
SESSION

MULTI-OBJECTIVE OPTIMIZATION +
COMBINATORIAL OPTIMIZATION +
AGENT-BASED ALGORITHMS +
COMPUTATIONAL BIOLOGY

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 1

2 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Emergent System Effects from Microscopic Evasion Choices in a
Predator-Prey Simulation

Chris J. Scogings
Computer Science

Massey University - Albany Campus
North Shore 102-904, Auckland

New Zealand
email: c.scogings@massey.ac.nz

Ken A. Hawick
Computer Science

Massey University - Albany Campus
North Shore 102-904, Auckland

New Zealand
email: k.a.hawick@massey.ac.nz

April 2013

ABSTRACT

A wide range of predator evasion strategies have been re-
ported for several real predator-prey systems in the wild.
We investigate predator evasion in a system of many simu-
lated animal agents. Our model is capable of simulating the
emergent effects arising from around a million individual mi-
croscopic agents which make individual intelligent choices
based on their local information. We find oscillatory and
other system wide effects arising from enhanced abilities of
prey to evade their predators. We compare some of these
effects to real predator-prey observed patterns of behaviour.
We find additional oscillatory effects arising when prey can
evolve towards different levels of evasive behaviour.

KEY WORDS
agent-based model; animat; overcrowding; prey evasion;
evolved behaviour; intelligent agents.

1 Introduction

Predator-prey systems are often identified in nature and some
of the effects understood from direct observation. Many of
the system wide emergent effects are however still poorly
understood, but can be probed using computer simulations.
In this paper we investigate emergent oscillatory phenomena
arising from population fluctuations when prey are able to
evade predators.
Agent-based “Artificial life” models that simulate predator-
prey systems are well known [1–5]. Such models consisted of
agents that were entirely virtual and did not attempt to model
real animals. Further work moved towards a modicum of real
animal behaviour leading to the term “animats” [6, 7] being
used for agents that attempt to model some aspect of real an-
imal behaviour including flocking [8], sentinels [9] and ter-

Figure 1: The situation at step 900 of a typical run showing
animats on a square grassed area. Predators are black and
prey are white. Various macro-clusters, including spiral for-
mations, have emerged.

mites [10].
Many agent-based models focus on “emergence” – the com-
plex and often unexplained patterns and clusters that emerge
from the interactions of many agents at the local level. In
predator-prey models, emergence can take the form of the de-
fensive spirals and other features discussed in [11] and shown
in Figure 1.
One aspect of real predator-prey behaviour is the use of eva-
sion techniques by prey [12–14] and how such evasion ca-

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 3

pabilities affect both predators and prey. Of particular in-
terest to this investigation is that large numbers of prey can
lead to overcrowding which reduces the ability of individual
prey to evade predators. Examples include: predators that
employ a “sit-and-wait” technique will usually benefit from
overcrowded prey [15]; prey that rely on hiding in burrows
can have hiding places reduced by overcrowding [16]; and
antelope in large herds are less vigilant than those in smaller
groups [17].
As the foundation for an investigation into prey evasion, this
paper makes use of a well-established spatial predator-prey
model [18]. The model consists of a flat plain on which large
numbers of animats reproduce, feed, flee predators or hunt
prey and eventually die. The model reproduces the repet-
itive cycle of behaviour that is well known from predator-
prey equation-based models such as the Lotka-Volterra equa-
tions [19]. Predators kill prey and, if prey is plentiful, the
predator numbers increase, leading to an increased demand
for prey which causes the prey population to drop and this in
turn causes a drop in the predator population which allows
the prey population to recover, and so the cycle continues.
The model abstracts over the exact mechanisms for traits such
as prey evasion to evolve or appear. The animat model we use
has a large enough population that we can study such effects
from a statistical perspective over several generations. Obser-
vations are therefore insensitive to microscopic implementa-
tion details on how such behaviour would actually be passed
on in real biological systems. We present results on intro-
ducing: different (but fixed) evasion abilities; the effect of
reducing evasion abilities when prey becomes overcrowded;
and the evolution of evasion abilities over several generations.
In this paper we investigate the effect on both predator and
prey populations, and thus on the carrying capacity of the sys-
tem as a whole, when prey make use of evasion techniques. A
brief overview of the predator-prey model is provided in Sec-
tion 2. The introduction of a fixed and identical evasion abil-
ity for all predators is discussed in Section 3. Section 4 inves-
tigates the effects of a reduction in prey evasion ability due to
prey overcrowding. Section 5 allows prey to evolve the eva-
sion ability through mutation across generations and investi-
gates how the evolutionary process affects both the predator
and prey populations. We discuss the implications of traits
such as evasion on the overall system in Section 6 and offer
some conclusions and ideas for future work in Section 7.

2 The Predator-Prey Animat Model

The model contains two groups of interacting agents (or “an-
imats”) – the predators and the prey. Every animat maintains
its current state including: current health; current age; and
an x-y location on the flat, 2-dimensional map. Every animat
also carries a set of rules (depending on species). The rule
sets are listed in Table 1.

Table 1: Animat Rule Sets in Priority Order
Rules for predator animats: Rules for prey animats:

1. breed if health > 50%
and mate adjacent

2. eat prey if health < 50%
and prey adjacent

3. seek mate if health >
50%

4. seek prey if health <
50%

5. randomly move to any
adjacent position

1. flee from predator if
predator is adjacent

2. graze (eat grass) if health
< 50%

3. breed if health > 50%
and mate adjacent

4. seek mate if health >
50%

5. randomly move to any
adjacent position

Each animat is initialised with the current age set to zero.
The age is incremented at every time step of the simulation
and when it reaches a pre-set maximum the animat “dies of
old age” and is removed. When a new animat is produced,
its current health value is set to the health of its parent. From
then on, the current health is reduced at each time step and if
it reaches zero the animat “starves to death”. If an animat eats
then the current health value is increased by a certain amount.
The concepts of health values and animats eating behaviours
are discussed in [20].
Prey eat “grass” which is placed at specific locations on the
map – usually in a contiguous area. Grass has a fixed “nu-
tritional value” and this is the number of health points that
prey receive when executing the graze rule. In these exper-
iments grass has a value of 45. Thus if a prey animat has
5% health and executes the graze rule, the animat’s health
would increase to 50%. However, if a prey animat with 75%
health executed the graze rule the animat’s health would rise
to 100% as current health may not exceed 100%. The exper-
iments discussed in this paper are situated on a large square
“grassed area” which explains why the diagrams showing an-
imat locations have a distinct edge. Containing the animats
is useful as it prevents populations becoming unmanageable
and also limits the area of the (otherwise unbounded) grid in
which the animats exist. Previous work [21] has shown that
these limitations do not affect the emergent patterns and clus-
ters of the model.
Predators eat prey but only do so if the predator is “hungry”
(i.e. the current health is less than 50%) and the prey is ad-
jacent to the predator. Early on in the development of the
model, a problem was identified whereby several predators
simultaneously consumed the same prey animat. This led
to the situation where a large number of predators could be
sustained by an unrealistically small number of prey. This
problem was solved by immediately removing “consumed”
prey from the list of available animats in the given time step.
Animats are updated in a random order which removes any

4 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

spatial artifacts from the sweep order. The process is thus a
two-phase system in which the variables for all animats are
updated after all rules have been executed. A full discussion
of this (and other) methods of updating agent-based models
can be found in [22].
Rules are considered in a strict priority order. Each time-step,
every animat attempts to execute the first rule in its rule set.
However, most rules have conditions and often cannot be ex-
ecuted. For example, predators can only eat prey if prey are
adjacent. If the conditions for the first rule can not be satis-
fied, the animat attempts to execute the next rule in the set and
so on. Breeding only has a certain chance of success. This is
a simple alternative to factoring in a host of complicated pa-
rameters including birth defects, nutrition, adequate shelter
and so on. Changing the chances of a successful birth can
dramatically alter the number of animats and can sometimes
cause the extinction of all animats. For these experiments the
chance of a successful birth was set to 15% for predators and
80% for prey.

3 Experiment 1 – Evasion Values

Figure 2: Plot showing the effects of fixed prey evasion val-
ues on prey populations. As evasion becomes more effective,
predators catch less prey allowing the prey population to in-
crease.

In this experiment, prey evasion of predators was introduced
into the model in the following way: each prey agent was
assigned an “evasion value” which is an integer value in the
range 0 to 99. The evasion value is the percentage chance that
the prey will evade a predator. Hence, for example, there is
a 10% chance that prey will evade a predator when the prey
animat has an evasion level of 10 and there is an 80% chance
that prey will evade a predator when the prey animat has an
evasion level of 80, and so on.
Prey evasion is checked during the execution of a predator’s
“eat” rule. When a predator is adjacent to prey and executes

the “eat” rule, the chance of prey evasion is calculated. If
the prey successfully evades the predator, the predator does
not eat and thus does not receive the increased health from
eating.
At the start of any simulation, all prey receive the same ini-
tial evasion value. The model can then be run in one of two
ways: either every prey animat always carries the initial eva-
sion value, i.e. all prey are clones of the initial prey; or the
evasion level is allowed to mutate and evolve from one gen-
eration to the next.

Figure 3: Plot showing the effects of fixed prey evasion values
on predator populations. As evasion becomes more effective,
predators catch less prey causing the prey population to in-
crease and in turn making it easier for predators to find more
prey. The predator population thus also increases – at least
initially.

In this experiment, only the initial evasion values were used
(all prey were identical clones). This enabled an analysis of
the effect on both prey and predator populations of an evasion
value that was fixed across the prey population. Several fixed
evasion values were tested and the results are shown in Fig-
ure 2 (prey population) and Figure 3 (predator population).
Each data point in the graphs is the final population figure at
the end of a simulation of 1,000 time steps during which all
prey carried the designated evasion value.
There is a distinct change in the emerging formations of an-
imats during these experiments. Figure 4 shows the situa-
tion during a run where all prey have a fixed evasion value of
60. Because prey now have considerable success in evading
predators, the animat clusters have taken on a more diffuse
nature with prey in larger clusters. There are also small re-
gions where predators have died out and only prey remain.
This situation should be compared with Figure 1 in which
prey have an evasion value of zero.
An unexpected outcome of this experiment is that the preda-
tor population initially benefits from increasing the prey eva-
sion value, even though increased evasion values mean that

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 5

Figure 4: The situation at step 1000 of a run in which all prey
have a fixed evasion value of 60. Predators are black and prey
are white. The tight formations shown in Figure 1 have disap-
peared and animats are spread in a far more diffuse manner.
This screen shot contains 11,694 predators and 132,434 prey
animats.

individual predators catch less prey. The reason for this is
that the increased evasion chance allows individual prey to
escape and breed, thus increasing the prey population. This
increased prey population, in turn, provides predators with
more available prey and thus the predator population also in-
creases, following the well known boom-bust population phe-
nomena [23].
However, when the prey evasion value reaches values above
70, individual prey becomes too difficult to catch and preda-
tors can not catch enough to sustain themselves. Thus, from
this point on, there is a rapid downward trend in predator
numbers and a corresponding increase in prey population.

4 Experiment 2 – Overcrowding

Experiment 1 in section 3 established that both predators and
prey benefit from prey evasion up to the point when the prey
evasion value moves above 70. Once the value is greater than
70, prey can successfully evade predators most of the time
leading to predators starving and the predator population be-
coming unsustainable.
In real animal populations, prey evasion does not reach such
levels as some other factor usually intervenes to prevent
this. These may include: predators evolving speed or other

attributes that reduce prey evasion effectiveness, predators
switching to other prey, or overcrowding of prey leading to
a reduction in the ability to evade predators [15, 17, 24].
In this experiment, we assume that when the prey popula-
tion exceeds 50,000 the prey will become overcrowded and
that this overcrowding leads to a reduction in the prey evasion
value. At this stage, the reduction is uniform across the prey
population but future work may include making the reduction
dependent on local factors. The formula used to calculate the
reduction is (where N is the total prey population):

if (N > 50,000) then:
reduction = (N - 50,000) / 1,800

else:
reduction = 0

The reduction is then applied to the evasion value for each
prey animat.
Once again, all prey were assigned a fixed prey evasion value
and offspring were clones, i.e. every prey animat only ever
carries the initial fixed evasion value. Several fixed evasion
values were tested and the results are shown in Figure 5 (prey
population) and Figure 6 (predator population). Each data
point in the graphs is the final population figure at the end of
a simulation of 1,000 time steps during which all prey carried
the designated evasion value.

Figure 5: Plot showing the effects of fixed prey evasion val-
ues on prey populations. Predators are assumed to benefit
from prey overcrowding and prey evasion values are reduced
if the population is over 50,000. As evasion becomes more ef-
fective, predators catch less prey causing the prey population
to increase.

The effects of prey overcrowding are clearly shown in Fig-
ure 5 where the prey populations never climb above 120,000.
This should be compared with the situation in which prey
overcrowding was ignored and prey populations reached fig-
ures in excess of 350,000 – see Figure 2. Figure 6 shows the
benefits to the predator population of prey overcrowding in

6 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Figure 6: Plot showing the effects of fixed prey evasion val-
ues on predator populations. Predators are assumed to benefit
from prey overcrowding and prey evasion values are reduced
if the population is over 50,000. As evasion becomes more
effective, predators catch less prey causing the prey popula-
tion to increase and in turn making it easier for predators to
find more prey. The predator population thus also increases.

Figure 7: Plot showing the effect on the prey population as
prey evasion values are allowed to evolve naturally over time.
All prey were initially assigned an evasion value of 0. The
overcrowding reduction is applied to evasion values, as de-
scribed in Experiment 2 in section 4. The plot shows the av-
erage population over ten runs with different random number
seeds.

that predators are always able to catch enough to eat and to
increase their population, even when prey evasion values are
above 70.

Figure 8: Plot showing the effect on the predator population
as prey evasion values are allowed to evolve naturally over
time. All prey were initially assigned an evasion value of
0. The overcrowding reduction is applied to evasion values,
as described in Experiment 2 in section 4. The plot shows
the average population over ten runs with different random
number seeds.

5 Experiment 3 – Evolution of Evasion

Experiment 1 in section 3 established that different (fixed)
prey evasion values affected both the predator and prey popu-
lations. In particular if the evasion value was too high (above
70) it became impossible for predators to sustain themselves
and the prey population consequently increased dramatically.
Experiment 2 in section 4 showed that both predator and prey
populations could be stabilized by introducing a reduction in
prey evasion values based on the size of the prey population.
This experiment investigates what happens when prey are al-
lowed to evolve an evasion value. In this experiment, all prey
were initially assigned an evasion value of 0 but evasion val-
ues were allowed to evolve due to mutation. When a new prey
animat is produced, it inherits the evasion value of its parent
but makes a random change to the evasion value (mutation).
This change can be as much as 5 more or less than the inher-
ited evasion value. For example, if an existing prey animat
has an evasion value of 25 its offspring can have evasion val-
ues anywhere in the range from 20 up to 30. However, prey
evasion values are restricted to a minimum of 0 and a maxi-
mum of 99.
Figure 7 and Figure 8 show the average populations of prey
and predators respectively over time as the evasion values
mutate and evolve within the prey population. Evasion values
initially climb rapidly as individual prey mutate to a higher
evasion value, enabling them to more easily evade predators
and thereby survive to produce more offspring. However, the
prey population increases to the point where prey become
overcrowded and a reduction is applied to the evasion values.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 7

Figure 9: Plot showing how the prey evasion values evolved
over the simulations shown in Figure 7 and Figure 8.

This enables predators to more easily catch prey and thus sta-
bilizes the populations in the typical “boom-bust” oscillations
characteristic of predator-prey models [23].
Figure 9 shows the change in the average prey evasion value
over time. There is an initial increase followed by a steady
state as the populations stabilize. The curve is quite smooth,
albeit with continued fluctuations superposed as animats ad-
just their evasiveness locally.

6 Discussion

An interesting and important general observation concerns
the interplay between what strategies work well for individ-
ual agents and what works best for the system as a whole. As
figures 2 and 3 show, a prey species that is good at predator
evasion may well survive initially but this can lead to massive
over population levels of prey which in turn lead to a mas-
sive increase in predators before the whole system crashes.
Predators then wipe out all prey before dying themselves of
subsequent starvation. In many other variations of the core
model we have found that such crashes are often avoided and
the spatial model “equilibrates” and settles to finite dynamic
mean population values around which stable and regular os-
cillations occur.
As the experiments in section 4 showed, a more realistic prey
evasion probability does allow the system to reach a dynamic
equilibrium mean values without complete extinction crashes
occurring. In general if the spatial model system is large
enough, even modestly large patches of local extinction can
be tolerated and the system as a whole will recover. There
are no obvious systematics to the fluctuations in the plots of
section 4.
The most interesting case is when individual animats are able
to adjust their microscopic behaviours and we observe a more

sophisticated set of oscillations present. In addition to indi-
vidual predator-prey coupled oscillations with a period of ap-
proximately 270 time steps, another slower envelope of 1,350
time steps emerges. We hypothesise that this is the adjust-
ment time constant for interacting spatial regions of interact-
ing animats to appropriately mix and adjust to prevailing con-
ditions.
There is another very much slower envelope observed in the
population plots, with a period in excess of 5,000 time steps
and that we believe from prior work is related to the size of
the model box region. The oscillation is likely caused by re-
flections from the boundary. A larger system size would have
longer time constant, or by imposing periodic boundary con-
ditions the effect could likely be removed. It is not overly
influential for this study of evasion effects however. Figure 4
suggests that at any given time there are a number of rela-
tively localised subsystems of interacting predators and prey
in the model system. If a local extinction does occur, then
stragglers colonize and take over that empty region and so
the overall system - providing it is large enough - will not
suffer total extinction, due to local fluctuations. A systemic
effect such as massive over success of, for example, prey (as
found in Experiment 1 in section 3) is necessary for a com-
plete crash.
There is scope for a more detailed Fourier time-series analy-
sis [25] averaged over sample configurations to see if relation-
ships between these periods and the model parameters can be
found.
Real animals observed in the wild likely interact over a highly
localised region. Nevertheless the individual regions - pride
groups and so forth - will still interact at their regional bound-
aries and hence individual choices will have an effect on the
system as a whole. The time constant for this coupling to-
gether of localised regions is an interesting area for further
investigation and could have implications for game manage-
ment decision making - animal relocation; fence and bound-
ary management and related practical options.

7 Conclusion

We have shown how predator evasion can be incorporated
into an individual agent-based “animat” model to produce a
number of emergent effects on the system as a whole. These
include: over population of prey followed by over predation
and subsequent system wide population crashes; and longer-
term approach to a dynamic mean equilibrium around which
stable spatial fluctuations are possible.
We have also observed the superposition of oscillations which
we hypothesize is due to a new regional effect caused by local
adjustments by individual animats within a region. We have
shown how our rule-based model supports individual animats
evolving traits and effectively adjusting a model parameter
to reach a dynamic equilibrium that is stable against whole

8 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

system crashes.
We believe there is ample scope for a more extensive quanti-
tative analysis to further investigate interactions between lo-
calised regions. It may also be possible to investigate an im-
position of deliberate boundary walls or isolation artifacts
such as fences and animal group relocations, both in the
model as well as in real predator-prey systems.

References
[1] Adami, C.: On modeling life. In Brooks, R., Maes, P., eds.:

Proc. Artificial Life IV, MIT Press (1994) 269–274

[2] Ray, T.: An approach to the synthesis of life. Artificial Life
II, Santa Fe Institute Studies in the Sciences of Complexity xi
(1991) 371–408

[3] Holland, J.H.: Echoing emergence: Objectives, rough defini-
tions, and speculations for echo-class models. In Cowan, G.A.,
Pines, D., Meltzer, D., eds.: Complexity: Metaphors, Models
and Reality. Addison-Wesley, Reading, MA (1994) 309–342

[4] Tyrrell, T., Mayhew, J.E.W.: Computer simulation of an ani-
mal environment. In Meyer, J.A., Wilson, S.W., eds.: From
Animals to Animats, Proceedings of the First International
Conference on Simulation of Adaptive Behavior. (1991) 263–
272

[5] Yaeger, L.: Computational genetice, physiology. metabolism,
neural systems, learning, vision and behavior or polyworld:
Life in a new context. In Langton, C., ed.: Proc Artificial Life
III Conference. (1994)

[6] Wilson, S.W.: The animat path to AI. In Meyer, J.A., Wilson,
S., eds.: From Animals to Animats 1: Proceedings of The First
International Conference on Simulation of Adaptive Behavior,
Cambridge, MA: The MIT Press/Bradford Books (1991) 15–
21

[7] Ziemke, T., Balkenius, C., Hallam, J., eds.: From Animals
to Animats 12 - 12th Int. Conf. on Simulation of Adaptive
Behaviour (SAB 2012). Number 7426 in LNAI, Odense,
Denkmark, Springer (2012)

[8] Fine, B.T., Shell, D.A.: Examining the information require-
ments for flocking motion. In: From Animals to Animats
12 - Proc. 12th Int. Conf. on Simulation of Adaptive Be-
haviours (SAB2012). Number 7426 in LNAI, Odense, Den-
mark, Springer (2012) 442–452

[9] Scogings, C.J., Hawick, K.A.: An investigation into the
effects of sentinels on animat collectives. In: Proc. Nine-
teenth IASTED Int. Conf on Applied Simulation and Mod-
elling (ASM 2011). Number 715-095, Crete, Greece, IASTED
(2011) 221–226 CSTN-121.

[10] Scogings, C.J., Hawick, K.A.: Simulating intelligent emergent
behaviour amongst termites to repair breaches in nest walls. In:
Proc. Int. Conf on Computational Intelligence (CI2010), Maui,
Hawaii, IASTED (2010) 125–132

[11] Hawick, K.A., Scogings, C.J., James, H.A.: Defensive spiral
emergence in a predator-prey model. Complexity International
12 (2008) 1–10 ISSN 1320-0682.

[12] Woodbury, P.: The geometry of predator avoidance by the blue
crab, callinectes sapidus rathbun. Animal Behaviour 34 (1986)
28–37

[13] Harper, D., Blake, R.: Energetics of piscivorous predator-prey
interactions. Theoretical Biology 134 (1988) 59–76

[14] Weihs, D., Webb, P.: Optimal avoidance and evasion tactics
in predator-prey interactions. Theoretical Biology 106 (1984)
189–206

[15] Beauchamp, G., Ruxton, G.: Changes in antipredator vigilance
over time caused by a war of attrition between predator and
prey. Behavioral Ecology 23 (2012) 265–270

[16] Hugie, D.M.: A waiting game between the black-bellied
plover and its fiddler crab prey. Animal Behaviour 67 (2004)
823–831

[17] Scheel, D.: Watching for lions in the grass: the usefulness of
scanning and its effects during hunts. Animal Behaviour 46
(1993) 695–704

[18] Scogings, C.J., Hawick, K.A., James, H.A.: Tools and tech-
niques for optimisation of microscopic artificial life simula-
tion models. In Nyongesa, H., ed.: Proceedings of the Sixth
IASTED International Conference on Modelling, Simulation,
and Optimization, Gabarone, Botswana, IASTED (2006) 90–
95

[19] Lotka, A.J.: Elements of Physical Biology. Williams &
Williams, Baltimore (1925)

[20] Scogings, C.J., Hawick, K.A., James, H.A.: Tuning growth
stability in an animat agent model. In: Proceedings of the 16th
IASTED International Conference in Applied Simulation and
Modelling (ASM 2007). Number 581-094, Palma de Mallorca,
Spain, IASTED (2007) 312–317

[21] Scogings, C.J., Hawick, K.A.: Global constraints and diffu-
sion in a localised animat agent model. In: Proc. IASTED Int.
Conf. on Applied Simulation and Modelling, Corfu, Greece,
IASTED (2008) 14–19

[22] James, H.A., Scogings, C.J., Hawick, K.A.: Parallel syn-
chronization issues in simulating artifical life. In Gonzalez,
T., ed.: Proc. 16th IASTED Int. Conf. on Parallel and Dis-
tributed Computing and Systems (PDCS), Cambridge, MA,
USA, IASTED (2004) 815–820 ISSN 1925-7937; ISBN 0-
88986-421-7.

[23] Volterra, V.: Variazioni e fluttuazioni del numero d’individui
in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei,
Ser VI 2 (1926)

[24] Jackson, A., Beauchamp, G., Broom, M., Ruxton, G.: Evo-
lution of anti-predator traits in response to a flexible targeting
strategy by predators. Proc. R. Soc. B. 273 (2006) 1055–1062

[25] Grafakos, L.: Nodern Fourier Analysis. Springer (2009)

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 9

Increasing the Density of Multi-Objective Multi-Modal Solutions
using Clustering and Pareto Estimation Techniques

R. Kudikala, I. Giagkiozis, and P.J. Fleming
Department of Automatic Control and Systems Engineering,

The University of Sheffield, Sheffield - S1 3JD, UK

Abstract— For continuous multi-objective optimization prob-
lems there exists an infinite number of solutions on the Pareto-
optimal front. A multi-objective evolutionary algorithm attempts
to find a representative set of the Pareto-optimal solutions. In
the case of multi-objective multi-modal problems, there exist
multiple decision vectors which map to identical objective
vectors on Pareto front. Many multi-objective evolutionary
algorithms fail to find and preserve all of the multi-modal
solutions in the non-dominated solutions set. Finding more of
the available multi-modal solutions would give the decision
maker a greater selection when choosing between solutions.
In this paper, we present an extended version of the Pareto
estimation method, to increase the density of the multi-objective
multi-modal solutions. The method uses clustering analysis to
identify and separate different clusters in the decision variables
space which correspond to the multi-modal Pareto optimal
solutions. Then Pareto estimation procedure is employed for
these individual clusters, there by increasing the density of
available multi-modal solutions. The proposed method has
been tested on experimental test functions and is shown to be
successful.

Keywords: Multi-objective optimization, multi-objective multi-
modal problems, cluster analysis, genetic algorithms.

1. Introduction
Many multi-objective evolutionary algorithms (MOEAs) fail

to find and preserve all of the multi-modal solutions in the
non-dominated solutions set [1]. Due to the incorporation of
diversity operators in MOEA, they will assign low fitness values
to solutions that are densely clustered in objective space, which
will eventually lead to their elimination from the population.
Hence they can identify only one set of decision vectors out
of the multi-modal solutions and converge to any one of the
global optima out of multiple global optima present in the
multi-objective multi-modal problems. Finding the multi-modal
solutions would allow the decision maker a greater choice when
choosing between solutions. For example, in chemical process
optimization the decision maker would want to know about
different temperature settings for which the process can deliver
the same results [2].

In this work, we present an extended version of the Pareto es-
timation method [3], which can be used to increase the number
of multi-modal solutions. The method uses clustering analysis to

Fig. 1: A many to one objective function. The two setsC1

and C2 map to the same Pareto optimal solutions in the Pareto
optimal setP .

identify and separate different clusters in the decision variables
space which correspond to the multi-modal Pareto optimal
solutions. Then Pareto estimation procedure is employed for
these individual clusters, therefore increasing the density of
available multi-modal solutions in multi-objective problems.

The remainder of this paper is organized as follows. In
Section 2 a general definition of a multi-objective optimization
problem and key concepts and definitions are provided. Section
3 presents Pareto estimation method and in Section 4 the
extended Pareto estimation method with clustering is described
for multi-objective multi-modal problems. In Section 5 the
method is tested against a multi-objective multi-modal test
problem with three cases and these tests are reported in Section
6. This paper is summarized and concluded in Section 7.

2. Problems with Multiple Global Optima
A multi-objective problem (MOP) is defined as:

min
x

F(x) = (f1(x), f2(x), . . . , fk(x)) ,

subject tox ∈ S,
(1)

wherek describes the multiplicity of scalar objective functions
f(·) andS is the feasible region. The vector of variables,x,
in this context is often referred to as decision vector while
z = F(x) is referred to as objective vector. An implicit
assumption is that the individual scalar objective functions in
(1) are mutuallycompeting. The objective function described in
(1) can in some cases be a many-to-one mapping. Namely, there
existx,y ∈ S andx 6= y that map to the same objective vector,
F(x) = F(y). This can especially impact the optimization
algorithm when the objective function is many-to-one in the

10 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

domain of Pareto optimal solutions, seeFig. 1. In this case, the
same Pareto optimal objective vector can be obtained for more
than one decision vector.

If the above assumptions hold then only a partial order-
ing can be defined unambiguously. Namely, when comparing
two decision vectorsx, x̃ ∈ S, it can so happen that their
corresponding objective vectors are incomparable. In practice,
this situation is resolved by a decision maker who will select
one solution over all others, thus inducing a form of complete
ordering. However this ordering is mostly subjective, even in
the case that utility functions [4] are used to ease the work of
the DM. In the absence of a DM a usual assumption is that the
relative importance of the objectives,fi, is unknown hence it
is reasonable to obtain several non-comparable solutions. The
problem of inducing partial ordering in Euclidean spaces was
initially studied by Edgeworth [5], and later further expanded
by Pareto [6]. The relations introduced by Pareto are defined as
follows for a minimization problem:

Definition 1: A decision vectorx⋆ ∈ S is said toweakly
dominate a decision vectorx iff fi(x

⋆) ≤ fi(x), ∀i ∈
{1, 2, . . . , k} and fi(x

⋆) < fi(x), for at least onei ∈
{1, 2, . . . , k} thenx⋆ � x.

Definition 2: A decision vectorx⋆ ∈ S is said todominate
a decision vectorx iff fi(x

⋆) < fi(x), ∀i ∈ {1, 2, . . . , k} then
x⋆ ≺ x.

Definition 3: A decision vectorx⋆ ∈ S is said to be
Pareto optimal if there is no other decision vectorx ∈ S
such thatfi(x) ≤ fi(x

⋆), ∀i ∈ {1, 2, . . . , k} and fi(x) <
fi(x

⋆), for at least onei ∈ {1, 2, . . . , k}.

Definition 4: Let F : S → Z, with S ∈ Rn andZ ∈ Rk.
If S is the feasible region then the setZ is the feasible region
in objective space. Given a setA ⊂ Z, the non-dominated
set is defined asP = {z : ∄z̃ � z, ∀z̃ ∈ A}. If A is the
entire feasible region in the objective space,Z, then the setP
is called thePareto optimal set (PS) or Pareto Front (PF).
Any elementz ∈ Z is referred to asobjective vector.

Definition 5: The ideal objective vector, z⋆, is the vector
with elements(inf(f1), . . . , inf(fk)) [7, pp. 16].

Definition 6: The nadir objective vector, znd, is the vector
with elements(sup(f1), . . . , sup(fk)), subject tofi be elements
of objective vectors in the Pareto optimal set [7, pp. 16].

Definition 7: The convex hull [8, pp. 24] of the setC =
{e1, . . . , ek}, denoted asconvC, whereei is a k × 1 vector
of zeros with1 on theith position, is referred to asCHI.

Definition 8: The extended convex hull (EHI) of the set
C, is the union ofCHI and the points in the affine space of
the setC produced by the projection of a Pareto optimal front,
with ideal vector0 and nadir vector1, onto the hyper-surface
of C.

Definition 9: Two decision vectorsx,y ∈ S are said to be
multi-modal solutions if they satisfyx 6= y, andF(x) = F(y)
for all i = 1, . . . , k.

3. Pareto Estimation Method
3.1 Motivation

Consider the following problem. At the end of an optimiza-
tion run on a multi-objective optimization problem we have
a set of solutions that approximate the Pareto optimal front.
Subsequently, these solutions are presented to a decision maker
(DM) who can identify a few candidate solutions that are of
interest, however, he would prefer a solution in the vicinity of
the aforementioned solutions. In this case the analyst does not
have many options and would either restart the optimization
in hope that the preferred solution of the decision maker is
obtained. An alternative is to use an interactive method such
as, progressive preference articulation [9]. These alternatives
present a number of difficulties of which the most obvious one
is that the computational load is increasing disproportionately
to the expected gain as there is absolutely no guarantee that the
preferred solutions will be obtained. This consideration may
lead the decision maker to abandon all the above scenarios and
simply select one solution from the already existing Pareto set
approximation.

The Pareto estimation method (PE) initially introduced in [3]
resolves, to some extent, this issue by allowing the decision
maker to explore more solutions in the vicinity of already
obtained ones without resorting to further optimization. Specif-
ically, Pareto estimation gives positive answer to the question:
“Given a set of Pareto optimal solutions, obtained by any
optimization algorithm, can specific solutions on the Pareto
front be obtained that are not part of the initially obtained Pareto
set?”.

3.2 Overview
In [3] it was shown that using the Pareto estimation method

the number of Pareto optimal solutions can be increased in
specific regions of interest. Pareto estimation was applied to a3-
objective portfolio optimization problem successfully targeting
two regions where the optimization algorithm used could not
obtain solutions across20 optimization runs. However, one of
the assumptions in [3] was that the objective function is one-
to-one, or at least that this condition obtains for the mapping
between the Pareto set in decision and objective space. If
this condition doesn’t hold the artificial neural network used
would face difficulties as for the same objective vector it would
have to produce two or more output vectors simultaneously,
seeFig. 3. In the rest of this section we briefly describe the
Pareto estimation method and then explain the motivation for
the extension introduced in this work. For a more complete
description of the original version of the Pareto estimation
method the reader is referred to [3].

A major motivation for the introduction of PE has been that
Pareto optimal solutions can be obtained in specific regions
of the Pareto front without the need to resort to additional
optimization runs. Although there is no guarantee that such
solutions will be produced the success rate of PE on a set
of difficult test problems illustrated that the relative cost of

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 11

Fig. 2: Illustration of theΠ−1 mapping for a hypothetical Pareto setP .

Fig. 3: The original version of the Pareto estimation method
(top). The extended Pareto estimation method first clusters the
Pareto optimal decision variable vectors and identifies a NN for
every one (bottom).

applying PE before another method is justified [3]. PE depends
on the ability to identify a relationship (mapping) from Pareto
optimal solutions in objective space to decision space. This
relationship can then be manipulated to produce solutions in
specific parts of the Pareto front. We refer to this mapping as,
FP , whose domain of definition is the set of Pareto optimal
objective vectors,P , and its range their corresponding decision
variable vectorsD,

FP : P → D. (2)

We elected originally to use a radial basis neural network as it
has been shown that it has competitive performance compared
to the alternatives, see [10]. The theoretical argument that
supports PE is was presented initially in [11], [12] and was later
used by Zhang et al. [13] to create RM-MEDA, a regularity-
based estimation of distribution algorithm. The argument is
that for continuous multi-objective problems the Pareto optimal
set is a piecewise continuous manifold in decision space. This
effectively enables the identification of the mapping in (2).

3.3 Pareto Estimation - General Procedure
Pareto estimation is comprised of three main parts:

• A transformation of the Pareto optimal solutions in objec-
tive space,Π−1 : P → P̃ .

• The identification of the relationship,̃FP̃ : P̃ → D, where
D are decision vectors corresponding to Pareto optimal
objective vectors,P .

• The generation of a set,E , and its use with theFP̃ mapping
to generate a set of estimated decision vectors,DE .

The first part is essentially a projection of the setP onto the
CHI . This is essential as it simplifies the task of generating
the setE to a large degree, seeFig. 2. Prior to application of
the projection the setP is normalized using,

f̃i =
fi − z⋆i

zndi − z⋆i
, (3)

where z⋆ and znd can be estimated from the Pareto optimal
setP . Using the normalization in (3) the objectives inP are
restricted in the range[0, 1] as shown inFig. 2. Consequently
the normalized objective vectors are projected ontoCHI as
follows,

P̃ = PPT
E +

1

k
J|P|,k. (4)

The matrixJ|P|,k is a |P|×k unit matrix andPE is a projection
matrix obtained as:

PE = H(HTH)−1HT ,

H =

(

e1 −
1

k
1 · · · ek−1 −

1

k
1

)

,
(5)

where ei is a vector of zeros with itsith element set to1.
Next the artificial neural network (ANN) which is employed to
identify the mappingF̃P , is created (see [3]), using̃P andD
as the training inputs and outputs respectively.

When the ANN has been trained, it then can be used for
creating more Pareto optimal solutions in specific regions on
the PF given a set,E , is supplied as input.E can be generated
in one of two ways:

• In a specific region, presumably that is of interest to the
decision maker.

• On the entireCHI , which if PE is successful will cover
the entire Pareto front.

In this paper, we employ the second method as it illustrates
the ability of PE and its extended version presented here, to

12 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

successfully identify Pareto optimal solutions across the entire
front. It should be noted however that we envisage that the
usage of PE would be to target specific parts of the PF as seen
in [3].

4. Clustering and Pareto Estimation for
Multi-Objective Multi-Modal Solutions

In the case of multi-objective multi-modal problems, there ex-
ists multiple decision vectors which result in identical objective
vectors on Pareto front as shown inFig. 1. This corresponds
to the many-to-one mapping of the multiple decision vectors
in D to the objective vectors inP . The decision vectors
corresponding to each multi-modal optimal fronts (Pareto front)
originate from different clustersCm in decision variable space
D. The ANN relationship will fail to produce the one-to-many
mapping ofF̃P̃ : P̃ → D. It will generate any one but not all of
the multi-modal solutions. In order to overcome this problem,
the different clustersCm of multi-modal solutions present in
the non-dominated set can be identified and separated using a
clustering algorithm. The obtained clusters of decision vectors
Cm and corresponding objective vectors inP will have one-
to-one mapping between decision variable space and objective
space for the Pareto front. Once the different clusters of decision
vectors Cm are separated, the ANN can be trained for the
individual cluster of solutionsCm and P̃ to identify number
of one-to-one mappings̃FP̃Cm

: P̃ → Cm.
Most clustering algorithms need the number of output clus-

ters to be pre-specified as an input to the algorithm. In general
we do not know a priori the number of clusters available in the
data set. Bezdek and Hathaway developed a visual assessment
of cluster tendency (VAT) method [14], to identify potential
clusters in a data set. Here the pair-wise dissimilarities between
then individuals of the data set are estimated and reordered,so
that all the neighbouring individuals are consecutively ordered.
The reorderedn × n matrix of pair-wise dissimilarities is
displayed as an intensity image withn × n pixels. Clusters
are indicated by dark blocks of pixels along the diagonal of
the image. However, the VAT method is too computationally
costly for larger data sets. Wang et al., [15], proposed an
improved VAT (iVAT) and an automated VAT (aVAT) methods
to automatically determine the number of clusters and cluster
separation based on the difference between diagonal blocks and
off-diagonal blocks in the image of the reordered dissimilarity
matrix. In this paper, the iVAT and aVAT [15] methods are
used for identifying different clusters of decision vectorsCm in
D, which correspond to multi-modal solutions in the objective
spaceP . The steps involved in clustering and Pareto estimation
of multi-objective multi-modal solutions are summarised as
follows:

Step 1 Extract,P , the non-dominated individuals obtained at
the end run of an optimization algorithm, and,D the
associated decision vectors.

Step 2 Perform clustering analysis on the obtained decision
variable vectorsD using a clustering algorithm.

Step 3 The obtained clusters of decision vectorsCm and
corresponding objective vectorsPCm

will have one-
to-one mapping between decision variable space and
objective space.

Step 4 For each individual cluster normalizeP using (3).
Step 5 Project the normalizedP onto the thek−1 hyperplane

defined by the set of vectors{e1, . . . , ek−1} using (5)
and (4), to producẽP.

Step 6 Identify the mappingF̃P̃Cm

: P̃ → Cm using P̃ and
Cm as inputs and outputs, respectively, and use these
to train the ANN.

Step 7 Create the setE . In this work this is a set of evenly
spaced convex vectors.

Step 8 Use the setE as inputs to the ANN created in Step
5, to obtain estimates of decision vectorsCE .

Step 9 All the setsCE can be used with the objective function
F(·) to verify that the produced solutions are non-
dominated and acceptable.

5. Experimental Setting
We employed the following multi-objective multi-modal test

functions as seen in [1].

F(x) = (f1(x), f2(x))

=

(

n
∑

i=1

sin(πxi),

n
∑

i=1

cos(πxi)

)

xi ∈ [0, 6], i = 1, 2, ..., n.

(6)

The above objective functions are chosen since both objectives
are in conflict with each other and will have a trade-off in the
objective space. For the minimization case, the above problem
will have a known Pareto front which varies between−

∑n

i=1
i

to 0, wherei is the number of decision variables chosen. The
above problem is also a multi-objective multi-modal problem.
The two objective functions are periodic functions with a period
of 2. They will have efficient frontiers which correspond to
the Pareto-optimal solutions for all the decision variable values
varying in the rangesxi ∈ [2r + 1, 2r + 3/2], wherer is an
integer.

Deb and Tiwari [1] developed a generic evolutionary algo-
rithm: Omni-optimizer, which incorporates restricted selection
and crowding measure utilizing both objective and variable
space information to find and preserve a well distributed multi-
modal solutions. Here we use Omni-optimizer for solving the
multi-objective multi-modal test problem in all three cases.
Also we employ the ratio of the inverted generational distance,
DR(·, ·) and the ratio of the mean nearest neighbour distance
SR(·, ·) as well as the C-Metric. Due to space limitations we
cannot include a description of these metrics, the reader is
referred to [3].

6. Results and Discussion
In this paper, we are considering three test cases of the multi-

objective multi-modal optimization problem (6) with different
numbers of variables and population sizes in the optimization.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 13

−2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

f1

f2

Pareto front

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1

x2

Decision vectors

0 50 100 150 200

0

50

100

150

200

No of Pareto solutions

No
 o

f P
ar

et
o

so
lu

tio
ns

Clusters of multi−modal decision vectors

−2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

f1

f2

Pareto front

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1

x2

Decision vectors

0 500 1000 1500 2000

0

500

1000

1500

2000

No of Pareto solutions

No
 o

f P
ar

et
o

so
lu

tio
ns

Clusters of multi−modal decision vectors

Fig. 4: Case I: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom) in
objective space, decision variable space and image of clusters.

−3 −2 −1 0
−3

−2.5

−2

−1.5

−1

−0.5

0

f1

f2

Pareto front

0 2 4 60

5
0

2

4

6

x1

Decision vectors

x2

x3

0 100 200 300 400

0

100

200

300

400

No of Pareto solutions

N
o

of
 P

ar
et

o
so

lu
tio

ns

Clusters of multi−modal decision vectors

−3 −2 −1 0
−3

−2.5

−2

−1.5

−1

−0.5

0

f1

f2

Pareto front

0 2 4 60

5

0

2

4

6

x1

Decision vectors

x2

x3

0 500 1000 1500

0

500

1000

1500

No of Pareto solutions

N
o

of
 P

ar
et

o
so

lu
tio

ns

Clusters of multi−modal decision vectors

Fig. 5: Case II: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom)
in objective space, decision variable space and image of clusters.

−3 −2 −1 0
−3

−2.5

−2

−1.5

−1

−0.5

0

f1

f2

Pareto front

0 2 4 6
0

5

0

2

4

6

x1

Decision vectors

x2

x3

0 500 1000

0

200

400

600

800

1000

No of Pareto solutions

No
 o

f P
ar

et
o

so
lu

tio
ns

Clusters of multi−modal decision vectors

−3 −2 −1 0
−3

−2.5

−2

−1.5

−1

−0.5

0

f1

f2

Pareto front

0 2 4 6
0

2
4

6
0

2

4

6

x1

Decision vectors

x2

x3

0 500 1000 1500 2000

0

500

1000

1500

2000

No of Pareto solutions

No
 o

f P
ar

et
o

so
lu

tio
ns

Clusters of multi−modal decision vectors

Fig. 6: Case III: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom)
in objective space, decision variable space and image of clusters.

14 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

6.1 CASE I
In the Case I, we have chosen two decision variablesxi ∈

[0, 6], i = 1, 2. for the optimization problem (6). Within the
range of these two variables the problem will have nine multi-
modal optimal fronts. We have set the population size to be200
and run the optimizer for500 generations. For the optimizer,
finding the global Pareto front is not so difficult in this problem.
However, finding all the multi-modal global Pareto fronts with
good distribution of solutions in corresponding decision vector
ranges is very difficult. In this particular instance, the Omni-
optimizer [1] is able to find all nine multi-modal optimal fronts
with 200 Pareto solutions with a good distribution of decision
vectors in all ranges ofxi ∈ [2r + 1, 2r + 3/2], where i =
1, 2 and r = 0, 1, 2. Fig. 4 shows the obtained Pareto optimal
solutions in top three sub-plots.

Cluster analysis using iVAT and aVAT [15] methods is
performed for the obtained Pareto optimal decision vectors.
The reordered dissimilarity matrix of200 decision vectors is
displayed as200 x 200 image with gray scaling in right hand
side sub-plot. The dark blocks appearing on the diagonal of the
image represent individual clusters; the size of each dark block,
represent number of individuals present in each cluster. It can be
seen from this plot, that each cluster (dark block) has atleast 18
individual solutions. After separating these clusters of decision
vectors, the procedure for Pareto estimation is executed. For
each cluster, the ANN is trained to find the one-to-one mapping
between objective space and decision vector space. Then this
ANN is used to estimate300 solutions in each cluster.

The quality of mapping estimated by ANN is highly depen-
dent on the supplied training decision vectors. If the training
data has a sufficient number of vectors, well distributed, then the
ANN will estimate a better mapping, otherwise, the mapping
estimated by ANN will be deceptive and may not generate good
solutions in the Pareto estimation process. After combining
all the solutions obtained from individual Pareto estimations,
we perform non-dominated sorting to remove any dominated
solutions from the set. At the end we have obtained around
2 300 non-dominated solutions out of2 700 solutions estimated.
In Fig. 4 the bottom sub-plots show plots for objective vectors,
decision vectors and gray scale image of the dissimilarity matrix
of estimated solutions. It can be seen from these sub-plots,
that Pareto estimation along with clustering is successfully
able to find many solutions for the multi-objective multi-modal
problem.

6.2 CASE II
In Case II, we have chosen the same objective functions with

three decision variablesxi ∈ [0, 6], i = 1, 2, 3.. Within the range
of these three variables the problem will have 27 multi-modal
optimal fronts each one corresponding toxi ∈ [2r+1, 2r+3/2],
wherei = 1, 2, 3 andr = 0, 1, 2.

We have set400 as the population size and run the optimizer
for 500 generations. The obtained400 non-dominated solutions
are shown in the top three sub-plotsFig. 5. The optimizer has

found all 27 multi-modal Pareto fronts, however, it is not able
to obtain good distribution of solutions in all the corresponding
decision vectors ranges. This can be easily observed from the
image of clusters, in which some clusters have more than 70
solutions, where as some clusters got very less number of
decision vectors around2 or 3.

We applied Pareto estimation to each cluster of solutions,
tried to estimate200 solutions for each cluster. After combining
the solutions estimated from all the clusters, non-dominated
sorting is performed to get the non-dominated solutions. Around
1 950 solutions found to be non-dominated out of5 400 esti-
mated solutions. The method is able to estimate around150
to 200 non-dominated solutions in some clusters, but failed to
estimate more solutions in clusters where there are insufficient
number of solution used for training the ANN. InFig. 5
the bottom three sub plots show the estimated non-dominated
solutions, in objective space, decision variable space and image
of clusters. (Note: Here the order of clusters in top and bottom
images is not same.)

6.3 CASE III

In Case III, we have chosen the same objective functions
with three decision variablesxi ∈ [0, 6], i = 1, 2, 3., but now
increase the population size to1 000 in optimization and run
the optimizer for500 generations. The obtained1 000 non-
dominated solutions are shown inFig. 6 top three subplots.
The optimizer has found all27 multi-modal Pareto fronts and
is now able to obtain a good distribution of solutions in all
the corresponding decision vectors ranges. This can be easily
observed from the image of clusters, in which clusters have
solutions in the range of20 to 60 solutions per cluster.

We applied Pareto estimation to each cluster of solutions and
tried to estimate150 solutions for each cluster. After combining
the solutions estimated from all the clusters, non-dominated
sorting is performed to get the non-dominated solutions. Around
3 000 solutions were found to be non-dominated out of4 050
estimated solutions. The method is able to estimate around
100 to 150 non-dominated solutions in each cluster. InFig. 6
the lower three sub-plots show the estimated non-dominated
solutions, in objective space, decision variable space and image
of clusters. It can be seen that, a very good distribution of
non-dominated solutions is obtained from the Pareto estimation.
(Note: Here the order of clusters in top and bottom images is
not same.)

Tables 1 and 2 summarize the various test metric computed
for the non-dominated solutions before and after the Pareto
estimation in all the three cases I, II, and III. These metrics
indicated that the proposed method is able to estimate well
distributed non-dominated solutions close to the true Pareto
front, when compare to non-dominated solutions obtained from
the Omni-optimizer.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 15

Table 1: DR(P ,PE) and SR(P ,PE) values of the obtained
solutions by OMNI-optimizer,P , and the estimated set,PE ,
by the extended Pareto estimation method.

IGD Ratio ESSm Ratio

Problem min mean std min mean std

Case I 5.2689 6.3300 0.5565 9.1278 11.3150 1.3969
Case II 1.8721 2.3615 0.2722 5.0175 5.6117 0.3843
Case III 1.8316 2.2347 0.1524 2.4162 2.9601 0.2344

Table 2: C-Metric values of the solutions obtained by OMNI-
optimizer, P , and the estimated set,PE , using the extended
Pareto estimation method.

C(PE ,P) C(P,PE)

Problem min mean std min mean std

Case I 0.4900 0.5848 0.0433 0.0000 0.0100 0.0042
Case II 0.4525 0.5200 0.0273 0.0000 0.0000 0.0000
Case III 0.5900 0.6154 0.0216 0.0000 0.0000 0.0000

7. Conclusions
For continuous multi-objective optimization problems, there

exist an infinite number of solutions on the Pareto-optimal front.
A multi-objective evolutionary algorithm (MOEA) attempts to
find a representative set of the Pareto-optimal solutions. If the
decision maker is not satisfied with the representative set found
by the MOEA, and wants to explore different solutions available
on the Pareto front, the MOEA needs to be re-run, which will
increase the number of function evaluations without providing
any guarantees that a suitable solution will be identified. In this
case, the Pareto estimation method can prove useful in order
to increase the density of available non-dominated solutions in
particular regions or the entire Pareto front. However, in the case
of multi-objective multi-modal problems, the Pareto estimation
method is not able to identify the one-to-many mapping of the
objective vectors to decision variables vectors.

In this paper, we have introduced an extended version of
the Pareto estimation method, to increase the density of multi-
objective multi-modal solutions. The method uses clustering
analysis to identify and separate different clusters in the deci-
sion variable space which correspond to the multi-modal Pareto
optimal solutions. These individual clusters are then used to
estimate the relation between objective space to decision space
using an ANN. Instead of a single network, as is the case in
the Pareto estimation method, we employ a network for each
individual cluster. These are then employed to estimate more
solutions for the selected cluster, presumably by the decision
maker, or all cluster. For testing purposes we have employed
the latter method in this work.

The proposed method has been tested on experimental test
functions, with three different case studies. We have used Omni-
optimizer [1] to solve the test problem in three cases, and
iVAT and aVAT [15] methods to identify different clusters of

solutions in the cluster analysis. In all cases, the extended Pareto
estimation method has successfully found many non-dominated
solutions corresponding to different multi-modal solutions. The
success of the proposed method highly depends on the number
of solutions available in an individual cluster for training and
estimating the one-to-one mapping between objective space and
decision vector space. In case II, the method failed to improve
density of the solutions in the clusters with a small number of
individuals. However, it has improved the density of solutions
in the remaining clusters representing multi-modal solutions to
the test problem. We leave for future work the evaluation of
the proposed method on a real-world system architecture design
problems, which have a tendency to have multi-model solutions.

8. Acknowledgements
The first author wishes to acknowledge the financial support

of Rolls-Royce plc and EPSRC through a Dorothy Hodgkin
Postgraduate Award (DHPA).

References
[1] K. Deb and S. Tiwari, “Omni-optimizer: A generic evolutionary algo-

rithm for single and multi-objective optimization,”European Journal of
Operational Research, vol. 185, no. 3, pp. 1062–1087, 2008.

[2] A. Tarafder, G. Rangaiah, and A. K. Ray, “A study of finding many
desirable solutions in multiobjective optimization of chemical processes,”
Computers & chemical engineering, vol. 31, no. 10, pp. 1257–1271, 2007.

[3] I. Giagkiozis and P. Fleming, “Increasing the Density of Available
Pareto Optimal Solutions,” Department of Automatic Control and Systems
Engineering, The University of Sheffield, Research Report No. 1028,
November 2012.

[4] C. Vira and Y. Haimes,Multiobjective Decision Making: Theory and
Methodology. North-Holland, 1983, no. 8.

[5] F. Edgeworth,Mathematical Psychics: An Essay on the Application of
Mathematics to the Moral Sciences. CK Paul, 1881, no. 10.

[6] V. Pareto, “Cours D’Économie Politique,” 1896.
[7] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, 1999,

vol. 12.
[8] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge

University Press, 2004.
[9] C. Fonseca and P. Fleming, “Multiobjective Optimization and Multiple

Constraint Handling with Evolutionary Algorithms. I. A Unified Formu-
lation,” IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 28, no. 1, pp. 26–37, 1998.

[10] Y. Jin, “A Comprehensive Survey of Fitness Approximation in Evo-
lutionary Computation,”Soft Computing - A Fusion of Foundations,
Methodologies and Applications, vol. 9, pp. 3–12, 2005.

[11] Y. Jin and B. Sendhoff, “Connectedness, Regularity and the Success of
Local Search in Evolutionary Multi-Objective Optimization,” inCongress
on Evolutionary Computation, vol. 3, dec. 2003, pp. 910 – 1917.

[12] O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich, “Covering Pareto
Sets by Multilevel Evolutionary Subdivision Techniques,” inEvolutionary
Multi-Criterion Optimization, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2003, vol. 2632, pp. 10–10.

[13] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A Regularity Model-Based
Multiobjective Estimation of Distribution Algorithm,”IEEE Transactions
on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008.

[14] J. C. Bezdek and R. J. Hathaway, “Vat: A tool for visual assessment
of (cluster) tendency,” inProceedings of the 2002 International Joint
Conference on Neural Networks, 2002. IJCNN’02., vol. 3. IEEE, 2002,
pp. 2225–2230.

[15] L. Wang, U. Nguyen, J. Bezdek, C. Leckie, and K. Ramamohanarao,
“iVat and aVat: Enhanced visual analysis for cluster tendency assessment,”
Advances in Knowledge Discovery and Data Mining, pp. 16–27, 2010.

16 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Cancer Genome Assembly and Alignment
 Michael Shan-Hui Ho

1
, Kun-Yu Hung

2
, Yu-Shiang Gen

1
, Chaochang Chiu

3
 and Tsung-Hua Lu

1

1
Department of Electric Engineering, NTPU, New Taipei City, Taiwan, ROC

2
Department of Information Management, MCU, Taoyuan Country, Taiwan, ROC

3
Department of Information Management, YZU, Taoyuan Country, Taiwan, ROC

Abstract— Cancer is defined as a disease that involves

changes or mutations in the cell genome. The underlying

cause of mutations leading to cancer is DNA damage. Cancer

genome sequencing includes cancer genome assembly and

cancer genome alignment is through early detection

improving survival opportunity of cancer patients. In this

research, a bioinformatics approach is proposed to solve

cancer genome sequencing by constructing De Bruijn Graphs

along with using the Euler Path for finding an optimal cancer

genome reassembly and the Smith–Waterman scoring matrix

for cancer genome alignment optimization.

Keywords: Cancer Genome Assembly, Cancer Genome

Alignment, Bioinformatics Computing, De Bruijn Graphs,

Smith–Waterman Matrix

1 Introduction

 Cancer is an important public health concern around

the world. Cancer is defined as a disease that involves changes

or mutations in the cell genome. These changes (mutations)

produce proteins that disrupt the delicate cellular balance

between cell division and quiescence, resulting in cells that

keep dividing to form cancers. The underlying cause of

mutations leading to cancer is DNA damage.

DNA damage In human cells, the estimated average

number of DNA damages occurring per hour is about 800, and

the number per day is about 19,200 [1]. Under normal

circumstances, a healthy cells repair virtually all of these

damages. Damages that are not repaired are termed mutations.

When a single cell acquires enough mutations in the DNA

sequence of relevant ‘cancer gene(s)’ it begins to behave in an

abnormal way characteristic of cancer. Cancer genome

sequencing includes cancer genome assembly and cancer

genome alignment is through early detection improving

survival opportunity of cancer patients.

2 Cancer genome assembly

For the last 30 years, fragment assembly followed the

‘‘overlap–layout–consensus’’ paradigm [2]. Although this

approach proved to be useful in assembling clones, it faces

difficulties in genomic shotgun assembly: the algorithms often

unable to resolve repeats even in prokaryotic genomes. So, in

the past decade, there has been a newly approach: instead of

‘‘overlap–layout–consensus’’ paradigm, the new algorithm is

based on the notion of the De Bruijn graph and transform the

cancer genome assembly problem into an Euler super path

problem [3].

2.1 The De Bruijn graphs

 Dutch mathematician Nicolaas De Bruijn finds a cyclic

sequence of letters taken from a given alphabet for which

every possible word of a certain length (k) appears as a string

of consecutive characters in the cyclic sequence exactly once.

[4][5]

Figure 1: De Bruijn graph.

 There exist n
k
 k-mers in an alphabet containing n

symbols. If our alphabet is instead 0 and 1, then all possible

3-mers are simply given by all eight 3-digit binary numbers:

000, 001, 010, 011, 100, 101, 110 and 111. The circular

superstring 0001110100 not only contains all 3-mers but also

is as short as possible, as it contains each 3-mer exactly once

shown in Figure 1.

2.2 The Euler path problem

 The Euler path problem, having been considered as one-

stroke drawing problem, is a path in a graph which visits

every edge exactly once. Euler proved that a necessary

condition for the existence of Eulerian circuits is that all

vertices in the graph have an even degree. If there are no

vertices of odd degree, all Eulerian paths are circuits. If there

are exactly two vertices of odd degree, all Eulerian path start

at one of them and end at the other.

3 Cancer genome alignment

 Cancer genome alignment is a way of arranging the

genome sequences of DNA to identify regions of similarity

that may be a consequence of functional, structural,

or evolutionary relationships between the sequences [6]. If

two sequences in an alignment share a common ancestor,

mismatches can be interpreted as point mutations and gaps as

insertion or deletion mutations introduced in one or both

lineages in the time since they diverged from one another.

3.1 Smith–Waterman algorithm

 The Smith–Waterman algorithm [7] finds the most

similar subsequences of two sequences by dynamic

programming. The algorithm compares two sequences by

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 17

http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Degree_(graph_theory)

computing a distance that represents the minimal cost of

transforming one segment into another. The function of

smith-waterman algorithm is as following: Consider two

strings S1 and S2 of length l1 and l2. To identify common

subsequences, the Smith – Waterman algorithm computes the

similarity H(i, j) of two sequences ending at position i and j of

the two sequences S1 and S2. The computation of H(i, j) is

given by the following recurrences:

 ()

{

 ()

 ()

 () ()

 () {
 ()

 ()

 () {
 ()

 ()

 Where 1 ≤ i ≤ l1, 1 ≤ j ≤ l2 and sbt is defined as value 2 if

the comparison is equal, otherwise it is 0. Initialization of

these values are given by: H(i,0) = E(i,0) = 0, 0 ≤ i ≤ l1, H(0,j)

= F(0,j) = 0, 0 ≤ j ≤ l2 The following figure, Figure 2, is an

example of the Smith–Waterman algorithm for two genome

alignment.

 A T C T C G T A T G A T G

 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 2 2 1 0 0 2 1 0

T 0 0 2 1 2 1 1 4 3 2 1 1 3 2
C 0 0 1 4 3 4 3 3 3 2 1 0 2 2
T 0 0 2 3 6 5 4 5 4 5 4 3 2 1
A 0 2 2 2 5 5 4 4 7 6 5 6 5 4
T 0 1 4 3 4 4 4 6 5 9 8 7 8 7
C 0 0 3 6 5 6 5 5 5 8 8 7 7 7
A 0 2 2 5 5 5 5 4 7 7 7 10 9 8

C 0 1 1 4 4 7 6 5 6 6 6 9 9 8

Figure 2: Example of the Smith–Waterman

4 DNA computation with sticker-based

 The sticker-based model employs two basic groups of

single-stranded DNA molecules in its representation of a bit

string. Consider a memory strand N bases in length

subdivided into K non-overlapping regions each M bases long

(thus, N ≥ M *K). Each region is identified with exactly one

bit position (or equivalently one Boolean variable) during the

course of the computation. Each memory strand along with its

annealed stickers (if any) represents one bit string shown in

Figure 3.

Figure 3: Memory strands of the sticker model

 In Table 1, a two-bit sticker (sm,1 and sm,2) model is used

to represent letters A, G, C, T.

Table 1: Two-bit sticker-based model
sm,1 sm,2 Letter of mth site

0 0 A

0 1 G

1 0 C

1 1 T

5 DNA manipulations

 DNA Manipulations is also called Adleman-Liption

model. A test tube is a set of molecules of DNA (a multi-set

of finite strings over the alphabet {A, C, G, T}. In this

subsection, DNA Model of computation has eight biological

operations, shown as following:

1. Extract. Given a tube P and a short single strand of DNA,

S, the operation produces two tubes +(P,S) and –(P,S),

where +(P,S)is all of the molecules of DNA in P which

contain S as a sub-strand and–(P,S) is all of the molecules

of DNA in P which do not contain S.

2. Merge. Given tubes P1 and P2, P1, P2), where

P1, P2) = P1 P2. This operation is used to pour

two tubes into one, without any change in the individual

strands.

3. Detect. Given a tube P, if P includes at least one DNA

molecule we have ‘yes’, and if P contains no DNA

molecule we have ‘no’.

4. Discard. Given a tube P, the operation discards P.

5. Amplify. Given a tube P, the operation, Amplify (P, P1,

P2), will produce two new tubes P1and P2 so that P1, and

P2 are totally a copy of P (P1, and P2 are now identical)

and P becomes an empty tube.

6. Append. Given a tube P containing a short strand of DNA,

Z, and the operation will append A onto the end of every

strand in P.

7. Append-head. Given a tube P containing a short strand of

DNA, Z, and the operation will append A onto the head of

every strand in P.

8. Read. Given a tube P, the operation is used to describe a

single molecule, which is contained in tube P. Even if P

contains many different molecules each encoding a

different set of bases, the operation can give an explicit

description of exactly one of them.

6 Construction of bio-logic and bio-

arithmetic bioinformatics circuitry

Figure 4: Bio-logic molecular computing model

18 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

 We use logic truth tables to optimize and complete logic

bio-circuit operations that can construct most basic DNA

logic circuits. These DNA logic circuits (gates) work in test

tubes to implement basic logic operations. These gates are

AND, OR, XOR, etc. All operations of Optimal

Bioinformatics Logic Computing are shown in Figure 4.

6.1 And operation on bioinformatics

computing

 The AND operation of a bit with two input Boolean

variables U and V generates a result of 1 if both U and V are 1.

However, if either U or V, or both, are zero, then the result is

0. The symbol represents the AND operation. Assume that

two one-bit binary numbers, Uk and Vk, for 1 k n are

applied to represent first and second inputs for the AND

operation of a bit respectively. The ANDk for 1 k n

represents the output for the AND operation of a bit. The

logic circuitry of parallel AND on one bit is shown in Figure

5. The corresponding truth table of the one-bit AND is shown

in Table 2.

Table 2: The truth table of the one-bit AND
Input Output

Uk Vk ANDk = Uk ∧ Vk

0 0 0

0 1 0

1 0 0

1 1 1

Figure 5: Logic circuitry of parallel AND on one bit

ParallelOneBitAND(T0, Uk, Vk, ANDk)

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)

If (Detect(T2
U=1,V=1) = = “yes”) then

 Append-head(T2
U=1,V=1, ANDk

1) EndIf

If (Detect(T2
U=1,V=0) = = “yes”) then

 Append-head(T2
U=1,V=0, ANDk

0) EndIf

If (Detect(T2
U=0,V=1) = = “yes”) then

Append-head(T2
U=0,V=1, ANDk

0) EndIf
If (Detect(T2

U=0,V=0) = = “yes”) then

Append-head(T2
U=0,V=0, ANDk

0) EndIf

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)

EndAlgorithm

Figure 6: Parallel AND operation of a bit algorithm

6.2 OR operation on bioinformatics computing

 The OR operation of a bit with two input Boolean

variables U and V produces a result of 1 if U or V, or both, are

1. However, if both U and V are zero, then the result is 0. A

plus sign + (logical sum) or symbol is normally applied to

represent OR. Assume that two one-bit binary numbers, Uk

and Vk, for 1 k n are applied to represent first and second

inputs for the OR operation of a bit respectively. The ORk for

1 k n represents the output for the OR operation of a bit.

The logic circuitry of parallel OR on one bit is shown in

Figure 7. The corresponding truth table of the one-bit OR is

shown in Table 3.

Table 3: The truth table of the one-bit OR
Input Output

Uk Vk ORk = Uk Vk

0 0 0

0 1 1

1 0 1

1 1 1

Figure 7: Logic circuitry of parallel OR on one bit

ParallelOneBitOR(T0, Uk, Vk, ORk)

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)
If (Detect(T2

U=1,V=1) = = “yes”) then

 Append-head(T2
U=1,V=1, ORk

1) EndIf

If (Detect(T2
U=1,V=0) = = “yes”) then

 Append-head(T2
U=1,V=0, ORk

1) EndIf

If (Detect(T2
U=0,V=1) = = “yes”) then

 Append-head(T2
U=0,V=1, ORk

1) EndIf
If (Detect(T2

U=0,V=0) = = “yes”) then

 Append-head(T2
U=0,V=0, ORk

0) EndIf

T0= ∪(T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0)

EndAlgorithm

Figure 8: Parallel OR operation of a bit algorithm

6.3 XOR operation on bioinformatics

computing

 The Exclusive-OR (XOR) operation of a bit with two

input Boolean variables U and V generates an output of 1 if

both U and V are different values and 0 if they are the same

values. The ⊕ symbol represents the XOR. Assume that two

one-bit binary numbers, Uk and Vk, for 1 k n are applied

to represent first and second inputs for the XOR operation of

a bit respectively. The representation of the superscript

denotes the value of variable (e.g. Uk
1
 denotes Uk=1, Uk

0

denotes Uk=0). The Sk for 1 k n represents the output for

the XOR operation of a bit. The logic circuitry of parallel

XOR on one bit is shown in Figure 9. The corresponding

truth table of the one-bit XOR is shown in Table 4:

Table 4: The truth table of the one-bit XOR
Input Output

Uk Vk XORk = Uk Å Vk

0 0 0

0 1 1

1 0 1

1 1 0

Figure 9: Logic circuitry of Parallel XOR on one bit

ParallelOneBitXOR(T0, Uk, Vk, XORk)

T1
U=1 = +(T0, Uk

1) and T1
U=0 = (T0, Uk

1).

T2
U=1,V=1 = +(T1

U=1, Vk
1) and T2

U=1,V=0 = (T1
U=1, Vk

1)

T2
U=0,V=1 = +(T1

U=0, Vk
1) and T2

U=0,V=0 = (T1
U=0, Vk

1)

If (Detect(T2
U=1,V=1) = = “yes”) then

 Append-head(T2
U=1,V=1, XORk

0) EndIf
If (Detect(T2

U=1,V=0) = = “yes”) then

 Append-head(T2
U=1,V=0, XORk

1) EndIf

If (Detect(T2
U=0,V=1) = = “yes”) then

 Append-head(T2
U=0,V=1, XORk

1) EndIf


 

 

 

 

 

 

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 19

If (Detect(T2
U=0,V=0) = = “yes”) then

 Append-head(T2
U=0,V=0, XORk

0) EndIf

T0 = (T2
U=1,V=1, T2

U=1,V=0, T2
U=0,V=1, T2

U=0,V=0).

EndAlgorithm

Figure 10: Parallel XOR operation of a bit algorithm

6.4 Bio-arithmetic parallel adder on one bit

A one-bit adder has three inputs and two outputs. Each

input and output is one bit. The first and second input bits

represent augend and addend, denoted by Uk and Vk, for

1kn. The last input represents the carry, denoted by Ck, for

1kn. The first output represents the sum of the augend,

addend and carry, denoted by Sk, for 1 k n. Then, the

second output represents the carry which is generated by the

sum of the augend, addend and carry, denoted by Ck+1. This

carry becomes the input of next one-bit adder. The logic

circuitry of parallel adder on one bit is shown in Figure 11,

and the truth table of the one-bit adder is shown in Table 5.

Table 5: The truth table of the one-bit adder

Figure 11: Logic circuitry of parallel adder on one bit

Based upon the logic circuitry in Figure 11, we can derive the

bio-algorithm of parallel adder on one bit in Figure 12.

ParallelOneBitAdder(T0, Uk , Vk, Ck)

ParallelOneBitXOR(T0, Uk,Vk, XORk)
ParallelOneBitXOR(T0, XORk, Ck , Sk)

ParallelOneBitAND(T0, Uk ,Vk , ANDk
1)

ParallelOneBitAND(T0, Ck ,Vk , ANDk
2)

ParallelOneBitAND(T0, Uk , Ck , ANDk
3)

ParallelOneBitOR(T0, ANDk
1, ANDk

2, ORk
1)

ParallelOneBitOR(T0, ORk
1, ANDk

3, ORk
2)

T1 = +(T0,

) and T2 = － (T0,

)

If(Detect(T1)==”yes”) then
Append-head (T1,Ck+1

1) EndIf

If(Detect(T2)==”yes”) then

Append-head (T2,Ck+1
0) EndIf

T0=∪(T1, T2)

EndAlgorithm

Figure 12: Parallel adder algorithm on one bit

6.5 Bio-arithmetic parallel adder on n bits

In this section, we use the bio-arithmetic adder on one bit

to construct the Parallel Adder.

ParallelAdder(T0, U, V, n)

Append(T0, C1
0)

For k=1 to n
 ParallelOneBitAdder(T0, Uk , Vk, Ck)

EndFor

EndAlgorithm

Figure 13: Parallel adder algorithm

6.6 Bio-arithmetic parallel comparator on one

bit

 The following algorithm is applied to compare stickers

from Ta and Tb. Tube T0
=
 is the first parameter and includes

comparison outcome to pass to algorithm ParallelComparator

(T0
EDGE_temp

, T0
overlay

, Ta, Tb, m, n, g, b). Tube Ta and Tb contain

two compared fragments individually. Number p represents

the site on Ta (s1,1s1,2. . . sp,1 sp,2. . . sm,1sm,2) for 1≤p≤q and

number d represents the site on Tb (s1,1s1,2. . . sd,1 sd,2. . . sm,1sm,2)

for 1≤ d ≤q. Algorithm for parallel execution is shown in

Figure 14.

OneBitComparator(T0
=, Ta , Tb , p ,d)

T1
1st_on= +(Ta,sp,1

1)and T1
 1st_off= − (Ta,sp,1

1)

T2
2nd_on= +(Ta,sp,2

1) and T2
 2nd_off = − (Ta,sp,2

1)

T3
1st_on= +(Tb,sd,1

1) and T3
 1st_off= − (Tb,sd,1

1)
T4

 2nd_on= +(Tb,sd,2
1) and T4

2nd_off= − (Tb,sd,2
1)

If (Detect(T1
1st_on)=‘yes’ and Detect(T3

1st_on)=‘yes’) then

If(Detect(T2
2nd_on)=‘yes’ and Detect(T4

2nd_on)=‘yes’) then

T0
= = ∪(T0

=,T1
1st_on, T3

1st_on, T2
2nd_on,T4

2nd_on) EndIf EndIf

If (Detect(T1
1st_on) = ‘yes’ and Detect(T3

1st_on) = ‘yes’) then

If(Detect(T2
2nd_off)=‘yes’ and Detect(T4

2nd_off)=‘yes’) then

T0
= = ∪(T0

=,T1
1st_on, T3

1st_on, T2
 2nd_off,T4

 2nd_off) EndIf EndIf

If(Detect(T1
1st_off) = ‘yes’ and Detect(T3

1st_off) = ‘yes’) then

If(Detect(T2
2nd_on)=‘yes’ and Detect(T4

2nd_on)=‘yes’) then

T0
= = ∪(T0

=,T1
1st_off, T3

1st_off, T2
2nd_on,T4

 2nd_on) EndIf EndIf

If(Detect(T1
1st_off) = ‘yes’ and Detect(T3

 1st_off) = ‘yes’) then

If(Detect(T2
2nd_off)=‘yes’ and Detect(T4

2nd_off)=‘yes’) then

T0
= = ∪(T0

=,T1
 1st_off, T3

 1st_off, T2
 2nd_off,T4

 2nd_off) EndIf EndIf

EndAlgorithm

Figure 14: Parallel comparator for one bit

6.7 Bio-arithmetic parallel comparator on n

bits

 The following algorithm, ParallelComparator (T0, T0

overlay, Ta, Tb, m, n, g, b), is an n-bit comparator. The

algorithm use “O” in a sticker-based model to represent four

condition by calling function OneBitComparator (T0=, Ta, Tb,

p, g+d) and get equal statement. For every bit Op,g represents

one success match between sp,1, sp,2 from Ta and sg,1, sg,2 from

Tb. Op,g would store this comparing result in tube T0overlay.

The number m and n are regarded as the start and last site of

fragment which contained in Ta. Number g and number b are

regarded as the start and last site of fragment which contained

in Tb. That is to say, the bit xg to xb in tube Tb are all 1.

Algorithm for parallel execution is shown in Figure 15.

ParallelComparator(T0, T0
overlay , Ta , Tb , m, n, g, b)

For d =0 to Min(n-m,b-g)
For p=n downto m

OneBitComparator(T0
=, Ta, Tb, p, g+d)

If (Detect(T0
=)=“yes”) then

Append(T0
overlay,Op,g+d

 1)

Discard(T0
=) EndIf

EndFor

EndFor

If (Detect(T0
overlay)=“yes”) then

20 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

T0=∪(T0, T0
overlay) EndIf

Discard(T0
overlay)

EndAlgorithm

Figure 15: parallel comparator for n bit

7 Proposed bioinformatics approach for

solving cancer genome squencing

problem

7.1 Proposed optimal bioinformatics

algorithms for solving cancer genome

assembly

 In the beginning, De Bruijn cancer genome assembly

bioinformatics graphs are constructed and then a modified

bioinformatics approach is using the Euler path to find an

optimal solution for solving the cancer genome assembly.

 Assume that xm is a q-bit binary number, which is

applied to represent q elements. Every bit xm represent the mth

element in S for 1 ≤ m ≤ q. We define xm1 denotes the value

of xm is 1 and xm
0
 represent the value of xm to be 0. The

following algorithm is used to construct sticker-based cancer

genome assembly bioinformatics solution space for 2
q

possible fragments of a q-element set S shown in figure 16.

Init(T0, q)

(1) For m = 1 to q

(1a) Amplify(T0, T1, T2)
(1b) Append(T1, xm

1)

(1c) Append(T2, xm
0)

(1d) T0 = ∪(T1, T2)

EndFor

EndAlgorithm

Figure 16: Bio-logical parallel n-bit init algorithm

Figure 17: Example of figure 16

The De Bruijn solution space of k-tuple - 1 fragments in

tube T0 is constructed in Figure 18. Each fragment denotes

one vertex in the De Bruijn graph.

ParallelDeBruijnSolutionSpace(T0, k, q)

For m = 1 to q – k+2

(1)T3= +(T0, xm
1) and T4= −(T0, xm

1)
For n = m to m + k – 2

(2a)T5= +(T3, xn
1) and T6= −(T3, xn

1)

(2b)Amplify(T5, T3, T3
backup)

End For

(3)If (m +k -1< =q) Then

For n = q downto m +k -1
(3a)T7= +(T5, xn

1) and T8= −(T5, xn
1)

(3b) Amplify(T8, T5, T5
backup)

End For

Else If

 T8 = ∪(T8, T5)

End If

(4)Append-head(T8, Bm)

(5)Tsolution_space = ∪(Tsolution_space, T8)

(6)T0 = ∪(T0, T4)

End For

EndAlgorithm

Figure 18: Parallel De Bruijn solution space

Figure 19: Effctive solution space from figure 18

Figure 20 appends stickers in the head of each fragment

in the effective solution space.

ParallelStickerAppended(TSticker, Tsolution_space , q)
(1)For n = q downto 1

(1a)T3= +(TSticker, xn
1)and T4= −(TSticker, xn

1)

If (Xn = A) Then

(1b)Append-head(T3, sn,2
0) and Append-head(T3, sn,1

0)

(1c)TSticker= ∪(T3, T4)

Else If (Xn = G) Then

(1d)Append-head(T3, sn,2
1) and Append-head(T3, sn,1

0)

(1e)TSticker= ∪(T3, T4)

Else If (Xn = C) Then

(1f)Append-head(T3, sn,2
0) and Append-head(T3, sn,1

1)

(1g)TSticker= ∪(T3, T4)

Else If (Xn = T) Then

(1h)Append-head(T3, sn,2
1) and Append-head(T3, sn,1

1)

(1i)TSticker= ∪(T3, T4) End If

EndFor

EndAlgorithm

Figure 20: Two-bit sticker model construction

Figure 21: Example of two-bit sticker model

The algorithm in Figure 22 creates the De Bruijn

bioinformatics graph. This algorithm merges the repeated

vertex into one in the De Bruijn bioinformatics graph. Symbol

“Ini” is used to indicate the ith repeated vertex.

ParallelConstructDBGraph(TDB_graph, TSticker, q)

(1)T9 = +(TSticker, B1) and T10 =－(TSticker, B1)

(2)Append-head(T9, In1)

(3)For i = 2 to size of T10

(3a)T11 = +(T10, Bi) and T12 =－(T10, Bi)

(4)For j = 1 to size of T9

(4a)T13 = +(T9, Bj) and T14 =－(T9, Bj)

(4b)ParallelComparator(T0
table,T13,T11,i, j, k)

(5)If (Detect(T0
table) = “yes”) then

(5a)Append-head(T13, Ini)
(5b)T9 = ∪(T13, T14)

(5c)Discard(T13, T14)

Terminate the execution of the loop End If

T0

x1
1x2

1x3
1x4

1, x1
0x2

1x3
1x4

1, x1
1x2

0x3
1x4

1, x1
0x2

0x3
1 x4

1,

x1
1x2

1x3
0x4

1, x1
0x2

1x3
0x4

1, x1
1x2

0x3
0x4

1, x1
0x2

0x3
0 x4

1,

x1
1x2

1x3
1x4

0, x1
0x2

1x3
1x4

0, x1
1x2

0x3
1x4

0, x1
0x2

0x3
1 x4

0,

x1
1x2

1x3
0x4

0, x1
0x2

1x3
0x4

0, x1
1x2

0x3
0x4

0, x1
0x2

0x3
0 x4

0

Tsolution_space

B4x1
0x2

0x3
0x4

1

B3x1
0x2

0x3
1x4

0

B2x1
0x2

1x3
0x4

0

B1x1
1x2

0x3
0x4

0

T0

x1
1x2

1x3
1x4

1, x1
0x2

1x3
1x4

1, x1
1x2

0x3
1x4

1, x1
0x2

0x3
1 x4

1,

x1
1x2

1x3
0x4

1, x1
0x2

1x3
0x4

1, x1
1x2

0x3
0x4

1, x1
0x2

0x3
0 x4

1,

x1
1x2

1x3
1x4

0, x1
0x2

1x3
1x4

0, x1
1x2

0x3
1x4

0, x1
0x2

0x3
1 x4

0,

x1
1x2

1x3
0x4

0, x1
0x2

1x3
0x4

0, x1
1x2

0x3
0x4

0, x1
0x2

0x3
0 x4

0

Tsolution_space

x1
0x2

0x3
0x4

1

x1
0x2

0x3
1x4

0

x1
0x2

1x3
0x4

0

x1
1x2

0x3
0x4

0

Tsolution_space

s4,1
1s4,2

0B4x1
0x2

0x3
0x4

1

s3,1
0s3,2

0B3x1
0x2

0x3
1x4

0

s2,1
1s2,2

1B2x1
0x2

1x3
0x4

0

s1,1
0s1,2

0B1x1
1x2

0x3
0x4

0

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 21

(6)T9 = ∪(T13, T14)
(7)Discard(T13, T14) End For

(8)If (Detect(T0
table) = “no”) then

(8a)Append-head(T11, Ini)

(8b)T9 = ∪(T9, T11) End If

(9)Discard(T10)
(10) T10 = ∪(T10, T12)

(11)Discard(T11, T12)

End For

(12)TDBGraph = ∪(TDBGraph, T9)

EndAlgorithm

Figure 22: De Bruijn graph construction

Figure 23: Example of De Bruijn graph construction

The algorithm in Figure 24 constructs an optimal path

using the modified Euler bioinformatics path approach.

ParallelEulerPath(TDB_graph, TRouting, q, k)

For m = 1 to q-k+1

 T13 = +(TDBGraph, Inm) and T14 =－(TDBGraph, In m)

For n = q-k+1

 T15 = +(T13, Bn) and T16 =－(T13, Bn)

 If (Detect(T15) = “YES”) then

Append(TRouting, Bn)
Discard(T15, T16)

Terminate the execution of the loop

End If

Discard(T15, T16)

End For

TDBGraph = ∪(T13, T14)

End For

EndAlgorithm

Figure 24: Parallel euler path algorithm

Figure 25: Result of cancer genome assembly

7.2 Proposed optimal bioinformatics

algorithms for solving cancer genome

alignment

The resolution for the proposed cancer genome

bioinformatics alignment is using the modified Smith –

Waterman algorithms to construct a Smith – Waterman matrix

for solving cancer genome alignment. Here two strings

“ATAC” and “AAAC” are used as an example. The algorithm

in Figure 26 constructs the Smith – Waterman matrix.

ParallelSmithWatermanMatrix(Tmatrix, Ttest, Ttarget, q, k)

For m = 1 to q

 For n = 1 to k

(1) ParallelConstructHFunction(TH, Tmatrix, Ttest, Ttarget, q, k)

(2) ParallelStickerComparator(T0
table

 , Ttest , Ttarget , m, n)

(3) If (Detect(T0
table) = “yes”) then

(3a)ParallelAdder(T>, T>, 2, n)

(3b)Append(Tmatrix, XmYn) Else

(3c)ParallelSubtractor(T>, T>, 1, n)

(3d)Append(Tmatrix, XmYn)

End If
End For

End For

End Algorithm

Figure 26: Smith – Waterman matrix construction

Figure 27: Example of Smith – Waterman matrix.

The algorithm in Figure 28 produces the score function

of Smith–Waterman algorithm in tube T
H
 using the H function

to score every comparison bit in the Smith – Waterman matrix.

ParallelConstructHFunction(TH, Tmatrix, Ttest, Ttarget, q, k)

(1)ParallelConstructHFunction(TH ,Tmatrix, Ttest, Ttarget, q, k,

i-1 , j-1)

(2)ParallelConstructEFunction(TE, Ttest, Ttarget, q, k i , j-1)

(3)ParallelConstructFFunction(TF, Ttest, Ttarget, q, k i-1 , j)

(4)ParallelComparator(T=, T<, T>,TH ,TE, n)

If (Detect(T0
<) = “yes”) then

(4a)ParallelComparator(T=, T<, T>,TE ,TF, n)

Else If (Detect(T0
>) = “yes”) then

(4b)ParallelComparator(T=, T<, T>,TH ,TF, n)

End If

End Algorithm

Figure 28: H Function construction

Figure 29: H scoring of Smith – Waterman matrix

The algorithm in Figure 30 produces the score function

of Smith–Waterman algorithm in tube T
E
 using the E function

to score every comparison bit in the Smith – Waterman matrix.

ParallelConstructEFunction(TE, Tmatrix, Ttest, Ttarget, q, k)

ParallelConstructHFunction(TH ,Tmatrix, Ttest, Ttarget, q, k, i , j-1)
ParallelConstructEFunction(TE, Ttest, Ttarget, q, k i , j-1)

ParallelSubtractor(TH, TH, α, n)

ParallelSubtractor(TE, TE, β, n)

ParallelComparator(T=, T<, T>,TH ,TE, n)

End Algorithm

Figure 30: E Function construction

 A A A C

 0 0 0 0 0

A 0 2 2 2 1

T 0 1 1 1 1

A 0 2 3 3 2

C 0 1 2 2 5

 A A A C

 H(i-1,j-1) E(i,j-1) 0 0 0

A F(i-1,j) (i,j)

T 0

A 0

C 0

22 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Figure 31: E scoring of Smith – Waterman matrix

The algorithm in Figure 32 produces the score function

of Smith–Waterman algorithm in tube T
F
 using the F function

to score every comparison bit in the Smith – Waterman matrix.

ParallelConstructFFunction(TF,Tmatrix, Ttest, Ttarget, q, k)

(1)ParallelConstructHFunction(TH ,Tmatrix, Ttest, Ttarget, q, k,

i-1 , j)

(2)ParallelConstructFFunction(TF, Ttest, Ttarget, q, k i-1 , j)

(3)ParallelSubtractor(TH, TH, α, n)

(4)ParallelSubtractor(TF, TF, β, n)

(5)ParallelComparator(T=, T<, T>,TH ,TF, n)

End Algorithm

Figure 32: F Function construction

Figure 33: F scoring of Smith – Waterman matrix

The algorithm in Figure 34 finds an optimal path by

computing a Smith – Waterman scoring matrix.

ParallelTraceBackPath (Tmatrix, i, j, q, k)

T1 = +(Tmatrix, X1
1) and T2 = －(Tmatrix, X1

1)

T3 = +(T1, Y1
1) and T4 = －(T1, Yn

1)

For m = 1 to q
 For n = 1 to k

T5 = +(Tmatrix, Xm
1) and T6 = －(Tmatrix, Xm

1)

T7 = +(T1, Yn
1) and T8 = －(T1, Yn

1)

ParallelComparator(TR
=, TR

<, TR
>,T3 ,T7, n)

 If (Detect(TR
>) = “yes”) then

Discard(TR
>)

 Ttrace = ∪(Ttrace, TR
>

)End If

End For

End For
 For n = 1 to k

 T9 = +(Ttrace, Xm-1
1) and T10 =－(Ttrace, Xm-1

1)

T11 = +(Ttrace, Yn-1
1) and T12 =－(Ttrace, Yn-1

1)

T13 = +(T11, Xm-1
1) and T14 =－(T11, Xm-1

1)

ParallelComparator(TR
=, TR

<, TR
>,T9 ,T11, n)

If (Detect(T0
<) = “yes”) then

ParallelComparator(T=, T<, T>,T11 ,T13, n)
Else If (Detect(T0

>) = “yes”) then

ParallelComparator(T=, T<, T>,T9 ,T13, n)

End If
Ttrace = ∪(Ttrace, TR

>
)

End For

EndAlgorithm

Figure 34: An optimal alignment path using Smith –

Waterman scoring matrix

Figure 35: Alignment example by Smith – Waterman matrix

8 Conclusions

Cancer is one of the most common causes of death

worldwide. The underlying cause of mutations leading to

cancer is DNA damage. The best opportunity for improving

survival of cancer patients is through early detection, when

curative surgical resection is possible. By using cancer

genome assembly and alignment can solve the cancer genome

sequencing problem and can early detect the DNA of cancer

damage. Both cancer genome assembly and alignment

problems are NP-complete. To resolve these issues, we first

break cancer DNA sequences into DNA fragments. A

modified and enhanced De Bruijn cancer genome assembly

graphs is constructed. Finally, an optimal Euler path is found

for solving the cancer genome assembly. Secondly, an

enhanced Smith – Waterman scoring matrix is used to

compare the reassembled path of the two new reassembled

DNA (test cancer DNA and target DNA) and determine

whether the test DNA is damaged or not. This research work

fully utilizing parallelism presents a clear evidence of the

ability of bioinformatics computing for solving cancer DNA

sequence assembly and alignment more efficient. The

experimental results of cancer genome assembly can be found

in O(n
3
) polynomial bound. And the experimental results of

cancer genome alignment is also in O(n*m) polynomial bound.

9 References

[1] Venturi, M; Hambly, RJ; Glinghammar, B; Rafter, JJ;

Rowland, IR. Genotoxic activity in human faecal water

and the role of bile acids: a study using the alkaline comet

assay. Carcinogenesis, 1997, 18, 2353-2359.

[2] Pevzner P. A., Tang Haixu. Fragment Assembly with

Double-Barreled Data. Bioinformatics，2001，17 (1):

225—233.

[3] Pevzner P., 1-Tuple DNA Sequencing：Computer Analysis.

Journal of Bimolecular Structure and Dynamics, 1989,

7(1):63-73.

[4] Algorithms for de novo short read assembly using De

Bruijn graphs Daniel R. Zerbino and Ewan Birney

[5] W. Bains and G.C. Smith [1988]. A novel method for

nucleic acid sequence determination. Journal of

Theoretical Biology 135, 303–307

[6] Mount DM. (2004). Bioinformatics: Sequence and

Genome Analysis (2nd ed.). Cold Spring Harbor

Laboratory Press: Cold Spring Harbor, NY. ISBN 0-

87969-608-7

[7] T.F. Smith and M.S. Waterman, “Identification of

common molecular subsequences,” J. Mol. Biol. pp. 195–

197, 1981

 A A A C

 0 0 0 0 0

A 0

T 0

A 0

C 0

F Function scoring bit

Current bit

E Function scoring bit

Current bit

 A A A C

 0 0 0 0 0

A 0

T 0

A 0

C 0

 A A A C

 0 0 0 0 0
A 0 2 2 2 1

T 0 1 1 1 1

A 0 2 3 3 2
C 0 1 2 2 5

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 23

Constructing Wedding Seating Plans: A Tabu
Subject

Rhyd Lewis∗

Cardiff School of Mathematics,
Cardiff Univerity, CF10 4AG, WALES.

Email: lewisR9@cf.ac.uk; Tel: +44 (0)2920 874856.

Abstract

This paper examines an interesting combinatorial optimisation problem that
generalises both the graph colouring and k-partition problems. The problem
has an interesting practical application in the construction of wedding seating
plans, where we seek to assign equal numbers of guests to tables such that they
are sat near friends and, perhaps more importantly, kept away from their ene-
mies. We describe an effective two-stage metaheuristic-based approach for this
problem which is currently used with the online tool on the commercial web-
site www.weddingseatplanner.com. We also present results on the performance
of this algorithm, indicating what factors can influence run time and solution
quality.

Keywords: Combinatorial Optimisation; Metaheuristics; Graph Colouring; Par-
titioning.

1 Introduction

The Wedding Seating Problem (WSP) involves taking a set of wedding guests and
assigning them to tables so that the following constraints are met:

• Guests belonging to groups, such as couples and families, should be sat at the
same tables;

• The number of guests per table should be equal;

• If there is any perceived animosity between different guests, these should be sat
on different tables; and similarly,

• If guests are known to like one another, they should be sat at the same table.

∗Corresponding author. Submitted to GEM’13 - The 2013 International Conference on Genetic
and Evolutionary Methods

24 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

The WSP can be formally stated as type of graph partitioning problem. Specifically,
we are given a graph G = (V,E) comprising a vertex set V and an edge set E.
Each vertex v ∈ V is used to represent a group of guests who are required to sit
together (couples, families, etc.), with the size of each guest group denoted sv. The
total number of guests n is thus

∑
v∈V sv. Each edge {u, v} ∈ E then defines the

relationship between vertices u and v according to a weighting wu,v (where wu,v =
wv,u). If wu,v > 0 we interpret this to mean that we would prefer the guests associated
with vertices u and v to be sat on different tables. Larger values for wu,v reflect a
strengthening of this requirement. Similarly, negative values for wu,v mean that we
would rather u and v were assigned to the same table.

A solution to the WSP is defined as a partition of the vertices into k subsets
U = {U1, . . . , Uk}, such that

⋃k
i=1 Ui = V and Ui ∩ Uj = ∅, i, j ∈ {1, . . . , k}, i 6= j.

The requested number of tables k is defined by the user, with each subset Ui defining
the guests assigned to a particular table i.

The quality of a candidate solution for the WSP can be evaluated according to two
objective functions, both which we seek to minimise. The first of these, calculated:

f1 =
k∑

i=1

∑
∀u,v∈Ui:{u,v}∈E

wu,v (1)

reflects the extent to which the rules governing who sits with who are obeyed. The
second objective function then measures the degree to which the number of guests
per table deviates from the required number of either bn/kc or dn/ke:

f2 =
k∑

i=1

min

∣∣∣∣∣∣
 ∑

∀v∈Ui

sv

− ⌊n
k

⌋∣∣∣∣∣∣ ,
∣∣∣∣∣∣
 ∑

∀v∈Ui

sv

− ⌈n
k

⌉∣∣∣∣∣∣
 . (2)

It is evident that the WSP is intractable since it generalises two classical NP-hard
problems:

• If E = ∅ (or ∀{u, v} ∈ E, wu,v = 0) then f1 (Equation (1)) will always equal
zero. This means that the only goal is to ensure that the number of guests
per table is as equal as possible. Hence the problem reduces to the k-partition
problem.1

• If ∀v ∈ V, sv = 0 then f2 (Equation (2)) will always equal zero, implying that
the task of balancing the number of guests per table is no longer relevant. In
this case the problem becomes equal to the weighted k-colouring problem, which
is itself a generalisation of the NP-hard graph k-colouring problem [3].

In this paper we describe a two stage approximation algorithm for the wed-
ding seating problem. This algorithm is currently used on the commercial website
www.weddingseatplanner.com. In particular, this approach exploits the underlying
graph structures of the problem allowing effective neighbourhood operators to be de-
fined that are able to quickly identify high-quality solutions. In the next section we

1Note that the k-partition problem is also variously known as the load balancing problem, the
equal piles problem, or the multiprocessor scheduling problem.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 25

Figure 1: Specification of guest groups (left) and seating preferences (right).

describe the online interactive tool and algorithm in detail, before looking at some
its run characteristics in Section 3. Section 4 concludes the paper.

2 Problem Interpretation and Algorithm

On entering the website, the user is asked to input (or import) the names of all guests
into an embedded interactive table. Groups of guests that need to be seated together
(families etc.) are placed on the same rows of the table, thus defining the various
values for sv. At the next step the user is then asked to define seating preferences
between different guest groups.

Figure 1 shows a small example of this process. Here, eight guest groups ranging
in size from 1 to 4 have been input, giving 20 guests in total. The right-hand grid
then shows how the seating preferences (values for wu,v) are defined. If the user
wants to define a preference, they do so by clicking on the relevant cells in the grid.
Users are limited to three options: (1) “Definitely Apart” (e.g. Pat and John); (2)
“Rather Apart” (Pat and Ruth); and (3) “Rather Together” (John and Ken). In our
case these are allocated weights of ∞, 1, and −1 respectively. Note that it would
have been possible to allow the user to input their own weights here; however it was
felt by the website designers that, while perhaps more flexible, this ran the risk of
bamboozling the user while not improving the usability of the tool.

The overall strategy of our algorithm is classify the requirements of the problem
as either hard (mandatory) constraints or soft (optional) constraints. In our case we
consider just one hard constraint, which we attempt to satisfy in Stage 1 – specifi-
cally the constraint that all pairs of guest groups required to be “Definitely Apart”
are assigned to different tables. In Stage 2 the algorithm then attempts to reduce
the number of violations of the remaining constraints via specialised neighbourhood
operators that do not allow any of the hard constraints satisfied in Stage 1 to be
re-violated. We now describe the two stages of the algorithm in more detail.

26 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

2.1 Stage 1

In Stage 1 the algorithm operates on the sub-graph G′ = (V,E ′), where E ′ = {{u, v} ∈
E : wu,v = ∞}. That is, G′ contains only those edges from E that define the
“Definitely Apart” requirement.2 Using this sub-graph, the problem of assigning all
guests to k tables (while not violating the “Definitely Apart” constraint) is equivalent
to the graph k-colouring problem.

The graph k-colouring problem is a widely studied combinatorial optimisation
problem for which a multitude of different algorithms are available [5]. In our case,
we use a variant of the DSatur heuristic [1] to produce an initial solution. DSatur
is a constructive algorithm that, at each iteration, selects the uncoloured vertex v that
currently has the largest number of distinct colours assigned to adjacent vertices. Ties
are broken by selecting the vertex with the largest degree. In our case the selected
vertex v is then assigned to any colour i ∈ {1, . . . , k} that currently features no other
vertices adjacent to v. If no such colour exists, v is kept to one side and is assigned to
a random colour at the end of the construction process, thereby introducing violations
of the hard constraint.

If the solution produced by the above process contains hard constraint violations,
attempts are next made to eliminate these. This is done using the TabuCol algo-
rithm of Hertz and de Werra [4, 2] which, while perhaps not as powerful as more
contemporary graph colouring algorithms, does have the advantage of being very
fast [5]. TabuCol uses the tabu search metaheuristic to make a series of small
changes (moves) to the candidate solution, attempting to find a solution for which
the cost function f1 = 0 (using G′). A move in the search space is performed using
a neighbourhood operator that takes a vertex v whose assignment to colour i is cur-
rently contributing to the cost, and then assigns it to a new colour j 6= i. The tabu
list is stored in a |V | × k matrix T and, upon performing this move, the element Tv,i

is marked as tabu for the next t iterations. In each iteration of TabuCol all possible
moves from the current solution are considered, and the move that is chosen is the
one that is seen to invoke the largest decrease (or failing that, the smallest increase)
in cost of any non-tabu move. Ties are broken randomly, and tabu moves are also
permitted if they are seen to improve on the best solution found so far.

Because speed is an issue with our online tool, TabuCol is only run for a fixed
number of iterations.3 If at the end of the process a solution with cost f1 = 0 has
not been achieved, then it is possible that the user has specified a k-value for which a
k-colouring is not achievable (i.e. the number of tables is too small to meet all of the
“Definately Apart” constraints). In this case, k is incremented by one and Stage 1
of the algorithm is repeated. This process continues until all hard constraints are
satisfied.

2For example, using the problem shown in fig. 1, E′ = {{1, 3}, {2, 4}, {3, 7}}.
3TabuCol is executed for 20n iterations, using a tabu tenure t that is proportional to the current

cost (t = 0.6f1 + r, where r is randomly selected from {1, 2, . . . , 9}), as recommended in [2].

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 27

1

1 2

2

2

5 5

v1 v2

v3

v4 v5

v6 v7
v8

v9 v10

3 3

Figure 2: Example of a feasible 5-colouring of graph G′ = (V,E ′).

2.2 Stage 2

At the start of Stage 2 we will have achieved a k colouring of G′ = (V,E ′) for which no
pair of adjacent vertices is assigned the same colour. We call such a solution feasible
as it obeys all of the imposed hard constraints. In this stage we now try to eliminate
violations of the soft constraints by exploring the space of feasible solutions. Note
that movements in this space might be restricted – indeed the space might not even
be contiguous – and so it is necessary to use neighbourhood operators that allow as
much freedom-of-movement as possible. In our case this is achieved using tabu search
in conjunction with two operators, both that exploit the underlying structure of the
graph colouring problem. These are defined as follows:

Kempe-Chain Interchange: Given an arbitrary vertex v currently assigned to
colour i, and given a second colour j 6= i, a Kempe-chain is defined as a con-
nected subgraph starting from v that only contains vertices coloured with i and
j. Such a chain can be denoted Kempe(v, i, j).

A Kempe-chain interchange involves taking a particular Kempe-chain and swap-
ping the colours of all vertices contained within it. For example, in fig. 2,
Kempe(v7, 5, 2) results in a chain involving vertices {v4, v9} (assigned to colour
2) and {v7, v8} (assigned to colour 5). When the colours of these vertices are
interchanged, we observe that the resultant solution will still be feasible. This
is actually the case with all Kempe-chain interchanges [6].

It is also worth noting that Kempe-chains can vary in size, and some combina-
tions for Kempe(v, i, j) will overlap in that they result in the same Kempe-chain
being identified (e.g. Kempe(v7, 5, 2) = Kempe(v9, 2, 5)). Indeed, as the num-
ber of colours k is reduced, or the density of G′ is increased, then so will the
size of the chains and the amount of overlap. This feature is relevant with ap-
plications of tabu-search such as ours because, with appropriate book-keeping,
we can avoid evaluating the effects of a particular interchange more than once
when scanning the entire neighbourhood.

Swaps: The swap operator is used for performing further moves not contained within
the Kempe-chain neighborhood. Specifically, when scanning the set of Kempe-
chain interchanges, we can also identify pairs of non-adjacent vertices u, v that
both feature Kempe-chains Kempe(u, i, j) and Kempe(v, j, i) of size 1 (e.g.

28 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

0

10

20

30

40

50

60

70

3 8 13 18 23 28 33 38

C
o

st

k

p=0.0

p=0.3

p=0.6

p=0.9

0

1

2

3

4

5

3 8 13 18 23 28 33 38

C
P

U
 t

im
e

 (
s)

k

p=0.0

p=0.3 p=0.6
p=0.9

Figure 3: Solution costs (left) and run times (right) for four instances using various
k-values. For most of the left figure, the line for p = 0.0 is obscured by the line for
p = 0.3 (i.e. the same results were achieved).

Kempe(v1, 1, 3) and Kempe(v5, 3, 1) in fig. 2.) In these particular cases u and
v can have their colours swapped, but no hard constraint violations will occur
as a result.

In each iteration of this stage of the algorithm all possible moves from both neigh-
bourhoods are evaluated and the same acceptance criteria as Stage 1 are applied.
Once a move is performed, all relevant parts of the tabu list T are updated to reflect
the changes made to the solution.4 The cost function used is simply (f1 + f2) which
will always evaluate to a value less than ∞ (since violations of the hard constraints
cannot occur).

3 Algorithm Performance

The algorithm and interface described above has been coded in ActionScript 3.0 and
can be run via a web browser at www.weddingseatplanner.com. To ensure run times
are kept relatively short, and also to allow the interface to be displayed clearly on the
screen, problem size is limited to |V | = 50 guest groups of up to 8 people, allowing a
maximum of n = 400 guests.

To gain an understanding of the performance characteristics of this algorithm, a
large problem instance of |V | = 50 guest groups was constructed, with the size of
each group chosen uniform randomly in the range 1 to 8. This instance was then
modified such that a each pair of vertices was joined by an ∞-weighted edge with
probability p (meaning that a proportion of approximately p guest group pairs would
be required to be “Definitely Apart”). Tests were then carried out using values of
p = {0.0, 0.3, 0.6, 0.9} and number of tables k = {3, 4, . . . , 40}.

Figure 3 shows the results of these tests with regard to the costs and run times
that were achieved at termination. Note that for p > 0.0, values are not reported for
the lowest k’s as feasible k-colourings were not achieved (quite possibly because they

4That is, all nodes and colours effected are marked as tabu in T . For our application a tabu
tenure of 10 is used along with an iteration limit of 10n.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 29

do not exist). Also note that all runs took less than 5 seconds on our machine (3.0
GHz Windows XP machine with 3.18 GB RAM).

Figure 3 (left) demonstrates that with no hard constraints, balanced table sizes
can be achieved with all k-values up to 30. Beyond this point however, it seems
there are simply too many tables (and too few guests per table) to spread the groups
equally. Higher costs are also realised when p > 0.0 and the lowest achievable values
for k are used. This is because many guest group combinations (including many of
those that are required for achieving low cost solutions) will now contain at least one
hard constraint violation, meaning they will not be considered by the algorithm. This
also explains why low cost solutions are not achieved using p = 0.9.

We also note that for more constrained problems (lower k’s and/or larger p’s), the
Kempe-chains in the underlying graph colouring model tend to become larger and
less numerous. In practice this means that the size of the neighbourhoods scanned
in each iteration of tabu search is reduced, resulting in shorter run times as shown in
Figure 3 (right). The exception to this pattern is for low values of k using p = 0.0,
where the larger numbers of guests per table requires more overheads in the calculation
of Kempe chains and the cost function, resulting in an increase in run times.

4 Conclusions

An effective two stage heuristic algorithm has been proposed for the wedding seating
problem, making use of concepts taken from the observed underlying graph colour-
ing model. Experiments have been presented to demonstrate factors that influence
solution quality and run times.

The described tool has been live at www.weddingseatplanner.com since mid-2011
and receives approximately 1000 hits per month at the time of writing. We have
also found that it can be a useful tool for introducing students to many of the issues
surrounding combinatorial optimisation.

References

[1] D. Brelaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–256,
1979.

[2] P. Galinier and J-K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3:379–397, 1999.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability - A guide to NP-
completeness. W. H. Freeman and Company, San Francisco, first edition, 1979.

[4] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing,
39(4):345–351, 1987.

[5] R. Lewis, J. Thompson, C. Mumford, and J. Gillard. A wide-ranging computational
comparison of high-performance graph colouring algorithms. Computers and Operations
Research, 39(9):1933–1950, 2012.

[6] J. Thompson and K. Dowsland. A robust simulated annealing based examination
timetabling system. Computers and Operations Research, 25(7/8):637–648, 1998.

30 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

SESSION

SWARM OPTIMIZATION ALGORITHMS AND
APPLICATIONS

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 31

32 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Solving the Traveling Salesman Problem using Reinforced

Ant Colony Optimization techniques

N.N.Poddar
1
, D. Kaur

2

1
Electrical Engineering and Computer Science, University of Toledo, Toledo, OH, USA

2
Electrical Engineering and Computer Science, University of Toledo, Toledo, OH, USA

Abstract - This paper discusses the results of applying

Reinforced Ant Colony Optimization algorithm to solve the

Traveling Salesman Problem (TSP), an NP Complete

problem. To evaluate the performance of Ant Colony

Optimization algorithm, comparative studies were done

between research which introduced Hybrid Genetic

algorithm [3] to solve the Traveling Salesman Problem and

the original Ant Colony Optimization algorithm proposed by

Dorigo[1]. After comparing the Hybrid and Genetic

algorithms as well as the Nearest Neighbor (NN) algorithm

and the original ACO against the reinforced ACO algorithm,

it was found that the reinforced ACO algorithm performs the

best with the tour length being the shortest. However, the

convergence time for the reinforced ACO algorithm increases

when the number of cities increases. Thus, although tour

length was shorter for the reinforced ACO, for a large

number of cities, the reinforced ACO algorithm took a

relatively long time to find a tour.

Keywords: Ant Colony Optimization algorithm, ACO,

Combinatorial Optimization problems.

1 Introduction

 Ant Colony Optimization uses the behavior of ants as a

model for coming up with techniques to solve optimization

problems which are difficult to solve in polynomial time using

brute force or other advanced algorithms. More specifically,

the foraging behaviors of ants were used to develop the Ant

Colony Optimization algorithm. This paper discusses the

results of applying ACO algorithm to solve the Traveling

Salesman Problem.

 Some researchers have made attempts to extend the

original ACO algorithm [1] to solve the Traveling Salesman

Problem. In [2] and [4], Max-Min Ant System is used where

only the best ant is allowed to update the pheromone trail, and

the pheromone level on the path is kept between a certain

lower and upper bound. In [3], hybrid GA was proposed. In

[5], a rank-based ACO has been implemented where a few

best ants are allowed to update the pheromone trail, and their

weight is dependent on their rank, with the best ant being

weighted the most. In [6], ants with memory solve a problem

in parts, and use the best solutions from that part in later

iterations. In [7], entropy is used to measure the information

content within the pheromones on a path, and the entropy is

used to determine the value for β, one of the parameters for

the ACO algorithm. In [8], Ant Colony Optimization is

combined with Genetic algorithm in a cooperative manner

where information is exchanged between the two algorithms

to produce better results. In [9], Ant Colony Optimization is

combined with local search which improves the solution

found by Ant Colony Optimization algorithm. In [10], a work

similar to [8] has been done where genetic techniques were

combined with ACO algorithm to yield better results.

 This paper is organized as follows. Section 2 discusses

TSP and the various methods used to solve TSP. Section 3

discusses the conventional ACO algorithm and the reinforced

ACO algorithm. Section 4 discusses the simulation technique.

Section 5 discusses the comparative studies between

reinforced ACO, conventional ACO and Genetic algorithms.

Section 6 discusses the results. Section 7 discusses the

conclusion and other future work.

2 Traveling salesman problem

 Traveling Salesman Problem is a classic NP Complete

problem in the field of Computer Science. It creates a

Hamiltonian Tour of all the cities in a graph, where each city

is visited once. That is, given a list of cities, the problem is to

find the shortest tour that visits all the cities and returns to the

first city. Different variations to this problem are there. The

problem is NP complete, meaning there aren’t any algorithms

available to solve the Traveling Salesman Problem in

polynomial time. There are many heuristics to solve the TSP

which approximate the final answer. Some of the algorithms

which approximate the final answer are Nearest Neighbor

algorithm, Genetic algorithm, Simulated Annealing, and Ant

Colony Optimization to name a few. Genetic algorithm,

Nearest Neighbor algorithm, and Ant Colony algorithms are

discussed and implemented in this paper. Comparative studies

were also done between the above mentioned algorithms, and

results of the study have been given in this paper.

3 Ant colony optimization algorithm

 Conventional Ant Colony Optimization (ACO)

algorithm is a heuristic technique inspired by foraging

behavior of ants. It is discussed in section 3.1. The reinforced

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 33

ACO algorithm and its simulation are discussed in the

following section 3.2 to 3.3.

3.1 Conventional ACO technique

 In the ACO algorithm, ants are modeled as agents that

search the problem space individually, but communicate with

one another the quality of the solution found so far, and thus

move towards a better solution. ACO uses a form of

communication called “stigmergy”. Here, each ant develops a

solution to the problem, and communicates with another ant

the quality of the solution using pheromone trails. In the

Traveling Salesman Problem, each ant starts at a point in the

graph, and then the ants build a solution to the Traveling

Salesman Problem. As they pass through an edge of the graph,

they deposit pheromones on the edge. Another ant trying to

create a tour will use the pheromone as a guide. The amount

of pheromones deposited depends on the quality of the

solution. In the Ant Colony Optimization algorithm, the

amount of pheromone deposited is indirectly proportional to

the tour length. The smaller the tour length, the more is the

pheromone laid on the path. The pheromone also decays

along a path with time. This allows for paths less traveled to

have a lower pheromone trail as the pheromones evaporates

with time.

3.2 Reinforced ACO algorithm

 Reinforced ACO was developed by modifying the

original ACO. The premise of the original ACO algorithm is

that an ant has to find the shortest path from the nest to the

food source. However in TSP, this scenario is not true as the

objective is to visit all the nodes starting from any node and

find the shortest tour distance. The algorithm uses as many

ants as the number of cities. The first objective is to go to the

nearest node from the starting node. Therefore beta is set

high, and a pheromone trail is laid such that the nearest city is

the preferred city to visit. Next, beta is decreased so that the

pheromone trails can guide the ants. However, this approach

has a problem because pheromones evaporate with time. Thus

less traveled edges see their pheromones evaporate. To allow

less promising edges on the graph to be explored, the

reinforced ACO algorithm increases the pheromones on an

edge having low pheromone by a factor of 100 once every 10

iterations.

 The algorithm implemented is discussed below –

procedure [best] = AS-TSP(max_it)

Randomly initialize τij (pheromone on an edge from city i to

city j)

Place each ant k on a randomly selected city

Let best be the shortest tour found so far and Lbest its length.

Initialize Lbest to a very large value

t ← 1

while t < max_it(maximum number of iterations entered by

user) do,

For i = 1 to N do,

Build T
k
(t), the TSP tour created by ant k, by applying (e-1)

times, where e is the number of cities, the step below:

At city i, choose the next city j with probability given by

equation (1) –

(t) = [τij(t)]
α
.[ηij]

β
/ [τil(t)]

α
.[ηil]

β
 if jε

Or 0 otherwise (1)



Equation (1) gives the probability of taking a certain edge(i,j).

In the above equation, τij is the pheromone trail from node i to

node j, and ηij is the visibility of the city which is given by

1/dij where dij is the distance from city i to city j. is the list

of cities that are yet to be visited by ant k when it is at city i. α

and β are constants defined by the user.

End for

Evaluate the length of the tour performed by each ant k.

If a shorter tour is found,

Then update best and Lbest

End if

For every city e do,

Update pheromone trails by applying the following rule at

iteration t:

τij(t+1) ← (1-p) τij(t) + Δ τij(t) + b. Δ τ
b
ij(t)

where

Δ τij(t) = , k = 1, …, N,

(t) = Q/L
k
(t) if (i, j)ε T

k
(t) and

0 Otherwise,

 (t) = Q/Lbest(t) if (i, j) ε best path and 0 otherwise

where p is the forgetting factor, b is a constant, Q is a

constant, L
k
 is the length of the tour performed by ant k, and

Lbest is the best tour length found so far.

End for

For every edge in graph between city i and j

If τij < K(constant defined by user)

τij = τij * M every 10 iterations(M is a user defined constant)

End if

End for

t ← t + 1

End while

End procedure

34 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Figure 1: Traveling Salesman tour constructed by the original ACO algorithm for 90-city TSP

 Figure 2: Traveling Salesman tour constructed by the Reinforced ACO algorithm for 90-city TSP

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 35

Figure 3: Traveling Salesman Tour constructed by the Reinforced ACO for 30 cities

Figure 4: Traveling Salesman Tour constructed by the Reinforced ACO for 50 cities.

36 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

3.3 Key features of reinforced ACO algorithm

 To get better results than the ACO algorithm which

converged to local optimal, changes to the algorithm were

made. In the implementation, K was set to 80, and M was set

to 100. The value of Q used was 100, while α was set to 1,

and β to 100 and then 5. Additionally, to compute the

pheromone trail left on the path, a forgetting factor, p, of 0.5

was used. The paths that had a pheromone level less than 80

had their pheromones increased every 10 iterations or time

step. It was found that multiplying the pheromone levels by a

factor of 100 gave the best results in terms of convergence

time. This value is specific to this implementation as the value

depends on how the forgetting factor or evaporation rate of

the pheromones was set up, as well as other constants. Thus,

this modification allowed paths that were less promising to be

explored as well, and produce better results.

4 Simulation of reinforced ACO

 The reinforced ACO algorithm above was implemented

using Java. The tour created visits every city the user wants to

visit and ends at the starting city. To compare the results with

Hybrid and Genetic algorithms [3], the coordinates of cities

from the research in [3] was imported. Also, the original ACO

algorithm proposed by Dorigo [1] was implemented. Fig. 1

shows the tour created by implementing the original ACO

algorithm with a tour distance of 81.20.

 When implementing the original ACO algorithm, it was

found that the algorithm got stuck in local optima. That is,

only some of the paths were being reinforced. The rest of the

paths were slowly dying out, and not being explored at all.

The reinforced ACO tries to overcome this pitfall.

 Pheromones were initially deposited on each path via a

random number generator. The pheromone was updated at the

end of each tour by an ant. The number of ants created for the

algorithm was equal to the number of cities. The program

gives the shortest tour generated by the algorithm along with

its tour length. The reinforced ACO algorithm was

implemented on a range of cities, and the results of the

implementation are shown in Figs. 2, 3, 4 and 5. The tour

lengths are shorter than original ACO proposed by Dorigo [1].

Formatting instructions

5 Comparative studies with pure GA,

hybrid GA, and nearest neighbor

 To evaluate the performance of the reinforced ACO

algorithm, comparative studies were done with the original

ACO algorithm proposed by Dorigo[1], the Nearest Neighbor

algorithm, and Pure and Hybrid GA algorithms proposed by

Kaur and Murugappan in [3] The methods and the

implementations of the above mentioned algorithms are

discussed in the following sections A through C.

5.1 Pure GA

 In Pure GA, the initial population was randomly created,

and then allowed to reproduce and mutate. The fitness was

evaluated based on tour distance with tours having lower

distances getting higher fitness values. The result of the

experiment is shown in Fig. 6.

 Figure 6 : Pure GA route for 90 cities TSP [2, p. 4]

Figure 5: Tour Length vs. Iteration for Reinforced ACO

algorithm

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 37

5.2 Hybrid GA

 In hybrid GA, the initial population was populated based

on the results of Nearest Neighbor algorithm. Thus the initial

population was of higher fitness than that of Pure GA. The

individuals were crossed over and mutated with one another.

The results of the experiment are illustrated in Fig. 7.

5.3 Nearest neighbor algorithm

 In the Nearest Neighbor algorithm, the salesman starts at

a random city and repeatedly visits the nearest city until all

cities have been visited. It converges very quickly to a

solution but is usually not the optimal one. The result of

applying the Nearest Neighbor algorithm to TSP is given in

Fig. 8.

6 Results

 The Reinforced ACO algorithm outperformed hybrid

GA, pure GA, the conventional ACO and the Nearest

Neighbor algorithms by giving the shortest tour distance. This

section gives the results of applying the reinforced ACO

algorithm on the Traveling Salesman Problem with 30, 50, 70

and 90 cities. Table 1 summarizes the tour distance and the

time taken for convergence of the TSP problem for different

number of cities using Pure GA, Hybrid GA, the conventional

ACO, and the reinforced ACO algorithms. As expected, the

time of convergence increased with the number of cities. As

can be seen from the Table 1, the reinforced ACO algorithm

performs the best in term of tour distance. However, the

convergence rate of reinforced ACO is higher than that of

hybrid GA or Pure GA as it takes a longer time to find a better

tour.

TABLE 1: CONVERGENCE RATE FOR THE TOUR OF N CITIES FOR PURE GA, HYBRID GA, ACO, AND

REINCORCED ACO ALGORITHMS

Citie

s N

Best NN

Route

distance

Pure GA Hybrid GA Original ACO Reinforced ACO

Distance Time(s) Distance Time(s) Distance Time(s) Distance Time(s)

30 48.1 43.7 <5 45.5 <5 44.71 2.27 44.5 20.18

50 63.2 61.9 <5 61.4 <5 63.05 6.86 60.15 29.25

70 73.7 78.6 <5 69.9 <5 72.68 22.61 68.28 28.6

90 86.3 98.6 <5 81.5 <5 80.31 38.75 78.27 57.3

 Figure 8: Nearest Neighbor route for 90 cities TSP [2,

p.4]

 Figure 7: Hybrid GA route for 90 cities TSP [2, p. 5]

38 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

7 Conclusion and future works

The results show that reinforced ACO algorithm provided

the shortest tour length compared with conventional ACO,

Hybrid GA, Pure GA and Nearest Neighbor methods. The

tour distance of reinforced ACO algorithm becomes

significantly smaller as the number of cities increase. As

expected, the time of convergence also increases as the

number of cities increase. Since the convergence time is high,

future work can be done to address that. It would be

interesting to embed the solution found from Genetic

algorithms to reinforced ACO algorithm where the

pheromones obtained from a run of a Genetic algorithm are

used by the reinforced ACO algorithm. Also, a different

heuristic such as an approximation algorithm can be used in

addition to Nearest Neighbor distance. Future works can also

include ants with memory.

8 References

[1] Leandro Nunes de Castro.“Fundamentals of Natural

Computing: Basic Concepts, Algorithms, and Applications:

Chapman and Hall, 2006, pp. 210-234.

[2] T. StÄutzle and H.H. Hoos. Improvements on the Ant

System: Introducing the MAX-MIN Ant System. In R.F.

Albrecht G.D. Smith, N.C. Steele, editor, Artificial Neural

Networks and Genetic Algorithms, pages 245-249. Springer

Verlag, Wien New York, 1998.

[3] Kaur. D, Murugappan, M.M, "Performance

enhancement in solving Traveling Salesman Problem using

hybrid genetic algorithm," Fuzzy Information Processing

Society, 2008. NAFIPS 2008. Annual Meeting of the North

American, May 2008 doi: 10.1109/NAFIPS.2008.4531202.

[4] T. StÄutzle and H.H. Hoos. The MAX-MIN Ant System

and Local Search for the Traveling Salesman Problem. In T.

Baeck, Z. Michalewicz and X. Yao, editors, Proceedings of

the IEEE International Conference on Evolutionary

Computation (ICEC'97), pages 309-314.

[5] B. Bullnheimer, R.F. Hartl, and C. Strauss. A New Rank

Based Version of the Ant System | A Computational Study.

Central European Journal for Operations Research and

Economics.

[6] A.Adnan. Ant Colony Optimization and swarm

intelligence 4th international workshop, ANTS 2004,

Brussels, Belgium, September 5-8, 2004 : proceedings. Berlin

New York: Springer, 2004.

[7] Hlaing, Zar, and May Khine. "Solving Traveling

Salesman Problem by Using Improved Ant Colony

Optimization Algorithm." 2011. Web. 12 Dec. 2012.

<http://www.ipcsit.com/vol16/11-ICICM2011M029.pdf>.

[8] Dong, G, Guo, W, & Tickle, K. “Solving the traveling

salesman problem using cooperative genetic ant systems”.

(2012). 39(5), 5006–5011. doi: 10.1016/j.ejor.2012.02.038

[9] Gambardella, L, Montemanni, R, & Weyland, D. (2012).

Coupling ant colony systems with strong local searches,

220(3), 831–843. doi: 10.1016/j.ejor.2012.02.038.

[10] Chen, S., & Chien, C. “Parallelized genetic ant colony

systems for solving the traveling salesman problem”. (2011).

38(4), 3873–3883. doi: 10.1016/j.eswa.2010.09.048

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 39

Harmonic Estimation in Radial Distribution
Feeders Based on Particle Swarm

Optimization

Ricardo A. S. Fernandes
CCET - UFSCar - Brazil

ricardo.asf@ufscar.br

Ricardo A. L. Rabêlo
UESPI - Brazil

ricardor_usp@yahoo.com.br

Ivan Nunes da Silva
EESC - USP - Brazil

insilva@sc.usp.br

Mário Oleskovicz
EESC - USP - Brazil

olesk@sc.usp.br

Abstract—This paper presents a method based on the particle
swarm optimization algorithm applied to estimate harmonic
components in radial distribution feeders. It is important to
mention that this method is not applied as harmonic state
estimator, neither to estimate the total harmonic distortion at the
substation. So, the proposed method can be employed to estimate
the harmonic components in specific points of common coupling
between the harmonic source and the feeder. In this sense, some
case studies were prepared in order to validate the method. The
point of common coupling where the harmonic source is located
were obtained by means of expert knowledge. Nevertheless, the
specialist/engineer should be induced to err the exact position of
the harmonic source due to the presence of other harmonic
sources with lower levels of distortion. Thus, the precision rate of
this method was evaluated in accordance with the uncertainty
that can be generated by the expert knowledge. These analysis
are crucial to verify the performance of the proposed method,
mainly, in the utility's point of view.

Keywords—harmonic components, harmonic estimation,
particle swarm optimization, power quality.

I. INTRODUCTION
Nowadays, the utilities have the concern for the electricity

delivered to the consumers. Moreover, we have the energy
efficiency, where some linear loads had been replaced by
nonlinear loads. Thus, it is possible to observe the increment of
current and/or voltage harmonic distortions in the distribution
feeders. Given these high level of distortions, it becomes clear
the poor power quality which mainly affect the consumers.

In conformity with these premises, some research have
been developed with the intuit to reach a precisely harmonic
power flow to radial and/or weakly meshed distribution feeders
[1-3].

However, in order to employ the above mentioned research,
it is necessary a prior knowledge about the harmonic
components of each Point of Common Coupling (PCC).
Hence, this information is very difficult to obtain due to the
absence of power quality monitors installed at these points or
smart meters installed at the consumers.

Due to the difficult to determine the harmonic power flow,
the research in this area were directed to harmonic state
estimation [4-5] and nonlinear load identification [6-7]. It is
important to highlight that state estimators need some
measurements to determine the harmonic components at each
bus.

Among the methods previously cited, we can highlight the
research developed by [7], where the authors use the IEEE 34-
bus with unbalanced voltages and light loading conditions. So,
the proposed method was designated to determine the precise
location of harmonic sources based on harmonic power flow
calculation. However, this method needs a total of 26 meters
located at the feeder. Thus, this kind of method is impractical
owing to the high cost for purchase harmonic analyzers.

In [5], a Bayesian method was proposed to estimate the
state of the IEEE 13-bus. It is important to say that the authors
use pseudo-measurements and the IEEE 13-bus was modified
to be a balanced feeder, but this condition is improbable in
distribution feeders. Moreover, this method needs 5 harmonic
analyzers to realize the state estimation.

Following the context above cited, this paper proposes a
method that is capable to determine the harmonic components
at a specific PCC. Hence, this technique must be employed to
obtain the load with the higher harmonic distortion based on
the expert knowledge.

This paper was divided in five sections, where in Section I
was given the introduction, Section II presents the
characteristics of the distribution feeder modeled and
simulated. In the Section III we describe the harmonic
estimator aspects. Finally, the Sections IV and V are,
respectively, designated to show the results of each case study
and the research conclusions.

II. DISTRIBUTION FEEDER MODELED AND SIMULATED
The simulated radial distribution feeder contain 20 buses

and consists in a modification of the IEEE 13-bus [8].
Therefore, some characteristics such as transformers, loads,
and overhead lines are similar to IEEE 13-bus. Figure 1 shows
the 20-bus distribution feeder proposed to evaluate the
methodology.

In order to model and simulate the 20-bus distribution
feeder, we use the ATP (Alternative Transient Program)
software [9]. Despite of this software be employed to transient
analysis, in this case it is used to steady-state.

Other features concerning to the 20-bus distribution feeder
are described in Table I, where were discriminated: source,
transformers, capacitor bank and meters (voltage and current).

The Figure 1 shows the 20-bus line diagram where two
power quality meters were allocated (one of them between the

40 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

buses 10 and P1 and the another one between the buses 50 and
P2).

Only the power quality meter at the end of the feeder was
randomly allocated. This location was chosen in order to better
cover the feeder.

10

20

30

2221

3231

23 24

3433

404241 4443

P2

5351

52

2Km

2Km

50m 50m

50m

250m 350m

3Km

1Km 1Km300m

5Km

400m 300m 500m 500m

200m 100m

100m

Voltage Meter 1 – Bus 10
Current Meter 1 – Between Buses 10 and P1

Voltage Meter 2 – Bus 50
Current Meter 2 – Between Buses 50 and P2

C

R L

88kV (Vline)

Substation Transformer

Δ - Yg

10 MVA

88kV (Vline) / 13,8kV (Vphase)

Source

ABCN

ABCNABCN ABCN ABCN

ABCNABCN ABCN ABCN

ABCNABCN ABCN ABCN

ABCN ABCN

ABCN

P1

50

ABCN – Three Phases + Neutral

Legend

Meters Located at the Substation

Meters Located at the End of the Feeder

Fig. 1. Line diagram of the 20-bus radial distribution feeder.

Due to this research is focused on the identification of
harmonic sources, a 6-pulses rectifier was modeled to supply
RC and RL loads. Thus, six case studies were created based on
the 20-bus distribution feeder and the 6-pulses rectifier. This
case studies will be presented in the Section IV.

III. HARMONIC ESTIMATION AT THE PCC
The harmonic estimator proposed in this paper was

addressed to determine a mean harmonic distortion at the PCC.
In this sense, the expert knowledge is responsible to define a
possible bus where the predominant harmonic source is
located. However, it is possible that the expert knowledge is
uncertain. So, the harmonic estimator attempts to minimize this
uncertainty.

Bearing in mind this pre-determined bus, the estimator
follow the procedures shown in Figure 2. These procedures
must be done to obtain the mean value of harmonic
components at the PCC.

Analyzing the Figure 2, it is possible to note that the
harmonic estimator needs the acquisition of actual (measures
obtained after entry of the harmonic source) and historical
measurements (before the entry of the harmonic source). The
historical and actual data are obtained from current and voltage
meters allocated at the points highlighted in Figure 1 (P1, 10,
P2, 50).

Based on these measurements, the Discrete Fourier
Transform (DFT) is applied to obtain the frequency spectrum

for each current and voltage acquired. So, the results of the
DFT are presented to the power quality engineer in order to
support the decision, i.e., the determination of the bus where
the harmonic source is probably located.

TABLE I. 20-BUS RADIAL DISTRIBUTION FEEDER: METERS,
TRANSFORMERS AND SOURCE CHARACTERISTICS.

Source

Nominal Line-to-Line Voltage (kV) 88.0

Resistance - Zero Sequence (Ω) 20.805

Resistance - Positive Sequence (Ω) 4.062

Inductance - Zero Sequence (mH) 203.721

Inductance - Positive Sequence (mH) 52.540

Nominal Frequency (Hz) 60

Substation Transformer

Connection Δ-Yg

Primary Winding - Line-to-Line Voltage (kV) 88.0

Secondary - Winding Line-to-Neutral Voltage (kV) 13.8

Primary Winding - Resistance (Ω) 0.055

Secondary Winding - Resistance (Ω) 0.794

Primary Winding - Inductance (mH) 1.628

Secoundary Winding - Inductance (mH) 23.626

Apparent Power (MVA) 10.0

Capacitor Bank

Connection Δ-Yg

Capacitance (µF) 5.965

Voltage and Current Meters

Sample per Cycle 256

Sampling Rate (Hz) 15360

Load Actual and Historical Measurements
(Data Storage on BD_M1 and BD_M2)

BD_M1

BD_M2

Substation
Measurements

Measurements
at the End of
the Feeder

Real Database

Calculation of Discrete Fourier Transform
(Voltage and Current Measurements)

Begin

Residue Calculation between DFT Values
of Actual and Historical Measurements

(Currents Only)

Estimation of Mean Harmonic Current
at the PCC Based on the PSO

End

Fig. 2. General procedures of the proposed method.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 41

In the next step, the algorithm performs the residue
calculation between the values obtained after the DFT (actual
and historical data).

After the procedures above mentioned, the harmonic
estimator runs based on the procedures shown in Figure 3.

Initialize Swarm with N Particles

Generate Simulations with the Current Amplitude of
each Particle for each Harmonic

Begin

DB_M1Sim

DB_M2Sim

Simulated Database

Substation
Measurements

Load Simulated Measurements
(Data Storage on DB_M1Sim and DB_ M2Sim)

Calculation of the DFT
(Data Storage on DB_M1Sim and DB_M2Sim)

Obtain Gbest and Pbest for each Particle

End

Evaluate Particles (Simulations)

Verify the Stopping Criteria

Update the Velocity and Position of each Particle

Measurements
at the End of
the Feeder

Fig. 3. Flowchart of the harmonic estimator based on particle swarm
optimization.

In this paper, as previously mentioned, the estimator is
based on Particle Swarm Optimization (PSO). Thereby, the
PSO is initialized with N particles (these particles have
random values of position and its velocities are equal to zero).
So, in the next step, each particle is evaluated related to the
objective function which furnish the best particle (bestg) and
the better positions obtained until the moment for each particle
(bestp). Consequently, the velocity of each particle is updated
in accordance with (1):

 () () ()() ()()1 21i i best i best iv t v t p x t g x tϕ ϕ+ = + × − + × − (1)

where:

• 1ϕ and 2ϕ are respectively the cognitive and social
parameters;

• iv and ix are the velocity and position of the
thi particle;

• t represents the actual state of the swarm.

Therefore, after the particles velocity update, its positions
must also be updated in conformity with (2):

 () () ()+ = + +1 1i i ix t x t v t . (2)

All the procedures presented must be repeated until the
algorithm reach the stopping criteria. This PSO algorithm was
implemented based on the foundations proposed by [10-11]. It
should be mentioned that was used a swarm with 15 particles.

IV. CASY STUDIES
As previously mentioned, a 20-bus distribution feeder was

modeled and simulated in order to validate this research. Thus,
six case studies were created and its peculiarities will be
properly treated in the sequence. Mentioning that for each case
study, some nonlinear loads (6-pulses rectifier) were allocated
in the feeder.

Before the presentation of each case study, it is important to
highlight the buses determined by the expert knowledge and
the comparison with the exact position of the harmonic source.

TABLE II. BUSES PRE-DETERMINED BY EXPERT KNOWLEDGE

Case Study Buses Error [m] Exact Estimated
#1 21 20 100
#2 30 30 0
#3 34 30 1300
#4 53 50 300
#5 52 50 300
#6 42 40 300

A. Case Study #1
In order to obtain the actual measures, a 6-pulse rectifier

feeding a inductive load (600 Ω e 200 mH) was allocated on
bus 21. Its harmonic current signature can be viewed in the
Table III. This is an ideal case study, because the historical
measures do not present harmonic distortions (uncommon
condition).

TABLE III. RL LOAD (600 Ω E 200 MH) ALLOCATED ON BUS 21

Harmonic Order Peak Current [A]
Phase A Phase B Phase C

1 59.935 60.165 59.922
3 0.148 0.268 0.121
5 13.332 13.183 13.316
7 6.896 7.117 6.799
9 0.155 0.244 0.122
11 5.314 5.225 5.275
13 4.055 4.260 3.918

Analyzing the actual signals of voltage and current, it is

noted a Total Harmonic Distortion (THD) of voltage about:
1.71% (phase A), 1.91% (phase B) and 1.74% (phase C).

The mean value of exact and estimated harmonic currents
obtained for this case can be visualized in the Table IV.

It is important to note that higher harmonic orders (11th and
13th) and those harmonic components with low amplitude
presents considerable errors.

42 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

TABLE IV. RESULTS OBTAINED TO THE CASE STUDY #1

Harmonic Order Mean Currents [A]
Exact Estimated

1 60.007 64.464
3 0.179 0.014
5 13.277 13.387
7 6.937 7.172
9 0.174 0.056
11 5.271 0.863
13 4.078 0.932

B. Case Study #2
The second case study was generated to present the same

historical data of case study #1. The actual state of this feeder
has a 6-pulses rectifier allocated in bus 30. This rectifier feed a
RL load (900 Ω and 900 mH). Thus, its harmonic currents were
measured and can be visualized in the Table V.

TABLE V. RL LOAD (900 Ω E 900 MH) ALLOCATED ON BUS 30

Harmonic Order Peak Current [A]
Phase A Phase B Phase C

1 40.183 40.495 40.276
3 0.262 0.340 0.078
5 8.426 8.158 8.356
7 5.220 5.530 5.266
9 0.260 0.337 0.088
11 3.717 3.478 3.643
13 2.892 3.221 2.953

Furthermore, the actual measurements has a voltage

unbalance (-5% for the phase B and +10% in the phase C)
when compared to historical measurements.

It is important to mention that the percentage of voltage
unbalance were randomly generated.

In this case study, it was found THD of voltage at the
substation about: 1.36% (phase A), 1.54% (phase B) and
1.39% (phase C). Thus, after perfom the harmonic estimator , it
was possible to obtain the exact and estimated mean harmonic
currents (Table VI).

TABLE VI. RESULTS OBTAINED TO THE CASE STUDY #2

Harmonic Order Mean Currents [A]
Exact Estimated

1 40.318 43.750
3 0.227 1.001
5 8.313 8.284
7 5.339 6.018
9 0.228 1.008
11 3.613 1.795
13 3.022 0.123

Analyzing these results, we can see that the harmonic

estimator presents the same pattern response shown in the case
study #1.

C. Case Study #3
This third case study, as well as case studies #1 and #2, was

generated to has historical data without harmonic distortion.

However, the capacitor bank previously allocated in bus 42
was out of operation.

The simulation that represents the actual state has a 6-
pulses rectifier allocated in bus 34. This rectifier has been
allocated in the feeder in order to feed a RL load (1300 Ω and
200 mH). Thus, the harmonic signature observed at this PCC
can be viewed through the Table VII.

TABLE VII. RL LOAD (1300 Ω E 200 MH) ALLOCATED ON BUS 34

Harmonic Order Peak Current [A]
Phase A Phase B Phase C

1 27.922 28.085 27.960
3 0.084 0.175 0.094
5 6.273 6.166 6.290
7 3.005 3.177 3.054
9 0.094 0.182 0.091
11 2.511 2.416 2.564
13 1.686 1.869 1.753

Furthermore, in the actual state of the feeder some RL loads

had their impedances changed in order to generate variations in
feeder loading. It is worth mentioning that only the resistive
part of these RL loads was changed in a randomly way.

The voltage THD for this third case study were calculated
at the substation: 0.92% (phase A), 1.11% (phase B) e 0.99%
(phase C).

The results obtained by the harmonic estimator based on
PSO were those shown in Table VIII.

TABLE VIII. RESULTS OBTAINED TO THE CASE STUDY #3

Harmonic Order Mean Currents [A]
Exact Estimated

1 27.989 27.354
3 0.118 0.026
5 6.243 6.225
7 3.079 3.103
9 0.122 0.025
11 2.497 2.431
13 1.770 1.658

In this case study, only the estimation pattern related to the

harmonic components of low amplitude was maintained.

D. Case Study #4
This case study was created to use the same profile of

historical measurements presented at this moment (without
distortions).

Briefly, it can be said that the actual state of the feeder
includes voltage unbalance about: -7% (phase A), 7% (phase
B) and -4% (phase C). In addition, variations on the RL loads
distributed over the feeder were done and also a 6-pulse
rectifier feeding a RC load (800 Ω and 1000 µF) was allocated
on bus 53. The harmonic distortions observed at the PCC for
this case study can be viewed by means of Table IX.

It was found for this case study voltage THD at the
substation about: 1.90% (phase A), 2.46% (phase B) and
1.46% (phase C).

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 43

TABLE IX. RC LOAD (800 Ω E 1000 µF) ALLOCATED ON BUS 53

Harmonic Order Peak Current [A]
Phase A Phase B Phase C

1 44.446 45.610 44.898
3 0.359 0.444 0.795
5 21.303 21.523 21.765
7 10.675 10.304 10.400
9 0.437 0.149 0.455
11 3.609 3.704 3.840
13 2.481 2.442 2.457

After the estimation of harmonic components (Table X),

the proposed method showed a high error to estimate the
fundamental component and for those with low amplitude.

TABLE X. RESULTS OBTAINED TO THE CASE STUDY #4

Harmonic Order Mean Currents [A]
Exact Estimated

1 44.985 79.752
3 0.533 1.437
5 21.530 20.629
7 10.460 9.631
9 0.347 0.140
11 3.718 4.031
13 2.460 2.398

E. Case Study #5
Different from the case studies previously reported, this

case had historical data generated with harmonic distortions,
i.e., it is assumed that the feeder already has nonlinear loads.
Thus, the voltage DHT measured at the substation for the
historical simulations were: 0.88% (phase A), 1.04% (phase B)
and 0.88% (phase C). Moreover, the capacitor bank was
maintained out of operation.

The simulation representing the actual state of the feeder
has a 6-pulse rectifier feeding a RL load (1400 Ω e 600 mH)
allocated on bus 52. In this way, the fundamental and harmonic
components of this load was measured (Table XI).

TABLE XI. RL LOAD (1400 Ω E 600 MH) ALLOCATED ON BUS 52

Harmonic Order Peak Current [A]
Phase A Phase B Phase C

1 25.762 25.801 25.852
3 0.085 0.022 0.087
5 5.559 5.562 5.518
7 2.866 2.951 2.990
9 0.077 0.066 0.086
11 2.152 2.176 2.150
13 1.541 1.647 1.685

In the actual state of this case, a voltage unbalance can be

verified: +3% (phase A), -6% (phase B) and +9% (phase C);
and a loading variation of the feeder.

During the actual state simulation were verified voltage
THD at the substation about: 1.38% (phase A), 1.45% (phase
B) and 1.28% (phase C). The results obtained for the case
study #5 are summarized on the Table XII.

This results are very similar to those obtained for the case
study #3.

TABLE XII. RESULTS OBTAINED TO THE CASE #5

Harmonic Order Mean Currents [A]
Exact Estimated

1 25.805 28.280
3 0.065 0.019
5 5.546 5.304
7 2.936 2.792
9 0.076 0.009
11 2.159 1.979
13 1.624 1.442

F. Case Study #6
Finally, the case study #6 is similar to the case study #5, but

the capacitor is in operation and replaced to the bus 20. The
historical data was obtained in the same way used to the case
study #5. Thus, nonlinear loads were allocated on the feeder
and a voltage THD at the substation was measured: 3.58%
(phase A), 3.56% (phase B) e 3.49% (phase C).

The actual data was acquired allocating a 6-pulse rectifier
on bus 42 to feed a RL load (1200 Ω e 400 mH). Its harmonic
components are shown in Table XIII.

TABLE XIII. RL LOAD (1200 Ω E 400 MH) ALLOCATED ON BUS 42

Harmonic Order Peak Current [A]
Phase A Phase B Phase C

1 29.650 30.029 29.710
3 0.277 0.437 0.162
5 6.549 6.269 6.489
7 2.974 3.332 2.961
9 0.225 0.355 0.162
11 2.279 2.127 2.263
13 1.438 1.692 1.356

The simulation to the actual scenario of the feeder presents

loading variations, voltages unbalance about: +4% (phase A),
+2% (phase B) and +2% (phase C), and voltage THD at the
substation about: 4.24% (phase A), 4.20% (phase B) and
4.17% (phase C). For this last case study, the harmonic
estimator shows high imprecision to determine harmonics with
low amplitude and to estimate the fundamental current.

TABLE XIV. RESULTS OBTAINED TO THE CASE #6

Harmonic Order
Mean Currents [A]
Exact Estimated

1 29.796 38.235
3 0.292 2.185
5 6.436 6.169
7 3.089 3.678
9 0.247 0.484
11 2.223 2.205
13 1.495 1.325

V. CONCLUSIONS
Analyzing the six case studies, we can be note that the

proposed method is not effective to determine harmonics with
low amplitude (less than 1 A). The cases #3 and #5 presents the
better estimations, probably due to the absence of capacitor
banks. So, the continuation of this research points to the

44 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

definition of behavioral patterns based on the possible
scenarios of load. Moreover, other optimization methods, such
as ant colony, genetic algorithm and modified particle swarms
must be adequate and tested envisioning results better than
these presented on this paper.

ACKNOWLEDGMENT
The authors would like to acknowledge the CNPq

(Conselho Nacional de Desenvolvimento Científico e
Tecnológico), CAPES (Coordenação de Aperfeiçoamento de
Pessoal de nível Superior) and FAPESP (Fundação de Amparo
à Pesquisa do Estado de São Paulo) by the financial support.

REFERENCES
[1] K. L. Lian and T. Noda, "A Time-Domain Harmonic Power-Flow

Algorithm for Obtaining Nonsinusoidal Steady-State Solutions," IEEE
Transactions on Power Delivery, Vol. 25, No. 3, pp. 1888-1898, 2010.

[2] M. Valcárcel and J. G. Mayordomo, "Harmonic Power Flow for
Unbalanced Systems," IEEE Transactions on Power Delivery, Vol. 8,
No. 4, pp. 2052-2059, 1993.

[3] L. Sainz and J. Pedra, "Infeasible Harmonic Power Flow Study
Solutions," IEEE Transactions on Power Delivery, Vol. 10, No. 3, pp.
1621-1627, 1995.

[4] E. F. Arruda, N. Kagan, and P. F. Ribeiro, "Harmonic Distortion State
Estimation Using an Evolutionary Strategy," IEEE Transactions on
Power Delivery, Vol. 25, No. 2, pp. 831-842, 2010.

[5] G. D’Antona, C. Muscas, and S. Sulis, "State Estimation for the
Localization of Harmonic Sources in Electric Distribution Systems,"
IEEE Transactions on Instrumentation and Measurement, Vol. 58, No.
5, pp. 1462-1470, 2009.

[6] E. Gursoy and D. Niebur, "Harmonic Load Identification Using
Complex Independent Component Analysis," IEEE Transactions on
Power Delivery, Vol. 24, No. 1, pp. 285-292, 2009.

[7] D. -J. Won, I.-Y. Chung, J. -M. Kim, S. -I. Moon, J. -C. Seo and J. -W.
Choe, "A New Algorithm to Locate Power-Quality Event Source with
Improved Realization of Distributed Monitoring Scheme," IEEE
Transactions on Power Delivery, Vol. 21, No. 3, pp. 1641-1647, 2006.

[8] IEEE Distribution Planning Working Group Report, "Radial Distribution
Test Feeders," IEEE Transactions on Power Systems, Vol. 6, No. 3, pp.
975-985, 1991.

[9] H. K. Hoidalen, ATP Draw version 5 – Users Manual Supplements,
Trondheim – Norway, 2007.

[10] J. Kennedy and R. C. Eberhart, "Particle Swarm Optimization,"
Proceedings of IEEE International Conference on Neural Networks, pp.
1942–1948, 1995.

[11] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan
Kaufmann/Academic Press, 2001.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 45

Emission Source Localization using the Firefly Algorithm

Darrin M. Hanna
1
 and Michael F. Lohrer

1

1
Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, United States

Abstract – In this paper two solutions to the emission source

localization problem are examined. This problem involves

monitoring an environment with a distributed sensor network

and processing the data to find the source of an emission.

Being able to quickly find the source of a chemical leak or

radiological dispersion can save lives, and reducing or

eliminating the need for people to be involved in the search

process further reduces the danger. Previous work presented

the benefits of using the Particle Swarm Optimization for

emission source localization. This work presents further

benefits by using The Firefly Algorithm. The Firefly Algorithm

in general only performs better when dealing with lots of noise

from the sensors, but is faster under all circumstances.

Keywords: Swarm Optimization, Firefly Algorithm, Particle

Swarm Optimization, Emission Source Localization

1 Introduction

Tracking and localization of an emission's source is an

important safety concern. Whether an accident or terrorist

strike causes hazardous material to leak into the surrounding

air, finding the source of an emission can be critical.

Traditional methods of source localization involve

continuously sampling the suspected area and sending in

trained personnel to find the source. This is not only time

consuming, but very dangerous. One possible solution is to

use robots to detect and locate the source, reducing the danger

to humans [1]. This can still take a significant amount of

time, even if multiple robots are utilized. Another solution is

to have many sensors spread throughout the contaminated

area, and locate the source by analyzing the data. This

method can be very quick, as long as the algorithm performed

to analyze the data is efficient.

The US Department of Energy's Oak Ridge National

Laboratory (ORNL) is developing a network called SensorNet

for the detection and assessment of chemical, biological,

radiological, nuclear, and explosive threats [2]. SensorNet

consists of many small, distributed sensors for gathering data,

and high level nodes for data processing. Various techniques

can potentially be applied to the data from these nodes to

determine the source of the emission. Previously, we

experimented with using Particle Swarm Optimization (PSO)

and found that with the proper tuning, PSO performed

relatively quickly and located sources accurately [3].

Particle Swarm Optimization is a form of artificial

intelligence capable of relatively quickly optimizing a given

problem. Recently however, another artificial intelligence

algorithm has been shown to outperform PSO [4]. The Firefly

Algorithm (FA) is extremely efficient and works well under

rugged search conditions. Since sensors involved in the

emission source localization will likely have noise in their

readings, the search space will not be smooth. It is also of

interest to note that with the right parameters, the FA can

essentially become PSO, or even Random Search. This

means that the FA is a general case of the two, and typically

lies somewhere in between, allowing it to potentially

outperform both.

The goal of this work is to directly compare the FA to

PSO on both benchmark functions and the emission source

localization problem. On the benchmark problems, the FA is

shown to outperform PSO in every way. For smaller scales of

the source localization problem, the Firefly Algorithm only

performs better with the more noisy sensors. For larger

source localization configurations however, the firefly

algorithm produces results similar to PSO in less time.

This paper presents a brief description of the PSO and

Firefly algorithms including variations to the initial FA that

have been developed by others. Section 3 also presents a new

improvement to the FA. Section 4 describes results in

benchmarking the algorithm to standard tests and

implementation improvements that we have made resulting in

faster execution. Section 5 details the source emission

problem and results of our firefly implementation compared

with the previous PSO work.

2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) models its behavior

after the swarming or flocking patterns of animals [1]. PSO

has particles that make up its population, called a swarm.

Each particle knows its position, velocity, and personal best

location found so far, and the global best. The particles use

these values to imitate both the social and individual

behaviors of a swarm. After a random initialization, the

update operation for a particle occurs according to the

following function [2]:

where i = 1, 2, …, N for N particles, and j = 1, 2, …, D for D

dimensions, vij is the velocity of the particle, t is the

generation or time-step, r1 and r2 are random numbers in the

range (0, 1), pij is the personal best location found so far, pgj is

the global best, xij is the location of the particle, and φ1, φ2 are

called learning rates.
2.4

2.4

(1)

46 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

3 The Firefly Algorithm

The Firefly Algorithm (FA) is a relatively new swarm

intelligence algorithm, developed by Xin-She Yang [3]. The

FA is intriguing because its author has shown that it is not

only faster than PSO on the functions tested, but also that it is

more likely to find the global minimum.

3.1 The Concept behind the Firefly Algorithm

The FA was inspired by the flashing of fireflies in

nature. There are over 2000 species of fireflies, most of

which produce a bioluminescence from their abdomen [4].

Each species of firefly produces its own pattern of flashes,

and although the complete function of these flashes is not

known, the main purpose is to attract a mate. The idea of this

attractiveness is what leads to the inspiration for the FA.

The FA idealizes several aspects of fireflies in nature.

First, real fireflies flash in discrete patterns, whereas the

modeled fireflies will be treated as always glowing with a

certain brightness. Then, three rules can be made to govern

the algorithm, and create a modeled firefly’s behavior [5].

1) The fireflies are unisex, and so therefore potentially

attracted to any of the other fireflies.

2) Attractiveness is determined by brightness, a less

bright firefly will move towards a brighter firefly.

3) The brightness of a firefly is proportional to the value

of the function being maximized at its current

location.

3.2 The Algorithm

The key to the FA is the encoding of the objective

function into the brightness of the fireflies, and in the

movement of the fireflies. Initially, all fireflies start in

random locations, and are assigned a brightness proportional

to the objective function evaluated at their location. After this

initialization, the algorithm loops until completion, moving

each firefly towards all the other fireflies in the swarm that are

brighter than itself. The pseudocode for the FA is given in

Figure 3.1. In order to move a firefly towards another, first,

the distance between the fireflies, , has to be calculated. Any

form of distance calculation that makes sense for the given

problem can be used, but for the general case the Cartesian

distance is appropriate. With the distance between two

fireflies known, the attractiveness can be determined. Since

the attractiveness is based on the light intensity, two terms go

into the calculation of . These terms account for the light

intensity decreasing as distance increases. First, from the

inverse square law , where is the light

intensity of the firefly being moved towards. Then due to

absorption through the air,
 , where is the

absorption coefficient, and . A of 0 yields no

absorption, while a large relates to the fireflies flying in a

heavy fog. Then to produce an approximation of the

combined terms, and to avoid the undefined result of ,

we obtain
 . However, calculating an

exponential can be expensive, and
 can be

approximated by when close to zero, which is

not as difficult to calculate. Since the attractiveness is directly

related to the light intensity, we can take , where is

the attractiveness at , and typically .
Combining the last two remarks results in the expression

 . Changing changes how attracted

fireflies are to others, so lowering lowers the desire for

fireflies to move towards brighter fireflies.

The movement of a firefly towards a brighter firefly is

determined by and a random component. The random

component is important for all metaheuristic algorithms; it

helps the algorithm to escape from local optimums. A simple

random movement can be generated with a uniform

distribution in the range of . Another important

factor is the scale of the problem. If two parameters of the

objective function have different ranges of possible values, a

fixed range of random numbers would cause different relative

randomness for each dimension. To solve this problem, the

generated random numbers can be multiplied with the scale of

each dimension, in the form of a vector of scaling values .

With all the terms together, the position update equation for a

firefly being attracted to firefly becomes:

where is a set of uniformly distributed random numbers in

the range of , and is a parameter controlling the

Figure 3.1. FA Pseudocode

Firefly Algorithm

Given:
Objective function f(x), where x = (x1, x2 … xd) for d

dimensions.
Light intensity Ii at xi is determined by f(xi)
Define α β γ δ

Give random locations for N fireflies in D dimensions
Initial evaluation of all N fireflies
while (End condition not met)

Increment t
for i = 1 to NumFireflies

for j = 1 to NumFireflies
if (Ij > Ii)

Move firefly i towards j in
d-dimension

end if
end for j
Evaluate new objective function solution and
 update light intensity
Check if the best position found so far

end for i
Reduce alpha
Sort the fireflies

end while
Find the best firefly

(2)

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 47

amount of randomness. is typically in the range ,
where 0 corresponds to no randomness and 1 corresponds to

being highly random.

3.3 Improvements

On top of the base algorithm, several improvements can

be made. The first, suggested by Yang [5], has a major effect.

It combines the FA with concepts from simulated annealing

(SA). SA models the annealing process of metals, in which

there is a given temperature schedule. The temperature starts

high, and is decreased as time goes on, and is analogous to the

amount of randomness. This idea of reducing the randomness

can be applied to the FA as well, and greatly benefits the FA.

The best reduction schedule to use varies with the problem at

hand, but for the purposes of the experiments undertaken in

the next section, the randomness reduction will be determined

by the following equation [5]:

where is the randomness reduction parameter, . A

 of 1 corresponds to no reduction, and lowering results in a

quicker reduction.

A second improvement we developed can help in the

case of large differences in the scale of parameters. The

random component is already scaled with the scaling vector ,

but the distance between fireflies is not. Thus the

attractiveness is not scaled, since it relies on . To fix this,

the distance calculation can be modified from the standard

Cartesian distance equation to

with the familiar scaling values of . With this implemented,

the entire update equation is scaled to the individual

parameters of the objective function.

A last change was simply to notice that the distance

is never used in any of the above equations, but rather
 .

This implies that the square root does not need to be taken in

equation 4, an expensive computation. By removing this, a

slight time speedup of the algorithm is achieved.

4 Initial Examination of the Firefly

Algorithm

In order to test and verify the FA, there are several

benchmark functions that can be used. With benchmark

functions both speed and accuracy can be measured and

compared. All the functions are usually run with 30

parameters to optimize, except Schaffer’s f6 as it is not

generalized for more than two parameters like the rest. All of

the functions used have a global minima of , and the

ending criteria will be set to a maximum number of 500

generations or when it finds a value at or below the error

threshold. The thresholds for each function are given in

Figure 4.1. Any execution of the FA that results in finding a

value at or below the threshold will be considered to have

found the global minimum. All of the function criteria are the

same as commonly used in literature, in order to make

comparisons easier and more meaningful [6].

Function Dimension Range Error

Threshold

Sphere 30 [-100,100] 0.01

Rosenbrock 30 [-30,30] 100

Rastrigin 30 [-5.12,5.12] 100

Griewank 30 [-600,600] 0.1

Schaffer's f6 30 [-100,100] 0.00001

Figure 4.1. Benchmark function parameters

4.1 Benchmark Comparisons to PSO

The Firefly Algorithm was compared with the PSO

algorithm results contained in literature [2]. The FA was run

with generic parameters of , , , and

 for the first testing, and compared against an

optimized constriction factor PSO with and

generic parameters of and . The

number of both fireflies and particles used was 30. Further

details and full results of the PSO are available in [6]. The

parameters listed in Figure 4.1 were again used for these tests.

Figure 4.2 shows the comparison between PSO and FA, using

the number of generations as a metric. In every case, the FA

outperformed the PSO, when each was used with generic

parameters. The standard deviations are shown as error bars

for all but the generic parameter PSO results, since the

standard deviation for the PSO was extremely high in most

cases. The fact that the standard deviation is significantly

lower for the FA shows its reliability in finding the global

optimum.

The generic parameters have been shown to work well,

but tuning the parameters based on the objective function can

lead to better results. Figure 4.2 Figure 4.1. PSO vs. FA:

Number of generations also shows the results of manually

tuning the parameters, for both the PSO and the FA. The

optimal parameters that were used for the FA, and which were

found through trial and error, are shown in Figure 4.4.Figure

4.3. FA Parameters The results show that in every case, the

FA again outperforms the PSO on the benchmark functions.

Improvements range from 31-98% fewer generations required

to reach the desired result with the tuned algorithms compared

to the un-tuned FA. The biggest improvement was seen in

Schaffer’s f6 function, which was also the only function with

two parameters. So for all tested functions, and particularly

the low-dimensional one, the FA is much more efficient than

PSO.

Not only is the efficiency of the algorithm important, but

so is the accuracy. Figure 4.3 shows the percent failure of the

two algorithms, with both the generic parameter and tuned

(4)

(4)

(3)

48 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

parameter results. The only function that the FA did not find

the global minimum 100% of the time was the Rosenbrock

function. However, once the parameters were tuned, the FA

achieved 100% accuracy on all functions, whereas the PSO

failed 10-20% on three of the five functions. This shows that

with some careful tuning, the FA can be not only extremely

efficient, but also very accurate compared to the PSO.

Figure 4.1. PSO vs. FA: Number of generations

Figure 4.2. Executions that do not find the global minimum

Function

Sphere 0.2 0.3 0.8 0.89

Rosenbrock 0.02 0.2 0.9 0.9

Rastrigin 0.1 0.5 0.8 0.8

Griewank 0.2 0.2 0.8 0.89

Schaffer’s f6 0.6 0.5 0.8 0.3

Figure 4.3. FA Parameters

5 Firefly Algorithm Scalability with

Emission Source Localization

The emission source localization problem requires a

model of propagation of the emission. From this model and

data received from sensors, the source can be located. To

model an aerosolized chemical, the intensity at any point

away from the source can be assumed to follow the inverse

square law [7]. This model ignores possible environmental

factors such as air currents, but is a good starting point. It will

be assumed that there is only one source, and that the sensors

will be scattered randomly around an area known to contain

the source. These sensors will also know their own locations,

either from GPS or some other sensor localization method.

The data from these sensors will be sent to a data processing

node, which can then determine the location of the source.

For the purposes of this examination, the sensors will be

simulated, and varying amounts of additive Gaussian noise

will be added to the sensors’ readings. With the added noise,

and since the propagation is assumed to follow the inverse

square law, a sensor’s reading can be calculated by:

where is the distance to sensor from the source, is the

source intensity, is the desired standard deviation of the

noise, and is a random number picked from a Gaussian

distribution of mean 0 and standard deviation 1. The source is

located at , which will be determined randomly before

the sensors are placed. The sensors will be placed randomly

within a fixed square search space. Figure 5.1 shows an

example of the placement of sensors with the source located at

(-70,80).

0

100

200

300

400

500

600

700

800

PSO Generic
Parameter
Results

PSO Manually
Tuned Results

FA Generic
Parameter
Results

FA Manually
Tuned Results

0%

5%

10%

15%

20%

25%

PSO Generic
Parameter
Results

PSO Manually
Tuned Results

FA Generic
Parameter
Results

FA Manually
Tuned Results

(5) 5.1

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 49

Figure 5.1. Randomly distributed sensors [6]

Then in order to formulate an objective function, the

goal becomes to determine the optimal and that

will provide the closest match between the propagation model

and the actual sensor readings. The error between the two can

be taken as

where is the intensity reported by sensor , is the

distance between sensor and the source location ,
and is a weighting factor used to correct for the error in the

sensor readings.

Now that the error in an estimate from a single sensor’s

point of view can be calculated, the least squares method can

be used to find the total error of an estimate [7]. The sum of

all the squared errors from each sensor will be the objective

function, given as [6]:

where is the number of sensors, and is the vector of

each for every sensor. So a firefly’s position consists of an

estimated , , , and a for every sensor; thus every

sensor adds a dimension to the problem.

5.1 Results

The aim of the tests with the FA will be to compare to

the PSO results in [3]. Thus, eight different configurations

each with a varying number of sensors and range over which

the sensors are spread were used to test various scales of the

problem, the results of which are given in Figures 5.3-5.7.

For each configuration, five tests were performed, with the

standard deviation of added noise varied from 0% to 50%.

The tests were run 20 times each, and the results shown are

the averages. Each test also has its own set of FA parameters.

The goal of the parameter choice was to find a set that

produced the best results in the least amount of time. The

biggest parameter affecting time is the number of fireflies, and

so is a good place to start when trying to reduce time taken.

Reducing the number of fireflies reduces the number of search

agents though, so it is often difficult to still produce accurate

results. Once the minimal number of fireflies is determined,

the next biggest factor is the number of generations to run.

The number of generations also greatly affects the runtime;

therefore once again, the minimum amount that still produced

accurate results was used. For the larger configurations,

changing the term was necessary. Since determines the

attractiveness of the fireflies, increasing results in faster

movements. In large search spaces this is important, as

otherwise it takes significantly longer to reach the same goal.

For the smaller configurations, was lowered from the

standard 0.97, since for a smaller number of generations, the

randomness needs to be reduced faster to reach the same level

near the end of the run. For and , standard values of 0.2

and 0.8 were used, respectively.

Configuration 1 3 5 7 8

Sensors 27 60 90 1000 2000

Range ±50 ±200 ±500 ±2500 ±5000

Fireflies 10 10 15 25 30

Generations 50 50 100 100 100

Alpha 0.2 0.2 0.2 0.2 0.2

Beta 0.2 0.2 0.2 1.0 1.0

Delta 0.93 0.97 0.97 0.97 0.97

Gamma 0.8 0.8 0.8 0.8 0.8

Figure 5.2. FA parameters used in each configuration

Noise var.

(%)

Location

Error (%)

Intensity

Error (%)

Execution

Time (ms)

10% 2.63 -0.71 3.45

20% 3.31 -2.82 3.35

30% 3.60 -5.70 3.40

40% 4.77 -11.14 3.65

50% 5.88 -14.91 3.35

Figure 5.3. Configuration 1

Noise

var. (%)

Location

Error (%)

Intensity

Error (%)

Execution

Time (ms)

0% 0.47 -0.71 4.80

10% 0.79 -0.25 4.95

20% 1.19 -3.61 4.65

30% 1.30 -2.70 4.80

40% 1.70 -5.55 4.75

50% 1.80 -4.88 4.55

Figure 5.4. Configuration 3

(6)

(7)

50 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Noise

var. (%)

Location

Error (%)

Intensity

Error (%)

Execution

Time (ms)

0% 0.09 -0.02 28.70

10% 0.29 -0.78 27.50

20% 0.73 -3.12 28.15

30% 1.18 -2.36 27.50

40% 1.52 -5.23 27.25

50% 2.04 -3.69 25.30

Figure 5.5. Configuration 5

Noise var.

(%)

Location

Error (%)

Intensity

Error (%)

Execution

Time (ms)

0% 0.05 -0.08 777.9

10% 0.10 -0.54 773.0

20% 0.36 -1.52 768.6

30% 0.43 -1.46 778.0

40% 0.54 -1.51 776.8

50% 0.74 -2.43 689.4

Figure 5.6. Configuration 7

Noise

var. (%)

Location

Error (%)

Intensity

Error (%)

Execution

Time (ms)

0% 0.04 0.05 2325

10% 0.06 -0.03 2261

20% 0.15 -0.86 2307

30% 0.48 -1.97 2337

40% 0.53 -1.65 2268

50% 0.73 -2.30 2088

Figure 5.7. Configuration 8

For the first few configurations, the results were fairly

similar. In configuration 1, the localization error obtained by

the FA is worse for 0-20% noise, but better for 30-50% noise.

The intensity error is better under all noise conditions, and the

time required is about 13 times lower. Note that much of the

time speedup is due to being run on a faster processor, but it is

still useful to compare relative speedups between

configurations.

In configuration 3, the average localization error is

higher for 0-30% noise, but lower for 40 and 50%. The

average intensity error is about the same for all noise levels,

and the execution time is about 180 times faster. With

configuration 5, the FA obtains about the same localization

and intensity error for 0-20% noise, but for 30-50% noise the

FA obtains better results for both. The speed for this

configuration was about 50 times faster than the PSO. Thus,

in the smaller configurations 1 through 5, for low noise levels,

the PSO seems to find better results, but not always as

efficiently. For higher noise levels, the FA wins out in terms

of accuracy of the results, and except for the smallest

configuration is likely much faster.

Configurations 6-8 provide a better comparison, as

tabular data is available. The PSO and FA results are

compared in Figures 5.8-5.11. Configuration 6 and 7 show

uniformly worse performance for the FA, but in configuration

8 the intensity error is lower for the FA on all but 30% noise.

The time speedups, however, are about 34, 23, and 18 times

faster, respectively. These times may or may not actually be

faster, given that the FA was run on a faster processor, but the

difference between speedups of different configurations

shows that the FA runs faster on small to medium scale

problems compared to the PSO. For the smaller scale

problems, the FA performs much better under highly noisy

conditions, and in fact gets nearly uniform results across all

noise levels, compared to the PSO. These results point to

using the FA either when using noisy sensors, or when speed

is critical.

Figure 5.8. PSO and FA on Configuration 6

Figure 5.9. PSO and FA on Configuration 7

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0% 10% 20% 30% 40% 50%

P
e

rc
e

n
t

Er
ro

r

Standard Deviation of Added Gaussian Noise

PSO Localization Error FA Localization Error

PSO Intensity Error FA Intensity Error

0.00

1.00

2.00

3.00

0% 10% 20% 30% 40% 50%

P
e

rc
e

n
t

Er
ro

r

Standard Deviation of Added Gaussian Noise

PSO Localization Error FA Localization Error

PSO Intensity Error FA Intensity Error

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 51

Figure 5.10. PSO and FA on Configuration 8

Figure 5.11. PSO and FA Execution Times for

Configurations 6-8

6 Conclusions and Future Work

The Firefly Algorithm is one of the latest artificial

intelligence algorithms developed. Inspired by the flashing of

fireflies, it gets its inspiration from nature like many other

metaheuristic algorithms. With the addition of randomness

reduction and scaling of the distance, the FA can be adapted

even further to improve results. In the benchmark functions,

we have seen the tuned FA finds the global minimum 100%

of the time, something the tuned PSO was not capable of. The

FA also obtained these results in only 2-21% of the number of

generations. In the emission source localization problem, the

FA can be superior to PSO in speed. For 90 or less sensors,

the PSO obtains better results when there is low noise, but

with high amounts of noise the FA wins out. For more

sensors, the PSO sees marginally better results, however both

the PSO and FA consistently have below 1% localization

error. It also gives better results when there is a large amount

of noise in the sensor data.

In order to speed up the FA even more, we are in the

process of implementing it in hardware similar to the

architecture that Tewolde and Hanna created for the hardware

PSO engine in [8]. A parallel hardware implementation could

even further improve speed. To find even better parameters,

auto-tuning could be implemented with another FA. As for

the algorithm itself, it would be worth investigating possible

improvements, such as hybridization with other algorithms.

The addition of the randomness reduction concept from

simulated annealing helped improve results, and this could be

investigated further, such as increasing the randomness at

various stages in order to escape local optima. Other such

algorithms likely have concepts worth exploring and adapting

to the FA.

7 References

[1] J. Kennedy and R. Eberhart, "Particle Swarm

Optimization," in Proceedings of IEEE International

Conference on Neural Networks, Piscataway, NJ, 1995.

[2] G. S. Tewolde, D. Hanna and R. E. Haskell, "Particle

Swarm Optimization for Emission Source Localization in

Sensor Networks," in Proceedings of the Conference on

Artificial Neural Networks and Intelligence in

Engineering (ANNIE) 2009, St. Louis, Missouri, 2009.

[3] X. S. Yang, Nature-Inspired Metaheuristic Algorithms,

Luniver Press, 2008.

[4] S. M. Lewis and C. K. Cratsley, "Flash Signal Evolution,

Mate Choice, and Predation in Fireflies," Annu. Rev.

Entomol., vol. 53, pp. 293-321, 2008.

[5] X. S. Yang, Engineering optimization: An introduction

with metaheuristic applications, Hoboken, NJ: John Wiley

& Sons., 2010.

[6] G. S. Tewolde, D. M. Hanna and R. E. Haskell,

"Enhancing Performance of PSO with Automatic

Parameter Tuning Technique," in Proceedings of the 2009

IEEE Swarm Intelligence Symposium, Nashville, TN,

2009.

[7] M. P. Michaelides and C. G. Panayiotou, "Plume Source

Position Estimation Using Sensor Networks," in

Proceedings of the 2005 IEEE International Symposium

on Intelligent Control, Mediterranean Conference on

Control and Automation, Limassol, Cyprus, 2005.

[8] G. S. Tewolde, "Multi-Swarm Parallel PSO: Hardware

Implementation," in Proceedings of the 2009 IEEE Swarm

Intelligence Symposium, Nashville, TN, 2009.

0

1

2

3

4

0% 10% 20% 30% 40% 50%

P
e

rc
e

n
t

Er
ro

r

Standard Deviation of Added Gaussian Noise

PSO Localization Error FA Localization Error

PSO Intensity Error FA Intensity Error

8.2

17.8

40.3

0.239 0.761 2.26

6 7 8

PSO Average Times FA Average Times

52 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

A Fast Parameter Setting Strategy for Particle
Swarm Optimization and Its Application in Urban

Water Distribution Network Optimal Design

Xuewei Q!!, Khaled Rashee!!, Ke L!!, Walter Potte!!
1. College of Engineering, University of Georgia, Athens, 30602, USA

2. Department of Computer Science, University of Georgia, Athens, 30602, USA
3. Institute of Artificial Intelligence, University of Georgia, Athens, 30602, USA

Abstract-Parameter setting is very essential for the
application of particle swarm optimization (PSO),
especially the acceleration coefficients. In this paper, we
propose a fast estimation strategy of optimal parameter
setting for PSO, in which an estimation distribution
algorithm (EDA) is used to co-evolve the acceleration
coefficients (!!and !!). The proposed algorithm is validated
on two numerical optimization problems and then applied to
the urban water distribution network optimization problem.
The experimental results show that both of these two
parameters converge to a fixed value respectively and the
achieved values for !! and !! are consistent as the results of
parameter tuning.PSO with the estimated optimal
parameters could achieve the best solution on benchmark
example and also outperform other methods in terms of
reliability and efficiency.

Keywords: Particle Swarm Optimization, Parameter
control, Estimation Distribution Algorithm, Water
Distribution Network.

1 Introduction
Particle Swarm Optimization is a population based
optimization method inspired by the collective behavior of a
bird flock, which was developed by Eberhart and
Kennedy[3] in 1995. It is an effective swarm intelligence
technique for solving optimization problems. It has shown
great potential and perspective for solving various
optimization problems [4,5,6,7,8].

A crucial aspect of improving the performance of PSO is
parameter setting [9]. PSO can only perform effectively
under good parameter settings. There are two primary
approaches of setting parameters [10]: parameter tuning and
parameter control. Parameter tuning identifies the optimal
parameter settings by repeatedly running using different
combinations of parameter values. However, this
cumbersome method usually takes much time and effort,
and relies on luck as exhaustive search of the parameter
space is prohibitively expensive. Another more popular
approach is parameter control. In this approach, the
parameters are not fixed, but changed during the course of

the evolutionary process. There are two main approaches of
parameter control [10]: adaptive parameter control and self-
adaptive parameter control. In adaptive parameter control,
the parameter values are adaptively adjusted by heuristic
rules based on feedback from previous parameter changes
[11]. In this approach, defining the meaning of feedback is a
key issue. In general, we often use the current stage of the
search, the performance of operators and/or the diversity of
the population as the guiding information. Adaptive
parameter control is common for PSO and has shown
effectiveness in solving various problems in the past
[3,12,13]. In self-adaptive parameter control, the parameters
and the solutions to the optimization problem evolve
together. Self-adaptive parameter control has been used in
genetic algorithms in which the parameters are encoded
within the chromosomes and evolve with the problem
(object) variables [14,15,16,17]. Adopting self-adaptive
parameter control in PSO has recently raised much interest
[18], which embeds the parameters within the evolution
variables. In this way, the parameters are self-adaptively
controlled.

Optimal design of water distribution networks (WDN) aims
to select a set of pipes (with different diameters) to form a
network which satisfies all the hydraulic requirements and
also has the minimal total cost, which is also called Pipe
Sizing. In the past three decades, a variety of optimization
methods have been proposed for the pipe sizing problem. In
the past few years, PSO was introduced to optimize WDN.
[19] applied a conventional discrete PSO to this problem for
the first time in 2008. Shortly afterwards, a diversity
enriched PSO variant was proposed [20] to address the
premature convergence problem and the performance was
improved compared to the conventional PSO. Montalvo et
al. [18] improved the performance of PSO further on this
WDN optimization problem by introducing a parameter
self-adaptive strategy.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 53

2 Methodologies
2.1 Estimation of distribution algorithm
Estimation of distribution algorithms (EDAs) is population
based evolutionary algorithm. During the iteration process,
EDAs try to estimate the probability distribution by using
good individuals to construct a probabilistic model, which is
then used to predict the promising positions and generate
new individuals of the next generation around that region.
The details of implementation of EDA are given in
algorithm 1:

Algorithm 1 The EDA algorithm
1: P<= Initialize the population
2: Evaluate the initial population
3: While iter_number ≤ Max_iterations do
4: P!<= Select the top s individuals from p
5: M<= estimate a new Model from P!
6: P! <= Sample n individuals from M
7: Evaluate P!
8: P<= Select n individuals from P U P!
9: iter_number =iter_number +1
10: end While

A very simple model assumes that each of the coefficients
follows a simple Gaussian distribution when the parameters
are approaching the global optimal settings. Hence, in each
iteration of EDA, the top individuals in the population are
used to estimate the mean and standard deviation of the
distribution of the best parameter settings. On the next
iteration, a new population is generated by sampling
according to the estimated distribution.

2.2 Particle swarm optimization
In the population of PSO, each particle holds the following
information: particle’s current positionx!, particle’s current
velocity: v! , the best position that the particle has ever
found so far Pbest! and the best position that the entire
swarm has ever found: gbest!

In PSO, each particle updates its position according to the
following equations:

!!"!!!=w!!"! +!!!!!(!"#$%!"! -!!"!)+!!!!!(!"#$%!"! -!!"!) (1)

!!"!!! = !!"! + !!"!!! (2)

Where j denotes the index of the dimension, i denotes the
number of particles, w is the inertia weight and t is the
iteration number, r! and r! are two random numbers
uniformly distributed in the range [0,1] and finally c! and
c! are the acceleration factors. After all the particles are
updated, the Pbest! and gbest! are also updated if better
positions are found.

Acceleration coefficients (c! and c!)are most influential to
the performance of the algorithm. Much previous research
has shown that for different problems, the optimal settings
of c! and c! are different. Therefore, designing an efficient

parameter setting strategy for acceleration coefficients has
been an active research area in PSO domain.

2.3Parameter co-evolving strategy
In our proposed parameter estimation strategy, there are two
iterative loops which run simultaneously. The first loop is
PSO which tries to find the optimal solution for the specific
problem; the second loop (coevolving loop) is the EDA
which tries to optimize the parameter settings (c! and c!)
online for each individual in PSO loop. In PSO population,
each individual is a candidate solution for the specific
optimization problem. In EDA population, each individual
is a pair of values for c! and c!. The population size for both
PSO and EDA loop are the same and one individual in PSO
corresponds to one individual in EDA population
respectively. Each individual in PSO is updated based on (1)
only using the corresponding pair of c! and c! in EDA
poplation. Each individual in EDA population is updated
every generation (see Algorithm 2). But this update is only
implemented every M (1-10) generations in PSO loop,
which means the parameter values for each individual in
PSO keeps unchanged during every M consecutive PSO
loop interactions. The fitness used in EDA loop is the
progress of the particle under the corresponding parameter
settings in PSO loop during M consecutive generations.
Therefore, the values of c! and c! in EDA loop will
hopefully converge to the best combination under which the
corresponding particle in PSO could achieve the biggest
progress in M consecutive generations. There is a
assumption behind is that a good setting of parameters for
the most recent iterations (e.g. past M iterations) will also be
good (at least not worse) for the immediate future iterations.
The complete pseudo code is given in following Algorithm
3.

Algorithm 2 Updating process in EDA Loop
1: t is the generation index of PSO loop;
2: !!! is the ith individual in !!"#at generation t;
3: !!! is the ith individual in !!"# at generation t;
4: N is populations size;
5: While i ≤ N do
6: f(!!!)= !(!!!)-f(!!!!!);
7: i=i+1;
8: End While;
9: Rank !!"# according to fitness (decsending);
10: Select the top individuals from !!"#;
11: Estimate the mean and standard deviation for each
dimension;
12: Sample N individuals by the estimated distribution;
13: Update all the individuals in !!"# with the sample.

54 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Algorithm 3 Parameter co-evolving algorithm
1: t is the generation index of PSO loop;
2: N is populations size of both !!"# and !!"#;
3: Initialize the population for PSO: !!"#;
4: Initialize the population for EDA: !!"#;
5: Evaluate the each individual in population !!"#;
6:While iter_number ≤ Max_iterations do
7: Update all the individuals in !!"# according to
8: (1)and (2);
9: If (iter_number)mod(M)=0
10: Update all the individuals in !!"#
11: according to Algorihtm 2;
12: End if ;
13:End While .

3 Validation
The proposed method is validated on two different
numerical optimization problems. The estimated optimal
parameter settings (c1 andc!) obtained by the proposed
algorithm on these problems are compared with the values
found by a fine parameter tuning. Ackly’s function and
Restringing’s function are selected in this experiment due to
their very rough landscapes with large numbers of local
minima which makes any search algorithm vulnerable to
being trapped in a local minimum. They are also usually
used as benchmark problems for evaluating proposed new
optimization algorithms. We use the functions with 30
dimensions and set c1 and c2 in the range of [0, 5] which is
normally the range of acceleration coefficients in the
literature.
3.1 Parameter fine tuning
A fine tuning experiment was conducted to identify the
optimal combination of the parameters c! and c!. The best
combinations for c! and c! were found to be [0.8, 1.8] for
Ackley’s function and [1.2, 1.6] for Ratrigin’s function.
Actually, from the 3D scatter plot in Figure 1, we can see
that good c! and c! combination is not just one point, but
rather a region in the basin. In other words, there is a family
of c! and c! combinations which could help the PSO
algorithm perform best.

3.2 Parameter estimation
 For each of the function, the proposed parameter
coevolving strategy is used to estimate the best parameter
setting. The average values for c! and c! of 30 runs are
taken as the estimated result. From Figures 2 and 3 below,
we can see that, for one particle, the c! and c! converged to
almost fixed values at the end of the search process. Also
from Figure 4, it is clear that for all the particles tracked, c!
and c! converged to the same or nearly the same values
respectively. Table 1 shows both fine-tuned and estimated
best combination of c! and c! for each problem. The
differences of between them are all less than 8%.

Furthermore, in the 3D plot of the results of parameter
tuning, there is an obvious basin which means three are
more than one pair of good parameter settings and all the
settings located in the basin can be regarded as optimal or
near optimal settings. The estimated results are found to be
located in the basin area. Therefore, we can say all the
estimated results are generally consistent with the results of
fine tuning.

a. Ackley’s function

	

 b. Rastrigin’s function
Figure 1. Parameter tuning results for two numerical

optimization problems

Table 1. Fine tuned and estimated parameters

parameter
s

Tuned results

 Ackley’s function Rastrigin’s function
C! 0.8 1.2
C! 1.8 1.8

 Estimated results and difference
Ackley’s function Rastrigin’s function

C! 0.861752 (+7.72%) 1.121347 (-6.6%)
C! 1.722622 (-4.3%) 1.665069 (-7.4%)

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 55

	

	

Figure 2. Track of c1 and c2 of one particle in one run
(Ackley’s function)

Figure 3. Track of c1 and c2 of one particle in one run

(Rastrigin’s function)

Figure 4. Track of c1 and c2 of 10 particles in one run
(Ackley’s function)

3.3 Benefits of fast estimation strategy
For most practical optimization problems, especially for
engineering design optimization problems, exhaustive
parameter tuning is very costly and probably intractable due
to the resource limits (time and experimental cost).
However, by using this fast parameter estimation strategy,
an optimal parameter setting (or near optimal) can be
identified in a very short time. Table 2 shows the time
consumed by the two methods on different problems.

Table 2. Time consumption by two different methods
on different problems

Problem Tuning Estimation Time
reduced

Ackley’s
function

2250 runs
(37.5 hours)

10 runs
(10 minutes)

99.5%

Rastrigin’s 2250 runs
(30 hours)

10 runs
(8 minutes)

99.5%

4 Optimization of WDN
A water distribution system (WDN) is a network of
components (e.g. pipes, pumps, valves, tanks, etc.) that
transport water from a source (e.g. reservoir, treatment
plant, tank, etc.) to the consumers (e.g. domestic,
commercial, and industrial users). The WDN optimization
problem here attempts to optimize its pipeline by selecting
the lowest cost combination of appropriate pipe sizes such
that the criteria of demands and other hydraulic constraints
are satisfied.

A free hydraulic solver EPANET2.0
(http://www.epa.gov/nrmrl/wswrd/dw/epanet.html) is used
to conduct the hydraulic calculations. In the proposed
optimization algorithm, one candidate solution (one particle)
is a set of diameters for all the pipes in the water distribution
network. The input for the hydraulic simulator

0	

1	

2	

3	

1	
 201	
 401	

0	

1	

2	

3	

1	
 201	
 401	

56 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

(EPANET2.0) is one candidate solution (diameter set) and
its output is the actual head pressure of each node in the
network. With these head pressures, the fitness of the
solution is calculated. Thus the major task for the hydraulic
solver is to compute the fitness of each potential design. A
flowchart is given in Figure 5.

Start

Initialize
population

Next
generation

Generation
update

Current
generation

Hydraulic
simulation

(EPANET2.0)

Calculate fitness
(Cost+Penalty)

i=N?

stop

Yes

NO

Figure 5. General flowchart of optimization for WDN

4.1 Benchmark network
In this paper, the proposed algorithm is applied to solve a
benchmark network from the literature known as the Hanoi
network. The Hanoi network (Figure 6), presented by
Fujiwara and Khang [21], requires the optimal design of 34
pipes, allowing a minimum hydraulic head of 30 meters for
all its 32 nodes, by means of 6 available diameters. The size
of the solution space is therefore 6!" . It serves as a
prototype of a medium sized network for the evaluation of
optimization algorithms.

 Figure 6. Hanoi Network [21]

4.2 Experimental settings
In addition to the two acceleration coefficients to be
estimated by the proposed approach, there are two other
important parameters need to be set. For the sake of
comparing with previous work, we set all other parameters
the same with that in the peer methods: inertia weight is set
to be 0.8. The boundary for the updated velocity (see
Equation (1)) which is used to constrain the velocity of each
particle to the range of [-V!"# , V!"#], is set to be 50%,
because the appropriate range for V!"# is between 40%
and 100% of the variable range, based on the findings by
[18].

4.3 Results & discussion
PSO with this parameter setting, PSO is implemented for 30
times on Hanoi network to estimate the optimal parameter
settings for this engineering design problem. As we can see
from Figure 7, in each single run, there is a clear
convergence of both c1 and c2 values during the co-
evolution process. The average values of parameters in
every implementation are recoded and the results of all 30
runs are displayed in Figure 8. We can see that all the
average values are close, which means the estimated results
are consistent throughout the experiments. The final
average parameter values of the 30 runs are shown in Table
3, which is used as the estimated optimal parameter setting
in the subsequent experiments.

 Table 3. Estimated results for Hanoi network

Parameters Mean value Standard
Deviation

c! 1.186576193 0.228964
c! 2.057563122 0.423434

Figure 7, Track of Estimated C1 and C2 values for 10 particles

0	

2	

4	

6	

1	
 201	
 401	
 601	
 801	

Es
tim

at
ed

 C
1	

va
lu

es

0	

2	

4	

6	

1	
 201	
 401	
 601	
 801	

Es
tim

at
ed

 C
2

va
lu

es

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 57

Figure 8. Estimated C1 and C2 values for Hanoi network

With the estimated optimal parameter settings: c1= 1.1866,
c2=2.0576, we run the PSO for 30 times on the Hanoi
network and the results are summarized in Table 4 below.
An extensive comparison previous work from the literature
is made. PSO with the estimated optimal parameter settings
could achieve the best known minimal cost which is
6.0811(unit cost).

Although the best minimal cost known in the literature is
only achieved once out of 30 runs, the reliability and
efficiency are better than other methods (Table 4). The
reliability of an optimization method could be measured by
the average performance achieved by the proposed
algorithm in a certain number of runs. Herein, we use the
average minimal cost as the indicator of reliability. We
know from Table 4 that the proposed algorithm achieves the
smallest average cost compared to the other methods which
were also able to achieve the best minimal cost. Efficiency
is also compared. It is measured by the average number of
fitness calls used by the algorithm to achieve the best
solution since in most engineering applications, fitness
evaluation is the most time consuming part of the
optimization algorithm. Obviously, our method achieves the
best efficiency, which is almost 4 times better than other
methods. Fitness track of 5 runs is shown in Figure 9, from
which a very fast convergence process can be observed.
Another important observation from this figure is that all the
5 search processes converged after around 100 iterations.
This might indicate that we could achieve a very good
(usually not optimal result) result with a very small number
of fitness evaluations (around 2,000). This is a clear
advantage over all other methods. From a practical point of
view, an “early” almost-optimal solution may be preferred
to a “very late” optimal solution when the cost of time is
taken into consideration. On the other hand, it also suggests
that premature convergence problem is present, which is a
common problem with the application of PSOs. Several
researchers have proposed methods to address this problem
with no conclusive solution. The major task for our

proposed estimation method is to help the PSO obtain a very
good parameter setting in a very short time, but it is not able
to tackle the premature convergence problem, so more work
is required to further improve the performance of PSO.

 Table 4. Minimal cost for the Hanoi networks

Methods Minimal cost
(x10!$)

Average
(x10!$)

Average NO. of
Fitness

evaluations
GA[22] 6.093
GA[23] 6.182
GA[24] 6.195
ACO[25] 6.367
PSO[19] 6.133 6.487 80,000
PSO[20] 6.081 6.297 80,000
PSO[18] 6.081 >6.297* 80,000
This work 6.081 6.252 20,000

*no specific number was given in the paper, but the authors compared their
results in this paper with the results of their previous paper and found the
average minimal costs are worse than previous work.

Figure 9. Fitness track of 5 runs optimal parameters

5 Conclusions and future work
In this work, a fast parameter estimation strategy for PSO is
proposed to estimate the optimal acceleration parameter
settings. Self-adaptive control and co-evolution strategies
are used together for the parameter estimation of PSO in the
proposed method. The tests on two numerical optimization
problems show that the estimated optimal parameter settings
are consistent with the optimal parameter settings achieved
by parameter tuning. PSO with the estimated parameters is
able to identify the best known cost for the benchmark
example on the WDN optimization problem. The algorithm
performs better than other methods in the literature in terms
of reliability and efficiency. The proposed parameter
estimation strategy is promising and may perform better
when combined with a premature convergence elimination
strategy. The major contributions of the work presented in
this paper are as follows: (1) A novel fast parameter
estimation strategy to replace the inefficient conventional
parameter tuning method for PSO is proposed And(2), a
new optimization method with PSO is proposed for the
optimization of water distribution networks.

Our future work will focus on the following topics: (1) to
extend the proposed fast parameter estimation strategy for
PSO to other Evolutionary Algorithms where there is a need

0	

1	

2	

0	
 10	
 20	
 30	

0	

2	

4	

0	
 10	
 20	
 30	

6000000	

6500000	

7000000	

7500000	

8000000	

1	
 101	
 201	
 301	
 401	

58 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

for parameter tuning. And (2) to apply the proposed
algorithm to the design optimization of larger water
distribution networks design or other practical engineering
design and/or optimization problems.

6 References
[1] Bonabeau E, Dorigo M, Theraulaz G.“Swarm
Intelligence: from natural to artificial systems.”Oxford
University Press, New York. 1999.
[2] Kennedy J., Eberhart R.C., Shi Y. “Swarm
Intelligence. Morgan Kaufmann, San Francisco” 2001.
[3] Eberhart R.C., Kennedy J.” A new optimizer using
particle swarm theory.” In: 6th International Symposium on
Micromachine and Human Science,Nagoya, Japan, pp. 39–
43. 1995.
[4] Dong Y., Tang J., Xu B., Wang D. “An application of
swarm optimization to nonlinear programming.” Computers
& Mathematics with Applications 49(11–12). 1655–1668.
2005.
[5] Chau K.W. “Particle swarm optimization training
algorithm for ANNs in stage prediction of Shing Mun
River.” Journal of Hydrology. 329(3–4), 363–367. 2006.
[6] Liao C.J., Tseng C.T., Luarn P. “A discrete version of
particle swarm optimization for flowshop scheduling
problems. Computers and Operations Research.” 34 (10),
3099–3111. 2007.
[7] Izquierdo J., Montalvo I., Pe´rez R., Fuertes V. “Design
optimization of wastewater collection networks by PSO.”
Computers & Mathematics with Applications56 (3), 777–
784. 2008.
[8] Izquierdo J., Montalvo I., Pe´rez-Garcı´a R., Fuertes
V.S.. “Forecasting pedestrian evacuation times by using
swarm intelligence.” Physica A: Statistical Mechanics and
its Applications 388 (7), 1213–1220. 2009.
[9] Ueno G., Yasuda K., Iwasaki N. “Robust adaptive
particle swarm optimization.” IEEE International
Conference on Systems, Man and Cybernetics, 4, 3915–
3920. 2005.
[10] Eiben A.E., Hinterding R., Michalewicz Z. “Parameter
control in evolutionary algorithms.” IEEE Transactions on
Evolutionary Computation 3. 124–141. 1999.
[11] Yen G.G., Lu H. “Dynamic multi-objective
evolutionary algorithm: Adaptive cell-based rank and
density estimation.” IEEE Transactions on Evolutionary
Computation 7(3), 253–274. 2003.
[12] Arumugam M.S., Rao M.V.C.. “On the improved
performances of the particle swarm optimization algorithms
with adaptive parameters, cross-over operators and root
mean square (RMS) variants for computing optimal control
of a class of hybrid systems.” Applied Soft Computing. 8
(1), 324–336. 2008.
[13] Ratnaweera A., Halgamuge S.K., Watson H.C.. “Self-
organizing hierarchical particle swarm optimizer with time-
varying acceleration coefficients.” IEEE Transactions on
Evolutionary Computation 8 (3), 240–255. 2004.

[14] Brest J., Greiner S., Boskovic B., Mernik M., Zumer
V. 2006. Self-adapting control parameters in differential
evolution: A comparative study on numerical benchmark
problems. IEEE Transactions on Evolutionary Computation.
10(6), 689–699.
[15] Angeline P.J. “Two self-adaptive crossover operators
for genetic programming.” Advances in Genetic
Programming 2. MIT Press, 89–109. 1996.
[16] Krasnogor N., and Gustafson S. “A study on the use of
’’self-generation’’ in memetic algorithms.” Natural
Computing: An International Journal 3 (1),53–76. 2004.
[17] Haupt R.L., Werner D.H.. “Genetic Algorithms in
Electromagnetics.” John Wiley & Sons, New Jersey. 2007.
[18] Montalvo I., Izquierdo J., Pe´rez-Garcı´a R., Herrera
M.. “Improved performance of PSO with self-adaptive
parameters for computing the optimal design of Water
Supply Systems” Engineering applications of artificial
intelligence. 23(5), 727-735. 2010.
[19] Idel Montalvo, Joaquin Izquierdo, Rafael Perez-
Garcia, Michael M. Tung, “Particle Swarm Optimization
applied to the design of water supply systems.” Computers
and Mathematics with Applications 56, 769-776, 2008a.
[20] Idel Montalvo, Joaquin Izquierdo, “A diversity –
enriched variant of discrete PSO applied to the design of
Water Distribution Networks.” Engineering Applications
40(7), 655-668,2008b.
[21] Fujiwara, O., and Khang, D. B., “Correction to a two-
phase decomposition method for optimal design of looped
water distribution networks.” Water Resour.Res., 27(5),
985–986. 1991.
[22]Matı´as,A.S.," Disen˜oderedesdedistribucio´ndeag
acontemplandola fiabilidad Polite´cnica deValencia.Tesis
doctoral.” 2006.
[23] Wu, Z.Y., Simpson, A.R., “Competent genetic-
evolutionary optimization of water distribution systems.”
Journal of Computing in Civil Engineering 15 (2), 89–101.
2001.
[24] Savic, D.A., Walters, G.A., “Genetic algorithms for
least-cost design of water distribution networks.” Journal of
Water Resources Planning and Management 123 (2), 67–77.
1997.
[25] Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon,J.B.,
“Parametric study for an ant algorithm applied to water
distribution system optimization.” IEEE Transactions on
Evolutionary Computation 9(2),175-191,2005	

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 59

60 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

SESSION

EVOLUTIONAY ALGORITHMS AND
STRATEGIES

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 61

62 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Evolutionary Routing Strategies for Automotive Networks

Martin Dohr, Bernd Eichberger
Institute of Electronics, Graz University of Technology, Austria

Abstract— The design of efficient communication networks
is a challenging task for modern vehicle development. Due
to novel technologies and new degrees of freedom in network
design, the decision on a bus topology has a severe impact
on the overall system cost and performance. In this work,
we propose a topology and routing optimization using Evo-
lutionary Algorithms and problem-specific encoding. Our
contribution includes a guided topology mutation operator
which outperforms standard random mutation. Further, we
propose two routing operators for usage during the optimiza-
tion process and compare their effectiveness on a network
application taken from a series vehicle.

Keywords: Evolutionary computation; communication networks;
design optimization; routing;

1. Introduction
Upcoming developments in the automotive industry will

have a severe impact on in-vehicle communications. Such
developments include advanced driver assistance systems
like lane departure warning, night vision or traffic sign recog-
nition. Those systems have in common, that complex sensors
such as cameras, RADAR or LIDAR have to be deployed in
remote locations within car. In order to convert the raw sen-
sor data into usable information for the driver, sophisticated
evaluation algorithms have to be applied. System designers
have always been mapping such computational intensive
tasks onto central Electronic Control Units (ECUs) for cost
reasons. Another argument for centralized processing is,
that upcoming functionalities will have a interconnected
architecture and rely on multiple distributed sensors as input
data sources. However, in contrast to present features, those
new developments and sensors will also have much higher
communication requirements which cannot be satisfied by
well established automotive bus systems like CAN [1]. For
example, the raw data transfer of RADAR and LIDAR
sensors are comparable to monochrome or colored video
stream. In comparison to that, current automotive features
such as cruise control or automated headlamp leveling only
require a fractional amount of that bandwidth.

There are several solutions to meet the new communi-
cation demands in the car. First implementations of rear
view cameras were connected by a separate shielded twisted
pair or coaxial wire using analog data transmission. While
this is cost efficient for a single data source, the cabling
effort for several distributed sensors makes this solution
impractical for modern automotive architectures. Improved

bus systems like MOST [2], FlexRay [3] or Ethernet [4]
are better suited for such high bandwidth demands and also
satisfy the stringent reliability and real time requirements of
automotive applications.

Another aspect are new architecture paradigms to manage
the increased complexity of interconnected features. Archi-
tectures like AUTOSAR [5] define an interface to separate
functional software from the underlying operating system
and hardware, thus allowing modular design of software
components (SWCs). The advantages of this separation are
that software components are now more independent from
their location of execution and can be mapped onto different
ECUs within the vehicle. At the same time, testability
and re-useability of components increases because of the
standardized interface and even online relocation of software
execution within the car is possible.

However, the architecture and design process of a net-
work is becoming more complex because of such recently
introduced degrees of freedom in software mapping. In [6],
the authors propose a holistic network architecture process
using Evolutionary Algorithms (EAs) and problem-specific
encoding. In this paper we will focus on methods to improve
the topology and routing optimization of the mentioned
approach.

The rest of this paper is structured as follows: Section
2 presents related publications concerning topology opti-
mization using evolutionary methods with a further focus on
automotive applications. Our system model and the phases
of optimization are explained in Section 3. A more detailed
description of our topology mutation and routing operators
is then given in Section 4 before presenting our test scenario
and results in Section 5. Finally, we give a conclusion of the
current work and next plans in Section 6.

2. Related Work
Network topology optimization has been an ongoing re-

search topic for decades as summarized in [7]. Most works
focus on multiobjective heuristics to solve such problems
[8] with objectives like network cost or message delay. The
performance is then verified on realistic traffic models as in
[9]. Recent works [10] utilize objective-guided genetic oper-
ators in combination with MOEA/D to incorporate problem-
specific knowledge into the optimization process.

Several authors have also studied special attributes of
automotive networks and how to optimize this specific appli-
cation. In [11], a repeated-matching method combined with

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 63

simulated annealing is proposed to optimize task allocation
and network assignment. A similar problem was solved in
[12] using a sophisticated system model and multiobjective
EAs. A hierarchical partitioning is used in [13] in combi-
nation with local heuristics for the gateway placement task,
a sub-problem which is not addressed in most publications.
The authors of [14] propose a combination of Integer Linear
Program (ILP) and EAs for topology and routing optimiza-
tion but also require a given architecture in form of nodes,
buses and gateways.

3. Optimization Work Flow and System
Model

Our optimization framework distinguishes between two
phases, application mapping and signal routing. Both phases
run adapted implementations of the SPEA2 algorithm [15]
which are extended by application specific network encoding
and custom operators. Each phase optimizes the network
with respect to different goals by utilizing specific fitness
functions and operators suited for the task at hand. The
overall work flow is depicted in Figure 1. Our work builds on
the ’Metaheuristic Algorithms in Java’ framework presented
in [16], which was chosen due to the very modular and
extendable design.

The aim of the first phase is to map all software com-
ponents onto ECUs while keeping communication between
the nodes at a minimum. On the other hand, the deployment
has to respect the processing capabilities of each ECU and
safe costs by optimal utilization for each node. Since those
goals are contradicting, the result of this phase is a Pareto
set of possible software mapping solutions. In our encoding,
we call such a mapping candidate an ApplicationMatrix.
Therefore, each solution in phase one consists of a common
functional description and set of nodes, combined with a
unique ApplicationMatrix, which defines the mapping of
each SWC onto a node. Further details on the used operators
will be published in [17] and are not the focus of this paper.
The rest of this section is mainly concerned with input
objects and variable encoding for the second optimization
phase.

3.1 Input Objects
In order to explain the goals of phase two it is sufficient to

know, that the input from phase one is a set of one or many
Pareto optimal mapping solutions for a given set of nodes
and functional description. The goal of this phase is to create
a feasible network topology where all nodes are connected
via bus systems or gateways and each communication signal
can be routed over this topology. The input parameters shall
be defined as follows:
• NodeDB: A list of active nodes N where each node

n ∈ N corresponds to an ECU with given coordinates
within the vehicle. Note that a model of monetary costs

PhaseN1

PhaseN2

ReadNInputN
Parameters

OptimizeN
ApplicationN

Mapping

OptimizeNTopologyN
andNRouting

:BusDB:NodeDB

:AtomicSoftwareComponent

:FunctionalDescription

:InputNetwork

:ApplicationMatrix

:BusMatrix

:CommunicationMatrix

Final

:MappingSPEA2

:RoutingSPEA2

Initial

using

result

result

using

result

result

Fig. 1: Workflow of the proposed framework showing input
objects and the two phases of optimization

for each node is only required in the first phase of
optimization. In phase two, it is sufficient to estimate
the additional costs of connecting a node to a bus
system which is modeled as bus coupler costs.

• The FunctionalDescription is a logical network of all
software components C and their corresponding com-
munication signals S. Each signal si ∈ S consists
of a set of one or more receiving SWCs Csi and
the corresponding bandwidth requirement in kbit/sec.
Since our framework is designed to be used in a very
early stage of product development, we provide a rough
bandwidth estimation instead of detailed transmission
deadline constraints which are generally not known at
this time.

• BusDB: A database of all available bus systems B with
estimated cost factors for bus couplers and wiring effort.
Furthermore, each bus system b ∈ B is defined by a
maximum transfer capacity in kbit/sec. This capacity
is usually set between 30% and 70% of the theoretical
maximum at this stage of development to be prepared

64 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

core::Solution

Variable

variable::
ApplicationMatrix

Variable

variable::BusMatrix

Variable

variable::
CommunicationMatrix

networks::InputNetwork

+f _busDBf :BusDB
+f _functionalDescriptionf :FunctionalDescription
+f _nodeDBf :NodeDB

Mutation

mutation::
BusMutator

Mutation

mutation::
GuidedBusMutator

Routing

routing::
LLFRouter

Routing

routing::
RandomSequenceRouter

1

1..*

1

1

1

1

1

1

createscreatesmodifiesmodifies

Fig. 2: Diagram of all related input objects, variables and
operators

for changes in communication requirements. A detailed
schedulability analysis, as presented in [18], is not
feasible at this stage of development.

• One or several ApplicationMatrix representations of
possible solutions from phase one.

3.2 Variable Encoding
A complete solution candidate in phase two consists of

common input parameters, a mapping solution from the
previous phase and two new variables representing topol-
ogy and signal routing. First, we define a variable called
BusMatrix to model the connections between nodes and
buses. The dimension is |B| × |N | with each entry stating
whether the node is connected to this bus system or not. The
network topology is therefore defined by this variable with
the exception of gateway functionalities. The representation
can be altered by mutation operators which is the usual
practice in evolutionary algorithms. Since the algorithm can
work with several distinct mapping solutions in parallel, a
crossover operation would not be suitable in this phase.

It should be noted, that a BusMatrix does not provide a
feasible network until a signal path has been found for each
communication signal. This is done by a routing operator
and results in a CommunicationMatrix, which represents all
signal paths and gateways within the network. The routing

operator uses a BusMatrix as input but can also add con-
nections to repair infeasible communication paths. Further,
the routing procedure can add gateway functionalities onto
nodes if needed. We consider gateways as objects derived
from software components and only allow a mapping on
certain nodes in the system. Those mappings can be created
by the router or by a distinct gateway mutation operator.
During the routing process, the CommunicationMatrix is
filled with signal paths and bandwidth information for all
used bus systems accompanied by a set of mapped gateways
G and their respective routing tables. In order to preserve
feasibility during this process, we define two constraints for
the routing algorithm.

1) Signals must not be routed over a bus system if the
resulting bandwidth would exceed the maximum bus
capacity.

2) To limit complexity and transmission time, a signal
route over two or more gateways is not allowed. This
is also standard practice for current vehicle networks
which utilize one central gateway for all bus systems.

A overview of all mentioned objects is depicted in Figure 2.

3.3 Fitness Functions
The goal of the routing phase is to find feasible networks

utilizing availiable bus systems in a cost efficient way. This
implies the following statements.

1) Each bus system shall have optimal bandwidth utiliza-
tion.

2) A balance between faster (more expensive) and
cheaper bus technologies has to be found.

3) Wire lengths have to be minimized as the cabling
harness is a significant cost factor in modern vehicles.

4) The usage of gateway components doubles the band-
width requirement for a signal since it has to be
transmitted over two bus systems to reach all receiving
software components.

Based on those statements we define three objectives to
measure the fitness of a solution.

System cost defines the hardware costs for a given topol-
ogy. The bus coupler cost BCC(b) models the expense of
adding a node n to a bus system b. The set N(b) is the set
of all nodes that are connected to the bus system b.

SystemCost =
∑
b∈B

BCC(b)× |N(b)|

Wiring cost represents the length of the cable harness. We
approximate this length for every bus system as the sum of
Manhattan distances between all nodes connected the bus.
The Manhattan distance is defined as the path between two
nodes, when only moves in direction of the Cartesian axes
are allowed.

dist(n1, n2) = |x1 − x2|+ |y1 − y2|+ |z1 − z2|

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 65

D
o

(u
n

ti
l(

P
(i

s(
fi

ll
ed

Fill(Population(P(with(
solutions(from(phase(one;(
Create(external(archive(E

Assign(SPEA2(fitness(
for(P(and(E

Fill(E(using(
evironmental(selection

Pick(a(solution(from(E(
=binary(tournamentN

Exit(condition?

Mutate(BusMatrix

Perform(routing

Store(in(P

Result(=(E

Mutate(gateways

ActivityFinal

RoutingSPEA2

No

Yes

Fig. 3: The routing algorithm with SPEA2 selection methods
and custom mutation and routing operators

For certain bus systems like MOST, the wire length can by
multiplied by an additional cost factor to reflect the more
expensive installation effort for optical cables.

Bus utilization is modeled by a fuzzy set where a con-
sumed bandwidth between 30% and 70% of the maximum
speed is considered as optimal load. Those values may vary
depending on the bus system in use and can be adapted from
’best practices’ in automotive engineering. If a bus utilization
is out of this range, we model a penalty value based on the
bandwidth mismatch and priority of the bus system. Due to
the priority, we can force the optimization process to utilize
more expensive bus systems better than cheap ones. The
overall fitness function is then the sum over the resulting
penalty values for all used bus systems.

4. Mutation and Routing Strategies
As stated before, the algorithm uses mutation operators

on a BusMatrix and then creates a CommunicationMatrix
by applying a routing operator. The procedure is based on
the SPEA2 [15] and employs unaltered fitness assignment
and selection implementations from [16]. The principal work
flow is depicted in Figure 3.

4.1 BusMatrix and Gateway Mutation
We have developed two mutation operators for the Bus-

Matrix, a random mutation and an advanced guided operator.
The random implementation can be compared to a simple
bit flip mutation, connecting or disconnecting a node from a
bus with a certain probability. In contrast to that, the guided

mutation prefers to connect nodes to bus systems, whose
bandwidth utilization is below optimal values. Consequently,
nodes have a higher probability of getting disconnected from
bus systems with higher communication load. Algorithm 1
states the procedure for guided bus mutation. It is important
to limit the guiding factor to very small values in order to
avoid overshooting.

Algorithm 1 Guided BusMatrix Mutation
1: p←MutationProbability
2: for all Bus Systems b in B do
3: u← BusUtilization(b)
4: for all Nodes n in N do
5: if (n connected to b and u == HIGH) or

(n not connected to b and u == LOW) then
6: pn ← p× 1.05
7: else
8: pn ← p
9: end if

10: mutate connection with probability pn
11: end for
12: end for

The mapping of gateway SWCs is also altered by an
distinct mutation. It is again a random bit flip mutator
method but with much lower probability of execution. Like
all other genetic operators, the presented mutation functions
share the same interface and could be interchanged during
runtime of the optimization.

4.2 Routing Strategies
We compared 2 routing operators with different charac-

teristics. The ’Largest Load First Router’ (LLFRouter) is
specified by a strict deterministic behavior. This means,
given the same BusMatrix and ApplicationMatrix as input,
the router will always create the same CommunicationMatrix
as output. The routing always starts with the signal repre-
senting the highest bandwidth requirement and ends with the
signal having the lowest. As a consequence, all evolutionary
logic is done during the mutation of the BusMatrix. In
contrast to that, we also propose a ’Random Sequence
Router’ (RSRouter), where the order of routed signals does
not follow a certain rule. The results are influenced by the
given bus topology but can vary depending on the router
logic.

Independent of the chosen operator, the router follows 4
steps to find a feasible path on the current topology for each
signal:

1) Find a direct connection between source and destina-
tion.

2) Find an available gateway connection.
3) Create a gateway connection without adding new bus

couplings.
4) Create a new direct connection.

66 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Depending on the current BusMatrix, a step could find more
than one feasible path to route a signal. For this case,
we define selection schemes which are set globally for the
optimization process:
• BEST_FIT: The router chooses the bus system in such

a way, that the added signal improves the overall bus
utilization. A simple local search heuristic was designed
to find this system in a time-efficient way.

• CHEAPEST: The cheapest available bus system is al-
ways chosen.

• RANDOM: The router randomly chooses a path. Note
that this will force the router into non deterministic
behavior.

5. Experimental Results
We evaluated both routing operators using each mutation

strategy and path selection schemes defined above. For each
operator setup, we calculated the hypervolume indicator or
S-metric [19] and generational distance [20] to compare the
resulting Pareto fronts after 20.000 evaluations. Since the
true Pareto front for the test problem at hand is not known,
we estimated it as the global Pareto front of all evaluation
runs.

5.1 Input Network
Our test network consists of 15 ECUs executing 284

atomic software components. The overall communication
load created by 390 signals equals 281 kbit/sec. Roughly
30% of those signals have more than one receiving soft-
ware component, for example network management and
diagnostic functions. The structure of this network was
generated from a middle class series vehicle but bandwidth
requirements were greatly increased as to utilize more bus
systems and therefore enable a broader spectrum of possible
solutions.

5.2 Results
The resulting performance indicators are listed in Table 1

with the best 3 values for each indicator highlighted in gray.
The random sequence router runs slightly faster because the
bandwidth sorting algorithm in LLF has to be performed
for each routing execution. The comparison shows that
guided BusMatrix mutation clearly outperforms its random
counterpart without a significant impact on execution time.
In fact, the fastest runs were also achieved using guided
mutation. An exemplary Pareto plot of 3 different operator
setups and the global Pareto front is depicted in Figure 4. It
shows the trade off between low system costs versus cheap
wiring effort and well utilization of bus systems. The LLF
router with guided mutation and random path selection has
the best overall performance as it covers both parts of the
front equally. Only the combination ’RSR / guided mutation
/ best fit path selection’ is closer to the solutions with low

Table 1: Results for different operator setups after 20.000
evaluations

Router Mutation Path HV GD
Exec.

time [ms]
RSR Random Random 0.09356 0.452851 25336

RSR Random Cheapest 0.12951 0.095245 26755

RSR Random Best Fit 0.35134 0.062998 25414

RSR Guided Random 0.46237 0.021208 24048

RSR Guided Cheapest 0.19250 0.016120 24946

RSR Guided Best Fit 0.19881 0.005960 25304

LLF Random Random 0.01778 0.323714 27539

LLF Random Cheapest 0.12510 0.050040 26927

LLF Random Best Fit 0.37797 0.035734 29095

LLF Guided Random 0.51932 0.008477 27354

LLF Guided Cheapest 0.18687 0.010839 29407

LLF Guided Best Fit 0.19769 0.006498 30078

system costs but neglects a lot of solutions in the Pareto
front.

6. Conclusion
This paper proposes advanced routing methods for evo-

lutionary network optimization. Our work is based on the
framework presented in [6] with focus on the application-
specific encoding. The framework is designed to optimize
the application mapping and topology in the context of in-
vehicle communication. Since this is done in a 2-phase
approach, our proposals can focus on the topology and
routing with a given set of solutions from the mapping
process. First, we developed a guided topology mutation
operator to even out bandwidth utilization between different
bus systems. Secondly, we propose two routing operators
where one shows deterministic behavior while the other
is non-deterministic by design. As last input, we chose
between three different strategies to find feasible communi-
cation paths within the network. After evaluating all operator
setups, we find that deterministic routing performs better in
most cases when combined with guided topology mutation.
Further, this guidance does not significantly prolong the
execution time of the overall optimization. However, due to
the test scenario taken from a series vehicle, it is not clear
if the results can be extended to networks of different sizes.
In order to ensure stable behavior for other applications, our
next goal is to develop generic test cases for a variety of
target applications.

References
[1] Robert Bosch GmbH. (2012) CAN - Controller Area

Network. [Online]. Available: http://www.semiconductors.bosch.de/
en/ipmodules/can/can.asp

[2] MOST Cooperation. (2012) MOST - Media Oriented Systems
Transport. [Online]. Available: http://www.mostcooperation.com

[3] FlexRay Consortium. (2012) FlexRay Communications System.
[Online]. Available: http://www.flexray.com

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 67

SystemFCost
WiringFCost

B
us

FU
til

iz
a

tio
n

10
20

30
40

50
60

70
80

0.8
1

1.2
1.4

1.6
1.8

2
2.2

2.4

1

1.5

2

2.5

3

3.5

4

4.5

LLF_Guided_Random

RSR_Guided_BestFit

RSR_Guided_Random

EstimatedFTrueFFront

Fig. 4: Pareto plot of 3 operator setups and the estimated global front

[4] H.-T. Lim, L. Volker, and D. Herrscher, “Challenges in a future
ip/ethernet-based in-car network for real-time applications,” in Design
Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, june
2011, pp. 7 –12.

[5] AUTOSAR Consortium. (2012) Automotive Open System
Architecture. [Online]. Available: http://www.autosar.org

[6] M. Dohr and B. Eichberger, “An application-specific approach in
automotive network optimization,” in Proceedings of the 2012 inter-
national conference on genetic and evolutionary methods, jul 2012,
pp. 62–67.

[7] M. Abd-El-Barr, “Topological network design: A survey,”
Journal of Network and Computer Applications, vol. 32,
no. 3, pp. 501 – 509, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S108480450800101X

[8] R. Kumar and N. Banerjee, “Multiobjective network topology
design,” Appl. Soft Comput., vol. 11, no. 8, pp. 5120–5128, 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.asoc.2011.05.047

[9] N. Banerjee and R. Kumar, “Multiobjective network design for
realistic traffic models,” in Proceedings of the 9th annual conference
on Genetic and evolutionary computation. ACM, 2007, pp. 1904–
1911.

[10] W. Peng and Q. Zhang, “Network topology planning using moea/d
with objective-guided operators,” in Parallel Problem Solving from
Nature - PPSN XII, ser. Lecture Notes in Computer Science,
C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone,
Eds. Springer Berlin Heidelberg, 2012, vol. 7492, pp. 62–71.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-32964-7_7

[11] S. Kim, E. Lee, M. Choi, H. Jeong, and S. Seo, “Design optimization
of vehicle control networks,” Vehicular Technology, IEEE Transac-
tions on, vol. 60, no. 7, pp. 3002 –3016, sept. 2011.

[12] T. Streichert, C. Haubelt, and J. Teich, “Multi-objective topology op-
timization for networked embedded systems,” in Embedded Computer
Systems: Architectures, Modeling and Simulation, 2006. IC-SAMOS
2006. International Conference on, 2006, pp. 93–98.

[13] R. Moritz, T. Ulrich, and L. Thiele, “Evolutionary exploration of e/e-
architectures in automotive design,” in Proceedings of the Interna-
tional Conference on Operations Research, Zurich, Switzerland, 2011,
pp. 361–366.

[14] M. Lukasiewycz, M. Glass, C. Haubelt, J. Teich, R. Regler, and
B. Lang, “Concurrent topology and routing optimization in automotive
network integration,” in Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE, june 2008, pp. 626 –629.

[15] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the
strength pareto evolutionary algorithm for multiobjective optimiza-
tion,” in Evolutionary Methods for Design, Optimisation, and Control.
CIMNE, Barcelona, Spain, 2002, pp. 95–100.

[16] J. J. Durillo and A. J. Nebro, “jmetal: A java framework
for multi-objective optimization,” Advances in Engineering
Software, vol. 42, pp. 760–771, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0965997811001219

[17] M. Dohr and B. Eichberger, “Guided mutation strategies for multiob-
jective automotive network architecture,” March 2013, currently under
review.

[18] R. I. Davis and A. Burns, “Controller area network (can) schedula-
bility analysis: Refuted, revisited and revised,” Refuted, Revisited and
RevisedŤ. Real-Time Systems, vol. 35, pp. 239–272, 2007.

[19] E. Zitzler and L. Thiele, “Multiobjective optimization using evolu-
tionary algorithms - a comparative case study.” Springer, 1998, pp.
292–301.

[20] D. Van Veldhuizen and G. Lamont, “On measuring multiobjective
evolutionary algorithm performance,” in Evolutionary Computation,
2000. Proceedings of the 2000 Congress on, vol. 1, 2000, pp. 204–
211 vol.1.

68 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Evac: An Evolutionary Accompanist

Shu Zhang, C. Thomas Bailey, and Khaled Rasheed

Institute for Artificial Intelligence, University of Georgia, Athens, GA, US

Abstract - Evac (the evolutionary accompanist) is a system

that engages in musical improvisation with the user. Evac

uses a genetic algorithm (GA) to invent musical phrases that

are neither too similar to the user’s input, nor too different.

It is notable for two reasons. First, it uses a novel, implicitly

interactive, genetic algorithm, which allows the user’s

actions to influence Evac’s musical performance without the

need for explicit rating of individuals. Second, in contrast to

many pieces of software in the world of evolutionary music

and art, Evac runs in real time, allowing the user to

experience the same kind of exploration that happens in real

life improvisation scenarios with other musicians. Evac must

also solve the design problems of dynamic environments,

since our GA’s fitness function relies on the user’s input.

Sample music resulting from the system is available.

Keywords

Evolutionary computing, music accompanist, interactive

Genetic Algorithm, real time

1. Introduction
Our problem is music composition. In particular, our system

allows the user to play music while simultaneously

generating impromptu accompaniment to go along with the

user’s input. The musical “brain” of the system is a genetic

algorithm implemented in C#.

Evolutionary computing is a research area which draws

inspiration from the process of natural evolution. It reflects

the phenomenon of survival of the fittest in nature.

The two cornerstones of evolutionary progress are

competition-based selection, and the phenotypic variations

among members of the population (Eiben & Smith, 2003).

The most important components for any evolutionary

algorithm includes: representation (definition of individuals),

an evaluation function, population, parent selection

mechanism, variation operators, recombination and mutation,

and a survivor selection mechanism. Evolutionary algorithms

(EA’s) have three basic features that distinguish them from

other algorithms: EA’s are population based; they use

recombination, mutation, or other genetic operators; and they

are stochastic.

In the literature there have been four main approaches:

genetic algorithms, evolution strategies, evolutionary

programming (EP), and genetic programming. All these

dialects of evolutionary computing follow these general

outlines, with differences only in technical detail. For

example, the representation of individuals is historically

strings over a finite alphabet in GAs, real valued vectors in

an evolution strategy, finite state machines in the classical

EP, and tree structures in genetic programming (Eiben &

Smith, 2003). All of them have been successfully applied to

a wide range of problems, with a focus on optimization

problems.

When an EA is applied to musical composition, there are

three main considerations (Burton & Vladimirova, 1999),

namely the search domain, the genetic representation, and the

fitness evaluation. For musical composition, the search

process is analogous to a combinatorial optimization

problem, and because of the infinite combination of

melodies, harmonies and rhythms, its search space is

unlimited (Tokui & Iba, 2000). Therefore, the composition

should be guided by some constraints. By artfully choosing

our constraints, we aimed to maximize the musicality of

Evac’s output, as well as its real-time responsiveness. To this

end, we limited our search to melodies of length 16 (i.e.,

strings of 16 single notes). Each note in the melody can be 1

of 13 pitches. All together this yields roughly
 possible combinations: still quite large, but no longer

infinite.

Our goal when designing the representation was to be as

simple as possible while maximizing the effectiveness of

evolutionary search. Hence we adopted a discrete

representation where an integer encodes several properties of

a note, and an array of 16 integers represents an individual

(musical phrase).

The last topic is fitness evaluation. Since we are generating

impromptu accompaniment for the user’s music, we

incorporate the user’s input into the fitness function.

Specifically, the music represented by an individual in the

GA is compared with the user’s input and rated for similarity

using music theoretic notions. To determine the individual’s

fitness, we used a function that assigned low fitness values to

those individuals who were either too similar or too different.

High fitness individuals were similar but not identical to the

user’s input. This ensured that the GA favored individuals

that were related to the user’s input without copying it.

The rest of the paper is structured as follows. The second

section gives a brief review of the literature related to

evolutionary computation and its application in music and

art; the third section describes how the user interacts with

Evac; the fourth section offers a detailed description of the

Genetic Algorithm used in Evac including: individual

representation of music notes, fitness function and genetic

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 69

operators; the fifth section discusses the results of running

and playing with Evac, along with analyses regarding the

system; the sixth section presents conclusions about the

performance of Evac, and the seventh section discusses

future work.

2. Background
Genetic algorithms have been frequently used as an approach

to music composition. In a previous study (Matic 2010),

position based representation of rhythm and relative

representation of pitches (based on distance from a starting

pitch), were used to allow flexible encoding of music

compositions. Use of a mathematical (i.e., non-interactive)

fitness function as well as an initial population with pre-

defined rhythm made the GA simpler to implement, and also

improved the quality of the final result.

However, strictly non-interactive fitness functions preclude

human influence on individuals’ fitness. While in some cases

this might be desirable, one of the primary goals of art is to

give voice to human experience; as such, removing humans

entirely from the loop of the fitness calculation represents a

serious trade-off. Interactive evolutionary algorithms (IEAs)

address that exact issue. Interactive evolutionary algorithms

explicitly include the user in the evaluation of individuals,

typically by allowing them to select the best individual(s)

from a group or assign fitness values based on subjective

appeal. In another paper on evolutionary music composition,

Tokui and Iba (2000) combined genetic algorithms and

genetic programming in an IEA. The GA individuals

represented short pieces of rhythmic patterns, while the GP

individuals expressed how these patterns were arranged in

terms of their functions. Both populations were evolved

interactively through user evaluation. The integration of

interactive GA and GP has the benefit of allowing search for

music structures in large search space.

Interactive evolutionary algorithms have also been used in

generating artwork. For example, Graca & Machado used an

IEA to generate assemblages (similar to collages) of 3D

objects (2008). In their evolutionary art approach, users make

the initial choice of source image and object library, then

guide the evolutionary process in accordance to their artistic

preference, until a desirable distribution of 3D objects is

evolved. Several interesting points addressed by this system

include: developing masks to allow exploration of details and

ignore other regions; conveying different artistic notions

such as motion; mimicking texture; and developing overall

expressiveness. The limitations of this system include human

fatigue, as well as the computational effort required to

preview and render the individuals.

User interface design has also been the subject of interactive

evolutionary algorithms (Masson, Demeure, & Calvary,

2010). In an evolutionary system called Magellan, the

traditional model-based (task-based) approaches and the

interactive genetic algorithms were combined to foster the

exploration of the design space and inspire the designer. The

input of the system was the given user task model, and the

output was sketches of UI’s, which could be later tuned by

human designers. However, as with the previous example,

the authors ran up against the human fatigue problem.

To address the issue of human fatigue, one approach that has

been used is to hardcode mathematical heuristics of

aesthetics. For example, in a proposed jewelry design

system, several heuristics functions evaluating aesthetics and

morphology were included, which reduced the amount of

feedback needed from the user by two orders of magnitude

(Wannarumon, Bohez, & Annanon, 2008). It was basically a

hybrid approach in which evaluations rely partially on an

encoded fitness function (the algorithmic aesthetics), and

partially on subjective human feedback. However, this

approach is still limited in its need for a hard-coded

aesthetical evaluation function, which is something that may

not be possible or practical for every situation.

In order to overcome both the human fatigue problem and the

hard coded fitness function, Hornby and Bongard (2012)

developed The Approximate User (TAU) system, in which a

model of the user’s preference was built and refined

continuously during the search process. This preference

model could then be used to drive the search algorithm,

decreasing the demand placed on the user. Two variations of

a user-modeling approach were compared to determine if this

approach can accelerate IEA search. The first approach

involved learning classification rules to determine which of

two designs is better. The second involved learning a model

to predict fitness scores. These two variants were compared

against the basic IEA and it was shown that TAU was 2.7

times faster and 15 times more reliable at producing near

optimal results.

3. Evac and the user
Evac is simple to operate – after opening the program, a very

minimal user interface is displayed and the user begins to

hear the tick of a metronome. From this moment, Evac is

ready to accept user input. The user treats the Tab, Q, W, E,

R, T, Y, U, I, O, P, open-bracket (‘[’), and close-bracket (‘]’)

keys on their computer keyboard like keys on a piano,

pressing them to trigger the sound of a flute and releasing

them to stop the sound. One note can be played at a time.

Each key corresponds to a specific pitch, shown in Table 1.

Table 1: Keyboard keys and pitches.

Keyboard Key Pitch

Tab A2

Q B2

W C3

E D3

70 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

R E3

T F3

Y G3

U A3

I B3

O C4

P D4

[E4

] F4

After a certain amount of “prep” time, whether the user has

played anything or not, Evac will begin playing the output of

the genetic algorithm. (In fact, Evac will happily play along

with silence forever - the fitness function, described below,

has no problem with comparing against silence.)

Evac addresses the human fatigue problem in a novel way.

The system does not require the user to evaluate music pieces

directly, saving them the mental fatigue of making choice

after choice (though the trade-off is that the user has no way

to directly control the software’s performance). Evac,

however, does constantly compare its output against the

user’s input. As a result, the user is kept in the evaluative

loop. In this way, Evac dodges the issue of user fatigue - the

only human activity involved is playing music, which is

quite enjoyable. As a matter of fact, our system can be used

as a tool to assist musicians in developing creative

accompaniment without much effort; all one needs to do is

keep playing.

4. The Genetic Algorithm approach

4.1 Overview
A technical overview of Evac’s GA configuration is given in

table 2. The major concern when designing Evac’s GA was

the need to balance the competing demands of high

performance with the limited resources available in a real-

time environment. A clear microcosm of this issue presents

itself in deciding an appropriate population size. Our

population size of 100 was chosen to be small enough to

prevent undue resource consumption: excessively large

populations require more computation per generation,

leading to more inertia and less responsiveness. Since Evac

operates in real time, this would decrease the value of the

system. On the other hand, small population size limits the

diversity of the population. This means fewer musical ideas

present in the population and a greater risk of stagnation.

Table 2: Technical overview of Evac’s GA parameters.

Representation

Discrete. Integers represent

pitch. Relative position of

integers represents rhythm. (See

below.)

Parent selection

strategy

Tournament selection with 4

competitors.

Survival strategy

Generational + elitism. (Best

individual retained between

generations.)

Crossover
Uniform crossover; probability:

90%

Mutation
Uniform mutation; mutation

probability per gene: 20%

Population size 100

We were reluctant to use “on-line” forms of parameter

control (e.g., self-adaptation, dynamic parameter control) for

two reasons. First, some forms of control pose additional

challenge to the evolutionary process. Second, others depend

on a priori reasoning that was not relevant to Evac’s task. For

example, a common technique is to use dynamic parameter

control to decrease mutation rate as the algorithm progresses.

Since Evac operates for as long as the user is entertained, this

technique is not appropriate. With that in mind, parameter

tuning (i.e., trial and error) was used to determine a

reasonable balance between the two demands.

4.2 Representation
Figure 1 shows the representation for a single music note,

and for an individual of the GA. As mentioned earlier, the

representation for a single note was an 11-bit integer

encoding of several values. Specifically, the lowest 6 bits

were used to present the pitch of the note, which gave us a

range of 64 different pitches (more than sufficient for the

thirteen pitches we used). The next 4 bits were used to

represent the velocity of the note (i.e., volume, or the

strength of the note), which gave us a range of 16 different

levels of velocity. If the velocity for a note was 0, that meant

it was silent (i.e., a break or rest). The next bit marked

whether this note was a new note or a continuation of the

previous one. This bit was only meaningful if there were two

consecutive notes with the same pitch. In that case, a new

note means two notes will be played. If the second one is not

a new note, it will not be played; instead, the first note will

be played for the duration of two notes.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 71

Figure 1: Representation for a single music note and an

individual

However, in Evac’s GA, an individual is not merely a note,

but an entire musical phrase, i.e. a series of notes. We took

each individual to be 16 notes long; as in music, these

sixteen notes could be played over an arbitrary length of

time, depending on Evac’s settings. This allowed the user to

determine for themselves whether they wanted to play a fast

song or a slow song. An example of a musical phrase and the

corresponding GA individual representation is shown in

Figure 2.

Position 1-5 2 3 4 5 7-16

Velocity 0 1 1 1 1 1

Pitch 12 7 5 3 0 0

isNewNote n/a true true true true False

Figure 2: Musical phrase (above) and corresponding Evac

individual representation (below).

4.3 Similarity Rating and Fitness Function
An individual’s fitness was achieved by transforming a

similarity function. The similarity function was computed by

comparing each individual against the user’s input for the

previous 16 beats, and depended only on the harmonic

“distance” (musical term: interval) between the pitches at

each index. (In our representation, such harmonic distance

can be computed by simple subtraction of the integer

pitches.) Our similarity weighting function was informed by

a musical technique called counterpoint, in which two

separate melodies (strings of notes) interweave to form a

larger texture. These two separate melodies are harmonically

interdependent, but independent in pitch contour and rhythm.

In particular, we used a simplistic approach where consonant,

“at rest” intervals had a higher similarity rating, while

dissonant, “unstable” intervals had a lower similarity rating.

Generally for most people, a consonance sounds pleasant

whereas dissonance sounds unpleasant or harsh. As Roger

Kamien said in his book (2008), “An unstable tone

combination is a dissonance; its tension demands an onward

motion to a stable chord. Thus dissonant chords are ‘active’;

traditionally they have been considered harsh and have

expressed pain, grief, and conflict.” We want our music to be

more pleasant to listen to, hence we gave consonant intervals

higher similarity ratings, which will lead to higher fitness

values in the evolutionary process.

Table 3 presents the 12 different musical intervals and their

corresponding similarity values. We adopted these values

based on music theory knowledge and our own musical

intuition. If two notes have an interval that is higher than 12,

their similarity value was calculated in this way: first, a

similarity value was calculated based on Table 3 using the

remainder of that interval value divided by 12, then the

resulting similarity value was decreased by 0.2 to get the

final similarity value. Rests have a similarity value of 1 to

other rests, and a similarity value of 0 to non-rests.

The similarity value of an individual was the sum of the

similarity values calculated for each of the 16 notes within

that individual. Once a similarity value had been obtained for

an individual, that similarity value was passed through a

weighting function (i.e., the fitness function, shown in Figure

4) to calculate the individual’s fitness value. The decision of

weighting functions was based on the principle that

individuals with excessively low or high similarity should

receive low fitness values. Individuals with mid-to-high

range similarity values should receive higher fitness values.

Several fitness functions were tested and the one with the

best performance among them, a quadratic function, was

chosen.

72 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Figure 3: Music intervals shown on piano keyboard

Table 3: Musical intervals and their corresponding similarity

values.

Interval : Musical Name Similarity value

0 : Unison 1

1 : Minor second 0

2 : Major second 0.3

3 : Minor third 0.4

4 : Major third 0.6

5 : Perfect fourth 0.1

6 : Tritone 0

7 : Perfect fifth 0.8

8 : Minor sixth 0.6

9 : Major sixth 0.4

10 : Minor seventh 0.3

11 : Major seventh 0.1

12 : Octave 0.9

To provide a brief idea of how Table 3 works out in practice,

assume we are interested in the individual: [0, 3, 5, …].

Furthermore, assume the first three notes of the user’s input

for the last 16 beats was [0, 10, 22, …]. To determine the

similarity rating, simply calculate the absolute value of the

differences between each note: [0 - 0, 10 - 3, 22 - 5, …] = [0,

7, 17, …], then compare to table 3. We can see distances of 0

(a unison - i.e., the same note) have a similarity value of 1,

distances of 7 have a similarity value of 0.8. For the

distances of 17, we first get the remainder of 17 divided by

12, which is 5, and from Table 3 we get distances of 5 have a

similarity value of 0.4. We then decrease 0.4 by 0.2 (which is

a static value got from experimentation) and get 0.2. Thus,

for each interval we have similarities [1, 0.8, 0.2, …]. To

obtain the similarity score for an individual, simply sum the

similarities of each interval. Thus, assuming the individual in

question consisted of only those three intervals listed

explicitly above, our example would have a similarity value

of 2. To obtain the individual’s final fitness score, apply the

fitness function shown in Figure 4: ,

yielding -64.

Figure 4: Fitness function: f(x) = – (x-10)2. Input is a similarity

rating.

4.4 Genetic Operators
For mutation we used uniform mutation. For each individual

(i.e., series of notes), the algorithm goes through each one

and decides whether that note will be mutated. Once a certain

note is chosen to be mutated, a new random integer will be

generated to replace that note. Since all three components

(pitch, velocity, isNewNote) are encoded within this integer,

we don’t need to consider the components separately. A high

mutation rate (20%) was chosen to prevent the algorithm

from converging on a simple parallel imitation of the user

(i.e., shifted up some number of pitches, but otherwise

identical).

For crossover, we used uniform crossover. Specifically, we

did not do crossover between notes; instead, we performed

crossover between different individuals. There are two

reasons to adopt this strategy. First, it is simple. Second, and

more importantly, we suspect that, in keeping with ideas like

the Building Block Hypothesis, recombining effective

individuals will allow us to more rapidly reach higher levels

of quality.

-200

-150

-100

-50

0

-5 0 5 10 15 20

F
it

n
es

s

Similarity Rating

Fitness Function

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 73

5. Results and analyses
Four excerpts of Evac sessions are available on the website

https://www.dropbox.com/sh/h5cbz756tcyxy6n/vUXrcnmjK

g, labeled “Evac Demo 1”, “Evac Demo 2”, “Evac Demo 3”,

and “Evac Demo 4.” Again, the flute sound is played by a

human user and the piano sound is played by the computer.

What follows are subjective evaluations of Evac’s

performance; further research would involve more rigorous

measures of quality (e.g., systematically conducted surveys

regarding Evac’s effectiveness, rating by experts on its

degree of musicality and quality of accompaniment, etc.)

The first thing to be said about Evac is that it is surprisingly

fun to use. We opted to use a flute as the voice for the user’s

input, and a piano as the voice for the program. The result

was both musical and entertaining. While Evac does not

provide hours of entertainment, there are just enough

moments of unexpected beauty to keep one engaged for half

an hour or an hour. It is particularly exhilarating when,

instead of simply complementing the user’s phrases, the

evolution yields phrases that seem to demonstrate some

initiative of their own.

On a similar note, the major goal of implicit interactivity was

to minimize the amount of user fatigue suffered while

controlling the algorithm. In our experience, this was a total

success. Working with Evac felt much more like playing a

game than interacting with an algorithm. While we

mentioned that Evac could keep one engaged for something

on the order of an hour, we suspect, if there were good

reason, people would be able to continue significantly longer

than that.

We did notice that it takes Evac some time to “catch up”

when the user changes musical directions. This is to be

expected - the population had optimized for a certain fitness

function, and when the user changes their behavior, the

algorithm needs time to adapt to the new fitness landscape.

Nor, all told, is the time it takes to adapt excessive. Typically

within one or two cycles of 16 beats, it has found its way into

something that is at least not offensive, if not truly

complementary.

Evac also seems to yield a better experience with slower

songs. To some degree, this can be attributed to the

processing demands - for slower songs, fewer computations

need to be performed per second, and as a result the program

responds more smoothly and immediately to user input. At

the same time, this is also a function of the latency present in

the system. Even at modest speeds, there is still appreciable

(if not crippling) delay between when the user presses a key

and when the corresponding flute sound plays. Slower

tempos mean the latency introduces relatively less error,

thereby making the delay less intrusive. This latency also

limits the user’s play style, to some extent. Because of the

latency, it is difficult to perform quick, intricate movements

while keeping time with the rest of the system. As such, it is

simpler and easier for users to play mostly long, sustained

notes with some flourishes, either at the beginning or the

end. Highly rhythmic melodies are essentially a non-option

because of this.

Though latency introduces some difficulties, perhaps Evac’s

greatest weakness is its utter lack of phrasing. This means

that, while Evac almost always sound good with what the

user plays, it is difficult to let Evac “take the lead.” This is

not ideal both because the user must always be actively

determining where the song will go, and because if the user

runs out of ideas, the session effectively comes to an end. Of

course, this is not surprising; Evac’s fitness function only

takes into account the “harmoniousness” of an individual

melody in relation to what the user has done, so there is no

reason to expect that it would demonstrate phrasing behavior.

6. Conclusion
Evac is excellent for what it is - a first approximation that

demonstrates the power of implicit interactivity. Evac

demonstrates satisfying performance on musical

improvisation with the user. Evac’s ability to run in real time

allows the user to experience the same kind of exploration

that happens in real life improvisation scenarios with other

musicians.

On one hand Evac is able to follow the music that the user

plays; on the other hand, Evac is more than a simple

reharmonizer. It never copies the user, nor does it repeat its

own previous melody. When the user stops playing (while

keeping the program running), Evac will also slow down

gradually, but it will never completely stop playing – it will

play few notes every now and then, as if it is asking and

waiting for the user to respond. Once the user starts playing

again, Evac will re-start the cooperation with the user, with

very short amount of time needed at the beginning to adapt to

the user’s music style.

7. Future work

The most immediate need is for reduced latency. If Evac

responded immediately and effortlessly to user input, we

anticipate using it would become even more fun. This in turn

would improve the extent to which it fulfilled its original

purpose: eliminating user fatigue. There are also some small

audio rendering issues (particularly at the end of notes) that

could use fixing. These small improvements, together with a

strong graphical user interface, would make Evac worthy of

public distribution.

If its other operations could be suitably optimized, the next

greatest need is for more sophisticated parameter control.

Parameter tuning has many downsides, and there is a

reasonable chance that well-designed parameter control

could reduce or eliminate the issue with Evac not taking the

lead (e.g., by increasing mutation rate and number of notes

played when user isn’t playing much, etc.). Furthermore,

sophisticated parameter control could throttle back the GA’s

resource usage in the event that other, non-Evac processes

begin demanding CPU time.

74 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

There is also an entire branch of research that we have yet to

exploit, despite its great potential relevance: evolutionary

computation in dynamic environments. Techniques like

storing good solutions to be used in case their environment

returns, or using random immigrants to help adapt to a new

fitness landscape could be easily applied to our problem

domain, since our fitness function changes whenever the user

moves in a new musical direction. Using these kinds of

strategies would yield serious improvements in Evac’s ability

to simulate a real human improvisation partner, since a key

part of musical improvisation with other people is

recognizing song sections which can be returned to or

modified.

Finally, the fitness function has several weaknesses that

could be addressed in future research. Most obvious is that

both the fitness function and the similarity function are hard-

coded, and thus rely on human expertise. Minimizing the

human involvement in these features would improve Evac’s

ability to participate in improvisation across different

musical traditions and with different individuals. Such an

innovation might also be engineered to address the issue with

phrasing, or to other musical problems like how to

coordinate the actions of more than one automated

instrument.

Once Evac or its peers are advanced enough, one might even

connect them to one another, and see what kind of music

machines would make just for themselves.

8. Acknowledgements

The presented work benefited from http://www.freesound.org/,

which provided all the sounds files that are used in Evac.

9. Reference
[1] Burton, A. R., & Vladimirova, T. 1999. Application of

Genetic Techniques to Musical Composition. Computer

Music Journal , 23.

[2] Eiben, A. E., & Smith, J. E. 2003. Introduction to

Evolutionary Computing.

[3] Graca, F. d., & Machado, P. 2008. Evolving

Assemblages of 3D Objects. In Applications of

Evolutionary Computing (pp. 453-462).

[4] Hornby, G. S., & Bongard, J. C. 2012. Accelerating

Human-Computer Collaborative Search through

Learning Comparative and Predictive User Models.

GECCO .

[5] Masson, D., Demeure, A., & Calvary, G. 2010.

Magellan, an Evolutionary System to Foster User

Interface Design Creativity. EICS .

[6] Matic, D. 2010. A Genetic Algorithm for Composing

Music . Yugoslav Journal of Operations Research , 157-

177.

[7] Tokui, N., & Iba, H. 2000. Music Composition with

Interactive Evolutionary Computation. Proceedings of

the 3rd international conference on generative art , 215-

226.

[8] Wannarumon, S., Bohez, E. L., & Annanon, K. 2008.

Aesthetic Evolutionary Algorithm for Fractal-Based

User-Centered Jewelry Design. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing , 19-

39.

[9] Kamien, Roger 2008. Music: An Appreciation, 6
th

 Brief

Edition, p.41. ISBN 978-0-07-340134-8

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 75

http://www.freesound.org/

Abstract — In this paper Evolutionary Strategy for
uncorrelated mutations such as self-adaptive one step and
self-adaptive k step are compared with correlated mutation.
The two offspring selection techniques of direct replacement
(µ,λ) and best fit (µ+λ) are used for comparison. These
techniques were applied to a standard multi peak function to
evaluate their performance. It was found that none of these
approaches always found the global maximum. The results
were very much dependent on the selection of the initial
random parents. Therefore a new approach of correlated
mutation using additional geometric translation has been
proposed. It is illustrated that this technique was successful in
finding the global maximum.

Keywords: Evolutionary Strategy, Correlated Mutation, Adaptive
Algorithm, Artificial Intelligence

1 INTRODUCTION
VOLUTIONARY strategies are the earliest techniques of
evolutionary algorithms first proposed by Rechenberg [6]

and Schwefel [10] (1965), initially used for parameter
optimization by Beyer (2001) [3], applications in fluid
dynamics and function optimization. The idea behind
evolutionary strategy is to randomly mutate all of the input
parameters in an effort to find the best solution. The amount of
mutation is varied in each iteration of the algorithm. Then by
applying (µ+λ) or (µ,λ) next generation selection, the resulting
parameters are improved further. No recombination techniques
were used in the algorithms for this paper. The main objective
is to find the set of parameters which will deliver the
optimized solution for a problem.
 Evolutionary strategies can be developed as uncorrelated
and correlated mutations. In uncorrelated mutation the
parameters are mutated by a small step size either in the
positive or negative direction depending on the fitness value
associated with direction. In the uncorrelated one step
algorithm one mutation value is calculated during each

iteration step and applied uniformly to all parameters being
considered. In uncorrelated k step algorithm a vector of
mutation values are calculated during each iteration step and
added to the vector of parameters. Both of these methods
traverse linearly across the x-axis. In correlated mutation
angles of rotation are also calculated and applied at each
iteration step and used to mutate the parameters with varying
orientation from a related correlation matrix. This method
makes the parameters sensitive to direction. These methods
were all tested using a mutli-peak function (1) commonly used
for comparative analysis of algorithms as shown in Fig. 1, this
function has a known global maximum 1.0 at x = 0.1. For x ϵ
[0.1]:
𝐹(𝑥) = (2−2((𝑥−0.1)/0.9)2)(𝑠𝑖𝑛(5𝜋𝑥))6. (1)

 It was found that both of the uncorrelated algorithms and the
correlated did not always reach this global maximum. The
correlated mutation had better results but was shown to be a
computational intense algorithm requiring more time to run
than the uncorrelated algorithms.

 Figure 1. Graph of equation (1) used for evaluation of algorithms.

 Both (µ+λ) and (µ,λ) next generation selection techniques
were used to compare the performance of the uncorrelated and
correlated mutation algorithms. In (µ,λ) the µ parents were

Comparison of Uncorrelated and Correlated
Evolutionary Strategies with Proposed Additional

Geometric Translations

A. Sandra DeBruyne1, B. Devinder Kaur2
1,2Electrical Engineering and Computer Science Department, University of Toledo, Toledo, OH, USA

E

76 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

directly replaced with their λ children for the next iteration. In
(µ+λ) the µ parents and λ children were sorted according to
fitness and the candidates with the best fitness were selected
for the next iteration. [1] It was found that (µ+λ) had better
results.
 Therefore in order to search for a better algorithm a
proposed new technique of correlated mutation with added
geometric translations is introduced. In this technique the
ellipses around the parents are translated to a new location in
the direction of better fitness. It was found that the results of
moving the entire ellipse in this way resulted in finding the
global maximum. This was verified by running the same
initial sample parent population on both the standard
correlated mutation algorithm and the new proposed correlated
mutation with added geometric translations.
 This paper is organized into seven sections. Section II
contains the explanation of the evolutionary strategy
algorithms used. Section III discusses uncorrelated mutation
with one step size and the shows the results of testing this
algorithm. Section IV discusses uncorrelated mutation with
individual step sizes and shows the results of testing this
algorithm. Section V discusses correlated mutation and shows
the results of testing this algorithm. Section VI discusses
correlated mutation with proposed translations and shows the
results of this algorithm, followed by section VII conclusions.

2 Evolutionary Strategy

In this section the algorithms for evolutionary strategy are
presented. Evolutionary strategy algorithms are based on
Darwin’s theory of evolution. [5] Parents create offspring and
the offspring that potentially have stronger features than the
parent are chosen to better survive in the environment.
Mutations are applied in the creation of these offspring to
introduce new features that were not present in the original
parents to improve the odds of achieving the desired goal. [1]

2.1 Pseudocode for Evolutionary Algorithms
Using these ideas a computer algorithm can be developed to

analyze a problem and its data to achieve an optimal solution
to that problem, as shown in Fig. 2. First, an initial population
P(t) is generated randomly and evaluated. Second a mutation
technique is applied to adjust the children to a new set P’(t).
The fitness of those children is evaluated and then children are
chosen from the set of parents P(t) and children P’(t) to form
the new parent set P(t+1). The loop terminates if either the
maximum number of iterations are reached or the desired
solution is found. As outlined here by Castro: [1]

Initialize P(t)
Evaluate P(t)
While not Terminate do
 P’(t) = mutate P(t)
 Evaluate P’(t)

 P(t+1) = P’(t) or best of {P’(t) U P(t)}
 t = t + 1
 Loop

 Figure 2. Sample pseudo code for evolutionary strategy algorithm [1].

2.2 Next Generation Selection Strategies
Two different selection processes were used to pick the next

generation of data to be sent through the algorithm. In
standard evolutionary strategy literature “given µ parents
generating λ offspring (λ >= µ)” [1] The simplest way is to use
the (µ,λ)-ES technique where the new set of children is used
as the parents for the next iteration, the algorithm in Fig. 2
would use P(t+1) = P’(t). A second technique is to use (µ+λ)-
ES technique [1], by looking at the fitness of the parents and
the fitness of the new children and sorting their resulting
finesses from best to worst. A next generation set is created
from the top µ best parents and children, the algorithm in Fig.
2 would use P(t+1) =best of {P’(t) U P(t)}.

2.3 Geometric Translation
By definition a translation “is a function that moves every

point a constant distance in a specified direction”[7]. One of
the disadvantages of the evolutionary strategies is that the final
results have a good chance of concentrating at a local
minimum and never reaching the goal. The advantage of using
a translation is to jump the parents that are trapped at a local
maximum to a different area of the graph.

3 UNCORRELATED WITH ONE STEP SIZE
As this algorithm loops through each iteration, all parents

are being mutated by the same single step size. Using the same
standard deviation σ to create all children will have the result
that “lines of equal probability density of the normal
distribution are hyper-spheres in an l-dimensional space.” [1]

Figure 3. Uncorrelated Mutation with One Step Sizes [11]

3.1 Formulas
Given n parents and the learning rate Ƭ suggested by

Castro[1] the following formulas are used to compute P’(t):
Ƭ = 1

√𝑛�

𝜎′ = 𝜎 ∗ 𝑒(Ƭ ∗ 𝑁(0,1))

𝑃’(𝑡) = 𝑃(𝑡) + 𝜎′ ∗ 𝑁(0,1) (2)

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 77

By multiplying 𝜎 by the lgnormal distribution 𝑒�Ƭ ∗ 𝑁(0,1)�
graphed in Fig. 4, and using the normal distribution N(0,1) to
modify 𝜎′, the standard deviations stays greater than zero
and the adjustment being made to 𝜎 and 𝜎′ are small values.
[11]

Figure 4. Lognormal Distribution [13]

3.2 Results
Uncorrelated mutation with one step size is shown to be a

fast and simple algorithm by the results in Table I. From the
tests run it is shown in Fig. 5 and 6 that the algorithm fails to
always find a global maximum. As the contours of the graph
become more complex the algorithm can tend towards a local
maximum and once arriving there concentrates the results at
that point. One important determining factor as to whether or
not this technique was successful was the selection of the next
generation. As shown in Fig. 5, the effect of applying (µ,λ) to
the determine the next generation, gives varied results. As
shown in Fig. 6, the effect of applying (µ+λ) results in local
maximum values. Table I shows the resulting x value of
0.3134 closer to the expected 0.1 value.

Figure 5. Uncorrelated One Step with No Offspring Sorting after 1000
iterations demonstrating the offspring being continually shifted in the positive
direction along the x-axis. Table shows the resulting x value of 3.4884 far
from the expected 0.1 value.

4 UNCORRELATED INDIVIDUAL STEP SIZE
As this algorithm loops through each iteration, each parent

is being mutated by an individual unique step size. Using the

different standard deviation σ𝑖 to create each child will have
the result that “lines of equal probability density of the normal
distribution are hyper-ellipsoids.” [1]

 Figure 7. Uncorrelated Mutation with Individual Step Sizes [11]

Figure 6. Uncorrelated One Step with Offspring Sorting after 1000 iterations
demonstrating the best offspring being selected and used for the next
generation. The shift in the positive direction along the x-axis is reduced.

TABLE I. UNCORRELATED ONE STEP RESULTS

M
et

ho
d

N
ex

t
G

en
er

at
io

n
 S

el
ec

to
r

C
ha

ng
e

D
ire

ct
io

n

N
o

Ite

ra
tio

ns

N
o

Pa
re

nt
s

Ti
m

e
(m

s)

R
es

ul
t X

R
es

ul
t Y

UnCorrelated One Step
 (µ,λ) N 100 10 3.8294 0.960119 0.0114469
 1000 10 28.594 0.945333 0.0553875
 10000 10 190.7619 0.910901 0.2970658
 (µ+λ) N 100 10 4.119 0.094013 0.9737142
 1000 10 39.0927 0.113978 0.8640433
 10000 10 195.8703 0.89136 0.9157631
 (µ,λ) Y 100 10 6.4753 0.112 0.8981011
 1000 10 35.22 0.943659 0.0635498
 10000 10 184.0641 0.051005 0.1366517
 (µ+λ) Y 100 10 4.4389 0.4752 0.4925319
 1000 10 39.0469 0.299784 0.9339375
 10000 10 216.5566 0.296049 0.9255736

4.1 Formulas
Given n parents and the learning rates τ and τ’ suggested by

Castro[1] the following formulas are used to compute P’(t):

78 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Ƭ = 1
�2√𝑛
�

Ƭ′ = 1
√2𝑛�

σ′(t) = σ(t) ∗ 𝑒(Ƭ ∗ N(0,1)+ Ƭ′ ∗ 𝑁𝑡(0,1))

P’(t) = P(t)+ σ′(t) ∗ N(0,1) (3)

To ensure that each parent is mutated by a unique step size the
algorithm is slightly modified to now use this lognormal
distribution 𝑒(Ƭ ∗ N(0,1)+ Ƭ′ ∗ 𝑁𝑡(0,1)) to modify 𝜎. In calculating
P’(t) each σ′(t)is modified by normal distribution N(0,1) to
ensure a small adjustment in the mutation.[11]

4.2 Results
Uncorrelated mutation with k step sizes is shown in Table II

to be a slightly slower algorithm than the uncorrelated one
step algorithm. From the tests run it is shown in Fig. 8 and 9
that this algorithm also fails to always find a global maximum.
This algorithm again tends to find a local maximum as the
contours of the graph become more complex and once arriving
there concentrates the results at that point. The same important
determining factor as to whether or not this technique was
successful was the selection of the next generation. As shown
in Fig. 8, the effect of applying (µ,λ) to the determine the next
generation, gives varied results. In comparison by applying
(µ+λ) Fig. 9 shows the results concentrating around local
maximum values. This technique of calculating the next
iteration by modifying the parents with a k sized vector of
random values does demonstrate a maximum being discovered
in fewer iterations than the previous one step technique, as
shown in Tables I & II.

Figure 8. Uncorrelated K Step with No Offspring Sorting after 1000 iterations
demonstrating the offspring being continually shifted in the positive direction

along the x-axis. Table shows the resulting x value of 3.4639 far from the
expected 0.1 value.

Figure 9. Uncorrelated K Step with Offspring Sorting after 1000 iterations
demonstrating the best offspring being selected and used for the next
generation. The shift in the positive direction along the x-axis is reduced.
Table shows the resulting x value of 0.3027 closer to the expected 0.1 value.

TABLE II. UNCORRELATED K STEP RESULTS

M
et

ho
d

N
ex

t
G

en
er

at
io

n
 S

el
ec

to
r

C
ha

ng
e

D
ire

ct
io

n

N
o

Ite

ra
tio

ns

N
o

Pa
re

nt
s

Ti
m

e
(m

s)

R
es

ul
t X

R
es

ul
t Y

UnCorrelated K Step
 (µ,λ) N 100 10 1.6245 0.949158 0.3934992
 1000 10 28.9059 0.927498 0.1737801
 10000 10 150.4814 0.958348 0.0143966
 (µ+λ) N 100 10 3.7323 0.99746 0.9999520
 1000 10 34.6443 0.286146 0.8166838
 10000 10 161.6135 0.98698 0.9987438
 (µ,λ) Y 100 10 3.222 0.908266 0.3107350
 1000 10 30.476 0.014095 0.0001107
 10000 10 165.2744 0.118038 0.7829405
 (µ+λ) Y 100 10 2.9218 0.704934 0.5250089
 1000 10 29.375 0.289595 0.8676037
 10000 10 164.8476 0.116392 0.8174364

5 CORRELATED MUTATION
As this algorithm loops through each iteration, each parent

is being mutated by an individual unique step size. Just like
the previous uncorrelated mutation with individual step sizes,
the formulas use a different standard deviation σ𝑖 to create
each child. The correlated mutation formulas add an additional
step of introducing rotation angles to “describe the coordinate
rotations necessary to transform the uncorrelated mutation
vector to a correlated mutation vector. Now the previous

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 79

hyper-ellipsoids can be rotated randomly at angle α(t) to give
the data more freedom of movement through the plane. “.[1]

Figure 10. Correlated Mutation with Angle of Rotation [11]

5.1 Formulas
Given n parents, the learning rates τ and τ’ and constant β

suggested by Castro[1] the following formulas are used to
compute P’(t):

Ƭ = 1
�2√𝑛
�

Ƭ′ = 1
√2𝑛�

𝜎′(𝑡) = 𝜎(𝑡) ∗ 𝑒(Ƭ ∗ 𝑁(0,1)+ Ƭ′ ∗ 𝑁𝑡(0,1))

𝛼′(𝑡) = 𝛼(𝑡) + 𝛽 ∗ 𝑁𝑡(0,1)

𝛽 = 0.0873

𝑃’(𝑡) = 𝑃(𝑡) + 𝜎′ ∗ 𝑁(0,𝐶(𝜎′,𝛼′))

 (4)

Where matrix C(σ′,α′) is calculated by [1]

𝐶 = (𝑆𝑇𝑇𝑆𝑇)

S is diagonal matrix of the standard deviations with
𝑠𝑖𝑗 = 𝜎(𝑡)

𝑇 = � � 𝑅𝑖𝑗(Ɵ)
𝑛

𝑗=𝑖+1

𝑛−1

𝑖

𝑅𝑖𝑗(Ɵ) 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ
𝑟𝑖𝑖 = 𝑟𝑗𝑗 = cos𝛼(𝑡)
𝑟𝑖𝑗 = 𝑟𝑗𝑖 = − sin𝛼(𝑡)

 (5)

5.2 Results
The time it takes to run the correlated mutation algorithm is

significantly higher than the uncorrelated algorithms inn
previous sections, as shown in Table III. In contrast the
number of iterations required to reach a maximum value is
significantly lower. In Fig. 11 and Fig. 12 it is shown that the
algorithm had reached a maximum value in fewer than 25
iterations. Fig. 11 and Fig 12 also show that a global
maximum is not always reached. Fig. 12 is concentrating the
best offspring around x=0.1, the desired value, but Fig. 10 is

showing the best offspring concentrating around x=0.5497, a
local maximum. Fig. 13 shows the correlated mutation
algorithm results with the rotation ellipses displayed. It can be
seen in Fig. 13 that the algorithm begins to concentrate its
offspring around the maximum peaks of the graph and remains
trapped there.

Figure 11. Correlated Mutation with No Offspring Sorting after 25 iterations
demonstrating the offspring being continually shifted in the positive direction
along the x-axis. Table shows the resulting x value of 0.5497 far from the
expected 0.1 value.

Figure 12. Correlated Mutation with Offspring Sorting after 25 iterations
demonstrating the best offspring being selected and used for the next
generation. Table shows the resulting x value of 0.1 successfully reaching the
expected value.

6 Correlated with Geometric Translation
As this algorithm loops through each iteration, each parent

is being mutated by an individual unique step size. Just like
the previous correlated mutation, this version of the correlated
mutation algorithm also uses different standard deviations σ𝑖
to create each child and calculates the rotation angles for the

80 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

hyper ellipsoids. The algorithm is further modified by the
proposed addition of translating these ellipsoids in the
direction of better fitness and reevaluating the translated
parameters.

TABLE III. CORRELATED RESULTS

M
et

ho
d

N
ex

t
G

en
er

at
io

n
 S

el
ec

to
r

C
ha

ng
e

D
ire

ct
io

n

N
o

Ite

ra
tio

ns

N
o

Pa
re

nt
s

Ti
m

e
(m

s)

R
es

ul
t X

R
es

ul
t Y

Correlated Mutation
 (µ,λ) N 100 10 14.1864 0.0578364 0.2397426
 1000 10 97.73 0.5 0.7603713
 10000 10 2198.9979 0.9431838 0.0659958
 (µ+λ) N 100 10 16.648 0.299355 0.9339560
 1000 10 91.4732 0.2889162 0.8585757
 10000 10 2240.1232 0.3 0.9335827
 (µ,λ) Y 100 10 13.0658 0.549034 0.0968278
 1000 10 80.9797 0.696457 0.5389286
 10000 10 1988.959 0.33141 0.4257688
 (µ+λ) Y 100 10 15.0406 0.1000344 0.9999122
 1000 10 74.5497 0.1 1.0000000
 10000 10 2314.0937 0.9709892 0.9937730

Figure 13. Correlated Mutation with Offspring Sorting after 10 iterations
using 25 parents. This graph demonstrates the way correlated mutation uses
ellipses. Graph shows the algorithm concentrating at a local maximum of
y=0.95.

As shown in standard correlated mutation sample run in
Fig. 13, the high concentration of ellipses around x=0.3, the
correlated mutation algorithm is shown to get trapped at a
local maximum of the graph. Results of this type suggest an
additional modification to the correlated mutation algorithm is
needed to dissipate these concentrations to other areas of the
graph. Since correlated mutation is a computationally intense
algorithm, as shown by the time studies in Table III, if the
algorithm can be modified to reduce the concentrations of
results, time would be saved by computing only sets of unique
values.

It is proposed that by adding translations of the ellipse
surrounding each of the parents in the directions of each of the
four ellipse vertices, parameters will effectively jump out of
the areas of local maximums to begin searching for the global
maximum in another region of the graph. The vertices are
evaluated against for fitness and a decision is made to move
the parameters in the direction of best fitness to the next
iteration of the algorithm

Figure 14. Correlated Mutation with Translation

6.1 Pseudocode
Given the original algorithm in Fig. 2, a test is introduced

prior to the selection of the next generation as shown in bold
italics in Fig. 15. This test compares the current parents to the
newly generated children. If the parents and children are
nearly identical a concentration of offspring is developing in
the data. Once this situation is identified, new parents are
created by translating this set of offspring in the direction best
fitness in a series of step sizes. This process removes duplicate
parents and replaces them with new unique values to continue
on with the search for the goal. The new set of offspring are
reevaluated and reselected by the (µ+λ) or (µ,λ) next
generation selection techniques and the next iteration of the
algorithm begins.

Initialize P(t)
Evaluate P(t)
While not Terminate do
 P’(t) = mutate P(t)
 Evaluate P’(t)
 Translate P(t) by step sizes and Reevaluate P’(t)
 P(t+1) = P’(t) or best of {P’(t) U P(t)}
 t = t + 1
 Loop

 Fig. 15. Modification to pseudo code for evolutionary strategy algorithm.

6.2 Results
Figure 16 shows a sample that was run using the standard

correlation algorithm starting at x=2.6 for the initial parent
parameter. Figure 17 shows a sample that was run using the
new proposed correlated mutation with translation starting and
the same x=0.26 initial parent value. The result is a shifting of
the data and subsequently reaching the global maximum in 4
iterations. Time studies as shown in Table 4 show an increase
in the computation time as compared to standard correlated
mutation, due to the added step of evaluating and computing
the translation values.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 81

TABLE IV. CORRELATED WITH TRANSLATION RESULTS

M
et

ho
d

N
ex

t
G

en
er

at
io

n
 S

el
ec

to
r

C
ha

ng
e

D
ire

ct
io

n

N
o

Ite

ra
tio

ns

N
o

Pa
re

nt
s

Ti
m

e
(m

s)

R
es

ul
t X

R
es

ul
t Y

Correlated Mutation with Translation
 (µ+λ) Y 4 10 575.81 0.1 1.0
 11 10 4235.64 0.10095 0.99933

Figure 16. Correlated Mutation with Offspring Sorting and Translation using
1 parent at x=0.26.After 10 iterations maximum found at x= 0.49

Figure 17. Correlated Mutation with Offspring Sorting and Translation using
1 parent at x=0.26.After 4 iterations maximum found at x= 0.1

7 Conclusion
 The Evolutionary strategies were explored to find the global
maximum in a mutli-peak mathematical function. An
evolutionary strategy with uncorrelated mutation algorithm
was shown to reach the global maximum in less than 50% of
the test runs, and was shown to be very sensitive to the initial
random parent population and next generation selection

techniques. Correlated mutation had better results than
uncorrelated reaching the global maximum in 90% of the test
runs. The correlated algorithm converged on the result in
fewer iterations, but each iteration took longer in time to run
than the in uncorrelated algorithm. Both uncorrelated and
standard correlated algorithms were shown to get stuck in
areas of at local maximum values and not reach the global
maximum value. The proposed correlated mutation with
geometric translation was shown to always reach the global
maximum on this multi peak function. The added translations
were shown to have an impact on increasing the time to
complete each iteration in the search.

References

[1] L. N. Castro, Fundamentals of Natural Computing, Chapter 3, Taylor

and Francis Group, LLC. New York, 2006.
[2] P.J. Bentley, Evolutionary Design by Computers, Morgan, Kaufman,

1999
[3] H. Beyer, The Theory of Evolutionary Strategies, Springer-Verlag Berlin

Heidelberg, Germany 2001.
[4] D.C. Dennett, Darwin’s Dangerous Idea: Evolution and the Meaning of

Life, Penguin Books. 1995
[5] D. Dumitrescu, B. Lazzerini, L.C. Jain, A. Dumitrescu, Evolutionary

Computing, CRC Press LLC, 2000, Ch.12.
[6] I. Rechenberg. “Cybernetic Solution Path of an Experimental Problem”

Roy.Aircr. Establ. Libr. Transl., 1122, Farnborough, Hants, UK.1995
[7] D. Roberts, Translations, Oswego City School District Regents Exam

Prep Center, 2012. http://www.regentsprep.org/Regents/math/geometry/
GT2/Trans.htm. 11 Mar. 2013.

[8] S.J. Russell and P. Norvig, Artificial Intelligence A Modern Approach,
Prentice Hall, New Jersey, U.S.A. 1995

[9] H. Schwefel, Numerical Optimization of Computer Models, Wiley,
Chichester. 1981

[10] H. Schwefel, Evolution and Optimum Seeking, Wiley, New York. 1995
[11] Z. Song, A. Kusiak, “Evolutionary Strategy and Applications” Univerity

of Iowa. 2009 http://www.engineering.uiowa.edu/~comp/Public/
Evolutionary%20Strategy.pdf

[12] G.Winter, J. Periaux, M. Galan, P. Cuesta, Genetic Algoithms in
Engineering and Computer Science, John Wiley and Sons Ltd., Great
Britian, 1995, Ch.6.

[13] Google Images, Lognormal Distribution, http://commons.wikimedia
.org/wiki/ File: Lognormal_distribution_PDF.png, 2012

82 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

http://www.regentsprep.org/Regents/math/geometry/
http://commons.wikimedia/

Evolutionary Path Algorithm: A Simple and Extensible

Metaheuristic for Global Optimization

P. C. Geiger, W. D. Potter, and W. D. Richardson

Institute for Artificial Intelligence, University of Georgia, Athens, Georgia, United States

Abstract - This paper presents a general-purpose algorithm

for finding high-quality solutions to hard optimization

problems. The method, called the Evolutionary Path

Algorithm, finds high-quality solutions by searching the space

that separates solutions within the search space. The

Evolutionary Path Algorithm performs random search at the

far end of its search path, and then as the path from a random

sample back to a Candidate solution is built, the search

becomes more local. This path traversal allows the algorithm

to explore the search space at the far end and improve a

known good solution as it returns to the Candidate solution.

Unlike many stochastic search algorithms, the Evolutionary

Path Algorithm can be implemented with very limited tuning

parameters, making it simpler to use for many practitioners.

The Evolutionary Path Algorithm has proven reliable with

respect to finding good answers, in the cases presented the

best answers, to hard problems. We demonstrate EPA here

on an NP hard minimal set cover example with known optima

and on an integer valued configuration problem.

Keywords: Discrete Optimization, Genetic Algorithms,

Stochastic Search

1 Introduction

 Many real world problems require combinatorial

optimization. Examples include scheduling, bin packing,

planning, network design, and engineering optimization.

What all of these problems share is a search space that is

generally too large for exhaustive search methods to find the

optimal answer in a reasonable amount of time. Therefore,

metaheuristic methods have proven to be useful because they

can find good answers in a limited amount of time.

Metaheuristics employing diverse strategies have been

developed over the past half century. The most notable being

the Genetic Algorithm, Particle Swarm Optimization,

Simulated Annealing, and various other swarm techniques

such as Ant Colony Optimization [2,3,4,5,6]. These

algorithms have produced diverse search strategies, operators

for combining answers to form new ones, and new sets of

rules for exploring the search space in an efficient manner.

Although each of these metaheuristics searches in a different

way, they all explore and exploit the search space to find good

answers.

The Evolutionary Path Algorithm explores and exploits the

search space using a very simple greedy strategy and an

exploitation, or intensification, operator called Path Relinking

[1]. It does not however, inherit the algorithm as a whole,

and instead combines random search with Path Relinking and

a moderately greedy strategy. No gradients are computed and

directionality is not required. The aim of the development of

the algorithm was to make a metaheuristic that was simple to

implement for any problem without an abundance of tuning

parameters.

In the following we will present the Evolutionary Path

Algorithm. It is an algorithm that traces the evolutionary links

(differences) between potential solutions to find better

solutions to hard problems. In section 2 we describe the

Evolutionary Path Algorithm as applied to a minimal set

cover problem. Section 3 describes the Evolutionary Path

Algorithm as applied to a combinatorial optimization problem

using integer values.

Imagine a fishing boat floating on a pond. The pond is the

search-space and any potential solution is a fish to catch. The

fisherman in the boat can cast anywhere across the open

waters in search of the best fish. On each cast the fisherman

gets several bites as he reels back to the boat and if he feels a

really big fish try the bait, he moves the boat to that location

thinking “Where there’s one big fish there must be more!” In

this way the fisherman moves through the search-space

locating his casting point above the best fish he has

encountered. After many adjustments of the boat it becomes

very likely he has found the best place in the pond. The

Evolutionary Path Algorithm adopts this same strategy as it

cuts paths through an unknown search-space.

2 Evolutionary Path Algorithm

The Evolutionary Path Algorithm is most simply expressed by

the following steps:

1. Initialize a Random Point within the Search Space. This is

now the Candidate Solution and the Best Solution.

2. Initialize another Random Point within the Search Space.

This is the Random Solution, if it is better than the Candidate

Solution, it becomes the Best Solution.

3. An Evolutionary Path is built between the Candidate

Solution and the Random Solution. Any solution found that is

better than Best Solution replaces Best Solution.

4. Candidate Solution is replaced by Best Solution when the

traversal of the Evolutionary Path is complete.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 83

5. The process above is repeated until some stopping

condition is met.

The Evolutionary Path Algorithm (EPA) is initialized by

choosing a random point within the search space to become

the candidate solution. Then, this solution is improved by

choosing another random point within the search space and

sampling the fitnesses of a randomly generated evolutionary

path between the two points. If the best point along the path is

better than the candidate solution, the old candidate solution is

discarded in favor of the best point seen so far.

This process of traversing an evolutionary path to the best

candidate solution is repeated until some stopping criteria,

such as a number of fitness evaluations, or a number of paths

traversed has been met. At the far end of the path the

difference between our candidate solution and the sampled

point may be high; this is where exploration of the search

space occurs and there is a possibility of leaving local optima

in favor of the global optima. As the difference between our

candidate solution and points along the evolutionary path

decreases, EPA is implicitly performing a local search with a

chance of incrementally optimizing our candidate solution.

Creating an evolutionary path is very simple when locations

within the search space are represented as binary strings. An

XOR of the two strings identifies the bits for which the

locations differ. The number of differences is known as the

Hamming distance between the two bit strings. Then, one of

these bits that differ is chosen at random. The value of the

randomly chosen differing bit is then set to match that of the

candidate solution. The fitness of this intermediate point along

the evolutionary path is evaluated. If the fitness of this

intermediate point is better than the fitness of our candidate

solution, we remember its location as the “Best Solution”.

The evolutionary path is complete when there are no more

intermediate points to sample. If, at the end of this process, a

best location exists that is not the candidate solution, the

candidate solution is replaced by the best solution seen thus

far. This process of path building continues until some

stopping criteria has been met.

Below is an example path that could be built between two bit

strings with a Hamming distance of 3. Although there are

multiple possible paths that could be built between most

solutions, only a single path is traversed in the Evolutionary

Path Algorithm.

Step 1 – A Candidate Solution and Random Solution

Pairing with Three Differing Bits.

Candidate

Solution

1 0 0 0

Random

Solution

0 1 0 1

Step 2 – The second bit of the Random Solution was

chosen at random to build the second point in the path,

reducing the Hamming distance to 2. If the new Random

Solution is better than the Candidate Solution it is

remembered as the Best Solution but the rest of the path is

still built.

Candidate

Solution

1 0 0 0

Random

Solution

0 0 0 1

Step 3 – The first bit of the Random Solution was chosen

at random and made to match the first bit of the

Candidate Solution to build the third point in the path,

reducing the differences between the solutions to 1.

Candidate

Solution

1 0 0 0

Random

Solution

1 0 0 1

Step 4 – The Path is Complete. If no solution along the

path was better than the Candidate solution, the algorithm

begins again with the Candidate Solution as the Best

Solution.

Candidate

Solution

1 0 0 0

Random

Solution

1 0 0 0

3 EPA for Multiple Fault Diagnosis

The Evolutionary Path Algorithm has been applied to the

Multiple Fault Diagnosis problem (MFD) [8] for

characterization. MFD is an NP hard minimum set cover

problem in which diagnoses for a set of symptoms are

represented by a binary string where an “on” bit represents

that the disease is indicated by the symptoms and an “off” bit

represents that the disease is not indicated by the set of

symptoms. In the problem as presented, there are 10 possible

symptoms or 2^10 - 1 (1,023) possible symptom sets. We did

not consider the empty set of symptoms because it does not

make sense to diagnose people who are well. For this set of

symptoms there are 25 possible diseases with 2^25 minus 1 or

(33,554,431) possible diagnoses. A set of observed

symptoms (M+) is evaluated against a diagnosis (set of

possible diseases) (DI) by the following fitness function:

L(DI; M+) = L1 x L2 x L3

The likelihood of any diagnosis (DI; M+) is L1xL2xL3 where:

84 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

L1 is the likelihood that diseases in DI cause the symptoms in

M+.

L2 is the likelihood that diseases in DI do not cause symptoms

outside of M+.

L3 is the likelihood that a highly probable (very common)

disease d contributes significantly in the overall likelihood of

a diagnosis DI containing d.

The values for calculating L1, L2, and L3 are contained in

tables mapping the likelihood of any disease causing a given

symptom and the probability of any disease d actually

occurring in the real world. For example, the table used in L3

biases the problem towards the common diseases (perhaps the

common cold) and away from obscure diseases like the

bubonic plague. The effect of the fitness function is to favor

diagnoses (DI) that explain all of the symptoms present (L1)

without explaining extra symptoms (L2) and contain common

diseases instead of rare (L3).

Since the search space is made up of possible diagnoses and

these are already bit-strings, the set-up for the EPA is

minimal. The fitness function, a function that builds

evolutionary paths, and a reasonable stopping point are the

only functions necessary to build the algorithm.

3.1 Reliability of EPA for MFD

To test the algorithm’s reliability it was run against all of the

possible symptom set combinations, which is 2^10 - 1 (1023),

ten times. The reliability for each run was then computed by

dividing the number of times the algorithm found the optimal

solution by 1023. For example, if the algorithm found the

optimal solution 788 times out of 1023, it would have 77%

reliability for that run. Because EPA is a stochastic

algorithm, it was run 10 times and the reliability for each of

those 10 runs was averaged to determine its reliability.

For this test, the stopping condition was set to a maximum of

18,000 fitness evaluations per symptom set (M+). This

number was chosen because it represents the maximum

number of fitness evaluations Potter et al [8] allowed for the

Genetic Algorithm to test reliability. The Genetic Algorithm

represents the algorithm that is most similar to EPA out of

those that Potter et al ran (Genetic Algorithm, Discrete PSO,

Rain Drop Optimization, and Extremal Optimization).

Because the optimal fitness values are known for this

problem, the algorithm was stopped for each symptom set

(M+) if the known best fitness was found before 18,000

fitness evaluations had been performed.The reliability

statistics for other algorithms were provided by Potter et. al

[8].

Table 1. Comparison of Reliabilities for MFD

EPA GA DPSO EO

97% 85% 98% 100%

EPA’s reliability is comparable to the DPSO’s reliability for

this problem and is far better than the GA’s with a similar

number of fitness comparisons. Extremal Optimization has a

reported 100% reliability on this problem with a similar

number of evaluations as allowed. It is likely that EPA’s

reliability is higher than the GA’s with a similar number of

fitness evaluations due to the fact that the GA has many

redundant fitness evaluations as it nears convergence whereas

the EPA continually builds evolutionary paths to random

possible solutions so the likelihood of redundancy is

extremely small.

3.2 EPA Efficiency for MFD

To test the efficiency of EPA on the MFD problem, the

algorithm was run 10 times over all 1023 symptom sets. The

stopping condition for these runs was the optimal solution DI,

so the algorithm was forced to find the global optima for each

symptom set. This experiment was done to replicate an

earlier reliability experiment for several algorithms [8].

On average the EPA took 5971 fitness evaluations to find the

optimal solution. Potter et. al. did not provide average fitness

evaluations to find optimal solutions for the MFD for any of

the algorithms compared for the MFD. However, 5971 fitness

evaluations is considerably less than the maximum allowed by

Potter et. al., because a GA with 300 individuals run for 60

generations allows for a maximum of 18,000 fitness

evaluations per solution.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 85

Figure 1. Optimization Curve of EPA for MFD

4 EPA With Integer Representation

4.1 Mobile Subscriber Equipment Problem

The mobile subscriber equipment problem (MSE) is a

configuration problem in which the best mobile

communications network must be assembled within the

constraints of component connectivity, mission requirements,

and U.S. Army doctrine. Although the networks being

configured are now outdated, the MSE represents a classic

configuration problem in which an expert’s knowledge can be

translated to a fitness function for optimization.

Army networks configured using MSE were in use in the early

1990s. A single network could support troops over a 15,000

square mile radius. At the heart of any MSE system was the

Node Center. Each network could contain up to 42 Node

Centers. There are six other modules that attach to this

backbone to form the rest of the network. Both large and

small extension nodes expanded the number of wire

subscribers by big and small amounts respectively, with two

types of small extension nodes offering different combinations

of connectivity. Radio subscribers were supported by Remote

Access Units, Control Centers were necessary for

connectivity, NATO interface units allowed the system to be

patched into NATO communications systems.

Using the fitness function laid out by Chang and Potter it is

possible to optimize a network given the number of wire and

radio subscribers [9]. However, the search space is very large

due to the combinatorial explosion that is created. The

minimum number of units allowed for most of the equipment

is zero, with the exception of the Node Center and System

Control Center. At least one of these is required for each

network. The maximum number of allowed units ranges from

the low end at four NATO Interfaces to 168 small extension

nodes.

4.2 EPA Set-Up for MSE

Building an evolutionary path between two lists of integer

values is almost as simple as building a path between two bit

strings. Originally, a naïve scheme of iteratively setting the

values of the random sample to those of the candidate

solution, in the same way that the bits were switched in the

binary example, was tried. This did not yield positive results.

The second scheme worked in the following way:

 While stopping criteria not met:

1. Select a Random Solution

2. While Path not Complete (Random and Candidate

Equal):

a. Find differences between the Random

Solution and the Candidate Solution

b. Select a differing component at random.

c. Choose a random value between the

Candidate solution’s assignment for the

differing component and the Random

solution’s assignment for differing

component.

d. Evaluate the new Random Solution: if this

point has the highest fitness seen so far, save

it as the Best solution.

3. Restart randomly if stagnation is detected.

An upper bound of 300,000 evaluations was used because

early runs suggested that this represented the near upper

bound for the number of evaluations the algorithm would take.

However, the average number of evaluations needed to find

the optimal answer was much lower than this. The fitness

function needs a number of wired subscribers and a number of

wireless subscribers to evaluate a candidate solution. The

number of wired subscribers was set to 1,495 and the number

of wireless subscribers was set to 672. This combination has

an optimum fitness of 327.35689.

Random restarts were also introduced due to the observed

possibility of stagnation. For these experiments, stagnation

was assumed if the algorithm had not found the optimal

answer by 125,000 fitness evaluations.

Obviously building paths between solutions with very

different component values can get quite long. Below is a

sample path built between two solutions with just a single

component that differs in value.

Path Point 1 – a Candidate Solution and Random Solution

Pairing with a Single Component that Differs.

Candidate

Solution

100 14 98 0

Random

Solution

100 14 12 0

86 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Path Point 2 – Since the Third Component Differs, a

random value between the Candidate’s (98) and the

Random’s (12) value assignment is selected to replace the

Random Solution’s current value for the third component.

Candidate

Solution

100 14 98 0

Random

Solution

100 14 72 0

Path Point 3 – Random Solution’s Third Component is

Still not Equal to Candidate Solution’s Third Component,

so the process is repeated again.

Candidate

Solution

100 14 98 0

Random

Solution

100 14 97 0

Path Point 4 – The Two Solutions are Now Identical. If

Any Point Along the Path Had a Higher Fitness Than The

Candidate Solution, it Would Now Become the New

Candidate Solution.

Candidate

Solution

100 14 98 0

Random

Solution

100 14 98 0

4.3 Reliability of EPA for MSE

To test the reliability of EPA, the algorithm was run 1,000

times. The stopping condition for these 1,000 runs was

300,000 evaluations or the optimal solution. This experiment

replicated a previously published reliability experiment for

several other popular optimization algorithms run on the same

problem [8]. For this experiment reliability was calculated as

the number of times the algorithm found the optimal solution,

divided by the number of runs.

Table 2. Comparison of Algorithm Reliabilities for MSE

EPA GA DPSO EO

99.3% 99.6% 99.85% 100%

The EPA found the optimal solution 993 times out of 1000,

missing the optimal solution just 7 times. In each of these 7

times a random restart was initiated, and the second or third

best solution was found. All of the algorithms had less than a

1% margin of difference in reliability for this problem. The

real difference between the algorithms’ performances was in

efficiency.

4.4 EPA Efficiency for MSE

To test the efficiency of the EPA for MSE the algorithm was

run 1,000 times with the optimal solution as the only stopping

condition. This setup was used to force the algorithm to find

an optimum even in a badly performing run.

The EPA took an average of 49,906.5 evaluations to find the

optimum solution for this problem, with a minimum of 1,675.

This is larger, but similar to the number of evaluations that the

DPSO and GA took in reported results [8]. These are

presented in the table below. There were no results for the

number of fitness evaluations for EO.

Table 3. Average Fitness Evaluations to Find Optimum

EPA GA DPSO

49,906.5 12,000 31,500

The observed difference in efficiency for this problem is due

to the observed possibility of spending a great deal of time on

a good, but not globally optimum point. In later experiments,

not presented here, random restarts were introduced when this

situation was detected, which improved efficiency greatly for

this problem. However, the basic algorithm remains less

efficient than both GA and DPSO for this problem.

Figure 2. A Selected Optimization Curve for MSE

5 Conclusions

This paper has presented a new optimization algorithm

designed particularly for discrete optimization. The

Evolutionary Path Algorithm requires no tuning parameters,

but still performs well in comparison to other well-known

stochastic optimization algorithms. It is reliable and

reasonably efficient. Although the algorithm may not be as

efficient on real-valued optimization problems as competing

algorithms, it is likely that small modifications could greatly

improve this performance.

The algorithm finds good solutions without calculating any

gradient information, using tuning parameters, or keeping a

large population in memory. Because it continually samples

the whole search space it is able to continue to search for and

find good solutions long after other methods have converged.

Future work should extend the path-building operators to

include other representations and look for extensions of the

algorithm that tailor it to specific optimization problems.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 87

6 References

[1] F. Glover. “Tabu Search—part I.” ORSA Journal On

Computing , Issue 3, 190-206, 1997.

[2] S. Boettcher & A. G. Percus. “ Extremal Optimization:

Methods derived from co-evolution.” Modeling and

Simulation Design. AK Peters Ltd. 1999.

[3] S. Kirkpatrick, and M.C. Vecchi. “Optimization by

simulated annealing.” Science, 220 (4598), 671-680, 1983.

[4] J.H. Holland, Adaptation in natural and artificial

systems. University of Michigan Press, Ann Arbor. 1975.

[5] Kennedy, J. and Eberhart, R.C. 1995. “Particle swarm

optimization. ” Proc. IEEE International Conference on

Neural Networks, Picataway NJ: IEEE Service Center, 1942-

1948. 1995.

[6] D. T. Pham, E. Ghanbarzadeh, A. Koc, E. Otri, S.

Rahim, S. and M. Zaidi. “The Bees Algorithm – A Novel

Tool for Complex Optimisation Problems”. Innovative

Production Machines and Systems.

DOI=http://conference.iproms.org/the_bees_algorithm_a_no

vel_tool_for_complex_optimisation_problems. 2009.

[7] M. Dorigo,, and G. Di Caro. “Ant colony optimization:

a new meta-heuristic.” In Evolutionary Computation, 1999.

CEC 99. Proceedings of the 1999 Congress (Vol. 2). IEEE.

1999.

[8] W. Potter, E. Drucker, P. Bettinger, F. Maier, D. Luper,

M. Martin, M. Watkinson, G Handy, and C. Hayes.

“Diagnosis, Configuration, Planning, and Pathfinding:

Experiments in Nature-Inspired Optimization.” Natural

Intelligence for Scheduling, Planning and Packing Problems,

R. Chiong, ed., Springer-Verlag. 1999.

[9] F.L. Chang and W. Potter. “A genetic algorithm

approach to solving the battlefield communication network

configuration problem.“ In Yfantis, EA (ed) Intell Sys. Third

Golden West Intern Conf (Theory and Decision Library D,

Vol 15). Kluwer,Dordrecht. 1995.

88 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

http://conference.iproms.org/the_bees_algorithm_a_novel_tool_for_complex_optimisation_problems
http://conference.iproms.org/the_bees_algorithm_a_novel_tool_for_complex_optimisation_problems

SESSION

GENETIC ALGORITHMS AND APPLICATIONS +
GENETIC PROGRAMMING

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 89

90 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Genetic Programming using the Karva Gene Expression Language
on Graphical Processing Units

A.V. Husselmann and K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: {a.v.husselmann, k.a.hawick }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract— Genetic Programming (GP) has been employed
in many problem domains, and as a result, it has been the
subject of much scientific inquiry. The extensive literature
body of GP has reported applications in algorithm discovery,
image enhancement and cooperative multi-agent systems, as
well as many other areas and disciplines, such as agent-
based modelling in Geography and Social Science. As mod-
els become more complex, further research toward higher ef-
ficiency have been warranted. We discuss solutions to large-
scale systems which require automatic programming, and
present results of a modified data-parallel implementation of
GP based on Gene-expression Programming for Graphical
Processing Units (GPUs), as well as a modified Santa Fe Ant
Trail problem to measure the efficacy of this algorithm. We
present results on algorithm convergence as well as timing
performance on both GPU and CPU implementations.

Keywords: karva language; CUDA; genetic programming; gpu;
parallel; optimisation.

1. Introduction
Genetic Programming (GP) was the combinatorial opti-

miser specially adapted for evolving programs by way of
natural selection and evolutionary processes [35]. It was the
result of John Koza’s paradigm altering work of 1995 [20],
the same year that saw parametric optimisation take a great
leap forward with the advent of the particle swarm optimiser,
due to Kennedy and Eberhart [18]. Combinatorial optimisa-
tion had been a problem under careful research for many
years, with classic problems such as the Traveling Salesman
Problem [38], Prisoner’s Dilemma [1] and the Knapsack
problem[10]. Many of these problems are representative of
real-world applications, and advancements in solutions to
these are beneficial to finding effective solutions for other
problems. GP has been applied to intrusion detection [5],
soccer playing “softbots” [25], [24], models of land change
in Mexico [27], team learning [26], algorithm discovery [2]
and even image enhancement [36]. Cooperative multi-agent
systems also benefit from the use of genetic programming
[34], as well as classification for data mining [40].

Since the introduction of Genetic Programming in 1995,
the canonical algorithm has been the subject of many
enhancements and alterations, as is the case with related

parametric optimisers [17], [15]. Some of these modifica-
tions include Linear GP [3] and Cartesian GP [30]. Some
modifications are very extensive, such as more restrictive
versions of GP [4] and also complete overhauls of the
original representation of programs, such as that in Ferreira’s
Gene Expression Programming (GEP) [7]. Many of these
modifications were intended to combat common problems in
GP, which have precluded more extensive use. O’Neill et al
describe these problems in detail [33]. The most prominent
of which is code size; in which there exists a drift in the
population towards larger and more redundant programs
[37].

GP is a population-based optimiser, in which a set of
programs are improved upon successively, by replacing it
with a set of new programs, with genetic operators applied
in a bid to drift away from bad solutions. A set of pro-
grams in this context is usually referred to as a generation.
Each program represents a specific candidate solution to
the problem at hand. Typically the most computationally
expensive aspect of genetic algorithms in general, is the
fitness evaluation of each of these candidate solutions. A
fitness metric is necessary to guide the genetic operators in a
way that is analogous to the concepts of natural selection and
“survival of the fittest” in biology. The most common genetic
operators considered are known as selection, mutation and
crossover, where mutation perturbs a candidate solution in
the search space, and crossover combines two candidate
solutions to hopefully obtain a new single candidate with
a slight improvement. Selection is simply a mechanism to
obtain inputs for the crossover operator.

Gene Expression Programming (GEP) [7], [8] is one
algorithm which departs from the traditional representation
of programs in GP. It replaces the tree-based representation
with a linear one, which still encodes an abstract syntax
tree (AST). Perhaps the greatest advantage to GEP is its
inherent support for introns: non-coding sections of the
genotype. When the linear representation is interpreted to
obtain the phenotype, certain introns may not make it into
the tree. As well as being more representative of actual
biological systems [30], this also brings a great simplification
to mutation and crossover.

In this article we present a modified GP using the k-
expression program representation from GEP, and accel-

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 91

Fig. 1: A 3D rendered version of the classic genetic program-
ming test environment known as the Santa Fe Ant Trail. This
visualisation[16] is a frame taken after random initialisation
of the 256 agents. This representation casts light on the
computationally expensive process of evaluating program
individuals.

erate this using Graphical Processing Units (GPUs). Our
rationale for using GPUs are two-fold: commodity pric-
ing on GPUs is very favourable for the computing power
that can be exerted on these platforms, and second, the
inherent parallelism in population-based optimisers such as
the GP allow not only parallel fitness evaluation, but also
parallel selection, crossover and mutation. Most other data-
parallel implementations of GP focus on accelerating fitness
evaluations [21]. We make a calculated effort to accelerate
the genetic operators in our implementation. Other GPU-
based GPs include efforts in acceleration on GPU clusters
[12] and different representations [22]. Interestingly, there
have also been parallelisation research inspired by quantum
computing, most notably the evolution of CUDA (Compute
Unified Device Architecture) PTX programs by a quantum-
inspired linear GP [6].

Our article is structured as follows: In Section 2 we
present some background on GEP, its operators, and various
specifics on the algorithm. We also introduce the Compute
Unified Device Architecture (CUDA) and the idiosyncrasies
of efficient data-parallel simulations designed for this. In
Section 3 we describe our modifications to GP and also the
method by which we measure the efficacy of this algorithm.
Following this, we use Section 4 to present our results and
then discuss these in Section 5, then finally we conclude and
present some possible future work in Section 6.

Fig. 2: Phenotypic AST built from genotype represented by
the karva-expression *-+*-abaa/abbacda.

2. Gene Expression Programming
We provide some background to gene-expression pro-

gramming (GEP) and mechanisms for implementing it.
Perhaps the most advantageous feature of Gene Expres-
sion Programming (GEP) is its representation of candidate
programs[8]. Ferreira [7] designed a language named Karva,
and candidate programs are represented in the form of karva-
expressions, or sometimes shortened to k-expressions. These
expressions take the following form:

01234567890123456

-+-abaa/abbacda

The first line is simply used as an indexing convenience.
The second line is the genotype of the candidate solution
to a particular problem. The distinction between genotype
and phenotypes in GP in general is simply the interpretation
of a representation into an executable program. This is not
always necessary, especially in Linear GP, where candidates
are stored in the same form as they are executed (namely,
sequences of instructions executed successively).

The symbols used in the k-expressions are either terminals
or non-terminals; and in this case, the terminals are a,b,c
and d. In this example, all the non-terminals are self-
explanatory and of arity 2, except Q, which is the square
root function, of arity 1. GEP has support for any set of
function terminals of any arity, provided that the expression
length is long enough to give each function its required
arguments. This will be made clear in how the genotype
is interpreted into a phenotype. This k-expressionis shown
in its phenotypic form in Figure 2.

The tree is built by reading the k-expressionfrom left to
right and filling the arguments of the non-terminals in the
tree level by level. Upon careful inspection, it is noteworthy

92 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Fig. 3: The AST built from the genotype represented by the
karva-expression *-++babaa/abbacda.

that the terminal d is an intron, and hence not in the
phenotype. Ferreira proposes several genetic operators and
leaves the selection of these to the user and their specific
application.

For ease of reference, we provide here a brief overview of
the mutation and crossover operators. Our selection operator
is tournament selection; as it most closely aligns with
our needs in data-parallel computation. Details on this is
provided in Section 3.

Crossover of two k-expressions is simple. We elect to use a
one-point recombination (for its simplicity), which involves
selecting a crossover point at random, and then creating two
new candidates from the recombination about that point.
Consider the k-expressionshown in 2. If it were recombined
with another expression at index 5, such as:

01234567890123456

*-++baa/bbabbacda

Then the results would be the following:

01234567890123456

*-++babaa/abbacda

-+-aa/bbabbacda

Which, when interpreted, are shown in Figs. 3 and 4.
Mutation of a k-expressionis simple. By using a uniform

random number, a random symbol in the expression is
chosen, and that symbol switched for another terminal or
non-terminal.

The most popular method of selecting pairs of candi-
dates to pass through the crossover operator is Roulette
Selection[11]. Candidates are chosen at random throughout
the population, but the probability of selecting each candi-
date is proportional to their fitness. This is usually accom-
plished by choosing a random number in (0, 1) and mapping
this to a hypothetical “roulette” wheel where the range of
(0, 1) is divided up in such a way that the probabilities of

Fig. 4: The phenotypic AST built from the genotype repre-
sented by the karva-expression *-+*-aa/bbabbacda.

choosing each candidate are correct relatively.
The Roulette selection method does not parallelise ex-

tremely well. Most parallel GP algorithms make use of
a selection method named “Tournament Selection”[29]. In
this scheme, every candidate is compared against another
uniform-randomly selected candidate, and the best candidate
(by fitness) is chosen as one of a crossover pair. Once this
process is complete, two candidates at a time are recombined
and then the mutation operator is called.

Genetic Programming responds very well to parallelisa-
tion. We use NVidia’s Compute Unified Device Architecture
(CUDA) platform [32], [23] to accelerate our algorithm. The
CUDA platform arose from a very effective arrangement
of MIMD and SIMD processors, which were intended for
processing large numbers of pixel data as fast as possible.
General-Purpose Graphical Processing Units (GPGPU) has
gained much interest since the advent of CUDA, particularly
in light of the fact that using pixel and fragment shaders for
simulation is an arcane and difficult affair. CUDA makes this
process much more accessible and purpose-built[31].

The CUDA-enabled GPU consists of several Streaming
Multi-processors (SMs) which have a certain number of
“CUDA cores”. These SMs process work units known as
“blocks”, which represent a 1D, 2D or 3D grid of threads.
These blocks are sized by the user, and typically coincide
with simulation-specific requirements. An SM computes a
block until completion, and then, if available, carries on to
the next block. During execution, threads are divided into
groups of 16, known as “warps”. Warps are the smallest
unit of execution in CUDA. Warps are executed in a SIMD
fashion on the CUDA cores on each SM (sometimes known
as SIMT). The combination of all SMs are therefore MIMD.

CUDA-enabled GPUs have some idiosyncratic behaviour
including memory access penalties and scoping among oth-
ers. These can sometimes be problematic when not given

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 93

careful due consideration. CUDA provides a variety of mem-
ories to the user, each of which has a different access penalty
and scope. For brevity, we omit a thorough discussion of
these. The process of executing simulations with CUDA
involves copying data across the PCI bus to the GPU’s
global memory, where it is then manipulated by device-
specific code. Once this computation is complete on the
GPU, the program would copy the modified data back again.
Depending on applicability in the application, one can make
use of host page-locked memory which reduce expensive
memory copies.

GPU-specific instructions are created by making use of
special syntax added to the C language, which is compiled
by the nvcc compiler. Once this code has been compiled,
the rest of the program is passed to the system C compiler for
normal compiling. This allows the CUDA device drivers to
copy device specific instructions to the GPU for computing.

3. CUDA Implementation
Apart from our use of The Karva language for expressing

candidate solutions, we also make special effort in order
to accelerate the process by which a new generation is
computed. It should be noted that sometimes the fitness
function can greatly outweigh this computation.

It appears then that k-expressions are naturally well-
suited to being used in CUDA. This is because they can be
stored as sequences of (independent) characters or integers.
Furthermore, crossover and mutation are almost trivially
easy, bearing in mind the head and tail requirements. Our
method for combining the traditional GP algorithm and
GEP-style k-expressions is shown in Alg. 1.

Algorithm 1 The parallel implementation of GP on GEP
k-expressions.

allocate & initialise space for n candidate programs

allocate space for random deviates
while termination criteria not met do

call CURAND to fill the random number array with
uniform deviates in the range [0,1)

copy candidates and candidate bests to device
CUDA: compute_argument_maps()
CUDA: interpret/execute programs
CUDA: update food locations/fitness
copy back to host

if end-of-generation then then
CUDA: apply genetic operators to programs
replace old programs with new ones

end if
visualise the result

end while

In this algorithm, we parallelise the majority of com-
putations. A disadvantage to using k-expressions is that
interpretation of these programs are not straight-forward.
We compute so-called “argument maps” in order to allow
the CUDA-based interpreter we designed to directly fill
the instructions with their corresponding arguments without
using recursion.

Precisely the method by which we apply the genetic
operators is strongly dependent on the selection method.
As we have mentioned before, Tournament selection is the
method of choice for most parallel implementations. The
algorithm we use for accomplishing this in CUDA is shown
in Alg. 2.

Parameters for the CUDA-based algorithm are
P (mutate) = 0.1 and P (crossover) = 0.8.

Algorithm 2 Parallel Tournament Selection
launch a CUDA kernel with n/2 threads
assign thread candidate x/2 + 1 and x/2
set a to random index
if candidate a beats candidate x/2 + 1 then

replace candidate x/2 + 1 with a
end if

set b to random index
if candidate b beats candidate x/2 then

replace candidate x/2 with b
end if

recombine candidates x/2 and x/2 + 1
mutate the two resultant candidates
save results over the original two candidates

To facilitate comparison, we have implemented a single-
threaded CPU-based GP optimiser, with the exact same
objective function, but computed in a serial fashion. Pa-
rameters are similar to the CUDA-based modified GP, with
P (crossover) = 0.8 and P (mutation) = 0.01. The CPU-
based GP makes use of the canonical tree-based repre-
sentation with a depth restriction of 4. The same number
of agents were used (1024). Tournament selection is also
used, and initialisation/point mutation is done by the Full
method. Crossover is implemented as a subtree swap. To
avoid program bloat, we prune the trees following the genetic
operators to a maximum depth of 4, where leaves are
replaced by random terminal symbols.

4. Convergence & Performance Results
We present some convergence data showing how the

various algorithmic implementations behave as well as some
timing performance data for a GPU/CUDA implementation
compared with a conventional serial CPU implementation.

Convergence results for the CUDA-based GP (based on
k-expressions) as well as the CPU-based GP with canonical

94 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Fig. 5: Convergence results for the CUDA-based GP with k-
expressions and the CPU-based GP with the canonical tree-
based representation. The graph shows the average mean
value of each generation, from 100 independent runs. The
error bars represent the average standard deviation of the
100 runs in each generation. Lowest and highest population
means are also shown.

Frame Time (µ sec) Gen. Time (µ sec)
CUDA-GP (k-exp) 1160± 40 423.2± 0.5
CPU-GP 48000± 8300 2600± 300

Table 1: Performance data for the CPU-based canonical GP
and the k-expression GPU-based GP algorithm.

representation is shown in Fig. 5. The plot shows the average
mean values of each generation for both algorithms. Each of
these data points has been averaged across 100 independent
runs. The error bars on the average mean line represents the
average standard deviation of the population fitness across
all 100 separate runs.

It is clear from this graph that the CUDA-based GP with
k-expressions clearly outperform the standard GP. At around
generation 20, the CUDA-GP seems to have a larger spread
in the average mean. We believe that this may be indicative
of a local minimum, analogous to the same phenomenon in
parametric optimisation. It is interesting to note that, because
of the difference in representation between the CUDA-GP
and the standard GP, at generation 20, the standard GP shows
the same increase in spread of mean, albeit, less pronounced.

The spread of the mean towards the end of the simulation
is smaller for the standard GP than for the CUDA-GP.
Although a smaller spread is much more desirable, the
highest mean of the standard GP only barely surpasses the
score of the lowest mean in the CUDA-based GP.

Performance data for each of these algorithms were also
collected. These are shown in Tab. 1. We averaged the frame

Fig. 6: Wall-clock performance of the CUDA and CPU-
based algorithms by generation.

compute time across the 300 frames in each generation,
and then across all 100 independent runs. The generation
compute time represents the time it took the algorithms
to compute a new population only. This was also aver-
aged over the 100 separate runs. The data is of the form
mean ± std. dev.

From this data, the CUDA-based algorithm achieves a
speedup of 6 times over the CPU algorithm for computing
new populations, and 41 times over the CPU algorithm for
computing a single frame of the simulation.

Fig. 6 shows the time taken by each algorithm for com-
puting a new population for fitness evaluation. This process
is mostly just the genetic operators; selection, crossover
and mutation. It is interesting to note that the compute
time for the CPU-based standard GP is nonlinear, while
the CUDA-based GP (with GEP-style k-expressions) is
practically linear. This is not an artifact of the plot itself.
The mean generation compute time for the CUDA algorithm
has a standard deviation of just 40µ sec, whereas the CPU
algorithm has a much larger 8300µ sec, even taking into
account the fact that its frame time is 41 times larger.

We believe that this may be due to the initialisation
method (Full) of the GP algorithm. Fig. 7 shows what
form a typical initialised agent would take. This is in sharp
contrast with Fig. 8 which depicts a much more effective
solution. As can be seen from the initial program, they can
potentially contain more IfFoodAhead functions, which
are far more computationally expensive. This explains why
initialised programs are often more expensive to evaluate,
and hence increase the overall generation compute time for
early generations.

From observation, it seems that highly effective programs
generally take a certain form. An IfFoodAhead function

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 95

Fig. 7: A typical individual agent generated by the Full
method in our simulation. LISP-style code for this tree is
(P(P(P(D)(L))(I(L)(L)))(P(P(M)(M))(P(M)(R)))).

Fig. 8: A highly effective generated agent. The LISP-style
code for this is (P(P(P(M)(M))(M))(I(M)(R))).

is used to cause movement in a direction other than straight,
and the rest of the program is simply Move terminals. The
reason why more Move terminals are beneficial is because it
allows the agent to move faster, and hence potentially reach
more food.

5. Discussion
By using the Karva language from within Ferreira’s Gene

Expression Programming algorithm, we believe we may
have attained better convergence for a particular reason;
crossover with k-expressions is a lossless matter. During
mutation in the standard GP, code bloat occurs, which is
generally remedied by using a pruning method, which forces
trees to be of a certain maximum depth. This is accomplished
by simply replacing functions with terminals which are
just above the maximum depth. The trees are also pruned
after crossover, since subtrees are chosen at random, and
destination nodes are also chosen at random. In other words,
one tree can be virtually appended to another, causing a
program that is twice the size of the original. Every time
pruning is applied, potentially valuable information is lost.
By using k-expressions, we avoid this problem.

It is worth noting that, as with most metaheuristics, the
parameter tuning effort is vitally important. Algorithms such
as these are very sensitive to their parameters. Our tuning
effort was carried out by hand, and as a result, it could be
improved somewhat. From the results we obtained however,
we believe we could not improve the standard GP even to
the point where the result would at all be inconclusive.

The speedup obtained from a data-parallel implementation
is also very promising. There are some optimisations we
have not included in our CUDA-based algorithm, such as
interaction redundancy elimination using spatial partitioning,
as well as hiding memory latency with tiling. Even without
these techniques, it is clear that a GPU implementation
presents a substantial improvement over CPU-based GP,
which will also generally extend to Evolutionary Algorithms
(EAs).

The notion of evolving a grammar is a powerful one
providing there is sufficient expressivity in the grammar
itself to accommodate appropriate features. Programming
grammars and formats such as Extended Backus-Naur Form
(EBNF) and Backus Naur Form (BNF) and their various
derivatives[39], [19] may offer some interesting possibilities
if appropriate genetic operators can be applied to language
evolution. Although there is work reported in the literature
on parsers that learn a language based on examples[28]
in (E)BNF the notion of evolving languages themselves
based on such a representation does not yet seem to have
been explored. Given the recent interest in the literature
on domain-specific languages (DSLs) [9], [13], [14] and
their use for reducing code complexity in a wide range of
applications, there is scope for applying the techniques we
have discussed to DSLs expressed in an appropriate grammar
that can be subsequently evolved and investigated for fitness
metrics such as compactness.

6. Conclusions and Future Work
We have presented a CUDA-based Genetic Programming

algorithm using the Karva language from Gene Expression
Programming for program representation. We have charac-
terised and compared this algorithm against the canonical
CPU-based Genetic Programming algorithm both with the
same modified Santa Fe Ant Trail objective function. Our
results suggest that using Karva provides a great benefit
towards convergence aspects of the algorithm, as well as
towards improving the wall-clock performance.

We have also discussed our method of selection, as well
as crossover and mutation in the context of k-expressions.
The resultant programs we obtained from both the CPU and
CUDA-based were competitive with hand-tuned programs
for the given restrictions. In our results, the best wall-clock
performance was achieved by the CUDA-based algorithm,
and we also discussed some irregularities in the CPU per-
formance data for population computations.

96 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

There is scope for further work towards extending or
improving Grammatical Evolution in a similar manner, es-
pecially taking into account its highly desirable attribute in
making use of BNF grammars. We also belive it possible
to develop tools that will support visualision of this sort of
program space in a more appropriate fashion.

References
[1] Axelrod, R.: The emergence of cooperation among egoists. The

American Political Science Review 75, 306–318 (1981)
[2] van Berkel, S.: Automatic Discovery of Distributed Algorithms for

Large-Scale Systems. Master’s thesis, Delft University of Technology
(2012)

[3] Brameier, M.: On Linear Genetic Programming. Ph.D. thesis, Univer-
sity of Dortmund (2004)

[4] Castle, T., Johnson, C.G.: Evolving high-level imperative program
trees with strongly formed genetic programming. In: Proceedings of
the 15th European Conference on Genetic Programming, EuroGP. vol.
7244, pp. 1–12. Springer (April 2012)

[5] Crosbie, M., Spafford, E.H.: Applying genetic programming to intru-
sion detection. Tech. rep., Department of Computer Sciences, Purdue
University, West Lafayette (1995), aAAI Technical Report FS-95-01

[6] Cupertino, L., Bentes, C.: Evolving cuda ptx programs by quantum
inspired linear genetic programming. In: Proceedings of GECCO’11
(2011)

[7] Ferreira, C.: Gene expression programming: A new adaptive algorithm
for solving problems. Complex Systems 13(2), 87–129 (2001)

[8] Ferreira, C.: Gene Expression Programming - Mathematical Model-
ing by an Artificial Intelligence. Springer, 2nd edn. (2006), iSBN
3540327976

[9] Fowler, M.: Domain-Specific Languages. No. ISBN 0-321-71294-3,
Addison Wesley (2011)

[10] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman (1979)

[11] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley (1989), iSBN 0201157675

[12] Harding, S.L., Banzhaf, W.: Distributed genetic programming on
gpus using cuda, submitted to Genetic Programming and Evolvable
Machines, 2009

[13] Hawick, K.A.: Engineering domain-specific languages for compu-
tational simulations of complex systems. In: Proc. Int. Conf. on
Software Engineering and Applications (SEA2011). pp. 222–229. No.
CSTN-123, IASTED, Dallas, USA (14-16 December 2011)

[14] Hawick, K.A.: Fluent interfaces and domain-specific languages for
graph generation and network analysis calculations. In: Proc. Int.
Conf. on Software Engineering (SE’13). IASTED, Innsbruck, Austria
(11-13 February 2013)

[15] Husselmann, A.V., Hawick, K.A.: Levy flights for particle swarm
optimisation algorithms on graphical processing units. Tech. rep.,
Computer Science, Massey University (2012), submitted to J. Parallel
and Cloud Computing

[16] Husselmann, A.V., Hawick, K.: 3d vector-field data processing and
visualisation on graphical processing units. In: Proc. Int. Conf. Sig-
nal and Image Processing (SIP 2012). pp. 92–98. No. CSTN-140,
IASTED, Honolulu, USA (20-22 August 2012)

[17] Husselmann, A.V., Hawick, K.A.: Parallel parametric optimisation
with firefly algorithms on graphical processing units. In: Proc. Int.
Conf. on Genetic and Evolutionary Methods (GEM’12). pp. 77–83.
No. CSTN-141, CSREA, Las Vegas, USA (16-19 July 2012)

[18] Kennedy, Eberhart: Particle swarm optimization. Proc. IEEE Int. Conf.
on Neural Networks 4, 1942–1948 (1995)

[19] Knuth, D.E.: Backus normal form vs. Backus Naur
form. Commun. ACM 7(12), 735–736 (Dec 1964),
http://doi.acm.org/10.1145/355588.365140

[20] Koza, J.R.: Genetic programming as a means for programming
computers by natural selection. Statistics and Computing 4(2), 87–
112 (June 1994)

[21] Langdon, W.B.: A many-threaded cuda interpreter for genetic pro-
gramming. In: Esparcia-Alcazar, A.I., Ekart, A., Silva, S., Dignum,
S., Uyar, A.S. (eds.) Proceedings of the 13th European Conference on
Genetic Programming, EuroGP. pp. 146–158. Springer (April 2010)

[22] Langdon, W.B., Banzhaf, W.: A simd interpreter for genetic program-
ming on gpu graphics cards. In: O’Neill, M., Vanneschi, L., Esparcia,
A., Gustafson, S. (eds.) Proceedings of the 11th European Conference
on Genetic Programming, EuroGP (March 2008)

[23] Leist, A., Playne, D.P., Hawick, K.A.: Exploiting Graphical Pro-
cessing Units for Data-Parallel Scientific Applications. Concurrency
and Computation: Practice and Experience 21(18), 2400–2437 (25
December 2009), CSTN-065

[24] Luke, S.: Genetic programming produced competitive soccer softbot
teams for robocup97. In: Koza, J.R., Banzhaf, W., Chellapilla, K.,
Kumar, D., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Goldberg,
D., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings
of the 3rd annual conference. pp. 214–222. Morgan Kaufmann, San
Mateo, California (1998)

[25] Luke, S., Hohn, C., Farris, J., Jackson, G., Hendler, J.: Co-evolving
soccer softbot team coordination with genetic programming. Robocup-
97: Robot soccer world cup I 1, 398–411 (1998)

[26] Luke, S., Spector, L.: Evolving teamwork and coordination with
genetic programming. In: Proceedings of the First Annual Conference
on Genetic Programming. pp. 150–156. MIT Press (1996)

[27] Manson, S.M.: Agent-based modeling and genetic programming for
modeling land change in the southern yucatán peninsular region of
mexico. Agriculture Ecosystems & Environment 111, 47–62 (2005)

[28] Mernik, M., Gerlic, G., Zumer, V., Bryant, B.R.: Can a
parser be generated from examples? In: Proceedings of
the 2003 ACM symposium on Applied computing. pp.
1063–1067. SAC ’03, ACM, New York, NY, USA (2003),
http://doi.acm.org/10.1145/952532.952740

[29] Miller, B.L., Miller, B.L., Goldberg, D.E., Goldberg, D.E.: Genetic
algorithms, tournament selection, and the effects of noise. Complex
Systems 9, 193–212 (1995)

[30] Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in
cartesian genetic programming. IEEE Transactions on Evolutionary
Computation 10(2), 167–174 (2006)

[31] Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel
programming with CUDA. ACM Queue 6(2), 40–53 (March/April
2008)

[32] NVIDIA® Corporation: NVIDIA CUDA C Programming Guide Ver-
sion 4.1 (2011), http://www.nvidia.com/ (last accessed April
2012)

[33] O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in
genetic programming. Genetic Programming and Evolvable Machines
11, 339–363 (2010)

[34] Panait, Luke: Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems 11, 387–434 (2005)

[35] Poli, R., Langdon, W., McPhee, N.: A field
guide to genetic programming. lulu.com (2008),
http://www.gp-field-guide.org.uk

[36] Poli, R., Cagnoni, S.: Genetic programming with user-driven selection:
Experiments on the evolution of algorithms for image enhancement.
In: Genetic Programming 1997: Proceedings of the 2nd Annual
Conference. pp. 269–277. Morgan Kaufmann (1997)

[37] Soule, T., Foster, J.A.: Code size and depth flows in genetic program-
ming. In: Koza, J., Deb, K., , Dorigo, M., Fogel, D., Garzon, M.,
Iba, H. (eds.) Proceedings of the 2nd Annual Conference on Genetic
Programming. pp. 313–320. MIT Press (1997)

[38] Wilson, G.V., Pawley, G.S.: On the stability of the travelling salesman
problem algorithm of Hopfield and Tank. Biol. Cybern. 58, 63–70
(1988)

[39] Wirth, N.: What can we do about the unnecessary diversity of notation
for syntatic definitions. Communications of the ACM 20(11), 822–823
(November 1977)

[40] Zhou, C., Xiao, W., Tirpak, T.M., Nelson, P.C.: Evolving accurate and
compact classification rules with gene expression programming. IEEE
Transactions on Evolutionary Computation 7, 519–531 (December
2003)

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 97

A Genetic-Based Nurse Rostering Tool: A Riyadh Hospital Case

Manar Hosny1 , Najla Al Turiki 1

1College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
mifawzi@ksu.edu.sa, najla_m_t@yahoo.com

P.O.Box 57395 Riyadh 11574
GEM’13 Conference

Abstract— Recently, many healthcare institutions became
interested in automating the process of personnel scheduling.
Nurse Rostering is a difficult scheduling problem, which is
defined as generating rosters by assigning working shifts
to a number of nurses over a certain planning period,
such that a predefined set of constraints is satisfied. There
is a high demand to automate this process, since many
healthcare institutions still make nurse rosters manually. In
this research we design a scheduling tool that is based on a
Genetic Algorithm (GA) approach to solve the nurse roster-
ing problem for the surgical unit in a Riyadh hospital. Our
GA-based tool will automatically create a schedule while
taking into account a number of difficult constraints. Some
constraints are specified by the hospital, and mainly relate to
maximizing the coverage of shifts and adhering to workload
requirements and certain shift succession patterns. Other
constraints relate to preferences of the nurses regarding their
annual leave and weekly days off. The main contribution of
this research is in proposing new GA solution representation
and problem specific operators that are specially designed
to handle the difficult problem constraints and satisfy the
requirements of the hospital. The automatically generated
schedule will save time and reduce the planner workload.

Keywords: Nurse Rostering, Scheduling, Heuristics, Meta-
heuristics, Genetic Algorithms, Combinatorial Optimization

1. Introduction
The Nurse Rostering Problem (NRP) is a personnel

scheduling problem that became essential for modern hospi-
tals and medical institutions. Currently, many hospitals make
nurse rosters manually. The process of building efficient and
balanced rosters is time consuming and needs a lot of experi-
ence. Therefore, there is a high demand for automated nurse
rostering tools. The automation of this task will minimize
the time and effort needed to create high quality and flexible
schedules. High quality rosters produced automatically will
overcome the problems resulting from poor rostering, such
as career leakage due to fatigue and stress from overwork.

The NRP is complex and difficult to solve. It belongs
to the category of NP-Hard problems [1], where a set of
difficult rules and constraints need to be simultaneously
satisfied. The NRP is defined as generating rosters by

assigning the required shifts to nurses over a certain planning
period (typically one month or one week), such that some
predefined rules and constraints are satisfied [1]. In the
schedule, each day consists of a number of shifts, for
example: a day shift, a night shift and a late shift. Each shift
must be assigned to sufficient nurses to cover the demand
of the ward or the hospital.

There are many constraints that make this problem chal-
lenging. Usually, work regulations, hospital rules and pref-
erences of nurses define the constraints of the problem.
Secondly, there is a specified number of hours a nurse can
work in a week, which should not be exceeded. Also, some
nurses are not qualified to work in certain shifts. In general,
the constraints are classified into two types:hard constraints
andsoft constraints.

Hard constraints are the constraints that must be satisfied
at all times in order to create a feasible solution. A solution
in which all hard constraints are satisfied is called afeasible
solution. Hard constraints are usually defined by law and
hospital requirements. For example, the minimum and max-
imum number of hours that should be worked by a nurse,
and assigning certain shifts to qualified nurses, to achieve
the desired level of care quality [2][3].

Soft constraints are not mandatory but violations of these
constraints need to be avoided as much as possible. The
quality of a generated roster is determined by the degree of
violation of soft constraints. Common soft constraints are
those related to nurses’ requests for days off on particular
days of the week, and balancing the work load efficiently
among the available nurses. Some of the common problem
constraints are listed below [3]:

1) Coverage: defines the required number of nurses to
work on each shift type per day.

2) Max (Min) Hours: defines the maximum (minimum)
number of hours a nurse must work over a period of
time.

3) Personal Preference: defines the nurses’ requests for
day and night shifts or off days.

4) Succession: defines the legal and illegal successions
of shifts, for example a night shift cannot be followed
by a day shift.

Many techniques were introduced in the literature to solve
the NRP. For example, operational research optimization

98 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

methods have been used including: goal programming [4],
column generation [5], and Lagrangian heuristic [6]. In
addition, many Meta-heuristic based methods that are used
for combinatorial optimizations are also applied for nurse
scheduling problems such as tabu search, simulated anneal-
ing, variable neighborhood search and genetic algorithms.

In this research we propose a GA approach to solve the
NRP. Although the general framework of GAs is standard,
there is a great potential for innovation when applying
GAs to a difficult problem like nurse rostering. In addition,
most papers in the literature focused on developing new
algorithms for solving the problem, rather than building a
system for the practical use of a certain healthcare institution.

This research is based on an MSc graduation project in the
College of Computer and Information Sciences at King Saud
University, Riyadh, Saudi Arabia. A user-friendly GA-based
system was designed in order to automatically generate nurse
schedules for the surgical department in a famous hospital
called "Riyadh Care" (denoted hereafter by RC) hospital.
The main objective of the research is to automatically create
an efficient nurses’ schedule that takes into account a number
of difficult constraints. The generated schedule should fulfill
the needs of the hospital by maximizing the coverage of
shifts, and adhering with the workload requirements and the
personal preferences of nurses. In this paper we provide
the early results of theoretical experimentation with the
designed tool before actual hospital implementation, and try
to highlight both the promising outcomes of the research as
well as areas of possible future improvement.

The rest of this paper is organized as follows: Section 2
gives a brief overview of some solution methods from the
literature to the NRP. Section 3 defines the NRP handled in
this research, as described by the RC hospital in Riyadh. Sec-
tion 4 describes in detail the proposed GA solution, including
the representation, the initial population, the fitness function
and the crossover and mutation operators. Section 5 shows
the experimental results obtained by testing the proposed
approach. Section 6 summarizes the results and proposes
some future improvements. Finally Sect. 7 concludes this
paper with a brief summary.

2. Related Work

The nurse rostering problem requires a robust and efficient
algorithm that can effectively handle the difficult problem
constraints. Heuristics are the most common methods that
have been applied to the nurse rostering problem. One
popular group of heuristics is population based heuristics
like genetic algorithms. In this section we will give examples
of two of the most commonly used heuristic methods in the
literature to tackle the NRP: Variable Neighborhood Search
(VNS), and Genetic Algorithms (GAs).

2.1 Variable Neighborhood Search (VNS)
[7] presented a VNS approach for the nurse rostering

problem. In this approach, a wide variety of constraints are
considered. The presented approach allows accessing the
hidden parts of the search space by applying suitable prob-
lem specific neighborhoods. Shortsighted neighborhoods and
very greedy ones are combined to achieve better exploration
of the search space. The design of a cost function of the
nurse rostering model is simply assigning a cost parameter
set by the user to each constraint. Each violation of con-
straints is then penalized. The cost of the entire schedule
is calculated as the summation of penalties associated to
each personnel schedule. The neighborhood structures of
their VNS method are of four types, inspired from the
manual scheduling process: single-shift day, soft constraints
related neighborhoods, swapping large sections of personnel
schedules, and shaking the solution. Experimental results
have shown that it will be useful to apply local search in
the neighbors of the roster until a local optimum is reached,
then the search expands to wider area.

[8] presented an approach that hybridizes heuristic order-
ing with variable neighborhood search. They have shown
how combining the repeated use of heuristic ordering and
backtracking will extend the search and improve the solution
quality. They also presented an analysis and discussion about
the allowed computational time and the significant role it
plays. They have compared the proposed VNS algorithm
with a genetic algorithm on commercial data. The results
have shown that the VNS algorithm outperform the genetic
algorithm.

2.2 Genetic Algorithms
[9] defined the problem of nurse rostering as assigning

shifts to qualified personnel using a given timetable under
some hard and soft constraints. They presented a method
based on genetic algorithms to solve nurse scheduling in
Fatih Sultan Mehemet Hospital. The standard GA is used,
and the fitness value is obtained for each individual in
the population by calculating the summation of its penalty
scores. Each hard and soft constraint is associated with a
weight value. The success ratio of finding a good solution
increases by the use of a hill climbing operator. They used
two techniques for handling the constraints: repair technique,
and normalization of fitness values and parameter settings.
Experimental results have shown that normalizing penalty
scores and the repair of violations and adaptive weights of
constraints will increase the quality of generated schedules.

[10] presented a research for designing and developing a
system for nurse schedules to be used in public hospitals.
They defined the nurse rostering problem as the problem that
occurs when one or more nurses cannot work on shifts that
were scheduled for them. This means that the current roster
must be rebuilt if there are no reserve nurses available to
cover these shifts. The paper applied constructive heuristics

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 99

with different versions of genetic algorithms to solve the
problem of nurse rostering. In the presented GA approach,
the individual is represented as a pair of chromosomes, and
each chromosome is represented as permutation, one for
nurses and one for tasks. The presented versions of GAs
differ in the encoding of permutations and the implementa-
tion of genetic operators. The approaches were tested using
real data form Lisbon Hospital and produced good quality
solutions within time limits specified by the hospital.

A genetic algorithm approach for the NRP is introduced
by [11] which is based on an indirect encoding of solutions.
The objective of their study is not to guarantee finding
feasible solutions, but they focus on using the problem
constraints in an active way to minimize the need for penalty
functions. Their problem definition is based mainly on two
constraints. First, the nurses of higher grades can replace
nurses of lower grades. Second, most of nurse contracts
involve special day-night structure in which the nurse can
work either day shifts or night shifts in a week but not both.
The crossover operator used is order-based crossover. In
addition, there are three decoders presented for their indirect
encoding. Experimental results have shown that the indirect
GA approach is more flexible than Tabu Search.

3. NRP for the Riyadh Care Hospital
Our system was designed based on real-world data of

the surgical unit in the Riyadh Care (RC) hospital, where
currently nurse rosters are made manually. The aim is to
generate weekly schedules for the surgical department in the
hospital for a predetermined number of nurses. The day’s
schedule consists of two types of shifts:day (from 7:00 am
to 7:00 pm) andnight (from 7:00 pm to 7:00 am). There are
two main types of nurses:head nurseand staff nurse. The
regular nurse can have three days off in a week while the
head nurse can have only one day off.

For a feasible schedule, qualified nurses are assigned
to cover the required shifts, such that each nurse is only
assigned one shift per day. Some of the nurses are assigned
to a predetermined number of on-call shifts according to
the hospital demand. In addition to the coverage constraint,
there is a number of constraints that make this problem
challenging: (1) a night shift cannot be followed by a day
shift; (2) the nurse should take a day off after working on
two consecutive day shifts; (3) when a nurse is assigned a
night shift followed by a day off, the following shift (after
the day off) should not be a day shift. This is intended to
give the nurse a chance to adjust her sleeping pattern after
working a night shift, before assigning a day shift to her;
and (4) the nurse can request certain days off according to
her preference. A sample roster for two staff nurses for a
week starting at Saturday and ending at Friday is shown in
Table 1.

Symbols used in formulating the problem are:

Table 1: Sample Roster

Sat Sun Mon Tue Wed Thu Fri
SN1 D D / N N * /
SN2 N / N N N # /

• SN : Staff Nurse
• D: Day Shift
• N : Night Shift
• /: Day Off
• ∗: Day On-Call
• #: Night On-Call
• PLj: Preference list of off days requested by nursej

The constraints of the problem can be summarized as
follows, in order of importance as expressed by the schedule
planner of the hospital:

1) Number of night and day shifts in a day (di, i =
1, 2, ...7) of a weekly schedule should differ by at most
one:
C1 : |

∑

di

D −
∑

di

N | <= 1, ∀i=1,2,...7

2) A nurse working in a night shift of some day should
not work in a day shift the day after:
C2 : N → N or N → O , whereO ∈ {/, ∗,#}

3) After working two consecutive day shifts, the nurse
should take a day off:
C3 : D → D → O, whereO ∈ {/, ∗,#}

4) An off day preceded by a night shift should be
followed by a night shift or another off day:
C4 : N → O → N or N → O → O, where
O ∈ {/, ∗,#}

5) Days off should meet the preference of each nurse:
C5 : Oj ∈ PLj , whereOj ∈ {/, ∗,#}

In our approach, we assume that all constraints are soft
constraints. However, the constraints are assigned different
weights according to the importance of each constraint as
indicated by the listing order above.

4. Proposed GA Solution
In our GA approach to solve the NRP, we propose a

new problem specific heuristic to initialize the population.
We also introduce problem specific crossover and mutation
operators which are basically dependent on the rules and
constraints of the RC hospital. The solutions generated
are evaluated by a fitness function that assigns weighs to
the given constraints and penalizes the violations of each
constraint.

The solution is represented as a 2-D array which repre-
sents a schedule of one week. The scheduling process starts
by generating the initial population as described in Sect.
4.2. Then each individual in the population is evaluated and
assigned a fitness value by the fitness function which is
defined in Sect. 4.3. Individuals with high fitness values are
selected to be recombined and mutated to generate new off-
spring (details of crossover and mutation operators are given

100 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

in Sections 4.4 and 4.5 respectively). Bad individuals with
low fitness values are eliminated from the new population
and replaced with the newly generated offspring. The rest
of the individuals will survive to the next generation. Then
the process is repeated from the fitness evaluation phase for
each generation until a high quality schedule is found or a
specified number of generations is reached.

4.1 Representation
The individual in the population represents a one week

schedule for the department with a given number of nurses.
The individual is represented as a 2-D array where one
dimension denotes the nurses, and the other dimension
denotes the shifts assigned to nurses on every day of the
week. A sample individual representation for four nurses is
shown in Table 2, whereD denotes a day shift,N denotes
a night shift and/ denotes a day off1.

Table 2: Solution Representation

Week Days

N
ur

se
s D N / D / / N

D / N / D N /
N D / / D / D
D / D N / D /

4.2 Initial Population
The initial population is created using a heuristic that will

try to satisfy some of the problem constraints in the initially
generated schedules. First, to calculate the total number of
shifts per week, we multiply the total number of nurses in
the surgical unit with 7 days (shifts), since each nurse can
be assigned a maximum of one shift per day:
TotalShifts = TotalNurses× 7

To compute the required number of day and night shifts in
a week according to the coverage constraint of the hospital,
we will first assign the Annual Leave (AL) days of nurses,
if any, in the week to be scheduled. After assigning the AL
days for nurses, the off days are assigned randomly to each
nurse in the initial schedule, where the staff nurse will be
assigned three days off and the head nurse will have one
day off. Then, to calculate the remaining number of shifts
we subtract the assigned AL days and off days from the total
number of shifts:
RemainingShifts = TotalShifts− (TotalAL+ TotalOff)

Then we can calculate the number of night shifts (TotalN)
as 1/3 of the remaning (required) number of shifts:
TotalN = ⌈(RemainingShifts/3)⌉

Finally, the number of day shifts (TotalD) is calculated as:
TotalD = RemainingShifts− TotalN

Following this,TotalD (number of day shifts) andTotalN

1In our representation we assume that a day off represents on-call days
as well, since the planner can easily change selected days off to on-call
days according to the need of the department.

(number of night shifts) are assigned randomly to nurses in
the initial schedule. Note that in the initial solution, more day
shifts are assigned than night shifts in the weekly schedule
(night shifts are 1/3 and day shifts are 2/3 of the total number
of shifts). This was suggested to try to achieve the desired
balance between the number of day and night shifts during
the evolutionary process, since the mutation operator, which
will be described in Sect. 4.5, mainly converts violating day
shifts into night shifts to try to repair constraints violation in
the solution. The initial population of schedules is created
using the initial schedule algorithm described above.

4.3 Fitness Function

The fitness function assigns a fitness value to each in-
dividual in the population to measures its quality. The
quality of the schedule in our approach depends on the
number of constraints violations found in the schedule. We
penalize the violations by assigning a weight value to each
constraint. The weight value represents the significance of
the constraint. So, the coverage constraintC1 is assigned
higher weight values than the other constraints.

ConstraintC1 is checked by subtracting the number of day
and night shifts in each day(di) of the schedule as shown
in (1).

V1 =

7
∑

i=1

|
∑

di

D −
∑

di

N | (1)

The number of violations ofC2, C3, C4 and C5 are
calculated for each nurse. The weight associated with each
constraintCk is then multiplied by the corresponding num-
ber of violationsVk. The summation of the results of this
operation for all constraints gives the fitness value of the
nurse’s schedule as shown in (2), whereF (Nj) is the fitness
of the schedule of nursej in the evaluated schedule.

F (Nj) =

5
∑

k=2

Wk ∗ Vk (2)

Summing fitness values of all nurses’ schedules, and the
fitness of the whole schedule in terms of the difference in
the number of day and night shifts gives the fitness of the
entire schedule as shown in (3), whereF (S) is the fitness
function of the schedule andn is the number of nurses.

F (S) = W1 ∗ V1 +

n
∑

j=1

F (Nj) (3)

It is important to mention that when evaluating a schedule
we assume that the schedule of the previous week is already
present and is used by the fitness function to check constraint
violations between the last day of the previous schedule and
the first day of the current schedule.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 101

4.4 Crossover Operator

High quality schedules are selected for recombination
by crossover. The crossover operator proposed in our GA
approach is a problem specific operator that helps to improve
solutions with respect to one constraint of our problem.
This constraint isC5, the preferences of each nurse for off
days. Two parent solutions are recombined by swapping a
specified number of nurses2 from one solution with the same
number of nurses of the other solution. The number of nurses
swapped between the two parents is according to a given
probability, such that a maximum of half the number of
nurses in a given solution can be swapped. The swapping of
nurses is performed under one condition which is as follows:

If group1 contains nurses selected randomly from parent1
and group2 contains nurses selected from parent2, then the
total numbers of day and night shifts in each day of group2
must be equal to the total numbers of day and night shifts
in each day of group1.

This condition will try to maintain the feasibility with
respect to the coverage constraint C1 as much as possible.
An example of the crossover operator is shown in Figure 1.

Fig. 1: Crossover Operator

2For simplicity hereafter we use the term "nurse" to refer to a "nurse
schedule", i.e., the crossover operator swaps the "schedules" of two nurses,
one nurse selected from each parent

4.5 Mutation

After applying crossover, the generated offspring can be
mutated under a given mutation probability. The mutation
operator proposed in our approach is a repair mutation.
It repairs the violations of the constraintsC2, C3 and C4

found in the schedule. In the mutation operator, some nurses’
schedules will be selected for repair according to a certain
probability. The mutation operator will repair the selected
nurses’ schedules by correcting the violations as it moves
through the schedule of each nurse from left to right. The
mutation operator will proceed in two passes:

• Pass 1:moving through the schedule of the nurse from
left to right, the mutation will correct the violation of
constraintC3, which happens when two consecutive
day shifts are followed by a third day shift or night
shift. This violation can be repaired by swapping the
third day/night shift with a day off found anywhere in
the schedule of that nurse:
D → D → N OR D → D → D =⇒ D → D → O

• Pass 2:moving through the schedule of the nurse from
left to right for the second time, the mutation will try to
correct the following two violations at the same pass:

– ConstraintC2 (a night shift followed by day shift):
This violation can be repaired by changing the day
shift to night shift:
N → D =⇒ N → N

– ConstraintC4 (a night shift followed by an off
day and the latest is followed by a day shift). This
violation is repaired by changing the day shift to
night shift, as shown below:
N → O → D =⇒ N → O → N

It is important to stress that fixing the schedule is done
forward from left to right in order not to disturb what
has been previously fixed in the schedule. An example of
mutating an individual is shown in Figure 2.

5. Experimental Results
To measure the performance of the proposed GA approach

for the nurse rostering problem, we performed several exper-
iments with different test cases. All experiments were per-
formed with Intel (R) 2 Duo (2.53GHz) processor, 4.00 GB
RAM, 32-bit Windows 7 Operating system. The experiments
include 10 test cases with 10 runs for each case. The test
cases are different with respect to the number of nurses (from
10 to 100). The preferences of each nurse for the days off are
created randomly in each test case. Initially we performed
tuning of GA parameters following the method suggested by
[12], which presented three main measures to evaluate the
performance of Genetic Algorithms. According to [12], these
measures are proved to evaluate GAs in terms of solution
quality regardless of convergence. The measures include:
likelihood of optimality, average fitness valueand likelihood

102 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Fig. 2: Mutation Operator

of evolution leap. After tuning, the following values were
used for GA parameters:

• Population Size = 50
• Number of Generations = 50
• Crossover Probability = 0.2
• Mutation Probability = 0.8

In addition, the selection method used wasTournament
Selection and the termination condition was reaching a
maximum pre-specified number of generations.

Regarding the weights of the constraints violations in
the fitness function. The following values were selected
empirically: W1 = 0.5, W2 = W3 = 0.24, and W4 =
W5 = 0.01.

Figure 3 shows the experimental results of our GA in
terms of the average fitness values of both the first generation
and the last generation over the 10 runs. As can be seen in
Figure 3, the solution is improved with a high percentage
during the evolutionary process. The improvement in the
average fitness is approximately between 70 to 80 percent
for the 10 test cases.

Table 3 shows the average number of constraints viola-
tions (over the 10 runs) in the last generation of each test
case. It can be observed from this table that the resulting av-
erage number of violations for the most important constraint
C1 is always less than 5.0 violations. This is considered a
good achievement for the GA given the difficulty of the
problem and the conflicting nature of the constraints. For
example, the planner who is responsible for putting the
schedule of 100 nurses (the last test case) will only need
to adjust on average 2-4 violations for the constraints C1,
C2, and C3 in the resulting schedule. The less important
constraint C4 on the other hand has a reasonable number
of violations for the small test cases, but is more difficult
to satisfy for the largest two test cases as indicated by the

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Test Case

A
v
e

r
a

g
e

 F
it
n

e
s
s

First Generation
Last Generation

Fig. 3: Average fitness values for 10 Runs

results in the table.

Table 3: Average number of constraints violations

Num Nurses C1 C2 C3 C4
10 0.5 1.7 0.5 0.9
20 1.5 1.4 2.0 2.5
30 2.3 3.1 1.5 1.9
40 3.0 3.9 2.8 3.4
50 3.5 5.7 4.1 6.0
60 3.8 5.3 3.2 5.0
70 4.6 7.6 5.0 6.9
80 4.4 9.3 5.4 6.2
90 3.8 2.3 1.8 16.2
100 4.1 2.0 1.9 16.6

Regarding the constraint C5, which is the preferences of
the nurses for the days off. The algorithm was able to satisfy
on average between 2-3 preferences only. This indicates
that the algorithm was not very successful in satisfying
the preferences of the nurses in terms of the days off.
The reason is obviously the small weight assigned to this
constraint in the objective function. Another reason is the
restricting condition in the crossover operator that requires
swapping only nurses that have the same number of day and
night shifts in each day of the week . This condition seems
seldom satisfied, which renders the crossover operator almost
useless.

On the other hand, the average execution time is quite
fast. It ranged from 5.7 seconds for the smallest test case to
46.4 seconds for the largest test case. This is indeed a lot
of time and effort saving compared to the manual planning
process needed to prepare a weekly schedule for 100 nurses.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 103

6. Results Summary and Suggestions for
Future Improvement

The experimental results of the algorithm show that the
mutation operator designed for this problem seems to per-
form a good job in satisfying the constraints C2 and C3, and
to a lesser extent the constraint C4. On the other hand the
crossover operator seems not very effective in performing
its intended role of satisfying the constraint C5. There is
also the issue of the small amount of violation remaining
in the final solution with respect to the constraint C1. To
improve the results and try to remove the violation, several
techniques can be applied:

• The final schedule can be adjusted manually using the
GUI (Graphical User Interface) provided in our system.
This is the option currently available to improve the
resulting schedule. To facilitate this process, the tool
can be modified to highlight locations of violation so
that the planner can easily spot them and manually
correct infeasibility.

• A new mutation operator can be added which is specif-
ically designed to repair the violation of the constraint
C1.

• The final best solution obtained by the GA can undergo
another optimization process using a simple technique
like hill climbing or simulated annealing. In this pro-
cess, some small changes may be applied to day and
night shifts, depending on which number is higher. The
new schedule is then evaluated in each iteration in order
to decide whether it can replace the old schedule or not.
In our opinion this seems to be the most promising
approach to correct the violation in constraint C1.

Regarding the constraint C5 which is related to satisfying
the preferences of nurses in the selected days off, it appears
that this constraint should be removed from the fitness
function, since it is difficult to satisfy simultaneously with
the other more important constraints of the problem. A
better approach could be to try to improve the last obtained
schedule by replacing some days off with days off belonging
the nurse’s preference list, provided that this change does not
violate the other problem constraints. We expect a significant
improvement in the results, if some or a combination of these
techniques is applied to the algorithm. We plan to try some
of these approaches in the near future.

7. Conclusions
In this paper we proposed a GA approach to solve the

nurse rostering problem. The aim is to automate the process
of nurse scheduling. The main contribution of this research is
in the design of complete system that can be used in practical
situations to generate fast and effective nurse rosters. The
algorithmic component of the system was based on a GA
in which a new heuristic approach for constructing the
initial schedules was devised to create the GA population.

In addition, a novel problem specific mutation operator that
repairs constraint violations has been designed to handle the
difficult problem constraints.

Experimental results show that although the final solution
generated still has some constraints violation, the quality of
the solution has improved with a high percentage during the
evolutionary process. The improvement in the average fitness
between the first and last GA generations is approximately
70 to 80 percent. In addition the result is achieved in a very
small amount of time, which indicates that the schedule
generated is applicable in practical situations after minor
adjustments by the planner to correct the violations of
constraints.

As a future work we will try to overcome constraints
violation in the final solution by introducing a new mutation
operator specifically directed to the coverage constraint.
Also, the final best solution obtained by the GA can undergo
another optimization process using a simple technique like
hill climbing or simulated annealing to improve the result
and get rid of constraints violation.

References
[1] E. Burke, P. De Causmaecker, G. Berghe, and H. Van Landeghem,

“The state of the art of nurse rostering,”Journal of scheduling, vol. 7,
no. 6, pp. 441–499, 2004.

[2] E. Burke, P. De Causmaecker, and G. Vanden Berghe, “A hybrid tabu
search algorithm for the nurse rostering problem,”Simulated evolution
and learning, pp. 187–194, 1999.

[3] S. Petrovic and G. Berghe, “Comparison of algorithms for nurse
rostering problems,” inProcedings of the 7th International Conference
on the Practice and Theory of Automated Timetabling, 2008, pp. 1–18.

[4] M. Azaiez and S. Al Sharif, “A 0-1 goal programming model for
nurse scheduling,”Computers & Operations Research, vol. 32, no. 3,
pp. 491–507, 2005.

[5] J. Bard and H. Purnomo, “Preference scheduling for nurses using
column generation,”European Journal of Operational Research, vol.
164, no. 2, pp. 510–534, 2005.

[6] ——, “Cyclic preference scheduling of nurses using a lagrangian-
based heuristic,”Journal of Scheduling, vol. 10, no. 1, pp. 5–23, 2007.

[7] E. Burke, P. De Causmaecker, S. Petrovic, and G. Berghe, “Variable
neighbourhood search for nurse rostering problems,”MCG Resende
& J. Pinho de Sousa (Eds.), Metaheuristics: Computer Decision-
making, Chapter 7, Kluwer, 2002.

[8] E. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman, “A hybrid
heuristic ordering and variable neighbourhood search for the nurse
rostering problem,”European Journal of Operational Research, vol.
188, no. 2, pp. 330–341, 2008.

[9] Ö. Kelemci and A. Uyar, “Application of a genetic algorithm to a real
world nurse rostering problem instance.”

[10] M. Moz and M. Vaz Pato, “A genetic algorithm approach to a nurse
rerostering problem,”Computers & Operations Research, vol. 34,
no. 3, pp. 667–691, 2007.

[11] U. Aickelin and K. Dowsland, “An indirect genetic algorithm for
a nurse-scheduling problem,”Computers & Operations Research,
vol. 31, no. 5, pp. 761–778, 2004.

[12] K. Sugihara, “Measures for performance evaluation of genetic algo-
rithms,” in 3rd Joint Conference on Information Science, JCIS ’97,
1997, pp. 172–175, extended Abstract.

104 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

A Genetic Algorithm for Multiprocessor Task
Scheduling

Tashniba Kaiser, Olawale Jegede, Ken Ferens, Douglas Buchanan
Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada

Ken.Ferens@ad.umanitoba.ca

Abstract—The goal of task scheduling in a multiprocessor
system is to schedule dependent tasks on processors such
that the processing time is minimized. This ensures optimal
usage of the processing systems. However this problem is
NP-hard in nature and heuristic based techniques are used
to obtain a good schedule in polynomial time. Genetic
Algorithms (GA) have been proposed over other heuristics
because it can use its genetic processes to find multiple
solutions faster. The GA proposed is based on a non-pre-
emptive precedence relation between tasks in the task graph.
Tasks assignment is prioritized based on the number of tasks
dependencies (NTD) and the earliest start time (EST) of
each task. For tasks with multiple possible earliest start
times, the minimum earliest start time is chosen for such
tasks. Java simulations compared the results obtained using
the minimum EST and the maximum EST. Our simulation
shows that the proposed algorithm with minimum EST
achieves faster processing periods compared with the
maximum EST.

Keywords—Genetic Algorithm, Number of Task
Dependencies, Total Finishing Time, Multiprocessor
Scheduling.

I. INTRODUCTION

The need to achieve optimal usage of a multiprocessing
system for task allocation cannot be overemphasized. The
aim is to ensure that the processing period is minimized by
scheduling tasks on time. However this problem of obtaining
optimal task scheduling in the multiprocessing system is
reported to be NP hard [1]. There are different scheduling
algorithms such as First-in-First-Out, Shortest-Job-First,
Priority based scheduling, Round-robin scheduling,
Multilevel Queue scheduling etc. It is important that any
algorithm chosen is able to address the scheduling problem
in polynomial time. Due to the computational complexity
however, different types of machine learning techniques
have been proposed. Some of the heuristics that have been
widely used for this problem are simulated annealing, tabu
search, ant colony optimization, and genetic algorithms
among others. Genetic algorithms are efficient in solving NP

hard problems especially in parallel computing such as any
multiprocessing system.

The common approach to this problem has been to use

the precedence-relations between tasks to prioritize task
assignment on the processors. This is also known as the
height-based tasks assignment, somewhat similar to the first-
in-first-out method as tasks with higher heights are given
priority than those down the tasks-graph. However to further
improve the optimization process (by further reducing the
makespan), a new approach is to assign tasks based on the
number of task dependencies (NTD) of each task. Which
means a task must be executed before all the other tasks that
depends on it can be executed. Thus, irrespective of a task’s
height in a task graph, priority is given to tasks with higher
number of task dependencies. This ensures a decrease in the
total finishing time (TFT) of the schedule.

The remaining sections of this paper are organised as

follows. Section 2 represents related work on multiprocessor
task allocation problem and our contribution to this work.
Section 3 discusses the GA approach to the multiprocessor
task allocation problem and methodology. In Section 4, we
discuss the simulations and results obtained using genetic
algorithm. Section 5 concludes the paper and gives future
work.

II. RELATED WORK

There have been several approaches to the tasks
allocation problem in a multiprocessing systems. Most of the
approaches have been based on non-pre-emptive precedence
relations between tasks in the task graph. Jin et al [2] carried
out a comprehensive survey of nine scheduling algorithms
which are frequently used to solve the multiprocessor task
scheduling problem and compared the performance of each
of the algorithms. The nine algorithms considered were
min-min, chaining, A*, genetic algorithms, simulated
annealing, tabu search, Highest Level First Known
Execution Times (HLFET), Insertion Scheduling Heuristic
(ISH), and Duplication Scheduling Heuristics (DSH) with
task duplication. The performance of the nine algorithms
was benchmarked against two widely used algorithms in

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 105

linear algebra which are the LU decomposition and the
Gauaa-Jordan elimination. With task duplication, the DSH
performed best while the ISH performed best without task
duplication. It was also reported that the GA and tabu search
obtained the best solution out of all the iterative search
algorithms considered. However, in this work task
duplication was not considered. Other works have been done
reporting the performance of the GA. Majority of the works
[1] [3] [4] [5] [6] assume non-pre-emptive precedence
relations between tasks in the task graph as well as non-
duplication of tasks. Wu et al [7] however assumed
duplication of tasks. The non-preemptive characteristics of
tasks in the task graph ensures that precedence relations are
adhered to. This necessitates the priority-based task
scheduling. The most common scheduling method is to
prioritise task based on their height [1]. The height is used to
denote the precedence relations between tasks in a task
graph. The higher a task is in the task graph, the higher the
priority given to it in allocating it to the multiprocessing
systems. However, as a result of tasks dependencies, the
height-based task scheduling can be inefficient. Tasks at a
higher height with no task dependencies will be scheduled
ahead of tasks at a lower height with task dependencies. This
increases the makespan of the processor. Abdeyazdan and
Rahmani [8] proposed a new algorithm which prioritizes
tasks scheduling based on the number of task dependencies
of each task and the earliest start time of each task. This
ensures that tasks having higher task dependencies are given
higher priority irrespective of their height on the precedence
graph thereby resulting in a further decrease in the makespan
of the processing system.

In this work, we have considered the algorithm proposed

by [8]. We observed that in the task graph, there may be
tasks with multiple possible earliest start times. Our
contribution is that for tasks with multiple possible earliest
start times, our algorithm choses the minimum earliest start
time for such tasks as against the maximum earliest start
time used by [8]. This is akin to choosing the shortest path as
against the longest path in a routing problem. Our algorithm
ensures a further decrease in the makespan.

III. GA MULTIPROCESSOR TASK SCHEDULING

The main goal of a scheduling problem is to reduce the
schedule length (makespan) of the processor. For a
multiprocessing systems N processors, the time it takes for
the last on a processor to finish executing is termed the
finishing time FT. The maximum finishing time among the
m processors in any schedule is termed the Total Finishing
Time TFT of that schedule. For k number of schedules, the
TFT can be represented as in (1) below.

ܨܶ ௞ܶ ൌ෍ݔܽܯ ሼܶܨ	݂݋	ݎ݋ݏݏ݁ܿ݋ݎܲ௜ሽ
௞

ଵ

ݎ݋݂ ݉ ൒ ݅ ൒ 1				

(1)

Height-Based Scheduling

Hou and Ansari [1] based their task priority-scheduling
in a multiprocessor system on the task height of each task. In
this model, tasks that are higher up the task graph are given
priority compared to tasks on lower levels. In a task graph
where there is a sequence of directed edges from task, say ti
to tj, then ti is higher up the graph while tj is lower down the
graph. This precedence relation implies that task ti has to be
executed before tasks tj and other tasks that precede that task
ti. According to [1], if PRED(ti) is a set of preceded tasks of
ti, then we can obtain the height of any of the preceding tasks
using equation (2).

ݐ݄݄݃݅݁ ሺݐ௜ሻ ቐ

0 ௜ሻݐሺܦܧܴܲ	݂݅								 ൌ ø,
1 ൅ maxሼ݄݄݁݅݃ݐ൫ݐ௝൯ሽ .݁ݏ݅ݓݎ݄݁ݐ݋	

௝ݐ 	 ∊ ௜ሻݐሺܦܧܴܲ
.

(2)

The height function given above is a mathematical
representation of the precedence relations between the tasks
in the task graph. Since the task height increases from 0 to a
finite length, the preceding tasks to the task(s) at height 0
will have heights greater than 0. Therefore the lower the
task height of any task, the higher up the task graph the task
is. In other words, if task ti is preceded by tasks tj, then ti will
be executed before tj and height(ti) < height(tj). However if
there is no precedence relation between any two tasks, the
order of execution can be arbitrary.

Problem with Height-Based Scheduling

To explain the drawback of a height-based scheduling
algorithm, we have used the task graph below [8]. Each of
the tasks t0 to t15 will have a height and an execution time.
Task t0 is at height 0 (highest), t1 and t2 have height 1, etc.
as shown in the table 1 below. The execution time of each
task is assigned randomly ranging from 0 to 15. The height-
based scheduling is such that tasks at higher heights are
scheduled before task at lower heights. However for tasks at
same heights, any of them is randomly chosen to be
scheduled on the processor.

The implication is that: “tasks such as t7 will be

scheduled before tasks such as t14.”

106 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Fig. 1 A task graph, from [8].

Table 1. Height and Execution time of tasks in Fig. 1.

Task Height Execution time
t0 0 3
t1 1 2
t2 1 4
t3 2 1
t4 2 10
t5 2 3
t6 2 6
t7 3 9
t8 3 7
t9 3 11
t10 3 5
t11 3 5
t12 4 8
t13 4 10
t14 4 15
t15 5 2

It is observed that task t7 has no task dependency,

meaning there is no task that needs task t7 to complete before
it can start. However, tasks t14 has task dependency; task t15

cannot be scheduled unless task t14 finishes execution.
Therefore, scheduling based on height increases the FT of a
processor and consequently the TFT. For a task graph with a
high percentage of task dependencies, the height-based
scheduling will not be suitable to achieve optimal
scheduling. This is why a new algorithm is needed for
optimal task scheduling in a multiprocessing systems.

Task Dependency-based Scheduling

The main goal of a scheduling problem is to reduce the
TFT (makespan) of the processor. To further reduce the
TFT, Abdeyazdan and Rahmani [8] proposed a new
algorithm which prioritizes tasks scheduling based on the

number of task dependencies and earliest start time (EST) of
each task. This ensures that tasks having higher task
dependencies are given higher priority irrespective of their
height on the precedence graph. For any task ݐ௜ with a j
number of outgoing edge, i.e. tasks that directly depends on
 ௜ݐ ௜, the Number of Task Dependency (NTD) for such taskݐ
is mathematially obtained by equation (3).

௜ሻݐሺܦܶܰ ൌ

ە
ۖ
۔

ۖ
0ۓ 								; ௜ሻݐሺܦܶܰ	݂݅ ൌ ø,

෍ሼ1 ൅ ௝൯ሽݐ൫ܦܶܰ
௝ୀଵ

.݁ݏ݅ݓݎ݄݁ݐ݋	

;௜ݐ	݊݋	ݏ݀݊݁݌݁݀	ݕ݈ݐܿ݁ݎ݅݀	௝ݐ

(3)

The NTD function above represents the total number of
tasks that depends on a task ݐ௜ whether directly or indirectly,
this [8] termed as number of children. With this, a task with
more number of tasks dependencies will be scheduled earlier
than one with lower number of task dependencies. The
concept of Earlier Start Time was introduced to ensure that
tasks are scheduled with respect to the earliest time for
which they are available to be scheduled. The EST of any
task is a function of the summation of the execution time of
all the tasks that precedes such tasks. However, because
there could be one or more path on the task graph along
which a task could be executed, this implies that there will
be multiple EST for such task. Our algorithm selects the
minimum EST. An algorithm to produce the schedule based
on the number of task dependencies is as below:

1. Arrange the tasks in descending order based on the

number of task dependencies of each task.
2. Put tasks with the same NTD in a single group and

perform steps a and b for all the groups in order of
higher NPD until every group is empty.
a. Randomly select a task from the group and then

delete it from the group.
b. Allocate the selected task to one of the processors

based on the EST method such that the starting
time of the task on that processor is less than other
processors.
i. For tasks with multiple EST, choose the

minimum EST in performing b.
3. Repeat steps ‘a’ and ‘b’ until all the tasks have been

selected.

The algorithm is such that every task is assigned only

once to a processor as there is no repetition of same task on
the task graph. From the task graph in figure 1, we can
arrange the tasks according to the NTD of each tasks. The
execution time of each task is used to compute the EST of
each task. Table 2 shows the EST of each tasks arranged
according to the descending order of the NTD of each tasks.
From Table 2, we see that each of tasks t8, t7, t12, and t13 have
two ESTs because there are two possible path from which

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 107

the EST can be obtained. For instance task t8 have an EST of
10 along the path t4→ t1→ t0 and an EST of 15 along the path
t5→ t2→ t10. Our algorithm always chooses the minimum EST.

Scheduling using GA

The goal of the combinatorial optimization problem in
this work is to find optimal task schedule in a very short
time. Since this problem is NP-complete, we have chosen
the GA to do the task scheduling. GA is a subset of
evolutionary algorithms that models biological processes to
optimize highly complex functions.

Table 2. Task Order based on NTD.

Task NTD EST
t0 15 0
t2 10 3
t1 6 3
t6 5 7
t4 4 5
t5 3 7
t8 2 10,15
t10 2 13
t3 1 5
t14 1 18
t7 0 6,15
t9 0 13
t11 0 13
t12 0 17,22
t13 0 17,22
t15 0 33

The GA allows a population composed of many

individuals to evolve under specified selection rules to a
state that maximizes the “fitness” (i.e. minimize the
objective function). It is important that a solution is found in
good time because time plays an important role in real time
applications for task scheduling in multiprocessing system.
The main advantage of using GA over other stochastic
techniques is its parallelism which enables faster
convergence. GA therefore outsmarts all other meta-
heuristic techniques in terms of the time it takes to arrive at a
good solution. The GA is able to provide a list of optimum
solutions at a single iteration; this is particularly good for
our application because we have multiple processors on
which the scheduling is done. GA’s are also less likely to get
stuck in local minima because of its crossover and mutation
processes. GA is therefore well suited to our problem. The
GA procedure is shown in Table 3.

The initial population consists of solutions in the search

space. A solution represents a schedule generated every time
the algorithm in section 3.3 is run. In GA term a solution is
termed a chromosome. A particular population size is chosen
depending on the problem size. Each of the solutions in the

initial population is examined using the objective function in
Equation (1). In GA terms, the objective function represents
the fitness function. The goal is to minimize the function.
The lower the TFT of a schedule, the better it satisfies the
objective function.

Table 3. Standard Genetic Algorithm.

Step Action

1
Generate a random initial population of n
schedules, where n is the population size.

2
Evaluate the fitness of each of the schedule in the
initial population.

3
Generate new populations using processes in steps
4-6

4
Selects two schedules among the current
population using the roulette wheel method based
on fitness of each schedule.

5
Crossover the two selected schedules considering
the crossover probability, to form the schedules for
the next generation

6
Mutate the one of the selected schedules at each
defined mutation point, considering the mutation
probability and place it in the new population.

7
Evaluate the fitness of each of the schedules in the
new population

8
Repeat steps 3-7 until the stopping criteria have
been met.

GA uses selection, crossover and mutation processes to

generate new solutions (schedules) in the search space.

• Selection deals with the probabilistic survival of the

fittest, in that the fittest schedules are chosen to survive.
Fitness is a comparable measurement of how well a schedule
satisfies the objective function. Once the schedules with the
better fittest are chosen, others will be eliminated. Simply,
the probability of a chromosome to be selected is
proportional to the quality value/fitness; this is also called
the roulette wheel selection method. There are various
selection methods but we propose to use the roulette wheel
selection algorithm because it gives every chromosome a
chance of survival. The lower the TFT of a schedule, the
larger the slot it occupies in the roulette wheel and
consequently the higher the chances of being selected for
every spin.

• Crossover is a technique considered to be the most

important step in the context of GAs. At a certain crossover
rate, GA selects two schedules from the population based on
roulette wheel method. After selecting these two schedules,
using the roulette wheel, a task is randomly selected from
the ordered set of tasks based on their NTD. In one of the
schedule (first schedule), the algorithm will choose all the
tasks that have equal or lower number of NTD to the
selected task. For each processor in the first schedule, the

108 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

chosen tasks are exchanged with the other tasks on
corresponding processor in the second schedule. This
produces two new schedules with most likely varying TFT
to the initial schedules.

• Mutation is a genetic operator used to maintain genetic

diversity, at a certain mutation rate, from one generation of a
population of schedules to the next. Mutation alters one or
more gene (task) values in a chromosome from its initial
state. In mutation, the solution may change entirely from the
previous solution. Hence GA can come to better or worst
solution by using mutation. Consequently, mutation aids GA
to avoid getting stuck in local minimal. To do mutation, the
two different schedules and task selected for the crossover
process are used. In the first schedule, the selected task is
exchanged with another task with equal NTD on another
processor in the same schedule. This same mutation process
is done for the second schedule. Like the crossover, this
procedure also produces two new schedules with most likely
varying TFT to the initial schedules.

After each cycle of selection, crossover and mutation, the

newly generated sets of solutions (schedules) are termed new
generation. Every generation is evaluated based on the
fitness function to determine if they represent a good enough
solution to satisfy the fitness function. This determines if the
GA can stop searching, or if otherwise, for the GA to
continue searching until the set stopping criteria is met. The
stopping criteria could be the number of generations, or
evolution time, or fitness threshold, or fitness convergence,
or population convergence. In our case, the number of
generations was set as the stopping criteria. The schedule
obtained after the stopping criteria will be the optimal or
near optimal schedule.

IV. EXPERIMENTAL RESULTS

The GA Simulation was done in Java to evaluate our
algorithm. Task graphs were created with number of tasks in
the graph ranging from 16, 21, and 30. The task dependency
percentage range between 20 and 60 and the execution time
for each task is random between 1 and 15 s. The task graphs
are scheduled on a multiprocessor system with 3 processors
for the two genetic-based algorithms with maximum earliest
start time and our algorithm minimum earliest start time.
The genetic algorithm parameters chosen are population size
of 40, crossover rate of 0.8 and the mutation rate of 0.1,
number of generations of 50.

Table 4 shows the schedules and the TFT for each of the

Max-EST and the Min-EST algorithm. The results shows
that the Min-EST can schedule tasks either with same TFT
or lower TFT compared to the Max-EST. The computation
time is however the same for both algorithms.

Table 4. Schedules for the 2 Algorithms.
Algorithms Total Finish Time (seconds)

Number of Processors = 3
Number of Tasks

16 21 30
Max-EST 40 76 146
Min-EST 40 75 134

Table 5. Schedule with varying NTD of tasks.
Algorithms Total Finish Time (seconds)

Number of Processors = 3
Number of Tasks = 30

Increase NTD of Tasks with Multiple
ESTs

20% 40% 60%
Max-EST 146 187 209
Min-EST 134 162 176

Table 5 shows the results obtained when the number of

task dependencies (NTD) of tasks with multiple ESTs is
considerably large compared with other tasks in the graph
with single EST. With a task graph containing 30 tasks, our
algorithm (Min-EST) outperforms the Max-ESTs algorithms
with increasing NPD of tasks with multiple ESTs. This
occurs because since both algorithms are based on NTD,
tasks with higher NTDs are given priority than those with
lower NTDs. In effect, if a task with multiple ESTs have a
higher NTD, it will be scheduled earlier and the minimum
EST of such task is likely to be less than the current
available start time on any of the processor. In the same
vein, if the NTD of a task with multiple ESTs is
considerably small compared to other tasks with single EST,
then such tasks will be scheduled late at which time the
minimum ESTs will be insignificant because the current
available start time on any of the processors would have
exceeded the minimum EST. Therefore our algorithm
outperforms the Max-EST algorithm only when the NTD of
tasks with multiple ESTs is considerably high compared to
that for tasks with single EST.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a simulation of multiprocessor tasks
scheduling based on the number of task dependencies using
GA. GA was used because this problem is NP_Hard and a
an optimal-or near-optimal schedule is needed in good time.
Tasks with higher number of task dependencies were given
priority independent of the height of such tasks. This helps
to further ensure that all the tasks in the tasks graph are
scheduled on time using the earliest start time of each task. It
was observed that some tasks can have more than one EST
as a result of multiple path of reaching such tasks in the
tasks graph. Our idea ensures that the minimum of the
multiple ESTs is chosen. Choosing the minimum ESTs is
only significant when the tasks with multiple ESTs are given

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 109

priority in scheduling which occurs only when the number of
task dependency is considerably high compared to tasks with
single ESTs. Simulation shows that our algorithm will
outperform the Max-EST algorithm only when the tasks
with multiple ESTs have higher task dependency compared
to other task with single EST in the task graph. For future
work, an adaptive adjustment of the algorithm parameters
(crossover and mutation rate) proposed by Yun-Xiao [9], can
be implemented in order to reduce the vector distance
between individual schedules. This should reduce the
convergence time for our proposed GA.

REFERENCES

[1] E. S. Hou, N. Ansari and H. Ren, "A Genetic Algorithm
for Multiprocessor Scheduling," in IEEE Transactions
on Parallel and Distributed Systems, 1994.

[2] S. Jin, G. Schiavone and D. Turgut, "A Performance
study of multiprocessor task scheduling algorithms,"
Journal of Supercomputing, vol. 43, no. 1, pp. 77-97,
January 2008.

[3] M. U, C. Ho, S. Funk and K. Rasheed, "GART: A
Genetic Algorithm based Real-time System Scheduler,"
in IEEE Congress on Evolutionary Computation, 2011.

[4] D. Montana, G. Bidwell and S. Moore, "Using Genetic
Algorithms for Complex Real Time Scheduling
Applications," in IEEE Network Operations and
Management Symposium, 1998.

[5] R. M. Miryani and M. Naghibzadeh, "Hard Real-Time
Multiobjective Scheduling in Heterogenous Systems
Using Genetic Algorithms," in International CSI
Computer Conference, 2009.

[6] Y. Monnier, J.-P. Beauvais and A.-M. Deplanche, "A
Genetic Algorithm for Scheduling Tasks in a Real-Time
Distributed System," in Euromicro Conference, 1998.

[7] A. S. Wu, H. Yu, S. Jin, K.-C. Lin and G. Schiavone,
"An Incremental Genetic Algorithm Approach to
Multiprocessor Scheduling," in IEEE Transactions on
Parallel and Distributed Systems, 2004.

[8] M. Abdeyazdan and A. M. Rahmani, "Multiprocessor
Task Scheduling using a new Prioritizing Genetic
Algorithm based on number of Task Children," in
International Conference on Distributed and Parrallel
Systems, 2008.

[9] Z. Yun-Xiao, Z. Jie and Z. Chang-Chang, "Cognitive
Radio Resource Allocation based on Coupled Chaotic
Genetic Algorithm," in IOP Science Chinese Physics B,
2010.

110 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Prediction of Potential Human West Nile Virus

(WNV) Disease Distribution in the US Based on

Year 2000 New York State Avian WNV Mortality

Jack K. Horner

P.O. Box 266

Los Alamos NM 87544 USA

GEM 2013

Abstract

West Nile Virus (WNV) disease is caused by a flavivirus that is transmitted primarily by the bites of

mosquitoes that have bitten infected birds. It was first detected in the US in New York City in 1999. By

2003, it had spread across the state; by September 2012, it had spread to the contiguous 48 states. Given

the WNV disease surveillance record, it is now possible to assess how well ecological niche modeling

(ENM), given the observed Year 2000 New York State WNV bird-mortality distribution, would have

predicted the distribution of the virus across the US. Here I compare a genetic-algorithm- rule-production

ENM predictions of the potential geographic distribution of the US avian WNV mortality with the

observed distribution of human WNV disease in the US in early October 2012.The analysis shows that

despite significant limitations of the WNV surveillance protocols in the US, ENM would have correctly

predicted the potential presence or absence, by state, of human WNV disease in the US.

Keywords: West Nile Virus, ecological niche modeling. epidemiology

1.0 Introduction

1.1 Overview of West Nile Virus

disease

WNV disease is a viral disease that is

typically spread by the bites of mosquitoes

that have bitten birds infected by the virus.

Humans and other mammals, and ~50

species of common birds in the US, are

susceptible to the disease.

About 20% of humans infected with WNV

develop mild WNV disease. Mild WNV

disease in humans can have any of the

following non-specific symptoms:

 Abdominal pain

 Diarrhea

 Fever

 Headache

 Lack of appetite

 Muscle aches

 Nausea

 Rash

 Sore throat

 Swollen lymph nodes

 Vomiting

These symptoms usually last for 3 - 6 days.

Severe WNV disease in humans can have

any of the following symptoms:

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 111

 Confusion or change in ability to

think clearly

 Loss of consciousness or coma

 Muscle weakness

 Stiff neck for no apparent reason

 Weakness of one arm or leg

Only about 1% of humans infected by WNV

will develop severe WNV disease.

There is no vaccine to help protect against,

or drug to treat, human WNV disease.

Treatment of severe forms WNV disease in

humans often involves hospitalization,

intravenous fluids, respiratory support, and

prevention of secondary infections.

WNV was first detected in 1937 in Uganda.

It was first detected in the United States in

the summer of 1999 (in New York City).

As of 18 September 2012, all contiguous 48

states had reported WNV infections in

people. A total of 3,142 cases of WNV

infection in people, including 134 deaths,

had been reported to the Centers for Disease

Control (CDC). Of these, 1,630 (52%) were

classified as severe ("neuroinvasive")

disease (such as meningitis or encephalitis)

and 1,512 (48%) were classified as non-

neuroinvasive cases ([8]).

Two-thirds of the reported US cases are

from seven states (Texas, Mississippi,

Michigan, South Dakota, Louisiana,

Oklahoma, and California). Almost 40

percent of all reported cases are from Texas,

particularly in the Dallas and Houston areas

([8]).

Mosquitoes carry the highest WNV load in

late summer/early autumn -- generally

August through early September.

1.2 Overview of ENM

The general problem of ENM can be stated

as follows. Given the distribution of a set S

of species in a geographic region G (e.g.,

New York state) with associated ecological

variables E (e.g., temperature, precipitation,

slope, aspect, altitude), predict the potential

distribution of S in geographic region G' 

G (e.g., the US) . Roughly speaking, this

amounts to predicting which parts of G' have

an ecological system state "like" that part of

G which is populated by S. "Like" in this

context is cast in terms of statistical

measures.

There are several ENM algorithms ([11]);

among the more widely used is genetic

algorithm rule-production (GARP, [5]). In

general terms, the GARP algorithm applies a

genetic algorithm ([12]) to optimize a set of

inference rules on a set of training data, then

applies that optimized set of rules to infer

features of a set of test data. A flowchart of

the generic GARP algorithm is shown in

Figure 1.

112 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Figure 1. Generic GARP algorithm flowchart. A parallelepiped represents data, a

rectangle represents a process or action, a diamond represents a test, a symbol that is

convex on the left and concave on right represents an intermediate store, and a cylinder

represents a permanent store. An arrow represents dataflow, or transfer of control,

depending on context, from the entity at the tail, to the entity at the head, of the arrow.

In GARP ENM, the Training and Test Data

consist of assertions about the geographic

locations (e.g., latitude and longitude) of a

set of species, together with a description of

an ecological state at those locations (i.e, the

values of a set of ecologically significant

variables such as temperature and

precipitation at those locations). The

Inference Rules allow one to infer the

likelihood that a given species will be at a

location, given the ecological state of that

location. A nominal GARP Inference Rule

might have the form "If region R has

temperature T and precipitation P, then the

probability that species K can survive in R is

S" (see [5] for further detail). The ENM

GARP algorithm first assesses how well an

initial set of Inference Rules predict a part of

the Training Data. If the prediction satisfies

some prescribed Fitness Threshold, the

Inference Rules are then applied to Test

Data of interest, and the algorithm

terminates. If the Rules do not satisfy the

Fitness Threshold criteria, the Inference

Rules are automatically modified

("mutated") and again tested against a

portion of the Training Data. This process is

iterated until the Fitness Criteria are satisfied

or the number of iterations of the process

exceeds some pre-established maximum

(Max Iterations).

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 113

2.0 Method

The selection of WNV data for US-wide

ENM poses some interesting challenges:

 1. Because mild WNV disease in humans

has rather non-specific symptoms, it is

rarely reported.

 2. Because severe WNV disease occurs in

less than 1% of WNV infections, severe

WNV case data significantly under-samples

the WNV infection distribution.

 3. Mosquito and bird sampling has been

spatially and temporally irregular within and

across states.

 4. The only widely available WNV

infection data are typically aggregated at a

county level, which induces spatial

coarseness and irregularity in the sampling.

Because of (3) and (4), only WNV

presence-absence data (as opposed to

observed case-counts) were used in the

present study. Because of (3), a resolution

of 10 arc-minutes was selected for the

ecological variables considered in the study.

(This choice corresponds to roughly 0.1 of

the distance from the average county

centroid to its borders.)

The annual aggregated distribution of avian

WNV mortality by county in New York

state in 2000 was obtained from [2].

County coordinates (Internal Point Latitude

and Longitude, essentially a centroid) were

obtained from the US Census Gazetteer for

Year 2010 ([3]). Case-occurrences from [2]

were reduced to present|absent by county

(i.e., multiple cases in a single county were

counted as only one occurrence), yielding

one mortality-occurrence "case" in each of

58 counties. The resulting present|absent

distribution was then exported to an Excel

spreadsheet to produce a Desktop GARP

(DG; [1],[5])-compatible avian-mortality-

occurrence training data file.

The generic grids for "Mean Temperature",

"Annual Precipitation", and "Altitude",

~1950-2000, 10-arc-minute resolution were

downloaded from the WorldClim web site

([6]), then converted to ESRI/ASCII GIS

format using the Raster/Conversion function

of the Desktop QGIS ([7]) software.

Desktop GARP parameters were set as

follows: convergence threshold = 0.01,

maximum iterations = 10000, rules =

{Atomic, Range, Negated Range, and

Logistic Regression}, concurrently (see [5]

for definitions of these parameters). For

each of the seven non-empty subsets of the

monthly temperature and precipitation grids

for August, together with the altitude grid,

20 simulations were run under DG to project

the potential avian WNV mortality

distribution across the world; the best of

these, in the sense of the modified Receiver

Operating Characteristic described in [9]

was compared, at state-level resolution, with

the US human WNV distribution reported

in [10] for 2012.

All software was executed on a Dell

Inspiron 545 with an Intel Core2 Quad CPU

Q8200 clocked at 2.33 GHz, with 8.00 GB

RAM, under Windows Vista Home

Premium/SP2.

3.0 Results

The best prediction of the US distribution of

WNV avian mortality cases, in the sense of

the modified Receiver Operating

Characteristic described in [9], used only the

August mean temperature as an

environmental variable (all other

combinations of the variables described in

Section 2.0 produced worse results). Figure

2 shows this best prediction.

114 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Figure 2. Predicted potential distribution of avian WNV mortality (shown in medium grey

in the US) in North America, given the 2000 New York State county-level avian WNV

mortality distribution (58 total WNV-mortality-occurrences) and the WorldClim world

August mean monthly temperature ("tmean8"), 10-arc-minute resolution. The simulation

predicts that all 48 contiguous states have the potential for avian WNV mortality. Note the

absence of mortality predicted for the highest elevations of the Rocky Mountains and for

the driest/hottest parts of the US deserts. The training accuracy of this scenario is ~0.72;

the test accuracy, ~0.70.

Figure 3 shows the observed distribution of US human WNV disease as of early October 2012.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 115

Figure 3. Observed distribution of confirmed human WNV cases (shown in medium grey,

by county) in 2012 in the contiguous 48 US states as of 7 October 2012 (adapted from [10]).

All 48 contiguous states reported human WNV cases in 2012 ([8]).

The computation utilized ~25% of the CPU

and ~2 GB memory on the platform

described in Section 2.0, as measured on the

system monitor. The time to solution for

each of the seven setups described in

Section 2.0 on that platform was 5-30

minutes, depending on the list of

environmental variables ("layers" in ENM

jargon) in a setup. The time to solution

decreased as the number of environmental

variables increased.

4.0 Conclusions and discussion

If we posit that avian WNV mortality in a

state is sufficient to predict that a human

WNV case could occur in that state, the

analysis above suggests that ENM could

have predicted the potential presence or

absence, by state, of human WNV disease,

given the Year 2000 New York avian WNV

mortality presence|absence distribution by

county.

The method described in Section 2.0,

however, raises at least one serious

question. The spatial and temporal

sampling irregularities described in that

section could in principle give rise to nearly

arbitrary noise in the data, and consequently

induce arbitrary noise in the predictions.

At least one consideration helps to mitigate

this concern. The simulation produces the

observed distribution at state-level

resolution, and correctly predicts the

absence of WNV disease from the highest

elevations in the Rocky Mountains and the

hottest parts of the US deserts (the

temperatures and precipitation of these

regions lie well outside those of the training

data set).

5.0 Acknowledgements

This work benefited from discussions with

Town Peterson and Jorge Soberón of the

116 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

University of Kansas Biodiversity Institute

and with Desmond Foley of the

Smithsonian Institution. For any problems

that remain, I am solely responsible.

 6.0 References

[1] Pereira RS. Desktop Genetic Algorithm

for Rule-set Production (Desktop GARP)

v1.1.6.

http://www.nhm.ku.edu/desktopgarp/. 2004.

(Note: this software is no longer supported.

An implementation of the GARP algorithm

can be found in Reference [4].)

[2] New York State Department of Health.

2000 West Nile Virus Summary. WNV

Positive Test Results 01/01/2000 -

12/31/2000.

http://www.health.ny.gov/diseases/west_nile

_virus/update/2000/today.pdf.

[3] US Census Bureau.

http://www.census.gov/tiger/tms/gazetteer/c

ounty2k.txt. 2010.

[4] Muñoz MES, De Giovanni R, Sutton T,

Pereira RS, Ruland K, Brewer P, Jardim

AC, Yamamoto M, Bellini DJS, da Cunha

Rodrigues ES, Stanzani SL, Avilla AO, Lin

C-T, Oberender J, Elwertowski T, Yesson C,

and Bruy A. openModeller.

http://openmodeller.sourceforge.net/. Circa

2009.

[5] Stockwell DRB. Genetic algorithms II.

In A. H. Fielding, ed. Machine Learning

Methods for Ecological Applications.

Kluwer. 1999. pp. 123-133.

[6] WorldClim. Global Mean

Temperatures. ~1950-2000. Generic grid,

10-arc-minute resolution. URL

http://www.worldclim.org/current.

[7] The Quantum GIS Project. Desktop

QGIS v 1.8.0. URL http://www.qgis.org/.

2012.

[8] US Center for Disease Control. Division

of Vector-Borne Diseases. West Nile Virus.

URL

http://www.cdc.gov/ncidod/dvbid/westnile/i

ndex.htm. 2012.

[9] US National Library of Medicine.

PubMed Health. West Nile Virus. URL

http://www.ncbi.nlm.nih.gov/pubmedhealth/

PMH0004457/.

[9] Peterson AT, Papeş M, and Soberón J.

Rethinking receiver operating characteristic

analysis applications in ecological niche

modeling. Ecological Modeling 213 (2008),

63-72.

[10] US Geological Survey. West Nile

Virus 2012 disease map.

http://diseasemaps.usgs.gov/wnv_us_human

.html.

[11] Peterson AT, Soberón J, Pearson RG,

Anderson RP, Martínez-Meyer E, Nakamura

M, and Araújo MB. Ecological Niches and

Geographic Distributions. Princeton. 2011.

[12] Poli R, Langdon WB, and McPhee NF.

A Field Guide to Genetic Programming.

Lulu Enterprises. 2008.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 117

A Chaotic Genetic Algorithm for
Radio Spectrum Allocation

Olawale David Jegede, Ken Ferens, Witold Kinsner
Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
{jegedeo@cc.umanitoba.ca, Ken.Ferens@ad.umanitoba.ca, Witold.Kinsner@ad.umanitoba.ca}

Abstract—A Chaotic Genetic Algorithm (CGA) for Cognitive
Radio spectrum allocation procedure is presented. The
development of the Cognitive radio system puts emphasis on
the efficient utilization of spectrum for both primary and
secondary users. Secondary users make use of the spectrum
without degrading the quality of service of the primary
user(s). We assume that spectrum sensing has been done;
thus a secondary user can specify the Quality of Service
(QoS) requirements for a particular application at any given
time. A Genetic Algorithm is used for the spectrum
allocation. We have compared the performance of a
Traditional Genetic Algorithm (TGA) with the chaotic
counterpart. The simulation shows that the CGA converges
faster with better fitness than the TGA. The simulation has
been modeled using MATLAB.

Keywords— Cognitive Radio, Quality of Service, Genetic
Algorithm, Traditional Genetic Algorithm, Chaotic Genetic
Algorithm, Adaptive Genetic Algorithm.

 INTRODUCTION I.

In the past two decades, the use of wireless applications has
increased rapidly eventually leading to an increased demand
of bandwidth. This higher demand of bandwidth has resulted
in two main problems: spectrum scarcity and
underutilization. Cognitive Radio (CR) concept was
introduced to solve this problem. Cognitive radio involves
secondary users borrowing free spectrum not being used by
the primary users without degrading the quality of service of
the primary user’s communication. The CR therefore must
be able to sense available spectrum, establish and maintain
quality of service (QoS) requirements for user’s application,
meet service level agreement (SLA) and understand its own
operational capabilities such as radio parameters [1].

The underlying objective of this work is to use a chaotic
genetic algorithm (CGA) to implement a spectrum allocation
process in which decisions to assign a spectrum are made
according to the radio user’s QoS requirements. Genetic
algorithm (GA) is a subset of evolutionary algorithms that
models biological processes to optimize highly complex
functions. A GA allows a population composed of many

individuals to evolve under specified selection rules to a
state that maximizes the “fitness” (i.e. minimize the
objective function). The main advantage of using GA over
other stochastic techniques is its parallelism, which speeds
up the simulation results leading to faster convergence. It is
important that a solution is found in good time because time
plays an important role in real time applications especially
for a CR. Some other significant advantages of using of the
GA include its ability to deal with a large number of
variables [1]. While GA can provide a single solution, it can
also provide a list of optimum solutions; this is particularly
good for multi-objective problems. Continuous or discrete
variables can be optimized with the GA and it can also
encode variable so that the optimization is done with the
encoded variables. Moreover, genetic algorithms are less
likely to get stuck in local minima owing to its crossover and
mutation processes. Therefore, it is a suitable approach to
the spectrum allocation problem. For the purpose of
distinguishing between a chaotic genetic algorithm and a
typical GA, the typical GA will be referred to as traditional
genetic algorithm (TGA).

Traditional Genetic Algorithms use a random process to
generate parameter values for the selection, crossover and
mutation processes. Random number generators are
designed to result in either uniform distributions or Gaussian
distributions [2]. We conjecture that selection, crossover and
mutation in genetics are driven by a random non-linear
dynamics process rather than a random process. Therefore in
the spectrum allocation process, a chaotic logistic map is
incorporated into the initial population generation as well as
in the crossover and mutation processes of TGA. We have
compared results obtained through the chaotic process with
that obtained using the traditional genetic algorithm process.
A coupled chaotic genetic algorithm (CGA) strategy is
therefore proposed [3].

Chaotic phenomena, which exists in nonlinear systems is an
irregular motion, seemingly unpredictable random behavior
under deterministic conditions [4]. Introducing chaos into
the whole process of a traditional genetic algorithm may
help improve convergence time and accuracy. The CGA
takes full advantage of the chaotic characteristics of the

118 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

logistic map. The logistic chaotic map was used in the
following processes of the GA: population generation,
crossover and mutation. The chaotic iterative generates
variables with unique probability distributions that are
different from typical uniform or Gaussian distributions, and
may be better suited for specific problems [4]. The algorithm
runs crossover and mutation simultaneously thus reducing
the run time and reduce the computational complexity of the
TGA. Simulation was implemented in MATLAB to compare
the results obtained for CGA and TGA.

The remaining sections of this paper are organised as
follows. Section 2 presents related work in the application of
TGA and CGA to similar spectrum allocation problem. The
contribution of this work is stated hereafter. Section 3
discusses the cognitive radio technology and the spectrum
allocation optimization problem to which we have applied
the CGA algorithm. Section 4 describes the TGA approach
to the spectrum allocation problem. We then describe the
proposed CGA approach used for the spectrum allocation
problem. In Section 5, we have compared the results
obtained using the TGA to the ones obtained with the CGA.
Conclusion is given in Section 6.

 RELATED WORK II.

Genetic Algorithm has been applied to spectrum
optimization in cognitive radio networks. Siddique and
Azam [1] applied GA to optimize spectrum allocation where
a secondary user specifies the QoS and the GA is then used
for the spectrum allocation. Kaur et al [5] also proposed an
Adaptive Genetic Algorithm (AGA) to optimize QoS
parameters in a cognitive radio. The AGA is such that,
unlike the TGA that uses a constant crossover and mutation
rates throughout the evolution process (iterations), it allows
different crossover and mutation rates so that the algorithms
can transverse different directions in the search space. This
ensures improved performance as well as represents a
response to the cognitive radio’s need to adapt to a changing
environment. Yun-Xiao et al [3] introduced Chaos into GA
processes and applied it to Cognitive radio resource
allocation. The coupled CGA succeeded in reducing the total
transmission power, bit error rate, and convergence speed in
the cognitive system compared to the simple GA (TGA) and
dynamic allocation algorithm. Min-Yuan and Kuo-Yu [4]
also proposed K-means clustering and Chaos Genetic
(KCGA) for Non-linear optimization. The KCGA was
shown to enhance the diversity of the GA as well as improve
on the limitations of the TGA in terms of convergence time
and local optima. The KCGA has an improved accuracy and
faster convergence time compared to the TGA. There are
several papers [2] [6] [7] [8] that have applied chaos to other
stochastic methods for different applications. The work
presented in this paper integrates chaos into the processes of
genetic algorithm for the purpose of spectrum allocation
using the QoS requirements of the secondary user and the

sensed spectrum environment. We have used chaotic
sequence to generate the initial population and also
incorporate chaos into the crossover and mutation processes.

 COGNITIVE RADIO SPECTRUM ALLOCATION III.

Cognitive radio (CR) was developed to meet the increasing
demands of QoS in wireless communications [9]. The QoS
of a network application can be defined as “the set of
quantitative and qualitative characteristics of the
communication system required to achieve desired
functionality of that application” [10]. A CR has been
defined as a radio that understands the context in which it
finds itself and as a result can tailor the communication
process in line with that understanding [11]. The focal
objective of CR is to address the underutilization of the
electromagnetic (EM) spectrum to meets today’s increased
needs in wireless communications. A CR can also recognize
the radio environment, can predict the future events, and can
learn from previous behaviors. Thus, the main cognition
capabilities of the CR are learning, sensing, awareness and
reasoning. A cognitive radio works in a cycle i.e. observe
(learning and sensing the environment), decide and act [11].
The observed results in the environment are given as input to
the CR and a decision is made on the basis of a mechanism
and finally an action will be taken as to allocation of
spectrum. We have chosen GA as the mechanism for the
spectrum allocation. The process of making a decision is
seen to be the “heart of the cognitive radios”. The set of
choices for our application represents QoS parameters. The
process involved in selecting the best ‘choice’ from the list
of available choices (search space) in order to reach some
kind of goal that is very near as possible to the optimal goal
is an “optimization process”.

We assume that the possible number of secondary users is
finite and the spectrum resources (QoS) will always be
countable, therefore our problem becomes that of
combinatorial optimization. A combinatorial optimization
problem will always have an objective function and a
solution space. The solution space for our problem is a set of
parameters of the QoS. The objective function is the
difference between the available QoS parameters and that
requested by the secondary user. The closer this difference is
to zero, the closer the optimization process is to optimality.
The goal of the combinatorial optimization problem in this
work is to find optimal spectrum allocation for CR
secondary users in a very short time without degrading the
quality of service of the primary user’s communication. It
has been proven that the problem of finding the optimal
spectrum allocation to CR users is NP-complete [12] [13]
[14]. Heuristics approach can be used to solve NP-complete
problems because they produce quickly enough a good
solution the problem. There are several heuristics available,
and we have chosen the genetic algorithm because it is faster

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 119

than most other heuristics and it is equally less likely to get
stuck in local minima compared to other heuristics.

A Secondary user (SU) specifies QoS requirements (values)
and transmits it to the CR; the CR has sensed information
about the whole radio environment. This sensed information
represents a pool of available solutions for spectrum
allocation for the secondary user, and from this pool the
initial population for the GA can be selected randomly. After
selecting the initial population, spectrum allocation decision
takes place following certain genetic algorithm processes
discussed in section 4. We have considered five radio
frequency (RF) QoS parameters; they are: data rate, signal
power, bit error rate, operating frequency and modulation
technique. The QoS requirements of the application are
compared with several available solutions in the pool and
then the best possible optimized solution is to be taken. In
this work, we have used the objective function developed by
Siddique and Azam [1] to analyse the performance of the
proposed CGA.

 SPECTRUM ALLOCATION OPTIMIZATION IV.
SOLUTION

In this section we describe how the traditional GA algorithm
can be applied to find an optimal solution to the optimization
problem. Then the CGA is described and applied to the
problem.

The TGA and CGA starts with a randomly generated set of
solutions (initial population) each of which represents a
possible solution to the allocation problem. The objective
function in equation (1) is used to test for the fitness of each
of the possible solutions. In GA terms, a possible solution is
also called a chromosome. For a multi-objective problem,
each of the objectives is known as ‘gene’ in GA terms.
Therefore the GA chromosome for this problem will have
five genes, each gene representing each of the five RF
parameters. The GA procedure applied to the spectrum
allocation problem is shown in Table 1.

Table 1. Genetic Algorithm.
Step Action

1
Generate a random initial population of n solutions,
where n is the population size.

2
Evaluate the fitness of each of the solutions in the
initial population.

3 Generate new populations using processes steps 4-6.

4
Selects two solutions among the current population
using the roulette wheel method based on fitness of
each solution.

5
Crossover the two selected solutions considering the
crossover probability, to form new solutions for the
next generation.

6
Mutate the new solution at each defined mutation
point, considering the mutation probability and place

it in the new population.

7
Evaluate the fitness of each of the solutions in the
new population.

8
Repeat steps 3-7 until the stopping criteria have
been met.

Chromosome Structure

The five radio parameters to be optimized are arranged in the
following order (Table 2). We have used the same
simulation parameters as in [1] because we will be
comparing their TGA with our proposed CGA. Each of the
radio parameters are described in the following section.

Table 2. Chromosome Structure.
Data
Rate

Signal
Power

Bit Error
Rate

Operating
Frequency

Modulation
Technique

Data Rate

The Data Rate, measured in bps, is the first gene of the
chromosome; we choose a range from 0-2M bps with a step
size of 125 kpbs. This implies that we have 16 decimal
values from 0 – 15 where ‘0’ is assigned to the 1st data rate
band (0-125 kpbs), ‘1’ to the 2nd data rate band (126-250
kbps) etc., (Table 3).

Table 3. Data Rate Gene.
Index 0 1 2 . . . 15
Data
Rate

0-
125kbps

126-
250Kbps

251 – 275
Kbps

. . .
1.876–2.000

Mbps

Signal Power

This is the specific power range that permits users to
communicate without any error; it boosts the probability of
successful communication. It is the second gene of the
chromosome. In like manner, we have chosen Signal Power
ranging from -31dBm to 31dBm, step size of 1dBm resulting
into 63 decimal values from 0 – 62 required for chromosome
representation. This is shown in Table 4.

Table 4. Signal Power Gene.
Index 0 1 2 . . . 62
Power -31 dBm -30 dBm -29 dBm . . . 31dBm

Bit Error Rate

This is the third gene of the chromosome. It stands for the bit
error rate (BER) which is the number of bit errors divided by
the total number of transferred bits during a studied time
interval. It ranges from 10-1 to 10-16, step size of 10-1

120 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

resulting into 16 decimal values required for chromosome
representation. This is shown in Table 8.

Table 5. Bit Error Rate Gene.
Index 0 1 2 . . . 15
Bit Error Rate 10-1 10-2 10-3 . . . 10-16

Operating Frequency

This is the fourth gene of the chromosome. It is the specific
frequency at which information is transmitted and received.
It ranges from 0-20MHz with a step size of 40 KHz
producing 500 frequencies resulting in decimal values
representation from 0 to 499. This is shown in Table 6.

Table 6. Operating Frequency Gene.
Index 0 1 2 . . . 499

Operating
Frequency

0-40
KHz

41-
80KHz

81-
120KHz

. . .
19.9 –

20MHz

Modulation Technique

This is the fifth gene in the chromosome. It is the process of
varying one or more properties of a high-frequency periodic
waveform, called the carrier signal, with a modulating signal
which typically contains information to be transmitted. Eight
Modulation Techniques have been considered and their
equivalent decimal values range from 0 to 7 in the following
order in which they are listed in Table 7. The values of the
respective parameters above have been coded in decimal for
the purpose of initial population generation, selection and
crossover.

Table 7. Modulation Technique Gene.
Modulation Technique Decimal Value
BPSK 0
QPSK 1
GMSK 2
16 QAM 3
DPSK 4
MSK 5
OFDM 6
OOK 7

However, mutation process requires the binary form of any
value encoding adopted. Therefore each of the genes to be
mutated will need to be represented in their binary form.
Table 8 shows the configuration of the chromosome in
decimal and the number of bits used for the binary
representation of each of the genes.

Table 8. Chromosome Configuration.
Gene
No.

Gene Decimal
Values

Number
of Bits

1 Date Rate 0 – 15 4
2 Signal Power 0 – 62 6
3 Error Rate 0 – 15 4
4 Frequency Band 0 – 499 9
5 Modulation

Technique
0 – 8 3

A pseudorandom initial population of 100 chromosomes was
generated with a GA breeding rate of 50 generations. In
formulating the fitness function (objective function) used in
the algorithm, [1] considered the magnitude of the difference
between the values of each parameter (or gene) that is
requested by the user (QoS) and the corresponding values of
the parameter available in the solution search space.

௙ܩ ൌ หܩ௚௘௡ െ ௦௨หܩ
௚௘௡ܩ ൌ randomly generated	gene
௦௨ܩ ൌ secondary user`s QoS	requested	gene

(1)

The fitness function is derived in such a way that it
minimizes the chances of the selection of the most terrible
chromosomes for the next generation of population. Notably
this work also considers the number of bits used to represent
each gene in the chromosome as part of the fitness measure
of each of the gene.

The number of bits used to represent each of the genes is
termed the Weight of the gene denoted by ‘GW’. The weight
of the gene is represented by GW1, GW2, GW3, GW4 and
GW5 for the date rate (2a), the signal power (2b), the error
rate (2c), the operating frequency (2d) and the modulation
technique (2e), respectively. The detailed weight for each
gene represents the percentage ratio of the number of bits
used to represent each gene to the total bits (26) of the
chromosomes.

GW1 ൌ ሺ4 26ሻ 	∗ 100	%⁄ 	
	

(2a)

GW2 ൌ ሺ6 26ሻ 	∗ 100	%⁄ 	
	

(2b)

GW3 ൌ ሺ4 26ሻ 	∗ 100	%⁄ 	
	

(2c)

GW4 ൌ ሺ9 26ሻ 	∗ 100	%⁄ 	
	

(2d)

GW5 ൌ ሺ3 26ሻ 	∗ 100	%⁄ 	 (2e)

Another important constant used in calculating the fitness
measure is a fitness point (FP). This FP will have an integer
value within the range defined for each gene in their
respective decimal representation part. This value is purely
the developers own choice. The FP is meant to limit the
search process of the algorithm on both side of the required
gene decimal value range. In Fitness Measure equations for
each gene these fitness points are represented by FP1, FP2,

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 121

FP3, FP4 and FP5 for the date rate, the signal power, the
error rate, the operating frequency and the modulation
technique respectively with chosen values being 6, 20, 7, 20
and 1 respectively. If we denote the fitness measure of a
gene as ݂݉, then ݂݉ can be given as in (3a) and (3b).

݂݉	 ൌ 	 ൣ൫ܹܩ	 ∗ 	ܲܨ	ݎ݋݂	௙൯൧ܩ	 ൐ ሺ1ሻ (3a)

݂݉	 ൌ 	 ሾܹܩሿ	݂ݎ݋	ܲܨ	 ൑ ሺ1ሻ (3b)

The total fitness of the chromosome ݂ܶ݉ is then calculated
by summing up all the fitness of each of the genes and then
subtracting from 100. The ݂ܶ݉ is given in (4) and the
aggregated weighted sum of each of the gene ݂݉௔௪௦ is
given by (5).

݂ܶ݉ ൌ 100 െ	݂݉௔௪௦

 (4)

݂݉௔௪௦ ൌ 	݂݉ௗ௥ ൅	݂݉௣ ൅	݂݉௕௘௥ ൅	݂݉௙௕ ൅	݂݉௠௦

(5)

݂݉௔௪௦ is the aggregated weighted sum of each parameter’s
fitness. ݂݉ௗ௥ is the fitness measure of the data rate
parameter. ݂݉௣ is the fitness measure of the signal power
parameter.	݂݉௕௘௥ is the fitness measure of the bit error rate
parameter.	݂݉௙௕ is the fitness measure of the frequency
band parameter.	݂݉௠௦ is the fitness measure of the
modulation scheme parameter. The lower the value of the
݂݉௔௪௦, the higher the fitness measure of the chromosome.

Elitism method of selection was used to copy the best fit set
of chromosomes from one generation to another without
altering the genes. The roulette wheel method of selection
was used to choose the two chromosomes that will be
crossed-over. The roulette wheel was chosen because the
probability of any chromosome being chosen for crossover
is directly proportional to its relative fitness with respect to
the total sum of fitness of the complete chromosome
population. GA uses crossover and mutation processes to
generate new population. Crossover involves the exchange
of genes between two chromosomes. This allows for
diversity within the solution as well as prevents the GA from
getting stuck in local minima. Two point crossover
technique and a crossover rate of 0.9 was employed as
proposed by Hasancebi and Erbatur [15]. Mutation is a
genetic operator used to maintain genetic diversity from one
generation of a population of algorithm chromosomes to the
next. It alters one or more gene values in a chromosome
from its initial state. Mutation is applied on genes of the
child after crossover, altering a binary bit of 0 to 1 or vice
versa [16]. In mutation, the solution may change entirely
from the previous solution. Hence GA can come to better
solution by using mutation. Mutation occurs during
evolution according to a user-definable mutation probability.
This probability should be set as low as possible. If it is set
too high, the search will turn into a primitive random search.

We have used a mutation rate of 2%. The chromosomes are
converted to binary form for the purpose of mutation and
converted back after mutation is done. The stopping criteria
used is the number of generations which was set at 50.

Chaotic GA (CGA) Method

Chaos refers to apparent randomness (but definitely not true
randomness), or irregularity, or unpredictability that arises in
deterministic dynamical systems [17]. According to Kinsner
[17], the properties of a chaotic system that provide
additional benefits over randomly generated solutions are
sensitivity to initial conditions, topological density and
topological transitivity. These ensure that CGA is able to
explore the entire solution space. The initial population of
size N was generated using the coupled logistic chaotic
sequence. The elitism method of selection is used to ensure
that best fit n chromosomes are copied to the next
generation. The decisions as to which of the genes to be
crossed over and mutated of the remaining N-n
chromosomes are also taken using a chaotic sequence. The
results obtained from this procedure are explained in Section
V. The important steps in the CGA include: establishing the
logistic chaotic sequences, using the sequence to initialise
population, using the chaotic sequences to run crossover and
mutation. The behavior of any chaotic systems is governed
by deterministic equations. Chaotic systems have a sense of
order or pattern even though they appear to be disorderly.
The first chaotic system can be produced by the well-known
one-dimensional logistic map which is defined in (6) as:

௞ାଵݖ ൌ ௞ሺ1ݖߤ െ μ	for						௞ሻݖ ൌ 4 (6)

The ݖ௞ represents the value of the variable z at the kth
iteration; ݖ௞ is in the interval [0,1]; and μ is a so-called
bifurcation parameter of the system. We have employed a
new chaotic map proposed by Mingjun and Huanwen [7]
because it has a better probability distribution. This new
chaotic map is defined in (7) as:

௞ାଵݖ ൌ ௞ݖߟ െ ௞ሻ݁ିଷ௭ೖݖߛሺ݄݊ܽݐ2
మ
 (7)

 η=0.9, γ=5.

For 100,000 points (solutions), the probability distribution of
the solutions generated by the logistic map is shown in Fig.
1 below, while that for the new chaotic map is shown in Fig.
2. A GA combined with chaotic operator has several
advantages such as large solution search space, reduced
similarity among individual solution and fast convergence
speed [3]. As explained by Mingjun and Huanwen [7], the
logistic map of Fig. 1 shows a lot of the points on the
distribution are near the edges, meaning that it can escape
local minima although it is difficult to seek for the global
optimum solution. Figure 2 shows that point distribution of
the new chaotic map is similar to uniform distribution with

122 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

two peaks near -0.8 and 0.8. This means that the new chaotic
map has the ability to escape local optimum as well as
converge to the global optimum at the same time. This is the
motivation for using the new chaotic map. We observe that
for an initial population size of 5000 there is a significance
difference pictorially between the ones generated using the
new chaotic map shown by Fig. 3 compared to those
generated using the pseudo-random process shown in Fig. 4.

 Probability distribution of Logistic map. Fig. 1

 Probability distribution of new chaotic map. Fig. 2

 EXPERIMENTAL RESULTS V.

Simulation was done in MATLAB in order to compare the
performance of the CGA against the TGA. We have used the
same GA parameters and secondary user`s QoS requirement
used by Siddique and Azam [1]. Table 9 shows the GA
parameters while Table 10 represents the secondary user`s
QoS requirements. The algorithm was run ten times and the
results (fitness) obtained are shown in Table 11 and plotted
in Fig. 5.

 Initial population with new chaotic map. Fig. 3

 Initial population with random generator. Fig. 4

 Total Fitness Measure of Resultant Chromosome. Fig. 5

The result shows that every time the algorithm is run, the
results generated by the CGA is more stable compared to the
TGA. The TGA has high swings and large variability in the

-1 -0.5 0 0.5 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

-2 -1 0 1 2
0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000
-1.5

-1

-0.5

0

0.5

1

1.5

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
70

75

80

85

90

95

100

T
ot

al
 F

itn
es

s
(%

)

Chromosomes

TGA
CGA

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 123

outputted allocated spectrum; this can be attributed to the
non-deterministic nature of the solution space otherwise
known as “random walk”. We observe that even though at
certain times (in the third and eight runs), the TGA gives a
better result compared to the CGA, yet the average fitness
measure of the results generated by the CGA over the 10
runs is 90.6 whereas that of the TGA is 84.5. In real life
scenario, there is need for stability and consistency in the
performance of the CR as against randomness; thus the CGA
is more suitable than the TGA. Fig. 6 shows the average
fitness of the CGA and TGA with increase in generation
from 40 to 100. It is observed that the CGA has higher
average fitness compared to the TGA. This can be attributed
to the chaotic map incorporated into the algorithm which has
been reported to aid the speed of convergence as reported in
section 2 of this work. Fig. 7 shows the performance of the
algorithms with increased population size. The result shows
that the average fitness of the TGA increases when the
population size was between 100 and 200 but then decreases
with population size beyond 200. This can be attributed to an
increase in the probability of point’s intersection typical of a
random walk as the solution space increases, thus slowing
down the momentum of the GA towards optimality. On the
other hand, the CGA has stable and averagely increasing
fitness as the population increases from 100 to 500. This can
be attributed to the non-intersection of points in a chaotic
walk; thus galvanising the GA towards optimality.

 Fitness Measure per Generation. Fig. 6

 Average Fitness Measure with Increasing Fig. 7
Population.

Table 9. GA parameters.
Genetic Parameters Predetermined Value
Population Size 100
Number of Generations 50
Crossover Rate 0.9
Mutation Rate 0.02

Table 10. User QoS requirements.

Data
Rate

Signal
Power

Bit Error
Rate

Operating
Frequency

Modulation
Technique

6 30 6 300 4

Table 11. Resultant QoS fitness Measures.
Results (%) TGA Fitness (%) CGA Fitness (%)

R1 82 88
R2 79 86
R3 93 89
R4 74 90
R5 79 86
R6 82 89
R7 81 94
R8 98 91
R9 90 93
R10 88 95

 CONCLUSIONS AND FUTURE WORK VI.

A Chaotic genetic algorithm was developed and used to find
good solutions to the radio spectrum allocation problem. The
CGA is based on the new chaotic map proposed by Mingjun
and Huanwen [7] because it has a better distribution
compared to the logistic map. The new chaotic map has the

40 50 60 70 80 90 100

85

86

87

88

89

90

91

92

T
o

ta
l F

itn
e

ss
 (

%
)

Generation

TGA
CGA

100 150 200 250 300 350 400 450 500
82

84

86

88

90

92

A
ve

ra
g

e
 F

itn
e

ss
 (

%
)

Population Size

TGA
CGA

124 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

ability to escape local optimum and converge to the global
optimum simultaneously unlike the logistic map. The
chaotic sequences generated by this map were used to
generate the initial population of the solution space and to
run the crossover and mutation processes of the genetic
algorithm. The experimental results showed that the CGA
gives a stable and better result compared to the TGA for the
spectrum allocation problem. For future work, an adaptive
adjustment of the algorithm parameters (crossover and
mutation rate) proposed by Yun-Xiao [3], can be
implemented in order to reduce the vector distance between
individual solutions. This should further reduce the
convergence time for our proposed CGA.

REFERENCES

[1] T. Siddique and A. Azam, "Spectrum Optimization in
Cognitive Radio Networks Using Genetic Algorithms,"
Blenkinge Institute of Technology, Sweden, 2010.

[2] D. Cook, K. Ferens and W. Kinsner, "Application of
Chaotic Simulated Annealing in the Optimization of
Task Allocation in a Multiprocessing System," in IEEE
International Conference on Cognitive Informatics and
Cognitive Computing, 2013.

[3] Z. Yun-Xiao, Z. Jie and Z. Chang-Chang, "Cognitive
Radio Resource Allocation based on Coupled Chaotic
Genetic Algorithm," in IOP Science Chinese Physics B,
2010.

[4] C. Min-Yuan and H. Kuo-Yu, "K-Means Clustering and
Chaos Genetic Algorithm for Nonlinear Optimization,"
in The International Symposium on Automation and
Robotics in Construction (ISARC), 2009.

[5] M. Kaur and M. Uddin, "Optimization of QoS
Parameters in Cognitive Radio Using Adaptive Genetic
Algorithm," International Journal of Next-Generation
Networks (IJNGN), vol. 4, no. 2, pp. 1-15, 2012.

[6] D. Shaw and W. Kinsner, "Chaotic simulated annealing
in multilayer feedforward networks," in Canadian
Conference on Electrical and Computer Engineering,
1996.

[7] J. Mingjun and T. Huanwen, "Application of chaos in
simulated annealing," vol. 21, no. 4, pp. 931-944, 2004.

[8] H. Meng, P. Zheng, R. Wu, X. Hao and Z. Xie, "A
Hybrid Particle Swarm Algorithm with Embedded
Chaotic Search," in IEEE Conference on Cybernetics
and Intelligent Systems, 2004.

[9] F. Bruce, "Introducing Adaptive, Aware, and Cognitive
Radios," in Cognitive Radio, Software Defined Radio,
and Adaptive Wireless Systems, Springer, 2007, pp. 1-
16.

[10] A. Vogel, B. Kerherve, G. von Bochmann and J.
Gecsei, "Distributed Multimedia and QoS: A Survey,"
in IEEE Multimedia 2, 1995.

[11] D. Linda, Essentials of Cognitive Radio, New York:
Cambridge University Press, 2009.

[12] F. Wu and N. Vaidya, "SMALL: A Strategy-Proof
Mechanism for Radio Spectrum Allocation," in IEEE
International Conference on Computer
Communications, 2011.

[13] D. Cox and D. Reudink, "Dynamic channel assignment
in high capacity mobile communication system," Bell
System Technical Journal, vol. 50, no. 6, p. 1833–1857,
1971.

[14] W. Yue, "Analytical methods to calculate the
performance of a cellular mobile radio communication
system with hybrid channel assignment," IEEE
transactions on vehicular technology, vol. 40, no. 2, p.
453–460, 1991.

[15] O. Hasancebi and F. Erbatur, "Evaluation of crossover
techniques in genetic algorithm based optimum
structural design," Computer and Structures (Elsevier)
78, p. 435 – 448, 2000.

[16] C. Reeves and J. Rowe, Genetic Algorithms: Principles
and Perspectives A Guide to GA Theory, AA
Dordrecht: Kluwer Academic Publishers, 2003.

[17] W. Kinsner, "Fractal and chaos engineering," Dept.
Electrical and Computer Eng., Univ. Manitoba,
Winnipeg,, 2010.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 125

A Genetic Algorithm for Node Localization in
Wireless Sensor Networks

Olawale David Jegede, Ken Ferens
Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada

Ken.Ferens@ad.umanitoba.ca

Abstract— A wireless sensor network is a collection of nodes
organised in into a cooperative network. Knowing the
locations of the wireless sensor nodes is central to accurate
information gathering. Conventional location detection
technique such as global positioning system (GPS) and
infrared are expensive to deploy. This paper proposes the
use of a genetic algorithm (GA) to learn the environment
impairments within a wireless sensor network for the
purpose of localization for data management. For each
coordinate in the grid network area, random perturbations
of received signal strength (RSS) were supplied to the GA.
The GA is able to learn the environment and reduce the
possible errors inherent in the RSSI measurement taken per
coordinate. Our simulation modeled in MATLAB shows that
the GA can achieve acceptable node location detection with
the aid of three anchors.

Keywords— Wireless Sensor Networks, Genetic Algorithm,
Received Signal Strength, Global Positioning System.

 INTRODUCTION I.

A Wireless Sensor Network (WSN) is simply a
collection of devices organized into a cooperative network.
It is a network consisting of spatially distributed autonomous
devices that use sensors to monitor physical or
environmental conditions. Node localization has been a topic
of active research in recent years. Accurate network self-
localization capability is highly desirable in wireless sensor
network [1]. Each device within the WSN consists of
processing capability (one or more microcontrollers, CPUs
or DSP chips), may contain multiple types of memory
(program, data and flash memories), have a RF transceiver
(usually with a single omni-directional antenna), have a
power source (e.g., batteries), and accommodate various
sensors and actuators. The devices can communicate with
their neighbours within a limited radio range, and by
relaying information to each other, they can transmit signals
to anywhere within the network. WSNs are potentially
important enablers for many applications in areas such as
military, environment or industrial control and monitoring,
telecommunications, security monitoring etc. A common
location detection technique is the use of the global

positioning system (GPS). The GPS is a satellite navigation
system based. GPS provides accurate location information
and can be installed in wireless sensor network nodes so that
each node can locate itself and be able to report its location.
However, installing GPS on every node in a WSN system
with large number of nodes is expensive. Therefore there is a
need to explore cheaper means of locating sensor nodes. One
way is to install GPS on a few sensor nodes which are
generally regarded as anchor nodes. Typically, the anchor
nodes in a network should be at least 3 or more. Then each
of the remaining sensor nodes in the network can then find
their coordinate in the network by triangulating around the
anchor nodes. Triangulation can be done using either range-
free or range-based algorithm [2]. A range-free algorithm
does not measure absolute distance between nodes but it
acquires location information by using estimated distance
between nodes [3]. Range-free algorithm includes DV-hop
[4], APIT [2] and so on. The performance of the range-free
algorithm decreases with increasing sensor nodes. A range-
based algorithm however uses the actual distance measured
between the anchor nodes and the sensor nodes to calculate
the position of the unknown nodes [3]. The methods used for
the range-based algorithm includes RSS, Angle of Arrival
(AOA), Time Difference of Arrival (TDOA), and Time of
Arrival (TOA). Range-based algorithm is more accurate than
the range-free algorithm. However, to deploy range-based
algorithm requires additional hardware which makes it more
expensive especially in large sensor networks. In this work
our localization algorithm is based on the received signal
strength. We have used GA to estimate the accurate location
using the received signal strength. The set of received signal
strengths received per sensor position is fed into our
proposed GA. The GA uses the Euclidean distance objective
function to find the accurate position of the sensor nodes.

The remaining sections of this paper are organised as
follows. Section 2 represents related work on wireless sensor
network localization methods and our contribution to this
work. Section 3 discusses the GA approach to the
localization problem and methodology. In Section 4, we
have discussed the simulation and results obtained using
genetic algorithm. Section 5 concludes the paper and gives
future work.

126 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

 RELATED WORK II.

There have been several approaches to the localization of
sensor nodes in a WSN including range-free and range-
based algorithm. Our optimization algorithm is range-based
because range-based algorithm is more accurate than the
range-free algorithm. The methods used for the range-based
algorithm includes RSS, Angle of Arrival (AOA), Time
Difference of Arrival (TDOA), and Time of Arrival (TOA).
Compared to the other methods, RSS-based ranging method
can be a cheap alternative. Therefore our algorithm is RSS-
based. Ash and Moses [5] evaluated the feasibility and
quality of self-localization that can be obtained using
received signal strength measurements from array of
directional antennas on each sensor node. The results were
found to be favourable when benchmarked against the
Cramer-Rao bound. Goldoni et al [6] used RSS range-based
localization methods in low power IEEE 802.15.4 WSN to
obtain positioning information. The algorithms used were
trilateration, min-max and the maximum-likelihood. The
results obtained were not without considerable errors. In
general the localization problem NP-hard [7]. It is important
that location of sensor nodes is done in quick time especially
very sensitive applications such as military operations.
Stochastic processes have been aplied to reduce the
computational time to locate sensor nodes. Simulated
Annealing [8], Artificial Neural Network [9], Particle
Swarm Optimization [10], and Ant Colony Optimization
[11] are among other approaches that have been used for the
localization problem. However, these techniques can easily
get stuck in local minima. This is why we have approached
the problem using Genetic Algorithm. Zhang et al [1] and Li
and Zhou [3] have proposed the GA for this problem. Zhang
et al [1] reported a better performance compared to the
gradient search localization (SPDL) while Li and Zhou [3]
reported a better performance compared to the range-free
DV-hop approach. However it is unclear what range-based
method was used to obtain the euclidean distance of the
unknown nodes position in the network. As stated earlier, we
have used the RSS as a measure to obtain sensor node
position in the network.

 GA APPROACH III.

The approach we have used is the RSS-based method of
localization. The RSS obtained from a next-hop sensor node
is used to determine the location of the sensor node. In our
own case we make use of a one-hop connection where a
sensor node is directly connected to each of the anchor
nodes. Since the sensor nodes are within transmission range
of each of the anchors, the signal strength of the sensor
nodes received at each of the anchor is used to find the
coordinate of the sensor node in the network. There is a
relationship between the transmit power of the sensor nodes
and the RSS at the anchor nodes. This is estimated as
contained in [12]:

ܴܵܵሺ݀ሻ ൌ 10݊ log
݀଴
݀
൅ 1ሻ) ܣ

A is the RSS at distance d0 from the transmitter; d0 is the
reference distance (usually 1m away from the transmitter);
and d is the distance of each sensor node to each anchor. We
solve (1) for d.

We consider that our sensor network has a total of r
sensors, comprising of k anchor nodes with known locations
and r-k sensor nodes with an unknown locations. Since we
have r-k sensor positions with unknown coordinates, we
move a sensor around in each of the r-k positions and
capture several readings of each the signal strength at each
of the r-k positions. Based on the RSS, let the estimated
distances of the mobile sensor node from each of the r-k
positions to the anchor nodes be given by (2):

݀௜, ௜ୀଵ	௧௢	௥ି௞ (2)

If the absolute positions of the mobile sensor node in the
grid are (xi, yi), i=1 to r-k and the positions of the anchor
nodes in the network is given by (Xj, Yj), j=1 to k, then the
Euclidean distance between the mobile sensor node and any
of the anchor nodes is given by (3):

௜௝ܦ ൌ ටሺ ௝ܺ െ ௜ሻଶݔ ൅	ሺ ௝ܻ െ 	௜ሻଶݕ

 (3)

The objective function is primarily to minimize the

difference between the actual and estimated distance
between the anchor node and the mobile sensor node at each
r-k positions. Therefore, we can formulate the objective
function as given by (4).

෍෍൫ܦ௜௝ െ ݀௜௝൯
ଶ

௥ି௞

௜ୀଵ

௞

௝ୀଵ

 (4)

Motivation for using Genetic Algorithms (GA)

Since the problem formulation in (1) has been regarded
as an NP-Hard [7], we are using the genetic algorithm to
optimize the objective function. For this problem it is
imperative that we get the desired solution (location) within
a very short time. This is the motivation for proposing GA to
solve this problem. GAs can explore large solution space in
multiple directions, a feature which accounts for its speed.
GAs can also strike a perfect balance between the global
optimum and many local optima. Genetic Algorithms (GAs)
are adaptive heuristic search algorithm based on the
evolutionary ideas of natural selection and genetics. They
represent an intelligent exploitation of a random search used
to solve optimization problems. GAs, although randomized,
exploit historical information to direct the search into the
region of better performance within the search space. It has

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 127

been successfully applied in many search, optimization, and
machine learning problem as discussed in section 2.

For this problem, every possible location in the network
represents a possible solution which in GA term is known as
a chromosome and the set of chromosomes for each grid
point is designated as the population for that grid point.
Since for each grid point(locations) we have the x and y
coordinate, our chromosome therefore is made up of two
genes, one for the x axis the other for the y axis. The GA
procedure applied to the localization problem is as shown in
Table 1.

Table 1. Genetic Algorithm.

Step Action

1
Generate a random initial population of n
chromosomes, where n is the population size.

2
Evaluate the fitness of each of the chromosomes in the
initial population

3 Generate new populations using processes in steps 4-6

4
Selects two chromosomes among the current
population using the roulette wheel method based on
fitness of each solution.

5
Crossover the two selected chromosomes considering
the crossover probability, to form the off springs for
the next generation

6
Mutate the new offspring at each defined mutation
point, considering the mutation probability and place
it in the new population.

7
Evaluate the fitness of each of the chromosomes in the
new population

8
Repeat steps 3-7 until the stopping criteria have been
met.

Standard GA applies genetic operators such as Selection,

Crossover and Mutation on an initially random population in
order to compute a whole generation of new strings. The
first phase of the GA is to generate a population of
individuals (chromosomes), after which evaluations will be
made to know if such chromosome has reached the desired
solution sufficient enough to be considered a good solution.
Otherwise, such chromosome will need to go through the
Selection, Mutation and Crossover Process in as many times
as possible to be able to select the best result – in this case
the best RSS in order to compute the particular location.

• Selection deals with the probabilistic survival of the

fittest, in that the fittest chromosomes are chosen to survive.
Fitness is a comparable measurement of how well a
chromosome solves the problem at hand. Once the
chromosomes with the better fittest are chosen, others will
be eliminated. Simply, the probability of a chromosome to
be selected is proportional to the quality value/fitness; this is
also called the roulette wheel selection method. There are
various selection methods but we propose to use the roulette

wheel selection algorithm because it gives every
chromosome a chance of survival.

• Crossover is a technique considered to be the most

important step in the context of GAs. At a certain crossover
rate, GA takes individual chromosomes from relevant data
and combines them to form new ones in the hope that the
new chromosomes will have better fitness compared to the
previous ones.

• Mutation is a genetic operator used to maintain genetic

diversity, at a certain mutation rate, from one generation of a
population of algorithm chromosomes to the next. It is
analogous to biological mutation. Mutation alters one or
more gene values in a chromosome from its initial state. In
mutation, the solution may change entirely from the previous
solution. Hence GA can come to better solution by using
mutation. Mutation simply aids GA to avoid getting stuck in
local minimal.

After each cycle of selection, crossover and mutation, the

newly generated sets of solutions are termed new generation.
Every generation is evaluated based on the fitness function
to determine if they represent a solution good enough for the
problem so the GA can stop searching, or if otherwise, for
the GA to continue searching until the set stopping criteria is
met. The stopping criteria could be the number of
generations, or evolution time, or fitness threshold, or fitness
convergence, or population convergence. In our case, the
number of generations was set as the stopping criteria.

 EXPERIMENTAL RESULTS IV.

Simulation was done in MATLAB to determine the
location of the wireless device using the genetic algorithm.

Generation of Data

Experiment was carried out in a chamber free from
wireless interference. A 5m by 5m grid was created with
coordinates ranging from [0, 1], [0, 2] to [5, 5]. The RSS
captured at each of the coordinates in the grid points were
fed into the GA as input. A Spectrum Analyzer was used to
measure the RSS at each of the three anchor nodes. Because
RSS is susceptible to attenuation and reflection, we captured
10 readings per coordinate per testing period over 10 test
periods. We averaged the RSS values per coordinate per one
test period and used it to determine the behaviour of the RSS
with distance; this is in order to ascertain the amount of
signal interference in the chambers. Figure 1 shows the
graph of the captured RSS against distance averaged over
one test period. Figure 1 shows a decrease in RSS with
increasing distance with the exception of three out of the
twenty five points in the grid. The readings obtained at each
of these three points were consistent over several test
periods. We conjecture that there is a deflection or reflection

128 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

at these points as a result of the obstructing steel elements
present at the specific points.

 Average RSS vs. Distance. Fig. 1

Since Fig. 1 shows a relatively acceptable RSS behavior

with distance, we were able to ascertain that the room is
largely free from other signals apart from that from our
mobile sensor. The GA parameters are as follows:
Population Size is 100, Number of generations is 100,
Crossover rate is 0.6 and Mutation rate is 0.01.

The results obtained are as shown in Tables 2 to 5. Each

Table shows the error in the predicted location of the GA for
each target positions as well as the relative percentage error
to the grid. Table 3 shows the results in the GA predictions
for each target when each of the target’s initial positions is
increased by 10cm. Table 4 shows the results in the GA
predictions for each targets when each of the target’s initial
positions is increased by 20cm. Table 5 shows the results in
the GA predictions for each targets when each of the target’s
initial positions is increased by 30cm. Figure 2 shows the
error in GA predictions for target 1 with increased distance.
Figure 3 shows the error in GA predictions for target 2 with
increased distance. Figure 4 shows the error in GA
predictions for target 3 with increased distance. Figure 5
shows the error in GA predictions for target 4 with increased
distance. Figure 6 shows the error in GA predictions for
target 5 with increased distance.

Table 2.

GA
PREDICTED

ACTUAL
Targets
Initial

Positions

ERROR in
GA

Prediction

Percentage
Error

(Relative to
total Grid)

(2.47, 1.35) (2.5, 1.4) 0.05 1.25

(1.16,2.37) (1.2, 2.4) 0.05 1.25
(0.4,2.96) (0.4,3.0) 0.04 1

(2.51,3.23) (2.5,3.2) 0.05 1.25
(3.54,3.56) (3.6,3.5) 0.08 2

Table 3.
ACTUAL

Targets’ Initial
Positions + 10cm

ERROR in GA
Prediction

Percentage Error
(Relative to total

Grid)

Target 1 0.212 5.3

Target 2 0.191 4.78

Target 3 0.108 2.7

Target 4 0.095 2.38
Target 5 0.165 4.125

Table 4.
ACTUAL

Targets’ Initial
Positions + 20cm

ERROR in GA
Prediction

Percentage Error
(Relative to total

Grid)

Target 1 0.340 8.5

Target 2 0.332 8.3

Target 3 0.312 7.8

Target 4 0.275 6.88
Target 5 0.295 7.38

Table 5.
ACTUAL

Targets’ Initial
Positions + 30cm

ERROR in GA
Prediction

Percentage Error
(Relative to total

Grid)
Target 1 0.481 12.03

Target 2 0.474 11.85

Target 3 0.453 11.33

Target 4 0.396 9.9
Target 5 0.433 10.825

Each of the graphs shows an approximately linear

relationship between the errors in prediction with increasing
distance. This stems from the RSS relationship with
increasing distance in Fig. 1.

1 2 3 4 5 6

-60

-58

-56

-54

-52

-50

-48

R
S

S
 (

in
 d

B
)

Distance (in Ft)

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 129

 Target 1. Fig. 2

 Target 2. Fig. 3

 Target 3. Fig. 4

 Target 4. Fig. 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r

in
 G

A
 P

re
d

ic
tio

n

Distance (meters)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r

in
 G

A
 P

re
d

ic
tio

n

Distance (meters)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r

in
 G

A
 P

re
d

ic
tio

n
Distance (meters)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

o
r

in
 G

A
 P

re
d

ic
tio

n

Distance (meters)

130 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

 Target 5. Fig. 6

The Average Error which shows the difference between

the GA predicted results and the expected ones is shown in
Fig 7 below. We can see that the error decreases with
increase in the number of generations. At around the 33rd
generations, the GA had found a good solution of less than
0.01. This is a practically acceptable result.

 Average Error for Target nodes per Generation. Fig. 7

 CONCLUSIONS AND FUTURE WORK V.

This paper presents a simulation of wireless sensor
network node localization using the GA. We used the

received signal strength captured at each of the anchor nodes
from a mobile sensor node for the purpose of estimating the
coordinate of the mobile sensor node at any point within the
grid. The test was carried out in a chamber free from any
other wireless signals apart from the signals from the mobile
sensor node. The GA algorithm was allowed to run for 100
generations giving acceptable results of less than one percent
average error in a very short time. This is good for practical
purpose in a wireless sensor network. For future work, an
adaptive adjustment of the algorithm parameters (crossover
and mutation rate) proposed by Yun-Xiao [13], can be
implemented in order to reduce the vector distance between
individual solutions. This should further reduce the
convergence time for our proposed GA.

REFERENCES

[1] Q. Zhang, J. Wang, C. Jin , C. Ma and W. Zhang,
"Genetic Algorithm based Wireless Sensor Network
Localization," in IEEE Fourth International
Conference on Natural Computation, 2008.

[2] T. He, C. Huang, B. Blum, J. Stankovic and T.
Abdelzaher, "Range-free Localization Schemes for
Large Scale Sensor Networks," in 9th Annual
International Conference on Mobile Computing and
Networks (Mobicom), 2003.

[3] W. Li and W. Zhou, "Genetic Algorithm-Base
Localization for Wireless Sensor Networks," in 7th
International Confercence on Natural Computation,
2011.

[4] D. Niculescu and B. Nath, "DV Based Positioning in
Ad hoc Networks," in Journal of Telecommunication
Systems, 2003.

[5] J. N. Ash and L. C. Potter, "Sensor Network
Localization via Received Signal Strengths
Measurements with Directional Antennas," [Online].
Available: www2.ece.ohio-
state.edu/~ashj/pubs/allerton04.pdf. [Accessed 13
March 2013].

[6] E. Goldoni, A. Savioli, M. Risi and P. Gamba,
"Experimental Analysis of RSSI-based Indoor
Localization with IEEE 802.15.4," in European
Wireless Conference, 2010.

[7] J. Saxe, "Embeddability of weighted graphs in k-space
is strongly np-hard," in 17th Allerton Conference in
Communications, Control and Computing, 1979.

[8] A. A. Kannan, G. Mao and B. Vucetic, "Simulated
Annealing based localization in wireless sensor
network," in The 30th IEEE Conference on Local
Computer Networks, 2005.

[9] T. Kaiser, P. Card and K. Ferens, "Environment
Feature Map for Wireless Device Localization," in The

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

o
r

in
 G

A
 P

re
d

ic
tio

n

Distance (meters)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

A
ve

ra
g

e
 E

rr
o

r

Generations

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 131

2012 International Conference on Security and
Management, 2012.

[10] X. Lei, Z. Huimin and S. Weiren, "Mobile Anchor
Assisted Node Localization in Sensor Networks Based
on Particle Swarm Optimization," in 6th International
Conference on Wireless Communications Networking
and Mobile Computing (WiCOM), 2010.

[11] S. Niranchana and Dinesh E, "Object Monitoring by
Prediction and Localization of Nodes by Using Ant
Colony Optimization in Sensor Network," in IEEE
Fourth International Conference on Advanced
Computing (ICoAC), 2012.

[12] E. Hossain, "Wireless Networks," Dept. Electrical and
Computer Eng., Univ. Manitoba, Winnipeg,, 2010.

[13] Z. Yun-Xiao, Z. Jie and Z. Chang-Chang, "Cognitive
Radio Resource Allocation based on Coupled Chaotic
Genetic Algorithm," in IOP Science Chinese Physics B,
2010.

132 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

SESSION

EVOLUTIONARY OPTIMIZATION AND GENETIC
ALGORITHMS

Chair(s)

Prof. Hamid Arabnia
University of Georgia

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 133

134 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Multi-objective Evolutionary Optimization of Cloud
Service Provider Selection Problems

Cheng-Yuan Lin
Dept of Computer Science and Information Engineering

Chung-Hua University
Hsin-Chu, Taiwan

m09902021@chu.edu.tw

Jian-Hung Chen*
Dept of Computer Science and Information Engineering

Chung-Hua University
Hsin-Chu, Taiwan
jh.chen@ieee.org*

Abstract—This paper describes a multi-objective evolutionary
approach for solving cloud computing service provider selection
problems with dynamic demands. In this investigated problem,
not only the service purchase costs and transmission costs of
service providers are different, but the demands of service
requests also change over the given periods. The objective of
this problem is to select a number of cloud service provider
while optimizing the total service distance, the total number of
serviced demand points, the total service purchase costs, and
total transmission costs simultaneously in the given continuous
time periods. A multi-objective genetic approach with an
inheritance mechanism is proposed to solve the investigated
problems. Four trail benchmark problems are designed and
solved using the proposed multi-objective evolutionary
algorithm. The results indicate that the proposed approach is
capable of obtaining a number of non-dominated solutions for
decision makers.

I. INTRODUCTION
With the rapid development of computing hardware, high-

speed network, web programming, distributed and parallel
computing, and other storage technologies, cloud computing
has recently emerged as an effective reuse paradigm, where
hardware computing power, software functionality, and other
computing resources are delivered as integrated services
through Internet [1]. There are many global and local
commercial cloud service providers, offering various kinds of
delivered services such as Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service
(SaaS). Recently, the advantages and features of cloud
services has arisen the interests of digital
entertainment/media/content suppliers to integrate cloud
computing services into their content delivery networks [2].

Consider a national-wide area with a number of service
request points, the requests at each point usually changes in
time; and within this area, a number of cloud service providers
with different locations and pricing options of services are
available for chosen. From the point view of digital
entertainment/media content suppliers, it is an important issue
to select suitable cloud computing service providers, which

can deliver their contents to massive customers rapidly and
smoothly. Therefore, maximizing some expected Quality-of-
Service (QoS) indictors and minimizing services related costs
are crucial considerations for decision makers. As a result,
considering the requirements of content supplier and the
conditions of cloud service providers, we formulated such
problems to multi-objective dynamic p-median problems in
this paper.

The classical p-median problem consists of selecting p
facilities in a given space which minimizes the total costs of
serving m demand points at a time. P-median problem is
prominent combinatorial optimization NP-hard problem in
location science and cluster analysis [3-9]. Many exact and
heuristic approaches have been proposed for solving p-median
problems. In traditional approaches, the planning of service
facility centers usually considers the demand of consumers as
constant values. However, it is not true in the real world
applications, because the demands of consumers may change
by environments and time. The dynamic p-median problem is
applicable to all situations modeled by the standard p-median
problem whenever demand changes over time in a predictable
way.

In this paper, a multi-objective p-median model with
dynamic demands which optimizes the total QoS distance, the
total number of serviced demand points, the total service
purchase costs, and the total network transmission costs is
investigated. Considering four different geographical features,
we propose an efficient approach based on genetic algorithms
for content providers to determine the selection of service
providers in different periods and satisfying the dynamic
demands of customers. The proposed approach can also
provide decision-makers a set of non-dominated solutions for
the selection processes.

This paper is organized as follows: Section 2 describes the
investigated dynamic p-median problem and multi-objective
optimization. Section 3 describes the mathematical model of
the investigated problem. Section 4 presents the proposed
multi-objective genetic algorithm MOGA for solving

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 135

investigated problems. Section 5 gives the experimental
results and analysis of the proposed algorithm. Section 6
concludes our paper.

II. RELATED WORK
A. P-median Problems

The classical p-median problem consists of locating p
facilities (medians) in a given space (e.g. Euclidean space)
which minimizes the total costs of serving m demand points,
where the pair-wise cost of servicing each point from all
facilities is given. Each demand point is only served by a
single facility and services to demand points are not
combinable [3-10].

Exact methods for solving p-median problems include
linear programming approaches, dual-based algorithms.
However, these exact methods suffer from the curse of
dimensionality since the computation costs of calculating all
demand points' expectations over all possible future
combinations increases exponentially in the number of
demand points. Many heuristic approaches have been
proposed to solve p-median problems, including greedy
heuristic, variable neighbor decomposition search, cooperative
parallel variable neighborhood search, and Lagrangian-
surrogate heuristic. Modern meta-heuristics have been applied
to solve p-median problems as well [8], such as tabu search
approaches, simulated annealing approaches and genetic
algorithms approaches.

Recently, considering the real-world conditions, various
models of p-median problems are proposed in the literature,
including stochastic p-median problems, progressive p-median
problems [3], dynamic p-median problems, and bi-objective p-
median problems [9].

B. Multi-objective Evolutionary Optimization
Assume the multi-objective functions are to be minimized.

Mathematically, MOOPs can be represented as the following
vector mathematical programming problems

)},(...,),(),({)(21 YFYFYFYFMinimize i (1)

where Y denotes a solution and fi(Y) is generally a nonlinear
objective function. Pareto dominance relationship and some
related terminologies are introduced below. When the
following inequalities hold between two solutions Y1 and Y2,
Y2 is a non-dominated solution and is said to dominate Y1 (Y2
 Y1):

).()(:)()(: 2121 YFYFjYFYFi jjii  (2)

When the following inequality hold between two solutions Y1
and Y2, Y2 is said to weakly dominate Y1 (Y2 Y1):

).()(: 21 YFYFi ii 

 (3)

A feasible solution Y * is said to be a Pareto-optimal solution
if and only if there does not exist a feasible solution Y where Y
dominates Y *, and the corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of

performing the fitness assignment of multiple objectives
without using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously.
As a result, MOEA seems to be an alternative approach to
solving the investigated service provider selection problems
on the assumption that no prior preference and domain
knowledge is available [10-11].

III. PROBLEM STATEMENT
In this paper, the investigated dynamic service provider

selection problem (DSPSP) is to select p service providers
from n service providers in each quarter, in order to satisfy the
dynamic demands of m service requests from end-users. The
following conditions are assumed in this problem:

1) Each service provider has different pricing options for
purchasing services and network transmission.

2) Although contents can be deliver to anywhere though
internet, end-users still expects no delays during
network transmission. Therefore, each service provider
has a pre-assumed maximum Quality-of-Service (QoS)
distance.

3) The number of demand points that a service provider
can service is unlimited.

4) The Euclidean distance is used to calculate the
distances between demand points and points of service
provider.

5) Each demand point can only serviced by a nearest point
of service provider within the maximum QoS distance.

6) In order to satisfying the dynamic demands, content
supplier may select p different service providers in the
next following quarter.

The investigated problem can be formulated to multi-
objective p-median problems with dynamic demands. The
objectives of DSPSP are while optimizing four competing
objective functions: the total QoS distance, the total number of
serviced demand points, the total service purchase costs, and
the total network transmission costs.

A. Problem Notations
i , j：i{1,2,3,…m}, j{1,2,3,…,n}.
m：The total number of demand points.
n：The total number of service provider points for selection.
Li：The index of demand points, Li = i.
Sj：The index of the service provider points. Service

providers points usually co-locate with some demand
points, therefore Sj{L1,L2,…Lm}.

Dj：The maximum Quality-of-Service (QoS) distance of the
service provider point j.

T：The total service periods.
tj：The time period that the service provider Sj served,

0=t1<t2<…<tp<tp+1<T.
dij：The distance between Li and Sj.
mdij：The nearest distance of the demand point Li between

the nearest service provider point, mdij=min{dij}.

136 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

wi(t)：The demanding function of the demand points Li at
time t, 0 t<T.

wij：The total demanding amount of the demand point Li

from time tj to time tj+1,  



1

.
j

j

t

t
iij dttww

Aj：The network transmission cost of the service provider
point Sj per demand unit.

Cj：The monthly service purchase cost of the service
provider point Sj.

Xi： The serviced index of the demand point Li. If the
demand point service Li is serviced within the maximum
QoS distance of a provider point, then Xi = 1, otherwise
Xi = 0.

Zj： The selection index of the service provider point Sj. If
the service provider point Sj is chosen and serves
demand points in the specific time period, then Zj = 1,
otherwise Zj = 0.

B. Problem objectives
1) Minimization of QoS distance

In the classical p-median problem, the demands in each
demands points are usually considered to a constant. However,
considering the real-world applications, demands are known to
be changed dynamically. Given the demanding function of
each demand points, the Quality-of-Service distance of each
demand to its nearest service provider points can be expressed
as follows:

.
1 1

1 jiij

n

j

m

i
ij ZXmdwFMinimize 

 
(4)

2) Minimization of network transmission cost

Considering the cloud computing environments, the costs
of network transmissions between service provider points and
demand points are not fixed. Given the network transmission
cost of each service point per time unit, the transmission costs
of each facility can be expressed as follows:

.
1 1

2 jij

n

j

m

i
ij ZXAwFMinimize 

 
(5)

3) Minimization of service purchase cost

In additional to the network transmission cost, the service
purchase cost on a specific service provider point is also an
important factor for content suppliers, because the service
cost in different service provider point are different. Given
the service purchase cost for each service provider points, the
total service purchase costs of selected service provider
points can be expressed as follows:

.
1

3 



n

j
jj ZCFMinimize (6)

4) Maximum of total number of serviced demand points

Because different service providers has different QoS
distance, therefore the number of demand points that a
service provider points may serviced could be different.
Given the maximum QoS distance of each service provider,
the number of serviced demand points can be calculated as
follows:

.
1

4 



m

i
iXFMaximize (6)

C. An Illustrative Example
An example is given here to explain our mathematical

formation. Assumed that a content supplier plans to select
three service provider points (p=3) from six providers (n=6)
within twelve months (T=12), in order to service ten
demanding points (m=10). The maximum Quality-of-Service
(QoS) Dj is 3 for all the service provider points. The
coordination, demanding function of demand points, the
service purchase costs and transmission costs of service
provider points are listed in Table I. Assumed a selection plan
for four quarters is determined as shown in Table II, three
service provider S2, S3, S6 are select in the first quarter, and
finally three service provider S1, S3, S5 are select in the fourth
quarter.

Take the selection plan of Quarter 4 for example, the total
amount of each demand points during Quarter 4 can be
calculated, as shown in Table III. The distance of each
demand point to different service provider points can be
calculated, as shown in Table IV. The demand points with Dj
are marked as bold. Hereafter, according to all the tables, the
objective functions in Quarter 4 can be calculated, F1 =
10.12242, F2 = 1507.5, F3 = 1650, F4 = 8.

TABLE I. THE INFORMATION OF DEMAND AND SERVICE POINTS LI ,SJ

Li Sj coord. wi(t) Aj Cj
L1 S1 (1,8) 10+6t 1 500
L2 S2 (2,5) 3+4t 1 700
L3 (0,9) 16+2t 1
L4 (10,2) 25+3t 1
L5 S3 (4,5) 50-2t 1 700
L6 S4 (3,7) 99-3t 1 450
L7 S5 (12,3) 6+7t 1 450
L8 (6,16) 24+4t 1
L9 (2,10) 10+10t 1
L10 S6 (8,4) 5+5t 1 500

TABLE II. REPRESENTATION OF FOUR SELECTION PLAN FOR FOUR
QUARTERS

QUARTER 1 QUARTER 2 QUARTER 3 QUARTER 4
2, 6, 3 3, 6, 4 5, 4, 3 3, 1, 5

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 137

TABLE III. THE TOTAL AMOUNT OF DEMANDS IN QUARTER 4,
ACCORDING TO THE SELECTION PLAN

 t = 0~3 t = 3~6 t = 6~9 t = 9~12
L1 57 111 165 219
L2 27 63 99 135
L3 57 75 93 111
L4 88.5 115.5 142.5 169.5
L5 141 123 105 87
L6 283.5 256.5 229.5 202.5
L7 49.5 112.5 175.5 238.5
L8 90 126 162 198
L9 75 165 255 345
L10 37.5 82.5 127.5 172.5

TABLE IV. THE DISTANCE OF EACH DEMAND POINT TO SELECTED
SERVICE PROVIDER POINTS IN QUARTHER 4

 S3(=L5) S1(=L1) S5(=L7)
L1 4.24264 0 12.083
L2 2 3.16228 10.198
L3 5.65685 1.41421 13.4164
L4 6.7082 10.8167 2.23607
L5 0 4.24264 8.24621
L6 2.23607 2.23607 9.84886
L7 8.24621 12.083 0
L8 11.1803 9.43398 14.3178
L9 5.38516 2.23607 12.2066
L10 4.12311 8.06226 4.12311

IV. THE PROPOSED MULTI-OBJECTIVE GENETIC

ALGORITHM
In this section, the proposed multi-objective genetic

algorithm to find a selection plan within four quarters for
DSPSP is described.
A. Chromosome Representation

A chromosome has gene information for solving the
problem in DSPSP. In the proposed approach, each
chromosome of has p genes. When a quarter is finished, the
non-dominated solutions will be stored and inherited to the
next population of the next quarter. The chromosome can be
regarded as a selection plan for a quarter.

B. Fitness Assignment
We use a generalized Pareto-based scale-independent

fitness function (GPSIFF) considering the quantitative fitness
values in Pareto space for both dominated and non-dominated
individuals [10]. GPSIFF makes the best use of Pareto
dominance relationship to evaluate individuals using a single
measure of performance. The used GPSIFF is briefly
described below. Let the fitness value of an individual Y be a
tournament-like score obtained from all participant individuals
by the following function:

  .cNqNpXF  (7)

, where Np is the number of individuals which can be
dominated by the individual Y, and Nq is the number of
individuals which can dominate the individual Y in the
objective space. Generally, a constant c can be optionally
added in the fitness function to make fitness values positive. c
is usually set to the number of all participant individuals.

C. Genetic Operators
The genetic operators used in the proposed approach are

widely used in literature. The selection operator uses a binary
tournament selection without replacement, which works as
follows. Choose two individuals randomly from the
population and copy the better individual into the intermediate
population. The crossover operator is uniform crossover and
the mutation operator is single point mutation without
duplicated genes.

D. Procedure of MOGA
The procedure of MOGA is written as follows:

Input: population size Npop, recombination probability pc,
mutation probability pm, the number of maximum generations
Gmax. Current Quarter Index q=1.

Output: The optimum solutions ever found in P.

Step 1: Initialization Randomly generate chromosomes to fill
in the population P until Npop individuals are reached. Each
chromosome is consists of p genes for a quarter.

Step 2: Evaluation For each individual in the population,
compute all objective function values F1, F2, F3.and F4.

Step 3: Fitness Assignment Assign each individual a fitness
value by using the equation (7) GPSIFF.

Step 4: Selection Select Npop individuals from the population
to form a new population using the binary tournament
selection.

Step 5: Recombination Perform the uniform crossover
operation with a recombination probability pc.

Step 6: One Point Mutation Apply the one point mutation
operators to each gene with a mutation probability pm. If the
mutated gene is duplicated with other genes in the same
chromosome, mutate the gene again.

Step 7: Termination test If the maximum generations have
reached, store all the non-dominated solutions in quarter q,
and then go to Step 8. Otherwise, go to Step 2.

Step 8: Inheritance q=q+1. If q>4, stop the algorithm.
Otherwise, inherit and copy non-dominated solutions to the
population of the next quarter, if the number of non-dominated
solutions exceed the population size Npop, randomly delete
solutions and reduce the size to Npop. Then, go to Step 1.

V. RESULT AND DISCUSSIONS
A. Simulation Environment and Parameter Settings

In this paper, four benchmarks are designed for
experiments, as shown in Figure 1. Each problem has
different distribution of demand points on different grid sizes,
described as follows:

1) Circle. 100 demand points and 36 service providers on
a 18*18 grid. The number of providers to be chosen p=10,
and the maximum QoS distance Dj=2.2.

2) Rectangele. Square with empty space. 100 demand
points and 36 service providers on a 16*16 grid. The number
of providers to be chosen p=10, and the maximum QoS
distance Dj=3.

138 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

3) Square. 100 demand points and 36 service providers
on a 110*110 grid. The number of providers to be chosen
p=10, and the maximum QoS distance Dj=10.

4) Triangle. 100 demand points and 36 service providers
on a 14*14 grid. The number of providers to be chosen p=10,
and the maximum QoS distance Dj=2.

Ten service providers will be select for each quarter. The
total number of quarter is 4. The parameter settings of
MOGA are listed as follows: population size Npop=100,
recombination probability pc=0.9, mutation probability
pm=0.1, the number of maximum generations Gmax=100.
Fifteen independent runs are conducted for each problem.
B. Disscussions

Figure 2-5 depicts the average values of objective
function F1, F2, F3, and F4 of non-dominated solutions
obtained MOGA in solving the circle benchmark from 15
runs. Figure 6-9 depicts the average values of objective
function F1, F2, F3, and F4 of non-dominated solutions
obtained MOGA in solving the square benchmark from 15
runs. Figure 10-13 depicts the average values of objective
function F1, F2, F3, and F4 of non-dominated solutions
obtained MOGA in solving the square benchmark from 15
runs. The results indicate that the proposed MOGA is capable
of solving DSPSP and optimize four objectives
simultaneously, considering different geographic distribution
of demand points.

VI. CONCLUSIONS
In this paper, a multi-objective evolutionary approach is proposed

to solve dynamic service provider selection problems. Experimental
results demonstrated the proposed approach is capable of optimizing
the quality-of-service distance, the total network transmission cost,
the total service purchase cost, and the total number of demands
points simultaneously. Moreover, the proposed approach can
provide mission planers a set of non-dominated solutions for
construction plan of service facilities. Our future work is to apply
our approach in solving some real cases.

Figure 1. Distributions of demand points in four benchmark problems.

Figure 2. The average service distance of non-dominated solutions in
different generations for the circle benchmark.

Figure 3. The average network transmission cost of non-dominated
solutions in different generations for the circle benchmark.

Figure 4. The average service purchase cost of non-dominated solutions in
different generations for the circle benchmark.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 139

Figure 5. The average total number of serviced demand points of non-
dominated solutions in different generations for the circle benchmark.

Figure 6. The average service distance of non-dominated solutions in
different generations for the square benchmark.

Figure 7. The average network transmission cost of non-dominated
solutions in different generations for the square benchmark.

Figure 8. The average service purchase cost of non-dominated solutions in
different generations for the square benchmark.

Figure 9. The average total number of serviced demand points of non-
dominated solutions in different generations for the square benchmark.

Figure 10. The average service distance of non-dominated solutions in
different generations for the triangle benchmark.

140 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Figure 11. The average network transmission cost of non-dominated
solutions in different generations for the triangle benchmark.

Figure 12. The average service purchase cost of non-dominated solutions in
different generations for the triangle benchmark.

Figure 13. The average total number of serviced demand points of non-
dominated solutions in different generations for the triangle benchmark.

REFERENCES
[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, "Cloud Computing and Grid

Computing 360-Degree Compared," Proceeding of Grid Computing
Environments Workshop, 2008. GCE '08, Nov. 2008, pp. 1-10, 12-16.

[2] Y. Li, Y. Shen, and Y. Liu, "Utilizing Content Delivery Network in
Cloud Computing,", Proceeding of 2012 International Conference on
Computational Problem-Solving (ICCP), Oct, 2012, pp. 137-143.

[3] Z. Drezner, “Dynamic Facility Location: The Progressive p-median
Problem,” Location Science, Vol.3, No.1, 1995, pp.1-7.

[4] S. H. Own, and M. S. Daskin, “Strategic Facility Location: A Review,”
European Journal of Operational Research Vol. 111, 1998, pp.423-447.

[5] G. O. Wesolowsky, “Dynamic Facility Location,” Management Science,
Vol. 19, No.11, 1973, pp.1241-1248.

[6] G. O. Wesolowsky, and W. G. Truscott, “The Multiperiod Location-
Allocation Problem with Relocation of Facilities,” Management
Science, Vol.22, No.1, 1975, pp.57-65.

[7] S. D. G. Francisco and E. C. Maria, “A Heuristic Approach for the
Discrete Dynamic Location Problem,” Location Science, Vol. 6, 1998,
pp.211-223.

[8] W. Pullan, "A population based hybrid metaheuristic for the p-median
problem," in Proceedings of IEEE Congress on Evolutionary
Computation, June 2008, pp.75-82.

[9] J. E. C. Arroyo, M. dos Santos Soares, P. M. dos Santos, "A GRASP
heuristic with Path-Relinking for a bi-objective p-median problem," in
Proceedings of 10th International Conference on Hybrid Intelligent
Systems (HIS), Aug. 2010, pp.97-102.

[10] S.–Y. Ho, L.–S. Shu and J.–H. Chen, “Intelligent Evolutionary
Algorithms for Large Parameter Optimization Problems,” IEEE
Transaction on Evolutionary Computation, Vol.8, No.6, Dec.2004,
pp.522-541.

[11] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strengthen Pareto approach,” IEEE
Transaction on Evolutionary Computation, Vol. 3, No. 4, 1999, pp.
257-271.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 141

Validation of an attributes selection system through genetic

algorithms for ICU on severely burnt patients (AG-PxQ) according

to its usability on the clinic

A. Jair A. del Valle-Lopez1, B. Verenice Z. Gonzalez Mejia2, C. Brenda R. Quintero-Silva3,

D. Ramon Andres Diaz-Valladares4 and E. Hector A. Olivas Namorado5

1Engineer Research and Innovation Centre (CI3), Universidad de Montemorelos, Montemorelos, Nuevo Leon,
Mexico

2Department of Research Support in Health Sciences (DAICS), Universidad de Montemorelos, Montemorelos,
Nuevo Leon, Mexico

3Engineer Research and Innovation Centre (CI3), Universidad de Montemorelos, Montemorelos, Nuevo Leon,
Mexico

4Engineer Research and Innovation Centre (CI3), Universidad de Montemorelos, Montemorelos, Nuevo Leon,
Mexico

5Department of Research Support in Health Sciences (DAICS), Universidad de Montemorelos, Montemorelos,
Nuevo Leon, Mexico

Abstract�On the practice of clinical medicine, decisions

that involve high uncertainty must be taken [12], according

to this, the medical diagnose may be described as the attempt

of taking right decisions despite the use of inadequate

information [11]. Reduction of processes is one of the

most frequent applications of Arti�cial Intelligence (AI),

there are several methods to achieve this, one of which

is the Genetic Algorithm Optimizing Method (GAOM), that

searches for the best solution to a problem in a set of

multiple possible options. In the speci�c case of the medical

duty, developing intelligent systems should be considered in

terms of credibility, to reach this, the objective is to value an

algorithm previously developed, measuring its functionality

in the clinical medicine by its utility for diagnosing, it is done

through contingency charts in order to know: (a) sensibility,

(b) speci�city, (c) predictive positive value y (d) predictive

negative value.

Keywords: Genetic Algorithms, Medical Screening, Arti�cial

Intelligence

1. Introduction
"Arti�cial Intelligence, does not imply mere information" [4]

Arti�cial Intelligence AI is a science that designs systems

capable to show human behavior features as: (a) language,

(b) ratio or intelligence and (c) apprenticeship, among other

things [1]. Due to this, AI is applied on different science and

technology activities, not excluding Bio-science, it has been

applied in the medical area to: (a) search for ideal solutions

and for (b) agility and prevention in medical processes.

An intelligent system is not conscious about its processes.

Although the increasing incursion of this systems in the

medical area [6], [7], [8]. , only few of them specify the

requirements to make this intelligent system a functional

system and with a certain level of credibility. For example,

the implementation of the genetic algorithm AG-PxQ, that

shows the results of an intelligent system for the selection

of features in the burnt patient unit of an hospital; when

this results were shown to the doctors in the clinical �eld,

they approved and amazed at them, but mentioned that

it cannot be applied due to its lack of medical screening

bases, disabling the medical professional to have practical

use of this intelligent system. Medical screening is justi�ed

on the statement that declares that its better for the patient

to detect a disease as fast as possible, or in the case of

patients with accident consequences, to detect the principal

problems that may complicate recovery. The triage, method

to categorize emergency patients [9], through the medical

screening employes methodologies that validate diagnostic

tests for its use on diseased or healthy patients; one of these

methodologies is the contingency chart.

2. Methodology for validation of diag-

nostic test

On the validation of a diagnostic test, statistical perspec-

tive plays a very important role. On statistics, contingency

charts are used to analyze relations between nominal or

ordinal variables. A contingency chart is de�ned by the

number of variables to analyze. Therefore a 2x2 contingency

chart will analyze relations between two variables, being

compound by rows for information of one of the variables

and columns for information of the other variable; lines and

columns form cells, where frequencies of each combination

of the analyzed variables will be set, as shown on Figure 1.

The statistics with medical utility that can be obtained

from a contingency chart, are: (a) sensibility, (b) speci�city,

(c) predictive positive value y (d) predictive negative value,

among others.

142 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

Fig. 1: Contingency Table

One of the aspects that require validation on medical

ambit is the capability to diagnose diseased patients as

diseased, in other words, certainty that the patient has a

disease or is dying. This measurement is called sensibility,

and is de�ned as the probability of having a diagnose with

positive results when the disease is present or there's the

possibility that the patient will die; this group can be de�ned

on a contingency chart as true-positive. Then, it can be

declared that sensibility is the total percentage of diseased

patients that have a positive diagnostic result. [12] If the

diagnostic of the diseased patients can be validated, then

the diagnostic of the healthy patients can be validated also.

This measurement is called speci�city, and is de�ned as the

probability of having a negative result if the patient is not

been infected or diseased; this group is called true-false on

a contingency chart. Then, it can be declared that speci�city

is the total percentage of non-diseased (healthy) patients that

have a negative diagnostic result. [12]. Another aspect that

requires validation in the medical �eld is the certainty that

the obtained result of a diagnostic test is correct. Probability

of having the when the result of a diagnostic test is positive

is known as Positive Predictive Value (+PV). On the other

hand, probability of not aving the disease when the result of

a diagnostic test is negative is known as Negative Predictive

Value (-PV). [12]

3. Short explanation of the results of the

AG-PxQ intelligent system

The genetic algorithm, one of the best known models of

evolutionary computation suggested by Holland in 1975 [3],

works with a set (population) of possible solutions (indi-

viduals) with the best capacity (adaptation/�tness). Popula-

tion changes according to an iterative process (generations)

where individuals with best pro�ciency have the chance to

survive, go through the next generation, and take part with

genetic operators [5]. Table 1 shows the AG-PxQ attributes

that medical specialists consider as parameters that collect

relevant clinical evidence to establish burnt-patients survival.

After creating the Initial population for the AG-PxQ

based on a data base of 100 patients, Successor populations

Table 1: Considered parameters for serious burnt patients.

Name Description

Genre Genre of the patient
Age Age of the patient
Tot Burnt surface in porcent
Prof Burnt surface in depht
Weight Weight of the patient
SAPS General severity indicator
Inh Inhibitor utilisation
BACTEREMIA Bacterian presence in blood
PNEUMONIA Pulmonary infection
WOUND INFECTION Surgical infection
Comorbilidad Cardiaca Previous cardiopathy
Comorbilidad Respiratoria Respiratory problems
Comorbilidad Hepatica Previous hepatic problems
HTA Arterial hypertension
Diabetes Diabetic patient
Sida drogas Drug consumption with HIV
Comorbilidad Renal Kidney problems
muere Decease foresight

were generated using different seeds, which is a speci�c

space to start searching for an ideal solution; seed1 was

selected as the most promising location, generating multiple

combinations (individuals) that might be the ideal solution,

in other words, the attributes combination that may present

the higher probability patient survival.

The result after different tests, as shown in Table 2,

suggested that the 5 variables (0, 1, 3, 5, 14) that match

with: (a) total burnt surface, (b) burnt surface depth, (c)

patient's weight, (d) pulmonary infection and (e) Arterial

hypertension are the best options to apply on a patient with

severe burns, since it gets the better adaptation percentage

according to the experiment.

Table 2: Considered parameters for serious burnt patients.

Experiment Adaptation Variables Matching tests

0.9545 1 5
0.9545 2 5 10
0.9545 3 5 14 16
0.9545 4 5 10 12 13
1.0000 5 0 1 3 5 14
0.9545 6 5 10 12 13 14 15
0.9545 7 5 10 12 13 14 15 16
0.9545 8 1 5 10 12 13 14 15 16
0.9545 9 1 5 8 10 12 13 14 15 16
0.9545 10 0 1 3 5 10 12 13 14 15 16
0.9545 11 0 1 2 3 4 5 10 12 13 14 15
1.0000 12 0 1 2 3 4 5 7 8 9 10 11 15
0.9545 13 0 1 3 4 6 7 8 9 11 12 13 15 16
1.0000 14 0 1 2 3 4 5 7 8 9 10 11 12 13 15
0.9090 15 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16
0.9090 16 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.9090 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4. Application of the validation method

AG-PxQ uses an original data base of about 100 severe

burnt patients, on which is indicated the medical apprecia-

tion about the patient's triage, with a nominal dichotomic

attribute of the decease foresight. This attribute is used as

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 143

Fig. 2: Contingency Table Design with AG-PxQ

one of the variables that occupy the columns at the 2x2 con-

tingency chart. AG-PxQ uses the data collector tool WEKA,

speci�cally the NSGA II method, as the method which

features will calculate and classify the adaptation/�tness

level of each individual; wherefore original data base is

passed through WEKA to see how it develops patient's

triage, this will produce information that will be used to �ll

up the lines on the contingency chart corresponding to the

diagnostic test that is going to be compared to the medical

triage, as shown on Figure 2.

The formulas to get validity and security (reliability) in the

area of public health are (1) Sensibility (S), (2) Speci�city

(SP), (3) Positive Predictive Value (+PV),

(4) Negative Predictive Value (-PV).

S = (TP/(TP + FN)) ∗ 100. (1)

SP = (TN/(FP + TN)) ∗ 100. (2)

+PV = (TP/(TP + FP)) ∗ 100. (3)

−PV = (TN/(FN + TN)) ∗ 100. (4)

5. Validation results

As seen on Figure 3, the design of the contingency chart

facilitates calculation of statistic values for AG-PxQ validity

and reliability.

Using the previously described formulas the following

values are obtained:

S = (32/(32 + 7)) ∗ 100 = 82.05 (5)

SP = (57/(4 + 57)) ∗ 100 = 93.44 (6)

+PV = (32/(32 + 4)) ∗ 100 = 88.89 (7)

−PV = (57/(7 + 57)) ∗ 100 = 89.06 (8)

6. Conclusions and future projects

Once the results of the tests for validity and reliability

of the AG-PxQ have been described and analyzed, the

conclusion is:

a) The total percentage of diseased patients that have a

Fig. 3: Contingency Table Values with AG-PxQ

positive diagnostic (sensibility) is 82.05%, which is a very

acceptable value of validity.

b) The total percentage of non-diseased (healthy) patients

with a negative diagnostic (speci�city) is 93.44%, which is

a very acceptable value of validity.

c) Probability of presenting certain disease when the result

is positive in the diagnostic test (test) (Positive Predictive

Value or +PV) is 88.89% Which is a very acceptable value

of reliability on diagnostic testing.

d) Probability of not presenting certain disease when

the result is positive in the diagnostic test (test) (Negative

Predictive Value or -PV) 89.06%, which is a very acceptable

value of reliability on diagnostic testing.

As future projects, the following topics are proposed:

• Utilization of the proposed algorithm using an enlarged

data base.

• Application on real cases and valuation of results on a

ICU supplied clinic.

• Application of the methodology of this system in other

medical areas.

References
[1] Petot GJ, Marling C, Sterling L. (1998). An arti�cial intelligence

system for computer-assisted menu planning. J Am Diet Assoc

98:1009- 14 8.
[2] Bell AJ. (1999). Levels and loops: the future of arti�cial intelligence

and neuroscience. 354:2013- 20.
[3] Holland, J.H. (1975). Adaptation in Natural and Arti�cial Systems.

Ann Harbor, MI: Univ. Of Michigan Press.
[4] Javier Caballero Villarraso, Antonio Romero Tabares, Francisco

J. Gavilán León, Manuel Baena García, Francisco Javier Díez
Vegas, Sevilla. (2011). Aplicación de algoritmos genéticos y

sistemas expertos en medicina asistencial. Agencia de Evaluación de
Tecnologías Sanitarias de Andalucía

[5] J.A. Del Valle-López, R.A. Díaz-Valladares, B.R. Quintero-Silva, J.A.
Serrano-Martínez. (2013). Aplicación de los algoritmos genéticos a la

UCI para la clasi�cación de pacientes. 978-607-95255-4-5
[6] Holman JG, Cookson MJ. (1987). Expert systems for medical

applications. J Med Eng Technol. 11:151-9.
[7] Edwards M, Morse DR, Fielding AH. (1987). Expert systems: frames,

rules or logic for species identi�cation? Computational Applied
Bioscience. 3:1-7.

[8] Flouris AD, Duffy J. (2006). Applications of arti�cial intelligence

systems in the analysis of epidemiological data (Eur J Epidemiol).
21:167-70

144 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

[9] María M. Abad-Grau, Jorge S. Ierache, Claudio Cervino. (2007).
Modelado de Sistema Experto para Triaje en Servicios de Urgencias

Médicas Universidad de Granada, Facultad de Informática Ciencias
de la Comunicación y Técnicas Especiales, Universidad de Morón. p.
1734-1744

[10] L. Salleras. (1994). La medicina clínica preventiva: el futuro de la

prevención. Med Clin (Barc). 102 Supl 1: 5-12.
[11] Riegelman RK, Hirsch RP. (1989). Studying a Study and Testing a

test: How to read the medical literature. Boston: Little Brown.
[12] Á. Ruiz Morales, L.E. Morillo Zárate. (2004). Investigación clínica:

epidemiología clínica aplicada. Edición Médica Panamericana p.576.

Int'l Conf. Genetic and Evolutionary Methods | GEM'13 | 145

146 Int'l Conf. Genetic and Evolutionary Methods | GEM'13 |

