
SESSION

HPC + LOAD-BALANCING + APPROXIMATION
ALGORITHMS + N-P HARD PROBLEMS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'13 | 1

2 Int'l Conf. Foundations of Computer Science | FCS'13 |

Stencil and Lattice Structures for Field Equation Model Simulations on
GPUs

D.P. Playne & K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: k.a.hawick@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2013

ABSTRACT
Field equations can be numerically simulated by approxi-
mating a continuous space field by a discrete lattice. There
are a number of different lattice geometries that can be used
to approximate continuous space which may cause struc-
tural artefacts in the simulation. These different lattice struc-
tures require the use of different stencil operators to approx-
imate the spatial terms of the field equations. We show how
different lattice geometries and associated stencil operators
can be implemented in a stencil library which is used in
conjunction with a code generator to produce code for field
equations simulations that can run on a CPU or GPU.

KEY WORDS
lattice geometry, stencil operators, field equation simula-
tions; GPU.

1 Introduction
Field equations are a family of computational models which
describe the behaviour of a field of interacting matter or en-
tities. These equations model a system represented by a field
in continuous space but can be simulated numerically by ap-
proximating the field as a lattice of discrete cells and the spa-
tial terms of the equations with stencil operators. Such equa-
tions can be used to describe - heat distribution, quenching
binary alloys [2,10], interacting species populations [14,19]
and superconductivity [6].
Rectilinear lattices are commonly used to approximate a
continuous field due to their simple geometry, easy mapping
to computer memory and simple stencil operators. Some
previous work on hexagonal stencils can be found in [15,20]
but this work does not consider how stencils and lattices can
be automatically generated and manipulated.
In this work we develop a stencil library that generates
the stencil operators required by a field equation simula-
tion based on the lattice geometry used. This stencil li-
brary is used in conjunction with a code generator presented

Figure 1: Three-dimensional Ginzburg-Landau simulation.

in [9]. A parallel code generation approach is now possi-
ble due to the advent of portable parallel languages such as
OpenCL and the general revitalisation of data-parallel com-
puting that has been stimulated by cheap GPUs and other ac-
celerators. Generally exposure to the original mathematics
of a PDE along with knowledge of the numerical discretisa-
tion scheme desired, gives a software generation tool more
power to identify the parallelisation potential of the prob-
lem and specifically target a high performance implemen-
tation. The roles and emphasis of performance and porta-
bility are then reversed in this approach and portability may
be achieved through implementations of the OpenCL target
code.
In fact using our approach we believe it is possible to
construct a number of inherent templates that will support
generation of several target languages including CUDA,
OpenMP or OpenCL. There appears to be considerable
scope for automatic generation of stencil source code that
makes use of heuristics and other practical experience to

Int'l Conf. Foundations of Computer Science | FCS'13 | 3

Figure 2: Two dimensional lattice geometries - triangular, rectangular and hexagonal.

achieve optimised implementations on present and emerg-
ing multicore processing devices [5].
Stencil operators have been in use for parallel program op-
timisation for some years [11, 18]. In the case of image op-
erators where a particular stencil might be well-known with
specific name it is straightforward to develop an optimised
software library of optimised operator routines. For solving
PDEs it is however harder to develop a general purpose li-
brary and automated code generation for a particular PDE
with particular initial/boundary conditions and solver algo-
rithm is more attractive [12]. Datta and collaborators discuss
stencil generation using Lisp-parsing of Fortran-like expres-
sions for the mathematics of the equation under considera-
tion and a system that generates the stencil in C or Fortran
code [3]. It is then possible to apply the standard appara-
tus and systems of parallel programming such as message
passing, parallel compiler macros or supercomputer vendor
proprietary optimisation tools to obtain a working parallel
implementation that can target modern multicore devices
amongst other platforms [4].
In Section 2 we discuss some different lattice structures and
the different stencil operators that can be used with them
in Section 3. Section 4 discusses some of the implemen-
tation issues of mapping non-rectilinear lattices onto com-
puter memory and presents some source which does so.
Some simulation and performance results are presented in
Section 5 and we draw some conclusions from this work in
Section 6.

2 Lattice Structures
To simulate a field equation numerically, the continuous
field representing the system must be approximated by a lat-
tice of discrete cells so it can be stored in computer memory
as an array. Each value in the array approximates the aver-
age state of the field within that discrete macroscopic cell.
The spatial interactions of the field equations are defined in
terms of spatial calculus operators which must be approxi-
mated by discrete stencils that can be applied to the lattice

approximating the field. The most common lattice geometry
used to approximate continuous space is the rectilinear lat-
tice which divides space into rectangular shapes. This lattice
geometry is commonly used as it is simple to comprehend,
can be easily extended to divide n-dimensional space and
can be mapped directly into an array in computer memory.
However, there are a number of different lattice structures
which can also be used to approximate a continuous field.
These more unusual lattice structures are often only appli-
cable to fields with a certain number of dimensions. There
is only one regular way to divide a one-dimensional field
whereas in two-dimensions a continuous field can be divided
into a number of different regular lattices. Figure 2 shows
three possible structures for a two-dimensional lattice - tri-
angular, rectilinear and hexagonal. Each cell in a triangular
lattice has three neighbours while the rectilinear has four
and the hexagonal has six.
The rectilinear and hexagonal lattices discussed in this re-
search are both Bravais lattices [1, 13] because they fulfil
the condition that an infinite lattice appears exactly the same
from any lattice point. The triangular lattice does not fulfil
this condition because neighbouring triangles must be in-
verted for them to fit together. Irregular lattices can also
be used to approximate continuous space but these require
stencils to be generated on a per-cell basis and are not con-
sidered in this work.

Figure 3: Two hexagons with distance h = 1 between the
centres and side length t.

The hexagonal lattices used in this work fix the distance
between each hexagon at 1. This gives a side length of
t = h

tan(π
3) = 0.577 which means each hexagon cell in

4 Int'l Conf. Foundations of Computer Science | FCS'13 |

Figure 4: The Laplacian stencil (top) and the Biharmonic stencil (bottom) shown in one-, two- and three-dimensions.

the lattice represents an area of A = 3
√
3

2 t2 = 0.866. This
means that a hexagonal lattice with more lattice points will
be required to simulate the same field area as a rectilinear
lattice with h = 1. Conceptually dividing a field into a
hexagonal lattice is simple but it will have implications on
both the stencils used to approximate the spatial terms of the
equation and the way the lattice must be stored in computer
memory.

3 Stencils & Library
The example field equation models in this research (the
Heat, Lotka-Volterra, Ginzburg-Landau and Cahn-Hilliard
equations) all use the Laplace operator for the spatial term
(the Cahn-Hilliard equation also uses the biharmonic oper-
ator). The Laplace operator or Laplacian is given by the
divergence or the gradient of a function in Euclidean space.
In Cartesian space this is given by the sum of second partial
derivatives in each dimension. Equation 1 gives the formula
for the continuous laplacian operator in n-dimensions.

∇2 =

n∑
i=1

∂2

∂x2i
(1)

When a continuous field is approximated by a lattice of dis-
crete cells this continuous Laplacian must be replaced by
a discrete approximation. The continuous Laplace opera-
tor can be adapted to the discrete form shown in Equation 2
which is suitable for generating difference equations [20]:

∇2 =
δ2

δx2i
− 4x

2
i

12

δ4

δx4i
+
4x4i
90

δ6

δx6i
... (2)

This series is truncated at the δ2/δx2i term which gives a

second derivative operator accurate on the order 4x2i . This
leads to the discrete stencils shown in Figure 4 for rectilin-
ear lattices in one-, two- and three-dimensions as well as the
two-dimensional hexagonal lattice. Also shown in Figure 4
are the stencils for rectilinear and hexagonal lattices repre-
senting the δ4/δx4i term or the biharmonic operator (∇4).
These stencils can be obtained by applying the laplacian
stencil to itself (∇4 = ∇2 · ∇2).
The Stencil Library is capable of providing and manipulat-
ing the stencils approximating the spatial calculus operators
for rectilinear and hexagonal lattices. This Stencil Library is
used in conjunction with a source code generator described
in [9]. The Stencil Library allows the definition of a field
equation to be kept separate from the specifics of the di-
mensionality and lattice geometry used for a particular sim-
ulation. Some PDE problems that arise in areas of physics
can be simulated in higher dimensions and it is useful to be
able to separate the dimension from other problem details
and thus generate software for any number of dimensions.
Hyper-dimensionality library support apparatus is discussed
in [7] which the Stencil Library uses to produce spatial sten-
cils.
The library must have the capability to provide stencils of
the correct dimensionality and lattice structure as requested
by the code generator. Currently the Stencil Library has
functions to generate rectilinear stencils any number of di-
mensions, hexagonal stencils in two-dimensions and arbi-
trary data-types.
When simulation source code is generated, the Stencil Li-
brary is given a simulation tree by the code generator. This
tree contains all the information about the field equation and
the configuration of the simulation. The Stencil Library will
examine this tree to identify nodes representing spatial op-
erators and inject the appropriate stencil data. The specific

Int'l Conf. Foundations of Computer Science | FCS'13 | 5

stencil data used to populate the node will depend on the
dimensionality and lattice structure of the simulation, as de-
fined by the simulation configuration. The example equa-
tions used in this paper use the Laplacian operator and the
Biharmonic operator.

∂φ

∂t
= m∇2

(
−bφ+ uφ3 −K∇2φ

)
(3)

Some equations may have stencil nodes nested inside one
another, the Cahn-Hilliard equation is one example of this
(see equation 3). In a situation such as this the Stencil Li-
brary will rearrange the equation to avoid any nested stencil
nodes. This can be achieved by applying the outer stencil
to the The nested Laplacian operator will be replaced by the
Biharmonic operator (which can be obtained by applying
the Laplacian to itself). The application of one stencil to an-
other can be computed by applying a stencil to every point
on the other stencil. The rearranged Cahn-Hilliard equation
can be seen in equation 4.

∂φ

∂t
= m

(
−b∇2φ+ u∇2φ3 −K∇4φ

)
(4)

4 Implementation
Computationally simulating a field equation using a recti-
linear lattice involves a straightforward mapping of the lat-
tice onto computer memory. The lattice structure can be
easily represented in computer memory and so calculating
the memory addresses of the neighbouring lattice points re-
quired for stencil operators is also straightforward. The only
complication involved in calculating neighbouring memory
addresses is on the boundaries, in this research periodic
boundary conditions are used to avoid artefacts from bound-
aries. The code listing showing the calculation of neigh-
bouring values and computation of the Cahn-Hilliard model
is shown in Listing 1.

Listing 1: Neighbouring memory address calculation and
model calculation code for a two-dimensional Cahn-Hilliard
equation on a rectilinear lattice point (x,y). The variables
in the calculation of the model with the form u yx are the
values fetched from the lattice u at position (x,y).

i n t ym2 = (y <= 1) ? (y−2)+Y : y−2;
i n t ym1 = (y == 0) ? Y−1 : y−1;
i n t yp1 = (y == Y−1) ? 0 : y +1;
i n t yp2 = (y >= Y−2) ? (y+2)−Y : y +2;

i n t xm2 = (x <= 1) ? (x−2)+X : x−2;
i n t xm1 = (x == 0) ? X−1 : x−1;
i n t xp1 = (x == X−1) ? 0 : x +1;
i n t xp2 = (x >= X−2) ? (x+2)−X : x +2;

. . .

M∗ (
−B∗ (u ym1x +

u yxm1 + (−4∗u yx) + u yxp1 +
u yp1x) +

U∗ (pow3 (u ym1x) +
pow3 (u yxm1)+(−4∗pow3 (u yx)) + pow3 (u yxp1) +

pow3 (u yp1x)) +
−K∗ (u ym2x +

(2∗ u ym1xm1)+(−8∗u ym1x)+(2∗ u ym1xp1) +
u yxm2+(−8∗u yxm1)+(20∗ u yx)+(−8∗ u yxp1)+ u yxp2 +

(2∗ u yp1xm1)+(−8∗ u yp1x)+(2∗ u yp1xp1) +
u yp2x))

The mapping of a hexagonal lattice into computer memory
is not so simple as the previous example. A hexagonal lattice
can represent an approximately rectangular region of space
by offsetting each row by an alternating offset (see Figure 2).
This gives a hexagonal lattice with Y rows of X cells which
can be stored as an array in memory. The downside of this is
that the calculation of the neighbouring memory addresses
in a simulation using a hexagonal lattice depends on the row
number. Effectively it gives rise to selecting one of the two
stencils shown in Figure 5.

Figure 5: The hexagonal laplacian stencil and the two row-
dependent rectilinear stencils.

These two stencils can be implemented by changing the cal-
culation of the neighbouring lattice point memory addresses
based on whether the lattice point is on an odd or even row.
The code to perform these address calculations and the com-
putation of the Cahn-Hilliard simulation on a hexagonal lat-
tice is shown in Listing 2. Note that not only has the number
of neighbouring addresses increased but the model calcula-
tion has also become more complex using additional neigh-
bouring values as compared to the code example in List-
ing 1.

Listing 2: The code to calculate the memory addresses of the
neighbouring cells and compute the Cahn-Hilliard equation
on a hexagonal lattice point (x,y).

i n t ym2 = (y <= 1) ? (y−2)+Y : y−2;
i n t ym1 = (y == 0) ? Y−1 : y−1;
i n t yp1 = (y == Y−1) ? 0 : y +1;
i n t yp2 = (y >= Y−2) ? (y+2)−Y : y +2;

i n t xm2 = (x <= 1) ? (x−2)+X : x−2;
i n t xm1 = (x == 0) ? X−1 : x−1;
i n t xp1 = (x == X−1) ? 0 : x +1;
i n t xp2 = (x >= X−2) ? (x+2)−X : x +2;

i n t xm15 = (y%2 == 0) ? xm2 : xm1 ;
i n t xm05 = (y%2 == 0) ? xm1 : x ;
i n t xp05 = (y%2 == 0) ? x : xp1 ;
i n t xp15 = (y%2 == 0) ? xp1 : xp2 ;

. . .

6 Int'l Conf. Foundations of Computer Science | FCS'13 |

M∗ (
−B∗ (2 . 0 / 3 . 0) ∗ (u ym1xm5 + u ym1xp5 +

u yxm1 + (−4∗u yx) + u yxp1 +
u yp1xm5 + u yp1xp5) +

U∗ (2 . 0 / 3 . 0) ∗ (
pow3 (u ym1xm5) + pow3 (u ym1xp5) +

pow3 (u yxm1)+(−4∗pow3 (u yx)) + pow3 (u yxp1) +
pow3 (u yp1xm5) + pow3 (u yp1xp5)) +

−K∗ (4 . 0 / 9 . 0) ∗ (
u ym2xm1 + (2∗ u ym2x) + u ym2xp1 +

(2∗uym1xm15)−(10∗uym1xm05)−(10∗uym1xp05)+(2∗ uym1xp15)+
u yxm2−(10∗u yxm1)+(42∗ u yx)−(10∗ u yxp1)+ u yxp2 +

(2∗ uyp1xm15)−(10∗uyp1xm05)−(10∗ uyp1xp05)+(2∗ uyp1xp15)+
u yp2xm1 + (2∗ u yp2x) + u yp2xp1))

Figure 6: Two snapshots of Cahn-Hilliard simulations -
computing on the rectilinear (top) and hexagonal (bottom)
lattices from Figure 2.

The simulation of a field equation requires this calculation
to be performed for each cell in the lattice and integrated
over time using an appropriate integration method. This can
be done by a CPU processor by iterating over every cell,
computing the new value and writing it to another lattice or
in parallel by a device such as a GPU in which each cell will
be updated by a different thread executing on many proces-
sors. This work is concerned mainly with the lattices and
spatial stencils but the further details of the simulation gen-
eration and structure can be found in [9].

5 Results
The first result of this research is that the simulation gen-
erator is able to produce code for field equation simula-
tions using both rectilinear and hexagonal lattices. This in-
volves generating stencils for both lattice types as required
by the models, applying them to each other when required
by the equation and mapping both the lattice and the stencil
memory address calculation onto memory. This has been
achieved successfully for the rectilinear lattice in one-, two-
and three-dimensions as well as the less simple hexago-
nal lattice in two dimensions. Screen captures of the two-
dimensional Cahn-Hilliard equation computed using a rec-
tilinear and a hexagonal lattice are shown in Figure 6.
One of the major requirements for the generator system is
that it should produce fast and efficient simulation code.
The performance of the code produced by the our sys-
tem’s C++ and CUDA generators is indistinguishable from
existing hand-written code. These hand-written compari-
son codes have been developed and optimised over a num-
ber of years, details of their optimisations can be found
in [8, 16, 17]. The performance of the four equations Heat,
Cahn-Hilliard, Ginzburg-Landau and Lotka-Volterra equa-
tions are presented for a number of simulation configura-
tions. These simulations have been computed on both recti-
linear lattices and hexagonal lattices. Figure 7 shows the
timing results of these simulations in two-dimensions for
N={1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192}.
These simulations have been computed on a Intel i7-970 and
an NVIDIA GeForce GTX580.
From these performance plots it can be seen the the differ-
ent field equations have different performance based on their
individual computation and memory requirements. In all
cases the simulations on hexagonal lattices are slower than
the rectilinear lattice simulations. The extra memory trans-
actions and computation required to compute the hexago-
nal stencils will always have a negative performance im-
pact. This penalty is especially visible for the Cahn-Hilliard
equation which uses the biharmonic operator. The simula-
tion of this model on a hexagonal lattice requires 19 neigh-
bouring lattice points instead of the 13 required by the two-
dimensional rectilinear biharmonic operator.

6 Discussion and Conclusions
In summary, we have discussed how continuous space can
be approximated by discrete lattices with different geome-
tries and how spatial calculus terms can be formulated as
stencil operators on these different lattices. The formulation
and application of these stencils can be performed automat-
ically by a stencil library which can reorder equations to
avoid nested stencils. This sometimes requires the library
to apply one stencil to another. The stencil library also pro-
vides a mapping from the lattice structure onto computer

Int'l Conf. Foundations of Computer Science | FCS'13 | 7

Figure 7: A performance comparison of the Cahn-Hilliard (ch), Ginzburg-Landau (gl), Lotka-Volterra (lv) and Heat (h) equation
simulations using rectilinear lattices (rec) and hexagonal lattices (hex) in C++ (CPU) and CUDA (GPU). Results are shown in
normal scale (top) and ln-ln scale (bottom).

8 Int'l Conf. Foundations of Computer Science | FCS'13 |

memory so that the lattice can be stored in an array.
The data provided by the stencil library can be used by a
code generation system which produces source code to nu-
merically simulate field equations. A number of field equa-
tions have been tested with this code generation system us-
ing both rectilinear and hexagonal lattices to approximate
the continuous field. The system has generated simulation
code in C for use on a CPU processor as well as CUDA for
use on a parallel graphical processing unit.
The functionality of separating a model definition from the
lattice geometries allows models to be tested on different
lattices with ease. This makes it easy to test models with a
range of lattices to ensure any structural patterns formed by
the model are representative of the model and not an artefact
of the particular lattice geometry used.
There is scope fro future work to implement other lat-
tice structures in three-dimensional space such as face-
centred cubic, body-centred cubic and hexagonal close-
packed. Some of the field equation models in our class can
be generalised to higher dimensions and in particular some
physics-oriented problems involve four and higher dimen-
sional field equations. Our stencils library and approach also
generalise to higher dimensional problems.
The computational performance we attained with our sten-
cils library and the code generated for running on accelera-
tors such as a GPU is extremely encouraging. However the
real value of this approach is being able to experiment with
different calculus operators, different lattices, and other al-
gorithmic details relatively easily – for the same equation
under study. In addition, this approach lowers considerably
the development and testing effort involved in studying an-
other (new) equation.

References
[1] Bravais, A.: Memoire sur les systemes formes par les points

distribues regulierement sur un plan ou dans l’espace. J.
Ecole Polytech 19, 1–128 (1850)

[2] Cahn, J.W., Hilliard, J.E.: Free Energy of a Nonuniform
System. I. Interfacial Free Energy. The Journal of Chemical
Physics 28(2), 258–267 (1958)

[3] Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J.,
Yelick, K.: Optimization and performance modeling of sten-
cil computations on modern microprocessors. SIAM Review
51(1), 129–159 (2009)

[4] Datta, K., Murphy, M., amd S. Williams, V.V., Carter, J.,
Oliker, L., Patterson, D., Shalf, J., Yelick, K.: Stencil compu-
tation optimization and auto-tuning on state-of-the-art multi-
core architectures. In: Proc. ACM/IEEE Conf. on Supercom-
puting (SC’08’) (2008)

[5] Ganapathi, A., Datta, K., Fox, A., Patterson, D.: A case
for machine learning to optimize multicore performance. In:
First USENIX Workshop on Hot Topics in Parallelism (Hot-
Par’09). Berkeley, CA, USA. (March 2009)

[6] Ginzburg, V.L., Landau, L.D.: (Published in English in Col-

lected papers of L.D.Landau, Oxford Press, 1965, pp138-
167). Zh. Eksp. Teor. Fiz. 20, 1064 (1950), edited I.D. ter
Haar

[7] Hawick, K.A., Playne, D.P.: Hypercubic Storage Layout
and Transforms in Arbitrary Dimensions using GPUs and
CUDA. Concurrency and Computation: Practice and Expe-
rience 23(10), 1027–1050 (July 2011)

[8] Hawick, K.A., Playne, D.P.: Numerical Simulation of the
Complex Ginzburg-Landau Equation on GPUs with CUDA.
In: Proc. IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN). pp. 39–45.
No. CSTN-070, IASTED, Innsbruck, Austria (15-17 Febru-
ary 2011)

[9] Hawick, K.A., Playne, D.P.: Simulation software generation
using a domain-specific language for partial differential field
equations. In: 11th International Conference on Software En-
gineering Research and Practice (SERP’13). p. SER3829.
No. CSTN-187, WorldComp, Las Vegas, USA (22-25 July
2013)

[10] Hawick, K.A.: Domain Growth in Alloys. Ph.D. thesis, Ed-
inburgh University (1991)

[11] James, H.A., Patten, C.J., Hawick, K.A.: Stencil methods on
distributed high performance computers. Tech. Rep. DHPC-
010, Advanced Computational Systems CRC, Department of
Computer Science, University of Adelaide (June 1997)

[12] Kamil, S., Chan, C., Williams, S., Oliker, L., Shalf, J.,
Howison, M., Bethel, E.W., Prabhat: A generalized frame-
work for auto-tuning stencil computations. In: Proc. Cray
User Group (CUG) Atlanta, Georgia,. pp. 1–11 (May 2009),
http://escholarship.org/uc/item/23p6g5nj

[13] Kittel, C.: Introduction to Solid State Physics. Wiley (2004),
iSBN 978-0-471-41526-8

[14] Lotka, A.J.: Elements of Physical Biology. Williams &
Williams, Baltimore (1925)

[15] Morii, F.: Distortion analysis on discrete laplacian operators
by introducing random images. In: Proceedings of the Third
International Conference on Image and Graphcis (ICIG’04)
(2004)

[16] Playne, D.P., Hawick, K.A.: Visualising vector field model
simulations. In: Proc. International Conference on Modeling,
Simulation and Visualization Methods (MSV’09). pp. 3–9.
WorldComp, Las Vegas, USA (13-16 July 2009)

[17] Playne, D., Hawick, K.: Data Parallel Three-Dimensional
Cahn-Hilliard Field Equation Simulation on GPUs with
CUDA. In: Proc. 2009 International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’09). pp. 104–110. WorldComp, Las vegas, USA
(13-16 July 2009)

[18] Reed, D.A., Adams, L.M., Patrick, M.L.: Stencils and prob-
lem partitionings: Their influence on the performance of mul-
tiple processor systems. IEEE Transactions on Computers C
36(7), 845–858 (jul 1987)

[19] Volterra, V.: Variazioni e fluttuazioni del numero d’individui
in specie animali conviventi. Mem. R. Accad. Naz. dei Lin-
cei, Ser VI 2 (1926)

[20] Woodward, M., Muir, F.: Hexagonal finite difference opera-
tors and 3-d wave equation migration. Stanford Exploration
Project 38, 195–206 (198)

Int'l Conf. Foundations of Computer Science | FCS'13 | 9

The Complexity and Algorithm for k-Duplicates Combinatorial
Auctions with Submodular and Subadditive Bidders

Wenbin Chen1,2,3, Lingxi Peng1, Jianxiong Wang1, Dongqing Xie1, Fufang Li1 and Maobin Tang1

1School of Computer Science, Guangzhou University, P.R. China
2Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, P.R. China

3State Key Laboratory for Novel Software Technology, Nanjing University, P.R. China

Abstract— In this paper, we study the problem of max-
imizing welfare in combinatorial auctions with k(> 1)-
duplicates of each item, where k is a fixed constant (i.e. k
is not the part of the input) and bidders are submodular or
subadditive. We exhibit some upper and lower approximation
bounds for k-duplicates combinatorial auctions. First, we
show that it is NP-hard to approximate the maximum welfare
for k-duplicates combinatorial auctions with subadditive
bidders within a factor of 2−ε where ε > 0 unless P = NP .
Secondly, we propose a 2-approximation algorithm for k-
duplicates combinatorial auctions with submodular bidders.

Keywords: Approximation Algorithm; Combinatorial Auctions;
NP-hard

1. Introduction
We consider the allocation problem in combinatorial auc-

tions with k(> 1)-duplicates of each item where k is a fixed
constant. In the past years, there has been much interest in
combinatorial auctions. In a combinatorial auction, there are
a set M of m items and n bidders. These items are being
sold to bidders. Every bidder i has a valuation function (it
is also called utility function in some cases) vi : 2M → R+.
We suppose that the valuation function is monotone, which
means for every two bundles S, T, S ⊆ T ⊆ M it holds
v(S) ≤ v(T), and normalized v(∅) = 0. The goal is to find
a partition (S1, . . . , Sn) of the m items that maximizes the
total utility or social welfare, i.e., Σivi(Si) is maximized.
We call such an allocation an optimal allocation.

The k-duplicates combinatorial auction is the allocation
problem in combinatorial auctions with k-duplicates of each
item where k is a fixed constant. Every bidder is still
interested in at most one unit of each item and every
valuation is still defined on the subsets of M . It is the
generalization of a combinatorial auction (where k = 1).

Since the size of the input is exponential, we suppose that
we have oracles for accessing it. There are two common
types of query methods. One common type of queries is
the “value queries". Given a bundle of S, a value query
answers v(S) for a valuation v. From a “computer science”
perspective, this kind of query is very natural.

Another kind of query is the “demand queries". Given
a vector p = (p1, . . . , pm) of item prices, a demand query
replies a set that maximizes the profit, i.e. maximizes vi(S)−
Σj∈Spj . Demand queries are very natural from an economic
point of view. It is known that demand queries can simulate
values queries in polynomial time [4].

In this paper we study the important cases where all
bidders are known to have subadditive and submodular
valuations; a valuation is called subadditive if v(S ∪ T) ≤
v(S) + v(T) for all S, T ⊆ M ; a valuation is called
submodular if v(S ∪ T) + v(S ∩ T) ≤ v(S) + v(T) for
all S, T ⊆ M . It is known that every submodular valuation
is subadditive [17].

For general utility functions, the combinatorial auction
problem is NP-hard. In [4], it has been shown that there
are no polynomial time algorithms with a factor better than
O(log m

m) if value queries are used. In [18] and [21], it
has also been shown that there are no polynomial time
algorithms with a factor better than O(1

m1/2−ε) even for
single minded bidders. If demand queries are used, achieving
any approximation factors better than O(1

m1/2−ε) requires
exponential communication [20]. More results on the combi-
natorial auction problems with general utilities can be found
in [7].

The allocation problem with subadditive utility func-
tions is still NP-hard. Using demand queries, a O(log m)
approximation algorithm for combinatorial auctions with
subadditive utility function is given in [8]. In the same paper,
an incentive compatible O(

√
m) approximation algorithm is

also presented if value queries is used. Recently, Feige give
an approximation algorithm that obtains the approximation
ratio of 2 ([12], [13]). As for complexity results, it is shown
that an exponential amount of communication is required
for achieving an approximation ratio better than 2 in [8].
In [12] and [13], it is proved that there are no polynomial
time algorithms approximating the maximum welfare within
a factor 2−ε unless P = NP , when bidders are subadditive.
Thus the approximation ratio 2 is the best possible for the
combinatorial auctions with subadditive utility functions.

In [17], a strict hierarchy of subclasses within the class
of subadditive valuations is presented: OXS ⊂ GS ⊂
SM ⊂ XOS ⊂ CF . The CF is the class of subadditive
(complement-free) valuations; SM is the set of submodular

10 Int'l Conf. Foundations of Computer Science | FCS'13 |

valuations; The XOS is the set of those valuations that can
be defined by XOR-of-ORs of singleton valuations.

For the combinatorial auctions with XOS utility func-
tions, a greedy algorithm achieving an approximation ratio
of 2 is given in [8], [9]. An improved ratio of e

e−1 is obtained
in [10] and [12]. It is shown that it is NP-hard to approximate
the optimal allocation with XOS valuations to within any
factor of e

e−1 − ε [8], [9]. It is also proved that exponential
communication is required for achieving any approximation
ratio better that e

e−1 when all bidders are XOS.
In the past years, combinatorial auctions with submodular

bidders have also received much attention. A greedy 2-
approximation algorithm is given in [17] and the approxima-
tion ratio is improved to (2− 1

n) in [10] when value queries is
used. In [22], Jan Vondrák design a randomized continuous
greedy e

e−1 -approximation algorithm for the submodular
welfare problem in the value oracle model. In [1], Ittai
Abraham and Moshe Babaioff et al. develop polynomial-
time approximation algorithms and truthful mechanisms for
welfare maximization with bidders with hypergraph valu-
ations. When demand queries is used, there is a random
polynomial time approximation algorithm that obtains an
approximation ratio of ρ < e

e−1 [14]. In [8], it is shown
that it is NP-hard to approximate the optimal allocation for
combinatorial auctions with submodular bidders to within
a factor better than 51/50, unless P = NP . Khot et al.
improve this result, prove that there are no polynomial time
algorithms that can obtain an approximation ratio better than

e
e−1 using value queries only, unless P = NP [16]. The
case of additive valuations with a budget limit is a subcase
of submodular valuations. It is NP-hard to find the optimal
allocation in a combinatorial auction with valuations that are
additive with budget limit [17]. In [2], a randomized algo-
rithm with an approximation ratio of e

e−1 is presented, which
can be derandomized. Some other subcases of submodular
valuations have also been studied (e.g. identical bidders [8],
[9], online settings [19].)

In [5], an incentive compatible mechanism for multi-
unit combinatorial auctions is given. In particular, this
includes the case where each good has exactly k units,
i.e. k-duplicates combinatorial auctions. In [11], Dobzinski
and Schapira exhibit a polynomial time min{n

k , O(m
1

k+1)}
approximation algorithm for k-duplicates combinatorial auc-
tions using demand queries only and show that exponential
communication is required for achieving an approximation
ratio better than min{n

k , O(m
1

k+1−ε)}, where ε > 0. In the
same paper, they also give an algorithm that achieves an
approximation ratio of O(m√

log m
) using only a polynomial

number of value queries and prove that it is impossible
to approximate a combinatorial auction with k-duplicates
to a factor of O(m

log m) using a polynomial number of
value queries. They studied the case where all valuations
are general utility functions. In [6], a O(

√
m) approxima-

tion algorithm for k-duplicates combinatorial auctions with

subadditive valuations using value queries and a O(log m)
approximation algorithm for k-duplicates combinatorial auc-
tions with subadditive valuations using demand queries are
given.

In this paper, we study the computational complexity of
k-duplicates combinatorial auctions with subadditive bidders
and approximation algorithms for k-duplicates combinatorial
auctions with submodular bidders.

Our Results

In this paper, first, we prove some lower bounds for subad-
ditive bidders. We show that it is NP-hard to approximate the
maximum welfare for k-duplicates combinatorial auctions
with subadditive bidders within a factor of 2−ε where ε > 0
unless P = NP . Secondly, we provide some approximation
algorithm. We give a 2-approximation algorithm for k-
duplicates combinatorial auctions with submodular bidders.

Structure of the Paper

In section 2, we study the computational complexity for
k-duplicates combinatorial auctions with subadditive valu-
ations. In section 3 we present a 2-approximation algorithm
for k-duplicates combinatorial auctions in which all valua-
tions are submodular. Finally, in section 4 we present some
conclusions and some open problems.

2. The complexity for k-duplicates com-
binatorial auctions with subadditive val-
uations

In this section we study the computational complexity
for k-duplicates combinatorial auctions with subadditive
valuations. In the following, we show that it is NP-hard
to approximate the optimal allocation within a factor of
2−ε for k-duplicates combinatorial auctions with subadditive
valuations, where ε > 0.

In order to get the computational complexity, we will give
a polynomial time reduction from the maximum independent
set problem for hypergraphs to k-duplicates combinatorial
auctions with subadditive valuations. First, we give two
definitions as follows.

Definition 1 A k-uniform hypergraph Hk(V,E) consists of
a set of vertices V and a collection E of k-element subsets
of V that are called hyperedges. An independent set of Hk

is a set of vertices such that no subset of these vertices form
a hyperedge in Hk.

Definition 2 The Maximum Independent Set (MIS) problem
for Hepergraphs is the following problem: Given a hyper-
graph Hk, find a maximum independent set.

Int'l Conf. Foundations of Computer Science | FCS'13 | 11

In [3], it is shown that for every ε > 0, there is an α > 0
such that it is NP-hard to distinguish between “yes cases"
in which a graph has an independent set of size αn and
“no cases" in which every independent set is of size at most
εαn. A gap-preserving reduction from the MIS problem for
graphs to the MIS for k-uniform hypergraphs is given in
[5] and [15]. Thus the following conclusion holds.

Lemma 1 ([5] and [15]) Let k ≥ 2 be a fixed integer, for
every ε > 0, there is an α > 0 such that it is NP-hard
to distinguish between “yes cases" in which a k-uniform
hypergraph has an independent set of size αn and “no
cases" in which every independent is of size at most εαn.

In the following, we give a reduction from the MIS
problem for k+1-hypergraph to the k-duplicates combina-
torial auctions with subadditive valuations. The reduction is
the extension of Feige’ reduction and is similar to that in
[5], where it is shown that it is NP-hard to approximate
k-duplicates combinatorial auctions to within a factor of
O(m

1−ε
k+1) unless NP = ZPP , for every fixed k ≥ 1 and

ε > 0.

Theorem 1 For every ε > 0, it is NP-hard to approximate the
optimal allocation within a factor of 2− ε for k-duplicates
combinatorial auctions with subadditive valuations.

Proof: By lemma 1, it is NP-hard to distinguish between
“yes cases" in which a k + 1-uniform hypergraph has an
independent set of size αn and “no cases" in which every
independent set is of size at most εαn. Given an instance
of k + 1-uniform hypergraph Hk+1 = (V,E), we define
an instance of k-duplicates combinatorial auctions with
subadditive valuations as follows: Let the hyperedges of the
hypergraph Hk+1 be the items with k duplicates of each
item and let the number of bidders be αn. Every bidder has
the same subadditive valuation. The subadditive valuation
is defined as follows. Suppose S is a subset of items. If
there is some vertex such that S contains all items whose
corresponding hyperedges are incident with it, the utility
v(S) = 2. Otherwise, v(S) = 1. We show that the utility
function is subadditive. Let S and T be any two subset of
items. By definition of v, v(S)+v(T) ≥ 1+1 = 2 and v(S∪
T) ≤ 2. So v(S∪T) ≤ v(S)+v(T). Thus the utility function
v is a subadditive valuation. On yes cases, by giving each
bidder the items corresponding to hyperedges incident with
some vertex of a maximum independent set, the maximum
welfare is 2αn. On no cases, the maximum welfare is at most
(1 + ε)αn. The reason is as follows. Since the maximum
independent set is of size at most εαn on no cases, the
number of its corresponding bidders is εαn. We assign each
such bidder the items corresponding to hyperedges incident
with that vertex. Thus there are 2εαn walfare for these εαn
bidders; For other (1− ε)αn bidders, if one such bidder are

assigned to all items whose corresponding hyperedges are
incident with it, then the vertex corresponding to that bidder
and the maximum independent set contain a hyperedge. Thus
the item corresponding to the hyperedge is assigned to k+1
different bidders, this contradict the fact that the duplicate of
each item is k. Thus for other (1− ε)αn bidders, there are
no bidder that are assigned to all items whose corresponding
hyperedges are incident with it. Thus their welfare are at
most (1 − ε)αn. So on no cases, the welfare are at most
2εαn + (1− ε)αn = (1 + ε)αn. Thus the hardness factor is

2αn
(1+ε)αn = 2− ε.

3. A 2-approximation algorithm for sub-
modular valuations
In this section we present a 2-approximation algorithm for k-
duplicates combinatorial auctions in which all valuations are
submodular, which extends the algorithm of [17]. In [17], an
equivalent definition of submodular valuations is as follows:
for all S ⊆ T and x 6∈ T , v(S∪x)−v(S) ≥ v(T∪x)−v(T).
That is, the marginal value of each item decreases as the
set of items already acquired increases. The approximation
algorithm is as follows.

Input: v1, . . . , vn-submodular valuations, given as black
boxes.

Output: An allocation S1, . . . , Sn which is 2-approximation
to the optimal allocation.

The Algorithm:
1) Initialize S1 = S2 = . . . = Sn = ∅.
2) For x = 1, . . . ,m do:

a) Let j1, . . . , jk be the bidders whose value of
vj(x|Sj) is the highest, the second high, . . . , the
k-th high, where vj(x|Sj) = vj(Sj∪x)−vj(Sj).

b) Allocate x to j1, . . . , jk, i.e. Sj1 ← Sj1 ∪
{x}, . . . , Sjk

← Sjk
∪ {x}.

Obviously, the above algorithm requires only a polynomial
number of operations.

Theorem 3 The above algorithm provides a 2-approximation
to the optimal allocation for k-duplicates combinatorial
auctions in which all valuations are submodular.

Proof: We denote by Q the original problem and define
a new problem Q′ on the m − 1 remaining items with
k-duplicates of each item after item 1 is removed: i.e.,
item 1 is unavailable and vj1 , . . . , vjk

are replaced by
v′j1 , . . . , v

′
jk

with v′j1(S) = vj1(S|{1}) = vj1(S ∪ {1}) −
vj1({1}), . . . , v′jk

(S) = vjk
(S|{1}) = vjk

(S ∪ {1}) −
vjk

({1}), where j1, . . . , jk are those bidders to whom item

12 Int'l Conf. Foundations of Computer Science | FCS'13 |

1 was allocated. All other valuations vi, i 6= j1, . . . , jk are
unchanged. Notice that the above algorithm can be viewed
as first item 1 is allocated to j1, . . . , jk and other items are
assigned using a recursive call on Q′.

Let ALG(Q) denote the value of the allocation produced
by above algorithm and OPT (Q) denote the value of
optimal allocation. Let p1 = vj1({1}), . . . , pk = vjk

({1}).
By the definition of Q′, we have v′j1(S) + vj1({1}) =
vj1(S ∪ {1}), . . . , v′jk

(S) + vjk
({1}) = vjk

(S ∪ {1}). So
we get ALG(Q) = ALG(Q′) + p1 + · · · + pk. We will
show that OPT (Q) ≤ OPT (Q′) + 2(p1 + · · · + pk). Let
S1, . . . , Sn be the optimal allocation S for Q, and assume
that 1 ∈ Sl1 , . . . , 1 ∈ Slk and vl1({1}) ≥ vl2({1}) ≥ . . . ≥
vlk({1}). Let S′ be the allocation of item 2, . . . ,m that is
the remaining allocation when k-duplicates of item 1 are
removed in the allocation S. This is a possible solution to
Q′. Let us compare OPT (Q′) to OPT (Q). All bidders
except l1, . . . , lk get the same allocation and all bidders
except j1, . . . , jk have the same valuation. Without loss
of generality, assume that l1 6= j1, . . . , lk 6= jk. Since
vli(S ∪ {1}) − vli(S) ≤ vli({1})(i = 1, . . . , k), the
bidders l1, . . . , lk lose at most vl1({1}) + · · · vlk({1}). But
vli({1}) ≤ vji({1}) = pi for all i(i = 1, . . . , k). Thus
the bidders l1, . . . , lk lose at most p1 + . . . + pk. By the
monotonicity of vji

(i = 1, . . . , k), v′ji
(Sji

) = vji
(Sji

∪
{1}) − vji

({1}) ≥ vji
(Sji

) − pi (for all i = 1, . . . , k).
Therefore OPT (Q′) ≥ OPT (Q)− 2(p1 + . . . + pk).

By lemma 1 of [17], Q′ also consists of submodular
valuations. Thus the proof is concluded by induction on Q′:
OPT (Q) ≤ OPT (Q′) + 2(p1 + . . . pk) ≤ 2ALG(Q′) +
2(p1 + . . . pk) ≤ 2ALG(Q).

4. Conclusions
In this paper, we have studied the computational complexity
for k-duplicates combinatorial auctions with subadditive
valuations. What are the computational complexity for k-
duplicates combinatorial auctions with submodular or XOS
valuations ? The problem should be further studied. About
approximation algorithms, how to improve the approxima-
tion ratio 2 for submodular valuations. What is the upper
bound for k-duplicates combinatorial auctions with subad-
ditive or XOS valuations ?

Acknowledgment
We would like to thank the anonymous referees for their
careful readings of the manuscripts and many useful sug-
gestions.

Wenbin Chen’s research has been supported by the Na-
tional Natural Science Foundation of China (NSFC) under
Grant No.11271097, the research project of Guangzhou
education bureau under Grant No. 2012A074., the project
IIPL-2011-001 from Shanghai Key Laboratory of Intelli-
gent Information Processing, and the project KFKT2012B01

from State Key Laboratory for Novel Software Technolo-
gyčňNanjing University. Lingxi Peng’s research has been
partly supported by the National Natural Science Foun-
dation of China (NSFC) under Grant No.61100150. and
the research project of Guangzhou education bureau under
Grant No. 2012A077. Jianxiong Wang’s research was par-
tially supported under Guangzhou City Council’s Science
and Technology Projects funding scheme (project number
12C42011622), under Guangdong provincial education de-
partment’s Yumiao early career researchers development
funding scheme (2012WYM0105 and 2012LYM0105) and
the research project of Guangzhou education bureau under
Grant No. 2012A143. Dongqing Xie’s research has been
partially supported by Yangcheng Scholars Project under
Grant No. 10A033D and Key Science and Technology
Innovation Projects of Guangdong Province’s Universities
under Grant No. CXZD1144. Fufang Li’s research has
been supported by Natural Science Foundation of Guang-
dong Province of China under Grant No. S2011040003843.
Maobin Tang’s research has been supported under Guang-
dong Province’s Science and Technology Projects under
Grant No. 2011B020313023 and 2012A020602065 and the
research project of Guangzhou education bureau under Grant
No. 2012A075.

References
[1] I. Abraham, M. Babaioff, S. Dughmi, T. Roughgarden, “Combinatorial

auctions with restricted complements,” in 2012 ACM Conference on
Electronic Commerce, 2012, pp. 3–16.

[2] N. Andelman and Y. Mansour, “ Auctions with budget constraints,” in
SWAT04, 2004, pp.26–38.

[3] S. Arora, and S. Safra, “Probabilistic checking of proofs: a new
characterization of NP,” Journal of ACM, 45(1), pp. 70–122, 1998.

[4] L. Blumrosen and N. Nisan, “On the computational power of iterative
auctions I: Demand queries,” in 2005 ACM Conference on Electronic
Commerce, 2005, pp. 29–43.

[5] Y. Bartal, R. Gonen, and N. Nisan, “ Incentive compatible multi unit
combinatorial auctions,” in TARK 03, 2003, pp. 72–87.

[6] Wenbin Chen, Jiangtao Meng, “Approximation Algorithms for k Du-
plicates Combinatorial Auctions with Subadditive Bidders,” in COCOA
2007, LNCS 4616, pp.163–170.

[7] P. Cramton, Y. Shoham, and R. Steinberg (editors). Combinatorial
Auctions, MIT Press, 2005.

[8] S. Dobzinski, N. Nisan, and M. Schapira, “Approximation algorithm
for combinatorial auctions with complement-free bidders,” Proceedings
of 37th Annual ACM Symposium on Theory of Computing, 2005, pp.
610–618.

[9] S. Dobzinski, N. Nisan, and M. Schapira, “Approximation algorithm
for combinatorial auctions with complement-free bidders,” Math. Oper.
Res. 35(1), pp. 1–13, 2010.

[10] S. Dobzinski, M. Schapira, “ An improved approximation algorithm
for combinatorial auctions with submodular bidders,” Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2006, pp. 1064–1073.

[11] S. Dobzinski, M. Schapira, “Optimal upper and lower approximation
bound for k-duplicates combinatorial auctions,” 2005, Working paper.

[12] U. Feige, “ On maximizing welfare when utility functions are subad-
ditive,” Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, 2006, 41–50.

[13] U. Feige, “On maximizing welfare when utility functions are subad-
ditive,” SIAM J. Comput. 39(1), pp. 122–142, 2009.

Int'l Conf. Foundations of Computer Science | FCS'13 | 13

[14] U. Feige, J. Vondrák, “ Approximation algorithms for allocation
problems: Improving the factor of 1 − 1

e
,” FOCS’06, 2006, pp. 267–

276.
[15] T. Hofmeister, H. Lefmann, “Approximating maximum independent

sets in uniform hypergraphs,” Proceedings of the Twenty-Third Math-
ematical Foundations of Computer Science, 1998, pp. 562–570.

[16] S. Khot, R. Lipton, E. Markakis and A. Mehta, “Inapproximability
results for combinatorial auctions with submodular utility functions,”
WINE 2005, 2005, pp. 92–101.

[17] B. Lehmann, D. Lehmann, and N. Nisan, “Combinatorial auctions
with decreasing marginal utilities,” In 2001 ACM conference on elec-
tronic commerce, 2001, pp. 18–28.

[18] D. Lehmanm, L. O’Callaghan, and Y. Shoham, “ Truth revelation in
approximately efficient combinatorial auctions,” In 1999 ACM Confer-
ence On Electronic Commerce, 1999, pp.96–102.

[19] A. Mehta, A. Saberi, U. Vazirani and V. Vazirani, “Adwords and gener-
alized online matching,” 46th Annual IEEE Symposium on Foundations
of Computer Science , 2005, pp. 264-273.

[20] N. Nisan and I. Segal, “ The communication requirements of effi-
cient allocations and supporting prices,” Journal of Economic Theory,
129(1), pp. 192–224, 2006.

[21] T. Sandholm, “An algorithm for optimal winner determination in
combinatorial auctions,” In IJCAI’99, 1999, pp. 542–547.

[22] Jan Vondrák, “Optimal approximation for the submodular welfare
problem in the value oracle model,“ Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, 2008, pp. 67-74.

14 Int'l Conf. Foundations of Computer Science | FCS'13 |

Optimising Computations for Evaluating Ising and Potts Model Partition
Functions by Exact Enumeration

K.A. Hawick and D.P. Playne
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: {k.a.hawick, d.p.playne }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2013

ABSTRACT

The Ising and Potts discrete lattice are useful baselines of
comparison for many systems and theoretical calculations in
statistical physics. While these models are traditionally stud-
ied using Monte Carlo sampling techniques it is also use-
ful to exactly enumerate their partition functions using brute-
force coding techniques. Recent advances in bitwise manip-
ulation and parallel processing technology have made these
techniques computationally feasible for the Q=3,4 state Potts
model as well as the 2 state Ising spin model. We report on
bit-packing and graphical processing unit implementations to
improve the number of model states that can be exactly enu-
merated per second and discuss implications for uses of this
approach with various observables.

KEY WORDS
partition function; enumeration; brute force; summation;
multicore, GPU.

1 Introduction
The Ising model [17] is a well studied statistical mechan-
ics model of a magnetic system exhibiting a phase transi-
tion [33]. The Ising model has been very widely used as
a baseline of comparison for many real systems, theoreti-
cal [21,34] and simulation models [16] in statistical and solid
state physics [31], and in other areas such as neural mod-
els of the brain and complex networks such as polymer sys-
tems [22]. The Potts model [30] extends the Ising system by
allowing more than just two simple spin states. The Ising and
Potts models are both formulated as a discrete and regular lat-
tice of individual spins that can take on a number of different
values but which will align (ferromagnetic model) or anti-
align (anti ferromagnetic model) with their nearest neigh-
bouring sites. The degree of alignment changes drastically
at a critical temperature - known as the Curie temperature for
real systems [38]. Above Tc the spins are still random with
no large spatial structure, whereas below Tc large droplets

Figure 1: Long range clusters in a Critical 5122 Ising model.

and regions of aligned spins spontaneously form.
Figure 1 shows a sample Ising model system around its crit-
ical temperature. These models are usually studied using
Monte Carlo sampling techniques [6, 7, 15, 25]. A model
system is initialised at a high temperature with uniformly
random spins and then quenched to a particular temperature
T of interest and an algorithm like those of Metropolis or
Glauber is used to allow the system to relax or equilibrate
at that temperature. Measurements can be made on the simu-
lated system and if the transition probabilities for the changes
are chosen correctly according to a Boltzmann energy factor
the procedure samples the various discrete starts according to
their importance or probability of occurrence.
It is useful however to attempt to evaluate the partition func-
tion [11,20,32] – or sum over the individual states – of these
models directly. The number of states M2 of the 2 state Ising
model grows as m = 2N where N = Ld is the number of

Int'l Conf. Foundations of Computer Science | FCS'13 | 15

spin sites. M grows very fast indeed and the system shown
in Figure 1 has N = 5122 spin sites and so has 2262144 dif-
ferent discrete states in its configuration space. The number
of states in a Q-state Potts model system grows even faster –
as QN . It is not feasible to enumerate the states explicitly for
such a large system, but nevertheless it is valuable to explore
changes to the partition function by studying small systems.
A great deal of work was done in the 20th Century in at-
tempting to evaluate Ising model partition functions [13] for
small systems [19] and has covered various model sizes [5]
and special cases to try to understand for example finite size
effects [2]. The Ising model has been solved analytically for
the 2 dimensional case although it is still instructive to com-
pare its known properties with those that result from enu-
merating its partition function on small square lattice Ising
systems [23]. The 3 dimensional system still poses a chal-
lenge and its properties have only been approximately evalu-
ated using simulation techniques. It is therefore of great and
continued interest to understand the properties of a 3 dimen-
sional Ising system using even a partial enumeration of its
partition function [3, 4, 29].
There is also continued interest in exactly enumerating other
systems such as the Potts model either directly [10,24] or us-
ing symmetries or other approaches to restrict the state space
traversed [9, 36].
Recently however advances in parallel processing technolo-
gies have allowed us to enumerate the states in small Potts
systems. Our focus in this present paper is to investigate the
computational feasibility of exact enumerations of 2 and 3 di-
mensional Ising and Potts systems using ordinary program-
ming techniques; bit packing to keep the data structures in
memory; and data parallel techniques using graphical pro-
cessing units (GPUs). A decade of advances in processing
power means that what were month long calculations in the
1990s are now feasible in a matter of hours. We obtain the
exact energy spectrum and its populations from evaluating
the partition function [1] but these new techniques open up
scope for tracking more elaborate observables than just the
energy as part of the traversal of the model’s state space.
We focus on the zero field Ising [37] and Potts system but
finite field versions of the models also offer scope for fur-
ther work. Other related problems such as the inverse Ising
model [27] involving deduction of the temperature from ob-
served state samples, may also benefit from improved parti-
tion enumeration information. We believe that enumerations
of the individual component size histograms may give in-
sights into droplet formation and noise and fluctuations [12]
in the model.
Our article is structured as follows: In Section 2 we briefly
summarise the Ising and Potts models before giving a de-
scription of the statistical mechanical partition functions in
Section 3. We describe our implementation methods using bit
packing to keep data structures in memory cache and graphi-
cal processing unit data parallelism in Section 4. We present

some timing and performance results and some preliminary
partition function spectra for the Potts system in Section 5.
We discuss the computational scope for this technique in Sec-
tion 6 and offer some tentative conclusions and ideas for fur-
ther study in Section 7.

2 Ising & Potts Models
The Ising model is formulated as a set of spin variables σi =
±1 arranged on a lattice - usually on a d-dimensional grid of
size N = Ld where length L is as large as can practically be
simulated.
The energy functional or Hamiltonian of the Ising model is:

H = −J
∑
〈i,j〉

σiσj (1)

This has no explicit time dependence or dynamical scheme
associated with it, and so one must be imposed artificially.
We do not give details of the normal Monte Carlo dynamical
sampling approach here as it is well described in the literature
[7, 8].
The main point to emphasise for the work reported in this
present paper is that each spin is independent and in the case
of the Ising model can take on Q = 2 states. A small Ising
system of for example N = 42, 52 still has a considerable
amount of symmetry present in it. There are a finite number
of possible energy levels and they have a large degree of de-
generacy - that is a great many of the possible arrangements
of the spin variables in the system leads to the same energy
level.
The Potts model extends the Ising model by allowing the
“spins” to take on a discrete range of integer values. The
consequence is that for a Q state system the number of possi-
ble arrangements of spin values goes as a power of Q which
obviously grows even faster for high Q.

3 Partition Function
The thermodynamic partition function or sum over the states
of the system is usually denoted as Z and is given by:

ZN (T) =
∑
σ1

∑
σ2

· · ·
∑
σN

exp (−H({σi})/kBT) (2)

where each degree of freedom σi takes the 2 values 0,1 for
the Ising model or the Q values for the Q-state Potts exten-
sion of the Ising model. There are in fact a great deal of
configurations that have identical energies due to symmetries
and so the partition function can be expressed as:

ZN (T) =
∑
l

gl exp (−El/kBT) (3)

Where the sum is over all the energy levels labelled by l, and
each level has degeneracy gl.

16 Int'l Conf. Foundations of Computer Science | FCS'13 |

The exact pattern of degeneracies varies somewhat for the
small systems we are able to enumerate depending upon
whether they are even or odd in their lengths.
Since our system is discrete we can evaluate them by build-
ing up an exact histogram of how many states fall into each
energy level. This exact histogram can then be used to eval-
uate other statistical and theoretical properties of the model.
Once the partition function [14] or an approximation to it is
obtained there are other techniques such as locating its ze-
ros [18] that can be applied to make further deductions on
the model properties. In this present paper we only evalu-
ate the energy level degeneracies and use this as a means of
scoping the computational effort and attainable performance
to make further studies.
This is a powerful technique but its use is limited by the rapid
growth of the number of states MS = QN=Ld

in the model.
In practice we have been limited by computer clock speeds
and memory performance to only very small systems sizes.
We can however explore various computational optimization
techniques to speed up this calculation so that new Q values
and higher system sizes might be explored.

4 Enumeration of States
The easiest method of enumerating through all the possible
combination of spin variables σi is to create an array of in-
teger values to represent the system. The possible system
states can be generated by iterating through every combina-
tion of values in this array. For an Ising model each site can
be {0,1}while for a Potts model each site can have the values
{0..Q-1}.

Listing 1: Array enumeration algorithm uses an array spin
to store all of the system states and a series of for loops
to iterate through the possible states. The array n stores the
indexes of each site’s neighbours and NORTH and WEST are
used as indexes into this array.

i n t s p i n [N] ;
f o r (s p i n [0] = 0 ; s p i n [0]<Q; s p i n [0] + +)
. .
f o r (s p i n [N−1]=0; s p i n [N−1]<Q; s p i n [N−1]++) {

long long E = 0 ;
f o r (i n t i = 0 ; i < N; i ++) {

E+=(s p i n [i]== s p i n [n [i] [NORTH]]) ? −1 : 1 ;
E+=(s p i n [i]== s p i n [n [i] [WEST]]) ? −1 : 1 ;

}
h i s t o g r a m [E+ o f f s e t] + + ;

}

The energy of a system can be calculated from the number
of like-like bonds in the system. To determine the number
of like-like bonds in a system, all the sites in the array must
be iterated through and compared to the neighbouring values.
This is slow for practical reasons however and if we can get
all the neighbours and spin state information in cache it will

be considerably faster to traverse than if main memory ac-
cesses are needed. An example of the code to iterate through
every possible state for a system stored in an array and cal-
culate the energy of each system can be seen in Listing 1.

4.1 Bit Enumeration
An Ising system is a series of spins that are either up or down,
and so each site can be represented by a single bit. For an
Ising system that is small enough to be enumerated, these
bits can be stored in a single 64-bit integer. A 64-bit integer
can represent an Ising system up to a maximum size of 8x8
or 4x4x4. The process of generating the different Ising con-
figurations is then simplified to iterating through the possible
integer values {0..N − 1} where N is the system size.
When an Ising system is represented by a single integer, the
process of calculating the total energy of the system can be
reduced to a series of bit-logic expressions. To do this expres-
sions must be formulated to create integer values that repre-
sent the neighbours of each cell. The number of neighbours
that must be calculated will be the same as the number of di-
mensions of the system. This is because the energy must be
calculated for each bond in the system. The left bond of one
atom is the same as the right bond of the other atom and thus
only needs to be calculated once.
Logic expressions are also formulated to determine how
many like-like bonds each atom has. In two dimensions only
the cases where the atom and two like-like bonds or no like-
like bonds because the only other option is to have one of
each in which case the energy is 0. This process results in
two integers, the first which has a 1 for every atom that has
two like-like bonds and the second has a 1 for every atom
with zero like-like bonds. The number of 1s in each of these
integers can then be counted and multiplied by 2 and -2 re-
spectively to give the total energy of the system. A code list-
ing in C showing this process for a two-dimensional Ising
enumeration is shown in Listing 2.

Listing 2: Bit enumeration algorithm stores the system state
as an long long and iterates through this integer value. A
series of bit masks and logic operations are used to compute
the energy of the system. builtin popcountl() is a
built in CPU function to count set bits in an int.

long long n1 , n2 , e1 , e2 , s1 , s2 ;
f o r (long long i = 0 ; i < N; i ++) {

/ / C a l c u l a t e n e i g h b o u r s
n1 = ((i&n1 mask1) >> X) |

((i&n1 mask2) << ((Y−1)∗X)) ;
n2 = ((i&n2 mask1) >> 1) |

((i&n2 mask2) << (X−1)) ;
/ / C a l c u l a t e Energy
s1 = ((i ˆ n1) & (i ˆ n2)) ;
s2 = ((˜ (i ˆ n1)) & (˜ (i ˆ n2))) ;
e1 = b u i l t i n p o p c o u n t l (s1&e1 mask) ;
e2 = b u i l t i n p o p c o u n t l (s2&e2 mask) ;
E = ((e1 ∗2) − (e2 ∗ 2)) ;

}

Int'l Conf. Foundations of Computer Science | FCS'13 | 17

In this code listing, n1 and n2 represent the neighbours in
the X and Y dimensions respectively. Each one can be calcu-
lated by extracting values using masks and shift operations.
Then the values s1 and s2 are calculated which represent
the number of atoms with two like-like bonds and no like-
like bonds. These are calculated using XOR, AND and NOT
operations. Finally built in CPU functions are used to count
the number of bits in each integer and multiplies them by 2
and -2 to give the total energy. This process is shown for a
3x3 Ising system in Figure 2.

Figure 2: The process of calculating the energy of a 3x3 sys-
tem state i in bit representation.

4.2 CUDA Implementation
The enumeration of the Ising model is a perfect candidate for
parallelisation as the energy calculation for each state can be
performed completely independently of the other states. The
most simple approach for enumerating the Ising model on
a GPU is to launch a single thread for each possible system
state. Each thread’s unique thread id then represents the Ising
system state it is measuring in bit format. Each thread can
then perform the same bit logic expressions as the CPU bit-
enumeration implementation to calculate the energy of the
system.
CUDA devices with compute capability 3.0 and above sup-
port a maximum of 1024 threads per block and a maximum
grid size of (231 − 1) in the X dimension and 65535 in the Y
and Z dimensions [28]. This easily allows for enough threads
to enumerate systems of a size that can be computed in a real-
istic time frame. Because the masks used in the neighbouring
value calculations are exactly the same for every thread, they
are stored in constant memory to minimise global memory
transactions.
Once the energy of a system state has been calculated they
must be collected together into the energy histogram. Due to
the parallel nature of the computation this must done care-
fully using atomic instructions to ensure the correct values
are saved in the histogram. One option that was explored was

for each block to collect a local energy histogram in shared
memory and then upload it to the global energy histogram
once all threads in the block had finished their computation.
However, in practice this was found to decrease the perfor-
mance of the enumeration.

Listing 3: Bit enumeration CUDA kernel to compute the en-
ergy histogram of an Ising system. The bit masks are stored
in constant memory and atomicAdd is used to update the
energy histogram stored in global memory. The function
popcll() is a built-in GPU function to count the num-

ber of set bits in an integer..

g l o b a l void k e r n e l (
unsigned long long ∗ h i s t o g r a m) {

long long i = (((long long) b l o c k I d x . x ∗
(long long) blockDim . x) +
(long long) t h r e a d I d x . x)∗
STATES PER THREAD ;

f o r (i n t j =0 ; j<STATES PER THREAD ; j ++){
long long n1 , n2 , s1 , s2 , e1 , e2 , E ;
n1 = ((i&n1 mask1 [0])>>1LL) |

((i&n1 mask2 [0])<<(X−1LL)) ;
n2 = ((i&n2 mask1 [0])>>X) |

((i&n2 mask2 [0]) <<((Y−1LL)∗X)) ;

/ / C a l c u l a t e Energy
e1 = ((i ˆ n1) & (i ˆ n2)) ;
e2 = ((˜ (i ˆ n1)) & (˜ (i ˆ n2))) ;
s1 = p o p c l l (e1&c e1 mask [0]) ;
s2 = p o p c l l (e2&c e2 mask [0]) ;
E = ((s1 ∗2) − (s2 ∗ 2)) ;
atomicAdd(& h i s t o g r a m [E+ o f f s e t] , 1ULL) ;
i ++;

}
}

The final method of tuning the CUDA implementation of the
enumeration is to vary the number of states each thread is
responsible for computing. Rather than launching one thread
for each system state, it is more efficient for each thread to
compute the energies of multiple system states (especially
for larger system sizes such as 6x6) as it avoids the overhead
of managing and launching extra threads. For this system
size it was found that computing 256 system states per thread
was the most efficient and provided a performance gain of
approximately 7% over computing one state per thread.

5 Performance Results
The performance results of the different enumeration im-
plementations from Section 4 have been gathered using an
3.50GHz Intel i7-2700K using GNU gcc 4.5 with optimisa-
tions and an NVIDIA GeForce GTX680 using CUDA 5.0.
The results of testing these three implementations are pre-
sented in Table 1.
From this table it can be seen that naive array implemen-
tation provides the worst performance, for the largest Ising

18 Int'l Conf. Foundations of Computer Science | FCS'13 |

Q system Array Bit CUDA
size Enumeration Enumeration Enumeration

time (sec) time (sec) time (sec)
2 4x4 0.005129 0.002707 0.000103

5x5 1.39604 0.571924 0.024464
6x6 4249.92 1220.14 42.7585

3x3x3 0.146955
4x3x3 93.0353
4x4x3 515215

3 3x3 0.000684
4x4 1.42689

4 3x3 0.009277
4x4 140.629

Table 1: Performance comparison of the 3 implementations.

Figure 3: Energy Spectra with exact population numbers of
states for 4x4 periodic Ising model

system size tested (6x6) it took this implementation 70 min-
utes to complete which means it can measure approximately
16 million states per second. Compressing the system state
into a single integer and using bit logic expressions reduced
this time to 20 minutes which means the bit enumeration
method can measure approximately 56 million states per sec-
ond. Computing the bit logic expressions on a GPU using
CUDA reduced the compute time to under 45 seconds and
gave and average of 1.6 billion measurements per second.
These results mean that enumerating the Ising model on a
GPU can provide a speedup of approximately ≈ 100x over
the array enumeration and ≈ 30x over the bit enumeration.
Figure 3 shows the energy histogram of all the possible states
of a 4x4 Ising model. It can be seen from this figure that not
all energy states are possible in an Ising system and that for
a size such as this with even lengths in each dimension the
histogram is symmetric. For system sizes with odd lengths
the histogram will not be symmetric as it is always possible
for all the states in a system to be the same but for an Ising
system there is not always a configuration where every spin

is different to all of its neighbours.
The number of states that fill each energy level grow very
rapidly but it is also important to note the combinatorially
large range of scales between the most probable energy level
and that of less probable but non-empty one. For this reason
it is useful to plot the populations on a logarithmic scale.
Figure 4 shows the periodic Ising models of size N = 42, 52

plotted on a logarithmic scale. We see the characteristic
parabolic shape which agrees with other work such as that
of Beale [1]. Our small system show distortions from the
parabolic shape - these are due to finite size effects and man-
ifest themselves as pinches in the shape at th side wings. It is
also interesting to note that the 52 system is not symmetric.,
This is due to checkerboard pattern high energy configura-
tions - where like like spins manage to avoid one another.
Such checkerboard patterns require an even number of spins
in each dimension so they are present in the spectrum for 42

but not 52.
Figure 4 also shows data for the Potts system withQ = 3. We
see that the parabola shifts so its peak is now around energy
of 10 instead of around zero. Also there is an asymmetry for
both the 42 and 52 Potts systems that are linked to the odd
Q = 3 number of states.

6 Discussion
Computational capabilities have moved on in recent years
and even using a very simple brute force enumeration of
states without exploiting any symmetries we can tackle Potts
systems withQ = 3, 4, ... that would not have been computa-
tionally feasible a decade ago. We obtained some significant
performance enhancements just by packing the data struc-
tures into bit patterns instead of decomposing as conventional
integers or long integers. This indicates how sensitive calcu-
lations on modern processors are to the cache and memory
management system. Modern computer systems have some-
what faster clock speeds, and somewhat faster memory man-
agement systems than they did a decade ago, but neither of
these two factors has improved as much as might have been
hoped, extrapolating from Moore’s law [26] and the previous
three decades. The availability of an order of magnitude more
processing cores allows a direct factor of ten in speedup as
state enumeration does parallelise almost perfectly by split-
ting the task into independent jobs.
A key result is that we have managed to obtain nearly two
orders of magnitude of performance increase using a GPU
accelerator. There would appear to be significant potential in
a cluster of CPUs, with multiple CPU cores and/or multiple
GPUs to tackle this sort of enumeration problem.
While many researchers have invented special tricks and
symmetries that can be exploited in the exact enumeration
of the energy states, it is important that we not be wholly
reliant on such symmetries that may not apply to other ob-
servables such as component cluster, monomers, and other

Int'l Conf. Foundations of Computer Science | FCS'13 | 19

Figure 4: Energy Spectra for 2-Dimensional periodic Potts and Ising models on 4x4 and 5x5 lattices, plotted on log scale.

lattice pattern operators.
It is likely to be useful to identify histograms of component
clusters as they are used in Monte Carlo renormalisation cal-
culations on the Ising and related model. Components also
play a significant part in cluster update algorithms such as
those of Wolff [39] and of Swendsen and Wang [35]. It is
likely to be instructive to determine what the relationship is
between cluster size, family and scaling and so forth, and
these update processes.

7 Conclusion
In summary we have explored three different methods for
enumerating the Ising model on a CPU and a GPU. The bit
enumeration method of provided the best performance results
by reducing the amount of memory required to represent a
system state and by performing the energy calculation as a
series of bit-logic expressions. This enumeration method im-
proved the performance on the CPU from 15 million states

per second to 56 million states per second. The GPU pro-
vided the best overall performance and was able to measure
1.6 billion states per second, 100x faster than the CPU array
enumeration method.
We have managed to obtain some preliminary results for
small Potts model systems and identified interesting asym-
metries and other features in the Potts exact partition function
energy spectrum that are worthy of further exploration. We
hope to be able to experiment with three dimensional Potts
systems for Q = 3, 4 by parallel job decomposition of the
enumeration task. We also hope to be able to incorporate fast
code for identifying other oberservables such as the number
of monomers and component clusters in small Ising and Potts
systems.
There is also scope for future work in formulating the bit-
logic expressions for computing the Potts model using the
bit-enumeration method on both the CPU and the GPU as
well as extending the bit-enumeration method to explore the
Ising and Potts model in three-dimensions. The analysis of

20 Int'l Conf. Foundations of Computer Science | FCS'13 |

the model could also be extended to calculate more than just
the energy of a system but also the count the number of
monomers, dimers, number of clusters or their sizes.

References
[1] Beale, P.D.: Exact distribution of energies in the two-

dimensional ising model. Phys. Rev. Lett. 76, 78–81 (1996)
[2] Bhanot, G., Duke, D., Salvador, R.: Finite-size scaling and the

three-dimensional ising model. Phys. Rev. B 33(11), 7841–
7844 (Jun 1986)

[3] Bhanot, G.: A numerical method to compute exactly the par-
tition function with application toz(n) theories in two dimen-
sions. J. Stat. Phys. 60, 55–75 (1990)

[4] Bhanot, G., Salvador, R., Black, S., Carter, P., Toral, R.: Accu-
rate estimate of nu for the three-dimensional ising model from
a numerical measurement of its partition function. Phys. Rev.
Lett. 59, 803–806 (1987)

[5] Bhanot, G., Sastry, S.: Solving the Ising model Exactly on a
5x5x4 Lattice using the Connection Machine. J. Stat. Phys.
60(3/4), 333–346 (Nov 1990), thinking machines Preprint
CS89-10

[6] Binder, K., Heermann, D.W.: Monte Carlo Simulation in Sta-
tistical Physics. Springer-Verlag (1997)

[7] Binder, K. (ed.): Monte Carlo Methods in Statistical Physics.
Topics in Current Physics, Springer-Verlag, 2 edn. (1986),
number 7

[8] Binder, K. (ed.): Applications of the Monte Carlo Method in
Statistical Physics. Topics in Current Physics, Springer-Verlag
(1987)

[9] Chang, S.C., Shrock, R.: Exact partition function for the potts
model with next-nearest neighbour couplings on arbitrary-
length ladders. Int. J. Mod. Phys. 15, 443–478 (2001)

[10] Chang, S.C., Shrock, R.: Some exact results on the potts
model partition function in a magnetic field. Tech. rep., Na-
tional Cheng Kung University, Taiwan (2009)

[11] van Dijk, W., Lobo, C., MacDonald, A., Bhaduri, R.K.:
Zeros of the partition function and phase transition. arXiv
1303.4770, McMaster University, Canada (2013)

[12] Droz, M.: Noise and fluctuations in equilibrium and non-
equilibrium statistical mechanics. Tech. rep., University of
Geneva (2001)

[13] Fronczak, A., Fronczak, P.: Exact expression for the number
of states in lattice models. Tech. rep., Warsaw University of
Technology, Poland (2013)

[14] Galluccio, A., Loebl, M., Vondrak, J.: New algorithm for the
ising problem: Partition function for finite lattice graphs. Phys.
Rev. Lett. 84, 5924–5927 (2000)

[15] Hastings, W.K.: Monte carlo sampling methods using mrkov
chains and their applications. Biometrika 57, 97–109 (1970)

[16] Hawick, K.A.: Domain Growth in Alloys. Ph.D. thesis, Edin-
burgh University (1991)

[17] Ising, E.: Beitrag zur Theorie des Ferromagnetismus.
Zeitschrift fuer Physik 31, 253–258 (1925)

[18] Janke, W., Kenna, R.: Analysis of the Density of Partition
Function Zeroes - A Measure for Phase Transition Strength,
pp. 97–101. Springer (2002), computer Simulation Studies in
Condensed-Matter Physics XIV

[19] Kaufman, B.: Crystal statistics ii. partition function evaluated

by spinor analysis. Phys. Rev. 76, 1232–1243 (1949)
[20] Kim, S.Y.: Exact partition functions of the ising model on l x

l square lattices with free boundary conditions up to l = 22. J.
Korean Physical Society 62, 214–219 (2013)

[21] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by
simulated annealing. Science 220(4598), 671–680 (May 1983)

[22] Lee, J.H., Kim, S.Y., Lee, J.: Exact partition function zeros of
a polymer on a simple-cubic lattice. Phys. Rev. E 86, 011802–
1–7 (2012)

[23] Malarz, K., Magdon-Maksymowicz, M.S., Maksymowicz,
A.Z., Kawecka-Magiera, B., Kulakowski, K.: New algorithm
for the computation of the partition function for the ising
model on a square lattice. Int. J. Mod. Phys. C 14(5), 689–694
(2003)

[24] McDonald, L.M., Moffatt, I.: On the potts model partition
function in an external field. J. Stat. Phys. 146, 1288–1302
(2012)

[25] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller,
A.H., Teller, E.: Equation of state calculations by fast comput-
ing machines. J. Chem. Phys. 21(6), 1087–1092 (Jun 1953)

[26] Moore, G.E.: Cramming more components onto integrated
circuits. Electronics Magazine April, 4 (1965)

[27] Nguyen, H.C., Berg, J.: Mean-field theory for the inverse ising
problem at low temperatures. Phys. Rev. Lett. 109, 050602–1–
5 (2012)

[28] NVIDIA: CUDA C Programming Guide, 5.0 edn. (October
2012)

[29] Pearson, R.B.: Partition function of the ising model on the
periodic 4x4x4 lattice. Phys. Rev. B 26, 6285–6290 (1982)

[30] Potts, R.B.: Some generalised order-disorder transformations.
Proc. Roy. Soc pp. 106–109 (1951), received July

[31] Raychaudhuri, S.: Kinetic Monte Carlo Simulation in Bio-
physics and Systems Biology (2013)

[32] Sangaranarayanan, M.V.: Two-dimensional ising model in a
finite magnetic field for the square lattice of infinite sites-
partition function and magnetization. arXiv 1302.1084, Indian
Institute of Technology, Madras (Jan 2013)

[33] Stanley, H.E.: Introduction to phase transitions and critical
phenomena. Oxford Science Publications (1987)

[34] Strasberg, P., Schaller, G., Brandes, T., Esposito, M.: Thermo-
dynamics of a physical model implementing a maxwell dae-
mon. Phys. Rev. Lett. 110, 040601–1–5 (January 2013)

[35] Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynam-
ics in Monte-Carlo simulations. Phys. Rev. Lett. 58(2), 86–88
(Jan 1987)

[36] Vernier, E., Jacobsen, J.L.: Corner free energies and boundary
effects for ising, potts and fully-packed loop models on the
square and triangular lattices. arXiv 1110.2158, Ecole Nor-
male Superieure, France (2011)

[37] Vinothkumar, M., Nandhini, G., Sangaranarayanan, M.V.:
Partition function of the two-dimensional nearest neighbour
ising models for finite lattices in a non-zero magnetic field. J.
Chem. Sci. 124, 105–113 (2012)

[38] Wohlfarth, E.P.: Theory and experiment in metallic mag-
netism. J. Magn. and. Magn. Mat. 45, 1–8 (1984)

[39] Wolff, U.: Collective Monte Carlo Updating for Spin Systems.
Phys. Lett. 228, 379 (1989)

Int'l Conf. Foundations of Computer Science | FCS'13 | 21

A Functional Approach to
Finding Answer Sets

Bryant Nelson, Josh Archer, and Nelson Rushton

Texas Tech Dept. of Computer Science
(bryant.nelson | josh.archer | nelson.rushton) @ ttu.edu

Texas Tech University

Department of Computer Science
Box 43104

Lubbock, TX 79409-3104

Submitted to FCS 2013

Keywords: Functional Programming,
Answer Set Prolog, Logic Programming

Abstract: A naive answer set solver was
implemented in the functional programming
language SequenceL, and its performance
compared to mainstream solvers on a set of
standard benchmark problems.
Implementation was very rapid (25 person
hours) and the resulting program only 400
lines of code. Nonetheless, the algorithm
was tractable and obtained parallel
speedups. Performance, though not
pathologically poor, was considerably
slower (around 20x) than that of mainstream
solvers (CLASP, Smodels, and DLV) on all
but one benchmark problem.

1. Introduction

In his 1990 paper “Why Functional
Programming Matters”, John Hughes
argues that functional programming allows
for an improvement in productivity due to
improved modularity. Through the encoding
of the solutions to many non-trivial problems

we have been convinced of Hughes’
hypothesis. We set out to further test this
hypothesis by encoding an Answer Set
Solver in SequenceL. We hypothesize that
a functional language would allow the
programmer to implement an Answer Set
Solver more quickly than a procedural
language, and that the resulting program
would be more readable and
understandable.

Finding answer sets is an NP-Complete
problem, and over the last few decades a
few solvers have been developed that
tackle this problem. The current juggernauts
in this area are the DLV, CLASP, and
SMODELS solvers, all of which are very
efficient. The problem would seem to benefit
from a parallelized solver, yet CLASP only
has a branch (CLASPar) dedicated to this,
and DLV has been “experimenting” with
parallelization in their grounder [DLVPar].
Moreover, all of the competitive solvers are
written in C/C++ and span over hundreds of
large files.

SequenceL is a high-abstraction, auto-
parallelizing, functional language. It is auto-
parallelizing in the sense that programs,
written in a high-level, declarative language

22 Int'l Conf. Foundations of Computer Science | FCS'13 |

without concern for command execution,
are then compiled into optimized multicore
C++. This abstraction frees the programmer
from the burden of manually implementing a
parallel solution and allows them to focus on
solving the problem at hand.

SequenceL also appears to be very easy to
read, even to those who have never
programmed in SequenceL. By easy to read
we mean that given a sufficient level of
understanding of the language’s syntax, the
relationship between the syntax and
semantics of statements is obvious enough.
The designers of SequenceL had simplicity
in mind when developing the groundwork for
the language. They aimed to accomplish
this by the “ruthless pursuit of utmost
simplicity” with respect to the language’s
complexity.

SequenceL was chosen as the
implementation language in order to, in
addition to the above, explore the effect of
auto-parallelizations on a naturally
parallelizable problem.

We hypothesized that a naïve functional
ASP Solver could be developed more
quickly, and be more readable than a
procedural implementation of the same. We
also hypothesized that automatic
parallelizations would allow the solver to
perform within an acceptable range of time
requirements for some problems.

2. Motivation

The problem of finding answer sets of non-
disjunctive Answer Set Programs is an area
that has had substantial research over the
past few decades. The declarative
programming paradigm had, based on

preliminary research, never been applied to
this problem. Upon initial observations it
was obvious that a simple answer set
solving algorithm could be easily expressed
declaratively. It was also apparent that this
declarative implementation would also be
considerably easier to read than a
procedural implementation.

The methods of programming declaratively
effectively involve envisioning what a
solution to a problem looks like, formally
specifying this solution, and directly
implementing it. Therefore, if a solution to a
problem (especially one that is
computationally substantial) is already
stated precisely, then encoding the
declarative attempt at said solution appears
to be easier than doing so procedurally. It
appeared that this was the case with the
algorithm chosen for finding answer sets:
the algorithm [Gelfond 2013] was proven,
stated at least partially as definitions rather
than algorithms, and modular enough to suit
a vision for a functionally written program.

Even before work began to write this solver,
around the time we had looked at enough
existing procedural solutions to intelligently
speak about them, we had the hypothesis
that a declarative solver would be easier to
read when compared to the existing ones.
From the use of SequenceL to solve other
common problems, and by observing the
massive size of the CLASP code, it was
apparent that SequenceL implementation
would exemplify the readability of a
declarative approach.

Our literature survey revealed not a lot of
work has been done on parallelization of
Answer Set Program solving. The only
parallel solver found was CLASPAR,
created by the same people behind CLASP.

Int'l Conf. Foundations of Computer Science | FCS'13 | 23

This solver used a master-slave based
approach where the master would
determine which sub-processes the slaves
would handle in a very procedural way. It
was apparent that a great deal more
thought went into the parallelization of the
algorithm than the solution itself.

All of these points led to experimenting with
implementing an Answer Set Program
solving algorithm in SequenceL, an auto-
parallelizing high-level declarative
programming language.

3. Methods

Algorithm Selection
The choice of algorithm was based on the
criteria of simplicity, verifiability, and
availability. An initial attempt was made to
look at the algorithm that the current non-
parallel version of CLASP encoded; this
was done in an effort to create the best
“apples-to-apples” comparison with a top
solver. However, after a moderate amount
of effort the actual algorithm could not be
found and it was impossible to easily
decipher what it was from just looking at the
available source code. This was due to two
major issues; the first was the sheer size of
the program [insert actual size of the one
we got], and the second was the fact that, in
general, it is difficult to discern the algorithm
from procedurally written code.

Initially, the idea of going with the DLV route
of solving answer sets was considered, but
it was decided against because that would
involve creating a grounder and integrating
it with the solver. It was decided that the
grounding would be done by GRINGO.
Once again, this was chosen to create an
“apples-to-apples” comparison with the

solver. Future work is planned for exploring
a system which intelligently grounds atoms
as needed, as opposed to grounding
everything as most solvers currently do.

After exploring the other two options, it was
decided to use the simplest algorithm
possible, short of brute force guessing and
checking, which was the algorithm found in
[Gelfond 2013]. This algorithm is completely
naive -- that is, it does nothing but find the
answer set of a grounded Answer Set
Programs with zero heuristics and with
nothing more than the direct definition of
Answer Set Programs. This algorithm had a
proof of correctness, and was readily
available for encoding.

Algorithm Implementation
The algorithm chosen is both sound and
complete with respect to the domain, but
parts of it were presented in different ways.
Moreover, there were two major methods
with which the pieces were described:
effective definitions and sequential
algorithms.

A sequential algorithm is one that lists a
sequence of instructions that need to be
executed in order to compute the desired
result; this is the description of most
commercial implementations. An effective
definition is a mathematical definition that
implicitly embodies an algorithm for
computing the function it defines. For

example; if we define as the
largest integer which is a divisor of m and a
divisor of n, then this definition is not

effective. On the other hand if is
defined as the largest integer in the closed
interval [1,m] which is a divisor of m and a
divisor of n, then the definition is effective
because the search has been limited to a
finite space

24 Int'l Conf. Foundations of Computer Science | FCS'13 |

A SequenceL program is essentially a set of
effective definitions. In the following
example are two function specifications; the
first (Least) is defined algorithmically,
whereas the second (IsAnswerSet) is
specified mostly by definitions.

Again, Least was specified algorithmically,
and as such there was a bit of translation
needed in order to encode this correctly in
SequenceL. The effort needed in showing
correctness of the encoded Least lies not in
checking whether the translated description
entails the SequenceL code (because this is
obvious), but rather ensuring that the
translation of the algorithmic description into
a definition is correct.

The ease with which the function
IsAnswerSet was written was indispensable
in the creation of this solver. As mentioned
above, the actual translation from the
specification into a definition is the bulk of
the work; here that is already done and
therefore the SequenceL encoding this is
obviously correct.

If the specification can be mathematically
proven to be correct, then the SequenceL
code is as well by default.

Effective Definition vs. Algorithm
The following is an illustration of the
difference between the definitional and
algorithmic styles mentioned above; the
Reduct is a well-known and integral concept
for finding answer sets of programs, and it is
defined with what appears to be a very
procedural mindset.

It is easy to see that this Reduct is
computed by performing these steps as
specified, and in sequential order. This does
not affect the nature of the result yielded;
but it is stated procedurally. Compare this
with the following equivalent specification:

Here, the Reduct clearly is something,
namely the items satisfying (1). This
specification is declarative, it states what

Int'l Conf. Foundations of Computer Science | FCS'13 | 25

something consists of instead of the
computation required to yield the desired
result.

State of the Art
In order to compare the results of the
SequenceL Answer Set Solver to the
current state of the art, the solver was
tested against the default CLASP, DLV, and
SMODELS answer set solvers. SMODELS
was included in an attempt to compare with
one of the older solvers. Test cases were
selected and the time necessary for the
system to solve the grounded input was
recorded (by grounded input, we mean the
output of GRINGO that SLASP, CLASP,
and Smodels all take as input).

The Potsdam group, who are the creators of
CLASP, have a suite of benchmark
problems on their website that range from
toy problems like Drosophila to complicated
real-world problems. Problems for our
experiment were chosen randomly chosen
from the set of problems in the Potsdam
benchmarks satisfying two criteria: (1) the
programs could be understood quickly, and
(2) their solutions contained no choice rules.
The reason for the omission of choice rules
was the fact that our solver did not explicitly
support them.

The following test cases were chosen:

• RedvsBlue

• Stable Marriage

• Hamiltonian Cycle

• Same Generation

• Reachability

• Ramsey Numbers

• Schur Decomposition

Test Results

On the whole the SequenceL solver ran
slower than the mainstream solvers. This
was to be expected considering that we
implemented without optimizations.
However, the SequenceL solver was able to
outperform the mainstream solvers on one
input program, called RedBlue. This ASP
program, using pseudo-disjunction, resulted
in a large number of possible answer sets,
all of which were valid. This allowed the
SequenceL solver to make better use of
parallelization, and was not effected by
heuristics. Since the heuristics used in the
established solvers did not affect this
problem, it was the only problem for which
the algorithms were essentially equivalent,
allowing a head to head comparison of
language efficiency (SequenceL vs. C).

In most cases, though the SequenceL ASP
Solver did not perform as well as the
mainstream solvers, it still executed within a
reasonable amount of time. For example, in
the Hamiltonian Cycle problem the
SequenceL ASP Solver performed
considerably slower than the other solvers,
but it still finished in a quarter of a second
on average.

26 Int'l Conf. Foundations of Computer Science | FCS'13 |

Source Code Comparison
The source code of the ASP Solver was
presented to the Knowledge Representation
group, a group of ASP experts, at Texas
Tech University during an hour long seminar
intended to be an introduction to
SequenceL. The members of the audience
had little to no knowledge of SequenceL. At
the end of this seminar persons in the
audience were able to make changes to the
code that had significant positive effects on
the performance of the solver.

The SequenceL solver was developed by
two graduate students in less than a week.
The total time spent in both planning and
development was 25 hours. The first thing
that had to be done was to convert the
definitions from the algorithm that were not
presented as effective definitions to such.
This conversion took 3 hours to complete
with both graduate students working at the

same computer. Once all definitions were
presented effectively implementation began,
this is where the majority of time was spent.
The implementation of the solver, in total,
took 9 hours, of which 1 hour was spent on
separate computers and 8 hours were spent
on the same computer. It took one of the
graduate students another 2 hours to write
the necessary parsing and formatting
functions. Finally, another 3 hours were
spent debugging and error correcting.
Debugging was also performed with both
graduate students working at the same
computer. The total time was calculated by
weighting the joint efforts of the students on
one computer by 1.5.

The final version of the solver consisted of
less than 400 executable lines, in a single
file of less than 29 kilobytes. This includes
the code required to parse the output from
GRINGO and format the output of the
solver. In comparison, the SMODELS
source consists of 32 files totaling over 150
kilobytes and the CLASP source consists of
over 100 files totaling more than 1.5
megabytes.

Impact of Parallelization
Overall, in every test we ran on our solver
that took longer than a second to execute,
there was an average 15 times speed
increase when going from 4 to 16 cores.
This greater-than-linear speedup still
remains to be explained.

The graph below shows the execution time
of the SequenceL ASP Solver vs. the
number of answer sets in the solution for
the 4 core counts on which we tested. With
32763 answer sets, there was a 10-fold
improvement between 4 cores and 16. It
also shows a slowdown on small numbers
of answer sets. This is because the

Int'l Conf. Foundations of Computer Science | FCS'13 | 27

overhead of setting up the threads
outweighs the actual execution time.

4. Conclusions

Due to the subjective nature of our
hypothesis regarding simplicity and
readability, we will present the results we
collected and leave it to the reader to draw
conclusions. We will also make available
the source code of the SequenceL ASP
Solver for closer inspection. We feel this
experiment supports the claims made by
Hughes and others that functional
programming has a great positive impact on
development time and readability. With
regard to the hypothesis about automatic
parallelizations, we feel that this experiment
shows that automatic parallelizations allow
a naïve algorithm implemented in
SequenceL to perform within a range
acceptable for a significant number of
commercial applications.

5. Future Work

The most pressing matter is to implement
the same algorithm in C++ in order to
provide a direct comparison of development
time and readability. We have found a
student willing to do the implementation in
C++, and he will begin work shortly.

Future work is planned to implement a more
intelligent, more competitive, answer set
solver. There is research into a partial
grounding solver as well as previously
unimplemented extensions of Answer Set
Programming. Any of these would be
perfect subjects for an automatically-
parallelized declarative implementation.

There is also a continuing effort to apply
SequenceL to other fields. Currently these
fields include Bioinformatics, Language
Parsing and Compilation, and Numerical
Analysis.

6. Bibliography

[Gelfond 2013] Michael Gelfond and Yulia

Kahl. Knowledge Representation,

Reasoning, and the Design of Intelligent

Agents. 2013.

28 Int'l Conf. Foundations of Computer Science | FCS'13 |

Lag-based Load Balancing for Linux-based
Multiprocessor Systems

Dongwon Ok1, Byeonghun Song1, Hyunmin Yoon1, Peng Wu1,

Jaesoo Lee2, Jungkeun Park3, and Minsoo Ryu4
1Department of Electronics and Computer Engineering, Hanyang University, Seoul, Korea

2The-AiO, Seongnam, Gyoenggi, Korea
3Department of Aerospace Information Engineering, Konkuk University, Seoul, Korea
4Department of Computer Science and Engineering, Hanyang University, Seoul, Korea

Abstract - In this paper, we present a lag-based load
balancing approach to achieve global fairness with the Linux
CFS (Completely Fair Scheduler). Lag of each task is defined
as the ideal CPU time it should have received minus the actual
CPU time it has received. The proposed approach monitors
the lag of each task at runtime and moves tasks to under-
loaded processors so that each task can bound its lag. We
implemented the proposed approach in the Linux kernel and
experimentally evaluated it. The results demonstrate that our
algorithm shows significant fairness improvements.

Keywords: Linux, Multi-core scheduling, Completely Fair
Scheduler, Fairness, Load balancing

1 Introduction
 The goal of fair scheduling is to share CPU resources
among tasks so that each task receives CPU time proportional
to its weight. Perfect fairness is generally impossible since it
requires infinitesimal CPU quanta for scheduling. Most fair
schedulers can provide approximate fairness attempting to
minimize the gap between the ideal GPS (generalized
processor sharing) [2] scheme and their actual one.
 Since the Linux 2.6.23 kernel release, Linux introduced
a fair scheduler, CFS (completely fair scheduler), replacing
the O(1) scheduler. CFS is the first fair scheduler
implemented in general purpose operating systems.
Previously, most operating systems such as Windows and
earlier Linux versions provide round-robin style sharing of
CPU resources rather than weight-based proportional sharing.
In contrast, CFS associates each task with a specific weight
value determined by the task’s nice value and attempts to
assign CPU time proportionally. CFS uses the notion of
virtual runtime to track the ratio of the actual CPU time each
task has received and the ideal CPU time each task should
have received. Scheduling decisions are made by finding one
that has the minimum virtual runtime and thus CFS can
guarantee proportional sharing of CPU time among tasks.
 Unfortunately, CFS does not ensure global fairness for
multiprocessor systems as Linux uses partitioned scheduling.
Linux maintains a separate run queue for each processor and
each run queue is scheduled by a separate CFS. Therefore,

local fairness can be achieved by the CFS scheme on each
processor while global fairness across multiple processors
cannot be guaranteed by the CFS scheme. The Linux kernel
attempts to mitigate this problem by balancing workload
among processors, but this approach often results in
unacceptable global fairness.
 In this paper, we present a lag-based load balancing
approach to achieve global fairness with CFS. We define lag
as the ideal CPU time each task should have received minus
the actual CPU time each task has received. Our proposed
approach monitors the lag of each task at runtime and moves
tasks across processors whenever their lag values seem to
exceed a specified upper bound. By moving such tasks to
under-loaded processors that are able to bound their lag
values, our approach can provide global fairness on
multiprocessor Linux systems.
 The remainder of this paper is organized as follows.
Section 2 describes the Linux CFS (completely fair scheduler),
its load balancing mechanism and its limitation. Section 3
describes the lag-based load balancing algorithm. Section 4
concludes this paper.

2 Completely Fair Scheduler
 Completely Fair Scheduler (CFS) has been employed as
the Linux scheduler since Linux 2.6.23 to provide weighted
fairness for task scheduling. The weight of each task is the
function of its nice value, integer value from -20 to 19, where
a small nice value corresponds to a large weight value. Linux
creates a separate run queue for each CPU and keeps track of
virtual runtime for each task to represent the ratio of the
actual CPU time the task has received and the ideal CPU time
the task should have received. A smaller virtual runtime value
indicates that the task has received less CPU time.
 A red-black tree is used to find a task that has the smallest
virtual runtime. The red-black tree places the task of the
smallest virtual runtime at its leftmost leaf. Whenever CFS
makes a scheduling decision, it selects the leftmost task from
the red-black tree.
 Let 𝑤0 be the weight of nice value 0, 𝑤𝑖 be the weight of
task 𝜏𝑖 and 𝑃𝑃(τ𝑖 , 𝑡) be the CPU time consumed by task 𝜏𝑖 by

Int'l Conf. Foundations of Computer Science | FCS'13 | 29

time 𝑡 . The virtual time of task 𝜏𝑖 by time 𝑡 is defined as
below.

VR�𝜏𝑖,𝑡� =
𝑃𝑃(τ𝑖 , 𝑡)

𝑤𝑖
× 𝑤0

(1)

Note that 𝑤0 and 𝑤𝑖 are determined from nice values, as
shown in Figure 1 taken from ``sched.c’’ in the Linux
kernel source code.

Figure 1. Mapping between nice values and weight values.

 The main idea behind CFS is to achieve fairness by using
virtual runtime values. However, in the current Linux kernel,
virtual runtime values are not examined across CPUs, thus
leading to unfairness from a global point of view. CFS
performs weight-based load balancing to mitigate this
problem, but this approach often results in unacceptable
global fairness.
 For load balancing, Linux defines the load of run queue
as the sum of all task weights in a run queue and keeps its
value as load in struct rq. It also specifies when to
perform load balancing, usually every k scheduling ticks for a
certain positive integer k in each scheduling domain.
Scheduling domain is a set of CPUs that are managed by a
single scheduling policy. Each scheduling domain may
contain one or more CPU groups and each group may contain
one or more CPUs. Linux tries to balance the load across
CPU groups within a domain. At every scheduling tick, CFS
checks if it needs to perform load balancing. If so, it starts
load balancing by calling load_balance(). For each
scheduling domain with SD_LOAD_BALANCE flag, it finds
the busiest group by calling find_busiest_group().
Before finding the busiest one among the CPU groups, it
checks again whether to proceed load balancing or not. The
kernel performs load balancing only when the load of current
group is sufficiently low. To do so,
find_busiest_group() examines two cases. The first
case is when the load of the current group is no less than the
average load of scheduling domain. The second case is when
the difference of the load of the current group and the
maximum load in the scheduling domain does not exceed a
certain imbalance value defined by imbalance_pct in
struct sched_domain. When the load of current group

is sufficiently low, find_busiest_group() function
calculates the amount of load to move using the following
imbalance metric.

𝐿𝑖𝑚𝑖𝑚𝑖 = min (𝐿𝑚𝑚𝑚 − 𝐿𝑚𝑎𝑎, 𝐿𝑚𝑎𝑎 − 𝐿𝑘) (2)

where 𝐿𝑚𝑚𝑚 is the maximum load of the busiest group in the
scheduling domain, 𝐿𝑎𝑎𝑎 is an average load in the system and
𝐿𝑘 is the load of the current group. Linux checks again if the
imbalance 𝐿𝑖𝑖𝑖𝑖𝑖 is greater than twice of the smallest weight
in the busiest run queue. If so, Linux moves tasks from the
busiest group to the current under-loaded group.

3 Lag-based Load Balancing
 In this section, we propose a lag-based load balancing
approach to achieve global fairness for CFS on
multiprocessor hardware. The proposed approach relies on the
notion of lag. The lag is defined as the ideal CPU time each
task should have received minus the actual CPU time each
task has received [1]. Suppose that task 𝜏 is runnable and
have a fixed weight in the interval [𝑡1, 𝑡2]. Let 𝑆𝜏,𝐴(𝑡1, 𝑡2)
denotes the CPU time that task 𝜏 receives in [𝑡1, 𝑡2] under a
certain scheduling scheme A, and 𝑆𝜏,𝐺𝐺𝐺(𝑡1, 𝑡2) denotes the
CPU time under the Generalized Processor Sharing (GPS) [2]
scheme; an idealized scheduling model which achieves
perfect fairness. For any interval [t1, t2], the lag of task τ at
time t ∈ [t1, t2] is formally defined as

𝑙𝑎𝑔𝜏(𝑡) = 𝑆𝜏,𝐺𝐺𝐺(𝑡1, 𝑡2) − 𝑆𝜏,𝐴(𝑡1, 𝑡2). (2)

 A positive lag at time 𝑡 implies that the task has received
less CPU time than under GPS, and a negative lag indicates
that the task has received more CPU time than required. If all
tasks in a run queue have positive lags, then this implies that
the load of the run queue is relatively higher. Similarly,
negative lags imply lower load. Let 𝑇𝑖 be the time slice that
task 𝜏𝑖 can consume without preemption. When task 𝜏𝑖 is not
scheduled for 𝑇𝑖 , the lag of task 𝜏𝑖 will increase by the amount
of ∆𝑙𝑎𝑔𝑖.

∆𝑙𝑎𝑔𝑖 = 𝑇𝑖 ×
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑗𝑗∈𝜱
 × 𝑁

(3)

where 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 is the weight of task 𝜏𝑖, 𝛷 is the set of all the
runnable tasks in the entire system, and 𝑁 is the number of
CPUs. As the average load of the entire system is

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 =
∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑗𝑗∈𝜱

𝑁
 ,

(4)

∆𝑙𝑎𝑔𝑖 can also be defined as below.

30 Int'l Conf. Foundations of Computer Science | FCS'13 |

∆𝑙𝑎𝑔𝑖 = 𝑇𝑖 ×
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑

(5)

Since the lag increases consistently unless the task is
scheduled, the time that the task should be scheduled can be
calculated back from 𝑙𝑎𝑔𝑖 and ∆𝑙𝑎𝑔𝑖 . Let 𝑙𝑎𝑥𝑖𝑡𝑦𝑖 denote the
remaining time until task 𝜏𝑖 exceeds a certain specified lag
bound without being scheduled. The 𝑙𝑎𝑥𝑖𝑡𝑦𝑖 for any task 𝜏𝑖 is
defined by

𝑙𝑎𝑥𝑖𝑡𝑦𝑖 = �
𝑙𝑎𝑔 𝑏𝑜𝑢𝑛𝑑 − 𝑙𝑎𝑔𝑖

∆𝑙𝑎𝑔𝑖
� .

(6)

Note that tasks tend to have large lag values in a high load run
queue. As time progresses, the lag values of one or more tasks
will exceed a specified bound. To avoid this, we need to
constantly monitor the lag values and check in advance if they
will exceed the bound or not. Specifically, whenever the
Linux kernel makes a scheduling decision for each run queue,
the proposed approach checks if there exist more than one
tasks that will have zero laxity at some identical time point. If
found, only one of those tasks remains in the original run
queue and other tasks are moved to less-loaded run queues.
Figure 2 shows this algorithm in flowchart where
count_laxity_zero(τ) checks if there exists more than one
tasks that will have zero laxity at some identical time point,
min_vruntime(CPU) is the value of minimum virtual runtime
for the given CPU, and vruntime(τ) is the virtual runtime of
the given task.

Figure 2. Flowchart of lag-based load balancing algorithm.

Whenever virtual runtime of the task is calculated, lag-based
load balancing performs as follows:

(i) Lag-based load balancing algorithm calculates
laxities of tasks in the same run queue.

(ii) If there are two or more tasks with laxity 0, tasks
should be migrated.

(iii) The algorithm scans run queues of the other CPUs in
min_vruntime(other CPU) – vruntime(τ) > 0. The
virtual runtime of task τ should be lower than the
minimum virtual runtime of other run queue, so the
task τ will get chance to be scheduled right after
migration.

If the suitable CPU is found, move the task τ into the run
queue of the CPU.

4 Experimental Evaluation

We conducted to evaluate proposed load balancing
algorithm in terms of the fairness. The algorithm was
implemented in the Linux kernel 2.6.34.13. We used
ideal_time value, which is calculated by Linux kernel to
measure a dynamic time slice to check preemption, as a lag
bound. Our experiments were performed on Ubuntu 10.10. In
order to evaluate the fairness of the proposed algorithm, we
ran four compute-intensive tasks with different weights, 1024,
335, 335 and 335. Let 𝐷𝑚𝑚𝑚(𝑡) be difference in virtual
runtime of two tasks, between the task with the largest virtual
runtime and the one with the smallest at time 𝑡 . Since the
virtual runtime of task has a concept of weighted CPU time,
𝐷𝑚𝑚𝑚(𝑡) represents unfairness; the lower 𝐷𝑚𝑚𝑚(𝑡) is, the
fairer the algorithm is. The experimental result represented by
the graph in Figure 3 shows that our approach enhances the
fairness.

Figure 3. Comparison of 𝐷𝑚𝑚𝑚(𝑡) between legacy Linux

2.6.34.13 and the one with lag-based algorithm.

5 Conclusions
 In this paper, we proposed a lag-based load balancing
scheme to guarantee global fairness in Linux-based
multiprocessor systems. The proposed approach introduces
the notion of lag and provides fairness across multiple

Int'l Conf. Foundations of Computer Science | FCS'13 | 31

processors through lag-based load balancing. We also
implemented the proposed approach in the Linux kernel and
experimentally evaluated it. The results demonstrate that our
algorithm shows significant improvement in terms of fairness.

6 Acknowledgement
This work was supported partly by Seoul Creative Human
Development Program (HM120006), partly by Mid-career
Researcher Program through NRF (National Research
Foundation) grant funded by the MEST (Ministry of
Education, Science and Technology) (NRF-2011-0015997),
partly by the IT R&D Program of MKE/KEIT [10035708,
“The Development of CPS (Cyber-Physical Systems) Core
Technologies for High Confidential Autonomic Control
Software”], and partly by the MSIP(Ministry of Science,
ICT&Future Planning), Korea, under the
CITRC(Convergence Information Technology Research
Center) support program (NIPA-2013-H0401-13-1008)
supervised by the NIPA(National IT Industry Promotion
Agency).

7 References
[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel, “Proportionate progress: A notion of fairness in
resource allocation,” Algorithmica, vol. 15, no. 6, pp. 600-625,
1996.

[2] A. K. Parekh, and R. G. Gallager, “A generalized
processor sharing approach to flow control in integrated
services networks: the single-node case,” IEEE/ACM
Transactions on Networking (TON), vol. 1, no. 3, pp. 344-357,
1993.

[3] S. Wang, Y. Chen, W. Jiang, P. Li, T. Dai, and Y. Cui,
"Fairness and interactivity of three CPU schedulers in Linux."
pp. 172-177.

[4] T. Li, D. Baumberger, and S. Hahn, “Efficient and
Scalable Multiprocessor Fair Scheduling Using Distributed
Weighted Round-Robin,” Acm Sigplan Notices, vol. 44, no. 4,
pp. 65-74, Apr, 2009.

[5] S. Huh, J. Yoo, M. Kim, and S. Hong, "Providing Fair
Share Scheduling on Multicore Cloud Servers via Virtual
Runtime-based Task Migration Algorithm." pp. 606-614.

32 Int'l Conf. Foundations of Computer Science | FCS'13 |

SESSION

GRAPH BASED METHODS + RELATED ISSUES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'13 | 33

34 Int'l Conf. Foundations of Computer Science | FCS'13 |

Generating edge covers of path graphs

J. Raymundo Marcial-Romero, J. A. Hernández, Vianney Muñoz-Jiménez and Héctor A. Montes-Venegas
Facultad de Ingeniería, Universidad Autónoma del Estado de México, UAEM, Toluca, México

Abstract— It is known that the edge cover problem is #P
complete. Even for path graphs withm edges it has been
shown that the set of edge covers is equal tofibonnaci(m).
As a consequence, generating the set of edge covers of a
given path graph is an exponential combinatorial problem.
In this paper we show that the set of edge covers of a given
path graph can be generated by what we call a set of kernel
strings. Even more, we show that both the set of kernel
strings is bounded by a quadratic polynomial and also there
is a quadratic polynomial algorithm which generates kernel
strings. As a consequence, a particular edge cover can be
recovered from a kernel string in polynomial time.

Keywords: Edge Covers, Graph Theory, Algorithms, Binary
Patterns

1. Introduction
An edge cover of an undirected graph is a subset of

its edges such that every vertex of the graph is incident
to at least one edge of the subset. It is well known that
the edge cover problemis #P complete. So, heuristic and
exact methods have been proposed to count the number of
edge covers for classes of graphs. For example, Bezáková et.
al. [1] have shown that a Glauber dynamics Markov chain
for edge covers mixes rapidly for graphs with degree at
most three. De Ita et. al. [2] have shown that the number
of edge covers for path graphs withm edges corresponds
to fibonacci(m). Although there is a polynomial time
algorithm which computes the number of edge covers of a
given path graph, generating the set of edge covers of a given
path graph is an exponential combinatorial problem. For
example a path graph with 60 edges has 1,548,008,755,920
edge covers. All of them are unthinkable useful for any
real application. Even more, assuming that we can encode
each edge cover on a byte, the storage space needed will
be approximately 1TB for a 60 edges path graph. Instead
of generating the whole set of edge covers, in this paper
we show how to generate what we call kernel edge covers.
Kernel edge covers means that any other edge cover can
be generated from them. We show that the number of kernel
edge covers is quadratic with respect to the number of edges
in the graph. Additionally, we present an algorithm which
generates the set of kernel edge covers also in quadratic time.

The set of kernel edge covers for path graphs is gener-
ated using an efficient algorithm for generating ascending
compositions of an integern in m parts based in the

diagram structure proposed by [3]. The technique uses a
binary pattern to map integer partitions into binary strings
to represent edge covers.

The paper is organized as follow. Section 2 presents the
preliminaries. Section 3 deals with generating partitions of
an integern in m parts, Section 4 presents the generation of
edge covers of path graphs. Section 5 concludes the paper
and future work is presented.

2. Preliminaries
An undirected graphG (i.e. finite, loopless and with no

parallel edges) is defined as a tuple(V,E), whereV is the
set of vertices(or nodes) andE the set ofedges. A vertex
and an incident edge are said tocovereach other.

A path graphP = (V,E) consists of a set of nodesV =
{a1, a2, . . . an} and edges built asei = ai−1ai, 1 ≤ i ≤ n,
i.e a path graph hasm = n− 1 edges.

The neighborhood of a vertexv ∈ V is the setN(v) =
{w ∈ V : vw ∈ E} and its degree, denoted asdG(v), is
the number of neighbors thatv has. The cardinality of a
setA will be denoted as|A|. Given a graphG = (V,E),
S = (V ′, E′) is called a subgraph ofG if V ′ ⊆ V and
E′ ⊆ E. G − v denotes the subgraph obtained fromG by
deletingv and all incidents edges tov whereasG\e is the
subgraph obtained by simply deletion of the edgee.

An edge cover for a graphG = (V,E) is a subset of
edgesE′ ⊆ E that covers all nodes ofG, that is, for each
u ∈ V there is av ∈ V such thate = uv ∈ E′. Let
EG = {E′ ⊆ E : E′ is an edge cover ofG} be the set of
edge covers for G, and|EG| be the number ofedge covers
of G.

3. Partitions of Integers
In this section we introduce partitions of integers and give

and efficient algorithm to compute them. In the following
section, the use of partition of integers to generate edge
covers will be discussed.

Let n be a positive integer. A composition ofn is a
way of writing n as the sum of positive integers denoted
as n = y1 + y2 + ... + yk. If the order of integersyj is
irrelevant, this representation is aninteger partition. When
y1 ≤ y2 ≤ ... ≤ yk we have an ascending composition.
Algorithms for enumerating all the partitions of an integer
or only the partitions with a restriction have been extensively
studied [4], [5].

Int'l Conf. Foundations of Computer Science | FCS'13 | 35

A data structure calledpartition diagram for storing all
the partitions of an integer is proposed in [3]. In Merca [6],
[7] improvements are proposed which, to date, are the most
adequate data structures for generating integer partitions.
We use the data structure proposed by Merca to present an
efficient algorithm for generating ascending compositions of
an integern in m parts (See Algorithm 1). This algorithm
is the foundation to generate edge covers of a path graph.

3.1 Partition Diagram
The partition diagram of an integern is a directed acyclic

graph. Fig. 1 shows a partition diagram of integeri = 6.
A node in a partition diagram is denoted by(y, Y), where
y is an element of a partition andY is a number to be
divided into parts that are not smaller thany. A node(y, Y)
that has no predecessor is called aanchored node (root
node) in a partition diagram. A node(y, Y) which has no
succesor andY = 0 is called aterminal node. A node
(y, Y) with Y > 0 andy ≤ Y is called aninternal node.
For example, in Fig. 1 the node(1, 6) is ananchored node
and alsointernal node, whereas node(5, 0) is a terminal
node (leaf node). Fig. 1 shows a path pointing from(2, 4)
to (2, 2) and(4, 0), it means that the nodes(2, 2) and(4, 0)
are the succesor of(2, 4).

(1, 6)

(1, 5) (2, 4) (3, 3) (6, 0)

(1, 4) (2, 3) (5, 0,)

(1, 3) (2, 2) (4, 0)

(1, 2) (3, 0)

(1, 1) (2, 0)

(1, 0)

Fig. 1: Partition diagram needed to generate the integer
partitions of the number 6. The diagram represents a directed
acyclic graph.

Given a partition diagram of an integern, a path from an
anchored node to a terminal node defines a unique partition

of n. The partition is formed during a path traversal by recov-
ering all the first parts of the tuples excluding the anchored
node and nodes of the form(1, r) if its predecessor is of the
form (y, r), wherey > 1. For example, the path(1, 6) (1, 5)
(1, 4) (2, 2) (1, 2) (2, 0) defines partition〈1, 1, 2, 2〉 since
the nodes(1, 6) and (1, 2) are excluded. Traversing all the
paths, the partitions of6 are 〈1, 1, 1, 1, 1, 1〉, 〈1, 1, 1, 1, 2〉,
〈1, 1, 1, 3〉, 〈1, 1, 2, 2〉, 〈1, 1, 4〉, 〈1, 2, 3〉, 〈1, 5〉, 〈2, 2, 2〉,
〈2, 4〉, 〈3, 3〉, and〈6〉.

Although the partition diagram shown in Fig. 1 is created
for integeri = 6, it also consists of all the partition diagrams
of any integer smaller than6. The partition diagram of
any integerr smaller thann is anchored at node(1, r).
For example, the node(1, 5) is the anchored node of the
partition diagram of5. In the next subsection we presented
an efficient algorithm to generate the ascending composition
of an integern in m parts.

3.2 Algorithm for generating ascending com-
position of an integer n in m parts

To obtain all the ascending composition of integern in
m parts, we can generate all paths from the root node to
the leaf nodes whose deep ism + 1 using the partition
diagram. To achieve this, we present a variant of Merca
algorithm for traversing all the paths with the constraint ofm
parts. We represent each level of the partition diagram as a
dynamic vector, i.e.diagram[0] = {(1, 6)}, diagram[1] =
{(1, 5), (2, 4), (3, 3), (6, 0)} and so on. Particular elements
of the diagram can be recovered asdiagram[row][column]
whererow represent the level of the diagram andcolumn
the position in the level.

The required variables should be initialized as follows.
Variablesrow ← 1 and colum← 0, these values represent
their position in the diagram. The variablepart ← 0, is
the number of parts in whichn has been already divided.
Finally, partition ← {} has the elements of a partition.
When a partition is formed, the setpartition is stored and
modified to generate a new partition.

4. Computing edge covers for path
graphs

In this section we show how to generate the set ofedge
covers of a path graph using 3.2. Firstly we present how to
encode edge covers for path graphs as binary strings.

4.1 Binary strings to represent edge covers
A binary pattern can be used to represent anedge cover

of a path graph. Letb1b2 . . . bm be a binary sequence. If
bi = 1 then the edge(ai, ai+1) belongs to theedge cover
otherwise (i.e.bi = 0) the edge(ai, ai+1) does not belong
to theedge cover.

Let G be a path graph withn nodes. A binary sequence
b1b2 . . . bm, m = n − 1 represents anedge cover for G if
the following conditions hold:

36 Int'l Conf. Foundations of Computer Science | FCS'13 |

Algorithm 1 Parts (Generating ascending composition den
in m parts)
Require: diagram (Diagram structure ofn)
Require: m, row, column, part, partition

1: for all i = 0; i ≤ length(diagram [row]−1); i = i+1
do

2: partition = partition ∪ first component
(diagram [row] [i]);

3: part← part+ 1;
4: if second component (diagram [row] [i])! = 0 and

part < m then
5: Parts (n-second component

(diagram [row] [i]) + 1, 0, part,m,n)
6: else
7: if second component (diagram [row] [i] = 0) and

part == m then
8: storepartition;
9: end if

10: end if
11: partition = partition-last component(partition);
12: part← part− 1;
13: end for

1) 6 ∃ bi, bi+1 such thatbi = 0 andbi+1 = 0.
2) b1 = 1 andbm = 1.
An edge cover representation, does not admit a sequence

of consecutive zeros. So, a binary sequence is represented
as
1p001p1 · · · 01pl−101pl for somel ∈ N andp0, p1, . . . pl > 0.

Lemma 1:Let ω be a binary sequence which represents
an edge cover of a path graph withn nodes. The maximum
numbersn of zeros appearing inω is given by
sn = n−2

2 ; if n is even and
sn = n−1

2 ; if n is odd.
Proof:

It is obvious that, when eachpi = 1, 1 ≤ i ≤ n, the
stringω has the maximum number of zeros. Since the one’s
appearing at the extrema ofω are fixed, then a string of
lengthn− 2 is left where half of the symbols are zero ifn
is even or half ofn− 1 symbols are zero ifn is odd.

Corollary 1: LetP be a path graph such that the number
of nodes ofP is n. If ω is a binary string which represents
an edge cover forP then

1) if n is even there are0 ≤ s ≤ n−2
2 zeros onω;

2) if n is odd there are0 ≤ s ≤ n−1
2 zeros onω.

Example 1: : If a path graph withn = 10 nodes is
given, then0 ≤ s ≤ 4 zeros are allowed in a binary
string to represent anedge cover. If s = 0 then, there is
only one binary string〈1111111111〉, if s = 1 then there
are eight binary strings〈1011111111〉, 〈1101111111〉,
〈1110111111〉, 〈1111011111〉, 〈1111101111〉,
〈1111110111〉, 〈1111111011〉, 〈1111111101〉 and so
on.

It is easy to see that there is only one string without zeros
that represent anedge cover of a path graph withn nodes.
In fact, it is the string withn−1 ones (each one represents an
edge). The strings with one zero that representedge covers
are also easily counted and generated as the following lemma
shows.

Lemma 2:Let P be a path graph withm edges ordered
asa1, a2, . . . , am. There arem− 2 strings of lengthm with
one zero that represent edge covers ofP .

Proof: Let b1b2 . . . bm be an arbitrary string which
represent the edges of the path graphP . It is obvious thatb1
and bm should be one since each of them cover the nodes
a1 and an respectively. So the string whereb2 = 0 and
bi = 1, i = 1, 3, 4, . . .m represents an edge cover ofP with
one zero. If we shift the value ofb2 to b3 and assign to
b2 the value one, we have the second string that represents
an edge cover ofP with one zero. In general ifbi = 0,
2 ≤ i ≤ m− 2 then shifting the value ofbi with bi+1 gives
a new edge cover ofP with one zero.

The generation of some strings with more that one zero
which representedge covers can be determined via the
correspondence with the integer partitions of a numbern.

Definition 1: A kernel string is a binary string of the form
01p101p2 · · · 1pl0, l ≥ 1 where0 < p1 ≤ p2 ≤ · · · ≤ pl.

Proposition 1: There aren − 4 kernel strings with two
zeros of length at mostn− 2.

Proof: A kernel string with two zeros is of the form
01p10. In fact, if 1 ≤ p1 ≤ n − 4 the kernel strings01p10
have length at mostn− 2.

An ascending integer partition can be used to generate
kernel strings.

Lemma 3:Let p(n,m) be the set of ascending integer
partitions ofn in m parts. If l1 + l2 + · · ·+ lm ∈ p(n,m),
then 01l101l2 · · · 1lm0 is a kernel string withm + 1 zeros
whose length isl1 + l2 + · · ·+ lm +m+ 1.

Proof: That01l101l2 · · · 1lm0 is a kernel string is easily
verified since eachli 6= 0 and the ascending condition means
that l1 ≤ l2 ≤ · · · ≤ lm. The number of zeros is also
straightforward computed.

Lemma 4:There are
∑n−r−3

i=r |p(i, r)| kernel strings with
r + 1 zeros for alln ≥ 5.

Proof: The proof is by induction overn.
The following example shows how to generate a kernel string
from an ascending integer partitionp(n,m).

Example 2:The partitions of four in two part are
p(4,2)={2+2, 1+3}. Since the cardinality of the set is two,
this means that there are two kernel strings with three zeros
and four ones. The kernel string are of the form01p101p20.
Each element of a partition is the value of api. So one
kernel string is formed whenp1 = p2 = 2 and the other
kernel string is formed whenp1 = 1 andp2 = 3 which are
the kernel strings0110110 and0101110, respectively. From
lemma 4, ifn = 9 there are four kernel strings with three
zeros because

Int'l Conf. Foundations of Computer Science | FCS'13 | 37

9−2−3∑

i=2

p(i, 2) =

4∑

i=2

p(i, 2)

= p(2, 2) + p(3, 2) + (4, 2)

= 1 + 1 + 2

= 4

The kernel strings are shown in the following table.

p(2, 2) = 1 + 1 01010
p(3, 2) = 1 + 2 010110

p(4, 2) = {2 + 2, 1 + 3} 0110110, 0101110

It is well known that if l1 + l2 + · · · + lm is an integer
partition of a numbern then a combination of the number,
i.e., l2 + l1 + · · ·+ lm, represents the same integer partition
of n. However, if they are used to generate kernel strings,
those strings are different. We can not call both of them
kernel strings since, ifl1 ≤ l2, it is not the case thatl1 > l2,
so the second is not a kernel string. We introduce another
definition to include those strings.

Definition 2: A combined string is a binary string of the
form 01p101p2 · · · 1pl0, l ≥ 1 where eachpi 6= 0, 1 ≤ i ≤ l.

Now, combined strings can be generated from integer
partitions also. However, we do not want to count combina-
tions of ascending integer partitions that are identical, i.e., if
l1 + l2 + · · ·+ lm is a partition which represent a combined
string andl1 = l2 then,l2 + l1 + · · ·+ lm will represent the
same string. We useλli to denote the number of times the
value li is repeated in the partition.

Let t = l1+ l2+ · · ·+ lm be an ascending integer partition
of the numbert. It is well known that the total number
of non-repeated combinations of the partitiont is given by
(
∑m

i=1 λli)!/
∏m

i=1(λli)!. Algorithms which efficiently built
these kind of integer partition combinations have long been
studied, a survey can be found in Knuth [8]. What is impor-
tant to point out is that combined strings can de generated
from kernel string since combined integer partitions can be
generated form integer partitions.

Corollary 2: Each combined string can be generated from
a kernel string.

Corollary 3: The set of kernel strings is a subset of the
set of combined strings.

Lemma 5:Let P be a path graph withm edges. Ifw is a
combined string such that|w| ≤ m−2 then1w1l represents
an edge cover ofP wherel = m− |w| − 1.

Proof: By definition, a combined string does not have
two consecutive zeros. That the length of1ω1l is m is
establish by the conditionl = m− |w| − 1.

Theorem 1:Let P be a path graph withm ≥ 4 edges.

1) If m is even then(m2 − 2)(m2 − 1) kernel strings
are needed to generate combined strings that represent
edge covers.

p(1, 1)
p(2, 1) p(2, 2)
p(3, 1) p(3, 2) p(3, 3)
p(4, 1) p(4, 2) p(4, 3)
p(5, 1) p(5, 2)
p(6, 1)

Table 1: Ascending integer partitions calculated from Algo-
rithm 2 for n = 10

2) If m is odd then(m−3)2

4 kernel strings are needed to
generate combined strings that represent edge covers.

Proof: We first prove the case wherem is even. By
lemma 1, it suffices to generate kernel strings withs zeros,
2 < s < (n − 2)/2. By proposition 1 there arem − 4
kernel strings with two zeros. In the same way, there are
n − 3 kernel strings with three zeros. In general, there are
(n/2) + 1 kernel strings with(n − 2)/2 zeros. Adding the
number of string we have

∑m−2
i=4,even(m− i) kernel strings.∑m−2

i=4,even(m−i) = (m2 −2)(m2 −1). Similarly, if m is odd,

there are
∑m−3

i=4,odd(m− i) kernel strings and
∑m−3

i=4,odd(m−

i) = (m−3)2

4 .

Algorithm 2 Increasing integer partitions needed to generate
kernel strings
Require: Integerm ≥ 4 which represent the number of

edges ofP
1: if m odd then
2: l = m−3

2
3: p(l, l)
4: else
5: l = m−2

2
6: end if
7: for all j = 1; j ≤ l; j ++ do
8: for all i = j; i < 2l− j; i++ do
9: p(i, j)

10: end for
11: end for

Let P be a path graph withm ≥ 4 edges, algorithm 2
calculates the ascending integer partitions ofl in r parts
needed to generate kernel strings based on the number of
edgesm. For example, ifn = 10, Table 1 shows which
ascending integer partitions are needed. We use a tThe
integer partitions are presented in rows and columns to see
its correspondence with the previous results. For example,
the second component of the elements in row one are 1.
Those partitions represent the kernel strings with two zeros
needed (lemma 4).

Although we known how to compute the set of combined
string from kernel strings, there is a last set of strings which
representedge covers of path graphs that are not included in
lemma 5. For example, the string10110101111 represents an
edge cover of a path graph with eleven edges, the combined

38 Int'l Conf. Foundations of Computer Science | FCS'13 |

string which generates such a string is011010 based on a
combination of the ascending partition1 + 2, i.e. 2 + 1.
However, the string11011010111 which also represents
an edge cover of a path graph with eleven edges is not
generated from the result of lemma 5. Those strings can be
obtained by shiftings to the right combined strings in the
whole string. In our example, if the combined string011010
is shifted one position to the right in the string10110101111
, the string11011010111 is generated.

Lemma 6:Let P be a path graph withm edges. If1w1l

represents an edge cover forP wherew is a combined string
and l > 1 then,l − 1 different strings which represent edge
covers ofP can be generated from1w1l.

Proof: Sincel > 1 then, shifting one place to the right
the combined stringw generates a new string11w1l−1 which
also represents an edge cover ofP . It is straightforward to
notice that the shifting can be donel − 1 times.

We are now in a position to present the algorithm to
generate the strings that representedge covers for a path
graph with at least four edges.Edge covers for path graphs
with less than four edges are straightforward calculated.

Algorithm 3 Generating the edge covers of a path graphP

Require: Integerm ≥ 4 which represent the number of
edges ofP

1: Generatediagram structure of m
2: Include the string without zeros, i.e.,1m

3: Includem− 2 edge covers with one zero
4: Compute kernel strings
5: Generate combined strings
6: for all combined stringw do
7: p = m− |w| − 1
8: for all i = 0; i < p; i++ do
9: add11iw1p−i

10: end for
11: end for

5. Conclusions and future work

A procedure to computeedge covers for path graphs us-
ing an efficient algorithm for generating ascending composi-
tions of an integern in m parts has been presented. Although
the number of edge covers grows exponentially [2], the space
and time needed to store either the partition diagram or the
set of kernel strings is quadratic. The implication of this
result is that, in practical applications, we can efficiently
recover subsets of edge covers for a given path graph as
kernel strings are the base to generate combined strings. We
believe that the procedure presented will be the foundation
to generate edge covers for simple graphs, i.e., acyclic and
cyclic.

References
[1] I. Bezáková and W. Rummler, “Sampling edge covers in 3-regular

graphs,” inMathematical Foundations of Computer Science 2009, ser.
Lecture Notes in Computer Science, R. Královic and D. Niwiński, Eds.
Springer Berlin Heidelberg, 2009, vol. 5734, pp. 137–148.

[2] G. D. Ita, J. R. Marcial-Romero, and H. A. Montes-Venegas,
“Estimating the relevance on communication lines based on the
number of edge covers,”Electronic Notes in Discrete Mathematics,
vol. 36, no. 0, pp. 247 – 254, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571065310000338

[3] R.-B. Lin, “Efficient data structure for storing the partitions of integers,”
The 22nd Workshop on Combinatorics and Computation Theory, pp.
349–354, 2005.

[4] D. Stanton and D. White, “Constructive combinatorics,”Springer-
Verlang, Berling, 1986.

[5] C. L. Liu, “Introduction to combinatorial mathematics,”MacGraw-Hill
College, 1986.

[6] M. Merca, “Binary diagrams for storing ascending compositions,”The
Computer Journal Advance Access, 2012.

[7] ——, “Fast algorithm for generating ascending compositions,”Journal
of Mathematical Modelling and Algorithms, vol. 11, pp. 89–104, 2012.
[Online]. Available: http://dx.doi.org/10.1007/s10852-011-9168-y

[8] D. E. Knuth, The Art of Computer Programming, Volume 4A: Combi-
natorial Algorithms, Part 1. Addison Wesley, 2011.

Int'l Conf. Foundations of Computer Science | FCS'13 | 39

Finding Paths with Minimum Shared Edges in Graphs with
Bounded Treewidth

Z.-Q. Ye1, Y.-M. Li2, H.-Q. Lu3 and X. Zhou4

1Zhejiang University, Hanzhou, Zhejiang, China
2Wenzhou University, Wenzhou, Zhejiang, China

3Zhejiang University of Technology, Hangzhou, Zhejiang, China
4Tohoku University, Sendai, Japan

Abstract— Given a positive integer p, a graph G and a
pair of two terminals s and t in G, the minimum shared-
edge paths problem is to find p paths connecting s and
t so as to minimize the number of edges shared among
the paths. This is a generalization of the well-known edge-
disjoint paths problem which asks whether there exist p
pairwise edge-disjoint paths connecting the terminals. The
edge-disjoint paths problem is NP-complete for given many
pairs of terminals even for graphs with treewidth at most
two. In this paper we show that the minimum shared-edge
paths problem for a given pair of two terminals can be solved
in polynomial time for graphs with bounded treewidth.

Keywords: Dynamic programming algorithm, Tree-
decomposition, Treewidth

1. Introduction
Given a number p, a graph G and a pair of two terminals

s and t in G, the minimum shared-edge paths problem
is to find p paths connecting s and t so as to minimize
the number of shared edges. This problem, introduced in
[7], has an application for a security assurance demand
in a geographic information system setting. Suppose that
a security organization is hired to do planning for a VIP
who wishes to travel safely between two locations. Given
the security concerns, p paths are determined in pre-trip
planning and then, just prior to actual travel, randomly one
path among the p paths is chosen. The fewer edges, that are
shared among the pre-trip paths, are to make the higher level
of perceived security. However, if it becomes unavoidable
to share edges among the paths, guards are employed on
those shared edges. Since guards take some costs, we want
to reduce their total number, that is, to minimize the number
of shared edges.

For the special case where the number of shared edges
is required to be zero, the minimum shared-edge paths
problem is reduced to the “edge-disjoint paths” problem,
which is to find p edge-disjoint paths connected s and t and
can be solved in polynomial time using standard maximum
flow algorithms. However the minimum shared-edge paths
problem is NP-hard for gernal graphs [7].

The class of graphs with treewidth k includes trees (k =
1), series-parallel graphs (k = 2) [11], Halin graphs (k = 3),
and k-terminal recursive graphs. Many problems can be
solved efficiently for graphs with treewidth bounded by a
constant k by a dynamic programming algorithm based on
the tree-decomposition [1], [2], [5], [6], [8], [9], [10], [15],
while the edge-disjoint paths problem for many pairs of
terminals is NP-complete even for k = 2 [13].

In this paper we give a polynomial-time algorithm to
solve the minimum shared-edge paths problem for graphs
with treewidth bounded by a constant k. Our idea is to
formulate the minimum shared-edge paths problem as a new
type of an edge-coloring problem, and to bound the size of
a dynamic programming (DP) table by O((p+1)(k+4)2k+8

),
applying and extending techniques developed for the or-
dinary edge-coloring problem [3], [12], [14]. We use the
fact that when doing dynamic programming upward in a
tree-decomposition only certain informations of the partial
solutions must be kept. These informations concern basically
the connectivity amongst the vertices of a basis graph inside
a solution. So the state space that is to be remembered is in
a sense given by the partitions of the vertex set of a basis
graph.

The paper is organized as follows. In Section 2 we present
some preliminary definitions. In Section 3 we give a simple
algorithm, that cannot always run in polynomial time, for
the minimum shared-edge paths problems on graphs with
treewidth bounded by a constant k. In Section 4 we modify
it to a polynomial-time algorithm. In Section 5 we conclude
with a generalization of our algorithm.

2. Terminology and Definitions
In this section we give some definitions. Let G = (V,E)

denote a graph with vertex set V and edge set E. We often
denote by V (G) and E(G) the vertex set and the edge set
of G, respectively. We denote by n the number of vertices in
G. The paper deals with simple undirected graphs without
multiple edges or self-loops. An edge joining vertices u and
v is denoted by (u, v). For E′ ⊆ E(G), G[E′] denotes the
subgraph of G induced by the edges in E′; G[E′] contains
every vertex of G to which at least one edge in E′ is incident,
and hence G[E′] contains no isolated vertex.

40 Int'l Conf. Foundations of Computer Science | FCS'13 |

We will use notions as: leaf, node, child and root in their
usual meaning. A tree-decomposition T = (VT , ET) of a
graph G is a rooted tree such that the following conditions
(A1)–(A6) hold [3]:

(A1) each X ∈ VT is a subset of V (G);

(A2)
⋃
X∈VT

X = V (G);

(A3) for each edge (u, v) ∈ E(G), there is a leaf node
X ∈ VT such that u, v ∈ X;

(A4) for any three nodes X1, X2, X3 ∈ VT , if node X2

lies on the path between X1 and X3, then X1 ∩
X3 ⊆ X2;

(A5) |VT | = O(n); and

(A6) every internal node Xi in T has exactly two chil-
dren Xl and Xr such that Xi = Xl or Xi = Xr.

The width of T is defined as max{|X| − 1 : X ∈ VT }, and
the treewidth, denoted by tw(G), of G is the minimum k
such that G has a tree-decomposition of width k. We denote
by X01 the root of a tree-decomposition. Assume that k is a
bounded positive integer. Since a tree-decomposition T of a
graph with treewidth k can be found in linear time [3], [4],
we may assume that its tree-decomposition T are given.

We next recursively define an edge-set Ei ⊆ E for each
node Xi of T as follows. Let rep : E → VT such that
rep(e) is a leaf node of T and the two ends of the edge
e is in rep(e). If Xi is a leaf of T , then let Ei = {e ∈
E| rep(e) = Xi}; if Xi is an internal node of T having two
children Xl and Xr, then let Ei = El ∪ Er. Thus node Xi

of T corresponds to a subgraph G[Ei] of G induced by the
edges in Ei. The subgraph G[Ei] is often denoted simply
by Gi. Then Gi is an edge-disjoint union of two subgraphs
Gl and Gr, which share common vertices only in Xi.

3. Simple Algorithm
In this section we give a straightforward dynamic pro-

gramming algorithm. Although all our algorithms only com-
pute the minimum number ω(G, p) of shared edges among
all p paths connecting s and t, they can be easily modified
so that they actually find such p paths connecting s and t
with minimum number of shared edges.

The main result of this section is the following theorem.
Theorem 3.1: Let G = (V,E) be a graph with n vertices

given by its tree-decomposition with width ≤ k. Let (s, t)
be a pair of two vertices in G, and let p be a positive integer.
Then one can compute ω(G, p) in time

O
(
n
{
p2pk(k+1)/2 + p(k + 4)2(k+4)p+3

})
.

If k is bounded, the first term in the braces above,
p2pk(k+1)/2, is bounded by a polynomial in n if p =
O(log n). The second term p(k+4)2(k+4)p+3 is also bounded
by a polynomial if p = O(log n) since p is in the single
exponent over a constant k + 4. On the other hand, both of

the terms are bounded by a constant if p = O(1). Thus we
have the following corollary.

Corollary 3.2: If p = O(log n), then the minimum
shared-edge paths problem can be solved for graphs with
bounded treewidth in polynomial time. If p = O(1), then
the problem can be solved for graph with bounded treewidth
in linear time.

In the remainder of this section we will give a proof
of Theorem 3.1. Our idea is to formulate the minimum
shared-edge paths problem as a new type of an edge-
coloring problem, and then to solve the coloring problem
using dynamic programming with a table of size at most
(k + 4)(k+4)p. We employ techniques developed for the
ordinary edge-coloring problem and the edge-disjoint paths
problem [3], [14], [16].

Let G = (V,E) be a graph, and let (s, t) be a pair of two
vertices in V called terminals. Let p be a positive integer, and
let C = {1, 2, · · · , p} be the set of colors. Any mapping f :
E → 2C is called a coloring of graph G. For a color c ∈ C,
we denote by G(f, c) the so-called “color class” for c, that
is, the subgraph of G induced by the edges which are colored
by a set of colors including c. We call f a correct coloring
of G if, for each color c ∈ C, G(f, c) has a connected
component containing both terminals s and t.

Let ω(G, f), called the cost of f , be the number of edges
which are in at least two graphs G(f, c), c ∈ C. Let ω(G, p)
be the minimum cost among all correct colorings of G. The
minimum shared-edge paths problem is to compute ω(G, p)
for a given graph G.

Let Xi be a node of a tree-decomposition T of a graph
G. We say that a coloring of graph Gi = G[Ei] is extensible
if it can be extended to a correct coloring of G = G[E01]
without changing the coloring of any edge in Ei, where X01

is the root of T .
When doing dynamic programming upward in a tree-

decomposition, only certain informations of all extensible
colorings must be kept in a DP table. The informations
are called “color vectors,” and the number of distinct color
vectors is bounded by (k + 4)(k+4)p, as we show below.

For a set X we denote by F(X) the set of all families of
pairwise disjoint subsets of X . If x = |X| ≥ 1, then

|F(X)| ≤ (x+ 1)x+1. (1)

For a node Xi of T we call a p-tuple C(Xi) =
(Y1,Y2, · · · ,Yp) a color vector on Xi, where Yc, 1 ≤ c ≤ p,
is a family in F(Xi ∪ {s, t}). Simply we define Fst(Xi) =
F(Xi∪{s, t}). We say that a color vector C(Xi) = (Y1,Y2,
· · · , Yp) on Xi is active if Gi = G[Ei] has a coloring f
such that Yc = Y(Xi; f, c) for each color c ∈ C, where

Y(Xi; f, c) = {V (D) ∩ (Xi ∪ {s, t}) |
D is a connected component of Gi(f, c)}.

Such a vector C(Xi) is called the color vector of the
coloring f . (Thus a color vector indicates which vertices

Int'l Conf. Foundations of Computer Science | FCS'13 | 41

in Xi are connected to each other or are reachable from
terminals in a color class. Observe that there is a special
case where one of the sets in Yc is just {s, t}. This encodes
the fact that the color c already connects terminals s and t
entirely in Gi without using any vertex in Xi except s and
t.)

We now have the following lemma.
Lemma 3.3: Let Xi be any node of a tree-decomposition

T of a graph G. Let two colorings f and g of Gi = G[Ei]
have the same color vector. Then f is extensible if and only
if g is extensible.

Proof: It suffices to prove that if f is extensible then
g is also extensible. Suppose that f is extensible. Then f
can be extended to a correct coloring f∗ of G = (V,E),
where f∗(e) = f(e) for e ∈ Ei. Let g∗ be a coloring of G
extended from g as follows: g∗(e) = g(e) for e ∈ Ei, and
g∗(e) = f∗(e) for e ∈ E −Ei. Since the subgraph Gi of G
is connected to other parts of G only through vertices in Xi

and f and g have the same color vector and f∗ is a correct
coloring, g∗ is a correct coloring.

Thus a color vector on Xi characterizes an equivalence
class of extensible colorings of Gi. Since |Xi| ≤ k + 1,
|Xi∪{s, t}| ≤ k+3. Therefore by Eq. (1) we have |F(Xi∪
{s, t})| ≤ (k + 4)k+4. Hence there are at most

(k + 4)(k+4)p (2)

color vectors C(Xi) = (Y1,Y2, · · · ,Yp) on Xi. Let

ω(Xi,C) = min{ω(Gi, f) |
f is a coloring of Gi with the color vector C},

and let ω(Xi,C) = ∞ if no such coloring f . Then clearly
we have the following lemma.

Lemma 3.4: Let C be any color vector on a node Xi of
T . Then C is active if and only if ω(Xi,C) 6=∞.

The main step of our algorithm is to compute a table of
all ω(Xi,C) for all active color vectors C on each node of
T from leaves to the root X01 of T by means of dynamic
programming. From the table on X01 one can easily compute
ω(G, p), as follows.

Lemma 3.5: Let G be a graph with a tree-decomposition
T rooted at X01. Then

ω(G, p) = min
C

ω(X01,C), (3)

where the minimum is taken over all active color vectors
C = (Y1,Y2, · · · ,Yp) on X01 such that, for each color c ∈
C, there is a set in Yc containing both s and t. Furthermore
Eq. (3) can be computed in time O((k + 4)(k+4)p).

We first compute the table of ω(Xi,C) for all active color
vectors C on each leaf Xi of T as follows:

(1) enumerate all colorings f : Ei → 2C of Gi; and

(2) compute all active color vectors C(Xi) =
(Y1,Y2, · · · ,Yp) on Xi from the colorings f of
Gi.

Since |C| = p and |Ei| ≤ k(k+1)/2 for leaf Xi, the number
of distinct colorings f : Ei → 2C is at most 2pk(k+1)/2. For
each coloring f of Gi, one can compute the color vector of
f in time O(p). Note that k = O(1). Therefore, steps (1) and
(2) above and hence all ω(Gi,C) can be compute for a leaf
in time O(p2pk(k+1)/2). Since T has O(n) leaves, the tables
on all leaves can be computed in time O(np2pk(k+1)/2),
which corresponds to the first term in the braces of the
complexity mentioned in Theorem 3.1.

t

1
Y
c

2
Y
c

X

X
r

l
{ , }

{ , }

s t

s

Fig. 1: Venn diagrams of Ylc and Yrc with two clusters Yc1
and Yc2.

We next compute ω(Xi,C) for all active color vectors
C on each internal node Xi of T from leaves to the root.
Lemma 3.6 below shows how to compute them on Xi from
all active color vectors on the left and right children Xl

and Xr of Xi. We now introduce a notion of a family
U(Ylc,Yrc;W) for families Ylc,Yrc and a set W ⊆ V .
Let C(Xl) = (Yl1,Yl2, · · · ,Ylp) be an active color vector
on Xl, and let C(Xr) = (Yr1,Yr2, · · · ,Yrp) be an active
color vector on Xr. Figure 1 illustrates Venn diagrams of
Ylc and Yrc, c ∈ C, where the sets in Ylc are indicated
by circles of solid lines and the sets in Yrc by circles of
dotted lines. All vertices shared by graphs Gl and Gr are
contained in Xi, and Xi ⊆ Xl ∪Xr. Therefore each family
Yc in a color vector C(Xi) on Xi corresponds to a “cluster”
in Fig. 1, formally defined as follows. For each color c ∈ C,
let GBc = (Ylc ∪Yrc, EBc

) be a bipartite graph with partite
sets Ylc and Yrc, where a vertex Ylc ∈ Ylc and a vertex
Yrc ∈ Yrc are joined by an edge in EBc iff Ylc∩Yrc 6= ∅. Let
Dc1, Dc2, · · · , Dcb be the connected components of GBc,
and for each j, 1 ≤ j ≤ b, let Ycj =

⋃
Y ∈V (Dcj)

Y. Then
Ycj is the “cluster” mentioned above, and corresponds to
the vertex set of a connected component of Gi(f, c) for the

42 Int'l Conf. Foundations of Computer Science | FCS'13 |

coloring f of Gi extended from the colorings of Gl and Gr
having color vectors C(Xl) and C(Xr), respectively. For a
set W ⊆ V we define a family U(Ylc,Yrc;W) of vertex
sets, as follows:

U(Ylc,Yrc;W) = {Ycj ∩W | 1 ≤ j ≤ b}.

We have the following lemma.
Lemma 3.6: Let an internal node Xi of T have two

children Xl and Xr. Then, for any color vector Ci =
(Y1,Y2, · · · , Yp) on Xi,

ω(Xi,Ci) = min
C′,C′′

ω(Xl,C
′) + ω(Xr,C

′′), (4)

where the minimum is taken over all color vectors C′ =
(Yl1,Yl2, · · · ,Ylp) on Xl and C′′ = (Yr1,Yr2, · · · ,Yrp)
on Xr satisfying

Yc = U(Ylc,Yrc;Xi ∪ {s, t}) (5)

for each color c ∈ C.
Proof: We first prove that

ω(Xi,Ci) ≥ min
C′,C′′

ω(Xl,C
′) + ω(Xr,C

′′). (6)

If Ci is not active on Xi, then by Lemma 3.4 ω(Xi,Ci) =
∞ and hence Eq. (6) holds. Therefore one may assume
that Ci is active and hence Gi has a coloring f with
the active color vector Ci = (Y1,Y2, · · · , Yp) such that
ω(Gi, f) = ω(Xi,Ci). Let fl and fr be restrictions of f
to El and Er, respectively. Let Cl = (Yl1,Yl2, · · · ,Ylp)
be the active color vector of the coloring fl, and let Cr =
(Yr1,Yr2, · · · ,Yrp) be the active color vector of the coloring
fr. Clearly Ei = El ∪ Er and El ∩ Er = ∅. Furthermore
all vertices shared by graphs Gl and Gr are contained in
set Xl ∩ Xr ⊆ Xi. Moreover Xi ⊆ Xl ∪ Xr since either
Xi = Xl or Xi = Xr. Therefore one can easily observe
that Yc = U(Ylc,Yrc;Xi∪{s, t}) for each color c ∈ C, and
hence Cl and Cr satisfy Eq. (5). We thus we have

ω(Xi,Ci) = ω(Gi, f)

= ω(Gl, fl) + ω(Gr, fr)

≥ ω(Gl,Cl) + ω(Gr,Cr)

≥ min
C′,C′′

ω(Xl,C
′) + ω(Xr,C

′′), (7)

completing to prove Eq. (6).
We then prove that

ω(Xi,Ci) ≤ min
C′,C′′

ω(Xl,C
′) + ω(Xr,C

′′). (8)

If minC′,C′′ ω(Xl,C
′) + ω(Xr,C

′′) = ∞, then Eq. (8)
holds. Therefore one may assume minC′,C′′{ω(Xl,C

′) +
ω(Xr,C

′′) 6= ∞, and hence Gl and Gr have colorings
gl and gr, respectively, with the active color vectors Cl =
(Yl1,Yl2, · · · ,Ylp) and Cr = (Yr1,Yr2, · · · ,Yrp) such that
ω(Gl, gl) = ω(Xr,Cl), ω(Gr, gr) = ω(Xr,Cr) and

ω(Xr,Cl) + ω(Xr,Cr) = min
C′,C′′

ω(Xl,C
′) + ω(Xr,C

′′).

Since Ei = El∪Er and El∩Er = ∅, the following extension
g of gl and gr

g(e) =

{
gl(e) if e ∈ El, and
gr(e) if e ∈ Er

is a coloring of Gi. Since by Eq. (5) Yc = U(Ylc,Yrc;Xi ∪
{sc, tc}) for each color c ∈ C, one can observe that Ci =
(Y1,Y2, · · · , Yp) is the color vector of g. Hence Ci is an
active color vector on Xi. Furthermore we have

ω(Xi,Ci) ≤ ω(Gi, g)

= ω(Gl, gl) + ω(Gr, gr)

= ω(Xl,Cl) + ω(Xr,Cr)

= min
C′,C′′

ω(Xl,C
′) + ω(Xr,C

′′),

completing to prove Eq. (8).
By Eqs. (6) and (8) we have verified Eq. (4).

Since |Ylc|, |Yrc| ≤ k + 4, the bipartite graph GBc =
(Ylc∪Yrc, EBc

) has at most (k+4)2 edges, that is, |EBc
| ≤

(k + 4)2. Clearly one can check in time O(k + 4) whether
Ylc ∩ Yrc 6= ∅. Therefore each bipartite graph GBc can be
constructed in time O((k + 4)3), and hence all p bipartite
graphs can be constructed in time O(p(k + 4)3). Thus one
can compute ω(Xi,C) of each active color vectors C on
Xi from a pair of active color vectors on Xl and on Xr

in time O(p(k + 4)3). By Eq. (2) there are at most (k +
4)(k+4)p active color vectors on Xl and at most (k+4)(k+4)p

active color vectors on Xr. Therefore there are at most (k+
4)2(k+4)p pairs of active color vectors on Xl and on Xr.
Thus one can compute all ω(Xi,C) of active color vectors
C on Xi in time O(p(k + 4)2(k+4)p+3). Since T has O(n)
internal nodes, one can compute the tables for all internal
nodes in time O(np(k+4)2(k+4)p+3), which corresponds to
the second term of the complexity in Theorem 3.1.

This completes a proof of Theorem 3.1.

4. Polynomial-Time Algorithm
The main result of this section is the following theorem.
Theorem 4.1: Let G = (V,E) be a graph of n vertices

given by its tree-decomposition with width ≤ k. Let (s, t) be
a pair of two vertices in G, and let p be the positive integer.
Then one can compute ω(G, p) in time

O
(
n(p+ 1)2

k(k+1)/2

+ n(p+ 1)(k+4)2k+8
)
.

If k is a bounded constant, then we have the following
corollary.

Corollary 4.2: The minimum shared-edge paths problem
can be solved in polynomial time for graph with bounded
treewidth.

In the remainder of this section we will give a proof of
Theorem 4.1. Our idea is to reduce the size of a DP table to

Int'l Conf. Foundations of Computer Science | FCS'13 | 43

O((p+1)(k+4)k+8

) by considering “correct colorings within
a permutation,” “counts” and “pair-counts” defined below.

Clearly the following lemma holds.
Lemma 4.3: Let f be a coloring of Gi = G[Ei] for a

node Xi, and let ϕ : C → C be any permutation (bijection)
of C. Then the composite ϕ ◦ f : Ei → 2C of f and ϕ is
extensible if and only if f is extensible, where ϕ ◦ f(e) =
{ϕ(c) | c ∈ f(e)}.

As known from Eq. (2), the number of distinct color vec-
tors on Xi is not polynomially bounded unless p = O(log n).
However, the number of distinct “counts” classifying all
colorings of Gi is polynomially bounded even if p = O(n),
as follows.

We call a mapping γ : Fst(Xi) → {0, 1, 2, · · · , p} a
count on a node Xi. A count γ on Xi is defined to be
active if Gi has a coloring f with a color vector C(Xi) =
(Y1,Y2, · · · ,Yp) such that γ satisfies

γ(A) = |{c ∈ C | A = Yc}|

for each A ∈ Fst(Xi). Such a count γ is called the count
of the coloring f . Clearly, for any active count γ,∑

A∈Fst(Xi)

γ(A) = |C| = p.

We now have the following lemma.
Lemma 4.4: Let two colorings f and g of Gi = G[Ei] for

a node Xi have the same count on Xi. Then f is extensible
if and only if g is extensible.

Proof: It suffices to prove that if f is extensible then g
is also extensible. Assume that f is extensible. Then f can
be extended to a correct coloring f∗ of G. Since f and g
have the same count, the following equation holds for any
families A ∈ Fst(Xi):

|{c ∈ C | A = Y(Xi; f, c)}| = |{c ∈ C | A = Y(Xi; g, c)}|.

Therefore there exists a permutation ϕ : C → C such that

Y(Xi;ϕ ◦ f, c) = Y(Xi; g, c)

for each color c ∈ C. Let g∗ be a coloring of G extended
from g as follows:

g∗(e) =

{
g(e) if e ∈ Ei,
ϕ(f∗(e)) otherwise.

We then claim that g∗ is a correct coloring of G and hence
g is extensible. It suffices to prove that for each color c ∈ C
graph G(g∗, c) contains the terminals s and t, both in the
same connected component of G(g∗, c). Let c be any color
in C. Since f∗ is a correct coloring of G, graph G(f∗, c)
contains the terminals s and t, both in the same connected
component of G(f∗, c). Therefore graph G(ϕ ◦ f∗, ϕ(c))
contains the terminals s and t, both in the same connected
component of G(ϕ ◦ f∗, ϕ(c)). The coloring ϕ ◦ f∗ is the
same as the coloring g∗ for the edges in E−Ei. Furthermore

Y(Xi;ϕ ◦ f, c) = Y(Xi; g, c). Therefore graph G(g∗, ϕ(c))
contains s and t, both in the same connected component
of G(g∗, ϕ(c)). Thus we have proved that g∗ is a correct
coloring of G.

By Lemma 4.4 an active count γ characterizes an equiva-
lence class of extensible colorings of Gi. Since |Xi| ≤ k+1,
by Eq. (1) |Fst(Xi)| ≤ (k + 4)k+4. Therefore there are at
most (k+4)k+4 distinct A ∈ Fst(Xi). Thus the number nγ
of distinct active counts γ : Fst(Xi) → {0, 1, · · · , p} is at
most

nγ ≤ (p+ 1)(k+4)k+4

. (9)

The number nγ is bounded by a polynomial in p. For a count
γ on Xi, let

ω(Xi, γ) = min{ω(Gi, f) |
f is a coloring of Gi with the count γ},

and let ω(Xi, γ) =∞ if no such a coloring exists.
From the table on the root X01 containing all ω(X01, γ)

of all active counts γ, one can easily compute ω(G, p), as
follows:

ω(G, p) = min
γ
{ω(X01, γ)} (10)

where the minimum is taken over all counts γ on the root
X01. By Eqs. (9) and (10), ω(G, p) can be computed in time
O((p+1)(k+4)k+4

). We thus need to compute a table of all
ω(Xi, γ) on each Xi by means of dynamic programming,
described below.

We first compute the table of ω(Xi, γ) for all active counts
γ on each leaf Xi of T . Since the number of all colorings
f : Ei → 2C of Gi is 2p|Ei|, it is not polynomial in p. We do
not need to enumerate all colorings of Gi as the following
lemma.

Lemma 4.5: Let Xi be a leaf of T . Let γ be a count on
Xi. Then

ω(Xi, γ) = min
ξ

∣∣∣∣∣∣
e ∈ Ei : ∑

S⊆Ei,S3e

ξ(S) ≥ 2


∣∣∣∣∣∣ , (11)

where the minimum is taken over all mappings ξ : 2Ei →
{0, 1, · · · , p} such that for each A ∈ Fst(Xi)

γ(A) =
∑
S

ξ(S), (12)

where the summation above is taken over all S ⊆ Ei such
that

A = {V (D) ∩ Fst(Xi) |
D is a connected component of G[S]}. (13)

Proof: We first prove

ω(Xi, γ) ≥ min
ξ

∣∣∣∣∣∣
e ∈ Ei : ∑

S⊆Ei,S3e

ξ(S) ≥ 2


∣∣∣∣∣∣ . (14)

44 Int'l Conf. Foundations of Computer Science | FCS'13 |

If ω(Xi, γ) = ∞, then Eq. (14) holds true. Therefore we
may assume ω(Xi, γ) 6= ∞ and hence γ is active on Xi.
Then Gi has a coloring f with the count γ. For each A ∈
Fst(Xi), let

Cf (A) = {c ∈ C | A = Y(Xi; f, c)}, (15)

then
γ(A) = |Cf (A)|. (16)

Let
Ei(f, c) = {e ∈ Ei | f(e) 3 c}, (17)

for each color c ∈ C and we define

Cg(S) = {c ∈ C | S = Ei(f, c)}

and
ξ(S) = |Cg(S)| (18)

for each S ⊆ Ei. Then ξ is a mapping 2Ei → {0, 1, · · · , p}.
We now prove that ξ satisfies Eq. (12). Since γ(A) =
|Cf (A)| for each A ∈ Fst(Xi) and Cg(S1) ∩ Cg(S2) = ∅
for each pair of distinct S1, S2 ⊆ Ei, by Eqs. (16) and (18)
it suffices to show

Cf (A) =
⋃
S

Cg(S) (19)

where the union is taken over all S ⊆ Ei satisfying Eq. (13).
We first prove that

Cf (A) ⊆
⋃
S

Cg(S). (20)

It suffices to prove that any color c ∈ Cf (A) is contained
in Cg(S) for some S satisfying Eq. (13). Since c ∈ Cf (A),
we have

A = Y(Xi; f, c).

By Eq. (17), choose S′ = Ei(f, c), then c ∈ Cg(S
′) and

hence we should prove that S′ satisfies Eq. (13). By Eq. (17),
clearly

A = {V (D) ∩ Fst(Xi) |
D is a connected component of G[Ei(f, c)]}

= {V (D) ∩ Fst(Xi) |
D is a connected component of G[S′]},

and hence S′ satisfies Eq. (13).
We next prove that

Cf (A) ⊇
⋃
S

Cg(S). (21)

Let c be any color c ∈ Cg(S) for S satisfying Eq. (13).
Clearly S = Ei(f, c). By the definition of Y(Xi; f, c), we
have

A = {V (D) ∩ Fst(Xi) |
D is a connected component of G[Ei(f, c)]},

and hence A = Y(Xi; f, c). By Eq. (15) we thus have c ∈
Cf (A). Thus we have proved Eq. (14).

By Eqs. (20) and (21) we have verified Eq. (19).
Similarly as above, we can prove

ω(Xi, γ) ≤ min
ξ

∣∣∣∣∣∣
e ∈ Ei : ∑

S⊆Ei,S3e

ξ(S) ≥ 2


∣∣∣∣∣∣ .

By Lemma 4.5, a mapping ξ : 2Ei → {0, 1, · · · , p} such
that ξ(S) = |{c ∈ C | S = Ei(f, c)}| for each S ∈ Ei
characterizes an equivalence class of colorings f of Gi.
Since |C| = p and |Ei| ≤ k(k + 1)/2 for leaf Xi, the
number of distinct such mappings ξ : 2Ei → {0, 1, · · · , p}
is at most (p + 1)2

k(k+1)/2

which is polynomial in p. Note
that k = O(1). Therefore, all ω(Xi, γ) can be computed
for a leaf in time O((p + 1)2

k(k+1)/2

). Since T has O(n)
leaves, the tables on all leaves can be computed in time
O(n(p+1)2

k(k+1)/2

), which corresponds to the first term in
the braces of the complexity mentioned in Theorem 4.1.

We now compute all ω(Xi, γ) of all active counts γ on
an internal node Xi from all active counts of its children
Xl and Xr. Note that Ei = El ∪ Er and El ∩ Er = ∅. We
call a mapping ρ : Fst(Xl)×Fst(Xr)→ {0, 1, 2, · · · , p} a
pair-count on Xi. We define a pair-count ρ to be active if
Gi has a coloring f such that, for each pair of Al ∈ Fst(Xl)
and Ar ∈ Fst(Xr)

ρ(Al,Ar) = |{c ∈ C : Al = Y(Xl; fl, c),

Ar = Y(Xr; fr, c)}|,

where fl = f |Gl is the restriction of f to El and fr = f |Gr
is the restriction of f to Er. Such a pair-count ρ is called
the pair-count of the coloring f of Gi. Let

ωpair(Xi, ρ) = min
f
{ω(Gi, f) |

f is a coloring of Gi with the pair-count ρ },

and let ωpair(Xi, ρ) =∞ if no such a coloring exists. Then
we have the following lemma.

Lemma 4.6: Let an internal node Xi of T have two
children Xl and Xr, and let ρ be any pair-count on Xi.
Then

ωpair(Xi, ρ) = min
γl,γr

ω(Xl, γl) + ω(Xr, γr), (22)

where the minimum is taken over all pairs of active counts
γl on Xl and γr on Xr satisfying

(B1) γl(Al) =
∑
A∈Fst(Xr)

ρ(Al,A) for each Al ∈
Fst(Xl); and

(B2) γr(Ar) =
∑
A∈Fst(Xl)

ρ(A,Ar) for each Ar ∈
Fst(Xr).

Using Lemma 4.6, we compute all ωpair(Xi, ρ) of all
active pair-counts ρ on Xi from all pairs of active counts
γl on Xl and γr on Xr. Since there are at most (k+4)2k+8

Int'l Conf. Foundations of Computer Science | FCS'13 | 45

pairs (Al,Ar) for which ρ(Al,Ar) ≥ 1, there are at most
(p+1)(k+4)2k+8

possible distinct active counts ρ. For each ρ
of them, we check in time O((k+4)k+4) = O(1) whether ρ
satisfies Conditions (B1) and (B2) in Lemma 4.6. Checking
Conditions (B1) and (B2) for all possible ρ’s can be done
in time O((p + 1)2(k+4)k+4

). Thus we have shown that all
active pair-counts ρ and ωpair(Xi, ρ) on Xi can be computed
in time

O((p+ 1)(k+2)2k+8

).

We now show how to compute all ω(Xi, γ) of all active
counts γ on an internal node Xi from all active pair-counts
on Xi as in the following lemma.

Lemma 4.7: Let an internal node Xi of T have two
children Xl and Xr, and let γ be any count on Xi. Then

ω(Xi, γ) = min
ρ′
{ωpair(Xi, ρ

′)}, (23)

where the minimum is taken over all active pair-counts ρ′

on Xi such that for each pair A ∈ Fst(Xi)

γ(A) =
∑

ρ(Al,Ar), (24)

where the summation above is taken over all pairs of Al ∈
Fst(Xl) and Ar ∈ Fst(Xr) satisfying

A = U(Al,Ar;Xi), (25)

where U has been defined in the previous section.
Using Lemma 4.7, we compute all ω(Xi, γ) of all active

counts γ on Xi from all active pair-counts ρ on Xi. There
are at most (p + 1)(k+4)2k+8

distinct active pair-counts ρ.
From each ρ of them, we compute γ satisfying Eq. (24) in
time O(1). Since |Al| ≤ k + 4, the bipartite graph GBc =
(Al ∪ Ar, Ec) defined in the previous section contains at
most (k + 4)2 = O(1) edges. Therefore one can check in
time O(1) for A, Al and Ar whether A = U(Al,Ar;Xi),
and hence one can check Eq. (25) in time O(1). Thus one
can compute all ω(Xi, γ) of all active counts γ on Xi in
time

O((p+ 1)(k+4)2k+8

).

Since T has O(n) internal nodes, one can compute the
tables for all internal nodes in time O(n(p + 1)(p+1)2k+8

),
which corresponds to the second term in the braces of the
complexity mentioned in Theorem 4.1.

This completes a proof of Theorem 4.1.

5. Conclusion
In this paper we gave a polynomial-time algorithm

for the minimum shared-edge paths problem on graphs
with bounded treewidth. Our algorithms can be ex-
tended to more than one terminal pair as follows. Let
(s1, t1), (s2, t2), · · · , (sα, tα) be α pairs of two terminals
in G, and for each i, 1 ≤ i ≤ α, let pi be a positive integer.
Then the problem is to find

∑
1≤i≤α pi paths such that there

are pi paths connecting si and ti for each i, 1 ≤ i ≤ α, so as
to minimize the number of edges shared among the paths.
If α is bounded, our algorithm can be extended to solve
the problem in polynomial time for graphs with bounded
treewidth.

Acknowledgments
This work is partially supported by the Japan Society for

the Promotion of Science (JSPS), Grant-in-Aid for Scientific
Research, Grant Numbers 23500001.

References
[1] S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese. An algebraic

theory of graph reduction. Journal of the Association for Computing
Machinery, Vol. 40, No. 5, pp. 1134–1164, 1993.

[2] S. Arnborg, J. Lagergren and D. Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, Vol. 12, No. 2, pp. 308–
340, 1991.

[3] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and
chromatic index on partial k-trees. Journal of Algorithms, Vol. 11,
No. 4, pp. 631–643, 1990.

[4] H. L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
Vol. 25, pp. 1305–1317, 1996.

[5] R. B. Borie, R. G. Parker and C. A. Tovey. Automatic generation of
linear-time algorithms from predicate calculus descriptions of problems
on recursively constructed graph families. Algorithmica, Vol. 7, pp.
555–581, 1992.

[6] B. Courcelle. The monadic second-order logic of graphs I: Recogniz-
able sets of finite graphs. Information and Computation, Vol. 85, pp.
12–75, 1990.

[7] M.T. Omran, J.-R. Sack and H. Zarrabi-Zadeh. Finding paths with
minimum shared edges Journal of Combinatorial Optimization, to
appear.

[8] N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. Journal of Algorithms, Vol. 7, pp. 309–322, 1986.

[9] N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths
problem. J. of Combin. Theory, Series B, Vol. 63, No. 1, pp. 65–110,
1995.

[10] P. Scheffler. A practial linear time algorithm for disjoint paths in
graphs with bounded tree-width. Technical Report, 396, Dept. of
Mathematics, Technische Universität Berlin, 1994.

[11] K. Takamizawa, T. Nishizeki and N. Saito. Linear-time computability
of combinatorial problems on series-parallel graphs. Journal of ACM,
Vol. 29, No. 3, pp. 623–641, 1982.

[12] X. Zhou and T. Nishizeki. Optimal parallel algorithms for edge-
coloring partial k-trees with bounded degrees. IEICE Trans. on
Fundamentals of Electronics, Communication and Computer Sciences,
Vol. E78-A, pp. 463–469, 1995.

[13] T. Nishizeki, J. Vygen and X. Zhou. The edge-disjoint paths
problem is NP-complete for series-parallel graphs. Discrete Applied
Mathematics,115, pp. 177-186, 2001.

[14] X. Zhou, S. Nakano and T. Nishizeki. Edge-coloring partial k-trees.
Journal of Algorithms, Vol. 21, pp. 598–617, 1996.

[15] X. Zhou, H. Suzuki and T. Nishizeki. A linear algorithm for edge-
coloring series-parallel multigraphs. Journal of Algorithms, Vol. 20,
pp. 174–201, 1996.

[16] X. Zhou, S. Tamura and T. Nishizeki. Finding edge-disjoint paths in
partial k-trees. Algorithmica, 26, pp. 3-30, 2000.

46 Int'l Conf. Foundations of Computer Science | FCS'13 |

Labeling for Vertices in Strict 2-Threshold Graphs

Wei-Da Hao

Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville

Kingsville, TX 78363, U.S.A.

Abstract - In this paper, we show a labeling scheme for a

class of graphs named Strict 2-Threshold that have threshold

dimension 2. The labeling scheme characterizes the structural

properties of neighborhood of each vertex. As a consequence,

 variation of a known recognition algorithm by

Rossella Petreschi and Andrea Sterbini published in 1995 is

presented, where n is the number of nodes, and m is the

number of edges in the graph.

Keywords: strict 2-threshold, recognition, labeling scheme

1 Introduction

 We consider finite undirected graphs with no loops or

multiple edges. Let be such a graph, where is

the set of vertex of G with magnitude and is the set

of edges of G with magnitude . Strict 2-threshold

(S2T
1
) graphs are a subset of 2-threshold graphs. A graph

 is called a 2-threshold graph, if it is edge-

coverable with two threshold graphs, and
 . An example of threshold graph is illustrated in

Figure 1-a. and are called the threshold components,

and constitute a threshold configuration of G. The threshold

dimension is defined to be the minimum number of threshold

sub-graphs to cover the edges. So, 2-threshold graphs are of

threshold dimension 1 or 2. The set of vertices that contains

the intersection of the vertex sets of and is , i.e.

 . The sub-graph induced by is called

connection graph, . Vertices of can be partitioned to
and , i.e. where

is a clique and
is a

stable set. Similarly, vertices of can be partitioned to
and , i.e. + where is a clique and

is a stable

set. The neighbors of in G are the union of neighbors

of in and neighbors of in , i.e.

().

 A graph G is called a S2T graph if it is a 2-threshold

graph, and exists at least one threshold configuration such

that every triangle of G is also a triangle in one of its

threshold components. Examples of S2T graphs are

illustrated in Figure 1-b and 1-c. Some properties and

characterization of S2T graphs can be found in [1, 3]. In [1]

an algorithm published in 1995 to recognize and decompose

strict 2-threshold graphs in time is presented. This

algorithm uses adjacency lists as data structure for input

graph, and its design is based on the neighbors of the

maximum-degree vertices. A time algorithm based on

1
 S2T is abbreviation for Strict 2-threshold graphs throughout

this article.

the conflict graph and related signed graph was known for

recognition of S2T graphs and published in 1988 [3]. A

 time CRCW parallel algorithm using

processor based on standard representation to recognize S2T

graphs was published in 1991 [4].

 In section 2, labeling scheme for S2T graphs is

addressed. In section 3, we show a variation in time of

the existing recognition algorithm of time complexity

 proposed in [1], as a result of the labeling scheme.

Section 4 contains summary of the works achieved in this

paper and future research.

2 Labeling for strict 2-threshold (S2T)

graphs

 In the proposed labeling scheme, the label for each

vertex is composed of two parts. The first part of the label is

assigned based on if it is in the connection graph. For vertex

not belonging to connection graph, NC is assigned to the first

part, otherwise C is assigned. The second part of the label

indicates the status of the vertex in the threshold

configuration. Based on whether the vertex belongs to a

clique or independent set in the threshold components, K, I,

I
2
, K

2
or IK are assigned as the second part of the label. Thus,

each vertex has one of the following labels: NC-K, NC-I, C-

I
2
, C- K

2
, and C-IK. Figure 1-b and 1-c illustrate the labeling

scheme. indicates the label of .

Lemma 1:

If is a S2T graph, and , then

() . And, if is C-I

2
, C-K

2
 or C-IK, then

 , where
 and

().

Proof: To prove

() by contradiction,

we assume

(). As a result,

 , which is against the definition of S2T graphs

that . So, the assumption is not correct, and thus

() is true.

 To prove by contradiction, we assume ,

where such that
 and

().

Under the assumption, exists in G with and

 , which is against the definition of S2T graphs that the

edges of triangle of G belong to the same threshold

component . So, the assumption is not correct, and thus it is

true that . Q.E.D.

Int'l Conf. Foundations of Computer Science | FCS'13 | 47

Figure 1 1-a Illustration of threshold graph. The clique is

composed of vertices 2, 3, 4 and 5. The independent set is

composed of vertices 1, 6 and 7; 1-b Illustration of labeling

for strict 2-threshold (S2T) graphs. Clique of is composed

of vertices 2, 3, 4 and 5. Independent set of is composed of

vertices 1, 6 and 8; Clique of is composed of vertices 7, 8,

9 and 10. Independent set of is composed of vertices 6 and

11; 1-c Illustration of labeling for strict 2-threshold (S2T)

graphs. Clique of is composed of vertices 2, 3, 4 and 6.

Independent set of is composed of vertices 1 and 5; Clique

of is composed of vertices 6, 7, 8 and 9. Independent set of

 is composed of vertices 5 and 10.

 With Lemma 1, the correctness of the following theorem

is straightforward. The proof is thus skipped.

Theorem 1 is a S2T graph, and .

Characterization of sub-graph , where :

1. If L(v) = NC-K, is a threshold graph.

2. If L(v) = NC-I, is a clique.

3. If L(v) = C-I
2
, is two independent cliques.

4. If L(v) = C-K
2
, is two independent threshold graphs.

5. If L(v) = C-IK, is two separated components, where

one is a clique and the other is a threshold graph.

3 O(n) variation in time of the existing

recognition algorithm

 Execution of the O (m) algorithm to recognize S2T graph

in [1] has two phases. The input to this algorithm is the graph

 represented by its adjacency list.

 In the first phase, a vertex of maximum degree, , and

its neighboring vertices are selected. Let

 . Then, S is derived as those

vertices in which have different degree in and G.

Finally, is derived as the vertices not belonging to and

belonging to S, i.e. . Sub-graph induced

by is
, and sub-graph induced by is

.

 Then, the algorithm tests if
 and

are threshold

graphs, and if S is an independent set. If any of the tests on

,

and S fails, second phase takes place. Otherwise, G

is a S2T graph with
 and

as its threshold components.

In recognition of threshold graphs, the authors of the paper in

[1] choose Orlin’s algorithm [6] of O(m) complexity.

 In the second phase, a maximum degree vertex, is

selected in . Then, repeat the steps in phase one

with replaced by to generate
,

and S.

Then, the algorithm tests if
 and

are threshold graphs,

and if S is an independent set. If any of the tests on
,

and S fail, G is not a S2T graph.

 In current paper, Chv tal and Hammer’s recognition

algorithm for threshold graphs [5] is selected to recognize

threshold graphs in phase 1, which is an implementation of

Theorem 2 in the following.

Theorem 2 [5]

Let be an undirected graph with degree

sequence . Define and
 . contains vertices of degree , where .
 . G is a threshold graph if and only if

the recursions below are satisfied: , where

 , and , where

 .

Lemma 2

Let be a graph with a universal vertex , and

 is induced by , where

 . Then, G is a threshold

graph if and only if is a threshold graph.

Proof: () If G is a threshold graph, its sub-graph is

also a threshold graph.

1-a

1-b

1-c

48 Int'l Conf. Foundations of Computer Science | FCS'13 |

() If is a threshold graph, its vertex set can be partitioned

to an independent set and a clique, i.e. .

From the definition of threshold graph, we know

 or

 ,

 for . (1)

Since is universal in G, it is still a universal vertex in .

So,

 for (2)

Let

 and . By (1), (2) and the

definition of , or

 , for . Thus, G is a threshold graph with

 and Q.E.D.

 Based on lemma 2, the algorithm implementation of

Theorem 2 is revised and listed in the following to recognize

thresholdness of
.

Algorithm 1 Recognize if
is a threshold graph

Input: Adjacency list of

Output: Yes.
 is a threshold graph. Or, no,

 is not a

threshold graph.

Begin

 1. Identify

 .
 2. Generate degree sequence:

)()()(
1deg_11deg_11deg_1 '21 VNkVNVN GdGdGd   

 3. Define 00 d and 1|| 1deg_11'  VNdk
.

 4. i= 0; j= ;

 6. WHILE ( 2/'ki )

 if |))(|)(()(
1deg_11deg_11deg_1 '1 VNikVNiVNi GBGdGd  

{
1NG is not a threshold graph. STOP.};

i = i+1;

 END WHILE

 7. WHILE  )12/'( kj

 if |))(|)(()(
1deg_11deg_11deg_1 '1 VNjkVNjVNj GBGdGd  

{
1NG is not a threshold graph. STOP.};

 j= j-1;

 END WHILE

 8.
1NG is a threshold graph.

End

Lemma 3

G is a S2T graph. Let the graph induced by
 , where , by , and its degree

sequence is .

Define and .

Then, when and

 ,
is a threshold graph.

Proof: Sub-graph induced by is two separate non-

empty components, and , according to 3, 4 and 5 of

Theorem 1. We first show the necessary condition for

 and

 are: or is a stable set. Let and

 be the set of vertex of and respectively.

Since ,

 is adjacent to every vertex of

and , and

the following are true:

1. .

2. .

3.

By moving to left hand side in 3 above, we

obtain

 (3)

When neither
nor is stable set, both and contain

 (clique of two vertices). This implies

 and (4)

When ,

 (5)

Using (4) and (5) in (3), we have the following derivation

1. If , then

 .

2. If , then

 .

 And it leads to the inference:

 [] ~[or is stable set.]

And, the contra-positive equivalence of the inference is

~[] [or is stable set.]

So, the necessary condition for

and

 is:

or is a

stable set.
 When both and are stable sets,

is a star graph,

which belongs to the class of threshold graphs. And, when

one of and is stable set and the other is not, according to

3, 4 and 5 of Theorem 1, the other is a clique or threshold

graph. In this situation,
is a threshold graph. Thus, we

have proved when
 and

 ,
is a threshold graph.

Q.E.D.

Int'l Conf. Foundations of Computer Science | FCS'13 | 49

Theorem 3

Let G be a S2T graph. The outcome of applying algorithm 1

is either the algorithm runs to the end (line 8), or the algorithm

stops in the first iteration of while loop.

Proof: Suppose , is a threshold configuration of G. Let

the degree sequence of be

, and the degree sequence of be

 . Based on lemma 3 in [1], each

maximum degree vertex, , in G is located in one of the

following locations: 1. is in . 2. is

in . 3. is in .

 In cases 1 and 2,
is an induced sub-graph of or ,

and thus is a threshold graph. According to lemma 2,

algorithm 1 will run to the end (line 8) and recognize
as a

threshold graph.

 In case 3, the label for is C-I
2
, C-K

2
 or C-IK.

According to 3, 4 and 5 of Theorem 1, is two

separate components, and . Let the degree sequence of

be

 ,

and
 contains vertex of degree

 for ,

where ,
 , |

 ,

 and
 .

 If
 , i.e.

 ,
 is the same

as
 Thus,

The algorithm will stop at the first iteration of the while loop

beginning at line 6, since the condition of if statement is true.

 If
 ,

 contains vertex of degree 1

in
. Algorithm 1 will delete

 from

and generate degree sequence

where ,
 and

 for .

1. When

 :

 In the first

iteration of the while loop on line 6, the condition of the if

statement “if

 ” is true, since

 | can be justified from

the facts that

 ,

and

 .

This indicates the recursion for threshold graph in Theorem 2

is not satisfied, the algorithm stops.

2. When

 :

This condition never exists.

3. When

 :

According to lemma 3,
is a threshold graph.

Algorithm 1 will run to the end (line 8) and claim
as a

threshold graph. Q.E.D.

 The variation on the S2T recognition algorithm

proposed in 1995 is stated in the following corollary.

Corollary

 In the first phase of the algorithm in [1], if the test of

thresholdness of the sub-graph induced by
 . is negative, the execution of second phase takes

place, which has time complexity . However, by using

algorithm listed in Figure 2, we know G is not a S2T graph, if

it stops not in the first iteration of the while loop. And thus

the execution of phase 2 is waived. As a consequence,

variation in time complexity is generated.

4 Conclusion

 We have presented vertex labeling scheme for the class

of perfect graphs known as strict 2-threshold (S2T) graphs.

The adjacent set of vertex in S2T graph has been shown to

have specific structure according to its assigned label. The

O(m) recognition algorithm for S2T graph in [1] can be

refined with the outcome enabled by the proposed labeling

scheme. As a consequence, many non-S2T graphs can be

identified as early as in phase 1, instead of proceeding to

phase 2, and thus variation in time is obtained.

Labeling scheme can extend its application further to other

algorithmic development for S2T graphs and other classes of

graphs coverable by threshold graphs.

5 References

[1] Rossella Petreschi, Andrea Sterbini, Recognizing strict 2-

threshold graphs in O(m) time, Information Processing Letters

54 (1995) 193 – 198.

[2] Frank Harry, Uri Peled, Hamiltonian Threshold Graphs,

Discrete Applied Mathematics 16 (1987) 11-15.

[3] N.V.R. Mahadev, U.N. Peled, Strict 2-threshold graphs,

Discrete Appl. Math. 21 (1988) 113-131.

[4] Lin Yu Tseng, W. D. Hao, An NC Algorithm for

Recognizing Strict 2-threshold Graphs, Int’l Conference on

Parallel Processing 3 (1991) 296-297.

[5] Martin Charles Golumbic, Algorithmic Graph Theory and

Perfect Graphs, Elsevier, 2004, Chapter 10 Threshold Graphs.

[6] James Orlin, The minimal integral separator of a threshold

graph, Annals of Discrete mathematics 1 (1977) 415-419.

[7] N.V.R. Mahadev, U.N. Peled, Threshold Graphs and

Related Topics, Annnals of Discrete Mathematics 56, North-

Holland, Amsterdam, 1995.

50 Int'l Conf. Foundations of Computer Science | FCS'13 |

Weak Convex Restrained Dominating Critical Graphs

P.J.A. Alphonse
1
 and T.N. Janakiraman

 2

1
 Department of Computer Applications, National Institute of Technology,

Tiruchirappalli, India.

2
 Department of Mathematics, National Institute of Technology,

Tiruchirappalli, India.

Abstract: - In a graph G = (V, E), a set D V is a weak

convex set if d<D>(u, v) = dG(u, v) for any two vertices u,

v in D. A weak convex set D is called as a weak convex

dominating (WCD) set if each vertex of V-D is adjacent

to at least one vertex in D. A weak convex dominating set

D is called weak convex restrained dominating (WCRD)

set if every vertex in V(G)-D is adjacent to a vertex in D

and another vertex in V(G)-D.

Consider a network contains transceivers that

are capable of broadcasting either a primary signal or an

auxiliary signal but not both and capable of receiving

both a primary signal and an auxiliary signal. Now the

problem under consideration is that finding a delay

preserving sub network that broadcasts the primary

signal such that the transceivers not broadcasting the

primary signal requires to receive the auxiliary signal.

Problem of finding such a sub network is equivalent to

finding a weak convex restrained dominating set in the

underlying graph of the network.

 In this paper we study the structure of the

network/sub network with respect to WCRD set and

addition of new links in the network.

Keywords: domination number, distance,

neighbourhood, weak convex set, weak convex

dominating set, weak convex restrained dominating set.

1. INTRODUCTION
Graphs discussed in this paper are undirected and

simple. Unless otherwise stated the graphs which we

consider are connected graphs only. For a graph G, let

V(G) and E(G) denote its vertex and edge set respectively

and p and q denote the cardinality of those sets

respectively. The degree of a vertex v in a graph G is

denoted by degG(v). The minimum and maximum degree

in a graph is denoted by and respectively. The length

of any shortest path between any two vertices u and v of a

connected graph G is called the distance between u and v

and is denoted by dG(u, v). The distance between two

vertices in different components of a disconnected graph

is defined to be . For a connected graph G, the

eccentricity eG(v) = max{dG(u, v): u V(G)}. If there is

no confusion, we simply use the notion deg(v), d(u, v)

and e(v) to denote degree, distance and eccentricity

respectively for the concerned graph. The minimum and

maximum eccentricities are the radius and diameter of G,

denoted r(G) and diam(G) respectively. When these two

are equal, the graph is called self-centered graph with

radius r, equivalently is r self-centered. A vertex u is said

to be an eccentric vertex of v in a graph G, if

d(u, v) = e(v). In general, u is called an eccentric vertex, if

it is an eccentric vertex of some vertex. For v V(G), the

neighbourhood NG(v) of v is the set of all vertices

adjacent to v in G. The set NG(v) = NG(v) {v} is called

the closed neighbourhood of v. A set S of edges in a

graph is said to be independent if no two of the edges in S

are adjacent. An edge e = (u, v) is a dominating edge in a

graph G if every vertex of G is adjacent to at least one of

u and v.

The concept of domination in graphs was introduced

by Ore. A set D V(G) is called dominating set of G if

every vertex in V(G)-D is adjacent to some vertex in D.

D is said to be a minimal dominating set if D-{v} is not a

dominating set for any v D. The domination number

(G) of G is the minimum cardinality of a dominating

set. We call a set of vertices a -set if it is a dominating

set with cardinality (G). Different types of dominating

sets have been studied by imposing conditions on the

dominating sets. A dominating set D is called connected

(independent) dominating set if the induced subgraph

<D> is connected (independent). D is called a total

dominating set if every vertex in V(G) is adjacent to

some vertex in D.

A cycle of D of a graph G is called a dominating

cycle of G, if every vertex in V – D is adjacent to some

vertex in D. A dominating set D of a graph G is called a

clique dominating set of G if <D> is complete. A set D is

called an efficient dominating set of G if every vertex in

V – D is adjacent to exactly one vertex in D. A set D V

is called a global dominating set if D is a dominating set

in G and G . A set D is called a restrained dominating

set if every vertex in V(G)-D is adjacent to a vertex in D

and another vertex in V(G)-D. A set D is a weak convex

dominating set if each vertex of V-D is adjacent to at

least one vertex in D and d<D>(u,v) = dG(u,v) for any two

vertices u, v in D. By
c

,
i
,

t
,

o
,

k
,

e
,

g
,

r
 and

wc
, we mean the minimum cardinality of a connected

dominating set, independent dominating set, total

Int'l Conf. Foundations of Computer Science | FCS'13 | 51

dominating set, cycle dominating set, clique dominating

set, efficient dominating set, global dominating set,

restrained dominating set and weak convex dominating

set respectively.

Consider a network contains transceivers that are

capable of broadcasting either a primary signal or an

auxiliary signal but not both and capable of receiving

both a primary signal and an auxiliary signal. Now the

problem under consideration is that finding a delay

preserving sub network that broadcasts the primary signal

such that the transceivers not broadcasting the primary

signal requires to receive the auxiliary signal. Problem of

finding such a sub network is equivalent to finding a

weak convex restrained dominating set in the underlying

graph of the network. This problem is introduced and

well addressed in [1], [4] and [5].

In this paper we study the change in the behaviour of

weak convex restrained domination number with respect

to addition of new edges in the respective graph. In this

paper we define a graph called k – Weak Convex

Restrained Domination critical graph and study the

properties possessed by the graph with respect to k = 2

and 3. Also we studied several interesting properties with

respect to the diameter and radius of the graph.

2. MAIN RESULTS

Definition 1 :[4]
 A dominating set D with d<D>(u, v) = dG(u, v) for

any two vertices u, v in D is called as a Weak Convex

Dominating (W.C.D) set.

Definition 2 :[5]
 A weak convex dominating set D is called Weak

Convex Restrained Dominating set (WCRD) if every

vertex in V(G)-D is adjacent to a vertex in D and another

vertex in V(G)-D.

The cardinality of the minimum weak convex

restrained dominating set is called Weak Convex

restrained domination number and is denoted by rc(G).

Definition 3:
 A graph G is said to be a k-Weak Convex

Restrained Dominating(k-WCRD) critical graph if

rc(G + e) < rc(G) and rc(G) = k, for any edge e E(G).

Proposition 1:
 A graph G is 1-W.C.R.D critical G = Kp.

Proposition 2:
G is 2- W.C.R.D critical the following hold good;

(i) G is 2-domination; and

(ii) For any two non-adjacent vertices one

of them is of degree (n-2).

Proposition 3:
 In a 2- W.C.R.D critical graph there cannot be

two vertices of degree less than or equal to n-3.

Proof:

 If there exist, two vertices u and v of degree less

than or equal to n-3. Join u and v. Then G + uv must have

a dominating set, which is either {u} or {v}. But both u

and v are of degree less than or equal to n-2 in G + uv,

which is a contradiction. Hence there exists only one

vertex of degree less than or equal to n-3.

Theorem 1:
 Let G be any 2-W.C.R.D critical graph on n

vertices. Then G must be any one of the following graph:

(1) (n-2)-regular graph

(2) a bi-regular graph with degree sequence

(k, n-2), 2 k n-3.

(3) A tri-regular graph with degree sequence

(1, n-2, n-1).

Proof:

 Let G be a 2- W.C.R.D critical graph on n

vertices. Let u be a vertex of G.

Case 1: If deg(u) = 1.

 Since G is 2-dominating, the set {u, v} will form

a dominating set, where v is the support of u. This

implies that v must be adjacent to all the vertices and

hence deg(v) = n-1. Also all the vertices except u will

form a clique. If any two vertices x and y other than u are

not adjacent, then the graph G + xy is still going to have

{u, v} as the only dominating set, which is a

contradiction to G is critical. Hence degree of the vertices

other than u and v will be n-2. Hence G is a tri-regular

graph with degree sequence (1, n-2, n-1). In this case the

number of edges in G is
2

211
2

)n()n(

=
2

43
2

nn
.

Case 2: Let deg(u) = k, 2 k n-3.

 From proposition 3, there be no other vertex

other than u which is of degree less than or equal to n-3.

Since G is 2-domination, there cannot be a vertex of

degree n-1. Hence all the vertices except u are of degree

n-2. Thus G is bi-regular graph with degree sequence

(k, n-2), where 2 k n-3. In this case

2

2)kn(k)n(k

.

Case 3: If deg(u) n-2, for all u V(G).

52 Int'l Conf. Foundations of Computer Science | FCS'13 |

Clearly as G is 2-dominating graph there cannot

be any vertex of degree n-1. Hence G is (n-2)-regular

graph.

Proposition 4:
 Any 2-W.C.R.D critical graph has diameter

equal to two.

Proof:

 Let u and v be any two non-adjacent vertices of

G. Then G+uv has either {u} or {v} as a W.C.R.D set.

Without loss of generality assume that {u} form a

W.C.R.D set. This implies that {u} is adjacent with the

neighbours of v, that is d(u, v) = 2 . Hence the diameter

of any 2-critical graph is equal to two.

Theorem 2:
Any 2-W.C.R.D critical graph with 2, is a

block.

Proof:

 Let u be a cut vertex of a 2-critical graph G.

Then in G-u, at least in one component there exist a

vertex which is of distance 2 from u(otherwise G is

dominated by u itself). Then that vertex and any vertex in

some other component must be at distance at least three

in G, which is a contradiction to the proposition 4. Hence

G is a block. Clearly in this case, G is self-centered with

diameter 2.

Corollary 1:
There exists no graph G for which both G and

G are 2- W.C.R.D critical.

Proof:

 Proof follows from Proposition 2 and

Theorem 2.

Theorem 3:
 The diameter of a 3- W.C.R.D critical graph is at

most 3.

Proof:

 Let G be a 3- W.C.R.D critical graph.

Case 1: If G has two pendant vertices u and v.

Then u and v have a common neighbour w(since

rc(G) = 3). This implies that {u, v, w} be the only

minimum W.C.R.D set.

 all the vertices other than u and v are also

adjacent with w(to maintain the domination).

 d(x, y) = 2, for any x, y V(G)

 diameter = 2.

Case 2: Suppose G has only one pendant vertex u with a

support v.

Claim 1: Any two vertices other than u and v are

adjacent.

 If x and y are any two non-adjacent vertices of

G, then joining of x and y by an edge will not reduce the

domination number. That is, still rc(G+xy) = 3 with

dominating set containing u, v and either x or y.

Therefore, any two vertices other than u and v must be

adjacent.

Claim 2: There cannot be more than one vertex,

which is not adjacent with v.

 If there exist two vertices x and y, which are not

adjacent with v, then still rc(G+xv) = 3 (That is, to

dominate G+xy, we require u, v and some vertex to

dominate y). Hence the claim 2.

 Thus from claim 1 and claim 2, we get for any

x, y V(G), d(x, y) 3.

Hence the diameter of G is at most 3.

Case 2: Suppose G has no pendant vertex.

Let x and y be any two non-adjacent vertices.

Now G+xy has a two dominating set with one vertex as x

or y. Without loss of generality let {x, z} form a two

dominating set for G+xy. If x dominates some vertex in

N1(y), then we get d(x, y) = 2 in G. If not, then z must

dominate all of N1(y) in G+xy, and hence in G also. This

implies that d(x,y) 3.

Hence the diameter of G is less than or equal to 3.

Theorem 4:
 Any cut vertex of a 3- W.C.R.D critical graph is

adjacent with a vertex of degree 1.

Proof:

 Let u be a cut vertex of a 3- W.C.R.D critical

graph G. Suppose u is not adjacent with any pendant

vertex. Let C1,C2,…,Cn be the components of G-u with

|Ci| 2.

Claim 1: There cannot be two vertices vi and vj

from two different Ci and Cj respectively such that

d(u, vi) and d(u, vj) 2.

 Suppose there exist two vi and vj from Ci and Cj

respectively with d(u, vi) and d(u, vj) greater than or

equal to 2 in G. Then d(vi, vj) 4 in G. This is a

contradiction to the fact that diameter of G is less than or

equal to 3 for a 3- W.C.R.D critical graph.

Hence we have, if there exists a vertex v in a component,

say C1 which is at distance 2 from u in G, then all the

vertices of the other components C2,C3,…,Cn must be

adjacent to u.

Claim 2: Each of the components C2,…,Cn

forms a clique individually.

 Suppose any of the component Ci(i=2 to n) has

two non-adjacent vertices, then the join of those vertices

will not reduce the W.C.R.D number (since they are not

pendant vertices of G) and hence the claim 2.

Claim 3: n = 2.

 Suppose n 3, then joining of any two vertices

of C2 and C3 will not affect the domination number of G

as they do not have any pendant vertex of G. Hence,

Int'l Conf. Foundations of Computer Science | FCS'13 | 53

n < 3 and u is a cut vertex implies n = 2. Thus G-u has

two components such that diam(C1) = 2 and

diam(C2) = 1.

Claim 4: |C2| = 1.

 Suppose |C2| 2. Let v and w be two vertices in

C2. Join any x in C1 and v in C2.

Subclaim: {x, y / y u} cannot be a 2-dominating set of

G+xv.

 Clearly, for any y in C1, xy is not a dominating

edge of G+xv, since the edge xy cannot dominate w in

C2. If y is in C2 so that xy dominates G+xv, then the edge

xu will become a dominating set for G, which is a

contradiction to rc(G) = 3.

Therefore, sub claim implies that xu is the only

dominating edge of G+xv. This also not admissible as

early we discussed. Hence |C2| = 1. Thus, we have proved

that G-u has two components in which one is trivial.

Hence u is adjacent to a pendant vertex.

Theorem 5:
 Any 3- W.C.R.D critical graphs has at most one

cut vertex.

Proof:

 This is trivial (since if it has two cut vertices

then the contradiction follows directly from the previous

Theorem 4 and the logic that W.C.R.D set contains all the

pendant vertices).

Corollary 2:
 If G is a 3- W.C.R.D critical graph with 2,

then G is a block.

Theorem 6:
 Let u be a cut vertex of a 3- W.C.R.D critical

graph G, then |N2(u)| 1.

Proof: Let u be a cut point of a 3- W.C.R.D critical

graph G. Let us suppose u is adjacent to exactly one

pendant vertex v. If |N2(u)| 2 and x, y N2(u), then it is

clear that any W.C.R.D set of G must contain {u, v, w},

where w is a vertex from N1(u). If we join u and x then

clearly {u, v} can be the only dominating edge for G+ux.

But it cannot dominate y. Which is a contradiction to G is

3- W.C.R.D critical. Hence |N2(u)| 1.

Theorem 7:
 Let G be a 3- W.C.R.D critical graph with

exactly one pendant vertex v, then |N3(v)| = 1.

Proof:

 From the previous Theorem 6, we have

|N3(v)| 1. Clearly N3(v) is non-empty. If not, that is if

N2(u) is empty, where u is the support of v. This implies

that uv will dominate the entire graph G. This is a

contradiction to the assumption that G is 3- W.C.R.D

critical. Hence |N3(v)|=1.

Theorem 8:
 Let G be a 3- W.C.R.D critical graph with two

pendant vertices x and y then N3(x) N3(y) = .

Proof:

 Let G be a 3- W.C.R.D critical graph with two

pendant vertices, say x and y. Let u be the support of both

x and y. Then {u, x, y} will be the only W.C.R.

dominating set of G. This implies that u is adjacent to all

the remaining vertices. Thus, N2(u) = . Hence

N3(x) N3(y) = .

Theorem 9:
 Let G be a 3- W.C.R.D critical graph with

exactly one pendant vertex, then q = 1
2

1p

.

Proof:

 Let u be a support of a pendant vertex v in G.

Therefore, from Theorem 7, |N3(v)| =1.

Claim : <N1(u) N2(u) – {v}> is a clique.

 Let x and y be any two non-adjacent vertices of

<N1(u) N2(u) – {v} >. If we join x and y, then G+xy is

dominated only by a 3-dominating set. This is a

contradiction to the critical property of G. Therefore, x

and y must be adjacent. Hence <N1(u) N2(u) – {v}>

is a clique. Hence the claim.

Also u is adjacent to (p-2) number of vertices.

Hence from the claim we have

q = 12
2

2
)p(

p

 = 12
2

32
)p(

)p)(p(

 = 1
2

232)p)(p(

 = 1
2

21)p)(p(

 = 1
2

1p

Theorem 10:
 Let G be a 3- W.C.R.D critical graph with two

pendant vertices, then q = 2
2

2p

.

54 Int'l Conf. Foundations of Computer Science | FCS'13 |

Proof:

 Let u be a support of the two pendant vertices x

and y.

Claim : G-{x, y} will form a clique.

 Let v, w be any two non-adjacent vertices of

G-{x, y}. If we join v and w, then still G+vw will have

the minimum W.C.R.D set {u, x, y} only, which is a

contradiction to the criticality of G. Therefore, v and w

are adjacent. As v and w are arbitrary, G-{x, y} will form

a clique and hence q = 2
2

2p

.

References:

[1] Alphonse P.J.A. (2002). On Distance,

Domination and Related Concepts in Graphs

and their Applications. Doctoral Dissertation,

Bharathidasan University, Tamilnadu, India.

[2] Cockayne, E.J., and S.T. Hedetniemi, Optimal

Domination in Graphs,. IEEE Trans. On

Circuits and Systems, CAS-22(11)(1973), 855-

857.

[3] Cockayne, E.J., and S.T. Hedetniemi. Towards a

theory of domination in graphs. Networks,

7:247-261, 1977.

[4] Janakiraman, T.N., and Alphonse, P.J.A.,, Weak

Convex Domination in Graphs, International

Journal of Engineering Science, Advanced

Computing and Bio-Technology., Vol.1, No.1,

1-13, 2010,.

[5] Janakiraman, T.N., and Alphonse, P.J.A.,, Weak

Convex Restrained Domination in Graphs,

International Journal of Engineering Science,

Advanced Computing and Bio-Technology.,

Vol.2, No.1, 01-10, 2011,.

[6] Janakiraman, T.N., (1991). On some eccentricity

properties of the graphs. Thesis, Madras

University, Tamilnadu, India.

[7] Mulder, H.M., (1980). Interval function of a

graph. Thesis, Verije University, Amsterdam.

[8] Teresa W. Haynes, Stephen T. Hedetniemi,

Peter J. Slater: Fundamentals of domination in

graphs. Marcel Dekker, New York 1998.

[9] O. Ore: Theory of Graphs, Amer. Soc. Colloq.

Publ. vol. 38. Amer. Math. Soc., Providence, RI

1962.

Int'l Conf. Foundations of Computer Science | FCS'13 | 55

56 Int'l Conf. Foundations of Computer Science | FCS'13 |

SESSION

FORMAL VERIFICATION + AUTOMATA

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'13 | 57

58 Int'l Conf. Foundations of Computer Science | FCS'13 |

Formalization Description of Huffman Coding Trees Using Mizar

Takaya Ido1, Hiroyuki Okazaki 1, and Yasunari Shidama1
1Shinshu University, 4-17-1 Wakasato Nagano-city, Nagano 380-8553, Japan

Abstract— Mizar is a type of system known as a "proof
checker," which automatically inspects the validity of formal
mathematical proofs. Mizar, designed for computational de-
scriptions of mathematics, was developed by Professor A.
Trybulec et al. at the University of Bialystok, in Poland
[1]. Various theorems can be formulated using the Mizar
programming language, and their validity is automatically
checked by Mizar’s proof checker. The Mizar system contains
a library known as the Mizar Mathematical Library, a
repository of many formally described theorems and def-
initions whose validity has been already inspected, from
which various applications can be sourced. In this report, we
examine the future direction of formal definitions of source
coding using Mizar, and as a specific example, we report on
the formal description of Huffman coding [2].

Keywords: Formal Verification, Mizar, Huffman trees

1. Formalization of tree structures
The so-called tree_* series in the Mizar Mathematical

library (code abridged), known as a tree structure in Mizar,
is expressed as a set of finite sequences of natural numbers.
For example the set of finite sequences

{{}, < ∗0∗ >,< ∗1∗ >,< ∗1, 0∗ >,< ∗1, 1∗ >} (1)

represents the tree shown in Figure 1. The top (or root) of

10

1
0

Fig. 1: Tree

the tree is represented by "," and a number is assigned to
each branch. The terminating leaves and intermediate nodes

are represented by the number sequence of their preceding
branches

<*0*>,<*1*>,<*1,0*>,<*1,1*> (2)

In general, a tree is a set X of finite sequences of natural
numbers that satisfy conditions (1) and (2) mentioned below.

1.1 Conditions of a tree
Consider a finite sequence of natural numbers belonging

to set X, of arbitrary length m,

q =< ∗q1,q2, · · · qm∗ > (3)

Condition 1: For an arbitrary natural number n, where n≤
m, the subsequence

p =< ∗q1,q2, · · · qn∗ > (4)

including the elements from the leading element of q to the
nth element also belongs to set X. Condition 2: If a finite
sequence of length m + 1, obtained by adding 1 to the end
of q,

q^ < ∗l∗ >=< ∗q1,q2, · · · qm, l∗ > (5)

belongs to set X, the finite sequence of length m + 1 obtained
by adding an arbitrary natural number k (where k≤ 1),

q^ < ∗k∗ >=< ∗q1,q2, · · · qm, k∗ > (6)

also belongs to set X. The above-mentioned conditions
(1) and (2) can be formalized as follows. The predicate
specifying whether p is the leading element to the nth
element (n≤ m) extracted from the finite sequence q is

notation
let p,q be FinSequence;
synonym p is_a_prefix_of q for p c= q;

end;

definition
let p,q be FinSequence;
redefine pred p is_a_prefix_of q means

:: TREES_1:def 1
ex n st p = q|Seg n;

end;

Here, Seg n is the set of natural numbers N≠ 0 and N≤
n .

definition
let n be Nat;
func Seg n -> set equals

Int'l Conf. Foundations of Computer Science | FCS'13 | 59

:: FINSEQ_1:def 1
{ k where k is Nat: 1 <= k & k <= n };

end;

A proper subsequence is defined by

notation
let p,q be FinSequence;
synonym p is_a_proper_prefix_of

q for p c < q;
end;

The set of this proper subsequence is defined by

definition
let p be FinSequence;
func ProperPrefixes p -> set means

:: TREES_1:def 2
for x being element holds
x in it iff ex q being FinSequence
st x = q & q is_a_proper_prefix_of p;

end;

In terms of the above definitions, conditions (1) and (2) are
expressed as attributes (attr) of set X and also as a variable
type definition as follows:

definition
let X;
attr X is Tree-like means

:: TREES_1:def 3
X c= NAT* & (for p st p in
X holds ProperPrefixes p c= X) &
for p,k,n st p^< * k* >
in X & n <= k holds
p^< * n* > in X;

end;
definition

mode Tree is Tree-like non empty set;
end;

In the tree shown in Figure 1, "" corresponds to the top of
the tree. The nodes descending left and right from the top
are denoted as "< *1* > " and " < *0* > ," respectively.
Continuing this pattern, the nodes descending left and right
from the preceding right node on the right are denoted as
"< *1, 0* >" and "< *1, 1* >," respectively.

2. Root nodes and empty sequences
An empty finite sequence expressed as "" or "<* >" NAT

represents the root node at the top of the tree structure. By
definition, this node constitutes an element of the tree and
is formalized in the following proposition.

reserve T,T1 for Tree;
theorem :: TREES_1:22

{} in T & < * > NAT in T;

Furthermore, an empty set of finite sequences also satisfies
the conditions of a tree.

theorem :: TREES_1:23
{ {} } is Tree;

2.1 Sum and intersection of two trees
Because the sets of two trees comprise finite sequences

of natural numbers, their intersection and sum also comprise
finite sequences of natural numbers; thus, both operations
generate trees. A formalized description of this statement is

reserve T,T1 for Tree;
registration

let T,T1;
cluster T \/ T1
-> Tree-like;
cluster T /\ T1
-> Tree-like non empty;

end;
theorem :: TREES_1:24

T \/ T1 is Tree;
theorem :: TREES_1:25

T /\ T1 is Tree;

2.2 Finite trees
If tree T comprises a finite set of sequences, then it is said

to be finite. The sum and intersection of two finite trees are
also finite.

reserve fT,fT1 for finite Tree;
theorem :: TREES_1:26

fT \/ fT1 is finite Tree;
theorem :: TREES_1:27

fT /\ T is finite Tree;

2.3 Elementary trees
For an arbitrary natural number n, the set< *k* >, which

consists of natural numbers k, where k< n, is called the
elementary tree of n.

definition
let n;
func elementary_tree n -> Tree equals

:: TREES_1:def 4
{ < * k* > : k < n } \/ { {} };

end;

The elementary tree is a finite tree.

registration
let n;
cluster elementary_tree n -> finite;

end;

Also, given that< *k* >, where k < n, is an element
of elementary_tree n, the following proposition can be
established:

60 Int'l Conf. Foundations of Computer Science | FCS'13 |

theorem :: TREES_1:28
k < n implies < * k* >
in elementary_tree n;

theorem :: TREES_1:29
elementary_tree 0 = { {} };

theorem :: TREES_1:30
p in elementary_tree n implies p =

{} or ex k st k < n & p = < * k* >;

2.4 Leaf nodes
Because the leaf nodes lie at the bottom level of the tree

structure, they possess no child nodes. If the finite sequence
p is a leaf node of tree T, then the finite sequence q-an
element of T-can never contain p as a proper subsequence.
The formal definition is

definition
let T;
func Leaves T -> Subset of T means

:: TREES_1:def 5
p in it iff p in T & not ex q st q in

T & p is_a_proper_prefix_of q;
end;

For the tree shown in Figure 1,

{{}, < ∗0∗ >,< ∗1∗ >,< ∗1, 0∗ >,< ∗1, 1∗ >} (7)

the leaves are

{< ∗1, 0∗ >,< ∗1, 1∗ >} (8)

The set of all leaf nodes is defined as a variable, as shown
below.

definition
let T;
assume

Leaves T <> {};
mode Leaf of T -> Element of T means

:: TREES_1:def 7
it in Leaves T;

end;

2.5 Subtrees
If T is a tree and a finite sequence p is an element of T,

then a finite sequence q may be connected to the end of p
to create the finite sequence pq̂. Note that p̂q (expressed as
T|p) is also an element of T, and q is also a tree.

definition
let T;
let p such that

p in T;
func T|p -> Tree means

:: TREES_1:def 6 ::
q in it iff p^q in T;

end;

For the tree shown in Figure 1,

T = {{}, < ∗0∗ >,< ∗1∗ >,< ∗1, 0∗ >,< ∗1, 1∗ >} (9)

if p = < *1* >, then,

p^{} = < ∗1∗ >

p^ < ∗0∗ > = < ∗1, 0∗ >

p^ < ∗1∗ > = < ∗1, 1∗ > (10)

so,
T|p = {{}, < ∗0∗ >,< ∗1∗ >}. (11)

Therefore, T|p is a subtree of T as shown in Figure 2.
From the above analysis, a subtree can be defined using

10

1
0

10

T

T|p

p=<*1*>

Fig. 2: Subtrees

the following variable type:

definition
let T;
mode Subtree of T -> Tree means

:: TREES_1:def 8
ex p being Element of T st it = T|p;

end;

3. Huffman trees
Huffman coding is a type of entropy encoding from which

an optimum code may always be constructed. A binary
Huffman tree is based on the frequency of information
symbols. The leaves of this tree correspond to information
symbols, and the binary sequences denoting the paths from
root to leaves are the code language. Here we outline a
Huffman tree construction method.

Int'l Conf. Foundations of Computer Science | FCS'13 | 61

3.1 Construction method for a Huffman tree
Step 1 : Every information symbol corresponds to a tree

with a single node; the value of the node is the
appearance frequency of the symbol. This step
generates a set of trees in which all information
symbols are either a root or leaf.

Step 2 : From the set of trees, select two nodes n1 and
n2 with roots of least value. If multiple roots have
the second lowest value, an arbitrary selection is
made.

Step 3 : A new node n′with its value equal to the sum
of the values of nodes n1 and n2 is created. The
resulting binary tree n" comprises a parent node n’
and child nodes n1 and n2.

Step 4 : Add n" to the set of trees.
Step 5 : If more than one tree exists, return to Step 2.
Step 6 : From each node of the constructed Huffman

tree, the left and right branch is assigned 0 or
1 (hence, the path from root to leaf is described
symbolically); whether the left or right branch is
assigned 0 or 1 is arbitrary.

The arbitrariness of selection in Steps 2 and 6 means that,
given the same information source, the Huffman tree is not
uniquely constructed.

3.2 Formalization description of the Huffman
tree structure

Source encoding is a mapping from the information source
to the code space. In Mizar, mapping can be defined in two
ways; using either a functor (func) or function (Function).
The former is reserved in Mizar as a definition of a "term."
Because Mizar is based on set theory, all terms are treated
as "sets" and are referred to as functors. On the other hand,
functions can also be treated as a set, with a family of
functions constituting a new data type, "mode." As stated
in Section 3.1 , the construction method for Huffman trees
is not uniquely determined. Thus, in this report, a family
of Huffman trees is defined as a "mode" of functions. The
encoder is similarly defined in terms of functions or families
of functions. Furthermore (although this is outside the scope
of the present report), we consider that larger classes of
code, such as entropy encoding and compact code, can be
formalized in a manner similar to the Huffman code in
Mizar.

In this section, a formal description of the construction
method outlined in Section 2.1 is presented. We consider a
binary tree with values (binary DecoratedTree) described in
Section 1. A Huffman tree is defined as a binary tree i.e., a
finite set of binary sequences, with the binary tree function
as its domain and the direct products of sources and their
occurrence probabilities as its range. Because a binary tree
is a code space, the function is a decoder, and a one-to-one
mapping exists between them. Therefore, the definition for

encoding should be derivable from the binary tree definition.
First, we define the predicate that must be satisfied by the
Huffman tree construction method.

definition
let SOURCE be non empty finite set;
let p be Probability of

(Trivial-SigmaField SOURCE);
let Tseq be FinSequence

f BoolBinFinTrees ExtSOURCE ;
let q being FinSequence of NAT;
pred Tseq,q,SOURCE,
p is_constructingHuffman

means
:: HUFFMAN:def 12
Tseq.1 = Initial-Trees(SOURCE,p)

& len Tseq = card (SOURCE)
& (for i be Nat st 1<= i
& i < len Tseq

holds
ex X,Y be non empty finite

Subset of BinFinTrees
ExtSOURCE

st
ex s,t,v be finite binary

DecoratedTree of ExtSOURCE
st
Tseq.i = X
& s is_MinValueTree_of X
& Y = X \ {s}
& t is_MinValueTree_of Y
& v in

{MakeTree (t,s,MaxVl(X) + 1),
MakeTree (s,t,MaxVl(X) + 1) }

& Tseq.(i+1) = (X \ {t,s}) \/ {v})
& (ex T be finite binary
DecoratedTree of ExtSOURCE

st { T } = Tseq.(len Tseq))
& dom q = Seg card (SOURCE)
& (for k be Nat st k

in Seg card (SOURCE)
holds q.k = card(Tseq.k)
& q.k <> 0)

& (for k be Nat holds
(k < card (SOURCE) implies

q.(k+1) = q.1 - k))
& (for k be Nat

st 1<=k & k < card (SOURCE)
holds 2 <= q.k);

end;
definition
let SOURCE be non empty finite set;
let p be Probability of

(Trivial-SigmaField SOURCE);

62 Int'l Conf. Foundations of Computer Science | FCS'13 |

let T be finite binary
DecoratedTree of ExtSOURCE ;

pred T,p,SOURCE is_HuffmanCode-Like
means

:: HUFFMAN:def 13
ex Tseq be FinSequence

of BoolBinFinTrees ExtSOURCE,
q being FinSequence of NAT

st Tseq,q,SOURCE,
p is_constructingHuffman

& {T} = Tseq.((len Tseq)) ;
end;

The following is an explanatory outline. In HUFFMAN:def
12 from above,

1) Step 1 is the processing step. In the initial set of trees,
all information symbols correspond to trees with a
single node, and the node values are the frequencies
of the information symbols. Steps 2 to 4 are iterative
steps. Two trees are selected from the set of trees
in an intermediate process and combined into a new
tree. The selected trees are then removed, and the
new tree is added to the tree set. This serial process
is represented formally by introducing the finite se-
quence of the set of binary trees (Tseq) with values in
ExtSOURCE.

2) For the set of given information sources SOURCE and
its appearance probability distribution p, the following
proposition guarantees that Tseq (the finite sequence
of the set of binary trees) exists.
theorem :: HUFFMAN:3
for SOURCE be non empty finite set,

p be Probability of
(Trivial-SigmaField SOURCE)
st 2 <= card (SOURCE)

holds
ex Tseq be FinSequence

of BoolBinFinTrees ExtSOURCE,
q being FinSequence of NAT

st
Tseq,q,SOURCE,
p is_constructingHuffman;

3) ExtSOURCE is the set of all pairings between the
numbers (natural numbers) attached to the nodes of the
sequentially generated Huffman trees and their appear-
ance probabilities (real numbers) given by probability
p.
definition
func ExtSOURCE -> non empty set

equals
:: HUFFMAN:def 2

[:NAT,REAL:] ;
end;

By formalizing a Huffman tree as a binary tree with a

value in ExtSOURCE, a unique pairing of number and
appearance probability can be mapped to each node.

4) The initial tree set is the initial value of Tseq, (Tseq.1),
defined as Initial-Trees(SOURCE,p). The iterations
proceed through Tseq.i to process the ith set of
trees. The final iteration of Tseq is expressed as
Tseq.(lenTseq) (determined by the length lenTseq of
Tseq). Tseq.(lenTseq) comprises a single Huffman tree
expressed as

{T} = Tseq.((len Tseq)) ;

5) The set of initial trees Initial-Trees(SOURCE,p) is a
set of trees each with a single node, in which appear-
ance probability p.x, given by the information number
x and its probability, is mapped to an elementary tree
elementarytree0 = (as described in Section 1),

elementary tree0 - -> [(canFSSOURCE)."x,p.x] and
is defined as follows:

definition
let SOURCE be non empty finite set;
let p be Probability

of (Trivial-SigmaField SOURCE);
func Initial-Trees(SOURCE,p)
-> non empty finite Subset of

BinFinTrees ExtSOURCE
equals
:: HUFFMAN:def 5
{T where T is Element of

FinTrees ExtSOURCE :
T is finite binary

DecoratedTree of ExtSOURCE
& ex x be Element of SOURCE st

T = elementary_tree 0 -->
[(canFS SOURCE)".x , p.{x}]} ;

end;

Here,(canFS SOURCE)" is a mapping that uniquely
corresponds natural numbers to elements x from the

set of information sources SOURCE.
Among the set of trees in the ith iteration of Tseq.i,

the two trees rooted by the lowest appearance
probability (the second coordinate of their attached
value) are selected (according to the predicate "is

MinValueTree of"). The formal procedure by which s
and t are removed from Tseq.1 and the synthesized

tree is added to construct Tseq.(i + 1) is shown
below. This formulation includes Step 3.

Tseq.i = X
& s is_MinValueTree_of X
& Y = X \ {s}
& t is_MinValueTree_of Y
& v in {MakeTree (t,s,MaxVl(X) + 1),

MakeTree (s,t,MaxVl(X) + 1) }
& Tseq.(i+1) = (X \ {t,s}) \/ {v})

The action of fetching the first and second

Int'l Conf. Foundations of Computer Science | FCS'13 | 63

coordinatesof the value corresponding to the binary
tree, which has a value in ExtSOURCE, is described

below.

definition
let p be DecoratedTree of ExtSOURCE;
func Vrootr p -> Real

equals
:: HUFFMAN:def 6

(p.{}) ‘2 ;
end;

definition
let p be DecoratedTree of ExtSOURCE;
func Vrootl p -> Nat

equals
:: HUFFMAN:def 7

(p.{}) ‘1 ;
end;

The predicate "is MinValueTree of" is hence
formalized as

definition
let X be non empty finite Subset of

BinFinTrees ExtSOURCE;
let p be finite binary

DecoratedTree of ExtSOURCE ;
pred p is_MinValueTree_of X
means
:: HUFFMAN:def 10
p in X & for q be finite binary

DecoratedTree of ExtSOURCE
st
q in X holds (Vrootr p) <= Vrootr q;
end;

and MakeTree is defined as follows.

definition
let p,q be finite binary

DecoratedTree of ExtSOURCE;
let k be Nat;
func MakeTree (p,q,k)

-> finite binary
DecoratedTree of ExtSOURCE

equals
:: HUFFMAN:def 9

[k,(Vrootr p) +(Vrootr q)]
-tree (p,q);

end;

MakeTree (t, s, MaxVl(X) + 1) generates a new tree
from s and t, as described in Section 1. The

maximum value MaxVI(X) of all numbers attached
to the roots of the trees belonging to X = Tseq.i is

increased by 1 and paired with the sum of appearance
probabilities of the roots of s and t. This pairing then
corresponds to the root of the newly synthesized tree.

Maximum value MaxVl is formalized as shown
below. The second coordinate of the value

corresponding to the root of tree p, belonging to the
set T of binary trees with values in ExtSOURCE, is

defined as

definition
let T be finite binary

DecoratedTree of ExtSOURCE;
let p be Element of (dom T) ;
func Vtree (T,p) -> Real

equals
:: HUFFMAN:def 8

(T.p) ‘2 ;
end;

by which the number assigned to the root of the tree
in X = Tseq.i is fetched.

Next, we describe how the largest of these numbers
is fetched.

definition
let X be non empty finite Subset of

BinFinTrees ExtSOURCE;
func MaxVl(X) -> Nat

means
:: HUFFMAN:def 11

ex L be non empty
finite Subset of NAT
st L = {Vrootl p where p
is Element of
BinFinTrees ExtSOURCE: p in X }
& it = max L ;

end;

The processing of Step 6 can be encompassed in a
definition that clearly expresses (including the

existence of the mapping itself) the mapping that
corresponds each node of the processed Huffman tree

to a finite sequence of 0,1.

definition
let SOURCE be non empty finite set;
let p be Probability of

(Trivial-SigmaField SOURCE);
mode entropyCode-encoder of SOURCE,p

-> Function of SOURCE, BOOLEAN *
means

:: HUFFMAN:def 19
it is one-to-one
& ex T be finite binary

DecoratedTree of ExtSOURCE
st

sT,p,SOURCE is_HuffmanCode-Like
& rng it = Leaves (dom T)
& for x be Element of SOURCE

holds
T.(it.x)

64 Int'l Conf. Foundations of Computer Science | FCS'13 |

= [(canFS(SOURCE))".x ,p.{x}];
end;

The appearance probability of each node that is not a
leaf of the final Huffman tree is the sum of the

appearance probabilities of each of its child nodes.
This is expressed in the following proposition:

theorem :: HUFFMAN:19
for SOURCE be non empty finite set,

p be Probability of
(Trivial-SigmaField SOURCE),

T be finite binary
DecoratedTree of ExtSOURCE

st T,p,SOURCE is_HuffmanCode-Like
holds

for t,s,r be Element of dom T
st
t in (dom T \ (Leaves (dom T)))
& s = (t^< * 0 * >)
& r = (t^< * 1 * >)
holds

Vtree (T,t) =
Vtree (T,s) + Vtree (T,r);

To prove this proposition, we must show that a
similar proposition holds for the trees in Tseq.i, the
set of trees in the ith iteration. This is achieved by

mathematical induction involving i, as follows.

theorem :: HUFFMAN:18
for SOURCE be non empty finite set,

p be Probability of
(Trivial-SigmaField SOURCE),

Tseq be FinSequence
of BoolBinFinTrees ExtSOURCE,

q being FinSequence of NAT
st Tseq,q,SOURCE,

p is_constructingHuffman
holds

for i be Nat st 1 <=i
& i <=len Tseq

holds
for T be finite binary

DecoratedTree of ExtSOURCE
for t,s,r be Element of dom T

st T in Tseq.i & t in
(dom T \ (Leaves (dom T)))

& s = (t^< * 0 * >)
& r = (t^< * 1 * >)

holds
Vtree (T,t)
= Vtree (T,s) + Vtree (T,r);

4. Closing remarks
In this report, we propose a series of formal definitions for

source coding in Mizar. Specifically, we reported a formal

definition of Huffman coding. First, we defined a method of
constructing a Huffman tree. From this definition, we defined
the encoder connecting the information source to the code
space and the coding scheme. Proofs of definitions and theo-
rems relating to the Huffman code were formulated in Mizar
and verified using Mizar’s checker. Future work will address
proofs on the characteristics of Huffman encoding, such as
length of code, the sibling property [3], and optimality.

Acknowledgment
This study was partly supported by JSPS KAKENHI

21240001 and 22300285.

References
[1] Mizar System: Available at http://mizar.org/.
[2] D.A. Huffman, A method for the construction of minimum-redundancy

codes, Proceedings of the I.R.E. September, pp.1098-1102, 1952.
[3] R.G. Gallager, Variations on a Theme by Huffman, IEEE Transactions

on Information Theory,Vol. IT- 24,NO. 6, pp. 668-674, 1978.

Int'l Conf. Foundations of Computer Science | FCS'13 | 65

Extended Timed Alternating Finite Automata:
Revisited

A. Fellah
Dept. of Computer Science & Applied Statistics

University of New Brunswick
Saint John, NB, E2L 4L5, Canada

Email: fellah@unb.ca

Abstract—In this paper, we continue to investigate timed
alternating finite automata (TAFA), in particular we generalize
the existing theory to the case of extended timed alternating
finite automata (ETAFA). We define a framework extension of
TAFA, study their power and properties. We develop an algebraic
treatment of such ETAFA, along the lines of the algebraic treat-
ment of systems of equations based on timed alternating finite
automata. We present an equational language representation for
ETAFA which parallels that of languages equations for TAFA.
The power of these machines is discussed, as well as some of
their fundamental properties. Moreover, we consider timed ε-
transitions and clock precisions, and discuss their interpretations
in ETAFA.

I. INTRODUCTION

The power of timed alternating finite automata (TAFA)
lies in its natural alternation between existential and universal
transitions during the course of a computation. Their power
lies not only exclusively in automata theory, but they become
an efficient framework in many applications, ranging from
proving properties of real time systems and specifying their
behaviors to verifying and model checking software systems.
Moreover, they provide a succinct representation for regular
languages, but are double-exponentially more succinct than
deterministic finite automata. Time alternating finite automata
have been independently introduced in [8], [10] and thoroughly
investigated in literature. Since their introduction, these models
have been largely investigated under several theoretical and
practical aspects. TAFA have been extended with clock vari-
ables, in almost the same way that time finite automata (TFA)
[4].

Classical automata are traditionally untimed or asyn-
chronous models of computation in which only the ordering of
events, not the time at which events occurs, would affect the
result of a computation. Timed automata received their first
seminal treatment in [4], since then they have become a pow-
erful canonical model for describing time to model and verify
embedded systems with real-time constraint computations. In
timed automata the value of a clock depends on the path
taken by the automaton are determined by transition relations.
Clocks were also extended to alternating finite automata to
justify timed transitions and sequences in these models. A
comprehensive analysis of the theory of timed alternating
finite automata (TAFA) based upon a hybrid combination
of alternating finite automata and timed automata models
were proposed in [8], [10], [11]. In addition, deterministic
timed alternating finite automata (DTAFA) were introduced in

[12] as the first determinizable subclass of alternating timed
automata by restricting the use of clocks. Moreover, they have
been shown to be more expressive and powerful than timed
automata and TAFA. Unlike timed automata model, the key
for the determinization of TAFA is the property that each
computation step, all clock values are determined only by
the input timed word. DTAFA are characterized by a fixed,
predefined association between the clocks and the symbols of
the input alphabet.

The aim of this paper is to propose a formalism which
is sufficiently general for modeling all variants of timed
alternating finite automata for which the Boolean operations
can be effectively defined. In this paper, we introduce extended
timed alternating finite automata (ETAFA), a general class of
automata that includes all restricted versions of timed AFA.
Moreover, we present a general equational language represen-
tation for ETAFA which parallels that of timed languages for
TAFA. We also give some fundamental properties of ETAFA.

This paper is organized as follows. Section II is devoted
to notations and preliminaries. Section III introduces extended
timed alternating finite automata (ETAFA) – a general frame-
work for several types of timed alternating finite automata. In
addition in Section IV, we develop an algebraic treatment of
such ETAFA, along the lines of the algebraic treatment of sys-
tems of equations based on timed alternating finite automata.
The solutions for such equations over time languages parallel
that of language equations for TAFA. Section V describes the
transformation between an equational language representation
and ETAFA. Closure properties and some results of ETAFA
are stated in Sections VI, VII, and VIII. In Section IX, we
consider the clock precision and discuss timed ε-transitions.
Finally, in Section X we draw some concluding remarks.

II. PRELIMINARIES

We denote by R the set of all non-negative reels including
0. The cardinality of a finite set A is |A|. An alphabet ∆
is a finite, nonempty set whose elements are called symbols
or letters. A timed word, wt over ∆ is a finite sequence
wt = (a1, t1)(a2, t2) · · · (ai, ti) where the a′is are symbols of
∆ and the t′is are in R such that for all i ≥ 1, ti < ti+1.
The first element, a′is, of each pair are the input symbols,
and the second element, t′is, are the time elapsed with respect
to the a′is since the previous symbol reading. We assume
that t1 = 0. Thus, t1 · · · ti is a finite monotonically non-
decreasing time sequence of R. The time language (∆× R)

∗

66 Int'l Conf. Foundations of Computer Science | FCS'13 |

is the set of all timed words over ∆ where λ denotes the
empty timed word. Recall that classical words over ∆ form
the free monoid (∆∗, ·, λ) generated be ∆, where “·” is the
classical concatenation operator (we write either ab or a · b for
the concatenation). For any timed language Lt ⊆ (∆× R)

∗,
Lt = ∆∗\Lt, is the complement of Lt with respect to ∆∗. For
languages Lt1 and Lt2 over ∆, the union and intersection are
denoted by Lt1 ∪ Lt2 and Lt1 ∩ Lt2, respectively.

Given a finite set X of clock variables, a clock constraint
ψ over X on a given input symbol a ∈ ∆ can be generated
by the following grammar.

ψ := x ≤ c | x < c | c ≤ x | c < x | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

where x is any clock in X and c ∈ R such that c ≥ 0. The
operators ∨ and ∧ stands for the logical-or and logical-and,
respectively. A clock interpretation (valuation) ν for X is a

mapping from X to R. That is, ν assigns to each clock x ∈ X
the value ν(x). A clock interpretation represents the values of
all clocks in X at a given snapshot in time. The length of a
timed word wt, denoted by |wt|, is the total number of symbols
in wt.

III. EXTENDED TIMED ALTERNATING FINITE AUTOMATA

Let B denote the two-element Boolean algebra B =
({0, 1},∨,∧,¬, 0, 1). BQ is a vector with |Q| elements re-
ferring to all the Boolean functions from Q to B where ∨,
∧, ¬ (interchangeably −) denote the “or”, “and” and “not”,
respectively. Let RX is a vector over R with |X | elements
referring to all real functions from X to R. For notation
convenience, let X denote a value vector over RX .

Definition 3.1: An extended timed alternating finite au-
tomaton (ETAFA) is a sept-tuple A = (Q,∆, s,X , g, h, F),
where (a) Q is a finite set, the set of states, (b) ∆ is the
alphabet, the input alphabet, (c) s ∈ Q is the starting state, (d)
X is a finite set, the set of clocks, (e) h is the time transition
function, h : (RX × R) 7→ RX ; (f) g is the letter transition
function from (Q× RX) into the set of all functions (BQ)

RX

into B. (g) F ⊆ Q is the set of final states.

The function h is specifically defined as:

h((x1, x2, . . . , x|X|), t) = ((x1 + t, x2 + t, . . . , x|X| + t))

where xi ∈ X for 1 ≤ i ≤ |X | and t ∈ R such that t ≥ 0.
For convenience, the definition of the function h can be
rewritten as h(X, t) = X′, where for all x ∈ X , X′ = X + t
where t is the time associated with the word that has been
read.

For each state q ∈ Q and with each vector X ∈ RX , g(q,X) is
a function from (BQ)

RX × (∆× R) into B, which we denote
as gq(X). For each q ∈ Q with each X ∈ RX and for each
a ∈ (∆× R), we define gq(X)(a) to be the Boolean function
(BQ)

RX 7→ B such that:

gq(X)(a)(u) = gq(X)(a, u)

where u ∈ (BQ)
RX . Thus, for any u ∈ (BQ)

RX , the value of
gq(X)(a)(u), also gq(X)(a, u) is either 1 or 0.

We define the function gQ×RX≥0
: (BQ)

RX × (∆ × R) 7→ B by

putting together the |Q×RX | functions gq(X) : (BQ)
RX×(∆×

R) 7→ B for each q ∈ Q and with each X ∈ RX as follows:

For a ∈ (∆× R) and u, v ∈ (BQ)
RX , gQ×RX (u, a) = v if and

only if ga(X)(u, a) = v(q,X), for each q ∈ Q and with each
X ∈ RX , where v(q,X) indexes the q element of the X vector in
(BQ)

RX . For convenience, we write g(u, q) instead of gQ×RX

when there is no confusion.

Now, we extend g to a function of Q×RX into the set of all
functions (BQ)

RX × (∆× R)
∗ 7→ B as follows:

gq(X)(u,wt) =

{
u(q,X) if wt = ε

gq(X)((u,wt
′), a) if wt = awt

′

where a ∈ (∆× R), wt, wt
′ ∈ (∆× R)∗ and u ∈ (BQ)

RX .
Note that ε ∈ (∆×R) is the timed null word where ε = (λ, 0)
such that wt · ε = wtε = wt.

For all q ∈ Q and with each X ∈ RX , we define the
characteristic vector f ∈ (BQ)

RX of F as follows:

f(q,X) = 1 ⇐⇒ q ∈ F
f(q,X) = 0 ⇐⇒ q ∈ Q\F

Definition 3.2: A word wt ∈ (∆ × R)∗ is accepted by a
ETAFA M if and only if gs(h(0, t))(f, wt) = 1, where s is
the starting state, f is the characteristic vector of F , t is the
time associated with the word that has been read, and 0 ∈ RX
is the zero-valued vector (i.e., 0 = 0 for all x ∈ X).

The language accepted by a ETAFA A = (Q,∆, s,X , g, h, F)
is defined as follows:

Lt(A) = {wt ∈ (∆× R)∗ | gs(h(0, t))(f, wt) = 1}

Note that wt = (a, t)wt
′ for some a ∈ ∆, t ∈ R, and wt

′ ∈
(∆× R)∗.

Example 3.1: Consider the following ETAFA A =
(Q,∆, q0,X , g, h, F) where Q = {q0, q1, q2}, ∆ = {a}, h is
given as in the ETAFA’s definition. X = {x}, and F2 = {q2}.
Thus, the characteristic vector f and the function g are as
follows:

f = (0, 0, 1), (0, 0, 1), . . . , (0, 0, 1) = (0, 0, 1)
RX

= (0, 0, 1)

g a

q0 q0 ∨ (q1[x := 0])
q1 ((x 6= 1) ∧ q1) ∨ ((x = 1) ∧ q2)
q2 q2

Analyzing the definition of the function g in the ETAFA A,
we can see how to trace one of the |Q × RX | functions for
every gq(X) transition that is made while tracing the word. In
addition the notation [x := 0] denotes a ”reset” of the clock x
and (x = 1) indicates a comparison.

Int'l Conf. Foundations of Computer Science | FCS'13 | 67

For example, tracing the timed word
wt =< a, 1/2 >< a, 0 >< a, 1 > assuming ε =< λ, 0 > is:

gq0(h(0, 1/2))((0, 0, 1), <a, 1/2><a, 0><a, 1>)

= gq0(1/2)((0, 0, 1), <a, 1/2><a, 0><a, 1>)

= gq0(h(1/2, 0))((0, 0, 1), <a, 0><a, 1>)

∨gq0(h(0, 0))((0, 0, 1), <a, 0><a, 1>)

= gq0(1/2)((0, 0, 1), <a, 0><a, 1>)

g ∨q0 (0)((0, 0, 1), <a, 0><a, 1>)

= gq0(h(1/2, 1))((0, 0, 1), <a, 1>)

∨gq1(h(0, 1))((0, 0, 1), <a, 1>)

∨gq1(h(0, 1))((0, 0, 1), <a, 1>)

= gq0(h(1 1/2, 1))((0, 0, 1), <a, 1>)

∨gq1(1)((0, 0, 1), <a, 1>) ∨ gq1(1)((0, 0, 1), <a, 1>)

= gq0(h(1 1/2, 0))((0, 0, 1), <λ, 0>)

∨gq1(h(0, 0))((0, 0, 1), <λ, 0>)

g∨q2(h(1, 0))((0, 0, 1), <λ, 0>)

∨gq2(h(1, 0))((0, 0, 1), <λ, 0>)

= gq1(1 1/2)((0, 0, 1), <λ, 0>)

∨gq0(0)((0, 0, 1), <λ, 0>) ∨ gq2(1)((0, 0, 1), <λ, 0>)

∨gq2(1)((0, 0, 1), <λ, 0>)

= 0 ∨ 0 ∨ 1 ∨ 1

= 1.

Therefore the timed word wt < a, 1/2 >< a, 0 >< a, 1 > is
accepted.

Because ETAFA only considers passage of time between two
input symbols (with the h function) by adding the elapsed time
to the current clock values, a change in either the ETAFA,
or the format of an input word is required. This can be
accomplished in one of the following two methods: (1) Adding
a universal clock to the ETAFA. This is a clock that never
resets and contains the value of the total elapsed time since
the start of a word. (2) Choosing the representation of a timed
word so that each time value of the (a, t) ∈ (∆ × R) would
be the time since the last symbol was read as opposed to the
time since the start of the word. We have chosen the second
method in the previous tracing example. Either method will
work fine as there would be no change to the current ETAFA
definition.

IV. EQUATIONAL LANGUAGE REPRESENTATION OF
ETAFA

The theory of classical language equations received its
formal treatment in the seminal paper of [6]. Most of the
subsequent research focused on restricted various types of
language equations and their different solution techniques. (See
for example, [10], [12], [13]). However, language equation
solutions still suffer from a lack of generality. In this section,
we define a general framework class of language equations
and relate them to extended alternating timed finite automata.

Let A = (Q,∆, s,X , g, h, F) be a ETAFA. For all q ∈ Q, A
can be represented by the following system of equations.

X̂(q,X) =

{∑
a∈∆

a · gq(X)(X̂, a) + ε(q,X)

}
q ∈ Q,X ∈ RX

(1)

for all X ∈ RX and where ”.” is the concate-
nation operation. X̂ is a vector of |Q × RX |
variables X̂(q,X) indexedm/cmr5.pfb¿¡/usr/share/texmf-
texlive/fonts/type1/public/amsfonts/c m/cmr7.pfb¿¡ by the
states q ∈ Q and vectors X ∈ RX and

ε(q,X) =

{
λ if q ∈ F
0 otherwise

for each q ∈ Q with each X ∈ RX .
Note all terms of the form a.0, a ∈ ∆ can be omitted as can
the term ε(q,X) if q ∈ Q\F .

The following theorems are the most important results relating
timed alternating finite automata and their equational represen-
tations. The second theorem gives a sufficient condition for the
uniqueness of the solution of the system of equations (1).

Theorem 4.1: [11] Let A = (Q,∆, s,X , g, h, F) be a
ETAFA represented by the system of language equations
X̂(q,X) of the form (1) whose solution is {X̂q}q∈Q. Let s be
the starting state of A. Then Lt(A) = X̂s.

Theorem 4.2: [11], [12] Any system of language equations
of the form of (1) has a unique solution for each {X̂q}q∈Q.
Furthermore, the solution for each {X̂q} is regular.

The following system of equations represents the ETAFA A
given in Example 3.1.

X̂q0 = a · (X̂q0 ∨ (X̂q1 [x := 0]))

X̂q1 = a · (x 6= 1) ∧ X̂q1) ∨ ((x = 1) ∧ X̂q2))

X̂q2 = a · X̂q2 + λ

Note that X̂(q0,X) for all X ∈ RX can be written as X̂q0 for
convenience.

Lemma 4.1: Let X̂(q,X) be an equational representation of
a given ETAFA A = (Q,∆, s,X , g, h, F), then X̂(q,X) and A
are equivalent in terms of language acceptance.

Proposition 1: The family of languages accepted by
ETAFA is the class of timed regular languages.

V. FROM THE EQUATIONAL REPRESENTATION TO ETAFA

Given the equational representation of ETAFA, we should
be able to construct the corresponding ETAFA. For example,
given the following system of equations:

X̂q0 = a · X̂q0 + b · (X̂q1 ∧ ¬(X̂q2 [y := 0])

X̂q1 = a · (x ≤ 2) ∧ X̂q1) + b · X̂q2 + λ

X̂q2 = a+ b · (y = 1/2)

We will assume that q0 is the starting state, but this may not
always be the case. We also assume that h is defined the
usual way unless explicitly told so. X Thus, the ETAFA A =

(Q,∆, q0, g, h,X , F) where Q = {q0, q1, q2}, ∆ = {a, b},
X = {x, y}, F = {q1}, and g is given as:

68 Int'l Conf. Foundations of Computer Science | FCS'13 |

g a b
q0 q0 q1 ∧ ¬(q2[y := 0])
q1 (x ≤ 2) ∧ q1 q2

q2 1 (y = 1/2)

VI. BOOLEAN OPERATIONS ON ETAFA

Given the equational representation of a ETAFA A =
(Q,∆, s,X , g, h, F):

X̂(s,X) =

{∑
a∈∆

a · gs(X)(X̂, a) + ε(s,X)

}
s ∈ Q,X ∈ RX

We construct the complement A = (Q′,∆, s′,X , g′, h′, F ′) as
follows:

X̂(s,X) =

{∑
a∈∆

a · gs(X)(X̂, a) + ε(s,X)

}
s ∪ s ∈ Q′

where X ∈ RXs and s are the starting states of A and A such
that

ε(s,X) =

{
0 if ε(s,X) = λ

λ if ε(s,X) = 0

Theorem 6.1: Let A1 = (Q1,∆1, s1,X 1, g1, h1, F 1) and
A2 = (Q2,∆2, s2,X 2, g2, h2, F 2) two ETAFA represented
by their equations X̂1

(q1,X1) and X̂2
(q2,X2) and accepting the

languages Lt(A
1) and Lt(A

2), respectively. Then, there exists
a ETAFA represented by its language equation X̂(s,X) = such
that Lt(A) = Lt(A

1) ∪ Lt(A
2), Lt(A) = Lt(A

1) ∩ Lt(A
2),

and Lt(A) = Lt(A
1) · Lt(A

2).

Proof: The proof is constructive and follows the same steps
as in the complement operation. Moreover and due to space
constraint, we summarize the results as follows:

Theorem 6.2: Extended timed alternating finite automata
are closed under all Boolean operations, including the inter-
section and composition.

In the following section we show that timed finite automaton
(TFA) can be converted into an extended timed finite automata
(ETAFA).

VII. TFA - ETAFA TRANSFORMATION

Timed finite automata (TFA) are are finite state automata
extended with a set of clocks. Whenever the automaton is in
state q, it can change to state q′ by reading a symbol while
the time constraints are satisfied. A state of a timed finite
automaton can be considered as a tuple containing the current
state of the automaton and the current values of the clocks.
Clocks are used to justify timed transitions and sequences
in TFA. These clocks can either progress synchronously and
uniformly, or they can be reset to zero. There are two types
of clock constraints – invariants labeling states, and guards
labeling transitions.

Definition 7.1: A timed finite automaton (TFA) is a six-
tuple A′ = (Q′, ∆′, s′, X ′, δ′, F ′), where (a) Q′ is a finite
set, the set of states; (b) ∆′ is an alphabet, the input alphabet;
(c) s′ ∈ Q′ is the starting state; (d) X ′ is a finite set, the set
of clocks; (e) F ′ ⊆ Q′ is a finite set, the set final states; (f) δ′

is a time transition function of the form (q, φ, ρ, a, q′) where
q, q′ ∈ Q′, a ∈ ∆′ ∪ {ε}, ρ ∈ X ′, φ is the transition guard, it
is a boolean combination of the form X ∈ I for some clock
X ′ and some bound interval I . q is the current state, q′ is the
next state, a is the letter read, ρ is the set of clocks to be reset.

Corollary 7.1: Let A′ = (Q′, ∆′, s′, X ′, δ′, F ′) be a
TFA, we can construct a ETAFA A = (Q,∆, s,X , g, h, F)
where Q = Q′, ∆ = ∆′, s = s′, h is defined the usual way,
X = X ′, F = F ′, and g is given by the equational language
representation X̂ as follows: For each (q, φ, ρ, a, q′) ∈ δ′

where a 6= ε.

X̂q := X̂q ∨ (∅ ∧ (X̂q′ [p := 0]))

for all p ∈ P(X).

The proof is straightforward. Simply perform an “or” operator
with the current boolean expression terms and (∅ ∧ (X̂q′ [p :=
0])).

Example 7.1: Consider A′ = (Q′,∆′, s′,X ′, δ′, F ′) be a
TFA where Q′ = {q0, q1, q2},∆′ = {a, b}, s′ = {q0},
X ′ = {x, y}, (x, y) ∈ R, F ′ = {q2}, and δ′ =
{(q0, (x, y), {x}, a, q1), (q1, (x, y), ∅, b, q1),
(q1, x ∈ [2, 2] ∨ y ∈ R, ∅, b, q1), (q1, x ∈ R ∨ y ∈
[0, 2), ∅, a, q2), (q2, (x, y), {x}, a, q2), (q2, (x, y), ∅, b, q0)}

The ETAFA equivalent is A = (Q,∆, s,X , g, h, F) where
Q = {q0, q1, q2}, X = {x, y}, ∆ = {a, b}, s = {q0}, h is
defined as h((x, y), t) = (x + t, y + t), F = {q2} , and g is
given by the equation X̂ as follows.

X̂q0 = a · (X̂q1 [x := 0])

X̂q1 = a · (y ∈ [0, 2)) ∧ X̂q2)+

b · (X̂q1 ∨ (x ∈ [2, 2]) ∧ X̂q0)

X̂q2 = a · (X̂q2 [x := 0]) + b · X̂q0 + ε

VIII. UNTIMED ε-TRANSITIONS AND ε-TRANSITIONS
WITH NO GUARDS

So far, we have not considered TFA with ε-transitions
for changing to ETAFA. The discussion of ε-transitions can
break down into two categories, ones with no time constraint
of guard, and ones that have constraints or guards. The
type of ε-transitions are actually fairly easy to simulate in
ETAFA. Consider the transition (q, x ∈ R, {X}, ε, q′), for
every transition (q′, x ∈ I,X 0, a, q) for some interval I , some
a ∈ Σ, some q′ ∈ Q, and X 0 ⊆ X , add the transition
(q′, x ∈ I,X 0 ∪ {x}, ε, q′). After all transitions have been
added, delete the edge (q, x ∈ R, {x}, ε, q′).
The TFA can be transformed to a ETAFA. Formally, we have
the following theorem:

Theorem 8.1: For every ε-transitions TFA M ′ there exists
a ETAFA M such that Lt(M

′) = Lt(M).

Proof: Due to space constraint we present a constructive
proof. Consider each transition (q, x ∈ R,X ′, ε, q′) ∈ M ′

for some q, q′ ∈ Q′, and X 0 ⊆ X . Now for each transition
(q′, φ,X 0, a, q) for some q′ ∈ Q′,X 0 ⊆ X , a ∈ ∆′, add
the edge (q, φ, X 0 ∪ X ′, a, q′). Finally, delete the edge
(q′, x ∈ R,X ′, ε, q′), If q = s for some (q, x ∈ R,X ′, ε, q′),

Int'l Conf. Foundations of Computer Science | FCS'13 | 69

then we notice that we cannot reduce this yet, but the ETAFA
equation X̂q for the starting state q is as follows:

X̂(q,X) =

{∑
a∈∆

a · gq(X)(X̂, a) ∨ gq′(X)(X̂, a)

}
q ∈ Q

IX. DISCRETE CLOCK AND CLOCK PRECISION

In the previous section we discuss timed ε-transitions, in
this section we consider another clock metric, clock precision.
Let X be the finite set of clocks and x ∈ X . We may ask
the following question what is the smallest possible values of
x ∈ X that satisfies x > 2? If x ∈ R, then we can only say
that x approaches 2 from the positive side, but this is a poorly
defined way of describing the clock value. Instead, we will
define the precision as some positive number in R such that
a clock value may only be multiples of this value., i.e., if the
precision is 10−3, then the smallest value of x for x > 2 is
2.001.

To simulate an ε-transition, we must redefine gq(X)(a, u)
for a ∈ ∆ as defined in Section III to gq(X)(a, u) for a ∈ ∆∪
{λ} and its extension over (∆×R)∗ becomes (∆ ∪ {λ} × R)

∗.
There is a potential problem because our current definition for
g is

gq(X)(u,wt) =

{
u(q,X) if wt = ε = (λ, 0)

gq(X)((u,wt
′), a) if wt = awt

′

However, since we are now considering λ, a readable letter,
we don’t want to collapse the gq function to u(q,X) because
we might not be at the end of the word. Therefore, we define
ε = (λ, 0) to denote the word terminator that is read at the end
of each word and collapse g to u(q,X) if a = ε is read. Now,
the equation becomes how to interpret these new ε-transition
in ETAFA. This is best illustrated by the following example:

X̂(q,X) = a · (X̂(q′,X)[y := 0]) + λ · ((X̂(q′,X) ∧ (y > 2) + λ

Note that λ indicates that q is a final state. Now if we consider
the expression gq(h((0, 1), 3)(u, a) for clock X = (x, y) =
(0, 1), we notice that the time expression function h((0, 1), 3)
will result in y > 2 being satisfied. In this case we chose the
minimum value in the range [0,3] =µ that will satisfy 1+µ > 2
since µ ∈ R, then there is no adequate way to properly write
what µ is. However, if we consider the precision (i.e., 10−3),
then 1,001 will work, therefore 1 + |1, 001| > 2 is the least
value that we can choose for this example.

X. CONCLUSION

We investigated extension of timed alternating finite au-
tomata with ε-transitions and presented is presented a general
framework for this class of automata. We further extended
the equational representation of TAFA to represent ETAFA
and explore solutions and properties for such equations over
time languages. Timed ε-transitions and clock precisions need
further investigation. There are several future directions worth
mentioning, including the relationship between extended timed
regular expressions and extended timed alternating finite au-
tomata which are being investigated.

REFERENCES

[1] F. Baader, A. Okhotin. Solving Language Equations and Disequations
with Applications to Disunification in Description Logics and Monadic
Set Constraints. Logic for Programming, Artificial Intelligence, and
Reasoning, (LPAR-18), LNCS 7180, pp 107-121, 2012.

[2] M. Ackerman, J. Shallit. Efficient Enumeration of Regular Languages.
Proc. of the 12th Internat. Conference on Implementation and Applica-
tion of Automata, Springer-Verlag, 2007.

[3] E. Carta-Gerardino, P. Babaali. Weighted Automata and Recurrence
Equations for Regular Languages arXiv preprint arXiv:1007.1045,
arxiv.org, 2010.

[4] R. Alur, D. Dill, A Theory of Timed Automata. Theoretical Computer
Science, 126 (2), pp. 183-235, 1994.

[5] R. Alur, L. Fix, T.A. Henzinger. Event-clock Automata: A Determiniz-
able Class of Timed Automata. Theoretical Computer Science, 211 (1-
2), pp. 253-273, 1999.

[6] J.A. Brzozowski, E. Leiss, On Equations for Regular Languages, Finite
Automata, and Sequential Networks, Theoret. Comput. Sci. 10, pp. 19-
35. 1980.

[7] E. Asarin, P. Caspi, and O. Maler. Timed Regular Expressions. JACM,
49(2): 172-206, 2002.

[8] Lasota, S. and Walukiewicz, I. Alternating Timed Automata. ACM
Trans. Comput. Logic, 9(2), 2008.

[9] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer, Alternation, J. Assoc.
Comput, 28, 1981, pp. 114-133, 1981.

[10] A. Fellah, C. Harding, Language Equations for Timed Alternating Finite
Automata, Internat. J. Comput. Math. 80,2, pp. 1075-1091, 2003.

[11] A. Fellah, Generalized Timed Alternating Finite Automata. 7th Intl
Workshop on Boolean Problems, Freiberg, Sachsen, Germany, pp. 159-
164, 2006.

[12] A. Fellah, A. Fellah, Z. Friggstad and S. Noureddine, Deterministic
Timed AFA: A New Class of Timed Alternating Finite Automata.
Journal of Computer Science, Vol. 5. No. 1, pp. 18, 2007.

[13] E. Leiss, Succinct Representation of Regular Languages by Boolean
automata II. Theoret. Comput. Sci. 38, pp. 133-136, 1985.

[14] O. Kupferman, M. Vardi, Weak Alternating Automata are not that Weak.
ACM Trans. Comput. Log. 2(3), pp. 408-429, 2001.

[15] K. Salomaa, X. Wu, S. Yu, Efficient Implementation of Regular Lan-
guages using Reversed Alternating Finite Automata, Theoret. Comput.
Sci. 231, pp. 103-111, 2000.

[16] E. Leiss, Language Equations, Springer-Verlag, New York, 1999.
[17] T.A. Henzinger, B. Horowitz, C.M. Kirsch. Giotto: A Time-triggered

Language for Embedded Programming. Proceedings of EMSOFT, pp.
166-184, 2001.

[18] E. Fersman, P. Pettersson, W. Yi. Timed Automata with Asynchronous
Processes: Schedulability and Decidability. In Tools and Algorithms for
the Construction and Analysis of Systems, Vol 2280 of Lecture Notes
in Computer Science. Springer-Verlag. 2002.

[19] C.L. Oding, W. Thomas. Alternating Automata and Logics over infinite
words. In IFIP TCS’00, Vol. 1872 of LNCS, pp. 521-535, 2000.

70 Int'l Conf. Foundations of Computer Science | FCS'13 |

Formalization of Binary Fields and N -dimensional Binary Vector
Spaces Using the Mizar Proof Checker

Kenichi Arai1 and Hiroyuki Okazaki2
1Tokyo University of Science, 2641 Yamazaki Noda-City, Chiba 278-8510, Japan

2Shinshu University, 4-17-1 Wakasato Nagano-city, Nagano 380-8553, Japan

Abstract— Binary fields and n-dimensional binary vector
spaces play important roles in practical computer science,
for example, coding theory and cryptology. In this paper,
we introduce our formalization of binary fields and n-
dimensional binary vector spaces. We then prove some the-
orems about subspaces and bases of n-dimensional binary
vector spaces. We prove the correctness of our formalization
using the Mizar proof checking system as a formal verifi-
cation tool. Mizar is a project that formalizes mathematics
with a computer-aided proving technique and is a universally
accepted proof checking system. The main objective of this
study is to prove the security of cryptographic systems using
the Mizar proof checker.

Keywords: Formal Verification, Proof Checker, Mizar, Binary
Field, N -dimensional Binary Vector Space

1. Introduction
Mizar[1] is a project that formalizes mathematics with

a computer-aided proving technique. The objective of this
study is to prove the security of cryptographic systems
using the Mizar proof checker. To this end, we intend to
formalize several topics concerning cryptology. As a part of
this effort, we have previously introduced our formalization
of the Advanced Encryption Standard (AES) at FCS’12[2].

The binary set {0, 1} together with modulo-2 addition
and multiplication is called a binary field, which is de-
noted by F2. A vector space over F2 is called a binary
vector space. The set of all binary vectors of length n
forms an n-dimensional vector space Vn over F2. Binary
fields and n-dimensional binary vector spaces play important
roles in practical computer science, for example, coding
theory[3] and cryptology. In cryptology, binary fields and
n-dimensional binary vector spaces are very important in
proving the security of cryptographic systems[4].

In this paper, we introduce our formalization of binary
fields, n-dimensional binary vector spaces, and their alge-
braic structures using the Mizar proof checker. We then
prove some theorems about subspaces and bases of n-
dimensional binary vector spaces.

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce the Mizar project. In Section
3, we briefly introduce binary fields and n-dimensional bi-
nary vector spaces. In Section 4, we introduce our formaliza-

tion of binary fields and their algebraic structures. In Section
5, we introduce our formalization of n-dimensional binary
vector spaces and their algebraic structures. We then prove
some theorems about subspaces and bases of n-dimensional
binary vector spaces. We conclude our discussion in Section
6. The definitions and theorems in this paper have been
verified for correctness using the Mizar proof checker.

2. Mizar
Mizar[1] is an advanced project of the Mizar Society

led by A.Trybulec, which formalizes mathematics with a
computer-aided proving technique. The Mizar project de-
scribes mathematical proofs in the Mizar language, which
was created to formally describe mathematics. The Mizar
proof checker operates in both Windows and UNIX envi-
ronments, and registers the proven definitions and theorems
in the Mizar Mathematical Library (MML). Mizar is one
of the proof assistants that can mechanically check proofs
written in the Mizar language.

The text that formalizes and describes the proof of math-
ematics by Mizar is called an “article”. When an article is
newly described, it is possible to advance it by referring
to articles registered in the MML that have already been
inspected as proof. Likewise, other articles can refer to an
article after it has been registered in the MML. Although the
Mizar language is based on a descriptive method for general
mathematical proofs, a reader should consult the references
for its grammatical details because Mizar uses a specific,
unique notation[5], [6], [7], [8].

3. Outline of Binary Fields and N -
dimensional Binary Vector Spaces

In this section, we review binary fields, n-dimensional
binary vector spaces, and vector subspaces[3].

3.1 Binary Fields
The binary field F2 (a so-called Galois field and written

GF(2)) is a finite field with two elements: 0 and 1. The opera-
tions defined over the binary field F2 are binary addition and
multiplication. Binary addition “+” and multiplication “•”
are defined by the rules of modulo-2 arithmetic, as shown
in Figure 1.

Int'l Conf. Foundations of Computer Science | FCS'13 | 71

Figure 1: Binary Addition and Binary Multiplication

Here, 0 is the additive identity and 1 is the multiplicative
identity. Binary addition and multiplication correspond to
the XOR (exclusive OR) and AND operations, respectively.
Because F2 is a field, many of the familiar properties of
number systems such as rational numbers and real numbers
are retained; these include associativity, commutativity, and
distributivity.

3.2 N -dimensional Binary Vector Spaces
The vector space V consists of a set of elements over

which the binary addition operation, denoted by the XOR
operation “⊕,” is defined. If F is a field, the binary multi-
plication operation, denoted by the AND operation “•,” is
defined between an element of the field F and the vectors
of the space V . Thus, V is called a vector space over the
field F if it satisfies the following conditions:

(i) V is a commutative group for the binary addition
operation.

(ii) For any x ∈ F and any u ∈ V , x • u ∈ V .
(iii) For any u,v ∈ V and any x ∈ F, x • (u + v) =

x • u + x • v.
(iv) For any u ∈ V and any x, y ∈ F, (x + y) • u =

x • u + y • u.
(v) For any u ∈ V and any x, y ∈ F, (x•y)•u = x•(y•u).

(vi) If 1 is the unit element in F, then 1 • u = u for any
u ∈ V .

Here, the elements of V and F are called vectors and
scalars, respectively.

Consider an ordered sequence of n components
(x1, x2, . . . , xn) where each component xi is an element of
the binary field F2. This sequence is called an n-component
vector. There are a total of 2n vectors. The corresponding
vector space for this set of vectors is denoted as Vn, a vector
space of dimension n.

The binary addition operation ⊕ for this vector space
is defined as follows: if u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) are vectors in Vn, then

u ⊕ v = (u1 ⊕ v1, u2 ⊕ v2, . . . , un ⊕ vn).

Since the sum vector is also an n-component vector, this
vector also belongs to the vector space Vn, and so the vector
space is said to be closed under the addition operation ⊕.

The addition of any two vectors of a given vector space is
also another vector of the same vector space.

Furthermore, Vn is a commutative group under the ad-
dition operation. The all-zero vector 0 = (0, 0, . . . , 0) is
also in the vector space and is the identity for the addition
operation:

u ⊕ 0 = (u1 ⊕ 0, u2 ⊕ 0, . . . , un ⊕ 0) = u,

u ⊕ u = (u1 ⊕ u1, u2 ⊕ u2, . . . , un ⊕ un) = 0.

Each vector of a vector space defined over the binary
field is its own additive inverse. It can be shown that the
vector space defined over F2 is a commutative group, so
that associative and commutative laws are satisfied. The
multiplication between a vector of the vectorial space u ∈ V
and a scalar of the binary field x ∈ F2 can be defined as

x • u = (x • u1, x • u2, . . . , x • un).

It can be shown that addition and scalar multiplication obey
the associative, commutative, and distributive laws, so the set
of vectors Vn is a vector space defined over the binary field
F2. In addition, a vector space over F2 is a binary vector
space; therefore, it is called an n-dimensional binary vector
space Vn.

3.3 Vector Subspaces
A subset S of the vector space V is called a subspace

of the vector space V . A non-empty subset S of V is a
subspace if it satisfies the following conditions:

• For any two vectors in S, u,v ∈ S, the sum vector
(u + v) ∈ S.

• For any element of the field x ∈ F and any vector
u ∈ S, the scalar multiplication x • u ∈ S.

If {v1,v2, . . . ,vk} is a set of vectors of the vector space
V defined over F and x1, x2, . . . , xk are scalar numbers of
the field F, the sum x1 • v1 ⊕ x2 • v2 ⊕ · · · ⊕ xk • vk is
called a linear combination of the vectors {v1,v2, . . . ,vk}.

A set of k vectors {v1,v2, . . . ,vk} is said to be linearly
dependent if and only if there exist k scalars of F, not all
equal to zero, such that a linear combination is equal to the
all-zero vector:

x1 • v1 ⊕ x2 • v2 ⊕ · · · ⊕ xk • vk = 0.

If the set of vectors is not linearly dependent, then this
set is said to be linearly independent.

A set of vectors is said to generate (span) a vector space
V if each vector in that vector space is a linear combination
of the vectors of the set. In any vector space or subspace,
there exists a set of at least linearly independent vectors that
generate such a vectorial space or subspace.

For a given n-dimensional binary vector space
Vn, the set of vectors {e1, e2, . . . ,en} =

72 Int'l Conf. Foundations of Computer Science | FCS'13 |

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} is the set
of vectors ei that has a non-zero component only at
position i. This set of vectors is linearly independent.

This set of linearly independent vectors {e1, e2, . . . ,en}
generates the n-dimensional binary vector space Vn, whose
dimension is n and is called a basis of the n-dimensional
binary vector space Vn. If k < n, the set of linearly
independent vectors {v1,v2, . . . ,vk} generates S of the n-
dimensional binary vector space Vn through all their possible
linear combinations:

c = y1 • v1 ⊕ y2 • v2 ⊕ · · · ⊕ yk • vk.

The subspace formed is of dimension k and consists of
2k vectors. The number of combinations is 2k because the
coefficients yi ∈ F2 adopt only one of the following two
possible values: 0 or 1.

4. Binary Fields and their Algebraic
Structures

In this section, we formalize the binary field F2 as
an algebraic structure. First, we define “BinaryField” as
a structure that has BOOLEAN as its carrier and that
includes the following two binary operations on BOOLEAN:
“XORB1” and “MLB1.” Next, we prove that BinaryField has
the attributes of a field.

We define binary addition and multiplication as follows:� �
definition
func XORB1 -> BinOp of BOOLEAN
means
for x,y be Element of BOOLEAN
holds it.(x,y) = x ’xor’ y;

end;� �� �
definition
func MLB1 -> BinOp of BOOLEAN
means
for x,y be Element of BOOLEAN
holds it.(x,y) = x ’&’ y;

end;� �
“BOOLEAN” denotes the binary set {0, 1} in the Mizar

language. Here, each of the operations, XORB1 and MLB1,
is defined as a “BinOp of BOOLEAN,” which is a function
from (BOOLEAN, BOOLEAN) into BOOLEAN[9], [10].
Thus, the definitions of both XORB1 and MLB1 ensure that
their outputs are elements of BOOLEAN.

We can now define an algebraic structure that has
BOOLEAN as its carrier, two binary operations, and two

identity elements 1:� �
definition
func BinaryField ->
strict non empty doubleLoopStr

equals
doubleLoopStr(# BOOLEAN,XORB1,MLB1,
TRUE,FALSE #);

end;� �
Here, BinaryField has TRUE (1) and FALSE (0) as the

identities of MLB1 and XORB1, respectively.
In the Mizar language, “Field” denotes a field as

follows[11]:� �
definition
mode Field is add-associative
right_zeroed right_complementable
Abelian commutative associative
well-unital distributive
almost_left_invertible
non degenerated doubleLoopStr;

end;� �
Data types are constructed as “modes” in the Mizar lan-

guage. We can construct new modes in the Mizar language
using existing modes and attributes, which are characteristics
of modes and other objects.

Now, we explain attributes of “doubleLoopStr”
(F , f, g, eg, ef), where F is BOOLEAN, f is XORB1,
g is MLB1, eg is TRUE, and ef is FALSE. Here, “add-
associative right_zeroed . . . almost_left_invertible non
degenerated” are attributes. The attribute “add-associative”
means that (F , f) holds the associative law:

∀a, b, c ∈ F , f(f(a, b), c) = f(a, f(b, c)).

The attribute “right_zeroed” means that ef is an additive
identity in F , that is, ∀a ∈ F , f(a, ef) = a. The attribute
“right_complementable” means that for any a ∈ F , there
exists an additive inverse b of a in F , that is, f(a, b) = ef .
The attribute “Abelian” means that (F , f) holds the com-
mutative law: ∀a, b ∈ F , f(a, b) = f(b, a). The attribute
“commutative” means that (F , g) holds the commutative
law: ∀a, b ∈ F , g(a, b) = g(b, a). The attribute “associative”
means that (F , g) holds the associative law:

∀a, b, c ∈ F , g(g(a, b), c) = g(a, g(b, c)).

The attribute “well-unital” means that eg is a multiplicative
identity in F , that is, ∀a ∈ F , g(a, eg) = g(eg, a) = a.

1An algebraic structure “doubleLoopStr” is a set for which two binary
operations and two elements are defined.

Int'l Conf. Foundations of Computer Science | FCS'13 | 73

The attribute “distributive” means that (F , f, g) holds the
distributive law:

∀a, b, c ∈ F , g(a, f(b, c)) = f(g(a, b), g(a, c)),
∀a, b, c ∈ F , g(f(a, b), c) = f(g(a, c), g(b, c)).

The attribute “almost_left_invertible” means that for any
a ∈ F \ {0}, there exists a multiplicative inverse b of
a in F \ {0}, that is, g(b, a) = eg . The attribute “non
degenerated” means that there exists non-zero divisor a(6=
0) ∈ F , where g(a, b) = 0 for some element b(6= 0) ∈ F .
Then, if “doubleLoopStr” (F , f, g, eg, ef) has all the above
attributes, the algebraic structure is a field.

Next, we introduce the following “cluster” for Binary-
Field:� �
registration
cluster BinaryField ->
add-associative right_zeroed
right_complementable Abelian
commutative associative
well-unital distributive
almost_left_invertible
non degenerated;

end;� �
This cluster is equivalent to the following theorem:� �
theorem
BinaryField is add-associative
right_zeroed right_complementable
Abelian commutative associative
well-unital distributive
almost_left_invertible
non degenerated doubleLoopStr;� �

In the Mizar system, a cluster captures some properties
of an expression, for example, its attributes. Once a cluster
has been registered, these properties can be derived automat-
ically from the expression, although it is always necessary
to refer to theorems.

Finally, we prove the following theorem:� �
theorem
BinaryField is Field;� �

5. N -dimensional Binary Vector Spaces
and their Algebraic Structures

In this section, we formalize the n-dimensional binary
vector space Vn as an algebraic structure. We then prove

some theorems about subspaces and bases of n-dimensional
binary vector spaces.

5.1 Formalization of N -dimensional Binary
Vector Spaces

In this section, we explain the definition of a vector space
V as an algebraic structure that has already been formalized
in Mizar. Then, we define “n-BinaryVectSp” as the structure
that has n-tuples on BOOLEAN as its carrier and that
includes addition and scalar multiplication on n-tuples on
BOOLEAN, “XORB n” and “MLTB n.”

In Mizar, the vector space algebraic structure, “VectSpStr
over F,” has already been formalized as follows[11]:� �
definition
let F be 1-sorted;
struct(addLoopStr) VectSpStr over F
(# carrier -> set,
addF -> BinOp of the carrier,
ZeroF -> Element of the carrier,
lmult ->
Function of
[:the carrier of F,
the carrier:], the carrier #);

end;� �
Mizar supports multiple inheritance of structures, making

a whole hierarchy of interrelated structures available in the
MML. In that hierarchy, the “1-sorted” structure is the
common ancestor of almost all other structures[12].

The definition of a vector space, “VectSp of F,” has already
been formalized as follows[11]:� �
definition
let F be add-associative
right_zeroed right_complementable
Abelian associative well-unital
distributive non empty
doubleLoopStr;

mode VectSp of F is
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
add-associative right_zeroed
right_complementable Abelian
non empty VectSpStr over F;

end;� �
Here, “vector-distributive,” “scalar-distributive,” “scalar-

associative,” and “scalar-unital” are attributes and correspond

74 Int'l Conf. Foundations of Computer Science | FCS'13 |

to (iii), (iv), (v), and (vi) of Section 3.2, respectively. This
definition also satisfies (i) from VectSpStr over F. See the
Appendix for details of this definition. If VectSpStr over F
has all the above attributes, the algebraic structure is a vector
space V . Thus, we will use VectSpStr over F and VectSp of
F to formalize the n-dimensional binary vector space Vn,
“n-BinaryVectSp.”

We define addition and scalar multiplication on n-tuples
on BOOLEAN, “XORB n” and “MLTB n,” as follows:� �
definition
let n be non zero Element of NAT;
func XORB n ->
BinOp of n-tuples_on BOOLEAN

means
for x,y being
Element of n-tuples_on BOOLEAN

holds it.(x,y) = Op-XOR(x,y);
end;� �� �
definition
let n be non zero Element of NAT;
func MLTB n ->
Function of
[:the carrier of BinaryField,
n-tuples_on BOOLEAN:],
n-tuples_on BOOLEAN

means
for a be Element of BOOLEAN,
x be Element of n-tuples_on BOOLEAN,
i be set st i in Seg n
holds (it.(a,x)).i = a ’&’ x.i;

end;� �
“NAT” denotes the set of natural numbers with 0 in the

Mizar language. Here, Op-XOR is a bitwise XOR function
and Seg n = [1, n].

The additive identity, the all-zero vector, for n-tuples on
BOOLEAN is defined as follows:� �
definition
let n be non zero Element of NAT;
func ZeroB n ->
Element of n-tuples_on BOOLEAN

equals
n |-> 0;

end;� �
Here, n |-> 0 is the all-zero n-tuples (0, 0, . . . , 0).
The following theorem can then be proved:

� �
theorem
VectSpStr(# n-tuples_on BOOLEAN,
XORB n,ZeroB n,MLTB n #) is

VectSp of BinaryField;� �
We now define an algebraic structure that has n-tuples on

BOOLEAN as its carrier, addition, scalar multiplication, and
the additive identity, as follows:� �
definition
let n be non zero Element of NAT;
func n-BinaryVectSp ->
VectSp of BinaryField

equals
VectSpStr(# n-tuples_on BOOLEAN,
XORB n,ZeroB n,MLTB n #);

end;� �
Finally, we prove the following theorem:� �
theorem
n-BinaryVectSp is
VectSp of BinaryField;� �

5.2 Theorems about Subspaces and Bases of
N -dimensional Binary Vector Spaces

In this section, we prove some theorems about subspaces
and bases of n-dimensional binary vector spaces. Definitions
of linear independence, bases, dimension, and subspace have
already been formalized in Mizar[13], [14], [15]. Therefore,
we use those definitions to prove some theorems.

First, we formalize the theorem about linear independence
as follows:� �
theorem
for n,m be non zero Element of NAT,
A be FinSequence of
n-tuples_on BOOLEAN,

B be finite Subset of n-BinaryVectSp
st rng A = B & m <= n & len A = m &
A is one-to-one &
(for i,j be Nat st i in Seg n &
j in Seg m holds
(i = j implies (A.i).j = TRUE) &
(i <> j implies (A.i).j = FALSE))

holds B is linearly-independent;� �

Int'l Conf. Foundations of Computer Science | FCS'13 | 75

Here, rng A of A that holds “(for i,j be Nat st i in Seg n
& · · · & (i <> j implies (A.i).j = FALSE))” is a basis of
n-BinaryVectSp. Because this rng A is linearly independent,
any subset B of rng A is also linearly independent.

Second, we formalize the following theorem that relates
to the above theorem:� �
theorem
for n be non zero Element of NAT,
A be FinSequence of
n-tuples_on BOOLEAN,

B be finite Subset of n-BinaryVectSp
st rng A = B & len A = n &
A is one-to-one &
(for i,j be Nat st i in Seg n &
j in Seg n holds
(i = j implies (A.i).j = TRUE) &
(i <> j implies (A.i).j = FALSE))

holds Lin B = VectSpStr
(# the carrier of n-BinaryVectSp,
the addF of n-BinaryVectSp,
the ZeroF of n-BinaryVectSp,
the lmult of n-BinaryVectSp #);� �

Here, Lin B means the space generated (spanned) by B.
The space generated by B has an algebraic structure equal
to n-BinaryVectSp.

We can then formalize the following theorem about the
basis:� �
theorem
for n be non zero Element of NAT
holds
ex B be finite Subset of
n-BinaryVectSp st B is Basis of
n-BinaryVectSp &

card B = n &
ex A be FinSequence of
n-tuples_on BOOLEAN st len A = n &

A is one-to-one & card (rng A) = n &
rng A = B &
(for i,j be Nat st i in Seg n &
j in Seg n holds
(i = j implies (A.i).j = TRUE) &
(i <> j implies (A.i).j = FALSE));� �

If B is a basis of n-BinaryVectSp, this theorem means that
B, which is a finite subset of n-BinaryVectSp, exists.

Next, we formalize a theorem about dimension as follows:

� �
theorem
for n be non zero Element of NAT
holds
n-BinaryVectSp is finite-dimensional
& dim (n-BinaryVectSp) = n;� �

Here, dim (n-BinaryVectSp) means the dimension of n-
BinaryVectSp.

Finally, we formalize a theorem about the subspace as
follows:� �
theorem
for n be non zero Element of NAT,
A be FinSequence of
n-tuples_on BOOLEAN,

C be Subset of n-BinaryVectSp
st len A = n & A is one-to-one &
card (rng A) = n &
(for i,j be Nat st i in Seg n &
j in Seg n holds
(i = j implies (A.i).j = TRUE) &
(i <> j implies (A.i).j = FALSE))

& C c= rng A
holds
Lin C is Subspace of n-BinaryVectSp
& C is Basis of Lin C &
dim (Lin C) = card C;� �

Here, c= means ⊆. This theorem means that the space
generated by C, which is a subset of rng A, is a subspace
of n-BinaryVectSp. In that case, C is a basis of the space
generated by C and the dimension of Lin C is equal to the
cardinal number of C.

6. Conclusion
In this paper, we introduced our formalization of binary

fields, n-dimensional binary vector spaces, and their alge-
braic structures in Mizar. We also proved some theorems
about subspaces and bases of the n-dimensional binary
vector spaces using the Mizar proof checking system as
a formal verification tool. Currently, we are analyzing the
cryptographic systems using our formalization in order to
achieve the security proof of cryptographic systems.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Num-

bers 21240001 and 22300285. We would like to sincerely
thank Prof. Shidama at Shinshu University for his helpful
advice.

76 Int'l Conf. Foundations of Computer Science | FCS'13 |

References
[1] Mizar Proof Checker. [Online]. Available: http://mizar.org/.
[2] H.Okazaki, K.Arai, and Y.Shidama, “Formal Verification of AES Using

the Mizar Proof Checker,” Proceedings of the 2012 International
Conference on Foundations of Computer Science (FCS’12), pp.78–84,
2012.

[3] J.C.Moreira and P.G.Farrell, Essentials of Error-Control Coding, John
Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, 2006.

[4] X.Lai, “Higher Order Derivatives and Differential Cryptanalysis,”
Communications and Cryptography, pp.227–233, Kluwer Academic
Pablishers, 1994.

[5] E.Bonarska, An Introduction to PC Mizar, Mizar Users Group, Fonda-
tion Philippe le Hodey, Brussels, 1990.

[6] M.Muzalewski, An Outline of PC Mizar, Fondation Philippe le Hodey,
Brussels, 1993.

[7] Y.Nakamura, T.Watanabe, Y.Tanaka, and P.Kawamoto,
Mizar Lecture Notes (4th Edition), Shinshu University,
Nagano, 2001. [Online]. Available: http://markun.cs.shinshu-
u.ac.jp/kiso/projects/proofchecker/mizar/index-e.html.

[8] A.Grabowski, A.Kornilowicz, and A.Naumowicz, “Mizar in a Nut-
shell,” Journal of Formalized Reasoning, 3(2), pp.153–245, 2010.

[9] C.Bylinski, “Binary Operations,” Formalized Mathematics, 1(1),
pp.175–180, 1990.

[10] Library Committee of the Association of Mizar Users, “Binary
Operations on Numbers,” To appear in Formalized Mathematics, 2004.

[11] E.Kusak, W.Leonczuk, M.Muzalewski, “Abelian Groups, Fields and
Vector Spaces,” Formalized Mathematics, 1(2), pp.335–342, 1990.

[12] Library Committee of the Association of Mizar Users, “Preliminaries
to Structures,” To appear in Formalized Mathematics, 1995.

[13] A.Trybulec, “Basis of Vector Space,” Formalized Mathematics, 1(5),
pp.883–885, 1990.

[14] J.C.Chen, “The Steinitz Theorem and the Dimension of a Real Linear
Space,” Formalized Mathematics, 6(3), pp.411–415, 1997.

[15] A.Trybulec, “Subspaces and Cosets of Subspaces in Real Linear
Space,” Formalized Mathematics, 1(2), pp.297–301, 1990.

Appendix
(ii) is formalized as follows:� �
definition
let F be non empty 1-sorted,
V be non empty VectSpStr over F;
let x be Element of F;
let v be Element of V;
func x*v -> Element of V
equals (the lmult of V).(x,v);

end;� �
(iii) is formalized as follows:� �
definition
let F be non empty doubleLoopStr;
let IT be non empty VectSpStr over F;
attr IT is vector-distributive
means
for x being Element of F
for v,w being Element of IT
holds x*(v+w) = x*v+x*w;

end;� �

(iv), (v), and (vi) are formalized as follows:� �
definition
let F be non empty doubleLoopStr;
let IT be non empty VectSpStr over F;
attr IT is scalar-distributive
means
for x,y being Element of F
for v being Element of IT
holds (x+y)*v = x*v+y*v;

attr IT is scalar-associative
means
for x,y being Element of F
for v being Element of IT
holds (x*y)*v = x*(y*v);

attr IT is scalar-unital
means
for v being Element of IT
holds (1.F)*v = v;

end;� �
Moreover, the elements of V and F are called vectors and

scalars, respectively; they are formalized as follows:� �
definition
let F be 1-sorted;
let VS be VectSpStr over F;
mode Vector of VS is Element of VS;
mode Scalar of F is Element of F;

end;� �

Int'l Conf. Foundations of Computer Science | FCS'13 | 77

78 Int'l Conf. Foundations of Computer Science | FCS'13 |

SESSION

ENCRYPTION + CALCULUS + TESTING
METHODS AND NEW METHODOLOGIES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'13 | 79

80 Int'l Conf. Foundations of Computer Science | FCS'13 |

On the Expressiveness of Monadic Higher Order Safe Ambient
Calculus

Zining Cao1,2
1State Key Laboratory for Civil Aircraft Flight Simulation

Shanghai Aircraft Design and Research Institute
Shanghai 201210, China

2Department of Computer Science and Technology
Nanjing University of Aeronautics & Astronautics

Nanjing 210016, China
Email: caozn@nuaa.edu.cn

Abstract— In this paper, we propose a monadic higher
order safe ambient calculus. The expressiveness of this
calculus is studied. We showed that polyadic higher order
safe ambient calculus, first order safe ambient calculus with
capability-passing, first order safe ambient calculus with
name-passing, and polyadic π-calculus can all be encoded
in monadic higher order ambient calculus. At last, we show
that synchronous monadic higher order ambient calculus can
be encoded in asynchronous monadic higher order ambient
calculus.

Keywords: Process Calculus; Higher Order Safe Ambient Calcu-
lus; Expressiveness.

1. Introduction
Mobile Ambients was proposed and studied intensively

in [3]. The calculus of Mobile Ambients (MA) is proposed
both as a core programming language for the Web and as
a model for reasoning about properties of mobile processes,
including security. In contrast with previous formalisms for
mobile processes such as the π-calculus, whose compu-
tational model is based on the notion of communication,
the MA computational model is based on the notion of
movement. An ambient, which may be thought of as a named
location, is the unit of movement. Processes within the same
ambient may exchange messages; ambients may be nested,
so to form a hierarchical structure. The three primitives
for movement allow: an ambient to enter another ambient;
an ambient to exit another ambient; a process to dissolve
an ambient boundary thus obtaining access to its content.
Elegant type systems for MA have been given; they control
the type of values exchanged within an ambient and the
mobility of ambients. A few variants of MA were proposed
in literatures [1], [5], [8]. In the Safe Ambients calculus
(SA) [8], for example, CCS-style co-actions are introduced
into the calculus to control potential interferences from other
ambients. Recently, there are several works about MA with
higher order communication. In [2], authors proposed an

extension of the ambient calculus in which processes can
be passed as values. A filter model for this calculus was
presented. This model was proved to be fully abstract with
respect to the notion of contextual equivalence where the
observables are ambients at top level. In [4], we present
a higher order ambient calculus, which is a higher order
extension of Safe Ambients calculus with passwords [10].
Furthermore, we present late bisimulation, quasi late bisim-
ulation, concise quasi late bisimulation and quasi normal
bisimulation for the higher order ambient calculus and study
the relation between these bisimulations. In this paper, we
propose a higher order extension of Safe Ambients calculus,
named MHSA, and study its expressive power.

This paper is organized as follows: Section 2 gives a
brief view of syntax and operational semantics of higher
order ambient calculus. Then we also give the reduction
barbed congruence. Section 3 we show that polyadic higher
order ambient calculus can be encoded in monadic higher
order ambient calculus. In Section 4 we show that first order
ambient calculus with capability-passing can be encoded in
monadic higher order ambient calculus. In Section 5 we
show that first order ambient calculus with name-passing
can be encoded in monadic higher order ambient calculus. In
Section 6, we show that polyadic π-calculus can be encoded
in monadic higher order ambient calculus. In Section 7, we
show that the synchronous monadic higher order ambient
calculus can be encoded in the asynchronous monadic higher
order ambient calculus, which means that all process calculi
in this paper can be encoded in the asynchronous monadic
higher order ambient calculus. The paper is concluded in
Section 8.

2. Monadic Higher Order Safe Ambient
Calculus

In this section, we present a monadic higher order safe
ambients calculus (named as MHSA), which is an exten-
sion of safe ambients by adding capability of higher order

Int'l Conf. Foundations of Computer Science | FCS'13 | 81

communication. Mobile capabilities (in, out, open and their
co-capabilities) make ambient calculi in born with the higher
order property. But these mobile capabilities are linear, i.e.,
only one copy of a process can move, whereas higher order
communication ((X) and ⟨P ⟩) are non-linear higher order
operators since more than one copy of a process can be
communicated. Therefore MHSA extends SA with non-
linear higher order communication capabilities.

2.1 Syntax and Labelled Transition System of
MHSA

The formal definition of process is given as follows:
P ::= 0 | X | (X).P | ⟨P1⟩.P2 | in⟨n⟩.P |

out⟨n⟩.P | open⟨n⟩.P | in⟨n⟩.P | out⟨n⟩.P | open⟨n⟩.P
| P1|P2 | (νn)P | n[P] | recX.P, where n ∈ set N of
names, X ∈ set V ar of process variables.

Informally, 0 denotes inaction. X is a process variable.
c.P can perform action c, where c is in the form of in⟨n⟩,
out⟨n⟩, open⟨n⟩, in⟨n⟩, out⟨n⟩, open⟨n⟩, (X), ⟨Q⟩, then
continues as P. P1|P2 is a parallel composition of two
processes P1 and P2. In each process of the form (νn)P the
occurrence of n is bound within the scope of P . n[P] denotes
process P in an ambients n. recX.P is a recursive definition
of process. An occurrence of n in P is said to be free iff it
does not lie within the scope of a bound occurrence of n.
The set of names occurring free in P is denoted fn(P). An
occurrence of a name in P is said to be bound if it is not free,
we write the set of bound names as bn(P). n(P) denotes
the set of names of P , i.e., n(P) = fn(P)∪ bn(P). We use
n(P,Q) to denote n(P) ∪ n(Q). A process is closed if it
has no free variable; it is open if it may have free variables.
Processes P and Q are α-convertible, P ≡α Q, if Q can
be obtained from P by a finite number of changes of bound
names and bound variables. The class of the processes is
denoted as Pr. The class of the closed processes is denoted
as Prc.

The formal definition of indexed context is given below:
C[] ::= [] | 0 | X | (X).C | ⟨P ⟩.C | ⟨C⟩.P | in⟨n⟩.C

| out⟨n⟩.C | open⟨n⟩.C | in⟨n⟩.C | out⟨n⟩.C | open⟨n⟩.C
| P |C | C|P | (νn)C | n[C] | recX.C

Structural congruence of MHSA is a congruence relation
including the following rules:
P ≡ Q if P ≡α Q; P |Q ≡ Q|P ; (P |Q)|R ≡ P |(Q|

R); P |0 ≡ P ; (νn)0 ≡ 0; (νm)(νn)P ≡ (νn)(νm)
P ; (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P); (νn)(m[P]) ≡
m[(νn)P] if n ̸= m.

The operational semantics of MHSA is given in Table
1. We have omitted the symmetric of the parallelism and
interaction.

Table 1: Labelled transition system of MHSA

STRUC :
P −→ P ′

Q −→ Q′P ≡ Q,P ′ ≡ Q′

COM : (X).P |⟨Q⟩.R −→ P{Q/X}|R

IN : n[in⟨m⟩.P1|P2]|m[in⟨m⟩.Q1|Q2] −→
m[n[P1|P2]|Q1|Q2]

OUT : m[n[out⟨m⟩.P1|P2]|P3]|out⟨m⟩.Q −→
n[P1|P2]|m[P3]|Q

OPEN : open⟨n⟩.P |n[open⟨n⟩.Q1|Q2] −→ P |Q1|Q2

PAR :
P −→ P ′

P |Q −→ P ′|Q
RES :

P −→ P ′

(νn)P −→ (νn)P ′

AMB :
P −→ P ′

n[P] −→ n[P ′]

REC :
P{recX.P/X} −→ P ′

recX.P −→ P ′

2.2 Reduction Barbed Congruence of MHSA
Now we can give the concept of reduction barbed con-

gruence for higher order ambients. Reduction barbed con-
gruence is a behavioural equivalence defined as the largest
equivalence that is preserved by all the constructs of the
language, is preserved by the reduction semantics of the
language, and preserves barbs, which are simple observables
of terms.

Now we review the concept of reduction barbed congru-
ence for SA. In the remainder of this paper, we abbreviate
P{R/U} as P ⟨R⟩. In the following, we use P =⇒ P ′ to
abbreviate P −→ ... −→ P ′.

Definition 1. For each name n, the observability predicate
⇓n is defined by

P ⇓n if ∃P ′, P =⇒ P ′ ≡ (νk̃)(n[c.P1|P2]|P3), where
c ∈ {in⟨n⟩, open⟨n⟩} and n /∈ {k̃};

Definition 2. A symmetric relation R ⊆ Prc × Prc is a
weak reduction barbed congruence if P R Q implies:

(1) C[P] R C[Q] for any C[];
(2) whenever P =⇒ P ′ then there exists Q′ such that

Q =⇒ Q′ and P ′ R Q′;
(3) P ⇓n implies Q ⇓n.
We write P ≈Ba Q if P and Q are weakly reduction

barbed congruent.

3. Encoding of Polyadic Higher Order
Safe Ambient Calculus

Now we introduce a polyadic higher order safe ambi-
ent calculus, then give an encoding which transforms this
polyadic higher order safe ambient calculus into the monadic
calculus. At last, we prove the full abstraction property of
this encoding.

3.1 Syntax and Labelled Transition System
Intuitively, polyadic higher order safe ambients are am-

bients which can send or receive many processes contem-
poraneously. The formal definition of processes of polyadic
higher order safe ambients is given as follows:

P ::= 0 | X | (X1, ..., Xk).P | ⟨P1, ..., Pk⟩.P | in⟨n⟩.P
| out⟨n⟩.P | open⟨n⟩.P | in⟨n⟩.P | out⟨n⟩.P | open⟨n⟩.P
| P1|P2 | (νn)P | n[P] | recX.P, where n ∈ set N of
names, X ∈ set V ar of process variables.

82 Int'l Conf. Foundations of Computer Science | FCS'13 |

The operational semantics of processes is similar as Table
1 except that COM is replaced by the following rule:

COM : (X1, ..., Xk).P |⟨Q1, ..., Qk⟩.R −→
P{Q1/X1, ..., Qk/Xk}|R

3.2 Encoding Polyadic Higher Order Safe Am-
bient Calculus in MHSA

Now we show that polyadic higher order safe ambients
can be simulated by monadic higher order safe ambients.

Definition 3. We give a mapping TrPS{}a with respect
to name a which transforms every polyadic higher order
safe ambient P into the monadic higher order safe ambient
TrPS{P}a. The mapping is defined inductively on the
structure of P.

(1) TrPS{0}a = 0;

(2) TrPS{X}a = X;
(3) TrPS{(X1, ..., Xk).P}a = (X).a[X|open⟨a⟩.(X1)...

(Xk).T rPS{P}a];
(4) TrPS{⟨P1, ..., Pk⟩.P}a = (νp)(⟨in⟨p⟩.0⟩.p[in⟨p⟩.

open⟨a⟩.⟨TrPS{P1}a⟩...⟨TrPS{Pk}a⟩.open⟨p⟩.T rPS{P}a]
|open⟨p⟩.0);

(5) TrPS{in⟨n⟩.P}a = in⟨n⟩.T rPS{P}a;
(6) TrPS{out⟨n⟩.P}a = out⟨n⟩.T rPS{P}a;
(7) TrPS{open⟨n⟩.P}a = open⟨n⟩.T rPS{P}a;
(8) TrPS{in⟨n⟩.P}a = in⟨n⟩.T rPS{P}a;
(9) TrPS{out⟨n⟩.P}a = out⟨n⟩.T rPS{P}a;
(10) TrPS{open⟨n⟩.P}a = open⟨n⟩.T rPS{P}a;
(11) TrPS{P1|P2}a = TrPS{P1}a|TrPS{P2}a;
(12) TrPS{(νn)P}a = (νn)TrPS{P}a;
(13) TrPS{n[P]}a = n[TrPS{P}a];
(14) TrPS{recX.P}a = recX.TrPS{P}a.
Now we can give the full abstraction property of encoding

TrPS{}a.
Lemma 1. For any polyadic higher order ambi-

ents P and Q1, ..., Qk, TrPS{P}a{TrPS{Q1}a/X1, ...,
T rPS{Qk}a/Xk} ≈Ba TrPS{P{Q1/X1, ..., Qk/Xk}}a,
where a /∈ fn(P,Q1, ..., Qk).

Lemma 2. For any polyadic higher order ambients P and
Q, P =⇒ Q ⇔ (νa)TrPS{P}a =⇒≈Ba (νa)TrPS{Q}a,
where a /∈ fn(P) ∪ fn(Q).

Lemma 3. For any polyadic higher order ambient P , P ⇓
n ⇔ (νa)TrPS{P}a ⇓ n, where a /∈ fn(P).

The definition of (weak) reduction barbed congruence
≈Ba for polyadic higher order ambients calculus is the same
as Definition 2.

Proposition 1. For any polyadic higher order ambients P
and Q, P ≈Ba Q ⇔ (νa)TrPS{P}a ≈Ba (νa)TrPS{Q}a,
where a /∈ fn(P) ∪ fn(Q).

P roof : By Lemmas 1, 2 and 3.
The above results show that the polyadic higher order

ambients calculus can be encoded in the monadic higher
order ambients calculus.

4. Encoding of First Order Ambient Cal-
culus with Capability-Passing

For first order ambient calculus with communication, there
are two kinds of communication, one is capability-passing,
i.e., processes can send or receive capabilities; another is
name-passing, i.e., processes can send or receive names.
We will prove that both these calculus can be encoded in
monadic higher order safe ambient calculus.

In this section, we prove that ambient calculus with
capability-passing can be encoded in monadic higher order
safe ambient calculus.

4.1 Syntax and Labelled Transition System of
Polyadic Calculus and Monadic Calculus

The formal definition of processes of polyadic first order
ambient calculus with capability-passing is given as follows:

P ::= 0 | X | (x1, ..., xk).P | ⟨c1, ..., ck⟩.P | x.P |
in⟨n⟩.P | out⟨n⟩.P | open⟨n⟩.P | in⟨n⟩.P | out⟨n⟩.P |
open⟨n⟩.P | P1|P2 | (νn)P | n[P] | recX.P, where n ∈ set
N of names, xi is a variable, ci is a capability.

The operational semantics of processes is similar as Table
1 except that COM is replaced by the following rule:

COM : (x1, ..., xk).P |⟨c1, ..., ck⟩.Q −→
P{c1/x1, ..., ck/xk}|Q

Monadic calculus is a subcalculus of polyadic calculus
where only one parameter can be communicated. The syntax
and labelled transition system of monadic calculus is similar
to polyadic calculus except that the number of parameters
in communications is one.

4.2 Encoding Polyadic Ambient Calculus in
Monadic Ambient Calculus

To prove that polyadic first order ambient calculus can
be encoded by polyadic higher order ambient calculus, we
approach this aim by two steps: firstly, we show that polyadic
first order ambient calculus can be encoded by monadic first
order ambient calculus; secondly, we show that monadic first
order ambient calculus can be encoded by monadic higher
order ambient calculus.

Now we first prove that polyadic first order ambient
calculus can be simulated by monadic first order ambient
calculus.

Definition 4. We give an encoding of the polyadic ambient
calculus in the monadic ambient calculus. The mapping is
defined inductively on the structure of P, where a ia a fresh
name.

(1) TrPFC{0}a = 0;
(2) TrPFC{X}a = X;
(3) TrPFC{(x1, ..., xk).P}a = (x).a[x.open⟨a⟩.(x1)...

(xk).T rPFC{P}a];
(4) TrPFC{⟨c1, ..., ck⟩.P}a = (νp)(⟨in⟨p⟩⟩.p[in⟨p⟩.

open⟨a⟩.⟨c1⟩...⟨ck⟩.open⟨p⟩.T rPFC{P}a]|open⟨p⟩.0);

Int'l Conf. Foundations of Computer Science | FCS'13 | 83

(5) TrPFC{α.P}a = α.TrPFC{P}a, where α is not in
the form of (x1, ..., xk) and ⟨c1, ..., ck⟩;

(6) TrPFC{P1|P2}a = TrPFC{P1}a|TrPFC{P2}a;
(7) TrPFC{(νn)P}a = (νn)TrPFC{P}a;
(8) TrPFC{n[P]}a = n[TrPFC{P}a];
(9) TrPFC{recX.P}a = recX.TrPFC{P}a.
In the following, we give the full abstraction property of

TrPFC{}a.
Lemma 4. For any polyadic ambient P , TrPFC{P}a

{c1/x1, ..., ck/xk} ≈Ba TrPFC{P{c1/x1, ..., ck/xk}}a,
where a /∈ fn(P, c1.0, ..., ck.0).

Lemma 5. For any polyadic ambients P and Q, P =⇒
Q ⇔ (νa)TrPFC{P}a =⇒≈Ba (νa)TrPFC{Q}a, where
a /∈ fn(P) ∪ fn(Q).

Lemma 6. For any polyadic ambient P , P ⇓ n ⇔
(νa)TrPFC{P}a ⇓ n, where a /∈ fn(P).

The definition of (weak) reduction barbed congruence
≈Ba for polyadic/monadic ambients with capability-passing
is the same as Definition 2.

Proposition 2. For any polyadic ambients P and Q,
P ≈Ba Q ⇔ (νa)TrPFC{P}a ≈Ba (νa)TrPFC{Q}a,
where a /∈ fn(P) ∪ fn(Q).
P roof : By Lemmas 4, 5 and 6.

4.3 Encoding Monadic Ambient Calculus in
MHSA

Now we show that every monadic ambient can be encoded
in a monadic higher order safe ambient.

Definition 5. We give a mapping TrFC{}a with respect
to name a which transforms every monadic ambient P
into monadic higher order safe ambient TrFC{P}a. The
mapping is defined inductively on the structure of P.

(1) TrFC{0}a = 0;
(2) TrFC{X}a = X;
(3) TrFC{(x).P}a = (X).T rFC{P}a;
(4) TrFC{⟨in⟨n⟩⟩.P}a = ⟨in⟨n⟩.open⟨a⟩.0⟩.T rFC

{P}a;
(5) TrFC{⟨out⟨n⟩⟩.P}a = ⟨out⟨n⟩.open⟨a⟩.0⟩.T rFC

{P}a;
(6) TrFC{⟨open⟨n⟩⟩.P}a = ⟨open⟨n⟩.open⟨a⟩.0⟩.T rFC

{P}a;
(7) TrFC{⟨in⟨n⟩⟩.P}a = ⟨in⟨n⟩.open⟨a⟩.0⟩.T rFC

{P}a;
(8) TrFC{⟨out⟨n⟩⟩.P}a = ⟨out⟨n⟩.open⟨a⟩.0⟩.T rFC

{P}a;
(9) TrFC{⟨open⟨n⟩⟩.P}a = ⟨open⟨n⟩.open⟨a⟩.0⟩.T rFC

{P}a;
(10) TrFC{x.P}a = X|a[open⟨a⟩.T rFC{P}a];
(11) TrFC{in⟨n⟩.P}a = in⟨n⟩.T rFC{P}a;
(12) TrFC{out⟨n⟩.P}a = out⟨n⟩.T rFC{P}a;
(13) TrFC{open⟨n⟩.P}a = open⟨n⟩.T rFC{P}a;
(14) TrFC{in⟨n⟩.P}a = in⟨n⟩.T rFC{P}a;
(15) TrFC{out⟨n⟩.P}a = out⟨n⟩.T rFC{P}a;
(16) TrFC{open⟨n⟩.P}a = open⟨n⟩.T rFC{P}a;

(17) TrFC{P1|P2}a = TrFC{P1}a|TrFC{P2}a;
(18) TrFC{(νn)P}a = (νn)TrFC{P}a;
(19) TrFC{n[P]}a = n[TrFC{P}a];
(20) TrFC{recX.P}a = recX.TrFC{P}a.
The following lemmas and propositions state the full

abstraction property of TrFC{}a.
Lemma 7. For any monadic ambient P , TrFC{P}a{c.

open⟨a⟩.0/X} ≈Ba TrFC{P{c/x}}a, where a /∈ fn(P,
c.0).

Lemma 8. For any monadic ambients P and Q, P =⇒
Q ⇔ (νa)TrFC{P}a =⇒≈Ba (νa)TrFC{Q}a, where a /∈
fn(P) ∪ fn(Q).

Lemma 9. For any monadic ambient P , P ⇓ n ⇔
(νa)TrFC{P}a ⇓ n, where a /∈ fn(P).

Proposition 3. For any monadic ambients with capability-
passing P and Q, P ≈Ba Q ⇔ (νa)TrFC{P}a ≈Ba

(νa)TrFC{Q}a, where a /∈ fn(P) ∪ fn(Q).

P roof : By Lemmas 7, 8 and 9.
We can indirectly encode polyadic first order ambient

calculus with capability-passing in monadic higher order
ambient calculus since polyadic first order ambient calculus
with capability-passing can be encoded in monadic first
order ambient calculus with capability-passing and monadic
first order ambient calculus with capability-passing can be
encoded in monadic higher order safe ambient calculus.

5. Encoding of First Order Ambient Cal-
culus with Name-Passing

In this section, we will give an encoding of ambient
calculus with name-passing, then we will prove the full
abstraction of this encoding.

5.1 Syntax and Labelled Transition System of
Polyadic Calculus and Monadic Calculus

The formal definition of processes of polyadic first order
ambient calculus with name-passing is given as follows:

P ::= 0 | X | (x1, ..., xk).P | ⟨n1, ..., nk⟩.P | in⟨n⟩.P |
out⟨n⟩.P | open⟨n⟩.P | in⟨n⟩.P | out⟨n⟩.P | open⟨n⟩.P |
P1|P2 | (νn)P | n[P] | recX.P | x[P] | in⟨x⟩.P | out⟨x⟩.P |
open⟨x⟩.P | in⟨x⟩.P | out⟨x⟩.P | open⟨x⟩.P, where n ∈ set
N of names, xi is a variable.

The operational semantics of processes is similar as Table
1 except that COM is replaced by the following rule:

COM : (x1, ..., xk).P |⟨n1, ..., nk⟩.R −→
P{n1/x1, ..., nk/xk}|R

Similarly, monadic calculus is a subcalculus of polyadic
calculus where only one parameter can be exchanged in one
communication. The syntax and labelled transition system
of monadic calculus is similar to polyadic calculus except
that the number of parameters in communications is one.

84 Int'l Conf. Foundations of Computer Science | FCS'13 |

5.2 Encoding Polyadic Ambient Calculus with
Name-Passing in Monadic Calculus

At first we show that the polyadic ambient calculus with
name-passing can be simulated by the monadic ambient
calculus with name-passing.

Definition 6. We give an encoding of the polyadic ambient
calculus with name-passing in the monadic ambient calculus
with name-passing. The mapping is defined inductively on
the structure of P, where a is a fresh name.

(1) TrPFN{0}a = 0;
(2) TrPFN{X}a = X;
(3) TrPFN{(x1, ..., xk).P}a = (x).a[in⟨x⟩.open⟨a⟩.

(x1)...(xk).T rPFN{P}a];
(4) TrPFN{⟨n1, ..., nk⟩.P}a = νp(⟨p⟩.p[in⟨p⟩.open⟨a⟩.

⟨n1⟩...⟨nk⟩.open⟨p⟩.T rPFN{P}a]|open⟨p⟩.0);
(5) TrPFN{α.P}a = α.TrPFN{P}a, where α is not in

the form of (x1, ..., xk) and ⟨n1, ..., nk⟩;
(6) TrPFN{P1|P2}a = TrPFN{P1}a|TrPFN{P2}a;
(7) TrPFN{(νn)P}a = (νn)TrPFN{P}a;
(8) TrPFN{n[P]}a = n[TrPFN{P}a];
(9) TrPFN{x[P]}a = x[TrPFN{P}a];
(10) TrPFN{recX.P}a = recX.TrPFN{P}a.
The full abstraction property of this encoding can be given

similar to Proposition 2.

5.3 Encoding Monadic Ambient Calculus with
Name-Passing in Polyadic Higher Order Safe
Ambient Calculus

Now we show that every monadic ambient with name-
passing can be encoded in a polyadic higher order safe
ambient.

Definition 7. We give a mapping TrFN{}a with respect
to name a which transforms every monadic ambient P
into polyadic higher order safe ambient TrFN{P}a. The
mapping is defined inductively on the structure of P.

(1) TrFN{0}a = 0;
(2) TrFN{X}a = X;
(3) TrFN{in⟨n⟩.P}a = in⟨n⟩.T rFN{P}a;
(4) TrFN{out⟨n⟩.P}a = out⟨n⟩.T rFN{P}a;
(5) TrFN{open⟨n⟩.P}a = open⟨n⟩.T rFN{P}a;
(6) TrFN{in⟨n⟩.P}a = in⟨n⟩.T rFN{P}a;
(7) TrFN{out⟨n⟩.P}a = out⟨n⟩.T rFN{P}a;
(8) TrFN{open⟨n⟩.P}a = open⟨n⟩.T rFN{P}a;
(9) TrFN{P1|P2}a = TrFN{P1}a|TrFN{P2}a;
(10) TrFN{(νn)P}a = (νn)TrFN{P}a;
(11) TrFN{n[P]}a = n[TrFN{P}a];
(12) TrFN{recX.P}a = recX.TrFN{P}a;
(13) TrFN{(x).P}a = (Zx

1 , Z
x
2 , Z

x
3 , Z

x
4 , Z

x
5 , Z

x
6 , Z

x
7 ,

Zx
8).T rFN{P}a;
(14) TrFN{⟨n⟩.P}a = ⟨n[in⟨n⟩.open⟨a⟩.0], in⟨n⟩.0,

in⟨n⟩.open⟨a⟩.0, out⟨n⟩.open⟨a⟩.0, open⟨n⟩.open⟨a⟩.0,
in⟨n⟩.open⟨a⟩.0, out⟨n⟩.open⟨a⟩.0, open⟨n⟩.open⟨a⟩.0⟩.
T rFN{P}a;

(15) TrFN{x[P]}a = Zx
1 |a[Zx

2 |open⟨a⟩.T rFN{P}a];
(16) TrFN{in⟨x⟩.P}a = Zx

3 |a[open⟨a⟩.T rFN{P}a];
(17) TrFN{out⟨x⟩.P}a = Zx

4 |a[open⟨a⟩.T rFN{P}a];
(18) TrFN{open⟨x⟩.P}a = Zx

5 |a[open⟨a⟩.T rFN{P}a];
(19) TrFN{in⟨x⟩.P}a = Zx

6 |a[open⟨a⟩.T rFN{P}a];
(20) TrFN{out⟨x⟩.P}a = Zx

7 |a[open⟨a⟩.T rFN{P}a];
(21) TrFN{open⟨x⟩.P}a = Zx

8 |a[open⟨a⟩.T rFN{P}a].
The full abstraction of TrFN{}a is stated in the following

lemmas and propositions.
Lemma 10. For any monadic ambient P , TrFN{P}a

{n[in⟨n⟩.open⟨a⟩.0]/Zx
1 , in⟨n⟩.0/Zx

2 , in⟨n⟩.open⟨a⟩.0/Zx
3 ,

out⟨n⟩.open⟨a⟩.0/Zx
4 , open⟨n⟩.open⟨a⟩.0/Zx

5 , in⟨n⟩.open⟨a⟩.
0/Zx

6 , out⟨n⟩.open⟨a⟩.0/Zx
7 , open⟨n⟩.open⟨a⟩.0/Zx

8 } ≈Ba

TrFN{P{n/x}}a, where a /∈ fn(P} ∪ {n}.
Lemma 11. For any monadic ambients P and Q, P =⇒

Q ⇔ (νa)TrFN{P}a =⇒≈Ba (νa)TrFN{Q}a, where a /∈
fn(P) ∪ fn(Q).

Lemma 12. For any monadic ambient P , P ⇓ n ⇔
(νa)TrFN{P}a ⇓ n, where a /∈ fn(P).

The definition of (weak) reduction barbed congruence
≈Ba for monadic ambients with name-passing is the same
as Definition 2.

Proposition 4. For any monadic ambients with name-
passing P and Q, P ≈Ba Q ⇔ (νa)TrFN{P}a ≈Ba

(νa)TrFN{Q}a, where a /∈ fn(P) ∪ fn(Q).
P roof : By Lemmas 10, 11 and 12.
We can indirectly encode polyadic first order ambient

calculus with name-passing in monadic higher order ambient
calculus since polyadic first order ambient calculus with
name-passing can be encoded in monadic first order ambient
calculus with name-passing, monadic first order ambient
calculus with name-passing can be encoded in polyadic
higher order safe ambient calculus, and polyadic higher order
safe ambient calculus can be encoded in monadic higher
order safe ambient calculus.

6. Encoding of Polyadic π-Calculus
In this section, we will show that polyadic π-calculus can

be encoded in monadic higher order ambient calculus.

6.1 Syntax and Labelled Transition System of
Polyadic π-Calculus

Now we briefly recall the syntax and labelled transition
system of the polyadic π-calculus.

We use a, b, c,..., x, y, z,... to range over the class of
names. The class Pr of the polyadic π-calculus processes is
built up using the operators of prefixing, sum, parallel com-
position, restriction and replication in the grammar below:

P ::= 0 | x(y1, ..., yk).P | x⟨y1, ..., yk⟩.P | P1|P2 | (νx)P |
!P

In each process of the form (νy)P or x(y).P the occur-
rence of y is bound within the scope of P . An occurrence
of y in a process is said to be free iff it does not lie within
the scope of a bound occurrence of y. The set of names

Int'l Conf. Foundations of Computer Science | FCS'13 | 85

occurring free in P is denoted fn(P). An occurrence of a
name in a process is said to be bound if it is not free, we
write the set of bound names as bn(P). Process P and Q
are α-convertible, P ≡α Q, if Q can be obtained from P
by a finite number of changes of bound names. The set of
all processes is denoted as Prcπ .

Structural congruence of polyadic π-calculus is a congru-
ence relation including the following rules:
P ≡ Q if P ≡α Q; P |Q ≡ Q|P ; (P |Q)|R ≡ P |(Q|

R); P |0 ≡ P ; (νn)0 ≡ 0; (νm)(νn)P ≡ (νn)(νm)
P ; (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P).

The operational semantics of processes is given in Table
2. We have omitted the symmetric of the parallelism and
communication.

Table 2: Labelled transition system of polyadic π-calculus
COM : x⟨y1, ..., yk⟩.P |x(z1, ..., zk).Q −→

P |Q{y1/z1, ..., yk/zk}
ALP :

P −→ P ′

Q −→ Q′P ≡ Q,P ′ ≡ Q′

PAR :
P −→ P ′

P |Q −→ P ′|Q
RES :

P −→ P ′

(νx)P −→ (νx)P ′

REP :
P |!P −→ P ′

!P −→ P ′

6.2 Encoding Polyadic π-Calculus in First Or-
der Ambient Calculus with Name-Passing

Now we show that polyadic π-calculus [12] can be
encoded in first order ambient calculus with name-passing.

Definition 8. We give a mapping Trπ{} which transforms
every polyadic π-calculus process P into the first order
ambient calculus with name-passing process Trπ{P}. The
mapping is defined inductively on the structure of P.

(1) Trπ{0} = 0;
(2) Trπ{x(y1, ..., yk).P} = x[in⟨x⟩.open⟨x⟩.(y1, ..., yk).

open⟨x⟩.T rπ{P}]|open⟨x⟩.0;
(3) Trπ{x⟨y1, ..., yk⟩.P} = x[in⟨x⟩.⟨y1, ..., yk⟩.T rπ{P}|

open⟨x⟩.0];
(4) Trπ{P1|P2} = Trπ{P1}|Trπ{P2};
(5) Trπ{(νx)P} = (νx)Trπ{P};
(6) Trπ{!P}n =!Trπ{P}n.
By the above Proposition 4, we can also get a full

abstract encoding from polyadic π-calculus in the monadic
higher order ambient calculus. Therefore, π-calculus can be
expressed in the monadic higher order ambient calculus.

Reduction barbed congruence for polyadic π-calculus is
defined as follows:

Definition 9. A symmetric relation R ⊆ Prcπ × Prcπ is a
weakly reduction barbed congruence if P R Q implies:

(1) P |C R Q|C for any C;
(2) Whenever P =⇒ P ′ then Q =⇒ Q′ and P ′ R Q′;
(3) For any name n, if P ⇓ n, then also Q ⇓ n. Here

P ⇓ n means ∃P ′, P =⇒ P ′ ≡ (νk̃)(α.P1|P2) where

n = x if α = x(y1, ..., yk), n = x if α = x⟨y1, ..., yk⟩} and
{n, n} ∩ k̃ = ∅.

We write P ≈Ba Q if P and Q are weakly reduction
barbed congruent.

Now we can give the full abstraction of Trπ{}.
Lemma 13. For any polyadic π-calculus process

P , Trπ{P}{z1/y1, ..., zk/yk} ≈Ba Trπ{P{z1/y1, ...,
zk/yk}}.

Lemma 14. For any polyadic π-calculus processes P and
Q, P =⇒ Q ⇔ Trπ{P} =⇒≈Ba Trπ{Q}.

Lemma 15. For any polyadic π-calculus process P , P ⇓
n ⇔ Trπ{P} ⇓ n.

Proposition 5. For any polyadic π-calculus processes P
and Q, P ≈Ba Q ⇔ Trπ{P} ≈Ba Trπ{Q}.

P roof : By Lemmas 13, 14 and 15.

7. Asynchronous vs. Synchronous Com-
munication

In the above sections, we study the expressiveness of
synchronous calculi. But many ambients calculi are asyn-
chronous calculi [3], [9]. So in this section, we will exploit
the expressiveness of asynchronous calculus.

For asynchronous calculus, message emission is non-
blocking. Asynchronous communications are interesting
from the point of view of concurrent and distributed pro-
gramming languages, because they are closer to the commu-
nication primitives offered by available distributed systems.
Asynchronous calculi are usually achieved, syntactically, by
disallowing output prefix (that is, continuations underneath
output messages) and choice. In [7], authors showed that
synchronous higher order π-calculus can be encoded in
asynchronous higher order π-calculus.

In this section, we show that the similar result also holds
for ambient calculus: synchronous monadic higher order safe
ambient calculus can be encoded in asynchronous monadic
higher order safe ambient calculus, named asynchronous
MHSA. This result implies that all process calculi in this
paper can be encoded in asynchronous monadic higher order
ambient calculus.

7.1 Syntax and Labelled Transition System of
Asynchronous MHSA

The formal definition of processes of asynchronous
monadic higher order safe ambients is given as follows:

P ::= 0 | X | (X).P | ⟨P ⟩ | in⟨n⟩.P | out⟨n⟩.P
| open⟨n⟩.P | in⟨n⟩.P | out⟨n⟩.P | open⟨n⟩.P |
P1|P2 | (νn)P | n[P] | recX.P, where n ∈ set N of
names, X ∈ set V ar of process variables.

The operational semantics of processes is similar as Table
1 except that COM is replaced by the following rule:

COM : (X).P |⟨Q⟩ −→ P{Q/X}

86 Int'l Conf. Foundations of Computer Science | FCS'13 |

7.2 Encoding MHSA in Asynchronous MHSA
In this section we present an encoding from syn-

chronous monadic higher order safe ambients to asyn-
chronous monadic higher order safe ambients, then prove
the full abstraction property of this encoding.

Definition 10. We give a mapping TrS{}a,b,c with re-
spect to names a, b, c which transforms every synchronous
monadic higher order safe ambient P into the asynchronous
monadic higher order safe ambient TrS{P}a,b,c. The map-
ping is defined inductively on the structure of P.

(1) TrS{0}a,b,c = 0;
(2) TrS{X}a,b,c = X;
(3) TrS{(X).P}a,b,c = a[in⟨a⟩.open⟨b⟩.(X).open⟨c⟩.

open⟨a⟩.T rS{P}a,b,c]|open⟨a⟩.0;
(4) TrS{⟨P1⟩.P2}a,b,c = b[in⟨a⟩.open⟨b⟩.⟨TrS{P1}a,b,c

⟩|c[open⟨c⟩.T rS{P2}a,b,c]];
(5) TrS{in⟨n⟩.P}a,b,c = in⟨n⟩.T rS{P}a,b,c;
(6) TrS{out⟨n⟩.P}a,b,c = out⟨n⟩.T rS{P}a,b,c;
(7) TrS{open⟨n⟩.P}a,b,c = open⟨n⟩.T rS{P}a,b,c;
(8) TrS{in⟨n⟩.P}a,b,c = in⟨n⟩.T rS{P}a,b,c;
(9) TrS{out⟨n⟩.P}a,b,c = out⟨n⟩.T rS{P}a,b,c;
(10) TrS{open⟨n⟩.P}a,b,c = open⟨n⟩.T rS{P}a,b,c;
(11) TrS{P1|P2}a,b,c = TrS{P1}a,b,c|TrS{P2}a,b,c;
(12) TrS{(νn)P}a,b,c = (νn)TrS{P}a,b,c;
(13) TrS{n[P]}a,b,c = n[TrS{P}a,b,c];
(14) TrS{recX.P}a,b,c = recX.TrS{P}a,b,c.
In the following, we aim to prove the full abstraction

property of encoding TrS{}a,b,c.
Lemma 16. For any synchronous monadic higher order

ambients P and Q, TrS{P}a,b,c{TrS{Q}a,b,c/X} ≈Ba

TrS{P{Q/X}}a,b,c, where a, b, c /∈ fn(P,Q).
Lemma 17. For any synchronous monadic higher or-

der ambients P and Q, P =⇒ Q ⇔ (νa, b, c)
TrS{P}a,b,c =⇒≈Ba (νa, b, c)TrS{Q}a,b,c, where a, b, c
/∈ fn(P) ∪ fn(Q).

Lemma 18. For any synchronous monadic higher order
ambient P , P ⇓ n ⇔ (νa, b, c)TrS{P}a,b,c ⇓ n, where
a, b, c /∈ fn(P).

The definition of (weak) reduction barbed congruence
≈Ba for asynchronous monadic higher order ambient cal-
culus is the same as Definition 2.

Proposition 6. For any synchronous monadic higher order
ambients P and Q, P ≈Ba Q ⇔ (νa, b, c)TrS{P}a,b,c ≈Ba

(νa, b, c)TrS{Q}a,b,c, where a, b, c /∈ fn(P) ∪ fn(Q).
P roof : By Lemmas 16, 17 and 18.
The above results show that the synchronous monadic

higher order ambient calculus can be encoded in asyn-
chronous monadic higher order ambient calculus.

8. Conclusions
In this paper, we studied the expressive power of monadic

higher order safe ambient calculus. We showed that polyadic
higher order safe ambient calculus, first order safe ambient

calculus with capability-passing, first order safe ambient
calculus with name-passing, and polyadic π-calculus can all
be encoded in monadic higher order ambient calculus. At
last, we also showed that synchronous monadic higher order
ambient calculus can be encoded in asynchronous monadic
higher order ambient calculus. Therefore, all process calculi
in this paper can be encoded in asynchronous monadic
higher order ambient calculus. In [6], authors showed that a
higher order π-calculus with n-adic communication cannot
be encoded in a calculus with n − 1-adic communication.
We have showed that polyadic π-calculus can be encoded
in monadic higher order ambient calculus in this paper.
Since it was proved that higher order π-calculus can be
encoded in π-calculus in [11], we can conclude that the
monadic higher order ambient calculus cannot be encoded in
higher order π-calculus with n-adic communication for any
n. Therefore, this result means that the expressive power of
monadic higher order ambient calculus is strictly stronger
than higher order π-calculus.

Acknowledgment
This work was supported by the Aviation Science Fund of

China under Grant No. 20128052064 and the National Natu-
ral Science Foundation of China under Grant No. 60873025.

References
[1] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. 4th

TACS. LNCS, vol. 2215. Springer Verlag. 2001.
[2] M. Coppo and M. Dezani-Ciangcaglini. A fully abstract model for

higher-order ambients. Proceedings of VMCAI 2002. LNCS 2294.
255-271.

[3] L. Cardelli, and A. Gordon. Mobile ambients. Theoretical Computer
Science 240, 1, 177-213. 2000. An extended abstract appeared in Proc.
of FoSSaCS98.

[4] Z. Cao. A Calculus of Higher Order Safe Ambients and Its Bisimu-
lations. Proceedings of TASE, 93-100, 2012.

[5] Y. Fu. Fair ambients. Acta Inf., 43(8):535-594, 2007.
[6] I. Lanese, J. A. Perez, D. Sangiorgi, and A. Schmitt. On the

Expressiveness of Polyadicity in Higher-Order Process Calculi. In
Proceedings of ICTCS’09, 7 pages, 2009.

[7] I. Lanese, J. A. Perez, D. Sangiorgi, and A. Schmitt. On the Ex-
pressiveness of Polyadic and Synchronous Communication in Higher-
Order Process Calculi. In Proc. ICALP’10, LNCS, 2010.

[8] F. Levi, and D. Sangiorgi. Controlling interference in ambients. An
extended abstract appeared in Proc. 27th POPL, ACM Press, 2000.

[9] F. Levi, and D. Sangiorgi. Mobile safe ambients. ACM Transactions
on Programming Languages and Systems 25(1), 1-69, 2003.

[10] M. Merro, M. Hennessy. A Bisimulation-based Semantic Theory of
Safe Ambients. ACM Transactions on Programming Languages and
Systems, 28(2):290-330, 2006.

[11] D. Sangiorgi. Expressing mobility in process algebras: first-order and
higher-order paradigms, Ph.D thesis, University of Einburgh, 1992.

[12] D. Sangiorgi, D. Walker. The π-calculus: a theory of mobile processes,
Cambridge University Press, 2001.

Int'l Conf. Foundations of Computer Science | FCS'13 | 87

Test Case Generation and Execution based on Record-
Replayer Mechanism

Jinyoung Kim1, Hyunmin Yoon1, and Minsoo Ryu2

1Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea
2Department of Computer Science and Engineering, Hanyang University, Seoul, Korea

Abstract - In this paper, we present a novel testing approach
using deterministic replay. Deterministic replay is a
technology that records nondeterministic events during a
normal computer execution and deterministically replays the
computer system’s execution along with the recorded events.
We apply this deterministic replay technology to event-driven
embedded system testing. The proposed approach works in
three steps. First, we run an initial test using a sequence of
“essential’’ events and obtain an event history that contains
enough information needed for deterministic replay. Second,
we create a number of variants of event history, i.e., test cases,
by mutating the event history and/or adding more event
records into the event history. Third, we execute the variants
of event history emulating all recorded I/O events. This
approach has two important advantages. It allows us to easily
and efficiently generate a lot of effective test cases that can
exhibit subtle bugs like races. It also provides an efficient
means for automated test case execution since we do not need
any arrangement of external entities like users and other
systems.

Keywords: Embedded system testing, Record-Replay,
Automated test execution, Event-driven test

1 Introduction
 Event-driven embedded software places significant
challenges on test case creation and execution. Event-driven
embedded software involves many sources of events including
users and a variety of physical devices such as NICs(network
interface cards) and storage devices. These sources may
generate a lot of events that lead us to consider numerous
combinations of events for testing, and thus make the creation
of test cases very difficult. Furthermore, such events may
occur in a complicated fashion; sequentially or concurrently,
with or without interdependencies among them. Therefore, to
detect some hard bugs such as races and time-sensitive bugs,
we should be able to control the precise timing of event
occurrences during the test process. Unfortunately, the
operating environment for event-driven software involves a
lot of entities such as users, physical devices and other

external embedded systems, which are hard to arrange for
precise event simulation during the testing process.
 In this paper, we present a novel testing approach using
deterministic replay. Deterministic replay is a technology that
records nondeterministic events during a normal computer
execution and deterministically replays the computer system’s
execution along with the recorded events. Since deterministic
replay can re-produce identical behavior during re-execution,
it has shown very effective in many areas including debugging
[1, 2, 3], fault tolerance [4, 5], security [6] and post-mortem
analysis [7]. In this work, we use RT-Replayer, a software-
based replayer that can capture and replay I/O events with
instruction level accuracy, to support test case creation and
execution for event-driven embedded software. RT-Replayer
is a software component that is installed inside an operating
system kernel. It has two execution modes, record and replay.
In record mode, it monitors I/O interrupts and records them in
an event history. In replay mode, it disables all interrupts and
emulates the recorded events at the same time points and
locations as those in record mode.
 The proposed testing approach using RT-Replayer
works in three steps. First, we run an initial test using a
sequence of “essential’’ events with RT-Replayer enabled in
record mode, and obtain an event history that contains enough
information needed for deterministic replay. Specifically, each
event record in the event history contains the type and source
of event, the program counter value where the event occurred,
the instruction count when it occurred, and the data content
that accompanied the event. Second, we create a number of
variants of event history, i.e., test cases, by varying program
counter values, instruction counts and data content that satisfy
certain testing criteria. In doing so, we may change the order
of events or even their timings so that subtle program bugs
like races can be detected. We may also add some other
events into the event history. This manipulation of event
history allows us to efficiently generate a series of effective
test cases. Third, we execute the variants of event history with
RT-Replayer enabled in replay mode. Since RT-Replay is
able to emulate events with all I/O interrupt disabled, we do
not need any arrangement of external entities like users and
other systems since RT-Replayer emulates all I/O events.
Therefore, the use of RT-Replayer can be used as an efficient
vehicle for automated test case execution.

88 Int'l Conf. Foundations of Computer Science | FCS'13 |

2 Overview of RT-Replayer
 RT-Replayer consists of three major components, event
recorder, event history and event replayer, as shown in Figure
1. During the record phase, the event recorder logs interrupts
and I/O data into a special data structure, called event log.
When the kernel terminates, the event recorder stores the
event history in safe non-volatile storage. During the replay
phase, the event replayer emulates the interrupts stored in the
event history.
 In order to efficiently record interrupts and I/O data, the
event recorder is implemented within OS interrupt handlers
and I/O device drivers. By using hardware performance
counters, it records the following important information for
deterministic replay.

- Event type and source (who)
- Data (what)
- Program counter value or I/O address (where)
- Instruction count (when)

The first element represents the type and source of event. It is
used to distinguish between interrupts and I/O data access. It
is also used to identify the source of interrupt or I/O address.
The second element represents the data obtained by interrupt
handling or I/O data access. The third element may represent
the program counter (PC) address where an interrupt occurred
or the I/O address from which an I/O operation read the data.
The last element represents an instruction count. We use
instruction counts to determine when interrupts occurred.

Figure 1. Overview of RT-Replayer

 The event replayer performs full-system replay by
appropriately handling the recorded events and data guided by
the event log. In order to avoid any external disturbance

during the replay phase, the event replay mechanism keeps all
hardware interrupts disabled and prohibits I/O drivers from
accessing real hardware. Instead, the event replay mechanism
emulates hardware interrupts and supplies requested I/O data
consulting the event history.

3 Replay Testing
3.1 Difficulties of testing embedded systems
 Concurrency is one of important features in modern
event-driven embedded systems for providing improved
performance. However, concurrent behavior often causes
delicate bugs such as race conditions and deadlocks. For
example, a shared variable may exhibit non-deterministic
behavior without proper synchronization using primitives like
semaphores or mutexes. In general, race conditions and
deadlocks are hard to track down and fix since they are not
reproducible in most cases.
 Time-sensitive operations are another source of bugs
that make testing significantly difficult. For instance, most I/O
controllers require a certain amount of time delay for
subsequent I/O operations: HD44780 character LCD
controller specifies that writing data into DDRAM takes 37 us
to complete, which means a device driver must wait at least
37 us before it performs a subsequent I/O operation. If not,
the character LCD device may not work correctly. Most
practitioners implement such a time delay using idle loops
with an appropriate safety margin, since the actual time delay
is affected by many factors like processor’s pipeline and
cache behavior and/or some other events that may be
interleaved between I/O operations. As a result, it is very hard
to verify whether a device driver properly implements such a
specified time delay or not.
 Hardware failures are even harder to test than concurrent
and time-sensitive software failures. There can be a lot of
hardware failures due to factors such as bus conflict. One
example is I2C bus. The I2C bus arbitration protocol specifies
that only a single slave can send or receive through the bus.
For some reasons, i.e., buggy device driver implementation or
faulty hardware implementation, more than one slaves can use
the bus simultaneously corrupting bus signals. In this case, the
slave devices may not function well or crash. This type of
hardware failures would be extremely hard to test and
reproduce.

3.2 Replay testing process

As described earlier, the proposed testing approach using
RT-Replayer works in three steps; (1) running an initial test to
obtain an event history with RT-Replayer enabled in record
mode; (2) create a number of variants of event history by
mutating the event history and/or adding more event records
into the event history, and (3) executing the variants of event
history with RT-Replayer enabled in replay mode. In this
subsection, we describe each step in detail.

Harware
Events

Software
Instructions

Event
Recorder

Event
Replayer

< Type ID PC IC Flag Address Saved Ins >
[1] Timer 1 0x1234 0x23456 T 0x5678 LDR r1 [2]
[2] Timer 2 0x3456 0x23480 T 0x6789 SWI 0x00

.

Event History

record

save load

execute

test cases

Int'l Conf. Foundations of Computer Science | FCS'13 | 89

3.2.1 Initial test case generation with RT-Replayer

We run an initial test using a sequence of “essential’’
events with RT-Replayer enabled in record mode. It is
important to choose likely events that can exhibit certain bugs
satisfying our testing criteria. For example, if we want to find
time sensitive bugs for some I/O devices, we need to choose
appropriate I/O events from those I/O devices and run a test
generating and interleaving the I/O events. During the test
execution, the I/O events are recoreded in the event history of
RT-Replayer. RT-Replayer logs in the event history
information needed for deterministic replay. Specifically, each
event record in the event history contains the type and source
of event, the program counter value where the event occurred,
the instruction count when it occurred, and the data content
that accompanied the event.

3.2.2 Creation of event history variants

Once we obtained an initial event history, we then create
event history variants. We can create event history variants in
three ways. First, we can modify some fields of event records.
For example, we can modify intruction count values of event
records so that events are generated at different time points
during replay. Second, we can modify the order of events.
Third, we can add or delete some events. Figure 2 shows an
example of creating event history variants.

Note that we must use a valid event record when adding
new one into the original event history. Every field of an event
record must be consistent and follow the specification of the
source I/O device. For example, when we create a new event
record for an interrupt from NIC, we must use a legal network
packet data that satisfies the network protocol format. For
some I/O devices, this may not be easy since we should

understand complex device specifications or I/O protocol
specifications. In such cases, we may run record-mode tests
multiple times so that we can obtain a valid event record for
each type of I/O event.

Deleting some events from the event history also needs
a special care. Some events can be correlated and must occur
in a specific order. For example, DMA can use multiple
interrupts for a single I/O data operation to send
acknowledgement of DMA request and to notify the
completion of DMA operation. In this case, we cannot remove
any of the correlated events. Fortunately, many I/O events are
one-shot events. Timer interrupts are one of them, thus
allowing us to easily remove them.

3.2.3 Execution of event history variants

We execute the event history variants with RT-Replayer
enabled in replay mode. Since RT-Replay is able to emulate
events with all I/O interrupt disabled, we do not need any
arrangement of external entities like users and other systems
since RT-Replayer emulates all I/O events. Therefore, the use
of RT-Replayer can be used as an efficient vehicle for
automated test case execution. At the moment of this writing,
we have not implemented a complete testing framework. By
simply using RT-Replayer, we are just able to run each event
history variant separately in a semi-automatic manner.

4 Conclusion
 We proposed a testing method based on record-replay
technology for event-driven embedded system. We believe
that our method has two important advantages. It allows us to
easily and efficiently generate a lot of effective test cases that
can exhibit subtle bugs like races. It also provides an efficient

Figure 2. Creation of event history variants

90 Int'l Conf. Foundations of Computer Science | FCS'13 |

means for automated test case execution since we do not need
any arrangement of external entities like users and other
systems.

5 Acknowledgement
 This work was supported partly by Seoul Creative Human
Development Program (HM120006), partly by the IT R&D
Program of MKE/KEIT [10035708, “The Development of
CPS (Cyber-Physical Systems) Core Technologies for High
Confidential Autonomic Control Software”], partly by Mid-
career Researcher Program through NRF (National Research
Foundation) grant funded by the MEST (Ministry of
Education, Science and Technology) (NRF-2011-0015997),
and partly by Business for Cooperative R&D between Industry,
Academy, and Research Institute funded Korea Small and
Medium Business Administration in 2013 (Grants No.
00045488).

6 References
[1] Dennis Geels , Gautam Altekar , Scott Shenker , Ion
Stoica “Replay debugging for distributed applications”;
Proceedings of the annual conference on USENIX '06 Annual
Technical Conference, p.27-27, May 30-June 03, 2006.

[2] T. J. LeBlanc, J. M. Mellor-Crummey. “Debugging
parallel programs with instant replay”; IEEE Transactions on
Computers, v.36 n.4, p.471-482, Apr 1987.

[3] Satish Narayanasamy, Gilles Pokam, Brad Calder.
“BugNet: Continuously Recording Program Execution for
Deterministic Replay Debugging”; Proceedings of the 32nd
Annual International Symposium on Computer Architecture,
p.284-295, Jun 2005.

[4] E. N. (Mootaz) Elnozahy , Lorenzo Alvisi , Yi-Min
Wang , David B. Johnson “A survey of rollback-recovery
protocols in message-passing systems”; ACM Computing
Surveys (CSUR), v.34 n.3, p.375-408, Sep 2002.

[5] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, David
A. Wood. “SafetyNet: improving the availability of shared
memory multiprocessors with global checkpoint/recovery”;
Proceedings of the 29th annual international symposium on
Computer architecture, p.123, May 2002

[6] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, Peter M. Chen. “ReVirt: enabling
intrusion analysis through virtual-machine logging and
replay”; ACM SIGOPS Operating Systems Review, v.36 n.SI,
winter 2002.

[7] Jim Chow, Tal Garfinkel, Peter M. Chen. “Decoupling
dynamic program analysis from execution in virtual
environments”; USENIX 2008 Annual Technical Conference
on Annual Technical Conference, p.1-14, Jun 2008.

[8] J.C. Maeng, J.-I. Kwon, M.-K. Sin, M.Ryu. “Rt-
replayer: a record-replay architecture for embedded real-time
software debugging”; SAC ’09: Proceedings of the 2009
ACM Symposium on Applied Computing, p. 1670–1675,
2009.

[9] Jonathan Corbet, Alessandro Rubini, Greg Kroah-
Hartman. “Linux Device Drives 3rd Edition”; O’REILLY
media, 2005.

Int'l Conf. Foundations of Computer Science | FCS'13 | 91

Normal Bisimulation for Higher Order π-Calculus with Passivation
Revisited

Zining Cao1,2
1Department of Computer Science and Technology
Nanjing University of Aeronautics & Astronautics

Nanjing 210016, China
2State Key Laboratory for Civil Aircraft Flight Simulation

Shanghai Aircraft Design and Research Institute
Shanghai 201210, China

Email: caozn@nuaa.edu.cn

Abstract— In this paper, we present late context bisimula-
tion and normal bisimulation for higher order π-calculus
with passivation and prove the coincidence between nor-
mal bisimulation, late context bisimulation, early context
bisimulation and contextual barbed bisimulation for higher
order π-calculus with passivation. Furthermore, we give a
variant of normal bisimulation, called limited normal bisim-
ulation, and prove the equivalence between limited normal
bisimulation and other bisimulations. At last, we extend the
definitions and propositions for weak bisimulations of HOπP
to the case of strong bisimulations.

Keywords: Process Calculus; Higher Order π-Calculus with
Passivation; Bisimulation.

1. Introduction
Higher order π-calculus was proposed and studied inten-

sively in Sangiorgi’s dissertation [13]. It is an extension
of the π-calculus [11] to allow communication of pro-
cesses rather than names alone. In [13], some interesting
bisimulations for higher order π-calculus were presented,
such as barbed equivalence, context bisimulation and normal
bisimulation. Barbed equivalence can be regarded as a uni-
form definition of bisimulation for a variety of concurrency
calculi. Context bisimulation is a very intuitive definition of
bisimulation for higher order π-calculus, but it is heavy to
handle, due to the appearance of universal quantifications
in its definition. In the definition of normal bisimulation,
all universal quantifications disappeared, therefore normal
bisimulation is a very economic characterisation of bisimu-
lation for higher order π-calculus.

The definitions of context bisimulation and barbed equiv-
alence involve quantification over contexts. So they are
often awkward to work with directly. It is therefore im-
portant to look for more tractable characterisations of the
bisimulations. In [13], [14], the equivalence between weak
normal bisimulation, weak context bisimulation and weak

barbed equivalence was proved for early and late semantics
respectively.

In [8], higher order π-calculus was extended to a calculus
with passivation (HOπP) and normal bisimulation for HOπP
was studied. In [8], it was showed that a large class of test
processes, i.e., abstraction-free process (which is a process
built with the regular HOπP syntax but without message
input a(X).P), cannot be used to derive a normal bisimi-
larity in HOπP. But it was showed that a form of normal
bisimilarity can be defined for HOπP without restriction.

The main aim of this paper is to present a normal
bisimulation for HOπP and give a proof for the equivalence
between normal bisimulation and early context bisimulation
for HOπP. To achieve this aim, we firstly introduce a late
context bisimulation, then we study the relation between nor-
mal bisimulation, late context bisimulation and early context
bisimulation for HOπP. As a corollary of this proposition,
we get the equivalence between normal bisimulation and
early context bisimulation for HOπP. Moreover, we present a
variant of normal bisimulation, named limited normal bisim-
ulation, and prove the equivalence between limited normal
bisimulation and other bisimulations. Finally, we extend the
definitions and propositions for weak bisimulations of HOπP
to the case of strong bisimulations.

This paper is organized as follows: Section 2 gives a brief
review of syntax and operational semantics of HOπP. Section
3 recalls the definitions of contextual barbed bisimulation
and early context bisimulation. Then we present a late
context bisimulation and a normal bisimulation for HOπP.
In Section 4, the equivalence between contextual barbed
bisimulation and early context bisimulation was given. Then
we give a proof for the equivalence between normal bisim-
ulation, late context bisimulation, early context bisimulation
and contextual barbed bisimulation for HOπP. In Section 5,
we give the definition of limited normal bisimulation, and
prove the equivalence between limited normal bisimulation
and other bisimulations. In Section 6, we give the definitions
and propositions for strong bisimulations. The paper is

92 Int'l Conf. Foundations of Computer Science | FCS'13 |

concluded in Section 7.

2. Syntax and Labelled Transition Sys-
tem of Higher Order π-Calculus with
Passivation

In this section we briefly recall the syntax and labelled
transition system of the higher order π-calculus with passi-
vation [8].

We assume a set N of names, ranged over by a, b, c, ... and
a set V ar of process variables, ranged over by X,Y, Z, U,
We use E,F, P,Q, ... to stand for processes. Pr denotes the
set of all processes.

We first give the grammar for the higher order π-calculus
processes as follows:
P ::= 0 | U | π.P | P1|P2 | (νa)P | !P | a[P]

π is called a prefix and can have one of the following
forms:
π ::= τ | a(U) | a⟨P ⟩, where τ is a tau prefix; l is a first

order input prefix; l is a first order output prefix; a(U) is a
higher order input prefix and a⟨P ⟩ is a higher order output
prefix.

In each process of the form (νa)P the occurrence of a
is bound within P . An occurrence of a in a process is said
to be free iff it does not lie within the scope of a bound
occurrence of a. The set of names occurring free in P is
denoted fn(P). An occurrence of a name in a process is
said to be bound if it is not free, we write the set of bound
names as bn(P). n(P) denotes the set of names of P , i.e.,
n(P) = fn(P) ∪ bn(P).

The set of all closed processes, i.e., the processes which
have no free variable, is denoted as Prc.

The structural congruence relation is the smallest congru-
ence generated by the following laws:
P |0 ≡ P , P1|P2 ≡ P2|P1, P1|(P2|P3) ≡ (P1|P2)|P3,

(νa)0 ≡ 0, (νa)(νb)P ≡ (νb)(νa)P, P |(νa)Q ≡ (νa)
(P |Q) if a /∈ fn(P)

A context is a term with a hole {} in it:
C{} ::= {} | π.C | C|P | P |C | (νa)C | !C | a[C]

The operational semantics of higher order processes is
given in Table 1. We have omitted the symmetric of the
parallelism and communication rules.

Table 1: Labelled transition system of higher order
π-calculus with passivation

ALP :
P

α−→ P ′

Q
α−→ Q′

P ≡ Q,P ′ ≡ Q′ TAU : τ.P
τ−→ P

OUT : a⟨E⟩.P a⟨E⟩−→ P IN : a(U).P
a⟨E⟩−→ P{E/U}

SUM :
P

α−→ P ′

P +Q
α−→ P ′

PAR :
P

α−→ P ′

P |Q α−→ P ′|Q
bn(α) ∩ fn(Q) = ∅

COM :
P

(νb̃)a⟨E⟩−→ P ′ Q
a⟨E⟩−→ Q′

P |Q τ−→ (νb̃)(P ′|Q′)
b̃ ∩ fn(Q) = ∅

RES :
P

α−→ P ′

(νa)P
α−→ (νa)P ′

a /∈ n(α)

REP :
P |!P α−→ P ′

!P
α−→ P ′

OPEN :
P

(νc̃)a⟨E⟩−→ P ′

(νb)P
(νb,c̃)a⟨E⟩−→ P ′

a ̸= b, b ∈ fn(E)− c̃

LOC :
P

α−→ P ′

a[P]
α−→ a[P ′]

PASSIV : a[P]
a⟨P ⟩−→ 0

3. Bisimulations of Higher Order π-
Calculus with Passivation

In [13], barbed equivalence was presented as a uniform
definition of bisimulation for first order π-calculus and
higher order π-calculus. In [6], a variant of barbed equiva-
lence, called contextual barbed bisimulation, was presented.

Definition 1. For each name or co-name µ, the observ-
ability predicate ↓µ is defined by

(1) P ↓a if there exist E,P ′ such that P
a⟨E⟩−→ P ′;

(2) P ↓a if there exist b̃, E, P ′ such that P
(νb̃)a⟨E⟩−→ P ′.

Definition 2. A symmetric relation R ⊆ Prc × Prc is a
weak contextual barbed bisimulation if P R Q implies:

(1) C{P} R C{Q} for any context C;
(2) whenever P

ε
=⇒ P ′ there exists Q′ such that Q ε

=⇒
Q′ and P ′ R Q′;

(3) P ⇓µ implies Q ⇓µ, where P ⇓µ means ∃P ′, P ε
=⇒

P ′ ↓µ.
We write P ≈Ba Q if P and Q are weakly contextual

barbed bisimilar.
Context and normal bisimulations were presented in [13],

[14] to describe the behavioral equivalences for higher
order π-calculus. In [8], Context and normal bisimulations
for HOπP were studied. In the following, we abbreviate
P{E/U} as P ⟨E⟩.

The grammar of HOπP evaluation contexts, which was
introduced in [8], is:

S ::= {} | (νa)S | S|P | P |S | a[S]
For HOπP evaluation contexts, the notations of free name

and bound name are similar to the case of HOπP processes.
In the following, we use ε

=⇒ to abbreviate the reflexive
and transitive closure of τ−→, and use α

=⇒ to abbreviate
ε

=⇒ α−→ ε
=⇒ . By neglecting the tau action, we can get the

following formal definitions of weak bisimulations:
Definition 3. ([8])Weak early context bisimilarity ≈E

Ct is
the largest symmetric relation on closed processes R such
that P R Q implies:

(1) whenever P ε
=⇒ P ′, there exists Q′ such that Q ε

=⇒
Q′ and P ′ R Q′;

Int'l Conf. Foundations of Computer Science | FCS'13 | 93

(2) whenever P
a⟨E⟩
=⇒ P ′, there exists Q′ such that Q

a⟨E⟩
=⇒

Q′ and P ′ R Q′;

(3) whenever P
(νb̃)a⟨E⟩
=⇒ P ′, for all C(U) with

fn(C(U)) ∩ bn(P,Q) = ∅, for all S{}, there exist Q′,

F , c̃ such that Q
(νc̃)a⟨F ⟩
=⇒ Q′ and (νb̃)(S{P ′}|C⟨E⟩) R

(νc̃)(S{Q′}|C⟨F ⟩).
We write P ≈E

Ct Q if P and Q are weakly early context
bisimilar.

In the following, we give the “late” variant of ≈E
Ct, where

the universal quantification is after the existential one.
Definition 4. Weak late context bisimilarity ≈L

Ct is the
largest symmetric relation on closed processes R such that
P R Q implies:

(1) whenever P ε
=⇒ P ′, there exists Q′ such that Q ε

=⇒
Q′ and P ′ R Q′;

(2) whenever P
a⟨U⟩
=⇒ P ′, there exists Q′ such that Q

a⟨U⟩
=⇒

Q′ and for all E, P ′{E/U} R Q′{E/U};

(3) whenever P
(νb̃)a⟨E⟩
=⇒ P ′,there exist Q′, F , c̃ such that

Q
(νc̃)a⟨F ⟩
=⇒ Q′ and for all C(U) with fn(C(U))∩{b̃, c̃} = ∅,

for all S{}, (νb̃)(S{P ′}|C⟨E⟩) R (νc̃)(S{Q′}|C⟨F ⟩).
We write P ≈L

Ct Q if P and Q are weakly late context
bisimilar.

For some process calculi, late bisimulation was proved
to be equivalent to early bisimulation [14]. The similar
proposition also holds for HOπP. In the following, we will
prove that ≈L

Ct is equivalent to ≈E
Ct .

Distinguished from context bisimulation, normal bisimu-
lation does not have universal quantifications in the clauses
of its definition. In the following, a name is called fresh in
a statement if it is different from any other name occurring
in the processes of the statement. In [8], it was showed that
a large class of test processes, i.e., abstraction-free process
(which is a process built with the regular HOπP syntax but
without message input a(X).P), cannot be used to derive a
normal bisimilarity in HOπP.

In the following we give a normal bisimulation for HOπP.
Definition 5. Weak normal bisimilarity ≈Nr is the largest

symmetric relation on closed processes R such that P R Q
implies:

(1) whenever P ε
=⇒ P ′, there exists Q′ such that Q ε

=⇒
Q′ and P ′ R Q′;

(2) whenever P
a⟨n(U).U⟩

=⇒ P ′, there exists Q′ such that
Q

a⟨n(U).U⟩
=⇒ Q′ and P ′ R Q′, where n is a fresh name;

(3) whenever P
(νb̃)a⟨E⟩
=⇒ P ′, there exist Q′, F , c̃

such that Q
(νc̃)a⟨F ⟩
=⇒ Q′ and (νb̃)(m⟨P ′⟩.0|!n⟨E⟩.0) R

(νc̃)(m⟨Q′⟩.0|!n⟨F ⟩.0), where m,n are fresh names.
We write P ≈Nr Q if P and Q are weakly normal

bisimilar.
In the above definition of normal bisimulation, we use the

process in the form of n(U).U, which is not abstraction-free
process mentioned in [8]. Therefore the equivalence between
≈E

Ct and ≈Nr does not conflict with the result in [8].

4. The Equivalence between Bisimula-
tions

In [13], [14], the equivalence between weak context
bisimulation and weak normal bisimulation was proved. In
the proof, the factorisation theorem was firstly given. It
allows us to factorise out certain subprocesses of a given
process. Thus, a complex process can be decomposed into
the parallel composition of simpler processes. Then the
concept of triggered processes was introduced, which is
the key step in the proof. Triggered processes represent
a sort of normal form for the processes of the calculus.
Most importantly, there is a very simple characterisation of
context bisimulation on triggered processes, called triggered
bisimulation. By the factorisation theorem, a process can be
transformed to a triggered process. The transform allows us
to use the simpler theory of triggered processes to reason
about the set of all processes. In [13], [14], weak context
bisimulation was firstly proved to be equivalent to weak
triggered bisimulation on triggered processes, then by the
transformation from processes to triggered processes, the
equivalence between weak context bisimulation and weak
normal bisimulation was proved.

To study the relation between bisimulations in the case of
calculus with with passivation, we firstly give factorisation
theorems for HOπP, furthermore we show that ≈L

Ct⊆≈E
Ct,

≈Nr⊆≈L
Ct and ≈E

Ct⊆≈Nr . At last we get the proposition:
P ≈E

Ct Q ⇔ P ≈L
Ct Q ⇔ P ≈Nr Q.

At first, we give the congurence of weak early context
bisimulation.

Proposition 1. (Congurence of ≈E
Ct) For all P , Q, S ∈

Prc, P ≈E
Ct Q implies:

1. π.P ≈E
Ct π.Q;

2. P |S ≈E
Ct Q|S;

3. (νa)P ≈E
Ct (νa)Q;

4. !P ≈E
Ct!Q;

5. a⟨P ⟩.S ≈E
Ct a⟨Q⟩.S;

6. a[P] ≈E
Ct a[Q].

P roof : Let R = {(C{P}, C{Q}) | P ≈E
Ct Q}. It is

enough to prove that R ⊆≈E
Ct . Similar to the argument of

the analogous result for context bisimulation in [13, Theorem
4.2.7].

Now we give the equivalence of ≈Ba and ≈E
Ct .

Proposition 2. For any P , Q ∈ Prc, P ≈Ba Q ⇔ P ≈E
Ct

Q.

Proof : (⇐) Let R = {(P,Q) | P ≈E
Ct Q}. It is enough

to prove that R ⊆≈Ba . It is trivial by the congurence of
≈E

Ct .

(⇒) Let R = {(P,Q) | P ≈Ba Q}. It is enough to prove
that R ⊆≈E

Ct .

We discuss the following cases.
(1) Suppose P

ε
=⇒ P ′. Since P ≈Ba Q, we have Q

ε
=⇒

Q′ and P ′ ≈Ba Q′. Therefore Q
ε

=⇒ Q′ and (P ′, Q′) ∈ R.

94 Int'l Conf. Foundations of Computer Science | FCS'13 |

(2) Suppose P
a⟨E⟩
=⇒ P ′. Since P ≈Ba Q, we have

P |m(X).a⟨E⟩.n(Y).0|m⟨0⟩.n⟨0⟩.0 ≈Ba Q|m(X).a⟨E⟩.
n(Y).0|m⟨0⟩.n⟨0⟩.0, where m,n,X, Y are fresh names
and variables. Furthermore, we have P |m(X).a⟨E⟩.n(Y)
.0|m⟨0⟩.n⟨0⟩.0 ↓m ̸↓n

τ−→ P |a⟨E⟩.n(Y).0|n⟨0⟩.0 ̸↓m↓n
τ−→ P ′|n(Y).0|n⟨0⟩.0 ↓n

τ−→ P ′ ̸↓n, and Q|m(X).a⟨E⟩.
n(Y).0|m⟨0⟩.n⟨0⟩.0 ↓m ̸↓n

ε
=⇒ Q′′|a⟨E⟩.n(Y).0|n⟨0⟩.0 ̸↓m

↓n
ε

=⇒ Q′′′|n(Y).0|n⟨0⟩.0 ↓n
ε

=⇒ Q′ ̸↓n and P ′ ≈Ba Q′.

Therefore Q
a⟨E⟩
=⇒ Q′ and (P ′, Q′) ∈ R.

(3) Suppose P
(νb̃)a⟨E⟩
=⇒ P ′. Since P ≈Ba Q, for any

C(U) with fn(C(U))∩bn(P,Q) = ∅, for any S{}, we have
S{P}|m(X).a(U).n(Y).C(U)|m⟨0⟩.n⟨0⟩.0 ≈Ba S{Q}
|m(X).a(U).n(Y).C(U)|m⟨0⟩.n⟨0⟩.0, where m,n,X, Y
are fresh names and variables. Furthermore, we have
S{P}|m(X).a(U).n(Y).C(U)|m⟨0⟩.n⟨0⟩.0 ↓m ̸↓n

τ−→ S{
P}|a(U).n(Y).C(U)|n⟨0⟩.0 ̸↓m↓n

τ−→ (νb̃)(S{P ′}|n(Y)
.C⟨E⟩|n⟨0⟩.0) ↓n

τ−→ (νb̃)(S{P ′}|C⟨E⟩) ̸↓n, and S{Q}|
m(X).a(U).n(Y).C(U)|m⟨0⟩.n⟨0⟩.0 ↓m ̸↓n

ε
=⇒ S{Q′′}|

a(U).n(Y).C(U)|n⟨0⟩.0 ̸↓m↓n
ε

=⇒ (νc̃)(S{Q′′′}|n(Y).
C⟨F ⟩|n⟨0⟩.0) ↓n

ε
=⇒ (νc̃)(S{Q′}|C⟨F ⟩) ̸↓n and (νb̃)

(S{P ′}|C⟨E⟩) ≈Ba (νc̃)(S{Q′}|C⟨F ⟩). Therefore Q
(νc̃)a⟨F ⟩
=⇒ Q′ and ((νb̃)(S{P ′}|C⟨E⟩), (νc̃)(S{Q′}|C⟨F ⟩))

∈ R.
Proposition 3 states the easy part of the relation between

≈L
Ct and ≈E

Ct.
Proposition 3. For any P , Q ∈ Prc, P ≈L

Ct Q ⇒ P ≈E
Ct

Q.
Proof : It is trivial by the definition.
Now we give the factorisation theorem for process substi-

tution, which states that, by means of triggers, a subprocess
of a given process can be factorised out.

Proposition 4. For any processes P and E with
m /∈ fn(P) ∪ fn(E), it holds that P{τ.E/X} ∼L

Ct

(νm)(P{m(U).U/X}|!m⟨E⟩.0).
P roof : Similar to the proof of P{τ.R/U} ∼Ct

(νm)(P{m.0/U}|!m.R) in [13], by induction on the struc-
ture of P .

Proposition 5. (Factorisation theorem) For any processes
P and E with m /∈ fn(P) ∪ fn(E), it holds that
P{E/X} ≈L

Ct (νm)(P{m(U).U/X}|!m⟨E⟩.0).
P roof : By Proposition 4.
Now we give the factorisation theorem for evaluation

contexts.
Proposition 6. For any evaluation context S{} and pro-

cess E with m /∈ fn(S)∪fn(E), it holds that S{τ.E} ∼L
Ct

(νm)(S{m(U).U}|m⟨E⟩.0).
P roof : Similar to the proof of P{τ.R/U} ∼Ct (νm)

(P{m.0/U}|!m.R) in [13], by induction on the structure of
S{}.

Proposition 7. (Factorisation theorem) For any evalu-
ation context S{} and process E with m /∈ fn(S) ∪
fn(E), it holds that S{E} ≈L

Ct (νm)(S{m(U).U}|m⟨E⟩.
0).

P roof : By Proposition 6.
The following proposition states that ≈Nr is preserved by

parallel composition and restriction.
Proposition 8. (Congruence of ≈Nr) For all P , Q, S ∈

Prc, P ≈Nr Q implies:
1. P |S ≈Nr Q|S;
2. (νa)P ≈Nr (νa)Q.
Proof : Let R = {(C{P}, C{Q}) | P ≈Nr Q}. It is

enough to prove that R ⊆≈Nr . Similar to the argument
of the analogous result for triggered bisimulation in [13,
Lemma 4.6.3].

To prove Proposition 9, we need the following Definition
6 and Lemma 1.

Definition 6. A relation R ⊆ Prc × Prc is a weak late
context bisimulation up to ≈L

Ct, if there is a symmetric
relation R:

(1) whenever P ε
=⇒ P ′, there exists Q′ such that Q ε

=⇒
Q′ and P ′ ≈L

Ct R ≈L
Ct Q

′;

(2) whenever P
a⟨E⟩
=⇒ P ′, there exists Q′ such that Q

a⟨E⟩
=⇒

Q′ and P ′ ≈L
Ct R ≈L

Ct Q
′;

(3) whenever P
(νb̃)a⟨E⟩
=⇒ P ′,there exist Q′, F , c̃ such

that Q
(νc̃)a⟨F ⟩
=⇒ Q′ and for all C(U) with fn(C(U)) ∩

{b̃, c̃} = ∅, for all S{}, (νb̃)(S{P ′}|C⟨E⟩) ≈L
Ct R ≈L

Ct

(νc̃)(S{Q′}|C⟨F ⟩).
Lemma 1. If R is a weak late context bisimulation up to

≈L
Ct, then R ⊆≈L

Ct .
P roof : The same argument of the analogous result

for CCS bisimilarity in [10]: Use a diagram-chasing ar-
gument to show that ≈L

Ct R ≈L
Ctis a weak late context

bisimulation.
The following proposition states that ≈Nr is included in

≈L
Ct .
Proposition 9. For any P , Q ∈ Prc, P ≈Nr Q ⇒ P ≈L

Ct

Q.
Proof : Let R = {(P,Q) | P ≈Nr Q}. It is enough to

prove that R ⊆≈L
Ct .

We discuss the case of higher order input and output, other
cases are trivial.

(1) Suppose P ≈Nr Q and P
a⟨E⟩
=⇒ P ′ ≡ P ′′{E/X}.

We have P
a⟨n(U).U⟩

=⇒ P ′′{n(U).U/X}, then there

exists Q′′ such that Q
a⟨n(U).U⟩

=⇒ Q′′{n(U).U/X} and
P ′′{n(U).U/X} R Q′′{n(U).U/X}. By the congurence of
≈Nr, we have (νn)(P ′′{n(U).U/X}|!n⟨E⟩.0) ≈Nr (νn)
(Q′′{n(U).U/X}|!n⟨E⟩.0). By factorisation theorem,
P ′′{E/X} ≈L

Ct (νn)(P ′′{n(U).U/X}|!n⟨E⟩.0) R (νn)
(Q′′{n(U).U/X}|!n⟨E⟩.0) ≈L

Ct Q′′{E/X}. Therefore,

we have Q
a⟨E⟩
=⇒ Q′′{E/X} and P ′′{E/X} ≈L

Ct R ≈L
Ct

Q′′{E/X}. By Lemma 1, R is a weak late context
bisimulation up to ≈L

Ct, So we have R ⊆≈L
Ct .

(2) Suppose P ≈Nr Q and P
(νb̃)a⟨E⟩
=⇒ P ′, then there exist

Q′, F , c̃ such that Q
(νc̃)a⟨F ⟩
=⇒ Q′ and (νb̃)(m⟨P ′⟩.0|!n⟨E⟩.0)

Int'l Conf. Foundations of Computer Science | FCS'13 | 95

R (νc̃)(m⟨Q′⟩.0|!n⟨F ⟩.0), where m,n are fresh names.
By the congurence of ≈Nr, we have (νm, n)((νb̃)
(S{m(U).U}|C⟨n(U).U⟩)|m⟨P ′⟩.0|!n⟨E⟩.0) ≈Nr (νm, n)
((νc̃)(S{m(U).U}|C⟨n(U).U⟩)|m⟨Q′⟩.0|!n⟨F ⟩.0).

Furthermore, by Propositions 5 and 7, (νb̃)(S{P ′}
|C⟨E⟩) ≈L

Ct (νm, n)((νb̃)(S{m(U).U}|C⟨n(U).U⟩)|m⟨P ′⟩
.0|!n⟨E⟩.0) R (νm, n)((νc̃)(S{m(U).U}|C⟨n(U).U⟩)
|m⟨Q′⟩.0|!n⟨F ⟩.0) ≈L

Ct (νc̃)(S{Q′}|C⟨F ⟩). By Lemma 1,
R is a weak late context bisimulation up to ≈L

Ct, So we
have R ⊆≈L

Ct .
The following lemma is used in the proof of Proposition

10.
Lemma 2. For any P , Q, E, F ∈ Prc,

(νb̃)(m[P]|E) ≈E
Ct (νc̃)(m[Q]|F) ⇒ (νb̃)(n⟨P ⟩.0|E) ≈E

Ct

(νc̃)(n⟨Q⟩.0|F), where m,n are fresh names.
P roof : Since (νb̃)(m[P]|E) ≈E

Ct (νc̃)(m[Q]|F), by the
congurence of ≈E

Ct, (νb̃)(m[P]|E)|m(U).k⟨U⟩.0 ≈E
Ct (νc̃)

(m[Q]|F)|m(U).k⟨U⟩.0. Therefore (νb̃)(m[P]|E)|m(U).
k⟨U⟩.0 ε

=⇒ (νb̃)(k⟨P ′⟩.0|E) ≈E
Ct (νc̃)(k⟨Q′⟩.0|F)

ε⇐=
(νc̃)(m[Q]|F)|m(U).k⟨U⟩.0, where P ≈E

Ct P
′, Q ≈E

Ct Q
′.

Furthermore, since P ≈E
Ct P

′, Q ≈E
Ct Q

′, by the congurence
of ≈E

Ct, we have (νb̃)(k⟨P ⟩.0|E) ≈E
Ct (νb̃)(k⟨P ′⟩.0|E)

and (νc̃)(k⟨Q⟩.0|F) ≈E
Ct (νc̃)(k⟨Q′⟩.0|F). Hence we get

(νb̃)(k⟨P ⟩.0|E) ≈E
Ct (νc̃)(k⟨Q⟩.0|F).

Now we show that ≈E
Ct is included in ≈Nr .

Proposition 10. For any P , Q ∈ Prc, P ≈E
Ct Q ⇒

P ≈Nr Q.
Proof : Let R = {(P,Q) | P ≈E

Ct Q}. It is enough to
prove that R ⊆≈Nr .

We discuss the case of higher order output, other cases
are trivial.

The only nontrivial case is to show how higher order
output actions of P are matched by Q.

Suppose P
(νb̃)a⟨E⟩
=⇒ P ′. By the definition of ≈E

Ct,
for all C(U) with fn(C(U)) ∩ bn(P,Q) = ∅, for all

S{}, there exist Q′, F , c̃ such that Q
(νc̃)a⟨F ⟩
=⇒ Q′ and

(νb̃)(S{P ′}|C⟨E⟩) ≈E
Ct (νc̃)(S{Q′}|C⟨F ⟩).

Let S{} = m[{}], C(U) =!n⟨U⟩.0, we have (νb̃)(m[P ′]|
!n⟨E⟩.0) ≈E

Ct (νc̃)(m[Q′]|!n⟨F ⟩.0). By Lemma 2, we
have (νb̃)(m⟨P ′⟩.0|!n⟨E⟩.0) ≈E

Ct (νc̃)(m⟨Q′⟩.0|!n⟨F ⟩.0).
Therefore R ⊆≈Nr .

The following proposition is the main result of this paper,
which states the equivalence of bisimulations for HOπP.

Proposition 11. For any P , Q ∈ Prc, P ≈Ba Q ⇔
P ≈E

Ct Q ⇔ P ≈L
Ct Q ⇔ P ≈Nr Q.

Proof : By Propositions 2, 3, 9 and 10.

5. A Variant of Normal Bisimulation
Let us see the language of HOπP without replication

operator defined by the following grammar:
P ::= 0 | U | P1|P2 | (νa)P | a[P]
πi ::= τ | a(U) | a⟨P ⟩

We write the set of processes of this higher order π-
calculus as Prp.

In [12], Parrow has shown that in higher order π-calculus,
replication can be defined by inaction, prefix, sum, parallel
and restriction under the sense of weak bisimulations. For
example, !P can be simulated by RP = (νa)(D|a⟨P |D⟩),
where D = a(X).(X|a⟨X⟩). Hence the expressive power
of this HOπP without replication operator is equivalent
to whole HOπP. In the definition of normal bisimulation,
replication appears. Although we can translate replication
into other operators, the form is somewhat complicated. In
[2], we gave a variant of normal bisimulation, where parallel
of any finitary copies is used as a limit form of replication.
We proved it coincides with normal bisimulation for higher
order π-calculus in [2].

In the following, we extend the variant of normal bisim-
ulation in [2] to HOπP, and then prove the equivalence of
the variant of normal bisimulation and other bisimulations.

Definition 7. A symmetric relation R ⊆ Prc × Prc is a
weak limit normal bisimulation if P R Q implies:

(1) whenever P ε
=⇒ P ′, there exists Q′ such that Q ε

=⇒
Q′ and P ′ R Q′;

(2) whenever P
a⟨n(U).U⟩

=⇒ P ′, there exists Q′ such that
Q

a⟨n(U).U⟩
=⇒ Q′ and P ′ R Q′, where n is a fresh name;

(3) whenever P
(νb̃)a⟨E⟩
=⇒ P ′, there exist Q′, F , c̃

such that Q
(νc̃)a⟨F ⟩
=⇒ Q′ and (νb̃)(m⟨P ′⟩.0|Πkn⟨E⟩.0) R

(νc̃)(m⟨Q′⟩.0|Πkn⟨F ⟩.0) for all k ∈ N = {0, 1, 2, ...},
where m,n are fresh names. Here we write ΠkP to denote
the parallel of k copies of P , for example, Π3P represents
P |P |P .

We write P ≈nor Q if P and Q are weakly limit normal
bisimilar.

Proposition 12. For any P , Q ∈ Prc, P ≈E
Ct Q ⇒

P ≈nor Q.
Proof : Similar to the proof of Proposition 10, just let

S{} = m[{}], C(U) = Πkn⟨U⟩.0.
Proposition 13. For any P , Q ∈ Prc, P ≈nor Q ⇒

P ≈Nr Q.
Proof : Let R = {((νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.0),

(νc̃)(Q|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0)) : (νb̃)(P |Πk1n1⟨E1⟩.0
|...|Πkmnm⟨Em⟩.0) ≈nor (νc̃)(Q|Πk1n1⟨F1⟩.0|...|Πkm

nm⟨Fm⟩.0) for any k1, ..., km ∈ N with fresh names
n1, ..., nm.}. It is enough to prove that R ⊆≈Nr .

We want to prove that
(1) If (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) R (νc̃)(Q|

!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) and (νb̃)(P |!n1⟨E1⟩.0|...|!nm

⟨Em⟩.0) ε
=⇒ S, then there exists T ′ such that (νc̃)

(Q|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) ε
=⇒ T and S R T .

(2) if (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) R (νc̃)(Q|
!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) and (νb̃)(P |!n1⟨E1⟩.0|...|!nm

⟨Em⟩.0) a⟨n(U).U⟩
=⇒ S, there exists T such that (νc̃)(Q|

!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) a⟨n(U).U⟩
=⇒ T and S R T , where n

96 Int'l Conf. Foundations of Computer Science | FCS'13 |

is a fresh name.

(3) if (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) R (νc̃)(Q|
!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) and (νb̃)(P |!n1⟨E1⟩.0|...|!nm

⟨Em⟩.0) (νẽ)a⟨E⟩
=⇒ S, there exist T , F , f̃ such that (νc̃)(Q|

!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) (νf̃)a⟨F ⟩
=⇒ T and (νẽ)(S|!n⟨E⟩.0)

R (νf̃)(T |!n⟨F ⟩.0), where n is a fresh name.

Case (1): We have (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩
.0)

ε
=⇒ (νb̃)(P ′|!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) ≡ S, hence

P
ε

=⇒ P ′. Since (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) R
(νc̃)(Q|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0), (νb̃)(P |Πk1n1⟨E1⟩.0|...|
Πkmnm⟨Em⟩.0) ≈nor (νc̃)(Q|Πk1n1⟨F1⟩.0|...|Πkmnm⟨Fm⟩
.0) for any k1, ..., km ∈ N, hence (νb̃)(P |Πk1n1⟨E1⟩.0
|...|Πkmnm⟨Em⟩.0) ε

=⇒ (νb̃)(P ′|Πk1n1⟨E1⟩.0|...|Πkmnm

⟨Em⟩.0) ≡ S′, (νc̃)(Q|Πk1n1⟨F1⟩.0|...|Πkmnm⟨Fm⟩.0) ε
=⇒

(νc̃)(Q′|Πk1
n1⟨F1⟩.0|...|Πkm

nm⟨Fm⟩.0) ≡ T ′ and S′ ≈nor

T ′. Therefore (νc̃)(Q|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) ε
=⇒ (νc̃)

(Q′|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) ≡ T and S R T.

Case (2): We have (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.
0)

a⟨n(U).U⟩
=⇒ (νb̃)(P ′|!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) ≡ S,

where n is a fresh name, hence P
a⟨n(U).U⟩

=⇒ P ′. Since
(νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) R (νc̃)(Q|!n1⟨F1⟩.0|...|
!nm⟨Fm⟩.0), (νb̃)(P |Πk1n1⟨E1⟩.0|...|Πkmnm⟨Em⟩.0) ≈nor

(νc̃)(Q|Πk1n1⟨F1⟩.0|...|Πkmnm⟨Fm⟩.0) for any k1, ...,
km ∈ N, hence (νb̃)(P |Πk1n1⟨E1⟩.0|...|Πkmnm⟨Em⟩.0)
a⟨n(U).U⟩

=⇒ (νb̃)(P ′|Πk1n1⟨E1⟩.0|...|Πkmnm⟨Em⟩.0) ≡ S′,

(νc̃)(Q|Πk1n1⟨F1⟩.0|...|Πkmnm⟨Fm⟩.0) a⟨n(U).U⟩
=⇒ (νc̃)(Q′

|Πk1n1⟨F1⟩.0|...|Πkmnm⟨Fm⟩.0) ≡ T ′ and S′ ≈nor

T ′. Therefore (νc̃)(Q|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) a⟨n(U).U⟩
=⇒

(νc̃)(Q′|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) ≡ T and S R T.

Case (3): We have (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.
0)

(νẽ)a⟨E⟩
=⇒ (νb̃)(P ′|!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) ≡ S, hence

P
(νẽ)a⟨E⟩
=⇒ P ′. Since (νb̃)(P |!n1⟨E1⟩.0|...|!nm⟨Em⟩.0) R

(νc̃)(Q|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0), (νb̃)(P |Πk1n1⟨E1⟩.0|...|
Πkmnm⟨Em⟩.0) ≈nor (νc̃)(Q|Πk1n1⟨F1⟩.0|...|Πkmnm⟨Fm⟩
.0) for any k1, ..., km ∈ N, hence (νb̃)(P |Πk1n1⟨E1⟩.0|...
|Πkmnm⟨Em⟩.0) (νẽ)a⟨E⟩

=⇒ (νb̃)(P ′|Πk1n1⟨E1⟩.0|...|Πkmnm

⟨Em⟩.0) ≡ S′, there exist T ′, F , f̃ such that (νc̃)(Q|
Πk1

n1⟨F1⟩.0|...|Πkm
nm⟨Fm⟩.0) (νf̃)a⟨F ⟩

=⇒ (νc̃)(Q′|Πk1
n1

⟨F1⟩.0|...|Πkmnm⟨Fm⟩.0) ≡ T ′ and (νẽ)(S′|!n⟨E⟩.0) ≈nor

(νf̃)(T ′|!n⟨F ⟩.0), where n is a fresh name. Therefore

(νc̃)(Q|!n1⟨F1⟩.0|...|!nm⟨Fm⟩.0) (νf̃)a⟨F ⟩
=⇒ (νc̃)(Q′|!n1⟨F1⟩

.0|...|!nm⟨Fm⟩.0) ≡ T and (νẽ)(S|!n⟨E⟩.0) R (νf̃)
(T ′!n⟨F ⟩.0).

Proposition 14. For any P , Q ∈ Prc, P ≈Ba Q ⇔
P ≈E

Ct Q ⇔ P ≈L
Ct Q ⇔ P ≈Nr Q ⇔ P ≈nor Q.

Proof : By Propositions 11, 12 and 13, we have the
proposition holds.

6. Strong Bisimulations
We give the definitions and prove the propositions only for

the case of weak bisimulations. The definitions and propo-
sitions for weak bisimulations of HOπP can be extended to
the case of strong bisimulations.

Roughly speaking, to get the definition of strong bisim-
ulations, we just need to replace ε

=⇒ by τ−→, replace α
=⇒

by α−→, and replace ⇓µ by ↓µ in the definition of weak
bisimulations. In the following, we give the definitions of
strong bisimulations.

Definition 8. A symmetric relation R ⊆ Prc × Prc is a
strong contextual barbed bisimulation if P R Q implies:

(1) C{P} R C{Q} for any context C;

(2) whenever P
τ−→ P ′ there exists Q′ such that Q τ−→

Q′ and P ′ R Q′;
(3) P ↓µ implies Q ↓µ.
We write P ∼Ba Q if P and Q are strongly contextual

barbed bisimilar.
Definition 9. Strong early context bisimilarity ∼E

Ct is the
largest symmetric relation on closed processes R such that
P R Q implies:

(1) whenever P τ−→ P ′, there exists Q′ such that Q τ−→
Q′ and P ′ R Q′;

(2) whenever P
a⟨E⟩−→ P ′, there exists Q′ such that Q

a⟨E⟩−→
Q′ and P ′ R Q′;

(3) whenever P
(νb̃)a⟨E⟩−→ P ′, for all C(U) with

fn(C(U)) ∩ bn(P,Q) = ∅, for all S{}, there exist Q′,

F , c̃ such that Q
(νc̃)a⟨F ⟩−→ Q′ and (νb̃)(S{P ′}|C⟨E⟩) R

(νc̃)(S{Q′}|C⟨F ⟩).
We write P ∼E

Ct Q if P and Q are strongly early context
bisimilar.

Definition 10. Strong late context bisimilarity ∼L
Ct is the

largest symmetric relation on closed processes R such that
P R Q implies:

(1) whenever P τ−→ P ′, there exists Q′ such that Q τ−→
Q′ and P ′ R Q′;

(2) whenever P
a⟨U⟩−→ P ′, there exists Q′ such that Q

a⟨U⟩−→
Q′ and for all E, P ′{E/U} R Q′{E/U};

(3) whenever P
(νb̃)a⟨E⟩−→ P ′,there exist Q′, F , c̃ such that

Q
(νc̃)a⟨F ⟩−→ Q′ and for all C(U) with fn(C(U))∩{b̃, c̃} = ∅,

for all S{}, (νb̃)(S{P ′}|C⟨E⟩) R (νc̃)(S{Q′}|C⟨F ⟩).
We write P ∼L

Ct Q if P and Q are strongly late context
bisimilar.

Definition 11. Strong normal bisimilarity ∼Nr is the
largest symmetric relation on closed processes R such that
P R Q implies:

(1) whenever P τ−→ P ′, there exists Q′ such that Q τ−→
Q′ and P ′ R Q′;

(2) whenever P
a⟨n(U).U⟩−→ P ′, there exists Q′ such that

Q
a⟨n(U).U⟩−→ Q′ and P ′ R Q′, where n is a fresh name;

Int'l Conf. Foundations of Computer Science | FCS'13 | 97

(3) whenever P
(νb̃)a⟨E⟩−→ P ′, there exist Q′, F , c̃

such that Q
(νc̃)a⟨F ⟩−→ Q′ and (νb̃)(m⟨P ′⟩.0|!n⟨E⟩.0) R

(νc̃)(m⟨Q′⟩.0|!n⟨F ⟩.0), where m,n are fresh names.
We write P ∼Nr Q if P and Q are strongly normal

bisimilar.
Definition 12. A symmetric relation R ⊆ Prc ×Prc is a

strong limit normal bisimulation if P R Q implies:
(1) whenever P τ−→ P ′, there exists Q′ such that Q τ−→

Q′ and P ′ R Q′;
(2) whenever P

a⟨n(U).U⟩−→ P ′, there exists Q′ such that
Q

a⟨n(U).U⟩−→ Q′ and P ′ R Q′, where n is a fresh name;

(3) whenever P
(νb̃)a⟨E⟩−→ P ′, there exist Q′, F , c̃

such that Q
(νc̃)a⟨F ⟩−→ Q′ and (νb̃)(m⟨P ′⟩.0|Πkn⟨E⟩.0) R

(νc̃)(m⟨Q′⟩.0|Πkn⟨F ⟩.0) for all k ∈ N = {0, 1, 2, ...},
where m,n are fresh names.

We write P ∼nor Q if P and Q are strongly limit normal
bisimilar.

By using the technique in [1], the equivalence of ≈E
Ct ,

≈L
Ct , ≈Nr and ≈nor for HOπP can be extended to the case

of strong bisimulations, i.e., the equivalence of ∼E
Ct , ∼L

Ct ,
∼Nr and ∼nor.

Proposition 15. For any P , Q ∈ Prc, P ∼Ba Q ⇔
P ∼E

Ct Q ⇔ P ∼L
Ct Q ⇔ P ∼Nr Q ⇔ P ∼nor Q.

7. Conclusions
In [8], higher order π-calculus was extended to a calculus

with passivation (HOπP) and bisimulations for HOπP were
presented and studied. In [8], it was showed that abstraction-
free process cannot be used to derive a normal bisimilarity in
HOπP. But it was showed that a form of normal bisimilarity
can be defined for HOπP without restriction.

The aim of this paper is to study the relation between
bisimulations for HOπP. We proposed the concepts of nor-
mal bisimulation and late context bisimulation for HOπP.
Then we prove the equivalence between normal bisimula-
tion, late context bisimulation, early context bisimulation
and contextual barbed bisimulation for HOπP. Furthermore,
we give a variant of normal bisimulation, called limited
normal bisimulation, and prove the equivalence between
limited normal bisimulation and other bisimulations. At
last, we extend the definitions and propositions for weak
bisimulations of HOπP to the case of strong bisimulations.

Acknowledgment
This work was supported by the Aviation Science Fund of

China under Grant No. 20128052064 and the National Natu-
ral Science Foundation of China under Grant No. 60873025.

References
[1] Z. Cao. More on bisimulations for higher-order π-calculus. In FOS-

SACS06, LNCS 3921, 63-78, 2006.

[2] Z. Cao, A Spatial Logical Characterisation of Context Bisimulation.
In Proceeding of ASIAN 2006, Lecture Notes in Computer Science
4435, 232-240, 2006.

[3] J. C. Godskesen, T. Hildebrandt, and V. Sassone. A Calculus of
Mobile Resources. In L. Brim, P. Jancar, M. Kretinsky, and A.
Kucera, editors, Proceedings of the 13th International Conference on
Concurrency Theory (CONCUR’02), volume 2421 of LNCS, pages
272–287. Springer Verlag, 2002.

[4] T. Hildebrandt, J. C. Godskesen, and M. Bundgaard. Bisimulation
Congruences for Homer - a Calculus of Higher Order Mobile Em-
bedded Resources. Technical Report TR-2004-52, IT University of
Copenhagen, 2004.

[5] A. Jeffrey, J. Rathke. A theory of bisimulation for a fragment of
concurrent ML with local names. Theoretical Computer Science.
323:1-48, 2004.

[6] A. Jeffrey, J. Rathke. Contextual equivalence for higher-order π-
calculus revisited. Logical Methods in Computer Science, 1(1:4):1-22,
2005.

[7] S. Lenglet, A. Schmitt, and J. Stefani. Howe’s method in calculi with
passivation. In CONCUR’09, volume 5710 of LNCS, pages 448-462,
2009.

[8] S. Lenglet, A. Schmitt, and J. Stefani. Normal bisimulations in process
calculi with passivation. In FoSSaCS’09, volume 5504 of LNCS,
pages 257-271, 2009.

[9] S. Lenglet, A. Schmitt, J. Stefani. Characterizing Contextual Equiv-
alence in Calculi with Passivation. Information and Computation,
209(11):1390-1433, 2011.

[10] R. Milner. A calculus of communication systems. Lecture Notes in
Computer Science 92. Springer-Verlag, 1980.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
(Part I and II). Information and Computation, 100:1-77, 1992.

[12] J.Parrow. An introduction to the π-calculus. In J. Bergstra, A. Ponse
and S. Smolka editors, Handbook of Process Algebra, North-Holland,
Amsterdam, 2001.

[13] D. Sangiorgi. Expressing mobility in process algebras: first-order and
higher-order paradigms, Ph.D thesis, University of Einburgh, 1992.

[14] D. Sangiorgi. Bisimulation in higher-order calculi, Information and
Computation, 131(2):141-178, 1996.

[15] A. Schmitt and J. Stefani. The Kell calculus: A family of higher
order distributed process calculi. In Proceedings of GC2004, LNCS,
Springer-Verlag, 2004.

98 Int'l Conf. Foundations of Computer Science | FCS'13 |

Bit Level Encryption Standard (BLES): Version-III

1
Gaurav Bhadra,

2
Tanya Bala,

3
 Samik Banik,

4
 Joyshree Nath,

5
Asoke Nath

1,2,3,5
Department of Computer Science, St. Xavier’s College(Autonomous),Kolkata, India

4Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India

E-mail:
1
gaurav.bhadra@gmail.com,

2
bala.tanya@gmail.com,

3
sam.xavo@gmail.com,

4
joyshreenath@gmail.com,

5
asokejoy1@gmail.com

Abstract: In the present paper the authors have

introduced a new symmetric key cryptographic method

called Bit Level Encryption Standard (BLES) Version-III

which is based on bit level columnar transposition

method, bit-wise generalized vernam cipher method with

feedback and bit-wise XOR operation. Recently Nath et al

has developed BLES Version-I where they have used bit

exchange method but with some fixed block size which

were multiple of 2. Due to even power of two sometimes

there were some repeats of characters in the encrypted

file if the input plain text has also duplicate characters.

To eliminate that problem Nath et al developed BLES

Version–II where the authors have taken block size of

square of odd numbers starting from three onwards. For

scanning from right to left the authors used square of

even numbers starting from four onwards. After finishing

bit exchange the authors have performed bit-wise XOR to

make the cryptosystem almost unbreakable. In the present

work the authors changed the bit level encryption method

by using bit level columnar transposition method in

random order followed by bit level generalized vernam

cipher method and bit level XOR operation. To make the

encryption process strong the authors have reverse the

entire content of the file and applied the he same

encryption method. BLES version III is done pure bit

level also the authors have used the feedback which gives

extra strength to this method. The present method will be

most suitable for encrypting short message, password,

confidential key etc. The spectral analysis in the result

sections shows that the BLES version-III method is free

from known plain text attack, differential attack or any

type brute force attack.

Keywords: BLES, modified generalized vernam cipher

method, bit level XOR operation, differential attack

1. Introduction
Due to rapid growth in data communication and network

in last few years now it is a real challenge to everyone to

send any confidential or important information from one

computer to another computer. Due to open internet

network it is now not at all difficult task to intercept any

confidential data from internet. If the confidential data is

not properly encrypted then any intruder can intercept

data and can manipulate it. The confidentiality and

genuineness of data has now become a very important

issue in computer network. To send any important

information from one user to another user normally the

people are using e-mail as their transmission media. But

the message of the e-mail can be trapped by the hacker

between sender and receiver provided it is in raw form.

So sending any kind of confidential message through e-

mail is not proper solution. The confidential message

may be trapped by any hacker between sender and

receiver and then divert it to someone else. The time has

come when the administration of any academic institute

have to implement the security policies while sending any

kind of data from one machine to other. The confidential

data must be protected from any unwanted intruder to

avoid any kind of disaster. It may be a big disaster when

some senior personnel of a business company is sending

some important business strategies to the Managing

Director of his company and the entire information is

hacked by some intruder or a hacker. After getting all

information from internet the hacker can pass it to some

rival company and this may create a real disaster in a

company. This type of disaster may happen any time

when the important data is moving from one machine to

another machine in an unprotected manner. To get rid of

this problem one has to send the encrypted text or cipher

text from client to server or to another client. To protect

any kind of hacking problems nowadays network security

and cryptography is an emerging research area where the

programmers are trying to develop some strong

encryption algorithm so that no intruder can intercept the

encrypted message. The authors here proposed method is

symmetric key cryptography

 The main advantage of symmetric key cryptography is

that the key management is very simple as one key is used

for both encryption as well as for decryption purpose. In

symmetric key algorithm the key is called secret key and

it should be known to sender and receiver both and no one

else. In public key cryptosystem there are both merits and

demerits. The merit is that there are two keys to be

maintained. One key is called public key that is known to

anybody and which can be used only to encrypt any plain

text. There is another key called secret key or the private

key that is known to receiver who is supposed to decrypt

the encrypted message. The pair of keys are such that the

private key can not be constructed from the public key so

the hacker can not decrypt the encrypted text as they don’t

know the private key. The problem of Public key

cryptosystem is that one has to do massive computation

for encrypting any plain text. Moreover in some public

key cryptography the size of encrypted message may

increase. Due to massive computation the public key

crypto system may not be suitable in some system like

sensors network or mobile network. In the present work

the authors are proposing a symmetric key method called

BLES version-III method which can be applied in sensor

network, mobile network, ATM network.

The present method uses bit level transposition method

followed by bit level modified generalized vernam cipher

method and then bit-wise XOR operations. Firstly, the

entire file is converted into bits. After that the keygen()

Int'l Conf. Foundations of Computer Science | FCS'13 | 99

function is called to generate encryption number and the

randomization number. These two numbers are calculated

from user entered secret key. The entire bits of the file is

then placed in a 2-dimensional matrix of size nx8. The

columns are extracted randomly according to the number

found in the randomized matrix . After finishing bit-wise

columnar transposition method the entire bit streams are

taken block-wise and applied generalized cipher method

with feedback. In first column the feedback bit is taken as

‘0’ and then in subsequent column the carry bit is taken as

the feedback. Finally the bit-wise XOR is performed

where first bit is XROED with the last bit and substituted

in first bit similarly the bit-2 is XORED with last but one

bit and substituted in bit-2 and this way the entire bits

were XORED. The above three methods were performed

repeatedly according to encryption number.

The multiple encryptions make the system very secure.

2. BLES Version-III Algorithm:

Encryption Algorithm:

Step-0: Start

Step-1: Enter input file name (plaintext file) and store it

in inputFile

Step-2: Enter output file name (ciphertext file) and store

it in outputFile

Step-3: Enter the password.

Step-4: Copy the input file to a temporary file

Step-5: Use module-1 to compute the number of times to

randomize and the encryption number

Step-6: i=1

Step-7: if i<=encryption number then goto step-8 else

goto step-13

Step-8: Use module-2 to perform columnar transposition

method

Step-9: Use module-3 to perform bitwise generalized

vernam cipher method

Step-10: Use module-4 to perform bitwise XOR.

Step-11: Convert the file back to bytes and write it in the

outputFile. This is the encrypted file

Step-12: i=i+1, goto step-7.

Step-13: End

Module 1: Calculation of Encryption Number and

Randomization Number (Keygen)

Step-0: Start.

Step-1: len=length of the password

Step-2: If len<8 then, base=9-len

 else base=1

Step-3:Initialize s1=0,i=0

Step-4: Calculate the following:

 a)pow=base^(i+1)

 b)n=ascii value of ith character of

password

 c)s1=s1+pow*n

Step-5: if i<len goto Step-4.

Step-6: s2=sum of digits of s1

Step-7: Randomization Number: r_times=s1%s2

Step-8: if r_times==0 or r_times>64, then r_times=64

Step-9:Initialize s3=0,i=0

Step-10: Calculate the following:

 a)pow=base^(i+1)

 b)n=ascii value of (len-1-i)
th

 character

 of password

 c)s3=s3+pow*n

Step-11: if i<len goto Step-4.

Step-12: s4=sum of digits of s3

Step-13: Encryption Number: en_num=s3%s4

Step-14: if en_num==0 or en_num>64, then

 en_num=64

Step-15: End

Example:

Suppose the user entered a key= “ABCD”

Therefore the length of the key=4

i) To calculate randomization number we proceed as

follows:

a. Calculate a sum from the given text key as follows:

Sum=Σ base
postion

 * ASCII value of character

Here for ASCII code of A=65, B=66, C=67, D=68

Base=5

Therefore s1=5
1
 * 65 + 5

2
 * 66 + 5

3
 * 67 + 5

4
 *

68=325+1650+8375+42500=51365

b. Calculate again sum of the digits in s1 as

s2=5+1+3+6+5=20

c. Find the modulo with s1 to obtain randomization

number:

R_times=s1 % s2=51365 % 20= 5

(ii) To calculate encryption number we proceed as

follows:

a. Calculate a sum as follows:

S3=51*68+52*67+53*66+54*65=340+1675+8250+

40625=50890

b. Sum of digits in s3 is s4=5+0+8+9+0=22

c. Therefore encryption number is:

 en_num=s3 % s4=50890 % 22 =4

Module 2: COLUMNAR TRANSPOSITION METHOD

ALGORITHM

Step-0: Start

Step-1: length=length of the file

Step-2: Convert the byte file to bits in reverse order.

Step-3: Extract 8 bits at a time.

Step-4: Complement the bits

Step-5: Xor bit-i with bit-(7-i) and store it in bit-(7-i),

where i= {0,1,2,3}

Step-6: Store the bits in a file.

Step-7: Generate the key using Module Keygen

Step-8: Run=0, len=length*2

Step-9: while run<en_num repeat steps 10 to 16

Step-10: Extract all the bits from the file and store it

column wise in a matrix col_matrix1 [4][len]

Step-11: Randomize the columns using MSA algorithm.

Step-12: Store randomized values in col_matrix2 [4][len]

Step-13: Divide the bits into four sections and store it in

four files.

Step-14: Repeat the steps 10 to 12 for these for files.

Step-15: Store the randomized bits in the file.

Step-16: run=run+1

Step-17: End

100 Int'l Conf. Foundations of Computer Science | FCS'13 |

Module 3:Bit-wise generalized Vernam Cipher method

using feedback

Here key should be same length as the input file. The key

is essentially a stream of bits. You have to decide how

many bits should be ‘1’ and how many bits should be ‘0’.

Then randomize the bit pattern of the key pad. Apply

vernam cipher method with the bit patterns of module1.

This method you have to apply multiple times in both

ways from left to right and then from right to left.

Step-0: Start.

Step-1: len=8*length of the password

Step-2: Initialize size=(square root of len) + 1, f=0, ky[] of

size len, key[][] of size [size][size], arr[] with 8 zeros.

Step-3: If f<len/8 goto step 4 else goto step 10

Step-4: Extract a character from pass and store it in val

Step-5: if number of elemens in ky[]<len goto Step-6 else

goto step 9.

Step-6: Extract 8 bits of val at a time and store them in

var[]

Step-7: val=val/2 after extraction of each bit

Step-8: Reverse the elements of arr and store them in ky[]

Step-9: f=f+1

Step-10: Initialize x=0

Step-11: Store the elements of ky[] in the 2D array

key[][].

Step-12: Randomize the elements of key[][] and store

them in a key file till the length of the key file becomes

equal to the number of bits in the input file.

Step 13: Initialize run=0

Step 14: if run<en_num goto step 15 else goto step 24.

Step-15: Initialize feedback=0.

Step-16:val=bit extracted from input file.

Step-17: k=bit extracted from key file

Step 18: s=binary sum of val, k and feedback.

Step 19: if s=(0)2 or s=(10)2 then cipher text bit=(0)2, else

if s=(1)2 or s=(11)2 then cipher text bit=(1)2,

feedback=carry of the sum in both the cases.

Step 20: Store the cipher text in a temporary file file2.

Step 21: Reverse the contents of file 2 and store it in

another temporary file file1.

Step 22: run=run+1.

Step 23: Goto step 14.

Step 24: Reverse the contents of file1.

Step 25: End.

Module 4: Bit-wise XOR

We perform bit-wise XOR with bit-1 with bit-n(last bit)

and substitute in position-n and bit-2 with bit-n-2 and

substitute in position-n-2. This way the complete file you

have to perform xor operation.

Step-0: Start.

Step-1: Store the end location (n-1) in End

Step-2: Store starting location (0) in Start

Step-3: If value at end== value at end, store 0 in end else

store 1 in end.

Step-4: Start=Start+1

Step-5: End = End -1

Step-6: if End >= n/2, then goto step 3.

Step-7: End.

Decryption Algorithm:

Step-0: Start

Step-1: Enter input file name (Encrypted File) and store it

in inputFile

Step-2: Enter output file name (Decrypted File) and store

it in outputFile

Step-3: Enter the password

Step-4: Copy the input file to a temporary file

Step-5: Use module-1 to compute the number of times to

randomize and the decryption number

Step-6: i=1

Step-7: if i<=decryption number then goto step-8 else

goto step-13

Step-8: Use module-4 to perform bitwise XOR operation

Step-9: Use module-3 to perform bit generalized bitwise

vernam cipher method.

Step-10: Use module-2 to perform columnar

transposition method.

Step-11: Convert the file back to bytes and write it in the

outputFile. This is the encrypted file.

Step-12: i=i+1, goto step-7.

Step-13: End

The modules have been described in our encryption

algorithm. The only difference is that decryption methods

will work in reverse order of the encryption process.

3. Results and Discussion
The present method i.e. BLES-III applied on various

repeated patterns such as ASCII ‘0’, ASCII ‘1’ and so on.

Normally none of the standard method will give good

results on these patterns but the present method shows the

results are quite satisfactory. We found it gives a random

set of characters for any input stream of characters. Some

of the results is shown in frequency graph and some

encrypted patterns are shown as it is. The most

interesting part is that out of ‘n’ characters if one

character is different then also the encrypted patterns are

coming different which is not possible in standard

cryptographic methods. The following are the frequency

graphs of the cipher text files obtained from files

containing a sequence of 1000 single ASCII characters.

Int'l Conf. Foundations of Computer Science | FCS'13 | 101

102 Int'l Conf. Foundations of Computer Science | FCS'13 |

Some pairs of similar text patterns and their

corresponding cipher texts are as follows:

Pattern-1: aaaabaaaa

Password: 1234 Encryption No.:10 RandomizationNo: 8

Cipher text:

Pattern-2: aaaacaaaa

Password: 1234 Encryption No.:10 RandomizationNo: 8

Cipher text:

Pattern-3: ababababa

Password: abcdef Encryption No.:9 RandomizationNo: 9

Cipher text:

Pattern-4: ababababb

Password: abcdef Encryption No.: 9 RandomizationNo: 9

Cipher text:

Pattern-5: 15ASCII ‘0’ + ASCII ‘1’

Password: qwerty Encryption No.:18 RandomizationNo:

12

Cipher text:

Pattern-6: 15ASCII ‘0’ + 2ASCII ‘1’

Password: qwerty Encryption No.:18 RandomizationNo:

12

Cipher text :

Pattern-7: 15ASCII ‘0’ + ASCII ‘1’ + 15ASCII ‘0’

Password: pass Encryption No.:15 RandomizationNo: 64

Cipher text :

Pattern-8: 15ASCII ‘0’ + ASCII ‘2’ + 15ASCII ‘0’

Password: pass Encryption No.:15 RandomizationNo: 64

Cipher text:

Pattern-9: babababab

Password: wxyz Encryption No.:8 RandomizationNo: 24

Cipher text:

Pattern-10: aabababab

Password: wxyz Encryption No.:8 RandomizationNo: 24

Cipher text:

Int'l Conf. Foundations of Computer Science | FCS'13 | 103

Encryption of a piece of plain text:

Plain text:

A Christian Minority Higher Educational Institution, St.

Xavier's was founded in 1860 by a Catholic Minority

Religious body, the Society of Jesus, and was affiliated to

Calcutta University in 1862. While preference is shown to

the educational and cultural needs of the Minority

community, admission is open to all irrespective of caste,

creed and nationality!

Password : 1234

En_num : 10

R_num : 8

Encrypted text:

4. Conclusion and Future Scope:
 The present method can not be decrypted using any brute

force method as the entire encryption process was done in

bit level. None of the operations are in byte level. The

encrypted text cannot be decrypted without knowing the

exact initial random matrix. To complete the whole

process we choose any of the random matrices to perform

bit exchange method and there is no similarity between

any two matrices and even if there is then it is very hard to

find out the similar ones. The spectral analysis shows that

our present method is free from standard cryptography

attacks namely brute force attack, known plain text attack

and differential attack. BLES-III may be most effective to

encrypt short message service (SMS) in mobile phone or

to encrypt password. BLES-III was tested on various

types of files such as audio file, video file, any database

file etc and in every case the result found was quite

satisfactory. The present bit level encryption method may

be made further complex by adding random bit-wise

permutation method, bit wise left shift and right shift

method and bit-wise complement operations in random

order. The authors are now working on that to make the

ultimate bit level standard unbreakable.

5. Acknowledgments
We are very much grateful to the Department of

Computer Science to give us this opportunity to work on

symmetric key Cryptography. One of the authors (AN)

sincerely expresses his gratitude to Fr. Dr. J. Felix Raj,

Principal of St. Xavier’s College (Autonomous), Kolkata

for giving constant encouragement in doing research in

cryptography.

6. References

[1] Symmetric Key Cryptography using Random Key

generator: Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik: “Proceedings of International conference on

security and management (SAM’10” held at Las Vegas,

USA Jull 12-15, 2010), Vol-2, Page: 239-244(2010).

[2] Advanced Symmetric key Cryptography using

extended MSA method: DJSSA symmetric key algorithm:

Dripto Chatterjee, Joyshree Nath, Soumitra Mondal,

Suvadeep Dasgupta and Asoke Nath, Jounal of

Computing, Vol 3, issue-2, Page 66-71,Feb(2011).

[3] A new Symmetric key Cryptography Algorithm using

extended MSA method: DJSA symmetric key algorithm,

Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta and

Asoke Nath: Proceedings of IEEE International

Conference on Communication Systems and Network

Technologies, held at SMVDU (Jammu) 03-06 June,

2011, Page-89-94(2011).

[4] New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key Algorithm: Neeraj

Khanna, Joel James,Joyshree Nath, Sayantan

Chakraborty, Amlan Chakrabarti and Asoke Nath :

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 125-

130(2011).

[5] Symmetric key Cryptography using modified DJSSA

symmetric key algorithm, Dripto Chatterjee, Joyshree

Nath, Sankar Das, Shalabh Agarwal and Asoke Nath,

Proceedings of International conference Worldcomp 2011

held at LasVegas 18-21 July 2011, Page-306-311, Vol-

1(2011).

[6] An Integrated symmetric key cryptography algorithm

using generalized vernam cipher method and DJSA

method: DJMNA symmetric key algorithm : Debanjan

Das, Joyshree Nath, Megholova Mukherjee, Neha

Chaudhury and Asoke Nath: Proceedings of IEEE

International conference : World Congress WICT-2011 to

be held at Mumbai University 11-14 Dec, 2011, Page

No.1203-1208(2011).

[7] Symmetric key cryptosystem using combined

cryptographic algorithms- generalized modified vernam

cipher method, MSA method and NJJSAA method:

TTJSA algorithm – Trisha Chatterjee, Tamodeep Das,

Joyshree Nath, Shayan Dey and Asoke Nath, Proceedings

of IEEE International conference: World Congress WICT-

2011 t held at Mumbai University 11-14 Dec, 2011, Page

No. 1179-1184(2011).

[8] Symmetric key Cryptography using two-way updated

– Generalized Vernam Cipher method: TTSJA algorithm,

International Journal of Computer Applications(IJCA,

USA), Vol 42, No.1, March, Pg: 34 -39(2012).

104 Int'l Conf. Foundations of Computer Science | FCS'13 |

[9] Ultra Encryption Standard(UES) Version-I:

Symmetric Key Cryptosystem using generalized

modified Vernam Cipher method, Permutation method

and Columnar Transposition method, Satyaki Roy,

Navajit Maitra, Joyshree Nath,Shalabh Agarwal and

Asoke Nath, Proceedings of IEEE sponsored National

Conference on Recent Advances in Communication,

Control and Computing Technology-RACCCT 2012, 29-

30 March held at Surat, Page 81-88(2012).

[10] An Integrated Symmetric Key Cryptographic Method

– Amalgamation of TTJSA Algorithm,

Adbvanced Caeser Cipher Algorithm, Bit Rotation and

reversal Method : SJA Algorithm., International Journal

of Modern Education and Computer Science, Somdip

Dey, Joyshree Nath, Asoke Nath,(IJMECS), ISSN: 2075-

0161 (Print), ISSN: 2075-017X (Online), Vol-4, No-5,

Page 1-9,2012.

[11] An Advanced Combined Symmetric Key

Cryptographic Method using Bit manipulation, Bit

Reversal, Modified Caeser Cipher(SD-REE), DJSA

method, TTJSA method: SJA-I Algorithm, Somdip dey,

Joyshree Nath, Asoke Nath, International Journal of

Computer Applications(IJCA 0975-8887, USA), Vol. 46,

 No.20, Page- 46-53,May, 2012.

[12] Ultra Encryption Standard(UES) Version-IV: New

Symmetric Key Cryptosystem with bit-level columnar

Transposition and Reshuffling of Bits, Satyaki Roy,

Navajit Maitra, Joyshree Nath, Shalabh Agarwal, Asoke

Nath, International Journal of Computer Applications,

USA, Vol 51-No 1, Page 28-35(2012).

[13] Bit Level Encryption Standard(BLES): Version-I,

Neeraj Khanna, Dripto Chatterjee, Joyshree Nath, Asoke

Nath, International Journal of Computer Applications,

USA, Vol 52-No 2, Page 41-46(2012).

[14] Bit Level Encryption Standard (BLES): Versiob-II,

Gaurav Bhadra, Tanya Bala, Samik Banik, Joyshree Nath

and Asoke Nath, Proceedings of IEEE International

Conference WICT-2012 held at IIITM-K,

Trivandrum Oct 30 to Nov 1, 2012, Page No. 121-

127(2012).

[15] Bit Level Generalized Modified Vernam Cipher

Method with Feedback, Prabal Banerjee, Asoke Nath,

International Journal of Advanced Computer

Research(ISSN(print):2249- 7277 ISSN(online):

2277-7970), Volume-2, Number-4 Issue-6, Page-24-30,

Dec(2012).

[16] Cryptography and Network Security, William

Stallings, Prectice Hall of India.

Int'l Conf. Foundations of Computer Science | FCS'13 | 105

Energy Efficient Multi Level Authentication in Sensor

Network

A. Shish Ahmad, B. Dr. Mohd. Rizwan Beg
CSE Department, Integral University, Lucknow, India

Abstract- Sensor networks are deployed for various
monitoring applications. The sensed data is
reported to base station in multi hop fashion. The
reporting should be in secure manner so that the
adversary can’t forge the data and can be
prevented from any masquerade attack. Public key
schemes are best suited for one-way authentication
as compare to symmetric one, but consume more
energy at sensor on applying them.

We has proposed three level of
authentication(MLA) using symmetric and
asymmetric approaches. We have applied the
algorithm in such a way that the total energy
consumption in the process is minimized. We have
identified those calculations which are not
necessary to be performed on sensor node, shifted
to base stations to save the energy at nodes. In this
fashion, we are able to provide a complete security
service including confidentiality, authentication,
data integrity in the network and also extend the life
time of sensor network. Our proposed approach is
oriented for to those application areas where
authentication is the primary concern.

Key Words-RC4, Stream Cipher, Block Cipher,
Encryption and Decryption, Sensor network,
Security, Authentication, DSS, Deffie-Hellman.

1. Introduction

Wireless sensor networks have become a
promising future to many applications, such as
smart houses, smart farms, smart parking, smart
hospitals, habitat monitoring, building and structure
monitoring, distributed robotics, industrial and
manufacturing, and national security. In addition to
common network threats, sensor networks are more
vulnerable to security breaches because they are
physically accessible by adversaries. Imagine the
damage caused by compromised sensor network in
sensitive military and hospital applications. These
are often deployed in unattended environments, thus
leaving these networks vulnerable to passive and
active attacks by the adversary. The conversation
between sensor nodes Can be eavesdropped by the
adversary .The adversary can be aware of the
conversation between the sensors and can forge the

data. Sensor nodes should be resilient to these
attacks. Since Sensor nodes are

resource constrained and run on battery, energy
consumption should be low to make it operate for
many days.

Authentication & confidentiality is very much
concern in battle-field scenarios, where fraudulent
node impersonate as a legitimate sensor .Public key
methods consist of power hungry function, so
symmetric key approaches are preferred for
applying confidentiality on sensors as compare to
asymmetric one. But symmetric approaches do not
give complete security services like authentication
etc. Here we have applied public key approaches in
such a way that total energy consumption decreases
as compare to traditional one, as well as we are able
to gain full security services.

Due to the small battery backup of Sensor Node,
security algorithm must consume low power.
Symmetric key are efficient for providing security
services like confidentiality, but its is more
Vulnerable and does not provide all the security
services like authentication as provided by public
key methods. Public key algorithm is less efficient
than symmetric key algorithm because it consume
more energy than symmetric key due to power
function calculation to generate encoded data.

1.1 Our Contribution

In form of a security framework we make three
level energy efficient authentication in securing
sensor networks:

Energy efficient Digital signature standard
(EEDSS) in such a way to mitigate the
authentication related attacks.

Energy efficient Deffie-Hellman (EEDHA)/
Energy efficient Elleptic Curve cryptography
(EEECC) in such a way to ensure the authentication
and key distribution related issues.

Open feedback mode (OFB) using RC4 instead
of DES for providing confidentiality and
authentication both efficiently.

So here we are providing a complete security
mechanism (authentication, confidentiality & Key
distribution) with three level authentication. Here
we are also saving the energy of sensor nodes by
identifying & shifting those steps which are not
necessary to be performed on sensor node to base
station.

106 Int'l Conf. Foundations of Computer Science | FCS'13 |

1.2 Implementation assumption

 Each Sensor Node has unique id assigned
before deployement.

 Sensor nodes are homogeneous and Static.

 Constant power supply, i.e no change in
capacitance, resistance and inductance
in hardware

 It should be ensured that adversary cannot
compromise Sensor Nodes immediately
after nodes are deployed. He takes a few
minutes of time to compromise them
after they are deployed.

 Each Sensor node has a comparator also.

 8051 microcontroller in sensor of
XLAT=11.0592 MHz and 12 clock per
machine cycle.

 Radio frequency module is constant.
Transmission and receiving power is
constant.

2. Energy Efficient Digital

Signature standard- First

Level Authentication
This is the first phase of authentication in sensor

network. Here we are applying DSS approach in
energy efficient way. We applied DSS in such a
way that the total energy consumption at sensor
node is decreases for producing the signature. Here
we have identified and shifted those steps of Digital
signature algorithm to the base station.

 A digital signature is an authentication
mechanism that enables the creator of a message to
attach a code that acts as a signature. Typically the
signature is formed by taking the hash of the
message and encrypting the message with the
creator’s private key. The signature guarantees the
source and integrity of the message.

The National Institute of Standards and
Technology (NIST) has published Federal
Information Processing Standard FIPS 186, known
as the Digital Signature Standard (DSS). The DSS
makes use of the Secure Hash Algorithm (SHA)

2.1 The DSS Approach

The DSS uses an algorithm that is designed to
provide only the digital signature function. Unlike
RSA, it cannot be used for encryption or key
exchange. Nevertheless, it is a public-key
technique.

In the RSA approach, the message to be signed is
input to a hash function that produces a secure hash
code of fixed length. This hash code is then
encrypted using the sender’s private key to form the
signature. Both the message and the signature are
then transmitted. The recipient takes the message
and produces a hash code. The recipient also
decrypts the signature using the sender’s public key.
If the calculated hash code matches the decrypted
signature, the signature is accepted as valid.

Because only the sender knows the private key,
only the sender could have produced a valid
signature.

The DSS approach also makes use of a hash
function. The hash code is provided as input to a
signature function along with a random number
generated for this particular signature. The
signature function also depends on the sender’s
private key (PRa) and a set of parameters known to
a group of communicating principals. We can
consider this set to constitute a global public key
(PUG)The result is a signature consisting of two
components, labeled s and r.

Following figure illustrate the DSS approach

Figure 1: DSS Approach

At the receiving end, the hash code of the
incoming message is generated. This plus the
signature is input to a verification function. The
verification function also depends on the global
public key as well as the sender’s public key (PUa)
, which is paired with the sender’s private key. The
output of the verification function is a value that is
equal to the signature component if the signature is
valid. The signature function is such that only the
sender, with knowledge of the private key, could
have produced the valid signature.

2.2 Proposed method-

To provide the authentication in sensor network,
we will use DSA as follows.

 This is the first level authentication. Our
method is elaborated in three phases. Following
phases summarizes the proposed method

1) Phase-1- Before deployment of the sensors
Selection of Global Public-Key Components-
We choose three parameters at base station that

are public and can be common to a group of sensor.
To choose these parameter a 160-bit prime

number is chosen. Next, a prime number p is
selected with a length between 512 and 1024 bits
such that q divides (p - 1). Finally, g is chosen to be
of the form h(p-1)/q mod p, where h is an integer
between 1 and (p-1) and with the restriction that
must be greater than 1 as follows.

p prime number where 2L _ 1 <p < 2L for
512 <= L <=1024 and L a multiple of 64; i.e., bit
length of between 512 and 1024 bits in increments
of 64 bits.

Int'l Conf. Foundations of Computer Science | FCS'13 | 107

q prime divisor of (p _ 1), where 2159 <q<
2160; i.e., bit length of 160 bits.

g h(p _ 1)/q mod p, where h is any

nteger with 1< h< (p _ 1) such that h(p _ 1)/q od
p>1

 .Selection of private keys & generation of
public keys

Next we choose different private keys for each
sensor and calculate its corresponding public key
and deploy pair of private & public to each sensor
as follows.

 Sensor’s Private Key
x random or pseudorandom integer with 0<

x< q.
Sensor’s Public Key
y= g

x
 mod p

The calculation of given is relatively
straightforward. However, given the public key , it
is believed to be computationally infeasible to
determine , which is the discrete logarithm of y to
the base g, modp.

 Creation of partial signature at the base
station

To create a signature, a user calculates two
quantities, r and s , that are functions of the public
key components (p,q,g) , the user’s private key (x), ,
and an additional integer k that should be generated
randomly or pseudorandomly and be unique for
each signing as follows.

 Because in signing r is not depended on
message, so we pre calculate the value of r and
value of K-1and deploy it to the sensors before the
deployment of the sensors with their public key.

. r= (gk mod p) mod q
Signature= (r, s)
Where k is random or pseudorandom

integer with 0< k< q.
Deploy the signature value at the corresponding

with their public key.

2) Phase-I1- Deployment of the sensors
After loading the signing function and public

key, we deploy the sensors in random fashion.
3) Phase-II1- After deployment of the sensors
After deployment each sensor shares its public

key to its neighbours.
After sensing the message and calculating the

message hash H (M), the sensor calculate rest of
signature part s as follows.

s = [K-1 (H(M) _ xr)] mod q
The sensor forward this message to its next hop

with its signature.
The receiving senor verify the coming message

by its signature as follows, and if its find legitimate
then it forward this message with its own signature
to next hop.

w= (s’)-1 mod q
u1= [H(M’)w] mod q
u2 =(r’)w mod q

v = [(gu1 yu2) mod p] mod q
where v is the is a function of the public key

components, the sender’s public key, and the hash
code of the incoming message

if v==r, message is accepted and forward it to
next hop else reject the coming message.

2.3 Analysis and Result

Calculation of r &K-1at base station before
deployement

 K

 Figure 2 :operations at base station

r= r_function(k, p, q, g) = (gk mod p) mod q
Preparation of sign at sending senor
 after deployment

 Figure 3:operations at sender end (sensor)

s= s_functiom(H(M), k, x, r, q) = (k_1 (H(M) +
xr))mod q

 y

v

Figure 4:operations at receiver end (sensor/Base)
w=W(s’, q) =s’_1 mod q
v=Verification(y, q, g, H(M’), w, r’)

= ((g(H(M’)w) mod q yr’w mod q) mod p) mod q

From the above figure 2, we can see that we
save those energy of sensors by which are involved
for the calculation of r & k-1by shifting these steps
at the base station.

M’

s’

r’

 H

Verification

(v)

 W_

H(M) g
q y g

k

Global public elements

r_function

Inverse

Function

Sensed
Messa

ge
(M)

Hash

Functi
on
(H)

s_function

Random
number
generator

s

P q
 g

r

q

x

k-1

108 Int'l Conf. Foundations of Computer Science | FCS'13 |

 Time taken for calculation of r
=(12/11.0592) * number of machine
cycle (13)* private keys of sensor

 Time taken for calculation of k-1=
(12/11.0592) * number of machine
cycle (16)*((k/10)+1)

 Total time saved (Tcpu)= Time taken for
calculation of r + Time taken for
calculation of k-1

 Total Energy saved (E) ≈ K1* Trfm + K2
* Tcpu_new

where Tcpu_new = time taken by the CPU at
increased bit rate , Trfm = time taken by the
transmission of data. K1 and K2 are the constant
that depend on the current consumption of the
RFM and CPU respectively at chosen frequency
and transmission power.

Let private key is 255. Let value of k is also 255.
Total time Total time saved (Tcpu)= 3.597

+460.0694
So E ≈ Tcpu≈ 463.66614 µs/ per

sensor=0.4636661ms/sensor.

Figure 5: Time consumed at sensor node at different sensor

3. EEECC/EEDHA- Second

Level Authentication
This is the second phase of authentication. We

used Energy efficient ECC & Energy efficient
DHA, to distribute the private & public key
between sensor nodes. This technique is energy
efficient because, we are identifying the steps which
are not necessary to be performed at sensor node
shifted to base station used for generation of
symmetric keys between the node. We use that
private & public key and generate symmetric key.

 3.1 EEDHA Phases

3.1.1 Phase1: Before deployment of the Sensor
Nodes using Deffie Hellman algorithm

 The Base Station select global elements q
and α such that q should be a prime
number not more than 1024 bits and α
should be less than q and also be the
primitive root of q or generator(base) of q.

 The base station select any private value X
that should be less than q for every node
differently and for itself also.

 The base station calculate public value for
every station (including itself as node) Y
by using following equation

Y=α
x
 mod ,

Now we deployed every node with private and
public values I,e, X and Y respectively with only
public value q.

3.1.2 Phase 2: After deployment of each Sensor
Nodes using Deffie Hellman algorithm

 Now every node of our static network
broadcast their public value Y to its
neighboring nodes with its id.

 Now every node calculate its secret key
(that will be different for each pair) by
using following equation.
K=Y

X
 mod q

 Now every node has a secret key to
exchange the message to each other with
its id. This show confidentiality, data
integrity and authentication to each other.

 Then as first message every node sends a
HELLO packet to its neighbors containing
its id and a nonce starting with 1 and
encrypted with respective Key.

 Now the receiving node receives and
decrypts the HELLO packet and store the
Nonce with id.

 For any next message between them every
packet contains the Nonce with a
increment of one with the data so that the
receiver can verify that the current data is
not a duplicate one using comparator. So it
can prevent the replay attack.

3.1.3 Phase 3: Addition of a new node in exiting
Network using Deffie Hellman algorithm

 Now if a new Sensor Node is deploys to
the exiting one with the same public values
that is X, Y & q. It exchanges the public
value Y and q to its neighbors.

 By using above method the neighbors
generate the corresponding keys by
selecting any random value X that should
be less than q.

3.2 EEECC Phases
3.2.1 Phase1 Before deployment of the Sensor
Nodes using ECC

 The Base Station select a large integer q,
which is either prime number p or an
integer of the form 2m and elliptic curve
parameter a and b for following equation.

Y2 + xy = x3 + ax2 + b.
This defines the elliptic group of points Eq(a,b).
The base station also picks a base point G from the
above points whose order is a very large value n.

 The base station select private value
n1,n2…..nN for sensor nodes 1,2….n
respectively, which is less than n for every
station and for itself also. These are the

Int'l Conf. Foundations of Computer Science | FCS'13 | 109

private keys for each of the sensor nodes
and base station.

 The base station generates public keys for
each of the sensor nodes and for itself by
following equation.

P = n * G
Where n and P are the private and public
values of the nods.

3.2.2 Phase After deployment of each Sensor
Nodes using ECC

 Now every node of our static network
broadcast their public value P to its
neighboring nodes with its id.

 Now every node calculate its secret key
(that will be different for each pair) by
using following equation, let second node
is the neighbor of the first node, so by
using following equation 1 and 2 generate
same key K(symmetric Key) at both the
end.
K=n1 * p2 (at node 1) and K= n2 * p1 (at
node 2)

 Now every node has a secret key to
exchange the message to each other with
its id. This show confidentiality, data
integrity and authentication to each other.

 Then as first message every node sends a
HELLO packet to its neighbors containing
its id and a nonce starting with 1 and
encrypted with respective Key.

 Now the receiving node receives and
decrypts the HELLO packet and store the
Nonce with id.

 For any next message between them every
packet contains the Nonce with a
increment of one with the data so that the
receiver can verify that the current data is
not a duplicate one using comparator. So it
can prevent the replay attack.

3.2.3 Phase 3: Addition of a new node in exiting
Network using ECC

 Now if a new Sensor Node is deploys to
the exiting one with the same values that is
nR, PR and G It exchanges the public
value PR and G to its neighbors.

 By using above method the neighbors
generate the corresponding keys by using
its previous value that is encrypted with its
symmetric key.

3.3 Analysis & Result
So in the above phases, we found and shifted

those steps of key/Cipher text generation to the base
station, which is not necessarily required at sensor
node, because public key method involve power
function calculation, which is more power hungry,
we minimizes this consumption by shifting it.

Following low level assembly code shows one of
the power function calculation for Deffie-Hellman

algorithm.After shifting one power function
calculation to the base station.

Total energy saved _ (clock per machine cycle/
frequency of processor) * Total mac\hine cycle to

calculate the power_function.

Figure6: Time consumed at sensor node at different sensor

Figure7: Time consumed at sensor node at different sensor

4. RC4- A Third Level

authentication
This is the third level of authentication, here the

initialization vector act as authenticator. The key
found from the second phase used as key for
applying the confidentiality using RC4.

Its implementation is also very easy in Output
feed back mode because output feedback mode is
only supported stream cipher technique and consists
of several simple machine operations, which makes
the processing very fast. According to the journals ,
RC4 is 5 times faster than DES and 15 times faster
than Triple-DES. Key size for the algorithm is very
flexible, which ranges from 1 to 255 bytes (8 to
1024 bits). The bytes of the static memory used as
an underlying key base changes after every byte
processes. Secure Socket Layer / Transport Layer
Security (SSL/ TLS) and Wired Equivalent Privacy
(WEP) protocol use RC4. SSL/ TLS uses some
other algorithms too. This cipher is mainly used to
encrypt/ decrypt files and data in transit.

4.1 RC4 Security and Efficiency
RC4 should be considered secure if keys of

length higher than 128 bits are used. In WEP, RC4
in combination with a particular method for
generating its keys, was broken. The weakness is

110 Int'l Conf. Foundations of Computer Science | FCS'13 |

not of RC4 itself, but how it is used in WEP. RC4 is
extremely efficient in software implementations,
since only byte operations are used.

RC4 should be considered secure if keys of
length higher than 128 bits are used. In WEP, RC4
in combination with a particular method for
generating its keys, was broken. The weakness is
not of RC4 itself, but how it is used in WEP. RC4 is
extremely efficient in software implementations,
since only byte operations are used.

RC4 falls short of the standards set by
cryptographers for a secure cipher in several ways,
and thus is not recommended for use in new
applications.

Unlike a modern stream cipher (such as those in
eSTREAM), RC4 does not take a separate nonce
alongside the key. This means that if a single long-
term key is to be used to securely encrypt multiple
streams, the cryptosystem must specify how to
combine the nonce and the long-term key to
generate the stream key for RC4. One approach to
addressing this is to generate a "fresh" RC4 key by
hashing a long-term key with a nonce. However,
many applications that use RC4 simply concatenate
key and nonce; RC4's weak key schedule then gives
rise to a variety of serious problems.

Many stream ciphers are based on linear
feedback shift registers (LFSRs), which while
efficient in hardware are less so in software. The
design of RC4 avoids the use of LFSRs, and is ideal
for software implementation, as it requires only byte
manipulations. It uses 256 bytes of memory for the
state array, S[0] through S[255], k bytes of memory
for the key, key[0] through key[k-1], and integer
variables, i, j, and k. Performing a modulus 256 can
be done with a bitwise AND with 255 (or on most
platforms, simple addition of bytes ignoring
overflow)

4.2 Stream Cipher V/S Block Cipher
Stream ciphers are often used in applications

where plaintext comes in quantities of unknowable
length where as in Block ciphers the length of the
plaintext is known .

In Stream Ciphers the encryption and decryption
process is done bit by bit where as in Block Ciphers
the encryption and decryption process is done on
the block of data .

Stream Ciphers are more faster than Block
Ciphers because in Stream Ciphers the
encryption/decryption is performed bit by bit while
in Block Ciphers the encryption/decryption is
performed on the block of data .

Block ciphers must be used in ciphertext stealing
or residual block termination mode to avoid
padding, while stream ciphers eliminate this issue
by naturally operating on the smallest unit that can
be transmitted (usually bytes).

Stream ciphers are often used in applications
where plaintext comes in quantities of unknowable
length—for example, a secure wireless connection.
If a block cipher were to be used in this type of
application, the designer would need to choose

either transmission efficiency or implementation
complexity, since block ciphers cannot directly
work on blocks shorter than their block size.

In cryptography, a stream cipher is a symmetric
key cipher where plaintext bits are combined with a
pseudorandom cipher bit stream (keystream),
typically by an exclusive-or (XOR) operation . In
cryptography, a block cipher is a symmetric key
cipher which operates on fixed-length groups of
bits, termed blocks, with an unvarying
transformation .

4.2 Encryption And Decryption Of Rc4

4.2.1 Encryption
The encryption in RC4 is done with the help of

two algorithms shown below-
The key-scheduling algorithm (KSA): The key-

scheduling algorithm is used to initialize the
permutation in the array "S". "keylength" is defined
as the number of bytes in the key and can be in the
range 1 ≤ keylength ≤ 256, typically between 5 and
16, corresponding to a key length of 40 – 128 bits.
First, the array "S" is initialized to the identity
permutation. S is then processed for 256 iterations
in a similar way to the main PRGA algorithm, but
also mixes in bytes of the key at the same time.

The pseudo-random generation algorithm
(PRGA): The lookup level of RC4. The output byte
is selected by looking up the values of S(i) and S(j),
adding them together modulo 256, and then looking
up the sum in S; S(S(i) + S(j)) is used as a byte of
the key stream, K. For many iterations as are
needed, the PRGA modifies the state and outputs a
byte of the key stream. In each iteration, the PRGA
increments i, adds the value of S pointed to by i to j,
exchanges the values of S[i] and S[j], and then
outputs the value of S at the location S[i] + S[j]
(modulo 256). Each value of S is swapped at
least once in every 256 iterations

4.2.2 Decryption
 It is reverse of encryption process i.e., in this the

k which we get in the key generation process is
XOR with the cipher text which we get from
encryption process. So the equation is as follows-

 P.T = (k XOR C.T)
Where P.T = Plain Text
 C.T = Cipher Text
 k = Key

4.3 Output Feedback Mode

The output feedback(OFB) mode has advantages
over cipher feed-back mode, because in encryption
process it encrypt the data in stream mode.

The output feedback (OFB) mode makes a block
cipher into a synchronous stream cipher: it
generates keystream blocks, which are then XORed
with the plaintext blocks to get the ciphertext. Just
as with other stream ciphers, flipping a bit in the
ciphertext produces a flipped bit in the plaintext at
the same location. This property allows many error

Int'l Conf. Foundations of Computer Science | FCS'13 | 111

http://en.wikipedia.org/wiki/Stream_cipher
http://en.wikipedia.org/wiki/Keystream
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Error-correcting_code

correcting codes to function normally even when
applied before encryption.

Following is the systematic diagram of output
feedback mode operation. Because of the symmetry
of the XOR operation, encryption and decryption
are exactly the same:

Following is the proposed diagram of OFB mode
using RC4 as stream cipher encryption. In this
technique we encrypt data bit by bit or character by
character to increase the encryption speed. Here the
initialization vector can be used as a key for
providing the authentication.

Figure 8: OFB

Each output feedback block cipher operation

depends on all previous ones, and so cannot be
performed in parallel. However, because the
plaintext or cipher text is only used for the final
XOR, the block cipher operations may be
performed in advance, allowing the final step to be
performed in parallel once the plaintext or cipher
text is available. It is possible to obtain an OFB
mode key stream by using CBC mode with a
constant string of zeroes as input. This can be
useful, because it allows the usage of fast hardware
implementations of CBC mode for OFB mode
encryption.

Using OFB mode with limited feedback like
CFB mode reduces the average cycle length by a
factor of 232 or more. A mathematical model
proposed by Davies and Parkin and substantiated by
experimental results showed that only with full
feedback an average cycle length near to the
obtainable maximum can be achieved. For this
reason, support for limited feedback was removed
from the specification of OFB.

4.4 Analysis of OFB
The first advantage of using OFB method is tha5

bit errors in transmission do not propagate. For
example, if a bit error occurs in C1 , only the
recovered value of P1 is affected; subsequent
plaintext units are not corrupted. With CFB, C1
also serves as input to the shift register and
therefore causes additional corruption downstream.

The second advantage of using OFB method is
the use of Initialization vector (IV) as
authentication key using MAC as authenticator .We
can also use IV to prevent replay attack, because at
each iteration we shift the IV left, so cable to
behave as a nonce each time to denote that this
current message is a fresh message.

The third advantage of using OFB is that we can
encrypt the message using stream Cipher technique
and that will increase the encryption and decryption
time, so the energy consumption will decrease.

The fourth advantage is that no padding is
required at the end of data to complete the block, so
overhead decreases.

4.5 Result And Analysis
We have proposed that if we use RC4 (a stream

cipher technique) instead of DES (i.e; block cipher
technique) in output feed back mode the total time
for encryption and decryption will reduce at sensor
node.

To prove the above method, following graph
shows the time taken for encryption/Decryption
using RC4 as stream cipher and Hill Cipher as a
block.

Figure 9: Comparision between stream & Block cipher

Here we observed that the time taken for stream

cipher is much less than block cipher.
As per above discussion it seems that encryption

as well as decryption speed in stream cipher is more
than block cipher. Also in CFB and OFB block
cipher modes of operation is much faster than CBC
mode.

As well as no bit padding is require in stream
cipher for encryption, but in block cipher we add
extra bit to complete the block for encryption.

Using CFB or OFB using we get more security
services at sensor node i.e. Confidentiality,

112 Int'l Conf. Foundations of Computer Science | FCS'13 |

http://en.wikipedia.org/wiki/Error-correcting_code

authentication, data integrity and freshness of the
message.

So in future we can use block cipher encryption
techniques in such a way that it can consume less
time and less power as stream cipher.

5. Conclusion And Future

Work
Multi level authentication(MLA) assures there is

no impersonation in the network and secure our
network from intruder nodes strongly. This
application is preferred in those areas where the
higher level of authentication is required like
battlefield scenarios and in defence application
where authentication matters.

Appling multilevel authentication total energy
consumption is increased slightly as the result
shows(in terms of processor time).

Using above techniques we are getting, a number
of security services like authentication,
confidentiality, data integrity, non-repudiation, etc.
With complete security solutions, we are also
minimizing routing overhead, because the
intermediate node will reject the messages to move
forward generated from a false node.

So by using MLA we are getting complete
security services at a cost of sightly increased
energy.

6. REFERENCES:

[1] P. Ekdahl, T. Johansson. “A new version ot
the stream cipher SNOW”, available from
http://www.it.lth.se/cryptology/snow/, 2002.

[2] Stinson, D. Cryptography: Theory and
Practice. Boca Raton,FL: Press,2002

[3] Rescorla, E. SSL and TLS: Designing and
Building Secure system, Reading , MA :
addition-Welsey, 2001.

[4] Knudsen. L., et al. “Analysis method for
alledged RC4.” Proceedings, ASIACRYPT
’98, 1998.

[5] Mister, S.; and Tavares, S. “Cryptography of
RC4 like Cipher.” Proceeding, workshop in
selected areas of cryptography, SAC 1998.

[6] Fluhrer, S. and McGrew, D. “Statistical
analysis of the alleged RC4 key stream
Generator. “ Proceeding, Fast software
encryption 2000.

[7] Whitfield Diffie, Paul C. van Oorschot,
Michael J. Wiener “Authentication and
Authenticated Key Exchanges” Designs,
Codes and Cryptography, 2, 107-125 (1992),

[8] Akl, S. “Digital signature: A Tutorial Survey”,
Computer, 1983.

[9] W. Du, R. Wang, and P. Ning “An Efficient
Scheme for Authenticating Public Keys in
Sensor Networks,” In Proc. MobiHoc’05,
pp.58-67, May 25-28, 2005.

[10] National Institure of Standards and
Technology: Proposed Federal Information

Processing Standard for Digital Signature
Standard (DSS). Federal Register, vol.56, no.
169, pp. 42980C42982 (1991)

[11] Mantin, I., Shamir, A. “A practical attack on
broadcast RC4.” Proceeding, Fast software
encryption 2001.

[12] .M. D. Galanis, P. Kitsos, G. Kostopoulos, O.
Koufopavlou, Comparison of the
Performanceof Stream Ciphers for Wireless
Communications, proceedings of CCCT'04,
Austin, Texas, USA,August 14-17, 2004.

[13] Blake, I.; Seroussi, G.; and smart, N. Elliptic
Curves in Cryptography. Cambridge;
Cambridge University Press, 1999.

[14] L. Batina, J. Lano, N. Mentens, B. Preneel, I.
Verbauwhede, S. B. Ä Ors, Energy,
Performance,Area versus Security Trade-o®s
for Stream Ciphers, in ECRYPT Workshop,
SASC - The State of the Art of Stream
Ciphers, pp. 302-310, 2004.

[15] A. Perrig, et al., "SPINS: Security protocols
for sensor network," Wireless Networks, vol.
8, no. 5, Sept. 2002, pp. 521-534.

[16] D. W. Davies and G. I. P. Parkin. The
average cycle size of the key stream in output
feedback encipherment. In Advances in
Cryptology, Proceedings of CRYPTO 82,
pages 263–282, 1982.

[17] Virgil D. Gligor, Pompiliu Donescu, "Fast
Encryption and Authentication: XCBC
Encryption and XECB Authentication
Modes". Proc. Fast Software Encryption,
2001: 92-108

[18] Charanjit S. Jutla, "Encryption Modes with
Almost Free Message Integrity", Proc.
Eurocrypt 2001, LNCS 2045, May 2001.

[19] Chungen, Yanhong Ge, “The Public Key
Encryption to Improve the Security on
Wireless Sensor Networks” 2009 Second
International Conference on Information and
Computing Science,978-0-7695-3634-7/09
$25.00 © 2009 IEEE,DOI
10.1109/ICIC.2009.

[20] Willliam Stallings “ Cryptography and
Network Security” Principles and Practice”
fifth Edition.

[21] SHISH AHMAD, RIZWAN .BEG, S.Q.
ABBASS. 2010.Energy Efficient Sensor
Network Security Using Stream Cipher Mode
of Operation. IEEE ICCCT -2010.

[22] SHISH AHMAD, RIZWAN BEG, S.Q.
ABBASS. 2010. Energy Saving Secure
framework for Sensor Network using Elliptic
Curve Cryptography. IJCA Special issue on
MANTES.

Int'l Conf. Foundations of Computer Science | FCS'13 | 113

Energy Efficient Encryption using Counter mode
of operation in Wireless Sensor Network

A. Shish Ahmad, B. Dr. Mohd. Rizwan Beg
CSE Department, Integral University, Lucknow, India

Abstract- Sensor networks are deployed for
various monitoring applications. The reporting
should be in secure manner so that the adversary
can’t forge the data and can be prevented from any
disclosure. In this paper we have identified those
calculations which are not necessary to be
performed on sensor node for securing the network,
shifted to base stations to save the energy at nodes.
Using pre-processing approach saves energy
consumption at nodes for producing Secured/
Encrypted data. So here we are proposing
EEECMO method Energy Efficient Encryption
using Counter mode of operation in such a way that
before the deployment, the base station process the
part of the security algorithm that involve the key in
the setup phase. In this fashion, we are getting
secure communication network without the
distribution of the key among the sensor nodes and
also minimizes energy consumption at sensor node.

Key Words- Sensor network, Security,
confidentiality, Block Cipher, Encryption and
Decryption, , Counter mode, pre-processing, Stream
Cipher.

1. Introduction
Wireless sensor networks have become a

promising future to many applications, such as
smart houses, smart farms, smart parking, smart
hospitals, habitat monitoring, building and structure
monitoring, distributed robotics, industrial and
manufacturing, and national security. In addition to
common network threats, sensor networks are more
vulnerable to security breaches because they are
physically accessible by adversaries. Imagine the
damage caused by compromised sensor network in
sensitive military and hospital applications. These
are often deployed in unattended environments, thus
leaving these networks vulnerable to passive and
active attacks by the adversary. The conversation
between sensor nodes Can be eavesdropped by the
adversary .The adversary can be aware of the
conversation between the sensors and can forge the
data. Sensor nodes should be resilient to these
attacks. Since Sensor nodes are resource
constrained and run on battery, energy consumption
should be low to make it operate for many days.

Confidentiality is very much concern in battle-
field scenarios, where fraudulent node impersonate
as a legitimate sensor.

Security in ad hoc networks is an essential
component for basic network functions like packet
forwarding and routing and network operation can
be easily jeopardized if countermeasures are not
embedded into the basic network functions at the
early stages of their design. The disclosure
threat involves the leakage of Security information
from the system to a party that should not have seen
the information and is a threat against the
confidentiality of the information.

Data confidentiality is a core security primitive
for ad hoc networks. It ensures that the message
cannot be understood by anyone other than the
authorized personnel. With wireless
communication, anyone can sniff the messages
going through the air, and without proper
encryption all the information is easily available.
Due to the small battery backup of Sensor Node,
security algorithm must consume low power.
Symmetric key are efficient for providing security
services like confidentiality.

Security Solutions should minimize the amount
of computation and communication required to
ensure the security services to accommodate the
limited energy and computational resources of
mobile, ad hoc-enabled devices.

Generally DES algorithm is a basic building
block for providing data security. To apply DES in
a variety of applications, four `”modes of
operations have been defined. These four modes are
intended to cover virtually all the possible
applications of encryptions of encryption for which
DES could be used.

Here we are proposing Energy Efficient
Encryption using Counter mode of operation
(EEECMO) using DES algorithm for providing
confidentiality in such a way that total energy
consumption decreases at Sensor node. Using the
property of property of pre-processing in CTR, we
pre-process those steps which is not necessary to be
performed at sensor node to base station.

The Proposed method uses the key at the base
station only to produce the credential that play role
to encrypt the sensed data at Sensor nodes/sensor
aggregator, so there is no need to distribute the key
in sensor network. It saves a lot of problem arises
to distribute the key as well as saves energy to
distribute the key.

2. Counter MODE (CTR)

114 Int'l Conf. Foundations of Computer Science | FCS'13 |

Although interest in the counter (CTR) mode has
increased recently with applications to ATM
(asynchronous transfer mode) network security and
IP sec (IP security) .A counter equal to the plaintext
block size is used. The only requirement stated in
SP 800-38A is that the counter value must be
different for each plaintext block that is encrypted.
Typically, the counter is initialized to some value
and then incremented by 1 for each subsequent
block (modulo 2b, where b is the block size). For
encryption, the counter is encrypted and then
XORed with the plaintext block to produce the
cipher text block; there is no chaining. For
decryption, the same sequence of counter values is
used, with each encrypted counter XORed with a
ciphertext block to recover the corresponding
plaintext block. Thus, the initial counter value must
be made available for decryption. Given a sequence
of counters T1, T2, Á , TN, we can define CTR
mode as follows.

 Encryption
Cj=Pj E(K,Tj) j=1,2......N-1.
CN=PN MSBu [E(K,TN)]

 Decryption
Pj=Cj E(K,Tj) j=1,2......N-1.
PN=CN MSBu [E(K,TN)]

For the last plaintext block, which may be a
partial block of bits, the most significant bits of the
last output block are used for the XOR operation;
the remaining b-u bits are discarded. Unlike the
ECB, CBC, and CFB modes, we do not need to use
padding because of the structure of the CTR mode.

As with the OFB mode, the initial counter value
must be a nonce; that is T1, must be different for all
of the messages encrypted using the same key.
Further, all Ti values across all messages must be
unique. If, contrary to this requirement, a counter
value is used multiple times, then the confidentiality
of all of the plaintext blocks corresponding to that
counter value may be compromised. In particular, if
any plaintext block that is encrypted using a given
counter value is known, then the output of the
encryption function can be determined easily from
the associated ciphertext block. This output allows
any other plaintext blocks that are encrypted using
the same counter value to be easily recovered from
their associated ciphertext blocks.

One way to ensure the uniqueness of counter
values is to continue to increment the counter value
by 1 across messages. That is, the first counter
value of the each message is one more than the last
counter value of the preceding message.
Following are advantages of CTR mode.

A. Hardware efficiency: Unlike the three chaining
modes, encryption (or decryption) in CTR mode
can be done in parallel on multiple blocks of
plaintext or cipher text. For the chaining modes,
the algorithm must complete the computation on

one block before beginning on the next block.
This limits the maximum throughput of the
algorithm to the reciprocal of the time for one
execution of block encryption or decryption. In
CTR mode, the throughput is only limited by the
amount of parallelism that is achieved.

B. Software efficiency: Similarly, because of the
opportunities for parallel execution in CTR
mode, processors that support parallel features,
such as aggressive pipelining, multiple
instruction dispatch per clock cycle, a large
number of registers, and SIMD instructions, can
be effectively utilized.

C. Pre-processing: The execution of the
underlying encryption algorithm does not
depend on input of the plaintext or cipher text.
Therefore, if sufficient memory is available and
security is maintained, preprocessing can be
used to prepare the output of the encryption
boxes that feed into the XOR functions. When
the plaintext or ciphertext input is presented,
then the only computation is a series of XORs.
Such a strategy greatly enhances throughput.

D. Random access: The ith block of plaintext or
ciphertext can be processed in random-access
fashion. With the chaining modes, block cannot
be computed until the i-1 prior block are
computed. There may be applications in which a
ciphertext is stored and it is desired to decrypt
just one block; for such applications, the
random access feature is attractive.

E. Provable security: It can be shown that CTR is
at least as secure as the other modes.

F. Simplicity: Unlike ECB and CBC modes, CTR
mode requires only the implementation of the
encryption algorithm and not the decryption
algorithm. This matters most when the
decryption algorithm differs substantially from
the encryption algorithm, as it does for AES. In
addition, the decryption key scheduling need not
be implemented.

FIGURE 1: OPERATION OF CTR

3. PROPOSED METHOD

Our proposed method is Energy Efficient
Encryption using Counter mode of operation

Int'l Conf. Foundations of Computer Science | FCS'13 | 115

(EEECMO) for securing Sensor network is
divided into 3-Phases.

3.1 Phase 1-:
This is the setup phase performed at base station
before the deployment of the sensor node.
We choose the incremental Counter of 64-bit
and keys k1,k2......Kn, Where n is the number of
sensor nodes. Apply the DES encryption as
follows, as shift register and select s-bits depend
on the size of sensed data to be encrypted.

Here we are using different keys to produce the
credential at different respective nodes, that play
role to produce the cipher text at nodes after
deployment.
The shift register value (after selecting s- bits)
store at each node and deploy it randomly.

3.2 Phase 2-:

This starts after the deployment of the senor
nodes. Using End to End encryption the sensor
encrypt the sensed data with the help of the

Credential loaded previously in setup phase as
follows.

In the above figure each sensor node/ aggregator
node perform the X-OR operation bit by bit to the
calculated credential prior to the deployment. Here
we can see that for encrypting the data at sensor
node no key is required. Following shows how the
cipher text calculated.

Cj = Pj MSBs(EKi(Counter (address)j)
where j = 1….. N
After calculating the cipher text each node send

that encrypted data to base station. After receiving
the encrypted data from each node/ aggregator the
base station perform the third phase of EEECMO.

3.3 Phase 3- After receiving the encrypted data
from the network, the base station starts the
decryption as follows. The Decrypted data is
found as follows

Pj = Cj MSBs(E Ki (Counter
(address)j) where j = 1….. N
The plaintext is calculated by X-ORing the
coming Cipher text with the shifted s-bits found
by apply DES encryption with the same key on
incremental counter.

116 Int'l Conf. Foundations of Computer Science | FCS'13 |

4. RESULT AND ANALYSIS
Keys Plays its role in the first phase i.e. is the

setup phase in which we apply the DES encryption
using different keys at base station only. After
encryption we are choosing only s-bits from 64-bit
credential. The s-bit block size depends on the size
of data send by the sensor aggregator/ sensor node
to the base station after deployment. The key does
not participate in second phase of encryption
process, so there is no need of key establishment in
network.

Secondly because the encryption in first phase
does not depend on the message, so we can pre-
process that part on base station only.

Another advantage of using only s-bits is to
perform stream encryption (may be a character of 8-
bit) instead of block cipher technique. So instead of
using block cipher technique like DES, we can
choose any stream cipher technique like RC4.
Following are the advantages of using stream cipher
over block cipher.

1. Stream ciphers are often used in applications
where plaintext comes in quantities of
unknowable length where as in Block
ciphers the length of the plaintext is known.

2. In Stream Ciphers the encryption and
decryption process is done bit by bit where
as in Block Ciphers the encryption and
decryption process is done on the block of
data .

3. Stream Ciphers are more faster than Block
Ciphers because in Stream Ciphers the
encryption/decryption is performed bit by bit
while in Block Ciphers the
encryption/decryption is performed on the
block of data .

4. Block ciphers must be used in ciphertext
stealing or residual block termination mode
to avoid padding, while stream ciphers
eliminate this issue by naturally operating on
the smallest unit that can be transmitted
(usually bytes).

5. Stream ciphers are often used in applications
where plaintext comes in quantities of
unknowable length—for example, a secure
wireless connection.

6. If a block cipher were to be used in this type
of application, the designer would need to
choose either transmission efficiency or
implementation complexity, since block
ciphers cannot directly work on blocks
shorter than their block size.

7. In cryptography, a stream cipher is a
symmetric key cipher where plaintext bits
are combined with a pseudorandom cipher
bit stream (key stream), typically by an
exclusive-or (XOR) operation. In
cryptography, a block cipher is a symmetric
key cipher which operates on fixed-length
groups of bits, termed blocks, with an
unvarying transformation.

So instead of apply DES for encryption, we
can go for stream cipher algorithm for
encryption like RC4,.

So following are advantages of using EEECMO.

1. The Throughput, hardware & software
efficiency of overall network system will
increase due to the pre-processing of
security algorithm.

Int'l Conf. Foundations of Computer Science | FCS'13 | 117

2. Energy consumption at sensor node
decreases, because of pre-processing of the
part of the security algorithm carried out at
base station. So it also saves the time and
energy for key establishment process as
shown in figure 6 .

3. Counter selected at base station incremented
for the next sensor hop also act as a
authenticator for that sensor node.

4. Stream cipher is faster than block cipher.
Also the computation time it takes to
generate a cipher text is less than the block
cipher for the same length of the output
cipher text as shown in following figure 5.

Figure 6: Energy saved in µJ with varied number of nodes

Figure 5 shows that the computation time for
stream cipher is less than the block cipher, so
selecting s-bits in shift register motivate us to use
stream cipher encryption instead of block cipher.
Figure 6 shows that the pre-processing approach
used in counter mode of operation saves energy at

sensor nodes. Figure indicates that as the network
energy will be saved more by network if we
increase number of nodes.

5. Conclusion

118 Int'l Conf. Foundations of Computer Science | FCS'13 |

Using counter mode increases the hardware and
software efficiency. Also due to the pre-processing
we can save the energy by saving the computation
cost of security algorithm at node.
The Throughput of overall network system
increases due to the pre-processing of security
algorithm. As the key does not participate to
produce the cipher text at sensor node, because the
requirement of the key does not depend on the
]message, so here we are saving the effort, time and
computation cost for distributing the key.
Also using counter mode we can go for the stream
cipher approach instead of block cipher which also
minimizes the computation cost.
So due to limited computational capabilities and
limited battery power we can go for those
approaches where part of the security algorithm can
be computed at base instead of sensor node to
minimize the energy consumption.
Also if the part of security algorithm does not
depended on key at sensor node i.e. not depended
on message, no distribution of key is required in
network.
Stream cipher algorithms can more preferred
because of compatibility to the sensors.

6. REFERENCES

[1] David Carman, Daniel Coffin, Bruno Dutertre,
Vipin Swarup, Ronald Watro” Forum Session:
Security for Wireless Sensor Networks”,
Proceedings of the 19th Annual Computer Security
Applications Conference (ACSAC 2003), 1063-
9527/03 $17.00 © 2003 IEEE .
[2] P. Ekdahl, T. Johansson. A new version ot the
stream cipher SNOW, available from
http://www.it.lth.se/cryptology/snow/, 2002.
[3] Shish Ahmad, Rizwan beg, Qamar Abbas,
Jameel Ahmad “ Comparative study between stream
cipher and block cipher using RC4 and Hill cipher”.
IJFCA 2010.
[4] Shish Ahmad, Dr. Mohd. Rizwan
Beg”Comparative Study between Stream Cipher
and Block Cipher using RC4 and Hill Cipher”,
International Journal of Computer
Applications.URI:http://www.ijcaonline.org/archiv
es/number25/465 -770,2010
[5] Dr. Mohd. Rizwan Beg, Shish Ahmad”Energy
Efficient Sensor Network Security Using Stream
Cipher Mode of Operation” in proceedings of
IEEE International Conference on Computer
and Communication Technology 2010 Available
online ieeeexplore.org
[6] Niels Ferguson, Bruce Schneier, Tadayoshi
Kohno, Cryptography Engineering, page 71, 2010.
[7] Alfred J. Menezes, Paul C. van Oorschot and
Scott A. Vanstone (1996). Handbook of Applied
Cryptography. CRC Press. ISBN 0-8493-8523-7.
[8] "Block Cipher Modes". NIST Computer
Security Resource Center.

[9] A. Biryukov, A. Shamir, D. Wagner , Real Time
Cryptanalysis of A5/1 on a PC, Proceedings of the
Fast Software Encryption Workshop 2000,
Springer-Verlag, Lecture Notes in Computer
Science, 2000.
[10] H. Lipmaa, P. Rogaway, D. Wagner, Counter
Mode Encryption, Proposal for the NIST Modes of
Operation Workshop,
http://csrc.nist.gov/encryption/modes/proposedmod
es/ctr/ctr-spec.pdf.
[11] A. Biryukov and A. Shamir, Cryptanalytic
Time/Memory/Data Tradeoffs for Stream Ciphers,
The Proceedings of ASIACRYPT 2000, Springer-
Verlag, 2000, pp. 1-13. Available online at
http://www.wisdom.weizmann.ac.il/~albi/publicatio
ns.html.
[12] P. Rogaway and D. Coppersmith, A software-
optimized encryption algorithm, Journal of
Cryptology, vol. 11, num. 4, pp. 273-287, 1998.
Earlier version in Proceedings of the Fast Software
Encryption Workshop, Lecture Notes in Computer
Science, Vol. 809, R. Anderson, ed.,
SpringerVerlag, 1993.
[13]] M. Blaze, W. Diffie, R. Rivest, B. Schneier,
T. Shimomura, E. Thompson, and M. Weiner,
Minimal Key Lengths for Symmetric Ciphers to
Provide Adequate Commercial Security, January
1996. Online
athttp://www.counterpane.com/keylength. html.
[14] David A. McGrew, Cisco Systems, Inc.”
Counter Mode Security: Analysis and
Recommendations” available at
http://cr.yp.to/bib/2002/mcgrew.pdf.
[15] Willliam Stallings “ Cryptography and
Network Security” Principles and Practice” fifth
Edition.
[16] Diffie,W., and Hellman, M. “Privacy and
Authentication: An Introduction to Cryptography.”
Proceedings of the IEEE,March 1979.

Int'l Conf. Foundations of Computer Science | FCS'13 | 119

http://www.it.lth.se/cryptology/snow/
http://www.ijcaonline.org/archiv
http://csrc.nist.gov/encryption/modes/proposedmod
http://www.wisdom.weizmann.ac.il/~albi/publicatio
http://www.counterpane.com/keylength
http://cr.yp.to/bib/2002/mcgrew.pdf

Advanced Symmetric Key Cryptosystem using Bit and

Byte Level Encryption Methods with Feedback

A. Prabal Banerjee
1
 and B. Asoke Nath

2

1,2 Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata, India
1
mail.prabal@gmail.com,

2
asokejoy1@gmail.com

Abstract - In the present paper the authors have introduced

a new symmetric key cryptographic method where the

authors have applied bit level and byte level generalized

modified vernam cipher method followed by bit-wise

transposition method. Nath et al already developed

method which was a combination of generalized bit level

and byte level encryption methods. In the present method the

authors have added one more encryption method that is bit-

wise columnar transposition method. Nath et al also

developed bit level encryption standard(BLES) Ver-I and

Ver-II where they have used extensive bit level permutation,

bit exchange, bit xor and bit shift encryption method. In the

present study the authors have used both bit level

generalized vernam cipher method and after that byte level

vernam cipher method using feedback and finally the output

is passed through bit-wise columnar transposition method to

make the whole system more secured. The introduction of

feedback in both bit level as well as byte level vernam cipher

method prevents from standard attacks such as differential

attack or known plain text attack. In the present paper the

authors have used random key generator to construct the

keypad for vernam cipher method. The present method will

be most effective for encrypting short message, password,

any confidential key etc.

Keywords: BLES, bit-wise columnar transposition,

differential attack, vernam cipher method

1 Introduction

In Internet when a person sends some confidential data from

one computer to another computer then there is no

guarantee that the confidential message can not be

intercepted by any unwanted intruder. This is because the

internet is now so open that any body can access any

information and sometimes he/she can divert/forward to

anyone also. So the security of data is now has a big

question mark. Any kind of private data should not be sent

in raw form from one computer to another. The

private/confidential data must be encrypted first and then it

should be sent over the internet. In the modern days e-mail

is one most important method to send data from one

machine to another or from one person to another person.

But the question is how secured is this method. The hackers

have made many packages and they have uploaded in

various websites to break any password. So it is not at all a

difficult task to break any password of any e-mail especially

if it is very weak password. Once the password is hacked

then anything can be done from that e-mail. So the e-mail

must not contain any confidential information in raw form.

The hackers are always try hack the password of e-mail.

Anytime the disaster may come. So if the data is

confidential/private then it must be encrypted first with

some good encryption method and then it can be sent to

someone. The security or the originality of data has now

become a very important issue in data communication

network. It is now a common practice in any academic

institution to send marks, attendance or question papers,

bank statement over e-mail. But this method is not fully

secured as anybody can intercept the data from internet and

misuse it. It is not at all difficult task for a hacker to

intercept an e-mail and retrieve the confidential data

especially if it is not encrypted. It must be ensured that in

any kind of e-business, air or railway reservation system or

in credit card or debit card system the data should not be

tampered or intercepted by an unauthorized person. The

disaster may happen in any corporate sector, business house

when the data is sent from one computer to other computer

in an unprotected manner. To overcome this problem one

has to send the encrypted text or cipher text from client to

server or to another client instead of sending in unencrypted

form. To protect data from intruder or hacker now network

security and cryptography is an emerging research area

where the programmers are trying to develop some strong

encryption algorithm so that no intruder can intercept the

encrypted message. The cryptography methods can be

divided into two categories : (i) symmetric key

cryptography where one key is used for both encryption and

decryption purpose. (ii) Public key cryptography where two

different keys are used one for encryption and the other for

decryption purpose. In symmetric key we have to maintain

only one key and hence the key management is simple . In

public key cryptography we maintain two keys one is public

key which is known to everybody and that can be used for

encryption purpose and there is another key called private

key which is a secret key and that is used for decryption

purpose only. In the present work the authors are proposing

a symmetric key method where they have used bit level and

byte level modified generalized vernam cipher method

using feedback method followed by randomized bit level

columnar transposition method The present method can be

applied in corporate sectors, business house, academic

institutions, Defense network etc. The present method

performs the following:

120 Int'l Conf. Foundations of Computer Science | FCS'13 |

The user has to enter some secret key and which is used to

generate MSA matrix.

The program then generates all the required anagrams

sufficient to encrypt all of the plaintext.

Then Bit level vernam cipher with feedback is applied ,

reverse file, apply again.

After that Byte level vernam cipher is applied with

feedback. Reverse the file and again applied the same

method.

Finally randomized Bit level transposition method applied.

The final bits were converted to bytes and write on to some

output file.

The multiple key generation from a set of random characters

and both bitwise and bytewise encoding make the system

very secure.

2 Encryption Algorithm

The present method is dependent both on the text-key and

the plaintext file size. From the text-key a randomization

matrix is generated using the method developed by Nath et

al(1). The algorithm of bit-level and byte level generalized

vernam cipher method and bitwise columnar transposition is

given as follows:

Step 1: Call Bitwise_Encrypt()

Step 2: Call Bytewise_Encrypt()

Step 3: Call Transpose_Encrypt()

Step 4: Exit

2.1 Function Bitwise_Encrypt ()

Step 1: Input a key string K

Step 2: Generate a 16x16 matrix (mat[][]) using the MSA

algorithm for the key string K

Step 3: Input Filename P which is the plaintext on which the

encryption is to be applied

Step 4: size=no. of bytes in file P, rand_no=1

Step 5: If size>=factorial of rand_no, rand_no=rand_no+1,

repeat step 5

Step 6: Take 'rand_no' amount of characters from mat[][]

and put in string buf

Step 7: Find all anagrams of buf and put in file F

Step 8: Call Encrypt_byte(P,F,mat)

Step 9: Reverse the contents of A into which function

Encrypt_byte has written

Step 10: Call Encrypt_bit(A,mat)

Step 11: limit=number of bytes in file B

Step 12: i=0

Step 13: if i>=limit/8, goto step 23

Step 14: add=j=0

Step 15: if j>=8, goto step 20

Step 16: Read a character from B and store into ch

Step 17: add=add+(ch-48)*power(7-j)

Step 18: j=j+1

Step 19: Goto step 15

Step 20: Convert add to character and print into file C

Step 21: i=i+1

Step 22: Goto step 13

Step 23: Return control to calling function

2.2 Function Bytewise_Encrypt (File C)

Step 1: limit=number of bytes in File C, k=carry=0

Step 2: if k>limit , goto step 11

Step 3: Read a character from file C and store to ch

Step 4: ch=ch+mat[i][j]+carry

Step 5: Write ch to file D

Step 6: carry= ch % 256

Step 7: j=j+1, k=k+1

Step 8: if j=16, i=i+1 and j=0

Step 9: if i=16, i=0

Step 10: Goto step 2

Step 11: Exit

2.3 Function Encrypt_byte (File P, File F,

mat[16][16])

Step 1: Find the number of bytes in the plaintext file P on

which the encryption is to be applied. Let it contain

no_of_bytes.

Step 2: carry=0

Step 3: Read a character from file F and store to ch

Step 4: Call char_to_bit(ch,key_bit)

Step 5: Read a byte ch from P

Step 6: Call char_to_bit(ch,text_pattern)

Step 7: k=0

Step 8: if k>=8, goto step 16

Step 9: add=text_pattern[k]+key_bit[k]+carry

Step 10: if add=1 or add=3, cipher_bit=1

 else cipher_bit=0

Step 11: if add>=2, carry=1

Int'l Conf. Foundations of Computer Science | FCS'13 | 121

 else carry=0

Step 12: If carry=0, carry=cipher_bit

Step 13: Print cipher_bit into file A

Step 14: k=k+1

Step 15: Goto Step 8

Step 16: no_of_bytes=no_of_bytes-1

Step 17: If no_of bytes>0, goto step 3

Step 18: Return control to calling function

2.4 Function Encrypt_bit (File A,

mat[16][16])

Step 1: Find the number of bytes in A on which the

encryption is to be applied. Let it contain no_of_bytes.

Step 2: carry=0

Step 3: Read a character from file F and store to ch

Step 4: Call char_to_bit(ch,key_bit)

Step 5: n=0

Step 6: if n>=8, goto step 11

Step 7: Read a char from A

Step 8: text_pattern[n]=ch-48

Step 9: n=n+1

Step 10: Goto step 6

Step 11: k=0

Step 12: if k>=8, goto step 16

Step 13: add=text_pattern[k]+key_bit[k]+carry

Step 14: if add=1 or add=3, cipher_bit=1

 else cipher_bit=0

Step 15: if add>=2, carry=1

 else carry=0

Step 16: If carry=0, carry=cipher_bit

Step 17: Print cipher_bit into file B

Step 18: k=k+1

Step 19: Goto Step 8

Step 20: no_of_bytes=no_of_bytes-8

Step 21: If no_of bytes>0, goto step 3

Step 22: Return control to calling function

2.5 Function power (integer p) -- Function

returns 2 to the power p

Step 1: ans=2

Step 2: if p!=0, return 1

Step 3: p=p-1

Step 4: if p=0, goto step 7

Step 5: ans=ans*2

Step 6: Goto step 4

Step 7: return ans

Step 8: Return control to calling function

2.6 Function char_to_bit (integer c, integer

a[]) --Function changes a character to its

corresponding bit pattern

Step 1: i=0

Step 2: if i>=8, goto step 4

Step 3: if ((ch)AND(1<<i))>0, a[7-i]=1

 else a[7-i]=0

Step 4: Return control to calling function

2.7 Function Transpose_Encrypt()

Step 1: Take a file A. Say it has n characters.

Step 2: Define a n x 8 table. i=0.

Step 3: Read a character ch from file A.

Step 4: Convert ch into its corresponding bit pattern and

save it in i
th

 row of the table.

Step 5: Take 8 numbers from MSA table such that each

number modulo 8 is unique and covers whole of range 0 to

7. Let the numbers be M1, M2, …. M8

Step 6 : For each of i from 1 to 8, choose Mi
th

column of the

table and save the contents into a temporary file T.

Step 7: Read 8 integers from file T. Compute its equivalent

binary. Save into final file F.

Step 8: Repeat step 7 until whole of file T is read.

Step 9: Return control to calling function.

3 DECRYPTION ALGORITHM

Step 1: Call Transpose_Decrypt()

Step 2: Call Bytewise_Decrypt()

Step 3: Call Bitwise_Decrypt()

Step 4: Exit

3.1 Function Bitwise_Decrypt (File P)

Step 1: Input a key string K

122 Int'l Conf. Foundations of Computer Science | FCS'13 |

Step 2: Generate a 16x16 matrix (mat[][]) using the MSA

algorithm for the key string K

Step 3: size=no. of bytes in file P, rand_no=1

Step 4: If size>=factorial of rand_no, rand_no=rand_no+1,

repeat step 4

Step 5: Take 'rand_no' amount of characters from mat[][]

and put in string buf

Step 6: Find all anagrams of buf and put in file F

Step 7: Call Encrypt_byte(P,F,mat)

Step 8: Reverse the contents of B into which function

Encrypt_byte has written

Step 9: Call Encrypt_bit(B,mat)

Step 10: limit=number of bytes in file B

Step 11: i=0

Step 12: if i>=limit/8, goto step 22

Step 13: add=j=0

Step 14: if j>=8, goto step 19

Step 15: Read a character from B and store into ch

Step 16: add=add+(ch-48)*power(7-j)

Step 17: j=j+1

Step 18: Goto step 14

Step 19: Convert add to character and print into file C

Step 20: i=i+1

Step 21: Goto step 12

Step 22: Exit

3.2 Function Bytewise_Decrypt (File P)

Step 1: Input Filename P which is the plaintext on which the

encryption is to be applied

Step 2: limit=number of bytes in File P, k=carry=0

Step 3: if k>limit , goto step 12

Step 4: Read a character from file P and store to ch

Step 5: ch=ch - mat[i][j] - carry

Step 6:if ch<0, ch=ch+255

Step 7: carry= ch , Store ch in File A

Step 8: j=j+1, k=k+1

Step 9: if j=16, i=i+1 and j=0

Step 10: if i=16, i=0

Step 11: Goto step 3

Step 12: Exit

3.3 Function Transpose_Decrypt()

Step 1: Take file A on which transposition is to be applied

and decrypted. Let it contain n characters

Step 2: Take tables T1 and T2 of size n x 8.

Step 3: Read a character from file A. Take its corresponding

bit pattern and save in T1 by filling it column wise. Repeat

the process until all the characters are read of file A.

Step 4: Take 8 numbers from MSA table such that each

number modulo 8 is unique and covers whole of range 0 to

7. Let the numbers be M1, M2, …. M8

Step 5: For each of i from 1 to 8, choose Mi
th

column of the

table and copy the contents of the column into (i-1)
th

column

of T2.

Step 6: Starting from row 0, take all rows, one at a time.

Compute the corresponding byte for the bit pattern (each

row is a bit pattern) and save in file F.

Step 7: Return control to calling function.

4 Randomixzation Of Matrix Using

Meheboob, Saima & Asoke(Msa)

Randomization Method

We first create a square matrix of size n x n where n can be

4, 8, 16 and 32. First we store numbers 0 to (n*n-1). We

apply the following randomization techniques to create a

random key matrix. The detail description of randomization

methods is given by Nath et.al[1].

The following Randomization methods were applied on

initial key matrix to obtain a randomized key matrix:

Step-1: call Function cycling()

Step-2: call Function upshift()

Step-3: call Function downshift()

Step-4: call Function leftshift()

Step-5: call Function rightshift()

Int'l Conf. Foundations of Computer Science | FCS'13 | 123

5 Results And Discussion

 The present method applied on various text files such as all

characters ASCII ‘0’, all characters ASCII ‘1’ and the
frequency distribution of the encrypted text is shown the

below spectral graph.

 Fig-1: Frequency Spectral analyses of Plain Text file

containing 1024 ASCII ‘0’ and Key=’a’.

 Fig-2: Frequency Spectral analyses of Plain Text file

containing 1024 ASCII ‘1’ and Key=’a’.

Fig-3: Frequency Spectral analyses of Plain Text file

containing 1024 ASCII ‘2’ and Key=’a’.

Fig-4: Frequency Spectral analyses of Plain Text file

containing 512 ASCII ‘0’,then 1 ASCII ‘1’ and then 512
ASCII ‘0’, encrypted using Key=’a’.

Fig-5: Frequency Spectral analyses of Plain Text file

containing 512 ASCII ‘1’,then 1 ASCII ‘0’ and then 512
ASCII ‘1’, encrypted using Key=’a’.

Table 1: A Plain Text file containing a paragraph and its

encrypted file after bit and bytewise encryption.

St. Francis Xavier is

the Patron of St.

Xavier's College.

There is not an

educated Indian who

has not heard the name

of Francis Xavier. It is

to India that Ignatius of

Loyola, the Founder of

the Society of Jesus,

sent his greatest son,

Francis Xavier in

1542. Xavier was a

zealous "missionary on

the move". He sailed to

Malacca and Japan in

1549 where he spent

two and a half years. In

April 1552 he set sail

to China via Malacca

from Goa, never to

return alive. He died at

Sancian, a small island

facing china, on 2

淋฀六뱄朕 엟뽄฀⌘طي뉁฀
ቮ붻洲㏵溦鰆㝇 省柾礟햴楢

슮옕갾瘁ͽⶶղ㊟ ฀ 銮鹹惶껔

鶴몦푰굓术砍律฀裋㓭坡ቶ฀
␒뫓薟戽먖솄㖡뭬ꑬ 辙” 될壗฀
฀佈郴㶣乩荟꾖匫튔몹ɱ良฀
챘↩泺 冯 㲕뢦蚧Ⴙ熱⡺갇悰

฀ड़孇䶃剸溁핦병ꋨ 攎葷ㅩ煼ك
썴緗氌 邵奵崇뎼걒 ฀ᡂ늅嬇
孫썽⢓微彚ꈑ 긻䜾뙷⍕鑂غى❽䏩ᄒ迪蒞 퐢疂฀턍옏聜
฀淌ᥚ훋㮫䕛≑ ꁍ 垒㶁฀폸篍
菥록翖繿 䩖ǃᇲ璞敳麟첎฀฀
฀檬䴣澯硁鑀퐨滼 ꋱ 膭฀
⿅䴘릠 囐㒦횘践졋置夺ಣꏤ
斴呣屧ㅥ墯퐂嫂⍂룘䎯صى뇒

㺬쎃洛좙렚쑲늀฀晳蘘฀醭桙
㠜摠棱썬벍薂 琟 鬾 峁靪

124 Int'l Conf. Foundations of Computer Science | FCS'13 |

December 1552.

Wherever he went, he

plunged himself into

charitable and pastoral

work preaching the

message of God's love

to people. He worked

in India for 10 years

from 1542 to 1552,

called the Xaverian

decade.

㙯焏฀캤洍法뒩㬯홱฀蜆멮
煁楧齶 复σ嗡黣ኡ䏀礔ꌽ ฀⎼
됆듯敎฀฀禩汽埗฀ 藊฀犷╊

฀ 䢂 搃⡊⼸㚰฀벮媯 밞힃

씣฀฀༐฀꾖浊㏩を ฀䭛慬紪ᇅ

฀ળ퐅⣝粠혟◣ 嶦챱깳샥ݓ釫ثم
瓁榯฀묜⨒฀竷쵪칞㠤 獝⅀㱊

⅁柴 ฀ὂʑ麭฀฀뤘覍 췔礼ള
兀 엁泐

6 Conclusion And Future Scope

The encrypted text cannot be decrypted without knowing the

exact initial random matrix. The size of random matrix taken

is 16x16. The numbers in 16x16 may be arranged in 256!

Ways. To complete the whole process the authors have

chosen any of the random matrix to perform bit exchange

method and there is no similarity between any two matrices

and even if there is then it is very hard to find out the similar

ones. The order of encryption applied in this paper is bit-

level first and then byte level. Multilevel applications of

these techniques in different order will yield considerably

different results. The spectral analysis shows that the present

method is free from standard cryptography attacks namely

brute force attack, known plain text attack and differential

attack. The present method will be most effective to encrypt

short message such as SMS in mobile phone, password

encryption and any type of confidential message. If the file

size is large then the present method will take more time to

encrypt. So therefore our proposed method may be used in

defense systems, Banking systems, Sensor networks, Mobile

computing etc. The present method may be further upgraded

by introducing bit level bit exchange method which is used

in BLES Version-I.

7 Acknowledgement

The authors are very much grateful to the Department of

Computer Science for giving the opportunity to work on

symmetric key Cryptography. One of the authors (AN)

sincerely expresses his gratitude to Fr. Dr. Felix Raj,

Principal of St. Xavier’s College (Autonomous) for giving
constant encouragement in doing research in cryptography.

8 References

[1] Symmetric Key Cryptography using Random Key

generator: Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik: “Proceedings of International conference on security
and management(SAM ’10)” held at Las Vegas, USA July
12-15, 2010), Vol-2, Page: 239-244(2010).

[2] Advanced Symmetric key Cryptography using extended

MSA method: DJSSA symmetric key algorithm: Dripto

Chatterjee, Joyshree Nath, Soumitra Mondal, Suvadeep

Dasgupta and Asoke Nath, Journal of Computing, Vol 3,

Issue-2, Page 66-71,Feb(2011).

[3] A new Symmetric key Cryptography Algorithm using

extended MSA method: DJSA symmetric key algorithm,

Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta and

Asoke Nath : Proceedings of IEEE International

Conference on Communication Systems and Network

Technologies, held at SMVDU(Jammu) 03-06 June,2011,

Page-89-94(2011).

[4] New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption algorithm:

NJJSAA symmetric key algorithm: Neeraj Khanna,

Joel James,Joyshree Nath, Sayantan Chakraborty, Amlan

Chakrabarti and Asoke Nath : Proceedings of IEEE

CSNT-2011 held at SMVDU(Jammu) 03-06 June

2011, Page 125-130(2011).

[5] Symmetric key Cryptography using modified DJSSA

symmetric key algorithm, Dripto Chatterjee, Joyshree

Nath, Sankar Das, Shalabh Agarwal and Asoke Nath,

Proceedings of International conference Worldcomp 2011

held at Las Vegas 18-21 July 2011, Page-306-311, Vol-

1(2011).

[6] An Integrated symmetric key cryptography algorithm

using generalized vernam cipher method and DJSA method:

DJMNA symmetric key algorithm: Debanjan Das, Joyshree

Nath, Megholova Mukherjee, Neha Chaudhury and Asoke

Nath: Proceedings of IEEE International conference: World

Congress WICT-2011 held at Mumbai University 11-14

Dec, 2011, Page No.1203-1208(2011).

[7] Symmetric key cryptosystem using combined

cryptographic algorithms- generalized modified vernam

cipher method, MSA method and NJJSAA method: TTJSA

algorithm – Trisha Chatterjee, Tamodeep Das, Joyshree

Nath, Shayan Dey and Asoke Nath, Proceedings of IEEE

International conference: World Congress WICT-2011 t

held at Mumbai University 11-14 Dec, 2011, Page No.

1179-1184(2011).

[8] Symmetric key Cryptography using two-way updated

Generalized Vernam Cipher method: TTSJA algorithm,

International Journal of Computer Applications (IJCA,

USA), Vol 42, No.1, March, Pg: 34 -39(2012).

[9] Ultra Encryption Standard(UES) Version-I: Symmetric

Key Cryptosystem using generalized modified Vernam

Cipher method, Permutation method and Columnar

Transposition method, Satyaki Roy, Navajit Maitra,

Joyshree Nath, Shalabh Agarwal and Asoke Nath,

Proceedings of IEEE sponsored National Conference on

Recent Advances in Communication, Control and

Computing Technology -RACCCT 2012, 29-30 March held

at Surat, Page 81-88(2012).

[10] An Integrated Symmetric Key Cryptographic Method –

Amalgamation of TTJSA Algorithm, Advanced Caeser

Cipher Algorithm, Bit Rotation and reversal Method: SJA

Algorithm., International Journal of Modern Education and

Computer Science, Somdip Dey, Joyshree Nath, Asoke

Nath,(IJMECS), ISSN: 2075-0161 (Print), ISSN: 2075-

017X (Online), Vol-4, No-5, Page 1-9,2012.

Int'l Conf. Foundations of Computer Science | FCS'13 | 125

[11] An Advanced Combined Symmetric Key Cryptographic

Method using Bit manipulation, Bit Reversal, Modified

Caeser Cipher(SD-REE), DJSA method, TTJSA method:

SJA-I Algorithm, Somdip dey, Joyshree Nath, Asoke Nath,

International Journal of Computer Applications(IJCA 0975-

8887, USA), Vol. 46, No.20, Page- 46-53,May, 2012.

[12] Ultra Encryption Standard(UES) Version-IV: New

Symmetric Key Cryptosystem with bit-level columnar

Transposition and Reshuffling of Bits, Satyaki Roy, Navajit

Maitra, Joyshree Nath, Shalabh Agarwal and Asoke Nath,

International Journal of Computer

Applications(IJCA)(0975-8887) USA Volume 51-

No.1.,Aug, Page. 28-35(2012)

[13] Bit Level Encryption Standard(BLES) : Version-I,

Neeraj Khanna, Dripto Chatterjee, Joyshree Nath and Asoke

Nath, International Journal of Computer

Applications(IJCA)(0975-8887) USA Volume 52-

No.2.,Aug, Page.41-46(2012).

[14] Bit Level Generalized Modified Vernam Cipher

Method with Feedback, Prabal Banerjee, Asoke Nath,

Proceedings of International Conference on Emerging

Trends and Technologies held at Indore, Dec 15-16,2012.

[15] Cryptography and Network Security, William Stallings,

Prentice Hall of India

126 Int'l Conf. Foundations of Computer Science | FCS'13 |

Modern Encryption Standard (MES) : Version-III

1
Rahul Deep Sircar,

2
Gunjan Sekhon,

3
Asoke Nath

1,2,3
 Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata, India

e-mail:
1
rahul.deep.sircar@gmail.com,

2
gunjansekhon1991@gmail.com,

3
asokejoy1@.gmail.com

Abstract : In the present paper the authors have introduced

a new symmetric key cryptographic method called Modern

encryption Standard (MES) Version-III. Sircar et. al

already published Modern Encryption Standard version-

II(MES-II) where the authors have used used Modified

generalized vernam cipher method with feedback with

different block size from left to right and after that entire

content is divided into two files and then combine them by

taking 2nd half first and the 1st block. The generalised

modified Vernam Cipher method again applied from left to

right with different block sizes. In the present method i.e in

MES-III the authors have combined three encryption

methods one after another. Firstly in method-1 the authors

have used blockwise generalized vernam cipher method.

Secondly in method-2 the input file is the encrypted file

obtained after method-1. In method-2 the authors have

applied the permutation method to reshuffle the entire file.

Thirdly in method-3 the authors have applied bit-wise

vernam cipher method. In method-3 the input file will be the

second encrypted file obtained after method-2.In result

section the authors have shown the results obtained after

method-1,method-2,method-3. The result shows the

encryption method is free from common attacks such as any

kind of brute force method or known plain text method. The

entire software is developed in Matlab. The authors have

applied MES-III on various types of files and found that it

works successfully. It is almost impossible to break the

present method without knowing the exact key and all three

methods. MES-III will be applicable to encrypt password,

any confidential key, bank data, defense data etc.

Keywords - MES, vernam cipher, blockwise, encryption,

Matlab

1. Introduction
Cryptography and cryptanalysis is now a very important

research area in modern digital communication network.

Internet access is now free to anyone. The Hackers have

created in various websites where they constantly upload

crack software. Using that software anyone can break any

password and can log into any confidential site. There are

no proper rules from any Government to stop for doing this.

Due to hacking problem now it always advised to user to

change their all important password in a regular interval. It

is also advised that the password should be hard. E-mail is

one important area where the hacker tries to get illegal

access to it. The data in e-mail should be always well

protected. While sending any kind of confidential message

or information from one user to another user one must send

it in encrypted form otherwise anyone can hack the message

during data communication. When a user is working in a

network environment then the user must be very careful

about his/her confidential data. It must be in encrypted form

otherwise anyone can intercept it provided he/she knows the

IP address of that machine. This may be further extended

when two users are sending message to each other from two

distant places. A hacker may listen in between and can

divert the message to someone else or can modify and send

it to the receiver. This is actually middleman attack. If the

data is in original form or in raw form then at any moment

this may be attacked by a middleman and it may create

some disaster also. The authenticity of data is now a big

challenge. To tackle this problem the people were trying to

develop good encryption method to encrypt confidential

data. At the same time the hackers are also not remain idle.

They also develop some brute force method to decrypt the

encrypted text without knowing actual encryption or the

decryption algorithm. So it some sort of game between the

cryptographer and the hackers. Cryptographer always tries

to win the game. Two types of cryptography algorithms are

used one is called symmetric key where one key is used for

encryption and as well as decryption purpose and other

method is called public key cryptography. In public key two

keys are used one key is used only for encryption purpose

which is called public key and the other key is used to

decrypt the encrypted text and it called as private key or the

secret key. In public key cryptography the extensive

computation is required in comparison to symmetric key

cryptography. Nath et al [1,2,3,4,5,6] developed different

symmetric key cryptosystem. The advantage of symmetric

key method is that the key management is very simple.

Recently Nath et al developed cryptography method called

Modern Encryption Standard ver-I and Ver-II. In the present

method Nath et al have developed upgraded version of

MES-II called as MES-III. In the present method the authors

have used three independent cryptography methods namely

generalized modified vernam cipher method in variable

block size and with feedback, randomized permutation

method and bit-wise generalized vernam cipher method.

Modified generalized vernam cipher method, bit-wise

vernam cipher method already been developed by Nath et al

in BLES-I, II. But in the present method the authors have

used variable block size in both bye wise and bit wise

vernam cipher with feedback. In the result section the

authors have shown the output of method-1, then method-1

and 2 and finally method-1, 2, 3 combined of some known

plain text. The output shows that the encryption is very

strong as the encrypted text is totally different if there is

only one character different in two patterns. The standard

encryption algorithm like RSA or DES if we apply on a

pattern where all characters are same then after encryption

Int'l Conf. Foundations of Computer Science | FCS'13 | 127

the encrypted text will also show same repeated pattern. But

the present method applied on repeated pattern but the

output contains totally different pattern. The entire software

developed in Matlab. In the present work the authors are

proposing a symmetric key method called Modern

Encryption Standard Version III (MES-III) which can be

used to encrypt data in sensor network, mobile network, and

ATM network, defense or even in corporate sector also.

MES-III may be very useful to encrypt password, short

message, encryption key etc.

2. Algorithm For Modern Encryption

Standard Ver-III :

2.1 Vernam Cipher with Feedback (blockwise):
Function of Method 1 in MES-III:

In Method 1 of MES-III we read the input file and divide it

into blocks of 2,4,6…,n where n=length of the input plain

text file. We encrypt each block using Vernam Cipher

Encryption with Feedback using a keypad generated from a

user input key. We then reverse the contents of the

encrypted file. Then we divide the file into 2 files, say

‘file1’ and ‘file2’. We then concatenate the contents of

‘file2’ to the end of ‘file1’. This whole process is carried out

the same number of times as the as the length of the user

input key. This is the end of method 1

2.1.1. Encryption Algorithm : main() module:

This function takes names of the plain text file and cipher

text file as input from the user. It also takes the key used for

encryption as input and executes the complete blockwise

encryption algorithm by calling the various functions

involved in this encryption method.

Step 1: Start main

Step 2: e_flag=1

Step 3: Input fi1e1 to plain text file

Step 3a: Input file2 to store cipher text file

Step 4: Open file1 in read mode

Step 4a: Open file2 in write mode

Step 5: file_len=sizeof(file1)//to calculate size of the input

text rounded down to the nearest even number

Step 6: if modulus(file_len,2)=0 then max_len=file_len

Step 6a: else max_len=file_len-1

Step 7: Initialize all elements of array key_indx(row)=0

where row=max_len

Step 8: Input file_key // User has to enter file_key of any

length

Step 9: key_len=length(file_key)

Step 10: Open a file ‘temp1.txt’in write mode //’temp1.txt’

will temporarily hold input text during encryption process

Step 11: Copy ‘file1’ to ‘temp1.txt’

Step 12: times=key_len //’times’ is the number of times the

total encryption process will take place

Step 13: i=1 //steps 13-36 carry out the entire encryption

process, that is calling the encrypt function, reversing,

splitting and merging the files

Step 14: block_size=0

Step 15: while block_size<=max_len

Step 16: goto beginning of the file ‘temp1.txt’

Step 17: block_size=block_size+2 //taking initial block size

as 2, block size is increased by 2 for every encryption step

Step 18: n_block=(max_len/block_size) //for a particular

block size, number of blocks is calculated

Step 19: key_indx=ps_keygen(file_key,block_size) //

key_index holds index values for generated keypad

Step 20: j=1 //steps 20-27 carry out encryption process by

calling the ‘encrypt’ function 1 block at a time

Step 21: Open a file ‘temp2.txt’ in write mode //‘temp2.txt’

holds the text in a particular block for encryption

Step 22: Copy ‘temp1.txt’ to ‘temp2.txt’

Step 23: Call encrypt(filet2,file2,key_indx) //this will

encrypt the contents of ‘filet2’ and write it in ‘file2’

Step 24: j=j+1

Step 24a: if j<=n_block,goto step 21

Step 25: copy residual characters from ‘temp1.txt’ to file2

Step 29: close ‘temp1.txt’

Step 27: Call filecopy(file2,filet) //after encryption,

encrypted text is stored in ‘filet’ for reversing, splitting and

merging

Step 28: Open ‘temp1.txt’ in read mode

Step 29: close file2

Step 30: Open file2 in write mode

Step 31: End while loop from step 15

Step 32: Call filereverse(filet)// To reverse the contents of

filet

Step 33: Call filesplitting(filet,e_flag)// It splits filet into 2

files say file_1 and file_2.

Step 34: Call mergefile(filet) // this concatenates contents of

file_1 to the end of file_2 and stores it in filet

Step 35: i=i+1

Step 35a: if i<=times, goto step 14

Step 37: Call filecopy(filet,file2)//this copes the contents of

filet into file2

Step 38: Close all files

Step 39: Delete temporary files

Step 40: End

2.1.2. Decryption Algorithm : Main() module:

This function takes names of the cipher text file and

deciphered text file as input from the user. It executes the

complete blockwise decryption algorithm by calling the

various functions involved in this decryption method.

Step 1: Start main

Step 2: e_flag=0

Step 3: Input fi1e1 to plain text file

Step 3a: Input file2 to store cipher text file

Step 4: Open file1 in read mode

Step 4a: Open file2 in write mode

Step 5: file_len=sizeof(file1)

Step 6: Initialize all elements of array key_indx(row)=0

where row=max_len

Step 7: Open a file ‘temp1.txt’in write mode //’temp1.txt’ is

a temporary file where encrypted text will be stored during

decryption

Step 8: Copy ‘file1’ to ‘temp1.txt’

Step 9: i=1 //steps 9-30 carry out the entire decryption

process, that is splitting, merging and reversing the files and

calling the decrypt function

128 Int'l Conf. Foundations of Computer Science | FCS'13 |

Step 10: block_size=max_len //the ‘block_size’ is set to the

largest possible block size to reverse the encryption process

Step 11: Call filesplitting(filet,e_flag)// It splits filet into 2

files say file_1 and file_2.

Step 12: Call mergefile(filet) // this concatenates contents of

file_1 to the end of file_2 and stores it in filet

Step 13: Call filereverse(filet)// To reverse the contents of

filet

Step 14: while block_size>=0

Step 15: n_block=floor(max_len/block_size) //For a

particular block size, the number of blocks is calculated

Step 16: key_indx=ps_keygen(file_key,block_size))//

key_index holds index values for generated key

Step 17: j=1 //steps 17-24 carry out decryption process by

calling ‘decrypt’ function 1 block at a time

Step 18: Open a file ‘temp2.txt’ in write mode //’temp2.txt’

holds the text in a particular block for decryption

Step 19: Copy ‘temp1.txt’ to ‘temp2.txt’

Step 20: k=k+1

Step 20a: if k<=block_size,goto step 20

Step 21: Call decrypt(filet2,file2,key_indx))//this will

decrypt the contents of ‘filet2’ and write it in ‘file2’

Step 22: j=j+1

Step 22a: if j<=n_block,goto step 18

Step 23: copy residual characters from ‘temp1.txt’ to file2

Step 24: close ‘temp1.txt’

Step 25: Call filecopy(file2,filet) //This function will copy

contents of file2 into filet

Step 26: Open ‘temp1.txt’ in read mode

Step 27: Open file2 in write mode

Step 28: block_size=block_size-2 //’block_size’ is

decreased by 2 and the decryption process is repeated if the

condition of the while loop is satisfied

Step 29: End while loop from step 14

Step 30: i=i+1

Step 30a: if i<=times,goto step 10

Step 31: Call filecopy(filet,file2)//this copes the contents of

filet into file2

Step 32: Close all files

Step 33: Delete temporary files

Step 34: End

2.1.3. function encrypt(file1,file2,key_indx):
Function to encrypt file1 using key_index and then store

in file2. The function uses generalized modified

Vernamcipher method proposed by Nath et al.

This function carries out vernam cipher method with

feedback to encrypt the input file

Step 1: Start

Step 2: Open file1 in read mode

Step 2a: Open file2 in append mode

Step 3: Initialize all elements of arrays

ch_indx(rows)=0,sum(rows)=0,fdbk(rows) =0 where

rows=max_len

Step 4: feedback=0

Step 5: i=1

Step 6: ch=read a character from file1,ch_indx(i)=int(ch)

Step 7: i=i+1

Step 7a: if i<=file_len,goto Step-6

Step 8: i=1 //Steps 8-15 carry out Vernam Cipher

Encryption with Feedback encryption

Step 9: tsum=ch_indx(i)+key_indx(i)+feedback

Step 10: fdbk(i)=tsum

Step 11: if tsum>=256, tsum(i)=mod(tsum,256)

Step 12: sum(i)=tsum

Step 13: feedback=sum(i)

Step 14: ch=char(sum(i)),write to file2

Step 15: i=i+1

Step 15a: if i<=block_size,goto step 9

Step 16: End

2.1.4. function decrypt(file1,file2,key_indx):

This function takes names of the cipher text file and

deciphered text file as input from the user. It executes the

complete decryption algorithm by calling the various

functions involved in this decryption method.

Step 1: Start

Step 2: Open file1 in read mode

Step 2a: Open file2 in append mode

Step 3: Initialize all elements of arrays

ch_indx(rows)=0,sum(rows)=0,pt_indx(rows) =0 where

rows=max_len

Step 4: feedback=0

Step 5: i=1 //Steps 5-16 carry out decryption of the Vernam

Cipher method with Feedback

Step 6: ch=read a character from file1,ch_indx(i)=int(ch)

Step 7: i=i+1

Step 7a: if i<=file_len,goto Step-6

Step 8: i=1

Step 9: tsum=ch_indx(i)+key_indx(i)+feedback

Step 10: if tsum<0, tsum=tsum+256

Step 10a:else if tsum>=256, , tsum(i)=mod(tsum,256)

Step 11: sum(i)=tsum

Step 13: feedback=ch_indx(i)

Step 14:fdbk(i)=feedback

Step 15: ch=char(pt_indx(i)),write to file2

Step 16: i=i+1

Step 16a: if i<=block_size,goto step 9

Step 17: End

2.1.5. function filereverse(file_name) :
Function is to reverse the content of file_name and to

store in the same file.

Step 1: Store file_name in file1 and ‘temp_rev.txt’ in file2

Step 2: Open file1 in ‘r’ mode using file ID fp1 and open

file2 in ‘w’ mode using file ID fp2

Step 3: Store the length of fp1 in n

Step 4: Initialize i to (n-1)

Step 5: Go to i’th position from the beginning of the file.

Step 6: Read the character in that position and store in it ch.

Step 7: Write ch to fp2

Step 8: If i=0, continue, else decrement the value of i by 1

and go to step 6

Step 9: Call function filecopy() passing file2 and file1 as

parameters

Step 10: Close fp2

Step 11: End

Int'l Conf. Foundations of Computer Science | FCS'13 | 129

2.1.6. function filesplitting(file_name,e_flag):

Function to split a file file_name into two files file1.txt and

file2.txt

Step 1: Store file_name in file1, ‘split_file1.txt’ in file2 and

‘split_file2.txt’ in file3

Step 2: Open file1 in ‘r’ mode using file ID fp1,open file2 in

‘w’ mode using file ID fp2 and open file3 in ‘w’ mode using

file ID fp3

Step 3: Store the length of fp1 in n

Step 4: If e_flag=1, store ceiling value of n/2 in n1, else

store floor value of n/2 in n1

Step 5: Store n-n1 in n2

Step 6: Initialize i=1

Step 7: Read a character from fp1 and store it in ch. Write

ch to fp2

Step 8: If i=n1, continue, else go to step 7

Step 9: Initialize i=1

Step 10: Read a character from fp1 and store it in ch. Write

ch to fp3

Step 11: If i=n2, continue, else go to step 10

Step 12: End

2.1.7. function mergefile(file_name) :
Function to combine two split files file1.txt and file2.txt to

get one file, by putting file2.txt first then file1.txt

Step 1: Store file_name in file3, ‘split_fil1.txt’ in file1 and

‘split_file2.txt’ in file2

Step 2: Open file1 in ‘r’ mode using file ID fp1,open file2 in

‘r’ mode using file ID fp2 and open file3 in ‘w’ mode using

file ID fp3

Step 3: Store the length of fp1 in n1 and length of fp2 in n2

Step 4: Initialize i to 1

Step 5: Read a character from fp2 and store it in ch. Write

ch to fp3

Step 6: If i=n2, continue, else go to step 5

Step 7: Read a character from fp1 and store it in ch. Write

ch to fp3

Step 8: If i=n2, continue, else go to step 7

Step 9: Close fp1 and fp2

Step 10: End

2.1.8. function filecopy(file_1,file_2) :

Function to copy file_1 to file_2

Step 1: Store file_1 in file1 and file_2 in file2

Step 2: Open file1 in ‘r+’ mode using file ID fp1 and open

file2 in ‘w+’ mode using file ID fp2

Step 3: Store the length of fp1 in n

Step 4: Initialize i to 1

Step 5: Read a character from fp1 and store it in ch. Write

ch to fp2

Step 6: If i=n,continue,else go to step 5

Step 7: End

2.2 Randomization method:
Function of Method 2 in MES-III:

In Method 1 of MES-III we read the input file and divide it

into blocks of 2,4,6…,n where n=length of the input plain

text file. We apply randomization function on each of the

blocks successively Inside the randomize function different

operations like leftshift, rightshift, upshift, downshift,

diagshift are performed on the matrix blocks. .The output of

one block becomes the input for the other block. Same way

decryption is done using the functions in a reverse way,

since the functions are complementary to each other.

2.2.1 Encryption Algorithm : main() module:

This method randomizes the content of a plain text file with

help of matrix element operations like leftshift, rightshift,

upshift, downshift, diagshift are performed on the matrix

blocks till the largest block size that can be formed in a

square matrix. The residual bytes are copied as it is. In

simple English language it jumbles up the contents of the

text file.

Step 0:Start main

Step 1:Input file1 name of encrypted file name

Step 2:Input file name of output file

Step 3:Open file1 in read mode and seek the file pointer to

the starting of the file

Step 4: Length of file1 file_len is calculated and it is closed

again

Step 5:In a nested for loop,matsize is equal size of n in nxn

largest matrix is found out

Step 6:i=1 to 1024;j=1 to 1024

Step 7:a(i,j)=' '

Step 8:times=matsize-1

Step 9:Array initialized a=zeros(i,j)//initializing each cell of

array a to zeros

Step 10:Open temp1 in write mode

Step 11:Copy the contents of file1 to temp1

Step 12:fclose('all')

Step 13:i=2

Ste p14:calculate isq=i*i

Step 15:calculate noofblocks=floor(file_len/isq)

Step 16:calculate bytescopied=noofblocks*isq

 Step 17:calculate residual bytes of the file as

res_bytes=file_len-bytescopied

Step 18:open file temp1 in read mode

Step 19:open file2 in write mode

Step 20:k=1

Step 21:read each input character from file temp1 and make

array(u1,u2)

Step 22:call shufarr= msaencryptfinal(a,i) ;// randomization

of array elements

Step 23:Each character from the shuffarr(u1,u2) is written in

file2

Step 24:If k<noofblocks then goto Step 21

Step 25:Position of residual bytes is found in file2

Step 26:inneri=pos

Step 27:Each character read from temp1 file

Step 28:Written into file2 //copying residual bytes into the

file 2

Step 29:If inneri<=file_len then goto Step 27

Step 30:Contents of file 2 copied into temp1

130 Int'l Conf. Foundations of Computer Science | FCS'13 |

Step 31:If i<=matsize,goto Step 14

Step 32:Display count value //for no of iterations

Step 33:Copy contents of temp1 to file2

Step 34:fclose('all')

Step 35:Delete temp1 file

Step 36:End

2.2.2. Decryption Algorithm : Main() module:

This method is to get back the original file contents as it was

before the randomization. This main function gets the

original contents of the file before randomization was

performed by starting the matrix block size from the largest

size and proceeding in decreasing order till largest block

size of 2.Remaining process is similar to encryption.

Step 0:Start main

Step 1:Input file1 name of encrypted file name

Step 2:Input file name of output file

Step 3:Open file1 in read mode and seek the file pointer to

the starting of the file

Step 4: Length of file1 file_len is calculated and it is closed

again

Step 5:In a nested for loop,matsize is equal size of n in nxn

largest matrix is found out

Step 6:i=1 to 1024;j=1 to 1024

Step 7:a(i,j)=' '

Step 8:times=matsize-1

Step 9:Array initialized a=zeros(i,j) //initializing each cell of

array a to zeros

Step 10:Open temp1 in write mode

Step 11:Copy the contents of file1 to temp1

Step 12:fclose('all')

Step 13:i=matsize //starting from the largest block size

Step 14:calculate isq=i*i

Step 15:calculate noofblocks=floor(file_len/isq)

Step 16:calculate bytescopied=noofblocks*isq

Step 17:calculate residual bytes of the file as

res_bytes=file_len-bytescopied

Step 18:open file temp1 in read mode

Step 19:open file2 in write mode

Step 20:k=1

Step 21:read each input character from file temp1 and make

array(u1,u2)

Step 22:call shufarr= msaderyptfinal(a,i) ;// to

randomization of array elements

Step 23:Each character from the shuffarr(u1,u2) is written in

file2

Step 24:If k<noofblocks then goto Step 21

Step 25:Position of residual bytes is found in file2 //residual

bytes are copied as it is.0

Step 26:inneri=pos

Step 27:Each character read from temp1 file

Step 28:Written into file2 //copying residual bytes into the

file 2

Step 29:If inneri<=file_len then goto Step 27

Step 30:Contents of file 2 copied into temp1

Step 31:If i<=matsize,goto Step 14

Step 32:Display count value //for no of iterations

Step 33:Copy contents of temp1 to file2

Step 34:fclose('all')

Step 35:Delete temp1 file

Step 36:End

2.2.3 function[shufarr]=msaencryptfinal(a,i):
This method performs matrix operations on the square array

in a given order.

Step 0:Start

Step 1:function[shufarr]=msaencryptfinal(a,i) // to

randomize elements of the array

Step 2:a1=diagshift(a,i) // apply diagonal shift

Step 3:a2=leftshift(a1,i) // apply left shift

Step 4:a3=diagshift(a2,i) // apply diagonal shift

Step 5:a4=upshift(a3,i) // apply up shift

Step 6:a5=diagshift(a4,i) // apply diagonal shift

Step 7:a6=rightshift(a5,i) //apply right shift

Step 8:a7=diagshift(a6,i) // apply diagonal shift

Step 9:a8=downshift(a7,i) // apply down shift

Step 10:a9=diagshift(a8,i) // apply diagonal shift

Step 11:shufarr=diagshift(a9,i) // apply diagonal shift

Step 12:End

2.2.4. function[shufarr]=msadecryptfinal(a,i):
This method performs matrix operations on the square array

in the reverse order as is in the encryption function.

Step 0:Start

Step 1:function [orig]=msadecryptfinal(b,i) //to get the

original array before randomization

Step 2:b1=revdiagshift(b,i) // apply reverse diagonal shift

Step 3:b2=revdiagshift(b1,i) // apply reverse diagonal shift

Step 4:b3=upshift(b2,i) // apply up shift

Step 5:b4=revdiagshift(b3,i) // apply reverse diagonal shift

Step 6:b5=leftshift(b4,i) // apply left shift

Step 7;b6=revdiagshift(b5,i) // apply reverse diagonal shift

Step 8:b7=downshift(b6,i) // apply down shift

Step 9:b8=revdiagshift(b7,) // apply reverse diagonal shift

Step 10:b9=rightshift(b8,i) // apply right shift

Step 11:orig=revdiagshift(b9,i) //apply reverse diagonal

shift

Step 12:End

2.2.5. function[a]=diagshift(a,n):

This function performs diagonal shift on the array elements.

Step 0:Start

Step 1:function[a]=diagshift(a,n)

Step 2:tmp=a(n,n); //tmp is a temporary variable

Step 3:i=n

Step 4 a(i,i)=a(i-1,i-1);

Step 5 If i>=2 ,then goto Step 4

Step 6 Calculate a(1,1)=tmp

Step 7 End

2.2.6. function [a]=revdiagshift(a,n):

This function performs reverse diagonal shift on the array

elements.

Step 0:Start

Step 1:function [a]=revdiagshift(a,n)

Step 2:tmp=a(1,1) //tmp is a temporary variable

Step 3:i=1

Step 4:a(i,i)=a(i+1,i+1);

Int'l Conf. Foundations of Computer Science | FCS'13 | 131

Step 5:If i>n-1,then goto Step 4

Step 6 Calculate a(n,n)=tmp

Step 7 End

2.2.7. function[a]=upshift(a,n):

This function performs reverse diagonal shift on the array

elements.

Step 0:Start

Step 1:function[a]=upshift(a,n)

Step 2:i=1

Step 3:tmp=a(1,i) //tmp is a temporary variable

Step 4:j=2

Step 5: a(j-1,i)=a(j,i);

Step 6:If j<n then goto Step 5

Step 7:If i<n then goto Step 3

Step 8: Calculate a(n,i)=tmp

Step 9:End

2.2.8 function[a]=downshift(a,n):

This function performs downshift on the array elements.

Step 0:Start

Step 1:function[a]=downshift(a,n)

Step 2:i=1

Step 3:tmp=a(n,i) //tmp is a temporary variable

Step 4:j=n

Step 5:calculate a(j,i)=a(j-1,i)

Step 6:if j>2 then goto Step 5

Step 7:calculate a(1,i)=tmp

Step 8:If i<n then goto Step 3

Step 9:End

2.2.9. function[a]=leftshift(a,n):

This function performs leftshift on the array elements.

Step 0:Start

Step 1:function[a]=leftshift(a,n)

Step 2:i=1

Step 3:temp=a(i,1) //tmp is a temporary variable

Step 4:j=2

Step 5: calculate a(i,j-1)=a(i,j)

Step 6:If j<n then goto Step 5

Step 7:Calculate a(i,n)=temp

Step 8:If i<n then goto Step 3

Step 9:End

2.2.10. function[a]=rightshift(a,n):

This function performs rightshift on the array elements.

Step 0:Start

Step 1:function[a]=rightshift(a,n)

Step 2:i=1

Step 3:temp=a(i,1) //tmp is a temporary variable

Step 4:j=n

Step 5:Calculate a(i,j)=a(i,j-1)

Step 6:If j>2then goto Step 5

Step 7:Calculate a(i,1)=tmp

Step 8:If i<n then goto Step 3

Step 9:End

2.3. Bitwise method:
Function of Method 3 in MES-III:

In Method 3 of MES-III we take the output text from

Method 2 and convert the entire output into bits. Then using

the algorithm of Method 2 we shuffle the bits a certain

number of times to obtain a different output text for every

particular input text. The number of time the shuffle

operation occurs on the text file depends is a number which

differs depending on the text in the input file. We then

convert the bits to bytes and out the final cipher text of

MES-III method.

2.3.1 Encryption Algorithm : main() module:

This encryption method reduces the plain text to bits and

carries out the method 2 process on it

Step 1: Start main

Step 2: Input fi1e1 to plain text file

Step 2a: Input file2 to store cipher text file

Step3: Open file1 in read mode

Step 3a: Open file2 in write mode

Step 4: file_len=sizeof(file1)

Step 5: size=8*file_len //size holds the size of the plain text

when converted to bits

Step 6: Initialize all elements of

ar(row)=0,ar1(row)=0,bin_arr(8)=0 where row=size //arrays

used for blockwise encryption

Step 7: ii=1

Step 8: isq=ii*ii

Step 9: if isq<=size, matsize=ii//size of the n on largest nxn

matrix that can be generated from this

Step 10: ii=ii+1

Step 10a: if ii<=(size/2), goto step 8

Step 11: initialize all elements of a(1024,1024)= ‘ ’

Step 12: Initialize all elements of a(i,j)=0

Step 13:pos=0,s=0,dig=0,s1=0,count=0 //variables used to

calculate how many times encryption will take place

Step 14: ch=read character from file1

Step 15: bin_arr=dec_to_bin(ch) //dec_to_bin will return a

binary array which will be stored in bin_arr

Step 16: store sum of ASCII value of all characters in plain

text in s // this will also be used to calculate the number of

times encryption will be done

Step 17: store binary values of each character in ‘ar’

Step 18: increment value of s1 by 1 for every ‘1’ present in

‘ar’ //this will also be used to calculate the number of times

encryption will be done

Step 19: times1=floor((s/s1)), times2=mod(s,s1),

times=times1+times2 //times=the number of times

encryption will occur. This varies for any slight variation in

plain text

Step 20: while times>40 // this is to make sure the loop is

not too large so that it will cause a lengthy encryption

process

Step 21: s2=sumofdigits(times)

Step 22: times=s2*s1

Step 23: end while loop started in step 20

Step 24: ext_i=1 //Steps 24-35 carry out the encryption

process by calling ‘msaencryptfinal()’ for each block

132 Int'l Conf. Foundations of Computer Science | FCS'13 |

Step 25: i=2

Step 26: count=count+1,pos1=0,pos2=0,isq=i*i

Step 27: noofblocks=floor(size/isq),

bytescopied=noofblocks*isq, res_bytes=size-bytescopied

Step 28: k=1

Step 29: read each input character from file temp1 and make

array(u1,u2),pos1=pos1+1

Step 30: call shufarr= msaencryptfinal(a,i) //function for

randomization of array elements

Step 31: Each character from the shuffarr(u1,u2) is written

in file2,pos2=po2+1

Step 32: k=k+1

Step 32a: If k<=noofblocks then goto Step 29
Step 33: transfer residual bytes from ‘ar’ to ‘ar1’

Step 34: transfer bits from ar1 to ar for further shuffling

Step 35: i=i+1

Step 35a: if i<=matsize,goto step 26

Step 36: ext_i=ext_i+1

Step 36a: if ext_i<=times,goto step 25

Step 37: i=1

Step 38: pos=0

Step 39: bin_arr(pos+1)=ar(i+pos) //creating 8 bits array

Step 40: pos=pos+1

Step 40a: if pos<=7 then goto step 39

Step 41: num=bin_to_dec(bin_arr) // binary to integer

Step 42:ch=char(num),write ch to file2 //creating Cipher

text file

Step 43: i=i+8

Step 43a: if i<=size then goto step 38

Step 44: End

2.3.2. Decryption Algorithm : Main() module:
Step 1: Start main

Step 2: Input fi1e1 to plain text file

Step 2a: Input file2 to store cipher text file

Step 3: Open file1 in read mode

Step 3a: Open file2 in write mode

Step 4: file_len=sizeof(file1)

Step 5: size=8*file_len

Step 6: Initialize all elements of

ar(row)=0,ar1(row)=0,bin_arr(8)=0 where row=size //arrays

used for blockwise decryption

Step 7: ii=1

Step 8: isq=ii*ii

Step 9: if isq<=size, matsize=ii//size of the n on largest nxn

matrix that can be generated from this

Step 10: ii=ii+1

Step 10a: if ii<=(size/2), goto step 8

Step 11: initialize all elements of a(1024,1024)= ‘ ’

Step 12: Initialize all elements of a(i,j)=0

Step 13: pos=0,count=0, i=1

Step 14: ch=read character from file1

Step 15: bin_arr=dec_to_bin(ch) //character to binary

Step 16: store sum of ASCII value of all characters in input

text in ‘s’ //this will also be used to calculate the number of

times encryption will be done

Step 17: ext_i=1 //Steps 17-28 carry out the decryption

process by calling ‘msadecryptfinal()’ for each block

Step 18: i=matsize

Step 19: count=count+1,pos1=0,pos2=0,isq=i*i

Step 20: noofblocks=floor(size/isq),

bytescopied=noofblocks*isq, res_bytes=size-bytescopied

Step 21: k=1

Step 22: read each input character from file temp1 and make

array(u1,u2),pos1=pos1+1

Step 23: call shufarr= msadecryptfinal(a,i) //function for

randomization of array elements

Step 24: Each character from the shuffarr(u1,u2) is written

in file2,pos2=po2+1

Step 25: k=k+1

Step 25a: If k<=noofblocks then goto step 22

Step 26: transfer the residual bits from ‘ar’ to ‘ar1’

Step 27: transfer bits from ar1 to ar for further shuffling

Step 28: i=i-1

Step 28a: if i>=2,goto step 19

Step 29: ext_i=ext_i+1

Step 29a: if ext_i<=times,goto step 18

Step 30: i=1 //Steps 44-50 carry out conversion from bits to

bytes and writing into output file

Step 31: pos=0

Step 32: bin_arr(pos+1)=ar(i+pos)//creating an array of 8

bits

Step 33: pos=pos+1

Step 33a: if pos<=7,goto step 32

Step 34: num=bin_to_dec(bin_arr)// binary to integer

Step 35:ch=char(num),write ch to file2// integer to character

Step 36: i=i+8

Step 36a: if i<=size,goto step 31

Step 37: End

2.3.3. function [arr]=dec_to_bin(ch):

This function takes a character as input and returns the

binary of it’s ASCII as an array

Step 1: Start

Step 2: Initialize all elements of arr(8)=0

Step 3: c1=int(ch)

Step 4: Convert ch to bits and store in arr

Step 5: End

2.3.4. function [num]=bin_to_dec(arr):

This function takes a binary array as input and returns an

integer which is the decimal of the binary array entered

Step 1: Start

Step 2: num=0

Step 3: Convert arr to decimal and store in num

Step 4: End

2.3.5. function [sum]=sumofdigits(n):
This function calculates the sum of the digits of the number

n. It is called by the main encryption function to calculate

how many times encryption will occur

Step 1: Start

Step 2: copy=n,sum=0

Step 3: while copy>0

Step 4: d=mod(copy,10)

Step 5: copy=copy/10

Step 6: sum=sum+d

Step 7: end while loop started in step 3

Int'l Conf. Foundations of Computer Science | FCS'13 | 133

Step-8: End

Transition diagram for the proposed algorithm MES

Version-III

3. Results and Discussion:
MES-III applied on all possible type of files and the results

found satisfactory. In table-1 we have shown different

standard plain text and the corresponding encrypted text

after method-1, method-1 and method-2 and then method-

1,2 and 3 together. The results show that it almost

impossible to get back the original text without knowing the

exact key and exact decryption algorithm. MES-III applied

on a small paragraph and output is also shown in a separate

table.

Table-1: Some standard input plain text and the

corresponding Cipher Text

Input Text Method 1 Method-1

+

Method 2

Method_1

+

Method_2

+ Method 3

he_is_goon �@»’tž¾Þ

m‘

m¾Þ»�@ÿ

ÿtÿ

þ†ÞŸ�|{ï±

ß

he_is_good �@»’tVf-· -Vf»�@ÿt· YP¨¬ôµIå•

Ý

caaaaaaa aâ…��ùù

�

aâÿ��ùù� ›^‰‡ðóÏ

baaaaaaa �ê¸ß’�×™ �ê¸ßÿ�×ÿ Šg›M}ößv

aaaacaaaa ¿òë!°»b¶ ¶»bë¿ò°! º”]ýìÌ¹(É

aaaabaaaa ¿òë!�‚‹†¶ ¶ÿÿë¿òÿ!� æöÁ×ýôþý

·

aaaaaaac ¿òë!rÉ-Ú ¿òë!rÉ-Ú Y—

O°ÿm32

aaaaaaab ¿òë!@éq{ ¿òë!@éq{ 9êŽèS�û�

111111111 Ï"ûqü�kú& &kúûÏ"�qü ûü_%˜Ù '

111101111 Ï"ûqûÖ;-& &;-ûÏ"Öqû SåH_Žh÷ëî

Test Case :
Plain Text - To promote a society of liberty, justice, equality,

fraternity and freedom.

Encrypted Text –

 4. Conclusion and Future Scope:
The encrypted text cannot be decrypted without knowing

the exact initial random matrix. MES-III is a combination of

3 independent methods and hence to decrypt the encrypted

text one has to apply the decryption algorithm in proper way

and the key should be also correct. The encrypted text of

some standard text shows that the present method is free

from known plain text attack, brute force attack or

differential attack. MES-III will be most effective to

encrypt short message such as SMS in mobile phone,

password encryption and any type of confidential message.

The method was tested the present method on any type file

such as text, audio, video or any other file and we find that it

is working perfectly ok. The present method may be further

upgraded by using some complex bit-wise operations such

as XOR, left shift, complement etc. The feedback

mechanism can be further made nonlinear to make the

whole system more complex. The authors are now working

on those complex operations.

5. Acknowledgement

We are very much grateful to the Department of Computer

Science to give us this opportunity to work on symmetric

key Cryptography. One of the authors (AN) sincerely

expresses his gratitude to Fr. Dr. Felix Raj, Principal of St.

Xavier’s College(Autonomous) for giving constant

encouragement in doing research in cryptography.

6. References
[1] Symmetric Key Cryptography using Random Key

generator : Asoke Nath, Saima Ghosh, Meheboob
Alam Mallik: “Proceedings of International conference
on security and management(SAM’10” held at Las
Vegas, USA Jull 12-15, 2010), Vol-2, Page: 239-
244(2010).

[2] Advanced Symmetric key Cryptography using extended
MSA method: DJSSA symmetric key algorithm: Dripto
Chatterjee, Joyshree Nath, Soumitra Mondal, Suvadeep
Dasgupta and Asoke Nath, Jounal of Computing, Vol 3,
issue-2, Page 66-71,Feb(2011).

[3] A new Symmetric key Cryptography Algorithm using
extended MSA method :DJSA symmetric key
algorithm, Dripto Chatterjee, Joyshree Nath, Suvadeep
Dasgupta and Asoke Nath : Proceedings of IEEE
International Conference on Communication Systems
and Network Technologies, held at SMVDU(Jammu)
03-06 June,2011, Page-89-94(2011).

Plain Text

Method-1

Cipher Text1

Method-2

Cipher Text2

Method-3

Encrypted Text

Process Begins

Process Ends

134 Int'l Conf. Foundations of Computer Science | FCS'13 |

[4] New Symmetric key Cryptographic algorithm using
combined bit manipulation and MSA encryption
algorithm: NJJSAA symmetric key algorithm :Neeraj
Khanna, Joel James,Joyshree Nath, Sayantan
Chakraborty, Amlan Chakrabarti and Asoke Nath
: Proceedings of IEEE CSNT-2011 held at
SMVDU(Jammu) 03-06 June 2011, Page 125-
130(2011).

[5] Symmetric key Cryptography using modified DJSSA
symmetric key algorithm, Dripto Chatterjee, Joyshree
Nath, Sankar Das, Shalabh Agarwal and Asoke Nath,
Proceedings of International conference Worldcomp
2011 held at LasVegas 18-21 July 2011, Page-306-311,
Vol-1(2011).

[6] An Integrated symmetric key cryptography algorithm
using generalized vernam cipher method and DJSA
method: DJMNA symmetric key algorithm : Debanjan
Das, Joyshree Nath, Megholova Mukherjee, Neha
Chaudhury and Asoke Nath: Proceedings of IEEE
International conference : World Congress WICT-2011
to be held at Mumbai University 11-14 Dec, 2011, Page
No.1203-1208(2011).

[7] Symmetric key cryptosystem using combined
cryptographic algorithms- generalized modified vernam
cipher method, MSA method and NJJSAA method:
TTJSA algorithm – Trisha Chatterjee, Tamodeep Das,
Joyshree Nath, Shayan Dey and Asoke Nath,
Proceedings of IEEE International conference : World
Congress WICT-2011 t held at Mumbai University 11-
14 Dec, 2011, Page No. 1179-1184(2011).

[8] Symmetric key Cryptography using two-way updated –
Generalized Vernam Cipher method: TTSJA algorithm,
International Journal of Computer Applications(IJCA,
USA), Vol 42, No.1, March, Pg: 34 -39(2012).

[9] Ultra Encryption Standard(UES) Version-I: Symmetric
Key Cryptosystem using generalized modified Vernam

Cipher method, Permutation method and Columnar
Transposition method, Satyaki Roy, Navajit Maitra,
Joyshree Nath,Shalabh Agarwal and Asoke Nath,
Proceedings of IEEE sponsored National Conference on
Recent Advances in Communication, Control and
Computing Technology-RACCCT 2012, 29-30 March
held at Surat, Page 81-88(2012).

[10] An Integrated Symmetric Key Cryptographic Method –
Amalgamation of TTJSA Algorithm, Adbvanced
Caeser Cipher Algorithm, Bit Rotation and reversal
Method : SJA Algorithm., International Journal of
Modern Education and Computer Science, Somdip
Dey, Joyshree Nath, Asoke Nath,(IJMECS), ISSN:
2075-0161 (Print), ISSN: 2075-017X (Online), Vol-4,
No-5, Page 1-9,2012.

[11] An Advanced Combined Symmetric Key
Cryptographic Method using Bit manipulation,
Bit Reversal, Modified Caeser Cipher(SD-REE), DJSA
method, TTJSA method: SJA-I Algorithm, Somdip dey,
Joyshree Nath, Asoke Nath, International Journal of
Computer Applications(IJCA 0975-8887, USA), Vol.
46, No.20, Page- 46-53,May, 2012.

[12] Ultra Encryption Standard(UES) Version-IV: New
Symmetric Key Cryptosystem with bit-level columnar
Transposition and Reshuffling of Bits, Satyaki Roy,
Navajit Maitra, Joyshree Nath, Shalabh Agarwal,
Asoke Nath, International Journal of Computer
Applications, USA, Vol 51-No 1, Page 28-35(2012).

[13] Bit Level Encryption Standard(BLES): Version-I,
Neeraj Khanna, Dripto Chatterjee, Joyshree Nath,
Asoke Nath, International Journal of Computer
Applications, USA, Vol 52-No 2, Page 41-46(2012).

[14] Cryptography and Network Security, William
Stallings, Prectice Hall of India.

Int'l Conf. Foundations of Computer Science | FCS'13 | 135

136 Int'l Conf. Foundations of Computer Science | FCS'13 |

SESSION

QUANTUM COMPUTING

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'13 | 137

138 Int'l Conf. Foundations of Computer Science | FCS'13 |

Equivalence of the Foulis-Holland Theorems and

the Orthomodular Law in Quantum Logic: Part 1

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

FCS 2013

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of

quantum-mechanical behaviors and operations. In much the same way that the structure of conventional

propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces

of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the

descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined. Now a QL can

be thought of as a BL in which the distributive law does not hold. Under certain commutativity conditions,

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs). Here I provide an automated deduction of one of the four FHTs from OML.

Keywords: automated deduction, quantum computing, orthomodular lattice, Foulis-Holland theorems,

Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”, i.e., can be measured in

either order, yielding the same results) and is

isomorphic to a Boolean lattice ([10], [11],

[19]), so also the algebra, C(H), of the

closed linear subspaces of (equivalently, the

system of linear operators on (observables

in)) a Hilbert space H ([1], [4], [6], [9],

[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems

(e.g., “the measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [4]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). Figure 1 shows a set of axioms

for an orthlolattice.

.

Int'l Conf. Foundations of Computer Science | FCS'13 | 139

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

A useful definition

 1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 <-> means if and only if

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, ortholattice axioms, and a useful definition.

C(H) is also a model of an orthomodular

lattice (OML; [4], [7]), which is an OL

conjoined with the orthomodularity axiom

(OMLaw):

 y v (c(y) ^ (x v y)) =

 x v y (OMLaw)

The rationalization of the OMA as a claim

proper to physics has proven problematic

([13], Section 5-6), motivating the question

of whether the OMA is required in an

adequate characterization of QL. Thus

formulated, the question suggests that the

OMA and its equivalents are specific to an

OML, and that as a consequence, banning

the OMA from QL yields a "truer" quantum

logic.

Now a QL can be thought of as a BL in

which the distributive law

 (D) (x v (y ^ z) =
 (x v y) ^ (x v z))

does not hold. Under certain commutativity

conditions, a QL does satisfy the distributive

law; among the most well known of these

relationships are the Foulis-Holland

theorems (FHTs ([7])):

140 Int'l Conf. Foundations of Computer Science | FCS'13 |

 % Foulis-Holland theorem FH1

 (C(x,y) & C(x,z)) -> ((x ^ (y v z)) = ((x ^ y) v (x ^ z)))

 % Foulis-Holland theorem FH2

 (C(x,y) & C(x,z)) -> ((y ^ (x v z)) = ((y ^ x) v (y ^ z)))

 % Foulis-Holland theorem FH3

 (C(x,y) & C(x,z)) -> ((x v (y ^ z)) = ((x v y) ^ (x v z)))

 % Foulis-Holland theorem FH4

 (C(x,y) & C(x,z)) -> ((y v (x ^ z)) = ((y v x) ^ (y v z)))

 where C(x,y), "x commutes with y" is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

Figure 2. The Foulis-Holland theorems.

2.0 Method

The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21]) were implemented in a prover9 ([2])

script ([3]) configured to derive FH1, then

executed in that framework on a Dell

Inspiron 545 with an Intel Core2 Quad CPU

Q8200 (clocked @ 2.33 GHz) and 8.00 GB

RAM, running under the Windows Vista

Home Premium /Cygwin operating

environment.

3.0 Results

Figure 3 shows the proof, generated by [3]

on the platform described in Section 2.0,

that FH1 is implied by an OML:

============================== PROOF =================================

% Proof 1 at 3.67 (+ 0.06) seconds: "Foulis-Holland Theorem 1".

% Length of proof is 90.

4 C(x,y) & C(x,z) -> x ^ (y v z) = (x ^ y) v (x ^ z) # label("Foulis-Holland Theorem 1")

label(non_clause) # label(goal). [goal].

13 x = c(c(x)) # label("AxL1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

15 x v y = y v x # label("AxL2"). [assumption].

16 (x v y) v z = x v (y v z) # label("AxL3"). [assumption].

18 x v (x ^ y) = x # label("AxL5"). [assumption].

19 x ^ (x v y) = x # label("AxL6"). [assumption].

20 c(x) ^ x = 0 # label("AxOL1"). [assumption].

21 c(x) v x = 1 # label("AxOL2"). [assumption].

22 x v c(x) = 1. [copy(21),rewrite([15(2)])].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

67 1_2 = x v ((y ^ c(x)) v (c(y) ^ c(x))) # label("Df. 2.20"). [assumption].

68 x v (c(y v x) v c(c(y) v x)) = 1_2.

[copy(67),rewrite([23(3),14(4),23(7),14(6),14(6),15(7)]),flip(a)].

75 x v (c(x) ^ (y v x)) = y v x # label("OMLaw"). [assumption].

Int'l Conf. Foundations of Computer Science | FCS'13 | 141

76 x v c(x v c(y v x)) = y v x. [copy(75),rewrite([23(3),14(2)])].

77 (c1 ^ c2) v (c1 ^ c3) != c1 ^ (c2 v c3) # label("Foulis-Holland Theorem 1") #

answer("Foulis-Holland Theorem 1"). [deny(4)].

78 c(c(c1) v c(c2 v c3)) != c(c(c1) v c(c2)) v c(c(c1) v c(c3)) # answer("Foulis-Holland

Theorem 1"). [copy(77),rewrite([23(3),23(9),23(18)]),flip(a)].

83 c(1) = 0. [back_rewrite(20),rewrite([23(2),14(2),22(2)])].

84 c(c(x) v c(x v y)) = x. [back_rewrite(19),rewrite([23(2)])].

85 x v c(c(x) v c(y)) = x. [back_rewrite(18),rewrite([23(1)])].

89 x v (y v z) = y v (x v z). [para(15(a,1),16(a,1,1)),rewrite([16(2)])].

97 x v (c(x) v y) = 1 v y. [para(22(a,1),16(a,1,1)),flip(a)].

98 x v (y v c(x v y)) = 1. [para(22(a,1),16(a,1)),flip(a)].

99 x v (c(x v y) v c(c(y) v x)) = 1_2. [para(15(a,1),68(a,1,2,1,1))].

108 x v c(x v c(x v y)) = y v x. [para(15(a,1),76(a,1,2,1,2,1))].

110 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).

[para(76(a,1),16(a,1)),rewrite([16(7)]),flip(a)].

113 1_2 = 1. [para(76(a,1),68(a,1,2,1,1)),rewrite([84(13),15(7),15(8),22(8)]),flip(a)].

124 x v (c(x v y) v c(c(y) v x)) = 1. [back_rewrite(99),rewrite([113(8)])].

133 c(x) v c(x v y) = c(x). [para(84(a,1),14(a,1,1)),flip(a)].

137 c(0 v c(x)) = x. [para(22(a,1),84(a,1,1,2,1)),rewrite([83(3),15(3)])].

141 1 v x = 1. [para(83(a,1),84(a,1,1,1)),rewrite([137(6)])].

144 x v (c(x) v y) = 1. [back_rewrite(97),rewrite([141(5)])].

146 x v c(c(x) v y) = x. [para(14(a,1),85(a,1,2,1,2))].

150 x v 0 = x. [para(22(a,1),85(a,1,2,1)),rewrite([83(2)])].

151 x v c(y v c(x)) = x. [para(76(a,1),85(a,1,2,1))].

163 x v (y v c(x)) = y v 1. [para(22(a,1),89(a,1,2)),flip(a)].

165 x v (y v c(x v c(z v x))) = y v (z v x). [para(76(a,1),89(a,1,2)),flip(a)].

193 x v 1 = 1. [para(141(a,1),15(a,1)),flip(a)].

195 x v (y v c(x)) = 1. [back_rewrite(163),rewrite([193(5)])].

196 0 v x = x. [para(150(a,1),15(a,1)),flip(a)].

207 x v (y v (c(x v y) v z)) = 1. [para(144(a,1),16(a,1)),flip(a)].

210 x v (y v (z v c(x v y))) = 1. [para(195(a,1),16(a,1)),flip(a)].

215 x v (c(c(x) v y) v z) = x v z. [para(146(a,1),16(a,1,1)),flip(a)].

217 x v (y v c(c(x) v z)) = y v x. [para(146(a,1),89(a,1,2)),flip(a)].

220 c(x) v c(y v x) = c(x). [para(14(a,1),151(a,1,2,1,2))].

221 x v (c(y v c(x)) v z) = x v z. [para(151(a,1),16(a,1,1)),flip(a)].

225 x v (y v c(z v c(x))) = y v x. [para(151(a,1),89(a,1,2)),flip(a)].

230 x v (y v c(y v x)) = 1. [para(15(a,1),98(a,1,2,2,1))].

234 c(x) v (c(x v y) v z) = c(x) v z. [para(133(a,1),16(a,1,1)),flip(a)].

236 c(x) v (y v c(x v z)) = y v c(x). [para(133(a,1),89(a,1,2)),flip(a)].

257 c(x) v (c(y v x) v z) = c(x) v z. [para(220(a,1),16(a,1,1)),flip(a)].

259 c(x v y) v c(y v c(x v y)) = c(y).

[para(220(a,1),76(a,1,2,1,2,1)),rewrite([14(6),15(5),220(11)])].

260 c(x) v (y v c(z v x)) = y v c(x). [para(220(a,1),89(a,1,2)),flip(a)].

262 x v (y v (c(y v x) v z)) = 1.

[para(230(a,1),16(a,1,1)),rewrite([141(2),16(5)]),flip(a)].

313 x v (y v (z v c(y v x))) = 1. [para(15(a,1),210(a,1,2,2,2,1))].

326 c(c(x) v y) v (z v x) = z v x.

[para(146(a,1),110(a,1,2,2,1,2,2,1,2)),rewrite([215(10),165(9),146(9)])].

665 x v (y v (c(z v c(x)) v u)) = y v (x v u). [para(221(a,1),89(a,1,2)),flip(a)].

741 x v c(x v c(y v c(x v y))) = 1.

[para(98(a,1),124(a,1,2,1,1)),rewrite([83(2),15(6),196(8)])].

855 c(x) v (y v (c(z v x) v u)) = c(x) v (y v u).

[para(326(a,1),215(a,1,2,1,1)),rewrite([16(6),16(9)])].

935 c(x) v (y v (c(x v z) v u)) = y v (c(x) v u). [para(234(a,1),89(a,1,2)),flip(a)].

1166 c(x) v (y v (z v c(x v u))) = y v (z v c(x)).

[para(16(a,1),236(a,1,2)),rewrite([16(9)])].

1409 c(x) v (y v (z v c(u v x))) = y v (z v c(x)).

[para(16(a,1),260(a,1,2)),rewrite([16(9)])].

3700 x v c(y v c(x v y)) = x.

[para(741(a,1),108(a,1,2,1)),rewrite([83(2),150(2),15(5)]),flip(a)].

3710 x v c(y v c(y v x)) = x. [para(15(a,1),3700(a,1,2,1,2,1))].

3719 x v c(y v x) = x v c(y).

[para(3700(a,1),151(a,1,2,1)),rewrite([15(5),236(5)]),flip(a)].

3992 c(x v y) v c(y v c(x)) = c(y). [back_rewrite(259),rewrite([3719(5)])].

4092 x v c(x v y) = x v c(y).

[para(3710(a,1),151(a,1,2,1)),rewrite([15(5),260(5)]),flip(a)].

4093 x v (c(y v x) v z) = x v (c(y) v z).

[para(207(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),935(6)]),flip(a)].

4094 x v (y v c(z v x)) = x v (y v c(z)).

[para(210(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),1166(6)]),flip(a)].

142 Int'l Conf. Foundations of Computer Science | FCS'13 |

4098 x v (c(x v y) v z) = c(y) v (x v z).

[para(262(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),855(6)]),flip(a)].

4099 x v (y v c(x v z)) = x v (y v c(z)).

[para(313(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),1409(6)]),flip(a)].

4102 c(x v y) v c(c(y) v x) = c(x).

[para(124(a,1),3710(a,1,2,1,2,1)),rewrite([83(8),150(8),15(8),260(8),15(4),133(4)]),flip(

a)].

4338 x v c(y v (z v x)) = x v c(y v z). [para(16(a,1),3719(a,1,2,1))].

4342 c(x) v c(y v c(z v x)) = c(x) v c(y).

[para(3719(a,1),257(a,1,2)),rewrite([257(6)]),flip(a)].

4374 x v c(y v (x v z)) = x v c(y v z). [para(89(a,1),4092(a,1,2,1))].

4419 c(x v c(c(y) v z)) = c(x v y) v c(c(y) v (x v c(z))).

[para(217(a,1),3992(a,1,1,1)),rewrite([15(8),4099(8)]),flip(a)].

4565 c(x v c(y v z)) = c(z v (x v c(y))) v c(x v c(z)).

[para(225(a,1),4102(a,1,2,1)),rewrite([14(2),15(4),4094(4),14(10)]),flip(a)].

4868 x v (y v (c(z v x) v u)) = y v (x v (c(z) v u)).

[para(4093(a,1),89(a,1,2)),flip(a)].

5175 c(x v y) v c(c(y) v (x v z)) = c(x v y) v c(x v z).

[para(4098(a,1),4374(a,1,2,1))].

5188 c(x v c(c(y) v z)) = c(x v y) v c(x v c(z)).

[back_rewrite(4419),rewrite([5175(13)])].

5751 c(x v y) v c(y v c(z v x)) = c(y).

[para(4338(a,1),4342(a,1,2,1)),rewrite([15(11),220(11)])].

5776 c(x v c(y v z)) v c(z v x) = c(x). [para(5751(a,1),15(a,1)),flip(a)].

5896 c(x v c(y v z)) v c(y v x) = c(x). [para(15(a,1),5776(a,1,1,1,2,1))].

6089 c(x v (y v c(z v u))) v c(z v (x v y)) = c(x v y). [para(16(a,1),5896(a,1,1,1))].

6099 c(x v (c(y v z) v c(y v u))) v c(y v (x v c(z))) = c(x v c(y v z)).

[para(4099(a,1),5896(a,1,2,1)),rewrite([16(6)])].

6193 c(x v (c(y v z) v u)) = c(x v (z v (c(y) v u))) v c(x v (c(z) v u)).

[para(665(a,1),4102(a,1,2,1)),rewrite([14(2),15(5),4868(5),14(12)]),flip(a)].

6227 c(x v c(y v z)) = c(x v (z v c(y))) v c(x v c(z)).

[back_rewrite(6099),rewrite([6193(7),133(4),16(16),6089(15)]),flip(a)].

6529 c(x v (y v z)) v c(x v c(y)) = c(x v z) v c(x v c(y)).

[back_rewrite(5188),rewrite([6227(5),14(2)])].

6557 c(x v (y v c(z))) v c(y v c(x)) = c(y v c(z)) v c(y v c(x)).

[back_rewrite(4565),rewrite([6227(4),6529(8)]),flip(a)].

6566 $F # answer("Foulis-Holland Theorem 1").

[back_rewrite(78),rewrite([6227(8),89(7),6557(15)]),xx(a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of FHT1 from OML. The proofs assume the default

inference rules of prover9. The general form of a line in this proof is “line_number conclusion

[derivation]”, where line_number is a unique identifier of a line in the proof, and conclusion is the

result of applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted

in square brackets (denoting the derivation), to the lines cited in those brackets. Note that some of

“logical” proof lines in the above have been transformed to two text lines, with the derivation

appearing on a text line following a text line containing the first part of that logical line. The detailed

syntax and semantics of these notations can be found in [2]. All prover9 proofs are by default proofs

by contradiction.

The total time to produce the proofs in Figure 3 on the platform described in Section 2.0

was approximately 3.7 seconds.

Int'l Conf. Foundations of Computer Science | FCS'13 | 143

4.0 Discussion

The results of Section 3.0 motivate several

observations:

 1. FH1 is derivable from OML.

 2. The proof in Section 3.0 is, as far as I

know, novel.

 3. Companion papers provide derivations

of the remaining FHTs from OML, and a

derivation of the OMLaw from an OML

without the OMLaw, conjoined with the

FHTs. The union of these proofs constitutes

a proof of the equivalence of the OMLaw

and the FHTs within OML theory.

5.0 Acknowledgements

This work benefited from discussions with

Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Horner JK. prover9 scripts for FH1.

2011. Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

144 Int'l Conf. Foundations of Computer Science | FCS'13 |

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

Int'l Conf. Foundations of Computer Science | FCS'13 | 145

Equivalence of the Foulis-Holland Theorems and

the Orthomodular Law in Quantum Logic: Part 2

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

FCS 2013

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of

quantum-mechanical behaviors and operations. In much the same way that the structure of conventional

propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces

of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the

descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined. Now a QL can

be thought of as a BL in which the distributive law does not hold. Under certain commutativity conditions,

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs). Here I provide an automated deduction of one of the four FHTs from OML.

Keywords: automated deduction, quantum computing, orthomodular lattice, Foulis-Holland theorems,

Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”, i.e., can be measured in

either order, yielding the same results) and is

isomorphic to a Boolean lattice ([10], [11],

[19]), so also the algebra, C(H), of the

closed linear subspaces of (equivalently, the

system of linear operators on (observables

in)) a Hilbert space H ([1], [4], [6], [9],

[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems

(e.g., “the measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [4]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). Figure 1 shows a set of axioms

for an orthlolattice.

146 Int'l Conf. Foundations of Computer Science | FCS'13 |

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

A useful definition

 1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 <-> means if and only if

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, ortholattice axioms, and a useful definition.

C(H) is also a model of an orthomodular

lattice (OML; [4], [7]), which is an OL

conjoined with the orthomodularity axiom

(OMLaw):

 y v (c(y) ^ (x v y)) =

 x v y (OMLaw)

The rationalization of the OMA as a claim

proper to physics has proven problematic

([13], Section 5-6), motivating the question

of whether the OMA is required in an

adequate characterization of QL. Thus

formulated, the question suggests that the

OMA and its equivalents are specific to an

OML, and that as a consequence, banning

the OMA from QL yields a "truer" quantum

logic.

Now a QL can be thought of as a BL in

which the distributive law

 (D) (x v (y ^ z) =

 (x v y) ^ (x v z))

does not hold. Under certain commutativity

conditions, a QL does satisfy the distributive

law; among the most well known of these

relationships are the Foulis-Holland

theorems (FHTs ([7])):

Int'l Conf. Foundations of Computer Science | FCS'13 | 147

 % Foulis-Holland theorem FH1

 (C(x,y) & C(x,z)) -> ((x ^ (y v z)) = ((x ^ y) v (x ^ z)))

 % Foulis-Holland theorem FH2

 (C(x,y) & C(x,z)) -> ((y ^ (x v z)) = ((y ^ x) v (y ^ z)))

 % Foulis-Holland theorem FH3

 (C(x,y) & C(x,z)) -> ((x v (y ^ z)) = ((x v y) ^ (x v z)))

 % Foulis-Holland theorem FH4

 (C(x,y) & C(x,z)) -> ((y v (x ^ z)) = ((y v x) ^ (y v z)))

 where C(x,y), "x commutes with y" is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

Figure 2. The Foulis-Holland theorems.

2.0 Method

The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21]) were implemented in a prover9 ([2])

script ([3]) configured to derive FH2, then

executed in that framework on a Dell

Inspiron 545 with an Intel Core2 Quad CPU

Q8200 (clocked @ 2.33 GHz) and 8.00 GB

RAM, running under the Windows Vista

Home Premium /Cygwin operating

environment.

3.0 Results

Figure 3 shows the proof, generated by [3]

on the platform described in Section 2.0,

that FH2 is implied by an OML:

============================== PROOF =================================

% Proof 1 at 4.24 (+ 0.17) seconds: "Foulis-Holland Theorem 2".

% Length of proof is 82.

% Level of proof is 15.

% Maximum clause weight is 29.

% Given clauses 311.

4 C(x,y) & C(x,z) -> y ^ (x v z) = (y ^ x) v (y ^ z) # label("Foulis-Holland Theorem 2")

label(non_clause) # label(goal). [goal].

13 x = c(c(x)) # label("AxL1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

15 x v y = y v x # label("AxL2"). [assumption].

16 (x v y) v z = x v (y v z) # label("AxL3"). [assumption].

18 x v (x ^ y) = x # label("AxL5"). [assumption].

19 x ^ (x v y) = x # label("AxL6"). [assumption].

20 c(x) ^ x = 0 # label("AxOL1"). [assumption].

21 c(x) v x = 1 # label("AxOL2"). [assumption].

22 x v c(x) = 1. [copy(21),rewrite([15(2)])].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

67 1_2 = x v ((y ^ c(x)) v (c(y) ^ c(x))) # label("Df. 2.20"). [assumption].

68 x v (c(y v x) v c(c(y) v x)) = 1_2.

[copy(67),rewrite([23(3),14(4),23(7),14(6),14(6),15(7)]),flip(a)].

75 x v (c(x) ^ (y v x)) = y v x # label("OMLaw"). [assumption].

148 Int'l Conf. Foundations of Computer Science | FCS'13 |

76 x v c(x v c(y v x)) = y v x. [copy(75),rewrite([23(3),14(2)])].

77 (c2 ^ c1) v (c2 ^ c3) != c2 ^ (c1 v c3) # label("Foulis-Holland Theorem 2") #

answer("Foulis-Holland Theorem 2"). [deny(4)].

78 c(c(c2) v c(c1 v c3)) != c(c(c1) v c(c2)) v c(c(c2) v c(c3)) # answer("Foulis-Holland

Theorem 2"). [copy(77),rewrite([23(3),15(5),23(9),23(18)]),flip(a)].

83 c(1) = 0. [back_rewrite(20),rewrite([23(2),14(2),22(2)])].

84 c(c(x) v c(x v y)) = x. [back_rewrite(19),rewrite([23(2)])].

85 x v c(c(x) v c(y)) = x. [back_rewrite(18),rewrite([23(1)])].

89 x v (y v z) = y v (x v z). [para(15(a,1),16(a,1,1)),rewrite([16(2)])].

97 x v (c(x) v y) = 1 v y. [para(22(a,1),16(a,1,1)),flip(a)].

98 x v (y v c(x v y)) = 1. [para(22(a,1),16(a,1)),flip(a)].

99 x v (c(x v y) v c(c(y) v x)) = 1_2. [para(15(a,1),68(a,1,2,1,1))].

101 x v (c(y v x) v (c(c(y) v x) v z)) = 1_2 v z.

[para(68(a,1),16(a,1,1)),rewrite([16(9)]),flip(a)].

108 x v c(x v c(x v y)) = y v x. [para(15(a,1),76(a,1,2,1,2,1))].

110 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).

[para(76(a,1),16(a,1)),rewrite([16(7)]),flip(a)].

113 1_2 = 1. [para(76(a,1),68(a,1,2,1,1)),rewrite([84(13),15(7),15(8),22(8)]),flip(a)].

122 x v (c(y v x) v (c(c(y) v x) v z)) = 1 v z. [back_rewrite(101),rewrite([113(9)])].

124 x v (c(x v y) v c(c(y) v x)) = 1. [back_rewrite(99),rewrite([113(8)])].

133 c(x) v c(x v y) = c(x). [para(84(a,1),14(a,1,1)),flip(a)].

137 c(0 v c(x)) = x. [para(22(a,1),84(a,1,1,2,1)),rewrite([83(3),15(3)])].

141 1 v x = 1. [para(83(a,1),84(a,1,1,1)),rewrite([137(6)])].

143 x v (c(y v x) v (c(c(y) v x) v z)) = 1. [back_rewrite(122),rewrite([141(10)])].

144 x v (c(x) v y) = 1. [back_rewrite(97),rewrite([141(5)])].

146 x v c(c(x) v y) = x. [para(14(a,1),85(a,1,2,1,2))].

150 x v 0 = x. [para(22(a,1),85(a,1,2,1)),rewrite([83(2)])].

151 x v c(y v c(x)) = x. [para(76(a,1),85(a,1,2,1))].

163 x v (y v c(x)) = y v 1. [para(22(a,1),89(a,1,2)),flip(a)].

165 x v (y v c(x v c(z v x))) = y v (z v x). [para(76(a,1),89(a,1,2)),flip(a)].

193 x v 1 = 1. [para(141(a,1),15(a,1)),flip(a)].

195 x v (y v c(x)) = 1. [back_rewrite(163),rewrite([193(5)])].

196 0 v x = x. [para(150(a,1),15(a,1)),flip(a)].

207 x v (y v (c(x v y) v z)) = 1. [para(144(a,1),16(a,1)),flip(a)].

210 x v (y v (z v c(x v y))) = 1. [para(195(a,1),16(a,1)),flip(a)].

215 x v (c(c(x) v y) v z) = x v z. [para(146(a,1),16(a,1,1)),flip(a)].

220 c(x) v c(y v x) = c(x). [para(14(a,1),151(a,1,2,1,2))].

221 x v (c(y v c(x)) v z) = x v z. [para(151(a,1),16(a,1,1)),flip(a)].

234 c(x) v (c(x v y) v z) = c(x) v z. [para(133(a,1),16(a,1,1)),flip(a)].

235 c(x v y) v c(x v (y v z)) = c(x v y). [para(16(a,1),133(a,1,2,1))].

236 c(x) v (y v c(x v z)) = y v c(x). [para(133(a,1),89(a,1,2)),flip(a)].

257 c(x) v (c(y v x) v z) = c(x) v z. [para(220(a,1),16(a,1,1)),flip(a)].

260 c(x) v (y v c(z v x)) = y v c(x). [para(220(a,1),89(a,1,2)),flip(a)].

313 x v (y v (z v c(y v x))) = 1. [para(15(a,1),210(a,1,2,2,2,1))].

326 c(c(x) v y) v (z v x) = z v x.

[para(146(a,1),110(a,1,2,2,1,2,2,1,2)),rewrite([215(10),165(9),146(9)])].

665 x v (y v (c(z v c(x)) v u)) = y v (x v u). [para(221(a,1),89(a,1,2)),flip(a)].

741 x v c(x v c(y v c(x v y))) = 1.

[para(98(a,1),124(a,1,2,1,1)),rewrite([83(2),15(6),196(8)])].

855 c(x) v (y v (c(z v x) v u)) = c(x) v (y v u).

[para(326(a,1),215(a,1,2,1,1)),rewrite([16(6),16(9)])].

935 c(x) v (y v (c(x v z) v u)) = y v (c(x) v u). [para(234(a,1),89(a,1,2)),flip(a)].

1409 c(x) v (y v (z v c(u v x))) = y v (z v c(x)).

[para(16(a,1),260(a,1,2)),rewrite([16(9)])].

3700 x v c(y v c(x v y)) = x.

[para(741(a,1),108(a,1,2,1)),rewrite([83(2),150(2),15(5)]),flip(a)].

3710 x v c(y v c(y v x)) = x. [para(15(a,1),3700(a,1,2,1,2,1))].

3719 x v c(y v x) = x v c(y).

[para(3700(a,1),151(a,1,2,1)),rewrite([15(5),236(5)]),flip(a)].

4093 x v (c(y v x) v z) = x v (c(y) v z).

[para(207(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),935(6)]),flip(a)].

4099 x v (y v c(x v z)) = x v (y v c(z)).

[para(313(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),1409(6)]),flip(a)].

4102 c(x v y) v c(c(y) v x) = c(x).

[para(124(a,1),3710(a,1,2,1,2,1)),rewrite([83(8),150(8),15(8),260(8),15(4),133(4)]),flip(

a)].

4105 c(x v y) v (c(c(x) v y) v z) = c(y) v z.

[para(143(a,1),3710(a,1,2,1,2,1)),rewrite([83(9),150(9),15(9),855(9),257(5)]),flip(a)].

4338 x v c(y v (z v x)) = x v c(y v z). [para(16(a,1),3719(a,1,2,1))].

4342 c(x) v c(y v c(z v x)) = c(x) v c(y).

[para(3719(a,1),257(a,1,2)),rewrite([257(6)]),flip(a)].

Int'l Conf. Foundations of Computer Science | FCS'13 | 149

4360 c(x v y) v c(y v (z v x)) = c(x v y).

[para(15(a,1),235(a,1,2,1)),rewrite([16(4)])].

4868 x v (y v (c(z v x) v u)) = y v (x v (c(z) v u)).

[para(4093(a,1),89(a,1,2)),flip(a)].

5751 c(x v y) v c(y v c(z v x)) = c(y).

[para(4338(a,1),4342(a,1,2,1)),rewrite([15(11),220(11)])].

5776 c(x v c(y v z)) v c(z v x) = c(x). [para(5751(a,1),15(a,1)),flip(a)].

5896 c(x v c(y v z)) v c(y v x) = c(x). [para(15(a,1),5776(a,1,1,1,2,1))].

6089 c(x v (y v c(z v u))) v c(z v (x v y)) = c(x v y). [para(16(a,1),5896(a,1,1,1))].

6099 c(x v (c(y v z) v c(y v u))) v c(y v (x v c(z))) = c(x v c(y v z)).

[para(4099(a,1),5896(a,1,2,1)),rewrite([16(6)])].

6108 c(x v (y v z)) v c(z v x) = c(z v x). [para(4360(a,1),15(a,1)),flip(a)].

6193 c(x v (c(y v z) v u)) = c(x v (z v (c(y) v u))) v c(x v (c(z) v u)).

[para(665(a,1),4102(a,1,2,1)),rewrite([14(2),15(5),4868(5),14(12)]),flip(a)].

6227 c(x v c(y v z)) = c(x v (z v c(y))) v c(x v c(z)).

[back_rewrite(6099),rewrite([6193(7),133(4),16(16),6089(15)]),flip(a)].

6566 c(c3 v (c(c1) v c(c2))) v c(c(c2) v c(c3)) != c(c(c1) v c(c2)) v c(c(c2) v c(c3)) #

answer("Foulis-Holland Theorem 2"). [back_rewrite(78),rewrite([6227(8),15(7),16(7)])].

7290 c(x v (y v z)) v c(z v c(x)) = c(y v z) v c(z v c(x)).

[para(6108(a,1),4105(a,1,2))].

7291 $F # answer("Foulis-Holland Theorem 2"). [resolve(7290,a,6566,a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of FH2 from OML. The proofs assume the default

inference rules of prover9. The general form of a line in this proof is “line_number conclusion

[derivation]”, where line_number is a unique identifier of a line in the proof, and conclusion is the

result of applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted

in square brackets (denoting the derivation), to the lines cited in those brackets. Note that some of

“logical” proof lines in the above have been transformed to two text lines, with the derivation

appearing on a text line following a text line containing the first part of that logical line. The detailed

syntax and semantics of these notations can be found in [2]. All prover9 proofs are by default proofs

by contradiction.

The total time to produce the proofs in

Figure 3 on the platform described in

Section 2.0 was approximately 4.4

seconds.

4.0 Discussion

The results of Section 3.0 motivate several

observations:

 1. FH2 is derivable from OML.

 2. The proof in Section 3.0 is, as far as I

know, novel.

 3. Companion papers provide derivations

of the remaining FHTs from OML, and a

derivation of the OMLaw from an OML

without the OMLaw, conjoined with the

FHTs. The union of these proofs constitutes

a proof of the equivalence of the OMLaw

and the FHTs within OML theory.

5.0 Acknowledgements

This work benefited from discussions with

Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

150 Int'l Conf. Foundations of Computer Science | FCS'13 |

[3] Horner JK. prover9 scripts for FH2.

2011. Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

Int'l Conf. Foundations of Computer Science | FCS'13 | 151

Equivalence of the Foulis-Holland Theorems and

the Orthomodular Law in Quantum Logic: Part 3

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

FCS 2013

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of

quantum-mechanical behaviors and operations. In much the same way that the structure of conventional

propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces

of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the

descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined. Now a QL can

be thought of as a BL in which the distributive law does not hold. Under certain commutativity conditions,

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs). Here I provide an automated deduction of one of the four FHTs from OML.

Keywords: automated deduction, quantum computing, orthomodular lattice, Foulis-Holland theorems,

Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”, i.e., can be measured in

either order, yielding the same results) and is

isomorphic to a Boolean lattice ([10], [11],

[19]), so also the algebra, C(H), of the

closed linear subspaces of (equivalently, the

system of linear operators on (observables

in)) a Hilbert space H ([1], [4], [6], [9],

[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems

(e.g., “the measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [4]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). Figure 1 shows a set of axioms

for an orthlolattice

.

152 Int'l Conf. Foundations of Computer Science | FCS'13 |

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

A useful definition

 1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 <-> means if and only if

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, ortholattice axioms, and a useful definition.

C(H) is also a model of an orthomodular

lattice (OML; [4], [7]), which is an OL

conjoined with the orthomodularity axiom

(OMLaw):

 y v (c(y) ^ (x v y)) =

 x v y (OMLaw)

The rationalization of the OMA as a claim

proper to physics has proven problematic

([13], Section 5-6), motivating the question

of whether the OMA is required in an

adequate characterization of QL. Thus

formulated, the question suggests that the

OMA and its equivalents are specific to an

OML, and that as a consequence, banning

the OMA from QL yields a "truer" quantum

logic.

Now a QL can be thought of as a BL in

which the distributive law

 (D) (x v (y ^ z) =

 (x v y) ^ (x v z))

does not hold. Under certain commutativity

conditions, a QL does satisfy the distributive

law; among the most well known of these

relationships are the Foulis-Holland

theorems (FHTs ([7])):

Int'l Conf. Foundations of Computer Science | FCS'13 | 153

 % Foulis-Holland theorem FH1

 (C(x,y) & C(x,z)) -> ((x ^ (y v z)) = ((x ^ y) v (x ^ z)))

 % Foulis-Holland theorem FH2

 (C(x,y) & C(x,z)) -> ((y ^ (x v z)) = ((y ^ x) v (y ^ z)))

 % Foulis-Holland theorem FH3

 (C(x,y) & C(x,z)) -> ((x v (y ^ z)) = ((x v y) ^ (x v z)))

 % Foulis-Holland theorem FH4

 (C(x,y) & C(x,z)) -> ((y v (x ^ z)) = ((y v x) ^ (y v z)))

 where C(x,y), "x commutes with y" is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

Figure 2. The Foulis-Holland theorems.

2.0 Method

The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21]) were implemented in a prover9 ([2])

script ([3]) configured to derive FH3, then

executed in that framework on a Dell

Inspiron 545 with an Intel Core2 Quad CPU

Q8200 (clocked @ 2.33 GHz) and 8.00 GB

RAM, running under the Windows Vista

Home Premium /Cygwin operating

environment.

3.0 Results

Figure 3 shows the proof, generated by [3]

on the platform described in Section 2.0,

that FH3 is implied by an OML:

============================== PROOF =================================

% Proof 1 at 2.32 (+ 0.11) seconds: "Foulis-Holland Theorem 3".

% Length of proof is 54.

4 C(x,y) & C(x,z) -> x v (y ^ z) = (x v y) ^ (x v z) # label("Foulis-Holland Theorem 3")

label(non_clause) # label(goal). [goal].

13 x = c(c(x)) # label("AxL1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

15 x v y = y v x # label("AxL2"). [assumption].

16 (x v y) v z = x v (y v z) # label("AxL3"). [assumption].

18 x v (x ^ y) = x # label("AxL5"). [assumption].

19 x ^ (x v y) = x # label("AxL6"). [assumption].

20 c(x) ^ x = 0 # label("AxOL1"). [assumption].

21 c(x) v x = 1 # label("AxOL2"). [assumption].

22 x v c(x) = 1. [copy(21),rewrite([15(2)])].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

67 1_2 = x v ((y ^ c(x)) v (c(y) ^ c(x))) # label("Df. 2.20"). [assumption].

68 x v (c(y v x) v c(c(y) v x)) = 1_2.

[copy(67),rewrite([23(3),14(4),23(7),14(6),14(6),15(7)]),flip(a)].

75 x v (c(x) ^ (y v x)) = y v x # label("OMLaw"). [assumption].

154 Int'l Conf. Foundations of Computer Science | FCS'13 |

76 x v c(x v c(y v x)) = y v x. [copy(75),rewrite([23(3),14(2)])].

77 c1 v (c2 ^ c3) != (c1 v c2) ^ (c1 v c3) # label("Foulis-Holland Theorem 3") #

answer("Foulis-Holland Theorem 3"). [deny(4)].

78 c(c(c1 v c2) v c(c1 v c3)) != c1 v c(c(c2) v c(c3)) # answer("Foulis-Holland Theorem

3"). [copy(77),rewrite([23(4),23(15)]),flip(a)].

83 c(1) = 0. [back_rewrite(20),rewrite([23(2),14(2),22(2)])].

84 c(c(x) v c(x v y)) = x. [back_rewrite(19),rewrite([23(2)])].

85 x v c(c(x) v c(y)) = x. [back_rewrite(18),rewrite([23(1)])].

89 x v (y v z) = y v (x v z). [para(15(a,1),16(a,1,1)),rewrite([16(2)])].

98 x v (y v c(x v y)) = 1. [para(22(a,1),16(a,1)),flip(a)].

99 x v (c(x v y) v c(c(y) v x)) = 1_2. [para(15(a,1),68(a,1,2,1,1))].

108 x v c(x v c(x v y)) = y v x. [para(15(a,1),76(a,1,2,1,2,1))].

110 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).

[para(76(a,1),16(a,1)),rewrite([16(7)]),flip(a)].

113 1_2 = 1. [para(76(a,1),68(a,1,2,1,1)),rewrite([84(13),15(7),15(8),22(8)]),flip(a)].

124 x v (c(x v y) v c(c(y) v x)) = 1. [back_rewrite(99),rewrite([113(8)])].

133 c(x) v c(x v y) = c(x). [para(84(a,1),14(a,1,1)),flip(a)].

137 c(0 v c(x)) = x. [para(22(a,1),84(a,1,1,2,1)),rewrite([83(3),15(3)])].

141 1 v x = 1. [para(83(a,1),84(a,1,1,1)),rewrite([137(6)])].

146 x v c(c(x) v y) = x. [para(14(a,1),85(a,1,2,1,2))].

150 x v 0 = x. [para(22(a,1),85(a,1,2,1)),rewrite([83(2)])].

151 x v c(y v c(x)) = x. [para(76(a,1),85(a,1,2,1))].

165 x v (y v c(x v c(z v x))) = y v (z v x). [para(76(a,1),89(a,1,2)),flip(a)].

196 0 v x = x. [para(150(a,1),15(a,1)),flip(a)].

215 x v (c(c(x) v y) v z) = x v z. [para(146(a,1),16(a,1,1)),flip(a)].

220 c(x) v c(y v x) = c(x). [para(14(a,1),151(a,1,2,1,2))].

230 x v (y v c(y v x)) = 1. [para(15(a,1),98(a,1,2,2,1))].

234 c(x) v (c(x v y) v z) = c(x) v z. [para(133(a,1),16(a,1,1)),flip(a)].

236 c(x) v (y v c(x v z)) = y v c(x). [para(133(a,1),89(a,1,2)),flip(a)].

259 c(x v y) v c(y v c(x v y)) = c(y).

[para(220(a,1),76(a,1,2,1,2,1)),rewrite([14(6),15(5),220(11)])].

260 c(x) v (y v c(z v x)) = y v c(x). [para(220(a,1),89(a,1,2)),flip(a)].

262 x v (y v (c(y v x) v z)) = 1.

[para(230(a,1),16(a,1,1)),rewrite([141(2),16(5)]),flip(a)].

326 c(c(x) v y) v (z v x) = z v x.

[para(146(a,1),110(a,1,2,2,1,2,2,1,2)),rewrite([215(10),165(9),146(9)])].

741 x v c(x v c(y v c(x v y))) = 1.

[para(98(a,1),124(a,1,2,1,1)),rewrite([83(2),15(6),196(8)])].

855 c(x) v (y v (c(z v x) v u)) = c(x) v (y v u).

[para(326(a,1),215(a,1,2,1,1)),rewrite([16(6),16(9)])].

3700 x v c(y v c(x v y)) = x.

[para(741(a,1),108(a,1,2,1)),rewrite([83(2),150(2),15(5)]),flip(a)].

3710 x v c(y v c(y v x)) = x. [para(15(a,1),3700(a,1,2,1,2,1))].

3719 x v c(y v x) = x v c(y).

[para(3700(a,1),151(a,1,2,1)),rewrite([15(5),236(5)]),flip(a)].

3992 c(x v y) v c(y v c(x)) = c(y). [back_rewrite(259),rewrite([3719(5)])].

4092 x v c(x v y) = x v c(y).

[para(3710(a,1),151(a,1,2,1)),rewrite([15(5),260(5)]),flip(a)].

4098 x v (c(x v y) v z) = c(y) v (x v z).

[para(262(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),855(6)]),flip(a)].

4422 c(c(x v y) v z) = c(c(x) v z) v c(c(y) v (x v z)).

[para(234(a,1),3992(a,1,1,1)),rewrite([14(8),15(7),4098(7)]),flip(a)].

4544 $F # answer("Foulis-Holland Theorem 3").

[back_rewrite(78),rewrite([4422(10),133(7),14(3),4092(9),89(8),4092(10)]),xx(a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of FH3 from OML. The proofs assume the default

inference rules of prover9. The general form of a line in this proof is “line_number conclusion

[derivation]”, where line_number is a unique identifier of a line in the proof, and conclusion is the

result of applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted

in square brackets (denoting the derivation), to the lines cited in those brackets. Note that some of

“logical” proof lines in the above have been transformed to two text lines, with the derivation

appearing on a text line following a text line containing the first part of that logical line. The detailed

syntax and semantics of these notations can be found in [2]. All prover9 proofs are by default proofs

by contradiction.

Int'l Conf. Foundations of Computer Science | FCS'13 | 155

The total time to produce the proofs in

Figure 3 on the platform described in

Section 2.0 was approximately 2.4

seconds.

4.0 Discussion

The results of Section 3.0 motivate several

observations:

 1. FH3 is derivable from OML.

 2. The proof in Section 3.0 is, as far as I

know, novel.

 3. Companion papers provide derivations

of the remaining FHTs from OML, and a

derivation of the OMLaw from an OML

without the OMLaw, conjoined with the

FHTs. The union of these proofs constitutes

a proof of the equivalence of the OMLaw

and the FHTs within OML theory.

5.0 Acknowledgements

This work benefited from discussions with

Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Horner JK. prover9 scripts for FH3.

2011. Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

156 Int'l Conf. Foundations of Computer Science | FCS'13 |

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

Int'l Conf. Foundations of Computer Science | FCS'13 | 157

Equivalence of the Foulis-Holland Theorems and

the Orthomodular Law in Quantum Logic: Part 4

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

FCS 2013

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of

quantum-mechanical behaviors and operations. In much the same way that the structure of conventional

propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces

of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the

descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined. Now a QL can

be thought of as a BL in which the distributive law does not hold. Under certain commutativity conditions,

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs). Here I provide an automated deduction of one of the four FHTs from OML.

Keywords: automated deduction, quantum computing, orthomodular lattice, Foulis-Holland theorems,

Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”, i.e., can be measured in

either order, yielding the same results) and is

isomorphic to a Boolean lattice ([10], [11],

[19]), so also the algebra, C(H), of the

closed linear subspaces of (equivalently, the

system of linear operators on (observables

in)) a Hilbert space H ([1], [4], [6], [9],

[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems

(e.g., “the measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [4]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). Figure 1 shows a set of axioms

for an orthlolattice.

158 Int'l Conf. Foundations of Computer Science | FCS'13 |

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

A useful definition

 1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 <-> means if and only if

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, ortholattice axioms, and a useful definition.

C(H) is also a model of an orthomodular

lattice (OML; [4], [7]), which is an OL

conjoined with the orthomodularity axiom

(OMLaw):

 y v (c(y) ^ (x v y)) =

 x v y (OMLaw)

The rationalization of the OMA as a claim

proper to physics has proven problematic

([13], Section 5-6), motivating the question

of whether the OMA is required in an

adequate characterization of QL. Thus

formulated, the question suggests that the

OMA and its equivalents are specific to an

OML, and that as a consequence, banning

the OMA from QL yields a "truer" quantum

logic.

Now a QL can be thought of as a BL in

which the distributive law

 (D) (x v (y ^ z) =
 (x v y) ^ (x v z))

does not hold. Under certain commutativity

conditions, a QL does satisfy (D); among the

most well known of these relationships are

the Foulis-Holland theorems (FHTs ([7])):

Int'l Conf. Foundations of Computer Science | FCS'13 | 159

 % Foulis-Holland theorem FH1

 (C(x,y) & C(x,z)) -> ((x ^ (y v z)) = ((x ^ y) v (x ^ z)))

 % Foulis-Holland theorem FH2

 (C(x,y) & C(x,z)) -> ((y ^ (x v z)) = ((y ^ x) v (y ^ z)))

 % Foulis-Holland theorem FH3

 (C(x,y) & C(x,z)) -> ((x v (y ^ z)) = ((x v y) ^ (x v z)))

 % Foulis-Holland theorem FH4

 (C(x,y) & C(x,z)) -> ((y v (x ^ z)) = ((y v x) ^ (y v z)))

 where C(x,y), "x commutes with y" is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

Figure 2. The Foulis-Holland theorems.

2.0 Method

The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21]) were implemented in a prover9 ([2])

script ([3]) configured to derive FH4, then

executed in that framework on a Dell

Inspiron 545 with an Intel Core2 Quad CPU

Q8200 (clocked @ 2.33 GHz) and 8.00 GB

RAM, running under the Windows Vista

Home Premium /Cygwin operating

environment.

3.0 Results

Figure 3 shows the proof, generated by [3]

on the platform described in Section 2.0,

that FH4 is implied by an OML:

============================== PROOF =================================

% Proof 1 at 3.68 (+ 0.06) seconds: "Foulis-Holland Theorem 4".

% Length of proof is 96.

4 C(x,y) & C(x,z) -> y v (x ^ z) = (y v x) ^ (y v z) # label("Foulis-Holland Theorem 4")

label(non_clause) # label(goal). [goal].

13 x = c(c(x)) # label("AxL1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

15 x v y = y v x # label("AxL2"). [assumption].

16 (x v y) v z = x v (y v z) # label("AxL3"). [assumption].

18 x v (x ^ y) = x # label("AxL5"). [assumption].

19 x ^ (x v y) = x # label("AxL6"). [assumption].

20 c(x) ^ x = 0 # label("AxOL1"). [assumption].

21 c(x) v x = 1 # label("AxOL2"). [assumption].

22 x v c(x) = 1. [copy(21),rewrite([15(2)])].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

67 1_2 = x v ((y ^ c(x)) v (c(y) ^ c(x))) # label("Df. 2.20"). [assumption].

68 x v (c(y v x) v c(c(y) v x)) = 1_2.

[copy(67),rewrite([23(3),14(4),23(7),14(6),14(6),15(7)]),flip(a)].

75 x v (c(x) ^ (y v x)) = y v x # label("OMLaw"). [assumption].

76 x v c(x v c(y v x)) = y v x. [copy(75),rewrite([23(3),14(2)])].

160 Int'l Conf. Foundations of Computer Science | FCS'13 |

77 c2 v (c1 ^ c3) != (c2 v c1) ^ (c2 v c3) # label("Foulis-Holland Theorem 4") #

answer("Foulis-Holland Theorem 4"). [deny(4)].

78 c(c(c1 v c2) v c(c2 v c3)) != c2 v c(c(c1) v c(c3)) # answer("Foulis-Holland Theorem

4"). [copy(77),rewrite([23(4),15(11),23(15)]),flip(a)].

83 c(1) = 0. [back_rewrite(20),rewrite([23(2),14(2),22(2)])].

84 c(c(x) v c(x v y)) = x. [back_rewrite(19),rewrite([23(2)])].

85 x v c(c(x) v c(y)) = x. [back_rewrite(18),rewrite([23(1)])].

89 x v (y v z) = y v (x v z). [para(15(a,1),16(a,1,1)),rewrite([16(2)])].

97 x v (c(x) v y) = 1 v y. [para(22(a,1),16(a,1,1)),flip(a)].

98 x v (y v c(x v y)) = 1. [para(22(a,1),16(a,1)),flip(a)].

99 x v (c(x v y) v c(c(y) v x)) = 1_2. [para(15(a,1),68(a,1,2,1,1))].

101 x v (c(y v x) v (c(c(y) v x) v z)) = 1_2 v z.

[para(68(a,1),16(a,1,1)),rewrite([16(9)]),flip(a)].

108 x v c(x v c(x v y)) = y v x. [para(15(a,1),76(a,1,2,1,2,1))].

110 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).

[para(76(a,1),16(a,1)),rewrite([16(7)]),flip(a)].

113 1_2 = 1. [para(76(a,1),68(a,1,2,1,1)),rewrite([84(13),15(7),15(8),22(8)]),flip(a)].

122 x v (c(y v x) v (c(c(y) v x) v z)) = 1 v z. [back_rewrite(101),rewrite([113(9)])].

124 x v (c(x v y) v c(c(y) v x)) = 1. [back_rewrite(99),rewrite([113(8)])].

133 c(x) v c(x v y) = c(x). [para(84(a,1),14(a,1,1)),flip(a)].

137 c(0 v c(x)) = x. [para(22(a,1),84(a,1,1,2,1)),rewrite([83(3),15(3)])].

141 1 v x = 1. [para(83(a,1),84(a,1,1,1)),rewrite([137(6)])].

143 x v (c(y v x) v (c(c(y) v x) v z)) = 1. [back_rewrite(122),rewrite([141(10)])].

144 x v (c(x) v y) = 1. [back_rewrite(97),rewrite([141(5)])].

146 x v c(c(x) v y) = x. [para(14(a,1),85(a,1,2,1,2))].

150 x v 0 = x. [para(22(a,1),85(a,1,2,1)),rewrite([83(2)])].

151 x v c(y v c(x)) = x. [para(76(a,1),85(a,1,2,1))].

163 x v (y v c(x)) = y v 1. [para(22(a,1),89(a,1,2)),flip(a)].

165 x v (y v c(x v c(z v x))) = y v (z v x). [para(76(a,1),89(a,1,2)),flip(a)].

193 x v 1 = 1. [para(141(a,1),15(a,1)),flip(a)].

195 x v (y v c(x)) = 1. [back_rewrite(163),rewrite([193(5)])].

196 0 v x = x. [para(150(a,1),15(a,1)),flip(a)].

207 x v (y v (c(x v y) v z)) = 1. [para(144(a,1),16(a,1)),flip(a)].

210 x v (y v (z v c(x v y))) = 1. [para(195(a,1),16(a,1)),flip(a)].

215 x v (c(c(x) v y) v z) = x v z. [para(146(a,1),16(a,1,1)),flip(a)].

217 x v (y v c(c(x) v z)) = y v x. [para(146(a,1),89(a,1,2)),flip(a)].

220 c(x) v c(y v x) = c(x). [para(14(a,1),151(a,1,2,1,2))].

221 x v (c(y v c(x)) v z) = x v z. [para(151(a,1),16(a,1,1)),flip(a)].

225 x v (y v c(z v c(x))) = y v x. [para(151(a,1),89(a,1,2)),flip(a)].

230 x v (y v c(y v x)) = 1. [para(15(a,1),98(a,1,2,2,1))].

234 c(x) v (c(x v y) v z) = c(x) v z. [para(133(a,1),16(a,1,1)),flip(a)].

236 c(x) v (y v c(x v z)) = y v c(x). [para(133(a,1),89(a,1,2)),flip(a)].

257 c(x) v (c(y v x) v z) = c(x) v z. [para(220(a,1),16(a,1,1)),flip(a)].

259 c(x v y) v c(y v c(x v y)) = c(y).

[para(220(a,1),76(a,1,2,1,2,1)),rewrite([14(6),15(5),220(11)])].

260 c(x) v (y v c(z v x)) = y v c(x). [para(220(a,1),89(a,1,2)),flip(a)].

262 x v (y v (c(y v x) v z)) = 1.

[para(230(a,1),16(a,1,1)),rewrite([141(2),16(5)]),flip(a)].

313 x v (y v (z v c(y v x))) = 1. [para(15(a,1),210(a,1,2,2,2,1))].

326 c(c(x) v y) v (z v x) = z v x.

[para(146(a,1),110(a,1,2,2,1,2,2,1,2)),rewrite([215(10),165(9),146(9)])].

665 x v (y v (c(z v c(x)) v u)) = y v (x v u). [para(221(a,1),89(a,1,2)),flip(a)].

741 x v c(x v c(y v c(x v y))) = 1.

[para(98(a,1),124(a,1,2,1,1)),rewrite([83(2),15(6),196(8)])].

855 c(x) v (y v (c(z v x) v u)) = c(x) v (y v u).

[para(326(a,1),215(a,1,2,1,1)),rewrite([16(6),16(9)])].

935 c(x) v (y v (c(x v z) v u)) = y v (c(x) v u). [para(234(a,1),89(a,1,2)),flip(a)].

1166 c(x) v (y v (z v c(x v u))) = y v (z v c(x)).

[para(16(a,1),236(a,1,2)),rewrite([16(9)])].

1409 c(x) v (y v (z v c(u v x))) = y v (z v c(x)).

[para(16(a,1),260(a,1,2)),rewrite([16(9)])].

3700 x v c(y v c(x v y)) = x.

[para(741(a,1),108(a,1,2,1)),rewrite([83(2),150(2),15(5)]),flip(a)].

3710 x v c(y v c(y v x)) = x. [para(15(a,1),3700(a,1,2,1,2,1))].

3719 x v c(y v x) = x v c(y).

[para(3700(a,1),151(a,1,2,1)),rewrite([15(5),236(5)]),flip(a)].

3992 c(x v y) v c(y v c(x)) = c(y). [back_rewrite(259),rewrite([3719(5)])].

4092 x v c(x v y) = x v c(y).

[para(3710(a,1),151(a,1,2,1)),rewrite([15(5),260(5)]),flip(a)].

4093 x v (c(y v x) v z) = x v (c(y) v z).

[para(207(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),935(6)]),flip(a)].

Int'l Conf. Foundations of Computer Science | FCS'13 | 161

4094 x v (y v c(z v x)) = x v (y v c(z)).

[para(210(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),1166(6)]),flip(a)].

4098 x v (c(x v y) v z) = c(y) v (x v z).

[para(262(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),855(6)]),flip(a)].

4099 x v (y v c(x v z)) = x v (y v c(z)).

[para(313(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),1409(6)]),flip(a)].

4102 c(x v y) v c(c(y) v x) = c(x).

[para(124(a,1),3710(a,1,2,1,2,1)),rewrite([83(8),150(8),15(8),260(8),15(4),133(4)]),flip(

a)].

4105 c(x v y) v (c(c(x) v y) v z) = c(y) v z.

[para(143(a,1),3710(a,1,2,1,2,1)),rewrite([83(9),150(9),15(9),855(9),257(5)]),flip(a)].

4338 x v c(y v (z v x)) = x v c(y v z). [para(16(a,1),3719(a,1,2,1))].

4342 c(x) v c(y v c(z v x)) = c(x) v c(y).

[para(3719(a,1),257(a,1,2)),rewrite([257(6)]),flip(a)].

4374 x v c(y v (x v z)) = x v c(y v z). [para(89(a,1),4092(a,1,2,1))].

4419 c(x v c(c(y) v z)) = c(x v y) v c(c(y) v (x v c(z))).

[para(217(a,1),3992(a,1,1,1)),rewrite([15(8),4099(8)]),flip(a)].

4422 c(c(x v y) v z) = c(c(x) v z) v c(c(y) v (x v z)).

[para(234(a,1),3992(a,1,1,1)),rewrite([14(8),15(7),4098(7)]),flip(a)].

4544 c(c1 v c(c2)) v c(c(c1) v c(c2 v c3)) != c2 v c(c(c1) v c(c3)) # answer("Foulis-

Holland Theorem 4"). [back_rewrite(78),rewrite([4422(10),89(17),133(16),15(14)])].

4566 c(x v c(y v z)) = c(z v (x v c(y))) v c(x v c(z)).

[para(225(a,1),4102(a,1,2,1)),rewrite([14(2),15(4),4094(4),14(10)]),flip(a)].

4869 x v (y v (c(z v x) v u)) = y v (x v (c(z) v u)).

[para(4093(a,1),89(a,1,2)),flip(a)].

5176 c(x v y) v c(c(y) v (x v z)) = c(x v y) v c(x v z).

[para(4098(a,1),4374(a,1,2,1))].

5189 c(x v c(c(y) v z)) = c(x v y) v c(x v c(z)).

[back_rewrite(4419),rewrite([5176(13)])].

5752 c(x v y) v c(y v c(z v x)) = c(y).

[para(4338(a,1),4342(a,1,2,1)),rewrite([15(11),220(11)])].

5777 c(x v c(y v z)) v c(z v x) = c(x). [para(5752(a,1),15(a,1)),flip(a)].

5897 c(x v c(y v z)) v c(y v x) = c(x). [para(15(a,1),5777(a,1,1,1,2,1))].

6090 c(x v (y v c(z v u))) v c(z v (x v y)) = c(x v y). [para(16(a,1),5897(a,1,1,1))].

6100 c(x v (c(y v z) v c(y v u))) v c(y v (x v c(z))) = c(x v c(y v z)).

[para(4099(a,1),5897(a,1,2,1)),rewrite([16(6)])].

6194 c(x v (c(y v z) v u)) = c(x v (z v (c(y) v u))) v c(x v (c(z) v u)).

[para(665(a,1),4102(a,1,2,1)),rewrite([14(2),15(5),4869(5),14(12)]),flip(a)].

6228 c(x v c(y v z)) = c(x v (z v c(y))) v c(x v c(z)).

[back_rewrite(6100),rewrite([6194(7),133(4),16(16),6090(15)]),flip(a)].

6530 c(x v (y v z)) v c(x v c(y)) = c(x v z) v c(x v c(y)).

[back_rewrite(5189),rewrite([6228(5),14(2)])].

6558 c(x v (y v c(z))) v c(y v c(x)) = c(y v c(z)) v c(y v c(x)).

[back_rewrite(4566),rewrite([6228(4),6530(8)]),flip(a)].

6559 $F # answer("Foulis-Holland Theorem 4").

[back_rewrite(4544),rewrite([6228(13),89(12),6558(20),4105(19),14(3)]),xx(a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of FH4 from OML. The proofs assume the default

inference rules of prover9. The general form of a line in this proof is “line_number conclusion

[derivation]”, where line_number is a unique identifier of a line in the proof, and conclusion is the

result of applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted

in square brackets (denoting the derivation), to the lines cited in those brackets. Note that some of

“logical” proof lines in the above have been transformed to two text lines, with the derivation

appearing on a text line following a text line containing the first part of that logical line. The detailed

syntax and semantics of these notations can be found in [2]. All prover9 proofs are by default proofs

by contradiction.

The total time to produce the proofs in Figure 3 on the platform described in Section 2.0

was approximately 4 seconds.

162 Int'l Conf. Foundations of Computer Science | FCS'13 |

4.0 Discussion

The results of Section 3.0 motivate several

observations:

 1. FH4 is derivable from OML.

 2. The proof in Section 3.0 is, as far as I

know, novel.

 3. Companion papers provide derivations

of the remaining FHTs from OML, and a

derivation of the OMLaw from an OML

without the OMLaw, conjoined with the

FHTs. The union of these proofs constitutes

a proof of the equivalence of the OMLaw

and the FHTs within OML theory.

5.0 Acknowledgements

This work benefited from discussions with

Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Horner JK. prover9 scripts for FH4.

2011. Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Int'l Conf. Foundations of Computer Science | FCS'13 | 163

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

164 Int'l Conf. Foundations of Computer Science | FCS'13 |

Equivalence of the Foulis-Holland Theorems and

the Orthomodular Law in Quantum Logic: Part 5

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

FCS 2013

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of

quantum-mechanical behaviors and operations. In much the same way that the structure of conventional

propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces

of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the

descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined. Now a QL can

be thought of as a BL in which the distributive law does not hold. Under certain commutativity conditions,

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs). Here I provide an automated deduction of the OMLaw, from OML without

the OMLaw, conjoined with one of the FHTs.

Keywords: automated deduction, quantum computing, orthomodular lattice, Foulis-Holland theorems,

Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”, i.e., can be measured in

either order, yielding the same results) and is

isomorphic to a Boolean lattice ([10], [11],

[19]), so also the algebra, C(H), of the

closed linear subspaces of (equivalently, the

system of linear operators on (observables

in)) a Hilbert space H ([1], [4], [6], [9],

[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems

(e.g., “the measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [4]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]).

Int'l Conf. Foundations of Computer Science | FCS'13 | 165

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

A useful definition

 1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 <-> means if and only if

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, ortholattice axioms, and a useful definition.

C(H) is also a model of an orthomodular

lattice (OML; [4], [7]), which is an OL

conjoined with the orthomodularity axiom

(OMLaw):

 y v (c(y) ^ (x v y)) =

 x v y (OMLaw)

The rationalization of the OMA as a claim

proper to physics has proven problematic

([13], Section 5-6), motivating the question

of whether the OMA is required in an

adequate characterization of QL. Thus

formulated, the question suggests that the

OMA and its equivalents are specific to an

OML, and that as a consequence, banning

the OMA from QL yields a "truer" quantum

logic.

Now a QL can be thought of as a BL in

which the distributive law

 (D) (x v (y ^ z) =
 (x v y) ^ (x v z))

does not hold. Under certain commutativity

conditions, a QL does satisfy (D); among the

most well known of these relationships are

the Foulis-Holland theorems (FHTs ([7])):

166 Int'l Conf. Foundations of Computer Science | FCS'13 |

 % Foulis-Holland theorem FH1

 (C(x,y) & C(x,z)) -> ((x ^ (y v z)) = ((x ^ y) v (x ^ z)))

 % Foulis-Holland theorem FH2

 (C(x,y) & C(x,z)) -> ((y ^ (x v z)) = ((y ^ x) v (y ^ z)))

 % Foulis-Holland theorem FH3

 (C(x,y) & C(x,z)) -> ((x v (y ^ z)) = ((x v y) ^ (x v z)))

 % Foulis-Holland theorem FH4

 (C(x,y) & C(x,z)) -> ((y v (x ^ z)) = ((y v x) ^ (y v z)))

 where C(x,y), "x commutes with y" is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

Figure 2. The Foulis-Holland theorems.

2.0 Method

The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21]), without the OMLaw, but conjoined

with the FH2, were implemented in a

prover9 ([2]) script ([3]) configured to

derive the OMLaw, then executed in that

framework on a Dell Inspiron 545 with an

Intel Core2 Quad CPU Q8200 (clocked @

2.33 GHz) and 8.00 GB RAM, running

under the Windows Vista Home Premium

/Cygwin operating environment.

3.0 Results

Figure 3 shows the proof, generated by [3]

on the platform described in Section 2.0,

that the OMLaw is implied by an OML

with the OMLaw, conjoined with the FH2:

============================== PROOF =================================

% Proof 1 at 0.09 (+ 0.01) seconds: "OMLaw".

% Length of proof is 43.

3 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df: commutes") #

label(non_clause). [assumption].

5 C(x,y) & C(x,z) -> y ^ (x v z) = (y ^ x) v (y ^ z) #

label("Foulis-Holland Theorem 2") # label(non_clause).

[assumption].

8 y v (c(y) ^ (x v y)) = x v y # label("OMLaw") #

label(non_clause) # label(goal). [goal].

13 x = c(c(x)) # label("AxL1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

15 x v y = y v x # label("AxL2"). [assumption].

16 (x v y) v z = x v (y v z) # label("AxL3"). [assumption].

Int'l Conf. Foundations of Computer Science | FCS'13 | 167

18 x v (x ^ y) = x # label("AxL5"). [assumption].

19 x ^ (x v y) = x # label("AxL6"). [assumption].

20 c(x) ^ x = 0 # label("AxOL1"). [assumption].

21 c(x) v x = 1 # label("AxOL2"). [assumption].

22 x v c(x) = 1. [copy(21),rewrite([15(2)])].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

65 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df: commutes").

[clausify(3)].

66 -C(x,y) | c(c(x) v y) v c(c(x) v c(y)) = x.

[copy(65),rewrite([23(2),23(7),14(8),15(9)])].

67 C(x,y) | (x ^ y) v (x ^ c(y)) != x # label("Df: commutes").

[clausify(3)].

68 C(x,y) | c(c(x) v y) v c(c(x) v c(y)) != x.

[copy(67),rewrite([23(2),23(7),14(8),15(9)])].

81 -C(x,y) | -C(x,z) | (y ^ x) v (y ^ z) = y ^ (x v z) #

label("Foulis-Holland Theorem 2"). [clausify(5)].

82 -C(x,y) | -C(x,z) | c(c(y) v c(x v z)) = c(c(y) v c(x)) v

c(c(y) v c(z)).

[copy(81),rewrite([23(3),23(7),23(13)]),flip(c)].

86 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMLaw") #

answer("OMLaw"). [deny(8)].

87 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMLaw").

[copy(86),rewrite([15(6),23(7),14(4),15(12)])].

88 c(1) = 0. [back_rewrite(20),rewrite([23(2),14(2),22(2)])].

89 c(c(x) v c(x v y)) = x. [back_rewrite(19),rewrite([23(2)])].

90 x v c(c(x) v c(y)) = x. [back_rewrite(18),rewrite([23(1)])].

94 x v (y v z) = y v (x v z).

[para(15(a,1),16(a,1,1)),rewrite([16(2)])].

102 x v (c(x) v y) = 1 v y. [para(22(a,1),16(a,1,1)),flip(a)].

109 C(x,c(x)) | 0 v c(c(x) v c(x)) != x.

[para(22(a,1),68(b,1,2,1)),rewrite([88(8),15(8)])].

123 C(x,1) | c(0 v c(x)) v c(1 v c(x)) != x.

[para(88(a,1),68(b,1,2,1,2)),rewrite([15(5),15(9),15(11)])].

125 c(x) v c(x v y) = c(x). [para(89(a,1),14(a,1,1)),flip(a)].

129 c(0 v c(x)) = x.

[para(22(a,1),89(a,1,1,2,1)),rewrite([88(3),15(3)])].

131 C(x,x v y) | c(1 v y) v x != x.

[para(89(a,1),68(b,1,2)),rewrite([94(5),102(5)])].

133 1 v x = 1. [para(88(a,1),89(a,1,1,1)),rewrite([129(6)])].

134 c(x v x) = c(x).

[para(89(a,1),89(a,1,1,2)),rewrite([14(2)])].

135 C(x,1) | x v 0 != x.

[back_rewrite(123),rewrite([129(6),133(5),88(4)])].

149 C(x,x v y) | 0 v x != x.

[back_rewrite(131),rewrite([133(4),88(4)])].

152 C(x,c(x)) | 0 v x != x.

[back_rewrite(109),rewrite([134(7),14(5)])].

158 x v 0 = x. [para(22(a,1),90(a,1,2,1)),rewrite([88(2)])].

162 C(x,1). [back_rewrite(135),rewrite([158(4)]),xx(b)].

172 0 v x = x.

[hyper(66,a,162,a),rewrite([15(3),133(3),88(2),88(4),15(4),129(5)

])].

168 Int'l Conf. Foundations of Computer Science | FCS'13 |

176 C(x,c(x)). [back_rewrite(152),rewrite([172(4)]),xx(b)].

177 C(x,x v y). [back_rewrite(149),rewrite([172(4)]),xx(b)].

216 x v c(x v c(x v y)) = x v y.

[hyper(82,a,177,a,b,176,a),rewrite([22(4),88(4),15(4),172(4),14(3

),15(5),125(5),14(3),14(5),15(4)]),flip(a)].

217 $F # answer("OMLaw"). [resolve(216,a,87,a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of the OMLaw from OML without the OMLaw,

conjoined with the FH2. The proofs assume the default inference rules of prover9. The

general form of a line in this proof is “line_number conclusion [derivation]”, where

line_number is a unique identifier of a line in the proof, and conclusion is the result of

applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted

in square brackets (denoting the derivation), to the lines cited in those brackets. Note that

some of “logical” proof lines in the above have been transformed to two text lines, with the

derivation appearing on a text line following a text line containing the first part of that

logical line. The detailed syntax and semantics of these notations can be found in [2]. All

prover9 proofs are by default proofs by contradiction.

The total time to produce the proofs in

Figure 3 on the platform described in

Section 2.0 was approximately 0.1

seconds.

4.0 Discussion

The results of Section 3.0 motivate several

observations:

 1. The OMLaw is derivable from the

OML without the OMLaw, conjoined with

the FHTs.

 2. The proof in Section 3.0 uses only

FH2, not FH1, FH3, or FH4.

 4. The proof in Section 3.0 is, as far as I

know, novel.

 5. The right-hand side (RHS) of FH1,

together with AxOL3, implies, via modus

tollens, the RHS of FH2, so FH1 -> FH2.

(The full proof is at most six steps long.)

 6. Companion papers provide derivations

of the FHTs from OML. The union of these

proofs (and observation (5) in this section)

constitutes a proof of the equivalence of the

OMLaw and the FHTs within OML theory.

5.0 Acknowledgements

This work benefited from discussions with

Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Horner JK. prover9 scripts for OMLaw

from FH2. 2011. Available from the

author on request.

Int'l Conf. Foundations of Computer Science | FCS'13 | 169

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

170 Int'l Conf. Foundations of Computer Science | FCS'13 |

Equivalence of the Foulis-Holland Theorems and

the Orthomodular Law in Quantum Logic: Part 6

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

FCS 2013

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of

quantum-mechanical behaviors and operations. In much the same way that the structure of conventional

propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces

of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the

descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined. Now a QL can

be thought of as a BL in which the distributive law does not hold. Under certain commutativity conditions,

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs). Here I provide an automated deduction of the OMLaw, from OML without

the OMLaw, conjoined with one of the FHTs.

Keywords: automated deduction, quantum computing, orthomodular lattice, Foulis-Holland theorems,

Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”, i.e., can be measured in

either order, yielding the same results) and is

isomorphic to a Boolean lattice ([10], [11],

[19]), so also the algebra, C(H), of the

closed linear subspaces of (equivalently, the

system of linear operators on (observables

in)) a Hilbert space H ([1], [4], [6], [9],

[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems

(e.g., “the measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [4]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). Figure 1 shows a set of axioms

for an orthlolattice.

Int'l Conf. Foundations of Computer Science | FCS'13 | 171

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

A useful definition

 1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 <-> means if and only if

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, ortholattice axioms, and a useful definition.

C(H) is also a model of an orthomodular

lattice (OML; [4], [7]), which is an OL

conjoined with the orthomodularity axiom

(OMLaw):

 y v (c(y) ^ (x v y)) =

 x v y (OMLaw)

The rationalization of the OMA as a claim

proper to physics has proven problematic

([13], Section 5-6), motivating the question

of whether the OMA is required in an

adequate characterization of QL. Thus

formulated, the question suggests that the

OMA and its equivalents are specific to an

OML, and that as a consequence, banning

the OMA from QL yields a "truer" quantum

logic.

Now a QL can be thought of as a BL in

which the distributive law

 (D) (x v (y ^ z) =
 (x v y) ^ (x v z))

does not hold. Under certain commutativity

conditions, a QL does satisfy (D); among the

most well known of these relationships are

the Foulis-Holland theorems (FHTs ([7])):

172 Int'l Conf. Foundations of Computer Science | FCS'13 |

 % Foulis-Holland theorem FH1

 (C(x,y) & C(x,z)) -> ((x ^ (y v z)) = ((x ^ y) v (x ^ z)))

 % Foulis-Holland theorem FH2

 (C(x,y) & C(x,z)) -> ((y ^ (x v z)) = ((y ^ x) v (y ^ z)))

 % Foulis-Holland theorem FH3

 (C(x,y) & C(x,z)) -> ((x v (y ^ z)) = ((x v y) ^ (x v z)))

 % Foulis-Holland theorem FH4

 (C(x,y) & C(x,z)) -> ((y v (x ^ z)) = ((y v x) ^ (y v z)))

 where C(x,y), "x commutes with y" is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

Figure 2. The Foulis-Holland theorems.

2.0 Method

The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21]), without the OMLaw, but conjoined

with the FH4, were implemented in a

prover9 ([2]) script ([3]) configured to

derive the OMLaw, then executed in that

framework on a Dell Inspiron 545 with an

Intel Core2 Quad CPU Q8200 (clocked @

2.33 GHz) and 8.00 GB RAM, running

under the Windows Vista Home Premium

/Cygwin operating environment.

3.0 Results

Figure 3 shows the proof, generated by [3]

on the platform described in Section 2.0,

that the OMLaw is implied by an OML

with the OMLaw, conjoined with FH4:

============================== PROOF =================================

% Proof 1 at 2.29 (+ 0.08) seconds: "OMLaw".

% Length of proof is 44.

3 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df: commutes") #

label(non_clause). [assumption].

4 C(x,y) & C(x,z) -> y v (x ^ z) = (y v x) ^ (y v z) #

label("Foulis-Holland Theorem 4") # label(non_clause).

[assumption].

5 y v (c(y) ^ (x v y)) = x v y # label("OMLaw") #

label(non_clause) # label(goal). [goal].

10 x = c(c(x)) # label("AxL1"). [assumption].

11 c(c(x)) = x. [copy(10),flip(a)].

12 x v y = y v x # label("AxL2"). [assumption].

13 (x v y) v z = x v (y v z) # label("AxL3"). [assumption].

Int'l Conf. Foundations of Computer Science | FCS'13 | 173

15 x v (x ^ y) = x # label("AxL5"). [assumption].

16 x ^ (x v y) = x # label("AxL6"). [assumption].

17 c(x) ^ x = 0 # label("AxOL1"). [assumption].

18 c(x) v x = 1 # label("AxOL2"). [assumption].

19 x v c(x) = 1. [copy(18),rewrite([12(2)])].

20 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

62 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df: commutes").

[clausify(3)].

63 -C(x,y) | c(c(x) v y) v c(c(x) v c(y)) = x.

[copy(62),rewrite([20(2),20(7),11(8),12(9)])].

64 C(x,y) | (x ^ y) v (x ^ c(y)) != x # label("Df: commutes").

[clausify(3)].

65 C(x,y) | c(c(x) v y) v c(c(x) v c(y)) != x.

[copy(64),rewrite([20(2),20(7),11(8),12(9)])].

76 -C(x,y) | -C(x,z) | y v (x ^ z) = (y v x) ^ (y v z) #

label("Foulis-Holland Theorem 4"). [clausify(4)].

77 -C(x,y) | -C(x,z) | c(c(y v x) v c(y v z)) = y v c(c(x) v

c(z)). [copy(76),rewrite([20(3),20(10)]),flip(c)].

78 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMLaw") #

answer("OMLaw"). [deny(5)].

79 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMLaw").

[copy(78),rewrite([12(6),20(7),11(4),12(12)])].

80 c(1) = 0. [back_rewrite(17),rewrite([20(2),11(2),19(2)])].

81 c(c(x) v c(x v y)) = x. [back_rewrite(16),rewrite([20(2)])].

82 x v c(c(x) v c(y)) = x. [back_rewrite(15),rewrite([20(1)])].

86 x v (y v z) = y v (x v z).

[para(12(a,1),13(a,1,1)),rewrite([13(2)])].

94 x v (c(x) v y) = 1 v y. [para(19(a,1),13(a,1,1)),flip(a)].

101 C(x,c(x)) | 0 v c(c(x) v c(x)) != x.

[para(19(a,1),65(b,1,2,1)),rewrite([80(8),12(8)])].

115 C(x,1) | c(0 v c(x)) v c(1 v c(x)) != x.

[para(80(a,1),65(b,1,2,1,2)),rewrite([12(5),12(9),12(11)])].

117 c(x) v c(x v y) = c(x). [para(81(a,1),11(a,1,1)),flip(a)].

121 c(0 v c(x)) = x.

[para(19(a,1),81(a,1,1,2,1)),rewrite([80(3),12(3)])].

122 C(x,c(x v y)) | x v c(1 v y) != x.

[para(81(a,1),65(b,1,1)),rewrite([11(7),86(6),94(6)])].

125 1 v x = 1. [para(80(a,1),81(a,1,1,1)),rewrite([121(6)])].

126 c(x v x) = c(x).

[para(81(a,1),81(a,1,1,2)),rewrite([11(2)])].

127 C(x,1) | x v 0 != x.

[back_rewrite(115),rewrite([121(6),125(5),80(4)])].

142 C(x,c(x v y)) | x v 0 != x.

[back_rewrite(122),rewrite([125(5),80(5)])].

144 C(x,c(x)) | 0 v x != x.

[back_rewrite(101),rewrite([126(7),11(5)])].

150 x v 0 = x. [para(19(a,1),82(a,1,2,1)),rewrite([80(2)])].

153 C(x,c(x v y)). [back_rewrite(142),rewrite([150(5)]),xx(b)].

154 C(x,1). [back_rewrite(127),rewrite([150(4)]),xx(b)].

164 0 v x = x.

[hyper(63,a,154,a),rewrite([12(3),125(3),80(2),80(4),12(4),121(5)

])].

174 Int'l Conf. Foundations of Computer Science | FCS'13 |

168 C(x,c(x)). [back_rewrite(144),rewrite([164(4)]),xx(b)].

219 c(x v c(x v c(x v y))) = c(x v y).

[hyper(77,a,153,a,b,168,a),rewrite([12(3),12(8),117(8),11(6),12(5

),11(11),12(10),19(10),80(10),12(10),164(10)])].

5239 x v c(x v c(x v y)) = x v y.

[para(219(a,1),11(a,1,1)),rewrite([11(3)]),flip(a)].

5240 $F # answer("OMLaw"). [resolve(5239,a,79,a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of the OMLaw from OML without the OMLaw,

conjoined with the FH4. The proofs assume the default inference rules of prover9. The

general form of a line in this proof is “line_number conclusion [derivation]”, where

line_number is a unique identifier of a line in the proof, and conclusion is the result of

applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted

in square brackets (denoting the derivation), to the lines cited in those brackets. Note that

some of “logical” proof lines in the above have been transformed to two text lines, with the

derivation appearing on a text line following a text line containing the first part of that

logical line. The detailed syntax and semantics of these notations can be found in [2]. All

prover9 proofs are by default proofs by contradiction.

The total time to produce the proofs in

Figure 3 on the platform described in

Section 2.0 was approximately 2.4

seconds.

4.0 Discussion

The results of Section 3.0 motivate several

observations:

 1. The OMLaw is derivable from the

OML without the OMLaw, conjoined with

the FHTs.

 2. The proof in Section 3.0 uses only

FH4, not FH1, FH2, or FH3.

 4. The proof in Section 3.0 is, as far as I

know, novel.

 5. Companion papers provide derivations

of the FHTs from OML. The union of these

proofs constitutes a proof of the equivalence

of the OMLaw and the FHTs within OML

theory.

5.0 Acknowledgements

This work benefited from discussions with

Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Horner JK. prover9 scripts for OMLaw

from FH2. 2011. Available from the

author on request.

Int'l Conf. Foundations of Computer Science | FCS'13 | 175

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

176 Int'l Conf. Foundations of Computer Science | FCS'13 |

Equivalence of the Foulis-Holland Theorems and

the Orthomodular Law in Quantum Logic: Part 7

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

FCS 2013

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of

quantum-mechanical behaviors and operations. In much the same way that the structure of conventional

propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces

of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the

descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined. Now a QL can

be thought of as a BL in which the distributive law does not hold. Under certain commutativity conditions,

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs). Here I provide an automated deduction of the OMLaw, from OML without

the OMLaw, conjoined with one of the FHTs.

Keywords: automated deduction, quantum computing, orthomodular lattice, Foulis-Holland theorems,

Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”, i.e., can be measured in

either order, yielding the same results) and is

isomorphic to a Boolean lattice ([10], [11],

[19]), so also the algebra, C(H), of the

closed linear subspaces of (equivalently, the

system of linear operators on (observables

in)) a Hilbert space H ([1], [4], [6], [9],

[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems

(e.g., “the measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [4]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). Figure 1 shows a set of axioms

for an orthlolattice.

Int'l Conf. Foundations of Computer Science | FCS'13 | 177

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

A useful definition

 1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 <-> means if and only if

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, ortholattice axioms, and a useful definition.

C(H) is also a model of an orthomodular

lattice (OML; [4], [7]), which is an OL

conjoined with the orthomodularity axiom

(OMLaw):

 y v (c(y) ^ (x v y)) =

 x v y (OMLaw)

The rationalization of the OMA as a claim

proper to physics has proven problematic

([13], Section 5-6), motivating the question

of whether the OMA is required in an

adequate characterization of QL. Thus

formulated, the question suggests that the

OMA and its equivalents are specific to an

OML, and that as a consequence, banning

the OMA from QL yields a "truer" quantum

logic.

Now a QL can be thought of as a BL in

which the distributive law

 (D) (x v (y ^ z) =
 (x v y) ^ (x v z))

does not hold. Under certain commutativity

conditions, a QL does satisfy (D); among the

most well known of these relationships are

the Foulis-Holland theorems (FHTs ([7])):

178 Int'l Conf. Foundations of Computer Science | FCS'13 |

 % Foulis-Holland theorem FH1

 (C(x,y) & C(x,z)) -> ((x ^ (y v z)) = ((x ^ y) v (x ^ z)))

 % Foulis-Holland theorem FH2

 (C(x,y) & C(x,z)) -> ((y ^ (x v z)) = ((y ^ x) v (y ^ z)))

 % Foulis-Holland theorem FH3

 (C(x,y) & C(x,z)) -> ((x v (y ^ z)) = ((x v y) ^ (x v z)))

 % Foulis-Holland theorem FH4

 (C(x,y) & C(x,z)) -> ((y v (x ^ z)) = ((y v x) ^ (y v z)))

 where C(x,y), "x commutes with y" is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

Figure 2. The Foulis-Holland theorems.

2.0 Method

The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21]), without the OMLaw, but conjoined

with the FH3, were implemented in a

prover9 ([2]) script ([3]) configured to

derive the OMLaw, then executed in that

framework on a Dell Inspiron 545 with an

Intel Core2 Quad CPU Q8200 (clocked @

2.33 GHz) and 8.00 GB RAM, running

under the Windows Vista Home Premium

/Cygwin operating environment.

3.0 Results

Figure 3 shows the proof, generated by [3]

on the platform described in Section 2.0,

that the OMLaw is implied by an OML

with the OMLaw, conjoined with FH3:

============================== PROOF =================================

% Proof 1 at 0.06 (+ 0.05) seconds: "OMLaw".

% Length of proof is 44.

3 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df: commutes") #

label(non_clause). [assumption].

4 C(x,y) & C(x,z) -> x v (y ^ z) = (x v y) ^ (x v z) #

label("Foulis-Holland Theorem 3") # label(non_clause).

[assumption].

5 y v (c(y) ^ (x v y)) = x v y # label("OMLaw") #

label(non_clause) # label(goal). [goal].

10 x = c(c(x)) # label("AxL1"). [assumption].

11 c(c(x)) = x. [copy(10),flip(a)].

12 x v y = y v x # label("AxL2"). [assumption].

Int'l Conf. Foundations of Computer Science | FCS'13 | 179

13 (x v y) v z = x v (y v z) # label("AxL3"). [assumption].

15 x v (x ^ y) = x # label("AxL5"). [assumption].

16 x ^ (x v y) = x # label("AxL6"). [assumption].

17 c(x) ^ x = 0 # label("AxOL1"). [assumption].

18 c(x) v x = 1 # label("AxOL2"). [assumption].

19 x v c(x) = 1. [copy(18),rewrite([12(2)])].

20 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

62 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df: commutes").

[clausify(3)].

63 -C(x,y) | c(c(x) v y) v c(c(x) v c(y)) = x.

[copy(62),rewrite([20(2),20(7),11(8),12(9)])].

64 C(x,y) | (x ^ y) v (x ^ c(y)) != x # label("Df: commutes").

[clausify(3)].

65 C(x,y) | c(c(x) v y) v c(c(x) v c(y)) != x.

[copy(64),rewrite([20(2),20(7),11(8),12(9)])].

76 -C(x,y) | -C(x,z) | x v (y ^ z) = (x v y) ^ (x v z) #

label("Foulis-Holland Theorem 3"). [clausify(4)].

77 -C(x,y) | -C(x,z) | c(c(x v y) v c(x v z)) = x v c(c(y) v

c(z)). [copy(76),rewrite([20(3),20(10)]),flip(c)].

78 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMLaw") #

answer("OMLaw"). [deny(5)].

79 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMLaw").

[copy(78),rewrite([12(6),20(7),11(4),12(12)])].

80 c(1) = 0. [back_rewrite(17),rewrite([20(2),11(2),19(2)])].

81 c(c(x) v c(x v y)) = x. [back_rewrite(16),rewrite([20(2)])].

82 x v c(c(x) v c(y)) = x. [back_rewrite(15),rewrite([20(1)])].

86 x v (y v z) = y v (x v z).

[para(12(a,1),13(a,1,1)),rewrite([13(2)])].

94 x v (c(x) v y) = 1 v y. [para(19(a,1),13(a,1,1)),flip(a)].

101 C(x,c(x)) | 0 v c(c(x) v c(x)) != x.

[para(19(a,1),65(b,1,2,1)),rewrite([80(8),12(8)])].

115 C(x,1) | c(0 v c(x)) v c(1 v c(x)) != x.

[para(80(a,1),65(b,1,2,1,2)),rewrite([12(5),12(9),12(11)])].

121 c(0 v c(x)) = x.

[para(19(a,1),81(a,1,1,2,1)),rewrite([80(3),12(3)])].

123 C(x,x v y) | c(1 v y) v x != x.

[para(81(a,1),65(b,1,2)),rewrite([86(5),94(5)])].

125 1 v x = 1. [para(80(a,1),81(a,1,1,1)),rewrite([121(6)])].

126 c(x v x) = c(x).

[para(81(a,1),81(a,1,1,2)),rewrite([11(2)])].

127 C(x,1) | x v 0 != x.

[back_rewrite(115),rewrite([121(6),125(5),80(4)])].

141 C(x,x v y) | 0 v x != x.

[back_rewrite(123),rewrite([125(4),80(4)])].

144 C(x,c(x)) | 0 v x != x.

[back_rewrite(101),rewrite([126(7),11(5)])].

150 x v 0 = x. [para(19(a,1),82(a,1,2,1)),rewrite([80(2)])].

152 x v x = x.

[para(80(a,1),82(a,1,2,1,2)),rewrite([12(3),121(4)])].

154 C(x,1). [back_rewrite(127),rewrite([150(4)]),xx(b)].

180 Int'l Conf. Foundations of Computer Science | FCS'13 |

164 0 v x = x.

[hyper(63,a,154,a),rewrite([12(3),125(3),80(2),80(4),12(4),121(5)

])].

168 C(x,c(x)). [back_rewrite(144),rewrite([164(4)]),xx(b)].

169 C(x,x v y). [back_rewrite(141),rewrite([164(4)]),xx(b)].

201 x v (x v y) = x v y. [para(152(a,1),13(a,1,1)),flip(a)].

206 x v c(x v c(x v y)) = x v y.

[hyper(77,a,168,a,b,169,a),rewrite([19(2),80(2),201(3),164(4),11(

3),11(3)]),flip(a)].

207 $F # answer("OMLaw"). [resolve(206,a,79,a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of the OMLaw from OML without the OMLaw,

conjoined with the FH3. The proofs assume the default inference rules of prover9. The

general form of a line in this proof is “line_number conclusion [derivation]”, where

line_number is a unique identifier of a line in the proof, and conclusion is the result of

applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted

in square brackets (denoting the derivation), to the lines cited in those brackets. Note that

some of “logical” proof lines in the above have been transformed to two text lines, with the

derivation appearing on a text line following a text line containing the first part of that

logical line. The detailed syntax and semantics of these notations can be found in [2]. All

prover9 proofs are by default proofs by contradiction.

The total time to produce the proofs in

Figure 3 on the platform described in

Section 2.0 was approximately 0.1

seconds.

4.0 Discussion

The results of Section 3.0 motivate several

observations:

 1. The OMLaw is derivable from the

OML without the OMLaw, conjoined with

the FHTs.

 2. The proof in Section 3.0 uses only

FH3, not FH2, FH3, or FH4.

 3. The proof in Section 3.0 is, as far as I

know, novel.

 4. Companion papers provide derivations

of the FHTs from OML. The union of these

proofs constitutes a proof of the equivalence

of the OMLaw and the FHTs within OML

theory.

5.0 Acknowledgements

This work benefited from discussions with

Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

Int'l Conf. Foundations of Computer Science | FCS'13 | 181

[3] Horner JK. prover9 scripts for OMLaw

from FH3. 2011. Available from the

author on request.

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

182 Int'l Conf. Foundations of Computer Science | FCS'13 |

SESSION

GRAMMAR RULES AND TEXT COMPRESSION
METHODS

Chair(s)

Prof. Hamid Arabnia
University of Georgia

Int'l Conf. Foundations of Computer Science | FCS'13 | 183

184 Int'l Conf. Foundations of Computer Science | FCS'13 |

Improving Compression Performance with a

Star Encoding Front End: A Linguistic Comparison

Ebru Celikel Cankaya
1
, Omar Darwish

2

1,2
Department of Computer Science, University of Texas at Dallas, Richardson, Texas, United States

Abstract – We introduce a front end encryption scheme to a

conventional compression algorithm to improve its

compression performance. We apply our technique on text to

achieve better lossless compression rates with no significant

runtime overhead. We extend our work to include different

source languages, namely English, French, German, and

Spanish to see the effect of source language on the overall

performance. Our approach yields promising results on

standard corpora for each language as it offers improved

compression rate (with28.9% at most on Arithmetic Coding

algorithm when the source language is English). Our scheme

also promises to provide security, when the dictionary of star

encoding is not revealed to unintended third parties.

Keywords: Text Compression, Pre-processing, Lossless

Transformation, Star Encoding, Security

1 Introduction

 In a world where technology prominently rules, research

focuses on relaxing the boundaries introduced by theoretical

restrictions. Data compression is one of these areas. Whether

for storage and/or transmission, compression helps achieve

significant gain in storage/channel efficiency. In the context

of lossless text compression, we once were bound by

Shannon’s upper limit: the shortest possible encoding of text

in a particular source alphabet is directly proportional to its

entropy [1]. With the most naïve model, i.e. zero-order model,

this boundary is as large as 4.75 BPC for English. As new

models are introduced, such as models that base themselves

on an order n context –hence named order-n model-, the

compression rate is getting better (for example, 2.77 BPC for

an order-3 model). Our aim in this paper is to improve even

better the lossless compression rate of text. We propose

employing star encoding as a front end to conventional

compression schemes as Arithmetic Coding [2], Huffman

Coding [3], Prediction by Partial Matching (PPM) [4], and

Burrows Wheeler Transform (BWT) [5] to achieve this

improvement. We also investigate the effect of star encoding

preceding conventional compression on different source

languages as English, French, German, and Spanish.

 We hope this work can serve as a practical tool to store

larger data on limited storage, and or transmit more data at a

time on network applications such as social media, search

engines, and general communication.

 We further consider an extension for our idea that will

involve an asymmetric encryption scheme that will conceal

the star encoding dictionary from adversaries. This will

augment a security feature to our proposed scheme, so that it

can be used for mass data oriented platforms such as clouds.

2 Related Work

 Recently, a greater number of researchers have shifted

their focus from generating new compression algorithms to

instead making it easier for existing compression technology

to perform better through text pre-processing. In this paper,

we explain some of the existing preprocessing techniques and

propose an approach of our own.

 Dictionary based pre-processing is a trivial idea that is

referred to for improving compression performance on text.

Rexline and Roberts [6], show that preprocessing can not only

help the main compressor perform better, it can also

contribute by performing pre-compression. Regarding the fact

that roughly 1000 words are used daily in average English text,

and almost 80 percent of English words are greater than 3

characters in length, it would be efficient to convert the most

frequently used words to 3 character code. The authors

suggest StarNT encoding: the first word is encoded as ‘a’, the

next word as ‘b’,…,27
th

 as ‘A’, 28
th

 as ‘B’, 53
rd

 as “aa”, 54
th

as “ab”. As this pattern continues, “ZZ” would be assigned to

the 2757
th

 word, “aaa” to the 2758
th

 word and so on. This

means that using only 3 characters, 143,364 words (52 + 52^2

+ 52^3) can be encoded, which is much more than needed by

the average language. From this, pre-compression is achieved.

 Another scholar work by [7] improves the word

replacement transformation by altering the characters used for

encoding. It focuses on improving encoding and decoding

time while simultaneously increasing compression rates. This

Int'l Conf. Foundations of Computer Science | FCS'13 | 185

3

idea is further studied by [8], where the most frequently

occurring words are mapped with the shortest encoded

counterparts. One variation proposed in [9], is that in addition

to the dictionary that contains the most frequently occurring

words (which is estimated to be an average 20-30 percent of

any given English literature), a list of stop words be used. This

list would be encoding in a slightly different way than the

dictionary in order to produce a shorter encoding per word.

 Another statistical approach to encoding is the proposed

in [10]. Based on the fact that words show a more biased

frequency than characters (this is also exploited by the

Lempel-Ziv family of compressors), authors pursue word

oriented pre-processing that has the potential of better

compressibility. The authors first compress text with a word-

based, byte-oriented compressor, then pass it to a character

oriented compressor. This work employs Dense Coding (DC),

which is faster to search than the plaintext due to its self-

synchronizing code characteristic, in the expense of increased

overall compression time.

 Other methods of compression involve certain

preprocessing techniques. The authors of [11] demonstrate

this concept in their paper, which focuses on white space

compression. They estimate that on average, around 15

percent of a text file is spacing, so eliminating this spacing

would make a text file approximately 15 percent smaller. To

accomplish this, they exploit the fact that most words are

either lowercase, uppercase, or begin with an uppercase letter

that is followed by lowercase letters. If a word is written in

any of these ways, is followed by a space, and its last two

characters are lowercase, then a space can be represented by

simply capitalizing the last letter of this word.

 Star (*) Encoding is a known technique, whose goal is to

produce as many redundant characters as possible, which can

be very useful when coupled with BWT [5], so that it will be

easier for a traditional compressor (such as a Huffman or

Arithmetic compressor) to achieve better compressibility. We

expand the use of star encoding as a front end to conventional

lossless compression algorithms: Arithmetic Coding, Huffman

Coding, PPM, and BWT on different text on various source

languages (English, French, German, and Spanish) and

compare compression performances.

 Yet another pre-processing approach is to replace parts of

a word instead of the whole word. Static Text Compression

Algorithm (STECA) [12] is a language dependent approach

that tries document the most common bigrams and trigrams

for a given language. Although the algorithm’s static structure

may be seen as a negative, it owes its speed to this design: it

generates a dictionary of the most commonly occurring

couplets and triplets, “ed” or “tio” in English, for example.

This dictionary is then used to assign a numerical value to

each bigram and trigram. With the help of this dictionary,

these frequently occurring sequences are replaced by their

numerical value in words that contain them.

 As expected, there is not a need for an excessively long

list of frequently occurring bigrams or trigrams since this

method works better the more frequent the character sequence

occurs naturally for the given language. Even though there is a

relatively small amount of numerical codes, numbers are still

needed to be represented in the encoded output. This can be

solved simply by using an escape number such as 0.

 The last encoding scheme we discuss is “Edge-Guided

(EG)” which is described in [13]. This encoding scheme does

not use a dictionary, but instead focuses on the way that words

interact with each other. Words and word sequences are

encoded as “vertices” and “edges” respectively. To start, each

distinct word or letter grouping in a sentence or stream is

mapped as a vertex. These vertices are then connected to each

other by edges which represent the flow of the sentence.

 An Edge-Guided encoder generates three streams Text,

Word, and Edge which are then passed to an encoder such as

PPM. The Word stream contains the distinct words found in

the original sentences, separated by an escape sequence. The

Text stream describes if the next word in the sentence is a

new vertex, creating a new edge, or following an existing

edge. Finally, the Edge stream is a numerical stream that is

matched with the Text stream to specify where edges connect.

As expected, this technique is very useful for text that

features abundant word redundancy.

3 Our Scheme

 In this section, we describe our design and present the

details of our scheme. Figure 1 presents an overview of our

scheme with its components: To realize a lossless

compression scheme, the sender takes the plaintext and

applies star encoding as a front end to preprocess the input

text. We anticipate that this preprocess will introduce

abundant redundancy (due to the injection of multiple ‘*’

symbols), which in turn will help improve compressibility.

For star encoding, the sender employs a shared dictionary.

The same dictionary is later employed by the receiver to

decode the star encoded text at the recipient site. We then

apply conventional lossless text compression algorithms,

namely Arithmetic Coding, Huffman Coding, Prediction by

186 Int'l Conf. Foundations of Computer Science | FCS'13 |

Partial Matching, and Burrows Wheeler Transform to

investigate the effect of using star encoding as a front end to

the compression process. We further apply our compression

scheme to different source languages to see the degree of

sensitivity of source languages to star encoding based

preprocessing. Once the conventional compression algorithm

compresses the star encoded input, the ciphertext is

transferred to the receiver.

 The receiver applies the steps applied by sender in reverse

order: He first decompresses the ciphertext, then star decodes

the decompressed text using the same shared dictionary to

retrieve the original text. The dictionary, when unavailable to

third parties but just sender and receiver contributes as a

means to provide security to the system. Therefore, our

scheme becomes a method that provides improved

compression with added security.

Figure 1. Overall system schema.

3.1 Corpora

 We run our experiments on 4 different common source

languages: English, French, German, and Spanish. For

English, standard Calgary and Canterbury corpora are used.

For the other source languages, text from available corpora is

compiled. A standard pre-processing that filters punctuation

marks, non-alphabet characters and multiple occurrences of

spaces is applied to the individual language wordlists and

each document before encoding and compression.

Table 1. English Corpora with selected text files from Calgary

Corpus and Canterbury Corpus [14][15].

Table 2. Dereko German Corpus with selected text files from

COSMAS II database [16].

Table 3. French Corpus with selected text files from Corpus of

Spoken French [17].

Table 4. Spanish Corpus with selected text files from [18].

3.2 Star Encoding as a Front End

 Star encoding was applied in a way that is similar to

what is described in [19]. After the first stage of pre-

processing, each individual corpus text file is then encoded

using a variation of the Star Encoding. Using wordlists for

each source language, a dictionary tree D is generated. This

tree is then split into multiple, lexicographically sorted

dictionaries Dx where x denotes the length of the words it

contains, making it a Length Index Preserving

Transformation (LIPT). For example, the English wordlist

that we used had minimum and maximum word lengths of 2

File Name Size (kB) Description

Calgary

bib 111261 Bibliography

book1 768771 Fiction book

book2 610856 non-fiction book

news 377109 USENET batch file

paper1 53161 Technical paper

paper2 82199 Technical paper

trans 93695 Transcript of terminal session

Canterbury

asyoulike 152089 Shakespeare

alice29 125179 English text

fields 11150 C source

Ice10 426754 Technical writing

Plrabn12 481861 Poetry

File Name Size (Byte) Description

doc1.txt 17720 Binnenhandel Der DDR

doc2.txt 17106 Pressemitteilung - 132/4/70- NRW

history.txt 16487 Bemerkungen Zur Modernen Darstellung Natinaler

horror.txt 15223 Der Schrecken Von Takera

scope.txt 15545 Brunte Horoskop

File Name Size (Byte) Description

anthology 97059 Anthologie du Journalisme

darwinOrigins 1391304 L'origine des espèces

dominique 442548 Dominique

football 20466 Notes sur le foot-ball (1897)

meditations 176650 Les meditations

File Name Size (Byte) Description

pachecho.txt 78708 Pachecos y Palomeques

palabras.txt 43610 Palabras y plumas

palau.txt 69133 El palau de vidre

palomares.txt 15318 Palomares (Palomares)

ramilletes.txt 8307 Los ramilletes

Int'l Conf. Foundations of Computer Science | FCS'13 | 187

+

and 22 characters respectively. From these sub-dictionaries,

encoding and decoding maps were generated. For encoding,

the plain words are mapped to their star encoding

counterparts. Words in a given sub-dictionary are mapped to

an encoded word that is the same length. The first word is

simply a string consisting of the asterisk *. For example, the

first four letter word in the sub dictionary would be encoded

to “****”. The next 52 words are encoded to “a***”,

“b***”, …, ”z***”, ”A***”, “B***”, …, “Z***”. The 54

word would start the pattern in the second character, with the

first character remaining an asterisk for the next 52 words:

“*a**”, “*b**”,…”*z**”. This pattern is continued till “Z” is

reached at the last character for the given word length:

“***Z”. The next word restarts the pattern at the second

character, but the first character remains ‘a’: “aa**”,

“ab**”, … “aZ**”, “a*a*”, … ,“a**Z.” The pattern

continues till the encoding limit for the current word length is

reached (i.e, the last encoded string is “ZZZZ”).

3.3 Compression Algorithms

 We employ the four widely used conventional

compression algorithms to test the performance improvement

of our star encoding front end on each. These algorithms are

Arithmetic Coding, Huffman Coding, PPM, and BWT.

4 Results

 Our experiments focus on employing star encoding as a

front end, anticipating a better compression rate later on when

we further apply conventional compression algorithms

individually. Results show that with some exceptions, we

obtain a significant improvement over conventional

compression for text on each source language. Figures 2 and

3 present the result of star encoding used as a front end on

English corpora Calgary and Canterbury, respectively. It

should be noted that our scheme can be used to also provide

security, in expense of time and extra data transfer, which

will involve the encryption of star encoded dictionary with a

symmetric encryption and sending the key to the receiver.

This is due to the tradeoff between security and storage cost.

Figure 2. Star encoding used as a front end on English

Calgary corpus

 As seen in Figure 2, star encoding improves the

Arithmetic Coding and Huffman Coding performances most

with very similar percentage gains as 28.86% and 28.90%,

respectively for English Calgary corpus. The poorest

performance is in PPM with only 2.78% improvement, and

the performance with BWT improves considerably at a rate of

9.22% on average for the selected five text files from Calgary

corpus.

Figure 3. Star encoding used as a front end on English

Canterbury corpus

Figure 3 has similar values for English Canterbury corpus,

where Arithmetic and Huffman algorithms outperform other

conventional compression algorithms, i.e. PPM and BWT, in

the gain obtained with using star encoding as a front end. This

time, Huffman Coding has a slightly better performance

improvement with 23.77% than Arithmetic Coding, which has

23.64% performance improvement. Moreover, we see that in

Canterbury corpus, the ordering in terms of improvement in

the compression performance for the worst two algorithms

comes out as similar as Calgary corpus: BWT poorer with

7.97% gain, and PPM with 1.94% gain only.

 28.90%

28.86%

2.78%

9.22%

3.548

3.567

1.873

2.218

4.999

5.022

1.937

2.461

AR…

HUFF

PP…

BWT

English Calgary Corpus

Plain Encoded BPC Improvement

23.64%

23.77%

1.94%

7.97%

3.566

3.582

2.012

2.35

4.668

4.698

2.05

2.55

ART

H

HUF

F

PPM

Z2

BWT

English Cantenbury Corpus

Plain Encoded BPC Improvement

16.21%

15.81%

-5.56%

2.83%

3.719

3.754

2.186

2.532

4.441

4.461

2.085

2.617

ARTH

HUFF

PPMZ2

BWT

French Corpus

Plain Encoded BPC Improvement

188 Int'l Conf. Foundations of Computer Science | FCS'13 |

Figure 4. Star encoding used as a front end on French corpus

 One of the aims of our work is to investigate the effect of

implementing star encoding as a front end on different source

languages. When we run our scheme on text in French corpus

(Figure 4), we again get the best improvement rates for

Arithmetic Coding (with 16.81%) and Huffman Coding (with

15.81%), though with lower rates this time. And interestingly,

while BWT still performs next to worst (with 2.83%), PPM

has an average performance loss in compression. This means

that using star encoding as a front end in French text degrades

the compression performance of PPM algorithm. These results

obviously suggest that source language itself is a substantial

parameter in lossless compression when star encoding is used

as a front end.

Figure 5. Star encoding used as a front end on German corpus

 To inquire more about this effect, and find out the

sensitivity of source languages to star encoding being applied

as a front end, we repeated our experiments on two more

source languages: German and Spanish. Figure 5

demonstrates the results we obtain on German corpus. Though

Arithmetic Coding and Huffman Coding yield very close

improvement rates as 16.66% and 16.65%, we see that PPM

has the best improvement rate so far in German corpus. Then,

we can conclude that German is more sensitive to star

encoding when it is applied as a front end to PPM algorithm.

For BWT, the improvement rate is similar to English and

French corpora, with a percentage of 6.60%.

Figure 6. Star encoding used as a front end on Spanish corpus

 When we employ Spanish as the source language, we get

different results than previous source languages as seen in

Figure 6: Arithmetic Coding and Huffman Coding only obtain

around 8% improvement, BWT around 2%, and the

improvement with PPM is almost negligible with an average

rate of 0.21% only. These results prove that the least sensitive

source language to employing star encoding as a front end to

conventional compression algorithms among four source

languages we consider is Spanish.

We also compare the rate of improvement for each

conventional compression algorithm on each source language.

Figure 7 displays the chart for average improvement rate

when star encoding is employed as a front end to four

conventional compression algorithms.

Figure 7. Linguistic Comparison for star encoding employed

as a front end to conventional compression algorithms.

 When we summarize the average compression rates

obtained for each source language and for each conventional

compression algorithm, we get Table 5.

16.66%

16.65%

4.21%

6.60%

3.921

3.925

2.542

2.93

4.607

4.711

2.657

3.14

ART

H

HUF

F

PPM

Z2

BWT

German Corpus

Plain Encoded BPC Improvement

8.39%

8.69%

0.21%

2.17%

4.082

4.088

2.611

3.012

4.459

4.481

2.629

3.089

ART

H

HUF

F

PPM

Z2

BWT

Spanish Corpus

Plain Encoded BPC Improvement

Int'l Conf. Foundations of Computer Science | FCS'13 | 189

+

Table 5. Average performance improvement per source

language and compression algorithm.

 According to Table 5, English Calgary corpus yields the

best performance improvement for all conventional

compression algorithms. This implies that Calgary corpus, and

hence English, is the most sensitive source language to

employing star encoding as a front end to lossless

compression with an average overall improvement rate of

17.44% (Calculated as the mean of improvement rates on four

compression algorithms). This is followed by English

Canterbury corpus with a mean improvement rate of 14.33%.

This result supports the implication that English is the most

sensitive source language to our proposed scheme, which

employs star encoding as a front end before applying any

compression.

 Table 5 states that the second most sensitive source

language seems to be German with an average improvement

performance of 11.03%. The third most sensitive source

language is French, where the average improvement

percentage is measured as 7.32%. It should be noted that in

German corpus, performance of PPM degraded significantly

at a rate of 5.56%, which is a unique case to consider among

all other source languages and compression algorithms.

 Finally, Spanish demonstrate the least amount of

sensitivity to our scheme by yielding an average improvement

rate of 4.87%, with insignificant improvement on PPM.

 Results in Table 5 also show that on average, PPM resists

most star encoding, with an average of only 0.72%

improvement rate. BWT is the second most resistant

compression algorithm to our scheme. One should remember

that these are already among the best performing compression

algorithms and these results suggest that we reach the

theoretical limits suggested by Shannon [1] after applying star

encoding that no further improvement is possible. Arithmetic

Coding and Huffman Coding respond to star encoding front

end similarly with an average improvement rate of 18.76%.

 For each source language, the rate of improvement is

very similar for Arithmetic Coding and Huffman Coding

extending in a stretch from almost 29% to around 8%. We

should consider the fact that originally, both compression

algorithms, i.e. Arithmetic Coding and Huffman perform

already poorly on text, regardless of the source language.

Whereas for BWT, and PPM the original compression rates

on plaintext is already good at an average rate of 2BPC for

each algorithm regardless of the source language. So, even

the high improvement rate after using star encoding does not

help make the compression performance of Arithmetic

Coding and Huffman to reach the already good compression

rates of BWT and PPM.

5 Conclusion and Future Work

 We design and implement a front end to improve the

performance of conventional compression algorithms as

Arithmetic Coding, Huffman Coding, PPM, and BWT. The

results we obtain are promising with insignificant runtime

overhead.

 We apply our scheme on different source languages as

English, French, German, and Spanish. Results show English

is the most sensitive source language to our approach that it

yields the highest performance gain with 28.9% in Arithmetic

Coding compression algorithm. The least source language is

Spanish with the lowest improvement performance of 0.21%

in PPM. Also, our results show that PPM is the least sensitive

algorithm to our scheme which employs star encoding as a

front end to improve compression performance. This is a

supportive indicator that we reach theoretical bounds on

especially already well performing compression algorithms

such as PPM and BWT, while still obtaining considerable

improvements in poorer performing compression algorithms

as Arithmetic Coding and Huffman Coding.

 Our scheme with its promising results can be used for

non-punctuation sensitive text, such as a list of emails, where

separate domains can be easily obtained from usernames later

on. Also, we anticipate that our method can be used in name

lists, books with predictive decoding. Furthermore, one can

employ star encoding plus compression in a random process

of encoding that only the sender, receiver know, though this

can be prone to brute force attack. Word lists have to be the

exact same to generate a perfect match, but a word list that

isn’t a perfect match, but close enough can still generate a

relatively close decoding. We think this would work better for

text files that are diverse in nature and would therefore require

a large wordlist.

 We plan on extending the implementation of our scheme

to provide security. If the star encoding dictionary is

encrypted with an asymmetric encryption algorithm, we can

guarantee the secure transfer of the dictionary. This, in turn,

provides an extra security to our scheme since any adversary

French German Spanish Average

Calgary Canterbury

ARTH 28.90 23.64 16.21 16.66 8.39 18.76

HUFF 28.86 23.77 15.81 16.65 8.69 18.76

PPM 2.78 1.94 -5.56 4.21 0.21 0.72

BWT 9.22 7.97 2.83 6.60 2.17 5.76

Average 17.44 14.33 7.32 11.03 4.87

English

190 Int'l Conf. Foundations of Computer Science | FCS'13 |

+

who does not have the private key cannot recover the

dictionary. Such a secure scheme that provides encryption as

well as compression can well meet the most prominent

requirement of today’s data storage and transmission:

handling cloud data securely.

6 References

[1] Shannon C. E., Waever W., “The Mathematical Theory of

Communication, Volume 1”, University of Illinois Press,

1949.

[2] Witten I., Neal R. M., Cleary J. G., “Arithmetic Coding

for Data Compression”, Communications of the ACM, 30(6),

June 1987.

[3] Har-Peled S., “Huffman Coding”, UIUC, Illinois, USA,

December, 2007.

[4] Hossain I., “Prediction with Partial Match using two-

dimensional approximate contexts”, Picture Coding

Symposium, pp. 181-184, Krakow, Poland, 2012.

[5] Kärkkäinen J., Mikkola P., Kempa D., “Grammar

Precompression Speeds Up Burrows–Wheeler Compression”,

String Processing and Information Retrieval, Lecture Notes in

Computer Science, Vol. 7608, pp. 330-335, 2012.

[6] Rexline S. J., Robert L., “Dictionary Based Preprocessing

Methods in Text Compression - A Survey.” International

Journal of Wisdom Based Computing. 1(2), pp. 14-15.

(Coimbatore, India 2011). Available:

http://wisdombasedcomputing.com/vol1issue2august2011/pap

er8.pdf [Accessed Jan. 27, 2013].

[7] Rexline S. J., Robert L., “IWRT: Improved Word

Replacement Transformation in Dictionary Based Lossless

Text Compression.” European Journal of Scientific Research.

86(2), pp. 194 – 196. . (Coimbatore, India 2011). Available:

http://www.europeanjournalofscientificresearch.com/ISSUES/

EJSR_86_2_06.pdf [Accessed Jan. 27,2013].

[8] Lourdusamy R., Shanmugasundaram S., “IIDBE: A

Lossless Text Transform for Better Compression.”

International Journal of Wisdom Based Computing. 1(2), pp.

2-4. (Coimbatore, India 2011) Available:

http://wisdombasedcomputing.com/vol1issue2august2011/pap

er6.pdf [Accessed Jan. 27, 2013].

[9] Boonjin V., Tadrat J., “An Experiment Study on Text

Transformation for Compression Using Stoplists and Frequent

Words.” Information Technology: New Generations, 5
th

 Int’l

Conference, 2008, pp. 709-713. (Bangkok, Thailand 2008)

[10] Fariña A., Navarro G., Paramá J., “Boosting Text

Compression with Word-Based Statistical Encoding.” Oxford

University Press. pp. 112, 115, 117-118. (Oxford, United

Kingdom 2011) Available:

http://comjnl.oxfordjournals.org/content/55/1/111.short

[Accessed Jan. 29, 2013].

[11] Nadarajan R., Robert L., “Simple lossless

preprocessing algorithms for text compression” IET Software,

3(1), pp. 37-45. (Coimbatore, India 2009).

[12] Carus A., Mesut A., “Fast Text Compression Using

Multiple Static Dictionaries.” Information Technology

Journal. [On-line]. 2010, pp. 2-3. (Edirne, Turkey 2010).

Available: http://docsdrive.com/pdfs/ansinet/itj/0000/17638-

7638.pdf [Accessed Jan. 27, 2013]

[13] Martinez-Prieto M. A., Adiego J., Fuente P., “Natural

Language Compression on Edge-Guided Text Processing”,

Journal of Information Sciences, Vol. 181(24). (Santiago,

Chile 2011)

[14] English Calgary Corpus URL:

http://corpus.canterbury.ac.nz/descriptions/#calgary,

[Accessed on: 02/17/2013].

[15] English Canterbury Corpus URL:

http://corpus.canterbury.ac.nz/descriptions/#cantrbry,

[Accessed on: 02/17/2013].

[16] German Corpus URL: COSMAS II, Institute for

Deutsche Sprache, http://www.ids-

mannheim.de/cosmas2/projekt/registrierung/, [Accessed on:

02/17/2013]

[17] French Corpus URL: Corpus of Spoken French, Centre

for Languages, Linguistics, & Area Studies, University of the

West England, http://www.llas.ac.uk/resources/mb/80,

[Accessed on: 02/17/2013]

[18] Spanish Corpus URL:

http://www.cervantesvirtual.com/bib/seccion/literatura/psegun

doniveld6b2.html?conten=catalogo [Accessed Jan. 21, 2013]

[19] Radescu R., “Transform Methods Used in Lossless

Compression of Text Files.” Romanian Journal of

Information Science and Technology. pp. 102-105. (Bucharest,

Romania 2009).

Int'l Conf. Foundations of Computer Science | FCS'13 | 191

AUTOMATED SEMANTICS TREATMENT OF SEQUENCE DIAGRAM
DEFINING GRAMMAR RULES

Fahad Alhumaidan and Nazir Ahmad Zafar

College of Computer Sciences and IT
King Faisal University, Hofuf, Saudi Arabia

Emails: {nazafar, falhumaidan}@kfu.edu.sa

ABSTRACT
UML diagrams being graphical in nature have informal
semantics and it is difficult to develop automated tools for
conversion and transformation of the diagrams. Formal
methods are proved to be effective for semantics analysis
of software systems. However, usage of formal methods
is not very welcomed at early stages of software
development. Hence, linking UML and formal techniques
is needed to address the deficiencies existing in both
approaches. In this paper, an approach is developed for
transformation of simple sequence diagram by defining
grammar rules. Formal specification of the procedure is
described using Z notation by capturing hidden semantics
under the diagrams. The model is analyzed and validated
using Z/Eves tool. We believe that resultant approach will
be useful for developing automated tools for modeling
and verification of software systems.

KEY WORDS
Automation, UML Sequence diagram, semantics analysis,
grammar rules, Z notation

1. Introduction

Although UML is accepted as a de-facto standard for
development of object oriented systems but its diagrams
are graphical in nature and are prone to causing errors [1].
The hidden semantics of the diagrams allows ambiguities
at design level. For example, model in UML may have
multiple interpretations and someone may not be able to
understand what is put under the diagrams. Formal
methods having well-defined semantics are at the early
stage of development. A linkage of UML diagrams and
formal methods will enhance the modeling power by
defining semantic rules over the diagrams [2].
 There exits few work in this area because the hidden
semantics under UML diagrams cannot be transformed
easily into formal notations. In the most relevant work, a
mechanism for verifying sequence diagram is proposed by
describing event-based deterministic finite automata from
UML interaction diagram [3]. This is an interesting piece
of work which is taken as starting point. In [4], a solution
is proposed by translating UML sequence diagram

combining description logic and computation tree logic.
Statics analysis of UML interaction diagram is provided
in [5] to check the well-formed-ness of the diagram.
Jackson et al. [6], have developed Alloy Constraint
Analyzer tool for description of systems whose state
space involves relational structures. A study is presented
based on web-service composition technique for
cooperative composition modeling language [7]. An
approach is demonstrated in [8] using XML to visualize
TCOZ models into UML diagrams. An algorithmic
approach is developed to check a consistency between
sequence and state diagrams [9]. A procedure of creating
tables and SQL code for Z specifications to UML
diagrams is described in [10]. Intelligent approach of
fusion recognition is described using petri-nets and fuzzy
logic in [11]. An integrated approach is developed by
combining B and UML in [12]. Kim et al., present a
framework by integrating Object-Z and UML for
requirements elicitation by a case study [13]. A tool is
developed which takes class diagram and produces a list
of comments on the diagrams in [14]. Few other relevant
works can be found in [15-20]
 In this paper, systematic procedure for formalizing
and verifying sequence diagram is presented by defining
grammar rules. The preliminary result of this research
were presented in [21]. Advanced concepts, for example,
loops, options, alternatives and reference are not
considered. Cash withdraw from an ATM system is taken
as a case study. First of all, a model of the system is
presented using sequence diagram. Then state diagram is
created by identifying states and transitions based on the
objects and messages considering the time sequence same
as in [21]. It is noted that many states of an object may
exit in the life of an object. In the next, a mapping is
defined to develop grammar for the diagram. Formal
analysis of the transformation procedure is generalized
based on the case study using Z notation. Z is used
because it is a model oriented specification language used
at an abstract level. The Z/Eves tool is used for model
analysis because it is powerful one for analyzing the
specification. Rest of the paper is organized as:
 In section 2, transformation procedure from sequence
to state diagram is presented. Formal specification of the
procedure is described in section 3. Model analysis is
given in section 4. The work is concluded in section 5.

192 Int'l Conf. Foundations of Computer Science | FCS'13 |

mailto:@ucp.edu.pk

2. Transformation of Sequence Diagram

In this section, critical analysis of sequence diagram is
provided. Then formal procedure from sequence diagram
to state diagram is presented by taking a case study of
ATM cash withdraw system. Finally, grammar is
developed to be used for further transformation.

2.1 ATM Cash Withdraw Case Study

The UML sequence diagram is used to realize details
under the use cases and shows the interaction between
objects by the roles. Sequence diagrams model messages
for analysis and design for behavior interaction. The
diagram represents messages and interactions in two
dimensions. The interaction is in horizontal dimension
whereas time is defined in the vertical line by resulting a
two dimensional model as shown in Figure 1.

u: User r: Reader d: Displayer i: Input Device p: Processor

m1: inputcard

m3: acceptcard

m5: requestPIN
m6: requetdisplay

m7: inputPIN
m8: PIN

m9: withdrawlamount

m10: requestdisplay

m11: inputamount
m12: amount

m15: money

m13: retreatcardm14: getcard

m2: !validcard

m4: stolen
c2

c1

m2: !validPIN
c4

m2: inactiveaccount
c3

m2: amountaceeds
c5

Figure 1. Sequence diagram for cash withdraw

UML sequence diagram is good modeling tool

because it provides a dynamic view showing behavior
which is not possible to extract from static system.
Another important feature is its capability to represent
parallelism between the complex components. The
sequence diagram helps to discover architectural view and
logical statements needed to define the system. Because
of good modeling approach, sequence diagrams can be
integrated easily because of the time dimension. In
sequence diagram, object interaction, sequence order,
responsibilities, functionalities and timings issues can be
easily addressed. The diagram also facilitates the
documentation at various levels of abstraction which is
not easy when it is required to create from the static part
of the system. Sequence diagram of ATM system as in the
figure for cash withdraw is presented. At first the card is
verified then PIN is entered for authentication. Finally,
the cash is withdrawn if requested amount is less than the
current balance of the customer.

2.2 Transformation Procedure

Sequence diagram in Figure 1 is transformed to state
diagram as shown in Figure 2.

m1

m2/c1
S0

S1 m3

S3 S3
m4/c2

m2/c3
m5

m6

m7
m8

S2

S4
S5

S6
S7

S8

S9
m2/c4

S9S10
m9

S11m10

S12

S13

S14

m11
m12m2/c5

S15

S16S17
S18

m13
m14

m15

Figure 2. State diagram based on sequence diagram

 In the transformation, each object may have many
states. For example, the object user has ten states and the
object reader has three states. It is noted that same
message can be executed from two different pairs of
states. For example, the message m2 is same for all the
pairs of states (s1, s2), (s1, s4), (s3, s5), (s9, s10) and
(s14, s15) which is repeated in case of failure of the
transaction. A message may have execution condition. For
example, c1, c2, c3, c4 and c5 are the message conditions.

Table 1
Mapping defining grammar for sequence diagram

Message Production

1 (S0, m1, S1, null) S0m1S1, null

2 (S1, m2, S2, c1) S1m2S2, c1
3 (S1, m3, S3, null) S1m3S3, null
4 (S1, m4, S4, c2) S1m4S4, c2
5 (S3, m2, S5, c3) S3m2S5, c3
6 (S3, m5, S6, null) S3m5S6, null
7 (S6, m6, S7, null) S6m6S7, null
8 (S7, m7, S8, null) S7m7S8, null
9 (S8, m8, S9, null) S8m8S9, null
10 (S9, m2, S10, c4) S9m2S10, c4

11 (S9, m9, S11, null) S9m9S11, null

12 (S11, m10, S12, null) S11m10S12, null
13 (S12, m11, S13, null) S12m11S13, null
14 (S13, m12, S14, null) S13m12S14, null
15 (S14, m2, S15, c5) S14m2S15, c5
16 (S14, m13, S16, null) S14m13S16, null
17 (S16, m14, S17, null) S16m14S17, null
18 (S14, m15, S18, null) S14m15S18, null

Int'l Conf. Foundations of Computer Science | FCS'13 | 193

The transformation procedure from state diagram to

grammar development is listed in Table 1. In the table, the
tuple (Si, mk, Sj, cp) represents that the message mk is
executed from state Si to state Sj under the condition cp.
For every message between two different states, a
production rule is created. If there is no condition before
the execution of a message then null condition is
supposed. It is noted that S2, S4, S5, S10, S15and S18 are
final states, however, S18 is the final state after successful
execution of the procedure. Rest of all states, are failure
of the operation.

Grammar Rules
After deriving rules from the messages, as in the table,
whole set of productions is listed below. The null
productions are added for termination of the process. The
same sequence of derivations can be represented by the
derivation tree for parsing of a scenario.

S0m1S1, null; S1m2S2, c1| m3S3, null| m4S4, c2; S2;
S3m2S5, c3| m5S6, null; S4; S5; S6m6S7, null;
S7m7S8, null; S8m8S9, null; S9m2S10, c4| m9S11, null;
S10; S11m10S12, null; S12m11S13, null; S13m12S14,
null; S14m2S15, c5|m13S16, null| m15S18, null; S15;
S16m14S17, null; S17; S18

Derivation
Any possible scenario of the diagram can be derived for
validation by the above grammar. For example, the
scenario m1m3m5m6m7m8m9m10m11m12m15 can be
validated by the sequence of derivations as below:
S0  m1S1

 m1m3S3
 m1m3m5S6
 m1m3m5m6S7
 m1m3m5m6m7S8
 m1m3m5m6m7m8S9
 m1m3m5m6m7m8m9m10S12
 m1m3m5m6m7m8m9m10m11S13
 m1m3m5m6m7m8m9m10m11m12S14
 m1m3m5m6m7m8m9m10m11m12m15S18
 m1m3m5m6m7m8m9m10m11m12m15.

3. Formal Analysis

In this section, formal analysis of transformation
procedure is described using Z notation. At first, the
sequence diagram consisting of objects and messages is
specified. The time sequence is given primary importance
in specification of the diagram. Then state diagram is
created based on the sequence diagram. Finally, grammar
is developed to be useful for derivation of all possible
scenarios based on the diagram.

There can be many states of an object of sequence
diagram. Hence state is defined before specification of an
object. The state is defined by the schema, State, which
consists of three variables that is state name, start time
and end time. To declare types of name, start and end
times SName and Time are used at an abstract level of
specification in Z. A schema consists of two parts namely
definition and predicate parts. In definition part of the
schema, variables are defined whereas invariants are
defined in the predicate part.

[SName]; Time 

State
sname: Sname; stime, etime: Time

stime  etime


An object is represented by the schema Object which
consists of six components namely object name, start
time, end time, sequence of states, attributes and methods
in the diagram. It is stated that the life line of an object is
described by the start and end times variables. The object
name and attributes are declared as a set type as specified
above. The methods is defined as a partial function
between object attributes.

[OName]

[Attribute]

Object 
oname: OName
ostart, oend: Time
states: seq State
attributes:  Attribute
methods: Attribute  Attribute

states  
# states  1
 s1, s2: State s1  ran states  s2  ran states
 states 1 = s1  states # states = s2
  ostart  s1 . stime  s2 . etime  oend
i:  # states  1  i  1 .. # states - 1
 s1, s2: State
 states i = s1  states i + 1 = s2  s1 . etime  s2 . stime
input, output: Attribute input output  methods
 input  attributes  output  attributes


The message in sequence diagram is defined by the
schema Message, which consists of activation time,
condition of execution, source and target objects. The
activation time of a message is specified by the schema
ActivationTime. It is stated that the start time is less than
the finishing time of any message in the diagram. The
next variable is condition that must be true before
execution of a message. The condition has three values,
i.e., true, false or null. The value null is used to represent
that there is no triggering condition for the message. In

194 Int'l Conf. Foundations of Computer Science | FCS'13 |

predicate part of the schema, time ordering of the message
is defined as an invariant.

Condition ::NULL TRUE FALSE

ActivationTime 
starttime, endtime: 

starttime  endtime


Message
ActivationTime
condition: Condition
from, to: State

from . stime  starttime  endtime  to . etime


Formal specification of the sequence diagram is
provided by the schema SequenceModel as given below.
The schema contains two components, communicating
objects and messages used in the sequence diagram. In
predicate part, it is stated that for every message there
exist two objects in the sequence diagram and vice versa.
In sequence diagram, it is less focused on messages itself
and more on the order in which these are executed. The
first message starts from the left-top and subsequent
messages are then followed following order of execution.
The message sent to the receiving object is implemented
by the receiving object.

SequenceModel
objects:  Object
messages:  Message

o1, o2: Object o1  objects  o2  objects
 s1, s2: State s1  ran o1 . states  s2  ran o2 . states
 m: Message m  messages m . from = s1  m . to = s2
m: Message m  messages
 o1, o2: Object o1  objects  o2  objects
 s1, s2: State s1  ran o1 . states  s2  ran o2 . states
 s1 = m . from  s2 = m . to


The state diagram was created from the sequence
diagram as in Figure 2. Formal specification of the state
diagram is described below by using the schema
StateDiagram which consists of five components, that is,
start state, all possible states of the diagram, messages,
transformation function and set of final states. The
definitions are given in first part and constraints are
defined in the second part of the schema.

In the predicate part of the schema, it is stated that
start state is an element of the total states of the sequence
diagram. For any message there exist two states reachable
after execution of the message. The transition function
takes a state, checks guard condition and triggers the
message by moving to the next state of the object. The set

of final states is represented by final which is subset of the
set of total states.

StateDiagram 
SequenceModel
start: State
states:  State
messages:  Message
delta: State  Condition  Message  State
final:  State

start  states
s1, s2: State s1  states  s2  states
 message: Message message  messages
 message . from = s1  message . to = s2
message: Message message  messages
 s1, s2: State s1  states  s2  states
 s1 = message . from  s2 = message . to
s1: State s1  states
 message: Message; cd: Condition; s2: State
 message  messages  s2  states  s1 cd message
 dom delta
 delta s1 cd message = s2
s: State s  final s  states

proof of StateDiagram$domainCheck
 prove by reduce

4. Model Analysis

Even formal specification of a complex system is written
in any of the formal language, it may cause potential
errors. This is because, for a moment, we don't have any
computer tool which may guarantee about complete
correctness of model of a complex system. The Z/Eves is
a powerful tool used for analyzing formal specification of
the model. The tool is integrated with various model
analysis facilities providing rigorous checking of the
system to be developed and has an automated deduction
capability.

The syntax checking, type checking and theorem
proving facilities of the Z/Eves tool are used for analysis
of the model. It is noted that syntax and type checking do
not require any interaction with the theorem proving
facility of the tool. The domain checking facility allowed
us to write meaningful properties of the system. It is
observed that domain checking of model is much harder
than the syntax and type checking of the model. Further,
the syntax and type checking are performed automatically
whereas one has to interact with the theorem proving
facility to perform the domain checking. Furthermore, we
observed that proof ‘by reduce’ was sufficient for formal
specification of this transformation procedure for domain
checking.

The schema expansion facility was used to unravel
the specification of the diagrams and procedures which

Int'l Conf. Foundations of Computer Science | FCS'13 | 195

simplified the model results that were not easy otherwise
to understand the specification. Prove by reduce is used
for analyzing the formal specification. Some of the results
of the model analysis are shown in the Table 2. In the
Table, the first column shows name of the schema to be
analyzed and evaluated, the second column is for syntax
and type check, third for domain checking, fourth for
reduction facility and the last one for the proof by
reduction. The symbol Y in the table shows that all
schemas are well written by syntax and domain checking.
However the * symbol, after Y, shows that proof is done
by the reduction technique.

Table 2. Results of model analysis

Schema Name
Syntax
Type

Check

Domain
Check Reduction Proof

State Y Y Y Y
Object Y Y Y Y
ActivationTime Y Y Y Y
Message Y Y Y* Y
SequenceModel Y Y Y* Y
StateDiagram Y Y Y* Y

5. Conclusion

An exhaustive survey of existing work was performed
before starting this work. Some interesting work was
found as discussed in section I but our work is different
from others because of capturing hidden semantics under
the graphical notations. A comparison to most relevant
work is presented. For example, in [3] a transformation
mechanism from sequence diagram to event deterministic
finite automata is provided. There were two major
drawbacks in that work. Firstly, the resultant automaton is
not deterministic because there is no state for some
transitions in the automata. Secondly, the verification
mechanism does not provide full support for correctness.

This work is part of our project on formalization of
UML diagrams to be useful for software development of
complex systems [21-24]. In this paper, an approach is
developed for transformation of UML sequence to state
diagrams by removing flaws existing in the diagram. Then
grammar is developed based on the state diagram for
verifying messages and scenarios. The resultant approach
will be useful in development of automated tools for
construction and verification of software systems.
Although we have taken a simple case study but the
advantage of our approach is that a formal procedure of
transformation from UML notations to mathematical
model is described. Then algorithm is specified using Z
notation and verification is provided using Z/Eves tool.
The Z notation is used because of its abstract and
expressive power [25]. The rich mathematical notations in
Z made it possible to reason about behavior of graphical

notations. The Z/Eves is a powerful tool used to analyze
the specification [26].

In future work, the advanced concepts of sequence
diagram will be considered and complete transformation
algorithm from the diagram to formal models will be
designed. It is noted that conversion of UML diagrams to
mathematical models by synthesis of suitable notations is
our major objective. Transition diagrams, graphs,
grammar, etc. are the tools for developing the integrated
approach.

Acknowledgement

We would like to thank Deanship of Scientific Research,
King Faisal University, Saudi Arabia for their funding
support to our project on formalization of UML diagrams
for automating design and development processes in
software systems.

References

[1] Yeung, W. L., Leung, K. R. P. H., Wang, J., Dong,
W.: Improvements Towards Formalizing UML State
Diagrams in CSP, Proceedings of 12th Asia Pacific
Software Engineering Conference, Taiwan, 2005.

[2] Shroff, M., France, R. B.: Towards Formalization of
UML Class Structures in Z, 21st International Conference
on Computer Software and Applications, pp. 646-51,
1997.

[3] Chen, Z., Zhenhua, D.: Specification and Verification
of UML2.0 Sequence Diagrams using Event
Deterministic Finite Automata, 2011 Fifth International
Conference on Secure Software Integration and
Reliability Improvement – Companion, pp. 41-46, 2011.

[4] Li, M., Ruan, Y.: Approach to Formalizing UML
Sequence Diagrams, 3rd International Workshop on
Intelligent Systems and Applications (ISA), pp. 1-4, 2011.

[5] Li, X., Liu, Z., Jifeng H.: A Formal Semantics of
UML Sequence Diagram, Proceedings of the 2004
Australian Software Engineering Conference, 2004.

[6] Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: The
Alloy Constraint Analyzer, Proceedings of International
Conference on Software Engineering, 2000.

[7] Xiuguo, Z., Liu, H.: Formal Verification for CCML
Based Web Service Composition, Information
Technology Journal, 2011.

[8] Sun, J., Dong, J. S., Liu, J., Wang, H.: A XML/XSL
Approach to Visualize and Animate TCOZ, Proc. of 8th
Asia-Pacific Software Engineering Conference, pp. 453-
60, 2001.

[9] Litvak, B.: Behavioral Consistency Validation of
UML Diagrams, First International Conference on
Software Engineering and Formal Methods, 2003.

196 Int'l Conf. Foundations of Computer Science | FCS'13 |

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10689
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5871829
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7784
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7784

[10] Moeini, A., Mesbah, R. O.: Specification and
Development of Database Applications based on Z and
SQL, Proceedings of 2009 International Conference on
Information Management and Engineering, pp. 399-405,
2009.

[11] Shi, Z.: Intelligent Target Fusion Recognition Based
on Fuzzy Petri Nets, Information Technology Journal, 11,
pp. 500-03, 2012.

[12] Leading, H., Souquieres, J.: Integration of UML and
B Specification Techniques: Systematic Transformation
from OCL Expressions into B, Proceedings of 9th Asia-
Pacific Software Engineering Conference, 2002.

[13] Kim, S. K., Carrington, D. A.: An Integrated
Framework with UML and Object-Z for Developing a
Precise and Understandable Specification: The Light
Control Case Study. Proceedings of Seventh Asia-Pacific
Software Engineering Conference, pp. 240-48, 2000.

[14] Ali, N. H., Shukur, Z., Idris, S.: A Design of an
Assessment System for UML Class Diagram, Int'l
Conference on Computational Science and Applications,
pp. 539–46, 2007.

[15] Miao, H., Liu, L., Li, L.: Formalizing UML Models
with Object-Z, Proceedings of 4th International
Conference on Formal Methods and Software
Engineering, Springer, 2002.

[16] Mostafa, A. M., Manal, A. I., Hatem, E. B., Saad, E.
M.: Toward a Formalization of UML2.0 Meta-model
using Z Specifications, Proc. of 8th ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/ Distributed
Computing, 3, pp. 694-701, 2007.

[17] Sengupta, S., Bhattacharya, S.: Formalization of
UML Diagrams and Consistency Verification: A Z
Notation Based Approach. Proceedings of India Software
Engineering Conference, pp. 151-52, 2008.

[18] Zafar, N. A.: Modeling and Formal Specification of
Automated Train Control System using Z Notation, IEEE
Multi-topic Conference (INMIC'06), pp. 438-43, 2006.

[19] Zafar, N. A., Khan, S. A., Araki, A.: Towards Safety
Properties of Moving Block Railway Interlocking System,
Int'l Journal of Innovative Computing, Information &
Control, 2012.

[20] Sohail, F., Zubairi, F., Sabir, N. Zafar, N. A.:
Designing Verifiable and Reusable Data Access Layer
Using Formal Methods and Design Patterns, International
Conference on Computer Modeling and Simulation, 2009.

[21] Zafar, N. A., Alhumaidan, F.: Scenarios Verification
in Sequence Diagram, International Conference on
Computer and Engineering Technology, Canada, 2103.

[22] Zafar, N. A.: Event-Action Based Model for
Identification and Formalization of Relations in UML
State Diagrams, Archives Des Sciences Journal, 65(4),
2012.

[23] Zafar, N. A., Alhumaidan, F.: Transformation of
Class Diagrams into Formal Specification, International
Journal Computer Science and Network Security, 11, 289-
95, 2011.

[24] Alhumaidan, F.:A Critical Analysis and Treatment
of Important UML Diagrams Enhancing Modeling Power,
Intelligent Information Management, 4(5), pp. 231-37,
2012.

[25] Spivey, J. M.: The Z Notation: A Reference Manual.
Englewood Cliffs NJ, Prentice-Hall, 1989.

[26] Meisels, I., Saaltink, M.: The Z/Eves Reference
Manual, Version 1.5, TR-97-5493-03d, ORA Canada,
1997.

Dr. Fahad M. Alhumaidan graduated from
University of Newcastle Upon Tyne, UK.
Currently, he is working as Assistant
Professor in Information System Department
at CCSIT. He is Vice Dean at College of
Computer Sciences and Information
Technology (CCSIT), at King Faisal
University, Saudi Arabia. He is also
Chairman of Computer Science Department.

He is responsible for chairing various technical and
administrative committees at the college. His research areas
include Software Engineering, Object-oriented Paradigm,
Integration of UML and Formal Methods, Business Process
Management, Workflow Systems, Soft aspects of Information
System, E-Business, Network & Communication. He has
contributed for various funded research projects and completed
successfully by publishing the results produced in international
journals and conferences proceedings.

Nazir A. Zafar was born in 1969 in Pakistan.
He received his M.Sc. (Math. in 1991), M.
Phil (Math. in 1993), and M.Sc. (Nucl. Engg.
in 1994) from Quaid-i-Azam University,
Pakistan. He was awarded PhD degree in
computer science from Kyushu University,
Japan in 2004.

Currently, he is working as Associate Professor at the College
of Computer Sciences and Information Technology (CCSIT),
King Faisal University (KF), Saudi Arabia. He is the founder
of various research groups in the area of software engineering
and formal methods. His current research interests are
modelling of systems using formal approaches, integration of
approaches, safety and security critical systems, etc. He is an
active member of Pakistan Mathematical Society. Dr. Zafar has
lectured at national and international level promoting use and
applications of formal methods at academic as well as at
industrial level. He has also administrative experience and
qualities. For example, he has worked as Dean, Faculty of
Information Technology, University of Central Punjab,
Pakistan. He has leaded various scientific committees related
to research and academic activities.

Int'l Conf. Foundations of Computer Science | FCS'13 | 197

http://portal.acm.org/author_page.cfm?id=81440601894&coll=DL&dl=ACM&trk=0&cfid=16978897&cftoken=72815154
http://portal.acm.org/author_page.cfm?id=81440623647&coll=DL&dl=ACM&trk=0&cfid=16978897&cftoken=72815154
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7203
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4301108
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4301108
http://www.springerlink.com/content/?Author=Huaikou+Miao
http://www.springerlink.com/content/?Author=Ling+Liu
http://www.springerlink.com/content/?Author=Li+Li
http://www.springerlink.com/content/978-3-540-00029-7/
http://www.springerlink.com/content/978-3-540-00029-7/
http://www.bibsonomy.org/author/Ismail
http://www.bibsonomy.org/author/Bolok
http://www.bibsonomy.org/author/Bolok
http://dl.acm.org/author_page.cfm?id=81339527159&coll=DL&dl=ACM&trk=0&cfid=56600855&cftoken=97932989
http://dl.acm.org/author_page.cfm?id=81100376793&coll=DL&dl=ACM&trk=0&cfid=56600855&cftoken=97932989
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:mB3voiENLucC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:mB3voiENLucC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&cstart=20&citation_for_view=i-SXw_0AAAAJ:_FxGoFyzp5QC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&cstart=20&citation_for_view=i-SXw_0AAAAJ:_FxGoFyzp5QC

