
SESSION

NOVEL SYSTEMS DESIGN AND APPLICATIONS +
POWER EFFICIENCY AND MANAGEMENT

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'13 | 1

2 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Abstract—With the rising demand of the already large cattle

industry, new techniques are being employed to aid in the

tracking and monitoring of cattle herds. The wireless monitoring

system described in this paper sets forth the framework for a

large scale monitoring system to aid in the health and wellbeing

of such herds. The system employs individual ear tags on each

cow that monitored important vital signs such as core

temperature, heart rate, and blood oxygen levels. Static access

points were used in the network to continually track individual

cattle movement as well as relay cattle health data back to the

farmer’s computer. This low power wireless system was

successfully constructed and tested with overall favorable results.

Sensor data was successfully sent back to the computer to be

displayed in a graphical user interface along with the positioning

information determined through triangulation for each cow.

Future alterations to the ear tags would provide a more reliable

product for marketable cattle monitoring systems.

Keywords- Bovine, Cattle, Ear Tag, Livestock Monitoring,

Triangulation, Vital Signs, Wireless Sensor Network, XBee, ZigBee

I. INTRODUCTION

In 2010, the U.S. consumed approximately 26.4 billion

pounds of beef, putting the retail equivalent value of the entire

beef industry around 74 billion U.S. dollars [1]. For this level

of consumption to be maintained, each cattle farmer must

maintain an average herd size of around 100 or more heads of

cattle [2]. Yet in 2010, due to factors such as bovine

respiratory disease and other illnesses, the industry also

suffered a significant loss of 1,234,500 cattle [3]. This results

in considerable economic costs due to antibiotic treatment,

losses due to death, and reduced herd performance.

II. RESEARCH OBJECTIVE

In order to offer farmers an efficient method of managing

their livestock from the comfort of their homes, this project

aims to employ a low power wireless sensor network to relay

health and location data from the herd of cattle back to the

farmer’s computer. Where a farmer may have difficulty

managing the herd 24 hours a day, the developed system

would be able to track and monitor the well-being of each cow

continually, and report all data back to a central PC. Proposed

sensors would monitor pulse rate, temperature, respiration,

and location information, in order to alert the farmers of any

abnormalities, such as cattle leaving the specified grazing

areas, early signs of illnesses, critical levels of body

temperature or heart rate, and many others concerns related to

the well-being of cattle.

III. FIVE-PHASE RESEARCH APPROACH

A. Phase 1

In order to develop a working knowledge of the problem

faced by farmers, research was done to lay out a basic method

for monitoring bovine vital signs and location, and then

relaying that information back to the farmers. As the first

phase in this project's five phase process, which guides the

research from hardware development through the

implementation stage, information on bovine health was

obtained through online articles, published papers, and

personal conversations with local farmers and animal science

professors. Using information gathered from these interviews

and articles, specific vital signs were chosen to be monitored

using sensors to detect the early signs of disease.

B. Phase 2

In the second phase of this project, the focus was on defining

device specifications and initial device selection. This includes

sensors, mounting equipment, microprocessors, wireless

transceivers, and a base station, all configured for low power

consumption. Several factors were considered throughout this

process, such as power management, hardware compatibility,

cost effectiveness, intrusion to the animal, and ease of overall

use.

C. Phase 3

The third phase of the project involved three simultaneous

tasks to build a prototype of the system that transmits data

from a cow through access points to a base station.

1) Development of mobile units and an ad hoc network

At the lowest level of the network, the wireless transceivers

on the cow ear tags serve as the mobile units in the network.

Together these mobile units form an ad hoc network through

mesh networking, which automatically finds the shortest route

to the nearest access point. The minimum distance routing

scheme reduces the transmission distance of each datagram,

which reduces noise and overall transmission errors in the

system. Each mobile unit collects sensor information and an

accompanying distance vector for the transceiver’s routing

Livestock Management System

James Foulkes
1
, Peter Tucker

2
, Mariflor Caronan

3
, Rebecca Curtis

4
, Leslie G. Parker

2
,

Chris Farnell
2
, Brett Sparkman

2
, Guoqing Zhou

2
, Scott C. Smith

2
, and Jingxian Wu

2

Department of Electrical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN
1

Department of Electrical Engineering, University of Arkansas, Fayetteville, AR
2

Department of Electrical Engineering, Northern Arizona University, Flagstaff, AZ
3

Department of Electrical & Computer Engineering, Missouri University of Science and Technology, Rolla, MO
4

foulkejw@rose-hulman.edu, p.n.tucker@gmail.com, mdc259@nau.edu, rcr2f@mst.edu, lgparker@uark.edu,

cfarnell@uark.edu, bsparkma@uark.edu, gzhou@uark.edu, smithsco@uark.edu, wuj@uark.edu

Int'l Conf. Embedded Systems and Applications | ESA'13 | 3

mailto:foulkejw@rose-hulman.edu
mailto:p.n.tucker@gmail.com
mailto:mdc259@nau.edu
mailto:rcr2f@mst.edu
mailto:lgparker@uark.edu
mailto:cfarnell@uark.edu
mailto:bsparkma@uark.edu
mailto:gzhou@uark.edu
mailto:smithsco@uark.edu
mailto:wuj@uark.edu

table to be framed with a small dedicated microprocessor, and

transmitted out through the transceiver.

2) Development of access points and static network

The second task involved designing and building the access

points to the basic service sets defined earlier as the ad hoc

network. These access points collect the sensor information

from the mobile units as defined through the ZigBee protocol

and then route it through the extended service set to the base

station. Again, each access point maintains a routing table

defined using a distance vector routing scheme that allows the

network to utilize the shortest route.

This process included a method for triangulation, which was

done through the process of cell splitting. By setting the

network up in this cellular fashion, the mobile units end up

between at least three of the receivers at any given time. This

allows for the towers to use signal strength measurements to

triangulate the signal.

3) Implementation of a Graphical User Interface

The third task involved configuring a computer as a base

station and building a graphical user interface (GUI). This

receives the data from each mobile unit, displays it to the user

in an easy to use format, and stores the data for use in a later

phase of the project.

D. Phase 4

Due to the large area and scale of some ranching operations

the extended service set must be completely composed of

wireless units requiring their own power sources. The fourth

phase of the project involved research and implementation of

power systems for both the mobile units and the access points.

Research was also done on energy production and storage

systems for regulation and distribution of power to th,e

transceivers and supporting components. An ideal power

system does not require any replacement by the farmer for at

least the lifetime of the cow, but the framework was set up for

a failsafe mechanism to alert the farmer if the unit was close to

failure or has experienced a power failure before the expected

lifetime.

E. Phase 5

The final phase of the project was developing algorithms for

data interpretation. This involved using the data from the

mobile units to interpret when something is out of the norm,

and alert the farmer. These alerts focus on issues such as cows

escaping from the fence and early signs of disease. This makes

the information easier to understand and use by making

qualitative results from quantitative data.

IV. BACKGROUND

A. Measuring Cow Vitals

Previously, cattle health has been determined by visually

assessing the cattle or a manual inspection by a veterinarian.

Due to the amount of demand for beef and dairy cattle, it is

essential for the farmer to have a quick and easy, as well as

efficient, means of monitoring their cattle. In recent years,

sensory devices have begun to be utilized to monitor cattle

vitals such as temperature, heart rate, and respiration, since

these have been determined to be the best indicators of early

disease.

1) Temperature

One sensory device used to measure the cow’s temperature

is called a FeverTag, which is a tympanic thermometer device

pinned to the ear with a probe inserted in the lower ear canal.

This device flashes an indicator light when the temperature is

greater than a set temperature such as 103.6°F [4]. Another

sensory device used commercially is the CorTemp bolus, a

large pill-like device, placed in a second stomach near the

heart called the reticulum to measure core body temperature

[5].

2) Heart Rate

Not only has the CorTemp bolus been used to measure core

body temperature, but it has also been used to measure heart

rate. This bolus has been designed to identify the beginning of

each pulse using a small waterproof microphone so that the

times between consecutive pulses can be determined and then

converted into a pulse rate [6]. Heart rate has also been

previously monitored using a Polar heart belt, which acquires

an animal’s heart vector using a standard set of electrodes.

This makes the Polar heart belt impractical for long term

usage [5].

3) Respiration

Not many sensors have been developed to directly measure

the respiration of cattle, but one device that has been used to

measure cattle respiration utilizes a thermistor attached to a

nose stud in the animal’s nostril. The temperature of the

thermistor increases with respect to the ambient temperature

as the animal exhales. The respiration rate can then be

calculated by recording the number of times per minute the

temperature rises and falls [7].

B. Tracking Unit Locations

The most common methods of guiding and tracking remote

systems are based on the idea of triangulation. Triangulation

is the process of determining the location of a point by

measuring the time difference of arrival of a signal to three

different receivers. Currently, the most common usage of a

triangulation like technology is in GPS systems, which

determine a position based on information from multiple

satellites.

V. SYSTEM SELECTION

A. Cattle Temperature

Multiple temperature sensors were considered for

measuring a cow’s core body temperature through the ear,

anus, or within a bolus. Due to the fact that the nearest

location from the ear tag to get a reading for the core body

temperature is the ear canal, a probe inserted at least two

inches into the ear was the most convenient and least invasive

method. The sensor chosen was similar to that used in the

previously mentioned FeverTag. It was imperative that this

probe be inserted into the lower ear canal deep enough for

consistent readings without creating a nuisance to the cow. To

prevent the probe from dislodging from the ear due to the

cow’s movement, the rigidity was strengthened by wrapping

wire around the probe’s length. In addition, the probe was

selected due to it having an adjustable resolution for obtaining

4 Int'l Conf. Embedded Systems and Applications | ESA'13 |

a more accurate temperature and a waterproof housing to

prevent contamination from the elements.

B. Reflective Pulse Oximeter

Low oxygen saturation of the hemoglobin or an abnormal

heart rate may be early indicators of bovine illness. A common

method of monitoring these vitals in humans is with a

transmissive pulse oximeter. It is typically placed on the finger

where it transmits light through the tissue, oscillating between

an infrared light-emitting diode (LED) and a red LED, to a

photo diode on the underside of the finger. Where the

changing absorption of light from a single LED will indicate

the pulsing of veins, two different wavelengths will be

absorbed differently due to the oxygen in the blood, enabling

the measurement of oxygen saturation by a light intensity

comparison. The only feasible tissue on cattle to place a

transmissive pulse oximeter would be the ear, however due to

the hair on the backside that can alter data, a reflective pulse

oximeter is necessary. The light from the LEDs is sent through

the surface of the skin, where light reflects from the superficial

vasculature back to the photo diode.

Figure 1 - Pulse Oximeter Schematic

The reflective pulse oximeter chosen featured a dual emitter

and a photo detector embedded in a small chip, less than a

centimeter squared in size and shown along with the sensing

circuit in Figure 1. Since the device was intended for being

used long term on a cow, the lower power and smaller size

was more convenient for the ear tag.

C. Environmental Humidity Sensor

Humidity negatively affects the signal strength, which

increased data loss in the communication between wireless

components. After reviewing different sensors that measure

outdoor temperature and humidity, a digital relative humidity

and temperature sensor was chosen. The humidity level

acquired on the farm can be used to examine the signal

strength dissipation. Also, the recorded temperature data

serves as a baseline for the cattle temperatures throughout the

day.

D. Solar Panel and LiPo Rider

To run a remote sensory network the end points have to run

off of a sustainable energy source since the nodes may not be

easily accessible on a regular basis. This requires the nodes to

incorporate a battery supply to sustain a level charge for the

circuitry, while also having a method for recharging the

batteries for extended operating durations to avoid unwanted

disruptions. To recharge the batteries on the cows’, solar

panels were chosen over piezo-electric energy generation

because solar power would give a predictable amount of

power throughout the day for each cow, whereas any type of

vibration or movement device would give off an unpredictable

amount of power for each cow. Solar power was determined

to be the only viable source of sustainable energy for the

access points due to the impractical nature of other options

such as wind power.

Figure 2 - Ear Tag Recharging Circuit

The solar panels on the ear tags were used to recharge small

lithium ion button cell batteries through the circuit designed

and shown above in Figure 2. The solar panels on the access

points, however, were used to charge the batteries through a

commercially available board called a LiPo Rider, which

allows larger batteries to be charged. Each of these circuits

allows the solar panels to run the transmitter directly in the

event that the batteries are drained, and maintain a regulated

voltage level.

E. XBee

 In order to reduce the impact on the cows’ normal activities,

it was decided that all the sensorial information would be

transmitted back to a central location through a wireless

network. Due to the various sizes of farms, this wireless link

could vary anywhere between a couple feet to a couple miles

and be effected by all sorts of weather conditions. The XBee

device, a wireless transceiver, was chosen because it works in

all these scenarios with a maximum operating radius of two

miles. XBees are also a good choice for this application

because they are physically small, slightly larger than a

quarter, and fit well within the space of an ear tag. The XBees

also have a maximum transmitting power of 67mW, which

makes them ideal for the low power endpoints of a remote

sensor network. The conservation of power by these devices

allows them to run in situations where they may not interact

with people more than twice a year when the cows are being

weighed and vaccinated. An added benefit of the XBee

devices is that they follow the ZigBee protocol and have the

U10A
MCP6004

+

-

OUT

3

R1 430K

C1 223C

2

SG

U10B
MCP6004

+

-

OUT

5

R2 2M

C2 682C

7

SG

6

U10C
MCP6004

+

-

OUT

10

R3 150K

C3 104C

8

SG

9

C4

106C

C5

104B

R4

51K
R5

51K

SG

R6

750K

4

ADC

V1

V1 = 3.3V
V2 = -3.3V

R7

100

IR RED

3.3V

3
1

4

External PPG Sensor

2

1

R8

200K

R9

200KC6

104M

C7

104C

C8

104C

U10D
MCP6004

+

-

OUT
14

13

12

3.3V

SG

3.3V

Int'l Conf. Embedded Systems and Applications | ESA'13 | 5

capability of setting up their own ad hoc networks, which

made networking simpler.

Among the Xbee devices available, the programmable

variant was chosen due to the sensor selection and special

network requirements. The selected temperature sensors were

one wire devices, which required the data collection to be

done through the additional microprocessor on the

programmable XBee devices. The ADC on this additional

microprocessor was also used to sample the waveforms from

the pulse oximeter’s analog circuitry and place it into a digital

frame.

VI. DESIGN AND IMPLEMENTATION

A. Communication Links

 As previously mentioned, XBee devices work off of a

ZigBee networking scheme that divides the mobile units in the

network into three main categories as determined by their

function in the network. These three categories under the

ZigBee protocol are the coordinator, router, and end device.

Due to the definition of these components in the ZigBee

protocol, the networks all followed the star topology layout,

and at the center of this layout is the network coordinator.

The network coordinator sets up the network and allows other

units to join the network assigning them network addresses

unique to the coordinator’s internal routing table.

The only links usually made with the coordinator directly are

through routers, which like coordinators never sleep. Routers

also act as the link between ad hoc networks of end devices

and the coordinator, relaying the data from each device to the

coordinator, and likewise from the coordinator to the end

devices.

End devices, however, do in fact have the ability to sleep for

periodic cycles and communicate during their uptime. These

end devices, the third part of the networking scheme, are the

outer most part of the star topology, and ideally communicate

through the routers to the coordinator or to each other.

B. Ear Tags

The main role of each ear tag, shown in Figure 3, was to

collect information from the cow’s vital sensors and relay

those readings back to the coordinator at the farmer’s

computer. The data collected by the microprocessor on the

programmable XBee was packaged together to send the

combined packet back to the coordinator.

Whereas the main focus of the end devices is to collect data

from the sensors and feed that information to the coordinator,

the end devices also had to interact with the routers, or access

points, so that the position of the cows could be triangulated.

This was done through a frame acknowledgement to an AT

request sent by an access point.

With large quantities of data being transmitted and received

by the XBee devices, power management became an issue of

great importance. To reduce the power consumption, the cows

would be sampled only a few times an hour, during which

time the XBees would be on. During the rest of the hour the

XBee devices could be put in a sleep cycle so that the battery

power would be conserved.

Figure 3 - Ear Tag Diagram

C. Access Points

Generally, the purpose of a router is to serve as a switch or

a range extender for a network so that the devices can

communicate more effectively. Yet, in this network

application, the access points, which acted as routers, were

placed in fixed locations and used to triangulate the cows’

positions through a maintained line of sight transmission.

Each of these routers serves as an access point to the basic

service set by routing the sensor information back to the

coordinator through the shortest transmission path, so that a

connection is always maintained between the cow and the

coordinator. These access points were intended to be laid out

in a hexagonal format, as in Figure 4, to maintain the

possibility for at least three connections at all times and aid in

the setup of large triangulation schemes. The setup of the

network in this fashion also allows for the distance attenuation

curve to be generated dynamically at the beginning of each

triangulation routine. Instead, for the scope of this project the

main access point was built with a temperature and humidity

sensor to add a loss term to the propagation loss model when

building the reference curve.

Figure 4 - Network Layout

D. Base Station

As the coordinator, the base station at the farmer’s

computer creates and hosts the network, which initially entails

assigning every member of the network a 16-bit network

address that could be used to create packet routes through the

network. This position in the star topology doesn’t have to be

6 Int'l Conf. Embedded Systems and Applications | ESA'13 |

filled by a programmable XBee, since the serial

communication with the base computer could parse the frame

and pull out the appropriate data packets. For the sake of

speed, a programmable XBee was used to print out the values

associated with each part of the data packet to the serial port

along with a text header that could be parsed out as the values

were read into the computer. As part of setting up the

network, the coordinator sends the main access point the

hardware addresses of the cows within the pasture, so that the

main access point can then coordinate the AT-Command

requests for the received signal strength from each of the

routers to each of the cows.

E. Tracking the Cattle

When installing this system on a farm, the GPS locations of

each access point are taken. Due to the fact that GPS

coordinates don’t account for the curvature of the earth,

standard triangulation techniques give skewed results when

using GPS coordinates directly. For this reason the Universal

Transverse Mercator coordinate system is used to give a

system of projected planar coordinates in terms of eastings and

northings, which can be easily used to calculate the correct

triangulated position. This conversion is done by the

computer when entering the GPS coordinates into the

computer as illustrated in Figure 5 below.

Figure 5 - Fence Parameter Setup

The equations used to compute the location of the cows in

this project were derived by first making the assumption that

around each of the access points was a sphere that had a radius

determined by the strength of the signal it received. This

distance is found empirically from a reference curve

calculated during a calibration routine, as shown in Figure 6.

By solving the equations of each sphere for the point of

intersection, the location of the common cow could be

determined.

General form:

Figure 6 - Propagation Attenuation Curve

Inclusion of three circles, as height is not a factor:

(1)

(2)

(3)

Subtract eq. 2 and 3 from 1:

Expand and collect terms:

 (4)

(5)

Substitute in for x:

 (

)

 (

) (

)

Distance

Int'l Conf. Embedded Systems and Applications | ESA'13 | 7

Solve for y:

Substitute solution for y into equation for x:

This position is then logged in the computer and saved so that

the interactions of sick cattle can be tracked back to determine

how the disease has spread and which cattle may be affected

by the illness.

F. Power Supply

When defining the battery supply required by each member

in the network, several key factors had to be taken into

account. Among these factors were relative network usage by

each of the network members as well as the availability to

renewable energy. For example, the access points were not

constrained by size or weight, so they were free to have larger

batteries and solar panels for recharging the batteries. The ear

tags, however, were constrained by both size and weight

requirements so that they would not cause ear drop in the

cattle, which presents false signs of depression. Also, the

solar panel chosen to recharge the batteries had to be powerful

enough to supply the required current, but had to fit on the

front of a standard ear tag to prevent excessive damage.

Access points handle the majority of the traffic in the

network as they coordinate the AT requests required for

triangulation as well as serve as the link between the end

devices and the coordinator. For this reason, the batteries in

the access points were chosen to meet the daily requirements

for transmission in the event that the solar panels failed to

recharge the battery at all. The value used to determine the

relative transmissions for the day was calculated from the

rated transmission power of the XBee devices and the total

number of projected transmissions in a lossy environment with

an equivalent projected error rate. As a result of having a

larger battery to fill this demand, a larger solar panel was

chosen to charge the battery through the LiPo rider board.

 In addition to the ear tags being constrained by size and

weight, they also sent and received fewer packets than the

access points individually. As a direct result of this, the

batteries could be smaller and therefore lighter weight. Yet,

by having a smaller battery, the circuit has a smaller reserved

power supply and relies more heavily on the ability for the

batteries to be recharged periodically. A solar panel, being the

most portable and reliable method of recharging the battery, is

still limited by the need for sunlight to create current flow,

which cannot be controlled on a cow that moves into shade to

cool off. For this reason a balance was attempted to be made

between the daily demand for transmissions by the ear tags

and the amount of average solar energy projected to be

harvested during the daylight hours.

G. Software Integration

The Graphical User Interface (GUI) provides the farmer an

easy to use method of viewing the statistics of the herd and

logging the data along with additional information pertaining

to symptoms and treatments regarding the cattle.

1) Live Data Display

As data is read into the GUI it is displayed on a front panel

with each cow’s position in the field as shown in Figure 7. A

scrolling capability is provided to display each cow’s most

recent statistics in the table above the field, as also seen in

Figure 7. This function can also be accessed by moving the

cursor over the desired cow. By clicking on each cow, the

individual statistics and history are displayed in a new window

as shown in Figure 8.

In the front panel, when a cow’s vital falls outside of the

norm, the color of the corresponding dot changes from green

to yellow, representing the cow’s current status and warning

the user of possible ailment. Similarly, a cow’s status color

will change to red and send an alert to the user when its

condition is critical and needs to be manually inspected for

illness.

Figure 7 - Herd Monitoring Window

In the case that more than one cow’s vitals are falling

outside the norm, the GUI enables the user to track the history

of the cows’ movements. This could help determine possible

points of contamination such as a similar watering hole or

food source.

2) Data Logging

In order to provide a useful account of a cow’s medical

history, vitals are saved hourly for a seven day period. All

proceeding vitals measured and recorded have a daily average

going back for three months. Along with each individual

cow’s information, an average of the entire herd is recorded in

a similar method. Saving the herd’s average vitals allows the

user to compare that of the individual to a norm of others in a

similar environment, in addition to comparing cow

temperatures with the corresponding outdoor temperature as

illustrated in Figure 8.

Many situations may be presented where the farmer has a

need to share the data he has logged in the program with

others that don’t have access to the cow’s history. For

instance, when the farmer interacts with a veternarian or a

member of the Center for Disease Control, there is a method

for printing out the health data associated with each cow as

well as where the cows have been. This data is presented in

an easy to read format that could also be given to buyers upon

8 Int'l Conf. Embedded Systems and Applications | ESA'13 |

purchase of the cattle to ensure that the health information can

be tracked in a responsible manner.

Figure 8 - Individual Cow Statistics

VII. RESULTS AND DISCUSSION

Overall, the system worked as intended, although some

alterations could be made for improvement. The tympanic

temperature sensor gave accurate and consistent readings

through all tests. However, when tested in the field on actual

cows, the probes tended to fall out of the ear canal easily due

to their unpredicted and excessive ear movements. Future

models should incorporate thinner, longer, and stiffer probes

to prevent dislodging due to ear movement. Probe length

should change per individual cow due to differing ear sizes

and tag placement.

The pulse oximetry sensor on the ear tags went through

several stages of development. A pulse oximeter was built

with 5 millimeter LEDs and a similar sized photodiode, which

was run through a basic current-to-voltage converter and

single stage low pass filter to give a recognizable pulse

waveform for both light frequencies to be sampled by the

microprocessor; however, this circuitry would have had to

have a multiple stage filter to add to the already large LED

diode combination. For this reason a smaller LED diode

integrated sensor was obtained from APMKorea to reduce the

overall footprint of the device. This sensor supplied a signal

to a four stage op-amp filter supplied along with the device, as

shown in Figure 1. Despite much debugging and redesigning

the circuitry accompanying the device in an attempt to better

tune the filtered signal, the sensor failed to yield a consistently

recognizable pulse waveform.

Field tests were initially done on creating an empirical

propagation loss model to be utilized in triangulating the

location of the ear tags. This test consisted of creating a curve

from received signal strength at known distances from the

receiver and then fitting this data with a logarithmic curve as

shown in Figure 6. This allowed for future alteration of the

curve due to other loss factors such as changes in relative

humidity. When the data gathered from the received signal

strengths were gathered from the access points, the fitted

curve was interpolated to find the distance that corresponded

to the respective signal strength. By this method the value for

the relative distance between the ear tag and the access point

was determined and then used in the triangulation equations in

Section VI.E to determine the actual location of the ear tag.

This process was done during testing at a higher resolution by

using an average of data from combinations of three access

points from a set of five unique access points. Based on this

test the averaged result gave us the location of the ear tag

within a range less than a foot.

VIII. FUTURE DIRECTION AND CONCLUSION

To make this product more useful to farmers, other sensors

could also be incorporated into the monitoring network to help

track additional factors not considered in the scope of this

project. For example, an XBee could be incorporated into the

farmer’s scale to track individual cattle growth through the

early stages of its life. RFID chips could also be integrated

into the system for additional benefits. In many areas, RFID

tags are already utilized to track cattle through the transactions

and transfers between farms. The incorporation of RFID tags

in this network device would allow the health information of

individual cows to follow them from farm to farm. This

would allow all health information to be uploaded and

tabulated in a large database that could aid in the tracking of

bovine diseases throughout the cattle industry and improve the

cattle vaccination process.

This wireless cattle monitoring project proved to be a viable

proof of concept design that could aid in the tracking of health

in cattle herds. Used by both farmers and researchers, a

system based on this networking scheme could be utilized to

more fully understand the health and natural patterns

associated with cattle and many other species. This could one

day be used as a vital link in a system of tracking and

prevention of disease among livestock on a national level.

IX. REFERENCES

[1] (2012, April 25). U.S. Beef and Cattle Industry:

Background statistics and Information [Online]. Available:

http://www.ers.usda.gov/news/BSECoverage.htm

[2] (2009, Sept. 28). Cattle: Background [Online]. Available:

http://www.ers.usda.gov/Briefing/Cattle/Background.htm

[3] (2011, May 12). Cattle Death Loss [Online]. Available:

http://www.usda.mannlib.cornell.ude/MannUsda/viewDoc

umentInfo.do?documentID=1625

[4] J. T. Richeson et al., “Evaluation of an Ear-Mounted

Tympanic Thermometer Device for Bovine Respiratory

Disease Diagnosis,” Arkansas Animal Science

Department, Fayetteville, AR, 2011, pp. 40-42.

[5] K. Smith et al., “An Integrated Cattle Health Monitoring

System,” in EMBS Annual International Conference, NY,

2006, pp. 4659-4662.

[6] A. Martinez et al., “ Ingestible Pill for Heart Rate and Core

Temperature Measurement in Cattle,” in Engineering in

Medicine and Biology Society Annual International

Conference, New York City, NY, 2006, pp. 3190-3193.

[7] L. Nagl et al., “Wearable Sensor System for Wireless

State-of-Health Determination in Cattle,” in Engineering in

Medicine and Biology Society 25th Annual International

Conference, Cancun, MX, 2003, pp. 3012-3015.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 9

http://www.ers.usda.gov/news/BSECoverage.htm
http://www.ers.usda.gov/Briefing/Cattle/Background.htm
http://www.usda.mannlib.cornell.ude/MannUsda/viewDocumentInfo.do?documentID=1625
http://www.usda.mannlib.cornell.ude/MannUsda/viewDocumentInfo.do?documentID=1625

An Emergency Medical Service in IPv6 Network
Environment

Tseng-Yi Chen1, Hsin-Wen Wei2, Ying-Jie Chen1, Wei-Kuan Shih1

1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
2 Department of Information Management, Tamkang University, Taipei, Taiwan

Abstract - Internet of Things (IoT) has been widely studied
over the past decade. Recently, many research results of IoT,
related to emergency system, smart building and medical
system, are published. The key research issue of IoT
applications is the ability to interact with physical world
through computation, communication, and machine control.
The emergency medical service is a very suitable application
for IoT environment. Hence, we develop an emergency
medical service based on IPv6 network environment.
Emergency medical service is constructed by the biosensors,
the healthcare information system and the notification
component. The emergency medical service will process raw
biological sensing data in bio-sensor module and show
system’s end-user the meaningful bio-information to notify
them. In advance, medical service system also adapts the
features of a speaker module. The role of the speaker module
is regarded as a health alarm device. The emergency medical
service can diagnose user’s health according to the pulse
information collected from biological sensor. Alert sound will
be broadcasted by speaker module, if the emergency medical
service detects abnormal situation from the sensing data.
After alert sound is played, the speaker plays audio of each
step according the standard first aid procedures, to tell
peoples who are near to patients what to do. So, patients can
obtain first aid operation from the near person to have their
life saved. One additional problem need to be studied is the
devices control. Most medical devices need to be connected to
the internet. However, the number of IPv4 addresses is not
enough. It is impossible to allocate IPv4 address to all
wearable medical devices. Hence, we introduce IPv6 stack
into the medical devices in order to realize the machine to
machine (M2M) conception of the internet environment.

Keywords: IPv6, emergency system, wearable sensor,
healthcare system.

1 Introduction
 The research of the physical sensor device has garnered
increasing attention owing to its technical importance in
widespread applications, such as monitoring and surveillance
in the military and biological detection [3,4]. Two critical
issues for the development of sensor systems are the construct
of innovative application and the solution of machine to

machine communication. In this paper, we develop an
innovative emergency medical service system. Our medical
service system contains three parts: hardware, software and
cloud. This medical service system integrates biosensor and
speaker module into the hardware platform. The medical
diagnosis service is constructed in cloud platform and the
medical service application is developed on Android system.
Our medical service system provides online health diagnosing
service and real-time condition feedback by the medical
device. If user is in the emergency status, the medical system
will notify the wearable device and the wearable device will
help people who are near the patient to operate basic first aid
guided by speaker module when the monitored person pass
out.

 Sensor applications originally entail components that
interact with each other through complex network protocol.
Hence, proper IP protocol can reduce the problem introduced
by complex network protocol. Therefore, in this research, we
also port IPv6 stack [1,2] to wearable medical device. With
the help of the IPv6 stack, the medical device has the ability
to communicate with handheld device or cloud service server
via Internet environment.

 In summary, this paper has two contributions in
technical and research aspect.

 Technical: In this research, we propose an innovative
medical service application. The application can diagnose the
monitored people’s status according to sensing information
from the biosensors. This system also gives a feedback to
monitored people according to the result of diagnosis.

 Research: We port IPv6 stack to medical service device.
Based on IPv6 stack, we also develop a medical service
system on these devices. Therefore, all Biosensors connect to
medical service system through IPv6 Protocol. The healthcare
application is developed on Android device and can control
the medical device through Internet protocol. The
communication between application and medical device is the
machine to machine concept and is the important research
issue for Internet of Things.

10 Int'l Conf. Embedded Systems and Applications | ESA'13 |

2 Related work
 Traditionally, many researches put efforts on setting up
a monitoring system inside the buildings. The research [6]
reports their experience on the implementation, deployment,
and operation of an indoor environmental monitoring
network using WSN called SensorScope. To make the sensor
nodes having long lifespan and working more efficient, some
researchers [7] propose a clustering-based network specific
for building monitoring. They also show that WSN is
conducive to build environment monitoring system. Some
applications that use WSNs for smart building are mainly for
the energy saving purpose [8].

 Nowadays, the deployment of a building control system
is getting complicated due to different communication
standards exist. In general, wireless sensor networks do not
equip IP protocol in their system; therefore, different network
routing algorithms are deployed. So, to connect their
application system into IP-based internet requires the
establishment of protocol translation stack at the boundary
between internet and WSN. The translation stack transforms
communication packet between non-IP packets of the WSN
group and the IP packets in internet. The translation stack
always stores a database of the local sensor node id and the
outgoing TCP/IP port. The system need to inquire the
database for delivering the message to destination machine
when it receives a control message and sends a collection
data to sink system.

 There are also some solutions for solving the problem
that variety of WSN standards are used for monitoring and
saving energy in smart buildings. Some researchers [9]
integrate WSNs with different service communication into a
‘knowledge and information services’ platform to support
energy management feature, which can be accessed via a
Web service to support inhabitant actions for reducing energy
demand. In [10], the authors not only present a web services-
based approach to integrate resource constrained sensor and
actuator nodes into wireless sensor networks, but also
implement an API to access services on sensor nodes. Their
APT follows the architectural style of representational state
transfer (REST). All research mentioned above do not take
account of IP convenience for wireless sensor network
applications.

 Therefore, many research and standard groups [5, 15, 16]
try to investigate and define the standard of IP stack in
wireless sensor network. Sensor networks with IP support
would eliminate the difference between WSN local area
network (LAN) and Internet wide area network (WAN).
Some research has been proposed in the IP-based WSN, e.g.
mechanisms, security, and protocols. The concept of IP stack
for smart object is proposed by IP for Smart Object (IPSO)
Alliance [11] in 2008. After the IPSO concept is proposed,
IP-based sensor network have been implemented [12, 13, 14]
recently. These works include monitoring systems, healthcare

applications and smart buildings. Those applications are
based on IP transmission protocol. But they do not consider
the issue that IP addresses is not enough. IPv6 protocol can
solve this problem.

 There are many WSN OS can be selected for porting,
those are TinyOS, LiteOS, and Contiki. The most popular OS
for WSN is TinyOS. TinyOS [17] is based on an event-driven
programing model. TinyOS signals the event handler to deal
the event when external trigger occurs. However, the
programming language for TinyOS, that is NesC, is not
commonly used by general programmer. For this reason, we
choose Contiki OS as the operating system on our target
platform.

 Contiki OS[18] is a small, open source and multitasking
operating system. It is designed for embedded systems with
small memory size. Contiki OS only consumes 2 kilobytes of
RAM and 40 kilobytes of ROM. Contiki OS is also an event-
driven kernel and on top of which application programs is
dynamically loaded and unloaded at runtime. Figure 5 shows
the architecture of the Contiki OS.

Fig. 1. Contiki system architecture

 Contiki’s kernel is a light-weight kernel. Contiki OS can
transmit the sensing data or forwarding message through
communication service. The communication service is an
important service in safe building application. We build up
TCP/IP stack based on the service. After choosing the
operating system, this research uses uIP stack as the
communication stack in WSN application.

 The uIP [19] is an open source TCP/IP stack for
wireless sensor object. It is widely used in the embedded
systems and several platforms. It also provide IPv6 stack for
wireless sensor device. After survey of embedded TCP/IP
stack, we choose uIP to build on the target system. It is a light
weight TCP/IP protocol in WSN applications.

 Hence, we propose an integrated IoT application
solution based on concept of IP-based enable WSN that
includes porting uIPv6 stack to sensor object, sensor

Int'l Conf. Embedded Systems and Applications | ESA'13 | 11

information management system development, and speak
module integration for application of escaping from disaster
environment.

3 System design
 The medical service system is composed of hardware
platform and software stack. This section introduces the
hardware and software component in emergency medical
service system.

3.1 System architecture

Fig. 2. Medical service system architecture

 Figure 2 shows the system architecture of our
emergency medical service system. We can see that our
medical service system is composed of wearable health
monitor device, medical service system in cloud platform and
healthcare application on handheld device. The medical
device system also integrates GPS module. The GPS module
can locate the location of the monitored people. If the
monitored people pass out, the medical service system will
activate the GPS module on medical device immediately and
the GPS module reports patient’s location to medical service
system. The medical service system will calculate a shortest
path from hospital to patient’s location and find the hospital
that is nearest to the patient. Then, the medical service system
sends the calculated path to the hospital to save the time for
picking up the patient. The hospital system integration is in
our future work

3.2 System Component Introduction

 Hardware platform: The emergency medical service
system is constructed by Piezo Buzzer sensor, temperature
sensor, Speech Synthesizer Bee speaker module and ARM-
based main board platform.

 The Piezo Buzzer sensor is driven by square waves. It is
cheaper than other pulse sensor. However, the Piezo Buzzer
sensor will generate more noise in pulse detection. Hence, our
medical system employs a suitable noise filtering algorithm to

make pattern of pulse detection become normal. The speaker
module used in our system is Speech Synthesizer Bee. It is
pin-compatible with the Xbee and can be easily plugged into
the sensor platform. This module is connected with Octopus
II platform through UART interface.

 Software stack: Our software stack is composed of
system kernel, library layer and application level. We modify
the system kernel in Linux in order to integrate some
biosensors into embedded medical system. We also port IPv6
stack into embedded medical device. In application level, we
develop a healthcare app on Android system. The healthcare
apps can directly communicate with embedded medical
device through IPv6 network.

4 The emergency medical service
 The emergency medical service system must include
wearable medical device integration, medical service
deployment on cloud platform and application designed on
mobile device, and the emergency medical service system
based on IPv6 network.

4.1 Wearable monitor device

 The wearable monitor device is combined with three
components: biosensors, speaker module and ARM-based
main board. The biosensors are connected to ARM-based
main board with UART and IIC protocol. The biosensors
include Piezo Buzzer sensor, temperature sensor and
pressure sensor. These biosensors can detect the biological
information for human beings. The wearable monitor device
will send the detected biological information to medical
service implemented on cloud platform. The speaker module
is integrated with ARM-based main board through UART
interface. The speaker module can play alert sound to help
the monitored people to realize their health condition.

4.2 Medical service on cloud

 We deploy the noise filtering algorithm and medical
diagnosis system on cloud platform. The noise filtering
algorithm helps our medical service system adjusting and
correcting the biological information detected by biosensors.
The noise filtering algorithm can help our medical diagnosis
system to get more precision diagnosis. If the user is in bad
health condition, the medical service sends alert to wearable
device and the device notify the user the current situation by
speaker. If the monitored people pass out, the medical
service will send the first aid procedure step by step to
wearable monitor device and also delivers the path
information between the patient’s location and the nearest
hospital

4.3 Application designs

 The application is developed on Android system. The
functions of our application include real-time pulse data

12 Int'l Conf. Embedded Systems and Applications | ESA'13 |

monitor, health condition in history view and the wearable
monitor device system configuration. The application
communicates with the wearable monitor device and medical
service platform through IPv6 stack

5 System demonstration
 First, we describe the application scenario of our
medical service system. Then, our demonstration will show
the wearable monitor device with execution result, the
medical service system, and the healthcare application.

5.1 Application scenario

 Here are two demo cases in our demo scenario

5.1.1 The wearable monitor device could save
patient’s life.

 The user needs to wear the medical device, such that
the wearable medical device can save his life when he passes
out and notify other people around the patient by speaker
module in wearable device. Note that, the medical device is
integrated with a speaker module and can plays first aid
operation step by step when the user is in the emergency
status.

5.1.2 The medical service system can conserve time
to hospital.

 Our wearable device equips a GPS module. Therefore,
the medical system can send the location of the patient to the
ambulance as soon as possible

5.2 System evaluation

5.2.1 Health monitor platform

 Figure 3 shows the health monitor platform .The
wearable monitor device could detect the status of people’s
pulse, temperature and pressure. We also integrate a speaker
module into the wearable device. And the wearable device
will sends the biological information of the user to the
medical service platform and the healthcare application.

Fig. 3. The wearable monitor device

5.2.2 Medical service on cloud

 We deploy our medical service on cloud platform. The
medical service includes noise filtering in biological data
sensing, ECG information presentation and medical
diagnosis. Our medical service also could give user feedback
about their health condition. Figure 4 shows our medical
service system. The server display last ten records of pulse
detection and shows the real-time biological information of
the GUI lefthand side. User can query specific history
information of the GUI righthand side

Fig. 4. The medical service on cloud platform

5.2.3 Healthcare application

Fig. 5. Healthcare application demonstration

 We also develop a mobile application on Android
system. Users can monitor real-timeEGC information in

Int'l Conf. Embedded Systems and Applications | ESA'13 | 13

application and change the view of the history data list. The
application also provides the configuration of the wearable
device system. All of the information communication in the
application is on the IPv6 network. Figure 4 shows our
healthcare application on Android system.

6 Conclusion
 Handheld devices become indispensable equipment in
the daily life of the people. Hence, we propose a complete
medical service system. The medical service system includes
wearable monitor device, medical system on cloud and
healthcare application. And the medical service system is
also built in IPv6 network environment. The medical service
integrate speaker module to provide feedback information
from medical service system. This is an innovative
application in biological information system.

7 Acknowledgement
 We would like to thank the National Science Council of the
Republic of China (Taiwan) for financial support of this
research under contract numbers NSC 101-2221-E-007-128-
MY2, NSC 101-2219-E-007-007 and NSC 101-2221-E-032-
067.

8 Reference
[1] S. Deering and R. Hinden, "Internet Protocol, version 6
(IPv6) specification," RFC 2460, 1998

[2] Adam Dunkels, "Full TCP/IP for 8-bit architectures," in
Proceedings of the 1st international conference on Mobile
systems, applications and services, MobiSys’03, pages 85-98,
2003

[3] I Lee, O Sokolsky. "Medical Cyber Physical Systems",
47th ACM/IEEE Design Automation Conference (DAC), pp.
743-748, 2010

[4] S Kannan, "Wheats: A Wearable Personal Healthcare
and Emergency Alert and Tracking System", European
Jounal of Scinetific Research, Vol 85 No. 3, pp 382-393, Sep.
2012.

[5] G. Montenegro and N. Kushalnagar, "Transmission of
IPv6 Packets over IEEE 802.15.4 Networks", draft-ietf-
6lowpan-format-01, Internet-Draft, work in progress, October
2005

[6] Schmid Thomas, Dubois-Ferrière Henri and Vetterli
Martin, "SensorScope: Experiences with a Wireless Building
Monitoring Sensor Network," Workshop on Real-World
Wireless Sensor Networks (REALWSN'05), Stockholm, June
2005

[7] Qifen Dong, Li Yu, Huanjia Lu, Zhen Hong, Yourong
Chen, "Design of Building Monitoring Systems Based on
Wireless Sensor Networks," Wireless Sensor Network, Vol.2
No.9, PP.703-709, September 2010

[8] Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob
Lyles, Michael Wei and Thomas Weng, "Occupancy-Driven
Energy Management for Smart Building Automation,"
Proceedings of the 2nd ACM Workshop on Embedded
Sensing Systems for Energy- Efficiency in Building, pp. 1-6,
2010

[9] Hanne Grindvoll, Ovidiu Vermesan, Tracey Crosbie,
Roy Bahr, Nashwan Dawood and Gian Marco Revel, "A
wireless sensor network for intelligent building energy
management based on multi communication standards – a
case study", ITcon Vol. 17, pg. 43-62, 2012

[10] Lars Schor, Philipp Sommer and Roger Wattenhofer,
"Towards a Zero-Configuration Wireless Sensor Network
Architecture for Smart Buildings," Proceedings of the First
ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings, pp. 31-36, 2009.

[11] A. Dunkels and J. Vasseur. "IP for smart objects
alliance.", Internet Protocol for Smart Objects (IPSO)
Alliance White paper No.2, September 2008.

[12] M. Durvy, J. Abeill´e, P. Wetterwald, C. O’Flynn, B.
Leverett, E. Gnoske, M. Vidales, G. Mulligan, N. Tsiftes, N.
Finne, and A Dunkels. "Making Sensor Networks IPv6
Ready." In Proceedings of the 6th ACM conference on
Embedded network sensor systems, pp. 421-422, 2008.

[13] J. Hui and D. Culler. "IP is Dead, Long Live IP for
Wireless Sensor Networks." In Proceedings of the 6th
international Conference on Embedded Networked Sensor
Systems, Raleigh, North Carolina, USA, November 2008.

[14] B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao.
"Tiny web services: design and implementation of
interoperable and evolvable sensor networks." In Proceedings
of the 6th ACM conference on Embedded network sensor
systems, pp. 253-266, 2008

[15] IETF working group 6lowpan, "IPv6 over Low power
WPAN (6lowpan)", Available:
http://www.ietf.org/html.charters/6lowp ancharter.html

[16] Adam Dunkels, "The Contiki Operating System 2.x",
Available :http://www.sics.se/~bg/telos/html/

[17] Philip Levis, Sam Madden, Joseph Polastre, Robert
Szewczyk, Kamin Whitehouse, Alec Woo, David Gay, Jason
Hill, Matt Welsh, Eric Brewer, and David Culler. "TinyOS:
An operating system for wireless sensor networks". In W.

14 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Weber, J. Rabaey, and E. Aarts, editors, Ambient Intelligence.
Springer-Verlag, New York, NY, 2004.

[18] Dunkels A., Björn Grönvall and Thiemo Voigt. "Contiki
- a lightweight and flexible operating system for tiny
networked sensors." In LCN ’04, pages 455– 462,
Washington, DC, USA, 2004. IEEE Computer Society.

[19] Adam Dunkels, "uIP - A Free Small TCP/IP Stack,"
2002. http://www.chuandong.com/cdbbs/upload/2007-
10/11/20071011951453508.pdf

Int'l Conf. Embedded Systems and Applications | ESA'13 | 15

Design of a FPGA-based Virtual Bus Interface System for

Reducing IOs in Hardware-in-the-Loop (HIL) Real-time

Simulation

K. Strell, D. Mackellar, and Y. Jung

Electrical and Computer Engineering, Gannon University, Erie, PA, USA

Abstract - The complex embedded systems of locomotives

require a vast amount of the Hardware-in-the-Loop (HIL)

testing before manufacturing. Various simulation efforts are

required to commit testing of the target embedded systems.

Therefore, development of the most effective systems is

necessary for efficient and accurate verification of the

embedded systems. Since most of the verification is complete

on the software, simulator seldom uses behaviors of IO

operations, which are critical in real-time applications

including embedded systems for locomotives. This paper

proposes a bus interface system to replacing the existing

massive IO cards in an embedded system integrated in a

locomotive simulator for providing reconfigurable extension

while maintaining required IO specifications including IO

access speed and signal fidelity. The developed bus interface

system is integrated to a modified Modbus (FEBus) and the

main simulator computer. The bus interface system is

implemented with FPGA including the NIOS II processor core

with associated other IP cores. In order to evaluate capability

of the HIL simulation with the developed system, a couple of

interface protocols, such as PCI over a PMC connection and

Gigabit Ethernet UDP/IP, are thoroughly tested.

Keywords: bus interface system, hardware-in-the-loop

simulation, real-time simulation

1 Introduction

 A control system of a contemporary locomotive

comprises of heterogeneous embedded systems that

communicate with each other to accomplish the desired

complexity and accuracy for concurrently driving numerous

actuators on the locomotive. The employed actuators are

ranged from power electronic circuits to display screens. The

actuators are required for sharing data between the embedded

systems integrated on the locomotive to operate the desired

functions.

The interface between the embedded systems is a means

for efficient control and user interaction. However, it also

increases the complexity of the system verification. In

particular, error propagation at the system level verification is

significant because an error at the system level could be often

influenced by multiple components in its subsystems. Thus,

inter and intra function verifications via the interface are

necessary for verification of the embedded systems [1].

Given the complexity of the embedded systems, HIL

simulators are the most efficient means of validating the

hardware and software of these systems. However application

specific simulators such as [2] and [3] would require an

infeasible number of simulators to cover all of the embedded

systems and would make it extremely difficult to simulate the

systems together. Therefore in the locomotive simulators used

currently the embedded systems in question become the UUTs

and the other pieces of the locomotive are simulated in

software with electrical signals interfacing the physical

components to the modeled components [4].

In order to bear such increasing complexity at the system

level verification, the simulators are required to cover the

entire embedded systems under the same or compatible

environment. In particular, our target system, a locomotive,

comprises various heterogeneous embedded systems that are

integrated through several partitioned interface hardware

systems. Furthermore, the number of components employed

in each subsystem proportionally raises the complexity and

cost of the simulations.

Building a simulator is a daunting task in terms of its

development time and cost. Therefore, including application

specific features into a simulator is not preferable.

Consequently, one of the best solutions to this issue is to

maintain the simulator’s capability with little or no

changeability. This was evident in the first attempt at

reducing IO, the Slim Sim in which the main modified

Modbus (FEBus) device, the Consolidated Input Output (CIO)

unit was removed completely. This yielded a simulator with

reduced IO but also reduced functionality.

After the full limitations of the Slim Sim were understood

there stood two distinct paths that could be taken to obtain the

desired IO reduction while also maintaining the testing

integrity. Both of the options involved removing at least part

of the FEBus devices in the simulators. The first option was

to virtualize the entire FEBus device so the control software

would be run on a modeled device [5]. The second option

would be to use a bus interface card [6] to mimic the IO cards

on the FEBus of the CIO leaving the processing card intact to

run the control software.

Section 2 describes the architecture and operation of the bus

interface system. Section 3 expresses evaluation of the bus

interface system with the simulation results and analysis of

the simulation results. The conclusions and future work are

depicted in Section 4.

16 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Figure 1. A Block Diagram of the FPGA-based Virtual Bus

Interface System

2 Architecture of the Virtual Bus

Interface System

 As addressed in the previous section, the ―Slim Sim‖

was created by eliminating the CIO unit. The SlimSim forces

the control system on the locomotive to run in a reduced

mode, which recognizes the CIO unit in a disabled state. The

reduced mode in the simulator prevents some components

from simulating at the component level. The simulator,

however, retains its systems level simulation capability.

More specifically, the simulator yields the ability to perform a

full HIL simulation with a reduced cost if the IO portion of

the CIO unit is removed but the processing card is remained.

 The FEBus interface card, shown in Figure 1 as a block

diagram, is composed of four major components: the FEBus

interface, dual-ported RAM, simulator protocol, and the

control circuitry and software. The FEBus interface is

responsible for responding to the FEBus master, reading and

writing the RAM when it is instructed. The simulator

protocol, either the PCI interface or UDP Ethernet, is the data

manager for the simulator side. It moves data according to IO

point, writing outputs from the simulator into the RAM and

reading inputs to the simulator from the FEBus data in RAM.

The RAM is used to hold all the data for the IO points that

would be controlled using the IO cards in a full HIL setup.

The control circuitry and software consists of the NIOS II

processor running software to manage the DMA moving data

to and from the simulator protocol. In addition, it runs the

software required to operate the simulator protocol, either a

TCP/IP stack for UDP or a PCI driver for the reflective

memory card.

2.1 FEBus for Virtual Bus Interface

 After executing a simulator without CIO, it was evident

this approach is a feasible solution or maybe one of the best

ways for simplification. Although the simulator could be

alleviate the signal congestion during the simulation,

involving CIO throughout the simulation prohibits the

simulator from its intended simulation capability. We realized

that a means to include the processing component of the CIO

unit could be a viable solution while removing the interface

cards from the simulator. In the current practice, a simulator

directly accesses the FEBus for reading and writing data to

and from during simulation. Thus, the simulator can obtain

the available CIO data without involving having any interface

card.

2.2 Bus Interface Protocols for HIL Real-time

Simulation

 In order to transmit and receive data to and from the

simulator, a preferred interface needs to be selected. This

interface is also intuitively interconnect the existing

simulators while satisfying important constrains including the

simulator time of the IO operation via the interface. In

particular, a key the interface constraint identified is timing

difference between the target simulator and the interface

hardware. For instance, the interface hardware provides a

10ms sampling rate. An access time of the simulator is

relatively slower than the signaling time over the interface

hardware. In order to overcome this issue, we adopted a

reflective memory network and a dedicated Ethernet between

the interface hardware and the simulator. We evaluated a

couple of the interface protocols for our implementation.

 The reflective memory network approach [7] can

facilitate integration of the interface hardware with the

simulator. A reflective memory network card seamlessly

integrates and updates to the existing ring or hub by

propagating the changes to its memory across to the other

nodes on the network. Since data integrity is one of the key

aspects for interface, data from the FEBus must be written to

its dedicated ranges of the addresses. In other words, the data

written via the FEBus must be not overwritten by any other

simulators. However, this approach requires implementing

the PCI or PCIe bus architecture (i.e., GEIP or General

Standards Corp). For instance, the GEIP PCI Reflective

Memory card [8] employs the PCI bus.

 The PCI bus architecture requires operating in the host

bridge mode, which always permits a controlling master to

access the bus. In order to expedite our design process, an

FPGA-based host-bridge capability is chosen. The PCI

Reflective Memory card is connected to the PCI bus

architecture implemented on the FPGA via a PMC connection

[9]. In addition, a driver needs to be developed. As the PCI

memory card is configured through assembly level

programming, the driver is configured as a memory mapped

variety. In this approach, one of the most critical portions in

the design is to manage the PCI configuration unlikely an

operating system (OS) usually take care of this kind of

operation.

 Another communication protocol selected is the UDP

over a Gigabit Ethernet connection. This protocol is

inexpensive to integrate into the simulator. In addition the

protocol provides an intuitive means to utilize an interface

board for monitoring data over the FEBus without any special

hardware. The protocol was implemented to the same FPGA

used for the PCI. The Altera’s triple-speed Ethernet core and

the RJ-45 connector on the Stratix III Development Board

[10] were used for our implementation. Figure 2 shows the

location of the RJ-45 on the development board in the blue

box. The triple-speed Ethernet core [11] employs a software

Int'l Conf. Embedded Systems and Applications | ESA'13 | 17

driver allowing the NIOS II microprocessor to open and

maintain a UDP connection in a client-server relationship

with the simulator.

Figure 2. The Virtual Bus Interface System Implementation

with Interface Connections on the Altera Stratix III

Development Board

 While the preferred interface protocol was the PCI

Reflective Memory card, the design was almost unable to

prototyped. The Stratix III FPGA board, however, provides

dedicated pins for a PCI bus interface with 3.0V signaling.

Unfortunately, the same pins are assigned for other IOs.

Without ability to access the PCI pins directly, the UDP

connection was chosen for the simulator interfacing protocol.

2.3 Implementation of the Virtual Bus

Interface System

 The virtual bus interface system developed is comprised

of four components—(1) the FEBus interface, (2) the UDP

simulator interface, (3) the dual-port SRAM, and (4) the NIOS

II microprocessor core. The FEBus interface responds an

address for each IO card in the CIO unit. Thus, the FEBus

interface eliminates any additional hardware on the simulator

sides. The UDP simulator interface transmits data to and

receives data from the simulator by delivering the value of the

IO points to and from the simulators. Dual-port SRAM

permits to read and write operations simultaneously if

necessary. In particular, the data at the same address need to

be accessed at the same time. The NIOS II microprocessor

initializes the bus interface system and controls data flow.

 The primary interface logic including the FEBus and the

UDP simulator interfaces, the SRAM, and the microprocessor

was implemented on an Altera Stratix III FPGA development

board. The FEBus connections utilize one of the two High-

Speed Mezzanine Card (HSMC) interfaces. The HSMC

connections are located on the left side of the development

board in the red box in Figure 2. These connections were

converted to standard 1‖ headers using a third party breakout

board. The one inch headers allowed the use of standard

ribbon cable which could be soldered to ribbon cable on the

FEBus connector of the CIO unit.

 The UDP simulator interface utilizes the Altera’s triple

speed Ethernet core including the MAC logic and PHY

circuitry. The UDP simulator interface also exploits a

software driver, which the two scatter-gather DMA cores read

and write the associated Ethernet buffers. The UDP

connection between the simulator and the IO board was

designed for delivering a packet in every 250us.

 On the other side of circuitry, the FEBus interface

transmits data to and receives data from the dual-port SRAM

via the address translation logic under the control of the bus

master. The bus master is an IO manager for other embedded

systems on the locomotive. The hardware of the FEBus was

tailored to each IO slot. The developed FEBus interface

responds to addresses on the bus as monitored by the bus

master. The FEBus interface accesses the dual-port SRAM via

the Altera’s memory mapped Avalon connection.

 The remaining hardware was built with Altera’s COTs

cores available in the Qsys tool. The Qsys tool allows the

building of digital circuits in a graphical fashion and is part of

the Quartus design software. Using this tool, frees the

designer from having to make individual signal connections as

they are grouped together logically and connected using a

relatively simple graphical interface. The FEBus logic was

brought into the Qsys tool for use in the design using a built in

wizard for importing user defined circuitry.

Figure 3. Synthesis and Routing Summary from Quartus

 The design was built using the Quartus design software

with the default timing and routing constraints. Using these

settings the design easily fit into the Stratix III FPGA. Pin

assignments were made using the PinPlanner feature of

Quartus, enabling the setting of pins by script for some of the

Altera cores. The report for the synthesis and routing is

shown in Figure 3.

 The microprocessor communicates to the other

components in the virtual bus interface system using Altera’s

Avalon interconnection fabric, which provides two different

types of connections, such as memory mapped and streaming.

The memory mapped variety is set as default. The Avalon

system also enables APIs for the memory and the DMA cores.

18 Int'l Conf. Embedded Systems and Applications | ESA'13 |

The software driver of the triple speed Ethernet core

necessitates a DMA for the streaming mechanism.

 The software program running on the microprocessor is

responsible for controlling the UDP simulator interface. The

software program composes the data for each packet and then

sends the packet out over the Ethernet assisted by the triple

speed Ethernet driver in every 250us to maintain data integrity

required for the locomotive control system. The packets are

delivered to the dual-port SRAM via the scatter gather DMA

(SGDMA) in a block transmission mode.

 The software program generates a header file with the

received IO card data. This header file contains the channel

and slot number of the data (on the FEBus) and its

corresponding address in the dual-port SRAM. The software

program utilizes the associated offsets to construct a

descriptor chain for processing the SGDMA core. After the

SGDMA core packs the data into a contiguous block of

memory, the software program sends the data to the Ethernet

core using the software driver and a UDP packet is also

transmitted. A similar process takes place reading data from

the simulator and placing it into the dual-port SRAM for

FEBus access.

3 Evaluation of the FPGA-based Virtual

Bus Interface System

 The virtual bus interface system was implemented in

VHDL and programmed to the Stratix III FPGA. The VHDL

cores implemented are simulated via the Altera’s Quartus II.

The software program was verified using Altera’s NIOS

extension for the Eclipse design environment. Wireshark was

utilized for evaluating the packet communication on the

network. Each bus interface was tested separately prior to

integrate the entire interface system. The FEBus interface was

tested using a standalone control system with diagnostic

software. The control system consists of the CIO and two

smart displays where the CIO acts as the IO manager for the

control system on the displays.

3.1 Evaluation of the FEBus interface with

Dual-ported RAM

 The FEBus interface’s connection to the dual-ported

RAM is a critical component in the system. This connection

allows the FEBus data to be accessed by the Ethernet core

and sent to the simulator. In order to test this connection a

simple system of the FEBus interface and the RAM was

created using the Quartus II software. Once the code was

generated it was simulated in Altera’s version of Modelsim

by wrapping the top level design in a handwritten testbench.

The testbench simulated the function of the FEBus master and

executed a cycle of two reads and two writes of different data

to verify the data could pass through the FEBus interface to

the RAM.

 Figure 4 illustrates the simulation results of the virtual

bus interface system for a read operation. In the figure, the

FEBus interface operates according to the implemented finite

state machine. Four states are defined as (2) a command

Figure 4. Simulation Result of the FEBus Interface

Implemented in VHDL

receiving state, (1) a dual-port SRAM accessing state, (3) a

completion acknowledging state, and (0) an idling state for

next interface operation. In the diagram the first region (A)

shows the card in the idle state (0) with the master placing the

address on the bus. No commands are issued during this

state. The second region (B) diagrams the reception of the

receive command. With the address on the bus the master

issues the read command by deasserting IORC, sending the

slave into the command receive state (2). During this state

the slave places the address on the RAM’s address line and

generates the read command by asserting the read line on the

dual ported RAM. In the third region (C) the slave receives

the data from the memory and places it on the FEBus data

line. This is the RAM interface state (1) which is followed by

the acknowledge state (3). In the acknowledge state, the slave

acknowledges the command and keeps asserting the

acknowledgement until the command is removed from the

bus. The final region (D) shows the state machine returning

to the idle state (0) in which all address are reset to zero and

the bidirectional data bus is put into a high impendence state.

The bus is then ready for the next cycle.

3.2 A Case Study: The FE187 Digital Output

Card

 In order to validate the hardware and software of the

Virtual IO Card work within a FEBus device the card must

replicate the function of the IO cards within the FEBus

device. In this test case the FE187 will be replicated to

ensure the control software on the CIO can drive writes and

reads to the replacement card with no ill effects. To replicate

this card the Virtual IO Card will be attached to the CIO via

the FEBus breakout and to the test computer via the Ethernet

connection from the development board. Altera’s SignalTap

tool was used to capture data while testing the card with the

control system.

 The CIO is connected to the rest of the control system

via ARCNET so the diagnostic software of the control system

can be used. As mentioned above the FEBus breakout allows

the HSMC connector on the Stratix III Development board to

be physically attached to the FEBus device. The UDP

connection is made over a 1 Gbps Ethernet connection with

standard RJ45 connectors.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 19

 The FE187 card is a 75 V 16 channel digital output card

that operates on the FEBus. To effectively model the

function of this card the Virtual IO Card must respond to the

FEBus master exactly how the FE187 would respond. In

order to implement this card the Virtual IO Card must

maintain a register with the value of the digital channels. The

control software first reads this register and compares the

value to its previous value to check if an overcurrent has

occurred. If the channel is not in an overcurrent state the

control software proceeds to write the card with its new data

and afterwards checks again for an overcurrent. Thus the

Virtual IO Card must respond to a sequence of read, write,

read from the master.

 With the Virtual IO Card attached to the CIO and test

computer, the control system was loaded with its diagnostic

software. Writes were then driven to the card using

diagnostic commands built into the CIO software. The data

written was then able to be seen in the dual ported RAM. In

addition to seeing the data from the bus in memory, the

successful return of the diagnostic write command confirms

that the Virtual IO Card can replicate the FE187 digital output

card.

4 Conclusions

 A bus interface card for a modified version of the

Modbus, the FEBus, was created to reduce the amount of IO

in locomotive HIL simulators. The card was implemented on

a Stratix III FPGA and consisted of four main components:

the FEBus interface, UDP simulator interface, the dual ported

RAM, and the NIOS II processor. The FEBus interface acted

as a universal bus slave in place of the IO cards on the CIO

unit, reading and writing the dual ported RAM at the request

of the master. The UDP simulator interface was responsible

for updating the RAM with the simulator data, writing

simulator outputs to the RAM and reading simulator inputs

from it. The NIOS II processor contained the software to

control the UDP Ethernet and the DMA required for using it.

Finally the RAM held the value of the IO points being

replaced, granting both interfaces access. The FEBus

interface was tested for accuracy with a standalone CIO. The

UDP connection was confirmed by sending data to and from

our main simulator computer to ensure the models ran

correctly with the new input method. Testing in a full

locomotive HIL simulator has yet to be completed at this

time. Despite the full testing being incomplete, the card is

still useful as a tool for software developers working on the

CIO unit and other FEBus devices.

5 References

[1] L. Cheng and Z. Lipeng, ―Hardware-in-the-Loop

Simulation and Its Application in Electric Vehicle

Development,‖ IEEE Vehicle Power and Propulsion

Conference, 2008.

[2] D. Michalek, C. Gehsat, R. Trapp, T. Bertram,

―Hardware-in-the-Loop-Simulation of a Vehicle Climate

Controller with a combined HVAC and Passenger

Compartment Model,‖ International Conference on Advanced

Intelligent Mechatronics, 2005.

[3] H. Hao, Z. Yang, X. Guoqing, ―Hareware-in-the-loop

Simulation of Electric Vehicle Powertrain System,‖ IEEE,

2009.

[4] J. Pouget and Y. Riffonneau, ―Signal Hardware-In-the-

Loop simulator of hybrid railway traction for the evaluation

of energy mana gement,‖ IEEE Vehicle Power and

Propulsion Conference, Oct. 2012.

[5] Y. Ito, Y. Sogure, S. Oho, ―Model-Based Software

Validation for Automotive Control Systems,‖ International

Conference on Control, Automation and Systems, 2010.

[6] J. Chen, L. Li, L. Wang, ―The Application of

PROFIBUS Technology in the Fengchan River Project's

Electronic Control System Reform,‖ Fifth International

Conference on Intelligent Networks and Intelligent Systems,

2012.

[7] Z. Rui, H. Shiying, ―Research and Realization of

Reflective Memory Network based on QNX,‖ IEEE Vehicle

Power and Propulsion Conference, 2008.

[8] M. Jovanovich, V. Milutinovic, ―An Overview of

Reflective Memory Systems,‖ IEEE Concurrency, pp. 56 –

64, 1999.

[9] IEEE Standard Physical and Environmental Layers for

PCI Mezzanine Cards (PMC), IEEE Standard 1386.1, 2001.

[10] Altera, Stratix III 3SL150 Development Board

Reference Manual, 2008.

[11] P. Xue, H. Wang, J. Hou, W. Li, ―SOPC realization of

image acquisition and real-time network monitoring system,‖

International Conference on Measurement, Information, and

Control, 2012.

20 Int'l Conf. Embedded Systems and Applications | ESA'13 |

An Adaptive Real-Time FPGA-Based Speech
Enhancement Processing System

Andrés J. Cuevas-Romano, Víctor H. Díaz-Ramírez, and Andrés Calvillo-Téllez

Instituto Politécnico Nacional - CITEDI, Avenida Instituto Politecnico Nacional 1310, Mesa de Otay, Tijuana
B.C. 22510, Mexco; email: {acuevas, vhdiaz, calvillo}@citedi.mx

Abstract—A real-time system for robust speech processing
based on a Field Programable Gate Array (FPGA) is presented.
The system estimates a clean signal from a noisy speech signal
using a locally adaptive algorithm based on calculation of rank-
order statistics from the input signal over a moving window. The
algorithm is able to improve the quality of noisy speech with no
perceivable musical noise. The processing system adapts the size
and contents of the moving window as well as the local estimator
used to recover the clean signal at each iteration. Results obtained
with the proposed system in terms of quality and intelligibility
objective measures are presented and discussed when testing the
system in different non-stationary noise environments. The real-
time performance of the proposed FPGA system is also evaluated
an discussed.

Index Terms—Speech enhancement, noise reduction, audio
processing, field programmable gate arrays, real-time.

I. INTRODUCTION

NOWADAYS, the demand for transmitting noise-free
speech signals on mobile communication equipment

has greatly increased the need for robust techniques for real-
time speech enhancement. Two common techniques used for
speech enhancement are given by the spectral subtraction
and Wiener filtering algorithms [1]. The former approach
calculates an estimate of the average noise spectrum which
is subtracted from the spectrum of the noisy signal in such
a manner that the average signal-to-noise ratio (SNR) is
improved [2], [3]. On the other hand, the Wiener filtering is a
linear filter optimized with respect to the mean-squared-error
between the clean and processed signals. In this approach,
an estimate of the clean speech power spectrum is estimated
(locally) from the noisy speech signal [4]. Furthermore, when
the noise can be described by a stationary random process then
the use of wiener filtering is recommendable [5].

The spectral subtraction and the Wiener filtering algorithms
are fast and reliable noise reduction techniques. However,
because of both of these algorithms operate in the frequency
domain, they commonly introduce spurious artifacts to pro-
cessed speech resulting in annoying musical noise [1]. Fur-
thermore, it is important to note that these algorithms assume
that noise is stationary, however, in real life scenarios such as
in mobile communications, noise is almost never stationary.
For this reason, the use of a robust filtering is desirable. There
are several successful nonlinear filters based on calculation of
rank-order statistics that could be used for speech enhancement
[6]. It is well known that these filters are robust and able to
preserve fine signal structures. In speech enhancement, this
feature can help to suppress the additive noise while preserving

Figure 1. Schematic diagram of the proposed speech enhancement system.

the intelligibility of speech. Speech processing systems can be
broadly classified in single or multiple channel systems. Single
channel systems use only one microphone to capture speech
signals whereas multiple channel systems utilize a microphone
array to capture speech from different locations.

In this work, we propose a single channel system for real-
time speech enhancement which uses a nonlinear locally adap-
tive algorithm for robust speech processing based on a FPGA
chip. The algorithm is carried out in the time-domain using a
time variant moving window. The algorithm is able to improve
the quality of noisy speech in terms of objective metrics and
with no perceivable musical noise [7]. The processing system
adapts the size and contents of the moving window as well
as the local estimator used to recover the clean signal at each
iteration. Therefore, a noise-free signal can be estimated using
a time-variant estimator over a local adaptive neighborhood. A
local neighborhood is a subset of signal elements of the sliding
window, which are close in some sense to a given element [6].
The proposed algorithm is adaptive to non-stationary signal
fragments and noise fluctuations.

Note that since the proposed method is implemented in
the time domain then a priori estimation of the spectral
distributions of signals and noise is not carried out for each
frame. Thus, annoying artifacts introduced to processed speech
are not perceivable [8]. A schematic diagram of the proposed
system is shown in Fig. 1.

II. SPEECH ENHANCEMENT ALGORITHM

Adaptive filtering has proven to be a good choice in
processing signals corrupted by non-stationary noise [9]. The
proposed algorithm for speech enhancement takes advantage

Int'l Conf. Embedded Systems and Applications | ESA'13 | 21

Figure 2. Block diagram of the proposed speech enhancement algorithm.

of the calculation of rank-order statistics to locally modify the
parameters of a robust estimator for recovering a speech signal
with an improved quality and by preserving its intelligibility
[7].

The flow diagram of the used speech enhancement algorithm
is presented in Fig. 2 and consists of the following steps [7]:

STEP 1: Read an initial input speech segment no with S
elements assuming speaker’s silence.

STEP 2: Start processing of speech segments (j = 1).

STEP 3: Read the jth input speech segment fj = sj + rj
(with N samples) to be processed. Note that the speech
segment is given by superposition of the clean signal sj and
additive noise rj .

STEP 4: Create a sliding window wj,i around the noisy
element fj(i) , given by

wj,i =

[
wj,i (n) = fj(n) : |n− i| ≤

S − 1

2

]T
. (1)

STEP 5: Calculate a local estimate of the SNR as follows:

SNRj,i =
wT

j,iwj,i

n0
Tn0

. (2)

STEP 6: Calculate the parameter εv as follows:

εvj,i = k1σn

[
1− 1

1 + (SNRj,i)
−k2

]
, (3)

where k1, and k2 are constant parameters which are defined
within the range of (0,1]. The parameters k1 and k2 help us
to take into account a priori information about either the
spread of the signal to be preserved or noise fluctuation to
be suppressed [7]. Using these two parameters a trade-off
between noise suppression and introduction of artifacts to the
processed speech signal can be achieved.

STEP 7: Construct an EV-neighborhood vj,i from wj,i as
follows:

vj,i = [wj,i(n) : wj,i(i)− εv ≤ wj,i(n) ≤ wj,i(i) + εv]
T
.

STEP 8: Compute the output estimate as yj(i) = aTvj,i.

STEP 9: Move the window (i = i+ 1) and evaluate if
(i ≤ N). If the result is "true" go to STEP 4. Otherwise, go
to STEP 3.

III. REAL-TIME FPGA-BASED SYSTEM FOR
SPEECH ENHANCEMENT

In recent years, FPGA devices have achieved a growing
popularity because of their great flexibility. These devices offer
the possibility to reconfigure their hardware according to the
designer’s needs. An FPGA can be programmed to operate
with a custom hardware architecture or can be programmed
to operate as a customizable reduced instruction set computer
(RISC) with particular specifications. In this work we propose
a real-time robust speech enhancement system using the al-
gorithm shown in Fig. 2 which is implemented on an FPGA
configured as a high-speed custom RISC processor.

The development board used for the implementation is the
Altera DE-115 which has a Cyclone IV E EP4CE115 chip.
The sampling rate for this system was set at 8 Khz and the
input speech was coded using signed 16 bit integer data. From
Fig. 1 we can observe that the CODEC captures the input
speech signal through the microphone (mic) and codes each
data sample according to the set sample rate. Next, the FPGA
processor reads out each data sample from the CODEC and
arranges them into data frames of fixed length for subsequent
signal processing. Each processed data frame is sent back to
the CODEC one next to another for sound playback through
a speaker (spk).

In order to obtain a real-time processing system, the pro-
cessing block must be fast enough to maintain a constant data
flow. To obtain the best performance with the FPGA chip, we
use the Nios II/f (fast) configuration. The block diagram of
the proposed speech processing system is shown in Fig. 3.

For real-time operation, we must take into account that the
size of the data frames in the system is a hardware dependent
parameter. Observe that if the size of the data frame is too large
then the system’s latency will be high. On the other hand, if
the size of the data frame is to small then the latency will be

22 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Figure 3. Block diagram of the FPGA system.

0.5 1 1.5 2 2.5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time

A
m

pl
itu

de

Car noise SNR = 15 dB

noisy clean processed Ev −Ev

Figure 4. Example of a speech sentence corrupted with 15dB SNR car noise
processed with the proposed system.

short but there will be interruptions in the output audio stream
[10]. So, the length of the data frame is a trade-off parameter
among the system’s latency and the quality of playback stream.
The size of the data frame used for the implementation is 204
samples, because the size of the sliding window is 51 samples.
It is important to mention that the processing time for 204
samples captured with a sample rate of 8 Khz takes 25 ms.

IV. RESULTS

In this section we present the results obtained with the
proposed real-time system for speech enhancement. We eval-
uate the performance of the system in terms of objective
quality and intelligibility metrics. Also, we test the real-time

performance of the FPGA-based system. To evaluate speech
quality we use the following metrics: perceptual evaluation
of speech quality (PESQ) [11], source to distortion ratio
(SDR) and source to interference ratio (SIR) [12]. The SDR
metric, characterizes the effective separation between speech
and background noise. The SIR, is a metric commonly used to
characterize introduction of artificial artifacts such as musical
noise. Speech intelligibility was evaluated by the short-time
objective intelligibility (STOI) metric [13].

We tested the proposed system for speech enhancement
in four different noisy environments: train, car, street and
restaurant. Speech samples were taken from the NOIZEUS
database [14]. The database consists of 30 IEEE sentences
[15], produced by different speakers. The speech samples were
originally sampled at 25 kHz and downsampled to 8 kHz. All
sentences from the database were processed with the proposed
system in different noise environments. Fig. 4 shows an
example of one speech file from the database after processing
with the proposed system when speech is corrupted with 15dB
SNR car noise. Note that the system adapts well to the non
stationary characteristics of speech signal and noise (see the
±εv behavior). With 95% confidence the results obtained in
terms of performance metrics are shown on tables 1-4 and Fig.
9-12. The results show a considerable quality improvement
from the noisy recordings and show consistent results across
the different noisy environments. The results obtained in terms
of speech intelligibility (see STOI results) show a lower
rating for higher noise SNR, however, this is normal behavior
because it has shown [1] that all noise reduction algorithms
either improve the speech quality or intelligibility. Also, note
that the proposed approach yields a good performance in terms
of noise reduction that is characterized by the SDR.

In Fig. 5 we see the spectrogram of the clean sentence of
the database "He knew the skill of the great young actress". In
Fig. 6, we see the spectrogram of the sentence used in Fig. 5
corrupted with 15 dB SNR car noise. The corrupted sentence
used in Fig. 6 was processed with the proposed FPGA-based
system. The spectrogram of the processed sentence is shown
in Fig. 7. It can be noted that there is a considerable reduction
of noise and the frequency distribution of the processed signal
is very similar to the one for the clean signal shown in Fig. 5.

Table I
PERFORMANCE OF THE PROPOSED ALGORITHM WITH 95% CONFIDENCE

IN NON-STATIONARY TRAIN NOISE ENVIRONMENT.

15 dB 10 dB 5 dB
STOI 0.93± 0.03 0.87± 0.03 0.78± 0.04
PESQ 2.52± 0.10 2.16± 0.11 1.88± 0.15
SIR 17.18± 1.25 12.15± 0.99 7.92± 1.57
SDR 15.96± 0.55 11.22± 0.39 6.58± 0.65

Evaluation of the real-time performance of the system

For evaluation of the real-time performance of the system,
we measure the processing time scheduling of the FPGA
implementation in terms of the rate of data frame processing
(latency). By performing these tests, we are interested in

Int'l Conf. Embedded Systems and Applications | ESA'13 | 23

Figure 5. Spectrogram of the clean speech sentence "He knew the skill of
the great young actress".

Figure 6. Spectrogram of the speech sentence "He knew the skill of the great
young actress" corrupted with 10dB SNR car noise.

Table II
PERFORMANCE OF THE PROPOSED ALGORITHM WITH 95% CONFIDENCE

IN NON-STATIONARY CAR NOISE ENVIRONMENT.

15 dB 10 dB 5 dB
STOI 0.92± 0.03 0.84± 0.03 0.77± 0.02
PESQ 2.55± 0.10 2.22± 0.11 1.94± 0.12
SIR 17.74± 0.80 13.40± 0.99 8.45± 1.11
SDR 16.55± 0.55 11.09± 0.39 7.26± 0.64

Figure 7. Spectrogram of the processed speech sentence "He knew the skill
of the great young actress" when is corrupted with 15dB SNR car noise.

Figure 8. Spectrogram of the processed speech sentence "He knew the skill
of the great young actress" when is corrupted with 10dB SNR car noise.

Table III
PERFORMANCE OF THE PROPOSED ALGORITHM WITH 95% CONFIDENCE

IN NON-STATIONARY STREET NOISE ENVIRONMENT.

15 dB 10 dB 5 dB
STOI 0.93± 0.03 0.87± 0.03 0.77± 0.02
PESQ 2.53± 0.10 2.27± 0.10 1.91± 0.12
SIR 16.87± 1.25 11.53± 0.99 6.51± 1.57
SDR 16.03± 0.55 10.78± 0.39 5.97± 0.65

24 Int'l Conf. Embedded Systems and Applications | ESA'13 |

15 dB 10 dB 5 dB
0

1

2

3
PESQ

15 dB 10 dB 5 dB
0

0.2

0.4

0.6

0.8

1
STOI

15 dB 10 dB 5 dB
0

5

10

15

20
SIR

15 dB 10 dB 5 dB
0

5

10

15

20
SDR

Processed Noisy

Figure 9. Performance of the proposed algorithm with 95% confidence in
non-stationary train noise environment.

15 dB 10 dB 5 dB
0

1

2

3
PESQ

15 dB 10 dB 5 dB
0

0.2

0.4

0.6

0.8

1
STOI

15 dB 10 dB 5 dB
0

5

10

15

20
SIR

15 dB 10 dB 5 dB
0

5

10

15

20
SDR

Processed Noisy

Figure 10. Performance of the proposed algorithm with 95% confidence in
non-stationary car noise environment.

15 dB 10 dB 5 dB
0

1

2

3
PESQ

15 dB 10 dB 5 dB
0

0.2

0.4

0.6

0.8

1
STOI

15 dB 10 dB 5 dB
0

5

10

15

20
SIR

15 dB 10 dB 5 dB
0

5

10

15

20
SDR

Processed Noisy

Figure 11. Performance of the proposed algorithm with 95% confidence in
non-stationary street noise environment.

Table IV
PERFORMANCE OF THE PROPOSED ALGORITHM WITH 95% CONFIDENCE

IN NON-STATIONARY RESTAURANT NOISE ENVIRONMENT.

15 dB 10 dB 5 dB
STOI 0.92± 0.03 0.84± 0.03 0.79± 0.04
PESQ 2.55± 0.10 2.22± 0.11 1.95± 0.12
SIR 17.74± 1.25 12.40± 0.99 7.45± 1.57
SDR 15.55± 0.55 11.09± 0.39 7.26± 0.65

15 dB 10 dB 5 dB
0

1

2

3
PESQ

15 dB 10 dB 5 dB
0

0.2

0.4

0.6

0.8

1
STOI

15 dB 10 dB 5 dB
0

5

10

15

20
SIR

15 dB 10 dB 5 dB
0

5

10

15

20
SDR

Processed Noisy

Figure 12. Performance of the proposed algorithm with 95% confidence in
non-stationary restaurant noise environment.

showing that the proposed system can be efficiently used for
real-time applications. Additionally, we want to show that
the proposed system can improve the quality of noisy speech
signals in real-time without sacrificing intelligibility and with
no perceivable musical noise. To measure the latency of the
FPGA implementation, a 600 Hz sinusoid tone was used as
the input signal. In Fig. 13 we can see that the obtained output
latency is 80 ms. When the speech enhancement algorithm is
disabled, that is, when the input samples are copied from the
input ADC to a memory buffer and then sent for playback, it
took 64 ms (see Fig. 13). So by subtracting this latency to the
latency when the algorithm is active we get 16 ms witch is
the latency of the processing operations.

V. CONCLUSIONS

A locally adaptive FPGA-based system for robust speech
processing was presented. The implemented algorithm is able
to recover an undistorted signal from a noisy speech employing
a time-variant estimator over a locally adaptive neighborhood
without introducing musical noise. Based on the conducted
tests, it is concluded that the system is capable of enhancing
speech signals corrupted by non-stationary noise in a real-time
processing scenario.

REFERENCES

[1] P. C. Loizou, Speech enhancement theory and practice. Taylor &
Francis, 2007.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 25

Figure 13. Measurement of system’s output latencies (top) Input, (center)
Bypass Output and (bottom) Processing Output.

[2] S. F. Boll, “Suppression of acoustic noise in speech using spectral
subtraction,” IEEE Trans. Acoust. Speech. and Signal Process., vol. 27,
no. 2, pp. 113–120, 1979.

[3] R. McAulay and M. Malpass, “Speech enhancement using soft-decision
noise suppression filter,” IEEE Trans. Acoust. Speech and Signal Pro-
cess., vol. 28, no. 2, pp. 137–145, 1980.

[4] C. Plapous, C. Marro, and P. Scalart, “Improved signal-to-noise ratio
estimation for speech enhancement,” IEEE Trans. Audio, Speech and
Lang. Process., vol. 14, no. 6, pp. 2098–2108, 2006.

[5] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures
for speech enhancement.” IEEE Trans. on Audio, Speech, and Lang.
Process., vol. 16, no. 1, pp. 229–238, 2008.

[6] L. Yaroslavsky and M. Eden, Fundamentals of digital optics.
Boston:Birkhäuser, 1996.

[7] V. Diaz-Ramirez and V. Kober, “Robust speech processing using local
adaptive nonlinear filtering,” IET Signal Processing, In press 2013.

[8] C. Breithaupt, T. Gerkmann, and R. Martin, “Cepstral smoothing of
spectral filter gains for speech enhancement without musical noise,”
IEEE Sig. Process. Lett., vol. 14, no. 12, pp. 1036–1039, 2007.

[9] J. M. Roger Woods, FPGA-based Implementation of Signal Processing
Systems. WILEY, 2008.

[10] V. L. Richard Boulanger, The Audio Programming Book. The MIT
Press, 2011.

[11] U.-T. P.862, “Perceptual evaluation of speech quality (pesq): An objec-
tive method for end-to-end speech quality assessment of narrow-band
telephone networks and speech codecs, itu-t recommendation p.862,”
2007.

[12] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech and Lang.
Process., vol. 14, no. 4, pp. 1462–1469, 2006.

[13] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm
for intelligibility prediction of time-frequency weighted noisy speech,”
IEEE Trans. Audio, Speech and Lang. Proc., vol. 19, no. 7, pp. 2125–
2136, 2011.

[14] Y. Hu and P. C. Loizou, “Subjective comparision and evaluation of
speech enhancement algorithms,” Speech Commun., vol. 49, pp. 588–
601, 2007.

[15] I. of Electrical, E. Engineers, I. Audio, and E. G. S. Committee,
IEEE Recommended Practice for Speech Quality Measurements,
ser. IEEE Std. The Institute, 1969. [Online]. Available: http:
//books.google.com.mx/books?id=blu1NwAACAAJ

26 Int'l Conf. Embedded Systems and Applications | ESA'13 |

http://books.google.com.mx/books?id=blu1NwAACAAJ
http://books.google.com.mx/books?id=blu1NwAACAAJ

Telemedicine: Issues With A Mote™ Based Remote

Patient Monitoring Wireless System Design

Patrick Otoo Bobbie
1,2

, Erik Hadley
3

1,3
Computer Science and Software Engineering, Southern Polytechnic State University, Marietta,

GA, USA
2
School of Informatics, Ghana Technology University College, Accra, Ghana

Abstract – The objective of the research project is to explore

the issues involved in building a wireless Electrocardiogram

(ECG) remote patient monitoring system. The issues include

capturing of the ECG signal data at a sufficient data rate to

produce an accurate representation of the signal, and the

maintaining of a reliable data stream from the ECG device to

the monitoring base station. An ECG device, capable of

amplifying the signal and regulating the output voltage

without overloading the analog to signal converter, was built.

Data was captured using the MDA300CA™ data acquisition

board and the MicaZ wireless Mote™ from Crossbow

Technologies™ Inc. Crossbow Technologies’s MIB600CA™

base station was used for receiving wireless transmission. The

MIB600CA also bridged the Ethernet connection for

streaming the wireless packets to a computer via the Ethernet

port. The paper discusses the hardware and software

architectures and the design methodology for building the

system. The results, through observations of the system’s

behavior and outputs, are discussed including suggestions for

mitigating the challenges toward the construction of a

commercially viable prototype.

Keywords: ECG, Telemedicine, Embedded TinyOS, Mote,

Remote Patient Monitoring.

1 Introduction

The purpose of this research project is to examine the issues

in producing a reliable wireless ECG patient monitoring

system using an analog to digital converter, the MDA300CA

and MicaZ wireless motes developed by Crossbow

Technologies, Inc. By using a wireless system to obtain a

patient’s ECG readings it allows for the patient to be

independent and possibly even far away from the doctor. It is

also possible for a large number of patients to be monitored

from one location reducing the need for constant walking from

bedside to bedside.

The ECG signal data captured by the analog to digital

converter is stored in a database on a computer that is

connected to an MIB600CA
TM

 base station, also developed

by Crossbow Technologies™, Inc. A database is used for data

storage because it offers the ability to store large amounts of

patient data, including timestamps and ECG signal values,

quickly and reliably. Further it is easy to pull the data out of

the database for analysis and display.

As stated earlier, patients receive the benefit of not having

to be connected to a large bedside ECG apparatus in order for

a doctor or nurse to be able to monitor them. For the purpose

of experimentation an assisted living center was used as a

model for data capture. This model was chosen because it

demonstrates how a patient can use a “wearable“ device and

move around in their environment all the while being

monitored by a doctor or nurse. The patient gains a degree of

freedom and the doctor is still able to watch over the patient

through the remote monitoring interface at the hospital. Figure

1 shows a layout of an environment that fits the assisted living

center model.

2 Related Research

A prototype remote patient monitoring system, similar to

ours, has been developed for use in hospitals by Roke Manor

Research. The prototype attaches sensor devices to a patient

that allows them to move about the hospital and be monitored

by the staff. When the patient is in a fixed location, such as

their bed, the portable unit is placed in a base station to allow

for more detailed monitoring. The prototype system has also

had some failsafe features in that if any abnormal signals are

detected the hospital staff is alerted immediately [17].

Another telemedicine device similar to the mote-based

system discussed here has been developed by Tadlys. The

Tadlys’ remote monitoring system uses Bluetooth for its

wireless communication and offers the ability to monitor

multiple patients in real-time from the same computer, as well

Figure 1: An Assisted Living Center Model

Int'l Conf. Embedded Systems and Applications | ESA'13 | 27

as archive patient data to a dedicated server for later review

[18].

However these existing products do not deal with issues

including the optimal location to place nodes throughout the

environment. How handoff between nodes occurs is also not

mentioned (although this information could be proprietary to

the company to exclude its publication in the literature). The

systems also do not discuss how often the database is archived

to free up storage space, nor how many patients can the

systems track. Also not discussed is how a patient’s location is

tracked to dispatch help in an emergency, only that the

systems monitor patients for problems and alert the physician.

Lastly not mentioned is if or how the battery is monitored so

that the device can maintain power and thus maintain

monitoring. These are challenging issues in embedded systems

design and construction, especially in the telemedicine arena.

3 Methodology

Following is the description of the design methodology of the

experiemental mote-based system for remote patient

monitoring. The two major considerations toward the design

approach are, first, the system architecture, and secondly the

hardware design. The hardware design depends on prior

research, which resulted in the fabrication of an ECG board

for experimental research [1]. The software design approach is

two-prong: the software architecture that allows interfacing of

the hardware to a backend database for data collection, and a

backend software system for the analysis of the data.

Although this research currently focuses on just monitoring

a patient’s ECG signals, the preliminary results show the

potential that could include extra sensors to monitor other

signals. For example, it is possible to connect an oximeter

(oxygen sensor) so that the oxygen levels in the patient’s

blood can be monitored as well. Also it is possible to add

extra sensors to monitor the relative temperature and humidity

of the patient’s environment. This could be used to signal an

alert to the doctor that the patient is in an environment that

puts them at risk and needs to be monitored closely.

The main issues that this research deals with relating to the

remote patient monitoring system are:

 Reliably capturing the ECG signal data with the

MDA300CA

 Maintaining a constant packet stream as the patients

move through their environment

 Reliably archiving the signal data into the database

The remote patient monitoring system contains the

following elements. The electrodes attached to the patient feed

into an amplifier and then a filter producing the ECG signal.

The signal is then sent to the analog to digital converter, the

MDA300CA, where the signal is digitized.

The MDA300CA mounts onto a MicaZ mote and the mote

puts the digitized signal into packets that are sent wirelessly

back through a network of MicaZ’s to the MIB600CA base

station. The MIB600CA connects to a computer via Ethernet

cable and streams the packets to the computer. The computer

pulls the signal data out of the packets and then stores them in

a database. Figure 2 depicts the system architecture of the

patient monitoring system.

In the following, the two main components of the mote-based

system are discussed, starting with the hardware design and

implementation, followed by the software design and

implementation.

4 Description of Hardware

4.1 The ECG Circuit

The ECG circuit used in this thesis consists of four

componentss: the electrodes, the instrument amplifier, the low-

pass filter, and a summing amplifier. The basis for this design

comes from a combination of two similar designs. The first

design was completed in a previous research[1]. The second

design was done by a different research team [2].

The electrodes used in both designs are very simple, and

consist of single strand wire with an alligator clip attached to

one end. The other end connects to one of three locations on

the ECG circuit. The negative lead connects to pin 1 of the

instrument amplifier and the positive lead connects to pin 2.

The ground lead connects to a 10Megaohm resistor that goes

to ground.

Both designs utilize an instrument amplifier, specifically the

AD624AD, which is connected in such a way that the signal

gain is 1000. Both references [1, 2] discuss in detail why the

AD624AD is an ideal choice for such a circuit.

The amplified ECG signal is output from the AD624AD,

which then is fed into the second component of the circuit..

The 50Hz low-pass filter removes all frequencies above 50Hz

from the signal. Most electrical devices in the United States

are powered by a 60Hz AC source, such devices create

Figure 2 : Block diagram of the remote patient

monitoring system

MIB600
Base Station

Electrodes

amplifier and filter

MicaZ

MicaZ Network

Computer and Database

Analog-digital

converter

MIB600 Base

Station

28 Int'l Conf. Embedded Systems and Applications | ESA'13 |

electrical noise at 60Hz. Because the cutoff for the low-pass

filter is 50Hz all of the 60Hz noise from nearby electrical

devices is removed from the ECG signal.

The last component in the circuit is a summing amplifier

utilizing an LMC6464AIN operational amplifier. The

summing amplifier is used to adjust the DC output voltage

from the ECG circuit. This is because the analog to digital

converter in the MDA300CA has a maximum input voltage of

+2.5VDC. Therefore the summing amplifier is used to reduce

the DC output voltage below the maximum 2.5VDC.

Figure 3 depicts a block diagram of the ECG circuit. (The

complete circuit diagram is in [1].)

Figure 3 : Block Diagram of the ECG Circuit

4.2 The MDA300CA™

The MDA300CA is a data acquisition board designed for

use in conjunction with either the Mica-2
TM

 or MicaZ
TM

series of motes developed by Crossbow Technologies

Incorporated [3]. The MDA300CA contains inputs for seven

different analog to digital single-ended channels, seven

differential analog to digital channels, six digital input

channels as well as temperature and humidity sensors and

relays for turning external devices on and off. The ECG

signals being output from the ECG circuit are input to analog

to digital channel 0 (AD0). Figure 4 shows a picture of the

MDA300CA.

4.2.1 The MicaZ
TM

The MDA300CA connects to the MicaZ
TM

 by means of a

51-pin connector. The MicaZ
TM

 is programmed to poll the

different input channels in the MDA300CA
TM

 and receive the

resulting data. The MicaZ
TM

 can then packetize the data and

transmit the packets wirelessly through a network of the

MicaZ
TM

 motes back to a base station for processing [5].

The MicaZ
TM

processor board, known as the MPR2400CA
TM

, consists of three major components. The first is the

processor where the mote application runs, and any digital or

analog I/O from the 51 pin connector is processed. The second

component is the 512K of flash memory where any data that is

to be stored on the mote occurs. The third component is the

radio transceiver that allows the mote to communicate

wirelessly with other motes and the base station [13].

The MicaZ
TM

 can be programmed to transmit on specific

channels between 2400MHz and 2483.5MHz, with 5MHz

steps in between each channel. This allows for the deployment

of multiple groups of MicaZ’s each performing its own tasks

without each group causing transmission interference with the

others. Each MicaZ
TM

 can also be programmed with a Group

ID so that if multiple groups are deployed and are using the

same transmission channel, packets that do not contain the

appropriate Group ID can be rejected. Each MicaZ
TM

 is also

programmed with its own unique ID within the group so that

data from each individual mote can be identified by the base

station [5]. Figure 5 is a picture of the MicaZ
TM

.

4.2.2 The MIB600CA
TM

The MIB600CA
TM

 serves two functions. The first function

is for the programming of the motes, and the second function

is for serving as a gateway, bridging the wireless transmissions

of the mote network to Ethernet [7].

The MIB600CA
TM

 can be interfaced with the motes in two

different fashions. One method is by directly connecting each

individual mote in the group, one at a time, to the MIB600CA

by means of the 51-pin connector. The mote can then be

assigned its unique ID and Group ID while a program is

uploaded. The other method for programming the motes is by

using Over The Air Programming (OTAP). As the name

suggests the motes are programmed wirelessly by receiving

the program either directly from the MIB600CA or from one

of the neighboring motes. OTAP is very useful if the motes

requiring programming are already deployed and retrieval is

not feasible. It should be noted however that OTAP requires

the motes to have a specific program called GoldenImage

preloaded for the OTAP to work. Therefore before

deployment each mote has to be connected to an MIB600CA
TM

 and programmed through the 51-pin connector [8].

Figure 4 : The MDA300CA
TM

[4]

Figure 5 : The MicaZ
TM

 [6]

Int'l Conf. Embedded Systems and Applications | ESA'13 | 29

The MIB600CA
TM

 bridges the wireless transmissions to

Ethernet by connecting via its 51-pin connector to a mote with

its node ID set to zero. This mote is loaded with software

specifically designed to receive the packet streams from nodes

corresponding to the Group ID of the mote, all other packet

streams are ignored. The MIB600CA then take the received

packets and transmit them through the Ethernet port to a

connected computer. The computer can then peform the

desired analysis of the data [7]. Figure 6 depicts the

MIB600CA™.

5 Software Description

5.1 TinyOS
TM

TinyOS™ was developed as an open-source operating

system specifically for wireless sensor networks. TinyOS
TM

has a component library which includes such things as

network protocols, distributed services, and drivers for sensors

or data acquisition. Everything is built out of components

which grants each user the flexibility to use things as is, or

alternatively take advantage of the open source nature of each

component and build their own custom components for

custom applications [10].

Each application in TinyOS
TM

 uses a concurrency model

based on tasks and hardware event handlers. As the

application executes, each task runs to completion, tasks

cannot preempt each other. The hardware event handlers

execute due to some form of hardware interrupt and will also

run to completion. Hardware events can preempt a task, or

other hardware events. Any command or event that is to be

executed as a hardware event handler must be declared using

the keyword “async” [11].

Because preemption does occur it is possible to have a data

race. Some of these data races can be found at compile time

and are displayed as warnings to the user when the application

is compiled. One of the best ways to avoid any data races is to

have any accesses to shared data done within an “atomic”

statement using semaphores, as any code within the atomic

statement cannot be preempted. The user is cautioned against

overuse of the atomic statement as it can prevent the execution

of other tasks or handlers and affect performance or even

cause the system to fail [11].

5.2 nesC
TM

The TinyOS
TM

 applications, libraries, and components are

all written with the nesC
TM

 language. The nesC
TM

 language

was developed for use in embedded systems and is designed to

support the concurrency model of TinyOS
TM

. The nesC
TM

language uses a C-like syntax, but has some distinct features

that separate nesC™ from C, as is required by the

concurrency model [11].

Each nesC component is either a “module” or a

“configuration.” The modules contain the application code and

the interfaces to the module. The configurations are used to

create a connection between each of the modules in an

application. The process of connecting modules via a

configuration is referred to as “wiring” [11].

A nesC application is compiled using the “ncc” compiler

which is based on the gcc compiler. Although it is possible to

create the executable from the command line using “ncc,”

normally a makefile is created that runs the compiler and

produces the binary file to be uploaded to the target device

[11].

5.3 XSensorMDA300™

When the user installs TinyOS
TM

 and all the related mote

applications onto their project development computer there

are a large number of sample applications installed for each of

the different sensor boards for the Crossbow series of motes.

One of these sample applications is XSensorMDA300.

The XSensorMDA300 application consists of a module

XSensorMDA300M.nc, a configuration XSensorMDA300.nc,

and a header file sensorboardApp.h. The XSensorMDA300

application was written for the MDA300CA sensor board. The

application polls each analog and digital input channel as well

as all the other sensor devices on the board at defined

intervals. The defined intervals can be found in the

“implementation” declaration of the module file, for example:

#define ANALOG_SAMPLING_TIME 90

Where the time is given in tenths of a second, and so in the

above statement sample 90 means that the analog channels

will be sampled every nine seconds.

The resulting data is placed into one of four different

packets. Each packet contains only some of the sensor results,

for example packet one contains the resulting values for the

first seven analog to digital channels. As each piece of data is

placed into the packet a counter is incremented. When that

counter equals a defined value the packet has been filled and

Figure 6 : The MIB600CA
TM

 [9]

30 Int'l Conf. Embedded Systems and Applications | ESA'13 |

is ready for transmission. And example code fragment of the

packet being filled is shown below.

switch (channelType) {

 case ANALOG:

 switch (channel) {

 case 0:

 packet[1].data[DATA_START+0]=data &

0xff;

 packet[1].data[DATA_START+1]=(data

>> 8) & 0xff;

 atomic {msg_status[1] |=0x01;}

 break;
 …

The program uses two switch-case control statements, first to

determine which of the channel types was polled analog,

digital, temperature, etc and then to determine which channel

of that type that was polled. In the above example when

analog channel 0 is polled the upper eight bits of resulting data

is inserted into packet 1 in the location DATA_START+0, the

very first location for data. The lower eight bits are placed in

location DATA_START+1. The program then executes an

atomic statement that cannot be preempted where it

increments the fullness counter for packet 1.

5.4 The Modified XSensorMDA300
TM

 for the ECG

For the purpose of capturing the ECG signals, it is not

necessary to monitor all of the data input channels or other

sensor devices on the MDA300CA. Therefore the existing

XSensorMDA300
TM

 application was modified so that only

one analog to digital channel would be monitored at the

desired sampling frequency of 100Hz. This was accomplished

by changing the defined analog sampling time as shown in

section 3.3 from 90 to 0.01. Also the packet length was

shortened so that the packet is just long enough to transmit the

value for the one channel making the transmission time

shorter, and improving overall the throughput/capacity of the

MDA300CA. This was accomplished by changing another

defined value in the “implementation” declaration. The value

for the constant MSG_LEN was changed from 29 to 8.

The unaltered program would sample all channels according

to the defined sampling times. In the modified program all of

the channel sampling declarations were removed except for

the one channel that would have the ECG device connected to

it, analog to digital channel 0.

A new variable was declared called PCKT_CNTR, which is

used in an additional switch-case statement for filling the

packets. When only one channel is being sampled it becomes

necessary to add an extra control so that each of the four

packets the XSensorMDA300 application can be filled

separately. Therefore PCKT_CNTR is initially set to 1 so that

on the first sample the first packet is filled. While the first

packet is being filled PCKT_CNTR is incremented by one so

that the next sample is placed in packet 2, and so on until

packet 4 is filled and PCKT_CNTR is reset to 1.

5.5 The MoteListener Application

The MicaZ
TM

 on the MIB600CA
TM

 is loaded with a

program called TOSBase. TOSBase is part of the TinyOS
TM

install package and performs the function of a server. As the

packets come to the base station from the deployed network

the TOSBase application takes those packets and retransmits

them out through the Ethernet port on the MIB600CA
TM

 to

any client application that has a TCP connection to the

MIB600CA
TM

.

Crossbow™, the company, provides tools for receiving and

logging packets from the MIB600CA
TM

 that are designed to

work with the sample programs provided. Since the packets

that are being received by the base station are custom made it

was necessary to create an application that could establish a

TCP connection to the MIB600CA
TM

 and then parse the data

from the packets as they come in. This application would then

have to take the data from each packet and insert that data into

a database for archiving/storing, becoming available later for

retrieval, analysis, and display.

In the design of our system, the application, MoteListener,

was written in C# and the database used for storing all of the

ECG data was Microsoft SQL Server. (The choice of the SQL

server allowed a front-end graphics module to be developed to

interface with the ECG system for the display of streamed

data in real-time using a Visual Basic platform.) As the

Microsoft .NET package allows for programs written in

different languages within the .NET package to be combined

into one application, C# appeared a good choice for the back

end system as it is possible to combine the two applications

into one executable in the future. Further, the SQL database

software was chosen because it supports complex

operations/functions such as triggers, stored procedures, etc.

The MoteListener application performs three functions. The

first is to establish a TCP connection to the MIB600CA
TM

.

For experimentation purposes, the MIB600CA
TM

 has a hard-

coded IP address of 192.168.0.43, and the default MIB600CA

port is 10002. Once the connection is established the

application performs its next function in the form of receiving

each packet as the MIB600CA
TM

 transmits them. These

packets are then parsed so that the identifying number of each

mote and the corresponding ECG data values are extracted.

The hexadecimal value of the ECG data is then converted to

an integer, and then the integer is converted to a floating point

millivolt value by use of a formula provided in the

MDA300CA
TM

 users guide [12].

Value mV = 2.5 * (ADC Reading / 4096)

Once this value has been computed the application performs

its last function by inserting the resulting ECG signal values

and node ID’s into the database.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 31

The MoteListener application inserts several hard-coded

values into the database along with the ID of the mote

transmitting to the base station and the millivolt value of the

ECG signal. The entire insert statement is as follows:

sqlDataAdapter1.InsertCommand.CommandText="INSERT

INTO Analysis(AnalyID, Temperature, Humi, SignalVoltage,

Enviro, BatteryVoltage, Name) VALUES ("+nodeNum+", 80,

.60, "+newData+", 'Good', 2.5, 'Douglas Adams')";

The values for Temperature, Humi, Enviro, BatteryVoltage,

and Name are currently (for simplicity) all hard coded. These

values are included because it is possible for a future version

of the ECG remote patient monitoring system to have

additional sensors to monitor relative temperature and

humidity, the battery voltage of the MicaZ, etc. It is also a

relatively trivial task to use something like a case-switch

selection statement to insert a patient’s name based on the

mote ID received from the packet. Therefore it was decided

that the database and insert command should be designed with

future systems in mind.

6 Experimentation and Observations

6.1 Direct Wireless Connection from the ECG to the

Base Station

This section describes the verification procedures taken to

ensure that the system was transmitting data from the mote

connected to the ECG circuit back to the base station the

following experiment was performed. It was observed that to

program any of the motes it is first necessary to connect the

MIB600CA
TM

 to the computer that the applications would be

loaded from via an Ethernet crossover cable.

The MicaZ
TM

, connected to the ECG, was programmed

with the custom XSensorMDA300
TM

 application that was

discussed above. Once programming was complete the

MDA300CA
TM

 was mounted to the mote. For testing

purposes the mote with the MDA300CA
TM

 was assigned node

ID 4. The input for analog to digital channel 0 was then

connected to the output of the ECG circuit, and the ground

connection for the ECG circuit was connected to a ground

terminal on the MDA300CA
TM

.

A second MicaZ
TM

 was programmed with TOSBase and

assigned the node ID 0. This MicaZ
TM

 remained connected to

the MIB600CA
TM

 to function as the server. Before any of the

packets could be recorded it was necessary to turn on the SQL

server since not doing so would cause a SQL exception to

occur in the MoteListener application. Once the SQL server

was running the MoteListener application was executed.

Finally the volunteer patient is connected to the ECG circuit

and the circuit is turned on.

It was then observed that there was data being transmitted

from the ECG node back to the base station where the data

was getting stored in the database verifying that the system

was functioning properly. The limitations of this

implementation are discussed in the following.

6.2 Limitations and Known Issues

6.2.1 Limitations of the Direct Wireless Connection

The direct wireless connection from the ECG node to the

base station is known to have the following issues. First, the

transmission rate for the packets was too slow to keep up with

the sampling rate of the analog to digital channel. The

sampling frequency of the analog to digital channel is 100Hz,

but the incoming packet stream was significantly slower.

The packet transmission rate was estimated from the console

print-statements, by visually counting the packets as they are

displayed over a period of time. In this mode, it was observed

that far less than 100 packets per second arrived at the base

station. Therefore when the data captured by the MDA300CA

was displayed the voltage values couldn’t be properly

interpreted as there were not enough samples to provide an

accurate ECG reading.

The second limitation of the direct wireless connection was

that there is a sever-related limitation placed on the mobility

of the patient connected to the ECG. The specifications

Crossbow provides for the MicaZ
TM

 state that the effective

transmitter range indoors is 20-30 meters and outdoors is from

75-100 meters [13]. This is clearly not a long enough range

for a patient to move around freely.

6.2.2 Limitations of the ECG System

The biggest problem faced with the ECG system was

maintaining good skin contact with the electrodes. The

electrodes initially provide good contact and provide good

signal data either for display on an oscilloscope or for capture

by the MDA300CA
TM

. However, over a short period of time

the center conductor of the electrodes would pull away from

the skin breaking the contact and thus providing no ECG

signal. If the electrodes are pressed against the skin the signal

could be read.

6.2.3 Possible Issues with the MDA300CA
 TM

There is a potential problem with the MDA300CA
TM

 sensor

board. In previous designs from Crossbow(tm), the

MDA300CA
TM

 was used in experiments with voltages being

fed into the analog to digital channels. Upon examination of

the MDA300CA
TM

 userguide and data sheets it was found

that the maximum input voltage to the analog to digital

channels is 2.5VDC [12]. For some of the experiments

conducted earlier, the voltages fed into the analog to digital

channels was in excess of the maximum, which could possibly

damage an MDA300CA
TM

 and therefore providing inaccurate

readings.

6.2.4 Possible Solutions for Known Issues

The problem of the packet throughput rate not being fast

enough to handle the sampling frequency of the analog to

digital channel could possibly be solved by using a data

buffer. If the analog to digital channel samples for a given

32 Int'l Conf. Embedded Systems and Applications | ESA'13 |

period of time, one second for example, were all placed into a

buffer then the entire buffer could be emptied into a packet

and then transmitted as one-second worth of sample data back

to the base station. This idea of using a buffer is similar to

what was done in a previous work when the data was captured

and sent over a wired network [1].

The buffer allows the base station to receive a larger sample

that can be stored and displayed immediately. The drawback

to using a buffer is that there will be gaps between packets

where no signals are being received. Therefore there would be

gaps when the patient’s ECG signals are not being monitored.

Also if the transmit-task is occurring then the task of sampling

of the analog to digital channel could not occur meaning that

there are gaps where the patients signals would not be

recorded. By keeping the size of the buffer small, it is

possible to have relatively small gaps or amounts of time

between transmissions so that as little data as possible is not

transmitted back to the base station.

The issue of maintaining good skin connectivity with the

electrodes could be solved by using an elastic material such as

that used for an elastic waistband. If the patient were to place

waistband material around their chest and over the positive

and negative electrodes then the waistband material would

provide constant pressure on the electrodes pressing them

against the skin. Since it is these authors’ experience that

every time the ECG signal disappeared and the electrodes

were pressed against the skin the signal returned then it is

believed that the elastic waistband material would work to

solve the problem.

7 Conclusions

The use of wireless technology in medical care is a

worthwhile endeavor. This research, following several similar

projects, demonstrates the possibilities that wireless

technology offers much to telemedicine application

development. The ability to remotely monitor a patient is not

only useful for the assisted living center model discussed

earlier in this paper, but is also useful for the monitoring of

patients in a remote location far away from a doctor’s office or

hospital.

During the course of the research the focus was on

producing an ECG device that would feed signals into the

analog to digital converter and then reliably streaming the

signals back to the base station. This led to the discovery of

two new issues, the first being the packet transmission rate that

is too slow to provide an accurate ECG sample, and the

second being that it is difficult to maintain good skin contact

with the ECG electrodes. Also still missing from the system is

the ability to multihop the data through a wireless mesh

network back to the base station.

Although this research has advanced the prototype ECG

remote patient monitoring system there is still more that can

be done to make the system both reliable and deployable. The

work done should be considered another step towards the goal

of a deployable, commercial quality product.

8 References

[1] Chaudary Zeeshan Arif. “Wi-Fi Compatible ECG

Monitoring & Interpretive Assistant”, Masters Thesis,

Southern Polytechnic State University, August 2004

[2] Carlson, Shawn. “Home is Where the ECG is”, Scientific

American,http://www.sciam.com/article.cfm?articleID=000C7

4E4-5172-1C74-9B81809EC588EF21, June 2000.

[3] Mica2 Data Acquistion Module (MDA300) Product

Information ;http://www.xbow.com/Products/productsdetails.a

spx?sid=77

[4] MDA300CA -

http://www.xbow.com/Products/productsdetails.aspx?sid=77

[5] MicaZ ZigBee Series (MPR2400) Product Information

http://www.xbow.com/Products/productsdetails.aspx?sid=101

[6] MicaZ Picture -

http://www.xbow.com/Products/productsdetails.aspx?sid=101

[7] Ethernet Gateway (MIB600)

http://www.xbow.com/Products/productsdetails.aspx?sid=90

[8] Wireless Sensor Networks Seminar Course book,

Crossbow Technology Inc, November 2005

[9] MIB600CA Picture

http://www.xbow.com/Products/productsdetails.aspx?sid=90

[10] TinyOS Mission Statement

http://www.tinyos.net/special/mission

[11] Tutorial Lesson 1: Getting Started with TinyOS and nesC

 http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson1.html

[12] MTS/MDA Sensor and Data Acquisition Board User’s

Manual Document 7430-0020-04, January 2006

http://www.xbow.com/Support/Support_pdf_files/MTS-

MDA_Series_Users_Manual.pdf

[13] MicaZ Datasheet -

http://www.xbow.com/Products/Product_pdf_files/Wireless_p

df/MICAz_Datasheet.pdf

[14] [AHRI] - Aware Home Research Initiative

 http://www.awarehome.gatech.edu/projects/index.html

[15] Code Blue: Wireless Sensor Networks for Medical Care

 http://www.eecs.harvard.edu/~mdw/proj/codeblue/

[16] Qureshi, Asfandyar. Shoeb, Ali. and Guttag, John.

“Building a High-Quality Mobile Telemedicine System using

Network Striping over Dissimilar Wireless Wide Area

Networks”, Computer Science and AI Laboratory

Massachusetts Institute of Technology, 2005 ;

http://nms.lcs.mit.edu/papers/embc05-qureshi-horde.pdf

[17] Roke Manor Research Develops Wireless Patient

Monitor, Roke Manor Research.

April 30, 2003. http://www.roke.co.uk/news/article.asp?id=53

[18] Remote Monitoring Systems, Tadlys.

2004 ;http://www.tadlys.com/Pages/Product_content.asp?iGlo

balId=3

Int'l Conf. Embedded Systems and Applications | ESA'13 | 33

http://nms.lcs.mit.edu/papers/embc05-qureshi-horde.pdf

FPGA Implementation of a Compact Genetic Algorithm
using Cellular Automata Pseudo-Random Generator

Marco A. Moreno-Armendáriz1, Carlos A. Cruz-Villar2, Victor H. Ponce-Ponce1

1Centro de Investigación en Computación, Instituto Politécnico Nacional,
Av. Juan de Dios Bátiz s/n, México D.F., 07738, México.

email: mam−armendariz@cic.ipn.mx
2Sección de Mecatrónica, CINVESTAV, Av. Instituto Politécnico Nacional 2508,

Apdo. Postal 14 740, México D.F., México

Abstract— In this paper the design and implementation
of the compact Genetic Algorithm (cGA) and a Cellular
Automata-based pseudo-random number generator
on a Field Programmable Gate Arrays (FPGA) is
accomplished. The design is made using the Hardware
Description Language, called VHDL. Accordingly, the
obtained results show that it is viable to have this
searching algorithm in Hardware to be used in real time
applications.

Keywords: Compact Genetic Algorithm; Cellular Au-
tomata; FPGA design.

1. Introduction

Genetic Algorithms (GA) are very well known opti-
mization techniques originally proposed in [1]. GA have
demonstrated to be successful in the solution of complex
numerical and combinatorial optimization problems, for
single and multiple objectives [2] simulating natural
evolution over populations of candidate solutions. GA
handle a set of potential solutions instead of only one,
but GA must evaluate the objective function several
times, thus one of their main disadvantages is the high
computing time required to solve complex problems.
Some strategies have been proposed to deal with this
drawback; for example, parallel implementations, effi-
cient operators design, and hardware implementations,
among others.

On the other hand, Compact Genetic Algorithms
(cGA), are a kind of probabilistic model-building ge-
netic algorithms or Estimation Distribution Algorithms
(EDA) [3]. cGA operates on probability vectors by re-
placing the variation operators (crossover and mutation)
that describes the distribution of a hypothetical popu-
lation of solutions. It is known that the cGA obtains
solutions of the same quality as the simple GA with
binary representation and uniform crossover but with
the advantage of an important reduction in the memory
requirements, i. e. it only needs to store the probability
vector (instead of the entire population). [4]. Therefore,

the cGA may be useful in memory-constrained applica-
tions such as evolvable hardware [5].

In this paper, a novel and efficient design of a cGA
in a hardware platform is shown. This design presents
the following features: modularity, concurrency, minimal
resource consumption, real time execution, and high
scalability properties.

Nowadays there exists different computing machines
to implement parallelism, nevertheless in this study we
looking for a portable and autonomous evolvable hard-
ware to be used in real-time tasks [22], therefore we select
a FPGA to develop our design.

Also, it is important to mention that the population
sizes in GA are problem-dependent, however in most of
the cases they are from hundreds to thousands of in-
dividuals. Some exceptions are called “micro Evolution-
ary Algorithms” which have especially small population
sizes, i.e. from 3 to 5, but in most of the cases they need
additional mechanism to maintain the diversity.

The Genetic Algorithms are inherently parallel mainly
due to their population-based nature. Thus, each indi-
vidual of the population could be executed in a paral-
lel manner. However, the compact Genetic Algorithm
(cGA) has not a population, instead it only has a
Probability Vector (PV), then, and its parallelization is
slightly different.

2. Related Work

In this section we will present some of the most
representative works including those related to Evolvable
Hardware as well as those studies related to the compact
Genetic Algorithms.

The term Evolvable Hardware is a research area that
includes both, the design and implementation of Evolu-
tionary Algorithms into hardware platforms to execute
specific tasks; as well as the usage of Evolutionary
Algorithms to generate hardware designs.

We will refer only to the former, that is, those works
where the authors designed and implemented Evolution-
ary Algorithms into hardware. More than that, we will

34 Int'l Conf. Embedded Systems and Applications | ESA'13 |

refer only to the Compact Genetic Algorithms (cGA) (i.
e. excluding other kind of Evolutionary Algorithms).

In 2001 Aporntewan and Chongstitvatana [10] pro-
posed a cGA implementation in a FPGA using the
language Verilog (Hardware Description Language). The
authors showed that their design runs 1000 times faster
than its software version executed in a workstation. The
design is composed of five modules: random number
generator, probability register, comparator, buffer, and
fitness function evaluator. It is based on three basic
operations: addition, subtraction, and comparisons. The
probability vector updating is executed in parallel. It
was tested on the Max-One problem with 32 bits and
implemented in a Xilinix FPGA 23.57 MHz. using 15,210
gates and a population size equal to 256. This cGA exe-
cutes one generation per three clock cycles for the Max-
One problem. For other more complicated problems, one
generation would take 3+e clocks, where e is the number
of clocks used to evaluate the fitness function.

In [11], [9], the authors argued the cGA is very weak
to optimize problems interesting for Evolvable Hard-
ware’s researchers. So, to overcome this issue, they pro-
posed some modifications to the cGA by incorporating
elitism, mutation and resampling. They demonstrated
it increases cGA exploration capabilities without in-
creasing the hardware complexity. It was implemented
with VHDL in a XC400 BORG and Virtex xc2v1000
whose architecture is composed by the following five
modules: Random number generator, registers for the
vector and mutation probabilities, buffer (2-ports RAM
storing the individuals), modules INC/DEC that update
each probability vector element and, a register indicating
which is the winning individual. It was tested using
a Max-One problem with 32-bits and 255 individuals.
Their results were compared against the ones in [10],
reporting similar results with a very small increment
of the consumed resources. Furthermore, the algorithm
was implemented on Software and tested on the De
Jong functions [12]. Additionally, the authors conducted
experiments on some dynamic optimization problems.

In [13] a Cellular Compact Genetic Algorithm im-
plemented in a FPGA was proposed. It consists of
a set of identical cGA. Each is called a cell and in-
teracts only with its four neighbours. Each cGA cell
exchanges probability vectors with its neighbours in
an asynchronous schema. The probability vectors are
combined by using an equation proposed by the authors.
They argued the Cellular cGA parallelization is straight
forward and suited to be implemented in a FPGA. They
experimented with the Max-One problem and two nu-
merical optimization problems demonstrating that their
proposal is better than the simple cGA.

Other interesting works were published in [5], [14],
[15] where the authors implemented different versions of

the cGA. They developed a real-valued version of the
cGA obtaining solutions with the same quality of those
found by binary cGA with reduced computational costs.
Furthermore, they implemented the non-persistent elitist
cGA in the same micro-controller used to implement
the cascade control of an induction motor drive to self-
tune its velocity and position. The cGA is executed on-
line and the motor’s sensors allow evaluating the fitness
function. This work outperforms alternative schemata
obtained with linear design techniques.

In [16] a novel architecture for a massive paralleliza-
tion of the cGA is proposed. This schema presents
three main advantages: low synchronization costs, fault
tolerance, and high scalability. This architecture was
simulated and tested in several processors (in software)
obtaining an almost linear speed-up with a growing
number of processors.

Only few publications about the analysis of the cGA
can be found in specialized literature. Among them we
can mention the following: The work published in [17]
presents a rigorous runtime analysis of the cGA for
pseudo-boolean functions on n variables, and proves that
not all linear functions have the same asymptotic run-
time. In [18] the authors modelled the cGA as a Markov
process and approximated it by an ordinary differential
equation with a small learning step. The differential
equation was studied to determine its convergence and
stability properties.

As a applications of GA algorithms, in [6] a method-
ology based on a genetic algorithm (GA) to automate
the design of combinational logic circuits in which the
aim is to minimize the total number of gates used is
presented. In [7], a GA is used for evolving and testing
new rules for intrusion detection, and finally in [8] the
major problem of the computational requirements for
optimizing the place and route operations of a VLSI
circuit is studied, the authors investigates the feasibility
of using reconfigurable computing platforms to improve
the performance of CAD optimization algorithms for this
problem.

3. Preliminaries

The Genetic Algorithms (GA) presented in [1] make
use of a population of 100 or more individuals to search
for a solution, eventually one of them is selected as final
solution. For the case of the cGA (see Algorithm 1)
the individuals of the population are not used directly,
in really are represented through the probability vector
PV , then two possible solutions (ind1 and ind2) are
generated to find the final solution, which remains in
PV .

Int'l Conf. Embedded Systems and Applications | ESA'13 | 35

3.1 The Compact Genetic Algorithm

The compact Genetic Algorithm (cGA), originally
proposed in [4], is the simplest algorithm from the Esti-
mation of Distribution Algorithms family [3] whose main
purpose is a simplification of the Genetic Algorithm.
The cGA generates two possible solutions through an
estimated probabilistic model of the original population
instead of using traditional recombination and mutation
operations and it is operationally equivalent to the order-
one behaviour of the simple GA with uniform crossover.
The length l of the PV must be able to represent the
length that has the desired solution.

The values of PV can be represented as real values
pi ∈ [0, 1],∀i = 1, ..., l where l is the chromosome’s length
(binary string). It measures the proportion of ’1’ alleles
in the i-th locus of the simulated population [19]. The
cGA initializes the PV with 0.5 each of its elements. Two
strings are generated using these probabilities. The fit-
ness values for each generated individual are computed,
then the PV is updated based on these strings. This
process is repeated until the PV converges (to 0 or 1).
The final PV is the solution found by the cGA.

The overall of the algorithm is as follows: The cGA
initializes the PV to 0.5, that is pi = [0.5],∀i = 1, ..., l.
Next, the strings ind1 and ind2 are generated according
to the probabilities in PV . The fitness values of the
strings ind1 and ind2 are compared and, the string with
better fitness is named winner and the other is called
loser. Then, if (winner[i] != loser[i]), the PV [i] will be
updated as follows: if (winner[i] = 1) then PV [i] will be
increased by 1/n, otherwise, PV [i] will be decreased by
1/n. n is the population size that the cGA is emulating.
Note that if (winner[i] =loser[i]), the PV [i] will not be
updated. The loop is repeated until each PV [i] becomes
zero or one. Finally, PV represents the final solution.
The pseudo-code of the cGA is shown in Algorithm 1. It
is assumed a maximization problem.

4. Hardware Design

The proposed design accomplishes the following fea-
tures:

• Modularity and Scalability: The complete design of
the cGA is divided into components that perform
a specific task. So that, it can be reused for future
developments.

• Concurrency: Due to the nature of the algorithm,
there are some parts that can be implemented in
parallel, for example the updating of the probabili-
ties vector and the individuals generation.

• Minimum resource consumption: In the proposal we
explore different techniques for the generation of
pseudo-random numbers.

Algorithm 1 The compact Genetic Algorithm (cGA)

1: INPUT: Population size n, chromosome length l (binary
string)

2: for i = 1 to l do
3: {/*Initialize a Probability Vector*/}
4: PV[i]:=0.5;
5: end for
6: while PV has not converged do
7: {/*Generate two possible solutions from the vector

PV*/}
8: for i = 1 to l do
9: {/* generate(PV[i]) returns an 1 with probability

PV[i], or 0 otherwise.*/}
10: Ind1[i]:=generate(PV[i]);
11: Ind2[i]:=generate(PV[i]);
12: end for
13: if fitness(Ind1) > fitness(Ind2) then
14: winner := Ind1;
15: loser := Ind2;
16: else
17: winner := Ind2;
18: loser := Ind1;
19: end if
20: {/*Update the PV towards the better one*/}
21: for i:=1 to l do
22: if winner[i] 6= loser[i] then
23: if winner[i]=1 then
24: PV[i]:= PV[i]+1/n;
25: else
26: PV[i]:= PV[i]-1/n;
27: end if
28: end if
29: end for
30: end while

31: OUTPUT: PV

• Real-time performance: Thanks to the characteris-
tics of the selected technology it is possible to use
the design for real time applications.

The complete design is conformed of five components,
and the manner to joint them by using a Finite State
Machine.

4.1 Hardware Components for the cGA

Considering that these designs (cGA and EcGA) will
be tested with 32-bits functions (see subsection 5.1), the
following components are customized to accomplish this
case. Nevertheless, these could be modified to work with
any size of this kind of functions. Considering this, the
new components are explained next:

1) Pseudo-Random Number Generator
(PRNG): This component generates the
random numbers which are essential for the
creation of the individuals. Any known random
generator algorithm can be used. However, others
will strongly impact on the overall design. We
considered implementing the Cellular Automata
Based Generator, explained next.

36 Int'l Conf. Embedded Systems and Applications | ESA'13 |

• Cellular Automata based Pseudo-
Random Number Generator (CA-
PRNG): The idea of using Cellular Automata
as generators of pseudo-random numbers was
proposed in [20], where the authors used an
one-dimensional cellular automata with n
cells. The automata’s states are ’0’ and ’1’.
In [23] a set of CA-PRNG with lengths from
4-bits to 53-bits was proposed. It used the
transition rules known as Rule 90 and Rule 150
(so named according to Wolfram [20]). Rule 90
is ai (t + 1) = ai−1 (t) ⊕ ai+1 (t) and the Rule
150 is ai (t + 1) = ai−1 (t) ⊕ ai (t) ⊕ ai+1 (t),
where ai (t + 1) is the next state of the cell i,
ai−1 (t) is the present state of the cell i − 1
(left neighbour), ai (t) is the present state of
cell i (current cell), and ai+1 (t) is the current
state of cell i + 1 (neighbour on the right).
For example, Rule 0101 means cell ’1’ will use
Rule 90, cell ’2’ will use Rule 150, cell ’3’ Rule
90 and cell ’4’ Rule 150. So, where there is
a ’zero’ Rule 90 is used, and where there is
a ’one’ Rule 150 applies. Cell memory (which
stores the automata state) can be implemented
with a synchronous flip-flop type D, and each
rule is implemented with a LUT or a simple
combinatorial function.
For the case of the cGA (see Algorithm 1) with
a chromosome length of 32-bits, we selected
a population size of 50 individuals, then the
lower number of necessary bits are 6. There-
fore, a size of 6-bits for the vector PV is
established.
On the other hand, the initialization of PV
is crucial to achieve an adequate behaviour
of the algorithm. Thus, for the cGA version
the design starts with a 48-bits CA-PRNG
proposed in [23] (whose cycle length is 2n−1),
then two substrings of 6-bits are extracted to
obtain 1-bit for ind1 and ind2. Now, since
there are 48-bits is possible to use the other
6 substrings of 6-bits to obtain in total 4-bits
for ind1 and ind2. Finally, another three CA-
PRNG are required to complete the total 32-
bits for ind1 and ind2, see Figures 2-3.

Some of the published papers [9]-[13], argue that
any type of PRNG works fine for the cGA hardware
design. However, it does not seem to be completely
true, considering that the available resources in
hardware are very limited. In this manuscript we
present two different PRNG, showing that they
directly affect the FPGA’s resources consumption.
As a result, it is necessary to do a carefully selec-
tion of the type of PRNG to be implemented. The

PRNG should occupy the hardware components as
less as possible, allowing more liberty to the cGA
design, particularly, the fitness function.
Further, to maintain the FPGA’s computations
simple, a CA-PRNG results a better option be-
cause both, the cGA and the CA-PRNG, use
binary representation. Hence, the comparisons be-
tween their values can be done without performing
any extra computation.

2) Individuals Generator (IndGen): This compo-
nent is responsible for the generation of a pair of
bits, one bit for each individual; for this example,
since the strings had a length of 32-bits, then it
would have 32 components of this type. IndGen
compares a pseudo-random number with an ele-
ment of the PV . If the pseudo-random number is
less than or equal to the corresponding PV ele-
ment, then the generated bit is ’1’, or ’0’ otherwise.
Notice that PV stores float numbers into [0, 1]
that must be increased/decreased with steps 1/n
(n is the population size, see Lines 21 and 23 in
Algorithm 1).On the other hand, the PV elements
must be compared against the random numbers.
Hence, the length of the binary chains representing
each element of PV are the same length as the
random numbers. In the case of CA-PRNG, it is
necessary to utilize a substring of 6-bits to emulate
a population with n = 50 individuals because it
must store n + 1 possible numbers (0/n, 1/n,...,
n/n). For the MS-PRNG, the length of the PV
was selected in 32-bits, however another size may
be used.

3) Fitness Evaluator (FEv): This component is
used to evaluate the fitness function. Its design
depends on the objective function to be optimized.
This block can be optimized according to the
designer’s ability to implement complex functions
of segmented or parallel mode.
The input vectors are the two strings Ind1, Ind2,
and RES as an output signal, it generates a ’1’ if
the ability of the individual Ind1 is greater than
or equal to that of the individual Ind2; or ’0’
otherwise.

4) Probability Vector Updater (PVU): The task
performed by this component is adding or sub-
tracting a certain amount (1/n where n is the
population size equal to 50) to each element of the
PV (see Lines 21 and 23 in Algorithm 1).
If the 6-bit substring of CA-PRNG is utilized, then
the PV elements are increased/decreased by one
unit. For the case of 32-bit MS-PRNG the step is
equal to 42949672.
To update the PV elements, three signals are
received: (1) the winning individual (op), (2) the

Int'l Conf. Embedded Systems and Applications | ESA'13 | 37

bit from individual one of the i − th position
(ind1[i]), and (3) the bit from individual two of the
i − th position (ind2[i]). The necessary condition
to update the i− th element of PV is that ind1[i]
and ind2[i] are different. If this is the case, then an
addition or subtraction is applied to that element.
This updating process is computed in parallel1.

5) Probability Vector Checker (PVC): This com-
ponent verifies if all the elements of the PV vector
are ’1’ or ’0’. When this condition is reached, the
register RDY−PV C is equal to one, indicating that
the cGA has finished.

4.2 Connecting the components

The complete design of the proposed architecture is
illustrated in Figures 1, 2, 3.

Fig. 1: One bit element of the cGA proposed design.

Fig. 2: Four bits element of the cGA proposed design.

Each pair of registers seed[i] contains the seed as
input to the CA-PRNG[i] (there are two versions:
48-bits and 44-bits), which generates two 6-bits random
numbers for cGA design. Then, IndGen[i] receives these
two random numbers and the PV[i], to generate two
bits corresponding to the registers Ind1[i] and Ind2[i].

1It is important to note that the values in PV must be kept into
the allowed range.

Fig. 3: 32-bits element of the cGA proposed design.

After that, the two bits are used as input to FEv. Then,
FEv receives all the pair of bits, that make up two
complete individuals, and to determine which of them
is the winner. With this information, the component
PVU[i] updates its corresponding PV[i] value. Then,
the component PVC[i] verifies the PV[i] convergence. In
that case, the whole PV is given as the algorithm output.

In order to synchronize all the components, a Finite
State Machine (FSM) is used [13]. The usage of this
machine will guarantee the correct behaviour of the
whole design. The FMS is defined by two functions: the
first calculates the next state of the system, and the
second, the output. A Mealy Machine is applied, which
uses a clock as a synchronizing signal for transitions. The
FMS is shown in Figure 4.

Fig. 4: Finite State Machine (FSM) of the proposed
design.

5. Experimental results

5.1 Test functions

To evaluate the performance of the cGA in hardware,
we use five types of test functions: Max-One, Min-
One, Hamming-1431655765, Hamming-858993459 and
Hamming-477218588. The so-called Hamming experi-
ments consist of the minimization of the Hamming dis-
tance to the corresponding binary chain; for example,

38 Int'l Conf. Embedded Systems and Applications | ESA'13 |

the Hamming-1431655765 indicates minimizing the dis-
tance to the chain ’01010101010101010101010101010101’
represents the decimal number 1431655765.

Hardware
Altera Cyclone II EP2C70F896C6 with a 50 MHz clock, and
the Altera’s Quartus II tool was used for designs using VHDL
language.
Total logic elements 1, 791 out of 68, 416 ≈ 3%
– Total combinatorial functions 1, 790 out of 68, 416 ≈ 3%
– Dedicated logic registers 754 out of 68, 416 ≈ 1%
Total registers 754
Embedded Multiplier (9-bits) 0 out of 300 = 0%

Software
cGA programmed in C++, executing in AMD Athlon 64 X2
Dual Core 4000+ at 2.09 GHz with 1 GB RAM and Ubuntu
8.04

Table 1: Experimental conditions

HW SW
cGA cGA

Max-One
Iterations 694 672
Execution time 82.41 µs 4090 µs
Min-One
Iterations 849 833
Execution time 101.4 µs 4830 µs
ReverseHamming-1431655765
Iterations 657 628
Execution time 74.22 µs 3860 µs
ReverseHamming-858993459
Iterations 712 695
Execution time 84.33 µs 4270 µs
ReverseHamming-477218588
Iterations 691 686
Execution time 78.6 µs 4180 µs

Table 2: Comparison between the hardware and software

5.2 Discussion

Here some important issues about the Hardware im-
plementation are discussed.

• It is obvious that the execution time depends on
the hardware clock frequency. However, a manner to
measure the performance independent of the hard-
ware velocity, is obtaining the number of clock cycles
consumed by one algorithm iteration. Thus, in this
implementation, one algorithm iteration requires 6
clock cycles, no matter the clock frequency utilized.
For this specific hardware platform, with a fre-
quency of 50 Mhz., the number of algorithm iter-
ations per second is computed with

Gensecond =
Frecuency(Hz)

clockgeneration
(1)

Then, it can perform 8.33 millions of generation per
second.

• The goals established in Section 4 were successfully
achieved. The Modularity, Scalability and Concur-
rency were implemented since each bit of the indi-
viduals are generated in separate components. This
allows increasing the size of the binary chain very
easily. By the use of the CA-PRNG we reduce the
consumption of the FPGA resources and at the
same time adequate pseudo-random numbers are
used in the cGA algorithms.

• The minimal resource consumption stands for all
proposed hardware components without consider
the resources required for the FEv component (this
block can be optimized according to the designert’s
ability to implement complex functions), for the
tested FEvt’s in this paper only 3% of the FPGA
resources are used. However, we carefully analyze
all aspects of the hardware design of the remains
components such as: data representation (fixed or
floating point) and arithmetic representation. These
aspect are very important in order to avoid use all
of the resources on the FPGA. So, It is important
to maintain a compact cGA design, because it could
be attached to other components, such as a Neural
Network-based controllers for a real application,
resulting necessary to reach a high performance
design that consumes as less FPGA’s resources as
possible.

• Each PB element stores a value into the range [0,1]
that is utilized as the probability to generate an 1
(or complementary a zero).To maintain the FPGA’s
computations simple, each PV element is compared
directly against the random number just generated.
Thus, it seems convenient that both, the PV values
and the generated random numbers, are into the
same range.
On the other hand, the cGA implemented in this
work uses binary representation, which means that
each PV element uses binary representation; there-
fore it becomes necessary to apply a discretization
of its values. Considering that the cGA algorithm
updates the PV values by increments/decrements of
1/n, (where n is the size of the emulated population)
it would be enough if the discretization contains the
values 0/n, 1/n, 2/n, ..., n/n. In most of the cases,
the population sizes n go from 50 to 100, therefore,
each element of PV could be represented with 6 bits
(with n ∈ [50,..., 64] or 7 bits (with n ∈ [65,...,100]).
The cGA and the CA-PRNG seem to be very
suitable to work together, especially for their im-
plementation on an FPGA device, mainly because
they both use binary representation, which avoids
further expensive computations.

• Finally, since the execution time (see Table 2) is in
the order of microseconds a real-time implementa-

Int'l Conf. Embedded Systems and Applications | ESA'13 | 39

tion is very feasible, some successful published works
are in [14], [15] and [22].

6. Conclusion and Future Work
While it is true that any known pseudo-random num-

bers generator would work, here we found that the MS-
PRNG occupies almost all the resources with a relatively
small binary chain. Thus, it could be useful only with
very small problems. However, if the Cellular Automata-
based PRNG (CA-PRNG) is applied, the design utilizes
only 3% out of the FPGA resources (see Tables 1-2).

For the kind of problems whose objective function
can be represented with binary numbers, our design
is suitable to be used in real applications. So, if the
complexity of the fitness function is bigger, then the
designer needs to explore different ways to maintain a
good balance between the velocity and the amount of
FPGA resources to be used.

The previously published cGA hardware implemen-
tations [10], [5], [14], [15], [11], [9], [13] do not present
a detailed description of their designs, i. e. they do
not show the components structure (I/O ports) or the
manner to synchronize them. Furthermore, the presented
design utilizes 6 clock cycles per one iteration.

As a future work we plan to use these algorithms
for tuning intelligent controllers, like the fuzzy visual
control developed by our research group in [21]. This is
a successful case where the implementation of the whole
system in hardware gives an excellent performance in
real time. However, one of the biggest problems is the
fuzzy tuning. Therefore, we want to use our hardware
version of the cGA algorithms as a self-tuning tool for
these kinds of controllers. Another successful application
was presented in [22].

7. Acknowledgements
The authors wish to thank to Instituto Politécnico

Nacional (SIP-IPN grants 20131514 and 20130086,
COFAA-IPN y PIFI-IPN), CINVESTAV and the Gov-
ernment of Mexico (SNI y CONACYT) for providing
necessary support to carry out this research work.

References
[1] J.H. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan, 1975.
[2] C.A. C. Coello, D. Veldhuizen, and G. Lamont, Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer
Academic, 2002.

[3] P. Larranaga and J. A. Lozano, Estimation of Distribution Al-
gorithms: A New Tool for Evolutionary Computation. Kluwer
Academic Publishers, 2001.

[4] G.R. Harik, F.G. Lobo, and D.E. Golberg, “The compact
genetic algorithm”, vol. 3, no. 4, pp. 287–297, 1999.

[5] F. Cupertino, E. Mininno, and D. Naso, “Elitist compact
genetic algorithms for induction motor self-tuning control” in
IEEE Congress on Evolutionary Computation, CEC, 2006,
pp. 3057–3063.

[6] C.A. Coello Coello and A.D. Christiansen and A. Hernández
Aguirre,“Towards automated evolutionary design of combina-
tional circuits”, Computers and Electrical Engineering, 27(1),
1-28, 2000.

[7] Z. Banković and D. Stepanović and S. Bojanić and Octavio
Nieto-Taladriz, “Improving network security using genetic
algorithm approach”, Computers and Electrical Engineering,
33(5-6), 438-451, 2007.

[8] S. Coe and S. Areibi and M. Moussa, “A hardware Memetic
accelerator for VLSI circuit partitioning”, Computers and
Electrical Engineering, 33(4), 233-248, 2007.

[9] J.C. Gallagher, S. Vigraham, and G. Kramer, “A family of
compact genetic algorithms for intrinsic evolvable hardware”,
IEEE Transactions on Evolutionary Computation, vol. 8, no.
2, 2004.

[10] C. Aporntewan and P. Chongstitvatana, “A hardware imple-
mentation of the compact genetic algorithm” in Proc. 2001
IEEE Congress Evolutionary Computation, 2001, pp. 624-629.

[11] J. C. Gallagher and S. Vigraham,“A modified compact ge-
netic algorithm for the intrinsic evolution of continuous time
recurrent neural networks” in Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan Kaufmann
Publishers, 2002, pp. 163-170.

[12] K. A. DeJong,“An analysis of the behavior of a class of genetic
algorithms”, Ph.D. dissertation, 1975.

[13] Y. Jewajinda and P. Chongstitvatana, “Fpga implementation
of a cellular compact genetic algorithm” in NASA/ESA Con-
ference on Adaptive Hardware and Systems, 2008, pp. 385-390.

[14] F. Cupertino, E. Mininno, E. Lino, and D. Naso, “Optimiza-
tion of position control of induction motors using compact
genetic algorithms” in 32nd Annual Conference on IEEE
Industrial Electronics, IECON, 2006, pp. 55–60.

[15] ——, “Compact genetic algorithms for the optimization of
induction motor cascaded control” in Electric Machines &
Drives Conference, 2007. IEMDC ’07. IEEE International,
vol. 1, 2007, pp. 82-87.

[16] F.G. Lobo, C. F. Lima, and H. Martires, “An architecture
for massive parallelization of the compact genetic algorithm,”
in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2004), vol. LNCS 3102. Springer, 2004,
pp. 412-413.

[17] S. Droste, “Not all linear functions are equally difficult for
the compact genetic algorithm” in Genetic and Evolutionary
Computation Conference (GECCO-2005), vol. 1, 2005, pp.
679-686.

[18] R. Rastegar and A. Hariri, “A step forward in studying the
compact genetic algorithm,” IEEE Transactions on Evolu-
tionary Computation, vol. 14, no. 3, pp. 277-289, 2004.

[19] C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact
genetic algorithm”, IEEE Transactions on Evolutionary Com-
putation, vol. 7, no. 4, pp. 367-385, August 2003.

[20] P.D. Hortensius, R.D. McLeod, and H.C. Card, “Parallel
random number generation for vlsi systems using cellular
automata”, IEEE Transactions on Computers, vol. 38, no. 10,
pp. 1466-1473, 1989.

[21] M.A. Moreno-Armendáriz, C.A. Pérez-Olvera, F. Ortiz Ro-
dŕıguez, E. Rubio-Espino, Indirect Hierarchical FCMAC con-
trol for the ball and plate system, Neurocomputing, 73, 2454-
2463, 2010.

[22] E. Mininno, F. Cupertino, and D. Naso, “Real-Valued Com-
pact Genetic Algorithms for Embedded Microcontroller Op-
timization”, IEEE Transactions on Evolutionary Computata-
tion, 12(2), 203-219, 2008.

[23] P.D. Hortensius , R.D. McLeod , W. Pries, D.M. Miller
,H.C. Card, Cellular Automata-based Pseudorandom Num-
ber Generators for Build-In Self-Test, IEEE Transactions on
Computer-aided Design, 8(8), 842-859, 1989.

40 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Design And Implementation Of An Embedded
Obstacle Detector For The Visually Impaired

Ihekweaba Chukwugoziem1, Nwachukwu-Nwokeafor K.C1, Ihekweaba Ogechi1

 1Computer Engineering Dept. Michael Okpara University of Agriculture, Umudike, Abia State Nigeria.

ABSTRACT: Physical disability has been a major
set back to individuals, their families and
subsequently national development. Visual
impairment is a major physical challenge that has
rendered many helpless. This paper showcases the
need for the visually impaired (the blind) to detect
obstacles beyond knee level at a long range and in
real-time. It further presents current works within the
scope of the project. Also, common obstacle
detection techniques are elucidated. Finally, the
system hardware development, software
requirements, specifications, conclusions and
recommendations were presented.

Keywords; Obstacle detection, microcontroller,
transmitter, assembler, astable..

1.0. INTRODUCTION.

Obstacle detection technology is widely used
globally in many areas and aspects of life within the
areas of domestic operations, manufacturing,
medicine, as well as space activities. In these fields,
the obstacle sensors are used for detection, counting
and avoidance as well, both for moving and
stationary objects. The basic techniques used, involve
ultrasonic sensors and infrared sensors which offer
varied attendant coverage ranges, design
specifications, operational principles and
development techniques. In the past, efforts have
been made by the General Motors Cooperation
(GMC), USA, to protect a driver from running over
objects or obstacles in the blind spots when backing
up. An advertisement aired in the spring, of 1984
displayed a car equipped with an object detector of a
small bicycle parked behind a car. Also, DELCO

Electronics came up with the Near Object Detector
System (NODS) for automobiles with poor rear
visibility. Several other works have been done in this
area with the introduction of Radar (40GHz),
Infrared, Lasers, and Ultrasound Techniques.
However, the radar approach was found to be the
most effective over others due to it’s immunity over
several environmental factors such as; rain, ice,
snow, dirt, etc. Other related works include, the
Tuvie; an electronic replacement for the White Cane
which uses a distance sensor to inform(using voice)
an end user of detection through a Bluetooth
earpiece. Another scenario involves the use of a live
camera to convert grayscale images into sounds
referred to as sound capes. In the Prosthesis, a
substitute for vision with audition, a device similar to
the voice but with a head-mounted Video camera is
used for capturing images and sending them to a
standard digitizing board in a computer. Also, the
Isreali Radar for the blind which uses two video
cameras and a high source to provide audio feedback
were demonstrated with the sensor vest which uses
ultrasonic sensors in a vest. In this system, ultrasonic
sensors installed in a vest and shirt lead to vibration
which is coordinated and processed to yield a
feedback on the direction in which an obstacle is
located. Generally, all these techniques with their
attendant disadvantages had in no doubt made their
contributions. It thus becomes imperative that basic
tools for obstacle detection which include, the digital
cameras working with the aid of the Laser, common
Radar, Microwave-based Radar, Digital Laser range
finders, and Infrared sensors are deployed in this
system development.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 41

2.0. MATERIAL AND
METHODS.

The hardware components used in this work include;

sensors, resistors, capacitors, transistors, Light

emitting diodes and the microcontroller. The

resistor is a two- terminal electronic component that

produces a voltage across its terminals that is

proportional to the electric current through it, in

accordance with Ohm’ law; V= IR [1]. The device

was used to regulate current and voltages at various

points on the circuit. The design involved the

calculations of various parameters which include;

resistance, the tolerance, the maximum working

voltage and the power rating. The capacitor, another

passive [2] electronic component consists of a pair of

conductors separated by a dielectric (insulator) [3].

An ideal capacitor is characterized by a single

constant value, the capacitance, measured in farads.

This is the ratio of the electric charge on each

conductor to the potential difference between them.

In this system, the Capacitors were used at the power

supply for blocking direct current while allowing

alternating current to pass, this was necessary for

smoothing the output of the power supplies. The

transistor, an active component was used as a simple

amplifier. A major component deployed in this

system is the microcontroller. The Microcontroller, a

digital[4] device, usually contains four several to

dozens of general purpose input/output pins (GP10).

A GP10 pin is software configurable to either an

input or an output state. When GP10 pins are

configured to the input state they are often used to

read sensors or external signals in real time control

operations[8]. . A less common feature on some

microcontrollers is a digital-to-analog converter

(DAC) that allows the processor to output analog

signals or voltage levels. The 89C51 is a 40-pin

digital[8], IC. Thirty-two pins are needed for the four

I/0 ports. To provide for the other microcontroller

control signals [10], [11], [12], most of these pins

have alternative functions, which are shown in figure

1, below;

Fig.1; The 89C51 pin configuration

PORT 0 (pin 32 – 40) is dual purpose serving as

either an 8-bit bidirectional I/0 port (p0.0-p0.7) or the

low other multiplexed address/data (AD0 – AD7).

AD0-AD7, are used to access external memory. They

are activated automatically whenever reference is

made to external memory. The AD lines are

demultiplexed into A0 – A7 and D0 – D7 by using

the ALE signal.

PORT 1 (pin 1-8) Port1 is an 8-bit bidirectional I/0

port.

P1.1

P1.4

1
2
3
4
5
6

8

9

10
11
12
13
14
15

7

16
17
18
19
20

40
39
38
37
36
35

33

32
31
30
29
28
27
26

34

25
24
23
22
21

P1.0

P1.2
P1.3

P1.5
P1.6
P1.7

RST
RXD
TXD

TXD
INTI

T0 P3.4
T1 P3.5

WR
RD P3.7
XTAL 2
XTAL 1

VSS

VCC
P0.0

P0.1

P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
EA / V
ALE / PROG

PSEN
P2.7 A15
P2.6 A14
P2.5 A13

P2.4 A12
P2.3 A11
P2.2 A10

P2.1 A9
P2.1 A8

Port 1
Port 0

Port 3

Port 2

42 Int'l Conf. Embedded Systems and Applications | ESA'13 |

PORT 2 (pin 21-28) Port 2 is a dual-purpose, serving

as either an 8-bit bidirectional 1/0 port (P2.0 – P2.7)

or as the high order address bus (A8 – A5) for access

to external memory. The port becomes active as the

high order address bus whenever reference to

external memory [6] is made.

PORT 3 (pin 10-17) Port 3 is a dual-purpose, serving

as an 8-bit bidirectional I/0 port. Its functions listed

in table 2-1.

PSEN (pin 29) Program Store Enable is a read strobe

for external program memory. It is connected to the

Output Enable (OE) of an external ROM or EPROM.

EA/VPP (pin 31) External Access (EA) is tied low to

enable the microcontroller to fetch its program code

from an external memory IC This pin also receives

the 21V programming supply voltage (VPP) for

programming the EPROM parts.

XRAL 1, XTAL 2 (pin 18, 19) Connections for a

crystal or an external oscillator.

The address spaces of the 89C51 are divided into four

distinct areas; internal data memory, external data

memory, internal code, memory, and external code

memory.

The 89C51 allows for up to 64k of external data

memory (RAM) and 64k of external code memory

(ROM/EPROM). The only disadvantage of external

memory, in addition to the additional circuitry, is that

ports 0 and 2 get tied up for the address and data bus.

When 89C51 is first reset, the program counter starts at

0000H. if EA is tied low, the CPU, issues a low on

PSEN (Program Store Enable), enabling the external

code memory ROM/EPROM instead.

With EA tied HIGH, the first 4k of program instruction

fetches are made from the internal code memory. Any

fetches from code memory above 4k (10000H is

FFFFH) will automatically be made from the external

code memory. If the application has a need for large

amounts of data memory, then external data memory

(RAM) can be used. I/0 to external RAM can only be

made by using one of the MOVX instructions [5].

When executing MOXV instruction, the 89C51

identifies a reference to external RAM, it thus issues the

appropriate WR or RD signal.

3.0 SYSTEM HARDWARE
 DESIGN DEVELOPMENT

The system developed is based on the infra red

technology. The infrared system as shown in figure; 2

and 3 below, provides for an interface between the

hardware and any possible software integration. The

detection unit of the system realized consists of two

components; an infrared emitting diode and an

infrared-sensitive photo transistor, with the other unit

containing an infrared reflector, as showcased

effectively in the figure;4. When positioned in-front

of an entrance to a protected area, the two units

establish an invisible beam, and any object captured

within the area leads to an interruption of the beam

path subsequently, an alarm is triggered .

THE BASIC CONCEPT OF
MOTION DETECTORS.

Fig.2. The Infrared Detector Unit.

Fig.3: The Block Diagram of Infrared Obstacle

Detection Systems, (IODS).

Int'l Conf. Embedded Systems and Applications | ESA'13 | 43

The system hardware consists of four units as shown

fig.3, below.

Fig.3, A block diagram of the Intelligent Infrared

Obstacle Detector.

In this system, when an object or obstacle is standing

in front of a blind person, the infrared receiver-

transmitter component is agitated. A 555timer

integrated circuit operating in an astable mode injects

the required current to the Light Emitting Diode

(LED’s), thus ensuring a long range of operation.

There are three such units, each operating at different

frequencies and positioned at various directions;

North, East, and West

The receiver uses a sharp IR module when the IR

beam from the transmitter falls on the IR module; the

output is activated or goes “High”. But when there is

obstruction, it goes “Low”.

But in this project, we placed the transmitter and

receiver module side by side to each other.

Meanwhile, the infrared transmitter continues to

transmit its 48 KHz signal. Once there is an object in

front of the transmitter, the IR beam is reflected back

to the receive module. This causes the receive

module to go “HIGH”. The microcontroller uses the

high state to turn ON the specific alarm signal

dedicated to the direction, thus indicating that an

object has been detected or is standing in the way at

that direction. The complete circuit diagram is shown

below.

INFRARED TX/RX
SENSOR

MICROCONTROLLER

ALARM UNIT

POWER SUPPPLY UNIT

44 Int'l Conf. Embedded Systems and Applications | ESA'13 |

 Fig.5. System circuit diagram.

4.0 SYSTEM SOFTWARE
 DEVELOPMENT

The system flowchart is shown in Fig 6 below. The

algorithm continuously monitors all the directions,

and generates the appropriate alarm signal when it

detects an obstacle in the direction monitored. The

software was finally developed using the 89c51

assembly programming language kit.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 45

Fig 6 Flowchart for embedded obstacle detector
 for the visually impaired

No

Yes

Start

Point at port p1.0

Logic 1

Present?

Point at port p1.1

Logic 1

Present?

Point at port p1.2

Logic 1

Present?

1.Clear output port

2. Load Delaynumber1

3. Send tone to output port

1.Clear output port

2. Load Delaynumber2

3. Send tone to output port

1.Clear output port

2. Load Delaynumber3

3. Send tone to output port

Yes

No

Yes

No

46 Int'l Conf. Embedded Systems and Applications | ESA'13 |

5.0 TESTS AND RESULTS
The transmitters were tested for proper signal

generation using the oscilloscope. Fig 7 below is the

output of transmitter 1 which was developed to

produce a 38khz signal at 10% duty cycle.

Figure 7. The 38 kHz frequency generated by the
emitter circuit.

The hardware was developed and tested with the
circuit wizard application software. The 89c51
assembly programming language [7] kit was used in
the development, debugging and translation of the
system software. The system was finally integrated
with an eprom programmer.

6.0 CONCLUSION
This system provides a low cost alternative to the
visually impaired persons in their ability to move
freely in their homes without being aided. The system
achieved an appreciable obstacle detection above
knee level and at good distance and with the
attendant interface capabilities offered by the use of
the microcontroller in its implementation.

REFERENCES.
[1] Alan Clements,2009, “ The Principles of
Computer Hardware”, Oxford University PressPp
338 – 355

[2] Anil K Maini, 2006, “Electronics and
Communication Simplified” Khana Publisher
 Pp 1 – 23

[3] B.S Chalk A.T Carter, R.W Hind, 2006,
“Computer Organisation and Architecture”, Palgrave
MacMillan Pearson Prentice Hall, Pp 259 – 315

[4] Carter J. W., 1996, “Microprocessor Architecture
and Microprogramming - A State Machine
Approach.” Prentice-Hall, Englewood Cliffs,
pp100,120

[5] Gothmann W. H., 1977, “Digital Electronics - An
introduction to Theory and Practice.” Prentice-
Hall, Englewood Cliffs, NJ, USA, pp1-75

[6] Jimmie J Cathery, Syed A Nasar; 2004 “
Schaum’s Outline Series; Basic Electrical
Engineering” , Tata McGrawHill , Pp 3 – 4

[7] Dielectric – Ashutosh, Pramanik , 2006 “
Electromagnets Theory and Applications”, Prentice
Hall of India, Pp 68 – 69

[8] John P, Hayes, 2005, “Digital System design and
Microprocessor” Tata McGrawHill Pp 1 – 69

[9] Microchip PIC16/17 Microcontroller Data Book.
Microchip Technology Inc., 1996.

[10] Microchip Embedded Control Handbook
1994/95 Microchip Technology Inc., 1994.

[11] Microchip PICStart Design Contest Application
Brief Notebook Microchip Technology Inc., 1993.

[12] P. B Ram, 2008, “Fundamentals of
Microprocessor and Microcomputers,” Pahupat Rai
Publications. Pp 7.1 – 7. 60

[13] Wilkinson B. and Makki R.,1992, “Digital
System Design.” Prentice Hall, International (UK)
Ltd. Pp 100-120

Int'l Conf. Embedded Systems and Applications | ESA'13 | 47

Developing an Ultra-Low Power Remote

Infrastructure Monitoring System

Ross Liederbach
1
, Ashley Little

1
, Flora Xiao

2
, Cornel Zlibut

3
, Guoqing Zhou

1
, Chris Farnell

1
, Brett Sparkman

1
,

Jingxian Wu
1
, and Scott C. Smith

1

Department of Electrical Engineering, University of Arkansas, Fayetteville, AR
1

Department of Material Science and Engineering, University of Illinois, Urbana-Champaign, IL
2

Department of Electrical Engineering, Tennessee State University, Nashville, TN
3

rliederb@uark.edu, arlittle@uark.edu, ffxiao2@illinois.edu, czlibut@tn.state.edu, gzhou@uark.edu, cfarnell@uark.edu,

bsparkma@uark.edu, wuj@uark.edu, and smithsco@uark.edu

Abstract— This paper develops an infrastructure monitoring

system to wirelessly monitor vibrations that may cause

impairment to structures. A wireless sensor network comprised

of a fusion center and four sensor nodes allows for data to be

transmitted from the sensors to the Fusion Center (FC), stored on

an SD card, and later uploaded to a server via Global System for

Mobile Communication/ General Packet Radio Service

(GSM/GPRS). Another option is to read live data straight to the

computer from the FC using a LabVIEW graphical user

interface. The FC is controlled by SMS from the user’s cellular

phone, with the option of manual override.

Keywords- Wireless Sensor Network, Arduino, Piezoelectric

Sensor, XBee Radio, Vibration Monitoring

I. INTRODUCTION

Present day infrastructure such as bridges, buildings, roads
and tunnels can use wireless sensor networks (WSNs) to test
for structural fatigue caused by high vibrations, fire, flood, ice,
etc. It is crucial to monitor these infrastructures for pending
dangers. Patterns of these conditions can be monitored by using
sensor nodes that transmit information to a fusion center (FC).
This allows engineers to analyze structural damage and prevent
future destruction. These WSNs will be needed for civilian and
military use for extended time periods, requiring the system to
use ultra-low power consumption, and to harvest energy from
the surrounding environment. Several challenges were
presented including a low signal-to-noise ratio and low
maintenance. Surrounding environment conditions like noise
and interference can lower efficiency of low power signals. The
WSN was designed to withstand all forms of environmental
conditions and harvest energy from the environment so that the
sensors need little to no maintenance. Access to the data
collected by the WSN was also included in the design. The
power of the XBee has a limited distance transmission as it
only allows up to a mile for transmitting data. XBee has mesh-
network capabilities used for extending the range of device
transmissions. This allows for data harvesting by storing data at
a FC and transmitting data from the FC to the computer via
GSM.

II. PREVIOUS WORK

 Many studies have been conducted on vibrational testing

with wireless sensor nodes for infrastructure health monitoring.

Factors such as cost and power vary widely for every project.

This project reduces cost and uses low power while harvesting

energy from the environment. It is important to point out that

this is on a much smaller scale than the previous works

mentioned below.

The Health Monitoring of Civil Infrastructures Using

Wireless Sensor Networks [8] used 64 nodes to monitor the

Golden Gate Bridge in San Francisco, CA. Each sensor node

cost approximately $600 [8] and was also tied to a high cost of

installation and maintenance. However, they each achieved a

sampling rate of 1kHz and accuracy of 30 muG. The WSN

used mesh networks due to its scale and a laptop was used as

the base station. The information was then sent long range

through the internet. Towards Wireless Sensor Networks for

Railway Infrastructure Monitoring [9] used its own WSN,

SENSORAIL, to monitor structural health and environmental

security of a railway system. The WSN involved some

overhead for the local wireless infrastructures in the form of

ZigBee communication protocol. The information was then

sent through a Wide Area Network (WAN) such as

GSM/GPRS, UMTS/EDGE, and Fiber Optics geographic

networks.

III. OVERVIEW OF COMPONENTS

After complete construction of the project, the node costs is

approximately $90 and the FC with included components

mentioned below equates to approximately $300.

A. Arduino Uno

The Italian-made Arduino Uno [6] is an open-source single-
board microcontroller. A standard boot loader and
programming language compiler run directly on the board. It is
programmed using a language similar to C++ [5]. Fourteen
input/output connector pins are exposed as female 0.1 inch
headers, allowing the Arduino to interface with accessories,
called shields. Some shields may be able to communicate
directly over pins while others use the I

2
C serial bus. The

48 Int'l Conf. Embedded Systems and Applications | ESA'13 |

mailto:rliederb@uark.edu
mailto:arlittle@uark.edu
mailto:ffxiao2@illinois.edu
mailto:czlibut@tn.state.edu
mailto:gzhou@uark.edu
mailto:cfarnell@uark.edu
mailto:bsparkma@uark.edu
mailto:wuj@uark.edu
mailto:smithsco@uark.edu

Arduino Uno uses an Atmel AVR 8-bit ATMega328P
processor [1]. For USB to Serial conversion the Arduino uses
an ATMega16U2 chip. The Arduino Uno functions on a 5V
operating voltage, with a 7-12V recommended input voltage.
Also, the Arduino includes a 16MHz crystal oscillator to
provide a stable clock signal.

Along with its processing power, the low power
consumption and shield compatibility makes the Arduino Uno
an optimal choice for the fusion center. With several shields
available for the Arduino, and with a basic programming
language, the Arduino Uno is extremely versatile and user-
friendly.

B. Series 1 XBee

 The Digi International Series 1 XBee [3] uses the IEEE
802.15.4 protocol. XBees allow for easy communication
between microcontrollers, computers, or anything with a serial
port. These modules have 8 digital I/O pins (with 6 being
capable of analog) and a built-in antenna. XBees are
programmed using AT commands. They are compatible with
X-CTU software, which is used for testing and configuration of
XBee devices. The Series 1 XBee is ultra-low power and has
long distance reliability allowing it to transmit up to 100’
indoor and 300’ in outdoor settings. The Radio Frequency (RF)
Data rate is up to 250,000 bits per second (bps). The Serial
Interface Data rate travels between 1200 bps and 250 kbps.
Power requirements are between 2.8 and 3.4 V for supply
voltage. The Series 1 XBee modules have point-to-point or
point-to-multipoint capabilities.

C. SM5100B GPRS Shield

The RF part of the GPRS shield converts into baseband for
receiver chains and translates base band signals into the RF
spectrum. This module has 60 connector pins and is connected
to the SM5100B evaluation board. The GSM module connects
directly to a Quad-band Cellular Duck Antenna. The
operational voltage is between 3.3V and 4.2V with a
recommended 3.6V power supply. The available frequency
bands are EGSM900, GSM850, DCS1800, and PCS1900. In
America and for this project the GSM850 was used. It operates
using AT Commands for the transmission control protocol
(TCP) [4].

D. LabVIEW Graphical User Interface

LabVIEW is system-design software allowing scientists
and engineers to program tools on a GUI for measurement and
control of systems. LabVIEW allows the user to program
graphically in a language called “G”. This programming
method allows the user to wire graphical icons together while
directly compiling to the computer, greatly simplifying the
debugging process. G Programming is much more intuitive
because it allows scientists and engineers to think and problem
solve visually. One benefit of the built-in compiler is the
broken run arrow in the toolbar that does not allow the user to
run the program if there is an error. LabVIEW is able to
connect to the serial port on the Arduino Uno to read in live
data. Also, it has the capability to read or write to spreadsheets.
Because of the intuitive programming language and applicable
measurement tools provided, LabVIEW offered a very

straightforward approach to designing a graphical user
interface (GUI) system.

E. Li-Po Rider

The Li-Po Rider [7] is a power module that has a Lithium-
Polymer (Li-Po) battery charger and a boost circuit with a
standard USB output connection. It connects to the
Photovoltaic Module (i.e., solar panel) in order to charge the
Li-Po battery. The solar panel uses 5.5V at peak power, which
is 0.935W. The Li-Po Rider can also charge the battery via the
USB port or with a wall charger. The Li-Po Rider can
automatically adjust the current to account for the varying
charge of the solar panel. This module has automatic
recharging capabilities as well as a user output power switch.
The batteries used in this project are 3.7V, 3000mA/Hr
batteries. This means that they should supply 3000mA of
current for one hour. Paired with the Photovoltaic Module, the
Li-Po Rider provides an ultra-low power solution for the WSN.

IV. SYSTEM DESIGN

A. Nodal Modules

Nodes are enclosed in 4x2x1” dimensional boxes. As shown

in Figure 1, they are packaged to hold an XBee wired to the

ATMega328P, the 3000mAh battery and the Li-Po Rider. This

gives the nodes their own sources of power, and the ability to

harvest energy from the environment. The sensing pin,

ground, and voltage controlled by the MOSFET, are all off-

board for easy connection to piezoelectric sensors or sensors

that require voltage. The MOSFET/microcontroller

combination allows for less power consumption by the sensor

devices and the XBee. All eight I/O pins of the XBee may be

made external to the node for access. An external switch

allows the user to manually turn the sensors on and off to

conserve power. The ATMega328P analyzes the commands

from the FC, which in turn may shut off current entirely to the

XBee radio, or start transmissions, thus conserving power.

This switching of power to the XBee and sensors is controlled

by the MOSFET in conjunction with the

microcontroller. Currently, during the sleep cycle, the node

draws ~13 mA, and while continuously transmitting, the node

draws ~74 mA.

Figure 1: Wiring of Nodes

Int'l Conf. Embedded Systems and Applications | ESA'13 | 49

1) Li-Po Rider

The Li-Po Rider [7] is extremely useful in its ability to

utilize external energy, and store that energy in a battery. The

Li-Po Rider also allows for switching 5V on and off from the

battery to power another system. With the Li-Po Rider board,

managing power at each node is simplified, with each node

having its own solar panel and 3000mAh battery.

2) ATmega328P

For controlling the XBee radio, with ultra-low power

consumption in mind, pre-programmed sleep modes on the

XBee did not work. These pre-programmed modes on the

XBee radio created problems with the Fusion Center interface;

therefore, a microprocessor, the ATMega328P, allows for

more specialized and specific communication between the

node and the FC. The ATMega328P is first boot-loaded with

the Arduino boot loader, which is shown in Figure 2.

Figure 2. Bootloading ATMega328P

After being bootloaded, this chip may be programmed using

the Arduino IDE. Programming the chip involves having a

digital pin written high and low based on commands sent from

the FC. This digital pin is connected to a PNP mosfet, which

in turn powers the XBee on and off.

3) XBee

Original programming of the XBee sets the baud rate, and

Personal Area Network ID (PAN ID) to the same as the XBee

at the fusion center, sets the destination address to the

coordinator XBee’s address, and sets the sampling rate and

“samples before TX” to A and 0, respectively (A is 10 in hex

and represents a 10ms or a 100Hz sample rate). Before

plugging the XBee into the system, the I/O pins must be

configured as needed to digital, or ADC. These values are

stored in the XBee and are not reset when powered off.

For the system of XBee and ATMega328P to work properly,

the XBee must turn on periodically to check for a command

from the FC. A sleep cycle consisting of “Wake” and “Sleep”

stages is implemented to accomplish this. If a command is

sent from the FC during the “Wake” stage of the sleep cycle,

the ATMega328P allows the XBee to stay on. Once the XBee

is on, other commands may be sent, such as a command to

start transmitting. In the case that the “Transmit” command is

sent, the ATMega328P will enter the XBee command mode

and reprogram the “samples before TX” value to “A,” which

again means 10, and therefore begins transmitting after

acquiring 10 samples. This method allows for longer “Sleep”

stages, however the longer the sleep stage, the longer it will

take for all nodes to wake up. Minimizing the “Wake” stage

of the sleep cycle would lower overall power consumption, but

this again could affect the time it takes to wake up since the

node might not receive the wake command during its “Wake”

stage. All XBee AT Commands can be altered as shown in

Table I [3].

TABLE I. XBEE AT COMMANDS

Command Description Value

ATID PAN ID 3332

ATDL
Destination Low

Address
40492D6A

ATBD
Interface Data

Rate
7- 115200bps

ATIR Sampling Rate 0

ATIT
Samples before

TX
A

ATD0-ATD7 I/0 Settings

1-NA

2-ADC

3-DI

4-DO LOW

5-DO HIGH

4) Abilities/Sensor capabilities

The ATMega328P microprocessor chip is the same as in the

Arduino Uno, and has a lot of processing power that is unused

in this application. Alternate and additional commands may

be analyzed and carried out by the ATMega328P, but in this

project, only sleep, wake, and transmit commands are used.

Any sensors that are powered by 5V or less, and output

between 0 and 3.3V, are capable of being used with the sensor

nodes. External circuitry is helpful in scaling voltages of

sensors down to what is readable by the XBee radio.

Using Series 1 XBee radios bring the advantage of higher

sampling rates, up to 1KHz, and simpler setup than Series 2

radios, which are only capable of sampling rates up to

20Hz. The Series 1 radio may store up to 46 analog samples

before transmission in its buffer, which allows for expansion

in the number of sensors the node is capable of supporting,

and allows for lower transmission rates.

B. Fusion Center

The fusion center is comprised of several elements

including: SD Wireless Shield, S1 XBee Radio, SD card, two

Arduinos, GPRS Shield, 12V power supply with a voltage

regulator, and a multiplexer. All the components are enclosed

in an 8x6x4” box, as shown in Figure 3. The box has two

50 Int'l Conf. Embedded Systems and Applications | ESA'13 |

switches controlling system power and a live or SD data

collection and a mini USB plug for live data collection.

The FC is the center piece that allows the whole system to

cooperate together. The FC system can also be broken into

two distinct systems sustained by individual Arduinos. The

first Arduino is dealing with XBee and SD communication,

while the second Arduino deals with the GPRS

communication. Together they allow for a larger variety of

integrations and improvements.

Figure 3: Wiring of Fusion Center

1) System One (Arduino/XBee/SD)

The Arduino Wireless Shield allows the Arduino board to

communicate through the XBee with all the sensor nodes. In

this system the microcontroller is programmed to deal with the

XBee and SD card for collecting the data from all the sensor

nodes and saving it to the SD card in separate files depending

on the sensor node. If the live data collection switch is “On”

then all the data will be output to a new serial port for viewing

it in LabVIEW.

Figure 4: Arduino with the XBee/SD Shield

a) XBee

The XBee at the FC is working as the coordinator for the

entire wireless network on the PAN. The XBee is programmed

in X-CTU, which includes the networking & security, RF

interfacing, serial interfacing, I/O settings, diagnostics, and

AT command options. One important difference in the

coordinator XBee is that its destination address is required to

be set to a broadcast address over the PAN so that each node

receives the commands sent from the FC. Commands like

wake, sleep, or transmit are all broadcast. The RF interfacing

should set the “select/read transmitter output power” value to

its highest level for efficient communication between the

XBees in different environments. Furthermore, the clear

channel assessment threshold is set to 44dBm so that if the

modem detects energy above the threshold it does not

transmit, which limits the loss of data samples. The serial

interfacing settings were modified to 115200 interface data

rate (BD) [3]. This option allows adding more sensor nodes to

the wireless network without lag or losses in the data received.

b) SD

The SD is formatted with FAT32 file system with one

partition on it since Arduino can only support this system. The

communication between the microcontroller and the SD card

uses SPI, which takes place on digital pins 11, 12, and 13.

Additionally, another two pins must be used to select the SD

card for input and output of data, which in this case were

digital pins 4 and 10. The SD is used to hold the received data

until it is being transmitted to the remote server through the

GPRS; afterwards the data is removed to prevent duplication

or retransmission of the same data.

2) System Two (Arduino/GPRS)

The Arduino GPRS/GSM Shield is a physical add-on to

Arduino that allows send/receive SMS and voice calls, but

also establishes TCP communication [4] over the broadly

spread GPRS network. In this project the GPRS/GSM shield is

used for sending and receiving SMS commands and

confirmations while connecting to a socket on a remote server

to send data. In this system the microcontroller is

programmed [4] to communicate with the GPRS/GSM in

order to establish socket and SMS connection. It is fully

commanded using AT commands [2] over the serial port

connection from the microcontroller. The GPRS uses a SIM

card from T-mobile which monthly or annually can be

recharged with the data plan desired by the user.

The microcontroller on this system also controls a dual 4-

channel analog multiplexer/demultiplexer with common select

logic for the ability to change between serial ports on the

Arduino, and three digital pins for communication between the

two Arduino systems.

Figure 5: SM5100B GPRS Shield/Arduino

Int'l Conf. Embedded Systems and Applications | ESA'13 | 51

3) FC Mechanism

The two Arduino systems at the FC should cooperate

together in order for the entire project to work properly. When

the entire system is turned on, one of the microcontrollers is

initializing the SD and XBee while the other microcontroller is

setting up the SMS and server socket connection based on the

server specified. Once the initialization and socket connection

is ready, a SMS confirmation is sent to the specified user.

Now the user is able to text a command, as shown in Table II.

If the GPRS receives the #ON command, it sends back a

confirmation to the user and lets the XBee/SD Arduino know

through a digital pin to broadcast the wake command. After all

the nodes respond with an acknowledgment of “On”, the

coordinator gives an order for transmission. Now the

microcontroller checks to see if the live data is switched “On”.

If the live data switch is not “On” then it automatically writes

the data to the SD card. If the live data switch is “On” it then

can be viewed in the LabVIEW interface. Once the user sends

the #OFF command, the GPRS again sends confirmation back

to the user and then lets the XBee/SD Arduino know to end

the transmission by sending the sleep command. Once the

nodes are in sleep mode and SD has all the data, the GPRS lets

the user know that data is ready to be transmitted to the

computer/TCP server. Therefore, the XBee/SD Arduino takes

over the TX/RX pins of the GPRS through a high-speed Si-

gate CMOS device for ease of uploading the data from the SD

card to the serial port of the GPRS. This data is continually

being sent to the computer/TCP server until no more data is

left. Once the data is finished, the TX/RX pins of the GPRS

are switched back to the previous Arduino and confirmation of

the completed data is sent back to the user. The SD files can

now be deleted to make room for new files or they can be

renamed to be kept for future analysis.

TABLE II. SMS COMMANDS

SMS Command Command Specification

#ON Turn Sensor nodes ON

#OFF Turn Sensor nodes OFF

#OR Reset GPRS

4) FC Optional Improvements & Capabilities

The FC can also be improved in many ways based on

preferences of the user. For example, if different types of

sensors are needed for monitoring the infrastructure, they can

be integrated into the FC. Sensors like humidity devices and

barometers were tested on the FC.

C. Node/FC Interface

Figure 6 shows the basic schematic of the communication

between cell phone, computer, fusion center, and nodes. In

the fusion center, two Arduino Uno boards are housed, each

with their own shield and separate tasks. The Arduino with

the GSM/GPRS shield handles all incoming commands from

the cell phone and sends back confirmations via SMS. This

shield also handles uploading data to a TCP server where it

can be accessed through a computer. Because this Arduino

receives commands, it passes the commands along to the

Arduino coupled with the SD Wireless shield. This second

Arduino directly communicates with the sensor nodes, giving

the nodes commands to turn on and transmit data, or enter the

sleep cycle. Once the command is sent to wake the nodes, the

fusion center waits for a confirmation from each node to send

the command to begin transmission. After the command to

transmit is sent, the processor at each node enters into the

XBee command mode and reprograms the “Samples Before

TX” value to “A”, or 10 samples before transmitting. The

transmit command shall only be sent once from the fusion

center, and broadcast to all the nodes to prevent interference

while the processor is entering command mode. Finally, when

the transmission is stopped and the nodes enter the sleep cycle,

the Arduino with the GSM/GPRS shield begins forming

packets to send over the TCP server, and the Arduino with the

SD shield writes the data, packet by packet, to the GSM/GPRS

shield. Once all the data is sent, the files on the SD card are

deleted, but are accessible through the TCP Server.

Figure 6. Basic Communication Schematic

D. Server

TCP File is an online open-source program that allows for a

socket connection and listens for incoming data. It then takes

this data and stores it into a .txt file.

The data is saved to a TXT file, which is then sorted by a

MATLAB program. The MATLAB program reads in the file

as a string, identifies all occurrences of sensor filenames, and

sorts each sensor’s data into its own column of a master

matrix. The sorted matrix is given a size at the beginning of

the program to minimize runtime, and after all the data is

sorted into it, all rows of all zeroes are deleted, and the master

matrix is written into a .csv file. The LabVIEW GUI reads in

the .csv file and displays it in a comprehensible format.

E. LabVIEW Interface

For this project, two graphical user interfaces were used.

Since there were two different methods for inputting data, two

different interfaces were needed. A GUI was designed for

reading in data from a data file, such as from an SD card. The

52 Int'l Conf. Embedded Systems and Applications | ESA'13 |

other interface focused on reading live data from the COM

port that the FC connected to.

1) Reading Data Files

Figure 7 shows the front panel of the GUI for reading in

data directly from a .csv data file. Detailed below in Table III

are the functions for each designated part on Figure 7.

Before the user presses the run button, they must choose a

file to read from by clicking the folder represented as

number 4. This will pull up a dialog box allowing the user to

select what file they would like to import. If the user presses

the run button without choosing a file, it will pop up with an

error and allow them to try again. Once the interface is

running, the sensors will show the last data point collected on

the .csv file, shown at number 5 in Figure 7.

Figure 7. GUI Front Panel

On the waveform chart, number 6 shows the Y-axis is auto-

scaled in order to display all the voltage points. The time-

voltage chart allows the user to scroll backward and see

previous plot points. Number 8 offers the user the option to

zoom in on the data values as shown in Figure 8. When the

user is finished using the program, they should press the stop

button located at point 2 in Figure 7.

TABLE III. GRAPHICAL USER INTERFACE FUNCTIONS

1 Run

2 Stop

3 Help

4 Dialog Box

5 Sensor Data Feed

6 Autoscaled Y-axis

7 Data points

8 Zoom function

Figure 8. Zoom Feature on GUI

Figure 9. Live GUI Front Panel

TABLE IV. GRAPHICAL USER INTERFACE FUNCTIONS

1 COM Port

2 Run

3 Stop

4 Chart

5 Expansion Function

6 Scrollbar

2) Reading from COMports

In this version of the GUI, shown in Figure 9, the user can

see live data from the COM port. The FC will be connected to

a USB port in the computer. The user will select the COM

port, as shown as number 1 in Figure 9. Once the COM port is

selected, the user can then run the program and see the plotted

data as it comes in. The chart will scroll with the new points as

well as auto-scale the Y-axis to ease the analysis process. The

GUI also is programmed to expand into a larger chart to the

right of the smaller charts to make it easier to see the graphed

points, which can be seen at number 5 in Figure 9.

V. RESULTS AND CONCLUSION

Testing was done in a three part phase. First, one wireless

sensor node was built and tested against a wired sensor. Then,

more nodes were built and tested as a final system without the

GPRS. Finally, the GPRS was connected to the final system.

1) Comparison to Wired Sensor Network

Once the first sensor node was built, an accelerometer was

attached to the wireless node so that the waveform could be

compared to that of a wired sensor. It was tested on a

cantilever beam in a lab at the Engineering Research Center

(ENRC) located in Fayetteville, AR. Results above 600mG

were successful. When the signal dropped below this level,

much noise was picked up resulting in faulty data. After more

Int'l Conf. Embedded Systems and Applications | ESA'13 | 53

testing, it was determined that either the voltage-scaling circuit

for the signal caused the noise or the accelerometer was

defective at low voltages.

2) Field Test

In order to test the final system without GPRS, a field test

was completed at a local bridge in Fayetteville, AR. The

sensors were placed underneath the bridge at its joints, which

seemed the most optimal location for reading vibrations from

the moving vehicles and other outside factors. To begin with,

data was collected live to make sure the sensors were working

properly. Then data was collected and stored in the SD card

for an hour with four piezoelectric sensors connected to the

four nodes. The data successfully transmitted to the FC on the

ground approximately 15 meters from the sensors. All

components worked as expected, and the data stored on the

SD card was analyzed later at the lab. One issue is that the .txt

file showed different amounts of data for each sensor node in

the one hour period. This may be caused by outside

interference that corrupts some of the transmissions from the

XBees to the FC.

3) GPRS/GSM

Once the GPRS was connected to the FC, all commands

were transmitted through SMS communication. After the data

was stored to the SD card, it was then transferred through the

TCP/IP server using the GPRS. The server waited for the data

to store into a single .txt file, which later was converted using

MATLAB into a .csv file for LabVIEW. This effectively

transmitted the data for further analysis.

4) Future Work

There are several things that can be improved upon in this

system. For example, a variety of sensors can be added to the

system such as a water sensor to test for flooding, a barometer

to test for air pressure, temperature, and altitude, or a humidity

sensor. Also, more nodes can be added to the system;

however, the program on the FC does not account for

additional nodes. Thus, the program could be altered for

easier expandability of the network, for more robustness, and

for higher efficiency.

REFERENCES

[1] “8-bit AVR® Microcontroller with 4/8/16/32K Bytes In-System
Programmable Flash”, ATMEL® Corporation, 2009, [Online]
Available: http://www.atmel.com/Images/doc8161.pdf

[2] “SM5100B-D AT Command,” Shanghai Sendtrue Technologies Co.,
Ltd., 2008, [Online] Available:

http://www.sparkfun.com/datasheets/CellularShield/SM5100B%20AT%
20Command%20Set.pdf

[3] XBee/XBee-Pro OEM RF Modules,Maxstream, Inc., Lindon, UT, 2007.

[4] Using AT commands to control TCP/IP stack on SM5100B-D module,
Shaghai Sendtrue Technologies Co., Ltd., 2008, [Online] Available:

http://www.sparkfun.com/datasheets/CellularShield/SM5100B%20TCPI
P%20App%20Note.pdf

[5] Margolis, Michael, Arduino Cookbook, Ed. 1, O’REILLY® Media, Inc.,
March 2011, pp. 81-213.

[6] “Arduino Uno”, ©Arduino., 2006, [Online] Available:
http://arduino.cc/en/Main/ArduinoBoardUno

[7] “Li-Po Rider V0.9b,” Seeed Studio, November 2011, [Online]
Available: http://www.seeedstudio.com/wiki/Lipo_Rider_V0.9b

[8] Sukun Kim, et al., "Health Monitoring of Civil Infrastructures Using
Wireless Sensor Networks," Information Processing in Sensor Networks,
2007. IPSN 2007. 6th International Symposium on , vol., no., pp.254-
263, 25-27 April 2007. [Online] Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4379685&isn
umber=4379652

 [9] Flammini, F., et al., "Towards Wireless Sensor Networks for railway
infrastructure monitoring," Electrical Systems for Aircraft, Railway and
Ship Propulsion (ESARS), 2010 , vol., no., pp.1-6, 19-21 Oct. 2010
[Online] Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5665249

54 Int'l Conf. Embedded Systems and Applications | ESA'13 |

http://www.atmel.com/Images/doc8161.pdf
http://www.sparkfun.com/datasheets/CellularShield/SM5100B%20AT%20Command%20Set.pdf
http://www.sparkfun.com/datasheets/CellularShield/SM5100B%20AT%20Command%20Set.pdf
http://www.sparkfun.com/datasheets/CellularShield/SM5100B%20TCPIP%20App%20Note.pdf
http://www.sparkfun.com/datasheets/CellularShield/SM5100B%20TCPIP%20App%20Note.pdf
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.seeedstudio.com/wiki/Lipo_Rider_V0.9b
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4379685&isnumber=4379652
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4379685&isnumber=4379652
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5665249&isnumber=5665195

A Knapsack Scheduling Algorithm for Soft Real-time
Multiprocessor System

Shaohang Cui1, Douglas Buchanan2, and Ken Ferens2
1ERLPhase Power Technologies Ltd.

2Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
scui@erlphase.com, Douglas.Buchanan@ad.umanitoba.ca, Ken.Ferens@ad.umanitoba.ca

Abstract—Due to the development of commercial multicore
architectures, scheduling in Multiprocessor real-time system
has attracted huge research interests and various
algorithms have been proposed. However, most prior
research on real-time scheduling on multiprocessors has
focused only on hard real-time systems where no deadline
may ever be missed. Due to the increasing need of soft real-
time multiprocessor systems where deadline violation is
tolerable, scheduling in overloaded soft real-time systems
should be studied as well. In this paper, we consider the
time/utility functions (TUFs) express the utility of
completing a task as a function of that task’s completion
time. Our objective is to maximize the overall system utility
with given computation capability constraints and TUFs of
tasks. We first formulate the scheduling problem to an
allocation optimization problem. Then, for practical
implementation, we propose a knapsack method to achieve
the suboptimal solution. Simulation results demonstrate that
the proposed knapsack method could achieve about 90% of
the optimized performance.

Keywords - Soft-real time scheduling; knapsack greedy
scheduling.

I. INTRODUCTION

Real-time multiprocessor systems are now ubiquitous.
The need for multiprocessor real-time analysis has been well
realized in the past 10 years due to the development of
commercial multicore architectures and the research
conducted on the design of effective scheduling algorithms.
The difficulty with achieving effective scheduling algorithms
in multiprocessor systems is that the algorithm must
optimally allocate processors to tasks, and then optimally
schedule the tasks in each processor, which is a doubly
complex endevour [1].

Research on real-time scheduling has largely focused on

recurring tasks, i.e., for each task, a potentially infinite
sequence of events (or jobs) arrive gradually [2], [3], [4].
These algorithms and systems under consideration could be
classified to different categories for various perspectives.

From the perspective of processors, multiprocessor systems
can be classified into [5]: (1) Heterogeneous where the
processors are different; (2) Homogeneous where the
processors are identical (3) Uniform where processors
operate at different integral multiple of a unit speed. From
the perspective of the degree of run-time migration,
algorithms could be classified to [6]: (1) no migration, where
tasks are partitioned and allocated to different processors
before their running (offline), and uniprocessor scheduling
algorithm is applied to each processor; (2) full migration,
where jobs are allowed to arbitrarily migrate across
processors during their execution; and (3) restricted
migration, where some form of migration is allowed, e.g., in
a job’s scale.

However, most prior research on real-time scheduling on

multiprocessors has focused only on hard real-time systems
where no deadline may ever be missed, which also indicated
that the systems under analysis must be under-loaded for a
feasible algorithm design. When resource overloads occur,
meeting deadlines of all activities is impossible as the
demand exceeds the supply. For a soft real-time, violation of
the deadline constraints results in degraded quality, but the
system can tolerate such violation and continue to operate
[7]. Due to the increasing need of soft real-time
multiprocessor systems with large computation requirements,
such as tracking, signal-processing, and multimedia systems,
scheduling in overloaded soft real-time systems should be
studied as well.

In a soft real-time system, deadlines by themselves

cannot express both urgency and importance, e.g., the most
urgent activity can be the least important, or vice versa [8].
In this case, in order to consider the importance and urgency
of tasks jointly, we consider the abstraction of time/utility
functions (or TUFs) as similar in [9] that express the utility
of completing a job as a function of that job’s completion
time. Utility is a task-specific and time-related measurement
of the value to the system. TUF quantifies the utility of
completing each task at a given time. We consider a simple
monotonically non-increasing functions as TUFs that, for a
given task, once a job of this task arrives and is ready to
process, the more time used to complete the job, the smaller
its value to the system. Our objective is to maximize the

Int'l Conf. Embedded Systems and Applications | ESA'13 | 55

overall system utility with given computation capability
constraints and TUFs of tasks. For simplicity, we consider a
homogeneous multiprocessor system with full migration
capability and worst case demand.

In [10][11], it has been proved that for a homogeneous

multiprocessor system with full migration capability, as long
as the utilization requirements of all tasks is less than the
system computation capability, a scheduling policy could be
achieved by the proposed LLREF algorithm. Our idea for the
soft real-time system is that, based on the system
computation capability, we are going to find an allocation of
utilization of processors to each tasks to maximize the
overall system utility. Once the allocation problem is solved,
a scheduling policy could be achieved based on LLREF
algorithm. In this way, we convert TUFs to utilization/utility
functions (UUF), and formulate the allocation problem as an
optimization problem. Due to practical reasons, we then
propose a knapsack method to achieve a suboptimal solution
for the allocation problem.

The rest of this paper is organized as follows. In Section

2, we propose the system model and formulate the
scheduling problem to an allocation optimization problem.
Then, for practical applications, we propose a knapsack
method to achieve the suboptimal solution in Section 3. The
performance evaluation of the concerned algorithms is
presented in Section 4. And Section 5 concludes with a
summary of the work presented in this paper.

II. SYSTEM MODEL

Similar to [10], we consider a homogeneous
multiprocessor system of M identical processors. The
application under consideration consist of a set of tasks,
denoted by T = {T1, T2, ..., TN}. Each task Ti has a number of
jobs, and these jobs may be released either periodically or
sporadically. All tasks are assumed to be independent, i.e.,
they do not share any resource or have any precedence. Full
migration is allowed, i.e., tasks may be pre-empted at any
time. As it is a soft real-time system, it is acceptable for a job
of a task to be completed after the arrival of the next job. The
constraint is that all tasks could be completed steadily, say,
the overall process rate should be no smaller than the overall
demands. Worst case demand is considered here, say, there is
a given minimum time ei required to complete a task i in the
worst case.

A. TUFs and UUFs

On the one hand, a hard real-time system will result in
total system failure if a hard deadline of any job is missed,
and there can be no benefit in completing any job later than
its hard deadline. A hard real-time system results in such
failure when resource demand exceeds system supply, or, in
other words, when resource-overload occurs. On the other
hand, a soft real-time system may continue to perform
tolerably if any job misses its deadline, albeit with degraded
performance. In other words, completing an activity at any

time in a soft real-time system, even after its deadline, will
result in some utility (benefit) to the system, although that
benefit (utility) depends on (is proportional to) the activity’s
completion time. Generally speaking, the amount of benefit
of completing a task after its deadline decreases with
increasing actual time of completion. Many systems quantify
the amount of benefit of completing a task after its original
deadline using the so called time-utility function [8], which
allows the semantics of soft real-time constraints to be
precisely specified. TUF quantifies the utility (benefit) of
completing a job as a function of time, including before and
after that job’s deadline time. Some examples of TUFs are
shown as in Fig. 1.

 (a) (b) (c)

Fig. 1 Example TUF Time Constraints. (a) Step TUFs; (b)
MITRE/TOG AWACS TUF [12]; (c) GD/CMU BM/C2
TUFs [13].

This paper defines optimal scheduling of tasks to
processors by the maximization of the so called Utility
Accrual (UA) function [8]. The UA function is the accrued
benefit of the activities completing their tasks at certain
times, given that the utility of the tasks are described using
the time-utility (time-benefit) functions. For example, the
accrual method may be a simple sum, so that an optimal
schedule is obtained when the sum of each activity’s attained
benefit is maximized. For simplicity, this paper considers
monotonically non-increasing time-utility functions, so that,
for a given task, once a job of this task arrives and is ready to
process, the more time used to complete the job, the smaller
is its benefit to the system. Given the system’s resource
capability, this paper’s objective is to maximize the overall
system utility, given the task time-utility functions.

In [11], a scheduling algorithm called LRE-TL was

proposed for homogeneous hard real-time multiprocessor
system with periodic or sporadic arriving jobs, in which it
was proved that as long as the overall utilization
requirements of all tasks is less than the processing
capability, a feasible scheduling policy could be achieved to
meet all task deadlines. The utilization of a task is defined as

,
, where ei is the longest execution time of a

job of a task i, Pi is the smallest interval between any of task
i’s two successive jobs, and Di is task i’s deadline.

For the soft real-time multiprocessor system under
consideration, if we could find a time interval di for each task
i, which is the maximum allowed interval between task i’s
arrival and completeness, we could get a utilization: .

Based on LRE-TL algorithm, as long as 0 1 and
∑ ∈ , where M is the number of processors, a
feasible scheduling policy could be acquired. Thus, the

56 Int'l Conf. Embedded Systems and Applications | ESA'13 |

scheduling problem could be converted to an optimization
problem: find di to maximize the overall utility given the
constraints for ui. Or TUF could be converted to utilization
utility functions (UUFs) which describe the relationship
between a task’s utility and utilization. In this way, the
optimization problem is an allocation problem: how to
allocate utilization to different tasks so as to maximize the
overall utility, given the overall available utilization
(processing ability) and UUFs.

B. Optimization Problem

From the above analysis, we could formulate the
scheduling problem in a soft real-time multiprocessor system
as an optimization problem for allocation of utilization to
tasks as follows:

∑ ,	s.t.,	∑ M, 0 1 1

When Ui(ui) are convex functions on the constrained set,

it is a convex programming problem and could be easily
solved by calculating the KKT conditions, i.e., let:

L A, u ∑ ∑ ∑

∑ 1 ,	where	 , … , 	
2

From KKT conditions, we have:

dL
du

0	 3

0	 4

0	 5

1 0	 6

Note that to solve KKT conditions, Ui should be

differentiable on the interval [0,1].

III. KNAPSACK GREEDY ALGORITHM

In practice, sometimes it may be not easy to acquire the

analytic expression of the TUF and UUF, or it is too complex
to solve the convex programming problem, or even Ui may
be not be convex nor differentiable on [0,1]. In this case, we
may use a Knapsack method to achieve the suboptimal
solution.

Intuitively, to maximize the overall utility (benefit),
higher utilization should be allocated to tasks which could
achieve high utility with small utilization first. However, as
the relationship between utilization and utility of a task is
determined by its UUF, which is not a constant, we need to
find a suitable point which is most profitable, say, how much

utilization should be allocated to a task to achieve utility.
Based on this consideration, we divided the UUF to 9

zones as shown in Fig. 2.

Fig. 2 UUFs and zones.

We select UUF ⁄⁄ where

and are task specific constant as the example. u=0.2,0.5
and , . The Y is the maximum achievable utility of
all tasks, given the maximum utilization (utilization = 1). In
Fig. 2, Y ≈ 20.64 is a random number.

Each zone is abstracted as represented by its centroid,
which is related with a required utilization and an estimated
utility, as shown in Table 1.

Table 1 Required utilization and estimated utility for zones.
Zone(i,j) i=1 2 2

j=1 (0.1, 5/6 Y) (0.35, 5/6 Y) (0.75, 5/6 Y)
2 (0.1, 1/2 Y) (0.35, 1/2 Y) (0.75, 1/2 Y)
3 (0.1, 1/6 Y) (0.35, 1/6 Y) (0.75, 1/6 Y)

For a task passing a zone, by estimation, within this zone,

this task could achieve the utility with a utilization
determined by the centroid of this zone. Based on its UUF, a
task will pass several zones. For a task passing zones in the
figure above, from left to right, more utilization will be
allocated to a task. From low to high, more utility could be
achieved by a task. A task passing several zones means it
could be processed with several policies, i.e., requested
utilization and achievable utility. In this way, these tasks’
UUF have been fuzzed as each task many have several
allocation policies. Now, the problem is, given all the tasks
and related policies, how to maximize the overall utility.

This problem could be converted to a group Knapsack

problem. However, given the requested utilization in each
zone (the weight in Knapsack problem) is decimal, it is not
efficient to solve it by using Knapsack methods. A greedy
method is then introduced, which consists of three steps:

Int'l Conf. Embedded Systems and Applications | ESA'13 | 57

1. For a zone, its profit rate is the estimated utility divided
by the required utilization. A task will select a zone with
the highest profit rate from all the zones it passes, and use
the corresponding allocation policy. The task with the
highest profit rate will be allocated with its required
utilization first. In this way, Task2 and Task3 will be
allocated based on the policy for zone (1,2), and Task1
will be allocated based on the policy for zone (2,2).

2. After all tasks have been allocated with their required

utilization to achieve the most profitable utility, if there is
still abundant resource, tasks which could increases its
utility markedly, should be provided with supplementary
utilization, say, which could go from a lower zone to a
higher zone by increasing utilization.

3. After tasks cannot achieve marked utility improvement by

increasing utilization, if there is still abundant resource,
such resource will be provided to all tasks equally, given
each task could get utilization 1 mostly.

In this way, based on Table 3, if there is abundant

resources remaining, task3 will be allocated first by
increasing its utilization to 0.35, and task2 will then be
allocated by increasing its utilization to 0.75. Note that based
on step 1, if a task is already in zone(i’,j), we do not need to
take the number of marked changes happen in i ≤ i’. If a task
passes several zones for the same i, only a higher zone will
be kept.

Table 2 Task related zones zone(i,j).
Task1 Zone (1,3) Zone (2,2) Zone (3,2)
Task2 Zone (1,2) Zone (2,2) Zone (3,1)
Task3 Zone (1,2) Zone (2,1) Zone (3,1)

Table 3 Marked increase as utilization increases.
Task1 Zone (1,3) Zone (2,2) Zone (3,2)
Task2 Zone (1,2) Zone (2,2) Zone (3,1)
Task3 Zone (1,2) Zone (2,1) Zone (3,1)

IV. PERFORMANCE

Since the optimization problem could only be solved by
KKT conditions when Ui(u) are differentiable and convex
functions on the constrained set u∊[0,1]. To compare the
performance of the proposed knapsack algorithm to the
optimal solution, we select the UUF as

⁄⁄ , where Ai is a random number uniformly
distributed on [5,20], and Bi is a random number generated
by normal distribution norm (5,5).

For N=10, increase M for 1 to 10, we acquired the

performance of knapsack algorithm and optimal solution as
shown in Fig. 3. Note that performance of both algorithms
has been normalized by the system demands. From this
figure, we could see that the proposed knapsack algorithm
could achieve about 90% performance of the optimal
solution even when M is small. As M increases and the

system becomes less overloaded, the knapsack algorithm
could achieve more utility until satisfy all system demands.

Fig. 3 Performance vs. processors (M).

(a)

(b)

Fig. 4 Performance vs. variation. (a) variation of Ai; (b)
variation of Bi.

58 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Select M=3. Set Ai a random number generated by
abs(norm(30,v)), and Bi is a random number generated by
normal distribution norm(5,5). Increasing v from 3 to 30 we
got a performance result as shown in Fig. 4(a). We could see
that in general, as the variation, or the difference of tasks
increases, performance of both knapsack algorithm and
optimization algorithm will increase.

V. CONCLUSIONS

When resource overloads occur, meeting deadlines of all
activities is impossible as the demand exceeds the supply,
while it is still acceptable in a soft real-time system. In this
paper, we consider the time/utility functions (TUFs) express
the utility of completing a task as a function of that task’s
completion time. Our objective is to maximize the overall
system utility with given computation capability constraints
and TUFs of tasks. We first formulate the scheduling
problem to an allocation optimization problem. Then, for
practical implementation, we propose a knapsack method to
achieve the suboptimal solution. Simulation results
demonstrate that the proposed knapsack method could
achieve about 90% of the optimized performance.

REFERENCES

[1] O. Zapata and P. Mejia-Alvarez. Analysis of real-time
multiprocessors scheduling algorithms. In Proceedings of
the Real-Time Systems Symposium (RTSS), 2003.

[2] Baker, T.P., “An analysis of EDF schedulability on a
multiprocessor,” Parallel and Distributed Systems, IEEE
Transactions on , vol.16, no.8, pp.760-768, Aug. 2005.

[3] Anderson, J.H.; Srinivasan, A., “Early-release fair
scheduling,” Real-Time Systems, 2000. Euromicro RTS
2000. 12th Euromicro Conference on , vol., no., pp.35-43,
2000.

[4] Jinkyu Lee; Easwaran, A.; Insik Shin, “LLF
Schedulability Analysis on Multiprocessor Platforms,” Real-
Time Systems Symposium (RTSS), 2010 IEEE 31st , vol.,
no., pp.25-36, Nov. 30 2010-Dec. 3 2010.

[5] Davis, Robert I. and Burns, Alan., “A survey of hard
real-time scheduling for multiprocessor systems”, Journal of
ACM Comput. Surv., vol. 43, no. 4, pp35-34, 2011.

[6] Carpenter, J.; Funk, S.; Holman, P.; Srinivasan, A;
Anderson, J;Baruah, S., “A categorization of real-time
multiprocessor scheduling problems and algorithms,”
Handbook On Scheduling Algorithms, Methods, And
Models, 2004.

[7] Muppala, J.K.; Woolet, S.P.; Trivedi, K.S., “Real-time
systems performance in the presence of failures,” Computer,
vol.24, no.5, pp.37-47, May 1991

[8] Wu, H.; Ravindran, B.; Jensen, E.D.; Peng Li,
“Time/utility function decomposition techniques for utility
accrual scheduling algorithms in real-time distributed
systems,” Computers, IEEE Transactions on , vol.54, no.9,
pp.1138,1153, Sept. 2005.

[9] Ravindran, B.; Jensen, E.D.; Peng Li, “On recent
advances in time/utility function real-time scheduling and
resource management,” Object-Oriented Real-Time
Distributed Computing, 2005. ISORC 2005. Eighth IEEE
International Symposium on, vol., no., pp.55-60, 18-20 May
2005.

[10] Hyeonjoong Cho; Ravindran, B.; Jensen, E.D., “An
Optimal Real-Time Scheduling Algorithm for
Multiprocessors,” Real-Time Systems Symposium, 2006.
RTSS ‘06. 27th IEEE International, vol., no., pp.101,110,
Dec. 2006.

[11] Shelby Funk, “LRE-TL: an optimal multiprocessor
algorithm for sporadic task sets with unconstrained
deadlines,” Real-Time Systems, vol. 46, no. 3, pp 332-359,
2010.

[12] R. Clark, E. D. Jensen, A. Kanevsky, J. Maurer, P.
Wallace, T. Wheeler, Y. Zhang, D. Wells, T. Lawrence, and
P. Hurley, “An Adaptive, Distributed Airborne Tracking
System,” in Proceedings of The IEEE Workshop on Parallel
and Distributed Systems, ser. LNCS, vol. 1586. Springer-
Verlag, pp. 353-362, April 1999.

[13] D. P. Maynard, S. E. Shipman, R. K. Clark, J. D.
Northcutt, R. B. Kegley, B. A. Zimmerman, and P. J.
Keleher, “An Example Real-Time Command, Control, and
Battle Management Application for Alpha,” Department of
Computer Science, Carnegie Mellon University, Archons
Project TR-88121, December 1988.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 59

A Hardware Accelerator Design Process for
Speech Recognition Application

Byron Buitrago P.
1
, Johnny Aguirre M.

2
, Andrés Benavides A.

2
, Marcela Rivera P.

3

1
 Systems Engineering Department, University of Antioquia, Colombia

2
 Electronic Engineering Department, University of Antioquia, Colombia

3
 University of Antioquia, Colombia

Abstract— This paper shows a methodology to improve

time response in a sub-stage inside a complete speech

recognition system, and shows how to apply such

methodology to other stages inside the same process. This

methodology involves hardware and software cooperative

work based on soft-core design using MicroBlaze

processors and reconfigurable hardware in Xilinx Spartan

3E FPGA. Design process, proposed methodology,

software and hardware components, and the migration

approach are described and analyzed along with the

process results.

Keywords: Speech recognition, Soft-core processor,

MicroBlaze, FPGA, Software to hardware mapping.

I. INTRODUCTION

Optimization of desktop and embedded applications is

often performed with respect to the target processor. Time

consumption is a very important part of the performance

measure in design, because from the final user point of

view, a slow time response of the application could be

interpreted as a poor processing behavior.

Nowadays, a wide range of applications aimed to

human-machine interaction, are available for every type of

devices. Fingerprint and face detection in addition to

speech recognition can be mentioned, between others [1],

being that last our case of study.

Human language processing requires different skills,

such as computer science, electrical engineering,

mathematics, psychology, linguistic, and others [2]. Due to

its implementation complexity, speech recognition

applications exhibit a wide range of requirements and

limitations which represent important design challenges.

From computer science and electrical engineering fields

the most important parameters to optimize are: time

performance, power consumption, circuit’s area and

memory read/write operations, between others. Currently,

there are several tools for the implementation, analysis,

research and development of software-based speech

recognizers [3] [4] [5], which are the main trend of speech

recognition systems. However, they are not aimed for

exploring potential concurrences that can help to improve

some aspects of a speech recognition system. In this work,

we analyze a technique for improving time response inside

a single stage of the speech recognizer, and show how the

same technique may be applied to other stages in the same

application. For that, we use hardware and software

cooperative work through soft processor combined with

reconfigurable logic.

This paper starts with a brief description of speech

recognition process, continuing with a study case analysis

in order to give a contextualization. In section IV, the

implemented strategy is described and results are

presented and analyzed. Finally, conclusions and future

work concerning this strategy are depicted.

II. SPEECH RECOGNITION

Human voice is a mechanic wave generated through

vocal cords vibration. This signal is emitted in a frequency

range that is between 100 and 3400 Hz approximately.

Human voice signal is sampled at 8 or 16 kHz in most

applications by an analog to digital converter, as can be

seen in Figure 1.

Figure 1: Speech signal acquisition.

60 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Speech recognition can be seen as a process which

transforms an acoustic speech signal into a text

representation. Two clear differentiable stages are found

on this process, as it is illustrated in Figure 2. First a

preprocessing and feature extraction phase, common to

any recognition system, followed by a decoding and

language database phase

Figure 2: Speech recognition block diagram.

A lot of approximations can be used in the second part

of the recognizer. In this particular work, statistical based

models are used, this type of techniques implements

Hidden Markov Models (HMMs) and Gaussian emission

densities for pattern comparison and decision. However,

several alternative approaches have been proposed in

literature [6].

Preprocessing stage is composed principally by a low

pass digital filter for band limitation (LPDF) followed by a

fast Fourier transform block (FFTB) which feeds a bank of

filters used to calculate Mel Frequency Cepstral

Coefficients (MFCCs). All that process generates a

compressed form of the original speech signal.

Preprocessing stage is shown in Figure 3.

Figure 3: Preprocessing stage sub-blocks

It is extremely important to guarantee a good

preprocessing analysis, in order to have properly

recognition results. Digital filtering highlights inside this

stage. In fact, multiplications and accumulation

algorithms, necessary for the digital filtering process,

demands a considerable amount of computational load [2].

III. CASE OF STUDY

Commercial speech recognizers can be found as

licensed software, their main uses are oriented to servers,

desktop computers and, more recently, video-game

consoles and smart-phones, among others [7]. Available

open source recognizers are supported by academic

research centers and some universities around the world.

Among them, the most matures are: CMU Sphinx

developed by Carnegie Mellon University [5] and HTK

developed by Cambridge University [4]. Both of them are

written in C language. Their main idea consists in provide

speech recognition tools for researchers around the world.

Actually, Sphinx stands as the best academic speech

recognizer for several reasons, including that its statistical

models are more refined and accurate than other tools [8],

and it has a totally open user license.

In order to measure some speech recognizer

parameters, it was decided to implement the Sphinx

software in a MicroBlaze soft-core processor [9] using

Xilinx design environment tools. The parameters that were

taken into account for the recognizer implementation were:

computing time, power dissipation and memory usage.

IV. STRATEGY APPROACH

By taking advantage of the available reconfigurable

resources for implementation, the choice of implementing

some software routines as equivalent hardware models was

developed, by following the next migration approach:

STEP 1 – SOFTWARE MIGRATION: In order to make

source code compilable, it should be eventually adapted to

particular architectural details in target processor.

STEP 2–SOFTWARE ROUTINES IDENTIFICATION: A

routine or set of routines is selected from the original

source code. According with optimization criteria, such

routines are replaced by hardware modules.

STEP 3–PURE SOFTWARE ROUTINES

CHARACTERIZATION: Assessment must follow the routines

selections. Measures may include power consumption,

execution time, and memory operations, and may provide

a baseline for future comparisons.

STEP 4–SOFTWARE TO HARDWARE MAPPING: Once

the software routines are selected, they must be translated

into digital hardware modules. Some tools may be used in

Int'l Conf. Embedded Systems and Applications | ESA'13 | 61

this step like Cynthesizer ForteDS [9] and Xilinx Vivado

HLS [10]. At this point it’s highly desirable to implement

a functional simulation over generated hardware, in order

to provide a guarantee of correct mapping.

STEP 5–WRAPPER GENERATION:Generated hardware

must be adapted as a peripheral module for the central

processing unit. This step represents hardware and

software cooperative work in order to improve application

performance in the way selected at Step 2.

STEP 6–COOPERATIVE HARDWARE AND SOFTWARE

SCHEME MEASUREMENTS: Data parameters of the new

design must be obtained in order to compare it with purely

software results of Step 3. If such results are not

satisfactory, it will be necessary go back to Step 2.

V. RESULTS AND ANALYSIS

The previously described strategy was applied to

preprocessing stage in a Sphinx speech recognizer which

was implemented on a MicroBlaze soft-core processor;

more precisely low pass filtering routines were addressed.

STEP 1 – SOFTWARE MIGRATION: Original Sphinx C

source code was adapted to MicroBlaze, because the

compiler threw several errors. Special architectural details

of MicroBlaze must be taken in account.

STEP 2–SOFTWARE ROUTINES IDENTIFICATION:

Filtering routines were selected for this work by using the

reasons exposed in section II. A 16 kHz and 16 bits per

sample test signal was used as digital filter input. A four

hundred samples vector, corresponding to 25 ms of voice

were submitted to the filter, it’s a good approximation

given that speech recognizer usually needs frames between

10 and 25 ms[11]. Filter frequency characteristics are

shown in Figure 4.

Figure 4: Digital filter frequency response

STEP 3–PURELY SOFTWARE ROUTINES

CHARACTERIZATION: Filtering routines were implemented

using Embedded Development Kit (EDK) of Xilinx ISE

Design Suite in a MicroBlaze processor. Time execution

was measured using internal timing function tool. Baseline

results found in this step will be depicted in Step 6 of this

section.

STEP 4–SOFTWARE TO HARDWARE MAPPING: Using

Vivado HLS tool, digital hardware version of filtering

software routines were obtained in HDL form.At this step

it was necessary make tuning over various synthesis

directives as pipeline, unrolling and flattened, between

others. After this tuning, generated hardware showed the

best performance with pipeline directive applied, as can be

seen in table 1:

Table 1: Generated hardware area characteristics

A test bench of new hardware was implemented,

putting special interest in functionality and time

consumption. Test bench results are shown in Figure 5.

Figure 5: Generated hardware test bench

STEP 5–WRAPPER GENERATION:Xilinx ISE and EDK

were used in wrapper generation to adapt generated

filtering hardware as an external module connected to

62 Int'l Conf. Embedded Systems and Applications | ESA'13 |

MicroBlaze processor through Fast Simple Link (FSL)

bus. Figure 6 illustrate the interconnection.

Figure 6: Schematically representation of MicroBlaze and

filtering hardware communication

Filter functionality was tested with a linear

combination of three sinusoidal waves of 2, 6 and 7 kHz,

as can be seen in figure 7(a). Pure software and

cooperative scheme responses were tested in MicroBlaze

in order to compare its functionality. Results were

identical in both cases, 4 kHz low pass filter response is

showed in figure 7(b), where 2 kHz tone is the only one

present in filter’s output.

(a) Test input signal

(b) FIR filter output

Figure 7: Filtering functionality test

STEP 6–COOPERATIVE HARDWARE AND SOFTWARE

SCHEME MEASUREMENTS: Generated filtering hardware

was connected with a MicroBlaze processor as peripheral,

old software routine call was replaced by peripheral

activation and data to process was sent to it, waiting for

returning results (filtered signal). Both schemes threw the

same results, being the cooperative design which shows a

considerable reduction in time execution, as could be seen

in Table 2.

Parameters \ Solutions MB MB+HW

Latency(us) 9714 414

Area

Logic 3767 4092

Signals 5095 5565

BRAMS 16 18

MULT 7 8

Power 0.128 0.130

Energy(Time*Power) 1243,39 53,82

Table 2: Pure software vs cooperative scheme results.

As it can be seen in Table 2, time delay to filtering

related tasks are widely reduced, given a speedup of 23.4.

The time execution of this process has been reduced to

4.2% of its original pure software implementation. The

table shows a remarkable increase in area, especially in

logic blocks usage. Power consumption presents a little

increase and it could be expected a grown of it if this

strategy is applied to other blocks inside the recognizer.

However, energy estimation shows a considerable

improving when the time execution is reduced by a factor

bigger than power consumption increase.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 63

VI. CONCLUSIONS AND FUTURE WORK

Cooperative hardware and software scheme shows

good results as an embedded design strategy.

Manufacturers actually provide new and powerful tools

which present huge advantages in the design process when

an application involves software routines and custom

hardware modules. This integration level is very hard to

reach using standard hard-core processors.

Specific performed experiment shows an important

speedup when both schemes are compared. Applying the

same strategy over more Sphinx software routines

simultaneously, the application speedup will be increased

drastically.

Applications implicit concurrency presents an

implementation difficulty doing it an aspect rarely

exploited in traditional application development way. This

strategy shows an easy form to natural concurrency

exploration and exploitation of this feature inside

applications.

Circuit area is an important topic inside this strategy,

when a software routine is mapped into a hardware

module, silicon area is inevitable increased. However,

FPGA design is limited by its internal connections

structure, which could be optimized in an ASIC design

process. Area increase implies bigger hardware power

dissipation too, but if we take into account Power × Time

product, we can achieve a better energetic performance

compared with pure software scheme.

To reach a better strategy performance, it will be

necessary to propose an automatic routines profiling

methodology in order to obtain easily the candidates to be

submitted to hardware conversion process.

Proposed strategy could be applied to other speech

recognition stages, among them, it can be mentioned the

Fast Fourier Transforms, Gaussian densities calculation,

Viterbi and Baum Welch algorithms [2], [11]. The same

strategy may be also extended beyond speech processing

applications.

In our interest to extend the scope of words and

phrases recognition, the analysis of recognized sounds is

proposed. Specifically from the psychology field,

analyzing some speech characteristics such as volume,

tone, speed, fluency, clarity, coherence, among others [12],

we can study possible inferences about psychological

aspects related to moods, personality traits and disorders in

human thought.

VII. ACKNOWLEDGMENTS

The authors would thank to Microelectronics and

Control group staffat University of Antioquia, who

provided the software and hardware tools during the

realization of this project. Special thanks to professor

Freddy Bolaños for his contributions in the development

of this work.

REFERENCES

[1] Desney S. Tan, Anton Nijholt, Brain-ComputerInterfaces Applying

our Minds to Human-Computer Interaction, Springer, 2010.

[2] X. Huang, A. Acero y H. Hon, Spoken Language Processing,
Prentice-Hall, 2001.

[3] Center for Spoken Language Understanding, http://cslu.cse.ogi.edu.

[4] Hidden Markov Model Toolkit – HTK, http://htk.eng.cam.ac.uk/

[5] SPHINX, Carnegie Mellon
University,http://cmusphinx.sourceforge.net/

[6] Joseph Keshet, Samy Bengio, Automatic Speech and Speaker
Recognition, Large Margin and Kernel Methods, A John Wiley and
Sons, Ltd, Publication, 2009.

[7] Dragon NaturallySpeaking,Siri, Nuance, http://www.nuance.com/

[8] Amudravijaya K, Maria Barot “A comparison of Public Domain
Software Tools for Speech Recognition”, SNDT University of
Mumbai, 2003.

[9] Forte Design Systems, http://www.forteds.com/

[10] Xilinx All Programable,. www.xilinx.com

[11] Levinson Stephen E., “Mathematical Models for Speech
Technology”. John Wiley & Sons Ltd, 2005.

[12] Marco Aurelio Fierro Urresta, “Semiología del psiquismo”. ed
Marco Fierro, 2008.

64 Int'l Conf. Embedded Systems and Applications | ESA'13 |

http://cslu.cse.ogi.edu/
http://htk.eng.cam.ac.uk/
http://cmusphinx.sourceforge.net/
http://www.forteds.com/
http://www.xilinx.com/

SESSION

MICRO-CONTROLLERS AND EMBEDDED
SYSTEMS + NETWORK ON CHIP SYSTEMS AND

APPLICATIONS

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'13 | 65

66 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Abstract—Due to the current cost of detecting unexploded

ordnances (UXOs), alternate systems of detection need to be

developed. The Department of Defense views UXO contamination

as a high priority problem [1]. The current method of UXO

detection involves sweeping an area for UXOs manually with

handheld metal detectors. An automated system of detection

would save time, cost less, and provide a safer alternative to the

current system. This paper describes a system that was created

composed of autonomous robots that detect UXOs and wirelessly

transmit their coordinates to a central hub where they are

mapped. These robots are meant to be smaller prototypes that

could be implemented as a larger system for real world

application. After these robots create a map of the UXOs in the

area, time can be saved in the removal process and human

interaction with the contaminated area will be kept to a

minimum.

Index Terms—Global Positioning System, Microcontrollers,

Mobile Robots, System Sensors, Wireless Sensor Network

I. INTRODUCTION

INES, bombshells, and ammunitions, also known as

Unexploded Ordnances (UXOs), pose a serious hazard

when dealing with military training sites and battlefields.

These UXOs can be both unstable and unpredictable. This

increases the danger that humans and wildlife face when in an

area contaminated with UXOs; therefore, UXOs should be

removed when decontaminating an area for reuse. There have

been many cases where civilians have tampered with UXOs

resulting in serious injury or fatality. The Department of

Manuscript received May 26, 2013. This work was co-funded by the

ASSURE program of the Department of Defense in partnership with the

National Science Foundation REU Site program under Grant ECC-1005106.

Brent A Bell, Chris Farnell, Brett Sparkman, Guoqing Zhou, Jingxian Wu,

and Scott C. Smith are with the Department of Electrical Engineering,

University of Arkansas, Fayetteville, AR 72701 USA (emails:

bab010@uark.edu, cfarnell@uark.edu, bsparkma@uark.edu,

gzhou@uark.edu, wuj@uark.edu, and smithsco@uark.edu).

Andrew L. Suchanek is with the Department of Computer Science and

Computer Engineering, University of Arkansas, Fayetteville, AR 72701 USA

(email: asuchanek32@gmail.com).

Dalesha Cartman is with the Department of Mathematics, Computer, and

Information Sciences, Mississippi Valley State University, Itta Bena, MS

38941 USA (email: dhcartman@gmail.com).

James D. Stuckey is with the Department of Electrical and Computer

Engineering, Missouri University of Science and Technology, Rolla, MO

65401 USA (email: jds2p8@mst.edu).

Defense estimates that there are more than 10 million acres of

land that contain UXOs, and billions of dollars would need to

be spent in order to decontaminate these areas [1].

The current method of UXO removal involves manual

search by personnel with handheld metal detectors; however,

this method of UXO discovery is time consuming, expensive,

and impractical for large areas. Due to the large area of land

contaminated by UXOs, compounded with their

unpredictability, there would be a large gain from an

automated system of detection for these UXOs. This would

make covering larger areas of ground easier while also

reducing the risk involved in the removal of the UXOs.

Several different attempts have been made to create better

systems of UXO detection, and most of these use mobile

robots in order to detect the buried UXOs. A researcher at the

Massachusetts Institute of Technology completed such a

project by creating a robot that moved using pressure sensors

mounted on the robot. The robot had a unique design based on

inspiration from an ant, and had five different sensors

including a metal detector. However, there were some

problems with this implementation: the robots had problems

staying within defined boundaries, and the robots would travel

out of range [2].

Another similar project was completed at Tennessee State

University where a robot was created that could detect the

UXO and distinguish it from false positives for objects that

weren’t UXOs. The best result of this project was 94%

accuracy in UXO detection [3].

Many researchers have investigated alternate ways to detect

UXOs without a metal detector. Researchers from University

College London have begun exploring the use of Multi

Frequency Ground Penetrating Radar in order to detect both

surface and buried explosives. This was mounted on an

Unmanned Aerial Vehicle for contactless remote detection [4].

The method proposed in this paper involves using

autonomous robots that will sweep a given area to detect

hidden UXOs through the use of a metal detector while also

avoiding any objects in their paths. By using autonomous

robots, UXOs could be detected, and their location would be

wirelessly transmitted back to a central location without any

need for human interaction in the detection process. As the

coordinates of the UXOs are received, the fusion center will

plot the coordinates on a map of the area. With this map, the

removal of UXOs would be much easier than the current

Unexploded Ordnance Detection with

Cooperative Mobile Robots

Brent A. Bell, Andrew L. Suchanek, Dalesha Cartman, James D. Stuckey,

Chris Farnell, Brett Sparkman, Guoqing Zhou, Jingxian Wu, and Scott C. Smith

M

Int'l Conf. Embedded Systems and Applications | ESA'13 | 67

mailto:bab010@uark.edu
mailto:cfarnell@uark.edu
mailto:bsparkma@uark.edu
mailto:gzhou@uark.edu
mailto:wuj@uark.edu
mailto:smithsco@uark.edu
mailto:asuchanek32@gmail.com
mailto:dhcartman@gmail.com
mailto:jds2p8@mst.edu

method.

This paper is divided into five major sections. Section II

provides an overview of the system. Section III describes the

autonomous navigation methods researched. Section IV

describes the fusion center including the user interface.

Section V provides conclusions and opportunities for future

work.

II. OVERVIEW OF SYSTEM COMPONENTS

The system can be split into two basic parts: the fusion

center and the robots or rovers. The fusion center is in

communication with the computer via a graphical user

interface (GUI). Commands can then be sent wirelessly from

the fusion center to the rovers, and the rovers will

autonomously search an area for UXOs. If any are found, the

GPS coordinates are wirelessly transmitted back to the fusion

center where they are displayed on a static Google map of the

area.

All of the components for both the rovers and the fusion

center were chosen based on their quality, compatibility,

power consumption, and price. Power consumption was a

concern because the rovers run on a battery, and the price was

an obstacle because many of the components, especially those

with higher accuracy, can be very expensive. An approximate

breakdown of cost for the project is included in Table I.

A. Platform

The Arduino Uno development board was chosen as the

platform for the project due to its flexibility and compatibility.

The Arduino microcontroller is built onto a board that makes

programming and using the microcontroller as simple as

possible. Another advantage to using the Arduino development

system is that “shields” may be added onto the basic board to

add different levels of functionality. Each shield adds sensors

or allows you to easily attach components to the Arduino.

Arduino also has its own programming language for

programming the microcontroller. It is based on C++, so

learning to code the Arduino microcontroller is

straightforward, since most basic programming courses cover

C/C++. The IDE for Arduino streamlines the process of

writing, compiling, and uploading the code to the Arduino

microcontroller.

B. Robot

Several different options of mobile robots were available to

choose from. The two main options that were explored were

the Rover 5 Robot Platform from Sparkfun Electronics and the

DFRobotShop Rover V2 from Robotshop. The Rover V2,

shown in Fig. 1, was chosen due to its compatibility with

Arduino and the XBee wireless communication modules. The

Rover V2 has a built-in Arduino Uno and receptacles to mount

the XBee. The Rover 5 lacks these features.

Each rover runs off of a 3.7V lithium-polymer rechargeable

battery. There is a built-in charging circuit on the rover that

allows these batteries to be charged by the USB port. The gear

ratio is set to the lowest setting, 203:1, to improve the off road

capabilities of the rover. The rover is relatively small with

dimensions of 200mm long x 108mm wide x 58mm high. The

rover is also tracked instead of having wheels. The small size

of the rover does make it good for prototyping but hinders its

off road capabilities; however, the tracks make it more

maneuverable off road.

C. Communication

Wireless communication is accomplished through the use of

XBee Wireless RF Modules. The XBee modules used were the

XBee Pro Series 2 with a wire antenna for longer distance

communication. The pro modules also have a longer range

than other XBees, and the Series 2 XBees offer more

customizability than Series 1. The Series 2 XBees also support

mesh networking, and while mesh networking was not used in

the current application, it would be a feasible future

implementation that would be especially beneficial for systems

with several Rovers.

Two communication modes are available to the XBees:

transparent mode and API mode. In transparent mode the radio

passes information exactly as it receives it on the serial port,

and the data is output to the serial port exactly as it is received.

API mode allows for more flexibility by creating packets that

can be sent to any XBee. In transparent mode, the XBees must

be reprogrammed either through commands from the

microcontroller or the computer in order to change the

destination address of the data it is sending. In API mode, the

TABLE I

COMPONENT PRICE LIST

Component Cost Quantity Total

DFRobotShop Rover V2 $94.99 2 $189.98

Compass Module HMC6352 $34.95 2 $69.90

Encoder Pair $15.99 2 $31.98

GPS LS23060 V1.0 $59.95 3 $179.85

Ultrasonic Sensor HC-SR04 $2.43 4 $9.72

XBee Pro Series 2 $28.00 3 $84.00

Miscellaneous $144.46

Total Project Cost $709.89

Fig. 1. Final implementation of rover with all components on board.

68 Int'l Conf. Embedded Systems and Applications | ESA'13 |

destination address is within the packet being sent, so sending

data to different XBees is simple.

The XBee modules for this project are configured as API

modules. There is one XBee at the fusion center that is

programmed as the coordinator. This is the XBee that sets up

the network. The two rovers are configured as routers. This

allows them to communicate with the coordinator and each

other.

D. UXO Detection

Due to most UXOs being made of metal, the most

convenient method of detecting them is by using a metal

detector. Many different metal detectors were researched and

tested for this project due to the need for a small compact

metal detector that could be mounted on the robot. Also, the

metal detector needed to have an adequate range of detection.

Two commercial metal detectors were tested for their range,

and three different circuits found online were adapted, built,

and tested. The results of these tests are shown in Table II.

The circuit that was the best for our project was the final

circuit that was built from scratch, shown in Fig. 2. This circuit

uses beat frequency oscillation to detect metal. This type of

metal detector works by comparing two coils acting as

frequency oscillators [5]. These two coils are tuned to near the

same frequency. When the detection coil moves near metal, its

oscillation frequency changes due to the disruption of the

magnetic fields surrounding the coil. The output of the circuit

then changes accordingly, and the Arduino can detect this

change in order to detect nearby metal.

When the rover is turned on, the pulse width of the output of

the circuit, which is directly determined by the difference in

frequencies of the reference coil and the detection coil, is

taken several times by the Arduino and averaged. This value is

stored as the base pulse width of the metal detector when no

metal is nearby. It can then be compared to the current pulse

width throughout the sweep to determine if there is any metal

in the area. If the output is significantly different, a UXO must

be nearby, and then the rover can read in the GPS coordinates

and send them to the fusion center.

In order to provide optimum detection, a mount was built to

hold the detection coil of the metal detector, as shown in

Fig. 1. It extends off the back of the rover and is made of

plexiglass. There were several different designs for this mount

that were attempted. The chosen design is fixed approximately

two centimeters off the ground, and was selected due to its

durability. However, this does create a problem when the rover

starts to ascend a steep hill. Due to the fixed height of the

mount, the plexiglass will drag as the tilt of the rover changes.

Another mount that was built fixed this solution by adding

hinges and a wheel so the mount could rotate up and down.

This design would have fixed the problem of dragging but was

significantly less durable, so it was not chosen for our final

implementation. Keeping the rover on relatively flat ground

was adequate for testing purposes.

E. Other Sensors

There were 4 other sensors used on the rover for navigation

and mapping of UXOs.

1) Ultrasonic Ranging Modules

A ranging module was needed for autonomous navigation,

so that objects could be detected and avoided. Two different

sensors were tested for this purpose: an infrared distance

sensor and an ultrasonic ranging module. Both worked well,

but the ultrasonic ranging modules provided more accurate

results. Output from the infrared sensors tended to be more

sporadic. For this reason, the ultrasonic ranging modules were

chosen to be the object detecting sensor on the rover. There

are two ultrasonic ranging modules mounted on the rover. One

of the ultrasonic ranging modules is mounted on the front of

the Rover, and the other is mounted on the right side of the

rover. Object avoidance could be achieved with one module

also, but it would need to be mounted on a servo in order to

view different directions.

2) Compass

In order to know which direction the robot was facing, a

sensor was needed that could determine its bearing. While it is

possible to calculate the bearing from the global positioning

system (GPS) when the rover is moving, this would not be an

Fig. 2. Metal detector circuit used on rover. This circuit was adapted from a

metal detector circuit found online [6].

TABLE II

METAL DETECTOR TEST RESULTS

Metal Detector Size Detection Range

Zircon Metal Finder 3.25” x 1.5” 3”

ZX Metal Detector Module ½” x 1.5” < ½”

Pulse Induction Type* 4” x 6.5” Non-functioning

555 Timer Circuit* 2” x 2” < ½”

Beat-Frequency Oscillation Type* 2.25” x 2.75” 3”

 Metal Detectors denoted by an asterisk are circuits built from scratch from

a block diagram. The other two metal detectors are commercial metal

detectors.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 69

adequate solution to the problem for two reasons. The GPS is

not accurate enough on the small scale used for testing to

provide an adequate heading. Also, being able to calculate the

bearing only while the rover is moving, places limitations on

the rover’s navigation, especially when first starting to sweep

an area.

3) Global Positioning System

To begin, the GPS was used for two purposes: retrieving the

coordinates of the UXOs that were detected by the metal

detector, and defining the boundaries of the search area. Due

to the smaller scale of the project and the large margin of

error, the GPS was inadequate for defining the boundaries of

the search area. The GPS lists an accuracy of three meters, but

the actual coordinates could have a larger or smaller margin of

error. Some points were off by as much as five meters. On the

small scale used for testing, this is a huge amount of error

introduced into the system. So, an alternative method of

determining a robot’s position needed to be found. However,

the GPS was still used for obtaining the approximate

coordinates of any UXOs detected.

4) Encoders

Encoders were added to the rover as an attempt to account

for the limitations of the GPS. The encoders could be used to

find the distance the rover had traveled in any direction, but

they also had limitations. The different techniques used for

both the encoders and the GPS in navigation are outlined in

the next section.

The encoders use light and a wheel with eight cutouts

mounted on the rear axle of the rover to increment a counter

16 times for every single rotation of the wheel. The encoders

output an analog value based on how much light is reflected

back. Due to the cutouts on the encoders, the amount of light

reflected changes, and these changes can be detected by the

Arduino in order to keep track of how far the rover has

traveled.

III. AUTONOMOUS NAVIGATION

Perhaps the largest amount of time spent on this project

went into writing and testing the autonomous navigation

program. This can be divided into two different phases: the

object avoidance function and the area sweep function. First,

the rover was designed to go around any objects in its path.

Then, two different methods of sweeping an area were tested.

A. Object Avoidance

Object avoidance was achieved through the combination of

two ultrasonic ranging modules and timing. The algorithm

performed when the path of the rover is obstructed starts when

an object is detected at less than three centimeters in front of

the rover. The rover will then make a 90° turn to the left. This

will put the right side of the rover near the object.

The right sensor will then continuously check the distance

between the rover and the object as the rover drives forward.

After the sensor detects that there is more than 10 cm between

it and anything on the right side, it travels straight for two

more seconds. This is to give the rover enough room to make

another 90° turn. The rover will then turn 90° to the right and

travel until it passes the obstacle at which point it will make

another right turn and travel until it is in line with its original

path. Finally, the rover will make its final left turn and

continue on with its original path. This sequence is shown in

Fig. 3.

If another obstacle is detected during the obstacle algorithm,

the rover will act accordingly. The rover will keep track of

how many turns it has made in each direction as it continues

avoiding any obstacles that are in front of it. It will turn left

any time it detects an obstacle in front and turn right any time

it has room to travel in that direction. This will continue until

the rover is on the other side of all the obstacles in its path.

B. Area Sweep

The second phase of coding for autonomous navigation

involved programming the rovers to cover everywhere in a

predefined area. There were two main groups of sweep

algorithms tested: GPS based navigation and encoder based

navigation.

Both of these navigation techniques were built around the

same approximate path. The rovers were set to start at the

outside corners of an area and to spiral inward until the area

was completely covered. This was accomplished through

different methods for each type of navigation.

1) GPS Based Navigation

GPS was the first type of navigation tested. The user could

enter the coordinates of each corner of the area boundaries into

the graphical user interface (GUI). The coordinates would then

be wirelessly transmitted to the rover. The rover would then

calculate a bearing based on its position and the position of the

first point entered into the GUI. When the rover arrives at

point one, it calculates the bearing that it needs to follow to get

from its current position to the second point. The first point is

Fig. 3. Graphic example of autonomous navigation algorithm for object

avoidance.

70 Int'l Conf. Embedded Systems and Applications | ESA'13 |

then moved about one foot in the direction of the center of the

search area. Because each point is moved in as the rover goes

around, it slowly spirals inward. Finally, the sweep function

will end when all of the points are moved to the center of the

search area.

 This method of autonomous navigation has several

advantages. With this method, the user can enter the

coordinates of the boundaries into the GUI. This makes it

simple to search a predefined area. With slight modifications

to the code, the area could easily be defined with more than 4

points and could be any shape. Also, with GPS based

navigation, it is easier to correct for any errors in the direction

the rover is heading. If the rover is off the path, it can simply

calculate a new bearing based on its current location, and

travel in that direction. Finally, with GPS navigation, the rover

does not have to be placed at one of the corners of the search

area. This is because no matter where the rover is placed, it

can calculate the bearing to the first coordinate entered into the

GUI.

However, GPS based navigation has limitations that make it

infeasible for our prototype. Due to the small scale of the

rovers and the small search area in testing, a small error in the

GPS coordinates introduces large amounts of error in the

rover’s path. Because the GPS modules could be off by three

meters or more, they were not adequate for navigation

exclusively off of the GPS coordinates. So, alternative

navigation methods needed to be explored.

2) Encoder Based Navigation

The encoder based navigation algorithm is the one that is

used in our final prototype. It works similarly to the GPS

navigation algorithm in that it also causes the rover to start at

an outside corner of the search area and spiral inward until it

reaches the center. This is accomplished by splitting the area

up into a coordinate plane where each increment of the

encoder is one unit in the plane. The dimensions of the area

may be entered into the code before the rover is programmed.

The rover must then be placed at one of the corners of the

area.

The rover’s compass must be calibrated at this point. The

user turns the rover in the direction of the first point that the

rover should travel to, and the bearing is taken and stored as

the rover’s positive ‘y’ direction. The user then turns the rover

90 degrees to the right until the LED indicator on the rover

indicates that the positive ‘x’ value is stored. This process is

repeated until all 4 directions are stored in the rover.

Then, once the sweep is started, the rover starts to travel in

the positive ‘y’ direction. Each state change of the encoder will

cause the Arduino to increment the ‘y’ coordinate by one. So,

an approximate location of the rover is kept track of based on

how far the rover has traveled. When the rover turns 90° in any

direction, the appropriate part of the coordinate is incremented

or decremented as the rover travels in that direction.

IV. USER INTERFACE AND FUSION CENTER

A user interface and fusion center, shown in Fig. 4, was also

created in order to provide the user with a way to control the

rover’s actions wirelessly. The fusion center acts as a bridge

for communication between the computer and the rover.

A. Fusion Center

The fusion center contains four basic components: an

Arduino, XBee, LCD screen, and GPS. The fusion center has

two main purposes: communication with the computer and

wireless communication with the rovers. It can also output the

GPS coordinates to the LCD screen. The Arduino is used to

pass on relevant commands from the computer to the XBee

and coordinates sent from the rovers to the computer.

When commands are sent from the computer to the fusion

center via USB cable, the commands are processed by the

Arduino. Depending on which rover the command is for, the

Arduino assembles the appropriate packet, which is then sent

to the appropriate rover. Upon receipt of the packet, the rover

executes the command.

Due to the XBee using the hardware serial port on the

Arduino, the Arduino is not able to receive data from both the

computer and the XBee normally. To solve this problem, a

software serial port was created on the Arduino, and a mini-

USB port was connected to these software serial pins. Through

this solution, the Arduino can communicate with both the

XBee and the computer separately and can pass on the

appropriate information.

B. LabVIEW

Two different programs were researched in order to create

the GUI: Processing and LabVIEW. Processing was the first

considered because it is closely related to the Arduino

programming language and therefore is easy to use with the

Arduino; however, after also looking at LabVIEW, it was

decided that LabVIEW would be better for our application.

LabVIEW makes mapping coordinates on a map much easier

than in processing, and it provides a more professional looking

Fig. 4. Graphic user Interface with one GPS coordinate mapped. There are

several features: Google static map, zoom bar, map center inputs, six control

buttons, com port selection, rover selection, and error output.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 71

GUI, and is easier to use than processing.

The GUI can receive coordinates and plot them on a Google

static map. A constant loop checks to see if any bytes are

available to read on the serial port. If there are any bytes

available, they are read in and the bytes are converted into the

float numbers they represent. Those float numbers are then

converted into a string, which is appended onto the URL that

requests a static map from Google. This map is then displayed

on the GUI showing both a map of the area and a balloon for

the received coordinates.

The GUI also has ways to send commands that control the

movement of the rovers. There are six buttons: Start Sweep,

Override, Left, Right, Forward, and Reverse. When the user

clicks any of these buttons a one byte hex command is sent to

the fusion center. After rover calibration, the start sweep

button can be used to begin the autonomous navigation of the

robot throughout the area. These commands can then be sent

to the appropriate rover and then executed. For the override

function, a dropdown menu allows the user to select the rover

that is to be overridden. Once in override mode, the directional

buttons can be used to control that rover. Clicking the override

button again takes the rover out of override mode.

V. TESTING

After all of the components were implemented and the rover

was communicating with the computer properly, the system

was tested for accuracy of automated movement and detection.

A total of 8 metal plates of varying sizes were randomly

distributed over an area of approximately 50 square feet in

order to test the system. Two rovers were programmed to

search this area by inputting the values for the dimensions of

the area. This test was performed several times with the plates

in different random layouts. Most of the tests had similar

results.

For a typical test, the rovers detected 7 of the metal plates,

and plotted them on the map shown in Fig. 5. It is easy to see

in this figure the resolution of the GPS is not very high, since it

appears that the plates are arranged in rows. However, on a

larger scale with actual landmines, this would not be as much

of a problem because the mines would be spread out over a

much larger area.

Only one plate went undetected during this test. This was

probably due to the fact that the plate was never in the path of

the rovers. This problem was due to errors in the autonomous

navigation of the rover. This could be corrected with more

accurate sensors, and better autonomous navigation. However,

overall, the test was very successful with a detection rate of

around 88%.

VI. CONCLUSIONS AND FUTURE WORK

Autonomous mine detecting rovers would be a good

alternative to the current method of UXO detection, and with

proper funding, a system that is adequate for large scale

applications could be built. Of the ones tested, the best method

for use in large scale applications would be the GPS based

navigation method.

There is also room for future work with this project,

especially in the area of autonomous navigation. There are

several problems that need to be addressed with the current

method of navigation, including errors with the compass and

errors with the encoders. All of the errors that come from these

two components are due to the inexpensive, lower quality

components used, and could therefore be fixed with superior

components.

A. Compass Accuracy

The compass does not give accurate headings even when

level and away from all sources of metal. Also, each degree of

heading change does not directly correspond with one degree

of rotation of the compass. Even after recalibration of the

compass, the headings are inaccurate and imprecise. In the

project, this was corrected by implementing a rover calibration

function where the rover takes in compass headings and sets

those headings as its bearings. As mentioned before, future

solutions to this problem would be to acquire a more accurate

compass module.

B. Encoder Problems

Also, since the encoders work based on the amount of light

reflected back from the LED on the encoder, they do not work

when the rover is placed in sunlight. This is a huge problem

due to the rovers needing to be able to search in any

environment. This problem was worked around by testing in

the mornings when the sunlight was less intense. As mentioned

before, this is a problem with the encoders themselves, and

these problems could easily be fixed with better encoders.

An alternate solution to this problem would be to create a

resistor divider circuit. Because the ADC on the ATMega328p

chip only has a 5 mV resolution, it is possible that the reading

Fig. 5. Results of testing for UXO detection. Eight metal plates of varying

sizes were distributed randomly over an area of approximately 50 square feet.

72 Int'l Conf. Embedded Systems and Applications | ESA'13 |

in sunlight outputs too high a voltage. There is not much

documentation on these encoders, so more research would be

necessary to determine if the encoders could be used.

C. GPS as a Solution

The encoders are not necessary when the rover is navigating

off of the GPS, so in a large scale application where a better

GPS can be acquired for the project, the problem with the

encoders would not need to be addressed. Because the system

will be used for military purposes, a more accurate GPS could

be easily obtained. By using the military tier of GPS, the

coordinates would already be more accurate, and there are

more expensive devices that can give an accuracy of less than

one centimeter [7].

A more accurate GPS would also help to fix the

inaccuracies when plotting the location of each UXO. Since

the UXOs are plotted on the map based on their GPS

coordinates, a more accurate GPS would allow UXO clean up

personnel to more easily find the UXOs for removal.

D. Maneuverability

One other problem with the current system is that there are

maneuverability problems with the rover. A larger rover would

be better for off road use, and therefore large rovers would

need to be developed for military application. There are also

problems with the metal detector mount hitting objects because

the current design does not detect objects beside the metal

detector when making a turn. This could be solved by adding

code that ‘remembers’ if an object has been detected at a

certain location, and then makes turns based on that. Another

solution is to add an ultrasonic ranging module to the rover

that is mounted on a servo, so any angle can be viewed to see

the distance of any object.

REFERENCES

[1] S. Billings (2009) Next Generation HeliMag UXO Mapping

Technology [Online]. Available: http://www.serdp.org/Program-

Areas/Munitions-Response/Land/Sensors/MR-200741

[2] J. McLurkin. Using Cooperative Robots for Explosive Ordnance

Disposal [Online]. Available: http://www.cs.cmu.edu/~biorobotics/

papers/sbp_papers/integrated1/mcmcklurk_ants_eod-paper.pdf

[3] R. Haroun, A. Saed, and A. Shirkhodaie (2008). UXO Detection,

Characterization and Remediation Using Intelligent Robotic Systems

[Online]. Available: http://144.206.159.178/ft/CONF/16414685/

16414704.pdf

[4] A. Amiri (2012). Landmine, IED, UXO Detection using Ground

Penetrating Radar from an Unmanned Aerial Vehicle [Online].

Available: <http://www.ucl.ac.uk/secret/2010-phd-projects/amiri-phd>

[5] C. Wessels and T. Palag (2005). Contsturction of a Beat Frequency

Oscillator Metal Detector [Online]. Available: http://ecee.colorado.edu/

~mcleod/teaching/EandM3400/Projects/Examples/metal-detector.pdf

[6] D. Smith (2012). BFO Metal Detector [Online]. Available:

http://www.easytreasure.co.uk/bfo.htm

[7] E. Edmonds (2012). Survey Grade, Mapping Grade or Recreational

Grade GPS? [Online]. Available: http://www.geo-jobe.com/

blog/2011/03/18/survey-grade-mapping-grade-or-recreational-grade-gps

Int'l Conf. Embedded Systems and Applications | ESA'13 | 73

Design of Multi-Ring On-Chip Network

Chao-Hao Su, Jen-Yu Wang, and Yarsun Hsu

Department of Electrical Engineering, National Tsinghua University, Hsinchu City, 320, Taiwan, R.O.C.

Abstract - In this study, a multi-ring interconnection net-

work architecture is implemented and examined. This study

also proposes a cross-multi-ring topology that allows pack-

ets to be transmitted across various rings in the same direc-

tion. The performance of the two topologies was then evalu-

ated and compared. The results indicate that a positive cor-

relation exists between the performance and cross-

transmission usage rate.

Keywords: Network on chip, multiprocessor, ring topology,

cross-ring topology

1 INTRODUCTION

 With the development of semiconductor processes and

system-on-chip (SoC) technologies, the number of SoC de-

sign cores has increased. According to the Moore law [1],

the transistor count increases at a rate of a factor of two per

year. This implies that the number of processing units in a

SoC design will continue to grow, further increasing the

difficulty of controlling the performance, power, and scala-

bility. To overcome these challenges, numerous studies have

proposed the network-on-chip (NoC) approach, which

adopts the packet switching and routing technique of com-

munication networks. In 2000, Hemani et al. [2] stated that

“An NoC is a network of computational storage and I/O

resources connected through a network of switches, where

resources communicate with each other using addressed

data packets routed to their destination by the switch fabric.”

Subsequently, NoCs have attracted substantial attention.

Various NoC architectures exist, including crossbar, mesh,

torus, ring, and hybrid architectures [3, 9]; each architecture

has differing implementations and limitations.

Among the various interconnection networks, a ring ar-

chitecture offers the advantages of low power consumption,

small chip area, and low implementation complexity, in

addition to guaranteeing a certain performance level; thus, it

is well suited for multiprocessor system-on-chip (MPSoC)

and chip multiprocessor (CMP) designs. Ring architectures

are used in numerous commercial systems such as IBM’s

Cell [4, 5, 6, 7, 8].

This study implements a multi-ring topology, extending it

into a cross-multi-ring topology that enables cross-

transmissions between rings in the same direction. A per-

formance analysis and discussion regarding the number of

rings and the cross-multi-ring topology are also presented.

This paper is organized into sections as follows: In Sec-

tions II and III, a four-ring topology and a cross-four-ring

topology are implemented, and their internal structures are

explained. Section IV provides an analysis and comparison

of their performance under various traffic patterns. The

study conclusion is presented in Section V.

Unit0 Unit1 Unit2

Unit3

Unit4Unit5Unit6

Unit7

Node0 Node1 Node2

Node3

Node4Node5Node6

Node7
Central
Arbiter

Figure 1. Four-Ring Topology

2 FOUR-RING TOPOLOGY

Because of the limitations of software parallelism, large-

scale multicore chips have not been commercialized. Main-

stream products have a maximum of 20 cores; in this scale,

the ring topology is commonly employed. In this section, a

four-ring interconnection network is implemented.

2.1 Four-Ring Topology Framework

Fig. 1 shows the four-ring topology, which comprises two

clockwise and two counterclockwise rings. Data units are

connected to the rings, and the number of data units can be

configured. This study adopted eight for use as an example.

This study partitioned each ring with the number of units

into segments, and each segment was maintained by a corre-

sponding node. To produce a transmission, the units send a

request with a destination ID to the central arbiter. Upon

receiving the request, the central arbiter checks the usage

status of all segments, and selects an available transmission

path. The central arbiter then sends specific pulses to each

node in the path notifying them to alter the status of their

control table. Fig. 2 shows the internal architecture of the

node corresponding to Unit 0; each node possesses a control

table and a set of transfer switches, and each transfer switch

is connected to a corresponding ring.

As shown in Fig. 2, Rings 0 and 2 are responsible for

clockwise data transmissions and Rings 1 and 3 are respon-

sible for counterclockwise transmissions. Transfer Switch

00 controls the data flow on Ring 0 of this node. Similarly,

Transfer Switches 01, 02, and 03 control the data flows on

Rings 1, 2, and 3, respectively. The function of a ring trans-

fer switch is similar to that of a highway ramp. When data

flows toward the node, it can choose between the options of

74 Int'l Conf. Embedded Systems and Applications | ESA'13 |

on-ramp, off-ramp, or pass-ramp, as decided by the control

table. The control table receives a pulse from the central

arbiter mentioned previously, and converts the pulse into

corresponding control signals; these signals (e.g., din00,

cl00, and dout00 shown in Fig. 2) guide the data flow to

enter the ring, leave the ring, or pass directly to the next

node.

Node0

Unit0

Central Arbiter

transfer switch03
transfer switch02

transfer switch01
transfer switch00

control table0

req grant

DI_ring3

DI_ring2
DI_ring1

DI_ring0

DO_ring3

DO_ring1
DO_ring2

DO_ring0

pulse

din00
cl00

dout00

DI_datain DO_dataout

Figure 2. Internal architecture of the node corresponding to

Unit 0 (Node 0) in a four-ring topology

Unit0

DO_ring0

dout00

cl00

din00

transfer switch00

DI_ring0

Figure 3. The structure of Transfer Switch 00 in Node 0

control latch0

din cl doutlatch0

latch1

latch2

latch3

pulse

for ring2

for ring1

for ring0

for ring3

din cl dout

control table0

Figure 4. The structure of Control Table 0 in Node 0

2.2 Node Architecture

The structure of Transfer Switch 00 in Node 0 is shown

in the dash-lined box in Fig. 3. (The first 0 of Transfer

switch 00 indicates that it belongs to the node of Unit 0, and

the second 0 indicates that it is connected to Ring 0.) Fig. 3

shows three switches, namely, switch in (Sin), switch out

(Sout), and switch pass (Spass), which are controlled by the

control signals din, dout, and cl, respectively.

 When din00 is set to high, the node of Unit 0 is in the

on-ramp data sending state and can send data to Ring 0.

 When dout00 is set to high, the node of Unit 0 is in the

off-ramp data receiving state and can retrieve data

from Ring 0.

 When cl00 is set to high, the node of Unit 0 is in the

pass-ramp data passing state, in which data from Ring

0 input port DI_ring0 is passed to the Ring 0 output

port DO_ring0.

 When dout00 and cl00 are both set to high, data is sent

to multiple destinations (i.e., multicast). At this time,

the node of Unit 0 receives data from Ring 0 and also

passes data to the next node because, although Unit 0

is one of the destinations of this data, it is not the final

destination.

The states of control signals din, dout and cl are main-

tained by the control table inside the node. As shown in Fig.

4, a control table possesses four latches, and each latch

maintains a set of din, dout and cl control signals. The con-

trol signal sets of Latches 0, 1, 2, and 3 correspond to Trans-

fer Switches 00, 01, 02, and 03, respectively. The control

table converts the pulses sent from the central arbiter into

corresponding control signals, and maintains them in the

latch. The pulses sent from the central arbiter can be classi-

fied into four types, and the four pulse types are explained

below.

 SEND: When a latch receives a SEND pulse, the latch

sets din to high, which means that the central arbiter

has found an available path for the unit to send data in-

to the ring.

 PASSTHRU: When a latch receives a PASSTHRU

pulse, the latch sets cl to high, which means that the

data transmission will pass through this node to the

next node.

 RECEIVE: When a latch receives a RECEIVE pulse,

the latch sets dout to high, which means that the unit

will receive data from the ring.

 MULTICAST: When a latch receives a MULTICAST

pulse, the latch sets both dout and cl to high, which

means that the unit will receive data from the ring as

data is passing to the next node.

An example explaining how the system works is provided

below (Fig. 5). In the initial state, the values of all control

signals are reset to low, and all segments are available. In

Fig. 5(a), for Unit 0 to send data to Unit 3 (purple section),

it first sends a request with the destination ID to the central

arbiter. Because the central arbiter is in the initial state, it

can locate a clockwise path in Ring 0 after evaluation. To

construct a path, the central arbiter sends a SEND pulse to

the source node, a PASSTHRU pulse to Nodes 1 and 2, and

a RECEIVE pulse to destination node. The central arbiter

also sends a grant to Unit 0, allowing it to transmit data after

a few cycles. As shown in Fig. 5(b), Unit 1 then sends a

request to the central arbiter (orange section) to transmit

data to Unit 6 while the transmission from Unit 0 to Unit 3

Int'l Conf. Embedded Systems and Applications | ESA'13 | 75

Central Arbiter

Unit0 Unit1 Unit2 Unit3

Unit7 Unit6 Unit5 Unit4

Request
buffer

Request

Grant

Request Request Request

RequestRequestRequestRequest

Grant Grant Grant

GrantGrantGrantGrant

Figure 6. Connections between the central arbiter and units

is still being completed. The central arbiter can determine

the paths from the three available rings, which are the coun-

terclockwise paths in Rings 0 and 3, and the clockwise path

in Ring 1. Because the paths of Rings 1 and 3 are shorter

than the path of Ring 2, the central arbiter chooses the path

of Ring 1 and sends SEND, PASSTHRU, PASSTHRU, and

RECEIVE pulses to Nodes 1, 0, 7, and 6, respectively.

2.3 Central Arbiter Architecture

Fig. 6 shows the architecture of the central buffer, includ-

ing eight request buffers that correspond to the eight units.

These request buffers are served by the central arbiter in a

round-robin manner. If a request buffer has failed three

times with the same request, it is allocated the highest pri-

ority in the next cycle; this principle was designed to pre-

vent starvation.

Arbitration is conducted by the central arbiter, as shown

in Fig. 7. The central arbiter possesses a ring arbiter and

four segment arbiters, which correspond to the four rings.

Segment arbiters evaluate the availability of corresponding

rings, and forward their result to the ring arbiter. After the

ring arbiter selects the shortest available path from the re-

sults of the segment arbiters, it replies to the segment arbiter

with a ring-chosen signal while sending a grant to the source

unit. As a segment arbiter receives a ring-chosen signal, the

segment arbiter sends pulses to the source node, destination

node, and nodes along the path, as shown in Fig. 5. In Fig. 7,

Node 0 is connected with four pulse signals: Pulses 00, 01,

02, and 03. These signals are also shown in Fig. 4. When

Node 0 receives Pulse 00, it updates Latch 0 of Control Ta-

ble 0, and Pulse 01 updates Latch 1 of Control Table 1, and

so on. In the implementation for this study, each segment

arbiter possessed eight pulse signals connected to segment

arbiters. However, for clarity, not all signals are shown in

Fig. 7.

Fig. 8 shows the flow of a request in the central arbiter.

Initially, a request waits in the request buffer for selection

by the round-robin module, where it may be moved into the

destination busy table. The destination busy table maintains

a list of destinations that are reserved by selected requests

and data transmissions, and filters out requests to destina-

tions that are busy to avoid destination contention before

arbitration. If a request does not have the same destination

as the requests already transmitting, it passes through the

destination busy table and enters the segment arbiters. Each

segment arbiter maintains a segment table that records the

usage status of the corresponding ring (Fig. 9). In the seg-

ment table, the values of S0 to S7 represent each segment’s

node5

node3node7

node6

node2

node4

Central Arbiter

Unit1

Unit0

Unit7

Unit6
Unit5

Unit4

Unit3
Unit2

node1

node0

din

1

0

0

cl

0

0

0 0

0

0

dout

control table0

0 0 0

din

0

0

0

cl

1

0

0 0

0

0

dout

control table1

0 0 0

din

0

0

0

cl

1

0

0 0

0

0

dout

control table2

0 0 0

din

0

0

0

cl

0

0

0 0

0

1

dout

control table3

0 0 0

din

0

0

0

cl

0

0

0 0

0

0

dout

control table4

0 0 0

din

0

0

0

cl

0

0

0 0

0

0

dout

control table5

0 0 0

din

0

0

0

cl

0

0

0 0

0

0

dout

control table6

0 0 0

din

0

0

0

cl

0

0

0 0

0

0

dout

control table7

0 0 0

send

passthru

passthru

receive

latch0

latch1

latch2

latch3

node5

node3node7

node6

node2

node4

Central Arbiter

Unit1

Unit0

Unit7

Unit6
Unit5

Unit4

Unit3
Unit2

node1

node0

latch0

din

1

0

0

cl

0

1

0 0

0

0

dout

control table0

0 0 0

din

0

1

0

cl

1

0

0 0

0

0

dout

control table1

0 0 0

din

0

0

0

cl

1

0

0 0

0

0

dout

control table2

0 0 0

din

0

0

0

cl

0

0

0 0

0

1

dout

control table3

0 0 0

din

0

0

0

cl

0

0

0 0

0

0

dout

control table4

0 0 0

din

0

0

0

cl

0

0

0 0

0

0

dout

control table5

0 0 0

din

0

0

0

cl

0

0

0 0

1

0

dout

control table6

0 0 0

din

0

0

0

cl

0

1

0 0

0

0

dout

control table7

0 0 0

send

passthru

passthru

receive

latch1

latch2

latch3

 (a) (b)

Figure 5. Behavior of the nodes and central arbiter: (a) Unit 0 sends data to Unit 3; (b) Unit 1 sends data to Unit 6

76 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Segment
arbiter0

Segment
arbiter1

Segment
arbiter2

Segment
arbiter3

Ring arbiter

Request
Grant

ringt chosen

segment grant

Pulse00

Pulse20

Pulse40

Pulse50

Pulse60

Pulse70

Central
arbiter

Pulse01

Pulse02

Pulse03

Pulse30

Pulse10

Node0 Node1 Node2 Node3

Node4Node5Node6Node7

Figure 7. Central arbiter overview

destination_busy table

round-robin

segment
arbiter0

segment
arbiter1

segment
arbiter2

segment
arbiter3

ring arbiter

MUX

re
qu

es
t

 p

at
h

readN

enable

REQUEST* writeN

request

S_ptr D_ptr

sgm_grant0 sgm_grant1 sgm_grant2 sgm_grant3

GRANT
Figure 8. Request flow in the central arbiter

ST0
1
1
1
1
1
1
1
1

ST1
1
1
1
1
1
1
1
1

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

A
N

D
A

N
D

segment grant0
(to ring arbiter)

segment grant1
(to ring arbiter)

segment arbiter0

segment arbiter1

request

counting

counting

ST2
1
1
1
1
1
1
1
1

ST3
1
1
1
1
1
1
1
1

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

A
N

D
A

N
D

segment grant2
(to ring arbiter)

segment grant3
(to ring arbiter)

segment arbiter2

segment arbiter3

counting

counting

Figure 9. The segment arbiter operations when Unit1

requests a path to Unit 4.

ST0
1
0
0
0
0
1
1
1

S0
S1
S2
S3
S4
S5
S6
S7

segment arbiter0

A
N

D

counting

ring chosen0
 (from ring arbiter)

Pulse20

Pulse30

Pulse10

Pulse40

Figure 10. SA0 sends corresponding pulses and updates the

segment table after receiving a ring-chosen signal.

se gme nt sgm_va l id

S0 valid:1

S1 invalid:0

S2

S3

S4

S5

S6

S7

se gme nt_ta ble

A
N
D

enable[0]
enable[1]
enable[2]
enable[3]
enable[4]
enable[5]
enable[6]
enable[7]

encoder

compare & count

M
U
X

M
U
X

0 segment_grant

…
…

source_ptr

destination_ptr

ring_chosen

Figure 11. Segment arbiter logical architecture

usage status in the ring. Each counting block in the segment

arbiters calculate the path transmission distance, forwarding

the results to the ring arbiter.

Fig. 9 shows the process of Unit 1 when it requests to

send data to Unit 4. First, all states in all of the segment

arbiter tables are reset to 1. When the request from Unit 1 is

received, each segment arbiter checks its segment table ac-

cording to the destination ID in the request. In this case,

Segment Arbiter 0 (SA0) checks the values of S1 to S4 in

Segment Table 0 (ST0), and Segment Arbiter 1 (SA1)

checks the values of S1, S0, S7, S6, S5, and S4, which cor-

respond to the counterclockwise path in Segment Table 1

(ST1). As denoted by the red dots in Fig. 9, the counting

block of each segment arbiter counts the number of checked

segment table entries, in other words, the path length. If the

AND gate outputs a true value to the counting block, the

counting block determines the path to be available, and thus,

forwards the counting result (the segment grant in Fig. 9) to

the ring arbiter. The function of the ring arbiter is to com-

pare all received segment grants, select the grant with the

smallest value, and send a ring-chosen signal to the chosen

segment arbiter. A grant signal is also sent to the source unit

simultaneously. In the implementation of this study, if mul-

tiple paths possess the same distance, the path with the low-

est ring number is selected.

In the situation shown in Fig. 9, the ring arbiter chooses

Ring 0 for the transmission, and sends a ring-chosen signal

to SA0. Upon receiving the ring-chosen signal, SA0 sends

corresponding pulses to the source node, path nodes, and

Int'l Conf. Embedded Systems and Applications | ESA'13 | 77

destination node. As shown in Fig. 10, Pulse 10 is a SEND

pulse transmitted to Latch 0 of Node 1. Pulses 20 and 30 are

PASSTHRU pulses that change the control signals in Latch

0 of Nodes 2 and 3. Pulse 40, the RECEIVE pulse, is sent to

Node 4 to change the control signal in Latch 0. The segment

table is simultaneously updated. All segments in the path are

set to invalid; thus, subsequent requests can determine that

these segments are busy. When the transmission is complete,

the entries in the segment table are changed to valid, and

pulses are again sent to each node.

 In a segment arbiter, the source ID and the destination ID

contained in a request are encoded, and the resulting outputs

are used to determine which segments will be in the path.

By checking the value of these segments in the segment

table, the AND gate (Fig. 11) will output true if the path is

available, and the segment grant signal will forward the

counting block result to the ring arbiter.

3 CROSS-FOUR-RING TOPOLOGY

In this section, a cross-four-ring topology is proposed.

Based on the four-ring topology described in Section II, this

study implemented an additional function that allows trans-

mission paths to cross rings in the same direction, thereby

better using each segment. For example, in Fig. 12(a), where

paths from Unit 2 to Unit 5 and from Unit 6 to Unit 1 have

been constructed, if Unit 0 requests a path to Unit 3, the

central arbiter will be unable to identify an available path

for Unit 0. However, by allowing transmission across rings,

as shown in Fig. 12(b), the central arbiter can find a path.

This path passes through the nodes of Units 0 and 1 in the

first ring, and of Units 2 and 3 in the second ring. To im-

plement this function, the architecture of the nodes and the

central arbiter were slightly modified, as is explained in the

following two sections.

3.1 Node Architecture

This study modified a four-ring topology design into the

architecture shown in Fig. 13, which allows cross-ring

transmissions in the same direction. Two atomic switches

are added before the input ports of the transfer switches, and

each atomic switch is responsible for one direction. These

atomic switches provide data paths for cross-ring transmis-

sions and are controlled by cross-pulse signals (cr_pulse02,

cr_pulse13) sent from the central arbiter. If an atomic switch

is set using cross-pulse signals, the crossing status of the

atomic switches is retained until the transmission is com-

plete. Once the transmission is finished, the atomic switch

returns to its original status while sending a signal to the

central arbiter to reset the corresponding table.

3.2 Central Arbiter Architecture

A four-ring topology possesses four segment arbiters, one

for each ring (Fig. 7). SA0 and Segment Arbiter 2 (SA2)

manage clockwise rings, and the usage status of clockwise

rings is maintained in ST0 and Segment Table 2 (ST2).

However, in a cross-four-ring topology, this study combined

SA0, SA2, and an additional cross arbiter (Cross Arbiter 02;

CA2) into Arbiter 02, as shown in Fig. 14. This combination

provides CA02 with the usage status of all clockwise rings,

which is maintained by ST0 and ST2, enabling it to deter-

mine the cross-ring transmission path in these rings. The

function of counting blocks in SA0 and SA2 remains the

same (i.e., to count the path length and generate segment

grants). The counting block of CA02 serves a similar func-

tion and also generates cross grants when cross-ring trans-

missions are possible; the ring arbiter can determine that the

transmission path uses multiple rings when receiving a

cross-grant. Cross-Table 02 (CT02) inside CA02 maintains

the status of the atomic switches, and CT02 sends Cross-

Pulse 02 (cr_pulse02) to the atomic switch when a cross-

ring transmission is selected by the ring arbiter. This study

only describes the clockwise portion because the counter-

clockwise portion is organized identically.

Fig. 15 shows the operation of a cross arbiter in the situa-

tions presented in Figs. 12(a) and 12(b), in which Unit 0

requests a path to Unit 3. Initially, the request is received by

CA02, SA0, and SA2, but only Segment 0 (S0) and Seg-

ment1 (S1) are valid in SA0, and Segment 2 (S2) and Seg-

ment 3 (S3) are valid in SA2. However, CA02 can use S0

and S1 in Ring 0 and S2 and S3 in Ring 2 to construct a

path. For this purpose, CA02 labels S0 and S1 in ST0, S2

and S3 in ST2, and Node 2 in CT02, which is where the

cross-transmission occurred (top image in Fig. 15). The

counting block then sends Cross Grant 02 to the ring arbiter.

If the only available path is the cross transmission path, the

ring arbiter will send a ring-chosen signal to CA02. After

receiving a ring-chosen signal, CA02 updates the labeled

segments to 0, which indicates that the segment is busy

(bottom image in Fig. 15). The labeled node in CT02 is also

updated to 0, which indicates that the atomic switch in this

node is in a cross-transmitting state. Simultaneously, corre-

sponding pulses are sent to the transfer switches in Nodes 0,

1, 2, and 3, similar to that for the four-ring topology. In

addition, cr_pulse02 is sent to the atomic switch of Node 2

to set the switch. Thus, a cross-transmission path from Unit

0 to Unit 3 is constructed.

Unit0 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7

Unit0 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7

(a)

(b)

Figure 12. (a) Two data stream paths are constructed from

Unit 2 to Unit 5 and from Unit 6 to Unit 1; and (b) a request

for a path from Unit 0 to Unit 3 can be provided through

cross-ring transmission

78 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Control logic

transfer
switch3

transfer
switch2

transfer
switch1

transfer
switch0

Mux

ringin0

ringout1

ringin2

ringout3

ringout0

ringin1

ringout2

ringin3

pulse0
pulse1
pulse2
pulse3

unit_datain unit_dataout

enable

ctrl

ctrl

cr_pulse02

cr_pulse13

state13

state02

Figure 13. The node architecture of a cross-four-ring

topology

SA0 SA2CrossArbiter02

Segment
table0

Segment
table2

Cross
table02

Counting
block

Counting
block

Counting
block

Arbiter02

request

segment
grant0

segment
grant2

cross
grant02 ring

chosen
cross

pulse02

Figure 14. Arbiter architecture to control the clockwise ring

in a cross-four-ring network

ST0

1

1

0

0

0

0

1

1

S0
S1
S2
S3
S4
S5
S6
S7

cross arbiter02

A
N

D

counting

ST2

0

0

1

1

1

1

0

0

CT02

1

1

1

1

1

1

1

1

request

cross
grant02

ring chosen

ST0

0

0

0

0

0

0

1

1

S0
S1
S2
S3
S4
S5
S6
S7

cross arbiter02

A
N

D

counting

ST2

0

0

0

0

1

1

0

0

CT02

1

1

0

1

1

1

1

1

pulse00

pulse10

pulse22

pulse32

cr_pulse02

Figure 15. Operation of a cross arbiter when clockwise

rings are in the situations shown in Figs. 12(a) and 12(b),

i.e., Unit 0 requests a path to Unit 3.

4 PERFORMANCE EVALUATION

In this section, this study evaluates the performance of a

two-ring interconnection network, four-ring interconnection

network, and cross-four-ring interconnection network under

different traffic patterns. The two-ring topology implement-

ed in this study possesses one clockwise ring and one coun-

terclockwise ring. The system architecture and performance

analysis was constructed using Verilog HDL.

4.1 Experiment Environment

Each evaluated network had eight units. In the simulation,

the first 6000 cycles are the warm-up phase, and packet la-

tency is measured in stable time from Cycle 6000 to Cycle

30 000. The total simulation time was 60 000 cycles. Laten-

cy is measured from the time the request is produced by the

traffic generator to the time the data traverse through all

nodes in the path and includes the wait for arbitration in the

injection queue. The journey time for a node is assumed to

be one cycle. The injection rate is defined as the average

number of flits injected by each node per cycle, and the

number of flits in a packet is specified in the data length

field.

The following traffic patterns are used for performance

evaluations:

 Random destination: Each source sends packets to

each destination with equal probability.

 Neighbor node destination: Each source sends packets

to neighboring units; for example, Unit 1 sends packets

to Units 0 or 2.

 Half-ring destination: Each source sends packets to

the farthest unit; for example, Unit 0 sends packets to

Unit 4 and Unit 1 sends packets to Unit 5 in an eight-

unit ring network.

4.2 Simulation Result

The top image in Fig. 16 shows the simulation results for

the two-ring interconnection network (2R), four-ring inter-

connection network (4R), and cross-four-ring interconnec-

tion network (Cross) under random destination traffic. The

two-ring topology network exhibited the worst performance

because it used the least resources. The results also show

that the performance of a cross-four-ring topology network

is slightly superior to the performance of a four-ring topolo-

gy network. In the bottom image of Fig. 16 the percentage

of requests that uses cross-functions (cross-rate) is shown.

The cross-rate values are approximately 1% to 2% when the

injection rate exceeds 0.1; this indicates that cross-functions

are infrequently employed with random destination traffic.

This is most likely because the random distribution of used

segments increases the difficulty of establishing a path, even

when cross-functions are enabled.

The top image in Fig. 17 is the simulation result under

half-ring destination traffic. The results show that the per-

formance of the cross-four-ring interconnection network

was superior to that of the four-ring interconnection network

because certain paths can be constructed using cross-

functions but cannot be established in a four-ring topology.

The results in the bottom image of Fig. 17 show that the

maximum cross-rate can reach to 50%.

Fig. 18 shows the simulation results of neighbor destina-

tion traffic, in this case, the curves of the four-ring intercon-

nection network and the cross-four-ring interconnection

network overlap. Because a unit only communicates to the

following or previous nodes in a neighbor destination traffic

Int'l Conf. Embedded Systems and Applications | ESA'13 | 79

pattern, the only reason a request cannot be served is that

the request has the same destination as another request, and

thus, is filtered out by the destination busy table. Under

these circumstances, cross-transmissions never occur; there-

fore, the cross-rate in such cases is always 0.

Based on these simulation results, theoretically, when the

cross-rate increases, the cross-four-ring interconnection

network exhibits a superior performance.

5 CONCLUSION

This study implemented a circuit switching four-ring in-

terconnection network using Verilog HDL. To construct a

path in this network, a unit sends the central arbiter a re-

quest for unused segments and can successively transmit

data after the path is constructed. The circuit switching de-

sign reduces the transmission latency, ensures the data is

continuous and reliable, and prevents conflicts between data

flows. However, path construction in the central arbiter re-

quires additional computation time, and a number of the

unused segments that cannot be constructed into a path are

wasted because existing paths are not shared. To resolve this

issue, this study proposed a cross-four-ring topology that

allows unused segments to be constructed into a path be-

tween various rings in the same direction. This study evalu-

ated the performance of these architectures under differing

traffic patterns. The simulation results show that the cross-

four-ring interconnection network achieves a comparatively

superior performance under half-ring destination traffic.

Furthermore, a positive correlation between the performance

and cross-rate was observed.

6 REFERENCES
[1] Schaller,R.Moore's law: past, present and future Spectrum, IEEE,

IEEE, 1997, 34, 52-59

[2] Hemani, A.; Jantsch, A.; Kumar, S.; Postula, A.; Oberg, J.; Millberg,
M. & Lindqvist, D.Network on chip: An architecture for billion
transistor era Proceeding of the IEEE NorChip Conference, 2000, 31

[3] Dally, W. & Towles, B. Principles and practices of interconnection
networks Morgan Kaufmann, 2003

[4] Chen, T.; Raghavan, R.; Dale, J. & Iwata, E. Cell broadband engine
architecture and its first implementation—a performance view IBM
Journal of Research and Development, IBM, 2007, 51, 559-572

[5] Kahle, J.; Day, M.; Hofstee, H.; Johns, C.; Maeurer, T. & Shippy, D.
Introduction to the Cell multiprocessor IBM journal of Research and
Development, IBM, 2005, 49, 589-604

[6] Kistler, M.; Perrone, M. & Petrini, F. Cell multiprocessor
communication network: Built for speed Micro, IEEE, IEEE, 2006,
26, 10-23

[7] DeveloperWorks, I.Meet the experts: David Krolak on the Cell
Broadband Engine EIB bus 2005

[8] Ainsworth, T. & Pinkston, T. Characterizing the Cell EIB on-chip
network Micro, IEEE, IEEE, 2007, 27, 6-14

[9] Duato, J.; Yalamanchili, S. & Ni, L. Interconnection networks
Morgan Kaufmann, 2002

[10] Tala, D. Verilog Tutorial www. asic-world. com, 2003

ACKNOWLEDGEMENT

The authors would like to thank the support from NSC

under grants 102-2220-E-007-003 and 102-2219-E-007-002,

and also from MOEA under grant 101-EC-17-A-02-S1-202.

Figure 16. Results of the random destination traffic pattern

Figure 17. Results of the half-ring destination traffic pattern

Figure 18. Results of the neighbor destination traffic pattern

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

100

200

300

400

500

600

injection rate (flits/node/cycle)

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

c
y
c
le

)

random

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

injection rate (flits/node/cycle)

c
ro

s
s
 r

a
te

 (
c
ro

s
s
 r

e
q
s
/a

ll
re

q
s
)

2R

4R

Cross

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

100

200

300

400

500

600

injection rate (flits/node/cycle)

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

c
y
c
le

)
half ring

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

injection rate (flits/node/cycle)

c
ro

s
s
 r

a
te

 (
c
ro

s
s
 r

e
q
s
/a

ll
re

q
s
)

2R

4R

Cross

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

20

30

40

50

60

70

80

90

100

injection rate (flits/node/cycle)

av
er

ag
e

la
te

nc
y

(c
yc

le
)

100% neighbor 0% random

2R

4R

Cross

80 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Model Based Design method for Dynamic Configurable
Ecosystem of Embedded System1

JungEun Cha1, YoungJun Jung1, Chaedeok Lim1

1 Embedded Software Platform Research Team, Electronics Telecommunication Research Institute,
Daejeon , KOREA

1 This work was supported by the IT R&D program of MKE(Ministry of Knowledge Economy)/KEIT(Korea Evaluation
Institute of Industrial Technology), grant NO. 10041332.

Abstract - We intend to present design methods to construct
model-based customized ecosystem that can be naturally built,
evolved, and maintained through voluntary participation of
various developers and users, in embedded system. To achieve
this, we provide a model-based customized ecosystem capable
of extending itself at a model level, wherein the course of
evolution is decided according to user’s feedbacks by steps of:
1) deciding development purposes and scopes of functions
required in the development of an ecosystem, 2) classifying the
functions 3) suggesting a scenario for building an optimum
function architecture and 4) defining a meta model of each
function module based on design patterns. Also, we defined
the processes reflecting user feedbacks. We expect that our
ecosystem is ecosystem is made flexibly adjustable at a model
level according to the views of developers and users in various
embedded systems.

Keywords: Ecosystem, Configurable design, Embedded
system, Design pattern, Design Process

1 Introduction
 Embedded systems come to the front as highlight of IT

fusion technologies, but are often troubled by increasing
functional complexity, strict safety requirements. Specially,
one of the biggest problems in developing and maintaining of
embedded system is the variability depending on using devices,
developer’s purpose, and user’s views. We think ecosystem is
the way to solve this variability of embedded system1[1].

For example, an ecosystem may be provided to accept
feedbacks directly from the users and to make up for
drawbacks of distributed works, thereby enlarging the
satisfaction of users so as to result in continual and voluntary
participation of users and, finally, the technical prosperity.
Such an ecosystem means a system that can build and evolve a
natural win-win organization where all the related parties can
get accomplishments through the voluntary participation of
various developers and users. Therefore, the developers
should build the ecosystem in order to distribute their works

more easily while the users expect to get optimum services
therefrom.

However, most of conventional ecosystems are made within
a simple user home page level due to their focuses on
developer’s building easiness, or are provided in the form of
an open source software project maintained by user’s
voluntary participation.

The first one is difficult to actively reflect user’s opinion
because it provides just a simple distribution function for
developers; and the second one has a problem in its building
costs resulted from such functions as being related with
maintenance of a server or a community, security, verification,
and the like. In another view, though the ecosystem is a
voluntary system maintained by developers and users, it has a
lot of variables such as the kind of works to be spread or the
range of users, or the like. Therefore, basic functions of the
system, which both developers and users can approve, are
fixed by developers in the early development time, and the rest
need to be adjusted and confirmed while the ecosystem is
being operated[2]. Most of the conventional ecosystems
provide only such services as being related with the basic
function fixed early by the developers, the utilization of users
is too much restricted, and a link to an external system or
addition of functions requested by users, which can occur in
the future, may be disabled or difficult[3].

Our goal is providing a model-based customized ecosystem
capable of guaranteeing evolution without errors, wherein the
architecture of the ecosystem is made flexibly adjustable at a
model level according to the views of developers and users in
various embedded systems, which should be frequently
changed or necessarily require user’s participation.

So, we provide a common architecture of the model-based
customized ecosystem in accordance with the embodiment of
the present methods. And suggested a method for designing a
model-based customized ecosystem by describing: 1) a
process deciding a scope and a scenario consisting of
ecosystem functions, 2) steps reflecting user feedbacks and
participating by users into existing ecosystem and 3) methods
of defining a common meta model and constructing a design
template for applying the organized common function
architecture of the ecosystem.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 81

2 Related Studies
2.1 Function Stages in Ecosystem

 Fig. 1 shows a block diagram illustrating the ‘function
stages’. The function stages support a detailed confirmation
for the ecosystem service functions included in each step by
mapping the scopes of functions, under the status extended to
the related functions, with abstracted function groups.

The function stages sequentially include three stages of
distribution, opinion exchange and voluntary improvement. In
the distribution stage, easy accessing/downloading functions
and user management functions are provided as main services
for the purpose of wide-spread of released files. This may be
enabled by making up for a function of homepage being
currently operated[4].

In the opinion exchange stage, a bulletin board function is a
main service to enable the exchange of opinions among
developers and users. Herein, basic tools are provided, with
which main progresses of projects are posted in view of the
developers, various opinions are exchanged about products,
technologies, and operating methods and users can make
voluntary co-documents. Further, those functions capable of
retrieving shared codes already released, providing suitable
meta information about them, and managing version thereof
are supported. Most of all, it is important to activate a
community of sharing each other’s knowledge by introducing
such an idea of ‘a question and answer corner’ used in a portal
site.

The voluntary improvement stage includes a series of
services by which the users can modify, improve, and again
share the released files. Therefore, it is important to provide
those functions of source code review and version
management of the source code so as to upload and share
programs developed by users. Further, an issue tracker is
necessarily required to track and settle down various issues,
and plug-in or open API may be necessary for interworking
with related services.

(Figure 1) Function Stages in Ecosystem

2.2 Services in Each Function Stage
 Fig. 3 illustrates a table for classifying the main functions

of the ecosystem. But these functionalities can change by user
feedbacks, features of distributed contents or developer’s
purpose in ecosystem[5].

The aforementioned functions of the ecosystem are
organized and classified into a basic group and an optional
group so as to gradually build an ecosystem according to the
development purpose. That is to say, the functions are
separated into stages 1 to 3 according to the development
purpose. Thereafter, the functions are classified as either a
basic compulsory function or an optional correctable function
in each stage and then those classified functions are combined
to organize a single design scenario. For example, the main
function of the stage 1 is ‘Downloading’, which enables users
to download work files such as the embedded software
platform developed by developers. The main functions of the
stage 2 are ‘Wiki’, ‘Notice’, ‘Board’, and ‘Community
Revitalization’. ‘Wiki’ is a function for a real time co-
documenting tool; ‘Notice’, for noticing major progresses
related with a released work; ‘Board’, for exchanging of
opinions among users about released products, developing
technologies, and ecosystem operating methods; and
‘Community Revitalization’, for sharing knowledge with each
other through the leading of an expert group composed of a
professional engineer, a program developer, or the like.

(Table 1) Function Categories in Ecosystem

Stage Basic function Description
1 Downloading · Provoding files approved to release after

confisuration management
2 WIKI · Co-documenting tool by voluntary

participation of users
Notice · Notice of various information related to

managed contents and ecosystem
operating information

Board · User opinion exchanges about released
contents, developing technologies,
ecosystem operatinf methods, etc.

Community
connectivity

· Learning and sharing technologies by
leading od expert groups

2.5 Reusing
Service

· Retrieving shared contents(codes,
documentation, video, etc.) and
providing understand information for
contents

Repository
management

· Configuration management of shared
assets and management of user
information

3 Configuration
management

· Storing source codes and managing
source code versions

Code review · Level 1: reviewing codes uploaded by
developers

· Level 2: reviewing codes for cooperating
among developers

Issue tracker · Tracking processes of modification and
improvement resulted from various user
opinipns, especially, for released
contents

Open API · Supporting link to various external
servies

Plug-in · Supporting addition od new functions or
interworking with other tools

The main functions of the stage 2.5 are ‘Reusing Service’

and ‘Repository Management’, wherein the first one means a
function of enabling users to retrieve shared codes and provide
meta information and the second one means a function for
shared asset configuration management and user management.

82 Int'l Conf. Embedded Systems and Applications | ESA'13 |

The main functions of stage 3 are ‘Source Code
Management’, ‘Code Review’, ‘Issue Tracker’, ‘Open API’,
and ‘Plug-in’. ‘Source Code Management’ is a function for
storing source codes and managing versions thereof; ‘Code
Review’, for reviewing codes of developer-uploading
programs or those resulted from the co-works among
developers; ‘Issue Tracker’, for managements such as tracking,
retrieval, and person-in-charge allocation for bugs of the
released works and user requests, or for opinion exchanges in
association with the bulletin board; ‘Open API’, for linking to
various external services; and ‘Plug-in’, for adding new
functions or interworking with other tools.

3 Model-based Customized design
method

3.1 Process of deciding a scope of functions of
an ecosystem

 The scope of functions of the ecosystem is determined
according to building purposes of the ecosystem by developers
in the early development time, and may be gradually changed
according to the intentions of participating users and operation
purpose of the ecosystem.

Figure 1 is shown the process for defining function scope by
considerations happened from purpose and expending strategy
of ecosystem. The purpose of the ecosystem should be
recognized before anything else to build the initial stage of the
ecosystem. In this embodiment, there are four purposes
exemplified, including a wide-spread of output, a community-
driven environment, an improvement of output, and an open
project development (or voluntary improvement).

(Figure 2) Process for defining function scope

(Figure 3) Function lineup scenario for building the ecosystem

Based on each purpose, a main function is defined as

‘Downloading’ for both purposes of the wide-spread of output
and the open project development, ‘Board’ for the purpose of
the community-driven environment, and ‘Output Verification’
for the purpose of the improvement of output (the developed
works). Then, related functions accompanied by the main
functions are extended, and final scopes of functions are
confirmed through a function stage mapping.

Especially, “functions stage mapping” in figure 2 are
connected to function steps in figure 1, then mapped function
stage is embodied into ecosystem including concrete functions
described in table 1.

3.2 Scenario for Function Definition of
Ecosystem

 Figure 3 sets out a conceptual view illustrating a function
lineup scenario for building the ecosystem in accordance with
the embodiment of the present invention, wherein solid lines
show the connections of basic functions while dotted lines
show those of optional functions[6][7].

In case of building an ecosystem of stage 3, developers must
make the system include: the basic function ‘Downloading’ of
stage 1; the basic functions ‘Board’, ‘Notice’, and ‘Repository
Management’ of stage 2; and the basic functions ‘Source Code
Management’ and ‘Issue Tracker’ of stage 3.

The ecosystem may additionally include optional functions
in stage 2, i.e., ‘Wiki’ as a user co-documenting function,
‘Community Revitalization’ as a knowledge sharing function
by experts, or ‘Reusing Service’ for the shared asset (or
common source) managed by the ecosystem, according to the
range of users and the utilization methods of the ecosystem.
Also, the ecosystem may additionally include optional
functions in stage 3, i.e., ‘Code Review’ for the developer-
uploading programs or the co-works among developers, ‘Open
API’ for linking to various external services, and ‘Plug-in’ for
adding new functions or interworking with another tools.
Based on the aforementioned function architecture of the
ecosystem, a common meta model can be provided. To this
end, first, a common architecture of the ecosystem will be
defined with reference to Fig. 3.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 83

(Figure 4) Common Architecture of Ecosystem

4 Ecosystem Design
4.1 Common Architecture

 Fig. 4 provides a view illustrating a common architecture
of the model-based customized ecosystem in accordance with
the embodiment of the present invention.

Referring to Fig. 4, the ecosystem includes: a work
distribution for distributing developed works such as
embedded software platforms to users; a shared asset
management for performing a voluntary reuse of the
developed works; a user support unit 508 for gathering and
reflecting user’s opinions about the distributed works; and a
repository management for managing information on the
developed works.

The work distribution enables a plurality of users, who
access the ecosystem via a network such as Internet, to
download the developed works such as the embedded software
platforms through an interface. Further, it performs API test
or source verification for the developed works. The shared
asset management unit stores, retrieves, and manages the
works constituting various embedded software platforms, the
information thereof, and users’ access information with
respect to the embedded software platforms. Further, the
shared asset management enables the users to upload a
modified version of the developed works. The user support
provides such functions as Wiki, Board, and OPEN Project
that enable exchanges of opinions among users, so that a
plurality of users who download the developed embedded
software platforms can express their opinions about the
platform and those opinions can be reflected for the
improvement of the platform. Open Project is one of the most
important modules to support for evolving shared contents
into various configurations outputs by voluntary users. The
repository management stores all the works and information
managed by the ecosystem in a repository, updates them, and
maintains openness thereof. An asset configuration unit
manages source codes and version information of the
developed works such as embedded software platforms. A
user management unit manages information on users who
download the developed work or offer opinions thereabout.

The issue tracker reflects improvements of the developed
work.

In detail, the issue tracker collects opinions of various users
about the developed works such as embedded software
platforms from the user support unit, catches bugs and
requests for modification of the developed works, and make
the bugs and requests be reflected when a corresponding
developed work is modified. Further, it makes the embedded
software platforms be linked with an external service by
applying an open API thereto, or enable the platforms to be
added by new functions or be interworked with another tools
by applying plug-in.

4.2 Reflecting Process of User Feedbacks
 After opening basic ecosystem constructed for distributing

initial outputs, users are used to suggesting their opinion
related on ecosystem. Then, UI structures or data processing
structures of ecosystem are changed by the scope of user
feedbacks.

As like figure 5, if users want to change to user interface
structures, activities for menus addition and deletion in level
of main menu are required, or menus under second level are
modified (addition or deletion) for reinforcing shared contents,
unless change UI structure. In the case of no changes for UI
structures, independent menus are adding as like RSS, tweets
and tag cloud, etc. And ecosystem UI acquires requisite space
for UI changing by relocating UI menus, and then it’s main
frame (UI layout) modified and overall UI structure is
reconfigured. If user feedbacks are required to change
information structure, information display units of ecosystem
is modified and these units are repackaged into similar
information categories. Lastly, changed ecosystem by
reflecting user feedbacks is re-leaded and performed
continuous feedback reflection cycles.

4.3 Dynamic Design Template
Figure 6 illustrates design models of defining a common

architecture and constructing a design template for applying
the organized common function architecture of the ecosystem.
We intended these design model can help to easy maintaining
ecosystem regardless of changed objects(classes) by applying
user feedbacks into UI abstract layer[8][9].

This model is divided into the UI, storage management and
main function part of ecosystem. For UI part is deep
connected to user feedbacks, so we tried to define the design
model to supporting easy changing and dependency
minimizing among related modules by separated
implementation. We adopted design pattern Abstract Factory
from GoF patterns, this pattern including 3 classes
(IndependentUIModifying, FirstMenuModifying,
SecondMenuModifying) is used to compose different UI by 3
classes when request for UI changing is different each other.
Also for performing menu addition and deletion without any
conditions, we applied Iterator pattern. This pattern makes
class MenuInstance to be independent.

84 Int'l Conf. Embedded Systems and Applications | ESA'13 |

 In our model, overall classes are structured by
Aggregation relationship to support for selecting detail
implementation methods according to user feedback’s type
and adding or deleting the operations in same class. Therefore,
because higher level classes include the lower level classes to
add the detail implementation, functions of implemented
ecosystem depend on selected one of classes with aggregated
relationship

At this point, an UML-based meta model can build a
flexible ecosystem by adjusting core attributes in each
function module as well as selecting each function module.

5 Conclusions
 The model-based customized ecosystem and design

method thereof have an advantage in enhancing the efficiency
of a system development, by organizing an optimum
ecosystem suitable for the purposes and strategies of
developers using a common design template, which is
composed of meta models that define a function classification
depending on the purposes of the ecosystem, a function design
scenario, and function modules.

Further, it has another advantages in maximizing efficiency
and flexibility of the ecosystem as well as the spread and
improvement of the distributed works via the ecosystem,

(Figure 5) Process for Reflection of User Feedbacks

DynamicEcosystem

AbstractUIManager

+Viewing()
+Hiding()

FunctionalityManager
RepositoryManager

ConcreteUIReconfigurating

+Occupyingspace()
+Resizing()
+Replacing()

MenuInstance

+Addmenu()
+Deletemenu()

UserUIConfirm

FirstMenuModifying

+MainMenu

+Viewing()
+Hiding()

SecondMenuModifying

+UnderSecondMenu

+Viewing()
+Hiding()

IndependentUIModifying

+RSS_icon
+TagCloude_UI
+OthersIcons

+VIewing()
+Hiding()

IndepedentUI

FirstMenu

SecondMenu

OutputDistribution

+Codes
+Documentaions
+Videos

+Downloading()
+EdtingFAQ()

AssetsSharing

+AssetsRetrival()
+AssetsViewing()
+AssetsExplanation()
+AssetsInfoModifying()

UserSUpporting

+Board()
+Q&A()
+Communities()
+Monitoring()
+IssuesSTnc()
+TagCloude()

CallOtherApp

+Plug-In()
+CallApp()

IssuesTracker

+IssuesRegistration()
+IssuesTrace()
+BugTracing()

OpenProject

+ProjectSuggesting()
+OpenProject()
+UserCodeUploading()
+CodeReviewng()
+CodeReleaseig()

AssetsManager

+AssetsConfiguration()
+AssetsLifeCycleManaging()

UserManager

+UserRegistration()
+UserHistorymanaging()
+UserWithdrawal()
+UserLevelManaging()
+UserAssetsMonitoring()

InfoUnitmanager

+ViewingUnitModifying()
+PackagingUnitModifying()
+RestoringUnitModifying()

(Figure 6) Dynamic Design Model for Ecosystem

Int'l Conf. Embedded Systems and Applications | ESA'13 | 85

because it can be voluntarily evolved to have versatile
functions according to patterns of accessing the ecosystem and
varying requests of users, by using the meta models That is to
say, the architecture of the ecosystem is made flexibly
adjustable at a model level according to the views of
developers and users in various embedded systems, which
should be frequently changed or necessarily require user’s
participation, thereby guaranteeing efficient development, and
errorless extension and link of the ecosystem.
6 References
[1] Bosch, Jan., From Software Product Lines to Software
Ecosystems. Accepted for SPLC 2009 (13th International
Software Product Line Conference), August 2009
[http://www.software-
ecosystems.com/Software_Ecosystems/Ecosystems.html]

[2] Jim Highsmith, Agile Software Development
Ecosystems, Addison-Wesley Professional, 2022

[3] Leffingwell, Dean, Scaling Software Agility Best
Practices for Large Enterprises, 2007, Addison-Wesley

[4] Karl Popp, Ralf Meyer, Profit from Software
Ecosystems: Business Models, Ecosystems and Partnerships
in the Software Industry, 2010, Synomic GimH

[5] David G. Messerschmitt, Clemens Szyperski, Software
Ecosystem: Understanding an Indispensable Technology and
Industry, 2005, MIT Press

[6] Jorma Taramaal, Munish Khurana2., and Pasi Kuvaja2,
“Product-Based Software Process Improvement for
Embedded Systems”, EUROMICRO ’98, vol. 2, pp.20905,
Vol. 2 August 25~ 27, 1998
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=007081
20, [accessed June 14, 2009]

[7] Bernd Hardung, Thorsten Kölzow, and Andreas Krüger,
“Reuse of Software in Distributed Embedded Automotive
Systems ,” EMSOFT’04, Pisa, Italy, vol. A247, pp. 203 - 210,
September 2004

[8] P. Clemens and L. Northop. Software Product Lines -
Practices and Patterns. Addison-Wesley, Boston, 2002.

[9] Erich Gamma, Ralph Johnson, Grady Booch, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 2006

86 Int'l Conf. Embedded Systems and Applications | ESA'13 |

LUCKY THIRTEENS: A NEW BREED OF MICROPROCESSOR BOARDS

William A. Stapleton
Ingram School of Engineering, Texas State University – San Marcos

601 University Drive, 5202 Roy F. Mitte Building, San Marcos, TX 78666 USA
wstapleton@txstate.edu, Voice: (512) 245-8746, FAX: (512) 245-7771

The 2013 International Conference on Embedded Systems and Applications

ABSTRACT
Within the last few months a new breed of small

microprocessor trainer boards had emerged onto the
marketplace. Boards such as the Freescale Freedom,
Texas Instruments Stellaris Launchpad, and ST Micro
Discovery are each entry-level ARM-based boards
available at a common price point: $13. These boards
offer an introduction to a modern 32-bit architecture with
state-of-art tools with little barrier to entry for the novice.
Consequently, these boards are offering a tremendous
opportunity for adoption into a wealth of Embedded
Systems curricula.

Keywords: embedded systems, engineering education

1. INTRODUCTION

Selecting a microprocessor architecture for

teaching embedded systems fundamentals has long
offered a difficult set of compromises. Selecting an
architecture such as Intel’s latest 80x86 variants, the i3,
i5, and i7 cores, certainly offers students to opportunity
to learn one of the most widely used architectures on the
market. Unfortunately, for a novice student, learning a
sufficient portion of Intel’s architecture within one, or
perhaps two, semesters is daunting to the point of
impossible. Many programs seek the other end of the
spectrum with architectures such as MIPS which are very
simple and straightforward but exist primarily in
simulation. Another simple architecture which has
become popular is the Arduino microprocessor based
around the Atmel Atmega architecture. This is a simple
architecture but the boards are generally presented
through a simplified set of programming tools. The
author has experience with programs which selected the
Freescale MC9S12 architecture as an exemplar with the

intent of balancing student experience to present a
commonly used architecture which is not excessively
complex to learn [1-7]. Unfortunately, the MC9S12 is
little changed in the last two decades. Many programs
have preferred ARM-based architectures for having a
clean RISC-type architecture which has been steadily
gaining market share. Until recently, the primary
limitation of the ARM architecture was finding a suitable
low-cost trainer. Within the last few months, at least
three companies have released entry-level ARM-based
boards at roughly the same price point: $13. With the
introduction of these boards there is little remaining
limitation to adopting a modern microprocessor
architecture.

2. THREE EXAMPLE BOARDS

The first exemplar of the “lucky thirteens” is the

Freescale Freedom [8]. This board is based around a
member of Freescale’s Kinetis line of ARM®
Cortex™-M0+ processors. Freescale offers a special
edition of the CodeWarrior software optimized
specifically for this board for free on their website [9].
The Freescale Freedom is depicted in Figure 1.

The second exemplar of the “lucky thirteens” is
the Texas Instruments Stellaris Launchpad [10]. This
board is based around a member of Texas Instruments’
Stellaris line of ARM® Cortex™-M4F processors.
Texas Instruments offers a special edition of the
Stellarisware and Code Composer Studio software
optimized specifically for this board for free on their
website [11]. The Texas Instruments Stellaris Launchpad
is depicted in Figure 2.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 87

The third exemplar of the “lucky thirteens” is
the ST Micro Discovery [12]. This board is based
around a member of ST Micro’s line of ARM®
Cortex™-M4 processors. St Micro offers sample
firmware of applications on their main product page but
leaves the choice of development tool to the user. The ST
Micro Discovery is depicted in Figure 3.

Figure 1: Freescale Freedom

Figure 2: Texas Instruments Stellaris Launchpad

Figure 3: ST Micro STM32F3DISCOVERY
Each of these three exemplar boards offers an

excellent set of capabilities. Any one which is selected
should provide an excellent platform for teaching

microprocessor architecture and embedded systems
applications.

The author has considerable past experience
with the Freescale MC9S12 architecture and embedded
software development in an academic setting [1-7].
What many consider the premier tool for MC9S12
development is the CodeWarrior software platform.
Freescale made CodeWarrior extremely desirable for this
task within academia when they released the free “special
edition” for MC9S12 some years ago. When Freescale
released the ARM-based Freedom platform along with a
new free special edition for the Kinetis ARM
microprocessor, they positioned themselves nicely to
give academia a clean upgrade path. Further, the
physical layout of the Freedom board mirrors the
Arduino Uno, one of the best-selling microprocessor
boards of the last decade. Specifically, the position of
the I/O headers on the Freedom boards allows it to
immediately connect to any of the hundreds of
Arduino-compatible “shield” peripherals [13]. Because
the author intends on adopting the Freescale Freedom as
a replacement for the MC9S12 platform, all examples in
the following sections will utilize the Freedom when
specifics are necessary but any of the boards should be
capable of operating in any of the examples. Any
exceptions will be noted.

3. PROGRAMMING THE BOARDS

All three of the exemplar boards are equipped

with two USB ports. One port is directly tied to the
microprocessor, either to native USB or through a
hardware USB-to-RS232 connection to native RS232.
The second USB port is connected to some form of
on-board background debugger. In the case of the
Freedom, the background debugging functions are
handled by a second, smaller ARM CPU adhering to the
OpenSDA standard.

Programs for the boards are written in the
language of choice for the user. The author has verified
both C and assembly options for these boards. Once
programs are written, binary files are created and

88 Int'l Conf. Embedded Systems and Applications | ESA'13 |

subsequently uploaded into the boards via the
background debugging facilities. In the case of the
Freescale boards, the binary files are in the S-record
format. CodeWarrior can directly program the boards
with these S-record files or users can upload them
manually.

4. BUILDING SOFTWARE FOR EXISTING

HARDWARE

The Arduino microprocessor boards have

become fantastically popular by providing a very simple
software platform to create simple applications. These
are a good choice for novice hobbyists but have a limited
top end of their capability. Their popularity has spurred
the creation of a large number of peripheral devices all
using a common physical interface, the “shield” [13].
Because the Arduino is based on a simple, older
architecture with limited I/O, most of the shield
peripherals were developed with either a standard serial
interface or direct control via a small number of I/O pins.
On the Arduino, hardware support for these interfaces is
limited and even simple serial standards such as RS232
may be implemented in software via “bit banging”.

Any of the three “lucky thirteen” boards
provides considerably more native I/O capability than an
Arduino including hardware support for standard serial
interfaces such as RS232, SPI, and IIC; hardware
pulse-width modulation; and analog-to-digital and/or
digital-to-analog. What these boards lack, at this point,
is a library of software functions to help the novice user
readily utilize this superior hardware for the same types
of applications that the simple software library of the
Arduino provides.

The author previously developed and published
a series of assembly language libraries for the MC9S12
aimed at typical embedded systems applications [1]. The
equivalent of these libraries will be developed as the
author adopts the Freedom board. Newer portions of
the libraries are planned to allow simple access to
popular shield peripherals. The next section describes
some examples of items that the author believes will

become common applications as teaching examples with
these new microprocessor boards.

5. COMMON APPLICATIONS SUITABLE

FOR TEACHING

When utilizing any microprocessor for training

purposes, one of the first tasks which students must learn
to program is a technique for input and output of text
based data. Since these microprocessor ttrainers have
no hardware “console” as such, most use a host PC as a
terminal, typically either via RS232 or virtual RS232
over USB. Writing routines for console-like user I/O is
often inspired by the C/C++-language routines such as
getc, putc, scanf, printf, cin, or cout. A significant
number of peripherals can be controlled using only an
RS232 port. Each of the three “lucky thirteen” boards
offers at least three independent hardware RS232
channels. Many older architectures such as the Atmel
ATMega on the Arduino or the MC9012 offer only one or
two hardware RS232 ports and additional ports must be
simulated in software.

The Inter-Integrated Circuit (IIC) and Serial
Peripheral Interconnect (SPI) standards also each allow
connection to a wide variety of peripherals. RS232 is a
two-device peer-to-peer standard. Both IIC and SPI can
connect multiple devices on the same bus. RS232 is
asynchronous while both IIC and SPI are synchronous.
Including lessons on one or both of these
communications standards opens a large number of
options to the student. All three of the ARM-based
boards have hardware support for one or more of each of
these ports.

One of the most popular problem realms for
both novice hobbyists and for teaching students is
utilizing microprocessor trainers for simple robotics. In
addition to the more general user I/O tasks, robotics
requires the control of various motor types for actions
and the input of a variety of data from numerous sensor
types for managing control. On the sensor input side of
this equation, in addition to serially-interfaced sensors,
mot other sensors produce analog outputs which must be

Int'l Conf. Embedded Systems and Applications | ESA'13 | 89

loaded into the microprocessor via some analog-to-digital
path. All of the three exemplar boards contain multiple
internal analog-to-digital channels. In fact, all three
offer a larger number of channels with higher sampling
rates and greater bit depth than older architectures such
as the ATMega of the Arduino or Freescale’s MC9S12.
However, the boards do not include internal
digital-to-analog, relying instead on external drivers.

Two common motor types, servo mtors and dc
motors, both utilize pulse-width modulation (PWM) for
control. Servo motor position is controlled by a 50 Hz
pulse train with duty cycle between 5% and 10%. DC
motor direction is controlled by an H-bridge and motor
speed is controlled by PWM. Some inexpensive
platforms like the Arduino implement PWM in software.
This has the disadvantage of having the timing of the
PWM signal be dependent on the overall amount of
processor loading. In all of the “lucky thirteen” boards,
PWM is supported directly in hardware such that the user
can “set and forget” a PWM signal and have an accurate
output regardless of other processor loading.

6. CONCLUSIONS

The new generation of inexpensive ARM-based

microprocessor trainer boards offers a tremendous
opportunity for updating a wide variety of
microprocessor curricula. The “lucky thirteen” boards
offer both better performance ad better price than their
predecessors. Even more importantly, these boards
offer greater I/O capacity and full hardware support for
multiple serial ports and PWM that their predecessors
had to implement in software. These boards are
supported with free, professional-level development tools.
In short, a strong case can be made for this class of
microprocessor boards becoming the “go to” solution for
all entry-level microprocessor needs.

7. REFERENCES

[1] Stapleton, William, “Development Of A Library For

Teaching And Implementing Resource-Limited

Embedded Systems,” Proceedings of The 2011
International Conference on Embedded Systems and
Applications, July 2011.

[2] Stapleton, William A., “Embedded Assessment of
Microcomputer Fundamentals for Embedded
Systems Education”, The 2008 International
Conference on Frontiers in Education: Computer
Science and Computer Engineering, Las Vegas, NV,
July 2008.

[3] Ricks, K.G., Jackson, D.J., Stapleton, W.A., “An
Embedded Systems Curriculum Based on the
IEEE/ACM Model Curriculum,” IEEE Transactions
on Education, Vol. 51, Issue 2, pp. 2262-2270, (2008)
– selected IEEE Education Society 2009 Best
Transactions Paper.

[4] Ricks, Kenneth G., David J Jackson, William A.
Stapleton, “Incorporating Embedded Programming
Skills within an ECE Curriculum”, SIGBED Review,
Volume 4, No. 1, pp. 17-26 (2007).

[5] Ricks, K. G., Stapleton, W. A., Jackson, D. J., “A
Focused Curriculum for Embedded Systems”,
Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA),
Madison, Wisconsin, June 2005.

[6] Stapleton, William, Kenneth Ricks, Jeff Jackson,
“Implementation of an Embedded Systems
Curriculum”, Proceedings of the ISCA 20th
International Conference on Computers and Their
Applications (CATA’05), New Orleans, LA, March
2005.

[7] Stapleton, William, “Zero to Two Hundred in Two
Years: Launching a New Program”, The 2010
International Conference on Frontiers in Education:
Computer Science and Computer Engineering, Las
Vegas, NV, July 12-15, 2010.

[8] URL: http://www.freescale.com/webapp/sps/site/
overview.jsp?code=FREDEVPLA&fsrch=1&sr=1

[9] URL: http://www.freescale.com/webapp/sps/site/
prod_summary.jsp?code=FRDM-KL25Z&fpsp
=1&tab=Design_Tools_Tab

90 Int'l Conf. Embedded Systems and Applications | ESA'13 |

[10] URL: https://estore.ti.com/Stellaris-LaunchPad.aspx
[11] URL: http://www.ti.com/tool/sw-ek-lm4f120xl
[12] URL: http://www.st.com/web/catalog/tools/FM116/

SC959/SS1532/PF254044?s_searchtype=partnumber
[13] URL: http://www.shieldlist.org/

Int'l Conf. Embedded Systems and Applications | ESA'13 | 91

Roto Disp-Pattern Generation using

Microcontroller- based Hardware

Jyothi R, Dr.V.K. Agrawal, and Pradeep A.S.

Computer Science Department, PESIT, Bangalore, Karnataka, India

Information Science Department, PESIT, Bangalore, Karnataka, India

Siemens Information Systems Ltd., Electronic City,Bangalore, Karnataka, India

Abstract-Pattern generation is computer-aided design for the

display of different patterns on the wheels of the car to attract

attention of prospective Customer to a business or itsa

Product or services. In This palper web are présentions a

system of pattern generation for entertainment and business

promotion purposes with name RD-PatGen. This is an

embedded microcontroller- based motorized LED graphical

displaying device. The proposed software runs on

microcontroller- based hardware named as Roto-Disp. A GUI

is used for creation of patterns. The pattern can be generated

in two modes namely, graphical mode and text mode.

Graphical patterns are generated in graphical mode and

ASCII characters like text patterns can be generated using

text mode. In both the modes, previously stored patterns can

be loaded automatically. The proposed system generates the

pattern in the background using GUI. In this GUI Preview,

option has been given to view generated patterns and also

COM settings options for serial data transmission. As car

starts moving, different patterns will be displayed on the

wheels of the car.

Keywords: Roto-Disp pattern generation, Microcontroller,

LED graphical displaying device, Graphical patterns and Text

patterns.

1 Introduction

 In the post- global era of business process, embedded

system has become a backbone for the development of many

of the present- day electronic products [1]. Embedded systems

find much usefulness in the automobile field. These are being

primarily used for functioning of an automobile. Embedded

systems are also in value- added services of automobile, like

advertisement. In order to attract customers for purchase of

cars, companies are using attractive pattern display on the

wheels of cars. Such patterns can be easily developed by

embedded system using microcontroller. We propose to use

microcontroller- based system for the generation of patterns.

Pattern generation software generates different patterns on the

wheels of the car. We are using visual basic for the creation

of graphical user interface (GUI). By making use of this GUI,

customers can generate patterns of their own interest. The

generated pattern is transferred to hardware by the serial

interface. Once the power is on, the controller generates

different prefixed patterns on the wheel of the car as shown in

figure 1. This approach of advertisement is likely to increase

consumption of products and services. It also leads to creation

and reinforcement of brand image and brand loyalty. In this

paper, we present both hardware and software aspects of the

pattern generation scheme. In this scheme, we are using a

microcontroller- based hardware and it is named as Roto-

Disp. We call this proposed pattern generation system as RD-

PatGen. With this system, different attractive patterns can be

generated on the wheels of the car. Images on the wheels

change automatically at different time intervals. RD-PatGen

System can also be used for entertainment and other business

promotion purposes.

The Section 2 provides the system description,

including hardware block diagram. Section 3 discusses the

software design aspects, which describes the set of data flow

diagrams, context level diagrams and also the operational

description for RD-PatGen. Section 4 shows the snapshots for

the RD-Patgen. Section 5 presents conclusions and points out

some future work.

2 System Description

 Pattern generation system consists of three major

subsystems. Block schematic of this system is shown in Fig.1.

The first subsystem is a personal computer, also named as

source unit. It is used for generating different patterns which

are to be displayed on wheels. This is an off-line system i.e.

the system is used during development phase. After the

patterns are generated and transferred to the next subsystem, a

microcontroller- based system, the role of personal computer

is terminated unless the patterns are required to be modified

again. The microcontroller transfers these stored patterns

during run time and interfaces with display unit on tyres for

the pattern display via slip ring arrangement. Design for RD-

PatGen system comprises of software for user maintenance

i.e. a GUI for creation and storage of patterns, development of

microcontroller-based hardware and firmware for the

controller. Different patterns are generated using GUI; these

patterns are transferred to the microcontroller- based hardware

92 Int'l Conf. Embedded Systems and Applications | ESA'13 |

(Roto-Disp).

Figure 1. RD-PatGen System components.

More description of PATGEN system is given in Figure 2. As

described above, pattern generation system consists of three

major components namely, Source Unit, Processing Unit and

Display Unit. The Source Unit is having adequate secondary

memory for storing the patterns. The stored patterns are

transferred offline to the Processing unit through serial

interface. Processing Unit is designed based on simple

microcontroller and provides interfaces to Source Unit and

Display Unit. It communicates Source Unit to receive the

stored data using RS 232C interface, and stores it into the

EEPROM. This controller controls all the elements within the

processing unit. After the required processing, the patterns are

mapped to the display format and then transferred to the

display unit. The transfer interface is based on slip ring

arrangement. When the car starts, controller senses the

rotation of wheels through proximity sensor and transfers

patterns from the memory to wheels of car for display.

Figure 2. Block diagram for RD_PATGEN System

Length
 The maximum allowed number of pages is seven for

Regular Research Papers (RRP) and Regular Research

Reports (RRR); four for Short Research Papers (SRP); and

two for Posters (PST).

2.1 Hardware Realization

 As shown in figure 3. Roto-Disp consists of a

rotating blade on which arrays of 16LEDs are mounted; these

LEDs are connected to a microcontroller processing unit with

driving circuitry. This driving circuit is mounted on the

microcontroller. An ac motor is used to simulate the rotating

wheel. A magnetic proximity sensor is placed on the blade

and this sensor is used to sense the reference point. Power to

the circuit is provided using slip ring arrangement. Slip ring

also provides the signal connectivity between processing unit

and display unit. When Roto-Disp unit and motor receive

power the motor starts rotating and hence the blade also starts

rotating. As soon as the controller senses the rotation through

the magnetic sensor, it starts controlling the 16 LEDs. This

controller transfers different pre-fixed LED patterns for every

1.4degree movement of the blade. Hence for a rotation of 360

degrees approximately, 256 different LED patterns are

generated. If the LED pattern sequence is selected, we can

see, a distinct pattern being generated due to the property of

perception of the eye. The image may consist of simple

graphics or alphanumerical messages. Using this arrangement

attractive pattern of images can be created on the wheels of

different automobiles.

 Newer patterns can be created on the PC using GUI of

Visual Basic [2, 3, 4]. This software can be used at a toll to

create various images and patterns on the PC. These patterns

can be downloaded on the memory chip through serial port.

Once the images are created, the software converts this image

into hex values, which correspond to LED on/off patterns.

When RD receives power, the controller transfers different

pre-fixed LED patterns and displays these patterns in a timed

sequential manner, and it can also store the direction of the

display either in clock wise or anti-clock wise direction.

Figure 3. Block diagram of hardware display device

The whole hardware is built around very popular

microcontroller PIC16F876 [5], as in figure 3. The firmware

for this is developed in „C‟ language using Hitech cross

compiler. An array of 16 Light Emitting diodes (LED) is

mounted on a rectangular strip. A power magnetic is fixed at

the exterior end of the LED strip. Whenever the magnet

comes near the proximity sensor, it generates a corresponding

pulse. This pulse is sensed by the PIC and is recognized as

Int'l Conf. Embedded Systems and Applications | ESA'13 | 93

the reference point. The LED pattern information is stored in

the flash memory (24LC256) interfaced externally to the PIC

using I2C bus (Inter IC Communication protocol). PIC has

two lines, RX (receive) and TX (transmit) dedicated for serial

communication. More description about the circuit diagram

which is built around the hardware device is given in

Appendix A.

3. Software Design for RD-PatGen

 Software design of Roto-Disp Pattern generation system

gives the GUI for generation of graphical as well as textual

patterns. GUI has 256 X16 pattern generation cells and 8

individual frames. The patterns can be generated in two

modes, graphic mode and text mode. In graphic mode,

different graphical patterns are generated based on the user

requirements. In text mode, options have been given to

generate text patterns, like ASCII characters. GUI provides an

option for new character generation, so that user should be

able to create a new pattern with a character of size 16 into 5,

and eight different patterns can be generated using eight

frames. Here, options are provided for generating eight such

images concurrently and also options for switching between

images. Images created will represent the pattern to be

generated on the device. Once the patterns are created either

in graphical mode or text mode, options are given to save the

patterns. The saved files are loaded, edited or transferred to

the hardware at any time. Options are also given to open an

existing pattern. With the Edit option, user can perform

changes on the GUI screen. A provision of time for

generation of pattern for each image has been given in

„seconds‟. Once the different patterns are generated, options

are given to preview the generated pattern. Here graphical

image to hexadecimal word generation algorithm have been

implemented to convert the images into hex values. When

power is switched on, the patterns generated by GUI are

transferred to the hardware by serial interface for display and

Roto-Disp has been used for the display of patterns on the

wheels of the motor car.

 The user switches between two modes of pattern

generation during design time, depending on the convenience.

User can create graphical images with a matrix 16 by 256.

LEDs to be glown are shown in red and off condition are

represented as black. User can select the LED condition as

either red or black by clicking on the corresponding cell. In

graphical mode, individual cell can be controlled with the

mouse click. In text mode, previously stored character pattern

can be selected by typing the corresponding character.

Options are given to user to select the time for display of each

pattern. The display on the grid is in a rectangular manner,

but in reality, the patterns will be in a circular shape. Hence a

circular simulation screen has been added; this function will

read the previously generated pattern and give a

corresponding circular display of the pattern. Provision has

been given to user to detect serial connection. User should be

able to configure the baud rate for serial configuration & also

to select different available COM ports.

3.1 Data Flow Diagrams

The flow of data in RD-PATGEN is described in detail with

appropriate data flow diagrams.

Figure 4. Data Flow Diagram for RD-PATGEN

Figure 4. Shows the data transmission to hardware device for

displaying the result.

Figure 5. Data Flow Diagram of pattern generation for RD-

PATGEN.

Figure 5. Shows Data flow diagram for generating Patterns,

There are two modes in which different patterns can be

generated. Graphic mode and Text mode. RD-PATGEN can

generate eight such types of different patterns, a time delay

also is provided.

Figure 6. Context level diagram for RD-PATGEN

 Figure 6. Shows complete data flow for the display device.

GetPatterns will get the corresponding patterns either in

graphical mode or in text mode. A set of settings will be

required before data transmission e.g. Port settings, options

given to select com ports from COM 1 to COM4 can be used.

Eight different frames are used at different Time delay to

display different patterns. The data transmission from RD-

94 Int'l Conf. Embedded Systems and Applications | ESA'13 |

PATGEN to the Display device will be sent through COM

ports using MS Communication. LED Display shows the

different patterns on the Image Active Area of the graphical

user interface. Preview of Patterns shows the exact display of

patterns, in the same ways which are displayed on the

hardware device.

3.2 Operational description for RD-PATGEN

Figure 7. Flowchart for RD-PATGEN

 Figure 7. Shows the flow chart for RD-PatGen system.

Once the RD-PatGen has been started if it is in program mode

i.e., the running mode of RD-PatGen, then it initiates Load

new Data method for loading existing patterns. If the RD-

PatGen is not in Program Mode, a Display method is called.

This Display method provides a Preview option to view the

patterns.

4. Snapshots for the RD-PatGen

4.1 Flow of RD-PatGen

Figure 9. Snapshot for splash screen.

Above figure shows the splash screen when RD-PATGEN is

initiated.

Figure 10. Snapshot for LED DISPLAY.

Figure 11. Snapshot for selecting existing patterns

Here user can create a new pattern; open existing patterns

(Fig.10) and can do modifications for the existing components

and save that pattern. Under the mode option, the user can

select either graphic mode or text mode. Once the user presses

the pattern generator under LED pattern Generator, the

following screen will be displayed.

Figure 12. Snapshot for LED Pattern Generator

Here the user can select the text pattern by typing the

particular character in the box given, so that the corresponding

pattern will be generated. Clear option is given to clear an

existing pattern, so that user can type a new character.

Figure 13. Snapshot for Graphic mode

Int'l Conf. Embedded Systems and Applications | ESA'13 | 95

 Figure 14. Snapshot for Text mode

Above figures show the Graphic mode and Text mode for the

selected pattern, and modifications can be done for the pattern

of interest.

Figure 15. Preview of Graphic mode

Figure 16. Preview of Text mode

The selection of the Preview button of LED DISPLAY leads

to the preview of patterns of interest. The above figures show

Graphic mode and Text mode for the patterns created for

display on the wheel of motor car.

5. Conclusions

 The “RD-PatGen” system has been developed and it has

been tested with all the test cases and found to be effective in

conjunction with associated hardware. RD-PatGen computer-

aided design is very extensively used. In this, many features

have been provided to display multiple patterns. Preview is

provided to view-generated patterns. Using different COM

settings data transmission is made easier. In our future work,

number of rows and columns can be increased. Cyclic

redundancy check can be made available for error checking.,

Preview can be made online, network and USB options can be

added, Image pattern can be extended for multiple colors and

Compact flash card, Plug and play option can also be

provided.

Appendix A

 Circuit Diagram for hardware display device

PIC16F876 is the heart of the circuit; it is very simple and

straight forward [6]. 16 LEDs are connected to the controller.

First 8 LEDs are connected to PORTB pins B0-B7. The next 8

LEDs are connected to PORTC pins C0-C7. A 330 Ω resistor

is connected in series with each LED to limit the current to

about 20ma. Logic „0‟ on the pic pin will turn off the

corresponding LED and logic „1‟ will turn on the LED. C2

and C3 lines of the PIC will function as SCL (Serial clock)

and SDA ((Serial Data) lines during pattern loading mode.

SCL and SDA lines are standard I2C communication lines.

The same SDA and SCL lines are connected to corresponding

flash memory pins. The usage of I2C device 24LC256 reduces

the interface lines to only 2. This device can store 256K bytes

of information. As a standard requirement, the SCL and SDA

lines are pulled-up to 5V through individual 2.2K Ω resistors.

C6 and C7 lines of PIC have been designated as RX and a TX

lines respectively for serial communications. These lines are

connected to Max232 serial port interface chip. This chip

converts the TTL level (0 & 5V) signals to RS232 level

(+12V & -12V) signal levels and vice versa. Proximity sensor

is connected to A0 line of the PIC. This sensor will give a

pulse when the magnet fixed on the LED strip comes near

during rotation. The PIC will poll for this signal and will

synchronize the patterns accordingly.

96 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Figure 17. Circuit diagram for hardware device

Acknowledgement

We gratefully acknowledge the financial support we have

received from the PES Institute of Technology. Our sincere

thanks to Prof. K N B Murthy, Principal, Prof. Nitin V Pujari,

HOD, Department of Computer Science and Engineering for

their constant encouragement to carry out my research work. I

would also like to thank Mr. Madhusudan.S, Technical

Manager, IBM, Bangalore for his kind support.

6. References

[1] MINI 11 - microcontroller development board for SCL

approach Aziz, H.A. Yusoff, N.M.K.N. Sapien, M.Z.B.M.

Fac. of Electr. & Electron. Eng., Univ. Malaysia Pahang,

Pekan, Malaysia, Research and Development (SCOReD),

2010 IEEE Student Conference.

[2] Programming Distributed with COM and Microsoft Visual

Basic 6.0, Ted Pattison, Microsoft Press,

[3] Real Visual Basic - A Practical Approach to Enterprise Ed.

Dan Petit, -- Pearson Education—2000

[4] Visual Basic 6 Database Programming Bible, Freeze IDG

Books, India—2000

[5] The Use of PIC Microcontrollers in Multiple DC Motors

Controls By Dr. Steve C. Hsiung, the Official Electronic

Publication of the National Association of Industrial

Technology, 2007

[6] Bates, M. (2004). PIC Microcontrollers: An Introduction

to Microelectronic (2nd Ed.). Burlington, Massachusetts:

Elsevier: Newness.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 97

Design and Development of ARM based
Embedded system Laboratory

Aruna. Kommu

and Raghavendra Rao. Kanchi

 VLSI and Embedded System Laboratory

 Department of Physics, Sri Krishnadevaraya University.

Anantapur, 515003, Andhra Pradesh, India

 * kanchiraghavendrarao@gmail.com

Abstract— In this paper we present a platform consisting of a

series of laboratory exercises using ARM microcontroller-

LPC2148 (ARM&TDMI). The open hardware system in the

present scenario gives an opportunity to perform the

experiments even at home. Stress is given to the simple

representation in terms of block diagrams instead of the use of

high level tools (C or Assembly). The system described supports

the transfer of developed program code from Laptop to the

Microcontroller, and evaluation of its execution on rapid

prototyping hardware. Further it allows the students to add new

exercises to the already existing list. They can also enhance their

skills by developing software which is suitable for hardware

interfacing and data acquisition in the laboratory. The series of

experiments described in the present paper will be a point of take

off to start a journey on working in the area of embedded system.

It gives an opportunity to think individually and to develop the

creativity towards the fast growth of technology about an

embedded system. Suggestions are given in the design so that

incorrect wiring and testing will be avoided.

Keywords— ARM7TDMI, LPC2148, On-chip Peripherals, Real-

time Interfacing, Hands –on experiences.

I. INTRODUCTION

In the present scenario, topics like: Application Specific
Integrated Circuit (ASIC), System- on Chip (SOC) have
replaced Computer Architecture, Organization and design in
the field of Computer Engineering. This shift has called for
want of knowledge on Embedded System to be a pre-requisite.
Majority of universities in India offers courses on
microcontrollers like PIC, ATMEL, MOTOROLA, INTEL etc.
Few universities in India have taught ARM microcontroller in
their curriculum. There are several papers dealing with
development of laboratory experiments using different

platforms and different microcontrollers [1, 2]. Paper

dealing with development of laboratory exercises using ARM-
based microcontroller are very less. On the other hand there is
a vast development of technology with high performance
microcontroller like ARM and on software side the operating
system Windows 8 can run on ARM microcontroller has been
developed.ARM microcontroller is dominant in the mobile
and auto mobile electronics market and is one of the industry
leading standard microcontroller. This is compatible with all
four major platform operating systems Symbian os, Palm os,
Linux os and windows CE. Keeping the above facts in view
point, we thought that it is worthwhile to describe a platform

on which a series of experiments can be performed that gives
a hands –on experience and bringing in a take home concept.
Further, the series of experiments described in this paper can
be introduced as a part of curriculum for the senior graduate
students.

 A.ARM7TDMI

 ARM (Advanced RISC Machine) architecture is the 32 bit
RISC instruction set architecture which is most widely used in
a number of embedded systems. ARM is a leading intellectual
property provider of high performance, low cast, and power
efficient RISC processor microcontroller [3]. ARM processor
has some characteristics that made them suitable for low
power application such as intelligent voltage management and
cache micro architecture. The most prominent future that
makes ARM differ from other microcontrollers is [4]:

� Interrupt system
� cache controller design
� voltage management
� Instruction set.

 ARM CPU has a von Newman architecture and it uses two
buses i.e. AHB (advanced high performance bus) and VPB
(VLSI peripheral bus) which increases the speed of execution
[5] compared to other commonly used microcontroller such as
the INTEL 8051 and the Microchip PIC family. ARM family
provide wide range of performance from 100 MIPS to 1000
MIPS. This increase in performance leads to two important
factors and advances in a new process technology.

� New pipeline mechanism.

� Implementation of Harvard bus architecture in ARM9

family
 An efficient and optimized processor design is an art. This is
because the instruction set should cater the need of the
programmer in an efficient way. i.e. keeping the future
implementation also plays pivotal role in the processor
design .This is because it has to bridge the gap between HLL
construct and machine language. Thus the compiler design
which in turn depends on the type of instruction set. The
whole ARM family has the same instruction set of 32 bit
ARM instruction set and 16 bit thumb instruction set .The
thumb instruction set was introduced in the fourth version of
the ARM architecture in order to achieve the high code
density for embedded applications.

98 Int'l Conf. Embedded Systems and Applications | ESA'13 |

 NXPs ARM mini kit was purchased from NSK electronics
which cost about 30$ [6]. Mini ARM kit consists of LPC2148
ARM7TDMI as its core and two types of memory, Flash
memory of 512kb with In system program and In Application
programming, static RAM of 40kb [7]. LPC2148 CPU has a
simple programmer model and it has sixteen 32 bit general
registers and two special registers named as current program
status register (CPSR), saved program status register (SPSR).
It has a vectored interrupt controller, two 10 bit ADCs with 14
channels, one DAC.USB full speed device controller, two
UARTS one with full modem interface, two 32 bit timers,
watch dog timer, PWM unit, REAL time clock with optional
battery backup and 45 general purpose i/o pins, CPU clocks
up to 60MHz on chip crystal oscillator and on chip PLL.

 There is open source KEIL software that provides a best
development tool and technical support [8]. It also offers
numerous ways from the technical support that one needs to
complete embedded projects. KEIL supports simulation using
the target systems and a debugger interface. Micro vision
includes traditional features like simple and complex
breakpoints, watch windows and execution controls as well as
sophisticated features like trace capture, execution profiler,
code coverage and logic analyser. Features such as free
development tools and compilers plus the ability to integrate a
low cost in circuit debugger in to the ARM CPU module made
the ARM an excellent choice for the new advances that have
been made in new process technologies. ARM CPUs accounts
for approximatly75% of all embedded 32-bit RISC CPU
making it the worlds largest selling 32-bit architecture. This
allows the students to learn popular microcontroller
architecture in their gradual level which is widely used in the
electronics industry. When the ARM CPUs are designed
ARM7TDMI from ARMv5 was the most popular device used
in Apple iPod and Newton PDA. TheARM7 microcontroller
also provides a wide range of internal peripherals. All these
features have made the ARM7 an ideal choice for lab
experimental kit for the beginners in to ARM microcontroller.
Some of the embedded control application typically requires a
processor with cache and memory protection to utilize the real
time operating systems. The vast majority of users need
security and desktop/web productivity applications. For that
purpose ARM has developed a vertical expansion of CPUs to
match the user requirements and provides a unique,
configurable amount of cache. Recent development includes a
new pipeline mechanism and implementation of Harvard
architecture in ARM9 family, DSP and java extensions to
some of the new architecture enables rich applications to
benefit from the high performance and low power
consumption intrinsic to ARM processor cores. BY
considering the above all facts ARM architecture is
compatible, flexible and encompass the full range of
embedded requirements, we have chosen to popularise ARM
microcontroller by developing a series of experiments useful
for graduate level laboratory. The following sections give an
account of experiments performed in the laboratory.

II. EXPERIMENTAL DESCRIPTION

 In our department embedded laboratory consisted of a
series of experiments using PIC, Atmel and Intel
microcontrollers. For the reason that ARM microcontrollers
have become very popular in mobile technology, automobile
and electronic industry, it is felt to introduce ARM based
training in hardware and software for the first time in the
curriculum. In this direction, a series of experiments useful to
both undergraduates and graduate laboratories of engineering
and science have been designed and developed. One of the
advantages of the described experiments is that they can be
implemented even for take-home labs since the hardware
components are inexpensive. The experiments are provided
with the relevant documentation. Brief description of these
experiments is given in the following. Fig 1 shows the mini
ARM kit connected to laptop.

Fig1: The mini ARM kit connected to the laptop and program uploading
window

A. LOGIC CONTROLLER

 The first experiment is to get acquainted with the
programming of a port of the Lpc2148 as input/output. This
needs the careful study of the I/O pins and selection of their
function. The logic controller experiment comprises of
interfacing LEDs with output port and connecting a
pushbutton(s) to an input port.

Output port: LEDs are connected to PORT of LPC2148 and
software is developed to switch alternate LEDs on and off,
and different variants of this exercise.

Input port: A single push-button (PB) is connected to one of
the pins of port 0 and that bit which PB is connected is
programmed as input port and software is developed to
display the number of times the push button is pressed on

Int'l Conf. Embedded Systems and Applications | ESA'13 | 99

LCD (interfacing LCD with LPC2148) is explained in
exercise B

B. INTERFACING LCD

 This experiment gives the hardware and software description
to interfacing LCD (16charactersx2line) with an output port.
In fact, the LCD can be interfaced in two modes: 8-bit mode
and 4-bit economic mode. In the present experiment the
second technique is explained since this presents a mode of
optimal utilization of I/O port pins. Following fig 2 shows the
LCD module interfaced with ARM CPU.

Fig 2: LCD module interfaced with ARM CPU

 C. INTERFACING SEVEN-SEGMENT DISPLAY

MODULE

A 4-digit LCD display module is interfaced with LPC 2148.
The display is driven by to ULN 2003 (Darlington Pair IC)
and multiplexed display concept is implemented by software.
This ensures low power consumption by the LED display
module. The outcome of the experiment is: To understand the
concept of multiplexed display.

D. INTERFACING STEPPER MOTOR

A stepper motor collected from a junked 51/4 floppy drive is
used. This experiment demonstrates the use of stepper motor
for different applications by rotating to motor of different
angles and different speeds. The stepper motor is driven by an
output via power driven IC ULN 2003.This experiment paves
path for applications of stepper motor rotation for different
applications.

E. INTERFACING DC MOTOR

A DC motor unlike stepper motor rotates continuously on the
application of power to it. The speed of rotation depends on

the amount of power applied to the motor. This can be varied
by the technique: pulse width modulation. LPC 2148 provides
a multiplexed pin as PWM output. Hardware is developed in
the form of a power amplifier with H-bridge that provides an
opportunity to rotate the motor clock-wise and anti clock-wise
directions. Software for obtaining variable duty cycle and
hence motor to rotate at different speeds is realized.

F. INTERFACING RELAYS AND SOLENOIDS

 Interfacing of relays and solenoids with the output ports of
lpc2148 throws light on control applications such as
temperature control, flow control etc. These relays solenoids
are interfaced via buffer/power amplifier stage. Software
controls the on/off time in a programmed way.

G. ANALOG VOLTAGE MEASUREMENT USING ON-CHIP

ANALOG-TO-DIGITAL CONVERTER (ADC):

 Lpc2148 is fabricated with a 10 bit on chip ADC. It can be
used in single ended/differential mode of operations. In the
present exit intensity measurement is carried out by
interfacing a photodiode with the analog input of ADC. LED
intensity is varied by an automated potentiometer driven by a
potentiometer. The acquired data is plotted by the computer
using origin package.

H. GENERATION OF ANALOG VOLTAGE USING ON-

CHIP DIGITAL-TO-ANALOG CONVERTER (DAC):

 The on chip DAC of LPC2148 can be used for various
applications such as waveform generation, displaying alpha-
numeric and graphics, generating different values of analog
output voltages etc .In the present work different analog
output voltages are measured by giving different digital inputs
at the appropriate digital pins that are selected using the pin
functions corresponding to DAC

I. REAL TIME CLOCK

 The on chip RTC is useful in serial applications such as to
count the happening of events, ultra low power design to

support battery powered systems. In the present experiment

software is developed to display Date, month, year and time
on the LCD which is interfaced in the experiment B. The
experimental arrangement using LPC2148 is shown in fig 3.

J.UNIVERSALASYNCHRONOUSRECEIVER/

TRANSMITTER (UART):

 LPC2148 has two on chip UARTs. One of these UARTs is
used. Software is developed to send characters to laptop under
HyperTerminal. This experiment gives an insight in to the
serial interface protocol-RS232, Baud rate selection etc.

100 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Fig: 3 Displaying real time clock on LCD module

H. SERIAL PERIPHERAL INTERFACE (SPI):

 The on chip SPI of lpc2148 uses MOSI, MISO, SCLK, and
SSEL. Pin functions are selected to interface a 12-bit ADC
(MCP3204), which supports SPI protocol. The digital output
equivalent to analog input voltage is displayed on LCD screen.
As shown in fig 4.

Figure 4 Interfacing MCP3204 (ADC) with ARM Module under SPI Protocol

III. CONCLUSION

 A series of experiments were designed using ARM platform.
They can be incorporated in the engineering and science
discipline. The low cast and fully open structure of the ARM
is considered to make it a good embedded platform, especially
in the higher education curriculum. With this basic and
fundamental knowledge of experimental lab using ARM,
students can learn the real engineering challenges by
experiencing hardware design, hardware prototyping and
sensor connectivity in addition being able to control various
signals in a single programming environment. It also allows
the students to improve their programming knowledge by
engaging them in real experiments. Using this approach it
also provides a fast learning process since it gives the
opportunity to work with the experimental modules whenever
needed.

 REFERENCES

[1] Yao Li “Teaching Embedded Systems using a modular Approach

Microcontrller Training Kit”, World Transactions on Engineering and
Technology Education. Vol.6, No.1, PP-135-138, 2007.

[2] Feisel. L and Rosa A “The role of the Laboratory in undergraduate
Engineering Education’ Journal of Engineering Education . 94,121,005.

[3] Oliver J.P and Haim. F “Lab at Home Hardware Kits for a Digital
Design Lab” IEEE Tranactions on Education 52, PP46, 2009.

[4] Andrew N Sloss “ARM Systems Developers Guide: Design and
Optimising System software, Morgan Kaffman Publishers, An Import
of Elsevier, 2005.

[5] Stew Furbur “ ARM System –on-chip Architecture, Pearson Education,
2005.

[6] LPC2148 User Manual NXP Semiconductors-UM10139
[7] http://www.nskelectronics.com
[8] http://www.keil.com
[9] K. Raghavendra Rao and G. Nagamani “Design and Development of

Hardware and software to Test the Potentiometer Linearity Using PC’s
Printer port, World Academy of Science Engineering and Technology
Vol.64, PP121-127, 2010.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 101

102 Int'l Conf. Embedded Systems and Applications | ESA'13 |

SESSION

POSTERS

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'13 | 103

104 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Development of Digital Signal Processing Module for
Level Measurement Radar

Yeonghwan Ju, Sang-Dong Kim, Jonghun Lee*(Corresponding author)

Advanced Radar Technology Laboratory, Robotics Research Division, Daegu Geongbuk Institute of Science
& Technology, Daegu , Korea

Email : {yhju, kimsd728, jhlee}@dgist.ac.kr

Abstract - This paper presents level measurement FMCW
radar. We developed digital signal processing module to
measure distance with high accuracy for FMCW radar. We
implemented the level measurement FMCW radar algorithm
on the FPGA and DSP. For verifying the level measurement
radar system, test bed is made to measure the distance for
every 1 mm. The experimental results show that the distance
accuracy is about 4.5 cm distance between 357 cm and 557
cm.

Keywords: level measurement radar, FMCW radar, radar
distance measurement

1 Introduction
 FMCW (frequency modulated continuous wave) radar
systems have become a trend for level gauging over the last
few years since the digital level measurement radar is more
flexible and when the environment changes, the program can
be updated accordingly. FMCW radar performs well under
harsh environmental conditions, achieve precision in the mm-
range, and offer competitive pricing. As a non-contact sensor,
level measurement radar requires the high accuracy, the high
linearity and the wide bandwidth of transmit signal in order to
measure precise range of a liquid level [1].

 In this paper, we developed digital signal processing
module based on the FPGA (field programmable gate array)
and DSP (digital signal processor) for a liquid surface level
measurement. Developed digital signal processing module is
connected to the 24GHz RF module and then developed level
measurement radar system is verified in anechoic chamber of
high frequency band.

2 Basic Principle of FMCW Radar
 The working principle of a FMCW radar level gauge is
shown in Fig.1. The microwave signal with linear frequency
modulation, generated by VCO (voltage controlled oscillator),
goes through antenna. The emitted signal by antenna is
reflected by product surface and received by the antenna
again. The transmitted signal and received signal are down-
mixed to obtain beat signal.

 The FMCW radar transmits a frequency-modulated
continuous wave to measure the range of the target.

 Figure 2 shows frequencies as a function of time in the
transmitted signals and received signals for a stationary target.
The range beat frequency bf can be obtained by signal
processing, and then the range of the target can be estimated
as Equation (1).

() /(2)bR C PRI f B (1)

Where, C is light speed, B is the modulation bandwidth, and
dt is the delay time between transmitted and received signals.

The PRI is Pulse Repetition Interval which is a chirp period.

VCO Amp Tx
Ant.

LPF LNA Rx
Ant.AMP

DAC

ADCDSP

Waveform
Generator

Fig. 1. Block diagram of the level measurement FMCW radar
system

bf

dt

B

PRI

Fig. 2. FMCW radar signal (a) the transmitted signal and
received signal (b) beat signal.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 105

3 Digital Signal Processing Module
 The digital signal processing module of the developed
FMCW radar is shown in Fig. 3. The digital signal processing
module consists of the ADC, the FPGA, and the DSP. In this
paper, we implemented the level measurement FMCW radar
algorithm on the ALTERA Cyclone for FPGA and TI
TMS320C6455 DSP, which supports the Gigabit Ethernet,
the internal memory, and the high processing clock.

The level measurement FMCW radar used in this paper is
composed of the RF transceiver module including the antenna,
the radar user interface, and the digital signal processing
module.

 Fig. 4 shows the working procedure of the implemented
level measurement radar. After power on, user interface of
the radar send start signal and then the DSP send RF_On
signal to the FPGA and the RF transceiver receive RF_On
through FPGA. At that time, the RF transceiver module
generates fast rapid ramps. If FPGA finished to store beat
frequency signal in FIFO the complete status is reported to
DSP. The DSP start reading the detection results from FPGA,
and finally transmit the range information to the radar user
interface.

4 Experimental Results
 We evaluate the performance of the level measurement
radar by combining a 24 GHz RF transceiver. The center
frequency and bandwidth of the developed radar system are
24 GHz and 2GHz, respectively. We experimented in
anechoic chamber with frequency band from 8GHz to
110GHz to obtain the accurate measurement results.

 Fig.5 shows the measurement results of the distance
accuracy. The experimental results show that the distance
accuracy is about 4.5 cm at distance between 357 cm and 557
cm.

5 Conclusions
 In this paper, we developed the level measurement
FMCW radar to obtain high accuracy level gauging. The
level measurement FMCW radar algorithm is implemented on
the FPGA and DSP. We verified the radar system connected
with a 24 GHz RF transceiver to obtain accurate
measurement results in anechoic chamber. Experimental
results showed that the accuracy of range estimation is less
than 5 cm.

6 Acknowledgments
 This work was supported by the DGIST R&D Program
of the Ministry of Education, Science and Technology of
Korea (13-RS-02).

7 References
[1] Armbrecht, G., Zietz, C., Denicke, E., & Rolfes, I.,
“Antenna Impact on the Gauging Accuracy of Industrial
Radar Level Measurements”, Microwave Theory and
Techniques, IEEE Transactions on 59.10 (2011): 2554-2562.

Fig. 3. Photograph of the hardware board of the digital signal
processing module.

Fig. 4. Level measurement radar algorithm Procedure.

350 400 450 500 550 600
350

400

450

500

550

600

real distance(cm)

es
tim

at
ed

 d
is

ta
nc

e(
cm

)

Fig. 5. The result of distance measurement between 357 cm
and 557 cm

106 Int'l Conf. Embedded Systems and Applications | ESA'13 |

SESSION

EMBEDDED SYSTEMS APPLICATIONS,
PROTOCOLS, OPTIMIZATION METHODS, AND

MICRO-CONTROLLERS

Chair(s)

Prof. Hamid Arabnia
University of Georgia

Int'l Conf. Embedded Systems and Applications | ESA'13 | 107

108 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Wireless Heart Rate and Blood Pressure Monitoring Network
Hicham H. Hallal1, May Haidar1, Maya Fakhriddine2, Insaf Kamal1, Angham Salem1

1Fahad Bin Sultan University, Tabuk, Saudi Arabia P.O.Box 15700 , Tabuk 71454
2San Diego State University, 5225 Campanile Dr, San Diego, CA 92115

{hhallal, mhaidar}@fbsu.edu.sa, mfakhrriddine@hotmail.com, e.sofy@hotmail.com,

spring_a_sa@hotmail.com

Abstract
We present a networked application to monitor

vital signs in patients without affecting their

daily routines. The proposed application, which

provides a monitoring and management

environment, is practical especially in the case

of elderly and young patients. We describe the

implementation of the application, which

targets reading the heart rate (HR) and blood

pressure (BP) signs of patients remotely, in a

context where multiple patients are considered

concurrently. The application includes a

control unit that analyzes remote readings,

prioritizes them following their urgency, alerts

health specialists for alarming readings, and

feeds a server application where a database of

all monitored patients stores history of the

readings for each patient.

Keywords: Embedded systems, Applications of

Embedded Systems, Health, wireless health monitor,

Wireless sensors.

1. Introduction
Health care is an essential concern for everyone.

Individuals are becoming increasingly aware of

the need to evaluate their conditions; and

governments are equally concerned about

providing sufficient and adequate care to their

citizens. In many countries, attempts exist to

develop platforms to allow the use of available

technologies to serve the advancement of health

care services. The Internet, networked

applications, embedded systems, and

nanotechnology are all examples of technologies

that are being increasingly used in developing

solutions to various problems in health care. In

the last few decades, continuous technological

advances have brought hope to solve many health

related problems including diagnosis, testing, and

even surgery. Technologies like embedded

systems, nano-electronics, robotics, and the

Internet have made microsurgery, remote surgery,

and implantation based diagnosis possible and

practical solutions in many contexts.

In this paper, we consider the problems of people

who suffer from high or low blood pressure and

irregular heart rate and who do not have full

awareness about the consequences; thus, are

unsure of the proper actions to take when

symptoms appear. While some people assume

that taking medication for a given period of time

can resolve a high-pressure problem, others

ignore regular checking of blood pressure as long

as they do not complain of any clear symptoms.

In fact, it cannot be emphasized enough that

hypertension patients must consult a doctor

regularly to measure pressure and determine a

treatment plan. Statistics conducted worldwide

show that most failures in hypertension therapy

result from the lack of cooperation between

patients and physicians. In many cases, the

required cooperation is simply taking regular

periodic readings of the vital signs of the patient.

The main problem is that the current methods for

reading blood pressure and heart rate are still

intrusive and patient limiting; they require direct

interface with the patient’s body, and they often

require his/her presence for extended periods at a

health facility. Even portable devices, which can

be worn by the patients to monitor their vitals for

extended periods of time away from the clinic or

the doctor’s office do not provide real time

feedback about the changes in someone’s

situation. For these reasons, researchers in both

academia and industry became more interested in

developing technologies and tools that can

provide readings of the vitals of a patient,

including the blood pressure and heart rate,

without much disruption to his/her daily routines.

This is made possible with the continuous

advances in embedded system technologies,

telecommunication networks, and sensor

technology. Needless to say is that any

achievement in the field can simplify the task of

the physician and provide the patient with better

care. In addition, the benefits of any developed

technology for this purpose are especially

apparent in the case of elderly and young children

patients who are difficult to monitor and control.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 109

mailto:mhaidar%7D@fbsu.edu.sa
mailto:mfakhrriddine@hotmail.com
mailto:spring_a_sa@hotmail.com

The work in this paper addresses the main questions:

Is it possible to automate the process of monitoring

the blood pressure and heart rate of patients using

existing technologies and infrastructure? Can such

automation be scaled up to cover multiple patients in

an efficient way?

In this paper, we develop a networked system for

monitoring blood pressure (BP) and heart rate (HR)

to be used in hospitals or with patients at home. The

system consists of:

A. Embedded system monitor: bracelet with sensors

for BP and HR. The embedded system can be

programmed to take readings at specific times or

open for remote control.

B. Control unit to log patient data and analyze

readings from different monitors. The unit is also

responsible for dispatching emergency calls for

health specialists when alarming readings are

received.

C. A control application that runs at the control unit

or at a server system. This application has the

task to manage the accounts of different patients,

to handle the readings received from different

monitors, and to build and manage the history

files of each patient. The intended application

consists of two main parts:

a. A database to store patient data and records

and to produce reports on the status of each

patient.

b. An interface program to handle the

communications with the embedded monitor.

The interface program is also responsible for

the management of the database of the

application (adding new patient records,

deleting and updating records, generating

reports, etc.). In addition, The interface allows

the user, usually a health care professional, to

control the embedded device remotely by

sending messages to operate or to stop the

monitor at designated or chosen times.

D. Wireless connection between the monitor and the

control unit. In the proposed setting, a hospital or

a care giving center, the communication between

the embedded monitor and the control unit can be

achieved via Radio Frequency (RF)

communication, which is inexpensive and easy to

implement.

E. Communication between control unit and third

party (parent, doctor, etc.). This communication

can be carried either over the Internet or over the

cellular networks (GSM, 3G, etc).

This paper is organized as follows. In Section 2, we

review the work and discuss similarity with existing

solutions. In Section 3, we describe the specification

of the proposed application and the main components

involved in the implementation. In sections 4, 5, and

6; we describe, in details, the components that make

up the proposed application. Then, in Section 7, we

conclude the paper and list the potential future

extensions.

2. Related Work

Reading the vitals of patients is a major task that

cannot be overlooked in any health care process.

Improving the techniques and tools used to read

blood pressure (BP) and heart rate (HR) has been the

focus of many researchers in both academia and

industry. We review the main related works that deal

with the development of advanced BP and HR

monitors. In [2], the authors report the design of an

electrocardiogram (ECG)/BP telemonitor using

photoplethysmographic (PPG) measurement of BP,

microcontroller technology, wireless communication,

and long term memory devices (24 hours). The work

in [3] describes a monitoring system that uses

implantable CMOS based sensor to provide 24/7

monitoring of the BP. The data collected by the

sensor is read telemetrically using an external unit

that should be carried close to the skin (at about 8

cm from the sensor). Readings in the external unit

can be transmitted to a central unit for display,

analysis, or storage. iHealth [9] have developed a

Wireless Blood Pressure Wrist Monitor that attaches

to the hand of the patient with a cuff. This wrist

monitor is linked through a wireless connection to a

mobile application that can be used on a smart phone

to track display instantaneous readings and history of

readings. The wrist monitor is also equipped with a

motion sensor system to guarantee accurate readings

when different positions of the user are assumed. In

other words, the device can be seen as a BP monitor

that uses a smart phone as its display. The work

reported in [4, 5] mentions the development of a

monitor for BP and HR of patients to be recorded

and displayed either locally or remotely by a wireless

connection. The interesting concept is the use of non-

intrusive monitoring techniques to read the signs. In

addition to the classical oscillometric method, the

author discusses the optical method

(photoplethysmographic or PPG for short) that relies

on one of two techniques. Transmission performed

by shining a light through the skin of the patient from

110 Int'l Conf. Embedded Systems and Applications | ESA'13 |

an LED installed at one side of a body part. The light

is then collected on the other side of the body part

using a photodiode; which allows analysis of the

characteristics of the light that passes through the

skin. Reflection, on the other hand, is done by

collecting the reflection of the light that is sent

through the skin. In this case, both the LED and the

photodiode are placed on the same side of the body

part. Characteristics of the light wave are derived

from its reflection (what was not absorbed in the

skin). Ideal places of use are the forehead and chest.

Finally, [1] describes a monitoring device to record

the vitals of a patient over a wireless connection. A

patch is fixed to the patient's head along with a

processing unit. Optical and electrical waveforms

generated by the patch determine the patient's vitals.

The proposed solution uses an optical system to

measure BP by determining the variation in the

optical waveform generated by the patch after it is

reflected in the body. This variation is then translated

to an electrical waveform that is transmitted to the

monitor central unit for analysis.

In this work, we base our approach on results

reached in the existing works and develop an

integrated framework for the monitoring of BP and

HR of multiple patients concurrently. It is a

networked application that is useful in different

settings including hospitals, long-term care centers,

and baby sections in hospitals. The application can

also be deployed for single users, and is not limited

in terms of choosing the type of sensors or meters.

The main advantage is the possibility of analyzing

patient data automatically for prioritization of the

readings and creating notifications and facilitating

the work of health professionals and caregivers.

Furthermore, the application, accessible over the

Internet, will easily integrate in any E-Health

framework. This is actually an ongoing discussion

with researchers working on evaluating the

deployment of an E-Health application in the

Kingdom of Saudi Arabia.

3. Specification of the Monitoring

System

Figure 1 shows a high level representation of the BP

and HR monitoring system.

Figure 1. Architecture of the monitoring application.

The figure shows the three main parts in the system

along with the interconnection among them:

1. On the patient side, an embedded BP and HR

monitor has the responsibility of providing the

reading and filtering of data while receiving

control commands and executing them (mainly to

operate the monitor or stopping it).

2. The control unit application has the task to

receive the readings from the monitor and process

the information in two ways:

a. If the readings are not alarming, the

application passes the reading with the ID of

the monitor to a server system that hosts a

database of all patients. The data is stored in

the databases for history.

b. If the readings are alarming, the application

sends a message to the number associated with

the source monitor. As in the first case, the

application passes the information for storage

in the database.

In both cases the information received from

the monitors are processed for a graphical or

numerical display on the server system that is

directly connected to the control unit.

3. The communication between the modules of the

system is carried out as follows:

a. Between the monitor and the control unit, the

communication is over RF waves.

b. Between the control unit and the server

system, the communication is direct through

serial connection.

c. Between the control unit and the destination

smart or mobile phone, the communication is

over GSM (3G) networks. This connection

can be modified to be between the server and

the smart phone. In the latter case, the

information sent to the smart phone will be

more detailed. However, for the time being

Int'l Conf. Embedded Systems and Applications | ESA'13 | 111

we consider that the control unit will send the

information to the phone because that will be

faster, especially in very urgent cases. An

extension of the whole application is possible

in way that the user can access the files

remotely on the server system to check the

history of any patient he selects.

In the following sections we detail the description of

each of the above mentioned components in the

system along with our plan for implementation.

4. Portable BP and HR Monitoring

Device
The BP and HR monitoring device is a simple

embedded system that can be implemented using a

microcontroller or simple logic circuit. The main task

of the proposed device is to perform the readings and

transmit the collected information to the control unit

via RF. For this reason the monitoring device can be

simplified to the degree that it can implement either

of the following two workflows. In both case, the

device can be implemented using simple logic circuit

without the need for a microcontroller. This is

essential since it contributes to reducing the cost of

the device so it is affordable for anyone. In Figure 2,

the first workflow (a), the device does not perform

any check on the collected information. Instead it is

passed directly for the control unit which will be

responsible for the analysis. Although this workflow

pauses a higher cost on communication (based on the

scheduling of transmissions), it might be needed in

specific cases where every reading is needed for the

diagnosis. On the other hand, the workflow in (b),

permits the device itself to decide on which readings

to send by performing a comparison against a

predefined threshold. This workflow is useful to save

on transmission power. Our intention is to implement

the monitoring device using the two workflows with

an option to preset the device to follow either of the

two before it is given to the patient. An extension to

this proposition is to make it possible to select the

workflow from the device itself, but we need to

evaluate how much risk this presents in terms of the

accuracy of readings and safety of the patient.

5. Analysis
The main component of the proposed system is the

control unit, which has the major task of compiling

the readings gathered by the different monitoring

devices in the network. Consequently, the unit

decides on the action to be performed on the

compiled data. If the data is alarming, the reading is

sent directly to the designated phone number of the

person in charge (this might be a doctor, a care giver,

or a relative). In addition, the reading itself is sent to

the server machine to be added to the database of the

patients. In both cases, the server system displays the

readings in a user friendly interface for the person

running the application. Such interface would

facilitate the task of the user to monitor the different

devices registered in the application.

The flowchart shown in Figure 3 shows the main

task of the control unit. In the flow, the unit

evaluates the readings received from the monitoring

devices and decides on sending alarms or not based

on the thresholds that are preset for the specific

device.

The control unit is composed of the following

elements:

1. Microcontroller: Two options are available for the

microcontroller of the E-WATER system,

PIC16F876A and PIC 16F877A [8], which both

are high performance RISC CPU’s. While both

microcontrollers can do the job of running the

embedded system, PIC16F877A has the

advantage of containing an analog to digital

converter. The main characteristics of the PIC

microcontrollers include:

a. Only 35 single-word instructions to learn

b. All single-cycle instructions except for

program branches, which are two-cycle

c. Operating speed: DC – 20 MHz clock input

d. DC – 200 ns instruction cycle

e. Up to 8K x 14 words of Flash Program

Memory,

f. Up to 368 x 8 bytes of Data Memory (RAM)

in the form of internal registers

In addition, the PIC microcontrollers can be

programmed using the C language, which is

easier to learn and work with than machine

specific Assembly Language. Translation into

PIC instructions can be done using compilers like

PIC C [8].

2. Memory Unit: we use an EEPROM -Electrically

Erasable Programmable Read Only Memory-

24LC16B, which is a 16k bit memory unit. The

device is organized as eight blocks of 256 * 8 bit

memory with a 2-wire serial interface. Low

voltage design permits operation down to 2.5

volts with standby and active currents of only

112 Int'l Conf. Embedded Systems and Applications | ESA'13 |

5µA and 1 mA respectively. The 24LC16B also

has a page-write capability for up to 16 bytes of

data. The memory unit will be used mainly to

store the thresholds for different devices, the

messages to be sent for the phones, and the phone

numbers associated with each monitoring device.

Figure 2. Left: simple workflow and Right: workflow

with check in the device.

3. Signal Converter: we use the MAX 232 which

converts signals from an RS-232 serial port to

signals suitable for use in the microcontroller

(TTL logic). The MAX232 is a dual

driver/receiver and typically converts the

receive/transmit (RX and TX) signals, as well as

the Clear To Send and Ready To Send (CTS and

RTS) signals.

4. GSM Modem: We use the F1003 GSM

MODEM, which supports SMS and CSD

functions. The modem is inexpensive and has

already been used in industrial settings. The

F1003 modem supports the RS232 interface,

which makes it possible to connect to the

Microcontroller through the MAX232 converter.

6. Server Application
The main role of this module is to process the

readings of the monitoring devices for different

clients and prepare reports on the medical situation

of patients. For this, a database is designed to host

the records for the different patients. We first discuss

the design of the database and then we describe how

the application processes reports. The main objective

of the database is to provide storage of the data

collected by the monitoring devices, where different

records of patients are defined and easily accessed. In

the future, the proposed database can be extended to

include variety of data that is useful to different types

of reports like the medical background of the patients

and the recommendations for each type of readings

for the patients. This becomes useful when

integrating the application with E-Health systems is

discussed. Currently, the proposed database consists

of four main tables:

1. Patient: This table holds data on the patients who

are using the monitoring devices. The table

includes fields like Name, Patient_ID, Address

Telephone Number, and Device_ID. The latter

field is used to identify the system that is installed

at the client’s site. The table also includes two

fields that are common with other tables: the

Patient_ID and the Device_ID. The former, which

is the primary key of the table, is common with

the Report table and the latter is common with the

Device table, which is not shown in the above

diagram.

2. Report: This table holds the information of an

Report, which includes the Patient_ID, the

Report_ID, and the Report_Type (could be daily,

monthly, or urgent).

3. Reading: This table includes the fields Type

(monthly, weekly, or hourly), the Date and Time,

the Device_ID and the Patient_ID.

4. Thresholds: This table defines the values limits

that should be monitored for the specific patient.

The proposed database structure remains of

manageable size and allows for ease of interface

since the number of patients usually monitored in the

application is usually limited.

The main task of the server application is to interface

the control unit to the database of patients. The

application has to update the records of each patient

based on the readings received from the control unit

and to generate reports based on those records. In

addition to that, the application should generate

reports about the data in the records. For example,

reports on the yearly history, differences in readings

between different patients and categories of patients

based on gender, types of sickness, or age for

example.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 113

Figure 3. Simplified workflow of the control unit.

7. Conclusion and Future Work
We presented a framework for monitoring blood

pressure and heart rate of patients to be used in order

to automate the process monitoring the vital signs of

patients in hospitals and care centers. At the same

time, the proposed application can also be used on

individual level in a home for a patient who needs

regular reading of the vital signs. The characteristics

of the proposed application include:

1. A networked application to improve monitoring

blood pressure and heart rate.

2. Useful in hospitals and at home.

3. Inexpensive implementation of the control unit

and the monitoring device.

An extension that is under consideration of the

application is to implement a framework for remote

control of the monitoring devices. The user of the

server application, mainly a health professional, can

control the monitoring device remotely with some

predefined commands that should be used only in

specific situations. These commands include two

main sets:

1. Turning it on or off based on the patient record or

the doctor’s request.

2. Changing the frequency of readings; for example,

from hourly to daily.

On another level, discussions are already underway

with a current Saudi E-Health project coordinators to

evaluate the proper means to integrate the proposed

monitoring network application in the E-health

framework that is still in its early stages.

References
[1] H. Asada. Wearable blood pressure sensor

offers 24/7 continuous monitoring. In MIT

news, April 2009.

[2] M. Bolanos, H. Nazeran, I. Gonzalez, R.

Parra, C. Martinez. A PDA-based

electrocardiogram/blood pressure telemonitor

for telemedicine. Proceedings of IEEE

Conference on Engineering in Medicine and

Biology Society. 2004;3:2169-72.

[3] M. Gräfe, T. Göttsche, P. Osypka, M. Görtz,

K. Trieu, H. Fassbender, W. Mokwa, U. Urban,

T. Schmitz-Rode, T. Hilbel, R. Becker,

B.Bender, W. Coenen, M. Fähnle, R. Glocker.

A Fully Implantable Blood Pressure Sensor for

Hypertensive Patients. Proceedings of IEEE

Conference on Sensors, 2008; PP. 1226 – 1229.

[4] L. Hong, J. Prohaska, A.R. Nara, Fiber-optic

transducer for blood pressure measurements.

Proceedings of the Annual International

Conference of the IEEE on Engineering in

Medicine and Biology Society,1988; PP. 810-

811.

[5] D. Parekh. Designing Heart Rate, Blood

Pressure and Body Temperature Sensors for

Mobile On-Call System. Department of

Electrical and Computer Engineering,

McMaster University, Canada, 2010.

[6] http://www.healthworksglobal.net/Pages/OBrien

%20Collection/history.html

[7] http://en.wikipedia.org/wiki/Heart_rate_monitor

[8] http://ww1.microchip.com/downloads/en/Device

Doc/39762f.pdf

[9] http://www.ihealthlabs.com/wireless-blood-

pressure-wrist-monitor-feature_33.htm

114 Int'l Conf. Embedded Systems and Applications | ESA'13 |

http://www.ncbi.nlm.nih.gov/pubmed?term=Bolanos%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17272154
http://www.ncbi.nlm.nih.gov/pubmed?term=Nazeran%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17272154
http://www.ncbi.nlm.nih.gov/pubmed?term=Gonzalez%20I%5BAuthor%5D&cauthor=true&cauthor_uid=17272154
http://www.ncbi.nlm.nih.gov/pubmed?term=Parra%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17272154
http://www.ncbi.nlm.nih.gov/pubmed?term=Martinez%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17272154
http://www.ncbi.nlm.nih.gov/pubmed/17272154
http://www.ncbi.nlm.nih.gov/pubmed/17272154
http://www.ncbi.nlm.nih.gov/pubmed/17272154
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4703548
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=727
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=727
http://www.healthworksglobal.net/Pages/OBrien%20Collection/history.html
http://www.healthworksglobal.net/Pages/OBrien%20Collection/history.html
http://en.wikipedia.org/wiki/Heart_rate_monitor
http://ww1.microchip.com/downloads/en/DeviceDoc/39762f.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39762f.pdf
http://www.ihealthlabs.com/wireless-blood-pressure-wrist-monitor-feature_33.htm
http://www.ihealthlabs.com/wireless-blood-pressure-wrist-monitor-feature_33.htm

Solar Array Positioning Controller

B. R. Shaer, N. M. Eubanks, C. A. Hayes, V. S. Ilin, and A. F. Potter
Electrical and Computer Engineering Department

University of West Florida
Shalimar, Florida, USA

Abstract: Traditional fixed solar panel installation fails to
optimize solar energy collection when the sun is not at its peak

position. Maintaining a perpendicular angle with the sun

optimizes the energy collected throughout the day thereby

increasing overall energy collection or reducing the number of

solar panels required for any given installation. This project
uses sensors, motors, various printed circuit boards, and

microcontrollers to maintain a perpendicular angle with the

sun and determine the additional solar energy collection

gained by tracking the sun's position throughout the day.

Additionally, this design continuously measures the wind
speed and lowers the solar panel to a flat, safe stow position if

dangerous wind levels are present.

Keywords: Control, dynamic, efficiency, energy collection,

Finite State Machine, optimization, solar

1. INTRO DUCTION

While once a rare sight, solar panels are now

commonly found on roadside signs, homes, businesses,

and industrial settings. Major improvements in solar

panel manufacturing, lower materials cost, and

government incentives have made solar technology a

viable energy solution for consumers and businesses

seeking to reduce their carbon footprint. Most solar

panel installations however utilize sub-optimal static

positions; the panel is aimed due south (in the Northern

Hemisphere) with a few degrees of elevation. While the

static mounting technique is generally acceptable, a

dynamic installation where the solar panel tracks the sun

increases total energy collection. This project controls a

dual-axis tracking system that periodically adjusts the

azimuth and elevation of the panel to maximize energy

collection throughout the day, increasing energy

production over traditional, fixed solar photovoltaic

panel installation.

This system is intended to operate with two axis

for daily movements with a third axis used strictly for

emergency stow operations. Various implementation

strategies may be used, provided motor movements

account for azimuth (left-right), alt itude (up-down), and

emergency stow operations. This implementation

expects only a single mechanical stow movement after

the panel is in an appropriate azimuth-altitude position.

The system should provide at least 15% energy

collection improvement over fixed position installation.

2. SYSTEM CO MPONENTS

Microcontroller: This project uses an Arduino

Mega 2560 based on the ATmega2560 microcontroller

due to flexib ility and ease of implementation. The

system uses digital and analog input and output pins to

read from each sensor and control each mechanical

component. The system requires additional hardware to

control power conversion, motor control, anemometer

input, and other system components.

Photo resistors: The system determines the relative

position of the sun via four photo resistors placed in a

diamond configuration that is mounted to the top of the

solar panel. The photo resistors are divided by a small

wall which casts shadows on the resistors that are

furthest from the light source. Each photo resistor

outputs a voltage between 0 and 5 based on the amount

of available light. The system maintains a perpendicular

angle with the sun by periodically moving the array to

ensure each photo resistor reads the same amount of

light. The Printed Circu it Board (PCB) and system-

ready board used for this project are shown in Figure 1.

Figure 1: Photo Resistor PCB Configuration and

Fully Functional, Device-Ready Board

Clock: A battery-backed crystalline Real Time

Clock (RTC) is used to remove timekeep ing functions

from the microprocessor, which enables the use of

system sleep modes for energy conservation. The

Arduino microcontroller reads the time directly from the

RTC when time functions are required.

Anemometer: An anemometer is used to detect

dangerous wind conditions. The system periodically

reads the analog anemometer output and moves to a

stow preparation state if wind speed exceeds the

predetermined maximum safe wind speed. signals the

Arduino microcontroller via interrupt pin when excess

wind loads are detected. Error checking and speed

verification occur prior to signaling an unsafe wind

condition to prevent false alarms. The function that

reads the wind speed also sets the emergency condition

detected flag, goToStow, when the appropriate

conditions exist. The anemometer, PCB, and completed

analog-to-TTL circuit board are shown in Figure 2.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 115

Figure 2: Anemometer, PCB, and Completed

Analog-to-TTL Circuit Board

Power System: A charge controller and battery

charger was constructed to condition the power

collected by the photovoltaic panel and maintain the

system battery. The battery charger is a dual level float

charger based on the Texas Instruments UC2906. The

charge controller is based on the SolarMagic product

line from Texas Instruments. The battery charger PCB

and assembled circuit board are shown in Figure 3.

Figure 3: System Battery Charger PCB and

Assembled Circuit Board

Charge Controller: The system uses a TI UC2906

based VRLA Battery Charger which provides

overcharge protection while ensuring adequate current

and voltage for energy collection and system use by

working in two distinct modes, trickle charge and bulk

charge. In t rickle charge mode, the float charger outputs

a low current voltage to slowly charge a depleted

battery. The low current input will not cause internal

heating of the battery should the battery voltage be low

due to failed cells. Once the battery voltage has reached

the threshold voltage the float charger switches to a bulk

charge mode, generating a current of 1A. The bulk

charge current continues until the battery reaches the

Over Charge voltage threshold when the charge current

begins to taper until approximately 0.1A. Once the bulk

charge current has dropped to 0.1A, the float charger

maintains the battery at the float voltage until a load is

placed across the battery, dropping the voltage below

the bulk charge threshold.

Battery Charger: The system charge controller

used a synchronous buck-boost regulator and four

MOSFET switches for low losses as compared to

diodes. The SM72442 is an MPPT controller with four

PWM outputs to control a four-switch Buck-Boost

converter. The SM72442 uses a perturb-and-observe

tracking algorithm to maintain the optimum power point

of the solar panel. The SM72442 features several

analog inputs to sense input current and voltage, output

current and voltage, and configuration setting pins. The

PWM outputs of the SM72442 are routed to the

SM72295 Full-Bridge Driver. This device features

internal bootstrap circuitry to drive the high-side gates,

two current amplifiers for the input and output currents,

and an over voltage sense input. The charge controller

PCB and fin ished assembled circuit board are shown in

Figure 4.

Figure 4: System Charge Controller PCB and

Finished Assembled Circuit Board

Motor Control Circuits: Two optional motor

controllers are available to maximize implementation

flexib ility. Either a stepper motors or a linear actuator

may be used for each of the three motors as configured

by the user at initial setup.

Bluetooth System Control: The system is fully

automated, however may be controlled via a Bluetooth

enabled Android device with the appropriate application

installed.

3. DATA LOGGING

This system records various system data, including

date and time, wind speed, system current (Amps), the

brightness of light measured in each sensor, actuator

arm positions, and two error codes depending on system

events using a 2-dimensional array. This system records

available data at predetermined intervals and upon

detecting errors. A separate data logging function is

called to record the following data elements. The

calling function passes the error codes to this function;

normal operations data logging calls pass zeros , error

conditions determines and passes the appropriate values

116 Int'l Conf. Embedded Systems and Applications | ESA'13 |

at function call. Each data point in the array uses 16-bit

signed integers allowing for data ranges from -32,768 to

32,767. In order to minimize space, data compression is

utilized on date and time fields. The system records

year, month, day, hour, minute and second but is

capturing this data on three integers:

 Int 0, yearMonth: the first three decimal places

record the year as offset from the year 2000; the last

two decimal places record the two-digit month.

This data logging allows for time tracking through

the end of year 2327 AD.

 Int 1, dayHour: the first decimal place is used as a

normal operations state bit; 0 indicates daytime

state; 1 indicates end of day state; 2 indicates start

of day state; and 3 indicates nighttime state. The

next two most significant decimal p laces capture the

day of the month; the last two decimal places

capture the hour from 0 to 23.

 Int 2, minuteSecond: the first decimal place is not

currently used but is available for future use if

necessary; 0 is always written to this decimal place.

The next two most significant decimal places record

the minutes from 0 to 59; the last two decimal

places record the seconds from 0 to 59.

 Int 3, mph: this integer records the wind speed as

identified by the anemometer using TTL. The two

most significant decimal places are currently

unused and always record 0; the may be available

for additional use in the future.

 Int 4, unnamed: records the current generated by the

solar panel from 0 to 1,023.

 Int 5 through int 8, photo resistor readings: These

ints record the brightness measured by the photo

resistors from 0 to 1,023.

 Int 9 through int 11, actuator arm positions: These

ints record the resistance measured by the actuator

arm position from 0 to 1,023.

 Int 12 through int 13, error bits: The system

currently allows for two error codes. Both bits 0 if

no error condition exists, e.g., standard data logging

at scheduled daytime intervals or start of day or end

of day.

 The first error code is a sequential number

indicating the exact error condition. Various

potential error conditions can occur throughout the

Fin ite State Machine (FSM); for example, if in

Normal Operat ions mode, only one of the four

normal operations condition flags should be set. If

all four are cleared, then the system does not know

what the current state is. A separate state correcting

function exists to correct this condition; if the

condition occurs, a data logging function is called

and the appropriate error code logged. The error

codes are unique to the state and function that

initiated the data logging event minimizing

troubleshooting time.

 The second error code has a variable function. In

most cases, it records the values of all state flags as

a binary number stored as an int. This helps

troubleshooters know the exact condition flags

when the error occurred.

4. SYSTEM CO NTRO L

This system is controlled by a Finite State Machine

(FSM) shown in Figure 5 which tracks the current state

and moves to subsequent steps depending on various

system readings and surrounding conditions depending

on the state of the system flags. The system tests all

available measurements and then follows this FSM

according to the conditions of the various flags as

depicted in the FSM. Excluding stow conditions, the

system determines the appropriate state, executes any

required movements to achieve the desired position,

then goes to a sleep mode. The process of measuring,

calculating, moving, verifying, and adjusting as needed

generally only requires 5 to 15 seconds; the system then

sleeps for 5 to 30 minutes depending on the user's

desired configuration. The wind setting is triggered via

interrupt pin to min imize system power consumption.

Figure 5: System Finite State Machine Diagram

4.1 SYSTEM S TATES

This system is controlled via a single main loop

that controls the sequence of events, special conditions,

and system sleep states. The main loop calls a function

that controls all the sensor functions; each sensor

function subroutine sets the system flags that determine

what actions need to be executed. The main loop then

calls the FSM function which reads all system variables

and determines which functions need to be called in

predefined sequences. The system uses ten global

Int'l Conf. Embedded Systems and Applications | ESA'13 | 117

control and condition bits used to control the system

state:

 normalOperat ions: This bit is initialized to TRUE at

system startup; it is set during routine operations or

return from stow conditions and is cleared

whenever unsafe wind conditions are detected. The

FSM is divided into two sub-state machines

controlled by the status of this bit. The FSM

function receives a local copy of this variable to

ensure data integrity.

 daytime: This bit is init ialized to TRUE at system

startup; it is set when adequate daylight exists for

solar energy collection and cleared when light fades

at the end of the day.

 endOfDay: This bit is initialized to FALSE at

system startup; it is set when light fades at the end

of the day and cleared upon transition to nighttime

state. This bit and the related state are expressly

used for data logging.

 nighttime: This bit is init ialized to FALSE at system

startup; it is set upon transition from the end of day

state and cleared upon detection of adequate light to

collect solar energy. The related state checks for

adequate lighting, wind speed, and then puts the

system in a sleep mode.

 startOfDay: This bit is initialized to FALSE at

system startup; it is set upon detection of adequate

light and cleared upon transition to daytime state.

This bit and the related state are expressly used for

data logging.

 goToStow: This bit is initialized to FALSE at

system startup; it is set and cleared by the function

that calls wind speed measurement and can

therefore be changed in any system state. If the

system is in normal operations, the

normalOperat ions flag is cleared as goToStow is

set.

 safeToStow: This bit is in itialized to FALSE at

system startup; it is set when the solar panel has

completed movement to a safe to stow position and

cleared upon initial movement out of this position

in the raiseToDaytimeState. The purpose of this bit

is to ensure the solar panel is protected from

potential damage by the stow motor movement.

The solar panel remains at stow position until the

unsafe wind conditions pass and the daytime b it is

set, preventing energy use before adequate sunlight

exists for energy collection.

 stowed: This bit is initialized to FALSE at system

startup; it is set when the solar panel reaches the full

stow position and cleared immediately upon

movement from the stow position.

 goToRaise: This bit is init ialized to FALSE at

system startup; it is set upon the departure of unsafe

wind conditions and cleared upon the detection of

unsafe wind conditions.

 raised: This bit is initialized to FALSE at system

startup; it is only set when the solar panel has made

full recovery from stow conditions and is cleared

after detection of unsafe wind conditions.

The system is divided into two major states, one

for normal operations and another for emergency stow

conditions when wind load may potentially damage the

solar panels. The state function controls the system

based on the logic in the flowchart depicting the FSM as

shown in Figure 1.

4.2 NO RMAL OPERATIO NS

The system spends the vast majority of its time in

the Normal Operat ions state. The system transitions

between these various states based on the time of day

and available light.

 Daytime State: The daytime state operations (right

side of the FSM diagram) periodically sample light

readings in the four photo resistors to determine if

the panel needs to move. The panel then adjusts

position until the panel is perpendicular to the sun,

controlling all of the solar tracking operations. The

system checks time from the external clock at each

iteration through the program execution and

initiates the data logging function at user-designated

predetermined intervals. Global variab les control

the sampling frequency and can be adjusted by the

user as needed.

 End of Day State: When the system detects

inadequate lighting at dusk, the machine transitions

to an end of day state where the data logging

function is called before transitioning to nighttime,

sleep sate.

 Nighttime State: The nighttime state is a system

sleep state. It periodically samples the wind speed

and measures any available sunlight. The system

transitions to a start-of-day state when the photo

resistors detect adequate lighting.

 Start of Day State: Before the system transitions

back to a full daytime state, it calls the data logging

function to record system information at dawn.

4.3 EMERGENCY STOW OPERATIO NS

Upon detection of unsafe wind speeds, the

goToStow bit is set and the normalOperat ions bit is

cleared. If wind speeds fall, the system clears the

goToStow bit; this triggers the return from stow

sequence. The normalOperat ions bit remains cleared

until the system has fully recovered from stow

118 Int'l Conf. Embedded Systems and Applications | ESA'13 |

conditions, including returning the panel to a pre-stow

position. the state diagram was designed to ensure the

preservation of the panel as the solar panel is mounted

on an adjustable platform and can be damaged if the

panel is not in the correct position when the stow motor

is activated. The system calls the data logging state

whenever the system transitions to or from any normal

operations states maximizing end users understanding of

system operations during unsafe conditions.

 Prepare To Stow State: The system immediately

moves to the prepare to stow state when the

goToStow bit is set. This state is designed to move

the solar panel to a safe position prior to calling the

stow motor function. Since an actuator motor was

used for vertical movement, the position of the

actuator arm can be routinely measured. This state

operates in a loop checking the position of the arm

at each loop iteration; once the arm exceeds a

minimum extension and stops moving, the function

controlling the actuator sets the safeToStow bit.

The loop terminates and returns to the main

function. The next iterat ion through the FSM

function changes the state to Go To Stow State.

 Go To Stow State: Th is state controls the stow

motor. Triggers are present at the fully raised and

fully lowered positions; this state continues to

engage the stow motor until the stowed trigger is

hit. Additionally, the system checks for premature

stow switch activation and recalls the stow function

if the switch is disengaged. Once the switch is

engaged, the stowed bit is set. The system moves to

the Stowed State upon its next iterat ion through the

FSM function.

 Stowed State: This state calls the wind

measurement function to monitor the wind speed.

The wind measurement function triggers a system

return from stow when the unsafe wind condition

passes, clearing the goToStow bit and setting the

goToRaise bit. Redundancy is used with these two

bits to increase system safety. If unsafe wind

speeds persist, this function activates a sleep mode

for a designated period of time.

 Prepare To Raise State: Th is state maintains a stow

position until the daytime b it is set; this prevents the

system from returning to stow when the system will

not collect any energy at nighttime. Th is prevents

wasted energy should unsafe wind conditions occur,

leave, and reoccur during the night. Once the

daytime bit is set and the goToRaise bit is set, the

system transitions to the Raise To Daytime State

where the panels return to a pre-stow position.

 Raise to Daytime State: Th is state ensures the

system recovers from a fu ll-stow position prior to

moving the panel's up-down and left-right motors

by activating the stow motor in reverse direct ion

and monitoring the stow recovery switch. The

motor stops once this switch is triggered; this state

then reads the pre-stow positions, returning the

panel to this position. Once the panels return to the

defined position, this state sets the Normal

Operations bit.

The wind speed measurement function triggers a

system recovery from stow when unsafe wind

conditions pass; this may occur during Prepare To Stow

State, Go To Stow State, or Stowed State. If unsafe

wind conditions reoccur while in this state, the wind

measurement function will reset the goToStow bit and

the system will return to the Prepare To Stow State.

Race conditions are a potential risk associated with these

states, so the wind speed measurement function utilizes

redundancy to prevent false readings.

All system components worked as expected; the

system is stable and consistent per design intent. The

fin ished system is shown in Figure 6.

Figure 6: Finished Solar Tracker System

5. RESULTS

Testing centered around current measurement and

average voltage readings with the panel at three

positions:

 Flat, "tabletop" position

 Traditional fixed-roof position at 30° from level

facing due south

 Dynamic, solar-tracked position

Int'l Conf. Embedded Systems and Applications | ESA'13 | 119

The system average voltage and current readings at

fixed points in time are compared to determine the

energy collection improvement using a dynamic position

over traditional rooftop positions. The tabletop position

is included as an arbitrary reference point. Motor

activation and electronics power consumption are

deducted from the dynamic position readings and

excluded from stationary position readings. Testing

occurred on a single, sunny day. The panel was setup in

a well-exposed yard and current measurements were

periodically collected at each of the three different

positions throughout the day. The resulting

measurements were plotted using MS Excel and are

shown in Figure 7.

Figure 7: System Test Current Readings at Three

Different Positions

Stationary data points which were used to generate

the graph in Figure 7 are shown in Table 1.

Table 1: Power Collection and Comparison

Time Tabletop

30°

Pitched
Roof

Sun
Chaser

% Immediate
Improvement

(vs.
Tabletop)

% Immediate
Improvement

(vs. 30°
Pitched Roof)

8:17 0.48 0.96 1.70 71.76% 43.53%

8:42 0.78 1.15 2.05 61.89% 43.90%

9:13 1.02 1.50 2.27 55.26% 33.92%

9:50 1.48 1.91 2.47 39.90% 22.51%

10:26 1.88 2.27 2.60 27.82% 12.78%

11:32 2.24 2.38 2.62 14.50% 9.05%

11:41 2.34 2.47 2.64 11.36% 6.44%

12:25 2.40 2.50 2.66 9.65% 5.88%

12:44 2.43 2.52 2.68 9.33% 5.97%

13:30 2.44 2.51 2.69 9.29% 6.69%

13:49 2.38 2.49 2.66 10.29% 6.26%

14:33 2.32 2.48 2.63 11.79% 5.70%

14:42 2.23 2.36 2.60 14.29% 9.15%

15:48 1.88 2.26 2.58 27.33% 12.40%

16:24 1.46 1.88 2.46 40.67% 23.61%

17:01 1.01 1.48 2.25 55.03% 33.91%

17:32 0.77 1.13 2.03 62.09% 44.23%

17:57 0.46 0.94 1.68 72.61% 44.19%

The available energy was also collected while the

motors were running, resulting in residual power at

runtime comparable to the tabletop position. The team

conservatively estimated total motor and system daily

runtime and calculated total expected daily Sun Chaser

power consumption; the results are shown in Table 2.

The net energy collection improvement is only slightly

less than the gross energy gain due to the extremely

limited motor runtime and copious use of system sleep

states.

Table 2: Power Consumption Measurements

Component

Power

consump-

tion
(hours)

Amp
rating

System
Voltage

Max

Watts

Consump
-tion

Watt
Hr

Total

(Runtim

e = 9 hr
40 min)

Actuator

Motor (0.6
Amp/hr, 15

sec/hr) 0.00417 0.60 12.93 7.76 0.03 0.31256

Stepper

Motor (1

Amp/hr, 1
min/hr) 0.01667 1.00 12.93 12.93 0.22 2.08370

Other

system
power

(meas ured,

1.5 min/hr) 0.02500 1.17 12.93 15.11 0.38 3.65065

Total Power Consumption 0.63 6.05

The dynamic solar tracking system successfully

completed its initial proving phase showing 16.96%

energy collection improvement over the traditional fixed

rooftop position (30° sloped roof) and 29.24%

improvement over flat, “tabletop” panel position as

shown in Table 3 below.

Table 3: Power Collection and Comparison

Avg

Amps
Avg
Volts

Gross
Watts

Power

Consumption
(Watts)

Net
Watts

%
Difference

Flat,

fix ed 1.67 12.93 208.41 N/A 208.41 29.24%

30° roof,

fix ed 1.96 12.93 244.59 N/A 244.59 16.96%

Dynamic

Position 2.40 12.93 300.44 6.05 294.39 N/A

This promising improvement to existing solar

technology will reduce the installation return on

investment period by increasing power returns or

reducing the number of required solar panels required

for the desired amount of energy collection. The

concept is now ready for further development and

optimization in p reparation for p roduct deployment.

6. CO NCLUSIONS AND RECOMMENDATIO NS

The work in this paper successfully demonstrated

expected energy collection improvement. Fixed

position solar panels fail to optimize solar energy

0.00

0.50

1.00

1.50

2.00

2.50

3.00

8
:1

7

8
:4

2

9
:1

3

9
:5

0

1
0

:2
6

1

1
:3

2

1
1

:4
1

1

2
:2

5

1
2

:4
4

1

3
:3

0

1
3

:4
9

1

4
:3

3

1
4

:4
2

1

5
:4

8

1
6

:2
4

1

7
:0

1

1
7

:3
2

A
m

p
s

Periodic Current Measurements

Tabletop 30° Pitched Roof Sun Chaser

120 Int'l Conf. Embedded Systems and Applications | ESA'13 |

collection; dynamic positioning control corrects for this

by maintaining a perpendicular angle between the solar

panel or array and the sun.

Additional potential system refinements include:

 Solar array position detection: Incorporating an

accelerometer/magnetometer may increase system

control over the solar panel position, adding a layer

of redundancy to further protect the solar panel

from potential damage in stow conditions.

 Data points: The current implementation utilizes a

large data element to compress date, time, and time

of day state information. Dynamic memory

allocation may be more suitable long-term solution.

For example, most analog inputs read values

between 0 and 1,023, so a 10-b it unsigned integer

would suffice in those scenarios. This is not

practical since data is stored in Byte-sized elements;

32-bit integers however could be used to store up to

three 10-bit unsigned integers. Conversely, the 10-

bit integers could be reduced to 8-bit unsigned

integers by performing a 2-b it shift right, effectively

dividing the reading by 4. Reading from these

fields would require a 2-b it shift left resulting with a

slight loss in data granularity.

 The current implementation uses flash memory;

writing to a data file on a SD card would allow for

larger data storage ranges.

 Additional data compression algorithms would

further improve data storage and slightly reduce

power consumption at data logging events.

 Optional data monitoring via integrated Bluetooth

application: The data storage can be transmitted to

Android-based mobile platfo rms since the system

includes Bluetooth technology.

 Optional Wi-Fi connectivity: Th is convenience

option would allow consumers to read system data

and various conditions from a desktop or laptop

computer without directly accessing the system.

Power consumption increase would need to be

studied prior to implementing this potential feature.

 Optional LCD readout for data retrieval: Th is

convenience option would primarily be used at

system setup and initialization but may be

beneficial in some applications.

7. References

1. Anderson, A. E., et al. Design of the Support

Structure, Drive Pedestal, and Controls for a Solar

Concentrator Electronic Resource]. Washington,

D.C., Oak Ridge, Tenn, United States. Dept. of

Energy; distributed by the Office of Scientific and

Technical Information, U.S. Dept. of Energy, 1991.

Print.

2. Cook, G., et al. Sh ining on Electronic Resource]: A

Primer on Solar Radiation Data. Washington, D.C.,

Oak Ridge, Tenn, United States. Dept. of Energy;

distributed by the Office of Scientific and Technical

Information, U.S. Dept. of Energy, 1992. Print.

3. Hammons, Burrell E., and United States Dept of

Energy Office of Scientific and Technical

Information. So lar Tracking Apparatus Electronic

Resource]. Oak Ridge, Tenn., Oak Ridge, Tenn,

United States. Dept. of Energy. Office o f Scientific

and Technical Informat ion; distributed by the

Office of Scientific and Technical Information, U.S.

Dept. of Energy, 1980. Print.

4. Howell, B., et al. Solar Kinetics` Photovoltaic

Concentrator Module and Tracker Development

Electronic Resource]. Washington, D.C., Oak

Ridge, Tenn, United States. Dept. of Energy;

distributed by the Office of Scientific and Technical

Information, U.S. Dept. of Energy, 1995. Print.

5. Jones, S. A., et al. Analysis of Solar Two Heliostat

Tracking Error Sources Electronic Resource].

Washington, D.C., Oak Ridge, Tenn: United States.

Dept. of Energy; distributed by the Office of

Scientific and Technical Information, U.S. Dept. of

Energy, 1999. Print.

6. ---. Analysis of Strategies to Improve Heliostat

Tracking at So lar Two Electronic Resource].

Washington, D.C., Oak Ridge, Tenn, United States.

Dept. of Energy; distributed by the Office of

Scientific and Technical Information, U.S. Dept. of

Energy, 1999. Print.

7. eme, , t mber er, an or i . "Maximum

Efficiency Trajectories of a Two-Axis Sun Tracking

System Determined Considering Tracking System

Consumption." Power Electronics, IEEE

Transactions on 26.4 (2011): 1280-90. Print.

8. Shingleton, J., et al. One-Axis Trackers -- Improved

Reliab ility, Durability, Performance, and Cost

Reduction; Final Subcontract Technical Status

Report, 2 may 2006 - 31 August 2007 Electronic

Resource]. Washington, D.C : Oak Ridge, Tenn,

United States. Dept. of Energy ; distributed by the

Office of Scientific and Technical Information, U.S.

Dept. of Energy, 2008. Print.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 121

Implementation of IEEE 1588v2 PTP for Precision Clock

Synchronization of Ethernet Network

Seongjin KIM
1
, Kwangman KO

1
, and Kyoungyoung SO

2

1
School of Computer Information Engineering, SANGJI University, KOREA

2
Department of Software Engineering, Chonbuk National University, KOREA

Abstract - A common sense of time among all the elements of

a distributed measurement and control system allows the use

of new techniques for the solution of problems with complex

synchronization requirements or arising from the interaction

of many sensors and actuators. Such a common sense of time

may be accomplished using IEEE Standard for a Precision

Clock Synchronization Protocol for Networked Measurement

and Control Systems (IEEE 1588-2008) to synchronize real-

time clocks incorporated within each component of the system.

In this paper, we implemented the IEEE 1588v2 PTP emulator

on BlueScope BL6000A using delay request-response

mechanism to estimate a clock synchronization.

Keywords: IEEE 1588, Precision Time Protocol, Time

Synchronization, Delay request-response mechanism

1 Introduction

 The technologies using the measurement and control

system are essential to network-based control system to

synchronize the distributed devices on distributed computing

environment[1]. The clock synchronization method using

NTP [2] and SNTP [3] is most commonly utilized in

managing/controlling a system using network communication

in a distributed system environment. The clock

synchronization method based on signal and location using

GPS satellite is different from network-based synchronization

method such as NTP and SNTP because it can perform

synchronization more accurate than network-based

synchronization method; however, it has a disadvantage that

more cost is required to provide with devices such as receiver

and antenna to receive GPS signal[4]. Therefore, a technology

is required for more accurate clock synchronization, which

can synchronize existing device at low cost but still secures

accuracy with error-range of sub-microseconds and uses

existing bandwidth without building a new network

configuration or adding a new device. In this paper, we

implemented a function that can emulate IEEE 1588v2 PTP

[5] using delay request-response mechanism in the

measurement of accurate clock synchronization of packet

based network using PTP. For this, a function, which divides

emulator into Master(Requester) and Slave(Responder) nodes,

creates detail PTP messages for clock synchronization and

transmits them, and a function, which provides with

information and statistical values on the received PTP

messages, are implemented on BlueScope BL6000A.

2 Baseded Works

 The precision time protocol is a protocol for measuring

high-ly precise clock synchronization using packet-based

network. The IEEE 1588 standard which define precision time

protocol have been published in 2002, IEEE 1588v1 [6], and

in 2008, IEEE 1588v2. IEEE 1588v2 is composed of master

and slave nodes and exchange messages based on timestamp

to determine the offset and path delay between two clocks.

2.1 Delay Request-Response Mechanisms

 The delay request-response mechanism measures the

<mean-PathDelay> between a pair of PTP ports and uses the

messages Sync, Delay_Req, Delay_Resp and possibly

Follow_Up as shown in the timing diagram of Figure 1. This

mechanism is required to be executed independently in each

supported domain of the two clocks.

Figure 1. Delay Request-Response path length measurement

122 Int'l Conf. Embedded Systems and Applications | ESA'13 |

The actual value of the path Delay is measured and

computed as follows for each instance of a delay request-

response measurement:

a) The master node prepares and issues a Sync message. If the

node is a two-step clock, it also prepares and issues a

Follow_Up message

b) The slave node is required to :

- Generate timestamp t2 upon receipt of Sync message from

master node.

- Send the Delay_Req message and generate and save

timestamp t3.

- If the received Sync message indicated that a Fol-low_Up

message will be received, save timestamp t1 from Follow_Up

message.

- If the received Sync message indicated that a Fol-low_Up

message will not be received, save timestamp t1 from Sync

message.

c) The master node is required to :

- Generate timestamp t4 upon receipt of the Delay_Req

message from slave.

- Set timestamp field of Delay_Resp message to the

timestamp t4.

- Issue the Delay_Resp message.

d) Upon receipt of the Delay_Resp message by the slave,

<meanPathDelay> and <offsetFromMaster> are computed as

following (1),

2

)t(t)t(t
MasteroffsetFrom

2

)t(t)t(t
laymeanPahtDe

3412

3412

 (1)

2.2 Peer Delay Mechanism

In the two-step mode, propagation time between two nodes is

measured through the exchange of three messages

(Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_Up) and its

process as shown in Figure 2.

a) Delay Requestor Node-A sends Pdelay_Req message, and

creates and saves time stamp.

b) Delay Responder Node-B that has received Pdelay_Req

message undergoes the following process.

 - Immediately upon receiving Pdelay_Req message from the

Delay Requestor Node-A, time stamp is created.

 - Copies the correctionField of Pdelay_Req message to the

correctionField of Pdelay_Resp_Follow_Up message, and sets

the correctionField of Pdelay_Resp as 0.

 - Copies the sequenceId field of Pdelay_Req to the

sequenceId field of Pdelay_Resp message and

Pdelay_Resp_Follow_Up message.

 - Copies the sourcePortIdentity field of Pdelay_Req to the

requestingPortIdentity field of Pdelay_Req message and

Pdelay_Resp_Follow_Up message.

 - Copies the domainNumber field of Pdelay_Req to the

domainNumber field of Pdelay_Req message and

Pdelay_Resp_Follow_Up message.

 - Sets the requestReceiptTimestamp field of Pdelay_Resp

message as 0.

 - Sends Pdelay_Resp message to the Delay Requestor Node-

A, and creates and saves time stamp .

- Sets the responseOriginTimestamp field of

Pdelay_Resp_Follow_Up message as 0, and after adding

turnaround time to the correctionField field, it is sent to Delay

Requestor Node-A.

c) Delay Requestor Node-A creates and saves time stamp

immediately upon receiving PDelay_Resp message.

Figure 2. Peer Delay Mechanism

After exchanging messages, Delay Requestor Node-A will

have two time stamps and two message field values. With

these time stamps and field values that have been saved, the

Mean Path Delay time between communication ports can be

calculated by applying Formula (2).

③

②

①

pp_Follow_UPdelay_Res of Fieldcorrection

-pPdelay_Res of Fieldcorrection

ampeiptTimestrequestRec-ampiginTimestresponseOr

tt 14

2

--
laymeanPahtDe

③②①
 (2)

In one-step mode, Pdelay_Resp_Follow_up message is not

transmitted, as shown in [Figure 2]. Accordingly, turnaround

time that was delivered through Pdelay_Resp_Follow_up

message is saved to the correctionField of Pdelay_Resp

message for transmission.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 123

a) Delay Requestor Node-A sends Pdelay_Req message, and

creates and saves time stamp .

b) Delay Responder Node-B that has received Pdelay_Req

message undergoes the following process.

 - Immediately upon receiving Pdelay_Req message from the

Delay Requestor Node-A, time stamp is created.

- Copies the sequenceId field of Pdelay_Req message to the

sequenceId of Pdelay_Resp message.

- Copies the sourcePortIdentity field of Pdelay_Req to the

requestingPortIdentity field of Pdelay_Req message.

- Copies the domainNumber field of Pdelay_Req to the

domainNumber field of Pdelay_Req message.

- Copies the correctionField of Pdelay_Req to the

correctionField of Pdelay_Resp.

 - Sets the requestReceiptTimestamp field of Pdelay_Resp

message as 0.

 - Sends Pdelay_Resp message to the Delay Requestor Node-

A, and creates and saves time stamp .

 After exchanging messages, Delay Requestor Node-A will

have two time stamps and correctionField value of

Pdelay_Resp message. With these time stamps and field value

that have been saved, the Mean Path Delay time between

communication ports can be calculated by applying Formula

(3).

2

pPdelay_Res of Fieldcorrection-)t(t
laymeanPahtDe 14 (3)

3 Implementations and Test of IEEE

1588v2 PTP

3.1 BlueScope BL6000A

BlueScope BL6000A is a portable all-in-one type measur-ing

device which can test 1Gbit/10Gbit Ethernet, SDH/SONE-T,

OTN and fiber channel. As seen in Figure 3, only one, either

the Master or the Slave, can be emulated in the implemented

IEEE 1588v2. When emulation starts, the PTP port state is

determined by the receipt of an Announce message. All PTP

messages transmitted/received by TX/RX are analyzed in

detail. Then the offset for statistical data and average path

delay time are calculated and calibrated.

Figure 3. Emulation Environment using BlueScope BL6000A

Figure 4 is TX screen to set up and transmit PTP messages at

Master and Slave. The TX PTP step is used to determine the

mode of clock synchronization. It is possible to select two-step

or one-step. TX PTP message provides with function which

enables the setting of Announce, Sync, Follow_up, De-

lay_Resp messages at Master and Delay_Req message at

Slave. It also provides with function, by which user can direct-

ly set up editable data, if necessary. TX PTP Interval of Mas-

ter can select transmission cycle of PTP message to Slave and

can set up within the range of 125ms∼16secs. RX Announce

Interval of Slave can select transmission cycle of the announce

message from Master. If an announce message would not be

received within the RX announce interval, the PTP port state

is changed.

Figure 4. Screenshot of TX PTP Configuration

The TX screen to set & transmit the PTP message of Delay

Requestor or Delay Responder is as shown in Figure 5. Peer

Delay Step is used to select operation mode and it supports

two-step mode and one-step mode. TX PTP Interval is to

select the transmission interval of PTP message that will be

sent to Delay Requestor and it can be set within the range of .

It also provides a function of setting Domain Number that is

the header information of PTP message.

Figure 5. Screenshot of TX PTP Configuration for Peer Delay

124 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Additionally, it also provides a function of setting Address

Mode, VLAN, Network Protocol, and a function of allowing

user to directly set data that can be edited, as well as showing

information by classifying each message into MAC, VLAN,

IP/UDP, Header & Body, as shown in Figure 6.

Figure 6. Screenshpt of TX PTP Message (PDelay_Req)

As seen in Figure 7 and Figure 8 the state information of all

PTP messages transmitted/received for clock synchronization

verification is provided separately for TX and RX. TX PTP

and RX PTP show the numbers and ratios of transmitted PTP

messages and received PTP messages. The Domain Mismatch

compares the domain number in the header of received PTP

message. If the domain number is different, it increases the

number of domain mismatch and the received PTP messages

are ignored.

Figure 7. Screenshot of Master and Slave Status

In the Peer Delay Status information, it shows the statistics

on the Mean Path Delay Time between Delay Requestor and

Delay Responder, in addition to TX/RX PTP and Domain

Mismatch information.

3.2 Experimental Results of Mechanism Test

In order to build an emulation environment to test clock

synchronization between Master and Slave, two BlueScope

BL6000As and one BlueScope BL1400A, which is to confirm

the accuracy of PTP messages, are used. BlueScope BL1400A

Figure 8. Screenshot of Peer delay Status and RX PTP

Message Viewer

is connected by optic 1G using SFP module (wave length:

1310nm, vendor: FINISAR Corp.) between two BlueScope

BL6000As as following Figure 9.

BlueScope BL1400 is a portable all-in-one measuring de-

vice, which can test 1Gbit/10Gbit Ethernet and it provides

with functions to test throughput/throughput32, IP tools,

monitoring, RFC2544 and PBB. In a test, it is used to capture

the received packets by its monitoring function and analyze

the packet information such as size, decode and Hex code.

Figure 9. Back-to-back Test Configuration

3.2.1 Delay Request-Response Mechanism Tests

Master and Slave are arranged for test as shown in Table 1

and the Master is activated for PTP message transmission.

Table 1. TX Configuration Master and Slave

Configuration Value

Master TX

PTP Step Two-steps

PTP Interval 1 second

Domain number 04 (Hex)

Slave TX
Announce Interval 1 second

Domain number 04 (Hex)

Int'l Conf. Embedded Systems and Applications | ESA'13 | 125

The slave receives PTP messages transmitted from Master,

store timestamps and analyze them. Then it begins message

exchange for clock synchronization. All timestamps used are

provided by the hardware in the measuring device for accurate

clock synchronization [7].

As seen in Figure 10, when synchronization begins, the Slave

shows schematized graphs together with various statistical

data using timestamps. In the statistics screen, timestamp t1~t4

time information, Master to Slave Delay, Slave to Master De-

lay, meanpathDelay, Offset from Master, Sync PDV(Packet

Delay Variation)/IPDV(Inter-Packet Delay Variation) [8] and

Delay_Req PDV/IPDV are shown in nanoseconds.

Figure 10. Slave Side of Statistics and Graph Screenshot

In the graphic screen, it is possible to see elapsed times and

multiple graphs in one screen by selecting multiple statistical

data. Designation of indicating range is also possible.

We performed clock synchronization to test delay request-

response mechanism by exchanging PTP messages 1100 times

on two-step and one-step mode respectively. In the result, as

follows Figure 11 and Figure 12, master and slave have been

synchronized after exchanging PTP messages approxi-mately

30 times and then kept to synchronization with error tolerance

of -50ns~+50ns.

Figure 11. Offset from master of Two-step

Figure 12. Offset from master of One-step

3.2.2 Peer Delay Mechanism Tests

We are arranged for Peer-to-peer test as shown in Table 2

and activated for PTP message transmission.

Table 2. TX Configuration of Requestor

Configuration Value

Requestor

Peer Delay Step Two-step/One-step

Address mode Multicast

VLAN N/A

Network Protocol Ethernet

TX PTP Interval 1 second

Domain number 04 (Hex)

For Peer Delay Mechanism test, a test was conducted on the

propagation time between communication ports by exchanging

PTP messages 1,080 times per mode, and the result is as

shown in Figure 13 and Figure 14. Figure 13 and Figure 14

show the graphs of Mean Path Time measured respectively in

two-step mode and one-step mode. In addition, (b) of Figure

13 and (b) of Figure 14 are the graphs that show the Mean

Path Delay Time in certain intervals in expansion. It was

confirmed through the test result that Mean Path Delay Time

was maintained within a certain range after PTP message was

exchanged between Delay Requestor and Delay Responder.

(a) Average Mean Path Delay Graph

126 Int'l Conf. Embedded Systems and Applications | ESA'13 |

(b) Detail Graph

Figure 13. Average Mean Path Delay of Two-stop

(a) Average Mean Path Delay Graph

(b) Detail Graph

Figure 14. Average Mean Path Delay of One-stop

4 Conclusion and Future Study

This study implemented a function that can emulate IEEE

1588v2 PTP using delay request-response mechanism for ac-

curate clock synchronization of packet based network using

PTP. For this, a function, which divides emulator into Master

(requester) and Slave (responder), creates detail PTP

messages for clock synchronization and transmit them, and a

function, which provides with information and statistical

values on the received PTP messages, are implemented on

BlueScope BL6000A, which is a measuring device of

Bluelight Technol-ogy. This study enabled more accurate

clock synchronization with improved degree of precision by

providing all timestamps at the hardware step.

In the future, in order to support the function of IEEE

1588v2 in detail, a Peer delay mechanism function, which can

measure peer-to-peer propagation time by way of Pdelay_Req,

Pdelay_Resp, Pdelay_Resp_Follow_up messages exchange,

will be provided. Also, a function, which can set up VLAN,

UDP over IPv4 and UDP over IPv6 network protocol, will be

provided in the future in order to expand the PTP packet by

multicast and unicast address.

5 Reference

[1] J. C. Eidson, "Measurement, Control, and

Communication Using IEEE1588," New York: Springer-

Verlag, Apr 2006.

[2] D. Mills, J. Martin, J. Burbank, and W. Kasch,

“Network Time Protocol Version 4: Protocol and Algorithms

Specification,” RFC 5905, Jun 2010.

[3] Mills, D., “Simple Network Time Protocol(SNTP)

Version 4 for IPv4, IPv6 and OSI,” RFC 2030, Oct 1996.

[4] Lewandowski W., Azoubib J., Klepczynski W.J., “GPS:

Primary Tool for Time Transfer,” Proceedings of the IEEE,

Vol. 87, No. 1, pp. 163 – 172, Jan 1999.

[5] “IEEE Standard for a Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems,”

IEEE Std 1588-2008, pp. c1-269, Jul 2008.

[6] "IEEE Standard for a Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems,"

IEEE Std 1588-2002, pp. 1-144, 2002.

[7] K. Correll, N. Barendt, and M. Branicky., “Design

Considerations for Software Only Implementations of the

IEEE 1588 Precision Time Protocol,” Conference on IEEE

1588, 2005.

[8] Morton, A. and B. Claise, "Packet Delay Variation

Applicability Statement," RFC 5481, Mar 2009.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 127

VLC System Using PSoC Microcontroller

*Kalla Harish, **Prof. M.V. Lakshmaih, ***Prof. Pendem Suresh Kumar , ****Prof. Thimmaih,
*****J Avesh Gopal

*, **, ****Srikrishna Devaraya University, Ananthapur, India.
, **Adama Science & Technology University, Adama, Ethiopia.

Emails: anu.harishh@gmail.com, drmvl2009@gmail.com, pendemsuresh@gmail.com,
drptm2008@gmail.com, aveshgopal@gmail.com

Abstract:
Present-day wireless communication has many
limitations like bandwidth depletion, security
etc. Now-a-days the research on VLC (Visible
Light Communications) system is offering new
possibilities in overcoming the problems
associated with wireless communications
system. In the present study a model has been
developed for addressing the above issues via
Visible Light Communications system for
power line communication through an 8-bit
PSoC microcontroller. The exclusive PLC chip
CY8CPLC10, an 8-bit PSoC3 microcontroller,
high intensity pi5 light emitting diodes (LEDs)
and the LX1972 visible light sensor were used
for the transmitter and receiver. The analysis
done using software and hardware components
have given voltage fluctuations were evaluated
as a function of distance from 10-50cm and
given good communication between two
computers with minimum loss due to
deescalating.

Keywords: VLC (Visible Light
Communication), 8-bit PSoC3 microcontroller,
Power line communication, Visible light
communication.

1. INTRODUCTION
Visible light communications technology uses
visible light (380-780nm) to deliver information
without the effects of electromagnetic waves,
keeping pace with current wireless
communications. Lights of general fluorescent
lamps or the visible light of light emitting

diodes (LEDs) are flickered at visible speeds to
send information. Visible light communication
does not have any possibility of leaking out
when the light is isolated, which offers better
security than wireless LAN, and does not suffer
performance losses even when a variety of
computers are connected at once. This
technology is also notable because it uses eco
friendly IT green technology rather than
electromagnetic waves, which can cause harm
to the human body [1].
In addition, due to the decreasing prices of
LEDs and improvements in their light emitting
efficiency, LEDs are now used in special
lighting applications such as mobile device
displays, cars, traffic signs, and advertisement
panels, as well as in the general lighting market,
such as current fluorescent lamps or
incandescent lights. Specifically, the emitting
efficiency of the white LED has already
surpassed that of the fluorescent lamp, and more
outstanding products are appearing in the
current market. Recently, due to RF bandwidth
frequency depletion, confusion possibilities,
increasing security requirements, and super-
speed ubiquitous communication environments,
radio frequency technology and mutually
complementary optical wireless communication
technologies are being developed at a large
number of companies and institutions
worldwide [2].
When developing more complex projects, there
is often a need for additional peripheral units,
such as operational and instrument amplifiers,
filters, timers, digital logic circuits, AD and DA

128 Int'l Conf. Embedded Systems and Applications | ESA'13 |

convertors, etc. As a general rule,
implementation of the extra peripherals brings
in additional difficulties: new components take
space, require additional attention during
production of a printed circuit board, increase
power consumption. All of these factors can
significantly affect the price and development
cycle of the project. The introduction of PSoC
microcontrollers has made many engineers’
dream come true of having all their project
needs covered in one chip.
PSoC: Programmable System on Chip
PSoC represents a whole new concept in
microcontroller development. In addition to all
the standard elements of 8-bitmicrocontrollers,
PSoC chips feature digital and analog
programmable blocks, which themselves allow
implementation of large number of peripherals.
PSOC3 element is inexpensive and provides the
PSOC Creator and it is highly flexible custom
microcontroller that allows the user to configure
the part for the current task at hand. In fact, the
PSoC is considered to be a “blank slate” without
any stock peripherals. Instead, the user must
specify which peripherals are required for the
project. The user may place any combination of
available blocks to create the resources required.
For instance, if the project requires 5 UARTS
for serial communication, then the user can
place 5 UARTS inside the PSoC. This flexibility
allows for extremely efficient designs but
requires significant upfront planning by the
user.
 This study will confirm the possibility of
applying this technology for the next generation
wireless network by creating a visible light
communication transmitter and receiver for
power line communication (PLC) using an
PSOC. The CY8CPLC10 is designed for
systems that require a communication interface
over commercial high voltage (HV) or low
voltage (LV) powerlines. Typically, these
systems consist of a microcontroller or
processor along with other electronic
components that implement the host application
functionality. The PLC interface is provided by

integrating the CY8CPLC10 with a powerline
coupling circuit [3, 4].

Fig. 1. System architecture.

2. EXPERIMENTS
Visible light communication technology, which
has gotten notice as a next generation
communication technology, is particularly
attractive for home networks. Among the
technologies, the visible light communication
system is designed and brought into a network
using PLC to study application of the LED
system that is necessarily relevant for living.
The visible light communication system based
on PLC uses a commercial alternating current
electric power source 220 V/60 Hz power line
and an RS-232C cable as a communication
medium, and consists of visible light
communication parts including PLC receiving
and transmitting parts. The system developed in
this study transmits the input data from a
computer to a PLC transmitter through an RS-
232C port. This signal is converted into the
transistor-transistor logic (TTL) signal level
through DS276 chip, and is transmitted to the
PLC receiver through a power line cable after
the data is transmitted to an exclusive PLC chip
through an 8-bit microcontroller. Data that is
transmitted after these processes is received by
an exclusive PLC chip that is attached to the
PLC receiver, and this signal passes through the
8-bit microcontroller and is transmitted to the
visible light communication light emitting parts.
After the data is received from the visible light

Int'l Conf. Embedded Systems and Applications | ESA'13 | 129

receiving sensor through the LED of the visible
light communication light emitting parts, the
lowered data signal is amplified by the OP-amp
circuit, and the RS-232C cable is used through
the Microcontroller and the DS276 chip to send
the data to other computers [7].

Fig. 2. Block diagram of the power line communication
(PLC) transmitter.

2.1 Composition of the system
The design in this study uses a commercial
alternating current electric power source, a 220
V/60 Hz power line as the communication
medium, and the system shown in Fig. 1 to
transmit the information. The distance between
the light emitting parts and the receiving parts of
the visible light communication should be
between 10-50 cm, and each LED should be
positioned horizontally. Each transmitting and
receiving part has its own LED in order to
verify the information transmitting and
receiving process so that the conditions and
power conditions can be checked in real time.
Real time checking of the transmitted and
received data is achieved by using the hyper
terminal window using Embedded C
programming. The visible light communication
data transmitting and receiving program uses
letters so that the data transferred between
computers can be checked by eye. In this
manner, the performance of the processes can be
monitored and evaluated. In this process, the
transmitting and receiving port drivers of both
computers should be well connected in order to
communicate.

2.2 PLC receiver
Figure 2 is the circuit image of the PLC receiver
used in this study. The PLC receiver mainly
consists of the exclusive CY8CPLC10 PLC
chip, microcontroller PSoC3 chip, and an
DS276 chip for the TTL signal level change.
The DS276 chip balances the voltage gap for the
serial communication between the PC and the
microcontroller. When data is transmitted using
the RS-232C cable in PC1, the data is
transmitted to the power line through the
exclusive PLC chip and the PSoC3
microcontroller.
2.3 PLC receiver and visible light
communication transmitter
This part of the system has a similar
composition to the PLC receiver, except that 3
of the 5pi LEDs are added to the light emitting
parts design. The signal that comes through the
power line is received through the exclusive
CY8CPLC10 PLC chip, and is transmitted to
the LED through the PSoC3 microcontroller
chip. Figure 3 shows the transmitter circuit
image of the visible light communication
system.
2.4 Visible light communication receiver
The composition of the visible light
communication receiver is different than that of
the PLC transmitter or visible light
communication receiver, as shown in Fig. 4.
The visible light communication receiver does
not have an exclusive PLC chip, so it only has a
visible light receiving sensor and PSoC3
microcontroller to receive the information. The
data is received in PC2 through PSoC3
microcontroller, which is an 8-bit
microcontroller, and OP-Amp LM324N after
the data is received from the LED through the
LX1972 visible light receiving sensor [8,9].

130 Int'l Conf. Embedded Systems and Applications | ESA'13 |

Fig. 3 Block diagram of the power line communication
(PLC) receiver and visible light communication
transmitter.

Fig. 4. Block diagram of the visible light communication
receiver.
3. RESULTS AND DISCUSSION
Figure 6 shows the process in which the letters
are transmitted and received. The transmitter
and receiver of the materialized system are
connected directly to the RS-232C port of the
computer, and the output value is calculated,
which is detected by the visible light receiving
sensor using an oscilloscope. The transmitting
and receiving waveforms can be checked and
verified as shown in Fig. 6. Figure 7 shows the
values obtained from voltage change through
visible light receiving sensor from a voltage that
5 V is approved by distance using an
oscilloscope.

Fig. 5. Voltage change value depending on light emitting
diode color of communication distance.

In the case of the white LED, the voltage at a
distance from 10-35 cm was constant, but the
voltage for a distance over 35 cm showed a
dramatic voltage decrease. A voltage loss of
0.67 V was confirmed, with a voltage of 4.32 V
at 10 cm to a voltage of 3.65 V at 50 cm. Also,
in the case of the red LED, the voltage from 10-
30 cm was constant, but there was a dramatic
voltage decrease at distances over 30 cm. At a
distance of 50 cm, the voltage was 3.26 V, so
that 1.06 V was confirmed as the voltage loss.
The voltage loss of the green LED is 1.46 V,
and the voltage loss of the blue LED is 0.47 V,
which shows the best performance among the
LEDs.
Figure 8 shows the Visual C++ program that
general users can easily take and adapt by
adding letters to verify successful data
transmissions between the computers. In this
manner, "HELLO!!" was used as the input and
was transmitted to the other computer. The
results were checked, and the blue LED showed
the best performance when evaluated using an
oscilloscope.

Int'l Conf. Embedded Systems and Applications | ESA'13 | 131

Fig .6. Monitoring screen using program visible light
communication data transmitter

Fig. 7. Monitoring screen using program visible light
communication data receiver.

4. CONCLUSION
In this study, a visible light communication
system for PLC was created, and a simple
experiment was created to verify the system
performance using a Embedded C program and
an oscilloscope.
The performance analysis was done by color at
communication distances from 10-50 cm with
5V, and showed that voltage loss can be
observed. As a result, the blue LED showed the
best performance at distances from 10-50 cm,
and there were no problems in the Embedded
program while the letters were transmitted and
received. As the distance increased, however,
the processing speed decreased due to the weak
signal treatment and the background lights,
which made it hard to receive precise data. Also,

new issues were found by using the estimated
values.
In this study, the performance under changing
conditions was evaluated, and the efficiency of
the light emitting part and the receiving sensor
of the visible light were studied so that better
communication conditions can be achieved in
the future. Continuous study and improvement
are required. This study also confirmed the
possibility of applying this technology for the
next generation network.

REFERENCES
[1] T. G. Kang, K. H. Lee, D. H. Kim, and S. G.
Lim, KSII Trans. 10, 85 (2009).
[2] H. J. Kang, J. Digit. Contents Soc. 8, 425
(2007).
[3] Aditya Yadav, Designing an External Host
Application for Cypress’s Powerline
Communication, AN55427,
http://www.cypress.com/?rID=38366
[4] Remote High Brightness LED Control Using
PowerPSoC and Powerline Communication
(PLC),AN60934,http://www.cypress.com/?rID=
37956
[5] J. M. Jung, J. M. Hwang, M. K. Kang, J. W.
Lee, and I. K. Kim, KSII Trans. 8, 557 (2007).
[6] D. W. Kim and S. W. Park, KIEE Trans. 55,
161 (2006).
[7] T. Komine and M. Nakagawa, IEEE Trans.
Consum. Electron. 49, 71 (2003) [DOI:
10.1109/TCE.2003.1205458].
[8] S. Haruyama, IEICE Trans. Fund. Electron.
Comm. Comput. Sci. 86A, 1284 (2003).
[9] T. Komine and M. Nakagawa, IEEE Trans.
Consum. Electron.

132 Int'l Conf. Embedded Systems and Applications | ESA'13 |

