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ABSTRACT

A wide range of predator evasion strategies have been re-
ported for several real predator-prey systems in the wild.
We investigate predator evasion in a system of many simu-
lated animal agents. Our model is capable of simulating the
emergent effects arising from around a million individual mi-
croscopic agents which make individual intelligent choices
based on their local information. We find oscillatory and
other system wide effects arising from enhanced abilities of
prey to evade their predators. We compare some of these
effects to real predator-prey observed patterns of behaviour.
We find additional oscillatory effects arising when prey can
evolve towards different levels of evasive behaviour.

KEY WORDS
agent-based model; animat; overcrowding; prey evasion;
evolved behaviour; intelligent agents.

1 Introduction

Predator-prey systems are often identified in nature and some
of the effects understood from direct observation. Many of
the system wide emergent effects are however still poorly
understood, but can be probed using computer simulations.
In this paper we investigate emergent oscillatory phenomena
arising from population fluctuations when prey are able to
evade predators.
Agent-based “Artificial life” models that simulate predator-
prey systems are well known [1–5]. Such models consisted of
agents that were entirely virtual and did not attempt to model
real animals. Further work moved towards a modicum of real
animal behaviour leading to the term “animats” [6, 7] being
used for agents that attempt to model some aspect of real an-
imal behaviour including flocking [8], sentinels [9] and ter-

Figure 1: The situation at step 900 of a typical run showing
animats on a square grassed area. Predators are black and
prey are white. Various macro-clusters, including spiral for-
mations, have emerged.

mites [10].
Many agent-based models focus on “emergence” – the com-
plex and often unexplained patterns and clusters that emerge
from the interactions of many agents at the local level. In
predator-prey models, emergence can take the form of the de-
fensive spirals and other features discussed in [11] and shown
in Figure 1.
One aspect of real predator-prey behaviour is the use of eva-
sion techniques by prey [12–14] and how such evasion ca-
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pabilities affect both predators and prey. Of particular in-
terest to this investigation is that large numbers of prey can
lead to overcrowding which reduces the ability of individual
prey to evade predators. Examples include: predators that
employ a “sit-and-wait” technique will usually benefit from
overcrowded prey [15]; prey that rely on hiding in burrows
can have hiding places reduced by overcrowding [16]; and
antelope in large herds are less vigilant than those in smaller
groups [17].
As the foundation for an investigation into prey evasion, this
paper makes use of a well-established spatial predator-prey
model [18]. The model consists of a flat plain on which large
numbers of animats reproduce, feed, flee predators or hunt
prey and eventually die. The model reproduces the repet-
itive cycle of behaviour that is well known from predator-
prey equation-based models such as the Lotka-Volterra equa-
tions [19]. Predators kill prey and, if prey is plentiful, the
predator numbers increase, leading to an increased demand
for prey which causes the prey population to drop and this in
turn causes a drop in the predator population which allows
the prey population to recover, and so the cycle continues.
The model abstracts over the exact mechanisms for traits such
as prey evasion to evolve or appear. The animat model we use
has a large enough population that we can study such effects
from a statistical perspective over several generations. Obser-
vations are therefore insensitive to microscopic implementa-
tion details on how such behaviour would actually be passed
on in real biological systems. We present results on intro-
ducing: different (but fixed) evasion abilities; the effect of
reducing evasion abilities when prey becomes overcrowded;
and the evolution of evasion abilities over several generations.
In this paper we investigate the effect on both predator and
prey populations, and thus on the carrying capacity of the sys-
tem as a whole, when prey make use of evasion techniques. A
brief overview of the predator-prey model is provided in Sec-
tion 2. The introduction of a fixed and identical evasion abil-
ity for all predators is discussed in Section 3. Section 4 inves-
tigates the effects of a reduction in prey evasion ability due to
prey overcrowding. Section 5 allows prey to evolve the eva-
sion ability through mutation across generations and investi-
gates how the evolutionary process affects both the predator
and prey populations. We discuss the implications of traits
such as evasion on the overall system in Section 6 and offer
some conclusions and ideas for future work in Section 7.

2 The Predator-Prey Animat Model

The model contains two groups of interacting agents (or “an-
imats”) – the predators and the prey. Every animat maintains
its current state including: current health; current age; and
an x-y location on the flat, 2-dimensional map. Every animat
also carries a set of rules (depending on species). The rule
sets are listed in Table 1.

Table 1: Animat Rule Sets in Priority Order
Rules for predator animats: Rules for prey animats:

1. breed if health > 50%
and mate adjacent

2. eat prey if health < 50%
and prey adjacent

3. seek mate if health >
50%

4. seek prey if health <
50%

5. randomly move to any
adjacent position

1. flee from predator if
predator is adjacent

2. graze (eat grass) if health
< 50%

3. breed if health > 50%
and mate adjacent

4. seek mate if health >
50%

5. randomly move to any
adjacent position

Each animat is initialised with the current age set to zero.
The age is incremented at every time step of the simulation
and when it reaches a pre-set maximum the animat “dies of
old age” and is removed. When a new animat is produced,
its current health value is set to the health of its parent. From
then on, the current health is reduced at each time step and if
it reaches zero the animat “starves to death”. If an animat eats
then the current health value is increased by a certain amount.
The concepts of health values and animats eating behaviours
are discussed in [20].
Prey eat “grass” which is placed at specific locations on the
map – usually in a contiguous area. Grass has a fixed “nu-
tritional value” and this is the number of health points that
prey receive when executing the graze rule. In these exper-
iments grass has a value of 45. Thus if a prey animat has
5% health and executes the graze rule, the animat’s health
would increase to 50%. However, if a prey animat with 75%
health executed the graze rule the animat’s health would rise
to 100% as current health may not exceed 100%. The exper-
iments discussed in this paper are situated on a large square
“grassed area” which explains why the diagrams showing an-
imat locations have a distinct edge. Containing the animats
is useful as it prevents populations becoming unmanageable
and also limits the area of the (otherwise unbounded) grid in
which the animats exist. Previous work [21] has shown that
these limitations do not affect the emergent patterns and clus-
ters of the model.
Predators eat prey but only do so if the predator is “hungry”
(i.e. the current health is less than 50%) and the prey is ad-
jacent to the predator. Early on in the development of the
model, a problem was identified whereby several predators
simultaneously consumed the same prey animat. This led
to the situation where a large number of predators could be
sustained by an unrealistically small number of prey. This
problem was solved by immediately removing “consumed”
prey from the list of available animats in the given time step.
Animats are updated in a random order which removes any
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spatial artifacts from the sweep order. The process is thus a
two-phase system in which the variables for all animats are
updated after all rules have been executed. A full discussion
of this (and other) methods of updating agent-based models
can be found in [22].
Rules are considered in a strict priority order. Each time-step,
every animat attempts to execute the first rule in its rule set.
However, most rules have conditions and often cannot be ex-
ecuted. For example, predators can only eat prey if prey are
adjacent. If the conditions for the first rule can not be satis-
fied, the animat attempts to execute the next rule in the set and
so on. Breeding only has a certain chance of success. This is
a simple alternative to factoring in a host of complicated pa-
rameters including birth defects, nutrition, adequate shelter
and so on. Changing the chances of a successful birth can
dramatically alter the number of animats and can sometimes
cause the extinction of all animats. For these experiments the
chance of a successful birth was set to 15% for predators and
80% for prey.

3 Experiment 1 – Evasion Values

Figure 2: Plot showing the effects of fixed prey evasion val-
ues on prey populations. As evasion becomes more effective,
predators catch less prey allowing the prey population to in-
crease.

In this experiment, prey evasion of predators was introduced
into the model in the following way: each prey agent was
assigned an “evasion value” which is an integer value in the
range 0 to 99. The evasion value is the percentage chance that
the prey will evade a predator. Hence, for example, there is
a 10% chance that prey will evade a predator when the prey
animat has an evasion level of 10 and there is an 80% chance
that prey will evade a predator when the prey animat has an
evasion level of 80, and so on.
Prey evasion is checked during the execution of a predator’s
“eat” rule. When a predator is adjacent to prey and executes

the “eat” rule, the chance of prey evasion is calculated. If
the prey successfully evades the predator, the predator does
not eat and thus does not receive the increased health from
eating.
At the start of any simulation, all prey receive the same ini-
tial evasion value. The model can then be run in one of two
ways: either every prey animat always carries the initial eva-
sion value, i.e. all prey are clones of the initial prey; or the
evasion level is allowed to mutate and evolve from one gen-
eration to the next.

Figure 3: Plot showing the effects of fixed prey evasion values
on predator populations. As evasion becomes more effective,
predators catch less prey causing the prey population to in-
crease and in turn making it easier for predators to find more
prey. The predator population thus also increases – at least
initially.

In this experiment, only the initial evasion values were used
(all prey were identical clones). This enabled an analysis of
the effect on both prey and predator populations of an evasion
value that was fixed across the prey population. Several fixed
evasion values were tested and the results are shown in Fig-
ure 2 (prey population) and Figure 3 (predator population).
Each data point in the graphs is the final population figure at
the end of a simulation of 1,000 time steps during which all
prey carried the designated evasion value.
There is a distinct change in the emerging formations of an-
imats during these experiments. Figure 4 shows the situa-
tion during a run where all prey have a fixed evasion value of
60. Because prey now have considerable success in evading
predators, the animat clusters have taken on a more diffuse
nature with prey in larger clusters. There are also small re-
gions where predators have died out and only prey remain.
This situation should be compared with Figure 1 in which
prey have an evasion value of zero.
An unexpected outcome of this experiment is that the preda-
tor population initially benefits from increasing the prey eva-
sion value, even though increased evasion values mean that
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Figure 4: The situation at step 1000 of a run in which all prey
have a fixed evasion value of 60. Predators are black and prey
are white. The tight formations shown in Figure 1 have disap-
peared and animats are spread in a far more diffuse manner.
This screen shot contains 11,694 predators and 132,434 prey
animats.

individual predators catch less prey. The reason for this is
that the increased evasion chance allows individual prey to
escape and breed, thus increasing the prey population. This
increased prey population, in turn, provides predators with
more available prey and thus the predator population also in-
creases, following the well known boom-bust population phe-
nomena [23].
However, when the prey evasion value reaches values above
70, individual prey becomes too difficult to catch and preda-
tors can not catch enough to sustain themselves. Thus, from
this point on, there is a rapid downward trend in predator
numbers and a corresponding increase in prey population.

4 Experiment 2 – Overcrowding

Experiment 1 in section 3 established that both predators and
prey benefit from prey evasion up to the point when the prey
evasion value moves above 70. Once the value is greater than
70, prey can successfully evade predators most of the time
leading to predators starving and the predator population be-
coming unsustainable.
In real animal populations, prey evasion does not reach such
levels as some other factor usually intervenes to prevent
this. These may include: predators evolving speed or other

attributes that reduce prey evasion effectiveness, predators
switching to other prey, or overcrowding of prey leading to
a reduction in the ability to evade predators [15, 17, 24].
In this experiment, we assume that when the prey popula-
tion exceeds 50,000 the prey will become overcrowded and
that this overcrowding leads to a reduction in the prey evasion
value. At this stage, the reduction is uniform across the prey
population but future work may include making the reduction
dependent on local factors. The formula used to calculate the
reduction is (where N is the total prey population):

if (N > 50,000) then:
reduction = (N - 50,000) / 1,800

else:
reduction = 0

The reduction is then applied to the evasion value for each
prey animat.
Once again, all prey were assigned a fixed prey evasion value
and offspring were clones, i.e. every prey animat only ever
carries the initial fixed evasion value. Several fixed evasion
values were tested and the results are shown in Figure 5 (prey
population) and Figure 6 (predator population). Each data
point in the graphs is the final population figure at the end of
a simulation of 1,000 time steps during which all prey carried
the designated evasion value.

Figure 5: Plot showing the effects of fixed prey evasion val-
ues on prey populations. Predators are assumed to benefit
from prey overcrowding and prey evasion values are reduced
if the population is over 50,000. As evasion becomes more ef-
fective, predators catch less prey causing the prey population
to increase.

The effects of prey overcrowding are clearly shown in Fig-
ure 5 where the prey populations never climb above 120,000.
This should be compared with the situation in which prey
overcrowding was ignored and prey populations reached fig-
ures in excess of 350,000 – see Figure 2. Figure 6 shows the
benefits to the predator population of prey overcrowding in
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Figure 6: Plot showing the effects of fixed prey evasion val-
ues on predator populations. Predators are assumed to benefit
from prey overcrowding and prey evasion values are reduced
if the population is over 50,000. As evasion becomes more
effective, predators catch less prey causing the prey popula-
tion to increase and in turn making it easier for predators to
find more prey. The predator population thus also increases.

Figure 7: Plot showing the effect on the prey population as
prey evasion values are allowed to evolve naturally over time.
All prey were initially assigned an evasion value of 0. The
overcrowding reduction is applied to evasion values, as de-
scribed in Experiment 2 in section 4. The plot shows the av-
erage population over ten runs with different random number
seeds.

that predators are always able to catch enough to eat and to
increase their population, even when prey evasion values are
above 70.

Figure 8: Plot showing the effect on the predator population
as prey evasion values are allowed to evolve naturally over
time. All prey were initially assigned an evasion value of
0. The overcrowding reduction is applied to evasion values,
as described in Experiment 2 in section 4. The plot shows
the average population over ten runs with different random
number seeds.

5 Experiment 3 – Evolution of Evasion

Experiment 1 in section 3 established that different (fixed)
prey evasion values affected both the predator and prey popu-
lations. In particular if the evasion value was too high (above
70) it became impossible for predators to sustain themselves
and the prey population consequently increased dramatically.
Experiment 2 in section 4 showed that both predator and prey
populations could be stabilized by introducing a reduction in
prey evasion values based on the size of the prey population.
This experiment investigates what happens when prey are al-
lowed to evolve an evasion value. In this experiment, all prey
were initially assigned an evasion value of 0 but evasion val-
ues were allowed to evolve due to mutation. When a new prey
animat is produced, it inherits the evasion value of its parent
but makes a random change to the evasion value (mutation).
This change can be as much as 5 more or less than the inher-
ited evasion value. For example, if an existing prey animat
has an evasion value of 25 its offspring can have evasion val-
ues anywhere in the range from 20 up to 30. However, prey
evasion values are restricted to a minimum of 0 and a maxi-
mum of 99.
Figure 7 and Figure 8 show the average populations of prey
and predators respectively over time as the evasion values
mutate and evolve within the prey population. Evasion values
initially climb rapidly as individual prey mutate to a higher
evasion value, enabling them to more easily evade predators
and thereby survive to produce more offspring. However, the
prey population increases to the point where prey become
overcrowded and a reduction is applied to the evasion values.
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Figure 9: Plot showing how the prey evasion values evolved
over the simulations shown in Figure 7 and Figure 8.

This enables predators to more easily catch prey and thus sta-
bilizes the populations in the typical “boom-bust” oscillations
characteristic of predator-prey models [23].
Figure 9 shows the change in the average prey evasion value
over time. There is an initial increase followed by a steady
state as the populations stabilize. The curve is quite smooth,
albeit with continued fluctuations superposed as animats ad-
just their evasiveness locally.

6 Discussion

An interesting and important general observation concerns
the interplay between what strategies work well for individ-
ual agents and what works best for the system as a whole. As
figures 2 and 3 show, a prey species that is good at predator
evasion may well survive initially but this can lead to massive
over population levels of prey which in turn lead to a mas-
sive increase in predators before the whole system crashes.
Predators then wipe out all prey before dying themselves of
subsequent starvation. In many other variations of the core
model we have found that such crashes are often avoided and
the spatial model “equilibrates” and settles to finite dynamic
mean population values around which stable and regular os-
cillations occur.
As the experiments in section 4 showed, a more realistic prey
evasion probability does allow the system to reach a dynamic
equilibrium mean values without complete extinction crashes
occurring. In general if the spatial model system is large
enough, even modestly large patches of local extinction can
be tolerated and the system as a whole will recover. There
are no obvious systematics to the fluctuations in the plots of
section 4.
The most interesting case is when individual animats are able
to adjust their microscopic behaviours and we observe a more

sophisticated set of oscillations present. In addition to indi-
vidual predator-prey coupled oscillations with a period of ap-
proximately 270 time steps, another slower envelope of 1,350
time steps emerges. We hypothesise that this is the adjust-
ment time constant for interacting spatial regions of interact-
ing animats to appropriately mix and adjust to prevailing con-
ditions.
There is another very much slower envelope observed in the
population plots, with a period in excess of 5,000 time steps
and that we believe from prior work is related to the size of
the model box region. The oscillation is likely caused by re-
flections from the boundary. A larger system size would have
longer time constant, or by imposing periodic boundary con-
ditions the effect could likely be removed. It is not overly
influential for this study of evasion effects however. Figure 4
suggests that at any given time there are a number of rela-
tively localised subsystems of interacting predators and prey
in the model system. If a local extinction does occur, then
stragglers colonize and take over that empty region and so
the overall system - providing it is large enough - will not
suffer total extinction, due to local fluctuations. A systemic
effect such as massive over success of, for example, prey (as
found in Experiment 1 in section 3) is necessary for a com-
plete crash.
There is scope for a more detailed Fourier time-series analy-
sis [25] averaged over sample configurations to see if relation-
ships between these periods and the model parameters can be
found.
Real animals observed in the wild likely interact over a highly
localised region. Nevertheless the individual regions - pride
groups and so forth - will still interact at their regional bound-
aries and hence individual choices will have an effect on the
system as a whole. The time constant for this coupling to-
gether of localised regions is an interesting area for further
investigation and could have implications for game manage-
ment decision making - animal relocation; fence and bound-
ary management and related practical options.

7 Conclusion

We have shown how predator evasion can be incorporated
into an individual agent-based “animat” model to produce a
number of emergent effects on the system as a whole. These
include: over population of prey followed by over predation
and subsequent system wide population crashes; and longer-
term approach to a dynamic mean equilibrium around which
stable spatial fluctuations are possible.
We have also observed the superposition of oscillations which
we hypothesize is due to a new regional effect caused by local
adjustments by individual animats within a region. We have
shown how our rule-based model supports individual animats
evolving traits and effectively adjusting a model parameter
to reach a dynamic equilibrium that is stable against whole
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system crashes.
We believe there is ample scope for a more extensive quanti-
tative analysis to further investigate interactions between lo-
calised regions. It may also be possible to investigate an im-
position of deliberate boundary walls or isolation artifacts
such as fences and animal group relocations, both in the
model as well as in real predator-prey systems.
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Abstract— For continuous multi-objective optimization prob-
lems there exists an infinite number of solutions on the Pareto-
optimal front. A multi-objective evolutionary algorithm attempts
to find a representative set of the Pareto-optimal solutions. In
the case of multi-objective multi-modal problems, there exist
multiple decision vectors which map to identical objective
vectors on Pareto front. Many multi-objective evolutionary
algorithms fail to find and preserve all of the multi-modal
solutions in the non-dominated solutions set. Finding more of
the available multi-modal solutions would give the decision
maker a greater selection when choosing between solutions.
In this paper, we present an extended version of the Pareto
estimation method, to increase the density of the multi-objective
multi-modal solutions. The method uses clustering analysis to
identify and separate different clusters in the decision variables
space which correspond to the multi-modal Pareto optimal
solutions. Then Pareto estimation procedure is employed for
these individual clusters, there by increasing the density of
available multi-modal solutions. The proposed method has
been tested on experimental test functions and is shown to be
successful.

Keywords: Multi-objective optimization, multi-objective multi-
modal problems, cluster analysis, genetic algorithms.

1. Introduction
Many multi-objective evolutionary algorithms (MOEAs) fail

to find and preserve all of the multi-modal solutions in the
non-dominated solutions set [1]. Due to the incorporation of
diversity operators in MOEA, they will assign low fitness values
to solutions that are densely clustered in objective space, which
will eventually lead to their elimination from the population.
Hence they can identify only one set of decision vectors out
of the multi-modal solutions and converge to any one of the
global optima out of multiple global optima present in the
multi-objective multi-modal problems. Finding the multi-modal
solutions would allow the decision maker a greater choice when
choosing between solutions. For example, in chemical process
optimization the decision maker would want to know about
different temperature settings for which the process can deliver
the same results [2].

In this work, we present an extended version of the Pareto es-
timation method [3], which can be used to increase the number
of multi-modal solutions. The method uses clustering analysis to

Fig. 1: A many to one objective function. The two setsC1

and C2 map to the same Pareto optimal solutions in the Pareto
optimal setP .

identify and separate different clusters in the decision variables
space which correspond to the multi-modal Pareto optimal
solutions. Then Pareto estimation procedure is employed for
these individual clusters, therefore increasing the density of
available multi-modal solutions in multi-objective problems.

The remainder of this paper is organized as follows. In
Section 2 a general definition of a multi-objective optimization
problem and key concepts and definitions are provided. Section
3 presents Pareto estimation method and in Section 4 the
extended Pareto estimation method with clustering is described
for multi-objective multi-modal problems. In Section 5 the
method is tested against a multi-objective multi-modal test
problem with three cases and these tests are reported in Section
6. This paper is summarized and concluded in Section 7.

2. Problems with Multiple Global Optima
A multi-objective problem (MOP) is defined as:

min
x

F(x) = (f1(x), f2(x), . . . , fk(x)) ,

subject tox ∈ S,
(1)

wherek describes the multiplicity of scalar objective functions
f(·) andS is the feasible region. The vector of variables,x,
in this context is often referred to as decision vector while
z = F(x) is referred to as objective vector. An implicit
assumption is that the individual scalar objective functions in
(1) are mutuallycompeting. The objective function described in
(1) can in some cases be a many-to-one mapping. Namely, there
existx,y ∈ S andx 6= y that map to the same objective vector,
F(x) = F(y). This can especially impact the optimization
algorithm when the objective function is many-to-one in the

10 Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  |



domain of Pareto optimal solutions, seeFig. 1. In this case, the
same Pareto optimal objective vector can be obtained for more
than one decision vector.

If the above assumptions hold then only a partial order-
ing can be defined unambiguously. Namely, when comparing
two decision vectorsx, x̃ ∈ S, it can so happen that their
corresponding objective vectors are incomparable. In practice,
this situation is resolved by a decision maker who will select
one solution over all others, thus inducing a form of complete
ordering. However this ordering is mostly subjective, even in
the case that utility functions [4] are used to ease the work of
the DM. In the absence of a DM a usual assumption is that the
relative importance of the objectives,fi, is unknown hence it
is reasonable to obtain several non-comparable solutions. The
problem of inducing partial ordering in Euclidean spaces was
initially studied by Edgeworth [5], and later further expanded
by Pareto [6]. The relations introduced by Pareto are defined as
follows for a minimization problem:

Definition 1: A decision vectorx⋆ ∈ S is said toweakly
dominate a decision vectorx iff fi(x

⋆) ≤ fi(x), ∀i ∈
{1, 2, . . . , k} and fi(x

⋆) < fi(x), for at least onei ∈
{1, 2, . . . , k} thenx⋆ � x.

Definition 2: A decision vectorx⋆ ∈ S is said todominate
a decision vectorx iff fi(x

⋆) < fi(x), ∀i ∈ {1, 2, . . . , k} then
x⋆ ≺ x.

Definition 3: A decision vectorx⋆ ∈ S is said to be
Pareto optimal if there is no other decision vectorx ∈ S
such thatfi(x) ≤ fi(x

⋆), ∀i ∈ {1, 2, . . . , k} and fi(x) <
fi(x

⋆), for at least onei ∈ {1, 2, . . . , k}.

Definition 4: Let F : S → Z, with S ∈ Rn andZ ∈ Rk.
If S is the feasible region then the setZ is the feasible region
in objective space. Given a setA ⊂ Z, the non-dominated
set is defined asP = {z : ∄z̃ � z, ∀z̃ ∈ A}. If A is the
entire feasible region in the objective space,Z, then the setP
is called thePareto optimal set (PS) or Pareto Front (PF).
Any elementz ∈ Z is referred to asobjective vector.

Definition 5: The ideal objective vector, z⋆, is the vector
with elements(inf(f1), . . . , inf(fk)) [7, pp. 16].

Definition 6: The nadir objective vector, znd, is the vector
with elements(sup(f1), . . . , sup(fk)), subject tofi be elements
of objective vectors in the Pareto optimal set [7, pp. 16].

Definition 7: The convex hull [8, pp. 24] of the setC =
{e1, . . . , ek}, denoted asconvC, whereei is a k × 1 vector
of zeros with1 on theith position, is referred to asCHI.

Definition 8: The extended convex hull (EHI) of the set
C, is the union ofCHI and the points in the affine space of
the setC produced by the projection of a Pareto optimal front,
with ideal vector0 and nadir vector1, onto the hyper-surface
of C.

Definition 9: Two decision vectorsx,y ∈ S are said to be
multi-modal solutions if they satisfyx 6= y, andF(x) = F(y)
for all i = 1, . . . , k.

3. Pareto Estimation Method
3.1 Motivation

Consider the following problem. At the end of an optimiza-
tion run on a multi-objective optimization problem we have
a set of solutions that approximate the Pareto optimal front.
Subsequently, these solutions are presented to a decision maker
(DM) who can identify a few candidate solutions that are of
interest, however, he would prefer a solution in the vicinity of
the aforementioned solutions. In this case the analyst does not
have many options and would either restart the optimization
in hope that the preferred solution of the decision maker is
obtained. An alternative is to use an interactive method such
as, progressive preference articulation [9]. These alternatives
present a number of difficulties of which the most obvious one
is that the computational load is increasing disproportionately
to the expected gain as there is absolutely no guarantee that the
preferred solutions will be obtained. This consideration may
lead the decision maker to abandon all the above scenarios and
simply select one solution from the already existing Pareto set
approximation.

The Pareto estimation method (PE) initially introduced in [3]
resolves, to some extent, this issue by allowing the decision
maker to explore more solutions in the vicinity of already
obtained ones without resorting to further optimization. Specif-
ically, Pareto estimation gives positive answer to the question:
“Given a set of Pareto optimal solutions, obtained by any
optimization algorithm, can specific solutions on the Pareto
front be obtained that are not part of the initially obtained Pareto
set?”.

3.2 Overview
In [3] it was shown that using the Pareto estimation method

the number of Pareto optimal solutions can be increased in
specific regions of interest. Pareto estimation was applied to a3-
objective portfolio optimization problem successfully targeting
two regions where the optimization algorithm used could not
obtain solutions across20 optimization runs. However, one of
the assumptions in [3] was that the objective function is one-
to-one, or at least that this condition obtains for the mapping
between the Pareto set in decision and objective space. If
this condition doesn’t hold the artificial neural network used
would face difficulties as for the same objective vector it would
have to produce two or more output vectors simultaneously,
seeFig. 3. In the rest of this section we briefly describe the
Pareto estimation method and then explain the motivation for
the extension introduced in this work. For a more complete
description of the original version of the Pareto estimation
method the reader is referred to [3].

A major motivation for the introduction of PE has been that
Pareto optimal solutions can be obtained in specific regions
of the Pareto front without the need to resort to additional
optimization runs. Although there is no guarantee that such
solutions will be produced the success rate of PE on a set
of difficult test problems illustrated that the relative cost of
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Fig. 2: Illustration of theΠ−1 mapping for a hypothetical Pareto setP .

Fig. 3: The original version of the Pareto estimation method
(top). The extended Pareto estimation method first clusters the
Pareto optimal decision variable vectors and identifies a NN for
every one (bottom).

applying PE before another method is justified [3]. PE depends
on the ability to identify a relationship (mapping) from Pareto
optimal solutions in objective space to decision space. This
relationship can then be manipulated to produce solutions in
specific parts of the Pareto front. We refer to this mapping as,
FP , whose domain of definition is the set of Pareto optimal
objective vectors,P , and its range their corresponding decision
variable vectorsD,

FP : P → D. (2)

We elected originally to use a radial basis neural network as it
has been shown that it has competitive performance compared
to the alternatives, see [10]. The theoretical argument that
supports PE is was presented initially in [11], [12] and was later
used by Zhang et al. [13] to create RM-MEDA, a regularity-
based estimation of distribution algorithm. The argument is
that for continuous multi-objective problems the Pareto optimal
set is a piecewise continuous manifold in decision space. This
effectively enables the identification of the mapping in (2).

3.3 Pareto Estimation - General Procedure
Pareto estimation is comprised of three main parts:

• A transformation of the Pareto optimal solutions in objec-
tive space,Π−1 : P → P̃ .

• The identification of the relationship,̃FP̃ : P̃ → D, where
D are decision vectors corresponding to Pareto optimal
objective vectors,P .

• The generation of a set,E , and its use with theFP̃ mapping
to generate a set of estimated decision vectors,DE .

The first part is essentially a projection of the setP onto the
CHI . This is essential as it simplifies the task of generating
the setE to a large degree, seeFig. 2. Prior to application of
the projection the setP is normalized using,

f̃i =
fi − z⋆i

zndi − z⋆i
, (3)

where z⋆ and znd can be estimated from the Pareto optimal
setP . Using the normalization in (3) the objectives inP are
restricted in the range[0, 1] as shown inFig. 2. Consequently
the normalized objective vectors are projected ontoCHI as
follows,

P̃ = PPT
E +

1

k
J|P|,k. (4)

The matrixJ|P|,k is a |P|×k unit matrix andPE is a projection
matrix obtained as:

PE = H(HTH)−1HT ,

H =

(

e1 −
1

k
1 · · · ek−1 −

1

k
1

)

,
(5)

where ei is a vector of zeros with itsith element set to1.
Next the artificial neural network (ANN) which is employed to
identify the mappingF̃P , is created (see [3]), using̃P andD
as the training inputs and outputs respectively.

When the ANN has been trained, it then can be used for
creating more Pareto optimal solutions in specific regions on
the PF given a set,E , is supplied as input.E can be generated
in one of two ways:

• In a specific region, presumably that is of interest to the
decision maker.

• On the entireCHI , which if PE is successful will cover
the entire Pareto front.

In this paper, we employ the second method as it illustrates
the ability of PE and its extended version presented here, to
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successfully identify Pareto optimal solutions across the entire
front. It should be noted however that we envisage that the
usage of PE would be to target specific parts of the PF as seen
in [3].

4. Clustering and Pareto Estimation for
Multi-Objective Multi-Modal Solutions

In the case of multi-objective multi-modal problems, there ex-
ists multiple decision vectors which result in identical objective
vectors on Pareto front as shown inFig. 1. This corresponds
to the many-to-one mapping of the multiple decision vectors
in D to the objective vectors inP . The decision vectors
corresponding to each multi-modal optimal fronts (Pareto front)
originate from different clustersCm in decision variable space
D. The ANN relationship will fail to produce the one-to-many
mapping ofF̃P̃ : P̃ → D. It will generate any one but not all of
the multi-modal solutions. In order to overcome this problem,
the different clustersCm of multi-modal solutions present in
the non-dominated set can be identified and separated using a
clustering algorithm. The obtained clusters of decision vectors
Cm and corresponding objective vectors inP will have one-
to-one mapping between decision variable space and objective
space for the Pareto front. Once the different clusters of decision
vectors Cm are separated, the ANN can be trained for the
individual cluster of solutionsCm and P̃ to identify number
of one-to-one mappings̃FP̃Cm

: P̃ → Cm.
Most clustering algorithms need the number of output clus-

ters to be pre-specified as an input to the algorithm. In general
we do not know a priori the number of clusters available in the
data set. Bezdek and Hathaway developed a visual assessment
of cluster tendency (VAT) method [14], to identify potential
clusters in a data set. Here the pair-wise dissimilarities between
then individuals of the data set are estimated and reordered,so
that all the neighbouring individuals are consecutively ordered.
The reorderedn × n matrix of pair-wise dissimilarities is
displayed as an intensity image withn × n pixels. Clusters
are indicated by dark blocks of pixels along the diagonal of
the image. However, the VAT method is too computationally
costly for larger data sets. Wang et al., [15], proposed an
improved VAT (iVAT) and an automated VAT (aVAT) methods
to automatically determine the number of clusters and cluster
separation based on the difference between diagonal blocks and
off-diagonal blocks in the image of the reordered dissimilarity
matrix. In this paper, the iVAT and aVAT [15] methods are
used for identifying different clusters of decision vectorsCm in
D, which correspond to multi-modal solutions in the objective
spaceP . The steps involved in clustering and Pareto estimation
of multi-objective multi-modal solutions are summarised as
follows:

Step 1 Extract,P , the non-dominated individuals obtained at
the end run of an optimization algorithm, and,D the
associated decision vectors.

Step 2 Perform clustering analysis on the obtained decision
variable vectorsD using a clustering algorithm.

Step 3 The obtained clusters of decision vectorsCm and
corresponding objective vectorsPCm

will have one-
to-one mapping between decision variable space and
objective space.

Step 4 For each individual cluster normalizeP using (3).
Step 5 Project the normalizedP onto the thek−1 hyperplane

defined by the set of vectors{e1, . . . , ek−1} using (5)
and (4), to producẽP.

Step 6 Identify the mappingF̃P̃Cm

: P̃ → Cm using P̃ and
Cm as inputs and outputs, respectively, and use these
to train the ANN.

Step 7 Create the setE . In this work this is a set of evenly
spaced convex vectors.

Step 8 Use the setE as inputs to the ANN created in Step
5, to obtain estimates of decision vectorsCE .

Step 9 All the setsCE can be used with the objective function
F(·) to verify that the produced solutions are non-
dominated and acceptable.

5. Experimental Setting
We employed the following multi-objective multi-modal test

functions as seen in [1].

F(x) = (f1(x), f2(x))

=

(

n
∑

i=1

sin(πxi),

n
∑

i=1

cos(πxi)

)

xi ∈ [0, 6], i = 1, 2, ..., n.

(6)

The above objective functions are chosen since both objectives
are in conflict with each other and will have a trade-off in the
objective space. For the minimization case, the above problem
will have a known Pareto front which varies between−

∑n

i=1
i

to 0, wherei is the number of decision variables chosen. The
above problem is also a multi-objective multi-modal problem.
The two objective functions are periodic functions with a period
of 2. They will have efficient frontiers which correspond to
the Pareto-optimal solutions for all the decision variable values
varying in the rangesxi ∈ [2r + 1, 2r + 3/2], wherer is an
integer.

Deb and Tiwari [1] developed a generic evolutionary algo-
rithm: Omni-optimizer, which incorporates restricted selection
and crowding measure utilizing both objective and variable
space information to find and preserve a well distributed multi-
modal solutions. Here we use Omni-optimizer for solving the
multi-objective multi-modal test problem in all three cases.
Also we employ the ratio of the inverted generational distance,
DR(·, ·) and the ratio of the mean nearest neighbour distance
SR(·, ·) as well as the C-Metric. Due to space limitations we
cannot include a description of these metrics, the reader is
referred to [3].

6. Results and Discussion
In this paper, we are considering three test cases of the multi-

objective multi-modal optimization problem (6) with different
numbers of variables and population sizes in the optimization.
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Fig. 4: Case I: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom) in
objective space, decision variable space and image of clusters.
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Fig. 5: Case II: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom)
in objective space, decision variable space and image of clusters.
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Fig. 6: Case III: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom)
in objective space, decision variable space and image of clusters.
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6.1 CASE I
In the Case I, we have chosen two decision variablesxi ∈

[0, 6], i = 1, 2. for the optimization problem (6). Within the
range of these two variables the problem will have nine multi-
modal optimal fronts. We have set the population size to be200
and run the optimizer for500 generations. For the optimizer,
finding the global Pareto front is not so difficult in this problem.
However, finding all the multi-modal global Pareto fronts with
good distribution of solutions in corresponding decision vector
ranges is very difficult. In this particular instance, the Omni-
optimizer [1] is able to find all nine multi-modal optimal fronts
with 200 Pareto solutions with a good distribution of decision
vectors in all ranges ofxi ∈ [2r + 1, 2r + 3/2], where i =
1, 2 and r = 0, 1, 2. Fig. 4 shows the obtained Pareto optimal
solutions in top three sub-plots.

Cluster analysis using iVAT and aVAT [15] methods is
performed for the obtained Pareto optimal decision vectors.
The reordered dissimilarity matrix of200 decision vectors is
displayed as200 x 200 image with gray scaling in right hand
side sub-plot. The dark blocks appearing on the diagonal of the
image represent individual clusters; the size of each dark block,
represent number of individuals present in each cluster. It can be
seen from this plot, that each cluster (dark block) has atleast 18
individual solutions. After separating these clusters of decision
vectors, the procedure for Pareto estimation is executed. For
each cluster, the ANN is trained to find the one-to-one mapping
between objective space and decision vector space. Then this
ANN is used to estimate300 solutions in each cluster.

The quality of mapping estimated by ANN is highly depen-
dent on the supplied training decision vectors. If the training
data has a sufficient number of vectors, well distributed, then the
ANN will estimate a better mapping, otherwise, the mapping
estimated by ANN will be deceptive and may not generate good
solutions in the Pareto estimation process. After combining
all the solutions obtained from individual Pareto estimations,
we perform non-dominated sorting to remove any dominated
solutions from the set. At the end we have obtained around
2 300 non-dominated solutions out of2 700 solutions estimated.
In Fig. 4 the bottom sub-plots show plots for objective vectors,
decision vectors and gray scale image of the dissimilarity matrix
of estimated solutions. It can be seen from these sub-plots,
that Pareto estimation along with clustering is successfully
able to find many solutions for the multi-objective multi-modal
problem.

6.2 CASE II
In Case II, we have chosen the same objective functions with

three decision variablesxi ∈ [0, 6], i = 1, 2, 3.. Within the range
of these three variables the problem will have 27 multi-modal
optimal fronts each one corresponding toxi ∈ [2r+1, 2r+3/2],
wherei = 1, 2, 3 andr = 0, 1, 2.

We have set400 as the population size and run the optimizer
for 500 generations. The obtained400 non-dominated solutions
are shown in the top three sub-plotsFig. 5. The optimizer has

found all 27 multi-modal Pareto fronts, however, it is not able
to obtain good distribution of solutions in all the corresponding
decision vectors ranges. This can be easily observed from the
image of clusters, in which some clusters have more than 70
solutions, where as some clusters got very less number of
decision vectors around2 or 3.

We applied Pareto estimation to each cluster of solutions,
tried to estimate200 solutions for each cluster. After combining
the solutions estimated from all the clusters, non-dominated
sorting is performed to get the non-dominated solutions. Around
1 950 solutions found to be non-dominated out of5 400 esti-
mated solutions. The method is able to estimate around150
to 200 non-dominated solutions in some clusters, but failed to
estimate more solutions in clusters where there are insufficient
number of solution used for training the ANN. InFig. 5
the bottom three sub plots show the estimated non-dominated
solutions, in objective space, decision variable space and image
of clusters. (Note: Here the order of clusters in top and bottom
images is not same.)

6.3 CASE III

In Case III, we have chosen the same objective functions
with three decision variablesxi ∈ [0, 6], i = 1, 2, 3., but now
increase the population size to1 000 in optimization and run
the optimizer for500 generations. The obtained1 000 non-
dominated solutions are shown inFig. 6 top three subplots.
The optimizer has found all27 multi-modal Pareto fronts and
is now able to obtain a good distribution of solutions in all
the corresponding decision vectors ranges. This can be easily
observed from the image of clusters, in which clusters have
solutions in the range of20 to 60 solutions per cluster.

We applied Pareto estimation to each cluster of solutions and
tried to estimate150 solutions for each cluster. After combining
the solutions estimated from all the clusters, non-dominated
sorting is performed to get the non-dominated solutions. Around
3 000 solutions were found to be non-dominated out of4 050
estimated solutions. The method is able to estimate around
100 to 150 non-dominated solutions in each cluster. InFig. 6
the lower three sub-plots show the estimated non-dominated
solutions, in objective space, decision variable space and image
of clusters. It can be seen that, a very good distribution of
non-dominated solutions is obtained from the Pareto estimation.
(Note: Here the order of clusters in top and bottom images is
not same.)

Tables 1 and 2 summarize the various test metric computed
for the non-dominated solutions before and after the Pareto
estimation in all the three cases I, II, and III. These metrics
indicated that the proposed method is able to estimate well
distributed non-dominated solutions close to the true Pareto
front, when compare to non-dominated solutions obtained from
the Omni-optimizer.
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Table 1: DR(P ,PE) and SR(P ,PE) values of the obtained
solutions by OMNI-optimizer,P , and the estimated set,PE ,
by the extended Pareto estimation method.

IGD Ratio ESSm Ratio

Problem min mean std min mean std

Case I 5.2689 6.3300 0.5565 9.1278 11.3150 1.3969
Case II 1.8721 2.3615 0.2722 5.0175 5.6117 0.3843
Case III 1.8316 2.2347 0.1524 2.4162 2.9601 0.2344

Table 2: C-Metric values of the solutions obtained by OMNI-
optimizer, P , and the estimated set,PE , using the extended
Pareto estimation method.

C(PE ,P) C(P,PE )

Problem min mean std min mean std

Case I 0.4900 0.5848 0.0433 0.0000 0.0100 0.0042
Case II 0.4525 0.5200 0.0273 0.0000 0.0000 0.0000
Case III 0.5900 0.6154 0.0216 0.0000 0.0000 0.0000

7. Conclusions
For continuous multi-objective optimization problems, there

exist an infinite number of solutions on the Pareto-optimal front.
A multi-objective evolutionary algorithm (MOEA) attempts to
find a representative set of the Pareto-optimal solutions. If the
decision maker is not satisfied with the representative set found
by the MOEA, and wants to explore different solutions available
on the Pareto front, the MOEA needs to be re-run, which will
increase the number of function evaluations without providing
any guarantees that a suitable solution will be identified. In this
case, the Pareto estimation method can prove useful in order
to increase the density of available non-dominated solutions in
particular regions or the entire Pareto front. However, in the case
of multi-objective multi-modal problems, the Pareto estimation
method is not able to identify the one-to-many mapping of the
objective vectors to decision variables vectors.

In this paper, we have introduced an extended version of
the Pareto estimation method, to increase the density of multi-
objective multi-modal solutions. The method uses clustering
analysis to identify and separate different clusters in the deci-
sion variable space which correspond to the multi-modal Pareto
optimal solutions. These individual clusters are then used to
estimate the relation between objective space to decision space
using an ANN. Instead of a single network, as is the case in
the Pareto estimation method, we employ a network for each
individual cluster. These are then employed to estimate more
solutions for the selected cluster, presumably by the decision
maker, or all cluster. For testing purposes we have employed
the latter method in this work.

The proposed method has been tested on experimental test
functions, with three different case studies. We have used Omni-
optimizer [1] to solve the test problem in three cases, and
iVAT and aVAT [15] methods to identify different clusters of

solutions in the cluster analysis. In all cases, the extended Pareto
estimation method has successfully found many non-dominated
solutions corresponding to different multi-modal solutions. The
success of the proposed method highly depends on the number
of solutions available in an individual cluster for training and
estimating the one-to-one mapping between objective space and
decision vector space. In case II, the method failed to improve
density of the solutions in the clusters with a small number of
individuals. However, it has improved the density of solutions
in the remaining clusters representing multi-modal solutions to
the test problem. We leave for future work the evaluation of
the proposed method on a real-world system architecture design
problems, which have a tendency to have multi-model solutions.
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Abstract— Cancer is defined as a disease that involves 

changes or mutations in the cell genome. The underlying 

cause of mutations leading to cancer is DNA damage. Cancer 

genome sequencing includes cancer genome assembly and 

cancer genome alignment is through early detection 

improving survival opportunity of cancer patients. In this 

research, a bioinformatics approach is proposed to solve 

cancer genome sequencing by constructing De Bruijn Graphs 

along with using the Euler Path for finding an optimal cancer 

genome reassembly and the Smith–Waterman scoring matrix 

for cancer genome alignment optimization. 

Keywords: Cancer Genome Assembly, Cancer Genome 

Alignment, Bioinformatics Computing, De Bruijn Graphs, 

Smith–Waterman Matrix 

1 Introduction 

 Cancer is an important public health concern around 

the world. Cancer is defined as a disease that involves changes 

or mutations in the cell genome. These changes (mutations) 

produce proteins that disrupt the delicate cellular balance 

between cell division and quiescence, resulting in cells that 

keep dividing to form cancers. The underlying cause of 

mutations leading to cancer is DNA damage.  

DNA damage In human cells, the estimated average 

number of DNA damages occurring per hour is about 800, and 

the number per day is about 19,200 [1]. Under normal 

circumstances, a healthy cells repair virtually all of these 

damages. Damages that are not repaired are termed mutations. 

When a single cell acquires enough mutations in the DNA 

sequence of relevant ‘cancer gene(s)’ it begins to behave in an 

abnormal way characteristic of cancer. Cancer genome 

sequencing includes cancer genome assembly and cancer 

genome alignment is through early detection improving 

survival opportunity of cancer patients.  

2 Cancer genome assembly 

For the last 30 years, fragment assembly followed the 

‘‘overlap–layout–consensus’’ paradigm [2]. Although this 

approach proved to be useful in assembling clones, it faces 

difficulties in genomic shotgun assembly: the algorithms often 

unable to resolve repeats even in prokaryotic genomes. So, in 

the past decade, there has been a newly approach: instead of 

‘‘overlap–layout–consensus’’ paradigm, the new algorithm is 

based on the notion of the De Bruijn graph and transform the 

cancer genome assembly problem into an Euler super path 

problem [3]. 

2.1 The De Bruijn graphs 

 Dutch mathematician Nicolaas De Bruijn finds a cyclic 

sequence of letters taken from a given alphabet for which 

every possible word of a certain length (k) appears as a string 

of consecutive characters in the cyclic sequence exactly once. 

[4][5] 

 
Figure 1: De Bruijn graph. 

 There exist n
k
 k-mers in an alphabet containing n 

symbols. If our alphabet is instead 0 and 1, then all possible 

3-mers are simply given by all eight 3-digit binary numbers: 

000, 001, 010, 011, 100, 101, 110 and 111. The circular 

superstring 0001110100 not only contains all 3-mers but also 

is as short as possible, as it contains each 3-mer exactly once 

shown in Figure 1. 

2.2 The Euler path problem 

 The Euler path problem, having been considered as one-

stroke drawing problem, is a path in a graph which visits 

every edge exactly once. Euler proved that a necessary 

condition for the existence of Eulerian circuits is that all 

vertices in the graph have an even degree. If there are no 

vertices of odd degree, all Eulerian paths are circuits. If there 

are exactly two vertices of odd degree, all Eulerian path start 

at one of them and end at the other. 

3 Cancer genome alignment 

  Cancer genome alignment is a way of arranging the 

genome sequences of DNA to identify regions of similarity 

that may be a consequence of functional, structural, 

or evolutionary relationships between the sequences [6]. If 

two sequences in an alignment share a common ancestor, 

mismatches can be interpreted as point mutations and gaps as 

insertion or deletion mutations introduced in one or both 

lineages in the time since they diverged from one another. 

3.1 Smith–Waterman algorithm 

 The Smith–Waterman algorithm [7] finds the most 

similar subsequences of two sequences by dynamic 

programming. The algorithm compares two sequences by 
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computing a distance that represents the minimal cost of 

transforming one segment into another. The function of 

smith-waterman algorithm is as following: Consider two 

strings S1 and S2 of length l1 and l2. To identify common 

subsequences, the Smith – Waterman algorithm computes the 

similarity H(i, j) of two sequences ending at position i and j of 

the two sequences S1 and S2. The computation of H(i, j) is 

given by the following recurrences: 

 (   )       

{
 
 

 
 

 
 (   )

 (   )

 (       )     (       )

 

 (   )      {
 (     )    

 (     )   
 

 (   )      {
 (     )    

 (     )   
 

 Where 1 ≤ i ≤ l1, 1 ≤ j ≤ l2 and sbt is defined as value 2 if 

the comparison is equal, otherwise it is 0. Initialization of 

these values are given by: H(i,0) = E(i,0) = 0, 0 ≤ i ≤ l1, H(0,j) 

= F(0,j) = 0, 0 ≤ j ≤ l2 The following figure, Figure 2, is an 

example of the Smith–Waterman algorithm for two genome 

alignment. 

  A T C T C G T A T G A T G 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G 0 0 0 0 0 0 2 2 1 0 0 2 1 0 

T 0 0 2 1 2 1 1 4 3 2 1 1 3 2 
C 0 0 1 4 3 4 3 3 3 2 1 0 2 2 
T 0 0 2 3 6 5 4 5 4 5 4 3 2 1 
A 0 2 2 2 5 5 4 4 7 6 5 6 5 4 
T 0 1 4 3 4 4 4 6 5 9 8 7 8 7 
C 0 0 3 6 5 6 5 5 5 8 8 7 7 7 
A 0 2 2 5 5 5 5 4 7 7 7 10 9 8 

C 0 1 1 4 4 7 6 5 6 6 6 9 9 8 

Figure 2: Example of the Smith–Waterman 

4 DNA computation with sticker-based 

 The sticker-based model employs two basic groups of 

single-stranded DNA molecules in its representation of a bit 

string. Consider a memory strand N bases in length 

subdivided into K non-overlapping regions each M bases long 

(thus, N ≥ M *K). Each region is identified with exactly one 

bit position (or equivalently one Boolean variable) during the 

course of the computation. Each memory strand along with its 

annealed stickers (if any) represents one bit string shown in 

Figure 3. 

 
Figure 3: Memory strands of the sticker model 

 In Table 1, a two-bit sticker (sm,1 and sm,2) model is used 

to represent letters A, G, C, T. 

Table 1: Two-bit sticker-based model 
sm,1 sm,2 Letter of mth site 

0 0 A 

0 1 G 

1 0 C 

1 1 T 

5 DNA manipulations 

 DNA Manipulations is also called Adleman-Liption 

model. A test tube is a set of molecules of DNA (a multi-set 

of finite strings over the alphabet {A, C, G, T}. In this 

subsection, DNA Model of computation has eight biological 

operations, shown as following: 

1. Extract. Given a tube P and a short single strand of DNA, 

S, the operation produces two tubes +(P,S) and –(P,S), 

where +(P,S)is all of the molecules of DNA in P which 

contain S as a sub-strand and–(P,S) is all of the molecules 

of DNA in P which do not contain S. 

2. Merge. Given tubes P1 and P2, P1, P2), where 

P1, P2) = P1 P2.  This operation is used to pour 

two tubes into one, without any change in the individual 

strands.    

3. Detect. Given a tube P, if P includes at least one DNA 

molecule we have ‘yes’, and if P contains no DNA 

molecule we have ‘no’. 

4. Discard. Given a tube P, the operation discards P. 

5. Amplify. Given a tube P, the operation, Amplify (P, P1, 

P2), will produce two new tubes P1and P2 so that P1, and 

P2 are totally a copy of P (P1, and P2 are now identical) 

and P becomes an empty tube. 

6. Append. Given a tube P containing a short strand of DNA, 

Z, and the operation will append A onto the end of every 

strand in P. 

7. Append-head. Given a tube P containing a short strand of 

DNA, Z, and the operation will append A onto the head of 

every strand in P. 

8. Read. Given a tube P, the operation is used to describe a 

single molecule, which is contained in tube P.  Even if P 

contains many different molecules each encoding a 

different set of bases, the operation can give an explicit 

description of exactly one of them. 

6 Construction of bio-logic and bio-

arithmetic bioinformatics circuitry 

Figure 4: Bio-logic molecular computing model 
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 We use logic truth tables to optimize and complete logic 

bio-circuit operations that can construct most basic DNA 

logic circuits.  These DNA logic circuits (gates) work in test 

tubes to implement basic logic operations.  These gates are 

AND, OR, XOR, etc. All operations of Optimal 

Bioinformatics Logic Computing are shown in Figure 4. 

6.1 And operation on bioinformatics 

computing 

 The AND operation of a bit with two input Boolean 

variables U and V generates a result of 1 if both U and V are 1. 

However, if either U or V, or both, are zero, then the result is 

0. The  symbol represents the AND operation. Assume that 

two one-bit binary numbers, Uk and Vk, for 1  k  n are 

applied to represent first and second inputs for the AND 

operation of a bit respectively. The ANDk for 1  k  n 

represents the output for the AND operation of a bit. The 

logic circuitry of parallel AND on one bit is shown in Figure 

5. The corresponding truth table of the one-bit AND is shown 

in Table 2. 

Table 2: The truth table of the one-bit AND 
Input Output 

Uk Vk ANDk = Uk  ∧ Vk 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 
Figure 5: Logic circuitry of parallel AND on one bit  

ParallelOneBitAND(T0, Uk, Vk, ANDk )  

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).  

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1) 

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1) 

If (Detect(T2
U=1,V=1) = = “yes”) then 

   Append-head(T2
U=1,V=1, ANDk

1)   EndIf  

If (Detect(T2
U=1,V=0) = = “yes”) then    

   Append-head(T2
U=1,V=0, ANDk

0)   EndIf  

If (Detect(T2
U=0,V=1) = = “yes”) then    

Append-head(T2
U=0,V=1, ANDk

0)   EndIf  
If (Detect(T2

U=0,V=0) = = “yes”) then   

Append-head(T2
U=0,V=0, ANDk

0)   EndIf  

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)  

EndAlgorithm  

Figure 6: Parallel AND operation of a bit algorithm 

6.2 OR operation on bioinformatics computing 

 The OR operation of a bit with two input Boolean 

variables U and V produces a result of 1 if U or V, or both, are 

1. However, if both U and V are zero, then the result is 0. A 

plus sign + (logical sum) or  symbol is normally applied to 

represent OR. Assume that two one-bit binary numbers, Uk 

and Vk, for 1 k n are applied to represent first and second 

inputs for the OR operation of a bit respectively. The ORk for 

1 k n represents the output for the OR operation of a bit. 

The logic circuitry of parallel OR on one bit is shown in 

Figure 7. The corresponding truth table of the one-bit OR is 

shown in Table 3. 

Table 3: The truth table of the one-bit OR 
Input Output 

Uk Vk ORk = Uk    Vk 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 
Figure 7: Logic circuitry of parallel OR on one bit 

ParallelOneBitOR(T0, Uk, Vk, ORk)  

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).  

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1) 

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1) 
If (Detect(T2

U=1,V=1) = = “yes”) then 

       Append-head(T2
U=1,V=1, ORk

1)   EndIf  

If (Detect(T2
U=1,V=0) = = “yes”) then    

    Append-head(T2
U=1,V=0, ORk

1)   EndIf  

If (Detect(T2
U=0,V=1) = = “yes”) then    

     Append-head(T2
U=0,V=1, ORk

1)  EndIf  
If (Detect(T2

U=0,V=0) = = “yes”) then   

     Append-head(T2
U=0,V=0, ORk

0)  EndIf  

T0= ∪(T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)  

EndAlgorithm 

Figure 8: Parallel OR operation of a bit algorithm 

6.3 XOR operation on bioinformatics 

computing 

 The Exclusive-OR (XOR) operation of a bit with two 

input Boolean variables U and V generates an output of 1 if 

both U and V are different values and 0 if they are the same 

values. The ⊕ symbol represents the XOR. Assume that two 

one-bit binary numbers, Uk and Vk, for 1 k n are applied 

to represent first and second inputs for the XOR operation of 

a bit respectively. The representation of the superscript 

denotes the value of variable (e.g. Uk
1
 denotes Uk=1, Uk

0
 

denotes Uk=0). The Sk for 1 k n represents the output for 

the XOR operation of a bit. The logic circuitry of parallel 

XOR on one bit is shown in Figure 9. The corresponding 

truth table of the one-bit XOR is shown in Table 4: 

Table 4: The truth table of the one-bit XOR 
Input Output 

Uk Vk XORk = Uk  Å Vk 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 
Figure 9: Logic circuitry of Parallel XOR on one bit 

ParallelOneBitXOR(T0, Uk, Vk, XORk)  

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).  

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)  

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)  

If (Detect(T2
U=1,V=1) = = “yes”) then 

       Append-head(T2
U=1,V=1, XORk

0)  EndIf  
If (Detect(T2

U=1,V=0) = = “yes”) then    

   Append-head(T2
U=1,V=0, XORk

1)  EndIf  

If (Detect(T2
U=0,V=1) = = “yes”) then    

   Append-head(T2
U=0,V=1, XORk

1)  EndIf  


 

 

 

 

 

 

 
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If (Detect(T2
U=0,V=0) = = “yes”) then   

   Append-head(T2
U=0,V=0, XORk

0)  EndIf  

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0).  

EndAlgorithm  

Figure 10: Parallel XOR operation of a bit algorithm 

6.4 Bio-arithmetic parallel adder on one bit 

A one-bit adder has three inputs and two outputs. Each 

input and output is one bit. The first and second input bits 

represent augend and addend, denoted by Uk and Vk, for 

1kn. The last input represents the carry, denoted by Ck, for 

1kn. The first output represents the sum of the augend, 

addend and carry, denoted by Sk, for 1 k n. Then, the 

second output represents the carry which is generated by the 

sum of the augend, addend and carry, denoted by Ck+1. This 

carry becomes the input of next one-bit adder. The logic 

circuitry of parallel adder on one bit is shown in Figure 11, 

and the truth table of the one-bit adder is shown in Table 5. 

Table 5: The truth table of the one-bit adder 

 

 
Figure 11: Logic circuitry of parallel adder on one bit 

Based upon the logic circuitry in Figure 11, we can derive the 

bio-algorithm of parallel adder on one bit in Figure 12. 

ParallelOneBitAdder(T0, Uk , Vk, Ck )  

ParallelOneBitXOR(T0, Uk,Vk, XORk)  
ParallelOneBitXOR(T0, XORk, Ck , Sk)  

ParallelOneBitAND(T0, Uk ,Vk , ANDk
1)  

ParallelOneBitAND(T0, Ck ,Vk , ANDk
2)  

ParallelOneBitAND(T0, Uk , Ck , ANDk
3)  

ParallelOneBitOR(T0, ANDk
1, ANDk

2, ORk
1)  

ParallelOneBitOR(T0, ORk
1, ANDk

3, ORk
2)  

T1 = +(T0,   
  

) and T2 = － ( T0,    
  

)  

If(Detect(T1)==”yes”) then       
Append-head (T1,Ck+1

1)     EndIf  

If(Detect(T2)==”yes”) then     

Append-head (T2,Ck+1
0)  EndIf  

T0=∪(T1, T2)  

EndAlgorithm 

Figure 12: Parallel adder algorithm on one bit 

6.5 Bio-arithmetic parallel adder on n bits 

In this section, we use the bio-arithmetic adder on one bit 

to construct the Parallel Adder. 

ParallelAdder(T0, U, V, n)  

Append(T0, C1
0)  

For k=1 to n  
 ParallelOneBitAdder(T0, Uk , Vk, Ck )   

EndFor  

EndAlgorithm 

Figure 13: Parallel adder algorithm 

6.6 Bio-arithmetic parallel comparator on one 

bit 

 The following algorithm is applied to compare stickers 

from Ta and Tb. Tube T0
=
 is the first parameter and includes 

comparison outcome to pass to algorithm ParallelComparator 

(T0
EDGE_temp

, T0
overlay

, Ta, Tb, m, n, g, b). Tube Ta and Tb contain 

two compared fragments individually. Number p represents 

the site on Ta (s1,1s1,2. . . sp,1 sp,2. . . sm,1sm,2) for 1≤p≤q and 

number d represents the site on Tb (s1,1s1,2. . . sd,1 sd,2. . . sm,1sm,2) 

for 1≤ d ≤q. Algorithm for parallel execution is shown in 

Figure 14. 

OneBitComparator(T0
=, Ta , Tb , p ,d) 

T1
1st_on= +(Ta,sp,1

1)and T1
 1st_off= − (Ta,sp,1

1) 

T2
2nd_on= +(Ta,sp,2

1) and T2
 2nd_off = − (Ta,sp,2

1) 

T3
1st_on= +(Tb,sd,1

1) and T3
 1st_off= − (Tb,sd,1

1) 
T4

 2nd_on= +(Tb,sd,2
1) and T4

2nd_off= − (Tb,sd,2
1) 

If (Detect(T1
1st_on)=‘yes’ and Detect(T3

1st_on)=‘yes’) then 

If(Detect(T2
2nd_on)=‘yes’ and Detect(T4

2nd_on)=‘yes’) then 

T0
=  = ∪(T0

=,T1
1st_on, T3

1st_on, T2
2nd_on,T4

2nd_on)  EndIf    EndIf 

If (Detect(T1
1st_on) = ‘yes’ and Detect(T3

1st_on) = ‘yes’) then 

If(Detect(T2
2nd_off)=‘yes’ and Detect(T4

2nd_off)=‘yes’) then 

T0
=  = ∪(T0

=,T1
1st_on, T3

1st_on, T2
 2nd_off,T4

 2nd_off)  EndIf   EndIf 

If(Detect(T1
1st_off) = ‘yes’ and Detect(T3

1st_off) = ‘yes’) then 

If(Detect(T2
2nd_on)=‘yes’ and Detect(T4

2nd_on)=‘yes’) then 

T0
=  = ∪(T0

=,T1
1st_off, T3

1st_off, T2
2nd_on,T4

 2nd_on)  EndIf    EndIf 

If(Detect(T1
1st_off) = ‘yes’ and Detect(T3

 1st_off) = ‘yes’) then 

If(Detect(T2
2nd_off)=‘yes’ and Detect(T4

2nd_off)=‘yes’) then 

T0
=  = ∪(T0

=,T1
 1st_off, T3

 1st_off, T2
 2nd_off,T4

 2nd_off)  EndIf  EndIf 

EndAlgorithm 

Figure 14: Parallel comparator for one bit 

6.7 Bio-arithmetic parallel comparator on n 

bits 

 The following algorithm, ParallelComparator (T0, T0 

overlay, Ta, Tb, m, n, g, b), is an n-bit comparator. The 

algorithm use “O” in a sticker-based model to represent four 

condition by calling function OneBitComparator (T0=, Ta, Tb, 

p, g+d) and get equal statement. For every bit Op,g represents 

one success match between sp,1, sp,2 from Ta and sg,1, sg,2 from 

Tb. Op,g would store this comparing result in tube T0overlay. 

The number m and n are regarded as the start and last site of 

fragment which contained in Ta. Number g and number b are 

regarded as the start and last site of fragment which contained 

in Tb. That is to say, the bit xg to xb in tube Tb are all 1. 

Algorithm for parallel execution is shown in Figure 15. 

ParallelComparator(T0, T0
overlay , Ta , Tb , m, n, g, b) 

For d =0 to Min(n-m,b-g) 
For p=n downto m 

OneBitComparator(T0
=, Ta, Tb, p, g+d) 

If (Detect(T0
=)=“yes”) then 

Append(T0
overlay,Op,g+d

 1) 

Discard(T0
=)  EndIf 

EndFor    

EndFor 

If (Detect(T0
overlay)=“yes”) then 
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T0=∪(T0, T0
overlay)  EndIf 

Discard(T0
overlay) 

EndAlgorithm 

Figure 15: parallel comparator for n bit 

7 Proposed bioinformatics approach for 

solving cancer  genome squencing 

problem 

7.1 Proposed optimal bioinformatics 

algorithms for solving cancer genome 

assembly 

 In the beginning, De Bruijn cancer genome assembly 

bioinformatics graphs are constructed and then a modified 

bioinformatics approach is using the Euler path to find an 

optimal solution for solving the cancer genome assembly. 

 Assume that xm is a q-bit binary number, which is 

applied to represent q elements. Every bit xm represent the mth 

element in S for 1 ≤ m ≤ q. We define xm1 denotes the value 

of xm is 1 and xm
0
 represent the value of xm to be 0. The 

following algorithm is used to construct sticker-based cancer 

genome assembly bioinformatics solution space for 2
q
 

possible fragments of a q-element set S shown in figure 16. 

Init(T0, q) 

(1) For m = 1 to q 

(1a) Amplify(T0, T1, T2) 
(1b) Append(T1, xm

1) 

(1c) Append(T2, xm
0) 

(1d) T0 = ∪(T1, T2) 

EndFor 

EndAlgorithm 

Figure 16: Bio-logical parallel n-bit init algorithm 

 

 

 

 

Figure 17: Example of figure 16 

The De Bruijn solution space of k-tuple - 1 fragments in 

tube T0 is constructed in Figure 18. Each fragment denotes 

one vertex in the De Bruijn graph. 

ParallelDeBruijnSolutionSpace(T0, k, q) 

For m = 1 to q – k+2 

(1)T3= +(T0, xm
1) and T4= −(T0, xm

1) 
For n = m to m + k – 2  

(2a)T5= +(T3, xn
1) and T6= −(T3, xn

1) 

(2b)Amplify(T5, T3, T3
backup)    

End For 

(3)If (m +k -1< =q) Then 

For n = q downto m +k -1 
(3a)T7= +(T5, xn

1) and T8= −(T5, xn
1) 

(3b) Amplify(T8, T5, T5
backup)     

End For 

Else If 

                T8 = ∪(T8, T5)   

End If 

(4)Append-head(T8, Bm) 

(5)Tsolution_space = ∪(Tsolution_space, T8) 

(6)T0 = ∪(T0, T4) 

End For 

EndAlgorithm 

Figure 18: Parallel De Bruijn solution space 

 

 

 

 

 

 

 

 

Figure 19: Effctive solution space from figure 18 

Figure 20 appends stickers in the head of each fragment 

in the effective solution space.  

ParallelStickerAppended(TSticker, Tsolution_space , q) 
(1)For n = q downto 1 

(1a)T3= +(TSticker, xn
1)and T4= −(TSticker, xn

1) 

If (Xn = A) Then 

(1b)Append-head(T3, sn,2
0) and Append-head(T3, sn,1

0) 

(1c)TSticker= ∪(T3, T4) 

Else If (Xn = G) Then 

(1d)Append-head(T3, sn,2
1) and Append-head(T3, sn,1

0) 

(1e)TSticker= ∪(T3, T4) 

Else If (Xn = C) Then 

(1f)Append-head(T3, sn,2
0) and Append-head(T3, sn,1

1) 

(1g)TSticker= ∪(T3, T4) 

Else If (Xn = T) Then 

(1h)Append-head(T3, sn,2
1) and Append-head(T3, sn,1

1) 

(1i)TSticker= ∪(T3, T4)  End If 

EndFor 

EndAlgorithm 

Figure 20: Two-bit sticker model construction 

 

 

 

 

Figure 21: Example of two-bit sticker model 

The algorithm in Figure 22 creates the De Bruijn 

bioinformatics graph. This algorithm merges the repeated 

vertex into one in the De Bruijn bioinformatics graph. Symbol 

“Ini” is used to indicate the ith repeated vertex.  

ParallelConstructDBGraph(TDB_graph, TSticker, q) 

(1)T9 = +( TSticker, B1) and T10 =－(TSticker, B1) 

(2)Append-head(T9, In1) 

(3)For i = 2 to size of T10 

(3a)T11 = +(T10, Bi) and T12 =－(T10, Bi) 

(4)For j = 1 to size of T9 

(4a)T13 = +(T9, Bj) and T14 =－(T9, Bj) 

(4b)ParallelComparator(T0
table,T13,T11,i, j, k) 

(5)If (Detect(T0
table ) = “yes”) then 

(5a)Append-head(T13, Ini) 
(5b)T9 = ∪(T13, T14) 

(5c)Discard(T13, T14) 

Terminate the execution of the loop     End If 

T0 

x1
1x2

1x3
1x4

1, x1
0x2

1x3
1x4

1, x1
1x2

0x3
1x4

1, x1
0x2

0x3
1 x4

1, 

x1
1x2

1x3
0x4

1, x1
0x2

1x3
0x4

1, x1
1x2

0x3
0x4

1, x1
0x2

0x3
0 x4

1, 

x1
1x2

1x3
1x4

0, x1
0x2

1x3
1x4

0, x1
1x2

0x3
1x4

0, x1
0x2

0x3
1 x4

0, 

x1
1x2

1x3
0x4

0, x1
0x2

1x3
0x4

0, x1
1x2

0x3
0x4

0, x1
0x2

0x3
0 x4

0 

Tsolution_space 

B4x1
0x2

0x3
0x4

1
 

B3x1
0x2

0x3
1x4

0 

B2x1
0x2

1x3
0x4

0 

B1x1
1x2

0x3
0x4

0
 

T0 

x1
1x2

1x3
1x4

1, x1
0x2

1x3
1x4

1, x1
1x2

0x3
1x4

1, x1
0x2

0x3
1 x4

1, 

x1
1x2

1x3
0x4

1, x1
0x2

1x3
0x4

1, x1
1x2

0x3
0x4

1, x1
0x2

0x3
0 x4

1, 

x1
1x2

1x3
1x4

0, x1
0x2

1x3
1x4

0, x1
1x2

0x3
1x4

0, x1
0x2

0x3
1 x4

0, 

x1
1x2

1x3
0x4

0, x1
0x2

1x3
0x4

0, x1
1x2

0x3
0x4

0, x1
0x2

0x3
0 x4

0 

Tsolution_space 

x1
0x2

0x3
0x4

1
 

x1
0x2

0x3
1x4

0 

x1
0x2

1x3
0x4

0 

x1
1x2

0x3
0x4

0
 

Tsolution_space 

s4,1
1s4,2

0B4x1
0x2

0x3
0x4

1 

s3,1
0s3,2

0B3x1
0x2

0x3
1x4

0 

s2,1
1s2,2

1B2x1
0x2

1x3
0x4

0 

s1,1
0s1,2

0B1x1
1x2

0x3
0x4

0
 

Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  | 21



(6)T9 = ∪(T13, T14) 
(7)Discard(T13, T14)     End For 

(8)If (Detect(T0
table ) = “no”) then 

(8a)Append-head(T11, Ini) 

(8b)T9 = ∪(T9, T11)    End If 

(9)Discard(T10 ) 
(10) T10 = ∪(T10, T12) 

(11)Discard(T11, T12) 

End For 

(12)TDBGraph = ∪(TDBGraph, T9) 

EndAlgorithm 

Figure 22: De Bruijn graph construction 

 
 

 
Figure 23: Example of De Bruijn graph construction 

The algorithm in Figure 24 constructs an optimal path 

using the modified Euler bioinformatics path approach.  

ParallelEulerPath(TDB_graph, TRouting, q, k) 

For m = 1 to q-k+1 

 T13 = +( TDBGraph, Inm) and T14 =－(TDBGraph, In m) 

For n = q-k+1 

       T15 = +( T13, Bn) and T16 =－(T13, Bn) 

       If (Detect(T15) = “YES”) then 

Append(TRouting, Bn) 
Discard(T15, T16) 

Terminate the execution of the loop   

End If 

Discard(T15, T16) 

End For 

TDBGraph = ∪(T13, T14) 

End For 

EndAlgorithm 

Figure 24: Parallel euler path algorithm 

 
Figure 25: Result of cancer genome assembly 

7.2 Proposed optimal bioinformatics 

algorithms for solving cancer genome 

alignment 

The resolution for the proposed cancer genome 

bioinformatics alignment is using the modified Smith – 

Waterman algorithms to construct a Smith – Waterman matrix 

for solving cancer genome alignment. Here two strings 

“ATAC” and “AAAC” are used as an example. The algorithm 

in Figure 26 constructs the Smith – Waterman matrix. 

ParallelSmithWatermanMatrix(Tmatrix, Ttest, Ttarget, q, k) 

For m = 1 to q 

 For n = 1 to k 

(1) ParallelConstructHFunction(TH, Tmatrix, Ttest, Ttarget, q, k) 

(2) ParallelStickerComparator(T0
table

 , Ttest , Ttarget , m, n) 

(3) If (Detect(T0
table ) = “yes”) then 

(3a)ParallelAdder(T>, T>, 2, n)  

(3b)Append(Tmatrix, XmYn   )  Else 

(3c)ParallelSubtractor(T>, T>, 1, n)  

(3d)Append(Tmatrix, XmYn   )  

End If 
End For   

End For 

End Algorithm 

Figure 26: Smith – Waterman matrix construction 

 

 

 

 

 

 

 

Figure 27: Example of Smith – Waterman matrix. 

The algorithm in Figure 28 produces the score function 

of Smith–Waterman algorithm in tube T
H
 using the H function 

to score every comparison bit in the Smith – Waterman matrix. 

ParallelConstructHFunction(TH, Tmatrix, Ttest, Ttarget, q, k) 

(1)ParallelConstructHFunction(TH ,Tmatrix, Ttest, Ttarget, q, k, 

i-1 , j-1) 

(2)ParallelConstructEFunction(TE, Ttest, Ttarget, q, k i , j-1) 

(3)ParallelConstructFFunction(TF, Ttest, Ttarget, q, k i-1 , j) 

(4)ParallelComparator(T=, T<, T>,TH ,TE, n)  

If (Detect(T0
< ) = “yes”) then 

(4a)ParallelComparator(T=, T<, T>,TE ,TF, n) 

Else If (Detect(T0
> ) = “yes”) then 

(4b)ParallelComparator(T=, T<, T>,TH ,TF, n) 

End If 

End Algorithm 

Figure 28: H Function construction 

 

 

 

 

 

 

Figure 29: H scoring of Smith – Waterman matrix 

The algorithm in Figure 30 produces the score function 

of Smith–Waterman algorithm in tube T
E
 using the E function 

to score every comparison bit in the Smith – Waterman matrix. 

ParallelConstructEFunction(TE, Tmatrix, Ttest, Ttarget, q, k) 

ParallelConstructHFunction(TH ,Tmatrix, Ttest, Ttarget, q, k, i , j-1) 
ParallelConstructEFunction(TE, Ttest, Ttarget, q, k i , j-1) 

ParallelSubtractor(TH, TH, α, n)  

ParallelSubtractor(TE, TE, β, n)  

ParallelComparator(T=, T<, T>,TH ,TE, n) 

End Algorithm 

Figure 30: E Function construction 
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Figure 31: E scoring of Smith – Waterman matrix 

The algorithm in Figure 32 produces the score function 

of Smith–Waterman algorithm in tube T
F
 using the F function 

to score every comparison bit in the Smith – Waterman matrix. 

ParallelConstructFFunction(TF,Tmatrix, Ttest, Ttarget, q, k) 

(1)ParallelConstructHFunction(TH ,Tmatrix, Ttest, Ttarget, q, k, 

i-1 , j) 

(2)ParallelConstructFFunction(TF, Ttest, Ttarget, q, k i-1 , j) 

(3)ParallelSubtractor(TH, TH, α, n)  

(4)ParallelSubtractor(TF, TF, β, n)  

(5)ParallelComparator(T=, T<, T>,TH ,TF, n) 

End Algorithm 

Figure 32: F Function construction 

 

 

 

 

 

 

Figure 33: F scoring of Smith – Waterman matrix 

The algorithm in Figure 34 finds an optimal path by 

computing a Smith – Waterman scoring matrix. 

ParallelTraceBackPath (Tmatrix, i, j, q, k) 

T1 = +( Tmatrix, X1
1) and T2 = －( Tmatrix, X1

1) 

T3 = +( T1, Y1
1) and T4 = －( T1, Yn

1) 

For m = 1 to q 
         For n = 1 to k 

T5 = +( Tmatrix, Xm
1) and T6 = －( Tmatrix, Xm

1) 

T7 = +( T1, Yn
1) and T8 = －( T1, Yn

1) 

ParallelComparator(TR
=, TR

<, TR
>,T3 ,T7, n) 

        If (Detect(TR
> ) = “yes”) then 

Discard(TR
>) 

            Ttrace = ∪(Ttrace, TR
>

 )End If   

End For  

End For 
 For n = 1 to k 

  T9 = +(Ttrace, Xm-1
1) and T10 =－(Ttrace, Xm-1

1) 

T11 = +(Ttrace, Yn-1
1) and T12 =－(Ttrace, Yn-1

1) 

T13 = +(T11, Xm-1
1) and T14 =－(T11, Xm-1

1) 

ParallelComparator(TR
=, TR

<, TR
>,T9 ,T11, n) 

If (Detect(T0
< ) = “yes”) then 

ParallelComparator(T=, T<, T>,T11 ,T13, n) 
Else If (Detect(T0

> ) = “yes”) then 

ParallelComparator(T=, T<, T>,T9 ,T13, n)  

End If 
Ttrace = ∪(Ttrace, TR

>
 )  

End For 

EndAlgorithm 

Figure 34: An optimal alignment path using Smith – 

Waterman scoring matrix 

 

 

 

 

 

Figure 35: Alignment example by Smith – Waterman matrix 

8 Conclusions 

Cancer is one of the most common causes of death 

worldwide. The underlying cause of mutations leading to 

cancer is DNA damage. The best opportunity for improving 

survival of cancer patients is through early detection, when 

curative surgical resection is possible. By using cancer 

genome assembly and alignment can solve the cancer genome 

sequencing problem and can early detect the DNA of cancer 

damage. Both cancer genome assembly and alignment 

problems are NP-complete. To resolve these issues, we first 

break cancer DNA sequences into DNA fragments. A 

modified and enhanced De Bruijn cancer genome assembly 

graphs is constructed. Finally, an optimal Euler path is found 

for solving the cancer genome assembly. Secondly, an 

enhanced Smith – Waterman scoring matrix is used to 

compare the reassembled path of the two new reassembled 

DNA (test cancer DNA and target DNA) and determine 

whether the test DNA is damaged or not. This research work 

fully utilizing parallelism presents a clear evidence of the 

ability of bioinformatics computing for solving cancer DNA 

sequence assembly and alignment more efficient. The 

experimental results of cancer genome assembly can be found 

in O(n
3
) polynomial bound. And the experimental results of 

cancer genome alignment is also in O(n*m) polynomial bound. 
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Abstract

This paper examines an interesting combinatorial optimisation problem that
generalises both the graph colouring and k-partition problems. The problem
has an interesting practical application in the construction of wedding seating
plans, where we seek to assign equal numbers of guests to tables such that they
are sat near friends and, perhaps more importantly, kept away from their ene-
mies. We describe an effective two-stage metaheuristic-based approach for this
problem which is currently used with the online tool on the commercial web-
site www.weddingseatplanner.com. We also present results on the performance
of this algorithm, indicating what factors can influence run time and solution
quality.

Keywords: Combinatorial Optimisation; Metaheuristics; Graph Colouring; Par-
titioning.

1 Introduction

The Wedding Seating Problem (WSP) involves taking a set of wedding guests and
assigning them to tables so that the following constraints are met:

• Guests belonging to groups, such as couples and families, should be sat at the
same tables;

• The number of guests per table should be equal;

• If there is any perceived animosity between different guests, these should be sat
on different tables; and similarly,

• If guests are known to like one another, they should be sat at the same table.

∗Corresponding author. Submitted to GEM’13 - The 2013 International Conference on Genetic
and Evolutionary Methods
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The WSP can be formally stated as type of graph partitioning problem. Specifically,
we are given a graph G = (V,E) comprising a vertex set V and an edge set E.
Each vertex v ∈ V is used to represent a group of guests who are required to sit
together (couples, families, etc.), with the size of each guest group denoted sv. The
total number of guests n is thus

∑
v∈V sv. Each edge {u, v} ∈ E then defines the

relationship between vertices u and v according to a weighting wu,v (where wu,v =
wv,u). If wu,v > 0 we interpret this to mean that we would prefer the guests associated
with vertices u and v to be sat on different tables. Larger values for wu,v reflect a
strengthening of this requirement. Similarly, negative values for wu,v mean that we
would rather u and v were assigned to the same table.

A solution to the WSP is defined as a partition of the vertices into k subsets
U = {U1, . . . , Uk}, such that

⋃k
i=1 Ui = V and Ui ∩ Uj = ∅, i, j ∈ {1, . . . , k}, i 6= j.

The requested number of tables k is defined by the user, with each subset Ui defining
the guests assigned to a particular table i.

The quality of a candidate solution for the WSP can be evaluated according to two
objective functions, both which we seek to minimise. The first of these, calculated:

f1 =
k∑

i=1

∑
∀u,v∈Ui:{u,v}∈E

wu,v (1)

reflects the extent to which the rules governing who sits with who are obeyed. The
second objective function then measures the degree to which the number of guests
per table deviates from the required number of either bn/kc or dn/ke:

f2 =
k∑

i=1

min

∣∣∣∣∣∣
 ∑

∀v∈Ui

sv

− ⌊n
k

⌋∣∣∣∣∣∣ ,
∣∣∣∣∣∣
 ∑

∀v∈Ui

sv

− ⌈n
k

⌉∣∣∣∣∣∣
 . (2)

It is evident that the WSP is intractable since it generalises two classical NP-hard
problems:

• If E = ∅ (or ∀{u, v} ∈ E, wu,v = 0) then f1 (Equation (1)) will always equal
zero. This means that the only goal is to ensure that the number of guests
per table is as equal as possible. Hence the problem reduces to the k-partition
problem.1

• If ∀v ∈ V, sv = 0 then f2 (Equation (2)) will always equal zero, implying that
the task of balancing the number of guests per table is no longer relevant. In
this case the problem becomes equal to the weighted k-colouring problem, which
is itself a generalisation of the NP-hard graph k-colouring problem [3].

In this paper we describe a two stage approximation algorithm for the wed-
ding seating problem. This algorithm is currently used on the commercial website
www.weddingseatplanner.com. In particular, this approach exploits the underlying
graph structures of the problem allowing effective neighbourhood operators to be de-
fined that are able to quickly identify high-quality solutions. In the next section we

1Note that the k-partition problem is also variously known as the load balancing problem, the
equal piles problem, or the multiprocessor scheduling problem.
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Figure 1: Specification of guest groups (left) and seating preferences (right).

describe the online interactive tool and algorithm in detail, before looking at some
its run characteristics in Section 3. Section 4 concludes the paper.

2 Problem Interpretation and Algorithm

On entering the website, the user is asked to input (or import) the names of all guests
into an embedded interactive table. Groups of guests that need to be seated together
(families etc.) are placed on the same rows of the table, thus defining the various
values for sv. At the next step the user is then asked to define seating preferences
between different guest groups.

Figure 1 shows a small example of this process. Here, eight guest groups ranging
in size from 1 to 4 have been input, giving 20 guests in total. The right-hand grid
then shows how the seating preferences (values for wu,v) are defined. If the user
wants to define a preference, they do so by clicking on the relevant cells in the grid.
Users are limited to three options: (1) “Definitely Apart” (e.g. Pat and John); (2)
“Rather Apart” (Pat and Ruth); and (3) “Rather Together” (John and Ken). In our
case these are allocated weights of ∞, 1, and −1 respectively. Note that it would
have been possible to allow the user to input their own weights here; however it was
felt by the website designers that, while perhaps more flexible, this ran the risk of
bamboozling the user while not improving the usability of the tool.

The overall strategy of our algorithm is classify the requirements of the problem
as either hard (mandatory) constraints or soft (optional) constraints. In our case we
consider just one hard constraint, which we attempt to satisfy in Stage 1 – specifi-
cally the constraint that all pairs of guest groups required to be “Definitely Apart”
are assigned to different tables. In Stage 2 the algorithm then attempts to reduce
the number of violations of the remaining constraints via specialised neighbourhood
operators that do not allow any of the hard constraints satisfied in Stage 1 to be
re-violated. We now describe the two stages of the algorithm in more detail.
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2.1 Stage 1

In Stage 1 the algorithm operates on the sub-graph G′ = (V,E ′), where E ′ = {{u, v} ∈
E : wu,v = ∞}. That is, G′ contains only those edges from E that define the
“Definitely Apart” requirement.2 Using this sub-graph, the problem of assigning all
guests to k tables (while not violating the “Definitely Apart” constraint) is equivalent
to the graph k-colouring problem.

The graph k-colouring problem is a widely studied combinatorial optimisation
problem for which a multitude of different algorithms are available [5]. In our case,
we use a variant of the DSatur heuristic [1] to produce an initial solution. DSatur
is a constructive algorithm that, at each iteration, selects the uncoloured vertex v that
currently has the largest number of distinct colours assigned to adjacent vertices. Ties
are broken by selecting the vertex with the largest degree. In our case the selected
vertex v is then assigned to any colour i ∈ {1, . . . , k} that currently features no other
vertices adjacent to v. If no such colour exists, v is kept to one side and is assigned to
a random colour at the end of the construction process, thereby introducing violations
of the hard constraint.

If the solution produced by the above process contains hard constraint violations,
attempts are next made to eliminate these. This is done using the TabuCol algo-
rithm of Hertz and de Werra [4, 2] which, while perhaps not as powerful as more
contemporary graph colouring algorithms, does have the advantage of being very
fast [5]. TabuCol uses the tabu search metaheuristic to make a series of small
changes (moves) to the candidate solution, attempting to find a solution for which
the cost function f1 = 0 (using G′). A move in the search space is performed using
a neighbourhood operator that takes a vertex v whose assignment to colour i is cur-
rently contributing to the cost, and then assigns it to a new colour j 6= i. The tabu
list is stored in a |V | × k matrix T and, upon performing this move, the element Tv,i

is marked as tabu for the next t iterations. In each iteration of TabuCol all possible
moves from the current solution are considered, and the move that is chosen is the
one that is seen to invoke the largest decrease (or failing that, the smallest increase)
in cost of any non-tabu move. Ties are broken randomly, and tabu moves are also
permitted if they are seen to improve on the best solution found so far.

Because speed is an issue with our online tool, TabuCol is only run for a fixed
number of iterations.3 If at the end of the process a solution with cost f1 = 0 has
not been achieved, then it is possible that the user has specified a k-value for which a
k-colouring is not achievable (i.e. the number of tables is too small to meet all of the
“Definately Apart” constraints). In this case, k is incremented by one and Stage 1
of the algorithm is repeated. This process continues until all hard constraints are
satisfied.

2For example, using the problem shown in fig. 1, E′ = {{1, 3}, {2, 4}, {3, 7}}.
3TabuCol is executed for 20n iterations, using a tabu tenure t that is proportional to the current

cost (t = 0.6f1 + r, where r is randomly selected from {1, 2, . . . , 9}), as recommended in [2].
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Figure 2: Example of a feasible 5-colouring of graph G′ = (V,E ′).

2.2 Stage 2

At the start of Stage 2 we will have achieved a k colouring of G′ = (V,E ′) for which no
pair of adjacent vertices is assigned the same colour. We call such a solution feasible
as it obeys all of the imposed hard constraints. In this stage we now try to eliminate
violations of the soft constraints by exploring the space of feasible solutions. Note
that movements in this space might be restricted – indeed the space might not even
be contiguous – and so it is necessary to use neighbourhood operators that allow as
much freedom-of-movement as possible. In our case this is achieved using tabu search
in conjunction with two operators, both that exploit the underlying structure of the
graph colouring problem. These are defined as follows:

Kempe-Chain Interchange: Given an arbitrary vertex v currently assigned to
colour i, and given a second colour j 6= i, a Kempe-chain is defined as a con-
nected subgraph starting from v that only contains vertices coloured with i and
j. Such a chain can be denoted Kempe(v, i, j).

A Kempe-chain interchange involves taking a particular Kempe-chain and swap-
ping the colours of all vertices contained within it. For example, in fig. 2,
Kempe(v7, 5, 2) results in a chain involving vertices {v4, v9} (assigned to colour
2) and {v7, v8} (assigned to colour 5). When the colours of these vertices are
interchanged, we observe that the resultant solution will still be feasible. This
is actually the case with all Kempe-chain interchanges [6].

It is also worth noting that Kempe-chains can vary in size, and some combina-
tions for Kempe(v, i, j) will overlap in that they result in the same Kempe-chain
being identified (e.g. Kempe(v7, 5, 2) = Kempe(v9, 2, 5)). Indeed, as the num-
ber of colours k is reduced, or the density of G′ is increased, then so will the
size of the chains and the amount of overlap. This feature is relevant with ap-
plications of tabu-search such as ours because, with appropriate book-keeping,
we can avoid evaluating the effects of a particular interchange more than once
when scanning the entire neighbourhood.

Swaps: The swap operator is used for performing further moves not contained within
the Kempe-chain neighborhood. Specifically, when scanning the set of Kempe-
chain interchanges, we can also identify pairs of non-adjacent vertices u, v that
both feature Kempe-chains Kempe(u, i, j) and Kempe(v, j, i) of size 1 (e.g.
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Figure 3: Solution costs (left) and run times (right) for four instances using various
k-values. For most of the left figure, the line for p = 0.0 is obscured by the line for
p = 0.3 (i.e. the same results were achieved).

Kempe(v1, 1, 3) and Kempe(v5, 3, 1) in fig. 2.) In these particular cases u and
v can have their colours swapped, but no hard constraint violations will occur
as a result.

In each iteration of this stage of the algorithm all possible moves from both neigh-
bourhoods are evaluated and the same acceptance criteria as Stage 1 are applied.
Once a move is performed, all relevant parts of the tabu list T are updated to reflect
the changes made to the solution.4 The cost function used is simply (f1 + f2) which
will always evaluate to a value less than ∞ (since violations of the hard constraints
cannot occur).

3 Algorithm Performance

The algorithm and interface described above has been coded in ActionScript 3.0 and
can be run via a web browser at www.weddingseatplanner.com. To ensure run times
are kept relatively short, and also to allow the interface to be displayed clearly on the
screen, problem size is limited to |V | = 50 guest groups of up to 8 people, allowing a
maximum of n = 400 guests.

To gain an understanding of the performance characteristics of this algorithm, a
large problem instance of |V | = 50 guest groups was constructed, with the size of
each group chosen uniform randomly in the range 1 to 8. This instance was then
modified such that a each pair of vertices was joined by an ∞-weighted edge with
probability p (meaning that a proportion of approximately p guest group pairs would
be required to be “Definitely Apart”). Tests were then carried out using values of
p = {0.0, 0.3, 0.6, 0.9} and number of tables k = {3, 4, . . . , 40}.

Figure 3 shows the results of these tests with regard to the costs and run times
that were achieved at termination. Note that for p > 0.0, values are not reported for
the lowest k’s as feasible k-colourings were not achieved (quite possibly because they

4That is, all nodes and colours effected are marked as tabu in T . For our application a tabu
tenure of 10 is used along with an iteration limit of 10n.
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do not exist). Also note that all runs took less than 5 seconds on our machine (3.0
GHz Windows XP machine with 3.18 GB RAM).

Figure 3 (left) demonstrates that with no hard constraints, balanced table sizes
can be achieved with all k-values up to 30. Beyond this point however, it seems
there are simply too many tables (and too few guests per table) to spread the groups
equally. Higher costs are also realised when p > 0.0 and the lowest achievable values
for k are used. This is because many guest group combinations (including many of
those that are required for achieving low cost solutions) will now contain at least one
hard constraint violation, meaning they will not be considered by the algorithm. This
also explains why low cost solutions are not achieved using p = 0.9.

We also note that for more constrained problems (lower k’s and/or larger p’s), the
Kempe-chains in the underlying graph colouring model tend to become larger and
less numerous. In practice this means that the size of the neighbourhoods scanned
in each iteration of tabu search is reduced, resulting in shorter run times as shown in
Figure 3 (right). The exception to this pattern is for low values of k using p = 0.0,
where the larger numbers of guests per table requires more overheads in the calculation
of Kempe chains and the cost function, resulting in an increase in run times.

4 Conclusions

An effective two stage heuristic algorithm has been proposed for the wedding seating
problem, making use of concepts taken from the observed underlying graph colour-
ing model. Experiments have been presented to demonstrate factors that influence
solution quality and run times.

The described tool has been live at www.weddingseatplanner.com since mid-2011
and receives approximately 1000 hits per month at the time of writing. We have
also found that it can be a useful tool for introducing students to many of the issues
surrounding combinatorial optimisation.
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Abstract - This paper discusses the results of applying 

Reinforced Ant Colony Optimization algorithm to solve the 

Traveling Salesman Problem (TSP), an NP Complete 

problem. To evaluate the performance of Ant Colony 

Optimization algorithm, comparative studies were done 

between research which introduced Hybrid Genetic 

algorithm [3] to solve the Traveling Salesman Problem and 

the original Ant Colony Optimization algorithm proposed by 

Dorigo[1]. After comparing the Hybrid and Genetic 

algorithms as well as the Nearest Neighbor (NN) algorithm 

and the original ACO against the reinforced ACO algorithm, 

it was found that the reinforced ACO algorithm performs the 

best with the tour length being the shortest. However, the 

convergence time for the reinforced ACO algorithm increases 

when the number of cities increases. Thus, although tour 

length was shorter for the reinforced ACO, for a large 

number of cities, the reinforced ACO algorithm took a 

relatively long time to find a tour. 

Keywords: Ant Colony Optimization algorithm, ACO, 

Combinatorial Optimization problems.  

 

1 Introduction 

  Ant Colony Optimization uses the behavior of ants as a 

model for coming up with techniques to solve optimization 

problems which are difficult to solve in polynomial time using 

brute force or other advanced algorithms. More specifically, 

the foraging behaviors of ants were used to develop the Ant 

Colony Optimization algorithm. This paper discusses the 

results of applying ACO algorithm to solve the Traveling 

Salesman Problem. 

 Some researchers have made attempts to extend the 

original ACO algorithm [1] to solve the Traveling Salesman 

Problem. In [2] and [4], Max-Min Ant System is used where 

only the best ant is allowed to update the pheromone trail, and 

the pheromone level on the path is kept between a certain 

lower and upper bound. In [3], hybrid GA was proposed. In 

[5], a rank-based ACO has been implemented where a few 

best ants are allowed to update the pheromone trail, and their 

weight is dependent on their rank, with the best ant being 

weighted the most. In [6], ants with memory solve a problem 

in parts, and use the best solutions from that part in later 

iterations. In [7], entropy is used to measure the information 

content within the pheromones on a path, and the entropy is 

used to determine the value for β, one of the parameters for 

the ACO algorithm. In [8], Ant Colony Optimization is 

combined with Genetic algorithm in a cooperative manner 

where information is exchanged between the two algorithms 

to produce better results. In [9], Ant Colony Optimization is 

combined with local search which improves the solution 

found by Ant Colony Optimization algorithm. In [10], a work 

similar to [8] has been done where genetic techniques were 

combined with ACO algorithm to yield better results. 

 This paper is organized as follows. Section 2 discusses 

TSP and the various methods used to solve TSP. Section 3 

discusses the conventional ACO algorithm and the reinforced 

ACO algorithm. Section 4 discusses the simulation technique. 

Section 5 discusses the comparative studies between 

reinforced ACO, conventional ACO and Genetic algorithms. 

Section 6 discusses the results. Section 7 discusses the 

conclusion and other future work. 

2 Traveling salesman problem 

 Traveling Salesman Problem is a classic NP Complete 

problem in the field of Computer Science. It creates a 

Hamiltonian Tour of all the cities in a graph, where each city 

is visited once. That is, given a list of cities, the problem is to 

find the shortest tour that visits all the cities and returns to the 

first city. Different variations to this problem are there. The 

problem is NP complete, meaning there aren’t any algorithms 

available to solve the Traveling Salesman Problem in 

polynomial time. There are many heuristics to solve the TSP 

which approximate the final answer. Some of the algorithms 

which approximate the final answer are Nearest Neighbor 

algorithm, Genetic algorithm, Simulated Annealing, and Ant 

Colony Optimization to name a few. Genetic algorithm, 

Nearest Neighbor algorithm, and Ant Colony algorithms are 

discussed and implemented in this paper. Comparative studies 

were also done between the above mentioned algorithms, and 

results of the study have been given in this paper. 

 

3 Ant colony optimization algorithm 

 Conventional Ant Colony Optimization (ACO) 

algorithm is a heuristic technique inspired by foraging 

behavior of ants. It is discussed in section 3.1. The reinforced 
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ACO algorithm and its simulation are discussed in the 

following section 3.2 to 3.3. 

3.1 Conventional ACO technique 

 In the ACO algorithm, ants are modeled as agents that 

search the problem space individually, but communicate with 

one another the quality of the solution found so far, and thus 

move towards a better solution. ACO uses a form of 

communication called “stigmergy”. Here, each ant develops a 

solution to the problem, and communicates with another ant 

the quality of the solution using pheromone trails. In the 

Traveling Salesman Problem, each ant starts at a point in the 

graph, and then the ants build a solution to the Traveling 

Salesman Problem. As they pass through an edge of the graph, 

they deposit pheromones on the edge. Another ant trying to 

create a tour will use the pheromone as a guide. The amount 

of pheromones deposited depends on the quality of the 

solution. In the Ant Colony Optimization algorithm, the 

amount of pheromone deposited is indirectly proportional to 

the tour length. The smaller the tour length, the more is the 

pheromone laid on the path. The pheromone also decays 

along a path with time. This allows for paths less traveled to 

have a lower pheromone trail as the pheromones evaporates 

with time. 

3.2 Reinforced ACO algorithm 

 Reinforced ACO was developed by modifying the 

original ACO. The premise of the original ACO algorithm is 

that an ant has to find the shortest path from the nest to the 

food source. However in TSP, this scenario is not true as the 

objective is to visit all the nodes starting from any node and 

find the shortest tour distance. The algorithm uses as many 

ants as the number of cities. The first objective is to go to the 

nearest node from the starting node. Therefore beta is set 

high, and a pheromone trail is laid such that the nearest city is 

the preferred city to visit. Next, beta is decreased so that the 

pheromone trails can guide the ants. However, this approach 

has a problem because pheromones evaporate with time. Thus 

less traveled edges see their pheromones evaporate. To allow 

less promising edges on the graph to be explored, the 

reinforced ACO algorithm increases the pheromones on an 

edge having low pheromone by a factor of 100 once every 10 

iterations. 

 The algorithm implemented is discussed below – 

procedure [best] = AS-TSP(max_it) 

Randomly initialize τij (pheromone on an edge from city i to 

city j) 

Place each ant k on a randomly selected city 

Let best be the shortest tour found so far and Lbest its length. 

Initialize Lbest to a very large value 

t ← 1 

while t < max_it(maximum number of iterations entered by 

user) do, 

For i = 1 to N do, 

Build T
k
(t), the TSP tour created by ant k, by applying (e-1) 

times, where e is the number of cities, the step below: 

At city i, choose the next city j with probability given by 

equation (1) – 

(t) = [τij(t)]
α
.[ηij]

β 
/ [τil(t)]

α
.[ηil]

β
     if jε  

Or 0 otherwise                                 (1)   



Equation (1) gives the probability of taking a certain edge(i,j). 

In the above equation, τij is the pheromone trail from node i to 

node j, and ηij is the visibility of the city which is given by 

1/dij where dij is the distance from city i to city j.  is the list 

of cities that are yet to be visited by ant k when it is at city i. α 

and β are constants defined by the user. 

End for 

Evaluate the length of the tour performed by each ant k. 

If a shorter tour is found, 

Then update best and Lbest 

End if 

For every city e do, 

Update pheromone trails by applying the following rule at 

iteration t: 

τij(t+1) ← (1-p) τij(t) + Δ τij(t) + b. Δ τ
b
ij(t) 

where 

Δ τij(t) = , k = 1, …, N, 

(t) =  Q/L
k
(t) if (i, j)ε T

k
(t) and 

0 Otherwise, 

 (t) =  Q/Lbest(t) if (i, j) ε best path and 0 otherwise 

where p is the forgetting factor, b is a constant, Q is a 

constant, L
k
 is the length of the tour performed by ant k, and 

Lbest is the best tour length found so far. 

End for 

For every edge in graph between city i and j 

If τij < K(constant defined by user) 

τij = τij * M every 10 iterations( M is  a user defined constant) 

End if 

End for 

t ← t + 1 

End while 

End procedure 
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Figure 1: Traveling Salesman tour constructed by the original ACO algorithm for 90-city TSP 

            Figure 2: Traveling Salesman tour constructed by the Reinforced ACO algorithm for 90-city TSP 
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Figure 3: Traveling Salesman Tour constructed by the Reinforced ACO for 30 cities 

Figure 4: Traveling Salesman Tour constructed by the Reinforced ACO for 50 cities. 
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3.3  Key features of reinforced ACO algorithm 

 To get better results than the ACO algorithm which 

converged to local optimal, changes to the algorithm were 

made. In the implementation, K was set to 80, and M was set 

to 100. The value of Q used was 100, while α was set to 1, 

and β to 100 and then 5. Additionally, to compute the 

pheromone trail left on the path, a forgetting factor, p, of 0.5 

was used. The paths that had a pheromone level less than 80 

had their pheromones increased every 10 iterations or time 

step. It was found that multiplying the pheromone levels by a 

factor of 100 gave the best results in terms of convergence 

time. This value is specific to this implementation as the value 

depends on how the forgetting factor or evaporation rate of 

the pheromones was set up, as well as other constants. Thus, 

this modification allowed paths that were less promising to be 

explored as well, and produce better results. 

4 Simulation of reinforced ACO 

 The reinforced ACO algorithm above was implemented 

using Java. The tour created visits every city the user wants to 

visit and ends at the starting city. To compare the results with 

Hybrid and Genetic algorithms [3], the coordinates of cities 

from the research in [3] was imported. Also, the original ACO 

algorithm proposed by Dorigo [1] was implemented. Fig. 1 

shows the tour created by implementing the original ACO 

algorithm with a tour distance of 81.20. 

 When implementing the original ACO algorithm, it was 

found that the algorithm got stuck in local optima.  That is, 

only some of the paths were being reinforced. The rest of the 

paths were slowly dying out, and not being explored at all. 

The reinforced ACO tries to overcome this pitfall. 

 Pheromones were initially deposited on each path via a 

random number generator. The pheromone was updated at the 

end of each tour by an ant. The number of ants created for the 

algorithm was equal to the number of cities. The program 

gives the shortest tour generated by the algorithm along with 

its tour length. The reinforced ACO algorithm was 

implemented on a range of cities, and the results of the 

implementation are shown in Figs. 2, 3, 4 and 5. The tour 

lengths are shorter than original ACO proposed by Dorigo [1]. 

Formatting instructions 

 

5 Comparative studies with pure GA, 

hybrid GA, and nearest neighbor 

 To evaluate the performance of the reinforced ACO 

algorithm, comparative studies were done with the original 

ACO algorithm proposed by Dorigo[1], the Nearest Neighbor 

algorithm, and Pure and Hybrid GA algorithms proposed by 

Kaur and Murugappan in [3] The methods and the 

implementations of the above mentioned algorithms are 

discussed in the following sections A through C. 

 

5.1 Pure GA 

 In Pure GA, the initial population was randomly created, 

and then allowed to reproduce and mutate. The fitness was 

evaluated based on tour distance with tours having lower 

distances getting higher fitness values. The result of the 

experiment is shown in Fig. 6. 

 

             Figure 6 : Pure GA route for 90 cities TSP [2, p. 4] 

Figure 5: Tour Length vs. Iteration for Reinforced ACO 

algorithm 
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5.2 Hybrid GA 

 In hybrid GA, the initial population was populated based 

on the results of Nearest Neighbor algorithm. Thus the initial 

population was of higher fitness than that of Pure GA. The 

individuals were crossed over and mutated with one another. 

The results of the experiment are illustrated in Fig. 7. 

5.3 Nearest neighbor algorithm 

 In the Nearest Neighbor algorithm, the salesman starts at 

a random city and repeatedly visits the nearest city until all 

cities have been visited. It converges very quickly to a 

solution but is usually not the optimal one. The result of 

applying the Nearest Neighbor algorithm to TSP is given in 

Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Results 

 The Reinforced ACO algorithm outperformed hybrid 

GA, pure GA, the conventional ACO and the Nearest 

Neighbor algorithms by giving the shortest tour distance. This 

section gives the results of applying the reinforced ACO 

algorithm on the Traveling Salesman Problem with 30, 50, 70 

and 90 cities. Table 1 summarizes the tour distance and the 

time taken for convergence of the TSP problem for different          

number of cities using Pure GA, Hybrid GA, the conventional 

ACO, and the reinforced ACO algorithms. As expected, the 

time of convergence increased with the number of cities. As 

can be seen from the Table 1, the reinforced ACO algorithm 

performs the best in term of tour distance. However, the 

convergence rate of reinforced ACO is higher than that of 

hybrid GA or Pure GA as it takes a longer time to find a better 

tour. 

 

TABLE 1: CONVERGENCE RATE FOR THE TOUR OF N CITIES FOR PURE GA, HYBRID GA, ACO, AND 

REINCORCED ACO ALGORITHMS 

 

Citie

s N 

Best NN 

Route 

distance 

Pure GA Hybrid GA Original ACO Reinforced ACO 

Distance Time(s) Distance Time(s) Distance Time(s) Distance Time(s) 

30 48.1 43.7 <5 45.5 <5 44.71 2.27 44.5 20.18 

50 63.2 61.9 <5 61.4 <5 63.05 6.86 60.15 29.25 

70 73.7 78.6 <5 69.9 <5 72.68 22.61 68.28 28.6 

90 86.3 98.6 <5 81.5 <5 80.31 38.75 78.27 57.3 

   Figure 8: Nearest Neighbor route for 90 cities TSP [2, 

p.4] 

 

        Figure 7: Hybrid GA route for 90 cities TSP [2, p. 5] 
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7 Conclusion and future works 

The results show that reinforced ACO algorithm provided 

the shortest tour length compared with conventional ACO, 

Hybrid GA, Pure GA and Nearest Neighbor methods. The 

tour distance of reinforced ACO algorithm becomes 

significantly smaller as the number of cities increase. As 

expected, the time of convergence also increases as the 

number of cities increase. Since the convergence time is high, 

future work can be done to address that. It would be 

interesting to embed the solution found from Genetic 

algorithms to reinforced ACO algorithm where the 

pheromones obtained from a run of a Genetic algorithm are 

used by the reinforced ACO algorithm. Also, a different 

heuristic such as an approximation algorithm can be used in 

addition to Nearest Neighbor distance. Future works can also 

include ants with memory. 
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Abstract—This paper presents a method based on the particle 
swarm optimization algorithm applied to estimate harmonic 
components in radial distribution feeders. It is important to 
mention that this method is not applied as harmonic state 
estimator, neither to estimate the total harmonic distortion at the 
substation. So, the proposed method can be employed to estimate 
the harmonic components in specific points of common coupling 
between the harmonic source and the feeder. In this sense, some 
case studies were prepared in order to validate the method. The 
point of common coupling where the harmonic source is located 
were obtained by means of expert knowledge. Nevertheless, the 
specialist/engineer should be induced to err the exact position of 
the harmonic source due to the presence of other harmonic 
sources with lower levels of distortion. Thus, the precision rate of 
this method was evaluated in accordance with the uncertainty 
that can be generated by the expert knowledge. These analysis 
are crucial to verify the performance of the proposed method, 
mainly, in the utility's point of view. 

Keywords—harmonic components, harmonic estimation, 
particle swarm optimization, power quality. 

I.  INTRODUCTION 
Nowadays, the utilities have the concern for the electricity 

delivered to the consumers. Moreover, we have the energy 
efficiency, where some linear loads had been replaced by 
nonlinear loads. Thus, it is possible to observe the increment of 
current and/or voltage harmonic distortions in the distribution 
feeders. Given these high level of distortions, it becomes clear 
the poor power quality which mainly affect the consumers. 

In conformity with these premises, some research have 
been developed with the intuit to reach a precisely  harmonic 
power flow to radial and/or weakly meshed distribution feeders 
[1-3]. 

However, in order to employ the above mentioned research, 
it is necessary a prior knowledge about the harmonic 
components of each Point of Common Coupling (PCC). 
Hence, this information is very difficult to obtain due to the 
absence of power quality monitors installed at these points or 
smart meters installed at the consumers. 

Due to the difficult to determine the harmonic power flow, 
the research in this area were directed to harmonic state 
estimation [4-5] and nonlinear load identification [6-7]. It is 
important to highlight that state estimators need some 
measurements to determine the harmonic components at each 
bus. 

Among the methods previously cited, we can highlight the 
research developed by [7], where the authors use the IEEE 34-
bus with unbalanced voltages and light loading conditions. So, 
the proposed method was designated to determine the precise 
location of harmonic sources based on harmonic power flow 
calculation. However, this method needs a total of 26 meters 
located at the feeder. Thus, this kind of method is impractical 
owing to the high cost for purchase harmonic analyzers. 

In  [5], a Bayesian method was proposed to estimate the 
state of the IEEE 13-bus. It is important to say that the authors 
use pseudo-measurements and the IEEE 13-bus was modified 
to be a balanced feeder, but this condition is improbable in 
distribution feeders. Moreover, this method needs 5 harmonic 
analyzers to realize the state estimation.  

Following the context above cited, this paper proposes a 
method that is capable to determine the harmonic components 
at a specific PCC. Hence, this technique must be employed to 
obtain the load with the higher harmonic distortion based on 
the expert knowledge. 

This paper was divided in five sections, where in Section I 
was given the introduction, Section II presents the 
characteristics of the distribution feeder modeled and 
simulated. In the Section III we describe the harmonic 
estimator aspects. Finally, the Sections IV and V are, 
respectively, designated to show the results of each case study 
and the research conclusions. 

II. DISTRIBUTION FEEDER MODELED AND SIMULATED 
The simulated radial distribution feeder contain 20 buses 

and consists in a modification of the IEEE 13-bus [8]. 
Therefore, some characteristics such as transformers, loads, 
and overhead lines are similar to IEEE 13-bus. Figure 1 shows 
the 20-bus distribution feeder proposed to evaluate the 
methodology. 

In order to model and simulate the 20-bus distribution 
feeder, we use the ATP (Alternative Transient Program) 
software [9]. Despite of this software be employed to transient 
analysis, in this case it is used to steady-state. 

Other features concerning to the 20-bus distribution feeder 
are described in Table I, where were discriminated: source, 
transformers, capacitor bank and meters (voltage and current).  

The Figure 1 shows the 20-bus line diagram where two 
power quality meters were allocated (one of them between the 
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buses 10 and P1 and the another one between the buses 50 and 
P2).  

Only the power quality meter at the end of the feeder was 
randomly allocated. This location was chosen in order to better 
cover the feeder.  
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Fig. 1. Line diagram of the 20-bus radial distribution feeder. 

Due to this research is focused on the identification of 
harmonic sources, a 6-pulses rectifier was modeled to supply 
RC and RL loads. Thus, six case studies were created based on 
the 20-bus distribution feeder and the 6-pulses rectifier. This 
case studies will be presented in the Section IV. 

III. HARMONIC ESTIMATION AT THE PCC 
The harmonic estimator proposed in this paper was 

addressed to determine a mean harmonic distortion at the PCC. 
In this sense, the expert knowledge is responsible to define a 
possible bus where the predominant harmonic source is 
located. However, it is possible that the expert knowledge is 
uncertain. So, the harmonic estimator attempts to minimize this 
uncertainty. 

Bearing in mind this pre-determined bus, the estimator 
follow the procedures shown in Figure 2. These procedures 
must be done to obtain the mean value of harmonic 
components at the PCC. 

Analyzing the Figure 2, it is possible to note that the 
harmonic estimator needs the acquisition of actual (measures 
obtained after entry of the harmonic source) and historical 
measurements (before the entry of the harmonic source). The 
historical and actual data are obtained from current and voltage 
meters allocated at the points highlighted in Figure 1 (P1, 10, 
P2, 50). 

Based on these measurements, the Discrete Fourier 
Transform (DFT) is applied to obtain the frequency spectrum 

for each current and voltage acquired. So, the results of the 
DFT are presented to the power quality engineer in order to 
support the decision, i.e., the determination of the bus where 
the harmonic source is probably located. 

TABLE I.  20-BUS RADIAL DISTRIBUTION FEEDER: METERS, 
TRANSFORMERS AND SOURCE CHARACTERISTICS. 

Source 

Nominal Line-to-Line Voltage (kV) 88.0 

Resistance - Zero Sequence (Ω) 20.805 

Resistance - Positive Sequence (Ω) 4.062 

Inductance - Zero Sequence (mH) 203.721 

Inductance - Positive Sequence (mH) 52.540 

Nominal Frequency (Hz) 60 

Substation Transformer 

Connection Δ-Yg 

Primary Winding - Line-to-Line Voltage (kV) 88.0 

Secondary - Winding Line-to-Neutral Voltage (kV) 13.8 

Primary Winding - Resistance (Ω) 0.055 

Secondary Winding - Resistance (Ω) 0.794 

Primary Winding - Inductance (mH) 1.628 

Secoundary Winding - Inductance (mH) 23.626 

Apparent Power (MVA) 10.0 

Capacitor Bank 

Connection Δ-Yg 

Capacitance (µF) 5.965 

Voltage and Current Meters 

Sample per Cycle 256 

Sampling Rate (Hz) 15360 

 

Load Actual and Historical Measurements 
(Data Storage on BD_M1 and BD_M2)

BD_M1

BD_M2

Substation
Measurements

Measurements 
at the End of 
the Feeder

Real Database

Calculation of Discrete Fourier Transform 
(Voltage and Current Measurements)

Begin

Residue Calculation between DFT Values 
of Actual and Historical Measurements 

(Currents Only)

Estimation of Mean Harmonic Current 
at the PCC Based on the PSO

End
 

Fig. 2. General procedures of the proposed method. 
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In the next step, the algorithm performs the residue 
calculation between the values obtained after the DFT (actual 
and historical data). 

After the procedures above mentioned, the harmonic 
estimator runs based on the procedures shown in Figure 3. 

Initialize Swarm with N Particles

Generate Simulations with the Current Amplitude of 
each Particle for each Harmonic

Begin

DB_M1Sim

DB_M2Sim

Simulated Database

Substation
Measurements

Load Simulated Measurements 
(Data Storage on DB_M1Sim and DB_ M2Sim)

Calculation of the DFT
(Data Storage on DB_M1Sim and DB_M2Sim)

Obtain Gbest and Pbest for each Particle

End

Evaluate Particles (Simulations)

Verify the Stopping Criteria

Update the Velocity and Position of each Particle

Measurements 
at the End of 
the Feeder

 
Fig. 3. Flowchart of the harmonic estimator based on particle swarm 
optimization. 

In this paper, as previously mentioned, the estimator is 
based on Particle Swarm Optimization (PSO). Thereby, the 
PSO is initialized with N  particles (these particles have 
random values of position and its velocities are equal to zero). 
So, in the next step, each particle is evaluated related to the 
objective function which furnish the best particle ( bestg ) and 
the better positions obtained until the moment for each particle 
( bestp ). Consequently, the velocity of each particle is updated 
in accordance with (1): 

 ( ) ( ) ( )( ) ( )( )1 21i i best i best iv t v t p x t g x tϕ ϕ+ = + × − + × −  (1) 

where: 

• 1ϕ  and 2ϕ  are respectively the cognitive and social 
parameters; 

• iv  and ix  are the velocity and position of the 
thi particle; 

• t  represents the actual state of the swarm. 

Therefore, after the particles velocity update, its positions 
must also be updated in conformity with (2): 

 ( ) ( ) ( )+ = + +1 1i i ix t x t v t . (2) 

All the procedures presented must be repeated until the 
algorithm reach the stopping criteria. This PSO algorithm was 
implemented based on the foundations proposed by [10-11]. It 
should be mentioned that was used a swarm with 15 particles. 

IV. CASY STUDIES 
As previously mentioned, a 20-bus distribution feeder was 

modeled and simulated in order to validate this research. Thus, 
six case studies were created and its peculiarities will be 
properly treated in the sequence. Mentioning that for each case 
study, some nonlinear loads (6-pulses rectifier) were allocated 
in the feeder. 

Before the presentation of each case study, it is important to 
highlight the buses determined by the expert knowledge and 
the comparison with the exact position of the harmonic source. 

TABLE II.  BUSES PRE-DETERMINED BY EXPERT KNOWLEDGE 

Case Study Buses Error [m] Exact Estimated 
#1 21 20 100 
#2 30 30 0 
#3 34 30 1300 
#4 53 50 300 
#5 52 50 300 
#6 42 40 300 

 

A. Case Study #1 
In order to obtain the actual measures, a 6-pulse rectifier 

feeding a inductive load (600 Ω e 200 mH) was allocated on 
bus 21. Its harmonic current signature can be viewed in the 
Table III. This is an ideal case study, because the historical 
measures do not present harmonic distortions (uncommon 
condition). 

TABLE III.  RL LOAD (600 Ω E 200 MH) ALLOCATED ON BUS 21  

Harmonic Order Peak Current [A] 
Phase A Phase B Phase C 

1 59.935 60.165 59.922 
3 0.148 0.268 0.121 
5 13.332 13.183 13.316 
7 6.896 7.117 6.799 
9 0.155 0.244 0.122 
11 5.314 5.225 5.275 
13 4.055 4.260 3.918 

 
Analyzing the actual signals of voltage and current, it is 

noted a Total Harmonic Distortion (THD) of voltage about: 
1.71% (phase A), 1.91% (phase B) and 1.74% (phase C). 

The mean value of exact and estimated harmonic currents 
obtained for this case can be visualized in the Table IV. 

It is important to note that higher harmonic orders (11th and 
13th) and those harmonic components with low amplitude 
presents considerable errors. 
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TABLE IV.  RESULTS OBTAINED TO THE CASE STUDY #1 

Harmonic Order Mean Currents [A] 
Exact Estimated 

1 60.007 64.464 
3 0.179 0.014 
5 13.277 13.387 
7 6.937 7.172 
9 0.174 0.056 
11 5.271 0.863 
13 4.078 0.932 

 

B. Case Study #2 
The second case study was generated to present the same 

historical data of case study #1. The actual state of this feeder 
has a 6-pulses rectifier allocated in bus 30. This rectifier feed a 
RL load (900 Ω and 900 mH). Thus, its harmonic currents were 
measured and can be visualized in the Table V. 

TABLE V.  RL LOAD (900 Ω E 900 MH) ALLOCATED ON BUS 30  

Harmonic Order Peak Current [A] 
Phase A Phase B Phase C 

1 40.183 40.495 40.276 
3 0.262 0.340 0.078 
5 8.426 8.158 8.356 
7 5.220 5.530 5.266 
9 0.260 0.337 0.088 
11 3.717 3.478 3.643 
13 2.892 3.221 2.953 

 
Furthermore, the actual measurements has a voltage 

unbalance (-5% for the phase B and +10% in the phase C) 
when compared to historical measurements. 

It is important to mention that the percentage of voltage 
unbalance were randomly generated. 

In this case study, it was found THD of voltage at the 
substation about: 1.36% (phase A), 1.54% (phase B) and 
1.39% (phase C). Thus, after perfom the harmonic estimator , it 
was possible to obtain the exact and estimated mean harmonic 
currents (Table VI). 

TABLE VI.  RESULTS  OBTAINED TO THE CASE STUDY #2 

Harmonic Order Mean Currents [A] 
Exact Estimated 

1 40.318 43.750 
3 0.227 1.001 
5 8.313 8.284 
7 5.339 6.018 
9 0.228 1.008 
11 3.613 1.795 
13 3.022 0.123 

 
Analyzing these results, we can see that the harmonic 

estimator presents the same pattern response shown in the case 
study #1. 

C. Case Study #3 
This third case study, as well as case studies #1 and #2, was 

generated to has historical data without harmonic distortion. 

However, the capacitor bank previously allocated in bus 42 
was out of operation. 

The simulation that represents the actual state has a 6-
pulses rectifier allocated in bus 34. This rectifier has been 
allocated in the feeder in order to feed a RL load (1300 Ω and 
200 mH). Thus, the harmonic signature observed at this PCC 
can be viewed through the Table VII. 

TABLE VII.  RL LOAD (1300 Ω E 200 MH) ALLOCATED ON BUS 34  

Harmonic Order Peak Current [A] 
Phase A Phase B Phase C 

1 27.922 28.085 27.960 
3 0.084 0.175 0.094 
5 6.273 6.166 6.290 
7 3.005 3.177 3.054 
9 0.094 0.182 0.091 
11 2.511 2.416 2.564 
13 1.686 1.869 1.753 

 
Furthermore, in the actual state of the feeder some RL loads 

had their impedances changed in order to generate variations in 
feeder loading. It is worth mentioning that only the resistive 
part of these RL loads was changed in a randomly way. 

The voltage THD for this third case study were calculated 
at the substation: 0.92% (phase A), 1.11% (phase B) e 0.99% 
(phase C). 

The results obtained by the harmonic estimator based on 
PSO were those shown in Table VIII. 

TABLE VIII.  RESULTS OBTAINED TO THE CASE STUDY #3 

Harmonic Order Mean Currents [A] 
Exact Estimated 

1 27.989 27.354 
3 0.118 0.026 
5 6.243 6.225 
7 3.079 3.103 
9 0.122 0.025 
11 2.497 2.431 
13 1.770 1.658 

 
In this case study, only the estimation pattern related to the 

harmonic components of low amplitude was maintained. 

D. Case Study #4 
This case study was created to use the same profile of 

historical measurements presented at this moment (without 
distortions). 

Briefly, it can be said that the actual state of the feeder 
includes voltage unbalance about: -7% (phase A), 7% (phase 
B) and -4% (phase C). In addition, variations on the RL loads 
distributed over the feeder were done and also a 6-pulse 
rectifier feeding a RC load (800 Ω and 1000 µF) was allocated 
on bus 53. The harmonic distortions observed at the PCC for 
this case study can be viewed by means of Table IX. 

It was found for this case study voltage THD at the 
substation about: 1.90% (phase A), 2.46% (phase B) and 
1.46% (phase C). 
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TABLE IX.  RC LOAD (800 Ω E 1000 µF) ALLOCATED ON BUS 53  

Harmonic Order Peak Current [A] 
Phase A Phase B Phase C 

1 44.446 45.610 44.898 
3 0.359 0.444 0.795 
5 21.303 21.523 21.765 
7 10.675 10.304 10.400 
9 0.437 0.149 0.455 
11 3.609 3.704 3.840 
13 2.481 2.442 2.457 

 
After the estimation of harmonic components (Table X), 

the proposed method showed a high error to estimate the 
fundamental component and for those with low amplitude. 

TABLE X.  RESULTS OBTAINED TO THE CASE STUDY #4 

Harmonic Order Mean Currents [A] 
Exact Estimated 

1 44.985 79.752 
3 0.533 1.437 
5 21.530 20.629 
7 10.460 9.631 
9 0.347 0.140 
11 3.718 4.031 
13 2.460 2.398 

E. Case Study #5 
Different from the case studies previously reported, this 

case had historical data generated with harmonic distortions, 
i.e., it is assumed that the feeder already has nonlinear loads. 
Thus, the voltage DHT measured at the substation for the 
historical simulations were: 0.88% (phase A), 1.04% (phase B) 
and 0.88% (phase C). Moreover, the capacitor bank was 
maintained out of operation. 

The simulation representing the actual state of the feeder 
has a 6-pulse rectifier feeding a RL load (1400 Ω e 600 mH) 
allocated on bus 52. In this way, the fundamental and harmonic 
components of this load was measured (Table XI). 

TABLE XI.  RL LOAD (1400 Ω E 600 MH) ALLOCATED ON BUS 52  

Harmonic Order Peak Current [A] 
Phase A Phase B Phase C 

1 25.762 25.801 25.852 
3 0.085 0.022 0.087 
5 5.559 5.562 5.518 
7 2.866 2.951 2.990 
9 0.077 0.066 0.086 
11 2.152 2.176 2.150 
13 1.541 1.647 1.685 

 
In the actual state of this case, a voltage unbalance can be 

verified: +3% (phase A), -6% (phase B) and +9% (phase C); 
and a loading variation of the feeder. 

During the actual state simulation were verified voltage 
THD at the substation about: 1.38% (phase A), 1.45% (phase 
B) and 1.28% (phase C). The results obtained for the case 
study #5 are summarized on the Table XII. 

This results are very similar to those obtained for the case 
study #3. 

TABLE XII.  RESULTS OBTAINED TO THE CASE #5  

Harmonic Order Mean Currents [A] 
Exact Estimated 

1 25.805 28.280 
3 0.065 0.019 
5 5.546 5.304 
7 2.936 2.792 
9 0.076 0.009 
11 2.159 1.979 
13 1.624 1.442 

 

F. Case Study #6 
Finally, the case study #6 is similar to the case study #5, but 

the capacitor is in operation and replaced to the bus 20. The 
historical data was obtained in the same way used to the case 
study #5. Thus, nonlinear loads were allocated on the feeder 
and a voltage THD at the substation was measured: 3.58% 
(phase A), 3.56% (phase B) e 3.49% (phase C). 

The actual data was acquired allocating a 6-pulse rectifier 
on bus 42 to feed a RL load (1200 Ω e 400 mH). Its harmonic 
components are shown in Table XIII. 

TABLE XIII.  RL LOAD (1200 Ω E 400 MH) ALLOCATED ON BUS 42  

Harmonic Order Peak Current [A] 
Phase A Phase B Phase C 

1 29.650 30.029 29.710 
3 0.277 0.437 0.162 
5 6.549 6.269 6.489 
7 2.974 3.332 2.961 
9 0.225 0.355 0.162 
11 2.279 2.127 2.263 
13 1.438 1.692 1.356 

 
The simulation to the actual scenario of the feeder presents 

loading variations, voltages unbalance about: +4% (phase A), 
+2% (phase B) and +2% (phase C), and voltage THD at the 
substation about: 4.24% (phase A), 4.20% (phase B) and 
4.17% (phase C). For this last case study, the harmonic 
estimator shows high imprecision to determine harmonics with 
low amplitude and to estimate the fundamental current.  

TABLE XIV.  RESULTS OBTAINED TO THE CASE #6 

Harmonic Order
Mean Currents [A] 
Exact Estimated 

1 29.796 38.235 
3 0.292 2.185 
5 6.436 6.169 
7 3.089 3.678 
9 0.247 0.484 
11 2.223 2.205 
13 1.495 1.325 

V. CONCLUSIONS 
Analyzing the six case studies, we can be note that the 

proposed method is not effective to determine harmonics with 
low amplitude (less than 1 A). The cases #3 and #5 presents the 
better estimations, probably due to the absence of capacitor 
banks. So, the continuation of this research points to the 
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definition of behavioral patterns based on the possible 
scenarios of load. Moreover, other optimization methods, such 
as ant colony, genetic algorithm and modified particle swarms  
must be adequate and tested envisioning results better than 
these presented on this paper. 
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Abstract – In this paper two solutions to the emission source 

localization problem are examined. This problem involves 

monitoring an environment with a distributed sensor network 

and processing the data to find the source of an emission. 

Being able to quickly find the source of a chemical leak or 

radiological dispersion can save lives, and reducing or 

eliminating the need for people to be involved in the search 

process further reduces the danger. Previous work presented 

the benefits of using the Particle Swarm Optimization for 

emission source localization.  This work presents further 

benefits by using The Firefly Algorithm. The Firefly Algorithm 

in general only performs better when dealing with lots of noise 

from the sensors, but is faster under all circumstances. 

Keywords: Swarm Optimization, Firefly Algorithm, Particle 

Swarm Optimization, Emission Source Localization  

 

1 Introduction 

Tracking and localization of an emission's source is an 

important safety concern.  Whether an accident or terrorist 

strike causes hazardous material to leak into the surrounding 

air, finding the source of an emission can be critical.  

Traditional methods of source localization involve 

continuously sampling the suspected area and sending in 

trained personnel to find the source.  This is not only time 

consuming, but very dangerous.  One possible solution is to 

use robots to detect and locate the source, reducing the danger 

to humans [1].  This can still take a significant amount of 

time, even if multiple robots are utilized.  Another solution is 

to have many sensors spread throughout the contaminated 

area, and locate the source by analyzing the data.  This 

method can be very quick, as long as the algorithm performed 

to analyze the data is efficient. 

The US Department of Energy's Oak Ridge National 

Laboratory (ORNL) is developing a network called SensorNet 

for the detection and assessment of chemical, biological, 

radiological, nuclear, and explosive threats [2].  SensorNet 

consists of many small, distributed sensors for gathering data, 

and high level nodes for data processing.  Various techniques 

can potentially be applied to the data from these nodes to 

determine the source of the emission.  Previously, we 

experimented with using Particle Swarm Optimization (PSO) 

and found that with the proper tuning, PSO performed 

relatively quickly and located sources accurately [3]. 

Particle Swarm Optimization is a form of artificial 

intelligence capable of relatively quickly optimizing a given 

problem.  Recently however, another artificial intelligence 

algorithm has been shown to outperform PSO [4].  The Firefly 

Algorithm (FA) is extremely efficient and works well under 

rugged search conditions.  Since sensors involved in the 

emission source localization will likely have noise in their 

readings, the search space will not be smooth.  It is also of 

interest to note that with the right parameters, the FA can 

essentially become PSO, or even Random Search.  This 

means that the FA is a general case of the two, and typically 

lies somewhere in between, allowing it to potentially 

outperform both. 

The goal of this work is to directly compare the FA to 

PSO on both benchmark functions and the emission source 

localization problem.  On the benchmark problems, the FA is 

shown to outperform PSO in every way.  For smaller scales of 

the source localization problem, the Firefly Algorithm only 

performs better with the more noisy sensors.  For larger 

source localization configurations however, the firefly 

algorithm produces results similar to PSO in less time. 

This paper presents a brief description of the PSO and 

Firefly algorithms including variations to the initial FA that 

have been developed by others.  Section 3 also presents a new 

improvement to the FA.  Section 4 describes results in 

benchmarking the algorithm to standard tests and 

implementation improvements that we have made resulting in 

faster execution.  Section 5 details the source emission 

problem and results of our firefly implementation compared 

with the previous PSO work. 

2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) models its behavior 

after the swarming or flocking patterns of animals [1].  PSO 

has particles that make up its population, called a swarm.  

Each particle knows its position, velocity, and personal best 

location found so far, and the global best.  The particles use 

these values to imitate both the social and individual 

behaviors of a swarm.  After a random initialization, the 

update operation for a particle occurs according to the 

following function [2]:  

                                  

                    

where i = 1, 2, …, N for N particles, and j = 1, 2, …, D for D 

dimensions, vij is the velocity of the particle, t is the 

generation or time-step, r1 and r2 are random numbers in the 

range (0, 1), pij is the personal best location found so far, pgj is 

the global best, xij is the location of the particle, and φ1, φ2 are 

called learning rates. 
2.4 

2.4 

(1) 
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3 The Firefly Algorithm 

The Firefly Algorithm (FA) is a relatively new swarm 

intelligence algorithm, developed by Xin-She Yang [3].  The 

FA is intriguing because its author has shown that it is not 

only faster than PSO on the functions tested, but also that it is 

more likely to find the global minimum. 

3.1 The Concept behind the Firefly Algorithm 

The FA was inspired by the flashing of fireflies in 

nature.  There are over 2000 species of fireflies, most of 

which produce a bioluminescence from their abdomen [4].  

Each species of firefly produces its own pattern of flashes, 

and although the complete function of these flashes is not 

known, the main purpose is to attract a mate.  The idea of this 

attractiveness is what leads to the inspiration for the FA. 

The FA idealizes several aspects of fireflies in nature.  

First, real fireflies flash in discrete patterns, whereas the 

modeled fireflies will be treated as always glowing with a 

certain brightness.  Then, three rules can be made to govern 

the algorithm, and create a modeled firefly’s behavior [5]. 

1) The fireflies are unisex, and so therefore potentially 

attracted to any of the other fireflies. 

2) Attractiveness is determined by brightness, a less 

bright firefly will move towards a brighter firefly. 

3) The brightness of a firefly is proportional to the value 

of the function being maximized at its current 

location. 

3.2 The Algorithm 

The key to the FA is the encoding of the objective 

function into the brightness of the fireflies, and in the 

movement of the fireflies.  Initially, all fireflies start in 

random locations, and are assigned a brightness proportional 

to the objective function evaluated at their location.  After this 

initialization, the algorithm loops until completion, moving 

each firefly towards all the other fireflies in the swarm that are 

brighter than itself.  The pseudocode for the FA is given in 

Figure 3.1.  In order to move a firefly towards another, first, 

the distance between the fireflies,  , has to be calculated.  Any 

form of distance calculation that makes sense for the given 

problem can be used, but for the general case the Cartesian 

distance is appropriate.  With the distance between two 

fireflies known, the attractiveness   can be determined.  Since 

the attractiveness is based on the light intensity, two terms go 

into the calculation of  .  These terms account for the light 

intensity decreasing as distance increases.  First, from the 

inverse square law            , where    is the light 

intensity of the firefly being moved towards.  Then due to 

absorption through the air,          
   , where   is the 

absorption coefficient, and          .  A   of 0 yields no 

absorption, while a large   relates to the fireflies flying in a 

heavy fog.  Then to produce an approximation of the 

combined terms, and to avoid the undefined result of      , 

we obtain         
    .  However, calculating an 

exponential can be expensive, and    
     can be 

approximated by            when close to zero, which is 

not as difficult to calculate.  Since the attractiveness is directly 

related to the light intensity, we can take      , where    is 

the attractiveness at    , and typically           .  
Combining the last two remarks results in the expression 

               .  Changing    changes how attracted 

fireflies are to others, so lowering    lowers the desire for 

fireflies to move towards brighter fireflies. 

 

 

The movement of a firefly towards a brighter firefly is 

determined by      and a random component.  The random 

component is important for all metaheuristic algorithms; it 

helps the algorithm to escape from local optimums.  A simple 

random movement can be generated with a uniform 

distribution in the range of           .  Another important 

factor is the scale of the problem.  If two parameters of the 

objective function have different ranges of possible values, a 

fixed range of random numbers would cause different relative 

randomness for each dimension.  To solve this problem, the 

generated random numbers can be multiplied with the scale of 

each dimension, in the form of a vector of scaling values  .  

With all the terms together, the position update equation for a 

firefly   being attracted to firefly   becomes: 

               
                     

where   is a set of uniformly distributed random numbers in 

the range of      , and   is a parameter controlling the 

Figure 3.1.  FA Pseudocode 

Firefly Algorithm  

Given: 
Objective function f(x), where x = (x1, x2  …  xd) for d 

dimensions. 
Light intensity Ii at xi is determined by f(xi) 
Define α  β  γ  δ 

Give random locations for N fireflies in D dimensions 
Initial evaluation of all N fireflies 
while (End condition not met) 

Increment t 
for i = 1 to NumFireflies 

for j = 1 to NumFireflies 
if (Ij > Ii) 

Move firefly i towards j in 
d-dimension 

end if 
end for j 
Evaluate new objective function solution and 
 update light intensity 
Check if the best position found so far 

end for i 
Reduce alpha 
Sort the fireflies 

end while 
Find the best firefly 
 

(2) 
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amount of randomness.    is typically in the range      , 
where 0 corresponds to no randomness and 1 corresponds to 

being highly random. 

3.3 Improvements 

On top of the base algorithm, several improvements can 

be made.  The first, suggested by Yang [5], has a major effect.  

It combines the FA with concepts from simulated annealing 

(SA).  SA models the annealing process of metals, in which 

there is a given temperature schedule.  The temperature starts 

high, and is decreased as time goes on, and is analogous to the 

amount of randomness.  This idea of reducing the randomness 

can be applied to the FA as well, and greatly benefits the FA.  

The best reduction schedule to use varies with the problem at 

hand, but for the purposes of the experiments undertaken in 

the next section, the randomness reduction will be determined 

by the following equation [5]: 

        
  

where   is the randomness reduction parameter,          .  A 

  of 1 corresponds to no reduction, and lowering   results in a 

quicker reduction. 

A second improvement we developed can help in the 

case of large differences in the scale of parameters.  The 

random component is already scaled with the scaling vector  , 

but the distance between fireflies   is not.  Thus the 

attractiveness   is not scaled, since it relies on  .  To fix this, 

the distance calculation can be modified from the standard 

Cartesian distance equation to 

                   
 

 

   

 

with the familiar scaling values of  .  With this implemented, 

the entire update equation is scaled to the individual 

parameters of the objective function. 

A last change was simply to notice that the distance     

is never used in any of the above equations, but rather    
 .  

This implies that the square root does not need to be taken in 

equation 4, an expensive computation.  By removing this, a 

slight time speedup of the algorithm is achieved. 

4 Initial Examination of the Firefly 

Algorithm 

In order to test and verify the FA, there are several 

benchmark functions that can be used.  With benchmark 

functions both speed and accuracy can be measured and 

compared.  All the functions are usually run with 30 

parameters to optimize, except Schaffer’s f6 as it is not 

generalized for more than two parameters like the rest.  All of 

the functions used have a global minima of       , and the 

ending criteria will be set to a maximum number of 500 

generations or when it finds a value at or below the error 

threshold.  The thresholds for each function are given in 

Figure 4.1.  Any execution of the FA that results in finding a 

value at or below the threshold will be considered to have 

found the global minimum.  All of the function criteria are the 

same as commonly used in literature, in order to make 

comparisons easier and more meaningful [6]. 

Function Dimension Range Error 

Threshold 

Sphere 30 [-100,100] 0.01 

Rosenbrock 30 [-30,30] 100 

Rastrigin 30 [-5.12,5.12] 100 

Griewank 30 [-600,600] 0.1 

Schaffer's f6 30 [-100,100] 0.00001 

Figure 4.1.  Benchmark function parameters 

4.1 Benchmark Comparisons to PSO 

The Firefly Algorithm was compared with the PSO 

algorithm results contained in literature [2].  The FA was run 

with generic parameters of      ,      ,      , and 

       for the first testing, and compared against an 

optimized constriction factor PSO with           and 

generic parameters of         and           .  The 

number of both fireflies and particles used was 30.  Further 

details and full results of the PSO are available in [6].  The 

parameters listed in Figure 4.1 were again used for these tests.  

Figure 4.2 shows the comparison between PSO and FA, using 

the number of generations as a metric.  In every case, the FA 

outperformed the PSO, when each was used with generic 

parameters.  The standard deviations are shown as error bars 

for all but the generic parameter PSO results, since the 

standard deviation for the PSO was extremely high in most 

cases.  The fact that the standard deviation is significantly 

lower for the FA shows its reliability in finding the global 

optimum. 

The generic parameters have been shown to work well, 

but tuning the parameters based on the objective function can 

lead to better results.  Figure 4.2 Figure 4.1.  PSO vs. FA:  

Number of generations also shows the results of manually 

tuning the parameters, for both the PSO and the FA.  The 

optimal parameters that were used for the FA, and which were 

found through trial and error, are shown in Figure 4.4.Figure 

4.3.  FA Parameters The results show that in every case, the 

FA again outperforms the PSO on the benchmark functions.  

Improvements range from 31-98% fewer generations required 

to reach the desired result with the tuned algorithms compared 

to the un-tuned FA.  The biggest improvement was seen in 

Schaffer’s f6 function, which was also the only function with 

two parameters.  So for all tested functions, and particularly 

the low-dimensional one, the FA is much more efficient than 

PSO. 

Not only is the efficiency of the algorithm important, but 

so is the accuracy.  Figure 4.3 shows the percent failure of the 

two algorithms, with both the generic parameter and tuned 

(4) 

(4) 

(3) 
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parameter results.  The only function that the FA did not find 

the global minimum 100% of the time was the Rosenbrock 

function.  However, once the parameters were tuned, the FA 

achieved 100% accuracy on all functions, whereas the PSO 

failed 10-20% on three of the five functions.  This shows that 

with some careful tuning, the FA can be not only extremely 

efficient, but also very accurate compared to the PSO. 

 

Figure 4.1.  PSO vs. FA:  Number of generations 

 

Figure 4.2.  Executions that do not find the global minimum 

 

 

 

 

Function         

Sphere 0.2 0.3 0.8 0.89 

Rosenbrock 0.02 0.2 0.9 0.9 

Rastrigin 0.1 0.5 0.8 0.8 

Griewank 0.2 0.2 0.8 0.89 

Schaffer’s f6 0.6 0.5 0.8 0.3 

Figure 4.3.  FA Parameters 

5 Firefly Algorithm Scalability with 

Emission Source Localization 

The emission source localization problem requires a 

model of propagation of the emission.  From this model and 

data received from sensors, the source can be located.  To 

model an aerosolized chemical, the intensity at any point 

away from the source can be assumed to follow the inverse 

square law [7].  This model ignores possible environmental 

factors such as air currents, but is a good starting point.  It will 

be assumed that there is only one source, and that the sensors 

will be scattered randomly around an area known to contain 

the source.  These sensors will also know their own locations, 

either from GPS or some other sensor localization method.  

The data from these sensors will be sent to a data processing 

node, which can then determine the location of the source.  

For the purposes of this examination, the sensors will be 

simulated, and varying amounts of additive Gaussian noise 

will be added to the sensors’ readings.  With the added noise, 

and since the propagation is assumed to follow the inverse 

square law, a sensor’s reading can be calculated by: 

   
  

  
 
       

where    is the distance to sensor   from the source,    is the 

source intensity,   is the desired standard deviation of the 

noise, and   is a random number picked from a Gaussian 

distribution of mean 0 and standard deviation 1.  The source is 

located at        , which will be determined randomly before 

the sensors are placed.  The sensors will be placed randomly 

within a fixed square search space.  Figure 5.1 shows an 

example of the placement of sensors with the source located at 

(-70,80). 
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Figure 5.1.  Randomly distributed sensors [6] 

Then in order to formulate an objective function, the 

goal becomes to determine the optimal    and         that 

will provide the closest match between the propagation model 

and the actual sensor readings.  The error between the two can 

be taken as 

            
        

where    is the intensity reported by sensor  ,    is the 

distance between sensor   and the source location        , 
and    is a weighting factor used to correct for the error in the 

sensor readings. 

Now that the error in an estimate from a single sensor’s 

point of view can be calculated, the least squares method can 

be used to find the total error of an estimate [7].  The sum of 

all the squared errors from each sensor will be the objective 

function, given as [6]: 

                  
 

  

   

           
        

 

  

   

 

where    is the number of sensors, and   is the vector of 

each    for every sensor.  So a firefly’s position consists of an 

estimated   ,   ,   , and a    for every sensor; thus every 

sensor adds a dimension to the problem. 

5.1 Results 

The aim of the tests with the FA will be to compare to 

the PSO results in [3].  Thus, eight different configurations 

each with a varying number of sensors and range over which 

the sensors are spread were used to test various scales of the 

problem, the results of which are given in Figures 5.3-5.7.  

For each configuration, five tests were performed, with the 

standard deviation of added noise varied from 0% to 50%.  

The tests were run 20 times each, and the results shown are 

the averages.  Each test also has its own set of FA parameters.  

The goal of the parameter choice was to find a set that 

produced the best results in the least amount of time.  The 

biggest parameter affecting time is the number of fireflies, and 

so is a good place to start when trying to reduce time taken.  

Reducing the number of fireflies reduces the number of search 

agents though, so it is often difficult to still produce accurate 

results.  Once the minimal number of fireflies is determined, 

the next biggest factor is the number of generations to run.  

The number of generations also greatly affects the runtime; 

therefore once again, the minimum amount that still produced 

accurate results was used.  For the larger configurations, 

changing the   term was necessary.  Since   determines the 

attractiveness of the fireflies, increasing   results in faster 

movements.  In large search spaces this is important, as 

otherwise it takes significantly longer to reach the same goal.  

For the smaller configurations,   was lowered from the 

standard 0.97, since for a smaller number of generations, the 

randomness needs to be reduced faster to reach the same level 

near the end of the run.  For   and  , standard values of 0.2 

and 0.8 were used, respectively. 

Configuration 1 3 5 7 8 

Sensors 27 60 90 1000 2000 

Range ±50 ±200 ±500 ±2500 ±5000 

Fireflies 10 10 15 25 30 

Generations 50 50 100 100 100 

Alpha 0.2 0.2 0.2 0.2 0.2 

Beta 0.2 0.2 0.2 1.0 1.0 

Delta 0.93 0.97 0.97 0.97 0.97 

Gamma 0.8 0.8 0.8 0.8 0.8 

Figure 5.2.  FA parameters used in each configuration 

Noise var. 

(%) 

Location 

Error (%) 

Intensity 

Error (%) 

Execution 

Time (ms) 

10% 2.63 -0.71 3.45 

20% 3.31 -2.82 3.35 

30% 3.60 -5.70 3.40 

40% 4.77 -11.14 3.65 

50% 5.88 -14.91 3.35 

Figure 5.3.  Configuration 1 

Noise 

var. (%) 

Location 

Error (%) 

Intensity 

Error (%) 

Execution 

Time (ms) 

0% 0.47 -0.71 4.80 

10% 0.79 -0.25 4.95 

20% 1.19 -3.61 4.65 

30% 1.30 -2.70 4.80 

40% 1.70 -5.55 4.75 

50% 1.80 -4.88 4.55 

Figure 5.4.  Configuration 3 

(6) 

(7) 
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Noise 

var. (%) 

Location 

Error (%) 

Intensity 

Error (%) 

Execution 

Time (ms) 

0% 0.09 -0.02 28.70 

10% 0.29 -0.78 27.50 

20% 0.73 -3.12 28.15 

30% 1.18 -2.36 27.50 

40% 1.52 -5.23 27.25 

50% 2.04 -3.69 25.30 

Figure 5.5.  Configuration 5 

Noise var. 

(%) 

Location 

Error (%) 

Intensity 

Error (%) 

Execution 

Time (ms) 

0% 0.05 -0.08 777.9 

10% 0.10 -0.54 773.0 

20% 0.36 -1.52 768.6 

30% 0.43 -1.46 778.0 

40% 0.54 -1.51 776.8 

50% 0.74 -2.43 689.4 

Figure 5.6.  Configuration 7 

Noise 

var. (%) 

Location 

Error (%) 

Intensity 

Error (%) 

Execution 

Time (ms) 

0% 0.04 0.05 2325 

10% 0.06 -0.03 2261 

20% 0.15 -0.86 2307 

30% 0.48 -1.97 2337 

40% 0.53 -1.65 2268 

50% 0.73 -2.30 2088 

Figure 5.7.  Configuration 8 

For the first few configurations, the results were fairly 

similar.  In configuration 1, the localization error obtained by 

the FA is worse for 0-20% noise, but better for 30-50% noise.  

The intensity error is better under all noise conditions, and the 

time required is about 13 times lower.  Note that much of the 

time speedup is due to being run on a faster processor, but it is 

still useful to compare relative speedups between 

configurations. 

In configuration 3, the average localization error is 

higher for 0-30% noise, but lower for 40 and 50%.  The 

average intensity error is about the same for all noise levels, 

and the execution time is about 180 times faster.  With 

configuration 5, the FA obtains about the same localization 

and intensity error for 0-20% noise, but for 30-50% noise the 

FA obtains better results for both.  The speed for this 

configuration was about 50 times faster than the PSO.  Thus, 

in the smaller configurations 1 through 5, for low noise levels, 

the PSO seems to find better results, but not always as 

efficiently.  For higher noise levels, the FA wins out in terms 

of accuracy of the results, and except for the smallest 

configuration is likely much faster. 

Configurations 6-8 provide a better comparison, as 

tabular data is available.  The PSO and FA results are 

compared in Figures 5.8-5.11.  Configuration 6 and 7 show 

uniformly worse performance for the FA, but in configuration 

8 the intensity error is lower for the FA on all but 30% noise.  

The time speedups, however, are about 34, 23, and 18 times 

faster, respectively.  These times may or may not actually be 

faster, given that the FA was run on a faster processor, but the 

difference between speedups of different configurations 

shows that the FA runs faster on small to medium scale 

problems compared to the PSO.  For the smaller scale 

problems, the FA performs much better under highly noisy 

conditions, and in fact gets nearly uniform results across all 

noise levels, compared to the PSO.  These results point to 

using the FA either when using noisy sensors, or when speed 

is critical. 

 

Figure 5.8.  PSO and FA on Configuration 6 

 

Figure 5.9.  PSO and FA on Configuration 7 
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Figure 5.10.  PSO and FA on Configuration 8 

 

Figure 5.11.  PSO and FA Execution Times for 

Configurations 6-8 

6 Conclusions and Future Work 

The Firefly Algorithm is one of the latest artificial 

intelligence algorithms developed.  Inspired by the flashing of 

fireflies, it gets its inspiration from nature like many other 

metaheuristic algorithms.  With the addition of randomness 

reduction and scaling of the distance, the FA can be adapted 

even further to improve results.  In the benchmark functions, 

we have seen the tuned FA finds the global minimum 100% 

of the time, something the tuned PSO was not capable of.  The 

FA also obtained these results in only 2-21% of the number of 

generations.  In the emission source localization problem, the 

FA can be superior to PSO in speed.  For 90 or less sensors, 

the PSO obtains better results when there is low noise, but 

with high amounts of noise the FA wins out.  For more 

sensors, the PSO sees marginally better results, however both 

the PSO and FA consistently have below 1% localization 

error.  It also gives better results when there is a large amount 

of noise in the sensor data. 

In order to speed up the FA even more, we are in the 

process of implementing it in hardware similar to the 

architecture that Tewolde and Hanna created for the hardware 

PSO engine in [8].  A parallel hardware implementation could 

even further improve speed.  To find even better parameters, 

auto-tuning could be implemented with another FA.  As for 

the algorithm itself, it would be worth investigating possible 

improvements, such as hybridization with other algorithms.  

The addition of the randomness reduction concept from 

simulated annealing helped improve results, and this could be 

investigated further, such as increasing the randomness at 

various stages in order to escape local optima.  Other such 

algorithms likely have concepts worth exploring and adapting 

to the FA. 
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A Fast Parameter Setting Strategy for Particle 
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Abstract-Parameter setting is very essential for the 
application of particle swarm optimization (PSO), 
especially the acceleration coefficients. In this paper, we 
propose a fast estimation strategy of optimal parameter 
setting for PSO, in which an estimation distribution 
algorithm (EDA) is used to co-evolve the acceleration 
coefficients (!!and  !!). The proposed algorithm is validated 
on two numerical optimization problems and then applied to 
the urban water distribution network optimization problem. 
The experimental results show that both of these two 
parameters converge to a fixed value respectively and the 
achieved values for !! and !! are consistent as the results of 
parameter tuning.PSO with the estimated optimal 
parameters could achieve the best solution on benchmark 
example and also outperform other methods in terms of 
reliability and efficiency.   

Keywords: Particle Swarm Optimization, Parameter 
control, Estimation Distribution Algorithm, Water 
Distribution Network. 

1  Introduction 
Particle Swarm Optimization is a population based 
optimization method inspired by the collective behavior of a 
bird flock, which was developed by Eberhart and 
Kennedy[3] in 1995. It is an effective swarm intelligence 
technique for solving optimization problems. It has shown 
great potential and perspective for solving various 
optimization problems [4,5,6,7,8]. 
 
A crucial aspect of improving the performance of PSO is 
parameter setting [9]. PSO can only perform effectively 
under good parameter settings. There are two primary 
approaches of setting parameters [10]: parameter tuning and 
parameter control. Parameter tuning identifies the optimal 
parameter settings by repeatedly running using different 
combinations of parameter values. However, this 
cumbersome method usually takes much time and effort, 
and relies on luck as exhaustive search of the parameter 
space is prohibitively expensive. Another more popular 
approach is parameter control. In this approach, the 
parameters are not fixed, but changed during the course of 

the evolutionary process. There are two main approaches of 
parameter control [10]: adaptive parameter control and self-
adaptive parameter control. In adaptive parameter control, 
the parameter values are adaptively adjusted by heuristic 
rules based on feedback from previous parameter changes 
[11]. In this approach, defining the meaning of feedback is a 
key issue. In general, we often use the current stage of the 
search, the performance of operators and/or the diversity of 
the population as the guiding information. Adaptive 
parameter control is common for PSO and has shown 
effectiveness in solving various problems in the past 
[3,12,13]. In self-adaptive parameter control, the parameters 
and the solutions to the optimization problem evolve 
together. Self-adaptive parameter control has been used in 
genetic algorithms in which the parameters are encoded 
within the chromosomes and evolve with the problem 
(object) variables [14,15,16,17]. Adopting self-adaptive 
parameter control in PSO has recently raised much interest 
[18], which embeds the parameters within the evolution 
variables. In this way, the parameters are self-adaptively 
controlled.  
 
Optimal design of water distribution networks (WDN) aims 
to select a set of pipes (with different diameters) to form a 
network which satisfies all the hydraulic requirements and 
also has the minimal total cost, which is also called Pipe 
Sizing. In the past three decades, a variety of optimization 
methods have been proposed for the pipe sizing problem. In 
the past few years, PSO was introduced to optimize WDN. 
[19] applied a conventional discrete PSO to this problem for 
the first time in 2008. Shortly afterwards, a diversity 
enriched PSO variant was proposed [20] to address the 
premature convergence problem and the performance was 
improved compared to the conventional PSO. Montalvo et 
al. [18] improved the performance of PSO further on this 
WDN optimization problem by introducing a parameter 
self-adaptive strategy.  
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2 Methodologies 
2.1 Estimation of distribution algorithm 
Estimation of distribution algorithms (EDAs) is population 
based evolutionary algorithm. During the iteration process, 
EDAs try to estimate the probability distribution by using 
good individuals to construct a probabilistic model, which is 
then used to predict the promising positions and generate 
new individuals of the next generation around that region.  
The details of implementation of EDA are given in 
algorithm 1:  

Algorithm 1   The EDA algorithm 
1: P<= Initialize the population 
2: Evaluate the initial population 
3: While iter_number ≤  Max_iterations do 
4:           P!<= Select the top s individuals from p 
5:           M<= estimate a new Model from P!  
6:           P! <= Sample n individuals from M 
7:           Evaluate P! 
8:           P<= Select n individuals from P U  P! 
9:           iter_number =iter_number +1 
10: end While 

 
A very simple model assumes that each of the coefficients 
follows a simple Gaussian distribution when the parameters 
are approaching the global optimal settings. Hence, in each 
iteration of EDA, the top individuals in the population are 
used to estimate the mean and standard deviation of the 
distribution of the best parameter settings. On the next 
iteration, a new population is generated by sampling 
according to the estimated distribution. 

2.2 Particle swarm optimization 
In the population of PSO, each particle holds the following 
information: particle’s current positionx!, particle’s current 
velocity: v!  , the best position that the particle has ever 
found so far Pbest! and the best position that  the entire 
swarm has ever found:    gbest!   
 
In PSO, each particle updates its position according to the 
following equations:  
 
!!"!!!=w!!"! +!!!!!(!"#$%!"! -!!"! )+!!!!!(!"#$%!"! -!!"! )                            (1) 

!!"!!! =   !!"! + !!"!!!                                                                                                                                                                (2) 
 
Where j denotes the index of the dimension, i denotes the 
number of particles, w is the inertia weight and t is the 
iteration number,  r!  and  r!  are two random numbers 
uniformly distributed in the range [0,1] and finally c!   and 
c! are the acceleration factors. After all the particles are 
updated, the Pbest!  and gbest! are also updated if better 
positions are found.  
 
Acceleration coefficients ( c! and c! )are most influential to 
the performance of the algorithm. Much previous research 
has shown that for different problems, the optimal settings 
of c! and c! are different. Therefore, designing an efficient 

parameter setting strategy for acceleration coefficients has 
been an active research area in PSO domain. 

2.3Parameter co-evolving strategy 
In our proposed parameter estimation strategy, there are two 
iterative loops which run simultaneously.  The first loop is 
PSO which tries to find the optimal solution for the specific 
problem; the second loop (coevolving loop) is the EDA 
which tries to optimize the parameter settings (c! and c!) 
online for each individual in PSO loop. In PSO population, 
each individual is a candidate solution for the specific 
optimization problem. In EDA population, each individual 
is a pair of values for c! and  c!. The population size for both 
PSO and EDA loop are the same and one individual in PSO 
corresponds to one individual in EDA population 
respectively. Each individual in PSO is updated based on (1) 
only using the corresponding pair of c!  and   c!  in EDA 
poplation. Each individual in EDA population is updated 
every generation (see Algorithm 2). But this update is only 
implemented every M (1-10) generations in PSO loop, 
which means the parameter values for each individual in 
PSO keeps unchanged during every M consecutive PSO 
loop interactions. The fitness used in EDA loop is the 
progress of the particle under the corresponding parameter 
settings in PSO loop during M consecutive generations. 
Therefore, the values of c!  and c!   in EDA loop will 
hopefully converge to the best combination under which the 
corresponding particle in PSO could achieve the biggest 
progress in M consecutive generations. There is a 
assumption behind is that a good setting of parameters for 
the most recent iterations (e.g. past M iterations) will also be 
good (at least not worse) for the immediate future iterations. 
The complete pseudo code is given in following Algorithm 
3. 
 

Algorithm 2   Updating process in  EDA Loop  
1: t   is the generation index of PSO loop; 
2: !!! is the ith individual in  !!"#at generation t; 
3: !!! is the ith individual in  !!"# at generation t; 
4: N is populations size; 
5: While i ≤  N do 
6:            f(!!!)=  !(!!!)-f(!!!!!); 
7:              i=i+1; 
8: End While; 
9: Rank !!"# according to fitness (decsending);                 
10: Select the top individuals from !!"#; 
11: Estimate the mean and standard deviation  for each 
dimension; 
12: Sample N individuals by the estimated distribution; 
13: Update all the individuals in  !!"# with the sample. 
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Algorithm 3   Parameter co-evolving algorithm 
1: t   is the generation index of PSO loop; 
2: N is populations size of both !!"# and !!"#; 
3: Initialize the population for PSO: !!"#; 
4: Initialize the population for EDA: !!"#; 
5: Evaluate the each individual in population !!"#;  
6:While iter_number ≤  Max_iterations do 
7:            Update all the individuals in !!"# according to  
8:               (1)and (2); 
9:               If (iter_number)mod(M)=0 
10:                     Update all the individuals in !!"# 
11:                      according to Algorihtm 2; 
12:             End if ;  
13:End While . 

 
3 Validation  
The proposed method is validated on two different 
numerical optimization problems. The estimated optimal 
parameter settings (c1 andc!) obtained by the proposed 
algorithm on these problems are compared with the values 
found by a fine parameter tuning. Ackly’s function and  
Restringing’s function are selected in this experiment due to 
their very rough landscapes with large numbers of local 
minima which makes any search algorithm vulnerable to 
being trapped in a local minimum.  They are also usually 
used as benchmark problems for evaluating proposed new 
optimization algorithms. We use the functions with 30 
dimensions and set c1 and c2 in the range of [0, 5] which is 
normally the range of acceleration coefficients in the 
literature. 
3.1 Parameter fine tuning 
A fine tuning experiment was conducted to identify the 
optimal combination of the parameters c! and c!. The best 
combinations for c! and c! were found to be [0.8, 1.8] for 
Ackley’s function and [1.2, 1.6] for Ratrigin’s function. 
Actually, from the 3D scatter plot in Figure 1, we can see 
that good c! and c! combination is not just one point, but 
rather a region in the basin. In other words, there is a family 
of c!  and c!  combinations which could help the PSO 
algorithm perform best.  

3.2 Parameter estimation 
 For each of the function, the proposed parameter 
coevolving strategy is used to estimate the best parameter 
setting. The average values for c!  and c!  of 30 runs are 
taken as the estimated result.  From Figures 2 and 3 below, 
we can see that, for one particle, the c! and c! converged to 
almost fixed values at the end of the search process. Also 
from Figure 4, it is clear that for all the particles tracked, c! 
and c! converged to the same or nearly the same values 
respectively. Table 1 shows both fine-tuned and estimated 
best combination of c!  and c!  for each problem. The 
differences of between them are all less than 8%.  

Furthermore, in the 3D plot of the results of parameter 
tuning, there is an obvious basin which means three are 
more than one pair of good parameter settings and all the 
settings located in the basin can be regarded as optimal or 
near optimal settings. The estimated results are found to be 
located in the basin area. Therefore, we can say all the 
estimated results are generally consistent with the results of 
fine tuning. 

 
a. Ackley’s  function         

	
  

                            b.        Rastrigin’s function  
Figure 1. Parameter tuning results for two numerical 

optimization problems 
 
Table 1. Fine tuned and estimated parameters 

parameter
s 

Tuned results 

 Ackley’s function Rastrigin’s function 
C! 0.8 1.2 
C! 1.8 1.8 

 Estimated results and difference 
Ackley’s function Rastrigin’s function 

C! 0.861752   (+7.72%) 1.121347  (-6.6%) 
C!  1.722622  (-4.3%) 1.665069   (-7.4%) 
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Figure 2. Track of c1 and c2 of one particle in one run 
(Ackley’s function) 

 

 
Figure  3. Track of c1 and c2 of one particle in one run 

(Rastrigin’s function) 

 

Figure  4. Track of c1 and c2 of 10 particles in one run 
(Ackley’s function) 

 
3.3 Benefits of fast estimation strategy 
For most practical optimization problems, especially for 
engineering design optimization problems, exhaustive 
parameter tuning is very costly and probably intractable due 
to the resource limits (time and experimental cost).  
However, by using this fast parameter estimation strategy, 
an optimal parameter setting (or near optimal) can be 
identified in a very short time. Table 2 shows the time 
consumed by the two methods on different problems. 
 

Table 2. Time consumption by two different methods 
on different problems 

Problem Tuning Estimation  Time 
reduced 

Ackley’s  
function  

2250  runs  
(37.5  hours)  

10  runs  
(10  minutes)  

99.5%  
  

Rastrigin’s     2250  runs  
(30    hours)  

10  runs  
(8  minutes)  

99.5%  
  

4 Optimization of WDN 
A water distribution system (WDN) is a network of 
components (e.g. pipes, pumps, valves, tanks, etc.) that 
transport water from a source (e.g. reservoir, treatment 
plant, tank, etc.) to the consumers (e.g. domestic, 
commercial, and industrial users). The WDN optimization 
problem here attempts to optimize its pipeline by selecting 
the lowest cost combination of appropriate pipe sizes such 
that the criteria of demands and other hydraulic constraints 
are satisfied.  

A free hydraulic solver EPANET2.0 
(http://www.epa.gov/nrmrl/wswrd/dw/epanet.html) is used 
to conduct the hydraulic calculations. In the proposed 
optimization algorithm, one candidate solution (one particle) 
is a set of diameters for all the pipes in the water distribution 
network. The input for the hydraulic simulator 
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(EPANET2.0) is one candidate solution (diameter set) and 
its output is the actual head pressure of each node in the 
network. With these head pressures, the fitness of the 
solution is calculated. Thus the major task for the hydraulic 
solver is to compute the fitness of each potential design.  A 
flowchart is given in Figure 5. 

Start

Initialize 
population

Next 
generation

Generation 
update

Current 
generation

Hydraulic 
simulation

(EPANET2.0)

Calculate fitness
(Cost+Penalty)

i=N?

stop

Yes

NO

 
Figure 5. General  flowchart of optimization for WDN 

4.1 Benchmark network 
In this paper, the proposed algorithm is applied to solve a 
benchmark network from the literature known as the Hanoi 
network. The Hanoi network (Figure 6), presented by 
Fujiwara and Khang [21], requires the optimal design of 34 
pipes, allowing a minimum hydraulic head of 30 meters for 
all its 32 nodes, by means of 6 available diameters. The size 
of the solution space is therefore     6!" . It serves as a 
prototype of a medium sized network for the evaluation of 
optimization algorithms. 

 

                         Figure 6.  Hanoi Network [21] 

4.2 Experimental settings 
In addition to the two acceleration coefficients to be 
estimated by the proposed approach, there are two other 
important parameters need to be set.  For the sake of 
comparing with previous work, we set all other parameters 
the same with that in the peer methods: inertia weight is set 
to be 0.8. The boundary for the updated velocity (see 
Equation (1)) which is used to constrain the velocity of each 
particle to the range of [-V!"#  ,        V!"#], is set to be 50%, 
because the appropriate range for  V!"#  is between 40% 
and 100% of the variable range, based on the findings by 
[18].  

4.3 Results & discussion 
PSO with this parameter setting, PSO is implemented for 30 
times on Hanoi network to estimate the optimal parameter 
settings for this engineering design problem. As we can see 
from Figure 7, in each single run, there is a clear 
convergence of both c1 and c2 values during the co-
evolution process. The average values of parameters in 
every implementation are recoded and the results of all 30 
runs are displayed in Figure 8. We can see that all the 
average values are close, which means the estimated results 
are consistent throughout the experiments.   The final 
average parameter values of the 30 runs are shown in Table 
3, which is used as the estimated optimal parameter setting 
in the subsequent experiments.  
 
     Table 3. Estimated results for Hanoi network 

Parameters Mean value Standard 
Deviation 

c!   1.186576193   0.228964  
c!   2.057563122   0.423434  

 

 
Figure 7, Track of Estimated C1 and C2 values for 10 particles 
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Figure 8. Estimated C1 and C2 values for Hanoi network 

With the estimated optimal parameter settings: c1= 1.1866, 
c2=2.0576, we run the PSO for 30 times on the Hanoi 
network and the results are summarized in Table 4 below. 
An extensive comparison previous work from the literature 
is made. PSO with the estimated optimal parameter settings 
could achieve the best known minimal cost which is 
6.0811(unit cost).  

Although the best minimal cost known in the literature is 
only achieved once out of  30 runs, the reliability and 
efficiency are better than other methods (Table 4). The 
reliability of an optimization method could be measured by 
the average performance achieved by the proposed 
algorithm in a certain number of runs. Herein, we use the 
average minimal cost as the indicator of reliability. We 
know from Table 4 that the proposed algorithm achieves the 
smallest average cost compared to the other methods which 
were also able to achieve the best minimal cost.  Efficiency 
is also compared. It is measured by the average number of 
fitness calls used by the algorithm to achieve the best 
solution since in most engineering applications, fitness 
evaluation is the most time consuming part of the 
optimization algorithm. Obviously, our method achieves the 
best efficiency, which is almost 4 times better than other 
methods. Fitness track of 5 runs is shown in Figure 9, from 
which a very fast convergence process can be observed. 
Another important observation from this figure is that all the 
5 search processes converged after around 100 iterations. 
This might indicate that we could achieve a very good 
(usually not optimal result) result with a very small number 
of fitness evaluations (around 2,000). This is a clear 
advantage over all other methods. From a practical point of 
view, an “early” almost-optimal solution may be preferred 
to a “very late” optimal solution when the cost of time is 
taken into consideration. On the other hand, it also suggests 
that premature convergence problem is present, which is a 
common problem with the application of PSOs. Several 
researchers have proposed methods to address this problem 
with no conclusive solution. The major task for our 

proposed estimation method is to help the PSO obtain a very 
good parameter setting in a very short time, but it is not able 
to tackle the premature convergence problem, so more work 
is required to further improve the performance of PSO. 
 
   Table 4. Minimal cost for the Hanoi networks      

Methods Minimal cost  
(x10!$) 

Average  
(x10!$) 

Average NO. of  
Fitness 

evaluations 
GA[22]   6.093        
GA[23]   6.182        
GA[24]   6.195        
ACO[25]   6.367        
PSO[19]   6.133   6.487   80,000  
PSO[20]   6.081   6.297   80,000  
PSO[18]   6.081   >6.297*   80,000  
This  work   6.081   6.252   20,000  

*no specific number was given in the paper, but the authors compared their 
results in this paper with the results of their previous paper and found the 
average minimal costs are worse than previous work.       
 

 
Figure 9. Fitness track of 5 runs optimal parameters  

5 Conclusions and future work 
In this work, a fast parameter estimation strategy for PSO is 
proposed to estimate the optimal acceleration parameter 
settings. Self-adaptive control and co-evolution strategies 
are used together for the parameter estimation of PSO in the 
proposed method. The tests on two numerical optimization 
problems show that the estimated optimal parameter settings 
are consistent with the optimal parameter settings achieved 
by parameter tuning. PSO with the estimated parameters is 
able to identify the best known cost for the benchmark 
example on the WDN optimization problem. The algorithm 
performs better than other methods in the literature in terms 
of reliability and efficiency. The proposed parameter 
estimation strategy is promising and may perform better 
when combined with a premature convergence elimination 
strategy. The major contributions of the work presented in 
this paper are as follows: (1) A novel fast parameter 
estimation strategy to replace the inefficient conventional 
parameter tuning method for PSO is proposed And(2), a 
new optimization method with PSO is proposed for the 
optimization of water distribution networks.  
 
Our future work will focus on the following topics: (1) to 
extend the proposed fast parameter estimation strategy for 
PSO to other Evolutionary Algorithms where there is a need 
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for parameter tuning. And (2) to apply the proposed 
algorithm to the design optimization of larger water 
distribution networks design or other practical engineering 
design and/or optimization problems. 
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Evolutionary Routing Strategies for Automotive Networks

Martin Dohr, Bernd Eichberger
Institute of Electronics, Graz University of Technology, Austria

Abstract— The design of efficient communication networks
is a challenging task for modern vehicle development. Due
to novel technologies and new degrees of freedom in network
design, the decision on a bus topology has a severe impact
on the overall system cost and performance. In this work,
we propose a topology and routing optimization using Evo-
lutionary Algorithms and problem-specific encoding. Our
contribution includes a guided topology mutation operator
which outperforms standard random mutation. Further, we
propose two routing operators for usage during the optimiza-
tion process and compare their effectiveness on a network
application taken from a series vehicle.

Keywords: Evolutionary computation; communication networks;
design optimization; routing;

1. Introduction
Upcoming developments in the automotive industry will

have a severe impact on in-vehicle communications. Such
developments include advanced driver assistance systems
like lane departure warning, night vision or traffic sign recog-
nition. Those systems have in common, that complex sensors
such as cameras, RADAR or LIDAR have to be deployed in
remote locations within car. In order to convert the raw sen-
sor data into usable information for the driver, sophisticated
evaluation algorithms have to be applied. System designers
have always been mapping such computational intensive
tasks onto central Electronic Control Units (ECUs) for cost
reasons. Another argument for centralized processing is,
that upcoming functionalities will have a interconnected
architecture and rely on multiple distributed sensors as input
data sources. However, in contrast to present features, those
new developments and sensors will also have much higher
communication requirements which cannot be satisfied by
well established automotive bus systems like CAN [1]. For
example, the raw data transfer of RADAR and LIDAR
sensors are comparable to monochrome or colored video
stream. In comparison to that, current automotive features
such as cruise control or automated headlamp leveling only
require a fractional amount of that bandwidth.

There are several solutions to meet the new communi-
cation demands in the car. First implementations of rear
view cameras were connected by a separate shielded twisted
pair or coaxial wire using analog data transmission. While
this is cost efficient for a single data source, the cabling
effort for several distributed sensors makes this solution
impractical for modern automotive architectures. Improved

bus systems like MOST [2], FlexRay [3] or Ethernet [4]
are better suited for such high bandwidth demands and also
satisfy the stringent reliability and real time requirements of
automotive applications.

Another aspect are new architecture paradigms to manage
the increased complexity of interconnected features. Archi-
tectures like AUTOSAR [5] define an interface to separate
functional software from the underlying operating system
and hardware, thus allowing modular design of software
components (SWCs). The advantages of this separation are
that software components are now more independent from
their location of execution and can be mapped onto different
ECUs within the vehicle. At the same time, testability
and re-useability of components increases because of the
standardized interface and even online relocation of software
execution within the car is possible.

However, the architecture and design process of a net-
work is becoming more complex because of such recently
introduced degrees of freedom in software mapping. In [6],
the authors propose a holistic network architecture process
using Evolutionary Algorithms (EAs) and problem-specific
encoding. In this paper we will focus on methods to improve
the topology and routing optimization of the mentioned
approach.

The rest of this paper is structured as follows: Section
2 presents related publications concerning topology opti-
mization using evolutionary methods with a further focus on
automotive applications. Our system model and the phases
of optimization are explained in Section 3. A more detailed
description of our topology mutation and routing operators
is then given in Section 4 before presenting our test scenario
and results in Section 5. Finally, we give a conclusion of the
current work and next plans in Section 6.

2. Related Work
Network topology optimization has been an ongoing re-

search topic for decades as summarized in [7]. Most works
focus on multiobjective heuristics to solve such problems
[8] with objectives like network cost or message delay. The
performance is then verified on realistic traffic models as in
[9]. Recent works [10] utilize objective-guided genetic oper-
ators in combination with MOEA/D to incorporate problem-
specific knowledge into the optimization process.

Several authors have also studied special attributes of
automotive networks and how to optimize this specific appli-
cation. In [11], a repeated-matching method combined with
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simulated annealing is proposed to optimize task allocation
and network assignment. A similar problem was solved in
[12] using a sophisticated system model and multiobjective
EAs. A hierarchical partitioning is used in [13] in combi-
nation with local heuristics for the gateway placement task,
a sub-problem which is not addressed in most publications.
The authors of [14] propose a combination of Integer Linear
Program (ILP) and EAs for topology and routing optimiza-
tion but also require a given architecture in form of nodes,
buses and gateways.

3. Optimization Work Flow and System
Model

Our optimization framework distinguishes between two
phases, application mapping and signal routing. Both phases
run adapted implementations of the SPEA2 algorithm [15]
which are extended by application specific network encoding
and custom operators. Each phase optimizes the network
with respect to different goals by utilizing specific fitness
functions and operators suited for the task at hand. The
overall work flow is depicted in Figure 1. Our work builds on
the ’Metaheuristic Algorithms in Java’ framework presented
in [16], which was chosen due to the very modular and
extendable design.

The aim of the first phase is to map all software com-
ponents onto ECUs while keeping communication between
the nodes at a minimum. On the other hand, the deployment
has to respect the processing capabilities of each ECU and
safe costs by optimal utilization for each node. Since those
goals are contradicting, the result of this phase is a Pareto
set of possible software mapping solutions. In our encoding,
we call such a mapping candidate an ApplicationMatrix.
Therefore, each solution in phase one consists of a common
functional description and set of nodes, combined with a
unique ApplicationMatrix, which defines the mapping of
each SWC onto a node. Further details on the used operators
will be published in [17] and are not the focus of this paper.
The rest of this section is mainly concerned with input
objects and variable encoding for the second optimization
phase.

3.1 Input Objects
In order to explain the goals of phase two it is sufficient to

know, that the input from phase one is a set of one or many
Pareto optimal mapping solutions for a given set of nodes
and functional description. The goal of this phase is to create
a feasible network topology where all nodes are connected
via bus systems or gateways and each communication signal
can be routed over this topology. The input parameters shall
be defined as follows:
• NodeDB: A list of active nodes N where each node

n ∈ N corresponds to an ECU with given coordinates
within the vehicle. Note that a model of monetary costs

PhaseN1

PhaseN2

ReadNInputN
Parameters

OptimizeN
ApplicationN

Mapping

OptimizeNTopologyN
andNRouting

:BusDB:NodeDB

:AtomicSoftwareComponent

:FunctionalDescription

:InputNetwork

:ApplicationMatrix

:BusMatrix

:CommunicationMatrix

Final

:MappingSPEA2

:RoutingSPEA2

Initial

using

result

result

using

result

result

Fig. 1: Workflow of the proposed framework showing input
objects and the two phases of optimization

for each node is only required in the first phase of
optimization. In phase two, it is sufficient to estimate
the additional costs of connecting a node to a bus
system which is modeled as bus coupler costs.

• The FunctionalDescription is a logical network of all
software components C and their corresponding com-
munication signals S. Each signal si ∈ S consists
of a set of one or more receiving SWCs Csi and
the corresponding bandwidth requirement in kbit/sec.
Since our framework is designed to be used in a very
early stage of product development, we provide a rough
bandwidth estimation instead of detailed transmission
deadline constraints which are generally not known at
this time.

• BusDB: A database of all available bus systems B with
estimated cost factors for bus couplers and wiring effort.
Furthermore, each bus system b ∈ B is defined by a
maximum transfer capacity in kbit/sec. This capacity
is usually set between 30% and 70% of the theoretical
maximum at this stage of development to be prepared
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Fig. 2: Diagram of all related input objects, variables and
operators

for changes in communication requirements. A detailed
schedulability analysis, as presented in [18], is not
feasible at this stage of development.

• One or several ApplicationMatrix representations of
possible solutions from phase one.

3.2 Variable Encoding
A complete solution candidate in phase two consists of

common input parameters, a mapping solution from the
previous phase and two new variables representing topol-
ogy and signal routing. First, we define a variable called
BusMatrix to model the connections between nodes and
buses. The dimension is |B| × |N | with each entry stating
whether the node is connected to this bus system or not. The
network topology is therefore defined by this variable with
the exception of gateway functionalities. The representation
can be altered by mutation operators which is the usual
practice in evolutionary algorithms. Since the algorithm can
work with several distinct mapping solutions in parallel, a
crossover operation would not be suitable in this phase.

It should be noted, that a BusMatrix does not provide a
feasible network until a signal path has been found for each
communication signal. This is done by a routing operator
and results in a CommunicationMatrix, which represents all
signal paths and gateways within the network. The routing

operator uses a BusMatrix as input but can also add con-
nections to repair infeasible communication paths. Further,
the routing procedure can add gateway functionalities onto
nodes if needed. We consider gateways as objects derived
from software components and only allow a mapping on
certain nodes in the system. Those mappings can be created
by the router or by a distinct gateway mutation operator.
During the routing process, the CommunicationMatrix is
filled with signal paths and bandwidth information for all
used bus systems accompanied by a set of mapped gateways
G and their respective routing tables. In order to preserve
feasibility during this process, we define two constraints for
the routing algorithm.

1) Signals must not be routed over a bus system if the
resulting bandwidth would exceed the maximum bus
capacity.

2) To limit complexity and transmission time, a signal
route over two or more gateways is not allowed. This
is also standard practice for current vehicle networks
which utilize one central gateway for all bus systems.

A overview of all mentioned objects is depicted in Figure 2.

3.3 Fitness Functions
The goal of the routing phase is to find feasible networks

utilizing availiable bus systems in a cost efficient way. This
implies the following statements.

1) Each bus system shall have optimal bandwidth utiliza-
tion.

2) A balance between faster (more expensive) and
cheaper bus technologies has to be found.

3) Wire lengths have to be minimized as the cabling
harness is a significant cost factor in modern vehicles.

4) The usage of gateway components doubles the band-
width requirement for a signal since it has to be
transmitted over two bus systems to reach all receiving
software components.

Based on those statements we define three objectives to
measure the fitness of a solution.

System cost defines the hardware costs for a given topol-
ogy. The bus coupler cost BCC(b) models the expense of
adding a node n to a bus system b. The set N(b) is the set
of all nodes that are connected to the bus system b.

SystemCost =
∑
b∈B

BCC(b)× |N(b)|

Wiring cost represents the length of the cable harness. We
approximate this length for every bus system as the sum of
Manhattan distances between all nodes connected the bus.
The Manhattan distance is defined as the path between two
nodes, when only moves in direction of the Cartesian axes
are allowed.

dist(n1, n2) = |x1 − x2|+ |y1 − y2|+ |z1 − z2|
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Fig. 3: The routing algorithm with SPEA2 selection methods
and custom mutation and routing operators

For certain bus systems like MOST, the wire length can by
multiplied by an additional cost factor to reflect the more
expensive installation effort for optical cables.

Bus utilization is modeled by a fuzzy set where a con-
sumed bandwidth between 30% and 70% of the maximum
speed is considered as optimal load. Those values may vary
depending on the bus system in use and can be adapted from
’best practices’ in automotive engineering. If a bus utilization
is out of this range, we model a penalty value based on the
bandwidth mismatch and priority of the bus system. Due to
the priority, we can force the optimization process to utilize
more expensive bus systems better than cheap ones. The
overall fitness function is then the sum over the resulting
penalty values for all used bus systems.

4. Mutation and Routing Strategies
As stated before, the algorithm uses mutation operators

on a BusMatrix and then creates a CommunicationMatrix
by applying a routing operator. The procedure is based on
the SPEA2 [15] and employs unaltered fitness assignment
and selection implementations from [16]. The principal work
flow is depicted in Figure 3.

4.1 BusMatrix and Gateway Mutation
We have developed two mutation operators for the Bus-

Matrix, a random mutation and an advanced guided operator.
The random implementation can be compared to a simple
bit flip mutation, connecting or disconnecting a node from a
bus with a certain probability. In contrast to that, the guided

mutation prefers to connect nodes to bus systems, whose
bandwidth utilization is below optimal values. Consequently,
nodes have a higher probability of getting disconnected from
bus systems with higher communication load. Algorithm 1
states the procedure for guided bus mutation. It is important
to limit the guiding factor to very small values in order to
avoid overshooting.

Algorithm 1 Guided BusMatrix Mutation
1: p←MutationProbability
2: for all Bus Systems b in B do
3: u← BusUtilization(b)
4: for all Nodes n in N do
5: if (n connected to b and u == HIGH) or

(n not connected to b and u == LOW ) then
6: pn ← p× 1.05
7: else
8: pn ← p
9: end if

10: mutate connection with probability pn
11: end for
12: end for

The mapping of gateway SWCs is also altered by an
distinct mutation. It is again a random bit flip mutator
method but with much lower probability of execution. Like
all other genetic operators, the presented mutation functions
share the same interface and could be interchanged during
runtime of the optimization.

4.2 Routing Strategies
We compared 2 routing operators with different charac-

teristics. The ’Largest Load First Router’ (LLFRouter) is
specified by a strict deterministic behavior. This means,
given the same BusMatrix and ApplicationMatrix as input,
the router will always create the same CommunicationMatrix
as output. The routing always starts with the signal repre-
senting the highest bandwidth requirement and ends with the
signal having the lowest. As a consequence, all evolutionary
logic is done during the mutation of the BusMatrix. In
contrast to that, we also propose a ’Random Sequence
Router’ (RSRouter), where the order of routed signals does
not follow a certain rule. The results are influenced by the
given bus topology but can vary depending on the router
logic.

Independent of the chosen operator, the router follows 4
steps to find a feasible path on the current topology for each
signal:

1) Find a direct connection between source and destina-
tion.

2) Find an available gateway connection.
3) Create a gateway connection without adding new bus

couplings.
4) Create a new direct connection.

66 Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  |



Depending on the current BusMatrix, a step could find more
than one feasible path to route a signal. For this case,
we define selection schemes which are set globally for the
optimization process:
• BEST_FIT: The router chooses the bus system in such

a way, that the added signal improves the overall bus
utilization. A simple local search heuristic was designed
to find this system in a time-efficient way.

• CHEAPEST: The cheapest available bus system is al-
ways chosen.

• RANDOM: The router randomly chooses a path. Note
that this will force the router into non deterministic
behavior.

5. Experimental Results
We evaluated both routing operators using each mutation

strategy and path selection schemes defined above. For each
operator setup, we calculated the hypervolume indicator or
S-metric [19] and generational distance [20] to compare the
resulting Pareto fronts after 20.000 evaluations. Since the
true Pareto front for the test problem at hand is not known,
we estimated it as the global Pareto front of all evaluation
runs.

5.1 Input Network
Our test network consists of 15 ECUs executing 284

atomic software components. The overall communication
load created by 390 signals equals 281 kbit/sec. Roughly
30% of those signals have more than one receiving soft-
ware component, for example network management and
diagnostic functions. The structure of this network was
generated from a middle class series vehicle but bandwidth
requirements were greatly increased as to utilize more bus
systems and therefore enable a broader spectrum of possible
solutions.

5.2 Results
The resulting performance indicators are listed in Table 1

with the best 3 values for each indicator highlighted in gray.
The random sequence router runs slightly faster because the
bandwidth sorting algorithm in LLF has to be performed
for each routing execution. The comparison shows that
guided BusMatrix mutation clearly outperforms its random
counterpart without a significant impact on execution time.
In fact, the fastest runs were also achieved using guided
mutation. An exemplary Pareto plot of 3 different operator
setups and the global Pareto front is depicted in Figure 4. It
shows the trade off between low system costs versus cheap
wiring effort and well utilization of bus systems. The LLF
router with guided mutation and random path selection has
the best overall performance as it covers both parts of the
front equally. Only the combination ’RSR / guided mutation
/ best fit path selection’ is closer to the solutions with low

Table 1: Results for different operator setups after 20.000
evaluations

Router Mutation Path HV GD
Exec.

time [ms]
RSR Random Random 0.09356 0.452851 25336

RSR Random Cheapest 0.12951 0.095245 26755

RSR Random Best Fit 0.35134 0.062998 25414

RSR Guided Random 0.46237 0.021208 24048

RSR Guided Cheapest 0.19250 0.016120 24946

RSR Guided Best Fit 0.19881 0.005960 25304

LLF Random Random 0.01778 0.323714 27539

LLF Random Cheapest 0.12510 0.050040 26927

LLF Random Best Fit 0.37797 0.035734 29095

LLF Guided Random 0.51932 0.008477 27354

LLF Guided Cheapest 0.18687 0.010839 29407

LLF Guided Best Fit 0.19769 0.006498 30078

system costs but neglects a lot of solutions in the Pareto
front.

6. Conclusion
This paper proposes advanced routing methods for evo-

lutionary network optimization. Our work is based on the
framework presented in [6] with focus on the application-
specific encoding. The framework is designed to optimize
the application mapping and topology in the context of in-
vehicle communication. Since this is done in a 2-phase
approach, our proposals can focus on the topology and
routing with a given set of solutions from the mapping
process. First, we developed a guided topology mutation
operator to even out bandwidth utilization between different
bus systems. Secondly, we propose two routing operators
where one shows deterministic behavior while the other
is non-deterministic by design. As last input, we chose
between three different strategies to find feasible communi-
cation paths within the network. After evaluating all operator
setups, we find that deterministic routing performs better in
most cases when combined with guided topology mutation.
Further, this guidance does not significantly prolong the
execution time of the overall optimization. However, due to
the test scenario taken from a series vehicle, it is not clear
if the results can be extended to networks of different sizes.
In order to ensure stable behavior for other applications, our
next goal is to develop generic test cases for a variety of
target applications.
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Abstract - Evac (the evolutionary accompanist) is a system 

that engages in musical improvisation with the user. Evac 

uses a genetic algorithm (GA) to invent musical phrases that 

are neither too similar to the user’s input, nor too different. 

It is notable for two reasons. First, it uses a novel, implicitly 

interactive, genetic algorithm, which allows the user’s 

actions to influence Evac’s musical performance without the 

need for explicit rating of individuals. Second, in contrast to 

many pieces of software in the world of evolutionary music 

and art, Evac runs in real time, allowing the user to 

experience the same kind of exploration that happens in real 

life improvisation scenarios with other musicians. Evac must 

also solve the design problems of dynamic environments, 

since our GA’s fitness function relies on the user’s input. 

Sample music resulting from the system is available.  

Keywords 

Evolutionary computing, music accompanist, interactive 

Genetic Algorithm, real time 

1. Introduction 
Our problem is music composition. In particular, our system 

allows the user to play music while simultaneously 

generating impromptu accompaniment to go along with the 

user’s input. The musical “brain” of the system is a genetic 

algorithm implemented in C#. 

Evolutionary computing is a research area which draws 

inspiration from the process of natural evolution. It reflects 

the phenomenon of survival of the fittest in nature.  

The two cornerstones of evolutionary progress are 

competition-based selection, and the phenotypic variations 

among members of the population (Eiben & Smith, 2003). 

The most important components for any evolutionary 

algorithm includes: representation (definition of individuals), 

an evaluation function, population, parent selection 

mechanism, variation operators, recombination and mutation, 

and a survivor selection mechanism. Evolutionary algorithms 

(EA’s) have three basic features that distinguish them from 

other algorithms: EA’s are population based; they use 

recombination, mutation, or other genetic operators; and they 

are stochastic.  

In the literature there have been four main approaches: 

genetic algorithms, evolution strategies, evolutionary 

programming (EP), and genetic programming. All these 

dialects of evolutionary computing follow these general 

outlines, with differences only in technical detail. For 

example, the representation of individuals is historically 

strings over a finite alphabet in GAs, real valued vectors in 

an evolution strategy, finite state machines in the classical 

EP, and tree structures in genetic programming (Eiben & 

Smith, 2003). All of them have been successfully applied to 

a wide range of problems, with a focus on optimization 

problems. 

When an EA is applied to musical composition, there are 

three main considerations (Burton & Vladimirova, 1999), 

namely the search domain, the genetic representation, and the 

fitness evaluation. For musical composition, the search 

process is analogous to a combinatorial optimization 

problem, and because of the infinite combination of 

melodies, harmonies and rhythms, its search space is 

unlimited (Tokui & Iba, 2000). Therefore, the composition 

should be guided by some constraints. By artfully choosing 

our constraints, we aimed to maximize the musicality of 

Evac’s output, as well as its real-time responsiveness. To this 

end, we limited our search to melodies of length 16 (i.e., 

strings of 16 single notes). Each note in the melody can be 1 

of 13 pitches. All together this yields roughly   
     possible combinations: still quite large, but no longer 

infinite. 

Our goal when designing the representation was to be as 

simple as possible while maximizing the effectiveness of 

evolutionary search. Hence we adopted a discrete 

representation where an integer encodes several properties of 

a note, and an array of 16 integers represents an individual 

(musical phrase). 

The last topic is fitness evaluation. Since we are generating 

impromptu accompaniment for the user’s music, we 

incorporate the user’s input into the fitness function. 

Specifically, the music represented by an individual in the 

GA is compared with the user’s input and rated for similarity 

using music theoretic notions. To determine the individual’s 

fitness, we used a function that assigned low fitness values to 

those individuals who were either too similar or too different. 

High fitness individuals were similar but not identical to the 

user’s input. This ensured that the GA favored individuals 

that were related to the user’s input without copying it.  

The rest of the paper is structured as follows. The second 

section gives a brief review of the literature related to 

evolutionary computation and its application in music and 

art; the third section describes how the user interacts with 

Evac; the fourth section offers a detailed description of the 

Genetic Algorithm used in Evac including: individual 

representation of music notes, fitness function and genetic 
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operators; the fifth section discusses the results of running 

and playing with Evac, along with analyses regarding the 

system; the sixth section presents conclusions about the 

performance of Evac, and the seventh section discusses 

future work. 

2. Background 
Genetic algorithms have been frequently used as an approach 

to music composition. In a previous study (Matic 2010), 

position based representation of rhythm and relative 

representation of pitches (based on distance from a starting 

pitch), were used to allow flexible encoding of music 

compositions.  Use of a mathematical (i.e., non-interactive) 

fitness function as well as an initial population with pre-

defined rhythm made the GA simpler to implement, and also 

improved the quality of the final result.  

However, strictly non-interactive fitness functions preclude 

human influence on individuals’ fitness. While in some cases 

this might be desirable, one of the primary goals of art is to 

give voice to human experience; as such, removing humans 

entirely from the loop of the fitness calculation represents a 

serious trade-off. Interactive evolutionary algorithms (IEAs) 

address that exact issue. Interactive evolutionary algorithms 

explicitly include the user in the evaluation of individuals, 

typically by allowing them to select the best individual(s) 

from a group or assign fitness values based on subjective 

appeal. In another paper on evolutionary music composition, 

Tokui and Iba (2000) combined genetic algorithms and 

genetic programming in an IEA. The GA individuals 

represented short pieces of rhythmic patterns, while the GP 

individuals expressed how these patterns were arranged in 

terms of their functions. Both populations were evolved 

interactively through user evaluation. The integration of 

interactive GA and GP has the benefit of allowing search for 

music structures in large search space. 

Interactive evolutionary algorithms have also been used in 

generating artwork. For example, Graca & Machado used an 

IEA to generate assemblages (similar to collages) of 3D 

objects (2008). In their evolutionary art approach, users make 

the initial choice of source image and object library, then 

guide the evolutionary process in accordance to their artistic 

preference, until a desirable distribution of 3D objects is 

evolved. Several interesting points addressed by this system 

include: developing masks to allow exploration of details and 

ignore other regions; conveying different artistic notions 

such as motion; mimicking texture; and developing overall 

expressiveness. The limitations of this system include human 

fatigue, as well as the computational effort required to 

preview and render the individuals.    

User interface design has also been the subject of interactive 

evolutionary algorithms (Masson, Demeure, & Calvary, 

2010). In an evolutionary system called Magellan, the 

traditional model-based (task-based) approaches and the 

interactive genetic algorithms were combined to foster the 

exploration of the design space and inspire the designer. The 

input of the system was the given user task model, and the 

output was sketches of UI’s, which could be later tuned by 

human designers. However, as with the previous example, 

the authors ran up against the human fatigue problem. 

To address the issue of human fatigue, one approach that has 

been used is to hardcode mathematical heuristics of 

aesthetics. For example, in a proposed jewelry design 

system, several heuristics functions evaluating aesthetics and 

morphology were included, which reduced the amount of 

feedback needed from the user by two orders of magnitude 

(Wannarumon, Bohez, & Annanon, 2008). It was basically a 

hybrid approach in which evaluations rely partially on an 

encoded fitness function (the algorithmic aesthetics), and 

partially on subjective human feedback. However, this 

approach is still limited in its need for a hard-coded 

aesthetical evaluation function, which is something that may 

not be possible or practical for every situation. 

In order to overcome both the human fatigue problem and the 

hard coded fitness function, Hornby and Bongard (2012) 

developed The Approximate User (TAU) system, in which a 

model of the user’s preference was built and refined 

continuously during the search process. This preference 

model could then be used to drive the search algorithm, 

decreasing the demand placed on the user. Two variations of 

a user-modeling approach were compared to determine if this 

approach can accelerate IEA search. The first approach 

involved learning classification rules to determine which of 

two designs is better. The second involved learning a model 

to predict fitness scores. These two variants were compared 

against the basic IEA and it was shown that TAU was 2.7 

times faster and 15 times more reliable at producing near 

optimal results.  

3. Evac and the user 
Evac is simple to operate – after opening the program, a very 

minimal user interface is displayed and the user begins to 

hear the tick of a metronome. From this moment, Evac is 

ready to accept user input. The user treats the Tab, Q, W, E, 

R, T, Y, U, I, O, P, open-bracket (‘[’), and close-bracket (‘]’) 

keys on their computer keyboard like keys on a piano, 

pressing them to trigger the sound of a flute and releasing 

them to stop the sound. One note can be played at a time. 

Each key corresponds to a specific pitch, shown in Table 1.  

 

Table 1: Keyboard keys and pitches. 

Keyboard Key Pitch 

Tab A2 

Q B2 

W C3 

E D3 
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R E3 

T F3 

Y G3 

U A3 

I B3 

O C4 

P D4 

[ E4 

] F4 

 

After a certain amount of “prep” time, whether the user has 

played anything or not, Evac will begin playing the output of 

the genetic algorithm. (In fact, Evac will happily play along 

with silence forever - the fitness function, described below, 

has no problem with comparing against silence.) 

Evac addresses the human fatigue problem in a novel way. 

The system does not require the user to evaluate music pieces 

directly, saving them the mental fatigue of making choice 

after choice (though the trade-off is that the user has no way 

to directly control the software’s performance). Evac, 

however, does constantly compare its output against the 

user’s input. As a result, the user is kept in the evaluative 

loop. In this way, Evac dodges the issue of user fatigue - the 

only human activity involved is playing music, which is 

quite enjoyable. As a matter of fact, our system can be used 

as a tool to assist musicians in developing creative 

accompaniment without much effort; all one needs to do is 

keep playing. 

4. The Genetic Algorithm approach 

4.1 Overview 
A technical overview of Evac’s GA configuration is given in 

table 2. The major concern when designing Evac’s GA was 

the need to balance the competing demands of high 

performance with the limited resources available in a real-

time environment. A clear microcosm of this issue presents 

itself in deciding an appropriate population size. Our 

population size of 100 was chosen to be small enough to 

prevent undue resource consumption: excessively large 

populations require more computation per generation, 

leading to more inertia and less responsiveness. Since Evac 

operates in real time, this would decrease the value of the 

system. On the other hand, small population size limits the 

diversity of the population. This means fewer musical ideas 

present in the population and a greater risk of stagnation. 

 

 

Table 2: Technical overview of Evac’s GA parameters. 

Representation 

Discrete. Integers represent 

pitch. Relative position of 

integers represents rhythm. (See 

below.) 

Parent selection 

strategy 

Tournament selection with 4 

competitors. 

Survival strategy 

Generational + elitism. (Best 

individual retained between 

generations.) 

Crossover 
Uniform crossover; probability: 

90% 

Mutation 
Uniform mutation; mutation 

probability per gene: 20% 

Population size 100 

 

We were reluctant to use “on-line” forms of parameter 

control (e.g., self-adaptation, dynamic parameter control) for 

two reasons. First, some forms of control pose additional 

challenge to the evolutionary process. Second, others depend 

on a priori reasoning that was not relevant to Evac’s task. For 

example, a common technique is to use dynamic parameter 

control to decrease mutation rate as the algorithm progresses. 

Since Evac operates for as long as the user is entertained, this 

technique is not appropriate. With that in mind, parameter 

tuning (i.e., trial and error) was used to determine a 

reasonable balance between the two demands. 

4.2  Representation 
Figure 1 shows the representation for a single music note, 

and for an individual of the GA. As mentioned earlier, the 

representation for a single note was an 11-bit integer 

encoding of several values. Specifically, the lowest 6 bits 

were used to present the pitch of the note, which gave us a 

range of 64 different pitches (more than sufficient for the 

thirteen pitches we used). The next 4 bits were used to 

represent the velocity of the note (i.e., volume, or the 

strength of the note), which gave us a range of 16 different 

levels of velocity. If the velocity for a note was 0, that meant 

it was silent (i.e., a break or rest). The next bit marked 

whether this note was a new note or a continuation of the 

previous one. This bit was only meaningful if there were two 

consecutive notes with the same pitch. In that case, a new 

note means two notes will be played. If the second one is not 

a new note, it will not be played; instead, the first note will 

be played for the duration of two notes. 

Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  | 71



 

Figure 1: Representation for a single music note and an 

individual 

However, in Evac’s GA, an individual is not merely a note, 

but an entire musical phrase, i.e. a series of notes. We took 

each individual to be 16 notes long; as in music, these 

sixteen notes could be played over an arbitrary length of 

time, depending on Evac’s settings. This allowed the user to 

determine for themselves whether they wanted to play a fast 

song or a slow song. An example of a musical phrase and the 

corresponding GA individual representation is shown in 

Figure 2.  

 

 

 

Position 1-5 2 3 4 5 7-16 

Velocity 0 1 1 1 1 1 

Pitch 12 7 5 3 0 0 

isNewNote n/a true true true true False 

 

Figure 2: Musical phrase (above) and corresponding Evac 

individual representation (below). 

 

4.3 Similarity Rating and Fitness Function 
An individual’s fitness was achieved by transforming a 

similarity function. The similarity function was computed by 

comparing each individual against the user’s input for the 

previous 16 beats, and depended only on the harmonic 

“distance” (musical term: interval) between the pitches at 

each index. (In our representation, such harmonic distance 

can be computed by simple subtraction of the integer 

pitches.) Our similarity weighting function was informed by 

a musical technique called counterpoint, in which two 

separate melodies (strings of notes) interweave to form a 

larger texture. These two separate melodies are harmonically 

interdependent, but independent in pitch contour and rhythm. 

In particular, we used a simplistic approach where consonant, 

“at rest” intervals had a higher similarity rating, while 

dissonant, “unstable” intervals had a lower similarity rating. 

Generally for most people, a consonance sounds pleasant 

whereas dissonance sounds unpleasant or harsh. As Roger 

Kamien said in his book (2008), “An unstable tone 

combination is a dissonance; its tension demands an onward 

motion to a stable chord. Thus dissonant chords are ‘active’; 

traditionally they have been considered harsh and have 

expressed pain, grief, and conflict.” We want our music to be 

more pleasant to listen to, hence we gave consonant intervals 

higher similarity ratings, which will lead to higher fitness 

values in the evolutionary process.  

Table 3 presents the 12 different musical intervals and their 

corresponding similarity values. We adopted these values 

based on music theory knowledge and our own musical 

intuition. If two notes have an interval that is higher than 12, 

their similarity value was calculated in this way: first, a 

similarity value was calculated based on Table 3 using the 

remainder of that interval value divided by 12, then the 

resulting similarity value was decreased by 0.2 to get the 

final similarity value. Rests have a similarity value of 1 to 

other rests, and a similarity value of 0 to non-rests. 

The similarity value of an individual was the sum of the 

similarity values calculated for each of the 16 notes within 

that individual. Once a similarity value had been obtained for 

an individual, that similarity value was passed through a 

weighting function (i.e., the fitness function, shown in Figure 

4) to calculate the individual’s fitness value. The decision of 

weighting functions was based on the principle that 

individuals with excessively low or high similarity should 

receive low fitness values. Individuals with mid-to-high 

range similarity values should receive higher fitness values. 

Several fitness functions were tested and the one with the 

best performance among them, a quadratic function, was 

chosen. 
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Figure 3: Music intervals shown on piano keyboard 

 

Table 3: Musical intervals and their corresponding similarity 

values. 

Interval : Musical Name Similarity value 

0 : Unison 1 

1 : Minor second 0 

2 : Major second 0.3 

3 : Minor third 0.4 

4 : Major third 0.6 

5 : Perfect fourth 0.1 

6 : Tritone 0 

7 : Perfect fifth 0.8 

8 : Minor sixth 0.6 

9 : Major sixth 0.4 

10 : Minor seventh 0.3 

11 : Major seventh 0.1 

12 : Octave 0.9 

 

To provide a brief idea of how Table 3 works out in practice, 

assume we are interested in the individual: [0, 3, 5, …]. 

Furthermore, assume the first three notes of the user’s input 

for the last 16 beats was [0, 10, 22, …]. To determine the 

similarity rating, simply calculate the absolute value of the 

differences between each note: [0 - 0, 10 - 3, 22 - 5, …] = [0, 

7, 17, …], then compare to table 3. We can see distances of 0 

(a unison - i.e., the same note) have a similarity value of 1, 

distances of 7 have a similarity value of 0.8. For the 

distances of 17, we first get the remainder of 17 divided by 

12, which is 5, and from Table 3 we get distances of 5 have a 

similarity value of 0.4. We then decrease 0.4 by 0.2 (which is 

a static value got from experimentation) and get 0.2. Thus, 

for each interval we have similarities [1, 0.8, 0.2, …]. To 

obtain the similarity score for an individual, simply sum the 

similarities of each interval. Thus, assuming the individual in 

question consisted of only those three intervals listed 

explicitly above, our example would have a similarity value 

of 2. To obtain the individual’s final fitness score, apply the 

fitness function shown in Figure 4:                  , 

yielding -64. 

 

 

Figure 4: Fitness function: f(x) = – (x-10)2. Input is a similarity 

rating. 

 

4.4 Genetic Operators 
For mutation we used uniform mutation. For each individual 

(i.e., series of notes), the algorithm goes through each one 

and decides whether that note will be mutated. Once a certain 

note is chosen to be mutated, a new random integer will be 

generated to replace that note.  Since all three components 

(pitch, velocity, isNewNote) are encoded within this integer, 

we don’t need to consider the components separately. A high 

mutation rate (20%) was chosen to prevent the algorithm 

from converging on a simple parallel imitation of the user 

(i.e., shifted up some number of pitches, but otherwise 

identical).  

For crossover, we used uniform crossover. Specifically, we 

did not do crossover between notes; instead, we performed 

crossover between different individuals. There are two 

reasons to adopt this strategy. First, it is simple. Second, and 

more importantly, we suspect that, in keeping with ideas like 

the Building Block Hypothesis, recombining effective 

individuals will allow us to more rapidly reach higher levels 

of quality. 
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5. Results and analyses 
Four excerpts of Evac sessions are available on the website 

https://www.dropbox.com/sh/h5cbz756tcyxy6n/vUXrcnmjK

g, labeled “Evac Demo 1”, “Evac Demo 2”, “Evac Demo 3”, 

and “Evac Demo 4.” Again, the flute sound is played by a 

human user and the piano sound is played by the computer. 

What follows are subjective evaluations of Evac’s 

performance; further research would involve more rigorous 

measures of quality (e.g., systematically conducted surveys 

regarding Evac’s effectiveness, rating by experts on its 

degree of musicality and quality of accompaniment, etc.) 

The first thing to be said about Evac is that it is surprisingly 

fun to use. We opted to use a flute as the voice for the user’s 

input, and a piano as the voice for the program. The result 

was both musical and entertaining. While Evac does not 

provide hours of entertainment, there are just enough 

moments of unexpected beauty to keep one engaged for half 

an hour or an hour. It is particularly exhilarating when, 

instead of simply complementing the user’s phrases, the 

evolution yields phrases that seem to demonstrate some 

initiative of their own. 

On a similar note, the major goal of implicit interactivity was 

to minimize the amount of user fatigue suffered while 

controlling the algorithm. In our experience, this was a total 

success. Working with Evac felt much more like playing a 

game than interacting with an algorithm. While we 

mentioned that Evac could keep one engaged for something 

on the order of an hour, we suspect, if there were good 

reason, people would be able to continue significantly longer 

than that. 

We did notice that it takes Evac some time to “catch up” 

when the user changes musical directions. This is to be 

expected - the population had optimized for a certain fitness 

function, and when the user changes their behavior, the 

algorithm needs time to adapt to the new fitness landscape. 

Nor, all told, is the time it takes to adapt excessive. Typically 

within one or two cycles of 16 beats, it has found its way into 

something that is at least not offensive, if not truly 

complementary. 

Evac also seems to yield a better experience with slower 

songs. To some degree, this can be attributed to the 

processing demands - for slower songs, fewer computations 

need to be performed per second, and as a result the program 

responds more smoothly and immediately to user input. At 

the same time, this is also a function of the latency present in 

the system. Even at modest speeds, there is still appreciable 

(if not crippling) delay between when the user presses a key 

and when the corresponding flute sound plays. Slower 

tempos mean the latency introduces relatively less error, 

thereby making the delay less intrusive. This latency also 

limits the user’s play style, to some extent. Because of the 

latency, it is difficult to perform quick, intricate movements 

while keeping time with the rest of the system. As such, it is 

simpler and easier for users to play mostly long, sustained 

notes with some flourishes, either at the beginning or the 

end. Highly rhythmic melodies are essentially a non-option 

because of this. 

Though latency introduces some difficulties, perhaps Evac’s 

greatest weakness is its utter lack of phrasing. This means 

that, while Evac almost always sound good with what the 

user plays, it is difficult to let Evac “take the lead.” This is 

not ideal both because the user must always be actively 

determining where the song will go, and because if the user 

runs out of ideas, the session effectively comes to an end. Of 

course, this is not surprising; Evac’s fitness function only 

takes into account the “harmoniousness” of an individual 

melody in relation to what the user has done, so there is no 

reason to expect that it would demonstrate phrasing behavior. 

6.  Conclusion 
Evac is excellent for what it is - a first approximation that 

demonstrates the power of implicit interactivity. Evac 

demonstrates satisfying performance on musical 

improvisation with the user. Evac’s ability to run in real time 

allows the user to experience the same kind of exploration 

that happens in real life improvisation scenarios with other 

musicians. 

On one hand Evac is able to follow the music that the user 

plays; on the other hand, Evac is more than a simple 

reharmonizer. It never copies the user, nor does it repeat its 

own previous melody. When the user stops playing (while 

keeping the program running), Evac will also slow down 

gradually, but it will never completely stop playing – it will 

play few notes every now and then, as if it is asking and 

waiting for the user to respond. Once the user starts playing 

again, Evac will re-start the cooperation with the user, with 

very short amount of time needed at the beginning to adapt to 

the user’s music style. 

7. Future work 

The most immediate need is for reduced latency. If Evac 

responded immediately and effortlessly to user input, we 

anticipate using it would become even more fun. This in turn 

would improve the extent to which it fulfilled its original 

purpose: eliminating user fatigue. There are also some small 

audio rendering issues (particularly at the end of notes) that 

could use fixing. These small improvements, together with a 

strong graphical user interface, would make Evac worthy of 

public distribution. 

If its other operations could be suitably optimized, the next 

greatest need is for more sophisticated parameter control. 

Parameter tuning has many downsides, and there is a 

reasonable chance that well-designed parameter control 

could reduce or eliminate the issue with Evac not taking the 

lead (e.g., by increasing mutation rate and number of notes 

played when user isn’t playing much, etc.). Furthermore, 

sophisticated parameter control could throttle back the GA’s 

resource usage in the event that other, non-Evac processes 

begin demanding CPU time. 
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There is also an entire branch of research that we have yet to 

exploit, despite its great potential relevance: evolutionary 

computation in dynamic environments. Techniques like 

storing good solutions to be used in case their environment 

returns, or using random immigrants to help adapt to a new 

fitness landscape could be easily applied to our problem 

domain, since our fitness function changes whenever the user 

moves in a new musical direction. Using these kinds of 

strategies would yield serious improvements in Evac’s ability 

to simulate a real human improvisation partner, since a key 

part of musical improvisation with other people is 

recognizing song sections which can be returned to or 

modified. 

Finally, the fitness function has several weaknesses that 

could be addressed in future research. Most obvious is that 

both the fitness function and the similarity function are hard-

coded, and thus rely on human expertise. Minimizing the 

human involvement in these features would improve Evac’s 

ability to participate in improvisation across different 

musical traditions and with different individuals. Such an 

innovation might also be engineered to address the issue with 

phrasing, or to other musical problems like how to 

coordinate the actions of more than one automated 

instrument. 

Once Evac or its peers are advanced enough, one might even 

connect them to one another, and see what kind of music 

machines would make just for themselves. 
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Abstract — In this paper Evolutionary Strategy for 
uncorrelated mutations such as self-adaptive one step and 
self-adaptive k step are compared with correlated mutation. 
The two offspring selection techniques of direct replacement 
(µ,λ)  and best fit (µ+λ) are used for comparison. These 
techniques were applied to a standard multi peak function to 
evaluate their performance. It was found that none of these 
approaches always found the global maximum. The results 
were very much dependent on the selection of the initial 
random parents. Therefore a new approach of correlated 
mutation using additional geometric translation has been 
proposed. It is illustrated that this technique was successful in 
finding the global maximum.  
 
Keywords: Evolutionary Strategy, Correlated Mutation, Adaptive 
Algorithm, Artificial Intelligence 

1 INTRODUCTION 
VOLUTIONARY strategies are the earliest techniques of 
evolutionary algorithms first proposed by Rechenberg [6] 

and Schwefel [10] (1965), initially used for parameter 
optimization by Beyer (2001) [3],  applications in fluid 
dynamics  and function optimization. The idea behind 
evolutionary strategy is to randomly mutate all of the input 
parameters in an effort to find the best solution. The amount of 
mutation is varied in each iteration of the algorithm. Then by 
applying (µ+λ) or (µ,λ) next generation selection, the resulting 
parameters are improved further. No recombination techniques 
were used in the algorithms for this paper. The main objective 
is to find the set of parameters which will deliver the 
optimized solution for a problem.  
 Evolutionary strategies can be developed as uncorrelated 
and correlated mutations. In uncorrelated mutation the 
parameters are mutated by a small step size either in the 
positive or negative direction depending on the fitness value 
associated with direction. In the uncorrelated one step 
algorithm one mutation value is calculated during each 

 

iteration step and applied uniformly to all parameters being 
considered. In uncorrelated k step algorithm a vector of 
mutation values are calculated during each iteration step and 
added to the vector of parameters. Both of these methods 
traverse linearly across the x-axis. In correlated mutation 
angles of rotation are also calculated and applied at each 
iteration step and used to mutate the parameters with varying 
orientation from a related correlation matrix. This method 
makes the parameters sensitive to direction. These methods 
were all tested using a mutli-peak function (1) commonly used 
for comparative analysis of algorithms as shown in Fig. 1, this 
function has a known global maximum 1.0 at x = 0.1. For x ϵ 
[0.1]: 
𝐹(𝑥) = (2−2((𝑥−0.1)/0.9)2)(𝑠𝑖𝑛(5𝜋𝑥))6.     (1) 

   It was found that both of the uncorrelated algorithms and the 
correlated did not always reach this global maximum. The 
correlated mutation had better results but was shown to be a 
computational intense algorithm requiring more time to run 
than the uncorrelated algorithms. 

 

 
 

   Figure 1.  Graph of equation (1) used for evaluation of algorithms. 
 
 Both (µ+λ) and (µ,λ) next generation selection techniques 
were used to compare the performance of the uncorrelated and 
correlated mutation algorithms.  In (µ,λ) the  µ parents were 
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directly replaced with their λ children for the next iteration. In 
(µ+λ) the  µ parents and λ children were sorted according to 
fitness and the candidates with the best fitness were selected 
for the next iteration. [1] It was found that (µ+λ) had better 
results. 
 Therefore in order to search for a better algorithm a 
proposed new technique of correlated mutation with added 
geometric translations is introduced. In this technique the 
ellipses around the parents are translated to a new location in 
the direction of better fitness. It was found that the results of 
moving the entire ellipse in this way resulted in finding the 
global maximum. This was verified by running the same 
initial sample parent population on both the standard 
correlated mutation algorithm and the new proposed correlated 
mutation with added geometric translations. 
 This paper is organized into seven sections. Section II 
contains the explanation of the evolutionary strategy 
algorithms used. Section III discusses uncorrelated mutation 
with one step size and the shows the results of testing this 
algorithm. Section IV discusses uncorrelated mutation with 
individual step sizes and shows the results of testing this 
algorithm. Section V discusses correlated mutation and shows 
the results of testing this algorithm. Section VI discusses 
correlated mutation with proposed translations and shows the 
results of this algorithm, followed by section VII conclusions. 
 
2  Evolutionary Strategy  

In this section the algorithms for evolutionary strategy are 
presented. Evolutionary strategy algorithms are based on 
Darwin’s theory of evolution. [5] Parents create offspring and 
the offspring that potentially have stronger features than the 
parent are chosen to better survive in the environment. 
Mutations are applied in the creation of these offspring to 
introduce new features that were not present in the original 
parents to improve the odds of achieving the desired goal. [1]  

2.1 Pseudocode for Evolutionary Algorithms 
Using these ideas a computer algorithm can be developed to 

analyze a problem and its data to achieve an optimal solution 
to that problem, as shown  in Fig. 2. First, an initial population 
P(t) is generated randomly and evaluated. Second a mutation 
technique is applied to adjust the children to a new set P’(t). 
The fitness of those children is evaluated and then children are 
chosen from the set of parents P(t) and children P’(t)  to form 
the new parent set P(t+1). The loop terminates if either the 
maximum number of iterations are reached or the desired 
solution is found. As outlined here by Castro: [1] 

 
Initialize P(t) 
Evaluate P(t) 
While not Terminate do 
    P’(t) = mutate P(t) 
     Evaluate P’(t) 

     P(t+1) = P’(t) or best of {P’(t) U P(t)} 
     t = t + 1  
 Loop 

 
   Figure 2.  Sample pseudo code for evolutionary strategy algorithm [1]. 

2.2 Next Generation Selection Strategies 
Two different selection processes were used to pick the next 

generation of data to be sent through the algorithm. In 
standard evolutionary strategy literature “given µ parents 
generating λ offspring (λ >= µ)” [1] The simplest way is to use 
the (µ,λ)-ES technique where the new set of children is used 
as the parents for the next iteration, the algorithm in Fig. 2 
would use P(t+1) = P’(t). A second technique is to use (µ+λ)-
ES technique [1], by looking at the fitness of the parents and 
the fitness of the new children and sorting their resulting 
finesses from best to worst. A next generation set is created 
from the top µ best parents and children, the algorithm in Fig. 
2 would use P(t+1) =best of {P’(t) U P(t)}.   

2.3 Geometric Translation 
By definition a translation “is a function that moves every 

point a constant distance in a specified direction”[7]. One of 
the disadvantages of the evolutionary strategies is that the final 
results have a good chance of concentrating at a local 
minimum and never reaching the goal. The advantage of using 
a translation is to jump the parents that are trapped at a local 
maximum to a different area of the graph.   

3 UNCORRELATED WITH ONE STEP SIZE 
As this algorithm loops through each iteration, all parents 

are being mutated by the same single step size. Using the same 
standard deviation σ to create all children will have the result 
that “lines of equal probability density of the normal 
distribution are hyper-spheres in an l-dimensional space.” [1]  

 

 
Figure 3.  Uncorrelated Mutation with One Step Sizes [11] 
 

3.1 Formulas 
Given n parents and the learning rate Ƭ suggested by 

Castro[1] the following formulas are used to compute  P’(t): 
Ƭ = 1

√𝑛�  

𝜎′ =  𝜎 ∗  𝑒(Ƭ ∗ 𝑁(0,1)) 
        

𝑃’(𝑡)  =  𝑃(𝑡) + 𝜎′ ∗  𝑁(0,1)             (2) 
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By multiplying 𝜎  by the lgnormal distribution 𝑒�Ƭ ∗ 𝑁(0,1)� 
graphed in Fig. 4, and using the normal distribution N(0,1) to 
modify 𝜎′,  the  standard deviations stays greater than zero 
and the adjustment being made to 𝜎  and 𝜎′ are small values. 
[11] 

 
Figure 4.  Lognormal Distribution [13] 

3.2   Results 
Uncorrelated mutation with one step size is shown to be a 

fast and simple algorithm by the results in Table I. From the 
tests run it is shown in Fig. 5 and 6 that the algorithm fails to 
always find a global maximum. As the contours of the graph 
become more complex the algorithm can tend towards a local 
maximum and once arriving there concentrates the results at 
that point. One important determining factor as to whether or 
not this technique was successful was the selection of the next 
generation. As shown in Fig. 5, the effect of applying (µ,λ) to 
the determine the next generation, gives varied results. As 
shown in Fig. 6, the effect of applying (µ+λ) results in local 
maximum values. Table I shows the resulting x value of 
0.3134 closer to the expected 0.1 value. 

 

 
 
Figure 5.  Uncorrelated One Step with No Offspring Sorting after 1000 
iterations demonstrating the offspring being continually shifted in the positive 
direction along the x-axis. Table shows the resulting x value of 3.4884 far 
from the expected 0.1 value. 

4 UNCORRELATED INDIVIDUAL STEP SIZE 
As this algorithm loops through each iteration, each parent 

is being mutated by an individual unique step size. Using the 

different standard deviation σ𝑖  to create each child will have 
the result that “lines of equal probability density of the normal 
distribution are hyper-ellipsoids.” [1]  

 

 
 Figure 7.  Uncorrelated Mutation with Individual Step Sizes [11] 
 

 
 
Figure 6.  Uncorrelated One Step with Offspring Sorting after 1000 iterations 
demonstrating the best offspring being selected and used for the next 
generation. The shift in the positive direction along the x-axis is reduced.  
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UnCorrelated One Step 
 (µ,λ) N 100 10 3.8294 0.960119 0.0114469 
   1000 10 28.594 0.945333 0.0553875 
   10000 10 190.7619 0.910901 0.2970658 
 (µ+λ) N 100 10 4.119 0.094013 0.9737142 
   1000 10 39.0927 0.113978 0.8640433 
   10000 10 195.8703 0.89136 0.9157631 
 (µ,λ) Y 100 10 6.4753 0.112 0.8981011 
   1000 10 35.22 0.943659 0.0635498 
   10000 10 184.0641 0.051005 0.1366517 
 (µ+λ) Y 100 10 4.4389 0.4752 0.4925319 
   1000 10 39.0469 0.299784 0.9339375 
   10000 10 216.5566 0.296049 0.9255736 

4.1 Formulas 
Given n parents and the learning rates τ and τ’ suggested by 

Castro[1] the following formulas are used to compute  P’(t): 
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Ƭ = 1
�2√𝑛
�  

Ƭ′ = 1
√2𝑛�  

           
σ′(t) =  σ(t) ∗  𝑒(Ƭ ∗ N(0,1)+ Ƭ′ ∗ 𝑁𝑡(0,1)) 

        
P’(t) =  P(t)+ σ′(t) ∗  N(0,1)        (3) 

                           
To ensure that each parent is mutated by a unique step size the 
algorithm is slightly modified to now use this lognormal 
distribution  𝑒(Ƭ ∗ N(0,1)+ Ƭ′ ∗ 𝑁𝑡(0,1)) to modify 𝜎. In calculating 
P’(t) each σ′(t)is modified by normal distribution N(0,1) to 
ensure a small adjustment in the mutation.[11] 

4.2 Results 
Uncorrelated mutation with k step sizes is shown in Table II 

to be a slightly slower algorithm than the uncorrelated one 
step algorithm. From the tests run it is shown in Fig. 8 and 9 
that this algorithm also fails to always find a global maximum. 
This algorithm again tends to find a local maximum as the 
contours of the graph become more complex and once arriving 
there concentrates the results at that point. The same important 
determining factor as to whether or not this technique was 
successful was the selection of the next generation. As shown 
in Fig. 8, the effect of applying (µ,λ) to the determine the next 
generation, gives varied results. In comparison by applying 
(µ+λ) Fig. 9 shows the results concentrating around local 
maximum values. This technique of calculating the next 
iteration by modifying the parents with a k sized vector of 
random values does demonstrate a maximum being discovered 
in fewer iterations than the previous one step technique, as 
shown in Tables I & II. 
 

 

 
 
Figure 8.  Uncorrelated K Step with No Offspring Sorting after 1000 iterations 
demonstrating the offspring being continually shifted in the positive direction 

along the x-axis. Table shows the resulting x value of 3.4639 far from the 
expected 0.1 value. 
 

 
 
Figure 9.  Uncorrelated K Step with Offspring Sorting after 1000 iterations 
demonstrating the best offspring being selected and used for the next 
generation. The shift in the positive direction along the x-axis is reduced. 
Table shows the resulting x value of 0.3027 closer to the expected 0.1 value. 

 
 

TABLE II.  UNCORRELATED K STEP RESULTS 
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UnCorrelated K Step 
 (µ,λ) N 100 10 1.6245 0.949158 0.3934992 
   1000 10 28.9059 0.927498 0.1737801 
   10000 10 150.4814 0.958348 0.0143966 
 (µ+λ) N 100 10 3.7323 0.99746 0.9999520 
   1000 10 34.6443 0.286146 0.8166838 
   10000 10 161.6135 0.98698 0.9987438 
 (µ,λ) Y 100 10 3.222 0.908266 0.3107350 
   1000 10 30.476 0.014095 0.0001107 
   10000 10 165.2744 0.118038 0.7829405 
 (µ+λ) Y 100 10 2.9218 0.704934 0.5250089 
   1000 10 29.375 0.289595 0.8676037 
   10000 10 164.8476 0.116392 0.8174364 

5 CORRELATED MUTATION 
As this algorithm loops through each iteration, each parent 

is being mutated by an individual unique step size. Just like 
the previous uncorrelated mutation with individual step sizes, 
the formulas use a different standard deviation σ𝑖  to create 
each child. The correlated mutation formulas add an additional 
step of introducing rotation angles to “describe the coordinate 
rotations necessary to transform the uncorrelated mutation 
vector to a correlated mutation vector. Now the previous 
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hyper-ellipsoids can be rotated randomly at angle α(t) to give 
the data more freedom of movement through the plane. “.[1]   

  

 
Figure 10.  Correlated Mutation with Angle of Rotation [11] 

5.1 Formulas 
Given n parents, the learning rates τ and τ’ and constant β 

suggested by Castro[1] the following formulas are used to 
compute  P’(t): 

Ƭ = 1
�2√𝑛
�  

Ƭ′ = 1
√2𝑛�  

         
𝜎′(𝑡) =  𝜎(𝑡) ∗  𝑒(Ƭ ∗ 𝑁(0,1)+ Ƭ′ ∗ 𝑁𝑡(0,1)) 

 
𝛼′(𝑡) =  𝛼(𝑡) +  𝛽 ∗ 𝑁𝑡(0,1) 

 
𝛽 = 0.0873 

          
𝑃’(𝑡)  =  𝑃(𝑡) + 𝜎′ ∗  𝑁(0,𝐶(𝜎′,𝛼′)) 

       
                        (4) 

Where matrix C(σ′,α′) is calculated by [1] 
 

𝐶 = (𝑆𝑇𝑇𝑆𝑇) 
 

S is diagonal matrix of the standard deviations with 
𝑠𝑖𝑗 = 𝜎(𝑡)  

 

𝑇 =  � � 𝑅𝑖𝑗(Ɵ)
𝑛

𝑗=𝑖+1

𝑛−1

𝑖

 

𝑅𝑖𝑗(Ɵ) 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 
𝑟𝑖𝑖 = 𝑟𝑗𝑗 =  cos𝛼(𝑡) 
𝑟𝑖𝑗 = 𝑟𝑗𝑖 =  − sin𝛼(𝑡) 

                        (5) 

5.2 Results 
The time it takes to run the correlated mutation algorithm is 

significantly higher than the uncorrelated algorithms inn 
previous sections, as shown in Table III. In contrast the 
number of iterations required to reach a maximum value is 
significantly lower. In Fig. 11 and Fig. 12 it is shown that the 
algorithm had reached a maximum value in fewer than 25 
iterations. Fig. 11 and Fig 12 also show that a global 
maximum is not always reached. Fig. 12 is concentrating the 
best offspring around x=0.1, the desired value, but Fig. 10 is 

showing the best offspring concentrating around x=0.5497, a 
local maximum. Fig. 13 shows the correlated mutation 
algorithm results with the rotation ellipses displayed. It can be 
seen in Fig. 13 that the algorithm begins to concentrate its 
offspring around the maximum peaks of the graph and remains 
trapped there. 

 
 

 
 
Figure 11.  Correlated  Mutation with No Offspring Sorting after 25 iterations 
demonstrating the offspring being continually shifted in the positive direction 
along the x-axis. Table shows the resulting x value of 0.5497 far from the 
expected 0.1 value. 
 
 

 
 
Figure 12.  Correlated  Mutation with Offspring Sorting after 25 iterations 
demonstrating the best offspring being selected and used for the next 
generation. Table shows the resulting x value of 0.1 successfully reaching the 
expected value. 
 

6 Correlated with Geometric Translation 
As this algorithm loops through each iteration, each parent 

is being mutated by an individual unique step size. Just like 
the previous correlated mutation, this version of the correlated 
mutation algorithm also uses different standard deviations σ𝑖  
to create each child and calculates the rotation angles for the 
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hyper ellipsoids. The algorithm is further modified by the 
proposed addition of translating these ellipsoids in the 
direction of better fitness and reevaluating the translated 
parameters. 

TABLE III.  CORRELATED RESULTS 
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Correlated Mutation 
 (µ,λ) N 100 10 14.1864 0.0578364 0.2397426 
   1000 10 97.73 0.5 0.7603713 
   10000 10 2198.9979 0.9431838 0.0659958 
 (µ+λ) N 100 10 16.648 0.299355 0.9339560 
   1000 10 91.4732 0.2889162 0.8585757 
   10000 10 2240.1232 0.3 0.9335827 
 (µ,λ) Y 100 10 13.0658 0.549034 0.0968278 
   1000 10 80.9797 0.696457 0.5389286 
   10000 10 1988.959 0.33141 0.4257688 
 (µ+λ) Y 100 10 15.0406 0.1000344 0.9999122 
   1000 10 74.5497 0.1 1.0000000 
   10000 10 2314.0937 0.9709892 0.9937730 

 
 
Figure 13.  Correlated Mutation with Offspring Sorting after 10 iterations 
using 25 parents. This graph demonstrates the way correlated mutation uses 
ellipses. Graph shows the algorithm concentrating at a local maximum of 
y=0.95.  
 

As shown in standard correlated mutation sample run in 
Fig. 13,  the high concentration of ellipses around x=0.3, the 
correlated mutation algorithm is shown to get trapped at a 
local maximum of the graph. Results of this type suggest an 
additional modification to the correlated mutation algorithm is 
needed to dissipate these concentrations to other areas of the 
graph. Since correlated mutation is a computationally intense 
algorithm, as shown by the time studies in Table III, if the 
algorithm can be modified to reduce the concentrations of 
results, time would be saved by computing only sets of unique 
values. 

It is proposed that by adding translations of the ellipse 
surrounding each of the parents in the directions of each of the 
four ellipse vertices, parameters will effectively jump out of 
the areas of local maximums to begin searching for the global 
maximum in another region of the graph. The vertices are 
evaluated against for fitness and a decision is made to move 
the parameters in the direction of best fitness to the next 
iteration of the algorithm 

 
Figure 14.  Correlated Mutation with Translation  
 

6.1 Pseudocode 
Given the original algorithm in Fig. 2, a test is introduced 

prior to the selection of the next generation as shown in bold 
italics in Fig. 15.  This test compares the current parents to the 
newly generated children. If the parents and children are 
nearly identical a concentration of offspring is developing in 
the data. Once this situation is identified, new parents are 
created by translating this set of offspring in the direction best 
fitness in a series of step sizes. This process removes duplicate 
parents and replaces them with new unique values to continue 
on with the search for the goal. The new set of offspring are 
reevaluated and reselected by the (µ+λ) or (µ,λ) next 
generation selection techniques and the next iteration of the 
algorithm begins.  

 
Initialize P(t) 
Evaluate P(t) 
While not Terminate do 
    P’(t) = mutate P(t) 
     Evaluate P’(t) 
     Translate P(t) by step sizes and Reevaluate P’(t)  
    P(t+1) = P’(t) or best of {P’(t) U P(t)} 
      t = t + 1  
 Loop 
 
 

   Fig. 15.  Modification to pseudo code for evolutionary strategy algorithm. 

6.2 Results 
Figure 16 shows a sample that was run using the standard 

correlation algorithm starting at x=2.6 for the initial parent 
parameter. Figure 17 shows a sample that was run using the 
new proposed correlated mutation with translation starting and 
the same x=0.26 initial parent value. The result is a shifting of 
the data and subsequently reaching the global maximum in 4 
iterations. Time studies as shown in Table 4 show an increase 
in the computation time as compared to standard correlated 
mutation, due to the added step of evaluating and computing 
the translation values. 
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TABLE IV.  CORRELATED WITH TRANSLATION RESULTS 
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Correlated Mutation with Translation 
 (µ+λ) Y 4 10 575.81 0.1 1.0 
   11 10 4235.64 0.10095 0.99933 
 
 

 
 
Figure 16.  Correlated Mutation with Offspring Sorting and Translation using 
1 parent at x=0.26.After 10 iterations maximum found at x= 0.49 
 

 
 
Figure 17.  Correlated Mutation with Offspring Sorting and Translation using 
1 parent at x=0.26.After 4 iterations maximum found at x= 0.1 
 

7 Conclusion 
    The Evolutionary strategies were explored to find the global 
maximum in a mutli-peak mathematical function. An 
evolutionary strategy with uncorrelated mutation algorithm 
was shown to reach the global maximum in less than 50% of 
the test runs, and was shown to be very sensitive to the initial 
random parent population and next generation selection 

techniques. Correlated mutation had better results than 
uncorrelated reaching the global maximum in 90% of the test 
runs. The correlated algorithm converged on the result in 
fewer iterations, but each iteration took longer in time to run 
than the in uncorrelated algorithm. Both uncorrelated and 
standard correlated algorithms were shown to get stuck in 
areas of at local maximum values and not reach the global 
maximum value.  The proposed correlated mutation with 
geometric translation was shown to always reach the global 
maximum on this multi peak function. The added translations 
were shown to have an impact on increasing the time to 
complete each iteration in the search. 
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Abstract - This paper presents a general-purpose algorithm 

for finding high-quality solutions to hard optimization 

problems.  The method, called the Evolutionary Path 

Algorithm, finds high-quality solutions by searching the space 

that separates solutions within the search space.  The 

Evolutionary Path Algorithm performs random search at the 

far end of its search path, and then as the path from a random 

sample back to a Candidate solution is built, the search 

becomes more local.  This path traversal allows the algorithm 

to explore the search space at the far end and improve a 

known good solution as it returns to the Candidate solution.  

Unlike many stochastic search algorithms, the Evolutionary 

Path Algorithm can be implemented with very limited tuning 

parameters, making it simpler to use for many practitioners.  

The Evolutionary Path Algorithm has proven reliable with 

respect to finding good answers, in the cases presented the 

best answers, to hard problems.   We demonstrate EPA  here 

on an NP hard minimal set cover example with known optima 

and on an integer valued configuration problem. 

Keywords: Discrete Optimization, Genetic Algorithms, 

Stochastic Search 

 

1 Introduction 

 Many real world problems require combinatorial 

optimization.  Examples include scheduling, bin packing, 

planning, network design, and engineering optimization.  

What all of these problems share is a search space that is 

generally too large for exhaustive search methods to find the 

optimal answer in a reasonable amount of time.  Therefore, 

metaheuristic methods have proven to be useful because they 

can find good answers in a limited amount of time.   

Metaheuristics employing diverse strategies have been 

developed over the past half century.  The most notable being 

the Genetic Algorithm, Particle Swarm Optimization, 

Simulated Annealing, and various other swarm techniques 

such as Ant Colony Optimization [2,3,4,5,6].  These 

algorithms have produced diverse search strategies, operators 

for combining answers to form new ones,  and new sets of 

rules for exploring the search space in an efficient manner.  

Although each of these metaheuristics searches in a different 

way, they all explore and exploit the search space to find good 

answers. 

The Evolutionary Path Algorithm explores and exploits the 

search space using a very simple greedy strategy and an 

exploitation, or intensification, operator called Path Relinking 

[1].   It does not however, inherit the algorithm as a whole, 

and instead combines random search with Path Relinking and 

a moderately greedy strategy.  No gradients are computed and 

directionality is not required.  The aim of the development of 

the algorithm was to make a metaheuristic that was simple to 

implement for any problem without an abundance of tuning 

parameters. 

In the following we will present the Evolutionary Path 

Algorithm.  It is an algorithm that traces the evolutionary links 

(differences) between potential solutions to find better 

solutions to hard problems. In section 2 we describe the 

Evolutionary Path Algorithm as applied to a minimal set 

cover problem. Section 3 describes the Evolutionary Path 

Algorithm as applied to a combinatorial optimization problem 

using integer values. 

Imagine a fishing boat floating on a pond.  The pond is the 

search-space and any potential solution is a fish to catch.  The 

fisherman in the boat can cast anywhere across the open 

waters in search of the best fish.  On each cast the fisherman 

gets several bites as he reels back to the boat and if he feels a 

really big fish try the bait, he moves the boat to that location 

thinking “Where there’s one big fish there must be more!”  In 

this way the fisherman moves through the search-space 

locating his casting point above the best fish he has 

encountered.  After many adjustments of the boat it becomes 

very likely he has found the best place in the pond.  The 

Evolutionary Path Algorithm adopts this same strategy as it 

cuts paths through an unknown search-space. 

2 Evolutionary Path Algorithm 

The Evolutionary Path Algorithm is most simply expressed by 

the following steps: 

 

1. Initialize a Random Point within the Search Space.  This is 

now the Candidate Solution and the Best Solution. 

 

2. Initialize another Random Point within the Search Space.  

This is the Random Solution, if it is better than the Candidate 

Solution, it becomes the Best Solution. 

 

3. An Evolutionary Path is built between the Candidate 

Solution and the Random Solution.  Any solution found that is 

better than Best Solution replaces Best Solution. 

 

4. Candidate Solution is replaced by Best Solution when the 

traversal of the Evolutionary Path is complete. 
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5. The process above is repeated until some stopping 

condition is met. 

 

The Evolutionary Path Algorithm (EPA) is initialized by 

choosing a random point within the search space to become 

the candidate solution.  Then, this solution is improved by 

choosing another random point within the search space and 

sampling the fitnesses of a randomly generated evolutionary 

path between the two points.  If the best point along the path is 

better than the candidate solution, the old candidate solution is 

discarded in favor of the best point seen so far.   

 

This process of traversing an evolutionary path to the best 

candidate solution is repeated until some stopping criteria, 

such as a number of fitness evaluations, or a number of paths 

traversed has been met.  At the far end of the path the 

difference between our candidate solution and the sampled 

point may be high; this is where exploration of the search 

space occurs and there is a possibility of leaving local optima 

in favor of the global optima.  As the difference between our 

candidate solution and points along the evolutionary path 

decreases, EPA is implicitly performing a local search with a 

chance of incrementally optimizing our candidate solution. 

 

Creating an evolutionary path is very simple when locations 

within the search space are represented as binary strings.  An 

XOR of the two strings identifies the bits for which the 

locations differ.  The number of differences is known as the 

Hamming distance between the two bit strings.  Then, one of 

these bits that differ is chosen at random.  The value of the 

randomly chosen differing bit is then set to match that of the 

candidate solution. The fitness of this intermediate point along 

the evolutionary path is evaluated.  If the fitness of this 

intermediate point is better than the fitness of our candidate 

solution, we remember its location as the “Best Solution”.   

 

The evolutionary path is complete when there are no more 

intermediate points to sample.  If, at the end of this process, a 

best location exists that is not the candidate solution, the 

candidate solution is replaced by the best solution seen thus 

far.  This process of path building continues until some 

stopping criteria has been met. 

 

Below is an example path that could be built between two bit 

strings with a Hamming distance of 3.  Although there are 

multiple possible paths that could be built between most 

solutions, only a single path is traversed in the Evolutionary 

Path Algorithm. 

 

 

 

Step 1 – A Candidate Solution and Random Solution 

Pairing with Three Differing Bits. 

Candidate 

Solution 

1 0 0 0 

Random 

Solution 

0 1 0 1 

 

 

Step 2 – The second bit of the Random Solution was 

chosen at random to build the second point in the path, 

reducing the Hamming distance to 2.  If the new Random 

Solution is better than the Candidate Solution it is 

remembered as the Best Solution but the rest of the path is 

still built. 

Candidate 

Solution 

1 0 0 0 

Random 

Solution 

0 0 0 1 

 

 

Step 3 – The first bit of the Random Solution was chosen 

at random and made to match the first bit of the 

Candidate Solution to build the third point in the path, 

reducing the differences between the solutions to 1. 

Candidate 

Solution 

1 0 0 0 

Random 

Solution 

1 0 0 1 

 

 

Step 4 – The Path is Complete. If no solution along the 

path was better than the Candidate solution, the algorithm 

begins again with the Candidate Solution as the Best 

Solution. 

Candidate 

Solution 

1 0 0 0 

Random 

Solution 

1 0 0 0 

 

3 EPA for Multiple Fault Diagnosis 

The Evolutionary Path Algorithm has been applied to the 

Multiple Fault Diagnosis problem (MFD) [8] for 

characterization.  MFD is an NP hard minimum set cover 

problem in which diagnoses for a set of symptoms are 

represented by a binary string where an “on” bit represents 

that the disease is indicated by the symptoms and an “off” bit 

represents that the disease is not indicated by the set of 

symptoms.  In the problem as presented, there are 10 possible 

symptoms or 2^10 - 1 (1,023) possible symptom sets.  We did 

not consider the empty set of symptoms because it does not 

make sense to diagnose people who are well.  For this set of 

symptoms there are 25 possible diseases with 2^25 minus 1 or 

(33,554,431) possible diagnoses.  A set of observed 

symptoms (M+) is evaluated against a diagnosis (set of 

possible diseases) (DI) by the following fitness function: 

L(DI; M+) = L1 x L2 x L3 

The likelihood of any diagnosis (DI; M+) is L1xL2xL3 where: 
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L1 is the likelihood that diseases in DI cause the symptoms in 

M+.  

L2 is the likelihood that diseases in DI do not cause symptoms 

outside of M+. 

L3 is the likelihood that a highly probable (very common) 

disease d contributes significantly in the overall likelihood of 

a diagnosis DI containing d. 

The values for calculating L1, L2, and L3 are contained in 

tables mapping the likelihood of any disease causing a given 

symptom and the probability of any disease d actually 

occurring in the real world.  For example, the table used in L3 

biases the problem towards the common diseases (perhaps the 

common cold) and away from obscure diseases like the 

bubonic plague.   The effect of the fitness function is to favor 

diagnoses (DI) that explain all of the symptoms present (L1) 

without explaining extra symptoms (L2) and contain common 

diseases instead of rare (L3).   

Since the search space is made up of possible diagnoses and 

these are already bit-strings, the set-up for the EPA is 

minimal.  The fitness function, a function that builds 

evolutionary paths, and a reasonable stopping point are the 

only functions necessary to build the algorithm.   

3.1 Reliability of EPA for MFD 

To test the algorithm’s reliability it was run against all of the 

possible symptom set combinations, which is 2^10 - 1 (1023), 

ten times.  The reliability for each run was then computed by 

dividing the number of times the algorithm found the optimal 

solution by 1023.  For example, if the algorithm found the 

optimal solution 788 times out of 1023, it would have 77% 

reliability for that run.  Because EPA is a stochastic 

algorithm, it was run 10 times and the reliability for each of 

those 10 runs was averaged to determine its reliability. 

For this test, the stopping condition was set to a maximum of 

18,000 fitness evaluations per symptom set (M+).  This 

number was chosen because it represents the maximum 

number of fitness evaluations Potter et al [8] allowed for the 

Genetic Algorithm to test reliability. The Genetic Algorithm 

represents the algorithm that is most similar to EPA out of 

those that Potter et al ran (Genetic Algorithm, Discrete PSO, 

Rain Drop Optimization, and Extremal Optimization). 

Because the optimal fitness values are known for this 

problem, the algorithm was stopped for each symptom set 

(M+) if the known best fitness was found before 18,000 

fitness evaluations had been performed.The reliability 

statistics for other algorithms were provided by Potter et. al 

[8]. 

 

 

Table 1. Comparison of Reliabilities for MFD 

EPA GA DPSO EO 

97% 85% 98% 100% 

 

EPA’s reliability is comparable to the DPSO’s reliability for 

this problem and is far better than the GA’s with a similar 

number of fitness comparisons.  Extremal Optimization has a 

reported 100% reliability on this problem with a similar 

number of evaluations as allowed.  It is likely that EPA’s 

reliability is higher than the GA’s with a similar number of 

fitness evaluations due to the fact that the GA has many 

redundant fitness evaluations as it nears convergence whereas 

the EPA continually builds evolutionary paths to random 

possible solutions so the likelihood of redundancy is 

extremely small. 

3.2 EPA Efficiency for MFD 

To test the efficiency of EPA on the MFD problem, the 

algorithm was run 10 times over all 1023 symptom sets.  The 

stopping condition for these runs was the optimal solution DI, 

so the algorithm was forced to find the global optima for each 

symptom set.  This experiment was done to replicate an 

earlier reliability experiment for several algorithms [8]. 

On average the EPA took 5971 fitness evaluations to find the 

optimal solution.  Potter et. al. did not provide average fitness 

evaluations to find optimal solutions for the MFD for any of 

the algorithms compared for the MFD.  However, 5971 fitness 

evaluations is considerably less than the maximum allowed by 

Potter et. al., because a GA with 300 individuals run for 60 

generations allows for a maximum of 18,000 fitness 

evaluations per solution.   
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Figure 1. Optimization Curve of EPA for MFD 

 

4 EPA With Integer Representation 

4.1 Mobile Subscriber Equipment Problem 

The mobile subscriber equipment problem (MSE) is a 

configuration problem in which the best mobile 

communications network must be assembled within the 

constraints of component connectivity, mission requirements, 

and U.S. Army doctrine.  Although the networks being 

configured are now outdated, the MSE represents a classic 

configuration problem in which an expert’s knowledge can be 

translated to a fitness function for optimization.   

 

Army networks configured using MSE were in use in the early 

1990s.    A single network could support troops over a 15,000 

square mile radius.  At the heart of any MSE system was the 

Node Center.  Each network could contain up to 42 Node 

Centers.  There are six other modules that attach to this 

backbone to form the rest of the network.  Both large and 

small extension nodes expanded the number of wire 

subscribers by big and small amounts respectively, with two 

types of small extension nodes offering different combinations 

of connectivity.  Radio subscribers were supported by Remote 

Access Units, Control Centers were necessary for 

connectivity, NATO interface units allowed the system to be 

patched into NATO communications systems. 

 

Using the fitness function laid out by Chang and Potter it is 

possible to optimize a network given the number of wire and 

radio subscribers [9].  However, the search space is very large 

due to the combinatorial explosion that is created.  The 

minimum number of units allowed for most of the equipment 

is zero, with the exception of the Node Center and System 

Control Center.  At least one of these is required for each 

network.  The maximum number of allowed units ranges from 

the low end at four NATO Interfaces to 168 small extension 

nodes.   

4.2 EPA Set-Up for MSE 

Building an evolutionary path between two lists of integer 

values is almost as simple as building a path between two bit 

strings.  Originally, a naïve scheme of iteratively setting the 

values of the random sample to those of the candidate 

solution, in the same way that the bits were switched in the 

binary example, was tried.  This did not yield positive results. 

The second scheme worked in the following way: 

 While stopping criteria not met: 

1.  Select a Random Solution 

2. While Path not Complete (Random and Candidate 

Equal): 

a. Find differences between the Random 

Solution and the Candidate Solution 

b. Select a differing component at random. 

c. Choose a random value between the 

Candidate solution’s assignment for the 

differing component and the Random 

solution’s assignment for differing 

component. 

d. Evaluate the new Random Solution: if this 

point has the highest fitness seen so far, save 

it as the Best solution. 

3. Restart randomly if stagnation is detected. 

 

An upper bound of 300,000 evaluations was used because 

early runs suggested that this represented the near upper 

bound for the number of evaluations the algorithm would take.  

However, the average number of evaluations needed to find 

the optimal answer was much lower than this.  The fitness 

function needs a number of wired subscribers and a number of 

wireless subscribers to evaluate a candidate solution.  The 

number of wired subscribers was set to 1,495 and the number 

of wireless subscribers was set to 672.  This combination has 

an optimum fitness of 327.35689. 

 

Random restarts were also introduced due to the observed 

possibility of stagnation.  For these experiments, stagnation 

was assumed if the algorithm had not found the optimal 

answer by 125,000 fitness evaluations. 

 

Obviously building paths between solutions with very 

different component values can get quite long.  Below is a 

sample path built between two solutions with just a single 

component that differs in value. 

 

Path Point 1 – a Candidate Solution and Random Solution 

Pairing with a Single Component that Differs. 

Candidate 

Solution 

100 14 98 0 

Random 

Solution 

100 14 12 0 
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Path Point 2 – Since the Third Component Differs, a 

random value between the Candidate’s (98) and the 

Random’s (12) value assignment is selected to replace the 

Random Solution’s current value for the third component. 

Candidate 

Solution 

100 14 98 0 

Random 

Solution 

100 14 72 0 

 

 

Path Point 3 – Random Solution’s Third Component is 

Still not Equal to Candidate Solution’s Third Component, 

so the process is repeated again. 

Candidate 

Solution 

100 14 98 0 

Random 

Solution 

100 14 97 0 

 

 

Path Point 4 – The Two Solutions are Now Identical.  If 

Any Point Along the Path Had a Higher Fitness Than The 

Candidate Solution, it Would Now Become the New 

Candidate Solution. 

Candidate 

Solution 

100 14 98 0 

Random 

Solution 

100 14 98 0 

 

4.3 Reliability of EPA for MSE 

To test the reliability of EPA, the algorithm was run 1,000 

times.  The stopping condition for these 1,000 runs was 

300,000 evaluations or the optimal solution.  This experiment 

replicated a previously published reliability experiment for 

several other popular optimization algorithms run on the same 

problem [8].  For this experiment reliability was calculated as 

the number of times the algorithm found the optimal solution, 

divided by the number of runs. 

 

Table 2. Comparison of Algorithm Reliabilities for MSE 

EPA GA DPSO EO 

99.3% 99.6% 99.85% 100% 

 

The EPA found the optimal solution 993 times out of 1000, 

missing the optimal solution just 7 times.  In each of these 7 

times a random restart was initiated, and the second or third 

best solution was found.  All of the algorithms had less than a 

1% margin of difference in reliability for this problem.  The 

real difference between the algorithms’ performances was in 

efficiency. 

 

4.4 EPA Efficiency for MSE 

To test the efficiency of the EPA for MSE the algorithm was 

run 1,000 times with the optimal solution as the only stopping 

condition.  This setup was used to force the algorithm to find 

an optimum even in a badly performing run.   

 

The EPA took an average of 49,906.5 evaluations to find the 

optimum solution for this problem, with a minimum of 1,675.  

This is larger, but similar to the number of evaluations that the 

DPSO and GA took in reported results [8].  These are 

presented in the table below.  There were no results for the 

number of fitness evaluations for EO. 

 

Table 3. Average Fitness Evaluations to Find Optimum 

EPA GA DPSO 

49,906.5 12,000 31,500 

 

The observed difference in efficiency for this problem is due 

to the observed possibility of spending a great deal of time on 

a good, but not globally optimum point.  In later experiments, 

not presented here, random restarts were introduced when this 

situation was detected, which improved efficiency greatly for 

this problem.  However, the basic algorithm remains less 

efficient than both GA and DPSO for this problem.   

 

Figure  2.  A Selected Optimization Curve for MSE 

  
 

5 Conclusions 

This paper has presented a new optimization algorithm 

designed particularly for discrete optimization.  The 

Evolutionary Path Algorithm requires no tuning parameters, 

but still performs well in comparison to other well-known 

stochastic optimization algorithms.  It is reliable and 

reasonably efficient.  Although the algorithm may not be as 

efficient on real-valued optimization problems as competing 

algorithms, it is likely that small modifications could greatly 

improve this performance. 

 

The algorithm finds good solutions without calculating any 

gradient information, using tuning parameters, or keeping a 

large population in memory.  Because it continually samples 

the whole search space it is able to continue to search for and 

find good solutions long after other methods have converged.  

Future work should extend the path-building operators to 

include other representations and look for extensions of the 

algorithm that tailor it to specific optimization problems. 
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Abstract— Genetic Programming (GP) has been employed
in many problem domains, and as a result, it has been the
subject of much scientific inquiry. The extensive literature
body of GP has reported applications in algorithm discovery,
image enhancement and cooperative multi-agent systems, as
well as many other areas and disciplines, such as agent-
based modelling in Geography and Social Science. As mod-
els become more complex, further research toward higher ef-
ficiency have been warranted. We discuss solutions to large-
scale systems which require automatic programming, and
present results of a modified data-parallel implementation of
GP based on Gene-expression Programming for Graphical
Processing Units (GPUs), as well as a modified Santa Fe Ant
Trail problem to measure the efficacy of this algorithm. We
present results on algorithm convergence as well as timing
performance on both GPU and CPU implementations.

Keywords: karva language; CUDA; genetic programming; gpu;
parallel; optimisation.

1. Introduction
Genetic Programming (GP) was the combinatorial opti-

miser specially adapted for evolving programs by way of
natural selection and evolutionary processes [35]. It was the
result of John Koza’s paradigm altering work of 1995 [20],
the same year that saw parametric optimisation take a great
leap forward with the advent of the particle swarm optimiser,
due to Kennedy and Eberhart [18]. Combinatorial optimisa-
tion had been a problem under careful research for many
years, with classic problems such as the Traveling Salesman
Problem [38], Prisoner’s Dilemma [1] and the Knapsack
problem[10]. Many of these problems are representative of
real-world applications, and advancements in solutions to
these are beneficial to finding effective solutions for other
problems. GP has been applied to intrusion detection [5],
soccer playing “softbots” [25], [24], models of land change
in Mexico [27], team learning [26], algorithm discovery [2]
and even image enhancement [36]. Cooperative multi-agent
systems also benefit from the use of genetic programming
[34], as well as classification for data mining [40].

Since the introduction of Genetic Programming in 1995,
the canonical algorithm has been the subject of many
enhancements and alterations, as is the case with related

parametric optimisers [17], [15]. Some of these modifica-
tions include Linear GP [3] and Cartesian GP [30]. Some
modifications are very extensive, such as more restrictive
versions of GP [4] and also complete overhauls of the
original representation of programs, such as that in Ferreira’s
Gene Expression Programming (GEP) [7]. Many of these
modifications were intended to combat common problems in
GP, which have precluded more extensive use. O’Neill et al
describe these problems in detail [33]. The most prominent
of which is code size; in which there exists a drift in the
population towards larger and more redundant programs
[37].

GP is a population-based optimiser, in which a set of
programs are improved upon successively, by replacing it
with a set of new programs, with genetic operators applied
in a bid to drift away from bad solutions. A set of pro-
grams in this context is usually referred to as a generation.
Each program represents a specific candidate solution to
the problem at hand. Typically the most computationally
expensive aspect of genetic algorithms in general, is the
fitness evaluation of each of these candidate solutions. A
fitness metric is necessary to guide the genetic operators in a
way that is analogous to the concepts of natural selection and
“survival of the fittest” in biology. The most common genetic
operators considered are known as selection, mutation and
crossover, where mutation perturbs a candidate solution in
the search space, and crossover combines two candidate
solutions to hopefully obtain a new single candidate with
a slight improvement. Selection is simply a mechanism to
obtain inputs for the crossover operator.

Gene Expression Programming (GEP) [7], [8] is one
algorithm which departs from the traditional representation
of programs in GP. It replaces the tree-based representation
with a linear one, which still encodes an abstract syntax
tree (AST). Perhaps the greatest advantage to GEP is its
inherent support for introns: non-coding sections of the
genotype. When the linear representation is interpreted to
obtain the phenotype, certain introns may not make it into
the tree. As well as being more representative of actual
biological systems [30], this also brings a great simplification
to mutation and crossover.

In this article we present a modified GP using the k-
expression program representation from GEP, and accel-
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Fig. 1: A 3D rendered version of the classic genetic program-
ming test environment known as the Santa Fe Ant Trail. This
visualisation[16] is a frame taken after random initialisation
of the 256 agents. This representation casts light on the
computationally expensive process of evaluating program
individuals.

erate this using Graphical Processing Units (GPUs). Our
rationale for using GPUs are two-fold: commodity pric-
ing on GPUs is very favourable for the computing power
that can be exerted on these platforms, and second, the
inherent parallelism in population-based optimisers such as
the GP allow not only parallel fitness evaluation, but also
parallel selection, crossover and mutation. Most other data-
parallel implementations of GP focus on accelerating fitness
evaluations [21]. We make a calculated effort to accelerate
the genetic operators in our implementation. Other GPU-
based GPs include efforts in acceleration on GPU clusters
[12] and different representations [22]. Interestingly, there
have also been parallelisation research inspired by quantum
computing, most notably the evolution of CUDA (Compute
Unified Device Architecture) PTX programs by a quantum-
inspired linear GP [6].

Our article is structured as follows: In Section 2 we
present some background on GEP, its operators, and various
specifics on the algorithm. We also introduce the Compute
Unified Device Architecture (CUDA) and the idiosyncrasies
of efficient data-parallel simulations designed for this. In
Section 3 we describe our modifications to GP and also the
method by which we measure the efficacy of this algorithm.
Following this, we use Section 4 to present our results and
then discuss these in Section 5, then finally we conclude and
present some possible future work in Section 6.

Fig. 2: Phenotypic AST built from genotype represented by
the karva-expression *-+*-abaa/abbacda.

2. Gene Expression Programming
We provide some background to gene-expression pro-

gramming (GEP) and mechanisms for implementing it.
Perhaps the most advantageous feature of Gene Expres-
sion Programming (GEP) is its representation of candidate
programs[8]. Ferreira [7] designed a language named Karva,
and candidate programs are represented in the form of karva-
expressions, or sometimes shortened to k-expressions. These
expressions take the following form:

01234567890123456

*-+*-abaa/abbacda

The first line is simply used as an indexing convenience.
The second line is the genotype of the candidate solution
to a particular problem. The distinction between genotype
and phenotypes in GP in general is simply the interpretation
of a representation into an executable program. This is not
always necessary, especially in Linear GP, where candidates
are stored in the same form as they are executed (namely,
sequences of instructions executed successively).

The symbols used in the k-expressions are either terminals
or non-terminals; and in this case, the terminals are a,b,c
and d. In this example, all the non-terminals are self-
explanatory and of arity 2, except Q, which is the square
root function, of arity 1. GEP has support for any set of
function terminals of any arity, provided that the expression
length is long enough to give each function its required
arguments. This will be made clear in how the genotype
is interpreted into a phenotype. This k-expressionis shown
in its phenotypic form in Figure 2.

The tree is built by reading the k-expressionfrom left to
right and filling the arguments of the non-terminals in the
tree level by level. Upon careful inspection, it is noteworthy
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Fig. 3: The AST built from the genotype represented by the
karva-expression *-++babaa/abbacda.

that the terminal d is an intron, and hence not in the
phenotype. Ferreira proposes several genetic operators and
leaves the selection of these to the user and their specific
application.

For ease of reference, we provide here a brief overview of
the mutation and crossover operators. Our selection operator
is tournament selection; as it most closely aligns with
our needs in data-parallel computation. Details on this is
provided in Section 3.

Crossover of two k-expressions is simple. We elect to use a
one-point recombination (for its simplicity), which involves
selecting a crossover point at random, and then creating two
new candidates from the recombination about that point.
Consider the k-expressionshown in 2. If it were recombined
with another expression at index 5, such as:

01234567890123456

*-++baa/bbabbacda

Then the results would be the following:

01234567890123456

*-++babaa/abbacda

*-+*-aa/bbabbacda

Which, when interpreted, are shown in Figs. 3 and 4.
Mutation of a k-expressionis simple. By using a uniform

random number, a random symbol in the expression is
chosen, and that symbol switched for another terminal or
non-terminal.

The most popular method of selecting pairs of candi-
dates to pass through the crossover operator is Roulette
Selection[11]. Candidates are chosen at random throughout
the population, but the probability of selecting each candi-
date is proportional to their fitness. This is usually accom-
plished by choosing a random number in (0, 1) and mapping
this to a hypothetical “roulette” wheel where the range of
(0, 1) is divided up in such a way that the probabilities of

Fig. 4: The phenotypic AST built from the genotype repre-
sented by the karva-expression *-+*-aa/bbabbacda.

choosing each candidate are correct relatively.
The Roulette selection method does not parallelise ex-

tremely well. Most parallel GP algorithms make use of
a selection method named “Tournament Selection”[29]. In
this scheme, every candidate is compared against another
uniform-randomly selected candidate, and the best candidate
(by fitness) is chosen as one of a crossover pair. Once this
process is complete, two candidates at a time are recombined
and then the mutation operator is called.

Genetic Programming responds very well to parallelisa-
tion. We use NVidia’s Compute Unified Device Architecture
(CUDA) platform [32], [23] to accelerate our algorithm. The
CUDA platform arose from a very effective arrangement
of MIMD and SIMD processors, which were intended for
processing large numbers of pixel data as fast as possible.
General-Purpose Graphical Processing Units (GPGPU) has
gained much interest since the advent of CUDA, particularly
in light of the fact that using pixel and fragment shaders for
simulation is an arcane and difficult affair. CUDA makes this
process much more accessible and purpose-built[31].

The CUDA-enabled GPU consists of several Streaming
Multi-processors (SMs) which have a certain number of
“CUDA cores”. These SMs process work units known as
“blocks”, which represent a 1D, 2D or 3D grid of threads.
These blocks are sized by the user, and typically coincide
with simulation-specific requirements. An SM computes a
block until completion, and then, if available, carries on to
the next block. During execution, threads are divided into
groups of 16, known as “warps”. Warps are the smallest
unit of execution in CUDA. Warps are executed in a SIMD
fashion on the CUDA cores on each SM (sometimes known
as SIMT). The combination of all SMs are therefore MIMD.

CUDA-enabled GPUs have some idiosyncratic behaviour
including memory access penalties and scoping among oth-
ers. These can sometimes be problematic when not given
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careful due consideration. CUDA provides a variety of mem-
ories to the user, each of which has a different access penalty
and scope. For brevity, we omit a thorough discussion of
these. The process of executing simulations with CUDA
involves copying data across the PCI bus to the GPU’s
global memory, where it is then manipulated by device-
specific code. Once this computation is complete on the
GPU, the program would copy the modified data back again.
Depending on applicability in the application, one can make
use of host page-locked memory which reduce expensive
memory copies.

GPU-specific instructions are created by making use of
special syntax added to the C language, which is compiled
by the nvcc compiler. Once this code has been compiled,
the rest of the program is passed to the system C compiler for
normal compiling. This allows the CUDA device drivers to
copy device specific instructions to the GPU for computing.

3. CUDA Implementation
Apart from our use of The Karva language for expressing

candidate solutions, we also make special effort in order
to accelerate the process by which a new generation is
computed. It should be noted that sometimes the fitness
function can greatly outweigh this computation.

It appears then that k-expressions are naturally well-
suited to being used in CUDA. This is because they can be
stored as sequences of (independent) characters or integers.
Furthermore, crossover and mutation are almost trivially
easy, bearing in mind the head and tail requirements. Our
method for combining the traditional GP algorithm and
GEP-style k-expressions is shown in Alg. 1.

Algorithm 1 The parallel implementation of GP on GEP
k-expressions.

allocate & initialise space for n candidate programs

allocate space for random deviates
while termination criteria not met do

call CURAND to fill the random number array with
uniform deviates in the range [0,1)

copy candidates and candidate bests to device
CUDA: compute_argument_maps()
CUDA: interpret/execute programs
CUDA: update food locations/fitness
copy back to host

if end-of-generation then then
CUDA: apply genetic operators to programs
replace old programs with new ones

end if
visualise the result

end while

In this algorithm, we parallelise the majority of com-
putations. A disadvantage to using k-expressions is that
interpretation of these programs are not straight-forward.
We compute so-called “argument maps” in order to allow
the CUDA-based interpreter we designed to directly fill
the instructions with their corresponding arguments without
using recursion.

Precisely the method by which we apply the genetic
operators is strongly dependent on the selection method.
As we have mentioned before, Tournament selection is the
method of choice for most parallel implementations. The
algorithm we use for accomplishing this in CUDA is shown
in Alg. 2.

Parameters for the CUDA-based algorithm are
P (mutate) = 0.1 and P (crossover) = 0.8.

Algorithm 2 Parallel Tournament Selection
launch a CUDA kernel with n/2 threads
assign thread candidate x/2 + 1 and x/2
set a to random index
if candidate a beats candidate x/2 + 1 then

replace candidate x/2 + 1 with a
end if

set b to random index
if candidate b beats candidate x/2 then

replace candidate x/2 with b
end if

recombine candidates x/2 and x/2 + 1
mutate the two resultant candidates
save results over the original two candidates

To facilitate comparison, we have implemented a single-
threaded CPU-based GP optimiser, with the exact same
objective function, but computed in a serial fashion. Pa-
rameters are similar to the CUDA-based modified GP, with
P (crossover) = 0.8 and P (mutation) = 0.01. The CPU-
based GP makes use of the canonical tree-based repre-
sentation with a depth restriction of 4. The same number
of agents were used (1024). Tournament selection is also
used, and initialisation/point mutation is done by the Full
method. Crossover is implemented as a subtree swap. To
avoid program bloat, we prune the trees following the genetic
operators to a maximum depth of 4, where leaves are
replaced by random terminal symbols.

4. Convergence & Performance Results
We present some convergence data showing how the

various algorithmic implementations behave as well as some
timing performance data for a GPU/CUDA implementation
compared with a conventional serial CPU implementation.

Convergence results for the CUDA-based GP (based on
k-expressions) as well as the CPU-based GP with canonical
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Fig. 5: Convergence results for the CUDA-based GP with k-
expressions and the CPU-based GP with the canonical tree-
based representation. The graph shows the average mean
value of each generation, from 100 independent runs. The
error bars represent the average standard deviation of the
100 runs in each generation. Lowest and highest population
means are also shown.

Frame Time (µ sec) Gen. Time (µ sec)
CUDA-GP (k-exp) 1160± 40 423.2± 0.5
CPU-GP 48000± 8300 2600± 300

Table 1: Performance data for the CPU-based canonical GP
and the k-expression GPU-based GP algorithm.

representation is shown in Fig. 5. The plot shows the average
mean values of each generation for both algorithms. Each of
these data points has been averaged across 100 independent
runs. The error bars on the average mean line represents the
average standard deviation of the population fitness across
all 100 separate runs.

It is clear from this graph that the CUDA-based GP with
k-expressions clearly outperform the standard GP. At around
generation 20, the CUDA-GP seems to have a larger spread
in the average mean. We believe that this may be indicative
of a local minimum, analogous to the same phenomenon in
parametric optimisation. It is interesting to note that, because
of the difference in representation between the CUDA-GP
and the standard GP, at generation 20, the standard GP shows
the same increase in spread of mean, albeit, less pronounced.

The spread of the mean towards the end of the simulation
is smaller for the standard GP than for the CUDA-GP.
Although a smaller spread is much more desirable, the
highest mean of the standard GP only barely surpasses the
score of the lowest mean in the CUDA-based GP.

Performance data for each of these algorithms were also
collected. These are shown in Tab. 1. We averaged the frame

Fig. 6: Wall-clock performance of the CUDA and CPU-
based algorithms by generation.

compute time across the 300 frames in each generation,
and then across all 100 independent runs. The generation
compute time represents the time it took the algorithms
to compute a new population only. This was also aver-
aged over the 100 separate runs. The data is of the form
mean ± std. dev.

From this data, the CUDA-based algorithm achieves a
speedup of 6 times over the CPU algorithm for computing
new populations, and 41 times over the CPU algorithm for
computing a single frame of the simulation.

Fig. 6 shows the time taken by each algorithm for com-
puting a new population for fitness evaluation. This process
is mostly just the genetic operators; selection, crossover
and mutation. It is interesting to note that the compute
time for the CPU-based standard GP is nonlinear, while
the CUDA-based GP (with GEP-style k-expressions) is
practically linear. This is not an artifact of the plot itself.
The mean generation compute time for the CUDA algorithm
has a standard deviation of just 40µ sec, whereas the CPU
algorithm has a much larger 8300µ sec, even taking into
account the fact that its frame time is 41 times larger.

We believe that this may be due to the initialisation
method (Full) of the GP algorithm. Fig. 7 shows what
form a typical initialised agent would take. This is in sharp
contrast with Fig. 8 which depicts a much more effective
solution. As can be seen from the initial program, they can
potentially contain more IfFoodAhead functions, which
are far more computationally expensive. This explains why
initialised programs are often more expensive to evaluate,
and hence increase the overall generation compute time for
early generations.

From observation, it seems that highly effective programs
generally take a certain form. An IfFoodAhead function
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Fig. 7: A typical individual agent generated by the Full
method in our simulation. LISP-style code for this tree is
(P(P(P(D)(L))(I(L)(L)))(P(P(M)(M))(P(M)(R)))).

Fig. 8: A highly effective generated agent. The LISP-style
code for this is (P(P(P(M)(M))(M))(I(M)(R))).

is used to cause movement in a direction other than straight,
and the rest of the program is simply Move terminals. The
reason why more Move terminals are beneficial is because it
allows the agent to move faster, and hence potentially reach
more food.

5. Discussion
By using the Karva language from within Ferreira’s Gene

Expression Programming algorithm, we believe we may
have attained better convergence for a particular reason;
crossover with k-expressions is a lossless matter. During
mutation in the standard GP, code bloat occurs, which is
generally remedied by using a pruning method, which forces
trees to be of a certain maximum depth. This is accomplished
by simply replacing functions with terminals which are
just above the maximum depth. The trees are also pruned
after crossover, since subtrees are chosen at random, and
destination nodes are also chosen at random. In other words,
one tree can be virtually appended to another, causing a
program that is twice the size of the original. Every time
pruning is applied, potentially valuable information is lost.
By using k-expressions, we avoid this problem.

It is worth noting that, as with most metaheuristics, the
parameter tuning effort is vitally important. Algorithms such
as these are very sensitive to their parameters. Our tuning
effort was carried out by hand, and as a result, it could be
improved somewhat. From the results we obtained however,
we believe we could not improve the standard GP even to
the point where the result would at all be inconclusive.

The speedup obtained from a data-parallel implementation
is also very promising. There are some optimisations we
have not included in our CUDA-based algorithm, such as
interaction redundancy elimination using spatial partitioning,
as well as hiding memory latency with tiling. Even without
these techniques, it is clear that a GPU implementation
presents a substantial improvement over CPU-based GP,
which will also generally extend to Evolutionary Algorithms
(EAs).

The notion of evolving a grammar is a powerful one
providing there is sufficient expressivity in the grammar
itself to accommodate appropriate features. Programming
grammars and formats such as Extended Backus-Naur Form
(EBNF) and Backus Naur Form (BNF) and their various
derivatives[39], [19] may offer some interesting possibilities
if appropriate genetic operators can be applied to language
evolution. Although there is work reported in the literature
on parsers that learn a language based on examples[28]
in (E)BNF the notion of evolving languages themselves
based on such a representation does not yet seem to have
been explored. Given the recent interest in the literature
on domain-specific languages (DSLs) [9], [13], [14] and
their use for reducing code complexity in a wide range of
applications, there is scope for applying the techniques we
have discussed to DSLs expressed in an appropriate grammar
that can be subsequently evolved and investigated for fitness
metrics such as compactness.

6. Conclusions and Future Work
We have presented a CUDA-based Genetic Programming

algorithm using the Karva language from Gene Expression
Programming for program representation. We have charac-
terised and compared this algorithm against the canonical
CPU-based Genetic Programming algorithm both with the
same modified Santa Fe Ant Trail objective function. Our
results suggest that using Karva provides a great benefit
towards convergence aspects of the algorithm, as well as
towards improving the wall-clock performance.

We have also discussed our method of selection, as well
as crossover and mutation in the context of k-expressions.
The resultant programs we obtained from both the CPU and
CUDA-based were competitive with hand-tuned programs
for the given restrictions. In our results, the best wall-clock
performance was achieved by the CUDA-based algorithm,
and we also discussed some irregularities in the CPU per-
formance data for population computations.
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There is scope for further work towards extending or
improving Grammatical Evolution in a similar manner, es-
pecially taking into account its highly desirable attribute in
making use of BNF grammars. We also belive it possible
to develop tools that will support visualision of this sort of
program space in a more appropriate fashion.
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Abstract— Recently, many healthcare institutions became
interested in automating the process of personnel scheduling.
Nurse Rostering is a difficult scheduling problem, which is
defined as generating rosters by assigning working shifts
to a number of nurses over a certain planning period,
such that a predefined set of constraints is satisfied. There
is a high demand to automate this process, since many
healthcare institutions still make nurse rosters manually. In
this research we design a scheduling tool that is based on a
Genetic Algorithm (GA) approach to solve the nurse roster-
ing problem for the surgical unit in a Riyadh hospital. Our
GA-based tool will automatically create a schedule while
taking into account a number of difficult constraints. Some
constraints are specified by the hospital, and mainly relate to
maximizing the coverage of shifts and adhering to workload
requirements and certain shift succession patterns. Other
constraints relate to preferences of the nurses regarding their
annual leave and weekly days off. The main contribution of
this research is in proposing new GA solution representation
and problem specific operators that are specially designed
to handle the difficult problem constraints and satisfy the
requirements of the hospital. The automatically generated
schedule will save time and reduce the planner workload.

Keywords: Nurse Rostering, Scheduling, Heuristics, Meta-
heuristics, Genetic Algorithms, Combinatorial Optimization

1. Introduction
The Nurse Rostering Problem (NRP) is a personnel

scheduling problem that became essential for modern hospi-
tals and medical institutions. Currently, many hospitals make
nurse rosters manually. The process of building efficient and
balanced rosters is time consuming and needs a lot of experi-
ence. Therefore, there is a high demand for automated nurse
rostering tools. The automation of this task will minimize
the time and effort needed to create high quality and flexible
schedules. High quality rosters produced automatically will
overcome the problems resulting from poor rostering, such
as career leakage due to fatigue and stress from overwork.

The NRP is complex and difficult to solve. It belongs
to the category of NP-Hard problems [1], where a set of
difficult rules and constraints need to be simultaneously
satisfied. The NRP is defined as generating rosters by

assigning the required shifts to nurses over a certain planning
period (typically one month or one week), such that some
predefined rules and constraints are satisfied [1]. In the
schedule, each day consists of a number of shifts, for
example: a day shift, a night shift and a late shift. Each shift
must be assigned to sufficient nurses to cover the demand
of the ward or the hospital.

There are many constraints that make this problem chal-
lenging. Usually, work regulations, hospital rules and pref-
erences of nurses define the constraints of the problem.
Secondly, there is a specified number of hours a nurse can
work in a week, which should not be exceeded. Also, some
nurses are not qualified to work in certain shifts. In general,
the constraints are classified into two types:hard constraints
andsoft constraints.

Hard constraints are the constraints that must be satisfied
at all times in order to create a feasible solution. A solution
in which all hard constraints are satisfied is called afeasible
solution. Hard constraints are usually defined by law and
hospital requirements. For example, the minimum and max-
imum number of hours that should be worked by a nurse,
and assigning certain shifts to qualified nurses, to achieve
the desired level of care quality [2][3].

Soft constraints are not mandatory but violations of these
constraints need to be avoided as much as possible. The
quality of a generated roster is determined by the degree of
violation of soft constraints. Common soft constraints are
those related to nurses’ requests for days off on particular
days of the week, and balancing the work load efficiently
among the available nurses. Some of the common problem
constraints are listed below [3]:

1) Coverage: defines the required number of nurses to
work on each shift type per day.

2) Max (Min) Hours: defines the maximum (minimum)
number of hours a nurse must work over a period of
time.

3) Personal Preference: defines the nurses’ requests for
day and night shifts or off days.

4) Succession: defines the legal and illegal successions
of shifts, for example a night shift cannot be followed
by a day shift.

Many techniques were introduced in the literature to solve
the NRP. For example, operational research optimization
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methods have been used including: goal programming [4],
column generation [5], and Lagrangian heuristic [6]. In
addition, many Meta-heuristic based methods that are used
for combinatorial optimizations are also applied for nurse
scheduling problems such as tabu search, simulated anneal-
ing, variable neighborhood search and genetic algorithms.

In this research we propose a GA approach to solve the
NRP. Although the general framework of GAs is standard,
there is a great potential for innovation when applying
GAs to a difficult problem like nurse rostering. In addition,
most papers in the literature focused on developing new
algorithms for solving the problem, rather than building a
system for the practical use of a certain healthcare institution.

This research is based on an MSc graduation project in the
College of Computer and Information Sciences at King Saud
University, Riyadh, Saudi Arabia. A user-friendly GA-based
system was designed in order to automatically generate nurse
schedules for the surgical department in a famous hospital
called "Riyadh Care" (denoted hereafter by RC) hospital.
The main objective of the research is to automatically create
an efficient nurses’ schedule that takes into account a number
of difficult constraints. The generated schedule should fulfill
the needs of the hospital by maximizing the coverage of
shifts, and adhering with the workload requirements and the
personal preferences of nurses. In this paper we provide
the early results of theoretical experimentation with the
designed tool before actual hospital implementation, and try
to highlight both the promising outcomes of the research as
well as areas of possible future improvement.

The rest of this paper is organized as follows: Section 2
gives a brief overview of some solution methods from the
literature to the NRP. Section 3 defines the NRP handled in
this research, as described by the RC hospital in Riyadh. Sec-
tion 4 describes in detail the proposed GA solution, including
the representation, the initial population, the fitness function
and the crossover and mutation operators. Section 5 shows
the experimental results obtained by testing the proposed
approach. Section 6 summarizes the results and proposes
some future improvements. Finally Sect. 7 concludes this
paper with a brief summary.

2. Related Work

The nurse rostering problem requires a robust and efficient
algorithm that can effectively handle the difficult problem
constraints. Heuristics are the most common methods that
have been applied to the nurse rostering problem. One
popular group of heuristics is population based heuristics
like genetic algorithms. In this section we will give examples
of two of the most commonly used heuristic methods in the
literature to tackle the NRP: Variable Neighborhood Search
(VNS), and Genetic Algorithms (GAs).

2.1 Variable Neighborhood Search (VNS)
[7] presented a VNS approach for the nurse rostering

problem. In this approach, a wide variety of constraints are
considered. The presented approach allows accessing the
hidden parts of the search space by applying suitable prob-
lem specific neighborhoods. Shortsighted neighborhoods and
very greedy ones are combined to achieve better exploration
of the search space. The design of a cost function of the
nurse rostering model is simply assigning a cost parameter
set by the user to each constraint. Each violation of con-
straints is then penalized. The cost of the entire schedule
is calculated as the summation of penalties associated to
each personnel schedule. The neighborhood structures of
their VNS method are of four types, inspired from the
manual scheduling process: single-shift day, soft constraints
related neighborhoods, swapping large sections of personnel
schedules, and shaking the solution. Experimental results
have shown that it will be useful to apply local search in
the neighbors of the roster until a local optimum is reached,
then the search expands to wider area.

[8] presented an approach that hybridizes heuristic order-
ing with variable neighborhood search. They have shown
how combining the repeated use of heuristic ordering and
backtracking will extend the search and improve the solution
quality. They also presented an analysis and discussion about
the allowed computational time and the significant role it
plays. They have compared the proposed VNS algorithm
with a genetic algorithm on commercial data. The results
have shown that the VNS algorithm outperform the genetic
algorithm.

2.2 Genetic Algorithms
[9] defined the problem of nurse rostering as assigning

shifts to qualified personnel using a given timetable under
some hard and soft constraints. They presented a method
based on genetic algorithms to solve nurse scheduling in
Fatih Sultan Mehemet Hospital. The standard GA is used,
and the fitness value is obtained for each individual in
the population by calculating the summation of its penalty
scores. Each hard and soft constraint is associated with a
weight value. The success ratio of finding a good solution
increases by the use of a hill climbing operator. They used
two techniques for handling the constraints: repair technique,
and normalization of fitness values and parameter settings.
Experimental results have shown that normalizing penalty
scores and the repair of violations and adaptive weights of
constraints will increase the quality of generated schedules.

[10] presented a research for designing and developing a
system for nurse schedules to be used in public hospitals.
They defined the nurse rostering problem as the problem that
occurs when one or more nurses cannot work on shifts that
were scheduled for them. This means that the current roster
must be rebuilt if there are no reserve nurses available to
cover these shifts. The paper applied constructive heuristics
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with different versions of genetic algorithms to solve the
problem of nurse rostering. In the presented GA approach,
the individual is represented as a pair of chromosomes, and
each chromosome is represented as permutation, one for
nurses and one for tasks. The presented versions of GAs
differ in the encoding of permutations and the implementa-
tion of genetic operators. The approaches were tested using
real data form Lisbon Hospital and produced good quality
solutions within time limits specified by the hospital.

A genetic algorithm approach for the NRP is introduced
by [11] which is based on an indirect encoding of solutions.
The objective of their study is not to guarantee finding
feasible solutions, but they focus on using the problem
constraints in an active way to minimize the need for penalty
functions. Their problem definition is based mainly on two
constraints. First, the nurses of higher grades can replace
nurses of lower grades. Second, most of nurse contracts
involve special day-night structure in which the nurse can
work either day shifts or night shifts in a week but not both.
The crossover operator used is order-based crossover. In
addition, there are three decoders presented for their indirect
encoding. Experimental results have shown that the indirect
GA approach is more flexible than Tabu Search.

3. NRP for the Riyadh Care Hospital
Our system was designed based on real-world data of

the surgical unit in the Riyadh Care (RC) hospital, where
currently nurse rosters are made manually. The aim is to
generate weekly schedules for the surgical department in the
hospital for a predetermined number of nurses. The day’s
schedule consists of two types of shifts:day (from 7:00 am
to 7:00 pm) andnight (from 7:00 pm to 7:00 am). There are
two main types of nurses:head nurseand staff nurse. The
regular nurse can have three days off in a week while the
head nurse can have only one day off.

For a feasible schedule, qualified nurses are assigned
to cover the required shifts, such that each nurse is only
assigned one shift per day. Some of the nurses are assigned
to a predetermined number of on-call shifts according to
the hospital demand. In addition to the coverage constraint,
there is a number of constraints that make this problem
challenging: (1) a night shift cannot be followed by a day
shift; (2) the nurse should take a day off after working on
two consecutive day shifts; (3) when a nurse is assigned a
night shift followed by a day off, the following shift (after
the day off) should not be a day shift. This is intended to
give the nurse a chance to adjust her sleeping pattern after
working a night shift, before assigning a day shift to her;
and (4) the nurse can request certain days off according to
her preference. A sample roster for two staff nurses for a
week starting at Saturday and ending at Friday is shown in
Table 1.

Symbols used in formulating the problem are:

Table 1: Sample Roster

Sat Sun Mon Tue Wed Thu Fri
SN1 D D / N N * /
SN2 N / N N N # /

• SN : Staff Nurse
• D: Day Shift
• N : Night Shift
• /: Day Off
• ∗: Day On-Call
• #: Night On-Call
• PLj: Preference list of off days requested by nursej

The constraints of the problem can be summarized as
follows, in order of importance as expressed by the schedule
planner of the hospital:

1) Number of night and day shifts in a day (di, i =
1, 2, ...7) of a weekly schedule should differ by at most
one:
C1 : |

∑

di

D −
∑

di

N | <= 1, ∀i=1,2,...7

2) A nurse working in a night shift of some day should
not work in a day shift the day after:
C2 : N → N or N → O , whereO ∈ {/, ∗,#}

3) After working two consecutive day shifts, the nurse
should take a day off:
C3 : D → D → O, whereO ∈ {/, ∗,#}

4) An off day preceded by a night shift should be
followed by a night shift or another off day:
C4 : N → O → N or N → O → O, where
O ∈ {/, ∗,#}

5) Days off should meet the preference of each nurse:
C5 : Oj ∈ PLj , whereOj ∈ {/, ∗,#}

In our approach, we assume that all constraints are soft
constraints. However, the constraints are assigned different
weights according to the importance of each constraint as
indicated by the listing order above.

4. Proposed GA Solution
In our GA approach to solve the NRP, we propose a

new problem specific heuristic to initialize the population.
We also introduce problem specific crossover and mutation
operators which are basically dependent on the rules and
constraints of the RC hospital. The solutions generated
are evaluated by a fitness function that assigns weighs to
the given constraints and penalizes the violations of each
constraint.

The solution is represented as a 2-D array which repre-
sents a schedule of one week. The scheduling process starts
by generating the initial population as described in Sect.
4.2. Then each individual in the population is evaluated and
assigned a fitness value by the fitness function which is
defined in Sect. 4.3. Individuals with high fitness values are
selected to be recombined and mutated to generate new off-
spring (details of crossover and mutation operators are given
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in Sections 4.4 and 4.5 respectively). Bad individuals with
low fitness values are eliminated from the new population
and replaced with the newly generated offspring. The rest
of the individuals will survive to the next generation. Then
the process is repeated from the fitness evaluation phase for
each generation until a high quality schedule is found or a
specified number of generations is reached.

4.1 Representation
The individual in the population represents a one week

schedule for the department with a given number of nurses.
The individual is represented as a 2-D array where one
dimension denotes the nurses, and the other dimension
denotes the shifts assigned to nurses on every day of the
week. A sample individual representation for four nurses is
shown in Table 2, whereD denotes a day shift,N denotes
a night shift and/ denotes a day off1.

Table 2: Solution Representation

Week Days

N
ur

se
s D N / D / / N

D / N / D N /
N D / / D / D
D / D N / D /

4.2 Initial Population
The initial population is created using a heuristic that will

try to satisfy some of the problem constraints in the initially
generated schedules. First, to calculate the total number of
shifts per week, we multiply the total number of nurses in
the surgical unit with 7 days (shifts), since each nurse can
be assigned a maximum of one shift per day:
TotalShifts = TotalNurses× 7

To compute the required number of day and night shifts in
a week according to the coverage constraint of the hospital,
we will first assign the Annual Leave (AL) days of nurses,
if any, in the week to be scheduled. After assigning the AL
days for nurses, the off days are assigned randomly to each
nurse in the initial schedule, where the staff nurse will be
assigned three days off and the head nurse will have one
day off. Then, to calculate the remaining number of shifts
we subtract the assigned AL days and off days from the total
number of shifts:
RemainingShifts = TotalShifts− (TotalAL+ TotalOff)

Then we can calculate the number of night shifts (TotalN )
as 1/3 of the remaning (required) number of shifts:
TotalN = ⌈(RemainingShifts/3)⌉

Finally, the number of day shifts (TotalD) is calculated as:
TotalD = RemainingShifts− TotalN

Following this,TotalD (number of day shifts) andTotalN

1In our representation we assume that a day off represents on-call days
as well, since the planner can easily change selected days off to on-call
days according to the need of the department.

(number of night shifts) are assigned randomly to nurses in
the initial schedule. Note that in the initial solution, more day
shifts are assigned than night shifts in the weekly schedule
(night shifts are 1/3 and day shifts are 2/3 of the total number
of shifts). This was suggested to try to achieve the desired
balance between the number of day and night shifts during
the evolutionary process, since the mutation operator, which
will be described in Sect. 4.5, mainly converts violating day
shifts into night shifts to try to repair constraints violation in
the solution. The initial population of schedules is created
using the initial schedule algorithm described above.

4.3 Fitness Function

The fitness function assigns a fitness value to each in-
dividual in the population to measures its quality. The
quality of the schedule in our approach depends on the
number of constraints violations found in the schedule. We
penalize the violations by assigning a weight value to each
constraint. The weight value represents the significance of
the constraint. So, the coverage constraintC1 is assigned
higher weight values than the other constraints.

ConstraintC1 is checked by subtracting the number of day
and night shifts in each day(di) of the schedule as shown
in (1).

V1 =

7
∑

i=1

|
∑

di

D −
∑

di

N | (1)

The number of violations ofC2, C3, C4 and C5 are
calculated for each nurse. The weight associated with each
constraintCk is then multiplied by the corresponding num-
ber of violationsVk. The summation of the results of this
operation for all constraints gives the fitness value of the
nurse’s schedule as shown in (2), whereF (Nj) is the fitness
of the schedule of nursej in the evaluated schedule.

F (Nj) =

5
∑

k=2

Wk ∗ Vk (2)

Summing fitness values of all nurses’ schedules, and the
fitness of the whole schedule in terms of the difference in
the number of day and night shifts gives the fitness of the
entire schedule as shown in (3), whereF (S) is the fitness
function of the schedule andn is the number of nurses.

F (S) = W1 ∗ V1 +

n
∑

j=1

F (Nj) (3)

It is important to mention that when evaluating a schedule
we assume that the schedule of the previous week is already
present and is used by the fitness function to check constraint
violations between the last day of the previous schedule and
the first day of the current schedule.
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4.4 Crossover Operator

High quality schedules are selected for recombination
by crossover. The crossover operator proposed in our GA
approach is a problem specific operator that helps to improve
solutions with respect to one constraint of our problem.
This constraint isC5, the preferences of each nurse for off
days. Two parent solutions are recombined by swapping a
specified number of nurses2 from one solution with the same
number of nurses of the other solution. The number of nurses
swapped between the two parents is according to a given
probability, such that a maximum of half the number of
nurses in a given solution can be swapped. The swapping of
nurses is performed under one condition which is as follows:

If group1 contains nurses selected randomly from parent1
and group2 contains nurses selected from parent2, then the
total numbers of day and night shifts in each day of group2
must be equal to the total numbers of day and night shifts
in each day of group1.

This condition will try to maintain the feasibility with
respect to the coverage constraint C1 as much as possible.
An example of the crossover operator is shown in Figure 1.

Fig. 1: Crossover Operator

2For simplicity hereafter we use the term "nurse" to refer to a "nurse
schedule", i.e., the crossover operator swaps the "schedules" of two nurses,
one nurse selected from each parent

4.5 Mutation

After applying crossover, the generated offspring can be
mutated under a given mutation probability. The mutation
operator proposed in our approach is a repair mutation.
It repairs the violations of the constraintsC2, C3 and C4

found in the schedule. In the mutation operator, some nurses’
schedules will be selected for repair according to a certain
probability. The mutation operator will repair the selected
nurses’ schedules by correcting the violations as it moves
through the schedule of each nurse from left to right. The
mutation operator will proceed in two passes:

• Pass 1:moving through the schedule of the nurse from
left to right, the mutation will correct the violation of
constraintC3, which happens when two consecutive
day shifts are followed by a third day shift or night
shift. This violation can be repaired by swapping the
third day/night shift with a day off found anywhere in
the schedule of that nurse:
D → D → N OR D → D → D =⇒ D → D → O

• Pass 2:moving through the schedule of the nurse from
left to right for the second time, the mutation will try to
correct the following two violations at the same pass:

– ConstraintC2 (a night shift followed by day shift):
This violation can be repaired by changing the day
shift to night shift:
N → D =⇒ N → N

– ConstraintC4 (a night shift followed by an off
day and the latest is followed by a day shift). This
violation is repaired by changing the day shift to
night shift, as shown below:
N → O → D =⇒ N → O → N

It is important to stress that fixing the schedule is done
forward from left to right in order not to disturb what
has been previously fixed in the schedule. An example of
mutating an individual is shown in Figure 2.

5. Experimental Results
To measure the performance of the proposed GA approach

for the nurse rostering problem, we performed several exper-
iments with different test cases. All experiments were per-
formed with Intel (R) 2 Duo (2.53GHz) processor, 4.00 GB
RAM, 32-bit Windows 7 Operating system. The experiments
include 10 test cases with 10 runs for each case. The test
cases are different with respect to the number of nurses (from
10 to 100). The preferences of each nurse for the days off are
created randomly in each test case. Initially we performed
tuning of GA parameters following the method suggested by
[12], which presented three main measures to evaluate the
performance of Genetic Algorithms. According to [12], these
measures are proved to evaluate GAs in terms of solution
quality regardless of convergence. The measures include:
likelihood of optimality, average fitness valueand likelihood
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Fig. 2: Mutation Operator

of evolution leap. After tuning, the following values were
used for GA parameters:

• Population Size = 50
• Number of Generations = 50
• Crossover Probability = 0.2
• Mutation Probability = 0.8

In addition, the selection method used wasTournament
Selection and the termination condition was reaching a
maximum pre-specified number of generations.

Regarding the weights of the constraints violations in
the fitness function. The following values were selected
empirically: W1 = 0.5, W2 = W3 = 0.24, and W4 =
W5 = 0.01.

Figure 3 shows the experimental results of our GA in
terms of the average fitness values of both the first generation
and the last generation over the 10 runs. As can be seen in
Figure 3, the solution is improved with a high percentage
during the evolutionary process. The improvement in the
average fitness is approximately between 70 to 80 percent
for the 10 test cases.

Table 3 shows the average number of constraints viola-
tions (over the 10 runs) in the last generation of each test
case. It can be observed from this table that the resulting av-
erage number of violations for the most important constraint
C1 is always less than 5.0 violations. This is considered a
good achievement for the GA given the difficulty of the
problem and the conflicting nature of the constraints. For
example, the planner who is responsible for putting the
schedule of 100 nurses (the last test case) will only need
to adjust on average 2-4 violations for the constraints C1,
C2, and C3 in the resulting schedule. The less important
constraint C4 on the other hand has a reasonable number
of violations for the small test cases, but is more difficult
to satisfy for the largest two test cases as indicated by the
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Fig. 3: Average fitness values for 10 Runs

results in the table.

Table 3: Average number of constraints violations

Num Nurses C1 C2 C3 C4
10 0.5 1.7 0.5 0.9
20 1.5 1.4 2.0 2.5
30 2.3 3.1 1.5 1.9
40 3.0 3.9 2.8 3.4
50 3.5 5.7 4.1 6.0
60 3.8 5.3 3.2 5.0
70 4.6 7.6 5.0 6.9
80 4.4 9.3 5.4 6.2
90 3.8 2.3 1.8 16.2
100 4.1 2.0 1.9 16.6

Regarding the constraint C5, which is the preferences of
the nurses for the days off. The algorithm was able to satisfy
on average between 2-3 preferences only. This indicates
that the algorithm was not very successful in satisfying
the preferences of the nurses in terms of the days off.
The reason is obviously the small weight assigned to this
constraint in the objective function. Another reason is the
restricting condition in the crossover operator that requires
swapping only nurses that have the same number of day and
night shifts in each day of the week . This condition seems
seldom satisfied, which renders the crossover operator almost
useless.

On the other hand, the average execution time is quite
fast. It ranged from 5.7 seconds for the smallest test case to
46.4 seconds for the largest test case. This is indeed a lot
of time and effort saving compared to the manual planning
process needed to prepare a weekly schedule for 100 nurses.
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6. Results Summary and Suggestions for
Future Improvement

The experimental results of the algorithm show that the
mutation operator designed for this problem seems to per-
form a good job in satisfying the constraints C2 and C3, and
to a lesser extent the constraint C4. On the other hand the
crossover operator seems not very effective in performing
its intended role of satisfying the constraint C5. There is
also the issue of the small amount of violation remaining
in the final solution with respect to the constraint C1. To
improve the results and try to remove the violation, several
techniques can be applied:

• The final schedule can be adjusted manually using the
GUI (Graphical User Interface) provided in our system.
This is the option currently available to improve the
resulting schedule. To facilitate this process, the tool
can be modified to highlight locations of violation so
that the planner can easily spot them and manually
correct infeasibility.

• A new mutation operator can be added which is specif-
ically designed to repair the violation of the constraint
C1.

• The final best solution obtained by the GA can undergo
another optimization process using a simple technique
like hill climbing or simulated annealing. In this pro-
cess, some small changes may be applied to day and
night shifts, depending on which number is higher. The
new schedule is then evaluated in each iteration in order
to decide whether it can replace the old schedule or not.
In our opinion this seems to be the most promising
approach to correct the violation in constraint C1.

Regarding the constraint C5 which is related to satisfying
the preferences of nurses in the selected days off, it appears
that this constraint should be removed from the fitness
function, since it is difficult to satisfy simultaneously with
the other more important constraints of the problem. A
better approach could be to try to improve the last obtained
schedule by replacing some days off with days off belonging
the nurse’s preference list, provided that this change does not
violate the other problem constraints. We expect a significant
improvement in the results, if some or a combination of these
techniques is applied to the algorithm. We plan to try some
of these approaches in the near future.

7. Conclusions
In this paper we proposed a GA approach to solve the

nurse rostering problem. The aim is to automate the process
of nurse scheduling. The main contribution of this research is
in the design of complete system that can be used in practical
situations to generate fast and effective nurse rosters. The
algorithmic component of the system was based on a GA
in which a new heuristic approach for constructing the
initial schedules was devised to create the GA population.

In addition, a novel problem specific mutation operator that
repairs constraint violations has been designed to handle the
difficult problem constraints.

Experimental results show that although the final solution
generated still has some constraints violation, the quality of
the solution has improved with a high percentage during the
evolutionary process. The improvement in the average fitness
between the first and last GA generations is approximately
70 to 80 percent. In addition the result is achieved in a very
small amount of time, which indicates that the schedule
generated is applicable in practical situations after minor
adjustments by the planner to correct the violations of
constraints.

As a future work we will try to overcome constraints
violation in the final solution by introducing a new mutation
operator specifically directed to the coverage constraint.
Also, the final best solution obtained by the GA can undergo
another optimization process using a simple technique like
hill climbing or simulated annealing to improve the result
and get rid of constraints violation.
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Abstract—The goal of task scheduling in a multiprocessor 
system is to schedule dependent tasks on processors such 
that the processing time is minimized. This ensures optimal 
usage of the processing systems. However this problem is 
NP-hard in nature and heuristic based techniques are used 
to obtain a good schedule in polynomial time. Genetic 
Algorithms (GA) have been proposed over other heuristics 
because it can use its genetic processes to find multiple 
solutions faster. The GA proposed is based on a non-pre-
emptive precedence relation between tasks in the task graph. 
Tasks assignment is prioritized based on the number of tasks 
dependencies (NTD) and the earliest start time (EST) of 
each task. For tasks with multiple possible earliest start 
times, the minimum earliest start time is chosen for such 
tasks. Java simulations compared the results obtained using 
the minimum EST and the maximum EST. Our simulation 
shows that the proposed algorithm with minimum EST 
achieves faster processing periods compared with the 
maximum EST. 

Keywords—Genetic Algorithm, Number of Task 
Dependencies, Total Finishing Time, Multiprocessor 
Scheduling. 

I. INTRODUCTION 

The need to achieve optimal usage of a multiprocessing 
system for task allocation cannot be overemphasized. The 
aim is to ensure that the processing period is minimized by 
scheduling tasks on time. However this problem of obtaining 
optimal task scheduling in the multiprocessing system is 
reported to be NP hard [1]. There are different scheduling 
algorithms such as First-in-First-Out, Shortest-Job-First, 
Priority based scheduling, Round-robin scheduling, 
Multilevel Queue scheduling etc. It is important that any 
algorithm chosen is able to address the scheduling problem 
in polynomial time. Due to the computational complexity 
however, different types of machine learning techniques 
have been proposed. Some of the heuristics that have been 
widely used for this problem are simulated annealing, tabu 
search, ant colony optimization, and genetic algorithms 
among others. Genetic algorithms are efficient in solving NP 

hard problems especially in parallel computing such as any 
multiprocessing system.  

 
The common approach to this problem has been to use 

the precedence-relations between tasks to prioritize task 
assignment on the processors. This is also known as the 
height-based tasks assignment, somewhat similar to the first-
in-first-out method as tasks with higher heights are given 
priority than those down the tasks-graph. However to further 
improve the optimization process (by further reducing the 
makespan), a new approach is to assign tasks based on the 
number of task dependencies (NTD) of each task. Which 
means a task must be executed before all the other tasks that 
depends on it can be executed. Thus, irrespective of a task’s 
height in a task graph, priority is given to tasks with higher 
number of task dependencies.  This ensures a decrease in the 
total finishing time (TFT) of the schedule.  

 
The remaining sections of this paper are organised as 

follows. Section 2 represents related work on multiprocessor 
task allocation problem and our contribution to this work. 
Section 3 discusses the GA approach to the multiprocessor 
task allocation problem and methodology. In Section 4, we 
discuss the simulations and results obtained using genetic 
algorithm. Section 5 concludes the paper and gives future 
work. 

II. RELATED WORK 

There have been several approaches to the tasks 
allocation problem in a multiprocessing systems. Most of the 
approaches have been based on non-pre-emptive precedence 
relations between tasks in the task graph. Jin et al [2] carried 
out a comprehensive survey of nine scheduling algorithms 
which are frequently used to solve the multiprocessor task 
scheduling problem and compared the performance of each 
of the algorithms.  The nine algorithms considered were 
min-min, chaining, A*, genetic algorithms, simulated 
annealing, tabu search, Highest Level First Known 
Execution Times (HLFET), Insertion Scheduling Heuristic 
(ISH), and Duplication Scheduling Heuristics (DSH) with 
task duplication. The performance of the nine algorithms 
was benchmarked against two widely used algorithms in 
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linear algebra which are the LU decomposition and the 
Gauaa-Jordan elimination. With task duplication, the DSH 
performed best while the ISH performed best without task 
duplication. It was also reported that the GA and tabu search 
obtained the best solution out of all the iterative search 
algorithms considered. However, in this work task 
duplication was not considered. Other works have been done 
reporting the performance of the GA. Majority of the works 
[1] [3] [4] [5] [6] assume non-pre-emptive precedence 
relations between tasks in the task graph as well as non-
duplication of tasks. Wu et al [7] however assumed 
duplication of tasks. The non-preemptive characteristics of 
tasks in the task graph ensures that precedence relations are 
adhered to. This necessitates the priority-based task 
scheduling. The most common scheduling method is to 
prioritise task based on their height [1]. The height is used to 
denote the precedence relations between tasks in a task 
graph. The higher a task is in the task graph, the higher the 
priority given to it in allocating it to the multiprocessing 
systems. However, as a result of tasks dependencies, the 
height-based task scheduling  can be inefficient. Tasks at a 
higher height with no task dependencies will be scheduled 
ahead of tasks at a lower height with task dependencies. This 
increases the makespan of the processor. Abdeyazdan and 
Rahmani [8] proposed a new algorithm which prioritizes 
tasks scheduling based on the number of task dependencies 
of each task and the earliest start time of each task. This 
ensures that tasks having higher task dependencies are given 
higher priority irrespective of their height on the precedence 
graph thereby resulting in a further decrease in the makespan 
of the processing system. 

 
In this work, we have considered the algorithm proposed 

by [8]. We observed that in the task graph, there may be 
tasks with multiple possible earliest start times. Our 
contribution is that for tasks with multiple possible earliest 
start times, our algorithm choses the minimum earliest start 
time for such tasks as against the maximum earliest start 
time used by [8]. This is akin to choosing the shortest path as 
against the longest path in a routing problem. Our algorithm 
ensures a further decrease in the makespan. 

III. GA MULTIPROCESSOR TASK SCHEDULING 

The main goal of a scheduling problem is to reduce the 
schedule length (makespan) of the processor. For a 
multiprocessing systems N processors, the time it takes for 
the last on a processor to finish executing is termed the 
finishing time FT. The maximum finishing time among the 
m processors in any schedule is termed the Total Finishing 
Time TFT of that schedule. For k number of schedules, the 
TFT can be represented as in (1) below. 
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Height-Based Scheduling 

Hou and Ansari [1] based their task priority-scheduling 
in a multiprocessor system on the task height of each task. In 
this model, tasks that are higher up the task graph are given 
priority compared to tasks on lower levels. In a task graph 
where there is a sequence of directed edges from task, say ti 
to tj, then ti is higher up the graph while tj is lower down the 
graph. This precedence relation implies that task ti has to be 
executed before tasks tj and other tasks that precede that task 
ti. According to [1], if PRED(ti) is a set of preceded tasks of 
ti, then we can obtain the height of any of the preceding tasks 
using equation (2). 
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(2) 

 
The height function given above is a mathematical 
representation of the precedence relations between the tasks 
in the task graph. Since the task height increases from 0 to a 
finite length, the preceding tasks to the task(s) at height 0 
will have heights greater than 0.  Therefore the lower the 
task height of any task, the higher up the task graph the task 
is. In other words, if task ti is preceded by tasks tj, then ti will 
be executed before tj and height(ti) < height(tj). However if 
there is no precedence relation between any two tasks, the 
order of execution can be arbitrary.  

 
Problem with Height-Based Scheduling 

To explain the drawback of a height-based scheduling 
algorithm, we have used the task graph below [8]. Each of 
the tasks t0 to t15 will have a height and an execution time. 
Task t0 is at height 0 (highest), t1 and t2 have height 1, etc. 
as shown in the table 1 below. The execution time of each 
task is assigned randomly ranging from 0 to 15. The height-
based scheduling is such that tasks at higher heights are 
scheduled before task at lower heights. However for tasks at 
same heights, any of them is randomly chosen to be 
scheduled on the processor. 

 
The implication is that: “tasks such as t7 will be 

scheduled before tasks such as t14.” 
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Fig. 1 A task graph, from [8]. 
 
Table 1. Height and Execution time of tasks in Fig. 1. 

Task Height Execution time 
t0 0 3 
t1 1 2 
t2 1 4 
t3 2 1 
t4 2 10 
t5 2 3 
t6 2 6 
t7 3 9 
t8 3 7 
t9 3 11 
t10 3 5 
t11 3 5 
t12 4 8 
t13 4 10 
t14 4 15 
t15 5 2 

 
It is observed that task t7 has no task dependency, 

meaning there is no task that needs task t7 to complete before 
it can start. However, tasks t14 has task dependency; task t15 

cannot be scheduled unless task t14 finishes execution. 
Therefore, scheduling based on height increases the FT of a 
processor and consequently the TFT. For a task graph with a 
high percentage of task dependencies, the height-based 
scheduling will not be suitable to achieve optimal 
scheduling. This is why a new algorithm is needed for 
optimal task scheduling in a multiprocessing systems.  

 
Task Dependency-based Scheduling  

The main goal of a scheduling problem is to reduce the 
TFT (makespan) of the processor. To further reduce the 
TFT, Abdeyazdan and Rahmani [8] proposed a new 
algorithm which prioritizes tasks scheduling based on the 

number of task dependencies and earliest start time (EST) of 
each task. This ensures that tasks having higher task 
dependencies are given higher priority irrespective of their 
height on the precedence graph. For any task ݐ௜ with a j 
number of outgoing edge, i.e. tasks that directly depends on 
 ௜ݐ ௜, the  Number of Task Dependency (NTD) for such taskݐ
is mathematially obtained by equation (3). 
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(3) 

The NTD function above represents the total number of 
tasks that depends on a task ݐ௜ whether directly or indirectly, 
this [8] termed as number of children. With this, a task with 
more number of tasks dependencies will be scheduled earlier 
than one with lower number of task dependencies. The 
concept of Earlier Start Time was introduced to ensure that 
tasks are scheduled with respect to the earliest time for 
which they are available to be scheduled. The EST of any 
task is a function of the summation of the execution time of 
all the tasks that precedes such tasks. However, because 
there could be one or more path on the task graph along 
which a task could be executed, this implies that there will 
be multiple EST for such task. Our algorithm selects the 
minimum EST. An algorithm to produce the schedule based 
on the number of task dependencies is as below: 
 
1. Arrange the tasks in descending order based on the 

number of task dependencies of each task. 
2. Put tasks with the same NTD in a single group and 

perform steps a and b for all the groups in order of 
higher NPD until every group is empty. 
a. Randomly select a task from the group and then 

delete it from the group. 
b. Allocate the selected task to one of the processors 

based on the EST method such that the starting 
time of the task on that processor is less than other 
processors. 
i. For tasks with multiple EST, choose the 

minimum EST in performing b.  
3. Repeat steps ‘a’ and ‘b’ until all the tasks have been 

selected. 
 
The algorithm is such that every task is assigned only 

once to a processor as there is no repetition of same task on 
the task graph. From the task graph in figure 1, we can 
arrange the tasks according to the NTD of each tasks. The 
execution time of each task is used to compute the EST of 
each task. Table 2 shows the EST of each tasks arranged 
according to the descending order of the NTD of each tasks. 
From Table 2, we see that each of tasks t8, t7, t12, and t13 have 
two ESTs because there are two possible path from which 
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the EST can be obtained. For instance task t8 have an EST of 
10 along the path t4→ t1→ t0 and an EST of 15 along the path 
t5→ t2→ t10. Our algorithm always chooses the minimum EST. 

 
Scheduling using GA 

The goal of the combinatorial optimization problem in 
this work is to find optimal task schedule in a very short 
time. Since this problem is NP-complete, we have chosen 
the GA to do the task scheduling. GA is a subset of 
evolutionary algorithms that models biological processes to 
optimize highly complex functions.  

 
Table 2. Task Order based on NTD. 

Task NTD EST 
t0 15 0 
t2 10 3 
t1 6 3 
t6 5 7 
t4 4 5 
t5 3 7 
t8 2 10,15 
t10 2 13 
t3 1 5 
t14 1 18 
t7 0 6,15 
t9 0 13 
t11 0 13 
t12 0 17,22 
t13 0 17,22 
t15 0 33 

 
The GA allows a population composed of many 

individuals to evolve under specified selection rules to a 
state that maximizes the “fitness” (i.e. minimize the 
objective function). It is important that a solution is found in 
good time because time plays an important role in real time 
applications for task scheduling in multiprocessing system. 
The main advantage of using GA over other stochastic 
techniques is its parallelism which enables faster 
convergence. GA therefore outsmarts all other meta-
heuristic techniques in terms of the time it takes to arrive at a 
good solution. The GA is able to provide a list of optimum 
solutions at a single iteration; this is particularly good for 
our application because we have multiple processors on 
which the scheduling is done. GA’s are also less likely to get 
stuck in local minima because of its crossover and mutation 
processes. GA is therefore well suited to our problem. The 
GA procedure is shown in Table 3. 

 
The initial population consists of solutions in the search 

space. A solution represents a schedule generated every time 
the algorithm in section 3.3 is run. In GA term a solution is 
termed a chromosome. A particular population size is chosen 
depending on the problem size. Each of the solutions in the 

initial population is examined using the objective function in 
Equation (1). In GA terms, the objective function represents 
the fitness function. The goal is to minimize the function. 
The lower the TFT of a schedule, the better it satisfies the 
objective function. 

 
Table 3. Standard Genetic Algorithm. 

Step Action 

1 
Generate a random initial population of n 
schedules, where n is the population size. 

2 
Evaluate the fitness of each of the schedule in the 
initial population. 

3 
Generate new populations using processes in steps 
4-6 

4 
Selects two schedules among the current 
population using the roulette wheel method based 
on fitness of each schedule. 

5 
Crossover the two selected schedules considering 
the crossover probability, to form the schedules for 
the next generation 

6 
Mutate the one of the selected schedules at each 
defined mutation point, considering the mutation 
probability and place it in the new population. 

7 
Evaluate the fitness of each of the schedules in the 
new population 

8 
Repeat steps 3-7 until the stopping criteria have 
been met. 

 
GA uses selection, crossover and mutation processes to 

generate new solutions (schedules) in the search space.  
 
• Selection deals with the probabilistic survival of the 

fittest, in that the fittest schedules are chosen to survive. 
Fitness is a comparable measurement of how well a schedule 
satisfies the objective function. Once the schedules with the 
better fittest are chosen, others will be eliminated. Simply, 
the probability of a chromosome to be selected is 
proportional to the quality value/fitness; this is also called 
the roulette wheel selection method. There are various 
selection methods but we propose to use the roulette wheel 
selection algorithm because it gives every chromosome a 
chance of survival. The lower the TFT of a schedule, the 
larger the slot it occupies in the roulette wheel and 
consequently the higher the chances of being selected for 
every spin.  

 
• Crossover is a technique considered to be the most 

important step in the context of GAs. At a certain crossover 
rate, GA selects two schedules from the population based on 
roulette wheel method. After selecting these two schedules, 
using the roulette wheel, a task is randomly selected from 
the ordered set of tasks based on their NTD. In one of the 
schedule (first schedule), the algorithm will choose all the 
tasks that have equal or lower number of NTD to the 
selected task. For each processor in the first schedule, the 
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chosen tasks are exchanged with the other tasks on 
corresponding processor in the second schedule. This 
produces two new schedules with most likely varying TFT 
to the initial schedules. 

 
• Mutation is a genetic operator used to maintain genetic 

diversity, at a certain mutation rate, from one generation of a 
population of schedules to the next. Mutation alters one or 
more gene (task) values in a chromosome from its initial 
state. In mutation, the solution may change entirely from the 
previous solution. Hence GA can come to better or worst 
solution by using mutation. Consequently, mutation aids GA 
to avoid getting stuck in local minimal. To do mutation, the 
two different schedules and task selected for the crossover 
process are used. In the first schedule, the selected task is 
exchanged with another task with equal NTD on another 
processor in the same schedule. This same mutation process 
is done for the second schedule. Like the crossover, this 
procedure also produces two new schedules with most likely 
varying TFT to the initial schedules. 

 
After each cycle of selection, crossover and mutation, the 

newly generated sets of solutions (schedules) are termed new 
generation. Every generation is evaluated based on the 
fitness function to determine if they represent a good enough 
solution to satisfy the fitness function. This determines if the 
GA can stop searching, or if otherwise, for the GA to 
continue searching until the set stopping criteria is met. The 
stopping criteria could be the number of generations, or 
evolution time, or fitness threshold, or fitness convergence, 
or population convergence. In our case, the number of 
generations was set as the stopping criteria. The schedule 
obtained after the stopping criteria will be the optimal or 
near optimal schedule. 

IV. EXPERIMENTAL RESULTS 

The GA Simulation was done in Java to evaluate our 
algorithm. Task graphs were created with number of tasks in 
the graph ranging from 16, 21, and 30. The task dependency 
percentage range between 20 and 60 and the execution time 
for each task is random between 1 and 15 s. The task graphs 
are scheduled on a multiprocessor system with 3 processors 
for the two genetic-based algorithms with maximum earliest 
start time and our algorithm minimum earliest start time. 
The genetic algorithm parameters chosen are population size 
of 40, crossover rate of 0.8 and the mutation rate of 0.1, 
number of generations of 50. 

 
Table 4 shows the schedules and the TFT for each of the 

Max-EST and the Min-EST algorithm. The results shows 
that the Min-EST can schedule tasks either with same TFT 
or lower TFT compared to the Max-EST. The computation 
time is however the same for both algorithms. 

 

Table 4. Schedules for the 2 Algorithms. 
Algorithms Total Finish Time (seconds) 

Number of Processors = 3 
Number of Tasks 

16 21 30 
Max-EST 40 76 146 
Min-EST 40 75 134 
 

Table 5. Schedule with varying NTD of tasks. 
Algorithms Total Finish Time (seconds) 

Number of Processors = 3 
Number of Tasks = 30 

Increase NTD of Tasks with Multiple 
ESTs 

20% 40% 60% 
Max-EST 146 187 209 
Min-EST 134 162 176 
 
Table 5 shows the results obtained when the number of 

task dependencies (NTD) of tasks with multiple ESTs is 
considerably large compared with other tasks in the graph 
with single EST. With a task graph containing 30 tasks, our 
algorithm (Min-EST) outperforms the Max-ESTs algorithms 
with increasing NPD of tasks with multiple ESTs. This 
occurs because since both algorithms are based on NTD, 
tasks with higher NTDs are given priority than those with 
lower NTDs. In effect, if a task with multiple ESTs have a 
higher NTD, it will be scheduled earlier and the minimum 
EST of such task is likely to be less than the current 
available start time on any of the processor. In the same 
vein, if the NTD of a task with multiple ESTs is 
considerably small compared to other tasks with single EST, 
then such tasks will be scheduled late at which time the 
minimum ESTs will be insignificant because the current 
available start time on any of the processors would have 
exceeded the minimum EST. Therefore our algorithm 
outperforms the Max-EST algorithm only when the NTD of 
tasks with multiple ESTs is considerably high compared to 
that for tasks with single EST. 

V. CONCLUSIONS AND FUTURE WORK 

This paper presents a simulation of multiprocessor tasks 
scheduling based on the number of task dependencies using 
GA. GA was used because this problem is NP_Hard and a 
an optimal-or near-optimal schedule is needed in good time. 
Tasks with higher number of task dependencies were given 
priority independent of the height of such tasks. This helps 
to further ensure that all the tasks in the tasks graph are 
scheduled on time using the earliest start time of each task. It 
was observed that some tasks can have more than one EST 
as a result of multiple path of reaching such tasks in the 
tasks graph. Our idea ensures that the minimum of the 
multiple ESTs is chosen. Choosing the minimum ESTs is 
only significant when the tasks with multiple ESTs are given 
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priority in scheduling which occurs only when the number of 
task dependency is considerably high compared to tasks with 
single ESTs. Simulation shows that our algorithm will 
outperform the Max-EST algorithm only when the tasks 
with multiple ESTs have higher task dependency compared 
to other task with single EST in the task graph. For future 
work, an adaptive adjustment of the algorithm parameters 
(crossover and mutation rate) proposed by Yun-Xiao [9], can 
be implemented in order to reduce the vector distance 
between individual schedules. This should reduce the 
convergence time for our proposed GA. 
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Abstract 

 

West Nile Virus (WNV) disease is caused by  a flavivirus that is transmitted primarily by the bites of 

mosquitoes that have bitten infected birds.  It was  first detected in the US in New York City in 1999.  By 

2003, it had spread across the state;  by September 2012, it had spread to the contiguous 48 states. Given 

the WNV disease surveillance record, it is now possible to assess how well ecological niche modeling 

(ENM), given the observed Year 2000 New York State WNV bird-mortality distribution, would have 

predicted the distribution of the virus across the US.  Here I compare a genetic-algorithm- rule-production 

ENM predictions of the  potential geographic distribution of the US avian WNV mortality  with the 

observed distribution of human WNV disease in the US in early October 2012.The analysis shows that 

despite significant limitations of the WNV surveillance protocols in the US, ENM would have correctly 

predicted the potential presence or absence, by state, of human WNV disease in the US. 

 
Keywords: West Nile Virus, ecological niche modeling. epidemiology 

 

 

1.0  Introduction 

1.1  Overview of West Nile Virus 

disease 

WNV disease is a viral disease that is 

typically spread by the bites of mosquitoes 

that have bitten birds infected by the virus.  

Humans and other mammals, and ~50 

species of common birds in the US, are 

susceptible to the disease.   

About 20% of humans  infected with WNV 

develop mild WNV disease.  Mild WNV 

disease in humans can have any of the 

following non-specific symptoms: 

 Abdominal pain 

 Diarrhea 

 Fever 

 Headache 

 Lack of appetite 

 Muscle aches 

 Nausea 

 Rash 

 Sore throat 

 Swollen lymph nodes 

 Vomiting 

These symptoms usually last for 3 - 6 days.   

Severe WNV disease  in humans can have 

any of the following symptoms: 
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 Confusion or change in ability to 

think clearly 

 Loss of consciousness or coma 

 Muscle weakness 

 Stiff neck for no apparent reason 

 Weakness of one arm or leg 

Only about 1% of humans infected by WNV 

will develop severe WNV disease. 

There is no vaccine to help protect against, 

or drug to treat, human WNV disease. 

Treatment of severe forms WNV disease in 

humans often involves hospitalization, 

intravenous fluids, respiratory support, and 

prevention of secondary infections.  

WNV was first detected in 1937 in Uganda. 

It was first detected in the United States in 

the summer of 1999  (in New York City).   

As of 18 September 2012, all contiguous 48 

states had reported WNV infections in 

people. A total of 3,142 cases of WNV 

infection in people, including 134 deaths, 

had been reported to the Centers for Disease 

Control (CDC). Of these, 1,630 (52%) were 

classified as severe ("neuroinvasive") 

disease (such as meningitis or encephalitis) 

and 1,512 (48%) were classified as non-

neuroinvasive cases ([8]).  

Two-thirds of the reported US cases are 

from seven states (Texas, Mississippi, 

Michigan, South Dakota, Louisiana, 

Oklahoma, and California).  Almost 40 

percent of all reported cases are from Texas, 

particularly in the Dallas and Houston areas 

([8]).  

Mosquitoes carry the highest WNV load in 

late summer/early autumn -- generally 

August through early September.  

 

1.2  Overview of ENM 

 
The general problem of ENM can be stated 

as follows.  Given the distribution of a set S 

of species in a geographic region G (e.g., 

New York state) with associated ecological 

variables E (e.g., temperature, precipitation, 

slope, aspect, altitude), predict the potential 

distribution of S in geographic region G'   

G (e.g., the US) .  Roughly speaking, this 

amounts to predicting which parts of G' have 

an ecological system state "like" that part of 

G which is populated by S.  "Like" in this 

context is cast in terms of statistical 

measures. 

 

There are several ENM algorithms ([11]); 

among the more widely used is genetic 

algorithm rule-production (GARP, [5]).  In 

general terms, the GARP algorithm applies a 

genetic algorithm ([12]) to optimize a set of 

inference rules on a set of training data, then 

applies that optimized set of rules to infer 

features of a set of test data.  A flowchart of 

the generic GARP algorithm is shown in 

Figure 1. 
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Figure 1.  Generic GARP algorithm flowchart.  A parallelepiped represents data, a 

rectangle represents a process or action, a diamond represents a test, a symbol that is 

convex on the left and concave on right represents an intermediate store, and a cylinder 

represents a permanent store.  An arrow represents dataflow, or transfer of control, 

depending on context, from the entity at the tail, to the entity at the head, of the arrow. 

 

 
In GARP ENM, the Training and Test Data 

consist of assertions about the geographic 

locations (e.g., latitude and longitude) of a 

set of species, together with a description of 

an ecological state at those locations (i.e, the 

values of a set of ecologically significant 

variables such as temperature and 

precipitation at those locations).  The 

Inference Rules allow one to infer the 

likelihood that a given species will be at a 

location, given the ecological state of that 

location.  A nominal GARP Inference Rule 

might have the form "If region R has 

temperature T and precipitation P, then the 

probability that species K can survive in R is 

S" (see [5] for further detail).  The ENM 

GARP algorithm first assesses how well an 

initial set of Inference Rules predict a part of 

the Training Data.  If the prediction satisfies 

some prescribed Fitness Threshold, the 

Inference Rules are then applied to Test 

Data of interest, and the algorithm 

terminates.  If the Rules do not satisfy the 

Fitness Threshold criteria, the Inference 

Rules are automatically modified 

("mutated") and again tested against a 

portion of the Training Data.  This process is 

iterated until the Fitness Criteria are satisfied 

or the number of iterations of the process 

exceeds some pre-established maximum 

(Max Iterations). 
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2.0  Method 
 

The selection of WNV data for US-wide 

ENM poses some interesting challenges: 

 

   1.   Because mild WNV disease in humans 

has rather non-specific symptoms, it is 

rarely reported.   

 

   2.  Because severe WNV disease occurs in 

less than 1% of  WNV infections, severe 

WNV case data significantly under-samples 

the WNV infection distribution. 

 

   3.  Mosquito and bird sampling has been 

spatially and temporally irregular within and 

across states.    

 

   4.  The only widely available WNV 

infection data are typically aggregated at a 

county level, which induces spatial 

coarseness and irregularity in the sampling.    

 

 

Because of (3) and (4),  only WNV 

presence-absence data  (as opposed to 

observed case-counts) were used in the 

present study.  Because of (3), a resolution 

of 10 arc-minutes was selected for the 

ecological variables considered in the study.  

(This choice corresponds to roughly 0.1 of 

the distance from the average county 

centroid to its borders.)  

 

The annual aggregated distribution of avian 

WNV mortality by county in New York 

state in 2000 was obtained from [2].   

County coordinates (Internal Point Latitude 

and Longitude, essentially a centroid) were 

obtained from the US Census Gazetteer for 

Year 2010 ([3]). Case-occurrences from [2] 

were reduced to present|absent by county 

(i.e., multiple cases in a single county were 

counted as only one occurrence), yielding 

one mortality-occurrence "case" in each of 

58 counties. The resulting present|absent 

distribution was then exported to an Excel 

spreadsheet to produce a Desktop GARP 

(DG; [1],[5])-compatible avian-mortality-

occurrence training data file.   

 

The generic grids for "Mean Temperature",  

"Annual Precipitation", and "Altitude",  

~1950-2000, 10-arc-minute resolution were 

downloaded from the WorldClim web site 

([6]), then converted to ESRI/ASCII GIS 

format using the Raster/Conversion function 

of the Desktop QGIS ([7]) software.  

Desktop GARP parameters were set as 

follows:  convergence threshold =  0.01,  

maximum iterations = 10000,  rules = 

{Atomic, Range, Negated Range, and 

Logistic Regression}, concurrently (see [5] 

for definitions of these parameters).   For 

each of the seven non-empty subsets of the 

monthly temperature and precipitation grids 

for August, together with the altitude grid, 

20 simulations were run under DG to project 

the potential avian WNV mortality 

distribution across the world; the best of 

these, in the sense of the modified Receiver 

Operating Characteristic described in [9] 

was compared, at state-level resolution, with 

the US human WNV  distribution reported 

in [10] for 2012. 

 

All software was executed on a Dell 

Inspiron 545 with an Intel Core2 Quad CPU 

Q8200 clocked at 2.33 GHz, with 8.00 GB 

RAM, under Windows Vista Home 

Premium/SP2.   

 

 

 

3.0  Results 

 
The best prediction of the US distribution of 

WNV avian mortality cases, in the sense of 

the modified Receiver Operating 

Characteristic described in [9], used only the 

August mean temperature as an 

environmental variable (all other 

combinations of the variables described in 

Section 2.0 produced worse results).  Figure 

2 shows this best prediction. 
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Figure 2.  Predicted potential distribution of avian WNV mortality (shown in medium grey 

in the US)  in  North America, given the 2000 New York State county-level avian WNV 

mortality distribution (58 total WNV-mortality-occurrences) and the WorldClim world 

August mean monthly temperature ("tmean8"), 10-arc-minute resolution. The simulation 

predicts that all 48 contiguous states have the potential for avian WNV mortality.  Note the 

absence of mortality predicted for the highest elevations of the Rocky Mountains and for 

the driest/hottest parts of the US deserts.  The training accuracy of this scenario is ~0.72; 

the test accuracy, ~0.70.   
 

 

Figure 3 shows the observed distribution of US human WNV disease as of early October 2012. 
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Figure 3.  Observed distribution of confirmed human WNV cases (shown in medium grey, 

by county) in 2012 in the contiguous 48 US states as of 7 October 2012 (adapted from [10]).  

All 48 contiguous states reported human WNV cases in 2012 ([8]). 

 
 

The computation utilized ~25% of the CPU 

and ~2 GB memory on the platform 

described in Section 2.0, as measured on the 

system monitor.  The time to solution for 

each of the seven setups described in 

Section 2.0 on that platform was 5-30  

minutes, depending on the list of 

environmental variables ("layers" in ENM 

jargon) in a setup.  The time to solution 

decreased as the number of environmental 

variables increased. 

 

 

4.0  Conclusions and discussion  

 
If we posit that avian WNV mortality in a 

state is sufficient to predict that a human 

WNV case could occur in that state, the 

analysis above suggests that ENM could 

have predicted the potential presence or 

absence, by state, of human WNV disease, 

given the Year 2000 New York avian WNV 

mortality presence|absence distribution by 

county. 

The method described in Section 2.0, 

however,  raises at least one serious 

question.   The spatial and temporal 

sampling irregularities described in that 

section could in principle give rise to nearly 

arbitrary noise in the data, and consequently 

induce arbitrary noise in the predictions.   

 

At least one consideration helps to mitigate 

this concern.    The simulation produces the 

observed distribution at state-level 

resolution, and correctly predicts  the 

absence of WNV disease from the highest 

elevations in the Rocky Mountains and the 

hottest parts of the US deserts (the 

temperatures and precipitation of these 

regions lie well outside  those of the training 

data set). 
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Abstract—A Chaotic Genetic Algorithm (CGA) for Cognitive 
Radio spectrum allocation procedure is presented. The 
development of the Cognitive radio system puts emphasis on 
the efficient utilization of spectrum for both primary and 
secondary users. Secondary users make use of the spectrum 
without degrading the quality of service of the primary 
user(s). We assume that spectrum sensing has been done; 
thus a secondary user can specify the Quality of Service 
(QoS) requirements for a particular application at any given 
time. A Genetic Algorithm is used for the spectrum 
allocation. We have compared the performance of a 
Traditional Genetic Algorithm (TGA) with the chaotic 
counterpart. The simulation shows that the CGA converges 
faster with better fitness than the TGA. The simulation has 
been modeled using MATLAB. 

Keywords— Cognitive Radio, Quality of Service, Genetic 
Algorithm, Traditional Genetic Algorithm, Chaotic Genetic 
Algorithm, Adaptive Genetic Algorithm. 

 INTRODUCTION I.

In the past two decades, the use of wireless applications has 
increased rapidly eventually leading to an increased demand 
of bandwidth. This higher demand of bandwidth has resulted 
in two main problems: spectrum scarcity and 
underutilization. Cognitive Radio (CR) concept was 
introduced to solve this problem. Cognitive radio involves 
secondary users borrowing free spectrum not being used by 
the primary users without degrading the quality of service of 
the primary user’s communication. The CR therefore must 
be able to sense available spectrum, establish and maintain 
quality of service (QoS) requirements for user’s application, 
meet service level agreement (SLA) and understand its own 
operational capabilities such as radio parameters [1]. 

The underlying objective of this work is to use a chaotic 
genetic algorithm (CGA) to implement a spectrum allocation 
process in which decisions to assign a spectrum are made 
according to the radio user’s QoS requirements. Genetic 
algorithm (GA) is a subset of evolutionary algorithms that 
models biological processes to optimize highly complex 
functions. A GA allows a population composed of many 

individuals to evolve under specified selection rules to a 
state that maximizes the “fitness” (i.e. minimize the 
objective function). The main advantage of using GA over 
other stochastic techniques is its parallelism, which speeds 
up the simulation results leading to faster convergence. It is 
important that a solution is found in good time because time 
plays an important role in real time applications especially 
for a CR.  Some other significant advantages of using of the 
GA include its ability to deal with a large number of 
variables [1]. While GA can provide a single solution, it can 
also provide a list of optimum solutions; this is particularly 
good for multi-objective problems. Continuous or discrete 
variables can be optimized with the GA and it can also 
encode variable so that the optimization is done with the 
encoded variables. Moreover, genetic algorithms are less 
likely to get stuck in local minima owing to its crossover and 
mutation processes. Therefore, it is a suitable approach to 
the spectrum allocation problem. For the purpose of 
distinguishing between a chaotic genetic algorithm and a 
typical GA, the typical GA will be referred to as traditional 
genetic algorithm (TGA). 

Traditional Genetic Algorithms use a random process to 
generate parameter values for the selection, crossover and 
mutation processes. Random number generators are 
designed to result in either uniform distributions or Gaussian 
distributions [2]. We conjecture that selection, crossover and 
mutation in genetics are driven by a random non-linear 
dynamics process rather than a random process. Therefore in 
the spectrum allocation process, a chaotic logistic map is 
incorporated into the initial population generation as well as 
in the crossover and mutation processes of TGA. We have 
compared results obtained through the chaotic process with 
that obtained using the traditional genetic algorithm process. 
A coupled chaotic genetic algorithm (CGA) strategy is 
therefore proposed [3].  

Chaotic phenomena, which exists in nonlinear systems is an 
irregular motion, seemingly unpredictable random behavior 
under deterministic conditions [4]. Introducing chaos into 
the whole process of a traditional genetic algorithm may 
help improve convergence time and accuracy. The CGA 
takes full advantage of the chaotic characteristics of the 
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logistic map. The logistic chaotic map was used in the 
following processes of the GA: population generation, 
crossover and mutation. The chaotic iterative generates 
variables with unique probability distributions that are 
different from typical uniform or Gaussian distributions, and 
may be better suited for specific problems [4]. The algorithm 
runs crossover and mutation simultaneously thus reducing 
the run time and reduce the computational complexity of the 
TGA. Simulation was implemented in MATLAB to compare 
the results obtained for CGA and TGA. 

The remaining sections of this paper are organised as 
follows. Section 2 presents related work in the application of 
TGA and CGA to similar spectrum allocation problem. The 
contribution of this work is stated hereafter. Section 3 
discusses the cognitive radio technology and the spectrum 
allocation optimization problem to which we have applied 
the CGA algorithm. Section 4 describes the TGA approach 
to the spectrum allocation problem. We then describe the 
proposed CGA approach used for the spectrum allocation 
problem. In Section 5, we have compared the results 
obtained using the TGA to the ones obtained with the CGA. 
Conclusion is given in Section 6. 

 RELATED WORK II.

Genetic Algorithm has been applied to spectrum 
optimization in cognitive radio networks. Siddique and 
Azam [1] applied GA to optimize spectrum allocation where 
a secondary user specifies the QoS and the GA is then used 
for the spectrum allocation. Kaur et al [5] also proposed an 
Adaptive Genetic Algorithm (AGA) to optimize QoS 
parameters in a cognitive radio. The AGA is such that, 
unlike the TGA that uses a constant crossover and mutation 
rates throughout the evolution process (iterations), it allows 
different crossover and mutation rates so that the algorithms 
can transverse different directions in the search space. This 
ensures improved performance as well as represents a 
response to the cognitive radio’s need to adapt to a changing 
environment. Yun-Xiao et al [3] introduced Chaos into GA 
processes and applied it to Cognitive radio resource 
allocation. The coupled CGA succeeded in reducing the total 
transmission power, bit error rate, and convergence speed in 
the cognitive system compared to the simple GA (TGA) and 
dynamic allocation algorithm.  Min-Yuan and Kuo-Yu [4] 
also proposed K-means clustering and Chaos Genetic 
(KCGA) for Non-linear optimization. The KCGA was 
shown to enhance the diversity of the GA as well as improve 
on the limitations of the TGA in terms of convergence time 
and local optima. The KCGA has an improved accuracy and 
faster convergence time compared to the TGA. There are 
several papers [2] [6] [7] [8] that have applied chaos to other 
stochastic methods for different applications. The work 
presented in this paper integrates chaos into the processes of 
genetic algorithm for the purpose of spectrum allocation 
using the QoS requirements of the secondary user and the 

sensed spectrum environment. We have used chaotic 
sequence to generate the initial population and also 
incorporate chaos into the crossover and mutation processes.  

 COGNITIVE RADIO SPECTRUM ALLOCATION III.

Cognitive radio (CR) was developed to meet the increasing 
demands of QoS in wireless communications [9]. The QoS 
of a network application can be defined as “the set of 
quantitative and qualitative characteristics of the 
communication system required to achieve desired 
functionality of that application” [10]. A CR has been 
defined as a radio that understands the context in which it 
finds itself and as a result can tailor the communication 
process in line with that understanding [11]. The focal 
objective of CR is to address the underutilization of the 
electromagnetic (EM) spectrum to meets today’s increased 
needs in wireless communications. A CR can also recognize 
the radio environment, can predict the future events, and can 
learn from previous behaviors. Thus, the main cognition 
capabilities of the CR are learning, sensing, awareness and 
reasoning. A cognitive radio works in a cycle i.e. observe 
(learning and sensing the environment), decide and act [11]. 
The observed results in the environment are given as input to 
the CR and a decision is made on the basis of a mechanism 
and finally an action will be taken as to allocation of 
spectrum. We have chosen GA as the mechanism for the 
spectrum allocation. The process of making a decision is 
seen to be the “heart of the cognitive radios”. The set of 
choices for our application represents QoS parameters. The 
process involved in selecting the best ‘choice’ from the list 
of available choices (search space) in order to reach some 
kind of goal that is very near as possible to the optimal goal 
is an “optimization process”.  

We assume that the possible number of secondary users is 
finite and the spectrum resources (QoS) will always be 
countable, therefore our problem becomes that of 
combinatorial optimization. A combinatorial optimization 
problem will always have an objective function and a 
solution space. The solution space for our problem is a set of 
parameters of the QoS. The objective function is the 
difference between the available QoS parameters and that 
requested by the secondary user. The closer this difference is 
to zero, the closer the optimization process is to optimality. 
The goal of the combinatorial optimization problem in this 
work is to find optimal spectrum allocation for CR 
secondary users in a very short time without degrading the 
quality of service of the primary user’s communication. It 
has been proven that the problem of finding the optimal 
spectrum allocation to CR users is NP-complete [12] [13] 
[14]. Heuristics approach can be used to solve NP-complete 
problems because they produce quickly enough a good 
solution the problem. There are several heuristics available, 
and we have chosen the genetic algorithm because it is faster 
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than most other heuristics and it is equally less likely to get 
stuck in local minima compared to other heuristics.  

A Secondary user (SU) specifies QoS requirements (values) 
and transmits it to the CR; the CR has sensed information 
about the whole radio environment. This sensed information 
represents a pool of available solutions for spectrum 
allocation for the secondary user, and from this pool the 
initial population for the GA can be selected randomly. After 
selecting the initial population, spectrum allocation decision 
takes place following certain genetic algorithm processes 
discussed in section 4. We have considered five radio 
frequency (RF) QoS parameters; they are: data rate, signal 
power, bit error rate, operating frequency and modulation 
technique. The QoS requirements of the application are 
compared with several available solutions in the pool and 
then the best possible optimized solution is to be taken. In 
this work, we have used the objective function developed by 
Siddique and Azam [1] to analyse the performance of the 
proposed CGA. 

 SPECTRUM ALLOCATION OPTIMIZATION IV.
SOLUTION 

In this section we describe how the traditional GA algorithm 
can be applied to find an optimal solution to the optimization 
problem. Then the CGA is described and applied to the 
problem. 

The TGA and CGA starts with a randomly generated set of 
solutions (initial population) each of which represents a 
possible solution to the allocation problem. The objective 
function in equation (1) is used to test for the fitness of each 
of the possible solutions. In GA terms, a possible solution is 
also called a chromosome. For a multi-objective problem, 
each of the objectives is known as ‘gene’ in GA terms. 
Therefore the GA chromosome for this problem will have 
five genes, each gene representing each of the five RF 
parameters. The GA procedure applied to the spectrum 
allocation problem is shown in Table 1. 

Table 1. Genetic Algorithm. 
Step Action 

1 
Generate a random initial population of n solutions, 
where n is the population size. 

2 
Evaluate the fitness of each of the solutions in the 
initial population. 

3 Generate new populations using processes steps 4-6.

4 
Selects two solutions among the current population 
using the roulette wheel method based on fitness of 
each solution. 

5 
Crossover the two selected solutions considering the 
crossover probability, to form new solutions for the 
next generation. 

6 
Mutate the new solution at each defined mutation 
point, considering the mutation probability and place 

it in the new population. 

7 
Evaluate the fitness of each of the solutions in the 
new population. 

8 
Repeat steps 3-7 until the stopping criteria have 
been met. 

 
Chromosome Structure 

The five radio parameters to be optimized are arranged in the 
following order (Table 2). We have used the same 
simulation parameters as in [1] because we will be 
comparing their TGA with our proposed CGA. Each of the 
radio parameters are described in the following section. 
 

Table 2. Chromosome Structure. 
Data 
Rate 

Signal 
Power 

Bit Error 
Rate 

Operating 
Frequency 

Modulation 
Technique 

 
Data Rate 

The Data Rate, measured in bps, is the first gene of the 
chromosome; we choose a range from 0-2M bps with a step 
size of 125 kpbs. This implies that we have 16 decimal 
values from 0 – 15 where ‘0’ is assigned to the 1st data rate 
band (0-125 kpbs), ‘1’ to the 2nd data rate band (126-250 
kbps) etc., (Table 3). 
 

Table 3. Data Rate Gene. 
Index 0 1 2 . . . 15 
Data 
Rate 

0-
125kbps

126-
250Kbps

251 – 275 
Kbps 

. . .
1.876–2.000 

Mbps 
 
Signal Power 

This is the specific power range that permits users to 
communicate without any error; it boosts the probability of 
successful communication. It is the second gene of the 
chromosome. In like manner, we have chosen Signal Power 
ranging from -31dBm to 31dBm, step size of 1dBm resulting 
into 63 decimal values from 0 – 62 required for chromosome 
representation. This is shown in Table 4. 
 

Table 4. Signal Power Gene. 
Index 0 1 2 . . .  62 
Power -31 dBm -30 dBm -29 dBm . . .  31dBm 

 

Bit Error Rate 

This is the third gene of the chromosome. It stands for the bit 
error rate (BER) which is the number of bit errors divided by 
the total number of transferred bits during a studied time 
interval. It ranges from 10-1 to 10-16, step size of 10-1 

120 Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  |



 

resulting into 16 decimal values required for chromosome 
representation. This is shown in Table 8. 
 

Table 5. Bit Error Rate Gene. 
Index 0 1 2 . . . 15 
Bit Error Rate 10-1 10-2 10-3 . . . 10-16 

 
Operating Frequency 

This is the fourth gene of the chromosome. It is the specific 
frequency at which information is transmitted and received. 
It ranges from 0-20MHz with a step size of 40 KHz 
producing 500 frequencies resulting in decimal values 
representation from 0 to 499. This is shown in Table 6. 
 

Table 6. Operating Frequency Gene. 
Index 0 1 2 . . . 499 

Operating 
Frequency 

0-40 
KHz 

41-
80KHz 

81-
120KHz 

. . . 
19.9 – 

20MHz 
 

Modulation Technique 

This is the fifth gene in the chromosome. It is the process of 
varying one or more properties of a high-frequency periodic 
waveform, called the carrier signal, with a modulating signal 
which typically contains information to be transmitted. Eight 
Modulation Techniques have been considered and their 
equivalent decimal values range from 0 to 7 in the following 
order in which they are listed in Table 7. The values of the 
respective parameters above have been coded in decimal for 
the purpose of initial population generation, selection and 
crossover. 
 

Table 7. Modulation Technique Gene. 
Modulation Technique Decimal Value 
BPSK 0 
QPSK 1 
GMSK 2 
16 QAM 3 
DPSK 4 
MSK 5 
OFDM 6 
OOK 7 

 
However, mutation process requires the binary form of any 
value encoding adopted. Therefore each of the genes to be 
mutated will need to be represented in their binary form. 
Table 8 shows the configuration of the chromosome in 
decimal and the number of bits used for the binary 
representation of each of the genes. 
 

Table 8. Chromosome Configuration. 
Gene 
No. 

Gene Decimal  
Values 

Number 
of Bits 

1 Date Rate 0 – 15 4 
2 Signal Power 0 – 62 6 
3 Error Rate 0 – 15 4 
4 Frequency Band 0 – 499 9 
5 Modulation 

Technique 
0 – 8 3 

 
A pseudorandom initial population of 100 chromosomes was 
generated with a GA breeding rate of 50 generations. In 
formulating the fitness function (objective function) used in 
the algorithm, [1] considered the magnitude of the difference 
between the values of each parameter (or gene) that is 
requested by the user (QoS) and the corresponding values of 
the parameter available in the solution search space. 

௙ܩ ൌ หܩ௚௘௡ െ  ௦௨หܩ
௚௘௡ܩ ൌ randomly generated	gene   
௦௨ܩ ൌ secondary user`s QoS	requested	gene

(1)

 

The fitness function is derived in such a way that it 
minimizes the chances of the selection of the most terrible 
chromosomes for the next generation of population. Notably 
this work also considers the number of bits used to represent 
each gene in the chromosome as part of the fitness measure 
of each of the gene.  

The number of bits used to represent each of the genes is 
termed the Weight of the gene denoted by ‘GW’. The weight 
of the gene is represented by GW1, GW2, GW3, GW4 and 
GW5 for the date rate (2a), the signal power (2b), the error 
rate (2c), the operating frequency (2d) and the modulation 
technique (2e), respectively. The detailed weight for each 
gene represents the percentage ratio of the number of bits 
used to represent each gene to the total bits (26) of the 
chromosomes. 

GW1 ൌ ሺ4 26ሻ 	∗ 100	%⁄ 	
	

(2a) 

GW2 ൌ ሺ6 26ሻ 	∗ 100	%⁄ 	
	

(2b) 

GW3 ൌ ሺ4 26ሻ 	∗ 100	%⁄ 	
	

(2c) 

GW4 ൌ ሺ9 26ሻ 	∗ 100	%⁄ 	
	

(2d) 

GW5 ൌ ሺ3 26ሻ 	∗ 100	%⁄ 	 (2e) 
 
Another important constant used in calculating the fitness 
measure is a fitness point (FP). This FP will have an integer 
value within the range defined for each gene in their 
respective decimal representation part. This value is purely 
the developers own choice. The FP is meant to limit the 
search process of the algorithm on both side of the required 
gene decimal value range. In Fitness Measure equations for 
each gene these fitness points are represented by FP1, FP2, 
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FP3, FP4 and FP5 for the date rate, the signal power, the 
error rate, the operating frequency and the modulation 
technique respectively with chosen values being 6, 20, 7, 20 
and 1 respectively. If we denote the fitness measure of a 
gene as ݂݉, then ݂݉ can be given as in (3a) and (3b). 

݂݉	 ൌ 	 ൣ൫ܹܩ	 ∗ 	ܲܨ	ݎ݋݂	௙൯൧ܩ	 ൐ ሺ1ሻ (3a)

݂݉	 ൌ 	 ሾܹܩሿ	݂ݎ݋	ܲܨ	 ൑ ሺ1ሻ (3b) 
 

The total fitness of the chromosome ݂ܶ݉ is then calculated 
by summing up all the fitness of each of the genes and then 
subtracting from 100. The ݂ܶ݉ is given in (4) and the 
aggregated weighted sum of each of the gene ݂݉௔௪௦ is 
given by (5). 

݂ܶ݉ ൌ 100 െ	݂݉௔௪௦ 
 

  (4)

݂݉௔௪௦ ൌ 	݂݉ௗ௥ ൅	݂݉௣ ൅	݂݉௕௘௥ ൅	݂݉௙௕ ൅	݂݉௠௦ 
 

(5)

݂݉௔௪௦ is the aggregated weighted sum of each parameter’s 
fitness. ݂݉ௗ௥ is the fitness measure of the data rate 
parameter. ݂݉௣ is the fitness measure of the signal power 
parameter.	݂݉௕௘௥  is the fitness measure of the bit error rate 
parameter.	݂݉௙௕ is the fitness measure of the frequency 
band parameter.	݂݉௠௦ is the fitness measure of the 
modulation scheme parameter. The lower the value of the 
݂݉௔௪௦, the higher the fitness measure of the chromosome. 

Elitism method of selection was used to copy the best fit set 
of chromosomes from one generation to another without 
altering the genes. The roulette wheel method of selection 
was used to choose the two chromosomes that will be 
crossed-over. The roulette wheel was chosen because the 
probability of any chromosome being chosen for crossover 
is directly proportional to its relative fitness with respect to 
the total sum of fitness of the complete chromosome 
population. GA uses crossover and mutation processes to 
generate new population. Crossover involves the exchange 
of genes between two chromosomes. This allows for 
diversity within the solution as well as prevents the GA from 
getting stuck in local minima. Two point crossover 
technique and a crossover rate of 0.9 was employed as 
proposed by Hasancebi and Erbatur [15]. Mutation is a 
genetic operator used to maintain genetic diversity from one 
generation of a population of algorithm chromosomes to the 
next. It alters one or more gene values in a chromosome 
from its initial state. Mutation is applied on genes of the 
child after crossover, altering a binary bit of 0 to 1 or vice 
versa [16]. In mutation, the solution may change entirely 
from the previous solution. Hence GA can come to better 
solution by using mutation. Mutation occurs during 
evolution according to a user-definable mutation probability. 
This probability should be set as low as possible. If it is set 
too high, the search will turn into a primitive random search. 

We have used a mutation rate of 2%. The chromosomes are 
converted to binary form for the purpose of mutation and 
converted back after mutation is done. The stopping criteria 
used is the number of generations which was set at 50. 

Chaotic GA (CGA) Method 

Chaos refers to apparent randomness (but definitely not true 
randomness), or irregularity, or unpredictability that arises in 
deterministic dynamical systems [17]. According to Kinsner 
[17], the properties of a chaotic system that provide 
additional benefits over randomly generated solutions are 
sensitivity to initial conditions, topological density and 
topological transitivity. These ensure that CGA is able to 
explore the entire solution space. The initial population of 
size N was generated using the coupled logistic chaotic 
sequence. The elitism method of selection is used to ensure 
that best fit n chromosomes are copied to the next 
generation. The decisions as to which of the genes to be 
crossed over and mutated of the remaining N-n 
chromosomes are also taken using a chaotic sequence. The 
results obtained from this procedure are explained in Section 
V. The important steps in the CGA include: establishing the 
logistic chaotic sequences, using the sequence to initialise 
population, using the chaotic sequences to run crossover and 
mutation. The behavior of any chaotic systems is governed 
by deterministic equations. Chaotic systems have a sense of 
order or pattern even though they appear to be disorderly. 
The first chaotic system can be produced by the well-known 
one-dimensional logistic map which is defined in (6) as: 

௞ାଵݖ ൌ ௞ሺ1ݖߤ െ μ	for						௞ሻݖ ൌ 4 (6)
 

The ݖ௞ represents the value of the variable z at the kth 
iteration; ݖ௞ is in the interval [0,1]; and μ is a so-called 
bifurcation parameter of the system. We have employed a 
new chaotic map proposed by Mingjun and Huanwen [7] 
because it has a better probability distribution. This new 
chaotic map is defined in (7) as: 

௞ାଵݖ ൌ ௞ݖߟ െ ௞ሻ݁ିଷ௭ೖݖߛሺ݄݊ܽݐ2
మ
  (7)

                η=0.9, γ=5.  
 
For 100,000 points (solutions), the probability distribution of 
the solutions generated by the logistic map is shown in Fig. 
1 below, while that for the new chaotic map is shown in Fig. 
2.  A GA combined with chaotic operator has several 
advantages such as large solution search space, reduced 
similarity among individual solution and fast convergence 
speed [3]. As explained by Mingjun and Huanwen [7], the 
logistic map of Fig. 1 shows a lot of the points on the 
distribution are near the edges, meaning that it can escape 
local minima although it is difficult to seek for the global 
optimum solution. Figure 2 shows that point distribution of 
the new chaotic map is similar to uniform distribution with 
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two peaks near -0.8 and 0.8. This means that the new chaotic 
map has the ability to escape local optimum as well as 
converge to the global optimum at the same time. This is the 
motivation for using the new chaotic map. We observe that 
for an initial population size of 5000 there is a significance 
difference pictorially between the ones generated using the 
new chaotic map shown by Fig. 3 compared to those 
generated using the pseudo-random process shown in Fig. 4. 
 

 

 Probability distribution of Logistic map. Fig. 1

 

 Probability distribution of new chaotic map. Fig. 2

 EXPERIMENTAL RESULTS V.

Simulation was done in MATLAB in order to compare the 
performance of the CGA against the TGA. We have used the 
same GA parameters and secondary user`s QoS requirement 
used by Siddique and Azam [1]. Table 9 shows the GA 
parameters while Table 10 represents the secondary user`s 
QoS requirements. The algorithm was run ten times and the 
results (fitness) obtained are shown in Table 11 and plotted 
in Fig. 5. 

 

 Initial population with new chaotic map. Fig. 3

 

 Initial population with random generator. Fig. 4

 

 Total Fitness Measure of Resultant Chromosome. Fig. 5

The result shows that every time the algorithm is run, the 
results generated by the CGA is more stable compared to the 
TGA. The TGA has high swings and large variability in the 
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outputted allocated spectrum; this can be attributed to the 
non-deterministic nature of the solution space otherwise 
known as “random walk”. We observe that even though at 
certain times (in the third and eight runs), the TGA gives a 
better result compared to the CGA, yet the average fitness 
measure of the results generated by the CGA over the 10 
runs is 90.6 whereas that of the TGA is 84.5. In real life 
scenario, there is need for stability and consistency in the 
performance of the CR as against randomness; thus the CGA 
is more suitable than the TGA. Fig. 6 shows the average 
fitness of the CGA and TGA with increase in generation 
from 40 to 100. It is observed that the CGA has higher 
average fitness compared to the TGA. This can be attributed 
to the chaotic map incorporated into the algorithm which has 
been reported to aid the speed of convergence as reported in 
section 2 of this work. Fig. 7 shows the performance of the 
algorithms with increased population size. The result shows 
that the average fitness of the TGA increases when the 
population size was between 100 and 200 but then decreases 
with population size beyond 200. This can be attributed to an 
increase in the probability of point’s intersection typical of a 
random walk as the solution space increases, thus slowing 
down the momentum of the GA towards optimality. On the 
other hand, the CGA has stable and averagely increasing 
fitness as the population increases from 100 to 500. This can 
be attributed to the non-intersection of points in a chaotic 
walk; thus galvanising the GA towards optimality. 

 

 Fitness Measure per Generation. Fig. 6

 

 Average Fitness Measure with Increasing Fig. 7
Population.  

Table 9. GA parameters. 
Genetic Parameters Predetermined Value 
Population Size 100 
Number of Generations 50 
Crossover Rate 0.9 
Mutation Rate 0.02 

 
Table 10. User QoS requirements. 

Data 
Rate 

Signal 
Power

Bit Error 
Rate 

Operating 
Frequency 

Modulation 
Technique 

6 30 6 300 4 
 

Table 11. Resultant QoS fitness Measures. 
Results (%) TGA Fitness (%) CGA Fitness (%) 

R1 82 88 
R2 79 86 
R3 93 89 
R4 74 90 
R5 79 86 
R6 82 89 
R7 81 94 
R8 98 91 
R9 90 93 
R10 88 95 

 
 CONCLUSIONS AND FUTURE WORK VI.

A Chaotic genetic algorithm was developed and used to find 
good solutions to the radio spectrum allocation problem. The 
CGA is based on the new chaotic map proposed by Mingjun 
and Huanwen [7] because it has a better distribution 
compared to the logistic map. The new chaotic map has the 
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ability to escape local optimum and converge to the global 
optimum simultaneously unlike the logistic map. The 
chaotic sequences generated by this map were used to 
generate the initial population of the solution space and to 
run the crossover and mutation processes of the genetic 
algorithm. The experimental results showed that the CGA 
gives a stable and better result compared to the TGA for the 
spectrum allocation problem. For future work, an adaptive 
adjustment of the algorithm parameters (crossover and 
mutation rate) proposed by Yun-Xiao [3], can be 
implemented in order to reduce the vector distance between 
individual solutions. This should further reduce the 
convergence time for our proposed CGA. 
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Abstract— A wireless sensor network is a collection of nodes 
organised in into a cooperative network. Knowing the 
locations of the wireless sensor nodes is central to accurate 
information gathering. Conventional location detection 
technique such as global positioning system (GPS) and 
infrared are expensive to deploy. This paper proposes the 
use of a genetic algorithm (GA) to learn the environment 
impairments within a wireless sensor network for the 
purpose of localization for data management. For each 
coordinate in the grid network area, random perturbations 
of received signal strength (RSS) were supplied to the GA. 
The GA is able to learn the environment and reduce the 
possible errors inherent in the RSSI measurement taken per 
coordinate.  Our simulation modeled in MATLAB shows that 
the GA can achieve acceptable node location detection with 
the aid of three anchors. 

Keywords— Wireless Sensor Networks, Genetic Algorithm, 
Received Signal Strength, Global Positioning System. 

 INTRODUCTION I.

A Wireless Sensor Network (WSN) is simply a 
collection of devices organized into a cooperative network. 
It is a network consisting of spatially distributed autonomous 
devices that use sensors to monitor physical or 
environmental conditions. Node localization has been a topic 
of active research in recent years. Accurate network self-
localization capability is highly desirable in wireless sensor 
network [1]. Each device within the WSN consists of 
processing capability (one or more microcontrollers, CPUs 
or DSP chips), may contain multiple types of memory 
(program, data and flash memories), have a RF transceiver 
(usually with a single omni-directional antenna), have a 
power source (e.g., batteries), and accommodate various 
sensors and actuators. The devices can communicate with 
their neighbours within a limited radio range, and by 
relaying information to each other, they can transmit signals 
to anywhere within the network. WSNs are potentially 
important enablers for many applications in areas such as 
military, environment or industrial control and monitoring, 
telecommunications, security monitoring etc. A common 
location detection technique is the use of the global 

positioning system (GPS). The GPS is a satellite navigation 
system based. GPS provides accurate location information 
and can be installed in wireless sensor network nodes so that 
each node can locate itself and be able to report its location. 
However, installing GPS on every node in a WSN system 
with large number of nodes is expensive. Therefore there is a 
need to explore cheaper means of locating sensor nodes. One 
way is to install GPS on a few sensor nodes which are 
generally regarded as anchor nodes. Typically, the anchor 
nodes in a network should be at least 3 or more. Then each 
of the remaining sensor nodes in the network can then find 
their coordinate in the network by triangulating around the 
anchor nodes. Triangulation can be done using either range-
free or range-based algorithm [2]. A range-free algorithm 
does not measure absolute distance between nodes but it 
acquires location information by using estimated distance 
between nodes [3]. Range-free algorithm includes DV-hop 
[4], APIT [2] and so on. The performance of the range-free 
algorithm decreases with increasing sensor nodes. A range-
based algorithm however uses the actual distance measured 
between the anchor nodes and the sensor nodes to calculate 
the position of the unknown nodes [3]. The methods used for 
the range-based algorithm includes RSS, Angle of Arrival 
(AOA), Time Difference of Arrival (TDOA), and Time of 
Arrival (TOA). Range-based algorithm is more accurate than 
the range-free algorithm. However, to deploy range-based 
algorithm requires additional hardware which makes it more 
expensive especially in large sensor networks. In this work 
our localization algorithm is based on the received signal 
strength. We have used GA to estimate the accurate location 
using the received signal strength. The set of received signal 
strengths received per sensor position is fed into our 
proposed GA. The GA uses the Euclidean distance objective 
function to find the accurate position of the sensor nodes.
  

The remaining sections of this paper are organised as 
follows. Section 2 represents related work on wireless sensor 
network localization methods and our contribution to this 
work. Section 3 discusses the GA approach to the 
localization problem and methodology. In Section 4, we 
have discussed the simulation and results obtained using 
genetic algorithm. Section 5 concludes the paper and gives 
future work. 
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 RELATED WORK II.

There have been several approaches to the localization of 
sensor nodes in a WSN including range-free and range-
based algorithm. Our optimization algorithm is range-based 
because range-based algorithm is more accurate than the 
range-free algorithm. The methods used for the range-based 
algorithm includes RSS, Angle of Arrival (AOA), Time 
Difference of Arrival (TDOA), and Time of Arrival (TOA). 
Compared to the other methods, RSS-based ranging method 
can be a cheap alternative. Therefore our algorithm is RSS-
based. Ash and Moses [5] evaluated the feasibility and 
quality of self-localization that can be obtained using 
received signal strength measurements from array of 
directional antennas on each sensor node. The results were 
found to be favourable when benchmarked against the 
Cramer-Rao bound. Goldoni et al [6] used RSS range-based 
localization methods in low power IEEE 802.15.4 WSN to 
obtain positioning information. The algorithms used were 
trilateration, min-max and the maximum-likelihood. The 
results obtained were not without considerable errors. In 
general the localization problem NP-hard [7]. It is important 
that location of sensor nodes is done in quick time especially 
very sensitive applications such as military operations. 
Stochastic processes have been aplied to reduce the 
computational time to locate sensor nodes. Simulated 
Annealing [8], Artificial Neural Network [9], Particle 
Swarm Optimization [10], and Ant Colony Optimization 
[11] are among other approaches that have been used for the 
localization problem. However, these techniques can easily 
get stuck in local minima. This is why we have approached 
the problem using Genetic Algorithm. Zhang et al [1] and Li 
and Zhou [3] have proposed the GA for this problem. Zhang 
et al [1] reported a better performance compared to the 
gradient search localization (SPDL) while Li and Zhou [3] 
reported a better performance compared to the range-free 
DV-hop approach. However it is unclear what range-based 
method was used to obtain the euclidean distance of the 
unknown nodes position in the network. As stated earlier, we 
have used the RSS as a measure to obtain sensor node 
position in the network.  

 
 GA APPROACH III.

The approach we have used is the RSS-based method of 
localization. The RSS obtained from a next-hop sensor node 
is used to determine the location of the sensor node. In our 
own case we make use of a one-hop connection where a 
sensor node is directly connected to each of the anchor 
nodes. Since the sensor nodes are within transmission range 
of each of the anchors, the signal strength of the sensor 
nodes received at each of the anchor is used to find the 
coordinate of the sensor node in the network. There is a 
relationship between the transmit power of the sensor nodes 
and the RSS at the anchor nodes. This is estimated as 
contained in [12]:  

ܴܵܵሺ݀ሻ ൌ 10݊ log
݀଴
݀
൅  1ሻ )  ܣ

A is the RSS at distance d0 from the transmitter; d0 is the 
reference distance (usually 1m away from the transmitter); 
and d is the distance of each sensor node to each anchor. We 
solve (1) for d.  

We consider that our sensor network has a total of r 
sensors, comprising of k anchor nodes with known locations 
and r-k sensor nodes with an unknown locations. Since we 
have r-k sensor positions with unknown coordinates, we 
move a sensor around in each of the r-k positions and 
capture several readings of each the signal strength at each 
of the r-k positions. Based on the RSS, let the estimated 
distances of the mobile sensor node from each of the r-k 
positions to the anchor nodes be given by (2): 

 
݀௜, ௜ୀଵ	௧௢	௥ି௞  (2)

If the absolute positions of the mobile sensor node in the 
grid are (xi, yi), i=1 to r-k and the positions of the anchor 
nodes in the network is given by (Xj, Yj), j=1 to k, then the 
Euclidean distance between the mobile sensor node and any 
of the anchor nodes is given by (3): 

 

௜௝ܦ ൌ ටሺ ௝ܺ െ ௜ሻଶݔ ൅	ሺ ௝ܻ െ  	௜ሻଶݕ
       
 (3) 

 
The objective function is primarily to minimize the 

difference between the actual and estimated distance 
between the anchor node and the mobile sensor node at each 
r-k positions. Therefore, we can formulate the objective 
function as given by (4). 
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 (4) 

 
Motivation for using Genetic Algorithms (GA)  

Since the problem formulation in (1) has been regarded 
as an NP-Hard [7], we are using the genetic algorithm to 
optimize the objective function. For this problem it is 
imperative that we get the desired solution (location) within 
a very short time. This is the motivation for proposing GA to 
solve this problem. GAs can explore large solution space in 
multiple directions, a feature which accounts for its speed. 
GAs can also strike a perfect balance between the global 
optimum and many local optima. Genetic Algorithms (GAs) 
are adaptive heuristic search algorithm based on the 
evolutionary ideas of natural selection and genetics. They 
represent an intelligent exploitation of a random search used 
to solve optimization problems. GAs, although randomized, 
exploit historical information to direct the search into the 
region of better performance within the search space. It has 
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been successfully applied in many search, optimization, and 
machine learning problem as discussed in section 2. 

For this problem, every possible location in the network 
represents a possible solution which in GA term is known as 
a chromosome and the set of chromosomes for each grid 
point is designated as the population for that grid point.  
Since for each grid point(locations) we have the x and y 
coordinate, our chromosome therefore is made up of two 
genes, one for the x axis the other for the y axis. The GA 
procedure applied to the localization problem is as shown in 
Table 1.  

 
Table 1. Genetic Algorithm. 

Step Action 

1 
Generate a random initial population of n 
chromosomes, where n is the population size. 

2 
Evaluate the fitness of each of the chromosomes in the 
initial population 

3 Generate new populations using processes in steps 4-6

4 
Selects two chromosomes among the current 
population using the roulette wheel method based on 
fitness of each solution. 

5 
Crossover the two selected chromosomes considering 
the crossover probability, to form the off springs for 
the next generation 

6 
Mutate the new offspring at each defined mutation 
point, considering the mutation probability and place 
it in the new population. 

7 
Evaluate the fitness of each of the chromosomes in the 
new population 

8 
Repeat steps 3-7 until the stopping criteria have been 
met. 

 
Standard GA applies genetic operators such as Selection, 

Crossover and Mutation on an initially random population in 
order to compute a whole generation of new strings. The 
first phase of the GA is to generate a population of 
individuals (chromosomes), after which evaluations will be 
made to know if such chromosome has reached the desired 
solution sufficient enough to be considered a good solution. 
Otherwise, such chromosome will need to go through the 
Selection, Mutation and Crossover Process in as many times 
as possible to be able to select the best result – in this case 
the best RSS in order to compute the particular location.  

 
• Selection deals with the probabilistic survival of the 

fittest, in that the fittest chromosomes are chosen to survive. 
Fitness is a comparable measurement of how well a 
chromosome solves the problem at hand. Once the 
chromosomes with the better fittest are chosen, others will 
be eliminated. Simply, the probability of a chromosome to 
be selected is proportional to the quality value/fitness; this is 
also called the roulette wheel selection method. There are 
various selection methods but we propose to use the roulette 

wheel selection algorithm because it gives every 
chromosome a chance of survival. 

 
• Crossover is a technique considered to be the most 

important step in the context of GAs. At a certain crossover 
rate, GA takes individual chromosomes from relevant data 
and combines them to form new ones in the hope that the 
new chromosomes will have better fitness compared to the 
previous ones. 

  
• Mutation is a genetic operator used to maintain genetic 

diversity, at a certain mutation rate, from one generation of a 
population of algorithm chromosomes to the next. It is 
analogous to biological mutation. Mutation alters one or 
more gene values in a chromosome from its initial state. In 
mutation, the solution may change entirely from the previous 
solution. Hence GA can come to better solution by using 
mutation. Mutation simply aids GA to avoid getting stuck in 
local minimal.  

 
After each cycle of selection, crossover and mutation, the 

newly generated sets of solutions are termed new generation. 
Every generation is evaluated based on the fitness function 
to determine if they represent a solution good enough for the 
problem so the GA can stop searching, or if otherwise, for 
the GA to continue searching until the set stopping criteria is 
met. The stopping criteria could be the number of 
generations, or evolution time, or fitness threshold, or fitness 
convergence, or population convergence. In our case, the 
number of generations was set as the stopping criteria.  
 

 EXPERIMENTAL RESULTS IV.

Simulation was done in MATLAB to determine the 
location of the wireless device using the genetic algorithm.  

 

Generation of Data 

Experiment was carried out in a chamber free from 
wireless interference. A 5m by 5m grid was created with 
coordinates ranging from [0, 1], [0, 2] to [5, 5]. The RSS 
captured at each of the coordinates in the grid points were 
fed into the GA as input. A Spectrum Analyzer was used to 
measure the RSS at each of the three anchor nodes. Because 
RSS is susceptible to attenuation and reflection, we captured 
10 readings per coordinate per testing period over 10 test 
periods. We averaged the RSS values per coordinate per one 
test period and used it to determine the behaviour of the RSS 
with distance; this is in order to ascertain the amount of 
signal interference in the chambers. Figure 1 shows the 
graph of the captured RSS against distance averaged over 
one test period. Figure 1 shows a decrease in RSS with 
increasing distance with the exception of three out of the 
twenty five points in the grid. The readings obtained at each 
of these three points were consistent over several test 
periods. We conjecture that there is a deflection or reflection 
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at these points as a result of the obstructing steel elements 
present at the specific points.  

 
 Average RSS vs. Distance. Fig. 1

 
Since Fig. 1 shows a relatively acceptable RSS behavior 

with distance, we were able to ascertain that the room is 
largely free from other signals apart from that from our 
mobile sensor. The GA parameters are as follows: 
Population Size is 100, Number of generations is 100, 
Crossover rate is 0.6 and Mutation rate is 0.01. 

 
The results obtained are as shown in Tables 2 to 5. Each 

Table shows the error in the predicted location of the GA for 
each target positions as well as the relative percentage error 
to the grid. Table 3 shows the results in the GA predictions 
for each target when each of the target’s initial positions is 
increased by 10cm. Table 4 shows the results in the GA 
predictions for each targets when each of the target’s initial 
positions is increased by 20cm. Table 5 shows the results in 
the GA predictions for each targets when each of the target’s 
initial positions is increased by 30cm. Figure 2 shows the 
error in GA predictions for target 1 with increased distance. 
Figure 3 shows the error in GA predictions for target 2 with 
increased distance. Figure 4 shows the error in GA 
predictions for target 3 with increased distance. Figure 5 
shows the error in GA predictions for target 4 with increased 
distance. Figure 6 shows the error in GA predictions for 
target 5 with increased distance.  

 
Table 2.  

GA 
PREDICTED 

ACTUAL 
Targets 
Initial 

Positions 

ERROR in 
GA 

Prediction 

Percentage 
Error 

(Relative to 
total Grid ) 

(2.47, 1.35) (2.5, 1.4) 0.05 1.25 

(1.16,2.37) (1.2, 2.4) 0.05 1.25 
(0.4,2.96) (0.4,3.0) 0.04 1 

(2.51,3.23) (2.5,3.2) 0.05 1.25 
(3.54,3.56) (3.6,3.5) 0.08 2 

 
 

Table 3.  
ACTUAL 

Targets’ Initial 
Positions  + 10cm 

 

ERROR in GA 
Prediction 

 
 

Percentage Error 
(Relative to total 

Grid ) 

Target 1 0.212 5.3 

Target 2 0.191 4.78 

Target 3 0.108 2.7 

Target 4 0.095 2.38 
Target 5 0.165 4.125 

 
 

Table 4.  
ACTUAL 

Targets’ Initial 
Positions  + 20cm 

 

ERROR in GA 
Prediction 

 
 

Percentage Error 
(Relative to total 

Grid ) 

Target 1 0.340 8.5 

Target 2 0.332 8.3 

Target 3 0.312 7.8 

Target 4 0.275 6.88 
Target 5 0.295 7.38 

 
 

Table 5.  
ACTUAL 

Targets’ Initial 
Positions  + 30cm 

ERROR in GA 
Prediction 

Percentage Error 
(Relative to total 

Grid ) 
Target 1 0.481 12.03 

Target 2 0.474 11.85 

Target 3 0.453 11.33 

Target 4 0.396 9.9 
Target 5 0.433 10.825 

 
Each of the graphs shows an approximately linear 

relationship between the errors in prediction with increasing 
distance. This stems from the RSS relationship with 
increasing distance in Fig. 1. 
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 Target 1. Fig. 2

 

 
 

 Target 2. Fig. 3
 

 
 Target 3. Fig. 4

 

 
 Target 4. Fig. 5

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r 

in
 G

A
 P

re
d

ic
tio

n

Distance (meters)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r 

in
 G

A
 P

re
d

ic
tio

n

Distance (meters)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r 

in
 G

A
 P

re
d

ic
tio

n
Distance (meters)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

o
r 

in
 G

A
 P

re
d

ic
tio

n

Distance (meters)

130 Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  |



 

 
 Target 5. Fig. 6

 
The Average Error which shows the difference between 

the GA predicted results and the expected ones is shown in 
Fig 7 below. We can see that the error decreases with 
increase in the number of generations. At around the 33rd 
generations, the GA had found a good solution of less than 
0.01. This is a practically acceptable result.  

 
 Average Error for Target nodes per Generation. Fig. 7

 
 CONCLUSIONS AND FUTURE WORK V.

This paper presents a simulation of wireless sensor 
network node localization using the GA. We used the 

received signal strength captured at each of the anchor nodes 
from a mobile sensor node for the purpose of estimating the 
coordinate of the mobile sensor node at any point within the 
grid. The test was carried out in a chamber free from any 
other wireless signals apart from the signals from the mobile 
sensor node. The GA algorithm was allowed to run for 100 
generations giving acceptable results of less than one percent 
average error in a very short time.  This is good for practical 
purpose in a wireless sensor network. For future work, an 
adaptive adjustment of the algorithm parameters (crossover 
and mutation rate) proposed by Yun-Xiao [13], can be 
implemented in order to reduce the vector distance between 
individual solutions. This should further reduce the 
convergence time for our proposed GA. 
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Abstract—This paper describes a multi-objective evolutionary 
approach for solving cloud computing service provider selection 
problems with dynamic demands. In this investigated problem, 
not only the service purchase costs and transmission costs of 
service providers are different, but the demands of service 
requests also change over the given periods.  The objective of 
this problem is to select a number of cloud service provider 
while optimizing the total service distance, the total number of 
serviced demand points, the total service purchase costs, and 
total transmission costs simultaneously in the given continuous 
time periods. A multi-objective genetic approach with an 
inheritance mechanism is proposed to solve the investigated 
problems. Four trail benchmark problems are designed and 
solved using the proposed multi-objective evolutionary 
algorithm. The results indicate that the proposed approach is 
capable of obtaining a number of non-dominated solutions for 
decision makers. 

I. INTRODUCTION 
With the rapid development of computing hardware, high-

speed network, web programming, distributed and parallel 
computing, and other storage technologies, cloud computing 
has recently emerged as an effective reuse paradigm, where 
hardware computing power, software functionality, and other 
computing resources are delivered as integrated services 
through Internet [1]. There are many global and local 
commercial cloud service providers, offering various kinds of 
delivered services such as Infrastructure-as-a-Service (IaaS), 
Platform-as-a-Service (PaaS) and Software-as-a-Service 
(SaaS). Recently, the advantages and features of cloud 
services has arisen the interests of digital 
entertainment/media/content suppliers to integrate cloud 
computing services into their content delivery networks [2].  

Consider a national-wide area with a number of service 
request points, the requests at each point usually changes in 
time; and within this area, a number of cloud service providers 
with different locations and pricing options of services are 
available for chosen. From the point view of digital 
entertainment/media content suppliers, it is an important issue 
to select suitable cloud computing service providers, which 

can deliver their contents to massive customers rapidly and 
smoothly. Therefore, maximizing some expected Quality-of-
Service (QoS) indictors and minimizing services related costs 
are crucial considerations for decision makers. As a result, 
considering the requirements of content supplier and the 
conditions of cloud service providers, we formulated such 
problems to multi-objective dynamic p-median problems in 
this paper.  

The classical p-median problem consists of selecting p 
facilities in a given space which minimizes the total costs of 
serving m demand points at a time. P-median problem is 
prominent combinatorial optimization NP-hard problem in 
location science and cluster analysis [3-9]. Many exact and 
heuristic approaches have been proposed for solving p-median 
problems. In traditional approaches, the planning of service 
facility centers usually considers the demand of consumers as 
constant values. However, it is not true in the real world 
applications, because the demands of consumers may change 
by environments and time. The dynamic p-median problem is 
applicable to all situations modeled by the standard p-median 
problem whenever demand changes over time in a predictable 
way.  

In this paper, a multi-objective p-median model with 
dynamic demands which optimizes the total QoS distance, the 
total number of serviced demand points, the total service 
purchase costs, and the total network transmission costs is 
investigated. Considering four different geographical features, 
we propose an efficient approach based on genetic algorithms 
for content providers to determine the selection of service 
providers in different periods and satisfying the dynamic 
demands of customers. The proposed approach can also 
provide decision-makers a set of non-dominated solutions for 
the selection processes. 

This paper is organized as follows: Section 2 describes the 
investigated dynamic p-median problem and multi-objective 
optimization. Section 3 describes the mathematical model of 
the investigated problem. Section 4 presents the proposed 
multi-objective genetic algorithm MOGA for solving 
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investigated problems. Section 5 gives the experimental 
results and analysis of the proposed algorithm. Section 6 
concludes our paper. 

II. RELATED WORK 
A.  P-median Problems 

The classical p-median problem consists of locating p 
facilities (medians) in a given space (e.g. Euclidean space) 
which minimizes the total costs of serving m demand points, 
where the pair-wise cost of servicing each point from all 
facilities is given. Each demand point is only served by a 
single facility and services to demand points are not 
combinable [3-10].  

Exact methods for solving p-median problems include 
linear programming approaches, dual-based algorithms. 
However, these exact methods suffer from the curse of 
dimensionality since the computation costs of calculating all 
demand points' expectations over all possible future 
combinations increases exponentially in the number of 
demand points.  Many heuristic approaches have been 
proposed to solve p-median problems, including greedy 
heuristic, variable neighbor decomposition search, cooperative 
parallel variable neighborhood search, and Lagrangian-
surrogate heuristic. Modern meta-heuristics have been applied 
to solve p-median problems as well [8], such as tabu search 
approaches, simulated annealing approaches and genetic 
algorithms approaches.  

Recently, considering the real-world conditions, various 
models of p-median problems are proposed in the literature, 
including stochastic p-median problems, progressive p-median 
problems [3], dynamic p-median problems, and bi-objective p-
median problems [9]. 

B.  Multi-objective Evolutionary Optimization 
Assume the multi-objective functions are to be minimized. 

Mathematically, MOOPs can be represented as the following 
vector mathematical programming problems  

)},(...,),(),({)( 21 YFYFYFYFMinimize i   (1)

where Y denotes a solution and fi(Y) is generally a nonlinear 
objective function. Pareto dominance relationship and some 
related terminologies are introduced below. When the 
following inequalities hold between two solutions Y1 and Y2, 
Y2 is a non-dominated solution and is said to dominate Y1 (Y2 
 Y1): 

).()(:)()(: 2121 YFYFjYFYFi jjii  (2)

When the following inequality hold between two solutions Y1 
and Y2, Y2 is said to weakly dominate Y1 (Y2 Y1): 

).()(: 21 YFYFi ii 
 

  (3)

A feasible solution Y * is said to be a Pareto-optimal solution 
if and only if there does not exist a feasible solution Y where Y 
dominates Y *, and the corresponding vector of Pareto-optimal 
solutions is called Pareto-optimal front. 

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of 

performing the fitness assignment of multiple objectives 
without using relative preferences of multiple objectives. Thus, 
all the objective functions can be optimized simultaneously. 
As a result, MOEA seems to be an alternative approach to 
solving the investigated service provider selection problems 
on the assumption that no prior preference and domain 
knowledge is available [10-11]. 

III. PROBLEM STATEMENT 
In this paper, the investigated dynamic service provider 

selection problem (DSPSP) is to select p service providers 
from n service providers in each quarter, in order to satisfy the 
dynamic demands of m service requests from end-users. The 
following conditions are assumed in this problem: 

1) Each service provider has different pricing options for 
purchasing services and network transmission. 

2) Although contents can be deliver to anywhere though 
internet, end-users still expects no delays during 
network transmission. Therefore, each service provider 
has a pre-assumed maximum Quality-of-Service (QoS) 
distance. 

3) The number of demand points that a service provider 
can service is unlimited. 

4) The Euclidean distance is used to calculate the 
distances between demand points and points of service 
provider. 

5) Each demand point can only serviced by a nearest point 
of service provider within the maximum QoS distance. 

6) In order to satisfying the dynamic demands, content 
supplier may select p different service providers in the 
next following quarter. 

The investigated problem can be formulated to multi-
objective p-median problems with dynamic demands. The 
objectives of DSPSP are while optimizing four competing 
objective functions: the total QoS distance, the total number of 
serviced demand points, the total service purchase costs, and 
the total network transmission costs.  

A. Problem Notations 
i  , j：i{1,2,3,…m},  j{1,2,3,…,n}. 
m：The total number of demand points. 
n：The total number of service provider points for selection. 
Li：The index of demand points, Li =  i. 
Sj：The index of the service provider points. Service 

providers points usually co-locate with some demand 
points, therefore Sj{L1,L2,…Lm}. 

Dj：The maximum Quality-of-Service (QoS) distance of the 
service provider point j. 

T：The total service periods. 
tj：The time period that the service provider Sj served, 

0=t1<t2<…<tp<tp+1<T. 
dij：The distance between Li and Sj. 
mdij：The nearest distance of the demand point Li between 

the nearest service provider point, mdij=min{dij}. 
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wi(t)：The demanding function of the demand points Li at 
time t, 0 t<T. 

wij：The total demanding amount of the demand point Li 

from time tj to time tj+1,  



1

. 
j

j

t

t
iij dttww  

Aj：The network transmission cost of the service provider 
point Sj  per demand unit. 

Cj：The monthly service purchase cost of the service 
provider point Sj. 

Xi： The serviced index of the demand point Li. If the 
demand point service Li is serviced within the maximum 
QoS distance of a provider point, then Xi = 1, otherwise 
Xi = 0.  

Zj： The selection index of the service provider point Sj. If 
the service provider point Sj is chosen and serves 
demand points in the specific time period, then Zj = 1, 
otherwise Zj = 0.  

B. Problem objectives 
1) Minimization of QoS distance 

In the classical p-median problem, the demands in each 
demands points are usually considered to a constant. However, 
considering the real-world applications, demands are known to 
be changed dynamically. Given the demanding function of 
each demand points, the Quality-of-Service distance of each 
demand to its nearest service provider points can be expressed 
as follows: 

. 
1 1

1 jiij

n

j

m

i
ij ZXmdwFMinimize 

 
(4)

2) Minimization of  network transmission cost  

Considering the cloud computing environments, the costs 
of network transmissions between service provider points and 
demand points are not fixed. Given the network transmission 
cost of each service point per time unit, the transmission costs 
of each facility can be expressed as follows: 

. 
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m

i
ij ZXAwFMinimize 

 
(5)

3) Minimization of service purchase cost 

In additional to the network transmission cost, the service 
purchase cost on a specific service provider point is also an 
important factor for content suppliers, because the service 
cost in different service provider point are different. Given 
the service purchase cost for each service provider points, the 
total service purchase costs of selected service provider 
points can be expressed as follows: 

. 
1

3 



n

j
jj ZCFMinimize  (6)

4) Maximum of total number of serviced demand points 

Because different service providers has different QoS 
distance, therefore the number of demand points that a 
service provider points may serviced could be different. 
Given the maximum QoS distance of each service provider, 
the number of serviced demand points can be calculated as 
follows: 

.
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C. An Illustrative Example 
An example is given here to explain our mathematical 

formation. Assumed that a content supplier plans to select 
three service provider points (p=3) from six providers (n=6) 
within twelve months (T=12), in order to service ten 
demanding points (m=10). The maximum Quality-of-Service 
(QoS) Dj is 3 for all the service provider points. The 
coordination, demanding function of demand points, the 
service purchase costs and transmission costs of service 
provider points are listed in Table I. Assumed a selection plan 
for four quarters is determined as shown in Table II, three 
service provider S2, S3, S6 are select in the first quarter, and 
finally three service provider S1, S3, S5 are select in the fourth 
quarter.  

Take the selection plan of Quarter 4 for example, the total 
amount of each demand points during Quarter 4 can be 
calculated, as shown in Table III. The distance of each 
demand point to different service provider points can be 
calculated, as shown in Table IV. The demand points with Dj 
are marked as bold. Hereafter, according to all the tables,  the 
objective functions in Quarter 4 can be calculated, F1 = 
10.12242, F2 = 1507.5, F3 = 1650, F4 = 8. 

TABLE I.  THE INFORMATION OF DEMAND AND SERVICE POINTS LI ,SJ 

Li Sj coord. wi(t) Aj Cj 
L1 S1 (1,8) 10+6t 1 500 
L2 S2 (2,5) 3+4t 1 700 
L3  (0,9) 16+2t 1  
L4  (10,2) 25+3t 1  
L5 S3 (4,5) 50-2t 1 700 
L6 S4 (3,7) 99-3t 1 450 
L7 S5 (12,3) 6+7t 1 450 
L8  (6,16) 24+4t 1  
L9  (2,10) 10+10t 1  
L10 S6 (8,4) 5+5t 1 500 

TABLE II.  REPRESENTATION OF FOUR SELECTION PLAN FOR FOUR 
QUARTERS 

QUARTER 1 QUARTER 2  QUARTER 3  QUARTER 4
2, 6, 3 3, 6, 4  5, 4, 3  3, 1, 5 
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TABLE III.  THE TOTAL AMOUNT OF DEMANDS IN QUARTER 4, 
ACCORDING TO THE SELECTION PLAN 

 t = 0~3 t = 3~6 t = 6~9 t = 9~12
L1 57 111 165 219 
L2 27 63 99 135 
L3 57 75 93 111 
L4 88.5 115.5 142.5 169.5 
L5 141 123 105 87 
L6 283.5 256.5 229.5 202.5 
L7 49.5 112.5 175.5 238.5 
L8 90 126 162 198 
L9 75 165 255 345 
L10 37.5 82.5 127.5 172.5 

 

TABLE IV.  THE DISTANCE OF EACH DEMAND POINT TO SELECTED 
SERVICE PROVIDER POINTS IN QUARTHER 4 

 S3(=L5) S1(=L1) S5(=L7) 
L1 4.24264 0 12.083 
L2 2 3.16228 10.198 
L3 5.65685 1.41421 13.4164 
L4 6.7082 10.8167 2.23607 
L5 0 4.24264 8.24621 
L6 2.23607 2.23607 9.84886 
L7 8.24621 12.083 0 
L8 11.1803 9.43398 14.3178 
L9 5.38516 2.23607 12.2066 
L10 4.12311 8.06226 4.12311 

 
IV. THE PROPOSED MULTI-OBJECTIVE GENETIC 

ALGORITHM  
In this section, the proposed multi-objective genetic 

algorithm to find a selection plan within four quarters for 
DSPSP is described. 
A. Chromosome Representation 

A chromosome has gene information for solving the 
problem in DSPSP. In the proposed approach, each 
chromosome of has p genes. When a quarter is finished, the 
non-dominated solutions will be stored and inherited to the 
next population of the next quarter. The chromosome can be 
regarded as a selection plan for a quarter. 

B. Fitness Assignment 
We use a generalized Pareto-based scale-independent 

fitness function (GPSIFF) considering the quantitative fitness 
values in Pareto space for both dominated and non-dominated 
individuals [10]. GPSIFF makes the best use of Pareto 
dominance relationship to evaluate individuals using a single 
measure of performance. The used GPSIFF is briefly 
described below. Let the fitness value of an individual Y be a 
tournament-like score obtained from all participant individuals 
by the following function: 

  .cNqNpXF   (7)

, where Np is the number of individuals which can be 
dominated by the individual Y, and Nq is the number of 
individuals which can dominate the individual Y in the 
objective space. Generally, a constant c can be optionally 
added in the fitness function to make fitness values positive. c 
is usually set to the number of all participant individuals. 

C. Genetic Operators 
The genetic operators used in the proposed approach are 

widely used in literature. The selection operator uses a binary 
tournament selection without replacement, which works as 
follows. Choose two individuals randomly from the 
population and copy the better individual into the intermediate 
population. The crossover operator is uniform crossover and 
the mutation operator is single point mutation without 
duplicated genes. 

D. Procedure of MOGA 
The procedure of MOGA is written as follows:  

Input: population size Npop, recombination probability pc, 
mutation probability pm, the number of maximum generations 
Gmax. Current Quarter Index q=1. 

Output: The optimum solutions ever found in P.  

Step 1: Initialization Randomly generate chromosomes to fill 
in the population P until Npop individuals are reached. Each 
chromosome is consists of p genes for a quarter.  

Step 2: Evaluation For each individual in the population, 
compute all objective function values F1, F2, F3.and F4.  

Step 3: Fitness Assignment Assign each individual a fitness 
value by using the equation (7) GPSIFF.  

Step 4: Selection Select Npop individuals from the population 
to form a new population using the binary tournament 
selection.  

Step 5: Recombination Perform the uniform crossover 
operation with a recombination probability pc.  

Step 6: One Point Mutation Apply the one point mutation 
operators to each gene with a mutation probability pm. If the 
mutated gene is duplicated with other genes in the same 
chromosome, mutate the gene again. 

Step 7: Termination test If the maximum generations have 
reached, store all the non-dominated solutions in quarter q, 
and then go to Step 8. Otherwise, go to Step 2. 

Step 8: Inheritance q=q+1. If q>4, stop the algorithm. 
Otherwise, inherit and copy non-dominated solutions to the 
population of the next quarter, if the number of non-dominated 
solutions exceed the population size Npop, randomly delete 
solutions and reduce the size to Npop. Then, go to Step 1. 

V. RESULT AND DISCUSSIONS  
A. Simulation Environment and Parameter Settings 

In this paper, four benchmarks are designed for 
experiments, as shown in Figure 1. Each problem has 
different distribution of demand points on different grid sizes, 
described as follows: 

1) Circle. 100 demand points and 36 service providers on 
a 18*18 grid. The number of providers to be chosen p=10, 
and the maximum QoS distance Dj=2.2. 

2)  Rectangele. Square with empty space. 100 demand 
points and 36 service providers on a 16*16 grid. The number 
of providers to be chosen p=10, and the maximum QoS 
distance Dj=3. 
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3) Square. 100 demand points and 36 service providers 
on a 110*110 grid. The number of providers to be chosen 
p=10, and the maximum QoS distance Dj=10. 

4)  Triangle. 100 demand points and 36 service providers 
on a 14*14 grid. The number of providers to be chosen p=10, 
and the maximum QoS distance Dj=2. 

Ten service providers will be select for each quarter. The 
total number of quarter is 4. The parameter settings of  
MOGA are listed as follows: population size Npop=100, 
recombination probability pc=0.9, mutation probability 
pm=0.1, the number of maximum generations Gmax=100. 
Fifteen independent runs are conducted for each problem. 
B. Disscussions 

Figure 2-5 depicts the average values of objective 
function F1, F2, F3, and F4 of non-dominated solutions 
obtained MOGA in solving the circle benchmark from 15 
runs. Figure 6-9 depicts the average values of objective 
function F1, F2, F3, and F4 of non-dominated solutions 
obtained MOGA in solving the square benchmark from 15 
runs. Figure 10-13 depicts the average values of objective 
function F1, F2, F3, and F4 of non-dominated solutions 
obtained MOGA in solving the square benchmark from 15 
runs. The results indicate that the proposed MOGA is capable 
of solving DSPSP and optimize four objectives 
simultaneously, considering different geographic distribution 
of demand points.  

VI. CONCLUSIONS 
In this paper, a multi-objective evolutionary approach is proposed 

to solve dynamic service provider selection problems. Experimental 
results demonstrated the proposed approach is capable of optimizing 
the quality-of-service distance, the total network transmission cost, 
the total service purchase cost, and the total number of demands 
points simultaneously. Moreover, the proposed approach can 
provide mission planers a set of non-dominated solutions for 
construction plan of service facilities. Our future work is to apply 
our approach in solving some real cases. 

 
Figure 1.  Distributions of demand points in four benchmark problems. 

 

Figure 2.  The average service distance of non-dominated solutions in 
different generations for the circle benchmark.  

 

Figure 3.  The average network transmission cost of non-dominated 
solutions in different generations for the circle benchmark.  

 

Figure 4.  The average service purchase cost of non-dominated solutions in 
different generations for the circle benchmark. 
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Figure 5.  The average total number of serviced demand points of non-
dominated solutions in different generations for the circle benchmark. 

 

Figure 6.  The average service distance of non-dominated solutions in 
different generations for the square benchmark.  

 

 

Figure 7.  The average network transmission cost of non-dominated 
solutions in different generations for the square benchmark.  

 

Figure 8.  The average service purchase cost of non-dominated solutions in 
different generations for the square benchmark. 

 

Figure 9.  The average total number of serviced demand points of non-
dominated solutions in different generations for the square benchmark. 

 

Figure 10.  The average service distance of non-dominated solutions in 
different generations for the triangle benchmark.  
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Figure 11.  The average network transmission cost of non-dominated 
solutions in different generations for the triangle benchmark.  

 

Figure 12.  The average service purchase cost of non-dominated solutions in 
different generations for the triangle benchmark. 

 

Figure 13.  The average total number of serviced demand points of non-
dominated solutions in different generations for the triangle benchmark. 
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Abstract�On the practice of clinical medicine, decisions

that involve high uncertainty must be taken [12], according

to this, the medical diagnose may be described as the attempt

of taking right decisions despite the use of inadequate

information [11]. Reduction of processes is one of the

most frequent applications of Arti�cial Intelligence (AI),

there are several methods to achieve this, one of which

is the Genetic Algorithm Optimizing Method (GAOM), that

searches for the best solution to a problem in a set of

multiple possible options. In the speci�c case of the medical

duty, developing intelligent systems should be considered in

terms of credibility, to reach this, the objective is to value an

algorithm previously developed, measuring its functionality

in the clinical medicine by its utility for diagnosing, it is done

through contingency charts in order to know: (a) sensibility,

(b) speci�city, (c) predictive positive value y (d) predictive

negative value.

Keywords: Genetic Algorithms, Medical Screening, Arti�cial

Intelligence

1. Introduction
"Arti�cial Intelligence, does not imply mere information" [4]

Arti�cial Intelligence AI is a science that designs systems

capable to show human behavior features as: (a) language,

(b) ratio or intelligence and (c) apprenticeship, among other

things [1]. Due to this, AI is applied on different science and

technology activities, not excluding Bio-science, it has been

applied in the medical area to: (a) search for ideal solutions

and for (b) agility and prevention in medical processes.

An intelligent system is not conscious about its processes.

Although the increasing incursion of this systems in the

medical area [6], [7], [8]. , only few of them specify the

requirements to make this intelligent system a functional

system and with a certain level of credibility. For example,

the implementation of the genetic algorithm AG-PxQ, that

shows the results of an intelligent system for the selection

of features in the burnt patient unit of an hospital; when

this results were shown to the doctors in the clinical �eld,

they approved and amazed at them, but mentioned that

it cannot be applied due to its lack of medical screening

bases, disabling the medical professional to have practical

use of this intelligent system. Medical screening is justi�ed

on the statement that declares that its better for the patient

to detect a disease as fast as possible, or in the case of

patients with accident consequences, to detect the principal

problems that may complicate recovery. The triage, method

to categorize emergency patients [9], through the medical

screening employes methodologies that validate diagnostic

tests for its use on diseased or healthy patients; one of these

methodologies is the contingency chart.

2. Methodology for validation of diag-

nostic test

On the validation of a diagnostic test, statistical perspec-

tive plays a very important role. On statistics, contingency

charts are used to analyze relations between nominal or

ordinal variables. A contingency chart is de�ned by the

number of variables to analyze. Therefore a 2x2 contingency

chart will analyze relations between two variables, being

compound by rows for information of one of the variables

and columns for information of the other variable; lines and

columns form cells, where frequencies of each combination

of the analyzed variables will be set, as shown on Figure 1.

The statistics with medical utility that can be obtained

from a contingency chart, are: (a) sensibility, (b) speci�city,

(c) predictive positive value y (d) predictive negative value,

among others.
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Fig. 1: Contingency Table

One of the aspects that require validation on medical

ambit is the capability to diagnose diseased patients as

diseased, in other words, certainty that the patient has a

disease or is dying. This measurement is called sensibility,

and is de�ned as the probability of having a diagnose with

positive results when the disease is present or there's the

possibility that the patient will die; this group can be de�ned

on a contingency chart as true-positive. Then, it can be

declared that sensibility is the total percentage of diseased

patients that have a positive diagnostic result. [12] If the

diagnostic of the diseased patients can be validated, then

the diagnostic of the healthy patients can be validated also.

This measurement is called speci�city, and is de�ned as the

probability of having a negative result if the patient is not

been infected or diseased; this group is called true-false on

a contingency chart. Then, it can be declared that speci�city

is the total percentage of non-diseased (healthy) patients that

have a negative diagnostic result. [12]. Another aspect that

requires validation in the medical �eld is the certainty that

the obtained result of a diagnostic test is correct. Probability

of having the when the result of a diagnostic test is positive

is known as Positive Predictive Value (+PV). On the other

hand, probability of not aving the disease when the result of

a diagnostic test is negative is known as Negative Predictive

Value (-PV). [12]

3. Short explanation of the results of the

AG-PxQ intelligent system

The genetic algorithm, one of the best known models of

evolutionary computation suggested by Holland in 1975 [3],

works with a set (population) of possible solutions (indi-

viduals) with the best capacity (adaptation/�tness). Popula-

tion changes according to an iterative process (generations)

where individuals with best pro�ciency have the chance to

survive, go through the next generation, and take part with

genetic operators [5]. Table 1 shows the AG-PxQ attributes

that medical specialists consider as parameters that collect

relevant clinical evidence to establish burnt-patients survival.

After creating the Initial population for the AG-PxQ

based on a data base of 100 patients, Successor populations

Table 1: Considered parameters for serious burnt patients.

Name Description

Genre Genre of the patient
Age Age of the patient
Tot Burnt surface in porcent
Prof Burnt surface in depht
Weight Weight of the patient
SAPS General severity indicator
Inh Inhibitor utilisation
BACTEREMIA Bacterian presence in blood
PNEUMONIA Pulmonary infection
WOUND INFECTION Surgical infection
Comorbilidad Cardiaca Previous cardiopathy
Comorbilidad Respiratoria Respiratory problems
Comorbilidad Hepatica Previous hepatic problems
HTA Arterial hypertension
Diabetes Diabetic patient
Sida drogas Drug consumption with HIV
Comorbilidad Renal Kidney problems
muere Decease foresight

were generated using different seeds, which is a speci�c

space to start searching for an ideal solution; seed1 was

selected as the most promising location, generating multiple

combinations (individuals) that might be the ideal solution,

in other words, the attributes combination that may present

the higher probability patient survival.

The result after different tests, as shown in Table 2,

suggested that the 5 variables (0, 1, 3, 5, 14) that match

with: (a) total burnt surface, (b) burnt surface depth, (c)

patient's weight, (d) pulmonary infection and (e) Arterial

hypertension are the best options to apply on a patient with

severe burns, since it gets the better adaptation percentage

according to the experiment.

Table 2: Considered parameters for serious burnt patients.

Experiment Adaptation Variables Matching tests

0.9545 1 5
0.9545 2 5 10
0.9545 3 5 14 16
0.9545 4 5 10 12 13
1.0000 5 0 1 3 5 14
0.9545 6 5 10 12 13 14 15
0.9545 7 5 10 12 13 14 15 16
0.9545 8 1 5 10 12 13 14 15 16
0.9545 9 1 5 8 10 12 13 14 15 16
0.9545 10 0 1 3 5 10 12 13 14 15 16
0.9545 11 0 1 2 3 4 5 10 12 13 14 15
1.0000 12 0 1 2 3 4 5 7 8 9 10 11 15
0.9545 13 0 1 3 4 6 7 8 9 11 12 13 15 16
1.0000 14 0 1 2 3 4 5 7 8 9 10 11 12 13 15
0.9090 15 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16
0.9090 16 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.9090 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4. Application of the validation method

AG-PxQ uses an original data base of about 100 severe

burnt patients, on which is indicated the medical apprecia-

tion about the patient's triage, with a nominal dichotomic

attribute of the decease foresight. This attribute is used as
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Fig. 2: Contingency Table Design with AG-PxQ

one of the variables that occupy the columns at the 2x2 con-

tingency chart. AG-PxQ uses the data collector tool WEKA,

speci�cally the NSGA II method, as the method which

features will calculate and classify the adaptation/�tness

level of each individual; wherefore original data base is

passed through WEKA to see how it develops patient's

triage, this will produce information that will be used to �ll

up the lines on the contingency chart corresponding to the

diagnostic test that is going to be compared to the medical

triage, as shown on Figure 2.

The formulas to get validity and security (reliability) in the

area of public health are (1) Sensibility (S), (2) Speci�city

(SP), (3) Positive Predictive Value (+PV),

(4) Negative Predictive Value (-PV).

S = (TP/(TP + FN)) ∗ 100. (1)

SP = (TN/(FP + TN)) ∗ 100. (2)

+PV = (TP/(TP + FP )) ∗ 100. (3)

−PV = (TN/(FN + TN)) ∗ 100. (4)

5. Validation results

As seen on Figure 3, the design of the contingency chart

facilitates calculation of statistic values for AG-PxQ validity

and reliability.

Using the previously described formulas the following

values are obtained:

S = (32/(32 + 7)) ∗ 100 = 82.05 (5)

SP = (57/(4 + 57)) ∗ 100 = 93.44 (6)

+PV = (32/(32 + 4)) ∗ 100 = 88.89 (7)

−PV = (57/(7 + 57)) ∗ 100 = 89.06 (8)

6. Conclusions and future projects

Once the results of the tests for validity and reliability

of the AG-PxQ have been described and analyzed, the

conclusion is:

a) The total percentage of diseased patients that have a

Fig. 3: Contingency Table Values with AG-PxQ

positive diagnostic (sensibility) is 82.05%, which is a very

acceptable value of validity.

b) The total percentage of non-diseased (healthy) patients

with a negative diagnostic (speci�city) is 93.44%, which is

a very acceptable value of validity.

c) Probability of presenting certain disease when the result

is positive in the diagnostic test (test) (Positive Predictive

Value or +PV) is 88.89% Which is a very acceptable value

of reliability on diagnostic testing.

d) Probability of not presenting certain disease when

the result is positive in the diagnostic test (test) (Negative

Predictive Value or -PV) 89.06%, which is a very acceptable

value of reliability on diagnostic testing.

As future projects, the following topics are proposed:

• Utilization of the proposed algorithm using an enlarged

data base.

• Application on real cases and valuation of results on a

ICU supplied clinic.

• Application of the methodology of this system in other

medical areas.

References
[1] Petot GJ, Marling C, Sterling L. (1998). An arti�cial intelligence

system for computer-assisted menu planning. J Am Diet Assoc

98:1009- 14 8.
[2] Bell AJ. (1999). Levels and loops: the future of arti�cial intelligence

and neuroscience. 354:2013- 20.
[3] Holland, J.H. (1975). Adaptation in Natural and Arti�cial Systems.

Ann Harbor, MI: Univ. Of Michigan Press.
[4] Javier Caballero Villarraso, Antonio Romero Tabares, Francisco

J. Gavilán León, Manuel Baena García, Francisco Javier Díez
Vegas, Sevilla. (2011). Aplicación de algoritmos genéticos y

sistemas expertos en medicina asistencial. Agencia de Evaluación de
Tecnologías Sanitarias de Andalucía

[5] J.A. Del Valle-López, R.A. Díaz-Valladares, B.R. Quintero-Silva, J.A.
Serrano-Martínez. (2013). Aplicación de los algoritmos genéticos a la

UCI para la clasi�cación de pacientes. 978-607-95255-4-5
[6] Holman JG, Cookson MJ. (1987). Expert systems for medical

applications. J Med Eng Technol. 11:151-9.
[7] Edwards M, Morse DR, Fielding AH. (1987). Expert systems: frames,

rules or logic for species identi�cation? Computational Applied
Bioscience. 3:1-7.

[8] Flouris AD, Duffy J. (2006). Applications of arti�cial intelligence

systems in the analysis of epidemiological data (Eur J Epidemiol).
21:167-70

144 Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  |



[9] María M. Abad-Grau, Jorge S. Ierache, Claudio Cervino. (2007).
Modelado de Sistema Experto para Triaje en Servicios de Urgencias

Médicas Universidad de Granada, Facultad de Informática Ciencias
de la Comunicación y Técnicas Especiales, Universidad de Morón. p.
1734-1744

[10] L. Salleras. (1994). La medicina clínica preventiva: el futuro de la

prevención. Med Clin (Barc). 102 Supl 1: 5-12.
[11] Riegelman RK, Hirsch RP. (1989). Studying a Study and Testing a

test: How to read the medical literature. Boston: Little Brown.
[12] Á. Ruiz Morales, L.E. Morillo Zárate. (2004). Investigación clínica:

epidemiología clínica aplicada. Edición Médica Panamericana p.576.

Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  | 145



 

146 Int'l Conf. Genetic and Evolutionary Methods |  GEM'13  |




