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Abstract— The problem of efficiently assigning tasks to
machines in heterogeneous computing environments with
uncertainty in the availability of the compute resources is a
challenging one. Previous research has looked at designing
heuristics to maximize the total reward earned by completing
tasks in an environment where compute nodes may randomly
fail. The rewards associated with the tasks are earned if
they are successfully executed before their deadlines. The
goal of the resource allocation policies is to maximize
the cumulative reward earned. We use heuristics from the
literature and improved versions of some of the heuristics
to perform the resource allocation decisions. We conduct
extensive experiments to compare the performance of these
heuristics in a variety of simulation environments. The goal
of the study is to be able to recommend a heuristic to
use based on the system environment. Our experiments
show that different heuristics perform the best in different
environments.

Keywords: mapping, resource allocation, fault-tolerant, hetero-
geneity, rewards, deadlines

1. Introduction
Distributed computing is currently used to solve a host

of problems where different tasks are mapped to separate
machines for execution. These environments may be het-
erogeneous, which means different tasks may have varied
execution times on the different machines. This makes it
difficult to assign tasks to machines to optimize for a given
performance metric. The process of allocating tasks to ma-
chines for execution is commonly referred to in the literature
as “resource allocation” or “mapping.” The mapping and
scheduling problem has been known to be NP-Complete [1],
and therefore one must use heuristics to get a solution to this
problem. It is common for failures to randomly occur in the
compute resources of these large-scale distributed systems.
As a result, it becomes even more difficult to make resource
allocation decisions while being aware of such failures. In
this study, the goal of our resource allocation procedures
is to maximize the total reward earned while executing the
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tasks in an environment where the machines may randomly
fail.

Fault-tolerance in distributed computing environments has
been extensively studied. Check-pointing tasks to avoid
restarting them from the beginning, in case they fail, is a
common method used to alleviate the damage caused by
the failure of resources [2], [3], [4], [5]. Replicating tasks is
another method used to improve the reliability of the system
[6], [4], [7], [8].

Shestak et al. [9] addressed the problem of making re-
source allocation decisions while being aware of the mean
fail rates of the compute resources. To model a harsh envi-
ronment the machines were made to have high probabilities
of failure. They assumed that a bag of tasks is available and
ready for execution. Each of those tasks has a reward and a
deadline associated with it. The reward of a task is earned
if the task is successfully completed by its deadline. If a
machine fails while executing the task, the task is returned
to the batch and may be re-mapped to another machine for
execution. The goal of the resource allocation heuristics is to
maximize the total reward that can be earned by executing
the tasks before their respective deadlines expire.

The contributions of this paper are: (a) an enhancement
in the prediction mechanism for some of the heuristics from
the literature [9], and (b) a study of the performance of
different heuristics on various environments that differ in
their types of heterogeneities, rates for task executions and
machine failures, and task re-mapping policies. We compare
the relative performance of the heuristics in each of these
simulated environments, and recommend the heuristic that
one should choose to obtain the highest reward for each
environment.

2. Problem Statement
The environment we model in this study and the goal of

our resource allocation procedures are based on the work
of Shestak et al. [9]. Each task has an associated reward
that is earned if its computation is successfully completed
by its deadline. The compute resources are assumed to have
high probabilities of failure. When a machine failure occurs
while executing a task, the task is returned to the batch and
is eligible to be mapped to another machine. The task may
fail multiple times, and it can be continually remapped to
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Fig. 1: Sample Estimated Time to Compute (ETC) matrices
modelling different types of heterogeneity in an environment
with three task classes and three machines

machines as long as its deadline has not expired. The goal
of the resource allocation policies will be to map tasks to
machines to maximize the total reward earned from all the
tasks. In this study, we say that a heuristic is “robust” [10]
if it can earn reward in an environment with uncertainties in
task execution times and machine failure times. The higher
the reward a heuristic earns, the more robust it is to such
uncertainties.

We work with a bag of tasks that was available at the
start of the simulation. Whether or not failed tasks are
allowed to come back for mapping events may be a policy
decision. Therefore, we consider both cases (allowing and
not allowing failed tasks to re-map), and simulate both
environments for experimentation purposes. We also model
various types of heterogeneity of the computing environ-
ment, and gauge the performance of the various resource
allocation procedures.

3. Environment Modeling
3.1 Modeling the Task Execution Times

An Estimated Time to Compute (ETC) matrix is used
to model the execution time characteristics of the various
tasks in the heterogeneous system. We use task classes
to group together tasks that have similar execution time

characteristics. Each entry tij in the ETC matrix gives the
mean execution time of tasks of class i on machine j of
our heterogeneous suite. The actual execution time of the
tasks are modeled using exponential distributions with the
means obtained from the entries of the ETC matrix. We use
exponential distributions to model task completion times,
based on the tests conducted at Ricoh InfoPrint [11]. For
simulation purposes, we create and use synthetic workloads,
but in real-world environments one could build such a matrix
based on historical data.

We model and gauge the performance of various resource
allocation policies under different types of ETC matrices.
The different ETC matrices are used to model various types
of heterogeneity of computing systems. We model four types
of ETC matrices. Sample 3 x 3 ETC matrices for each of
these types are shown in Figure 1. We model homogeneous
workloads and homogeneous compute resources by having a
fixed value for all the entries in the ETC matrix. We call this
type of ETC matrix constant. We model another environment
wherein the workload can be considered homogeneous, but
the compute resources can be considered to have different
computational capabilities. We model such an environment
by having unique values for each of the columns of the
ETC matrix, and refer to this matrix as column-varying.
A completely heterogeneous environment is modeled by
having random values for each cell in the ETC matrix. In an
environment, modeled by such a matrix, it is possible (and
likely) for a machine to be better than another machine for
a particular task class and worse for another. Such a matrix
is referred to as inconsistent. If we independently sort the
elements within each of the rows of such an inconsistent
ETC, and then independently sort the entries in each of
the columns, we obtain what we call a task-mach-consistent
matrix. In such an environment, if a machine executes a task
faster than another machine, then it will do so for all tasks.
Similarly, if a task executes faster than another task on a
single machine, then it will do so on all machines. This type
of matrix is well suited for some of the heuristics discussed
later.

3.2 Modeling the Machine Failures
It has been shown in the literature that exponential dis-

tributions can be used to stochastically model hardware
failures [12], [13]. In our environment, each machine has
an exponential distribution associated with it to model the
probability of failure, and for each machine j, we have a
failure rate represented by λj .

Shestak et al. [9] have shown how a distribution of
processor availability can be obtained using the average
execution time of tasks on a machine j (referred to as tavj ),
and the failure rate of the machine λj . This probability
mass function consists of as many pulses as there are
machines in the environment. The distribution gives the
relative probability of each machine to become available
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for a mapping event. Machines become available for a
mapping event under two scenarios: if they have successfully
completed a task, or if they have encountered a failure.
The distribution sorts the machines in an ascending order
of their “quality.” A machine has better “quality” if it has
a lower value for λjtavj . Therefore, a machine that has a
lower failure rate and/or a lower value for mean execution
time, will be considered better. The Cumulative Distribution
Function (CDF) of this probability distribution will be used
to guide resource allocation decisions by some heuristics.

4. Resource Allocation Policies
4.1 Overview

In our environment, a mapping decision (deciding which
machine to map a task to) is made whenever a machine
becomes available for executing a task. Machines become
available in two cases: when they successfully complete a
task that was assigned to them, or when they have encoun-
tered a failure. We make an assumption that failed machines
get instantly repaired and are available for executing tasks
immediately. We use heuristics from the literature [9] as
well as modifications to these heuristics to make mapping
decisions.

4.2 Heuristics from the Literature
4.2.1 Reward Heuristics:

There are two heuristics that directly try to optimize the
reward [9]. They are the Reward heuristic and Expected
Reward heuristic. In Reward, whenever a mapping event
occurs, the task that has the highest value for reward is
assigned to the machine that just became available. In
Expected Reward, when a machine becomes available for a
mapping event, the task with the highest value for expected
reward is assigned to it.

For a task i, Pi(t) is the probability (computed at time
t) of successfully completing task i through multiple assign-
ments before its deadline expires. The expected reward for a
task i is given by the product riPi(t), where ri is the reward
that this task can earn if completed successfully. For any
machine j, we represent by pj the probability of machine
j being available for an assignment. Also, the term Vi(t)
is the estimated number of reassignments that task i may
undergo starting at time t up to its deadline. The derivations
of these terms are shown in [9]. Pi(t) is calculated using
the equation shown below.

Pi(t) = 1−

 M∑
j=1

pj(1− e−λjtij )

Vi(t)

(1)

The term (1 − e−λjtij ) gives the probability of task
i failing on machine j. This factor is weighed with the
probability of machine j being available for an assignment
(pj), and therefore the weighted sum,

∑M
j=1 pj(1− e−λjtij ),

gives the probability of failure when task i is mapped to a
machine. Therefore, Equation 1 represents the probability
that task i will successfully complete before its deadline,
even through multiple assignments.

4.2.2 Matching Heuristics:
There are two heuristics in [9] that use the concepts of

the Derman-Lieberman-Ross (DLR) Theorem [14] to guide
mapping decisions. We call them the Matching heuristic and
Expected Matching heuristic. A brief overview of the DLR
theorem is given below, followed by the Matching heuristics
that are implemented using the DLR concept.

The DLR theorem [14] provides an algorithm for op-
timally assigning a set of available workers to incoming
jobs. Each incoming job is assumed to have a reward value
associated with it. Each worker is assumed to have a prob-
ability (that represents the quality and skill of the worker),
with which the reward earned for a job is scaled. It is also
assumed that one has the distribution from which the reward
values for all the incoming tasks are sampled from. Using
the distribution of the reward values of the incoming tasks,
and the notion of the skill of the workers (determined by
their probabilities), the DLR method describes an algorithm
that maps high reward tasks to better skilled workers and
low reward tasks to lesser skilled workers. The distribution
that dictates the reward values of the incoming jobs is vital
to making these decisions.

The Matching heuristics [9] try to implement the DLR
concept within the resource allocation problem. In our en-
vironment, machines become available for mapping events,
and a task needs to be assigned to them. This is analogous
to jobs coming in and looking for a worker that can be
assigned to them. The distribution described in Section 3.2
is used to describe the quality and the likelihood of the
incoming machine, analogous to the distribution that governs
the likelihood of various reward values for the incoming job.
The only other factor that needs to be accounted for is the
ranking of the tasks, analogous to the ranking of the workers.
It is in this aspect that the Matching and the Expected
Matching heuristics differ. In Matching, the tasks are sorted
based on their reward values. In Expected Matching the
tasks are sorted based on their value of expected reward. As
before, expected reward of a task i is given by the product
riPi(t).

4.3 Modifications to Heuristics
We modify Equation 1 to incorporate the knowledge of

the machine that just became available for a mapping event.
Let us call the machine that just became available to be
machine J . The probability that this machine will become
available pJ will be 1, and by a similar logic pj = 0,∀j 6=
J . Therefore, the summation term for this mapping event
will reduce to (1 − e−λJ tiJ ). We know that this counts as
an assignment for task i, and therefore we extract the term
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(1 − e−λJ tiJ ) out, and reduce the count of the number of
reassignments of task i (denoted by Vi(t)) by one. This gives
us our new equation for Pi(t).

Pi(t) = 1− (1− e−λJ tiJ )× M∑
j=1

pj(1− e−λjtij )

Vi(t)−1

(2)

We create the Latest Expected Reward and the Latest
Expected Macthing heuristics that are similar to the Expected
Reward and Expected Matching heuristics, but with the
difference that they use Equation 2 for their expression of
Pi(t) instead of Equation 1. This is to denote the fact that
they use the latest information to compute Pi(t).

For experimentation purposes, we also model an environ-
ment where tasks are not allowed to come back when the ma-
chine they were assigned to failed. In such an environment,
the value of Pi(t) is simply calculated using the equation
given below.

Pi(t) = e−λJ tiJ (3)

5. Simulation Setup
In this study, the workload that we are modeling consists

of independent tasks, i.e., no communication is required
between the individual tasks, and there are no precedence
constraints. Each task is sequential (i.e., not decomposable
into parallel parts). It is also assumed that each machine can
handle only one task at a time (no multitasking).

We modeled different ETC matrices, as described in Sec-
tion 3.1. The entries of the ETC matrix represent the mean
execution time values of the different task classes on the
different machines. We modeled two types of environments;
the narrow and the broad environments. For the narrow
environment, the entries of the ETC matrix were uniformly
picked at random from the range [0.5, 4.0], whereas for the
broad environment they were uniformly picked at random
from the range [0.5, 9.5].

The values of the mean times to failure for the machines
were also randomly picked from a range depending on
the environment that was being modeled. For the narrow
environment, the range was [0.6, 1.0], whereas, for the
broad environment, the range was [0.6, 2.375]. Therefore,
the broad environment has wider ranges for the possible
values of the execution times of the tasks and the times
between failure for the machines in comparison to the
narrow environment.

Similar to the environment studied by Shestak et al. [9],
we model an environment with 200 tasks, six machines, and
five task classes. Each task is randomly assigned to one of
the five task classes. The ETC matrix has task classes along
its rows, and machines along its columns, and therefore
the size of the ETC matrix is 5 x 6. For each task, the
reward value was assigned by randomly picking an integer

in the range [1, 100]. All the tasks in a task class have a
common deadline. The deadline for a task class was set to
six times the longest execution time of this task class across
the machines.

There were three main parameters that we varied to alter
the environment being modeled. The first was whether or
not we allow failed tasks to return back to the batch for
further remapping. The second was whether we use the
narrow or broad environment. The final parameter was the
type of ETC matrix used. We modeled four types of ETC
matrices: constant, column-varying, inconsistent, and task-
mach-consistent. We ran tests with all combinations of these
various parameters.

6. Experimental Results and Analysis
The goal of this study is to compare and evaluate the

performance of the heuristics under a variety of scenarios
to be able to choose which heuristic to use for different
environments. Therefore, it serves to only compare the
relative performance of the heuristics with each other under
the various scenarios, as opposed to comparing the absolute
performance of a heuristic across the scenarios. It would also
be inaccurate to make such a comparison, because the dif-
ferent scenarios have different execution time characteristics
and different handling methods for dropped tasks. These can
result in different values for the total reward earned by the
same heuristic under these varied environments.

For each simulation case, 100 trials were performed and
the results were averaged and 95% confidence intervals were
calculated. For each trial, new values were used for the
following: the entries of the ETC matrix, reward values of
the tasks, and fail rates of the machines.

We observed that the Expected Reward heuristic did not
perform better than the Latest Expected Reward heuristic
for any of the test cases. The Latest Expected Reward
heuristic is able to use the most recent information to
its advantage while calculating the probability of a task
successfully completing. The significant benefit earned by
using Equation 2 as opposed to Equation 1 comes from the
fact that we are able to factor out the current machine from
the summation, thus avoiding distorting the probability of
failure for this first mapping event.

From our experiments, we also observed that the Latest
Expected Matching heuristic performed better than both the
Matching and the Expected Matching heuristics. Therefore,
in Figure 2 we only show the results for the Reward, Latest
Expected Reward, and Latest Expected Matching heuristics.
Each of these three heuristics perform better than the other
two heuristics for at least some of the environments.

Figure 2 shows the results for the Reward, Latest Expected
Reward, and Latest Expected Matching heuristics for the
various types of environments that we modeled. Figures
2(a) and 2(b) show results from the case where re-mapping
of failed tasks is allowed. Figures 2(c) and 2(d) shows
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Fig. 2: Results showing the total reward earned by the Reward, Latest Expected Reward, and the Latest Expected Matching
heuristics in (a) the narrow environment with re-mapping allowed, (b) the broad environment with re-mapping allowed, (c)
the narrow environment with no remapping, and (d) the broad environment with no remapping. The results are averaged
over 100 trials and the error bars show 95% confidence intervals.

results with the case where each task can be mapped to a
machine only once. Figures 2(a) and 2(c) have results from
the narrow environment. This determines the ranges of the
mean execution times of the tasks and the mean fail times of
the machines. Figures 2(b) and 2(d) show results for the case
with the broad environment. For each of these charts, along
the independent axis are the results of the three heuristics
for the various types of ETC matrices that we modeled,
i.e., constant, column-varying, inconsistent, and task-mach-
consistent. It is worth noting that our goal will be to compare
the relative performance of the three heuristics for any given
scenario (i.e., comparing the bars within the set of three) as
opposed to comparing the results across scenarios.

The Reward heuristic performs the best among the three

heuristics when we have a completely homogeneous environ-
ment (i.e., modeled by the constant ETC matrix) irrespective
of whether or not tasks are allowed to come back, and
whether we use the narrow or the broad environment. Note
that in the case when tasks are not allowed to come back
(Figures 2(c) and 2(d)) and when the constant or the column-
varying ETC matrices are used, the Latest Expected Reward
and the Reward heuristic have equal results. On average, the
total reward earned by the Reward heuristic was at least a
45% improvement over that earned by the Latest Expected
Matching heuristic when the constant ETC matrix was used.
This can be attributed to the fact that the Reward heuristic
directly optimizes for reward, and in an environment where
all tasks perform similarly across all machines, the benefits
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obtained by performing a matching of tasks and machines
is reduced.

In cases where the environment is heterogeneous (i.e.,
models of the ETC matrix other than constant), the Reward
heuristic beats the Latest Expect Matching heuristic when
failed tasks are allowed to come back for mapping events
(Figures 2(a) and 2(b)). This trend is reversed when failed
tasks are not allowed to come back (Figures 2(c) and 2(d)).
The Latest Expected Matching always does better than the
Reward heuristic (except the case with the constant ETC)
when failed tasks are not allowed to come back for re-
mapping. Also, in general the relative performance of the
Latest Expected Matching heuristic is better in such envi-
ronments. Unlike the other heuristics, the Latest Expected
Matching heuristic, tries to match “better” tasks (those
that have a higher value for expected reward) to “better”
machines (those that execute faster, and fail less often).
This is particularly helpful when re-mapping is not allowed,
because in this case, each task only gets one chance to
be mapped to a machine. The Latest Expected Matching
heuristic performs the best in this case because it holds on to
the better tasks until a good machine comes in for a mapping
event. The Reward (or the Latest Expected Reward) heuristic
simply assign the task with the highest reward (or expected
reward) to the next available machine.

The Latest Expected Matching heuristic performs better
than the Latest Expected Reward heuristic when the envi-
ronment uses the column-varying ETC matrix or the task-
mach-consistent ETC matrix and when failed tasks are not
allowed to re-map. This is because in such environments it
becomes easier for the Latest Expected Matching heuristic to
be able to designate some machines as being better than the
others. This helps the heuristic rank the machines in terms
of their “quality” and as a result provides better mapping
decisions. Moreover, when we use the broad environment as
opposed to the narrow environment, the relative performance
benefit of this heuristic increases. This is because there is
more variance in the performance of the machines and the
Latest Expected Matching heuristic is able to use that to its
advantage as it makes its decisions by ranking machines in
terms of their goodness. The more the difference between
the performance of the “good” and “bad” quality machines,
the more the benefit of using the Latest Expected Matching
heuristic.

When we use an inconsistent ETC matrix it becomes
hard for the Latest Expected Matching heuristic to rank
the machines. This is because in a highly inconsistent
heterogeneous environment, a machine may perform better
than another machine for one task, but may perform worse
for another task. This makes it harder for the Latest Expected
Matching algorithm to be able to rank the machines in a
global manner in terms of their “quality.” Therefore, we see
that the Latest Expected Reward heuristic always performs
better when we model the environment with an inconsistent

matrix. It performs much better than the Reward heuristic in
all inconsistent ETC matrix cases, because it calculates the
expected reward (viz. the probability of earning some reward
amount) by looking at the execution time values of the tasks.
The Reward heuristic fails to look at the heterogeneity of the
system while making its mapping decisions, and therefore
performs poorly.

In summary, the Latest Expected Matching heuristic per-
forms the best when the environment being modeled is
similar to the environment of the DLR theorem [14] (on
which this heuristic is based), i.e., re-mapping of tasks is
not allowed, and the machines can be ranked clearly in
terms of their performance (modeled by column-varying and
task-mach-consistent types of ETC matrices). The Reward
heuristic performs the best when the environment is com-
pletely homogeneous (modeled by the constant type of ETC
matrix), because the execution times are the same for all
tasks and machines. The Latest Expected Reward heuristic
performs the best compared to the other heuristics in a highly
heterogeneous environment (modeled by the inconsistent
type of ETC matrix) because it optimizes for not just the
reward value but also the likelihood of earning that reward.

7. Related Work
The scheduling problem has been widely studied in het-

erogeneous computing environments (eg., [15], [16], [17]).
It is important to make the resource allocations be fault
tolerant, especially in distributed and grid computing en-
vironments. Various techniques have been used to cope
with the ill-effects of failures of compute resources. Check-
pointing and rollback-recovery are common techniques used
to avoid having to restart failed tasks from the beginning
(e.g., [2], [3], [4], [5]) (as mentioned in Section 1). Another
method used to improve the reliability of the system, in
terms of increasing the chances of completing tasks, is to
run replicas of the tasks on multiple compute resources (e.g.,
[6], [4], [7], [8]).

Shestak et al. [9] addressed the problem of maximizing
the reward earned by the tasks in an environment where
the compute nodes may randomly fail. Their work used the
concepts of a theorem introduced by Derman et al. [14].
There have been other works on scheduling that look at
maximizing reward earned by the tasks [18], but they do
not model environments where the machines tend to fail.
Our study builds on the work done in [9] to perform a
comparative study of the performance of the heuristics under
a variety of system environments.

8. Conclusions and Future Work
The goal of this study was to be able to model and

characterize various system environments and gauge the
relative performance of fault-tolerant heuristics in these
environments. This study extends the work of Shestak et
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al. [9] by addressing a similar problem, but performing
extensive tests on a wide-range of environments. We also
modified and improved the prediction mechanism of the
Expected Reward and the Expected Matching heuristics by
using the latest information we have about the system. We
simulated a variety of environments by changing different
attributes associated with the environment. Our results show
that the Reward, Latest Expected Reward, and the Latest
Expected Matching heuristics have different strengths and
weaknesses, therefore performing better or worse depending
on the environment.

One direction for future work is introducing a delay
before a failed machine returns for a mapping event. This
will help us to more closely model a realistic environment.
Also, we may try to modify the Latest Expected Matching
heuristic to make it more heterogeneity-aware. It would also
be interesting to modify the workload to have tasks whose
reward values degrade with time, instead of having a fixed
reward value until a hard deadline.
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Abstract - As reconfigurable logic devices see increasing use 

in aerospace and terrestrial applications, fault tolerant 

techniques are being developed to counter rising susceptibility 

due to decreasing feature sizes. Applying fault-tolerance to an 

entire circuit  induces unacceptable area and time penalties, 

thus some techniques trade area for fault tolerance. Area-

Constrained Partial Fault Tolerance (ACPFT) is a 

methodology that explicitly accepts a device’s resources as an 

input and attempts to find a maximally fault-tolerant subset, 

but determining an optimal partition is still an open problem. 

While ACPFT originally used heuristics for subset selection, a 

modification called ACPFT-GA has been developed that uses 

genetic evolution to provide significantly better fault coverage 

in many applications. However, its running time is 

substantially longer than standard ACPFT and may be 

prohibitive. This paper presents a GPU-accelerated version of 

ACPFT-GA that has executed over 27 times faster than CPU 

versions, allowing ACPFT-GA to better scale to larger 

circuits. 

 

Keywords: Genetic algorithms, partial fault tolerance, 

reconfigurable logic, GPU programming 

1 Introduction 

Two options for a system’s processing device are general 

purpose processors (GPU) and application specific integrated 

circuits (ASIC). The GPU offers great flexibility but low 

relative computational power. An ASIC can be designed to 

provide the greatest processing capability, however this 

requires a lengthy and very expensive design process, and it is 

extremely costly for small production runs. A reconfigurable 

logic device such as a field-programmable gate array (FPGA) 

offers an attractive third alternative. They provide high levels 

of computational power like ASICs, yet their ability to be 

reprogrammed gives flexibility like GPUs. They are off-the-

shelf devices and therefore do not have the lead times of 

ASICs. These features make them common choices in the low 

production runs of aerospace applications, and they are 

increasingly used in terrestrial systems. However, they may 

contain millions of bits to store configurations, and this makes 

them more susceptible to faults caused by electromagnetic 

radiation than GPUs and ASICs. Aerospace systems are 

currently concerned with errors due to single event upsets 

(SEUs), and as transistor feature sizes continue to shrink, 

terrestrial systems are also becoming wary[1, 2].  

Many applications using reconfigurable logic are not safety 

critical. A failure can be tolerated by ignoring the error and 

continuing, such as in video playback. In other cases, the 

operation can be reattempted, such as retransmitting dropped 

packets in network communication. However, a reduction of 

faults would clearly improve the user experience. Since 

systems implemented with reconfigurable logic invariably 

leave a portion of the device unused, these extra device 

resources can be leveraged to provide some level of partial-

fault tolerance and reduce the fault rate. The problem of 

applying partial fault-tolerance can then be formulated as 

follows. The logic cells contained with the original circuit 

must be partitioned into a protected subset and non-protected 

subset such that the fault-coverage is maximized given a set 

amount of additional logic resources. With current logic 

devices having hundreds of thousands of logic cells, this 

presents a gigantic solutions space.  

A method of partial fault tolerance called Area-Constrained 

Partial Fault Tolerance (ACPFT) has been developed that 

accepts a circuit’s available area as an input and finds a 

maximally fault-tolerance version of the circuit. This initial 

implementation utilizes difference heuristics to determine a 

partition, and it generally executes very quickly. A second 

version called ACPFT – Genetic Algorithm (ACPFT-GA) uses 

genetic evolution to explore the solution space. It was found to 

produce significantly more fault-tolerant circuits in expected 

application spaces, but the running times of ACPFT-GA can 

be two orders of magnitude larger than ACPFT’s. To provide 

the fault coverage of ACPFT-GA with a more acceptable 

execution time, the research presented here accelerates 

ACPFT-GA using NVIDIA CUDA, which is a popular 

programming extension for running scientific computations 

directly on massively-parallel graphics processors. This results 

in an average speed-up of around 17 to 18 times over standard 

ACPFT-GA with some cases showing speedups of over 27 

times.  

This paper is organized as follows. Section 2 reviews the 

key concepts of ACPFT-GA, other efforts to accelerate genetic 

algorithms with CUDA, and the key considerations when 

developing with CUDA. Section 3 describes the 

implementation of ACPFT-GA, the tool chain, and the 

particulars of casting it as a CUDA-based algorithm. Section 4 

presents the experimental results, and Section 5 concludes the 

paper. 

GPU Acceleration of Genetic Algorithms for Subset 

Selection for Partial Fault Tolerance  

D. Foster 

Electrical and Computer Engineering Department, Kettering University, Flint, MI, USA 
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2 Background 

2.1 Partial Fault Tolerance 

Since this paper focuses on the acceleration of ACPFT-GA 

and not the introduction of ACPFT-GA itself, readers are 

referred to [3] and [4] for the justifications of partial fault 

tolerance in reconfigurable logic. These summarize the 

advances in partial fault tolerance along with alternatives to 

ACPFT such as the BYU-LANL partial TMR tool [5], partial 

error masking [6], selective TMR [7], and Automatic Insertion 

of Partial TMR [8] 

 Triple modular redundancy (TMR) remains the standard 

fault-tolerance method for FPGAs [9]. It can be applied to 

circuits regardless of the function and of the logic cells used, 

and it often adds a minimal delay compared to other methods. 

TMR almost completely protects a circuit against a single 

fault, although voting logic may still be susceptible. However, 

it more than triples the circuit's size with a corresponding 

increase in power use. [10].  These advantages make TMR the 

most common basis for partial fault-tolerance.  

 Area-Constrained Partial Fault Tolerance is a technique that 

uses partial TMR to reduce the circuit area susceptible to faults 

even if the majority voters are not considered ideal, meaning 

that they can suffer faults also [3]. Ideal voters is an 

assumption often used for simplification in other methods 

because when a large subset of the circuit is being protected, 

the cross-sectional area of the majority voters is significantly 

smaller than the tripled area, perhaps by several orders of 

magnitude, and the rate of faults in the voters is considered to 

be negligible. This assumption is invalid in a fine-grained 

approach where the protected area and majority voters have 

comparable areas. ACPFT was originally designed to use 

several heuristics and metrics to determine a maximally fault-

tolerant partition of a circuit’s logic cells. 

 ACPFT maps well to genetic algorithms since it is similar to 

the familiar knapsack problem. In knapsack, there is a set of 

items, each with a weight and a value, and a knapsack that can 

hold a fixed weight. The optimization problem is to select a 

subset of items that can be carried in the knapsack with the 

maximum total value. The additional area of the FPGA relates 

to the knapsack, and the logic cells with their areas and 

sensitivities to faults relate to items with weight and value. 

However, the fault-tolerance problem is more complicated 

since the additional area required by each logic cell is not a 

constant value. It is a function of the other cells being 

protected. Previous research demonstrates that even simple 

genetic algorithms can create more fault-tolerant partitions 

than heuristic methods under common conditions, namely that 

the amount of additional resources available for fault tolerance 

is less than the size of the unprotected circuit [4]. 

2.2 Fundamentals of CUDA 

CUDA is an extension to several common programming 

languages, prominently C and C++, which requires an 

NVIDIA-based graphics processor for execution. NVIDIA 

GPUs are widely deployed and thus represent a very common 

computing platform. For easy scalability, NVIDIA cards are 

designed around a generalized processing unit called a 

streaming multiprocessor (SM). This allows the performance 

of CUDA applications to scale based on the number and 

hardware implementation of the SMs contained on a given 

card. Details of NVIDIA GPUs can be found at [11]. 

Since the underlying hardware architecture of a GPU is 

drastically different than a CPU, algorithms must be crafted 

using several critical concepts in order to make efficient use of 

the GPUs computational power [12]. Since GPU-based cards 

have either a small cache system or none at all, they rely on 

massive thread parallelism to hide memory access latency by 

executing a different group of threads when one group block 

on a memory operation. Therefore, an algorithm must be able 

to extract sufficient parallelism from a problem to occupy the 

GPU’s thread slots and mask this latency. Second, main 

memory accesses are efficient only when reading from 

contiguous memory locations. Data structures and memory 

accesses should be structured to use this coalesced pattern. 

Third, a GPU offers several different types of physical 

memory, such as the large global RAM, small local shared 

memory, constant memory, per-thread registers, and so on. 

Careful design should use the most appropriate memory type. 

Finally, an NVIDIA GPU executes threads in groups called 

warps. For each clock cycle, all of the threads in a warp or 

half-warp must either execute the same instruction or do 

nothing. When threads within a warp execute different code, 

called divergence, more and more threads will remain idle per 

clock cycle, and the processing power of the GPU is under-

utilized. 

With well-crafted algorithms designed with the above 

considerations, GPUs can potentially execute algorithms 

significantly faster than CPUs. GPUs can also solve problems 

using an estimated one tenth to one twentieth of the power 

required by traditional supercomputing systems [13], thereby 

reducing costs.  

2.3 CUDA as a Platform for Evolutionary 

Algorithms 

CUDA is already established as a popular platform for 

evolutionary computing. Examples can be found for simple 

genetic evolution [14] and differential evolution [15]. Ant 

colony optimization has also been explored [16-18] as well as 

particle swarm optimization [19-21].  

In many evolutionary techniques, the execution time to 

evaluate the fitness function is a significant fraction of the 

algorithm’s overall time, as is the case with ACPFT. Thus, 

even though there have been many implementations of 

evolutionary algorithms using CUDA, and the common 

operations are becoming well-understood, it is still crucial to 

explore efficient implementations of new, unique fitness 

functions and common evolutionary operators that support 

them.  
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3 Implementation 

3.1 Genetic Algorithm Structure 

The solution to the partial fault tolerance partitioning 

problem is coded as an ordered array of bytes in which each 

byte corresponds to a specific logic cell in the circuit. The 

byte’s value is ‘0’ if it is in the non-protected partition and ‘1’ 

if it is in the protected partition. One byte is used per gene in 

the chromosome instead of one bit since other values are used 

temporarily during the constraint satisfaction check described 

later.  

The algorithm randomly selects some chromosomes for 

mutation, choosing those with higher fitness functions 

proportionally more often. Each gene is examined for random 

mutation. Mutation results in the binary value being flipped. 

For crossover, chromosomes are selected in pairs. One gene is 

randomly selected as the location for single point crossover. 

Two new chromosomes are created from each pair selected. 

Mutation is not performed on chromosomes created by 

crossover. 

The fitness function is simply the number of 1’s in the 

chromosome, representing the number of logic cells that are in 

the protected subset. Previous research has shown that this 

correlates very highly with the actual amount of fault coverage 

provided. However, the complexity in ACPFT-GA is that the 

chromosome must represent a circuit that can fit within the 

available logic resources. Therefore, the chromosome is 

processed such that it represents a circuit with ACPFT 

correctly applied. In this format, a gene is ‘0’ if it is 

unprotected, ‘1’ if it is a protected and tripled cell, and ‘2’ if 

the cell is tripled and connected to a majority voter. With this 

format, the amount of logic resources can be calculated and 

compared to those available. If the resulting circuit violates the 

constraints, the chromosome’s fitness is set to a value lower 

than any possible valid chromosome. It is not culled since 

further evolution may result in a valid chromosome again.  

3.2 Tool Chain 

Each circuit is represented in a net list in the common EDIF 

format. ACPFT was written in Perl to accommodate reading 

and processing this input file and altering it for the partially 

protected output file. When using heuristics, the partitioning is 

processed with the Perl script. If the genetic evolution is 

selected, the ACPFT Perl script parses the EDIF net list 

outputs a condensed version of the net list in a text file. A C++ 

program then imports this formatted net list, performs the 

genetic evolution with or without using a GPU, and outputs the 

best chromosome. The ACPFT in turn uses this chromosome 

to partition the circuit and creates the proper modifications of 

the EDIF net list that can then be implemented on an FPGA. 

The script also generates a user constraint file to prevent the 

FPGA tools from removing the redundant logic cells. 

Currently, the ACPFT tools are run manually, but they are 

designed such that they could be easily inserted into the 

standard FPGA design flow and automated. 

3.3 CUDA Implementation 

The chromosomes are stored in a 2-dimenional array of 

characters in which each row corresponds to a complete 

solution. The array contains enough rows to hold all the 

members of the current generation and those created by 

mutation and crossover for the next. Once this entire array has 

been scanned to determine which chromosomes should be 

carried into the next generation in order of decreasing fitness 

function, the appropriate chromosomes are copied into a 

second identical array, and this second array is then the source 

of members for the next loop. 

The GPU’s constant memory was used to store many 

invariants of the net list, such as logic cell type, numbers of 

destination cells, and lists of destinations cells. It was also used 

to hold many kernel parameters that are fixed for a given 

evolution. None of these values are required to be in constant 

memory for the algorithm to function, so they could be moved 

to global memory if the circuit is too large for constant 

memory. 

The pseudo code below shows the basic steps that are 

performed per generation by ACPFT-GA.  

 

1. Generate array of pseudo-random values 

2. Randomly select chromosomes for mutation and 

crossover 

3. Create new chromosomes by mutation 

4. Create new chromosomes by crossover 

5. Calculate fitness function and validate constraints 

6. Reorder the array of chromosomes. 

 

CUDA has a random number library called cuRAND that 

has a CPU-only version. It is used in the CPU implementation 

so that both the CPU and GPU versions use the same pseudo-

random sequences and generate identical output.  Also, the 

cuRAND number generator is effective when generating large 

batches of values, so it is called once at the beginning of the 

loop to create all random values for that iteration. 

In step 2, some random values are used to select 

chromosomes for steps 3 and 4. The fitness values of the 

chromosomes are summed, and each chromosome is assigned 

a range of values equal to its fitness. Each random number is 

scaled to the sum of fitness values, and then it is compared to 

the chromosomes’ ranges to determine which is selected. In 

the GPU version, this operation is performed on the GPU. The 

kernel is written so that each block is 256 threads, each one 

converting one floating point random number to an integer 

corresponding to a chromosome. The number of blocks 

required is the ceiling of the number of chromosomes needed 

in the next two steps divided by 256. With the values tested, 

there were far too few blocks to fully occupy the card, but it is 

more efficient than transferring data to the CPU for 

computation. 

 In step 3, the algorithm selects a chromosome based on the 

indices from step 2, and it checks each gene for a mutation 

using random values still remaining from step 1. On the GPU 

implementation, one block is launched for each chromosome 

being mutated. The block size is set to 256, with each thread 

12 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



 

 

checking every 256
th

 gene for mutation. This allows the SM of 

a revision 2.0 GPU to hold 6 blocks, and the number of 

blocks/chromosomes needed to fully utilize the card is only a 

few dozen to a couple hundred. 

 The crossover step is similar to the mutation step, using 

indices from step 2 and the remaining random values from step 

1. A pair of chromosomes is handled by one block, and each 

block uses 256 threads, again with each thread processing 

every 256
th

 gene. Twice the number of chromosomes is needed 

to occupy the GPU than in step 3, but this number was easily 

reached.  

 Step 5 is by far the most complex. At this point, a 

chromosome contains only 1’s and 0’s representing the 

protected and non-protected subsets of logic cells. In ACPFT, 

each protected cell must be tripled, requiring three of that type 

of logic cell. For each tripled cell, all of the cells that use its 

output and are still classified as non-protected must be tripled 

and then combined with a majority voter. This step is 

performed first and is designed for as many coalesced accesses 

as possible, although some are unavoidable when examining a 

cell’s destinations. 

 Once cells have been promoted to tripled and voted, each 

cell with a voter is examined to see if all destination are tripled 

or voted. If so, the logic cell can be converted to a tripled cell, 

increasing the size of the protected subset and actually freeing 

some resources used for voters. This step also has coalesced 

and non-coalesced accesses. 

 After this step, the fitness function is calculated with a 

reduction from the CUDA thrust library. The sum consists of 

the sensitivities for all cells that are in the protected subset, 

ignoring cells that are single or tripled. Next, the constraint 

condition is checked. Each logic cell adds a count to the logic 

cells used based on its state. Single cells add one to the like 

type, tripled cells add three to the like type, and voted cells add 

three to the like type and one to the type used for voters. These 

counts are contained in shared memory and require atomic 

addition instructions to avoid races. 

 Once all of the logic cells are accounted for, one thread 

compares the needed resources to the available resources. If 

the constraints aren’t met, the fitness value is adjusted to 1.0, 

so that the invalid chromosome still has a small chance of 

being selected in the next generation. Further mutation and 

crossover may again result in a valid cell. 

 The CUDA thrust library is used in step 6. The fitness 

values are sorted and the new chromosome order is determined 

using these optimized sorting functions. Another thrust 

function calculates the prefix sum used for the chromosomes 

ranges. Finally, a kernel uses the new order to copy the best 

chromosomes from the current chromosome array into the 

second array, and the pointers to these arrays are swapped in 

preparation for the next generation. 

4 Testing and Results 

ACPFT-GA was tested using the alu4, apex2, and pdc 

circuits from the ACM/SIGDA "Big 20" benchmarks. These 

circuits were chosen since they show a range of circuit sizes 

with 597, 1056, and 1328 logic cells respectively. They have 

also been used in previous research, and data exists for 

comparisons. 

As with previous ACPFT experiments, the performance 

given different amounts of available resources is accomplished 

by creating an array of theoretical FPGAs of varying sizes. 

The number of logic cells in each circuit is used as a “perfect-

fit” FPGA. Larger devices are emulated by increasing the 

number of each resource by a constant multiplier and rounding 

down. This method created up to 23 theoretical FPGAs, from 

10% to 230% in increments of 10%.  Between 210% and 

230% depending on the test circuit, there were sufficient 

resource for full TMR, and partial fault-tolerance would no 

longer be necessary.  

The genetic algorithm parameters were selected to match 

those used in [4]. The test used a set of 4096 chromosomes. 

For each circuit, the mutation factor was the reciprocal of the 

number of logic cells. In each generation, the top 256 

chromosomes were carried over into the next generation. 1920 

were selected using elitism for mutation, and each gene was 

checked for a mutation. The remaining 1920 chromosomes 

were generated by crossover. Mutations were not applied to 

chromosomes created through crossover. Like the previous 

work, each initial chromosome was initialized to a string of 

"0"s, representing a fully unprotected circuit. Three more 

experiments were performed using the output of a heuristic 

method from previous research to initialize the chromosomes. 

The fanout method was chosen since it yielded very good 

results and had a low execution time. For the second 

experimental setup, all additional resources were supplied to 

the fanout method, and then the result was refined with the 

genetic algorithm. In the third and fourth setups, the fanout 

method was supplied 10% fewer and 20% fewer resources 

than available respectively. In these cases, there were still 

some unallocated logic cells when the genetic algorithm was 

applied.  

 The test computer used a Core i7 processor at 2.8 GHz, 6 

GB of RAM, a GTX 480 graphics card, and CUDA SDK 4.0. 

ACPFT-GA was run ten times on each simulated FPGA using 

just a CPU and then using the GPU. Each test was allowed to 

run for 1000 generations. The times required for mutation, 

crossing, and calculating the fitness functions and constraint 

conditions were logged for all runs. 

The mutation time, crossover time, fitness function and 

constraint checking time, and total execution time are shown in 

the following tables. Times are shown for the CPU-only 

version, the GPU accelerated version, and the speedup of the 

GPU version relative to the CPU version. The data for alu4, 

apex2, and pdc are shown in Table 1, Table 2, and Table 3 

respectively for the tests that begin with no initialization, i.e. 

all available resources are unused and selected only by the 

genetic algorithm. The data for tests in which 20% of the 

resources are left unused, and the chromosomes are initialized 

with the output of ACPFT using fanout are shown in Table 4, 

Table 5, and Table 6 for alu4, apex2, and pdc respectively. 

The data for the other two tests are not shown due to space 

limitations, but the results are very comparable to the 20% 
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used tests. These tables show results from 10% additional 

resources to 230% additional resources. 

 The data shows several patterns. First, the amount of time 

required for mutation and crossover remains fairly fixed for 

each circuit over the range of additional resources. This is 

expected, since the work performed for the mutation and 

crossover steps depends on the number of genes and the 

number of chromosomes. From circuit to circuit, the  

differences in mutation times and crossover times for both 

versions were smaller than the difference in circuit sizes. This 

indicates that these steps are communication bound, as is 

expected. 

 The fitness and constraints checking execution time shows 

much more variation. The pattern of this variation is shown in 

Figure 1 for the pdc circuit with no initialization accelerated 

with the GPU, and it is representative of graphs of other tests.  

This graph demonstrates that the amount of time required for 

the fitness function is very dependent on the amount of 

additional resources made available. This pattern is logical. To 

evaluate the fitness function, each cell that is within the 

protected subset must be examined to triple and vote its output 

cells, followed by examing voters to see if they can be 

removed. As the amount of available resources increases, the 

number of cells within the protected partition increases, and 

thus the execution time required also increases. 

The data shows that the mutation and crossover speedups are 

comparable between circuits. The tables also demonstrate that 

the crossover time consumes a few percent of the total time, 

the mutation time is usually within 10% to 20% of the 

execution time (with lower percentages as more resources are 

made available), and the fitness function consumes the 

majority of the processing time. Therefore, the total speedup 

depends largely on the speedup of the fitness function. The 

speedups between circuit is also very similar. All three circuits 

were implemented with the same time of logical device and 

had about the same average fanout. Therefore, the amount of 

work per logic cell in the protected subset was roughly the 

same for all three circuits. 

 

 
Figure 1 Per Generation Execution Time for the pdc Circuit 

using a GTX 480 and 20% Unused Additional Resources 

 

Table 1 Performance of alu4 with no initialization 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 15,874.2 ms 5,874.8 ms 55,103.7 ms 77,068.7 ms 

Max. time w/CPU 17,267.5 ms 7,044.1 ms 89,340.1 ms 113,767.3 ms 

Ave. time w/CPU 16,641.1 ms 6,478.9 ms 76,733.0 ms 99,968.7 ms 

Min. time w/GPU 856.4 ms 123.7 ms 3,011.3 ms 5,081.7 ms 

Max. time w/GPU 1,134.8 ms 185.1 ms 7,093.1 ms 19,412.1 ms 

Ave. time w/GPU 1,068.7 ms 153.9 ms 5,504.3 ms 12,742.3 ms 

Min. Speedup 14.0 32.1 12.4 13.4  

Max. Speedup 20.0 54.1 17.3 17.5 

Ave. Speedup 15.6 42.5 14.3 15.1 

 

Table 2 Performance of apex2with no initialization 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 25,186.7 ms 7,774.0 ms 108,212.6 ms 144,558.5 ms 

Max. time w/CPU 26,760.9 ms 8,917.8 ms 158,688.5 ms 194,473.5 ms 

Ave. time w/CPU 27,102.6 ms 8,420.2 ms 142,759.2 ms 179,140.1 ms 

Min. time w/GPU 1,158.2 ms 154.6 ms 4,481.6 ms 8,743.7 ms 

Max. time w/GPU 1,340.5 ms 232.3 ms 11,750.8 ms 47,051.5 ms 

Ave. time w/GPU 1,243.5 ms 194.2 ms 8,850.8 ms 29,703.4 ms 

Min. Speedup 19.5 36.8 12.9 14.0 

Max. Speedup 22.4 56.4 23.3 24.2 

Ave. Speedup 21.8 43.8 17.1 18.2 
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Table 3 Performance of pdc with no initialization 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 31,728.3 ms 8,887.0 ms 131,546.4 ms 172,293.0 ms 

Max. time w/CPU 32,522.6 ms 9,804.8 ms 194,660.3 ms 236,821.8 ms 

Ave. time w/CPU 32,185.7 ms 9,396.8 ms 174,245.2 ms 215,949.1 ms 

Min. time w/GPU 1,243.5 ms 177.4 ms 4,865.0 ms 10,802.9 ms 

Max. time w/GPU 1,398.7 ms 245.9 ms 16,053.1 ms 70,709.3 ms 

Ave. time w/GPU 1,340.3 ms 206.6 ms 12,231.8 ms 42,948.1 ms 

Min. Speedup 23.0 38.5 12.0 13.3 

Max. Speedup 25.7 53.9 27.0 27.1 

Ave. Speedup 24.0 45.9 15.1 16.4 

 

 

Table 4 Performance of alu4 initialized with fanout heuristic and 20% area free 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 16,219.7 ms 6,019.2 ms 60,460.7 ms 82,970.3 ms 

Max. time w/CPU 20,661.1 ms 9,091.9 ms 93,772.2 ms 123,792.7 ms 

Ave. time w/CPU 19,772.6 ms 8,386.4 ms 84,708.5 ms 113,263.4 ms 

Min. time w/GPU 1,039.0 ms 132.1 ms 3,554.2 ms 6,502.0 ms 

Max. time w/GPU 1,052.8 ms 154.2 ms 6,799.4 ms 11,178.7 ms 

Ave. time w/GPU 1,044.1 ms 139.3 ms 5,438.7 ms 8,500.5 ms 

Min. Speedup 15.5 43.4 13.6 15.2 

Max. Speedup 19.7 66.0 19.2 20.3 

Ave. Speedup 18.9 60.2 16.0 17.3 

 

 

Table 5 Performance of apex2 initialized with fanout heuristic and 20% area free 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 25,970.9 ms 8,020.1 ms 120,902.6 ms 156,958.0 ms 

Max. time w/CPU 28,001.2 ms 9,104.0 ms 146,805.2 ms 182,581.4 ms 

Ave. time w/CPU 26,439.2 ms 8,570.1 ms 137,966.6 ms 173,902.9 ms 

Min. time w/GPU 1,109.1 ms 111.0 ms 5,639.5 ms 13,036.7 ms 

Max. time w/GPU 1,298.5 ms 158.0 ms 11,483.9 ms 22,720.0 ms 

Ave. time w/GPU 1,164.5 ms 135.2 ms 8,901.9 ms 15,913.5 ms 

Min. Speedup 20.5 55.9 12.5 14.0 

Max. Speedup 23.9 78.6 21.6 22.9 

Ave. Speedup 22.7 63.9 16.1 17.6 

 

 

Table 6 Performance of pdc initialized with fanout heuristic and 20% area free 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 31,476.9 ms 8,633.9 ms 145,464.6 ms 187,116.4 ms 

Max. time w/CPU 32,764.1 ms 9,961.1 ms 186,007.6 ms 228,721.8 ms 

Ave. time w/CPU 32,211.5 ms 9,339.5 ms 172,327.6 ms 214,013.6 ms 

Min. time w/GPU 1,277.9 ms 145.2 ms 8,104.6 ms 14,250.6 ms 

Max. time w/GPU 1,325.3 ms 197.7 ms 15,348.0 ms 29,715.3 ms 

Ave. time w/GPU 1,296.7 ms 173.9 ms 12,094.0 ms 22,916.1 ms 

Min. Speedup 23.9 43.7 12.1 13.6 

Max. Speedup 25.5 65.8 17.9 19.6 

Ave. Speedup 24.8 54.2 14.7 16.1 
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5  Conclusions 

This research presents a significant acceleration of the 

partial fault tolerance method area-constrained partial fault 

tolerance using genetic evolution by employing NVIDIA 

CUDA to execute the algorithm on massively parallel 

graphical processing units. This speed up allows this method 

to be much more efficiently applied to larger circuits, and it 

will benefit from additional acceleration as the processing 

power of graphics processors tracks that of reconfigurable 

logic devices. 
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Abstract— As the mean time between failures has decreased, 

applications should be able to handle failures avoiding 

performance degradation if possible. This work is focused on 

a decentralized, scalable, transparent and flexible fault 

tolerant architecture named RADIC an acronym for 

Redundant Array of Distributed and Independent Controllers. 

As MPI is a de facto standard used for communication in 

parallel computers, RADIC have been included into it. 

RADIC’s default behavior is to restart failed processes on 

already used nodes, overloading them. Moreover it also could 

be configured to keep the initial process per node ratio, 

maintaining the original performance in case of failures. In 

this paper we propose a transparent and automatic 

management of spare nodes in order to avoid performance 

degradation and to minimize the mean time to recovery – 

MTTR when using them.  Our work provides transparent fault 

tolerance for applications that are written using the MPI 

standard. Initial evaluations show how the application 

performance is restored as it used to be before a failure, 

minimizing the MTTR by managing faults automatically. 

Keywords – RADIC, MPI,  Fault Tolerance, Decentralized, Spare 

Nodes,  Uncoordinated Checkpoint. 

1  Introduction 

Considering the many long-running parallel applications 
that are executed on High Performance Computer – HPC-  
clusters and the increase in the failure rate [1] on these 
computers, it becomes imperative to make these applications 
resilient to faults.  

Hardware failures may cause unscheduled stops to 
applications. If there are not any fault tolerant mechanisms to 
prevent it, these applications will have to be re-executed from 
the beginning. If a fault tolerant mechanism is used, failures 
could be treated. In such environment an automatic and 
application transparent fault tolerance mechanism is desirable. 
It could also reduce the complexity of applications 
development. Failure treatment and management are crucial to 
maintain the performance of HPC applications that are 
executed over several days. 

One of the most commonly used approaches to deal with 
failures in HPC parallel applications is the rollback-recovery 
approach based on checkpoint and restart protocols. Rollback-

recovery protocols periodically save processes states in order 
to rollback in case of faults. 

Checkpoints could be performed using a coordinated or 
uncoordinated checkpointing protocol. Coordinated 
checkpointing protocols create a consistent set of checkpoints 
by stopping all the processes in the parallel application in a 
consistent state and then taking a snapshot of the entire 
application. This approach minimizes the overhead of fault 
free execution, but in case of faults, all processes (even those 
that have not failed) must rollback to the previous consistent 
saved state. All the computation time used to progress the 
parallel application execution before the fault and after the last 
snapshot is loosed.  

In uncoordinated checkpointing protocols, each process is 
checkpointed individually, and it could happen in different 
moments of the execution. Thus, there is not a global 
consistent state. The advantage of this method is that in case of 
faults only the affected processes must rollback. In order to 
avoid the domino effect [2], this approach should be combined 
with an event logging protocol. 

When a parallel application is executed, we usually seek 
for executions with an optimal amount of resources to 
maximize the speedup or efficiency. When a failure occurs 
and the application loses some resources all the initial tuning 
effort is loosed. 

In this paper we present new RADIC [3] enhancements to 
avoid performance degradation when failures occur. The 
objective is achieved using automatic spare nodes 
management to maintain the initial amount of resources when 
node failures occur. We also try to minimize the MTTR after a 
failure is detected by managing faults without human 
intervention. For that reason, every fault tolerant tasks and 
decisions are made automatically. The RADIC architecture 
has been integrated into the Open MPI library to allow 
execution of real scientific parallel applications and to be 
application-transparent. 

Our approach considers the consequences that node 
failures bring to parallel applications. A physical failure 
affects computing components. If these components are not 
replaced properly there is a loss in computational capacity. 

Figure 1. RADIC components 
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Running a parallel application with fewer resources than the 
optimal, causes this degradation. 

This work is presented and divided as follow: section 2 
describes the RADIC architecture, its components and how it 
operates to protect an application against failures. In section 3 
we introduce the related work on fault tolerant systems. The 
section 4 presents the integration of RADIC into the Open 
MPI library to provide user-transparent fault tolerance. Next, 
section 5 illustrates the initial results obtained with the 
described implementation. Finally, section 6 presents the 
conclusions and future lines. 

2 RADIC Architecture 

RADIC [3] is a fault tolerant architecture for message 
passing systems based on rollback-recovery techniques. These 
techniques rely on uncoordinated checkpoint protocol 
combined with a receiver based pessimistic event log [4]. The 
approach that was chosen does not need any coordinated or 
centralized action or element to carry out their fault tolerance 
tasks and mechanisms, so application scalability depends on 
the application itself. 

 The RADIC architecture acts as a fault tolerant layer 
between the MPI standard and the parallel machine (fault 
probable). This fault tolerant layer provides a fault-resilient 
environment for parallel application even when the application 
runs over a fault-probable parallel machine. 

Our work is focused on providing an application-
transparent fault tolerant middleware within a message passing 
library, specifically, Open MPI [5]. 

Critical data such as checkpoints and event logs are stored 
in a different node than the one in which the process is 
running. Processes that were residing in a failed node will be 
restarted in another node from their latest checkpoint, and will 
consume the event log in order to reach the before fault state. 
RADIC policies provide a transparent, decentralized, scalable 
and flexible fault tolerance solution. 

2.1 RADIC components 

RADIC provides fault tolerance based on two main 
components: protectors and observers. In the Figure 1 we 
illustrated computing nodes (Ny), application process (Px), the 
protectors (Ty), and the observers (Ox) where the sub-index x 
represents the process number and y represents the node 
number. Protectors and observers work together with the aim 
of building a distributed fault tolerant controller. Both 
components are described below: 

 Observers: are responsible of process monitoring and 
fault masking. Each application process has one 
observer attached to it. The observers performs event 
logging of received messages in a pessimistic manner, 
they also take periodic checkpoints of the process to 
which it is attached. Checkpoints and logging data are 
sent and stored in their protectors located in another 
node (Figure 1). During recovery, the observers are in 
charge of processing with the event log, replaying 
them in order to reach the same state before fault. 

 Protectors: on each node there is a protector running, 
their main function is to detect node failures via a 
heartbeat/watchdog protocol. Protectors also store 
checkpoints and event logs sent by observers. When a 
failure occurs, the protector has to restart the failed 

processes that it protects; they also have to reestablish 
the heartbeat/watchdog protocol since it gets broken 
due to node failures.  

2.2 RADIC Operation 

Fast failure detection is one of RADIC priorities, since it is 
one of the variables that affect the MTTR. RADIC first 
detection mechanism is a heartbeat/watchdog protocol that 
allows protectors to learn about neighbor’s protectors faults. 

As every communication goes through the observers, they 
have absolutely control of messages exchange between peers. 
Observers can also detect and mask faults. Each protector 
maintain a data structure called radictable, where each entry 
(an entry per process exists in the application) of the structure 
is composed of a process id, the URI of the process, URI of its 
protector, and a unique clock of received and sent messages. 
When a process fails and get restarted, the observers consult 
the radictable in order to find about the node where the 
process has been recovered by asking the process’s protector.  
The protectors updated the radictable on demand when they 
identify any processes failures. 

In the Figure 2a it is possible to see a fault free execution 
using RADIC without spare nodes support.  

When a failure occurs (Figure 2b), the parallel application 
execution will continue with one less node. The node failure is 
detected by the heartbeat/watchdog mechanism. After the 
failure, the heartbeat/watchdog mechanism is reconstructed, 
and T4 indicates T2 as the new protector of P4 (Figure 2c). O4 
needs to take a checkpoint of P4, because its latest checkpoint 
gets lost when T3 fails. T2 restarts and re-executes P3(Figure 
2d), and also will indicate that the new protector of P3 is T1. 
Then O3 will take a checkpoint of P3 and send the data to T1. 
Finally, O3 we erase old message logs. 

The protectors have two operating modes: active or 
passive. Active is when they form part of the detection scheme 
and there are some application processes running on its node 
(all nodes of Figure 2). Protectors may be in a passive state 
when they are running in a spare node, this is a low 
consumption state (to avoid node and network overload).  

2.3 Spare Nodes in RADIC 

When a failure occurs and the failed process is restarted in 
the same node its protector is running, if this node already has 
application processes running on it, the node becomes 
overloaded. This could slow down the execution of both 

Figure 2. a) Fault free execution. b) Failure in Node 3.                                 

c) Heartbeat/watchdog restoration and assignation of a new protector to P4.   
d) Restart of the process P3 in node N2. 
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processes. As a consequence of this, the performance of the 
entire application could be affected, increasing its execution 
time. 

One method to maintain the initial performance in such a 
scenario is to use spare nodes to restart failed processes [6] 
instead of overloading the non-failed nodes. Spare nodes are 
that initially are not used by the parallel application. 

In the Figure 3a, we can observe the execution of a parallel 
application using 4 nodes and having 1 spare node (NS). 
When a failure occurs in the node N3 (Figure 3b) the protector 
T2 will detect the failure of protector T3 and it consult a table 
to find the information about the spare nodes location and state 
(sparetable).  

The sparetable (Table 1) is replicated among all 
protectors. Spares are assigned as failures occur, and the 
replicated information is updated on demand, so all the 
operations are made in a decentralized and transparent 
manner. Eventually, these tables could be outdated, however it 
does not affects the RADIC operation, since this information 
will be checked before using any spare. 

After consulting its sparetable the protector T2 confirms 
the availability of the spare NS (Figure 3c) and if it is 
available T2 transfer the latest checkpoint and event logging 
data of process P3 to NS (Figure 3d). Finally, the protector TS 
restart P3 and become an active protector by joining the 
heartbeat/watchdog protection scheme (Figure 3e). 

3 Related Work 

Many proposals have been made to provide fault tolerance 
for message passing applications. Most strategies are based on 
a coordinated checkpointing approach or an uncoordinated 
checkpointing strategy combined with a logging mechanism. 

Currently, there are several checkpoint-restart tools 
available. We can highlight BLCR (Berkeley Lab’s 
Checkpoint/Restart) [7] and DMTCP (Distributed 
MultiThreaded Checkpoint) [8]. DMTCP works at user space 
and BLCR works at kernel level. BLCR is one of the most 
used libraries to provide fault tolerance in parallel systems. To 
use BLCR in parallel applications, MPI libraries should at 
least reopen communication channels after restart [9]. 

Table 2 highlights the features of three of the most popular 
fault tolerant frameworks integrated into MPI libraries and our 
approach. Most solutions use a centralized storage. However, 
due to scalability reasons, it is desirable to avoid any 
centralized element. 

Our approach differs from MPICH-V2 [10] because we do 
not use any centralized storage because with RADIC, every 
computing node could stores critical data from process 
residing in another node. Also we use a pessimistic receiver 
based logging protocol. MPICH-V2 is now a deprecated 
implementation. 

MPICH-VCL is designed to reduce overhead during fault 
free execution by avoiding message logs. It is based on 
Chandy-Lamport algorithm [11]. MPICH2-PCL [12] uses a 
blocking coordinated checkpointing protocol.  

LAM-MPI [13] is previous to Open MPI. It modularizes a 
checkpoint/restart approach to allow the usage of multiple 
checkpoint/restart techniques. The implementation supports 
communications over TCP and Myrinet in combination with 
BLCR and SELF checkpointing operations. LAM-MPI uses a 
coordinated checkpoint approach and needs a communication 
thread between the checkpoint/restart system and the process 
mpirun to schedule checkpoints. 

The current checkpoint/restart implementation of the Open 
MPI library [9] aims to combine the best features from these 
methods described above. The implementation uses a 
distributed checkpoint/restart mechanism where each 
checkpoint is taken independently, but coordination is needed 
to make a consistent global state, which requires the 
interruption of all processes at the same time.  

Another work that has become important is the Coordinated 
Infrastructure for Fault Tolerant Systems –CIFTS- [14]. It is a 
framework that enables system software components to share 
fault information with other components to take some action 
in order to get adapted to faults. The main difference with our 
proposal is that we deal with faults automatically and 
transparently to applications. This allows us to reduce the 
MTTR. 

4 RADIC in MPI 

The first prototype of RADIC was called RADICMPI [15] 
and it has been developed as a small subset of the MPI 
standard. As a message passing library is very limited. As this 
implementation does not have all the MPI primitives, it cannot 
execute many of the scientific applications available 

 
Table 1. Sparetable 

RADICMPI does not consider collective operations and 
other complex functions that many applications use. For that 
reason, instead of extending the prototype to comply the MPI 
standard, we decided to integrate the RADIC architecture into 
a well-established MPI implementation. It allows the correct 
execution of any MPI application using the fault tolerance 
policies and mechanisms of RADIC (Section II). 

In the next paragraphs we will explain some important 
features of the integration of RADIC into Open MPI. 

4.1 Open MPI Architecture 

A depth research about the inclusion of RADIC in Open 
MPI has been made in [16]. The implementation is named 

Spare Id Address Observers 

0 Node5 1 

1 Node6 0 

… … … 

Figure 3. RADIC with spare nodes. a) Execution before failure with one 

spare node. b) Failure in node 3. c) The protector T2 check availability of 
spare node NS. d) Protector T2 transfer the checkpoint of process P3 to 

spare node NS. e) Protector TS restart process P3 and also the 

communications. 
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RADIC-OMPI and integrates the basic protection level of 
RADIC. It does not include spare nodes management. 

Open MPI architecture has been already described in [5]. 
For that reason, in this paper we will focus only on the 
components relevant to the RADIC integration. 

The Open MPI frameworks are divided in three groups that 
are: Open MPI (OMPI) which provides the API to write 
parallel applications; Open Run-Time Environment (ORTE) 
which provides the execution environment for parallel 
applications; and Open Portable Layer (OPAL) which 
provides an abstraction to some operating system functions. 

To launch a given parallel application, an ORTE daemon 
is launched in every node that takes part in the parallel 
application. These daemons communicate between them to 
create the parallel runtime environment. Once this 
environment is created the application processes are launched 
by these daemons. Every process exchange information about 
communication channels during the Module Exchange 
(MODEX) operation which is an all-to-all communication. 
The protector functionalities have been integrated into the 
ORTE daemon because in Open MPI there is always one 
daemon running in each node, wich fits the protector 
requirements. 

Table 2. Fault tolerant MPI libraries. 

Name FT Strategy Detection and 

Recovery 

MPICH-V2 - Uncoordinated Ckpt. 

- Sender based pessimistic 

log. 
- Centralized storage. 

- Automatic. 

MPICH-

VCL 

- Coordinated Ckpt. 

 - Chandy-Lamport 
Algorithm. 

- Centralized storage. 

- Automatic. 

Open MPI - Coordinated Ckpt. 

- Centralized storage. 

- Fault Detection and 

safe stop. 
- Manual recovery. 

RADIC - Uncoordinated Ckpt. 

- Pessimistic Receiver 
based Log. 

- Distributed storage. 

- Automatic and 

application 
transparent. 

OMPI provides a three-layer framework stack for MPI 
communication: 

 Point-to-point Management Layer (PML) which 
allows wrapper stacking. The observer, because of its 
behavior, has been implemented as a PML 
component; this ensures the existence of one observer 
per application process. 

 Byte Transfer Layer (BTL) that implements all the 
communication drivers. 

 BTL Management Layer (BML) that acts as a 
container to the drivers implemented by the BTL 
framework. 

The Open MPI implementation provides a framework to 
schedule checkpoint/restart requests. This framework is called 
Snapshot Coordinator (SnapC). The generated checkpoints are 
transferred through the File Manager (FileM) framework. All 
these communications to schedule and manage the transferring 
of the checkpoint files are made using the Out of Band (OOB) 
framework. 

4.2 RADIC Implementation 

To define the initial heartbeat/watchdog fault detection 
protection scheme and protection mapping a simple algorithm 
is used: each observer sets his protector as the next logical 
node, and the last node sets the first one as its protector.  

All protectors should fill the radictable before launching 
the parallel application and update it with new information 
when failures occur. The update of the radictable does not 
require any collective operation. Thus many protectors could 
have an outdated version of the radictable. However, the 
radictable will be updated further on demand, when observers 
try to contact restarted processes.   

Regarding to the fault tolerances mechanism and their 
integration into Open MPI, the following observations can be 
made: 

 Uncoordinated checkpoints: each process performs its 
checkpoints through a checkpoint thread. Checkpoints 
are triggered by a timer (checkpoint interval) or by 
other events. Before a checkpoint is made, to ensure 
that there is no in transit messages all communication 
channels are flushed and remain unused until the 
checkpointing operation finishes. After a checkpoint is 
made, each process transfers their checkpoint files 
using the FileM framework and then the 
communication within processes are allowed again. 

 Message Log: since the observer is located in the 
PML framework, it ensures that all communications 
through it are logged and then transferred to the 
correspondent protector. The protector only confirms 
a message reception after the message has been saved. 
Messages are marked as received by the remote 
process after the receiver and its protector confirm the 
message reception (pessimistic receiver based log).  

 Failure detection mechanism: failures are detected 
when communications fails; this mechanism requires 
the modification of lower layers to raise errors to the 
PML framework where the faults are managed. It 
avoids application stops. A heartbeat/watchdog 
mechanism is also used. The protectors send 
heartbeats to the next logical node and the receiver 
protector resets the watchdog timer after reception. 

 Failure management: the default behavior of the 
library is to finalize when a failure occurs (fail-stop) 
Hence RADIC needs to mask failures to continue 
execution and avoid fault propagation to the 
application level. When a protector finds out about a 
failure, the restarting operation is initiated.  

 Recovery: the recovery is composed of three phases. 
In the first one, a protector restores the failed process 
from its checkpoint with its attached observer. Then 
the restored observer sets its new protector, re-
executes the process while consuming the event 
logging data and then takes a checkpoint. Finally, the 
process execution is resumed after its checkpoint is 
sent to its new protector, just to ensure its protection. 
Protectors involved in the fault also reestablish the 
protection mechanism. We consider the recovery as an 
atomic procedure. 

 Reconfiguration: when the recovery ends, the 
communications have to be restored. To achieve this 
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goal the lower layers of Open MPI must be modified 
to redirect all the communications to the new address 
of the process.  To avoid collective operation this 
information is updated on demand or by a token 
mechanism. 

4.3 Proposal: Spare Nodes Management in 

Open MPI 

An important aspect that has to be considered when 
running parallel applications is the performance. The previous 
implementation of the RADIC architecture [16] allows the 
successful completion of parallel applications even in presence 
of failures. However, it does not consider the management of 
extra resources to replace failed nodes. Including the spare 
nodes management into RADIC, the applications will not only 
end correctly but also will avoid performance degradation due 
to loss of computational resources. 

Our proposal is not restricted on avoiding performance 
lost, we also propose a mechanism for automatically select 
spare nodes and include them on the parallel environment 
domain without user intervention. By doing the spare nodes 
management transparently and automatically, we minimize the 
MTTR. 

 When including spare nodes into the RADIC architecture, 
the restarting and reconfiguration are the most affected 
mechanisms. To reconfigure the system, a deterministic 
algorithm to find restarted processes is needed. 

When using RADIC without spare nodes (Figure 2), failed 
processes are restarted in their protectors. If an observer tries 
to reach a relocated failed process, it will take a look at its 
radictable to find the old protector of the failed process (this 
information may be outdated). Then, the observer will ask 
about that process. The old protector will say that it is no 
longer protecting such a process, and will point who is the new 
protector (Figure 2).  

If a failure occurs and there are spare nodes available, the 
spare will be included into the parallel environment domain 
and failed processes should be restarted in it. The 
heartbeat/watchdog mechanism will be reestablished and the 
involved protectors will update their radictable and sparetable 
(Table 1). 

Considering Figure 3e, if process P1 wants to reach P3, O1 
will ask T2 about P3. T2 will point that P3 is residing in the 
spare NS. Then O1 will tell T1 to update its radictable and its 
sparetable and P1 will finally try to contact P3. The process 
described above is distributed and decentralized, and each 
process will do it only when it is strictly necessary, avoiding 
the costly Module Exchange (MODEX) collective of Open 
MPI. 

The main problem when restarting a process in another 
node is that we need an ORTE daemon running in that node to 
adopt the new process as a child. Moreover, all future 
communication with the restarted process needs to be 
redirected to its new location. For that reason, ORTE daemons 
are launched even in spare nodes, but no application process is 
launched on it until it be required as a spare node.  

An additional problem that must be addressed is that a 
sender observer must not consider as a failure the lack of 
communication with other processes when the receiver 
process is doing a checkpoint or is restarting. The sender 
observer will fail to communicate, and will consult the 

receiver’s protector to find about the state of the receiver. The 
protector will indicate that the process is checkpointing or 
restarting, and the communication will be retried later. 

The radictable and sparetable were included inside the job 
information structure (orte_jmap_t). When the parallel 
application starts, each protector (ORTE daemon) populates its 
radictable and its sparetable. The radictable and sparetable 
are updated (on demand) when a protector notices that a 
process has restarted in another place. 

If the application runs out of spares, the default mechanism 
of RADIC is used (Figure 2). 

5 Experimental Results 
A fault tolerant architecture, generally, introduces some 

kind of overhead in the system it is protecting. These 
overheads are generally caused by replication in some of its 
forms. The overheads introduced by RADIC are mostly 
caused by the uncoordinated checkpoints and the pessimistic 
log mechanism as it has been showed in [16].  

Failures may cause degradation because of the loss of the 
computational capacity if there are no spare nodes available.  
The experimental evaluation that has been done tries to shows 
how fast is the failure detection and recovery mechanisms of 
our proposal, and how fast it can include automatically spare 
nodes into the parallel environment in order to avoid the 
impact on the performance of applications when resources are 
loosed.  

We present experimental results using three different 
benchmarks: a static matrix multiplication benchmark, the LU 
benchmark that is part of the NAS Parallel Benchmarks (NPB) 
[17] and the SMG2000 application [18]. 

The matrix multiplication application is modeled as a 
master/worker application, the master sends the data to the 
workers only at the start, and collects the results when the 
application finalizes. Each application process is assigned to 
one core during normal execution. The matrix multiplication 
implemented has few communications (only at the beginning 
and at the end). 

Experiments have been made using a Dell PowerEdge 
M600 with 8 nodes, each node with 2 quad-core Intel

®
 Xeon

®
 

E5430 running at 2.66 GHz. Each node has 16 GBytes of main 
memory and and a dual embedded Broadcom

® 
NetXtreme 

IITM 5708 Gigabit Ethernet. RADIC have been integrated 
into version 1.7 of Open MPI. 

Our main objective is to depict the application 

Figure 4. Throughput of the Matrix Multiplication application with and 

without spare nodes(32 processes – Checkpoint interval = 30 sec). 
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performance degradation avoidance when failures occur in 
parallel computers. By using spare nodes automatically and 
transparently to restart failed processes into them, we can 
decrease the MTTR to a minimum while maintaining 
application performance as it was before failure. 

As we mentioned before, it is crucial to deal with failures 
as fast as possible. If the application loses a node and we use 
the default approach of RADIC (Figure 2) one of the nodes 
become overloaded. As a consequence of this, the whole 
application throughput could decreases.  

Replace failed nodes with spares is not trivial, because it is 
necessary to include the spare node into the parallel 
environment world and then restart the failed process or 
processes in it transparently and automatically. Therefore, 
application performance is affected only by a short period. 

The experiments try to depict how performance (in terms 
of throughput) is affected after a failure without using spare 
nodes, and the benefits of using them. 

To obtain the operations per second of the Matrix 
Multiplication application we divided the sub-matrix size that 
computes each process by the time spent into an internal 
iteration. 

The checkpoint intervals that we use to make the 
experiments are only for test purposes. If we want to define 
valid checkpoint intervals we can use the model proposed in 
[19].  

Figure 4 shows three executions of the matrix 
multiplication benchmark. The green line shows the fault-free 
execution. The blue line shows the execution of the 
application using RADIC with 2 spare nodes (and 2 failures). 
The red line shows the execution of RADIC without using 
spare nodes, and with one failure.  

When a fault occurs and the application is not using spare 
nodes, the failed processes are restarted on their protectors and 
these nodes become overloaded. It occurs because processes 
compete for available resources and the application loses 
about 40% of its initial throughput. If we use RADIC with 
spare nodes, the application loses throughput only for a short 
period, until a spare is selected and the process is restarted in 
it, after that, the initial throughput is restored. 

The static matrix multiplication is only a synthetic 
application. To evaluate the throughput changes with real 

applications using RADIC, we have designed a new set of 
experiments using the LU benchmark and the SMG2000 
benchmark (Figure 5). 

Figure 5a depicts the behavior of the LU benchmark using 
RADIC with and without spare nodes (and without faults). 
The application has an irregular behavior because it computes 
sparse matrices. If a failure occurs and the application does not 
have any spare node, it losses about 35% of its throughput. 
However, if the application uses spare nodes, the throughput is 
reduced in 25% during the recovery and after that, the initial 
throughput is recovered. 

Figure 5b depicts the throughput of the SMG2000 
benchmark. The checkpointing and restart operations are quite 
expensive for this application because the memory footprint of 
each process is about 2GB. If a fault occurs, and the process is 
restarted on its protector, the application losses about 15% of 
its initial throughput. However, if the process is restarted on a 
spare node, the initial throughput is maintained.  

As is known, the execution time of an application affected 
by faults depends on the moment in which the failure occurs. 
For that reason when treating faults we focus on showing the 
degradation in terms of throughput not in terms of execution 
time. 

Considering the results we can conclude that transparent 
and automatic management of spare nodes reduces avoids 
increments in the MTTR and maintains the application 
throughput avoiding system overload. 

6 Conclusions and Future Work 

The proposal presented in this paper has demonstrated that 
the RADIC policies are effective to automatically and 
transparently manage spare nodes, avoiding long recovery 
times while maintains initial application performance. 

In this paper we have presented the design and evaluation 
of an alternative method to restart failed processes 
automatically maintaining the original computational capacity. 
This is an important issue because usually, applications are 
configured to execute with an optimal number of nodes. 
Loosing computational resources due to hardware failures 
decreases the application performance. 

Figure 5. a) Performance of the LU Benchmark with and without Spare Nodes. b) Performance of the SMG2000 application with and without Spare Nodes. 
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Having scalability as an objective, it is imperative to use a 
decentralized fault tolerance approach. Furthermore, when 
failures occur, a transparent an automatic fault treatment is 
desired, because the parallel application will experiment 
performance degradation only for a short period of time. 

The use of a fault tolerance architecture with RADIC 
characteristics is desirable because it does not require any user 
intervention and it is also configurable to use available 
resources. When running parallel applications in computer 
clusters, frequently, there are free nodes that are not being 
used by any application, so these nodes could be used as spare 
nodes. 

 The implementation of RADIC into the Open MPI library 
has several advantages. The first one is that Open MPI is a 
widely used library used in the scientific world. It allows the 
utilization of RADIC with real scientific applications. The 
second advantage is that our implementation makes easier the 
processes migration without stopping the parallel application 
execution.  

Initial analyses also show that RADIC will complement 
correctly with the MPI3 standard. The MPI3 standard will 
make easier the failure management because more information 
about failures will be available, so the possibilities to take 
corrective actions will increase.  

The integration of RADIC into a stable Open MPI 
implementation as well as provide an interface for live 
migration are pending tasks. RADIC also need to start taking 
into account applications with I/O events (transactional 
applications). 
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Abstract - Automotive Electric and Electronic systems come 
into wide use as requirement for more and complex 
functionality in vehicle is increase. Automotive E/E systems 
are based on networked ECUs, which each ECU is connected 
to each other through network, and distributed control system. 
As the ECUs are increase on the network, the development of 
automotive E/E system gets complicated. This paper considers 
the problems of automotive E/E system and proposes 
distributed service architecture, which can provide 
dependability and flexibility. Distributed service architecture 
separates service management from service processing, 
simplifies service layer and service node and makes 
development phase easy. Depend on service clustering. 
Proposed architecture separates services into sub-network 
from network and provides distributed service management. 

Keywords: In-Vehicle Network; Distributed Control 
Network; Fault-Tolerant Architecture; Dependable 
Distributed System; 

 

1 Introduction 
  Electric, electronic and software are generally used in 

automotive system. Automotive electric/electronic system 
provides huge improvement of functionality, performance and 
product properties. But automotive industry does not have 
much experience in automotive E/E engineering; include 
software, embedded computer system and management.   In 
fact, 49.2% of car break downs in Germany were due to E/E 
system failure in 2003 and also major recalls from automotive 
industry are based on problems of E/E system 

One important point of automotive E/E system for 
automotive industry is the possibility to achieve 
competiveness through cost-efficient and dependable system. 
But development and modification of automotive E/E system 
is complicated and dangerous, even these are easier than 
mechanic/hydraulic system. This paper proposes distributed 
service architecture to solve these problems and to make 
automotive E/E system dependable. 

Section 2 describes background for automotive E/E system. 
Section 3 describes the overview of distributed service 
architecture, section 4 presents service management, flexible 
implementation, fail-safety, on-line diagnosis and test. Section 

5 describes experimental environment. Finally, the last section 
presents conclusion and future work.  

2 Background 
 In early days, a vehicle has only a few Engine Control 

Units (ECU) and ECUs were not connected to each other and 
worked as stand-alone units, shown as fig. 1 a). It is simple 
enough to develop and modify, and barely need engineering 
efforts.  Also, an ECU failure does not affect other ECUs.  

As a development of electronics and embedded system 
technology, Electronic Control Unit (ECU) which is based on 
software, is used to implement automotive functionality. 
Automotive E/E system gets complex substantially to 
implement a lot of functions which demand for competitive 
strategy, customer requirement and law. The Mercedes S-
Class included more than 50 ECUs from 1991 and the BMW 
5 and 7 series have 70 networked ECUs from 2004.  

In-Vehicle Network (IVN), which connects ECUs to ECUs, 
with point-to-point connections is the simplest topology and 
can make functionality easily, shown as fig. 1 b). But this 
topology has complex wiring which is hard to modify and 
extend. And as ECUs are increase, the wiring and connection 
points are increase exponentially. This is not good for 
development, production and maintenance of vehicle. The 
Mercedes S-class from 1991 has more than 3km of wiring. 

 

Figure 1 Automotive E/E architecture 

Networked E/E system uses bus architecture for simplicity to 
develop, shown as Fig. 1. c), also flexibility to modify easily. 
ECUs, which have their own sensors and actuators, are 
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connected with others through network and are able to share 
some information from sensor. Although networked E/E 
system has some advantages compared to point-to-point 
connection, still some limitation are remaining to provide 
flexibility and scalability. Sensors, actuators and other 
properties do not have their own network interface, so they 
have to be a part of some kind of ECUs.  

Fully networked E/E system consists of smart sensors and 
smart actuators which have their own network interfaces thus 
they can connect to IVN independently and assure high 
flexibility and scalability. But with the increase in number of 
ECUs, sensors and actuators, the development of Automotive 
E/E system becomes complicated. Moreover, heavy traffic on 
IVN causes congestion, delay and emission of data, thus 
safety and dependability are not sure.  This paper proposes 
distributed service architecture to solve problems, which are 
described above, and provide flexibility. Distributed service 
management points (SMP) maintain services hierarchically 
and provide redundant services to assure dependability. 
According to the requirements, SMP can consist of various 
services and can modify services easily and support on-line 
diagnosis and test to validate services. 

3 Basic System Architecture 
 Proposed distributed service architecture consists of a 

network of SMPs and Service Control Point (SCP). The 
functionality of SMP is a service management of system with 
service state messages and relays the service requests. Each 
SMP is connected with other SMPs through network but 
SMPs do not have any information over the other SMPs, 
shown as fig. 2. With service index table, SMP can only 
lookup available services and SMPs which manages services. 

 

Figure 2 Simple view of SMPs 

SMP manages service states of SCPs and relays service 
request from SCP to specific SMP which can process 
requested service. Each SMP checks state of other SMPs with 
service state message, maintains service index table which 
describes service information. Each SMP has its SCPs which 
are connected to sub-network. Depend on functional and 
strategic requirements of automotive E/E system, the 
composition of SMPs and SCPs, which called service 
clustering, can vary considerably. In most cases, service 

cluster and services are defined in system analysis documents 
already.  

If service is processed within a SMP, it called in-bound 
service. If service is not processed within a SMP, SMP has to 
relay service request to other SMPs, it called out-bound 
service, shown as fig. 3. In case of in-bound service, 
requested services do not make any data on main network, 
only on sub-network which separated from main network.  

 

Figure 3 Basic composition of SMP and SCPs 

SCP consists of ECUs, sensors, actuators and other 
properties. SCP processes relayed service request from SMP 
with its own resources. When some kind of event happened, 
SCP sends service request to SMP simply and processes 
relayed service request from SMP. If SCP needs some service 
it sends a service request to the SMP to which it is directly 
connected. If the requested service is available within the 
same SMP, in-bound service, it is relayed to SCP, which can 
process the service, on the sub network. On the other hand, if 
the service is unavailable, out-bound service, the SMP relays 
service request to another SMP on main network. In case of 
no SMP on the network is able to process the service, the 
SMP replies with a service fail message. Also, service 
requests and service replies are define in system analysis 
documents. The entire architecture is shown as fig. 4. 

 

Figure 4 Overview of Distributed Service Architecture 

Logging SMP can collect all of service request, service state 
and service failed messages. Logging SMP is connected with 
SCPs which are related to log services and provide on-line 
diagnosis with various logging data services. 
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Depend on service clustering, proposed distributed service 
architecture separates sub-network from main network. The 
separation of services can reduce numbers of connection 
points and disperse network traffic. Comparing state messages 
of SMPs, the proposed architecture can detect faults of SMPs 
and can operate in fail-operational mode with redundant 
SMPs. Additionally, SMPs can isolate fault of SCPs and 
redundant SCPs can cover faults of other SCPs. 

4 Distributed Service Architecture 
 This section describes service management of proposed 

architecture and flexible configuration in implementation 
level.  Also, describe reliability and construction of on-line 
diagnosis and test. 

4.1 Service Management 
 Distributed service architecture adopts point-to-point 

service architecture in general distributed systems. Proposed 
architecture manages services and cooperates without central 
supervisor and central arbiter [1][9]. Because of single point 
failure problem, complexity and flexibility, central control 
supervisor is not good for distributed control system. 
Automotive E/E system is a kind of real-time control system 
which is based on a set of control units with software and 
interfaces interconnected on network. Depend on system 
requirement, allocation of control units on the network will be 
various as well as allocation of interfaces and software on the 
control units. But services have to be finished within deadline, 
which defined in the system requirement, although system has 
different design. We assume that proposed architecture just 
has simple layers, which consist of single SMP layer and 
single SCP layer, to assure service result within deadline and 
to provide simplicity for flexible reconfiguration. To manage 
services on the distributed service architecture, each SMP has 
3 information tables, service index table, service page table 
and service list table. 

 

Figure 5 Basic service flow 

In proposed architecture, basic service flow is shown as fig. 
5. SCP detects events from outside, e.g., data from speed 
sensor or ACC on/off switch, and sends service request to 

local SMP which is connected directly with SCP. When local 
SMP receives service request from SCP, local SMP lookups 
service in service index table and relays the service to remote 
SMP, in case of out-bound service, or SCP, in case of in-
bound service. If local SMP does not find service in service 
index table, local SMP replies to SCP with service fail 
message. When remote SMP receive the service request, 
remote SMP lookup the service in service index table, relays 
the service to SCP. Also, if SCP is not available, remote SMP 
has to reply with service fail message. If service is available in 
Local SMP, local SMP relay the service to SCP. 

Service index table, which has service ID and information of 
SCPs and SMPs, is defined statically in system analysis 
documents. Each SMP maintains information of service index 
table dynamically with exchange of service state messages. 
Service index table, shown as Table 1, consists of service list 
ID, service page ID and service flag. SMPs have to share 
same information of service index table to assure service state. 
Service list ID identifies service uniquely. Service page ID 
represents a group of SMP which manages specific services. 
Service flag indicates service state, if service is available on a 
SMP at least, service flag is true. If not available on all of 
SMPs, service flag is False.  

Table 1 Service Index Table 

Service List ID Service Page ID Service Flag 

List ID 1 Page ID 1 T 

List ID 2 Page ID 1 T 

List ID 3 Page ID 1 T 

List ID 9 Page ID 2 T 

List ID 10 Page ID 2 T 

List ID 11 Page ID 9 F 

… … … 

 

According to service clustering and design policy, service 
page table is defined statically, shown as Table 2. SMPs have 
to share same information of service page table, also. For 
dependability and simplicity, service page table separate from 
service index table. Because service index table indicates 
service state only, SMP can recognize service state easily 
without lookup of all of SMPs. if service needs to be moved 
to another SMP, service page table will be modified only. 

Service list table has information of SCPs which correspond 
to services, shown as Table 3. Each SMP has its own service 
list table, it is local information. 
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Table 2 Service Page Table 

Page ID Primary SMP Secondary SMP 

Page ID 1 SMP1 SMP4 

Page ID 2 SMP2 SMP5 

Page ID 9 SMP3 SMP2 

… … … 

Table 3 Service List Table 

List ID Primary SCP Secondary 

List ID 1 SCP1 SCP4 

List ID 2 SCP2 SCP5 

List ID 3 SCP3 SCP1 

… … … 

 

When local SMP receives service request from SCP, local 
SMP finds service list ID of service request in service index 
table. If local SMP finds service list ID in service index table, 
it retrieves service page ID. Local SMP finds information of 
SMP in service page table with service page ID, shown as fig. 
6. In case of in-bound service, local SMP finds information of 
SCP in service list table with service list ID. In case of out-
bound service, local SMP relays service request to remote 
SMP. When remote SMP receives service request from local 
SMP, remote SMP finds information of SCP in service list 
table with service list ID, also. In case of both, SMP can find 
SCPs in service list table and relays service request to SCP.  

 

Figure 6 Relation of service tables 

 

Table 1 is example of service index table, 6 services and 3 
pages are in service index table. Service List ID 1, 2 and 3 
belong to Page ID 1 and all of these services are available. 
Service List ID 9 and 10 belong to Page ID 2, service is 
available, also. Service List ID 11 belongs to Page ID 9, 

service is not available. When SMP receives service request 
with List ID 9, it retrieves Page ID 2 from service page table. 
Page ID 2 consists of SMP 2 and SMP 5 in service page table. 
From Table 2, Primary SMP is SMP 2, SMP will relay service 
List ID 9 to SMP 2. 

Table 3 is an example of service list table of SMP1. When 
SMP want to relay service List ID 2 to SCP, SMP just 
retrieves List ID 2 in service list table. List ID 2 has two SCPs, 
SCP 2 for primary SCP and SCP 5 for secondary SCP in 
service list table. SMP will relay service list ID 2 to SCP2. 

Each SMP checks service state of SCPs periodically and 
manages service flag in service index table. Also, if an event 
occurs, SMP updates service flags and notify immediately. 
When SMP detects that service state of SCP is changed, SMP 
update service state and sends service state message to other 
SMPs.. 

4.2 Flexible Implementation 
 Proposed distributed service architecture provides flexible 

implementation. Depending on system requirement, main 
network and sub-network can be implemented with various 
digital control networks [2]. Generally, CAN, FlexRay, and 
MOST which have high bandwidth and dependability, are 
used for main network. Especially, FlexRay and FT-CAN, 
which have redundant communication channel, are good for 
safety and dependability but not for flexibility. Sub network 
often uses CAN and LIN, which are cheap and easy to use. 
SMP and SCP can construct various hardware and software 
architecture; also, SMP and SCP can be on same hardware 
(like a multi-processor, SoC) in implementation level. SCP 
can be implemented as various combinations of ECUs and 
sensors, actuators, depending on system requirement and 
restriction. 

 

Figure 7 Flexible Implementation 

Proposed architecture separates sub-network from main 
network. Because of this separation, numbers of ECUs, 
sensors and actuators are decreased on main network and 
network traffic is dispersed. Also, design verification and 
validation of automotive E/E system will be easier. Physical 
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restriction of network can be avoided, that’s why the physical 
link of network can be shortened. Traditionally, IVN consists 
of power-train, chassis, body and entertainment domains, each 
domain works independently. But, they need to be connected 
with each other to share information, e.g., Adaptive Cruse 
Control needs information and control of power-train and 
chassis domain. Infotainment system needs information of all 
of domains. 

Depend on system requirements, SMPs may support various 
network and sub-network in implementation level, shown as 
Table 4. For example, CAN 2.0, which generally used in 
automotive E/E system, for main network, CAN 1.0 and LIN 
for sub-network are possible. Also, FlexRay, which based on 
time-triggered protocol, for main network, CAN and LIN for 
sub-network are possible. 

Table 4 Example Composition of Network 

 Main Network Sub-Network 

Example 1 CAN 2.0 CAN 1.0, LIN 

Example 2 FlexRay CAN, LIN 

Example 3 MOST CAN, LIN 

 

In case of CAN network, CAN use priority-based protocol, a 
kind of event-triggered, for multiple access control. To 
implement functions, priority assignment methods for CAN 
messages are needed in design phase. The design of priority 
assignment gets more and more complicated as the number of 
connection points, numbers of messages are increase. Low 
priority messages cannot be transferred through the network 
because of jitter and delay introduced after the 
implementation. To solve this problem, flexible priority of 
CAN messages are proposed [5], but this is not good for 
safety and reliability of the entire system. Moreover, as 
physical link runs long, transfer rate is going down, e.g., 
maximum transfer rate is up to 1Mbps at 40m but 250Kbps at 
200m and 50Kbps at 1km.  

In case of FlexRay, FlexRay use TTP (Time Triggered 
Protocol) for multiple access control, design of slot allocation 
of static segment is needed. According to static slot allocation, 
messages are transferred in each static segment. The rest of a 
time segment, message is transferred as a dynamic segment. 
Similar to CAN, as numbers of connection-points are increase, 
the design of slot allocation gets complicated exponentially. 
74 parameters need to be configured with suitable value 
within predefined range. Possible configuration spans more 
than 1048 for each design. Lack of flexibility and sub-optimal 
resource usage problem are still remaining [13]. In worst case, 
messages cannot be allocated in a static segment because the 
numbers of slots in a static segment are limited, e.g., 16 bytes 
payload, 3ms static segment cycle will be 93 slots at 10Mbps, 
51 slots at 5Mbps and 27 slots at 2.5Mbps [14].  

 

Figure 8 Comparison of service flow 

The Proposed architecture separates sub-network from main 
network, only SMPs are connected to main network, the 
number of connection-points will be decrease, shown as fig.8. 
As only out-bound services are transferred through the main 
network, network traffic will be decrease and design, 
validation and verification will be easier. Furthermore, as 
physical link is shortened, loss of transfer rate can be 
minimized. 

4.3 Fail Safety 
 A fault-tolerant system has redundant components to 

assure dependability and safety generally [3][4][8]. The 
proposed architecture provides distributed fault tolerant 
architecture. Redundant SMP in service page table and 
redundant SCP in service list table minimize the failure of the 
services. To detect software faults, at least, two version of 
software are needed. Also, to detect hardware faults, more 
than two types of hardware are needed. Use of different 
version of software can detect software fault and hardware 
transient fault, shown as Table 5. And use of different types of 
hardware can detect hardware permanent fault.   

Table 5 Fault detection case 

S/W 

(# of 
version) 

H/W 

(# of 
hardware) 

Fault Type 

S/W H/W 
Transient 

H/W 
Permanent 

1 1 X O X 

1 2 X O O 

2 1 O O X 

2 2 O O O 
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Each SMP can manage primary SCP and secondary SCP in 
service list table for fault-tolerant system as well as SMP in 
service page table. Different software on SCP, for fault 
detection, is available. Depending on system requirements for 
safety and dependability, fault-tolerant SCP runs in dual mode. 
In first mode, all of SCPs can fully process services. When 
run in fail-operational mode, secondary SCP processes only 
degraded services.  

4.4 On-line Diagnosis and Test 
 Logging SMP can collects all of state messages and service 

messages while logging SCPs process those messages on 
development phase and product phase. On-board computer, 
which can process simple diagnosis, can be a kind of logging 
SCP. Off-board interfaces, like OBD-II, for intensive 
diagnosis, can be a kind of logging SCP, shown as fig. 9[6]. 

 

Figure 9 Example of on-line diagnosis 

Collection and analysis, statistics, data-mining of messages 
are processed by logging SCPs. As the composition of logging 
services, messages can be processed efficiently and 
systematically for a long time during development phase.  
Simple logging SCPs can be used du 0.05 cming production 
phase for maintenance. As the increase of services, various 
SCPs can be used for on-line diagnosis. Flexible on-line 
diagnosis can be possible for domain characteristics of vehicle 
and requirement. 

 

Figure 10 Example of test probe 

For test automation environment, proposed architecture can 
configure SCPs as test probes, shown as fig. 10. To verify and 
validate service list and service configuration, test probe 
sends all of service request automatically as an acceptance test. 

If service list and service configuration are not correct, service 
fail message will be returned. Input of test cases, e.g., service 
ID, service table configurations, and output, e.g., expecting 
service result, can be generated automatically from system 
design documents. When service configuration is changed for 
optional service and variation, test automation with test 
probes and test case is good for verification and validation.  

5 Experimental Results 
5.1 Experimental environment 

 Experimental environment, adaptive front lamp control 
system, consists of three SMPs and four SCPs, shown as fig. 
11. Assume that two SCPs in drive shaft cluster detect degree 
of steering wheel and speed of vehicle and send control 
request to SMP. SCP, which detects degree of steering wheel, 
sends control requests of yaw of the front lamps. SCP, which 
detects speed, sends information of control speed. As the 
speed of vehicle, front lamps have to move fast or slow. SMP 
with two SCPs use CAN for a sub-network, because of 
sampling rate of data. SMP with yaw SCPs use LIN as a sub-
network. test SMP and test SCP is on same hardware and 
CAN use for main network.  

 

Figure 11 Experimental Environment 

Freescale MC9S12XF512 board is used for SMPs which 
have two interfaces of each LIN, CAN, Flexray. 
MC9S12XF512 board is working in stand-alone mode, shown 
as fig. 12. Software of SMP is developed with Freescale 
Cordwarrior IDE and BDM interface. 

 

Figure 12 Implementation of SMPs 
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5.2 Experimental Scenarios 
 We design service list and service configuration of 

system. To manage service state, simple service flag message 
is developed. When SMP detects service change of SCPs, 
SMP sends service flag message to others. Only service flag 
message can change service state of service index table. If 
there is no corruption, all SMPs have same service state.  

Service message consist of service request message and 
service fail message. It is possible that local SMP sends 
service request message to remote SMP before local SMP 
change service state with service flag message. In this case, 
remote SMP will reply with service fail message. When local 
SMP receives service fail message, Local SMP retrieve 
service state and try again. Out-bound service can be 
validated with CAN analyzer, shown as Fig.13.  

 

Figure 13 CAN Messages Monitoring 

 
Figure 14 Reconfigured experimental environment 

Now, assume that new service is added that is known as front 
lamp auto leveling. For this service, two SCPs, which can 
detect incline and control pitch of the front lamps, will be 
added to experimental system, shown as fig. 14. Incline SCP, 
pitch SCP are developed, also. SCP, which detects incline of 
vehicle, sends control request of pitch of front lamps. 

For service reconfiguration, just add service list id to service 
index table, SMP to service page table and SCP to service list 
table. Services are verified and validated with test probe. 
Service list is allocated to CAN message, shown as Table 6.  

Table 6 Design of messages 

Message type CAN ID 

Service Flag 0xD8E00000 

Service Notification 0xD9E00000 

Service Interrogation 0xDAE00000 

Service Fail 0xE8E00000 

Service Req1(Left) 0xE9E00000 

Service Req2(Right) 0xEAE00000 

Service Req3(Up) 0xEBE00000 

Service Req4(Down) 0xECE00000 

Service Req5(Reset) 0xEDE00000 

 

6 Conclusions 
 This paper proposed distributed service management to 

solve complexity of traditional in-vehicle network architecture 
and provide flexibility. The proposed architecture can use 
various control networks in implementation level. Because of 
separation of service management from processing, 
distributed SMPs manage their own SCPs simply and just 
relay service requests. As the sub-network is separated from 
main network, design, verification and validation of vehicle 
network is easier than before. Redundant SMPs and SCPs 
improve safety and dependability of system. Proposed 
architecture can be used other distributed control area. For 
design and implementation of automotive E/E system, EAST-
ADL (Architecture Description Language) and Automotive 
Open system Architecture(AUTOSAR) can be used 
[10][11][12].  

Research about the framework to define and design services 
and system is needed. Requirement analysis, system 
configuration and formalized development process, which are 
suitable for de-facto of the automotive industry, will be added 
to our future work. Moreover, research on implementation 
platform for SCPs and SMPs with AUTOSAR complaint is 
also needed. Finally, Test interfaces and test platform for 
verification and validation are needed for safety and 
dependability, also. 
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A File System Using GPU-Accelerated File-wise Reliability Scheme

Chien-Kai Tseng, Shang-Chieh Lin, and Yarsun Hsu
Department of Electrical Engineering, National Tsing Hua University, HsinChu, Taiwan, R.O.C

Abstract— This work revises the original file-wise reliability
scheme to cope with larger pages in storage devices nowa-
days, and implements it as a file system prototype: CRSFS.
There are four layers in CRSFS: GPU primitive for Cauchy
Reed-Solomon (CRS) coding, CrystalGPU framework, CRS
coding layer and AFS FUSE layer.

CRSFS provides GPU acceleration on the CRS encoding/
decoding operations by using the CUDA program: GPU
primitive for CRS coding. Besides, it is integrated with FUSE
(Filesystem in Userspace) framework and Rx (extended re-
mote procedure call) protocol in AFS FUSE layer to provide
high flexibility on storage system configurations. Hence, most
programs can benefit from it without rewriting their read/
write operations.

Finally, it’s shown that with the help of GPU acceleration,
there are up to 24.5x performance gains compared to the
CPU counterpart in AFS FUSE layer. The speed of CRS
encoding/decoding operations is no longer the performance
bottleneck.

Keywords: Reliability; file-wise reliability; Fault-tolerance; File
System; CUDA; GPU acceleration

1. Introduction
Reliability is always a big concern for storage devices.

Nearly all the storage devices have some kind of mechanism
to ensure the correctness of the data stored on them.

As for large storage systems, the Redundant Arrays
of Inexpensive Disks (RAID) [1] technique is commonly
applied to prevent data losses caused by disks failures.
However, because of the high cost and low flexibility of
the RAID configuration on storage devices, the file-wise
reliability scheme has been proposed to provide different
level of protections based on the importance of files [2]. But
the Reed-Solomon (RS) code encoding/decoding operations
are time-consuming when executed on CPU. Moreover, the
erasure unit size proposed at that time is no longer suitable
for the storage devices nowadays. The page size in Solid-
State Drives (SSDs) has increased to 4 KB or 8 KB. Even
the sector size in hard disks has increased from 512 bytes to
4 KB. Therefore, it is necessary to redesign the file-wise
reliability scheme and introduce the GPU acceleration to
improve the encoding/decoding speed.

In this paper, the original file-wise reliability scheme is
revised to deal with larger page sizes in current storage
devices, and implemented in the file system prototype —
CRSFS. In the revised file-wise reliability scheme, there are

total four different reliability levels. All of them utilize CRS
code to satisfy different file reliability requirements between
ordinary user files and important system files.

Due to the low throughput of RS encoding/decoding
operations on previous work, CRSFS is equipped with GPU
acceleration to improve the speed of CRS encoding/decoding
operations. Besides, CRSFS integrates FUSE [3] and Rx [4]
to provide high flexibility on storage system configurations.

The introduced CUDA program in this work—GPU primi-
tive for CRS coding—is optimized for the Fermi architecture
of Nvidia GPUs and is integrated with CrystalGPU [5]
to exploit the ability of concurrent computation and com-
munication and eliminate the overhead of device memory
allocations. In this work, it’s shown that with the help of
GPU acceleration, the performance gain can reach up to
24.5x compared to the CPU counterpart. Therefore, the
speed of encoding/decoding operations is no longer the
performance bottleneck.

The POSIX extended attribute APIs of file system are
used in this work. Hence, any programs can manipulate the
reliability level of a file by using setxattr(), getxattr() and
removexattr() to change the user.crsfs.rlevel value of the file.

The rest of the paper is organized as follows: Section 2
introduces related work. Section 3 explains the design and
implementation thoroughly. The performance evaluations
and comparisons between GPU and CPU are presented in
section 4. Finally, section 5 describes conclusions.

2. Related Work
The GPGPU computing is quite popular in recent years.

Since then, researchers have exploited the GPU power to
accelerate many real-world applications, including reliabil-
ity mechanisms applied on storage devices. For example,
a GPU-based RAID system is proposed as a user space
framework to accelerate the RS code operations via table
lookups [6]. Later, this system is integrated into Gibraltar
RAID [7], which is executed on a server node to provide
software RAID encoding/decoding services via high-speed
network connections.

Other works, such as the Barracuda micro driver architec-
ture for GPUs [8], try to leverage the GPU power in kernel
space. Barracuda uses the CUDA based Peter Anvin Reed
Solomon encoding (PARSE) [9] to provide the software
RAID service to the file requests in kernel space. Due to the
fact that the CUDA APIs are only available in user space,
the data must be forwarded from kernel space to user space
before processed by the CUDA program.
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Gibraltar RAID provides services purely in user space,
while the Barracuda provides services to the file requests in
kernel space via procfs signaling forwarding. Both works are
based on RS coding and use the table lookup technique to
handle the complex arithmetic operations over Galois field
(GF). Besides, they also provide the same software RAID
service which can only handle reliability issues based on
storage devices, rather than files.

In addition, the GPU accelerated storage system, which
consists of MosaStore storage system, HashGPU library and
CrystalGPU, is proposed as a content addressable storage
system to provide hash service [10]. In that work, Crystal-
GPU enables up to 3x performance gains with single-GPU
configuration compared with HashGPU, which is shown to
have up to 5x performance gains compared with CPU.

Also, GPGPU has been shown to be a powerful off-
loading engine for CRS encoding in [11]. All of these works
above show that GPU has great potential of improving the
parity generation performance on CPU.

3. Design and Implementation
In this section, the file-wise reliability scheme is reintro-

duced with some modifications. And the implemented file
system prototype (CRSFS) is composed of four layers: GPU
primitive for CRS coding, CrystalGPU framework, CRS
coding layer and AFS FUSE layer.

3.1 Revised File-wise Reliability Scheme
We’ve proposed a file-wise reliability scheme in 2010 [2].

The idea of file-wise reliability scheme is allowing users
to configure different levels of reliability on individual files
according to the respective requirement, and is realized by
attaching new abilities in storage subsystem of OS. These
abilities are listed below:

• Record the reliability level of each file and store the
checksum transparently

• Let users configure the reliability level of demanded
files

• Automatically perform possible fault-tolerance when
encountering I/O errors

The configuration of the revised file-wise reliability
scheme is described in table 1. The CRS code for erasure
coding is used to provide erasure recovery in all reliability
levels. It takes 512 KB as data input of each encoding, and
generates 32-KB, 64-KB, 128-KB and 256-KB redundancy
in level 1, 2, 3, and 4 respectively. The larger erasure unit
size(4KB) can help deal with large page size in SSDs and
the Advanced Format sectors in HDDs.

Configuration or change to the reliability level of a file
is performed via the POSIX extended file attribute system
calls. Any change to the value of the extended file attribute
named "user.crsfs.rlevel" invokes the encoding routine. And

Table 1: Algorithms and fault-tolerance capability (512 KB)
in revised file-wise reliability scheme.

Level 1 2 3 4

Algorithm (128,8)CRS (128,16)CRS (128,32)CRS (128,64)CRS

Erasure
Recovery

8 pages 16 pages 32 pages 64 pages

(k,m)CRS denotes Cauchy Reed-Solomon code with k data units and m
checksum units. Packet size equals 512 bytes.
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Fig. 1: Scheduling of CUDA threads according to the
encoding matrix

the recovery procedure is triggered transparently when en-
countering failed fetching of data pages, i.e. read errors. All
these operations will be explained thoroughly in section 3.5.

3.2 GPU Primitive for CRS Coding
The CRS code operation for erasure coding is the ma-

trix multiplication over GF (21), thus converting all the
operations over GF (2ω) into bitwise xor and bitwise and
operations. As a result, each column of the encoding matrix
uses the same row of the data, and each row of the coding
matrix contributes to the same row of the checksum.

The overall encoding computation is a Mm×1024 ×
N1024×4096 matrix multiplications, and m equals 64, 128,
256 or 512. To apply the tile-based algorithm and maximize
the parallelism, the workload is divided both by the rows
of the encoding matrix and by the columns of the data
chunk respectively. Therefore, each two-dimension block
consists of 256(32 × 8) threads, and is responsible for
M16×1024 ×N1024×1024 matrix multiplications.

At startup, the first warp in every block is respon-
sible to load the encoding matrix from global memory
to shared memory. Then, in each iteration, threads in
the same block load one matrix16×32 block and one
data1024×32 block by applying the coalescing technique
to access continuous global address. Each element in
matrix16×32 and data1024×32 is 32-bit wide. There are
total BLOCKROW

THREADROW ( 168 = 2) × BLOCKCOL(32) = 64
iterations in the computation stage, starting from the upper-
left corner of the encoding matrix along side with the same

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 33



column down to the lower-right corner as illustrated in fig. 1.
In fig. 1, the elements of the encoding matrix filled with the
same color are examined at the same iteration in the same
CUDA block, and the number in each box represents the idy
of the threads reading this value, where the idy represents
the y dimension index. Every CUDA block will go through
M16×1024 in this order to compute C16×1024.

In each computation iteration xi, threads with the same
idy check if the bxi

2 c-th element in the idy-th row of
the the encoding matrix, denoted as matrix_val, is equal
to one. If so, each of the threads does one 32-bit XOR
operation, resulting in one large 1024-bit XOR operation of
one data1×1024 block and one cs1×1024 block. After that, the
result block is then written back to the same cs1×1024 block
in shared memory. If matrix_val is equal to 0, then, they
just skip current computation iteration. Because the threads
with the same idy are in the same warp and they do the
XOR operation according to the same matrix_val, there’s no
branch divergence.

The CRS GPU primitive is modified from an open source
project - MAGMA [12] to take advantage of the Fermi
architecture. The techniques used in MAGMA, such as
texture cache and software pipeline, improve the matrix
multiplication performance.

3.3 CrystalGPU Framework - revised
The CrystalGPU framework has been modified to better

fit the need of CRS coding layer.
First, the rlevel is added to the data structure,

gpufw_job_s, to record the reliability configuration of the
current operation.

Second, gpufw_job_put_free() has been abandoned. In-
stead, the GPU master thread automatically puts the current
job into the free list queue after calling the registered
callback function.

Third, if there’s no free streams available,
gpufw_job_get_free() blocks the current program execution
and waits for the MASTER_SIG_FREE_JOB signal from
the GPU master thread instead of returning false directly.

Fourth, the rlevel ranges from 1 to 4 normally. But the
rlevel will be added with 5 after the encoding operation to
indicate that the same rlevel encoding operation has been
done before. Thus, the excess encoding matrix buffer copies
can be detected and avoided.

3.4 Cauchy Reed-Solomon Coding Layer
The Cauchy Reed-Solomon Coding layer is an abstraction

layer upon the CrystalGPU framework, and is responsible to
do CRS encoding/decoding setup and trigger the underlying
encoding/decoding routines.

As illustrated in fig. 2 the Cauchy Reed-Solomon coding
layer consists of 5 functions calls.

First, the crs_init() needs to be called before any other
functions, and the number of streams need to be specified,

crs_init(stream)

crs_set_rlevel 
(rlevel, callback, 
path, erased…)

Set rlevel, encoding/
decoding matrix and 

callback function.

crs_block_coding
(data, offset)

Asynchronous 
computation.

crs_synch()

crs_finalize()
Specify the 
total stream 

number.

Computation

Fig. 2: Flow of CRS coding layer

or it will use the default stream number, 10. In this function,
the main task is the memory allocation and GPU master
thread initialization.

Second, the crs_set_rlevel() is called to do the relia-
bility level configurations. If the current operation equals
to CRS_DECODE, the argument erased, which is used
to produce the decoding matrix, must be assigned. The
erased[x] equals 1 if the x-th chunk is missing, and it equals
0 otherwise. The index of the data chunks ranges from 0 to
127, and the index of the checksum chunks ranges from 128
to 144, 160 or 192 which depends on r_level. Notice that
the total number of erased units must be less or equal to the
maximum erasure-tolerate number specified in the reliability
level, or it will just return false to indicate failure.

Third, the crs_block_coding() is called to do the asyn-
chronous computation by copying 512-KB input data to
the input buffer of the CrystalGPU framework. If there’s a
free stream, this function call is non-blocking. Otherwise, it
blocks the program execution as described in section 3.3. If
the input data is larger than 512 KB, the crs_block_coding()
can be called multiple times continuously to handle the
encoding operation of different chunks in the same file.

To avoid excess data copies, the copies of the encoding
matrix buffer will be skipped if the stream returned by
gpufw_job_get_free() has the same r_level as the current
crs_block_coding() operation.

Fourth, the job_synch() is used to block and wait for the
last submitted job to be completed. Last, when the file server
process (afsfuse server) is terminated, the job_finalize() is
called to clean up the allocated memory and data structures.

3.5 AFS FUSE Layer
AFS FUSE layer is based on FUSE and Rx to implement

the client-server model of CRSFS according to [13].

3.5.1 The Overview
As shown in fig. 3, a client process file request is

first captured by the FUSE kernel module, FUSEFS, and
forwarded to the /dev/fuse. Then, the user space daemon
of FUSE, afsfuse client, reads command from /dev/fuse

34 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



file system

VFS

Client process 
file request

FUSEFS 

user space

kernel

VFS

afsfuse client afsfuse server 

serverclient

/dev/fuse storage device

storage

RX

Fig. 3: Flow of AFS FUSE layer

and calls the corresponding xmp_xxx functions accord-
ing to the fuse_operations list registered by afsfuse client.
The xmp_xxx functions then invoke the corresponding
rxc_rxc_xxx functions in afsfuse server via Rx to actually
access the storage device and do the accompanying CRS
computations if the file written to has the extended file
attribute named "user.crsfs.rlevel" and its value is valid as
listed in table 1.

The only job of the client node—with afsfuse client
running—is to forward these file requests captured by
FUSEFS to the server node—with afsfuse server running—
via Rx protocol. All the CRS encoding/decoding operations
are performed on the server node. There could be a storage
node if the storage device is outside of the server node, such
as using an external iSCSI storage node.

3.5.2 Implementations in AFSFUSE Server

The important functions that trigger the CRS coding rou-
tines in afsfuse server are the followings: setxattr(), write()
and read().

a) Setxattr: In setxattr(), whenever there’s a value change
at "user.crsfs.rlevel" and the new value is valid, afsfuse
server will read all the contents of the file 512-KB chunk
by 512-KB chunk and skip the last one if the file size is not
a multiple of 512 KB.

b) Write: As for write(), due to the limitation of the linux
kernel and FUSE, the maximum write size is 4 KB. Even if
this limitation dose not exist, it can’t be assured that the
write file request size is always 512 KB. Therefore, the
write request is buffered up in a 512-KB buffer on 512-KB
chunk basis Whenever 512-KB chunk is buffered up, the
CRS encoding operation will be triggered asynchronously.

c) Read: As for the read(), after afsfuse server performing
the actual file accesses, if there’s an I/O error, the CRS
recovering procedure is triggered. Assume that the file can

Table 2: Hardware specifications

CPU Intel® Xeon® CPU E5620 @ 2.4GHz 4C/8T × 2
RAM 4GB DDR3-1066MHz × 3
GPU Nvdia® Tesla M2050 × 1
HDD Hitachi 1.5TB 7200RPM × 2 (RAID 1)

Table 3: Software settings

OS Ubuntu Server 10.04.3-amd64
Kernel Linux 2.6.32-33

File System client: ext4, server: ext4
CPU lib Jerasure 1.2

CUDA 4.0

tolerate up to m-page erasures according to its rlevel.
First, afsfuse server reads the 512-KB data chunk and

4m-KB checksum chunk page by page. If the page is read
without the EIO error, afsfuse server copys it to the 512-KB
buffer. Otherwise, afsfuse server marks the value of the int
erased[x] to 1 where x is the index number of the current
page in the big chunk as described in section 3.4. All the
recovering routines need are the first 512-KB survived pages
and the erased[128 + m] with the erased page indexes set
to 1. Then, afsfuse server calls crs_set_rlevel() to create the
decoding matrix and then invokes crs_coding() to submit
the job to GPU as mentioned in section 3.4. After that,
crs_synch() must be called before returning the values back
to xmp_read() in afsfuse client.

After all the missing pages in the big chunk are recovered,
afsfuse server just re-writes these pages at the same file
offset. The underlying storage devices, such as hard disks,
will re-map these logic block addresses (LBAs) of the bad
sectors (or pages) to the new ones in the reserved area if
they encounter I/O errors with write operations.

4. Evaluation
In this section, both of the GPU primitive for CRS coding

and the file operations—setxattr, write, and read—on AFS
FUSE layer are evaluated.

4.1 Experiment Environment
As listed in table 2, the computer used in this evaluation

is a powerful single node computer which runs all the client,
server and storage nodes.

The software settings are described in table 3. Notice that,
the CPU coding library used as the baseline for comparison
is the Jerasure version 1.2 released by James S. Plank [14].
The Jerasure routines for CRS coding are wrapped up as
the same interface as the CRS Coding layer described in
section 3.4 and are inserted at the same position in the AFS
FUSE layer. Therefore, the Jerasure coding routines also
benefit from avoiding excess encoding operations generation
if rlevel of the current job is the same as the one of the last
job.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 35



Due to the limitation of both the linux kernel and the
FUSE framework, each write operation can only write up
to 4-KB data per write request. Any write system call with
data size larger than 4 KB is split into 4-KB write requests
automatically. Similarly, the read operation is limited to 128-
KB data transfer per read request.

In order to test the performance of transparent recovery
with maximum erasures, the errno is set to EIO selectively
and the m erasures are distributed evenly into the 128
data units. This happens only when afsfuse client reads the
first page of each 512-KB chunk, resulting in one recovery
operation for each 512-KB chunk. The read evaluation is
performed by directly reading from files with preset reli-
ability levels and excludes the time writing the recovered
pages back to the files.

All the evaluated results illustrated in the following graphs
are the average values of 10 identical experiments. Each
experiment is tested with all reliability levels (from 1 to 4)
and file sizes (from 512 KB to 16 MB or 1 GB). All the
GPU parts are tested with stream_count set to 10.

4.2 GPU Primitive for CRS Coding
Fig. 4 shows the performance of GPU Primitive for CRS

coding. The htod stands for "host to device memory copy"
and the dtoh stands for "device to host memory copy"
similarly. The m, n in each test set mean the number of
checksum rows (m) and the packet size (n). There are total
m
ω checksum units and k

ω data units in one big chunk, where
k is 1024 and ω is 8 in this work. Moreover, both tests of
4096 bits and 8192 bits packet size are performed to examine
the possibility of increasing the erasure unit size from 4 KB
to 8 KB. The memory copy size of the htod and dtoh are
k×n bits (data transfer) and m×n bits (checksum transfer)
respectively.

For the computation part, the performance of the (64,
1024) on 8192 bits packet size is much better than the one
on 4096 bits packet size, which means the workload of the
latter can’t fully occupy GPU. And the throughput becomes
nearly half from (m, k) to (2m, k) as the complexity doubles
from m to 2m. Besides these tests, (16, 64) like RAID-6,
including 2 checksum units and 8 data units, is also tested
and reaches up to 14GB/s with large packet size. This shows
that the GPU Primitive is quite efficient.

4.3 AFS FUSE Layer
The FUSE and the AFS FUSE introduce about 3.2 ms

and 24 ms overhead per 512-KB chunk write system call
respectively. The former is measured by launching a write
system call with 512-KB data from a user space program,
and directly returned from xmp_write() in afsfuse client.
Similarly, the latter is measured by using the same oper-
ations, but this time, it’s returned from rxc_rxc_write() in
afsfuse server after receiving the arguments of xmp_write()
in afsfuse client via Rx.
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Fig. 4: Throughput of GPU primitive for CRS coding
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Fig. 5: Throughput of setting different rlevels on: (a) GPU.
(b) CPU.
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Fig. 6: Speed comparison on setting different rlevels between
GPU and CPU

4.3.1 Performance of Setting Reliability Levels

As shown in fig. 5 and 6, the performance of the GPU
encoding outperforms the CPU’s, starting from 1.1x up to
24.5x. The results of these tests are all beyond the speed of
the hard disk because all the tests are performed 10 times
such that almost all files are cached in RAM.

36 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



All the performance results, except for rlevel=1, show the
trend of first increasing and then decreasing to some stable
value as data size increases. Some of them even outperform
their counterparts in GPU primitive illustrated in fig. 4.
That is the result of asynchronized operation functionality
provided by CrystalGPU. By setting stream_count to 10 in
this work, there are at most 10 CRS encoding/decoding jobs
on the fly, which means that when the data size is less than
or equal to 5 MB, afsfuse server at rxc_rxc_write() just
reads 512-KB data from the file, copies them to the input
buffer of CrystalGPU, invokes the encoding operation and
then continues to encode the next 512-KB chunk without
any blocking delay.

However, for all tests with rlevel=1, there’s little benefit
because the encoding task is so light such that before afsfuse
server submits the next encoding job, the encoding job for
previous chunk has already been finished.

Notice that, there’s no test result in rlevel=4, 1024-MB
file test on CPU because the setxattr system call has a time
limit, around 14 seconds, which causes the test finished with
the following error: attr_set: Operation not permitted.

4.3.2 Performance of Write Operations

The write performance on different size of files is also
evaluated. It is tested by writing different size of data to the
corresponding zero-length files with preset reliability levels.
The result is shown in fig. 7. The tests with rlevel=0 are
performed with no reliability levels.

As illustrated in fig. 7, the throughput of the write opera-
tions on GPU is quite stable due to asynchronized operation
functionality. On the other hand, the throughput of the write
operations on CPU decreases as rlevel increases because
the CRS encoding operations on CPU are executed on the
same thread as afsfuse server. Therefore, the request service
time includes the encoding operation time, which hurts the
performance.

All of the tests are limited by the maximum throughput
in this framework. The throughput is mostly under 20 MB/s
because the write system calls with data size larger than 4
KB are split into multiple 4 KB file requests as mentioned
in section 4.1. Together with the round-trip overhead in
the AFS FUSE framework, the throughput of the write
operations becomes quite limited compared to the one of the
read operations which can reach up to 120 MB/s. However,
if there are multiple client nodes accessing the same server
node, the total throughput can be aggregated to a larger one,
reducing the impact of the low throughput for a single client
node.

4.3.3 Performance of Transparent Recovery on Read
Operations

The recovery throughput is quite low as shown in fig. 8
because the recovery procedure is a synchronized operation.
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Fig. 7: Throughput of write operations.
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Fig. 8: Throughput of read operations with transparent
recovery.

The client must block and wait until all the recovery opera-
tions finish, or this read operation fails as the data which the
client requested for can’t be served immediately. However,
since I/O errors seldom happen, the request service time for
the read operation is more important than the throughput of
the recovery procedure. For a single 512-KB read operation
with maximum erasures on GPU, the request service time for
rlevel=1, 2, 3 and 4 are 47, 75, 126 and 233 ms respectively.
When executed on CPU, these are 31, 39, 136 and 181 ms
respectively.

Due to the memory transfer overhead and the synchroniza-
tion of the recovery procedure, the performance of the GPU
part is even worse than the one of the CPU part. However,
for the tests of the rlevel=4, the performance of the GPU part
is much the same as the one of the CPU part because the
GPU with more computing power takes the advantage of less
computation time compared to the CPU as the complexity
increases.

5. Conclusion
In this work, the original file-wise reliability scheme is

revised to cope with the larger page size in storage devices
nowadays, and a prototype file system, CRSFS, is proposed
to implement it with GPU acceleration and flexible design.

GPU primitive for CRS coding is a CUDA program
optimized for the Fermi architecture of Nvidia GPUs. Com-
bined with CrystalGPU, it shows up to 24.5x performance
gains compared to the CPU counterpart in AFS FUSE
layer. Therefore, it’s clearly shown that the speed of CRS
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encoding/decoding operations is no longer the performance
bottleneck.

In addition to the GPU acceleration, CRSFS is also
integrated with FUSE and Rx in AFS FUSE layer to provide
high flexibility on storage system configurations. The client
node in AFS FUSE layer provides POSIX file system APIs
to client file requests via FUSE, which means that most
programs can benefit from the flexible file-wise reliability
scheme provided by CRSFS without rewriting their read/
write operations.
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Abstract - To implement fault detection under large-scale, 

high churn, strong reliability required network environments, 

a small proportion of members are likely to be more critical 

than others. The communications would be reduced 

significantly by removing them. We further the studies on 

GFDP (Grouping Fault Detection Protocol) and propose a 

Partitioning-avoidance GFDP (Pa-GFDP) to enhance the 

survivability of a detection system. Pa-GFDP could detect the 

critical members in the distributed system and neutralize them. 

Without global information, the accurate detection of critical 

members could be accomplished with little traffic overhead 

and within limited time threshold. Pa-GFDP was proven to be 

correct and effective by experiments. 

Keywords: Distributed System; Fault Detection; 

Survivability; Critical Member; Neutralization  

 

1 Introduction 

 In recent years, the progress in deploying large-scale 

distributed systems such as Grid, Cloud, Wireless Sensor 

Networks (WSN) and P2P overlay networks, has been pretty 

fast. Related studies mainly focused on the subjects of 

efficient information transmission, integrity of functions, 

scalability and extensibility. But researches on the 

dependability of a system have drawn more and more 

attentions nowadays. David Patterson [1] has pointed out that 

the construction of today’s computer system is to provide 

high-reliable network services. But the large open distributed 

systems suffer from threats of intrusions, attacks, component 

failures and so on, which make the systems undependable. 

How to deliver scalable and trustworthy network computing 

services using untrusted intermediaries becomes one of the 

most key tasks to build dependable distributed systems. 

 One of the most efficient ways to enhance the system’s 

dependability is fault monitoring, while the fault detection is 

the fundamental component of fault monitoring. The 

traditional solutions of fault detection do not meet the 

requirements of modern large-scale distributed systems. The 

latest research achievements designed distributed approach to 

execute fault detection. As described in [7] and [8], the 

detectors formed a distributed system over the networks 

themselves. 

 For a large-scale distributed system, it is often not cost 

effective to protect all the nodes. Also, detectors in a 

distributed system are usually not equally important from the 

dependability point of view. Many researchers noticed the 

existence of critical links and critical nodes in the context of 

P2P overlay networks and WSNs. And in a distributed 

detection system, the same researches are necessary to 

enhance the survivability of the detection function.  

 An enhanced Grouping Fault Detection Protocol (GFDP 

[8]) called Partitioning avoidance GFDP (Pa-GFDP) is 

designed in this paper. And the highlights of Pa-GFDP are 

summarized as follows: 1) Local: Without global knowledge, 

a detector can identify whether it is a critical one based solely 

on local information; 2) Adaptive accuracy: Using limited 

information to estimate a critical member with high 

probability; 3) Traffic lightweight: No need to insert any extra 

traffic into the network; 4) Dynamic: As detectors could come 

and leave frequently, Pa-GFDP is able to run at each detector 

at any time to identify itself if it becomes a critical one at the 

given time and neutralize it. 

 The remainder of this paper is organized as follow. 

Section 2 discusses related works, the system model and 

definitions are introduced in section3, the protocol is 

discussed in section4. Experiments and conclusions are 

presented in section 5 and 6 respectively.  

2 Related work 

 Highly reliable application systems which support fault 

detection based on fast developing Grid, P2P, and Wireless 

Sensor Networks systems have been brought out [9-11]. But 

traditional fault detection methods could not meet the 

requirements for modern networks. So several fault detection 

algorithms were brought out to satisfy these requirements such 

as large-scale, strong-dynamics and transmission-uncertainty 

[12-14]. And most of these algorithms are based on static 

heart-beat detection, but which could not quite meet the 

requirement of dynamics. A dynamic heart-beat fault 

detection based on grey model which efficiently reduces the 
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observed sample size is presented in [9], it solved the problem 

of dynamics in distributed systems, but it needs a large sample 

size, and with the problem of large network overhead. 

 Renesse [15] proposed a Gossip-style fault detection 

protocol to solve the problem of probably network congestion 

during messages dissemination using the fault detection based 

on time prediction. We furthered the theory and developed 

GFDP [8] and Bt-GFDP [7]. This protocol takes the 

advantage of the high reliability of message dissemination in 

the network while avoids the problem of network congestion, 

meanwhile the redundant messages were controlled in the 

system. 

 In our former works [7] and [8], when the detectors 

probabilistically leave and re-join the system, the detection 

structure becomes unstable. According to the observation of 

Saroiu et al. [3], to stabilize the detection system, cut vertexes 

and links should be neutralized. 

3 Definitions and Limitations 

 A network monitoring system consists of a set of 

multiple members with limited size: 

Π = {m1, m2, …, mi}, for i > 2 and i∈N 

mi in Π here is an abstract presentation of a module or a 

process, or even a node in the monitoring system. And 

members may be alive or failed, in other words, the member 

in the system may join in or leave out randomly.  

 The set of fault detectors in the system is defined as: 

Ω = {d1, d2, …, dj}, for j >2 and j∈N 

Any mi in Π has a corresponding dj exists in Ω, dj is called a 

fault detector attached to mi. An active member means its 

detector participates in the monitoring system; while a failed 

one means its detector may be crashed or detached. In the 

following description, we use “member” and its attached 

“detector” as the same meaning. 

 The following are the definitions used in this 

specification. 

 Component: A component is a maximally connected 

subgraph. 

 CM: Short for Critical Member, also refer as Cut Vertex. 

A CM is a vertex of a graph such that removal of it causes an 

increase in the number of connected components. 

 Bridge: A bridge, or cut edge, is an edge whose removal 

disconnects a graph. 

 K-connected: If it is always possible to establish a path 

from any vertex to all others even after removing any (k-1) 

vertices, then the graph is said to be k-connected. 

 Block: also called bi-connected component, a block is a 

maximally connected subgraph having no CM. 

 Three possible cases are illustrated in Fig.1, and CMs 

are colored in grey. In Fig.1(a), the CM is the joint of a 2-

connected subgragh and a bridge; in (b), the CM is the joint of 

two 2-connected subgraphs; and in (c), the CM in the middle 

is the joint of two bridges. Indeed, all CMs fall into the three 

cases. 

(a) (b) (c)
 

Fig.1 Three cases of CM 

 In this paper, we would consider the case of cut vertex. 

Bridges will not be considered. As removal either a vertex of 

a bridge would disconnect a graph. 

4 Protocol specification 

 This section describes our distributed approach to 

identify the CMs under a large-scale distributed high-churn 

environment. The communication between members is 

derived from GFDP [8], mainly by gossiping. With the help of 

information inter-changed between members, we then design 

a zero-overhead passive detection method to identify CMs. 

The accuracy of the detection can be reinforced by an active 

detection method with a fairly low cost. Both passive and 

active detections are new functions added into Pa-GFDP, and 

both detections will be executed periodically to reflect the 

topologically changed of detection system. 

4.1 Passive CM Detection 

 In the detection system which running Pa-GFDP, a 

message is propagated from one detector to others hop-by-hop 

using the gossiping mechanism. The forwarding message 

contains the path information from the starting detector to the 

current one. We propose to utilize such information to find 

CMs by sorting the neighbors of a detector into one or more 

blocks. According to the aforementioned definition, a detector 

is denoted as a CM if its neighbors belong to multiple blocks. 

In our scheme, we assume the following characteristics of 

gossiping in the monitoring system.  

 (1) A detector forwards the received message to part of 

its local view neighbors except the one where the message 

came from. And the number of forwarding destinations is 

determined by the configured gossiping fan-out, we denoted 

as c here. 

 (2) Each message is assigned a globally unique 

message ID. As every detector in the monitoring system only 

maintains a local view of its own, it does not have global 
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knowledge of the system. And as every detector in the system 

has a unique ID di.id, and it has an aforementioned Beat 

Counter, a message could be generated by combining di.id 

with Beat Counter. Here we denote it as Msg.id. 

 (3) A detector gossips each message only once. If it 

receives the same message later, it simply drops the duplicates. 

 In the passive detection, each member keeps track of 

recently received messages. A list of records is cached on 

each member, called MsgList, with each entry representing a 

message received in the format of < Msg.id, list of di.id that 

the message has traversed members>. A member also flags its 

neighbors their block information. At the beginning of a 

passive detection period, MsgList is empty and all neighbors 

of a member are assumed to be in different blocks. During the 

periodical execution of passive detection, a member randomly 

receives messages from its neighbors. By examining the path 

information of the received messages, it could discover circles 

formed by its neighbors. Thus a member could deduce that all 

neighbors on a circle belong to a block including itself. When 

two circles shares one or more members exclusive of itself, 

then it could deduce that the members on both circles are in 

the same block. This is how blocks merging and flags 

changing in a member’s local view. As more messages arrive, 

member keeps merging the blocks and changing the block 

flags of its neighbors. The pseudo code of On_Recieving() is 

illustrated in Fig.2. 

 
Fig.2 Pseudo code of function On_Receiving() 

 After running a determined period of passive CM 

detection, all the neighbors of a member will probably be 

merged into a few blocks. If there are only one block flag in a 

member’s local view, it is not a CM. Otherwise; an active 

detection process is triggered for further determination, which 

is introduced in 4.2. Note that the passive detection is 

executed passively during the process of message 

dissemination. All the information is attached in the normal 

messages, so it would not incur any additional traffic overhead. 

4.2 Active CM Detection 

 With the passive detection, a member knows for sure 

that it is not a CM if all the neighbors belong to a single block. 

However, having two or more blocks remaining at the end of 

passive detection does not mean a member is a CM. For 

example, a node might not be able to receive messages 

containing all possible paths from its neighbors because the 

messages are forwarded in a manner of gossip, or the message 

TTL threshold is reached. In order to identify CMs, an active 

detection is necessary. Compared to the passive detection, the 

active detection achieves shorter convergence time at the cost 

of additional but acceptable traffic overhead. 

 If a member’s block flags are not consistent after a long-

enough period of passive detection, which means that the 

neighbors of that member are sorted into two or more blocks, 

it regards itself as a suspect of CM and immediately starts an 

active detection process.  

 At first, it randomly selects a neighbor from each block 

and numbers the each neighbor with a unique Block-index (e.g. 

1, 2, 3...). Then the node sends probe messages to these 

neighbors. The format of the probe message is < di.id, Msg.id, 

TTL, Block-index>, where di.id is the suspect’s member ID, 

Msg.id keeps the records the time the probe message is 

generated, TTL (time to live) is a pre-configured number of 

hops that the message can be forwarded, and Block-index 

denotes the index of the block to which the suspect sends the 

probe message. Each member keeps a probe message list. 

There is one entry for each suspect in the connection list with 

the format of <suspect's di.id, Msg.id, Block-index 1, Block-

index 2...>. 

 Upon receiving a probe message, one of the following 

situations may arise.  

 (1) The member has already received the message, or 

the Msg.id of the message is smaller than that stored in the 

corresponding probe message list entry. The member just 

drops the message.  

 (2) There is no entry for the suspect that issues this 

probe message. The member creates a new entry for it.  

 (3) The Msg.id in the received message is larger than 

that stored in the corresponding probe message list entry. The 

suspect replaces the older Msg.id and Block-indexes stored in 

the probe message list with the new one.  

 (4) The Msg.id of the received message is the same as 

the one stored in the corresponding probe message list entry 

but the Block-index of the message is not the same. The node 
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adds the new Block-index to the corresponding entry and 

sends an arrival message back to the suspect. The arrival 

message therefore contains di.id of the current member, two or 

more Block-indexes, and the Msg.id stored in the entry. A 

member does not send any arrival messages until it receives at 

least two probe messages with different Block-indexes.  

 In this way, the neighbors of a CM suspect can be 

merged into fewer and fewer blocks. If only one block 

remains in its local view, the suspect is not a CM. Otherwise; 

the suspect must be a CM. In the case of being verified a CM. 

a progress of CM neutralization would be trigger, which is 

discussed below. Since the initial TTL value of a probe 

message is usually small, we are able to get the result of the 

active detection much sooner than the passive detection. In 

other words, the active detection can be applied as a useful 

complement to the passive detection. It can also be utilized as 

an independent approach to identify CMs if we value speed 

over cost. 

4.3 CM Neutralization 

 The goal of CM neutralization is to enhance the system 

survivability with respect to topology connectivity. CM 

neutralization is relatively easy to achieve by building extra 

connections between members in different blocks. After the 

new connection is built, two initially independent blocks are 

merged into one block. Consequently, all members in the 

graph will get 2-connected and the CM becomes a normal 

node. 

4.4 Traffic Overhead 

 We evaluate the traffic overhead by counting the 

messages delivered due to the CM detections. Note that 

gossiping is adopted in our basic GFDP as the basic 

mechanism for data dissemination. Even if there is no passive 

detection, the traffic overhead of gossiping does exist as an 

element of system running. Hence the passive detection does 

not incur any additional traffic overhead because it only 

utilizes the information extracted from the existing messages. 

For the active detection, suppose the system has n members, 

let c be the gossiping fan-out and let t be the initial TTL value.  

 Note that a detector will not forward the probe message 

if it has already sent an arrival message back to the 

corresponding suspect. We define the traversal set as the 

members which are traversed by the same block number of a 

suspect’s probe message. And the traversal sets of different 

blocks of a suspect will not overlap. As a result, the total 

traffic overhead of probe messages is Ο(n
2
c/2), where nc/2 is 

the number of edges in the whole graph. On the other hand, 

the traffic overhead is also limited by the initial TTL value. It 

can never exceed Ο(nc
t
). Therefore the total traffic overhead 

of forwarding probe messages is min(Ο(n
2
c/2), Ο(nc

t
)). In the 

detection system, the value of c is much smaller than that of n. 

The inequality c
t
 ≤ n holds when the initial TTL value t is 

limited to save traffic cost. Thus we can conclude that the total 

traffic overhead of active detection is Ο(nc
t
). 

5 Experiments 

 We make use of the test environment of [8], but we 

changed some configurations to modify the topology of the 

detection system. Altogether we have generated 10 different 

initial configurations with system size from 500 to 5000. 3of 

them are selected as representative for the subsequent 

experiments, their initial configurations are listed in Tab.1. 

 

 In the series of experiments we first evaluate the 

accuracy of CMs detection. The result is shown in Fig.3. 

From the result we can see that the gossiping fan-out would 

effect on the efficiency of CMs detection. But larger t would 

incur much higher traffic overhead. Moreover, larger TTL has 

less effect at last several rounds. 

 
Fig.3 Accuracy of CMs Detection 

 We evaluate the survivability of the detection system by 

using GFDP and Pa-GFDP comparatively. The result is 

shown in Fig.4. In both experiments we deleted the CMs at a 

fixed rate while GFDP and Pa-GFDP were running. From the 

test result we can see that Pa-GFDP improves the survivability 

of the system remarkably. 

6 Conclusions 

 The connectivity among members basically determines 

the survivability of communications in large-scale distributed 

systems. It is observed that a small portion of members are 

more critical to the system than others. Removal of the critical 

ones would destroy the topology of a connected graph. To 

further our work on GFDP, we propose a partition avoidance 

approach to identify critical members and neutralize them. 

Compare to GFDP, the proposed Pa-GFDP mainly appends 

three functions: passive CM detection, active CM detection 
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and CM neutralization. From the experimental results, we can 

discover that by deploying Pa-GFDP we could enhance the 

survivability of the system significantly. 

 Moreover, by little modification, the methodologies 

proposed in this paper could be used in many large-scale 

distributed systems, like WSN, P2P overlay networks, to 

identify the cut vertexes and cure them. 

 
(a) GFDP 

 
(b) Pa-GFDP 

Fig.4 CMs deletion Impact on Detection Coverage 
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Abstract - In this paper, a new approach for Fault 
Management, based on the autonomic computing paradigm 
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1 Introduction 
  The capacity of detecting failures in a given system is a 
very important challenge which arises in many engineering 
disciplines. When dealing with expensive equipment’s, large 
and complex systems, or an infrastructure on which critical 
services or processes depend, requirements of availability and 
reliability increase dramatically. This is a reason why fault 
management becomes a very important research topic in areas 
such as chemical, aerospatial, nuclear, and electrical 
engineering, among many others [1]. An emergent field in 
which expensive equipment and critical systems arise is 
telecommunications (TELCO). Today’s TELCO  networks 
are very complex systems involving hundreds and even 
thousands of components, every one having multiple variables 
and features to be evaluated in order to assess how well the 
services running on them are performing. Due to need of 
quality service, and because of the growing dependency that 
organizations and people have on these services, networks 
(and the infrastructure and platforms where services run), 
need to have a high degree of availability as well as the 
capacity to react to failures and problems which might arise 
during their operation. Every day, critical mission is becoming 
a more commonly used term for designating the infrastructure 
which is used to run TELCO services. Critical mission means 
that systems should be available 100% of the time, and must 
not be interrupted under any circumstance, as an interruption 
might mean that a critical process cannot be performed [2]. 
This requirement of high availability implies that any event 
associated to failures in any component of the system be 
managed in such a way that the degradation or unavailability 
of a system be avoided or minimized as much as possible. 
This is the reason why fault management  has become a big 
issue in the field of operation and engineering. As in many 
cases, the ability of human operators and supervisors is not 
quick and efficient enough to respond in the best way to the 

event of a failure. This work presents an alternative to 
conventional fault management based on Expert Systems by 
using two emergent technologies as Mobile Agents and 
Autonomic Computing 

2 Fundamentals 

2.1 Autonomic Computing 

 Autonomic Computing is a concept inherited from 
bioinspired computing in its beginnings. The first work where 
Autonomy Oriented Computing is introduced is the work by 
Liu et al [3]. This work defines the fundamentals of 
Autonomy in computing and the four main characteristics 
which should be exhibited by a computing system according 
to this paradigm:  

• Autonomy: The entities in the system are rational 
individuals, which are capable to act in an independent way; 
in other words, the system does not have a central component 
and manager.  

• Emergent: When system entities cooperate and work 
together, they exhibit behaviors not available or possible to 
obtain by individual entities separately.  

• Adaptive: System components are capable to modify their 
behavior according to changes present in the environment 
where system operates.  

• Self-organized: The system components are capable to 
organize themselves to achieve the previous commented 
behaviors. This paper also presents the several types of 
Autonomy Oriented Computing according to how autonomy is 
achieved by the system.  

In Jin and Liu [4], Autonomy Oriented Computing is formally 
defined, by employing set notation to express the concepts 
associated: Environment, computing entity, state, behavior, 
goal are some of the concepts which are expressed in a formal 
language. From a more applied point of view, and again from 
a bioinspired perspective, Horn [5] presents the approach to 
Autonomic Computing from perspective of a industry leader 
as IBM.  
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Following Horn, there are eight keys elements which has an 
Autonomic Computing System:  

 

• Self-Awareness: This is, the system should know itself. It 
will need detailed knowledge of its components, current 
status, ultimate capacity, and all connections with other 
systems to govern itself. It will need to know the extent of its 
“owned” resources, those it can borrow or lend, and those that 
can be shared or should be isolated.  

• Self-Configuration: System configuration or “setup” must 
occur automatically. Also, the system must modify itself, in 
such a way that its configuration be the most adequate to cope 
with environment conditions. 

• Self-Optimization: This is, the system will always try to 
find other ways to improve its functioning. It will monitor its 
constituent parts and fine-tune workflow to achieve 
predetermined system goals.  

• Self-Healing: System must be able to recover from events 
that might cause malfunctioning. The system also must be 
able to detect problem or potential problems, and according to 
this, define alternate ways to perform, applying 
reconfiguration to keep the system working.  

• Self-Protection: Starting from the fact of the potentially 
aggressive and hostile environment where system resides, it 
must be able to detect, protect and identify potential attacks or 
vulnerabilities, so that it can protect itself and maintaining 
working in a secure and consistent state.  

• Self-adaptability: This is, the system must know its 
environment, the context which surrounds it when operating, 
and the other entities cohabitating with it. It must be able to 
adapt to this environment, and its changing conditions, by 
reconfiguring itself or optimizing itself.  

• Openness: The components in system must be open to 
communicate each other, and must be able to work with 
shared technologies. Proprietary solutions are not compatible 
with Autonomic Computing philosophy.  

• Self-containment: Components within an Autonomic 
Computing System must be able to perform the task or tasks 
they have assigned, not requiring external interventions for the 
performing itself, and hiding the complexity to end user. 

Complementing the work by Horn, Lin et al [6] review 
Autonomic Computing from the perspective of Software 
Engineering. They present a proposal of metrics which could 
be used to evaluate the quality of frameworks based on 
Autonomic Computing. In other side, the works of Sterritt [7], 
Magedanz et al [8], Ionescu et al [9] and Tizghadam et al [10] 
evidentiate how Autonomic Computing has become a very 

important research topic in the field of Information 
Technologies, both for academic communities and for 
industries, in solving many problems which are becoming 
difficult to face with traditional and conventional approaches. 

2.2 Mobile Agents 

Agents are enjoying a lot of popularity as a novel abstraction 
for structuring distributed applications. It is a technology from 
the field of Artificial Intelligence. Although, there is not a 
precise and widely adopted definition for Agents, the tendency 
is define it through the features they should expose [11].  
 
Following to Yubao and Renyuan [12], an agent is an entity 
possessing the following characteristics:  
• Self-government: Agents should have the ability to 
governate themselves, without external interference from the 
outside world while they are performing their tasks.  
• Smart: Agents should implement certain functions and be 
able to choose the required information to complete their 
tasks. They also should be able to get knowledge from the 
performing of their tasks.  
• Lasting: The agents should survive, according to their 
participation in the tasks.  
• Co-relation: This is the social behavior defined by 
theoretical definitions. In real world, the cooperation is 
presented as messages exchange among the agents in the 
system.  
 
Figure 1 presents a classification of software agents according 
their functions, their properties, or other relevant  
features which can be assigned to them. Specifically, a feature 
relevant in the approach to be proposed is mobility. That is, 
the capacity of the agent to move itself autonomously across 
the environment where it runs, with the goal to execute its 
designated task at other locations where be required. 
 

 

Figure 1: Software Agent Classification [12] 

 
 

3 Proposed Architecture 
For the goal of offering high availability and reliability on 
critical systems, increasing the reliability of Fault 
Management (FM) component or components is a very 
important goal to achieve. The elements detecting Faults, with 
the goal of detect them, isolating them or event correct them 
should become very smart and reliable, and should adapt to 
the complexity of the systems where they are meant to be 
used.  
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The approach to FM which is proposed consists in 
implementing Mobile Agents (MA), which exhibit the eight 
fundamental features of AC defined by Horn [Horn, 2001]. 
These agents will be designated to monitor specific resources, 
and will use a Knowledge Database which will store criteria 
defining faults for the associated resource. According to these 
criteria, the agents will be able to anticipate to faults on the 
component, by analyzing and detecting patterns on the 
designated assess metrics for the resource and by means of 
mobility feature, agents would be able to move across the 
system to monitor the designated resource at other locations.  
The architecture for the proposed approach is composed by 
the following components:  
• Knowledge Database (KDB): Is a database containing the 
criteria which are going to use by the agents to determine 
faults and how to react before them. 
• Data Collector (DC): It is a component which will receive 
the data coming from the agents, and will send them 
information regarding changes in the criteria for fault 
detection. 
• Mobile Agent (MA): It is an agent which will perform the 
actions on the resource and will traverse the network 
monitoring similar resources in other hosts. 
• Managed Resource (MR): It is the resource in the hosts 
which will be supervised by the agents, for possible faults and 
problems in its performance. This resource can be a hardware 
element, a software element, or the behavior of a particular 
metric or behavior. 
 
Figure 2 illustrates the architecture. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Proposed approach architecture. 

 
Database as mentioned, will have two purposes. First, it will 
be to contain the data reported by the agents, for example, 
whenever it performs a correction because of a failure, or 
according to periodic monitoring if defined. The other purpose 
will be to store rules or instructions defining the criteria to act 
when a faulty behavior is detected. For example, if a failure is 
a filesystem full, the criteria could be what files to delete, or 

what kind of files to delete. Also, according to the 
functionality which performs the system component, the 
collected data would be useful to predict that a failure is yet to 
come, and so, indicate a proactive action triggered on the MA.  
Data collector would be the entity which communicates with 
the MA. It will have two purposes. The first, collect the data 
from the MA, by receiving on them, or by triggering a data 
query to them. The other will be to perform smart analysis on 
data collected, and if possible, to modify the criteria of fault 
detection and notify these changes on criteria to MA. For 
example, if MR is a filesystem, the data collector could 
analyze the growing rate of a particular file and predict that it 
might cause a failure by full filesystem and notify this to MA. 
Also, the data collector would be useful to notify exceptions to 
MA, so that they could ignore the application of a criteria. The 
DC could be an agent itself.  Mobile Agent would be the entity 
performing the detection and correction of failures on the 
hosts. It would be implemented in such a way to apply criteria 
to solve faults in a particular resource, and it could choose to 
travel or to clone itself to send a copy of itself to another host 
requiring supervision in the same resource. Managed Resource 
would be the system component under supervision and control 
by Mobile Agents. It might be a hardware or software element, 
or even a service or task. 
 
 

4 Experiments and Results 
 
The present section describes de tests performed to validate 
the advantages of the proposed approach for fault 
management. For these tests, a preliminary implementation of 
the proposed approach was performed, and run on a typical 
platform for the voice over IP Service. Two aspects were 
assessed. The time required to detect a failure, and the 
bandwidth consumed. 
For the validation of the approach proposed in this work, a 
typical platform in the Voice over IP Services was chosen. 
This kind of platform was chosen, because of its criticity, and 
the relationships established between the components, which 
tend to induce failures in the other components, when a 
problem occurs. 
The figure 3 depicts the testbed which was used for the 
implementation. 
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Figure 3: Testbed platform 

For the implementation of the agents, the used tool was JADE, 
a very popular framework for implementing Mobile Agents on 
Java Programming Language. 
For the testing, three scenarios were defined and tested. The 
three scenarios consist in inducing failures on a Resource 
node, and measuring the time used to detect (and correct) the 
failure. 
 

4.1 Full filesystem event 

On the first scenario, the first failure to be induced was a 
filesystem full on Relational Database. The failure was 
induced by creating an increasing size file, by means of an 
infinite loop script which concatenated 1MB files to an 
existing file until the whole filesystem was filled. 
The SNMP based detection was performed by running a shell 
script which invocated snmpwalk system command once every 
second, querying the OID referencing the filesystem to be 
monitored. For the agent scenario, platform was started up, 
and a monitor agent was created on the supervised host, 
indicating it what filesystem to monitor. For this first test, no 
action was defined for the monitoring agent at startup time. At 
failure occurrence, DCA instructed the agent the action to 
perform, which in in this case was deleting the file causing the 
filesystem full. 
Table 1 presents the results of the execution of this test 
scenario. 
 

 
Table 1 : Data for the test of full filesystem fault at database 

 

4.2 Dead system process 

The second test scenario is the detection of a dead process 
within the SIP Proxy. The failure is induced by killing the 
process, making it disappears from system processes table. 

The SNMP based detection was performed by running a shell 
script which invocated snmpwalk system command once every 
second, querying the OID referencing the entry of the process 
within the system process table exposed through SNMP. For 
the agent scenario, platform was started up, and a monitor 
agent was created on the supervised host, indicating the name 
of the executable associated to process. In this case, a single 
process was monitored, although the approach is valid for 
multiple instances of same process. For this test, no action was 
defined for the monitoring agent at start time. At failure 
occurrence, DCA instructed the monitoring agent to restart the 
process. 
Table 2 presents the results of the test for a system dead 
process. 
 

 
Table 2: Data of the test of dead system process at 
SIP Server 

 

4.3 Network interface missconfiguration 

The second test scenario is the detection of a 
missconfiguration within the Mediaserver. The failure is 
induced by modifying the network interface configuration, 
changing the duplex mode from full to half. This is a very 
common error on this kind of equipments, and usually causes 
malfunction in the service it offers. 
The SNMP based detection was performed by running a shell 
script which invocated snmpwalk system command once every 
second, querying the OID referencing the duplex mode of the 
main network interface of the mediaserver. In this case, the 
monitoring script was capable, after detecting the error, to 
perform a correction by setting the parameter of duplex mode, 
by executing snmpset system command. For the agent 
scenario, platform was started up, and a monitor agent was 
created on the supervised host, indicating the name of the 
main network interface in the host. 
For this test, no action was defined for the monitoring agent at 
start time. At failure occurrence, DCA instructed the 
monitoring agent to reconfigure the network interface. 
Table 3 presents the results of the execution of this test 
scenario. 
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Table 3: Data of the test of network interface 
missconfiguration at mediaserver. 

 

5 Results Discussion 
 
In this section, a discussion on the results obtained from the 
tests will be presented. A very important point to state is the 
fact that in the first two tests, besides of the fault detection, 
from the information that DCA returns at failure occurrence, 
the agent is capable to perform an action to correct the fault 
condition. The concept behind the implemented platform is 
providing the agents with logic and actions (behaviors) 
allowing that, from the information provided by the DCA in 
this case, they be capable to apply corrections. 
 

In the standard implementation, SNMP based detection is not 
capable to correct complex faults as it should have external 
mechanisms to apply any correction. SNMP can solve very 
specific faults, if the correction consists in modifying a single 
variable, as seen on the third scenario, where the script could 
restore the network interface configuration. In the other cases, 
an autonomous correction y means of SNMP is not possible, 
and the intervention of a human operator is required. The fault 
correction is reactive, not proactive. 
The agents implementation, by default is capable to provide 
mechanisms to apply corrections when particular types of 
faults are detected. Also, because of the local memory the 
agents have, they can try to apply corrections when faults are 
detected, without the need to ask for information to DCA, in 
an autonomous way. The agents, provided information to react 
to faults are capable to apply corrections in a proactive way. 
The traditional approaches, based on SNMP, are just based on 
notifications, and focused on alarm and notification triggering, 
leaving the action performed to correct the fault condition 
itself to an external entity (usually a human operator). It can 
be observed that the elapsed time, measured since monitoring 
was started until the fault condition was detected (and 
corrected), is a longer for agents than for SNMP. This can be 
explained as the agent platform (main container and satellital 
container) require some time for its initialization. In SNMP 
case, monitoring starts by just run the script executing 
snmpwalk. The average packet size is also greater for agents 
than SNMP because the network transport protocol that agent 
platform uses. JADE uses TCP for the communication, 
different to SNMP, which uses UDP. The usage of TCP as 

communication protocol in the agent platform increases the 
reliability of monitoring, as delivery of messages is 
guaranteed, and monitoring agents do not require to have 
additional logic for handling message delivery. 
Another fact which can be observed is that agent approach 
requires less packets to be exchanged. As the agent 
communicates with DCA only for notifications and 
initialization tasks, and not for monitoring per se, less traffic is 
required. For SNMP, more packets are required, as the 
decision to detect the fault is taken at monitoring station, not 
in the monitored resource itself. 
Briefing, from the point of view of the two variables assessed, 
the proposed approach, based on agents, shows to be more 
efficient, by exhibiting lower times to detect the fault, less 
traffic requirements, and besides, provides added value by the 
capability of executing and performing proactive corrective 
actions, to eliminate and avoid the fault conditions. 
 

6 Conclusions 
 In this work, an approach for fault management using 
Autonomic Computing and Mobile Agents has been proposed. 
This approach ha showed to offer more advantages than 
conventional approaches by exhibiting the following features. 

• From the architectural point of view, it is not server centric, 
as traditional systems, usually based on a master component 
which queries satelital agents to obtain information. Although 
the proposed approach has a master component, the 
monitoring agents do not require the communication with this 
component to perform their tasks, as they are designed to 
operate in autonomous way. 

• It provides self-learning capacities. Traditional systems just 
report the fault by triggering an alarm when a threshold is 
reached, or when the fault itself arises, but they lack of 
efficient mechanisms to correct the fault. The agents in the 
proposed approach have the capacity to analyze causes of the 
detected problems, and perform further actions to avoid the 
fault occurrence. 

• It provides a richer communication protocol among the 
involved entities, allowing having a detailed information 
regarding facts and actions to be performed. The concept of 
agents ontology provides a very robust mechanism for the 
communication protocol regarding message formats and 
interpretation. Traditional approaches are based on a simple 
request/response protocol, with very strict and limited 
message formats. 

• It provides mobility, which allows to monitoring agents to 
move across the network to detect and correct faults. 
Traditional systems are based on static monitoring systems, 
which are confined to run at a single host. These features 
present a system which is very suitable for platforms as the 
ones used in Telecommunications service, which nowadays 
require high levels of availability because of the criticity of 
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the services they offer. Also, the implementation of the 
features previously mentioned contribute to improve the task 
of fault management, by providing added value to monitoring 
tasks, and correction for some of the limitations of traditional 
approaches. 
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Abstract— The management of output data from simulation
models can be simplified in grid environments by automating
and standardizing the way in which they are collected
and stored. In the context of component-based computer
models with well-defined input-output interfaces, general-
purpose data collector components can be linked to model
components to retrieve output data and deliver them to
online repositories via web services. We have developed
a distributed data collector component that adheres to the
Open Modeling Interface (OpenMI). The component buffers
data to minimize the impact on a simulation’s runtime and
shares the buffer across compute nodes for load-balancing
and cooperative delivery of data to web services. The
buffering capability resulted in minimal runtimes within a
single simulation and reduced data delivery latencies for
concurrently executing simulations across a cluster. In this
paper we report on the design and performance of the
component.

Keywords: OpenMI, data, web services, modeling, simulation

1. Introduction
The output data produced by environmental computer

simulations often provides a starting point for investigation
into the phenomena being studied. The data may need to be
archived, aggregated, processed, and analyzed statistically
or geographically before they can be visualized and inter-
preted. These may be performed by an individual or as part
of a collaborative effort between groups within or across
institutions.

Model output traditionally takes the form of local data
files that may be of a custom format or adhere to simple
standards such has comma separated values and extensible
markup language or more complex standards such as netCDF
and various database formats. Managing output files can
be challenging, particularly in a grid environment in which
simulations execute on multiple machines across a compute
cluster.

As an alternative to data files, model output data can be
immediately relayed to an Internet-connected data storage
service that serves as a single repository for the data.
This facilitates sharing of the data over the Internet and
automates common tasks such as data archiving. In the
general case, this capability is added to a model program

by either modifying the model source code or incorporating
intermediary software (often via scripting). In the case of
model components with well-defined input-output interfaces,
a general-purpose data collector component can be attached
to any model component to retrieve the output data. Such
components can mitigate data management challenges in any
linked modeling context.

The Open Modeling Interface (OpenMI) [1] defines a
standard way for software components to exchange data with
each other and coordinate their execution. It defines a set
of capabilities that a component must possess in order for
it to be linkable to other components. These capabilities are
both descriptive, to support the task of specifying component
interactions at the domain level, and functional, to support
the execution of a set of linked components. To fulfill the
descriptive requirements, a component must be capable of
providing a list (via a function call) of the domain quantities
that it can provide and those that it uses as input, along with
the units and spatial distribution of each. These are called
output exchange items and input exchange items, and in the
case of model components there is typically one output item
for each quantity that it simulates and one input item for
each of its inputs. To fulfill the functional requirements, a
component must possess a GetValues function through which
it provides data (that correspond to the exchange items) at
runtime.

The GetValues function has three parameters that collec-
tively identify a quantity at a single point in time at one or
more locations as illustrated in Figure 1. A quantity (labeled
Q in the figure) is represented by an object with several
properties such as a textual identifier and units information.
A time T is represented by a simple date object. A list
of locations E is represented by an elementset object that
contains a collection of element objects that each have a
textual identifier, spatial shape (point, line, or polygon) and
geographic coordinates. The GetValues function returns an
array of real numbers called a valueset V such that each
number corresponds to an element (based on its index) and
collectively represents the state of a quantity at a point in
time.

The GetValues function not only provides a means for
the exchange of data between a group of linked components
(called a composition) but it also provides a means for
their coordinated execution at runtime. A special component
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Fig. 1: OpenMI pull-based execution. Solid lines indicate
function calls and dashed lines indicate the flow of data.

called a trigger begins by calling GetValues on one of the
components. When GetValues is called on a component, it
executes as many time steps as necessary to advance to the
requested point in simulation time and returns a valueset
corresponding to that time. Thus a component only executes
time steps as-needed to respond to a GetValues call. If it
needs input from another component in order to execute a
time step it calls GetValues on that component and blocks
until a valueset is returned. The components take turns
executing synchronously and pull data from each other until
the simulation completes.

Compositions of linked components can be created and
executed using visual software tools. A scientist chooses a
set of components, and for each one, assigns each output
exchange item to another component’s input exchange item.
These assignments are called links and there may be multiple
links between two components and may be in the same or
opposite directions.

In this work we present the design and evaluation of
a general-purpose Data Collector Component (DCC) that
is capable of collecting data from OpenMI components
and delivering them to online repositories. We describe the
design and implementation of the DCC in the following
section and present our experimental results in Section 3. We
review related work in Section 4 and present our conclusions
in Section 5.

2. Methods
Figure 2 illustrates the movement of data through a

distributed data collection system for linked model compo-
nents. Compositions of linked components execute on cluster
nodes. Each composition includes a DCC that collects data
from the components and delivers them to web services. Any
web service that is capable of accepting data items consisting
of a quantity identifier, date, list of location identifiers, and

cluster

node

DCC

C

C

DCC

CC

C

web 
services

Fig. 2: System overview.

list of values, can be used.

2.1 Web Services
The Open Geospatial Consortium [2] publishes interface

standards for location-based information and services to
support interoperability. The Geographic Markup Language
(GML) [3] standard defines XML schemas for geospatial
information including observations data, which is capable
of describing model output from OpenMI components.
The prototype implementation of the DCC uses this XML
schema to represent the data as they are sent to web services.
An example of an XML document that conforms to the
schema is given in Figure 3 (we used a more succinct gml:id
attribute in place of a gml:location element). Additional XML
schemas, such as Observations and Measurements [4] could
be incorporated into the DCC as well.

<gml:Observation gml:id="18951">
    <gml:validTime>
        <gml:TimeInstant>
            <gml:timePosition>2010-12-01T12:00:00</gml:timePosition>
        </gml:TimeInstant>
    </gml:validTime>
    <gml:resultOf>
        <app:Temperature>67.2</app:Temperature>
    </gml:resultOf>
</gml:Observation>

Fig. 3: GML description of a single value.

If a DCC were to make a web service call each time
it collects a valueset then the execution of the simulation
would be paused for the duration of the call due to the
synchronous execution of components. In addition, sending
a single valueset in each web service call may result in
inefficient network utilization when the network latency is
comparable to the transmission time of the valueset.

In the ideal case the collection of valuesets would not
increase the runtime of a simulation and a sufficient number
of valuesets would be transferred in each web service call to
achieve efficient network utilization. To these ends the DCC
utilizes a buffer that enables the sending of valuesets to be
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asynchronous with respect to their collection and allows for
the coalescing of multiple valuesets into a single web service
call. The buffer is shared among all DCC’s across a cluster
to provide a total buffer size that is greater than the local
buffer size of each individual and to allow cooperation in
delivering the buffered data.

The implementation of the DCC consists of a buffering
module and a delivery module as illustrated in Figure 4.
The buffering module collects valuesets from components
and stores them in the shared buffer. The delivery module
removes valuesets from the buffer and delivers them to web
services. The behavior of these modules is dictated by three

local map
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collect
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event

component

DCC
DCC
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Fig. 4: Operation of the data collector component. Solid lines
indicate function calls and dashed lines indicate the flow of
data.

parameters: maximum local buffer size, maximum residence
time, and minimum delivery size. These are described in the
following sections.

2.2 Buffering
A DCC may be linked to one or more components

within a composition. Components raise an event each time
output data is produced, typically after each time step (the
DataChanged event). The DCC listens for this event and in
response calls the component’s GetValues function to obtain
the newly created valueset and places it into the buffer.

The shared buffer is provided by an open source data
distribution platform (Hazelcast [5]) that is compiled into,
and runs as a set of background threads within, each DCC.
It manages a distributed map data structure, dynamically dis-
covering peers via multicast and communicating via TCP/IP.
The entries in the map are evenly distributed among all peers
and each peer holds a portion of the entries in a local map.
Entries are keyed by a universally unique identifier and are
variably sized and include the quantity identifier (string),
timestamp (long), elementset identifier (string), expiration
date (long), valueset data (byte array), and valueset data size

(long). The memory overhead of storing an entry in the
distributed map data structure is approximately 260 bytes.

The amount of memory dedicated to the local map is
dictated by the maximum local buffer size parameter, thus
the total memory available to the distributed map is the sum
of all peers’ local maximums. If the addition of an entry
into the buffer would cause the local map’s size to become
greater that the maximum, then the buffering module waits
until there is available space, during which the execution of
the simulation is blocked. The buffering module relies on
the delivery module to remove entries from the buffer and
send them.

2.3 Delivery
The removal of entries from the buffer by the delivery

manager is dictated by two parameters: minimum delivery
size and maximum residence time. The minimum delivery
size provides a means to regulate network efficiency. The
delivery manager attempts to remove enough valuesets from
the buffer to meet the minimum delivery size before sending
them in a single web service call. This may cause entries to
remain in the buffer for extended periods of time. This may
be acceptable in cases in which the data is being archived,
but in cases where the data is consumed as the simulation is
being carried out, it may be necessary to place a constraint
on the duration that an entry may reside in the buffer before
it is delivered. This is controlled by the maximum residence
time parameter, which places a limit on the length of time
an entry remains in the buffer. Each entry in the buffer has
an expiration date that is calculated based on the creation
date and maximum residence time. The maximum residence
time has higher priority than the minimum delivery size, so
in some cases a web service call may contain a small amount
of data in order to enforce the time constraint.

The minimum delivery size is specified in terms of the
number of values per web service call rather then the number
of bytes of serialized XML because different web services
may utilize different XML schemas and the latter would
require a priori knowledge of the serialized XML size for
any valueset. Identifying the serialized XML size for a
valueset would require either (1) the serialized XML size
per value to be known or (2) valuesets to be temporarily
serialized to XML as the buffer is being inspected. The
former would require calculating the serialized XML size per
value for each XML schema and the latter would consume
additional system resources.

The following algorithm is used by the delivery manager.
The delivery thread periodically iterates over the entries in
the local map and determines (1) whether there are any
entries that have expired and (2) whether there are enough
entries to meet the minimum delivery size. If either case
is true, the delivery thread iterates over the local map
to identify the entry with the lowest expiration date and
removes it. It repeatedly iterates over the entries, removing
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the entry with the lowest expiration date, until either (1)
enough entries have been collected to meet the minimum
delivery size, or (2) the local map is empty. Only the
entries in the local map are iterated in order to avoid global
operations and improve scalability. The valuesets within the
entries are deserialized from their byte array representation,
coalesced, serialized into XML, and then sent in a single web
service call. The process repeats until both the simulation
is completed and the number of entries delivered is equal
to or greater than the number of entries inserted into the
local buffer. The latter ensures that each DCC delivers a fair
share of the entries and that only DCC’s with excess capacity
deliver more entries then they collect.

When a valueset is delivered to a web service it must
include information about the location that each value repre-
sents. This information is not stored inside the buffer entries
because it would be redundant as the location information
is identical for all valuesets that correspond to a common
elementset. Elementsets are static during a simulation run
so there is typically a high ratio of valuesets to elementsets.
The buffer entries only store the elementset’s identifier and
the actual elementset information is stored in a separate
distributed map. In this way a DCC can lookup the complete
elementset information for any valueset before it is delivered.

3. Experimental Results
We conducted a performance study using an onsite Linux-

based Beowulf cluster. The compute nodes had 2 quad-core
2.3 GHz Opteron 2376 processors with 8 GB of memory
and the server node had a quad-core 2.7 Ghz processor and
8 GB of memory. All nodes were connected via gigabit
ethernet. The software components were implemented in
Java using the Alterra OpenMI 1.4 SDK and the web service
was SOAP-based and implemented in PHP hosted by the
Apache HTTP server within a Windows virtual machine.

To represent a model component we created a producer
component that used a fixed-length time step of 1 day and
would sleep for a fixed amount of time between time steps
to mimic the time spent calculating a time step. On each
time step a single valueset was generated and collected by
the DCC linked to it.

3.1 Minimum Delivery Size
The minimum delivery size that maximizes throughput to

the web service is dependent on several factors including
network latency, available bandwidth, and software perfor-
mance. We conducted a series of measurements to empir-
ically identify the ideal delivery size for our experimental
configuration.

To establish a baseline of the expected performance of the
DCC, we independently measured the maximum throughput
from a benchmark Java application to the Apache/PHP web
service and found it to be 47 MB/s. This performance
was only possible when the ChunkedStreamingMode of

the java.net.HttpURLConnection object was enabled, which
prevents the complete POST request from being buffered
in memory and streams the data directly from disk to the
connection’s input stream (although not all web servers
support this mode).

We configured a single composition consisting of a
producer component linked to a DCC and measured the
throughput from the DCC to the web service in a series
of simulations. In each simulation the producer generated
a number of valuesets that were collected by the DCC
and individually sent to the web service in separate calls.
The average throughput (over all sends in each simulation)
achieved in each simulation is shown in Figure 5.
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Fig. 5: Impact of minimum delivery size on throughput.

As the data size increased, the throughput increased as
well until the maximum throughput was reached, at which
point larger data sizes no longer improved the throughput.
To achieve at least 50% of the maximum throughput it was
necessary to set the minimum delivery size to 2.6 × 105

values which ensures that each web service call contains at
least 11 MB of serialized XML data.

3.2 Maximum Residence Time
The maximum residence time imposes a limit on the

amount of time that an entry may reside in the buffer. When
expired entries are detected in the buffer, all expired entries
are removed from the buffer, along with any additional
entries necessary to meet the minimum delivery size, and
are sent in a single web service call. Thus some entries may
be removed from the buffer before they expire resulting in
an average residence time that is less than the maximum
residence time.

To investigate the effect of the maximum residence time,
we measured the average residence time of entries that
were added to the buffer at a regular interval. The testing
configuration included a single producer component that
generated a valueset at a regular interval that was shorter
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than the maximum residence time in each case causing
several entries to be added to the buffer before one of
them expires. The buffer was configured such that entries
were only removed as a result of an expiration (unlimited
maximum buffer size) and when an expiration occurs all
entries were removed from the buffer and sent in a single
web service call (minimum delivery size set to maximum).

The results indicate that the average residence time was
one-half the maximum residence time in all cases. The
expiration of the first entry added to the buffer causes all
the entries to be removed and delivered, all of which spent
differing amounts of time in the buffer. In general, the sum
S of the residence time rt of n entries added to the buffer
at a fixed interval i is:

Sn = rt1 + (rt1 + i) + ..+ (rt1 + (n− 1)i)

= n/2(rt1 + rtn)
(1)

The first entry added to the buffer has the maximum resi-
dence time RTmax and the last one added has 0 residence
time, thus the average residence time RTavg is given by:

RTavg = (n/2(0 +RTmax))/n = RTmax/2 (2)

With respect to network efficiency, setting a low maxi-
mum residence time resulted in inefficient bandwidth usage
because the minimum delivery size was not met. In such
cases, network efficiency can be improved by increasing the
maximum residence time.

3.3 Buffering
The primary purpose of the buffer is to provide a means

for the asynchronous delivery of data to minimize the impact
of the data collection on the simulation runtime. To evaluate
the buffer’s utility in this respect we measured the simulation
runtime of a single composition consisting of a producer
component linked to a DCC with varying buffer sizes.

The producer generated valuesets of 100 KB at a fixed
interval and the DCC had an unlimited maximum residence
time and a minimum delivery size equivalent to the size
of the valueset so that valuesets were delivered to the web
service in individual calls. We imposed a latency on the
web service of twice the interval so that data was added
to the buffer at exactly twice rate at which it was removed
causing the amount of buffered data to increase throughout
the simulation.

We measured the simulation time as the time spent by
the producer executing time steps. In general the minimum
buffer size BSmin to ensure no impact on runtime is given
by:

BSmin = (InRate−OutRate)× Tsim (3)

where InRate is the rate at which data is added to the
buffer, OutRate is the rate at which data is removed, and
Tsim is the simulation time. In this experiment the expected
minimum buffer size was (20.0 KB/s - 10.0 KB/s) × 2500
s = 25.0 MB.

Results are given in Figure 6. Given a sufficient buffer size
the runtime remains constant with minimal overhead added
by the data collection and sending (adding only the time to
retrieve the valueset from the component and insert it into
the buffer, both of which occur in memory). The results are
consistent with the expected minimum buffer size as speedup
becomes constant as the buffer size approaches 24 MB.
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Fig. 6: Speedup for varying buffer sizes.

3.4 Distributed Cooperation
The entries in the local buffer of each DCC are evenly

distributed among all the active DCC’s on a cluster. This
results in entries migrating away from DCC’s that are
collecting faster then they are delivering, and toward DCC’s
that are delivering faster then they are collecting, which
enables cooperative sending of the data.

To evaluate the effect of cooperation among DCC’s we
executed concurrent simulations on multiple cluster nodes
with differing rates of data collection and data delivery. A
single composition consisting of a single DCC and producer
executed on each compute node and we measured the
completion time which we define as the amount of time
necessary for all data to be delivered. In the ideal case the
completion time is equivalent to the simulation time, but may
extend past the simulation time if the simulation completes
before all data is delivered.

Four fast-production nodes were configured such that data
was produced at a faster rate than it could be delivered, and
the other slow-production nodes were configured such that
data was produced at a slower rate than it was delivered.
Given a sufficient number of nodes, the runtime remains
constant with minimal overhead added by the data collection
and sending (adding only the time to retrieve the valueset
from the component and insert it into the buffer, both of
which occur in memory). The following equation describes
the necessary balance of capacity across a cluster to ensure
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that simulation runtimes are not affected by the data collec-
tion. For N nodes over a given simulation period:

0 =
N∑
i=1

InRatei −OutRatei (4)

In this configuration, the 4 fast-production nodes inserted
0.5 entries per second while the remaining slow-production
nodes each inserted 0.01 entries per second. All nodes
removed entries at the rate of 0.1 entries per second. By
Equation 4, 32 slow-production nodes would be sufficient to
collectively match the rate of 1.6 entries per second inserted
by the four fast-production nodes. This assumes that the
slow-production nodes are actively delivering data during
the complete simulation period.
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Fig. 7: Speedup for varying numbers of nodes.

We observed near-ideal speedup in the average completion
time of the four fast-production nodes for up to 16 nodes
as shown in Figure 7. As the number of nodes increased
beyond 16, the rate at which entries were added to the
distributed buffer was not sufficient to ensure each slow-
production node had entries in its local buffer, resulting in
the slow-production nodes not sending at all times (as in
the ideal case). For example, each slow-production node
spent an average of 31% less of its excess time delivering
data when there were 48 nodes than when there were 16
nodes. Enabling the cooperation across nodes reduces the
completion time, but achieving ideal speedup is contingent
on the availability of sufficient data at each node.

4. Related Work
The DCC automates both the task of collecting model out-

put data and transferring them to online services. These are
typically performed manually or using custom software [6]
that execute general-purpose tools such as GridFTP [7]. Web
services have been utilized in modeling and simulation since
their conception as both a means to access data and to control

the execution of online models [8], [9], [10], [11]. The
DCC provides a point of integration between linked models
and any Internet-connected data platform that supports web
services, including Workflow Management Systems such as
Taverna [12] and Vistrails [13] and distributed data storage
systems such as iRODS [14] and HIS [15]. It complements
existing methods for input data retrieval from online services
for OpenMI linked models [16], [17], [18].

5. Conclusions
We presented the design of the Data Collector Component

(DCC) for OpenMI components and evaluated its perfor-
mance. The DCC collects model output data from model
components and efficiently delivers them to web services.
It utilizes a distributed buffer optimized for the unique
behavior and constraints of the OpenMI. General-purpose
data collector components simplify the task of collecting
model output within a grid environment and facilitate storage
and post-processing by online services.

The DCC consists of a buffering module and a delivery
module. The buffering module obtains output data from one
or more components as they are created and stores them in a
distributed buffer that is shared among all DCC’s executing
on a cluster. The delivery module continuously monitors
the buffer and delivers data to web services in a way that
balances efficiency and latency.

We evaluated the performance of the DCC and its sensitiv-
ity to its three parameters: maximum buffer size, minimum
delivery size, and maximum residence time. The minimum
delivery size was found to have a significant impact on the
throughput and to achieve at least 50% of the maximum
throughput each message must contain at least 2.6 × 105

elements in our experimental configuration. The maximum
residence time resulted in an average residence time that
is one-half the maximum residence time when entries are
added to the buffer at a regular interval. We found that
buffering resulted in maximum speedup in simulation time
(a factor of 3) within a single composition, and distributed
cooperation resulted in a speedup in the completion time by
a factor of 2.4.

As the importance of data availability, interoperability
and transparency continue to rise, so too does the need
for software tools to facilitate these. General-purpose tools
that intelligently and efficiently collect and deliver data
will become an essential part of OpenMI linked models on
workstations and grids alike and this work provides a starting
point for such tools.
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Abstract— A library for parallel IO and data management 
has been developed for multi-physics simulations. The goal 
of the library is to provide sustainable, interoperable, 
efficient, scalable, and convenient tools for parallel IO and 
data management for high-level data structures in 
numerical simulations, and to provide tools for the 
connection between applications. The library supports the 
N-to-M mode, in which data on N computer processors are 
written into M files. The number of files is transparent to 
users and is chosen by users when files are open. The high-
level data structures include those in particle simulations, 
one- and multi-dimensional arrays, structured meshes, 
unstructured meshes, the meshes generated through 
adaptive mesh refinement, and variables associated with 
these meshes. The IO mechanism can be collective and non-
collective. The library is typically used for restarting files, 
visualization files, and files connecting different 
applications. The data objects suitable for the library could 
be either large or small data sets. Even for small data sets, 
the IO performance is close to the one of MPI-IO 
performance for large data sets. For resilience, the library 
guarantees that any parts of files that have been written be 
readable if computer hardware crashes during writing. 

Keywords: data structure, data management, IO. 

 

1 Introduction 
      Parallel IO and scientific data management have played 
an important role since the beginning of large scale 
scientific computing, and are getting more important due to 
the increase of the scale of the computing. Existing 
products, which have partially addressed the issue, include 
HDF5 [1], SAF [2], CGNS [3], NetCDF [4], Silo [5], UDM 
[6], and others. Each of the existing products has certain 
advantages and disadvantages. Some of the products have 
good functionalities for unstructured meshes, but they either 
don’t have capabilities for running on parallel computer 
environments or lack for good parallel I/O performance.  
Some of them are designed for parallel environments, but do 
not have the capabilities to deal with unstructured meshes, 
or they get only a fraction of MPI I/O performance. Some 

have good IO performance but lack the functionality to 
query data sets for their relationship. Some have a decent IO 
performance for large data sets, while they failed to deliver 
the similar performance for small data sets. 
 
     The HIO library is for parallel IO and data management 
for high-level data structures used in numerical simulations. 
It has been developed under Department of Energy (DoE) 
Advanced Simulation and Computing (ASC) program for 
ASC code projects. The HIO library is the further 
development of the UDM library [6]. The HIO library 
provides sustainable, interoperable, efficient, scalable, and 
convenient tools for parallel IO and data management for 
high level data structures in applications. In the DoE 
community, such as national laboratories, data files 
generated in one code project often have to be used in 
another code project as inputs. The HIO library provides a 
parallel tool for such connections.  
 

 
Figure 1.  Data on N computer processors are written into M files. 

     The HIO library writes simulation data on N computer 
processors to M files on parallel computer environments, 
i.e., N to M, as shown in Fig.1. The number of files, M, is 
chosen by users when the files are opened, and M could be 
one. The library consists of functionalities for IO and data 
management for high-level data structures encountered in 
numerical simulations on parallel computer environments, 
such as data in particle simulations, structured meshes, 
unstructured meshes, meshes generated from adaptive mesh 
refinement (AMR), and their associated variables defined on 
cell centers, vertices, edges, or faces of meshes. The library 
is built on the top of MPI I/O, and its I/O performance is 
almost the same as MPI I/O. To our knowledge, the 
functionality and performance of the library are superior to 
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existing products for these data structures in numerical 
simulations.  
 
      In this paper, we will report the library, and its main 
usages.  In Section II, we will present the main 
functionalities of the library. The usage of the library will be 
demonstrated in Section III. The IO performance of the 
library will be discussed in Section IV, and in the final 
section we will discuss resilience of the library and some of 
our future plans. 
 
2  Functionalties 

The HIO library provides IO and data management tools 
for data in particle simulations, single and multi-dimensional 
arrays, structured meshes, unstructured meshes, and the 
mesh generated through adaptive mesh refinement (AMR), 
and their associated variables defined on these meshes in 
numerical simulations on parallel computer environments. It 
also provides a hierarchical data structure within a data file. 
The files generated through the library are self-described. 
 
2.1 N-to-M Mode 
 
     In the current and future computer system, the number of 
computer processors in a computer system is so large that 
writing to a single file for a writing event will not be 
optimal for IO performance and network communication. 
Therefore, the data on N computer processors, on which a 
simulation is run, could be written to M files, M could be 
one, and M could be N although the case with M equal to N 
is not our focus. For a given N processors, the optimal M 
depends on individual computer system and software on it, 
it also depends on the size of the data to be written into this 
files. For this reason, through the library, M is a file-specific 
parameter, and some files could be written in the N-to-M 
mode while others are done through the N-to-1 mode. For 
this library, this M is a parameter that users can choose 
when they create files, and by default it is one. 
 
       For writing, the library divides N processors into M 
groups for any M provided by users. For example, a user is 
to write a file with a file name foo and M = 2. The library 
will actually create two files with names foo.m00001 and 
foo.m00002. These two files are also what the user sees, and 
they are transparent to users. From the names of these files, 
foo.m00001 and foo.m00002, the user can not see each file 
contains the data of which group of processors, but this 
information could be easily queried from a function call of 
the library.  
 
      After the file is created, for example, foo, the library 
remembers the partition of M files from N processors until 
the file is closed. Before the file is closed, any subsequent 
writing into the file, foo, will be automatically partitioned 

into the M files. The writing call is the same as that for the 
case with N equal to one, without the parameter M involved. 
 
      For the convenience to query data in the M files, each of 
these M files contains the description of the partition of N 
processors among the M files and the description of data on 
all N processors, such as the sizes of data on each processor 
and the processors writing to any particular file. Each of the 
M files contains also the information of structure of the files 
and the description of all the objects in the M files, such as 
the information written into a single file. Therefore, from 
each of the M files, users can get the description of all M 
files. 
 

2.2  Unstructured Meshes 
 

      One of the important and powerful functionality in the 
HIO library is the management of unstructured meshes and 
their associated variables. The library supports a broad 
range of unstructured meshes, which include meshes with 
fixed shapes, arbitrary polygons, and arbitrary polyhedrons. 
The mesh elements with a fixed shape may be triangles, 
quadrangles, pentagons, tetrahedrons, pyramids, wedges, 
pentagon prisms, and points in particle simulations. A mesh 
element may be a zone, or face, or edge, i.e., a mesh may be 
a zone-mesh, face-mesh, edge-mesh, and points. An edge-
mesh may be one-, or two-, or three-dimensional, and a 
face-mesh may be either two- or three-dimensional. Mesh 
elements of a zone-mesh may be made directly from nodes, 
or the elements may be made from edges, or the elements 
may be made from faces and the faces are then made from 
either edges or nodes. The HIO library also supports ghost 
mesh elements, boundary faces, boundary edges, 
boundary nodes, slip faces, slip edges, slip nodes, etc. 
The variables associated with unstructured meshes 
may be node-variables, or edge-variables, or face-
variables, or zone-variables, and variables may be 
scalars, or vectors, or tensors.  

 

 
Figure 2.  Examples of mesh elements supported in the HIO library 
for unstructured meshes.  

     To illustrate the meshes supported in the library, in Fig.2 
we list some examples for mesh elements. They include (a) 
triangles, (b) quadrangles,  (c) pentagons, (d) arbitrary 
polygons, (e) hexahedrons, (f) tetrahedrons, (g) wedges, (h) 
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pyramids, (i) pentagon-prisms, and (j) arbitrary 
polyhedrons. The mesh elements may be made from any 
lower level entities, such as faces, edges, and nodes. Figure 
3 shows three possible ways to make up three-dimensional 
elements. 

 
Figure 3.  An element may be made from (a) nodes, or (b) faces 
and nodes, or (c) faces, edges, and nodes. 

      Although the HIO library covers a broad range of 
unstructured meshes, a user only has to set up his/her own 
mesh definition, and all other mesh definitions are hidden 
from the user. For example, for an unstructured zone-mesh 
made from nodes, only the list of nodes for each element is 
needed, if the elements are of a fixed shape, such as prisms. 
If mesh elements are arbitrary polyhedrons made from 
nodes, two arrays are needed, one for the numbers of nodes 
for elements, and the other for the list of nodes for each 
element.  Like the capability for structured meshes, the 
association between a mesh and a set of variables is 
automatically built into the library.  

2.3  Adaptive Mesh Refinement 
      Although a mesh generated through AMR may be 
considered as an unstructured mesh in IO, but it involve 
unnessary memory copies and additional working memory 
requrement. The HIO library is able to handle AMR meshs 
naturally without additional memory. 

 

Figure 4.  Illustration of ghost cells in cell-based AMR. The left 
image is the partition of between two processors, and the right one 
is the part of the mesh on each processor with ghost cells. 

      For element-based AMR structured meshes in the HIO 
library, we store the center and width of each element in 
each dimension. The scalar variables associated with the 
meshes are one-dimensional and the associated vector 
variables are two-dimensional arrays. The association 
between the variables and a mesh is automatically built and 
stored in the file. For block- or patch-based AMR structured 
meshes, each block or patch is considered as a standard 
structured mesh.  

      The library also support ghost cells in AMR meshes. 
Some post data anaylizers need variables on ghost cells to 
derive information around interfaces between processor 
interfaces, such as a visualization tool calculating 
isosurfaces. Figure 4 shows the illustration of ghost cells 
surrounding the part of an AMR mesh on each processor. 

2.4  Writing/Reading Descriptions 
      Users can add any description to any object, such as a 
file itself, or an array, or a mesh, or a variable, as long as the 
description is not of the problem-size, and each processor 
has the same description. More importantly, writing all 
descriptions almost doesn’t have any IO cost, since all the 
descriptions will be buffered together with all the meta data 
and are written at the end of a file when the file is closed.  
 
The number of the descriptions and each description can be 
automatically queried. As writing the description, reading 
any description does not involve any additional IO cost 
since all the descriptions together with all the meta data are 
read into the memory when a file is open.  
 
2.5   Small Data Sets 
 
     Writing small data sets into a file on a parallel 
environment will typically result in very IO performance. 
The HIO library provides an automatic buffering 
mechanism so that a large number of small data sets will 
automatically buffered together before they, together with 
their names and descriptions, are written into a file. Writing 
small data sets, users will get the same IO performance as 
they get for large data sets. But, users don’t have to keep 
track of the locations of each individual small data set in the 
combined buffer and the disk file.  
 
     To read a small data set, the HIO library actually only 
copies small data set from a buffer to the user’s memory. If 
the buffer is not available yet, the library will automatically 
read the buffer first, and then copy the data. Therefore, the 
library doesn’t involve reading from a disk with a small set 
of data.  
 
     To users, all the tedious operations necessary for writing 
and reading the small data sets are behind the scene. Writing 
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small data sets is the same as writing big data sets, and even 
the names and arguments of the functions to be called are 
the same. 
 
2.6   Querying 
 

 
Figure 5.  Three parts of an unstructured mesh with 1.6 billion 
elements. The left is read through an original processor rank, the 
middle one is read through a set of global element ids, and the right 
is read through a space domain. 

      A file written through the HIO library is self-described. 
All the information in the file may be queried by function 

calls of the library. For example, for a given file, users may 
find the number of arrays, meshes, and variables, the 
description of each array, mesh, and variable, and any 
association between meshes and variables. Through the 
querying function in the library, meshes and variables may 
be directly viewed through parallel graphics tools. 
 
      After a data object, such as array, mesh, and variable, is 
written into a file, users may read any part of the data object 
in terms of, for example, global ids, or a processor rank, or a 
space domain. Figure 5 illustrates the capability for reading 
three parts of an unstructured mesh with 1.6 billion 
elements. The top image is a part read through a processor 
rank, the middle one is a part identified through a set of 
global element ids, and the lower image is read based on a 
space domain. 
 
As stated beore, one of usages of the library is to connect 
data files to visualization tools. All the images presented in 
this paper are produced through the visualization tool 
Ensight except the the one in Fig.6, which is produced 
through VisIt. Our simulations generate a set of files for 
visualtion, and the set of files could be read by either 
Ensight and VisIt without direct transformation. 

 

Figure 6.  Iso-surfaces of pressure of a three-dimensional 
simulation. 

2.7 Hierarchical Data Format 
 
     The HIO library supports the hierarchical data structure 
within each file, which is equivalent to the Unix file system, 
although it is not necessary for the functionalities of the 
library mentioned above. After a file is created, users may 
create any number of groups within the file. A group is a 
container in which other groups and data sets may be 
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created and written. A file is also a group. A data set is an 
array, or a mesh, or a variable. A number of attributes may 
be attached to a group or data set. An attribute is any 
additional description users want to store into the file for a 
group or data set. Due to the hierarchical data structure and 
the attributes, users may build their own data format that is 
self-described.  
 
       All the data needed for the hierarchical data structure 
and attributes are stored at the end of each file, which is 
written to a file only when the file is closed. Therefore, the 
cost for the hierarchical structure and attributes is very 
minimal. 
 
3  Basic Functions and Uages 
       One of the design principles of the HIO library was a 
small number of functions. The following is the list of main 
functions of the library. 
 

• hio_set_mcomm(mfiles) 
• hio_open(filename, mode, fid)           
• hio_close(fid) 
• hio_init(type, fileid, obj) 
• hio_write(type, fileid, obj) 
• hio_query(type, fileid, filter, nobjs, objs) 
• hio_clean(type, nobjs, objs) 
• hio_get_size(type, domain, fileid, obj) 
• hio_read(type, domain, fileid, objs, nobjs) 
• hio_init_append(type, obj) 
• hio_finalize_append(type, id) 

 
      The first two functions are for opening and closing files. 
The function hio_init is to initialize any object before it is 
being used, and the object includes array, structured and 
unstructured mesh, AMR mesh, and variable defined on a 
mesh. The function hio_query is for querying, which 
include querying files, querying variables, querying 
relationship between variables and meshes, querying 
attributes, etc. The function hio_clean is to release the 
memory allocated in the call of the function hio_query. The 
function hio_get_size to determine the sizes of grid zones, 
faces, edges, and nodes for a given part of a mesh, for 
example, a spatial domain, a part associated with a specific 
processor, or a number of elements. The function hio_read 
is to read attributes and any data for a given part of a mesh, 
which include coordinate, mesh, variable, etc. The 
functions, hio_init_append and hio_finalize_append, 
together with hio_write are for generating large meshes with 
a small number of computer processors. 
 
     The following is an example to write an unstructured 
mesh with general polyhedrons. To specify the mesh, each 
computer processor has a number of elements, nzone. The 
set of elements have a number of faces and nodes, nface and 
nnode. The arrays, num_faces_for_zone and 

facelist_for_zone, are to specify the elements, and the 
arrays, num_nodes_for_face and nodelist_for_face, are to 
define the faces. The arrays, x, y, and z, are the locations of 
these nnode nodes. All these arrays and sizes are local to the 
processor. Then code to write this unstructured mesh is as 
follows. 

hio_unstructured_mesh m;  
hio_coord *c = &m->coord; 
hio_init(hio_umesh, -1, &m); 
m.dims = 3; 
m.type = hio_general_mesh; 
m.sizes[0] = nzone; 
m.sizes[1] = nface; 
m.sizes[3] = nnode; 
m.num_nodes_for_face = num_nodes_for_face; 
m.nodelist_for_face       = nodelist_for_face; 
m.num_faces_for_zone = num_faces_for_zone; 
m.facelist_for_zone       = facelist_for_zone; 
c->coord[0] = x; c->coord[1] = y; c->coord[2] = z; 
c->datatype = hio_double;    
m.datatype = hio_int;   
hio_write(hio_umesh, fileid, &m); 

 
After this mesh is written to a file, this mesh can be queried 
as described before. 
 
The following segment of codes demonstrates the usage to 
write a large mesh into a file through a small number of 
processors.  

hio_unstructured_mesh m; 
hio_coord *c = &(m.coord); 
hio_init_append(hio_umesh, -1, &m); 
m.dims = 3;  
m.type = hio_general_mesh; 
m.datatype = hio_int; 
c->datatype = hio_double; 
while (more_block) { 
        generate a part of mesh 
        write the part to mesh 
} 
hio_finalize_append(hio_umesh, m.id); 

 

 
Figure 7.  An unstructured mesh with 1.6 billion elements written 
through the “append” capability in the HIO library. 
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      An example mesh with 1.6 billion of unstructured 
elements generated through 16 processors in this way is 
shown in Fig.6. 
 
A cell_based AMR structured mesh is defined through 
arrays for the centers of elements, x, y, z, and arrays for 
widths of the elements, dx, dy, and dz. The following 
segment of codes shows the usage to write a cell_based 
AMR mesh. An example mesh is shown in Fig.7 that 
contain four materials. 
 

 
Figure 8.  A cell_based AMR structured mesh with four materials and the 
variable of density written through the HIO library. 

hio_Structured_Element_AMR m; 
hio_init(hio_smesh_element_amr, -1, &m); 
m.name = meshname; 
m.dims  = 2; 
m.datatype_coord = hio_double; 
m.size           = nelement; 
m.coord[1]   = x; 
m.coord[0]   = y; 
m.dcoord[1] = dx; 
m.dcoord[0] = dy; 
hio_write(hio_smesh_cell_amr, fileid, &m); 

 
      After a mesh is written into a file, a set of variables can 
be written into the file, and the relationship between the 
mesh and variables is automatically built. The following 
codes show the usage to write a scalar variable defined on 
elements, zone_density, and a vector defined on nodes, 
node_velocity_x and node_velcity_y. 
 

hio_Mesh_Var   var; 
hio_init(hio_mesh_var, -1, &var); 

var.name            = varname1; 
var.mesh_ids[0] = m.id; 
var.type              = hio_zone; 
var.datatype        = hio_double; 
var.rank              = 0; 
var.comps[0].buffer = zone_density; 
hio_write(hio_mesh_var, fileid, &var); 
 
hio_init(hio_mesh_var, -1, &var); 
var.name            = varname2; 
var.mesh_ids[0] = m.id; 
var.type              = hio_node; 
var.datatype       = hio_double; 
var.rank              = 1; 
var.comp_sizes[0]   = 2; 
var.comps[0].buffer = node_velocity_x; 
var.comps[1].buffer = node_velocity_y; 
hio_write(hio_mesh_var, fileid, &var);    

 
After a mesh and a set of variables are written into a set of 
files. Any part of the mesh and the variables associated with 
this part of the mesh may be easily read. The following 
segment of codes shows the usage to read a part of mesh 
defined through domain, and nvar variables, vars, associated 
with this domain. 
 

int                                     nvar; 
hio_Domain                     domain; 
hio_Unstructured_Mesh  m; 
hio_Mesh_Var                 *vars; 
specify mesh and domain 
hio_get_size(type, domain, fileid, &m); 
allocate space for the part of mesh, and variables 
hio_read(hio_umesh, domain, fileid, &m, 1); 
hio_read(hio_mesh_var, domain, fileid, &vars, 
nvar); 

       The other examples include patch-based AMR 
structured meshes shown in Fig.8. The patches of the first 
and second levels of a patch-based AMR mesh in a three 
dimensional simulation are displayed in the figure. The 
rectangular with each color in Fig.8 is a patch.  

4  Performance 
      The HIO library is built directly on the top of MPI-IO, 
and files generated are machine-independent. Its 
functionality and performance have been tested on from a 
couple of dozen processors to full machines, and its 
performance is around 97% of that of the MPI-IO. 
 
      The library depends on MPI I/O for its I/O performance, 
and it currently supports both collective and non-collective 
writes. The library doesn’t explicitly move data between 
processors. The library itself doesn’t directly interact with 
file systems. If it is necessary, the library have appropriate 
functions to set parameters of the file system through MPI 
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calls. If the MPI is tuned to be of high performance in a 
machine, the HIO library will have high IO performance 
too. 
 

 
Figure 9.  A patch-based AMR structured mesh written through the 
HIO library. The image the second level of patches on the the top 
of the first level patches. 

       To illustrate I/O performance, we used the Q, 
Lightning, and Lobo machines in the Los Alamos National 
Laboratory as examples. The Q machine has a HP 
proprietary parallel file system, and the Lightning and Lobo 
machines have global parallel file systems provided by 
Panasas. The MPI library, mpich, is used on the Q and 
Lighting machines for the tests, and OpenMPI is used on the 
Lobo machine. An unstructured mesh and its 50 associated 
variables are used in the example. The mesh is defined by 
three arrays for coordinates, and an array for the list of 
nodes for elements. We use 510 processors on the Lightning 
machine to write the mesh with total elements 1.6 billion 
and 50 associated variables. The size resulting files is about 
405 Gbytes. As stated before, the files generated through the 
library are slightly larger than the files generated through 
MPI I/O. This is due to the meta data used in the HIO 
library. The HIO library gets 97% of writing performance of 
MPI I/O. On the Q machine, we use 256 processors, the size 
of resulting files is about 203 Gbytes, and the writing 
performance is also 97% of the one obtained through MPI 
I/O.  For 1024 processors on the Lobo machine, for a data 
file of 813 Gbytes, the performance of the HIO library is 
98% of the one of raw MPI-IO calls.  
 
     A few points about the test are worth being mentioned 
here. Firstly, for the pure MPI I/O test, all processors 
collectively write 53 large arrays, and the sizes of data on 

each processor are roughly equal. Secondly, the file 
generated through the HIO library is self-described, and 
may be queried and visualized, but the file generated 
through MPI I/O may not. Last, for the case with 510 
processors, the total overhead of file size in the HIO file is 
110 kbytes, or 0.00004%. Each processor contributes about 
200 bytes of the 110 kbytes, and remaining 8000 bytes are 
the overhead for the description of file structures.  
 
     For the best possible performance, we take three main 
steps. We first make sure that the data on each processor are 
contiguously written onto a disk file, and therefore there is 
no movement of data during writing. Second, the library 
collects all the data for descriptions of arrays, meshes, 
variables, relationship and associations, the hierarchical file 
structure, etc., and writes the collection only when a file is 
closed.  Third, when reading files, the library reads all the 
meta data and the file structure together and reads it only 
once. 
 
5   Acknowledgments 
     The work presented here has been supported by 
Department of Energy through the Advanced Simulation and 
Computing program. The author is grateful to Paul Weber 
for his effort in readers of visualization tools for the data files 
written through HIO library. 
 
6   References   
 
[1] Brown, S., Folk, M., Goucher, G., Rew, R., “Software for 

Portable Scientific Data Management”, Computers in Physics, 
vol. 7, no. 3, pp.304-308 (1993).  

[2] Miller, M. C., Reus, J. F., Matzke, R. P., Arrighi, W. J., 
Schoof. L. A., Hitt, R. T., Espen, P. K., “Enable Integration of 
High Performance, Scientific Computing Applications: 
Modeling Scientific Data with the Sets and Fields (SAF) 
Modeling System”, in Computational Science- ICCS 2001, 
Alexandrov et al. (Eds.), Springer-Verlag Berlin Heidelberg 
2001, pp.158-167, 2001. 

[3] Poirier, D., Allmaras, S., McCarthy D. R., Smith M., and 
Enomoto F., “ The CGNS System”, 39th AIAA Fluid 
Dynamics Conference, AIAA-98-3007, Albuquerque, NM, 
June, 1998.   

[4] Rew, R. K., Davis, G., “NetCDF: An Interface for Scientific 
Data Access”, IEEE Computer Graphics and Applications, 
vol.4, pp 72-82, July (1990). 

[5] Roberts, L., J., “Silo User’s Guide”, University of California 
Research Lab Report, Lawrence Livermore National 
Laboratory, UCRL-MA-118751-REV-1 (2000). 

[6] Dai, W., Aulwes, R., Gaeta, M., and Pfaff, R., Unified Data 
Model (UDM): A Library for Parallel IO and Data 
Management, The proceedings of the 2007 International 
Conference on Parallel amd Distributed Processing 
Techniquies and Appliciation,Arabnia et al (Eds.), CSREA 
Press 2007, Vol.II, pp.697-702, 2007.  

 

66 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



Scalable Solution of Radiative Heat Transfer 
Problems by the Photon Monte Carlo Algorithm on  

Hybrid Computing Architectures 
  

Joo Hong Lee, Mark T. Jones and Paul E. Plassmann 
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 

 
Abstract – The simulation of Radiative Heat Transfer 
(RHT) effects by the Photon Monte Carlo (PMC) method is 
a computationally demanding problem. In this paper we 
present results and analysis of a new algorithm designed to 
solve this problem on a hybrid computing architecture. This 
architecture includes distributed memory, shared memory, 
and Graphics Processing Unit (GPU) accelerated 
components. In this paper we present an approach to obtain 
good parallel performance based on a partitioning of the 
application software into two parts. The first part is a multi-
threaded application code that manages the ray tracing 
aspects of the PMC. The second part is an asynchronous, 
GPU-accelerated pseudo-random number generation 
library. An advantage of this approach is that this software 
framework can be easily translated to other Monte Carlo 
applications. We present experimental results from a large-
scale hybrid computer for a standard RHT model problem 
and compare these results to our analytical model.  

Keywords: Monte Carlo algorithms, radiative heat transfer, 
GPU acceleration, hybrid computing, scientific computing. 

 
1. Introduction 
     Radiative Heat Transfer (RHT) plays a central role in 
many important engineering applications that involve 
combustion. The computational cost of modeling RHT 
effects accurately can be extremely high due to its highly 
nonlinear and non-local nature [1]. This nonlinearity arises 
because RHT rates typically depend on the fourth power of 
the temperature [2]. Thus, applications that involve the 
computation of these rates, such as with combustion, are 
highly sensitive to the accuracy of these temperature 
calculations. Omitting RHT effects from simulations in 
such applications can lead to inaccurately computed 
temperature profiles, which in turn affects the stability and 
the accuracy of the calculation of other variables [3]. 

     The non-local nature of RHT comes from the fact that 
the photons that carry radiation (and energy) can be 
absorbed far from the physical position that they are 
emitted. Because of these non-local effects, conservation 
laws cannot be applied over an infinitesimal volume, but 
instead must be applied over the entire computational 
domain. The Photon Monte Carlo (PMC) method can be 

effectively used in the solution of thermal radiation 
problems [4]. This method is based on a model of radiative 
energy traveling in discrete packets (like photons) and the 
computation of the effect of these photons while traversing, 
scattering and interacting with matter within the 
computational domain. Advantages of this method include: 
an ability to deal with complex geometries; an ability to 
handle non-uniform temperature fields; the ability to 
include photon scattering; and the ability to employ a great 
variety of methods to include specialized radiative 
properties of the enclosure or the transport domain [5]. 

     This paper is organized as follows. In section 2 we 
describe the algorithm of PMC method and our software 
framework. In section 3 we present an analysis of the 
performance of this proposed approach on a hybrid 
computing architecture. In section 4 we compare 
experimental results of the performance of a representative 
PMC simulation with this analytical model. We present our 
conclusions in section 5.    

2. The Photon Monte Carlo Method 
     The Photon Monte Carlo (PMC) method is a sampling 
method based on simulating the movement and absorption 
of photon bundles (rays) through a discretized 
computational domain. The advantage of this approach, as 
opposed to other RHT approximation schemes, is that its 
overall computational cost grows slowly as a function of 
the complexity of the RHT problems [4]. An additional 
advantage is that increased accuracy can be obtained by 
using larger numbers of photon bundles. Hence, the PMC 
method is well suited to radiation calculations that include 
complex geometries, non-trivial absorption properties, and 
singular effects such as scattering. In this section we 
describe the basic PMC algorithm. We also review how 
pseudo-random numbers are used within the PMC 
algorithm and ultimately in the overall RHT simulation. 
 

2.1. The PMC Algorithm 
     In numerical simulations that include a RHT component, 
the computational domain contains a participating medium 
(a material that both emits and absorbs photons). The PMC 
method traces a statistically significant sample of photon 
bundles from their point of emission within the medium to 
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a point of absorption within the medium or its boundary. 
When the photon bundle is absorbed, its energy is added to 
the local energy of the absorbing element within the 
discretized medium. With this approach, the PMC method 
is able to calculate the energy gain or loss for every 
element within the computational domain. 
     The tracking of the photon bundles through the 
computational domain requires that the PMC algorithm 
model several types of element interactions.  These 
interaction types are illustrated in Figure 1. On the left, 
Figure 1 (a), we show a photon bundle entering an element 
and being absorbed within the element. In the middle, 
Figure 1 (b), we show a photon bundle entering an element 
and being scattered off of a particle within the element. On 
the right, Figure 1 (c), we show a photon entering an 
element, traversing the entire element, and exiting the 
element to enter a neighboring element. For the 
computational results presented in this paper we employ a 
software framework capable of modeling these element 
interactions and tracing the photon bundles through a 
computational mesh [6].  

 
Figure 1. Possible photon interactions within an element. In (a) we show 
the photon bundle being absorbed within the element, in (b) the photon is 
scattered off a particle within the element, and in (c) the photon bundle is 
transmitted through the element. 

     The PMC algorithm can be used to solve a wide range 
of RHT problems. In this paper, we use the algorithm to 
solve a simple model problem. The model problem we use 
is a three-dimensional rectangular solid domain with two 
plates with different temperatures on opposite walls and 
periodic boundary conditions in the other two orthogonal 
dimensions [4]. The RHT problem that we solve involves 
computing the temperature as a function of position 
between the two plates. For a fixed computational mesh the 
overall computational work grows linearly with the number 
of photon bundles that we track through the domain. By 
increasing the number of photon bundles used in the 
simulation, we can examine the “scaled” speedup of the 
simulation when run on a hybrid parallel computer 
architecture. In addition, as we increase the number of 
photons, the accuracy of the computed solution improves 
and we can verify the statistical independence of sampling 
done by the photon bundles by looking at the convergence 
of the temperature from independent samples. 
 
2.2. Pseudo-Random Numbers and PMC 

     For every photon bundle, the PMC algorithm must 
determine a point of emission, a direction of emission, a 

wavelength, a point of absorption, and various other 
properties that are independently chosen from probability 
distributions. Because of the large number of required 
pseudo-random numbers, a profile of the PMC code 
running a standard CPU shows that 90% or more of the 
computational time is spent generating these numbers. This 
percentage can be even higher as the complexity of the 
radiative properties and the accuracy required from the 
simulation increases. Based on this observation, a more 
efficient scheme for generating these pseudo-random 
numbers can dramatically improve the overall performance 
of the PMC algorithm. In the following section, we present 
a GPU accelerated pseudo-random number generation 
algorithm. In addition, we present an analysis of the 
running time of this algorithm and show how it achieves 
much of this potential efficiency gain for the PMC 
algorithm. 

 
3. A Theoretical Analysis of the GPU 

Accelerated Algorithm 
     As discussed in the proceeding section, the PMC 
method for solving RHT problems involves the tracing of 
large numbers of statistically independent photon rays [4]. 
The statistical independence and the spatial integration of 
the effect of the photons as they traverse elements with 
non-trivial absorption properties require the use of large 
numbers of pseudo-random numbers [4]. The overall PMC 
software framework that we use for the experiment results 
presented in this paper was developed in [6]. The pseudo-
random number generation function calls in this code are 
replaced with calls to the GPU accelerated software library 
developed in [7]. 

     In this section we present an analysis of the running 
time of the PMC code on a hybrid computing architecture. 
This analysis consists of two parts—first an analysis of the 
pseudo-random number generation and, second, an analysis 
of the multi-threaded PMC calculation that makes use of 
these pseudo-random numbers. 

3.1. Pseudo-Random Number Generation 
     The approach used to generate pseudo-random numbers 
for use in multi-threaded Monte Carlo applications is 
presented in detail in [7]. We review the analysis developed 
in [7] in order to be able to derive an overall analysis of the 
PMC simulation. 

     As discussed in [7], using the GPU to generate pseudo-
random numbers involves three main factors:  the transfer 
of state tables from CPU to GPU memory, the actual 
computation of the pseudo-random numbers on the GPU 
stream processors, and finally the copying back of the state 
tables and the pseudo-random numbers from the GPU to 
CPU memory. 
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     The memory transfer time between the CPU and GPU 
and back again can be modeled by a linear dependence with 
respect to the amount of data transferred. Accordingly, if 
we denote the time required to copy m bytes of data from 
the CPU to the GPU by TCPU→GPU (m) and the time required 
to copy m bytes of data from the GPU to the CPU by 
TGPU→CPU (m), we have the linear relations 

TCPU→GPU(m)  = tCG m + ts                      

TGPU→CPU(m)  = tGC m + ts. 
(1)  

     In these formulae ts is a “start up” time for the copy, tCG 
is the incremental time required to copy each addition byte 
of data from the CPU to the GPU, and tGC is the 
incremental time required to copy each addition byte of 
data from the GPU to the CPU. These constants are 
architecture dependent and can easily be measured. For 
example, for the Athena system used for the results 
presented in the experimental section of this paper we 
obtained the data shown in Figure 2. 

  
Figure 2. Experimental results from the Athena system showing the time 
(in seconds) required transferring data between the CPU and the GPU (and 
visa versa) as a function of the number of bytes transferred. Note the 
different incremental transfer rates to and from the GPU. 

     Using a linear least squares fit to the data shown in 
Figure 2, we obtain the values for the constants in (1) as 
shown in Table 1. 

Table 1. The constants ts, tCG and tGC obtained by a linear least-squares fit 
to the data in Figure 2. These constants are for the Athena system, the 
hybrid computing system used for the experimental results. 

Constant Time 
ts 3.0ms/copy 

tCG 0.29ns/byte 
tGC 0.37ns/byte 

 

     The second aspect of computing the pseudo-random 
numbers on the GPU is the time to execute the “kernel” 
(the OpenCL program that contains the instructions that are 
executed on the GPU). This time can be modeled as 
consisting of two parts, a “kernel start up time” Ts and a 
“kernel execute time” which we denote by Te. The total 

time to execute the kernel, Tk, is modeled as the sum of 
these two terms as 

Tk = Te  + Ts, (2)  
The pseudo-random number generator works by generating 
a sequence of numbers in a loop⎯we denote the number of 
times through the loop, or the “kernel cycle,” as nk.  
Empirically we determine that Ts can be modeled as a 
function of nk by the equation 

Ts (nk) = ank +b, (3)  
where a is an incremental rate measured to be 
100ns/kernel-cyle, and b is a fixed setup time measured to 
be 1ms. Each kernel cycle, the GPU tries to schedule some 
number of threads, nwgs, called the “working group size” on 
each compute unit in the GPU. The GPU performance is, 
however, limited by the number of stream processors that it 
has per compute unit. We denote this number by pwgs (this 
number is 32 for the Athena system). Given that it takes 
some amount of time to execute the thread, say tc

GPU, then 
the second term, the “kernel execute time,” can be modeled 
as 

Te  (nk ,nwgs)  = nk tc
GPU ⎡nwgs / pwgs⎤ , (4)  

where tc
GPU was measured to be 400ns/number for the 

Athena system. Using the equations (3) and (4) to model 
the overall execution time for one kernel cycle as given in 
(2), we obtain the black ‘*’ points shown in Figure 3. In 
this figure the number of kernel cycles, nk, is fixed at 
10,000; we then measure the time it takes for the kernel to 
execute. The measured times are shown as the green ‘+’ 
symbols in this graph. As the work group size increases 
beyond multiples of 32 (e.g., 32, 64, and 96), we observe 
discrete jumps in the measured times as predicted by 
equation (4). 
     A good way to parameterize the performance of the 
pseudo-random generator is in terms of the number of work 
items, nwi, which is the product of the number of work 
groups, nwg, and the work group size, nwgs, as follows 

nwi = nwg nwgs . (5)  
     This a good way to parameterize the scaling of the 
parallel algorithm because the number of work items, nwi, 
represents the number of independent “tasks” that are to be 
executed on the GPU. However, there are two limitations to 
the number of these tasks that can be executed in parallel. 
First, only one work group can use a compute unit at a 
time; hence, the number of work groups that can execute in 
parallel is limited by the number of compute units on the 
GPU. We denote the number of compute units on the  GPU 
by nCU. Second, as discussed above, the number of stream 
processors per compute unit, pwgs, limits the number of 
threads that can execute at one time on a compute unit.  
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Figure 3. The time measured for the kernel to execute as a function of 
the work group size per work group (or compute unit). For this data we 
fixed the number of work groups to be one. The experimentally measured 
data from the Athena system is shown as the green ‘+’ points, the modeled 
times, based on equation (2), are shown as the black ‘*’ points on this 
graph. In this figure the number of kernel cycles is fixed at 10,000. 

     A complete model of the time required to generate the 
pseudo-random numbers requires that we also include the 
time necessary to copy the pseudo-random number seed 
tables back and forth between the CPU and GPU memory 
(one table for each work item) and to copy the pseudo-
random numbers from the GPU to the CPU memory. To 
help amortize the cost of copying the seed tables between 
the CPU and GPU memories, we iteratively run the GPU 
kernel code ni times. Each time the GPU kernel code is run 
we generate n' = nk nwi pseudo-random numbers. Thus, the 
total number of pseudo-random numbers generated is given 
by n = ni n'.  

     Therefore, in our model we have four separate parts to 
consider: (1) the time to upload the seed tables, TseedUp; (2) 
the time to download the seed tables TseedDown; (3) the kernel 
execution time, Tk; and (4) the time to download the n' 
pseudo-random numbers, TGPU→CPU(n'). Combining these 
factors, the time to generate n pseudo-random numbers 
using the GPU, TRN

GPU (n), can be expressed as: 

        TRN
GPU (n) = TseedUp + TseedDown  + 

                             ni [Tk(nk,nwgs)   + TGPU→CPU(n')] 
                         = TseedUp + TseedDown  + 
                             ni [Tk(nk,nwgs)+ tGC n' + ts] . 

(6)  

The seed table size is 28 words, and we require a separate 
seed table for each work group. However, given that the 
number of work groups is at most in the thousands, and the 
number of pseudo-random numbers that we will be copying 
back from the GPU is typically in the millions, we can 
ignore TseedUp and TseedDown in equation (6) and use the 
following approximation,  

              TRN
GPU (n) ≈ ni [Tk(nk,nwgs)+ tGC n' + ts] . (7)  

Also note that in our formulation of Tk(nk,nwgs), we tacitly 
assumed that there are an unlimited number of compute 
units available on the GPU. In practice, of course, the GPU 
architecture has limited number of compute units, nCU. 
When the number of work groups is larger than the number 
of compute units, the extra work corresponding to these 
additional work groups must be scheduled sequentially on 
the GPU. To take this effect into account, we introduce a 
modified kernel execution time function, Tk

*(nk, nwgs, nwg).  
The modified kernel execution time can be expressed as 

              Tk
*(nk, nwgs, nwg) = Tk(nk,nwgs) ⎡nwg / nCU⎤ . (8)  

    To compute the speedup of the GPU accelerated 
algorithm, we need a model for the running time of the 
sequential algorithm on the CPU. As this running time 
should depend linearly on the number of pseudo-random 
numbers generated, we model the time to generate the 
numbers using the CPU, TRN

CPU (n), as: 

                                TRN
CPU (n) = tc

CPU n. (9)  
The pseudo-random number generator used on the GPU is 
an implementation of RANLUX [8]. Thus, on the CPU we 
use the GNU Scientific Library (GSL) implementation of 
this pseudo-random number generator [9]. For the GSL 
implementation of RANLUX with a luxury level of 0 
(gsl_rng_ranlxs0) the value measured for tc

CPU for the 
Athena system used for our experiments is 50ns/number. 
For a luxury level of 2, this value was measured to be 
120ns/number.  Combining the two models, the speedup of 
generating n pseudo-random numbers using the GPU 
compared to CPU can be computed as  

                      SRN (n) = TRN
CPU (n) / TRN

GPU (n). (10)  
This speedup is presented below in Figure 4. In this figure 
we show both the experimentally measured speedup (on the 
Athena system) and the theoretical speedup based on the 
model presented above computed using the machine 
parameters for the Athena system. Note that we plot the 
theoretical speedup for two models. The first model 
assumes an unlimited number of compute units, and the 
second model is based on equation (8), where the number 
of compute units is limited to 14 (as for the Athena system).  

     How we obtain the increasing number of work items in 
Figure 4 requires some additional explanation. We use 
work group sizes, nwgs, of 32, 64, and 96 and we fix the 
number of iterations, ni, to 10. We adjust nwg and nk to 
generate the same number of pseudo-random numbers 
(98,304,000) for different nwgs in the following manner. The 
number of work groups, nwg, is increased from 20 to 29. 
When nwgs is 32, 64 and 96, nk is respectively varied from 
600×29 to 600×20, from 300×29 to 300×20, and from 200×29 
to 200×20. 
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Figure 4. Speedup plots comparing the GPU execution time to the CPU 
execution time for the pseudo-random number generation library. Three 
different work group sizes (32, 64 and 96) are used. The speedup results 
are plotted as a function of the number of work items. As explained in the 
text, the number of work groups and the number of kernel cycles are both 
varied in order to compute the same number of pseudo-random numbers 
for each data point. These results are for RANLUX with luxury level 0. 

     Note that the experimentally measured results agree well 
with the modified theoretical model. We include in the plot 
the theoretical model for an unlimited number of compute 
units. As one can see, the overall speedup is limited and 
ultimately approaches an asymptotic value. This limit 
results primarily from the time required to copy back the 
pseudo-random numbers from the GPU to the CPU 
memories. 
 

3.2. PMC Speedup Analysis 
     We can compute a speedup for the RHT simulation 
using a hybrid-computing scheme (i.e., using the GPU to 
compute the pseudo-random numbers) relative to using 
solely the CPU. First, we consider the time required on a 
single thread using the CPU to compute the pseudo-random 
numbers. Let the required number of pseudo-random 
numbers be denoted by n. Note that the number of pseudo-
random numbers required increases linearly with the 
number of photons used in the RHT simulation, although 
the constant of proportionality depends on the specific 
geometry and problem parameters (e.g., the absorption 
coefficient as a function of position). We can express the 
sequential simulation time, TS (n), as 

                     TS (n)=TRN
CPU(n)+TRHT (n), (11)  

where TRHT (n) is a time required for the radiative heat 
transfer simulation (excluding the pseudo-random number 
generation) and TRN

CPU(n) is the time for generating 
pseudo-random numbers using the CPU.  

    An analysis of the time required for the RHT simulation 
running in parallel using multiple threads and a single GPU 
to compute the pseudo-random numbers is more complex 
as it involves the parallel execution of the thread managing 

the GPU and the GPU program itself [7]. As discussed in 
the preceding subsection, the time to compute a pseudo-
random number on the GPU is a complex function of a 
number of factors specific to the GPU used and its 
configuration. We can, however, simplify the analysis by 
considering only a single parameter, the block size B. As a 
general rule, the efficiency of computing the numbers 
increases with the block size. However, the exact efficiency 
depends on the number of work items, nwi, the number of 
iterations, ni, and the number of kernel cycles, nk (as 
discussed above and in detail in reference [7]). Given these 
parameters, the block size B is given by the formula 

B = nk ni nwi . (12)  
     As noted earlier, the number of work items, nwi, can be 
configured in a number of different ways by selecting 
different values for the number of work groups, nwg and the 
work group size, nwgs as the number of work items is the 
product of these two parameters. We assume that these 
parameters are chosen to maximize the efficiency of 
computation on the GPU. Given these definitions, the 
parallel simulation time, TP (p,pn,B), can be expressed as 

   TP (p,np,B) = pTRN
GPU (B) +  

                        max{p(⎡n/B⎤-1) TRN
GPU (B),  

                        ⎣n/B⎦ TRHT (B)+ TRHT (n - ⎣n/B⎦B)}, 

(13)  

where TRN
GPU(B) is a time to fill in the pseudo-random 

numbers using the GPU  for the block size B, and  p is the 
number of threads.  
    The timeline for the RHT simulation for a single thread 
in the above equation is illustrated in Figures 5 and 6. 
Figure 5 shows the simulation time when the pseudo-
random number block generation time takes longer than the 
RHT time; note how the RHT part of the code is blocked 
while it waits for a new block of pseudo-random numbers 
is generated by the GPU.  
 

 
Figure 5. A timeline showing what the RHT thread and the pseudo-
random number thread manager are doing relative to each other when TRN 
(B) is longer than TRHT (B). In (a) we show the case the block size is larger 
than in (b). 
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     To illustrate where the “max” arises in equation (12), in 
Figure 6 we illustrate the simulation time when the TRN (B) 
(the time to generate a block of pseudo-random numbers on 
the GPU) is shorter than the time TRHT (B). 

 
Figure 6. Illustrations of the simulation timeline showing the RHT thread 
and the pseudo-random number managing thread. In  (a) the block size is 
large enough that TRN (B) can generate a new block before TRHT (B) 
completes.  In (b) we illustrate the case when the block size is even larger 
than in (a). 

     In Figure 7 we illustrate the case when the simulation is 
multi-threaded with multiple threads consuming the 
pseudo-random numbers generated. Again, note how the 
“max” in equation (12) is used to describe this case. 

 

 
Figure 7. An example illustrating multiple threads executing the RHT 
part of the code using the pseudo-random numbers generated from the 
single thread managing the GPU.  
 

     Finally, the overall scaled speedup SS for the hybrid 
version the RHT simulation using the GPU-accelerated 
libraries can be expressed as:   

SS (p,np,B) = p TS (n) / TP (p,np,B). (14)  
 

4. Experimental Results 
     For the experimental results presented in this section, we 
use the Athena system in Virginia Tech [10]. Athena is a 
cluster system with GPUs and large RAM memory. The 
system is made up of 16 nodes and each node consists of 4 
octa-cores. Each node also has one NVIDIA S2050 GPU. 
Each GPU contains 14 compute units, and each compute 
unit consists of 32 processing elements [11]. For all the 
results presented in this section, a luxury level of 2 is used 
for the RANLUX pseudo-random number generators. 

     To measure the scaled speedup on this hybrid 
architecture, the CPU-only version of the simulation is first 

run and timed on a single CPU. These measurements are 
compared to the running time of the simulation on the 
hybrid architecture for a scaled instance of the problem.  In 
Figures 8 and 9 we show the speedup of the RHT 
simulation using the GPU accelerated random number 
generator and a single CPU as compared to the solely CPU-
based version. In Figure 8, note that when the number of 
photons used by the simulation is small, the scaled speedup 
is limited by the time required to generate the first block of 
pseudo-random numbers (e.g., see the timelines in Figures 
6). For larger numbers of photons, this initial time is 
amortized as many blocks are used. Note that by using a 
smaller block size, this transition to improved speedup 
occurs for a smaller number of photons. The results in 
Figure 8 correspond to the timelines shown in Figure 6 
where the asymptotic speedup is determined by the relative 
amount of time spent in RHT portion of the simulation. 
    

 
Figure 8. The speedup for the GPU-accelerated simulation run on a 
single CPU for large block sizes. The photon numbers are increased from 
102 to 106 in order to vary the workload. The work group size is 96, the 
number of work groups is 14, and the number of kernel cycles is 500. To 
change the block size, the number of iterations is respectively set to 10, 
100 and 1000. 

In Figure 9 we show the speedup for the timeline case 
shown in Figure 5. In this case, the asymptotic speedup is 
limited by the speedup of pseudo-random numbers being 
generated on the GPU. As shown in the figure, this speedup 
decreases with smaller block sizes. 

     The scaled speedup obtained with multiple threads on a 
single node is in Figure 10. This plot shows that the overall 
performance of the simulation increases almost linearly. As 
with the results in Figure 8, the speedup is limited for small 
numbers of photons by the generation of the initial blocks 
of pseudo-random numbers. This fact is illustrated in the 
timelines shown in Figure 7. Again, as in Figure 8, this 
initial cost is amortized as multiple blocks are used for 
larger numbers of photons.  
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Figure 9. The speedup of the RHT simulation for on a single CPU for 
small block sizes. The photon numbers are increased from 102 to 106 in 
order to vary the workload. The work group size is 96, the number of work 
groups is 14 and the number of iterations is 1. To change the block size, 
the number of kernel cycles is set to 20, 40 and 60.  
 

 
Figure 10. The measured scaled speedup for GPU-accelerated version of 
the RHT simulation using 1, 2, 4 and 8 threads on a single node (i.e., with 
one GPU). The photon numbers are increased from 103 to 106 in order to 
vary the workload. The work group size is 96, the number of work groups 
is 14, the number of iterations is 100 and the number of kernel cycles is 
500. 
 
     The relative cost of the RHT portion of the simulation 
can be varied by increasing the computed accuracy of the 
energy contributed to an element during the transmission of 
a photon (as depicted in Figure 1(c)). This increased 
accuracy requires the use of more pseudo-random numbers 
for the Monte Carlo integration involving the absorptivity 
when traversing the element. The effect of this increased 
accuracy on the speedup is shown in Figure 11. The 
speedups for three different numbers of samples per 
element (80, 160, and 240) are shown in this figure. 
 

 
Figure 11. The speedup for the GPU-accelerated algorithm run on a single 
CPU for different transmission sampling strategies (as described in the 
text). The number of samples per element is respectively set to 80, 160 
and 240.  The number of photons used is increased from 102 to 106 in 
order to vary the workload. For these results the work group size is 96, the 
number of work groups is 14, the number of iterations is 100 and the 
number of kernel cycles is 500. 
 
     To be able to generate the theoretical curves shown in 
Figure 8-11, one needs to know how the RHT portion of 
the simulation, TRHT (B), scales with block size. In Figure 
12 we show how this time varies with block size and with 
differing numbers of samples per element during the 
transmission calculation. 

 
Figure 12. The change of TRHT (B) as a function of block size B. The block 
size B is increased from 896,000 to 4,480,000 for the data shown on this 
plot. Linear least squares fits to these data points are shown as the dashed 
lines in this figure. For sampling of 80, 160 and 240 points per element, 
the respective slopes from the least squares fit are 1.38×10-8, 6.9×10-9 and 
4.6×10-9. 
 
     Finally, the RHT simulation was run on a complete 
hybrid architecture including distributed memory (using 10 
nodes), using multiple threads on each node (8 threads per 
node), and using the GPU-accelerated pseudo-random 
number generator (using one GPU per node). The scaled 
speedup results obtained on this hybrid architecture are 
shown in Figure 13. Clearly, significant scaled speedups 
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can be obtained for a modestly sized hybrid architecture 
using this approach. 
 

  
Figure 13. The scaled speedup plots for the RHT simulation using the 
GPU-accelerated pseudo-random number generator on a hybrid computing 
architecture. The number of photons used in the Monte Carlo simulation is 
increased from 103 to 106 in order to vary the workload. 10 compute nodes 
are used with 8 threads per node for the simulation. For the GPU the work 
group size is 96, the number of work groups is 14, the number of iterations 
is 100 and the number of kernel cycles is 500. 

      

 
Figure 14. The standard deviation for the mean temperature obtained on 
different compute nodes as a function of the number of samples. Note that 
the slope of the best-fit line in this graph is -0.5, which is consistent with 
the Monte Carlo simulation data on different nodes being statistically 
independent. 

To ensure that the simulation results obtained on this 
parallel system are statistically independent when using 
multiple nodes, we computed the mean of the temperature 
at one point in the interior of the domain for the multiple 
threads within each node. We then compute the standard 
deviation of these means (from the 10 nodes). This standard 
deviation is plotted in Figure 14 as a function of the 
number of photons used in the simulation. The slope of this 
graph is -0.5, which is what one would expect (from the 

central limit theorem) and is consistent with statistically 
independent simulation results from different nodes. Note 
that this result does not prove statistical independence, but 
it does show that the data is not statistical dependent. 

5. Conclusions 
     In this paper, we have implemented a Monte Carlo 
application framework on a hybrid computer 
architecture where GPU acceleration is used for 
generating large blocks of pseudo-random numbers 
asynchronously. The target application is a baseline 
Radiative Heat Transfer (RHT) simulation; we 
presented experimental results that confirm our analysis 
about the scaled speedup of this approach.  Overall, this 
approach can be very effective and achieve nearly a 
1,000 times speedup on a modestly sized hybrid 
machine. 

     Our approach demonstrates how GPU acceleration 
can be used in real world applications such as RHT. We 
observe that transferring computation from the CPU to 
GPU can significantly improve the simulation 
efficiency. However, the overhead of memory copies to 
and from the CPU and GPU must be amortized through 
the use of large data block transfers and significant data 
reuse on the GPU. 
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ABSTRACT
Hard-core interacting particle methods are of increasing
importance for simulations and game applications as well
as a tool supporting animations. We develop a high accu-
racy numerical integration technique for managing hard-
core colliding particles of various physical properties such
as differing interaction species and hard-core radii us-
ing multiple Graphical Processing Unit (m-GPU) com-
puting techniques. We report on the performance trade-
offs between communications and computations for vari-
ous model parameters and for a range of individual GPU
models and multiple-GPU combinations. We explore uses
of the GPU Direct communications mechanisms between
multiple GPUs accelerating the same CPU host and show
that m-GPU multi-level parallelism is a powerful approach
for complex N-Body simulations that will deploy well on
commodity systems.

KEY WORDS
m-GPU; GPUDirect; N-Body; hard-core collisions; poly-
disperse radii; multi-species.

1 Introduction
Models based upon classical N-Body particle systems [2]
are commonly used at various levels of approximation in
game simulations [5,11,12] but still play an important role
in understanding physical phenomena such as diffusion,
phase mixing and separation [4], and other behaviours that
arise from specific geometric distributions.

Considerable work has been reported in the literature on
uses of molecular dynamics whereby approximate poten-
tial models are used to simulate atomic and molecular
systems [14, 30, 36]. A recent review by Larsson and
co-workers [26] points out that there is still considerable
scope for improved algorithms and for hybrid solutions to
the molecular dynamics N-Body applications problem.

Another N-Body application area of significance is in sim-

Figure 1: Three-dimensional particle system with rigid
walls.

ulating astrophysical phenomena including: general rela-
tivity systems [44]; cosmological simulations [37]; simu-
lations related to dark matter theories [25]; and other mod-
ifications to Newtonian gravity [39]. A body of recent im-
portant work is progressing in this field where simulation
provides an important means of exploring the implications
of various theories of dark matter.

It is therefore of continuing importance to understand the
computational performance for N-Body particle system
simulations and indeed such simulations have found use as
benchmark kernels for high-performance computing sys-
tems [8, 19, 20, 23, 29, 33, 38].

In the limit of a large number of particles and a thermody-
namically equilibrated system a simple benchmark rating
such as number of particle updates per second suffices, but
in practice, many gaming situations in which particle mod-
els are employed the system is quite definitely not in equi-
librium. Much present research into understanding growth
and transient behaviour in physical, chemical and biolog-

76 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



ical systems is also concerned with models and systems
that are far from equilibrium.

It is therefore interesting to add to the parametric space
of a particle integration benchmark by considering how
the load balance and computational organisation can be
changed by varying a manageable parameter such as the
temperature of a simulated system.

We consider a system of hard spherical particles that inter-
act at long and medium range through an attractive poten-
tial with a soft repulsive core, but with a hard impenetrable
core at very short range. This is a realistic model for many
scenarios and allows us to experiment with a range of com-
putational intensities in the resulting particle benchmark.
The system is also usefully realistic – it can be modelled
with a definite walled container and not with the unrealis-
tic periodic boundaries often used in physics model simu-
lations used for studying statistical mechanical properties.

Two typical paradigms for deploying N-Body simulation
codes [34] are as either near teal-time interactive codes
that have a built in visualisation capability, or as batch-
oriented non-interactive codes, that may offer a frame
dumping capability but which are not intended nor capable
of rendering in real time.

There are a number of sophisticated data organisational
methods that approximate the O(N2) interactions with
appropriate potential cut-offs which can be managed as
spatial trees and neighbour lists [3, 41]. Some of these
approaches can be optimised for particular architectures
such as hypercubic systems [6, 15]. Collision dynamics
can also be optimised using appropriate collision lists and
associated techniques [10].

The size of systems that are feasible to simulate obviously
depends on the desired simulated time period as well as
most critically – upon the number of particles involved.
At the time of writing, work has been reported on up to
N ≈ 1010 possible particles in a gravitational simulation
involving collisional and collisionless systems [7]. Arti-
cles such as that by Aarseth report work with more com-
plex models such as post Newtonian corrections [1] with
N ≈ 105 particles simulated on on GRAPE [22] type
computer architectures.

Various architectural approaches have been applied to this
important class of application problems, including clusters
and volunteer distributed computing systems [9] and con-
ventional multi-core CPU systems modern multicore CPU
systems [40]. Work by Groen and co-workers [16] indi-
cates the typical number of cores (60-750) that have been
recently feasibly employed in multicore cluster systems to
tackle a single N-Body application simulation cold dark
matter.

In this present paper we are interested in the capabilities
of graphical processing units and systems deploying sin-

Figure 2: Theoretical Maxwell-Boltzmann distribution
computed for Temperatures 1,2,3,4 with kB = m ≡ 1
from equation 2 showing increasing most-probable speed
and distribution width with increasing temperature. Ex-
perimental data from a sample simulation is included for
reference.

gle and multiple GPU systems and several authors and re-
search groups have reported work on N-Body calculations
on GPUs – although nearly always on a very specific al-
gorithm [14, 17, 21, 42, 43].

A considerable range of sophisticated physics quality sim-
ulation codes for specific and special purpose N-Body ap-
plications are available and have been compared in the re-
view by Fortin and co-workers [13].

We are interested in the computational structure of a hy-
brid N-Body application that involves different sorts of
short or long range potentials, hard core collisions and also
interactions with enclosing rigid walls of a container. This
covers the principal algorithms needed for both games
quality physics simulations as well as more sophisticated
energy conserving statistical mechanics studies. We are
also interested in being able to deploy very accurate high-
order numerical integration methods such as the Hairer
10th order time stepping algorithm [18].

In this paper we explore how a sophisticated N-Body sim-
ulation can be developed for multiple GPU systems with
the option of choosing collisional or collisionless systems,
and parameterising the model using temperature T as well
as the number of individual particles N .

2 Distribution of Speeds
It becomes feasible and realistic to ascribe a temperature
to an ensemble of simulated particles once the system size
N is large enough. In practice a few thousand particles
yields thermal measurements that can be compared with
the theoretical definition discussed below.

The scalar speed is defined in terms of the velocity com-
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ponents for each particle as:

v =
√
(v2x + v2y + v2z) (1)

and taking the Boltzmann probability energy factor
e−E/kBT alongwith kinetic energy expression for a point
particle 1

2mv
2 we obtain the probability density distribu-

tion of speeds as:

f(v) = 4π

(
m

2πkBT

)3/2

v2 exp(−mv2/kBT ) (2)

which is normalised so that:∫ ∞
0

f(v)dv ≡ 1 (3)

and is known as the Maxwell-Boltzmann distribution with
the form as shown in Figure 2. Differentiating, we locate
the most probably speed at the peak of the distribution:

df(vp)

dv
= 0 => vp =

√
(2kBT/m) (4)

where vP is the most probable occurring speed and thus
temperature T can be obtained from:

T =
mv2p
2kB

(5)

Temperature is also related to the width of the Maxwell-
Boltzmann distribution functions and can also be (more
reliably) fitted to that, than from the peak position which
is more prone to experimental uncertainty.

3 Molecular Dynamics
The molecular dynamics (MD) technique involves a nu-
merical integration of the classical equations of motion
for a number of particles, or molecules, given a model
Hamiltonian [2, 24, 27]. The resulting numerical trajec-
tory through phase space, can be used to make a number
of useful measurements of the dynamical properties of a
system [31].

There are several difficulties involved in applying this
technique to the simulation of an alloy, even a purely bi-
nary one. Primarily, the first requirement is for a suitable
model Hamiltonian for the system. While this is not easy
to obtain exactly, it is possible to construct an approximate
one with the basic properties, using pair-wise potentials.
For example one very simple model would be to assume a
system of soft spherical atoms in a box, with two atomic
species present, and atoms of each species preferentially
attracting atoms of its own species.

A model Hamiltonian of the Lennard-Jones form [27] can
be constructed using:

U(R) = 4ε

[( σ
R

)12
− xi,j

( σ
R

)6]
(6)

This gives the potential energy U due to the pair-wise in-
teraction of two atoms of species i, j, separated by some
radial distance R = |ri − rj |, given two atom specific pa-
rameters in the form of an energy ε and a length scale σ,
and a cross term coupling fraction xi,j which is greater
for interactions between like species i, j than for opposite
species.

4 Model Implementation
This molecular dynamics simulation has been imple-
mented for multi-GPU systems using CUDA. The simula-
tion computes the potential between particles using the all-
pairs algorithm and computes hard-sphere collisions using
a posteriori method. All hard-sphere collisions are inelas-
tic as are the collisions of particles hitting the walls of an
enclosing box. A diagram of the inelastic collisions are
shown in Figure 3.

Figure 3: Inelastic Collisions

This simulation has been implemented and tested for m-
GPU systems containing up to four GPU devices. The
high-level algorithms are the same as the ones discussed
in [19]. The particles are evenly distributed between the
GPU devices and each device is responsible for updating
its particles. To calculate the total force on a particle, each
device will calculate the force each of it’s own particles ex-
ert on each other as well as the force exerted on its particles
by the particles stored in the other devices. This requires
communication between the different devices, there are a
number of ways this communication can be performed and
they are discussed and compared in section 5. All force
calculations make use of the tiling algorithm [29] as it still
provides the best performance.

Various methods can be used to integrate the motion of the
particles based on the laws of motion and the potential be-
tween them. The different methods have various tradeoffs
in terms of memory usage, computation time, stability and
accuracy. Selecting the optimal method is not always sim-
ple. It has been shown that high-order methods may be
computationally more expensive per step, they are stable
and accurate with larger step sizes resulting in an overall
improvement in performance. The implementations in this
work have been tested using the following methods - Eu-
ler, Runge-Kutta 2nd, Runge-Kutta 4th, Dormand-Prince
5th and Hairer 10th.
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Figure 4: GPU transfer methods.

The fundamental collision model used in this research is
the same as the method discussed in [19]. After each time-
step, each particle is checked against every other particle
to determine if a collision has occurred. The collision de-
tection phase is similar to the all-pairs force calculation.
If a collision has occurred, the device will calculate the
time at which the collision occurred and record it. Once
all the particles have been checked, the collision that oc-
curred first will be corrected. Both particles are stepped
backwards in time to the point of collision, an inelastic
collision is computed at this point and the particles are
then moved forward in time to same time as the rest of the
system. This process is repeated until there are no more
collisions.

5 M-GPU Communication
The focus of this research was to compare the different
methods of communication CUDA provides for transfer-
ring data between devices. In [19] we evaluated the perfor-
mance of PCIe extender chassis such as the Dell C410x.
For that comparison the simple peer-to-peer memory copy
made available by NVIDIA’s GPUDirect 2.0. In this re-
search we compare the performance of all the peer-to-peer
communication methods.

Before GPUDirect, all communication in an m-GPU sys-
tem had to go through the host memory. GPUDirect 2.0 al-
lows the direct transfer of data between devices and elimi-
nates the need for extra system memory and transfer over-
head. There are two types of direct communication sup-
ported by GPUDirect 2.0 - Direct Transfer and Direct Ac-
cess.

Direct Transfer is a host controlled memcpy from one
device directly to another. This data transfer does not
need to go through the host and thus avoids unnec-
essary transfer overheads. CUDA 4.0 provides two
methods for Direct Transfer - cudaMemcpyPeer and
cudaMemcpyPeerAsync. cudaMemcpyPeer is a
blocking memory call that will not return until the transfer
is complete. cudaMemcpyPeerAsync is non-blocking
and the method will return immediately even though the
transfer has not yet completed.

Direct Access allows a thread executing on one device to
access a value stored in the memory of another device.
This feature makes used of the Unified Virtual Address-
ing (UVA) supported by CUDA 4.0. UVA gives a single
address space to the host and device memory, previously
the host and each device had a separate memory address
space [28]. Direct Access is designed for Non-Uniform
Memory Access (NUMA) patterns. Using this method of
communication the kernels on each device can simply ac-
cess the values from the other devices and there is no need
for any memcpy calls.

6 CUDA Implementations
To use the CUDA peer-to-peer communication methods,
the devices must have Peer Access enabled. This must
be set on each device for every other device peer-to-peer
communication will be used. Peer-to-peer communication
with device d can be enabled by simply calling the func-
tion cudaDeviceEnablePeerAccess(d,0).

Listings 1 and 2 show the two methods of Di-
rect Transfer. Listing 1 blocking copy method
cudaMemcpyPeer. The thread connects two each de-
vice and uses cudaMemcpyPeer to copy the particle
data out of another device into memory on the current de-
vice. Once all devices have performed this copy, kernels
will be launched on each device to compute something
with this data. This computation can either be a force cal-
culation or a collision detection kernel.

Listing 1: Direct Transfer Method - cudaMemcpyPeer.

f o r ( i n t t = 1 ; t < P ; t ++) {
f o r ( i n t i d = 0 ; i d < P ; i d ++) {

i n t i d 2 = ( i d + t )%P ;
c u d a S e t D e v i c e ( i d ) ;
cudaMemcpyPeer ( p2 [ i d ] , id , p [ i d 2 ] , id2 , s i z e ) ;

}
f o r ( i n t i d = 0 ; i d < P ; i d ++) {

c u d a S e t D e v i c e ( i d ) ;
/ / Compute s o m e t h i n g u s i n g p2 [ i d ]

}
}

The non-blocking copy method is very similar but will use
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cudaMemcpyPeerAsync instead. In this implementa-
tion the host will launch all the memory copy calls at once
instead of waiting for each one to finish before launching
the next. The kernels are also launched immediately but
will not execute until the data transfer is completed. The
code snippet for this data transfer method is shown in List-
ing 2.

Listing 2: Direct Transfer Method - cudaMem-
cpyPeerAsync.

f o r ( i n t t = 1 ; t < P ; t ++) {
f o r ( i n t i d = 0 ; i d < P ; i d ++) {

i n t i d 2 = ( i d + t )%P ;
c u d a S e t D e v i c e ( i d ) ;
cudaMemcpyPeerAsync ( p2 [ i d ] , id , p [ i d 2 ] , id2 ,

s i z e , s t r e a m [ i d ] ) ;
}
f o r ( i n t i d = 0 ; i d < P ; i d ++) {

c u d a S e t D e v i c e ( i d ) ;
/ / Compute s o m e t h i n g u s i n g p2 [ i d ]

}
}

The Direct Access method shown in Listing 3 does not use
any copy functions. Instead the computation kernels can
simply access the particles in the other devices. Each de-
vice simply calculates the device id of all the other devices
and get the address of their particle data. The computation
kernels can then access the particles at these addresses.
This requires Unified Virtual Addressing otherwise each
device would access its own memory and not the memory
on other devices.

Listing 3: Direct Access Method.

f o r ( i n t i d = 0 ; i d < P ; i d ++) {
c u d a S e t D e v i c e ( i d ) ;
i d 1 = ( i d + 1)%P ;
i d 2 = ( i d + 2)%P ;
. . .
/ / Compute s o m e t h i n g u s i n g p [ i d 1 ] , p [ i d 2 ] . . .

}

These three implementations can all be used to transfer
data between multiple devices for molecular dynamics
simulations on m-GPU systems. The performance of these
three methods are compared in Section 7.

7 Performance Results
The implementations discussed in this work have been
evaluated using two different experiments. The first shows
the time required to compute a molecular dynamics sim-
ulation with potentials and hard-sphere collisions at dif-
ferent system densities. The second compares the perfor-
mance of the different m-GPU implementations. Both of
these experiments have been computed with four NVIDIA

C2070 compute cards connected to a Dell C410x PCIe ex-
tender chassis and use the Runge-Kutta 4th order integra-
tion method. The performance of this system is compared
to other GeForce and Tesla card configurations in [19].

The first experiment was to compare the three peer-to-peer
transfer methods - Synchronous Direct Transfer (DT-S),
Asynchronous Direct Transfer (DT-A) and Direct Access
(DA). These three methods have been tested on the Dell
C410x and the results for a range of transfer sizes are
shown in Figure 5. This shows that the Asynchronous Di-
rect Transfer method provides the best performance and
Direct Access outperforms Synchronous Direct Transfer
for small transfers but is slightly slower for larger trans-
fers ( > 256 KB). It is important to note that the Di-
rect Transfer methods communicate the information be-
tween devices but it must still be read by the kernels from
global memory, whereas the kernels using Direct Access
will have already read the required values.

Figure 5: Transfer time for three peer-to-peer communica-
tion methods for 4KB-2GB shown in ln-ln scale.

The second experiment is designed to compare the perfor-
mance of the three m-GPU implementations in the actual
simulation. The methods have been compared across a
range of system sizes and densities. The performance re-
sults (in milliseconds per time step) are presented for one
fixed density. These results are shown in Table 1.

8 Discussion
The almost indistinguishable performance results of the
three implementations presented in Section 7 are surpris-
ing to say the least. The close performance of the two Di-
rect Transfer methods is not entirely unusual as the data is
transferred as a block in by both implementations. In pre-
vious work [35], with asynchronous data transfer through
host showed a significant performance improvement over
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Table 1: Performance comparision of GPUDirect simula-
tion implementations. Times acurate to ±0.005 millisecs
per timestep.)

Size Direct Direct Direct
Transfer Transfer Access

N (Async)
1024 3.46 2.66 3.52
2048 5.55 4.76 5.58
4096 9.81 9.03 9.80
8192 18.78 18.12 18.73
16384 53.38 52.26 53.18
32768 194.56 193.50 193.78
65536 729.27 727.75 727.01

synchronous. However, this work focused on lattice mod-
els where only the borders had to be transferred and thus
all communication could be completely hidden.

However, it was highly unexpected that the Direct Access
method would provide almost the same performance as
the other two implementations. It was expected that the
NUMA style of access to another device’s memory would
significantly reduce performance. However, all perfor-
mance benchmarks and tests for both all-pairs force cal-
culation and collision detection show almost no difference
in performance. The high performance of Direct Access
represents a significant step forward for m-GPU program-
ming. Previous m-GPU research [32,35] which used com-
munication through the host found the performance of m-
GPU programs to be extremely sensitive to communica-
tion methods used. Getting the best performance out of
such applications required a great deal of fine-tuning.

For this reason, the high-performance of the Direct Access
functionality of GPUDirect 2.0 was unexpected. However,
it has performed well in every test and significantly re-
duces programmer effort. Kernels can simply access data
from other devices without the need for explicit data trans-
fer and extra memory to store duplicated data. For this rea-
son we believe the Direct Access functionality of GPUDi-
rect 2.0 to be extremely valuable for m-GPU systems.

9 Conclusions
The molecular dynamics simulation discussed in this work
is capable of collisional and collision less simulations,
with or without elastic wall collisions and a range of pos-
sible force/potential models including simple gravitational
attraction and multiple species Lennard Jones style sys-
tems. These simulations have been implemented for m-
GPU systems with multiple GPUs to accelerate a single
CPU. Such systems are becoming an increasingly impor-
tant node architecture for future supercomputers and clus-
ters.

These implementations make use of the GPUDirect 2.0
device-device communication methods that allow data to
be directly transferred from one device to another with-
out going through the host. The three implementations
show almost no difference in performance despite the fact
that the Direct Access method uses a Non-Uniform Mem-
ory Access pattern. This surprising result makes it signifi-
cantly easier to develop efficient m-GPU applications and
represent a major step forward in m-GPU technology.
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In-Situ Data Compression
for Flow Simulation in Porous Media
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Abstract— Supercomputing simulations easily generate
datasets in the range of tera or even peta bytes. However,
writing datasets during simulation and reading them for
post-processing implies a high I/O load and thus imposes a
major bottleneck. In the computation phase, compute nodes
stall at writing large amounts of data and the simulation
slows down - scientists have to capture data less frequently
losing important information. In the post-processing phase,
the data has to be read into memory and visualization
becomes a time consuming batch process. These problems
can be addressed with in-situ data reduction techniques
which reduce the I/O load significantly. Recently a novel
in-situ data compression method, ISABELA, has been pro-
posed [6]. It provides high compression rates at negligible
run time overhead while being local, communication-free,
and scalable. This contribution describes a variant of the
ISABELA method and its application to a fluid simulation
in porous media. Modifications to the original algorithm
concern the specific properties of porous media as well as
a general new method for exploiting temporal coherence
in time-dependent fluid simulation data. Evaluation results
concern the optimal choice of curve fitting parameters for
data compression and give insight into the trade-off between
desired error bounds and compression rates. Overall, the
very high compression rate of the ISABELA method is
confirmed by our experiments.

Keywords: in-situ processing, lossy compression, high perfor-
mance computing, b-spline, data-intensive application, temporal
pattern

1. Introduction
As high performance computing resources and algorithms

become generally available to scientists, the simulation of
physical phenomena plays an increasingly important role in
prototyping and knowledge discovery. However the growing
computational power raises new problems and challenges to
existing hard- and software [2]. With numerical simulations
producing amounts of data in the order of tera or even peta
bytes, storage devices are driven to peak performance on file
systems not optimized for parallel operation [14]. Similarly,
for later post-processing, large amounts of data have to
be read into memory. This makes post-processing a time
consuming batch process which hardly can be influenced by
the user once being started [8].

In-situ data reduction is a promising approach to deal with
the heavy I/O load of high-resolution supercomputing simu-
lations. In in-situ processing, data compression techniques
are directly integrated into the computation phase of the
simulation run. Instead of forcing scientists to write out only
a subset of the computed simulation data, in-situ processing
offers the potential of storing simulation data in their full
resolution [8], [6].

The work in this paper is specifically motivated by the
need for in-situ data reduction in large-scale Lattice Boltz-
mann simulations [13] of flow in porous media. Porous
media are characterized by highly complex geometries,
which present special challenges to numerical simulations.
In the Collaborative Research Center (CRC) 920 [1] at Tech-
nical University Bergakademie Freiberg (Germany), multi-
functional filters for metal melt filtration are researched. The
aim is to contribute towards the development of zero-defect
materials improving safety of road and railway vehicles
as well as aircrafts and other applications requiring highly
stressable metal based components.

A further goal is to provide a basis for the design of a new
real-time visualization framework using immersive Virtual
Reality, replacing offline batch processing by interactive data
exploration experiences. With interactive data visualization
playing an increasingly important role in data analysis, in-
situ data reduction is seen a key feature in CRC 920’s
evolving simulation and visualization frameworks.

Recently, a novel in-situ data reduction technique called
ISABELA (for ”In-situ Sort-And-B-spline Error-bounded
Lossy Abatement”) has been proposed [6]. It outperforms
existing lossy and lossless compression techniques for sci-
entific data and offers surprisingly high compression rates
while introducing only a minor overhead in computation
time into the simulation.

This paper reports on a variant of the ISABELA method
(as no implementation details are given in [6]) and its
application to fluid simulation data of flow within porous
media. In Section 2, we review related work on lossless
and lossy compression of scientific data. Section 3 presents
our variant of the ISABELA compression method. Our
ISABELA-variant takes advantage of differentiating between
geometry and fluid cells when applied to voxel grids of
porous media. We further describe an error quantization
scheme and investigate a novel general method for exploiting
temporal coherence in fluid simulation data to enhance com-
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pression ratio. In Section 4, we present compression results
and analyze different parameterizations of the compression
algorithm. Finally, we conclude that ISABELA-like methods
provide very good compression results for flow simulation in
porous media as well. However, the optimal parameterization
and implementation details for our melt simulation dataset
varies from the suggested parameterization in the original
ISABELA description.

2. Related Work
The complex internal structure of scientific data makes

compression a challenge for existing compression methods.
Lossless techniques for fast online compression of floating
point data are presented e.g. in [10] and [3]. These tech-
niques function by predicting data values and storing small
differences between predicted and original data values. They
also offer options to omit precision bits supporting lossy
compression. However, at high compression rates the relative
error increases significantly [6]. Moreover, the compression
is not block-based making them unsuitable for random
read/write applications.

In the context of compression of medical images, [11]
introduces a lossless method based on wavelets improved
by detection of global and local symmetries. However, this
method induces significant computational effort to enable
high compression rates and is thus not suited for in-situ data
reduction.

Generally, scientific floating point data is commonly
known to be inherently noisy and random-like, high-entropy
data without repeating bit or byte patterns, thus commonly
considered to be hardly compressible [15]. As argued in [6],
standard lossless compression methods do not reach satis-
fying compression rates or otherwise introduce significant
computational overhead.

Due to approximations and discretizations, simulation data
is already flawed. Thus, lossy compression with a user-
defined error bound is a reasonable choice for achieving high
compression rates.

A lossy data reduction technique for ”In-situ Sort-And-
B-spline Error-bounded Lossy Abatement” (ISABELA) was
recently proposed [6]. It outperforms existing lossy compres-
sion techniques, like Wavelets [5], and lossless compression
techniques, like FPC [3], LZMA and Bzip. ISABELA offers
surprisingly high compression rates of up to ∼85% while
introducing only a minor overhead in computation time and
ensuring a user-defined error bound. It is designed for local
encoding and decoding of scientific data.

The main idea of ISABELA is to apply a pre-conditioner,
which sets up a very strong signal-to-noise ratio by sorting
data values. Due to monotonic and smooth behavior of
the sorted data, a regression model approximates the data
with significantly fewer coefficients compared to the overall
amount of data [6], [4].

Relatively few studies have been conducted on the ap-
plication of B-splines for compression of scientific data.
In [4] and [7] B-splines are used to fit scattered data by
optimizing positions of control points. ISABELA extends
this concept and transforms the data to guarantee an accurate
fitting model.

3. Compression Algorithm
In this section, a variant of the ISABELA-algorithm for in-

situ data reduction is presented. As in the original proposal,
a first pre-processing step is to subdivide, linearize and
sort the data; in our variant, the algorithm further accounts
for special properties of porous media, by differentiating
between geometry and fluid cells. Then, the sorted data is
fitted through cubic B-splines. A new variable width error
quantization scheme is applied, which bounds the maximum
relative error on a per-point basis. Finally a new method for
exploiting the temporal coherence of fluid simulation data is
integrated into the compression algorithm.

3.1 Subdividing, Linearizing and Sorting
As first pre-processing step, the data is subdivided into

smaller contiguous blocks that can be compressed and de-
compressed independently from each other, thus supporting
random access of data blocks. By linearizing the data, the
three-dimensional compression problem is transformed into
a one-dimensional one. Sorting of the linearized data results
in smooth curves, that can be approximated much better
through B-splines [6].

In figure 1 the procedure of subdividing, linearizing and
sorting the data is sketched. In step 1 the entire data grid is
subdivided into smaller blocks, which contain N data values.
In step 2 the blocks are linearized in a fixed serialization
order. This gives a scattered sequence α = (a1, . . . , aN )
of N data values for each block, which is shown in step
3. In step 4 the data is sorted in ascending order to get
a monotonic sequence α′ = (a′1, . . . , a

′
N ). In general, the

method is independent of a particular block size N .
In simulations of porous media, the data grid contains

geometry cells, which are represented by a constant data
value ā in α′. This offers a further opportunity for compres-
sion. Discarding data values belonging to geometry cells in
the sorted sequence α′ yields a new sequence of n ≤ N
data values, which is denoted as β = (b1, . . . , bn). This
enhances the performance of the compression, but keeps the
possibility to reconstruct the data on per-block basis without
decompressing the entire dataset. The sequence β then is
applied to a regression model, which is able to represent the
data accurately.

To be able to revert the sorting process and reconstruct α
during decompression, one has to keep track of the indices,
when sorting and shortening α to obtain β. The shortened
sequence of indices of elements of β in α is denoted as
τ = (t1, . . . , tn). Remaining values with indices not being
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(1) (2)

(3) (4)

Fig. 1: Illustration of pre-processing the data for compres-
sion: (1) subdividing voxel grid containing porous media
into smaller blocks, (2) + (3) linearizing data in blocks
into scattered sequence, (4) sorting scattered sequence yields
monotonic smooth data.

in τ , are set to the constant ā in order to reconstruct the
geometry cells omitted in β. In following an example of a
particular instantiation of α, α′, β and τ , with geometry cells
having ā = 0 is given:

α : 0.3 0.1 0.0 0.2 0.4 0.5 0.3 0.0
α′ : 0.0 0.0 0.1 0.2 0.3 0.3 0.4 0.5
β : 0.1 0.2 0.3 0.3 0.4 0.5
τ : 2 4 1 7 5 6

(1)

3.2 Cubic B-Spline Fit
The sequence β has a high signal-to-noise ratio and can be

fitted by a cubic B-spline with few control points accurately
[6].

Originally developed in the CAD and computer graphics
fields, B-splines provide a flexible framework for represent-
ing complex shapes [9]. Cubic B-splines are constructed
from a set of control points and a knot vector. The control
points are used to specify the shape of the resulting curve,
whereas the knot vector defines the influence of the control
points on piecewise polynomial curve segments.

Cubic B-splines are denoted as a sum of M control points
pj , weighted by B-spline basis functions N3

j of degree 3:

S(u) =
M∑
j=1

N3
j (u) · pj (2)

The knot vector is chosen to have equally spaced knots,
which means each control point has the same influence on
the curve. B-splines are able to locally adapt the shape of
a monotonic point cloud accurately, which makes them a

very flexible and efficient tool in the present case of data
compression [6], [4].

In order to fit the sequence β using the above setup, the
n data values bi are mapped to uniformly distributed values
xi ∈ [0, 1]. For each point a linear equation S(xi) = bi
according to eqn. (2) is set up, which gives a linear system

Nn · P = β (3)

Nn holds B-spline basis functions N3
j (xi) for n equations

and P holds control points pj . The system is solved using the
least squares method. This involves computing the Moore-
Penrose Pseudoinverse N+

n . The control points, which min-
imize least square distances are given by P = N+

n · β.
In the case of n ≤ M , the observed block has a high

amount of geometry cells. Then the system is underdeter-
mined and the data will be stored directly, since the number
of data values is less or equal to the number of control points.

Since the number n of data values per block is varying,
the number of equations in the linear system 3 also varies.
To address this problem, the matrices Nn and N+

n are pre-
computed for n = M+1, . . . , N and the corresponding case
is selected at compressing and decompressing respectively.

Once the data has been fitted, eqn. 2 is used to reconstruct
the data from control points P and xi values, which yields an
approximation of β. The approximate sequence is denoted
as β′ = (b′1, . . . , b

′
n) and is obtained by β′ = Nn · P . In

the next step the approximation error bi − b′i is handled by
applying error correction.

3.3 Error Quantization
Cubic B-spline regression ensures an accurate fitting

model for the data. However, the approximation β′ does not
meet the precision needed for scientific data analysis. Thus
an (unspecified) additional error quantization step is applied
in ISABELA [6]. In the following, we describe the error
quantization method developed for our ISABELA variant.

A user-defined error criterion is met by setting an upper
bound p for the relative error εi on a per-point basis. The
relative error is measured between sequence β and γ =
(c1, . . . , cn):

εi =
(bi − ci)2

b2i + ε̄
≤ p (4)

γ denotes the sequence of data, reconstructed from the
approximate sequence β′ by applying an error correction
step. Since the relative error can grow without limit for
values near zero, the maximum relative error is bounded
by introducing ε̄ into eqn. 4 [12]. The error correction step
is given by the following quantization scheme

ci = b′i + δi · c̄ ·∆(b′i) (5)

where δi denotes integer quantization steps and c̄ · ∆(b′i)
denotes the real valued width of the quantized value grid.
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The quantization scheme in eqn. 5 uses a variable quan-
tization width depending on b′i, since a global width guar-
anteeing εi ≤ p can become very small having δi to grow
very high.

∆(b′i) describes the maximum tolerance, so that the rela-
tive error between b′i and b′i ± ∆(b′i) is less or equal to p.
The variable quantization width follows from eqn. 4 and is
given by

∆(b′i) = p ·
√
b′2i + ε̄ (6)

Since original data values bi from β are not known at
decompressing, B-spline approximations b′i near bi are used
to predict the quantization width. Since ∆(b′i) does not
bound the relative error with respect to bi, a scaling factor
c̄ is applied to ensure, that

c̄ ·∆(b′i) ≤ ∆(bi) (7)

holds, which guarantees eqn. 4 to hold for ci computed from
eqn. 5. The scaling factor is obtained by

c̄ = min
i

∆(bi)

∆(b′i)
(8)

Given β, β′ and c̄, the integer quantization steps are
computed by

δi =

⌊
bi − b′i
c̄ ·∆(b′i)

+
1

2

⌋
(9)

To store δi efficiently a stream of Bδ bit numbers is used.
The number of bits needed to store δi is determined by

Bδ =
⌈
ld
(

max
i
δi

)⌉
(10)

Using τ the values ci of γ are reordered into γ′ =
(c′1, . . . , c

′
N ), which denotes an approximation of α meeting

bounded relative error criterion. The reconstruction is ac-
complished for i = 1, . . . , n by setting c′ti = ci. Remaining
values with indices i not being in τ are set to c′i = ā to
reconstruct geometry cells.

3.4 Exploiting Temporal Coherence
In ISABELA, temporal data patterns are exploited to

enhance compression ratio. The improvement results from
similarities in the index sequence τ , which changes only
slightly over consecutive timesteps on a per block-basis. The
pattern is applied by introducing a reference sequence τ0 and
delta sequences τ1, τ2, . . .. Instead of storing the indices of
delta sequences directly, the differences τ1−τ0, τ2−τ0, . . .
are stored. This yields mainly small integer numbers, which
are compressed using a lossless compression technique.
Using this procedure the compression performance of IS-
ABELA is improved by ∼ 3%.

In our implementation, we exploit another temporal pat-
tern, which relies on the continuous nature of the data in
time dimension. Since linearized sequences α of consecutive
timesteps change smoothly, difference encoding of data

alpha0

alpha1

alpha2

Fig. 2: Illustration of temporal smoothness of consecutive
sequences α0, α1 and α2 of u data for one block.

values can be applied. For this, α0 is considered a reference
sequence and following sequences α1, α2, . . . are considered
delta sequences. Temporal smoothness is sketched in figure
2.

Instead of compressing the data values of delta sequences
directly, differences of data values to decompressed refer-
ence sequence ᾱ1 = α1 − γ′0, ᾱ2 = α2 − γ′0, . . . are taken
into account. The resulting values ᾱk = (āk1 , . . . , ā

k
N ) of

a delta sequence with index k > 0 are small. Applying
sorting, linearizing and B-spline regression yields shortened
sequences β̄, β̄′k and τk belonging to ᾱk.

Now, the relative error between b̄ki and c̄ki has to be
bounded by p on a per-point basis. The error quantization is
accomplished by

cki = c′0
tki

+ b̄′ki + δi · c̄ ·∆(c′0
tki

+ b̄′ki )

c̄ki︸︷︷︸
cki−c′0tk

i

= b̄′ki + δi · c̄ ·∆(c′0
tki

+ b̄′ki ) (11)

to meet the criterion. As ∆(c′0
tki

+ b̄′ki ) ≈ ∆(b′ki ) and b̄ki −
b̄′ki < bki − b′ki , the integer quantization steps

δi =

⌊
b̄ki − b̄′ki

c̄ ·∆(c′0
tki

+ b̄′ki )
+

1

2

⌋
(12)

become smaller. Thus, Bδ also decreases which reduces the
amount of memory needed to reconstruct delta timestep k.

4. Results
The algorithm described in 3 has three parameters: block

size N , number of B-spline control points M , and user-
defined error threshold p. The parameters influence the
compression ratio CR. Assuming 64 bit double precision
floating point values, the compression ratio of one block is
given by

CR = 1− [64 · (M + 1) + dld(N)e·
(n+ 2) +Bδ · n] · 1/(64 ·N)

(13)
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Compression ratio is calculated by taking into account
M ·64 bits for B-spline control points, 64 bits for the scaling
factor c̄, dld(N)e · (n + 2) bits for storing τ as well as n
and Bδ and Bδ · n bits for storing error quantization steps.

In order to estimate performance parameters, the algo-
rithm is applied to subgrids of 26 timesteps of simulation
data extracted from a Lattice Boltzmann simulation of melt
in porous media. The data contains velocity (u, v, w) and
density (ρ) values in a 64× 64× 64 grid. The entire dataset
has a size of 212, 992KB, where each feature has a total
size of 53, 248KB.
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Fig. 3: Top: Mean compression rate achieved at compressing
u plotted against number of B-spline control points for
different block sizes. The optimal compression rate of about
77% was achieved with block size N = 8× 8× 8. Bottom:
Performance of compressing u, v, w and ρ using block size
N = 8× 8× 8. Best compression results over all attributes
were achieved for M = 10.

4.1 Parameter Analysis
In the compression algorithm as described, the accuracy

of cubic B-spline regression primarily depends on the pa-
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Fig. 4: Top: Variation of CR per block, implied by changing
number of geometry cells and changing number of bits Bδ
needed to encode error quantization steps. Bottom: Mean
compression ratio CR achieved at compressing u, v, w and
ρ using M = 10 and N = 8 × 8 × 8 (using variable
amount n of data values per block) for different user-defined
relative error bounds p. Numbers in parentheses indicate
compression rates for non-geometry cells only.

rameters N and M . To resolve the impact of the parameters
on the compression ratio, the algorithm was run with varying
block sizes and varying number of control points. In figure
3 the results are depicted. We found that N = 512 and
M = 10 yield the best overall compression ratio in our
case. We also found that the use of non-cubic block shapes
did not improve the compression ratio and we decided to
use cubic 8× 8× 8 blocks.

On one hand, N = 512 is a power of two, which allows
to use all dld(N)e bits to store the indices in τ optimally.
On the other hand, there exists a trade-off between Bδ bits
needed to encode the error and the number of control points
M . If the data is fitted more accurately by the B-spline, less
storage is needed to encode the error quantization steps.

In figure 4, the compression ratio for N = 512 and
M = 10 is given for different user-defined relative error
bounds p = 10−2, 10−3, 10−4. In parentheses CR for setting
N := n is given, which corresponds to not considering
geometry cells in the compression rate. In the whole data set
26.9% of the cells are geometry cells. Our experiments show
that the algorithm yields high compression ratio ensuring
the user-defined error bound. In particular, the algorithm
clearly outperforms lossless methods like gzip (50.6%),
bzip2 (52.7%) and lzma (57.5%), ISABELA-variant algo-
rithms achieve higher compression rates while being local,
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scalable, communication-free and in-situ applicable [6].
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10−2, 10−3. Top: normalized root mean square error
NRMSE(α, γ′). Bottom: Pearson Correlation ρp(α, γ′).

4.2 Error Analysis
As in [6], normalized root mean square error

NRMSE(α, γ′) and Pearson correlation ρp(α, γ
′) are

taken into account to observe the performance of the
compression algorithm. NRMSE(α, γ′) and ρp(α, γ

′) are
given on per-block basis by

NRMSE(α, γ′) =

∑N
i=1

√
(ai − c′i)2

maxj aj −minj aj
(14)

ρ(α, γ′) =
Cov(α, γ′)√

Var(α) ·Var(γ′)
(15)

Error quantization and regression using the least squares
method excellently reconstruct the data and yield high com-
pression ratios even for low error threshold p = 10−2. In
figure 5, the performance is shown in terms of NRMSE
and Pearson Correlation ρp. NRMSE shows low values,

whereas ρp shows values being nearly one, which indicates
excellent data reconstruction.

beta0

beta1

beta2

gamma'0
---beta1
---beta2

Fig. 6: Impact of difference encoding on the sorted shortened
data to be compressed. Left: sequences β0, β1 and β2

without difference encoding. Right: decompressed reference
sequence γ′0 and difference encoded delta sequences β̄1, β̄2.
As can be seen, delta sequences are flatter and therefore need
less error correction bits.

4.3 Analysis of Time Difference Encoding
The pre-conditioning step exploits the continuous nature

of the data in spatial dimensions and produces smooth
monotonic curves. Applying cubic B-spline regression with
few control points accurately fits the data allowing high
compression rates. By also taking advantage of the contin-
uous nature of the flow data in temporal dimension, it is
possible to further enhance compression ratio. Considering
differences between reference sequences and delta sequences
allows to reduce the amount of storage needed to encode
error quantization steps. The impact of difference encoding
data sequences is depicted in figure 6. For consecutive
timesteps’ sequences, differences are small and therefore,
when being compressed with the same relative error bound
as the original data, the amount of error correction data is
reduced.

The performance of difference encoding K delta se-
quences α1, . . . , αK per reference sequence α0 is shown
at compressing 26 timesteps of simulation data. The mean
compression ratio and the reduction of the number of bits Bδ
needed to encode error quantization steps is shown in figure
7. Compression gain ranges from ∼ 2% to ∼ 3% which
compares to the gain of the ISABELA method proposed in
[6] exploiting temporal pattern in index sequences.

5. Conclusion
We presented a variant of the ISABELA method for in-situ

compression of scientific data. One of our modifications to
ISABELA addresses specific properties of flow in porous
media. Another modification concerns the exploitation of
temporal coherence of time-continuous datasets by com-
pressing differences between reference and delta timesteps.
For continuous smooth data, compressing differences yields
a significant reduction of error correction data. As a (mi-
nor) drawback, difference encoding requires decompressing
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of bits Bδ needed to encode error quantization steps for one
block of u data using difference encoding of K = 4 delta
sequences.

blocks of reference timesteps. However, the underlying data
structures involve B-splines which can be evaluated locally.
Thus, local decompression is still possible without signif-
icant overhead. Improvements of the overall compression
ratio compare to the delta-encoding in the original ISABELA
method. Through the combination of both methods, the
overall compression rate may be improved even more.

Our results on a melt simulation dataset confirm that high
compression rates can be achieved with ISABELA-like algo-
rithms also in the case of porous media. Further, compression
lossiness can be controlled comfortably by providing the
algorithm with a user-defined error bound. Results were
presented that relate several error bound choices to achieved
compression rates.

The analysis of our ISABELA variant applied to flow in
porous media suggests an optimal block size of 8 × 8 × 8 =
512 data cells. Further, our results indicate that the optimal
number of B-spline control points is 10. These results differ
from the original ISABELA publication [6] where a block
size of 1024 and 30 control points are suggested as optimal.
Future work is needed to clarify the optimal parametrizations
of ISABELA-like compression methods on different types of
datasets.
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Symmetry and Simplicity in Simulation:
Reducing Complexity in Alternate Parallel–Serial Processing
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Abstract— Certain simulations are characterized by al-
ternating periods of “expansion” and “contraction.” For
example, simulated populations of migratory birds may con-
gregate in a central geographic location for overwintering,
handled by a single processor, then fan out to dispersed loca-
tions for local ecological interactions during the rest of the
year, handled by one processor per location. In another ap-
plication, the difficult problem of fitting parameters to large-
scale stochastic simulation models may fan out to numerous
processors computing independent stochastic trajectories
from the same initial conditions, then “contract” to allow
a new, more likely set of parameters to be estimated from
the computed distribution of independent trajectories. The
contraction is commonly handled by a designated “master
processor.” In this paper, we point out a simpler, completely
symmetric algorithm in which all processors act identically
and no processor is designated master. We have used it for
applications in simulated annealing and exhibit it here in a
standard MPI (Message Passing Interface) environment.

Keywords: parallel processing, symmetric multiprocessing,
parallel–serial simulation, parameter fitting, individual-based mod-
eling

1. Introduction
The goal of this paper is to demonstrate a symmetric tech-
nique for coordinating multiple processors and contrast that
technique with a more usual master–subordinate technique.
We consider the case where multiple processors calculate re-
sults independently of one another for an extended length of
time, from seconds to minutes or more. The processors then
pool their results before partitioning the calculations and
expanding to multiple independent processors again. This
repeats through multiple expansion–contraction phases until
the computation converges to some result. We exhibit the
algorithms in detail and illustrate them within an application
of parameter fitting.

2. Algorithms
We assume each processor accepts a data structure as input
and returns the results of its calculations in the same or
another data structure. For simplicity here, we represent this
data structure as an array of double-precision floating-point

numbers, local[j], though it could take any form. In addition,
an array of these data structures, global[i][j], has one row
per processor. In the symmetric algorithm, all processors use
this array, but in the master–subordinate algorithm, only the
master uses it. Any processor can be the master, but here
we make it the one numbered 0. The processor number is
placed in an integer variable named cproc by Function 1
of the appendix. Algorithms in the appendix encapsulate
the MPI environment [1] and provide a degree of system
independence.
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Figure 1. Communications among a dozen processors in the
symmetric technique, top, and the master–subordinate technique,
bottom. The standard technique on the bottom might seem simpler,
because of fewer interconnections, but asymmetries actually make it
more complex.
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We present the algorithms in a stylized form of the
language C, as an alternative to pseudocode, so that they
define the interface precisely, and so they can be compiled,
run, and modified. In the displayed algorithms, flow control
and reserved words are bolded, variables and function names
are italicized, and certain operations such as ‘<=’, ‘>=’,
‘!=’, and ‘==’ are displayed in a mathematical form as ‘≤’,
‘≥’, ‘6=’, and ‘≡’, respectively.

2.1 Symmetric technique
In applications of parameter fitting, computing a new set
of parameters is a global step, needing input from all the
processors together. Therefore, it seems natural to assign
that step to a master processor. However, such assignment is
unnecessary. If all processors share information equally, then
every processor can compute the new parameters for itself,
using the same algorithm that would be used by the master
processor. No time is lost, for all subordinate processors
would be waiting for the master processor anyway. No
chance of error arises, for all processors are executing the
same code. And a notable simplification results, cutting
the number of lines of code needed almost four-fold (see
discussion below).

For the symmetric case, the program begins by invoking
function MPBegin and ends by invoking MPEnd, defined in
the appendix (steps 1 and 4, respectively, in the algorithm
below). Variables t and tmax are integers recording the
current and the maximum times, respectively. The main loop
has five lines.

[1] MPBegin();

[2] for (t = 0; t ≤ tmax; t++)
{ converge = NewParameters(global);

if (converge) break;

[3] Simulate(local);
MPCommon(global, local, W); }

[4] MPEnd();

Steps 1 and 4 above merely begin and end multiprocess-
ing operations. Step 2 loops through the procedure, with
each processor invoking function NewParameters to handle
data from all the processors (array global), for example
computing a new set of parameters by whatever technique
is desired—gradient descent, simulated annealing, genetic
search, and so forth. That function returns an indication of
whether the process has converged, and if convergence is
detected, the program terminates the main loop.

Step 3 invokes function Simulate, which carries out the
current processor’s simulation task, getting its parameters
from array local and returning its results in the same array.
Finally each processor communicates its results to all other
processors and symmetrically receives all results back by
invoking function MPCommon before repeating. W in the
example is the width of arrays global and local.

In addition to the code for MPBegin and MPEnd (Func-
tions 1 and 2 in the appendix), this process uses only the five
lines of code of Function 3 in the appendix. The amount of
data communicated is WN(N−1) elements, where W is the
number of elements per processor and N is the number of
processors. Processors pass messages only once per iteration.

2.2 Master–subordinate technique
When the global process is assigned to a master processor,
the program also begins by invoking function MPBegin and
ends by invoking MPEnd, defined in the appendix (steps 1
and 8, respectively, in the algorithm below). The variable
cproc defines the processor number, which was not needed
in the symmetric case. As before, t and tmax are integers
recording the current and the maximum times, respectively.
The main loop has nine lines.

[1] MPBegin();

[2] for (t = 0; t ≤ tmax; t++)

[3] { if (cproc ≡ 0)
{ converge = NewParameters(global);

if (converge) break;
MPMasterSend(global, W); }

[4] else MPSubordinateReceive(local, W);

[5] Simulate(local);

[6] if (cproc ≡ 0) MPMasterReceive(global, W);
[7] else MPSubordinateSend(local, W); }

[8] MPEnd();

At the beginning of the loop, cproc is tested to determine
whether the master processor is running (processor num-
ber 0). If so, then the master processor computes the new pa-
rameters, checks for convergence, and if convergence has not
been achieved, sends the parameters out to all subordinates
for additional computation (step 3 in the algorithm). If, on
the other hand, a subordinate processor is running, it merely
waits for the master processor to send it the parameters
(step 4 in the algorithm).

After that, all processors, master and subordinate alike,
run one simulation task by invoking function Simulate
(step 5), as in the symmetric technique. Next the master
processor receives the simulation results from all subordi-
nates (step 6) while subordinates send them (step 7). Then
the loop repeats. As before, W is the width of arrays global
and local.

In addition to the code for MPBegin and MPEnd (Func-
tions 1 and 2 in the appendix) this process uses the twenty-
eight lines of code of Functions 4a, 4b, 5a, and 5b in the
appendix. The amount of data communicated is 2W (N−1)
elements, where W is the number of elements per proces-
sor and N is the number of processors. Both master and
subordinate processors pass messages twice per iteration.
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3. Discussion
The symmetric version needs no conditional if–else state-
ments to determine which processor is running. It makes
half the number of calls to the message passing interface
per iteration, which simplifies the communications. It is
somewhat less error prone, not only because of its greater
simplicity, but also because multiple processors can be
automatically checking each others work, detecting such
mistakes as uninitialized variables that may behave differ-
ently under different conditions. It is shorter. The symmetric
version uses 5 lines within its loop in the algorithm above
and calls upon the 5 lines of Function 3 in the appendix,
for a total of 10 lines in the loop. Functions 4a, 4b, 5a, and
5b in the appendix do not exist in the symmetric version.
The master–subordinate version, in contrast, uses 9 lines
within its loop and calls upon the additional 28 lines of
Functions 4a, 4b, 5a, and 5b in the appendix, for a total of
37 lines in the loop.

The code to support symmetric multiprocessing is thus
almost four times as compact. This savings can become
compounded in the application code, because that code does
not have to differentiate between master and subordinate
communications. In parts of the code not connected with
inter-processor communication, such as printing, one pro-
cessor may still have to act as master. Yet since each level
of reduction in complexity can be significant in a large
program, this technique is preferred, all other things being
equal.

One thing not equal is energy consumption. With all
processors computing during the contraction phase, more
heat will be generated and more energy consumed. Computa-
tions performed during the contraction phase will typically
be short and simple compared with long and complicated
simulations in the expansion phase, so this will be negligible.
But if it is not, then a master–subordinate approach might
be preferred.

Another thing not equal is the amount of information
communicated among processors. The master–subordinate
technique has only N−1 communication paths, where N is
the number of processors, whereas the symmetric technique
has 1/2N(N−1) paths (Figure 1). Though this can be a large

difference, it can also be insignificant in many applications.
If the computation step is seconds or minutes or more, as it
often will be, the microseconds or milliseconds dedicated to
communications will vanish into the rest of the computation.

4. Conclusions
The symmetric version is simple. It is a viable way of
communicating among multiple processors that can be incor-
porated into any expansion–contraction simulation programs,
or related kinds of simulations. We have used it successfully
in a large-scale simulation model developed by one of us
(A.K.) for human tuberculosis in the UK. Compilable copies
of the code described here and related simulation algorithms
are available free from the authors upon request.
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8. Appendix
This appendix defines the precise connections with the “Mes-
sage Passing Interface,” MPI [1]. Prototypes for functions
and constants are defined in a file “mpi.h”, which must be
included at the top of the code. Then each process must call
Function 1 before beginning. That function initializes com-
munications, determines the number of processors that are
participating, and assigns a number to the current processor.
Furthermore, each process calls Function 2 after its work is
complete, just before ceasing operations.

Function 3 is used in both symmetric and master–
subordinate techniques. In this example it assembles an nproc
by w array of data from all processors, where nproc is the
number of processors and w is the number of data elements
shared by each processor. It is typically called at the end of
each processing step to synchronize all processors and put
them all in a common data state. Processing is delayed until
all processors have called this function. Therefore, note that
all processors must call at corresponding points in the cycle
or operations could deadlock.

Functions 4a, 4b, 5a, and 5b are additional algorithms
needed for master–subordinate processing. Function 4a sends

data from the master processor, numbered 0, to all processors
allocated, including itself. Data to be sent reside in the
nproc by w array of data. Function 4a is typically called
at the beginning of each processing step to synchronize
all processors and give each processor the data it needs to
carry out the next step. The master process must call this
function and all others must call the companion function
MPSubordinateReceive, Function 4b, at corresponding points
in the cycle. Function 4b receives data from the master
processor, resulting from that processor’s call to 4a.

Function 5a receives data from subordinate processors,
whose numbers are greater than 0. Data are assembled in
the nproc by w array. Function 5a is typically called by
the master processor at the end of each processing step
to receive results back from all processors and compute
the data to begin the next step. The master process must
call this function and all others must call the companion
function MPSubordinateSend, 5b, at corresponding points in
the cycle. Function 5b sends data back to the master pro-
cessor, numbered 0, to satisfy its call to MPMasterReceive,
Function 5a.

Function 1.
Upon entry to the algorithm, no conditions are significant. At exit, (1) multiprocessing operations
have commenced. (2) nproc contains the total number of processors allocated. (3) cproc contains the
number of the current processor, in the range 0 to nproc− 1.

int MPBegin()
{ static int argc; static char ∗∗argv; int n;

MPI_Init(&argc, &argv); 1. Initialize message processing.
MPI_Comm_rank(MPI_COMM_WORLD, &cproc); 2. Determine this processor’s number.
MPI_Comm_size(MPI_COMM_WORLD, &nproc); 3. Determine the number of processors.
return 0; } 4. Return to caller.

Function 2.
Upon entry to the algorithm, multiprocessing operations have closed. At exit, the main program
may itself exit.

int MPEnd() { MPI_Finalize(); return 0; }

Function 3.
Upon entry to the algorithm, (1) local is a vector of w data elements (double precision floating
point) that are this processor’s contribution to the global data set. (2) global is a nproc by w matrix to
receive the values of local from all processors. (3) w contains the width of local and global. At exit,
global[n] contains a copy of the contents of local from each processor n, where n ranges from 0 to
nproc− 1. In particular, the local of this processsor passed on entry is in row global[cproc].

int MPCommon(double global[ ][ ], double local[ ], int w)
{ MPI_Allgather(local, w, MPI_DOUBLE,

global, w, MPI_DOUBLE,
MPI_COMM_WORLD);

return 0; }
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Function 4a.
Upon entry to the algorithm, (1) cproc is 0. (2) global is a nproc by w matrix containing values to
be sent to each processor n in row global[n]. (3) w contains the width of global[i]. At exit, global[n]
has been sent to each processor n.

int MPMasterSend(double ∗global, int w)
{ double ∗temp = 1. Allocate a temporary area to receive

(double∗)malloc(w∗sizeof (double)); the master’s data back from itself.

MPI_Scatter(global, w, MPI_DOUBLE, 2. Send data from global[n] to each
temp, w, MPI_DOUBLE, processor n.
0, MPI_COMM_WORLD);

free(temp); 3. Release the temporary area.
return 0; } 4. return to caller.

Function 4b.
Upon entry to the algorithm, (1) cproc is not 0. (2) local is vector of w elements to receive data
from the master processor. At exit, local contains the data received.

int MPSubordinateReceive(double local[ ], int w)
{ MPI_Scatter((double∗)0, 0, MPI_DOUBLE,

local, w, MPI_DOUBLE,
0, MPI_COMM_WORLD);

return 0; }

Function 5a.
Upon entry to the algorithm, (1) cproc is 0. (2) global[nproc][w] is an area to receive values for
each processor n in row global[n]. (3) global[0] contains any results from the master processor, to be
sent back to itself. (4) w contains the width of global[i]. At exit, global[n] contains the results from
each processor n, except that global[0] is unchanged.

int MPMasterReceive(double global[ ][ ], int w)
{ int i;

double ∗temp = 1. Allocate a temporary area to receive
(double∗)malloc(w∗sizeof (double)); the master’s data back from itself.

for (i = 0; i < w; i++) temp[i] = global[i];

MPI_Gather(temp, w, MPI_DOUBLE, 2. Send data from global[n] to each
global, w, MPI_DOUBLE, processor n.
0, MPI_COMM_WORLD);

free(temp); 3. Release the temporary area and
return 0; } return to caller.

Function 5b.
Upon entry to the algorithm, (1) cproc is not 0. (2) local is vector of w elements to send to the
master processor. At exit, the data have been sent.

int MPSubordinateSend(double local[ ][ ], int w)
{ MPI_Gather(local, w, MPI_DOUBLE, 1. Send data to processor 0.

(double∗)0, 0, MPI_DOUBLE,
0, MPI_COMM_WORLD);

return 0; } 2. Return to caller.
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ABSTRACT
The Sznajd model of opinion formation exhibits complex
phase transitional and growth behaviour and can be stud-
ied with numerical simulations on a number of different
network structures. Large system sizes and detailed sta-
tistical sampling of the model both require data-parallel
computing to accelerate simulation performance. Data
structures and computational performance issues are re-
ported for simulations on single and multi-core processing
devices. A discussion of optimal data structures for per-
formance on Graphical Processing Units using NVIDIA’s
Compute Unified Device Architecture (CUDA) is also
given. System size and memory layout tradeoffs for dif-
ferent processing devices are also presented.

KEY WORDS
Sznajd opinion formation model; complex system; simu-
lation; data-parallelism; GPU; CUDA; memory halo

1 Introduction
Opinion formation models [21] such as the Sznajd model
[40] display some interesting phase transitional and com-
plex behaviours that rely upon computer simulation for
their study. Opinion formation models can capture in-
dividual behaviour at a microscopic level that manifests
itself as a macroscopic or system-wide outcome when
implemented with system of many participating agents.
The Sznajd model of opinion formation exhibits complex
phase transitional and growth behaviour and can be stud-
ied with numerical simulations on a number of different
network structures [18, 35].

One of the main points of interest in simulating this sort
of model is to study the dynamics [29, 43] and kinetics
[5, 11] of the system both from the perspective of a well-
defined model of phase transitional behaviour but also for
to study the spread of influence of opinions [13,22,44] for
comparison with real sociological phenomena.

Figure 1: Multi-opinion Sznajd Model simulated on a 403

periodic lattice with 4 opinions in the population.

Sznajd models can be simulated on a range of network
structures with varying number of neighbouring opin-
ion sites [33]. Results have been reported for one di-
mensional systems [32]; triangular lattices [23] and gen-
eralised heterogeneous graphs and small-world [1] and
Watts-Strogatz graph structures [42]. In this present pa-
per we focus on square lattices but our simulation system
can also manage arbitrary dimensional hyper-cubic struc-
tures in 3 dimensions and higher. Figure 1 is a system
snapshot from our simulation, and shows the ongoing for-
mation of spatial groups of like-minded opinion holding
agents arranged on a cubic symmetry lattice.

This class of model can capture important sociological be-
haviours such as conformity [36]; crowd dynamics [25];
political extremism and relative agreements [9]; and voter
herding and the role of independents [20]. Sznajd models
can be usefully compared with real sociological systems
such as political elections [34]; proportional and major-
ity elections [41]; and other sociological and knowledge
exchange scenarios [28].

The Sznajd model and its variants are also of interest as ab-
stract models for the study of dynamics and criticality. Nu-
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merical experiments and data obtained from simulations
allow comparisons with theoretical predictions. An area
of theoretical comparison is with non-equilibrium [10] and
growth theories including Fokker-Planck theory, fluctua-
tion dissipation theory [12] and other relaxation modelling
equations [26].

Comparisons are drawn in the literature between the Sz-
najd model and related systems like the Ising model [37].
The Sznajd system has been described as a “push” model
as influence is pushed outwards from an updated cell,
whereas the Ising model is a “pull” model since it changes
a cell’s value based upon the value of its immediate neigh-
bours [4, 39]. Other areas of comparison are based on
the use of externally applied opinion or magnetic field bi-
ases [3, 7]. Active areas of development include incorpo-
ration of bulk parameters such as an effective temperature
into Sznajd-like models [24, 38].

In summary, the Sznajd model and related models are an
important class of complex system to study numerically.
Large and fast simulations are necessary to support use-
ful comparisons with realistic real systems and with theo-
retical predictions. We can achieve large fast simulations
using data-parallel computing techniques.

Graphical Processing Units (GPUs) are finding many im-
portant uses as engines for data parallelism, over and
above their original purpose for accelerating graphics sys-
tems. Opinion formation models such as the Sznajd sys-
tem are relatively well suited to this form of parallel sim-
ulation and GPUs enable a rapid exploration of the pa-
rameter space of such models is possible interactively and
with good statistical sampling on relatively large model
systems.

Compute Unified Device Architecture (CUDA) [30] is
NVIDIA’s proprietary programming language that is
widely used in programming computational model sim-
ulations including Ising systems. In this present paper we
show how the Sznajd model can be implemented on GPU
systems but that there are some unexpected complications
due to the particular nature of the Sznajd model neighbour-
hoods. We also show that there is an interesting tradeoff
between achieving realistically large system sizes the scal-
ability requirements of simulating a system long enough to
reach a well defined consensus opinion point.

Our paper is structured as follows: In Section 2 we sum-
marise the Sznajd model and describe how we imple-
mented it in Section 3. We include details on memory util-
isation issues and a simple and more memory efficient im-
plementation. We present some performance benchmark
data on multiple GPU systems in Section 4. We offer some
areas for further work in Section 5 and some conclusions
in Section 6.

2 Sznajd Model Formulation
The Sznajd model formulation used in this research is for-
mulated in the same manner as described in [18]. The
simulation consists of some very simple microscopic rules
that result in complex macroscopic behavior. Each update
consists of selecting a cell and a random neighbor. If the
two cells have the same opinion they convince their direct
neighbors. This particular variation of the Sznajd model
update can be applied for Sznajd systems of any dimen-
sionality and is therefore useful for the parallel algorithmic
and scalability analysis presented in this present work.

Figure 2: The update rules for the Sznajd Model, if both
selected cells agree, they convince their neighbors. If they
disagree the neighbors are unchanged.

The Sznajd model is constructed as follows:

1. each of the N lattice cells represents a voter agent
holding a single opinion

2. starting conditions are chosen for a random mixture
of Q different opinion states.

3. each voter is updated at each time step

4. upon choosing a voter, we randomly look at one of
its neighbours.

5. if the voter and the chosen neighbour hold the same
opinion they “persuade” all their immediate neigh-
bours to this opinion

6. this process repeats until consensus is reached
(whereby all voters hold the same final opinion state)

There are a number of properties that can be measured to
study the changes in the population of opinion agents: the
time to achieve consensus tc; the time tq to eliminate a
species and yield only q < Q − 1 states present in the
system; and the mean fluctuation sizes in these. These
can be studied for different sizes of system N and also for
different dimensionalities and indeed differing neighbour
influence regions.
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Figure 3: Sznajd Model on 64 × 64 periodic lattice at
times: 0,1,2,4,8,16,32,64,128,256 and final configuration
after random 25/25/25/25 start.

The Sznajd model and models like it can be run to full
consensus under many dynamical conditions [29]. The
meshes we study do lead (eventually) to a consensus out-
come. The consensus state is a stable state since there
are no thermal or spontaneous changes of opinion in the
model we study. However although the consensus state
will be arrived at eventually in finite time for a finite sys-
tem, these completion times do grow with system size. We
explore this effect and the implications for the maximum
feasible system sizes that we can study.

Figure 2 shows the transition rules for the Sznajd model.
The model behaviour is best understood from examination
of a time series of model configurations. Figure 3 shows a
two dimensional lattice of Sznajd opinion-holding agents
evolving over logarithmic times from a random initial mix
of opinions to a single consensus.

3 Data-Parallel Implementation
Sznajd model simulations present an challenge for Graph-
ical Processing Units. In previous investigation of lattice-
based simulations [15, 17, 19, 27, 31] GPUs generally
exhibit the best performance for large system sizes as
small simulations struggle to fully utilize the computa-
tional throughput of GPU architectures.

The nature of the Sznajd model means that the number
of steps required for a system to reach consensus grows

rapidly with system size. Because of this relationship,
simulations of large system sizes that are well-suited to
the GPU architectures require a very large number of steps
to reach consensus. Even on powerful GPU architectures
these large system sizes take an in feasibly long time to
compute the thousands of runs required for statistical anal-
ysis.

This means an implementation must be developed that can
perform effectively for small system sizes N = 1282 to
N = 2562.

3.1 Sznajd Model Memory Access
The Sznajd model has a relatively large memory access
pattern or memory halo. Each cell update has the poten-
tial to change the values of twelve different neighbouring
cells. To perform parallel updates, it is important that these
updates do not overlap or else the behavior of the model
will be affected.

Figure 4: The potential memory halo of a Sznajd model
update. The blue cell is the cell selected for update, the
dark grey cells represent the immediate neighbors and the
light grey cells represent cells whose values could poten-
tially be affected.

3.2 Naive GPU Implementation
The initial idea of implementing the Sznajd model was to
implement a checkerboard style update commonly used to
simulate the Ising model [19]. The checkerboard update or
red/black update performs a parallel update on every cell
belonging to one half of the checkerboard. This update
method is applicable to the Ising model because it reads
from it’s nearest neighbors and only changes the value of
the cell being updated. Because the Sznajd model has
quite a different memory halo, a different checkerboard
pattern is required.

To ensure that no two parallel update ever write to the
same cell, the memory halos of the updated cells must not
overlap. One possible checkerboard design is to split the
lattice into 5×5 (2D) or 53 (3D) sections. Each update se-
lects the same cell out of this section and updates it. Each
update will randomly select one neighbor but this is al-
ready accounted for in the memory halo. Importantly the
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memory halos of the updates never overlap, this can be
seen in Figure 5.

Figure 5: Update pattern of the naive GPU implementa-
tion, the update pattern ensures no cell value is changed
by two different updates.

This implementation has regular memory access patterns
and would be a perfect candidate for lattice crinkling
which rearranges data in a lattice for better memory ac-
cess [16]. However, during initial testing a problem was
discovered with this implementation. When two neighbor-
ing cells are updated one after another, there is a tendency
for an opinion to propagate in that direction. Because the
cells are updated in a regular pattern, any neighboring up-
dates will occur across the entire lattice. This means opin-
ions propagate in one direction across the entire lattice and
causes the lattice to ’jitter’ during the course of the simu-
lation.

Any correlation between updates such as this have the po-
tential to affect the behavior of the model and skew any
results. For this reason the Sznajd checkerboard update
has not been used for any results gathering and instead an
alternative implementation was developed to remove the
correlation.

3.3 Improved GPU Implementation
The improved Sznajd update method is similar to the
checkerboard update but with a few important differences.
Instead of splitting the lattice into 5 × 5 sections, the im-
proved method splits the lattice into 8× 8 sections. These
8 × 8 sections are further split into 4 × 4 quadrants. In-
stead of the same cell in each section being updated at the
same time, each quadrant of each section is updated at the
same time. This update will randomly select a cell from
the quadrant and update that cell. This breaks the correla-
tion seen in the previous implementation while still insur-
ing that the memory halos from two update never overlap.
This update method is shown in Figure 6.

While this update method can be used to simulate the Sz-
najd model, it does severely restrict the computational load
of each update. Each parallel update only processes one
cell out of an entire 8x8 cell. This means for an N2 sys-
tem only N2

82 cells can be updated in parallel. To perform
an entire system update, 82 parallel updates are required.

Figure 6: The update pattern of the improved GPU imple-
mentation. One random cell in each quadrant is updated

This severely restricts the performance of the simulation
which is already limited to small system sizes due to the
nature of the model but is necessary to break correlation
between sequential updates.

3.4 Optimising the Implementation
Unfortunately due to the semi-random access pattern of
this update method, previously successful optimization
techniques such as data crinkling are not applicable [14,
19]. However, some optimization strategies such as bit-
packing can be used. We are investigating Sznajd systems
with Q = {2..16}, this means only 4 bits of storage are
required for each cell. This allows the values of 8 cells to
be packed into a single 32-bit integer. This conveniently
allows each row of the 8x8 sections to be stored in a single
integer.

Figure 7: The process of unpacking integers, updating the
simulation and re-packing them into the integers for stor-
age.

This not only helps reduce the storage requirements for
a Sznajd system but also helps memory access. Because
each line of every 8x8 section will be stored in sequential
memory addresses, they can be read in a single coalesced
memory read. Once these values are read, they will be un-
packed into a shared memory array which will be used to
compute the simulation. The threads computing the up-
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date will change the values in this shared memory array
and then re-pack them into integers which will be written
back to GPU memory. This process is illustrated in Fig-
ure 7.

4 Performance and Results
Due to the highly restricted and sparse update method cou-
pled with very limited system sizes, the GPU implemen-
tation struggles to provide the kind of speed-ups seen in
many simulations. For the system sizes appropriate for
Sznajd simulations (642 - 2562) the computational power
of the GPU cannot be fully utilized. However, the GPU
implementation can still performance faster than the CPU
version for system sizes N >= 1602.

As the system size increases, more of the computational
power of the GPU can be used and the speedup it provides
will increase. This performance improvement becomes in-
creasingly important as the behavior of larger systems is
investigated.

The performance of the GPU implementation has been
compared to the un-optimised version and a CPU version
for a range of system sizes and number of opinions. Vary-
ing the number of opinions had little impact on the perfor-
mance of any simulation and only the results for Q = 2
are presented.

The CPU implementation has been written in C, compiled
with gcc 4.5 and executed on a 2.67GHz Intel Core i7 920.
Both the un-optimised (GPU1) and optimised (GPU2) im-
plementations have been compiled using CUDA 4.0 and
executed on a GTX580. The performance results of these
three Sznajd model simulations are shown in Figure 8.

The improved performance of the GPU2 implementation
allows larger system sizes to be investigated. The num-
ber of steps to consensus of the Sznajd model has been
investigated for system sizes of N = {642...2562} and
Q = {2...10}. The results of this experiment are pre-
sented in Figure 9 and appear to shown some unexpected
results.

Previous work with system sizes of N <= 962 has shown
that the number of steps required to reach consensus in-
creases as the number of opinions increases [18]. How-
ever, the findings from the previous experiment shows that
for Sznajd systems of N >= 1922 and Q = 2 require
more steps to reach consensus than systems with higher
values of Q.

Figure 9: The number of simulation steps required for the
Sznajd system to reach consensus.

5 Discussion
There are a number of variations to the simple Sznajd
model that have been explored in the literature. The notion
that two voters with the same opinion will have a strong
influence on their immediate neighbours is not unreason-
able, although it is possible to vary the number of agreeing
voters required to cause a local sway of opinion. Triples
and plaquettes of four have been tried. It appears that a
pair is enough to capture the essential model behaviour
however, and we have used the simplest “voter pairs” in
this paper.

A simple regular mesh is not particularly realistic and a
number of other meshes and graph networks including
preferential and scale free network structures have also
been studied and reported in the literature. Again, it ap-
pears that the square mesh captures the essence of the
model behaviour and we use a simple square mesh in the
work reported here. However we do consider the neigh-
bourhood of influence of the agreeing pair of voters.

There are various ways the Sznajd model could be ex-
tended. One interesting possibility is modelling opinions
that are continuous rather than discrete [2]. This sort of
simulation would require use of floating point capabilities,
which present a different set of performance tradeoffs on
GPUs, which typically share floating point units across the
their cores.

Another area for development is the study of agent repu-
tations and how the reputation - or long term behaviour of
an agent - affects its power of influence on its neighbour-
ing agents [6,8]. Temporal memory effects like reputation
will require storage of agent histories and will consider-
ably change the memory requirements. This will lower the
feasibility of containing the simulation state within cache.
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Figure 8: The milliseconds per time-step of three Sznajd model simulations - the CPU, GPU1 (un-optimised) and GPU2
(optimised) implementations. The results are shown in normal scale (left) and log-log scale (right).

6 Conclusion
We have discussed the importance of Sznajd opinion mod-
els and their role in simulation studies of real sociological
systems and as models of phase transitional and complex
emergent behaviour. We have described the need for large
simulations that must be run to the point of single opinion
consensus.

We have experimented with various data and multi parallel
implementations and have identified a tradeoff that makes
good use for multiple GPU devices attached to a CPU.
The computational performance tradeoff space is not triv-
ial and is dominated by the halo gathering scalability ef-
fects.

The Sznajd model neighbour-hood and the push nature
of the information propagation means that the simulated
system has to be arranged with a relatively large crinkle
length, to safely delegate compute responsibility across
the data parallel cores of a GPU. While this supports good
scalability for large simulated system sizes, we are con-
strained to having systems sizes that are not so large as
to make it infeasible to achieve single opinion consensus.
Numerical experiments require us to run the simulations
to this point for sensible comparisons with theory. The
multi-GPU approach addresses this by achieving good job
throughput.

Some areas for further development of Sznajd-like models
have also been identified. These include the use of con-
tinuous opinion dynamics and historical reputation effects
that would further exercise the floating point and memory
management properties of GPUs.
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Abstract— Climate simulations have significant role in
analyzing changes that have occurred in the Earth, give us
better understanding of the recently happened processes.
Most of the existing models perform approximate results
and fundamental improvements of the software models are
necessary to increase accuracy. We present an efficient im-
plementation of ultra-high resolution atmospheric global
circulation model on graphics processing units(GPUs).
The model based on the nonhydrostatic system with the
icosahedral grid and called "NICAM". We ported compu-
tationally intensive part of the NICAM code to GPU by
using CUDA FORTRAN, then validated and compared its
GPU performance to that for the parallel CPU version of
the code. This approach shows a good performance results
together with reducing memory consumption compared to
a fully GPU approaches. Our results show 5x speedup
for a computationally intensive part of shallow water
simulation model on a single GPU in comparison with
a parallel CPU implementation (5 cores).

Keywords: GPU computations, CUDA Fortran, climate simu-
lations, nonhydrostatic system

1. Introduction
One of the main goals of climate simulations is a

prediction of future climate changes and their impact on
the Earth and society. It is essential to get a reliable results
from the simulations to plan our future ecological, finan-
cial and human strategy. For this purpose we need signif-
icantly increase scales of the current climate simulations.
Thus, it is important to adapt current climate applications
to take advantage of the performance capabilities of novel
hybrid architectures.

Performance rise of the climate and weather simulation
software was based on increasing processor speed rather
than increasing parallelism for last years[1]. Nowadays, to
sustain such an increase towards the exascale era, we need
some significant changes in the software models. GPUs
are a very high performance alternative to conventional
microprocessor. The massive parallelism of GPUs offers
tremendous performance in many high-performance com-
puting applications. GPUs were designed to exploit fine-
grained parallelism, which gives us an ability to create
weather and climate models with much finer parallelism.

In order to increase performance of the existing climate
simulation, we ported and optimized a high resolution

climate model to GPU. We aimed to get significant accel-
eration from applying heterogeneous computing with both
conventional CPUs and vector-oriented GPU accelerators.

In this work we use single GPU to run a new type
of ultra-high resolution atmospheric global circulation
model NICAM (Nonhydrostatic ICosahedral Atmospheric
Model) [2] being developed at Advanced Institute for
Computational Science, RIKEN (see section II). Initial
NICAM code uses 2-dimensional MPI-parallelization and
shows good scalability results.

We propose to localize and port the most computation-
intensive part of the climate model to GPU. For this
purpose, we first study the original NICAM code and
isolate the most time-consuming modules. Then, we ported
those modules to GPU and evaluated the performance of
our implementation.

The main difference of our strategy from some of
existing GPU-based approaches [3], [4] is that we do not
port to the GPU entire climate model application. Our
method allows to reduce the memory to be allocated on
GPU by performing on CPU some low-cost computations
and porting to the GPU only the most time-consuming
computations.

The results of our evaluation show that we reach an
almost optimal performance for most of the ported kernels
and we see an important speedup. We have got 5x speedup
for a computationally intensive part of shallow water
simulation model on a single GPU, in comparison with
a parallel CPU implementation. Our GPU kernels give us
performance, close to the maximum one, which indicate
the efficient hardware utilization.

This paper is organized as follows. We describe some
important background in the "NICAMmodel" section.
Section III outlines our GPU NICAM implementation
approach, presents step-by-step algorithm of the "mapping
to GPU" process. In section IV we give some information
about environment we used, describe performance results
for both CPU and GPU versions of the code and present
GPU performance model. We give some conclusions and
outline our plans for future work in section V.

2. NICAM model
NICAM is a Nonhydrostatic ICosahedral Atmospheric

Model, used as a Global Cloud Resolving Model (GCRM).
It was designed to perform "cloud resolving simulations"
by directly calculating deep convection and meso-scale
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Fig. 1: Tropical cyclones SINLAKU and IKE reproduced
by NICAM 7km simulation [6] (00UTC 13 Sep. 2008) (by
H.L. Tanaka).

circulations, which play key roles not only in the trop-
ical circulations but in the global circulations of the
atmosphere[2]. NICAM - is a unified model in the sense
that it can be used for both short term numerical predic-
tions for weather systems such as a week, and long term
simulations to obtain quasi-equilibrium climate states (see
Figure 1).

The model uses fully compressible (elastic) non-
hydrostatic system to obtain thermodynamically quasi-
equilibrium states by long time simulations. For this
purpose a nonhydrostatic numerical scheme which guar-
antees conservation of mass and energy was devised and
implemented to the global model using the icosahedral
grid configuration. The formulation and numerical scheme
of NICAM along with numerical results of some test cases
are thoroughly presented in [5].

The finite volume method is used for numerical dis-
cretization, so that total mass and energy over the domain
is conserved; thus this model is suitable for long term
climate simulation.

2.1 Numerical methods
For the horizontal discretization, icosahedral grid sys-

tem on the sphere is used. Figure 2 shows an example of
series of consecutive icosahedral grids.

The icosahedral grids are constructed by a recursive
division of geodesic arches on the sphere. Starting from the
original icosahedron, one-level finer grids are generated
by bisecting the geodesic arches of the former coarser
grids. We call the n-th bisection of the icosahedron glevel
n (glevel: grid division level). The average grid interval of
glevel 11 is about 3.5 km, for example. The total number
of grid points is Ng = 10(2n)2 + 2.

Numerical models with this grid system are first inves-
tigated by Sadourny et al. [7] and Williamson [8], and
are recently revisited as a candidate for next-generation
high-resolution global models.

In the [9] Tomita et al. describe the modifications, which
was applied to the original icosahedral grids by using the

Fig. 2: Horizontal discretization scheme of NICAM model,
based on icosahedral grid system on the sphere. Grid level
0 - original icosahedron, 2 grid points. The number of
grid points for grid level n can be calculated by Ng =
10(2n)2 + 2

spring dynamics. With this modifications, the fractal struc-
ture of the original icosahedral grid is relaxed and more
uniform grid structure with a smaller ratio of minimum to
maximum grid intervals is obtained by smoothing the grid
arrangement. It was found that the numerical errors can
be reduced using the modified grid[10].

The governing equations of the global model are a
newly developed nonhydrostatic schemes that guaran-
tees conservation of mass and energy. The finite volume
method is used for the flux form equations. The Arakawa-
A type grid is used where all the variables are allocated at
the vertices of triangles. The shape of the control volume
is either hexagon or pentagon.

Further details about numerical scheme, used in NICAM
are described in [2], [9], [10].

2.2 MPI parallelization
In this paper we present our single GPU implementation

of NICAM model, but we plan to use current NICAM
MPI-parallelization method to create a multi-GPU imple-
mentation for a following work.

Initial NICAM code use 2-d domain decomposition with
FLAT-MPI parallel programming model (see Figure 3,
Figure 4).

MPI parallelization strategy is based on discretization
grid by regions, which then managed by the different MPI
processes.

Region discretization algorithm is shown at the Figure
3. First, we create region level 0 by connecting two
neighboring icosahedral triangles. In this case we have
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Fig. 3: NICAM region decomposition, used for FLAT MPI
parallelization scheme. Region level 0 has 10 rectangles.
The number of rectangles for the region level n can be
calculated by Nr = 10(4n)

Fig. 4: MPI distribution strategy: region level 1, 40 regions
and 10 MPI processes. Each process manage 4 regions
with the same color

only 10 rectangles for the level 0 region. To increase
region level to 1, we divide each of rectangles into 4 sub-
rectangles by connecting the diagonal mid-points (revel-
1). Continuing this process recursively we can get region
level-n.

MPI distribution strategy is presented on Figure 4. One
process manages rectangle regions with the same color.
Figure 4 shows an example case for the region level 1, 40
regions and 10 MPI processes. Each process manages 4
regions with the same color.

Assuming one process manages one rectangle region,
increasing r-level computational intensity on 1 process is
reducing.

Start process

MPI configuration setup

Initial data computations

do nl=1, nlmax

One large step

Viscosity filter
Horizontalize filter

MPI communication

Stop process

Fig. 5: Simplified flow-graph of the original NICAM
Shallow Water model code.

3. GPU implementation
Our GPU implementation approach is based on porting

the most computationally intensive part of the initial
NICAM code to GPU. In this work we investigate 2-
dimensional (Shallow water) case of NICAM model [11],
which plan to implement for the 3- dimensional case in
future work.

First, we selected a computationally intensive module
of NICAM, then modified this Fortran model to run
on NVIDIA GPU using PGI CUDA Fortran[12], [13],
validated and compared its GPU performance to that of
the original MPI parallel module.

In purpose to analyze runtime behavior of the given
code we used the Scalasca performance toolset [14]. We
have got profiling results for different configurations of the
grid and region level numbers.

In the Figure 5 we present a simplified flow-graph of
the original NICAM Shallow Water model code. The main
computations performs in the cycle by the time steps (nl).
Before starting the main cycle computations we need to
setup MPI configuration and compute the initial data. At
the end of each time step we collect the data from each
MPI process and go to the next time iteration.

According to the profiling results "one large step" is
the most time consuming module of the code. It takes
more then 50% of the whole time to compute this mod-
ule. Therefore, in purpose to accelerate computations, we
decided to port this module to GPU.

In the Figure 6 we present our GPU implementation
approach scheme.

After we computed an initial data on CPU we send
the ones, necessary for "One large step" computations, to
GPU and store them in GPU global memory. Some of this
initial data are constant and by porting them once in the
beginning of the NICAM computations we reduce CPU-
GPU communicational overheads.
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Start process

MPI configuration setup

Initial data computations

do nl=1, nlmax

One large step

Viscosity filter
Horizontalize filter

MPI communication

Stop process

copy initial data to GPU

CPU-GPU communication

GPU-CPU communication

Computation on GPU

Fig. 6: NICAM GPU implementation approach. Porting
the most computationally intensive module "One large
step" to the GPU

The data, which are variable inside the cycle and
necessary for the GPU computations, are transferring to
GPU before the "One large step" module on each time
step. Then, data, computed on GPU and needed for farther
computations on CPU, copying to the CPU at the end of
the "One large step".

In the Figure 7 we present "One large step" module
in detail. This module performs one full time step of the
second-order Runge-Kutta scheme, which uses for the ap-
proximation of solutions of ordinary differential equations.
"One large step" module consist of 3 main subroutines:
OPRT_gradient, OPRT_vorticity and OPRT_divergence. If
we port only this subroutines to GPU the communication
overheads will be significant and affect to the performance.
Therefore we also port initial data and output data com-
putation modules to GPU and keep all temporary data in
the GPU global memory. Initial CPU code for this module
was slightly modified in purpose to reduce the amount of
memory to be allocated on GPU.

We created one kernel for OPRT_gradient and one
for OPRT_divergence. For OPRT_vorticity module it was
necessary to create 2 kernels for the data synchronization
issue. Figure 8 shows how our numerical scheme is
computed by executing 6 CUDA kernels in order.

Each module, ported to the kernels, based on a nested
loop calculation. Each loop iteration computes 1 element
of 2-dimensional array. Each thread of our GPU kernels
calculates 1 element of the array.

The CUDA programming model requires the program-
mer to organize parallel kernels into a grid blocks, which
divided into thread blocks with at most 512 threads each.
The NVIDIA GPU architecture executes the threads of a
block in SIMT (single instruction, multiple thread) groups
of 32 called warps.

We use 2-dimensional grid, which size depends on the
of grid level and region level sizes. We use a block
configuration of 256 threads where we have one thread

One large step

Output data:
dh, dvx, dvy,dvz,

Input data:
h, vx, vy,vz,

calculation of scl
hvx, hvy, hvz

GRD_zs,vx,

vy, vz, h

OPRT_gradient

calculation of dh,
dvh, dvy, dvz

OPRT_vorticity

OPRT_divergence

scl

grdx, grdx_pl,
grdy, grdy_pl
grdz, grdz_pl

vx, vy,vz
omega
omega_pl

hvx, hvy, hvz
dh,
dh_pl

GRD_x, vz, vy, vz,
omega, grdx, grdy,
grdz

Fig. 7: "One large step" module. Left side blocks - input
data, right side blocks - output data.

COPY to CPU:

dh, dvx, dvy,dvz

COPY to GPY:

h, vx, vy,vz

<<< kernel for scl, hvx, hvy, hvz >>>

<<< kernel OPRT_gradient >>>

<<< kernel OPRT_vorticity 1>>>

<<< kernel OPRT_divergence >>>

<<< kernel for dvx, dvy,  dvz, dh >>>

<<< kernel OPRT_vorticity 2>>>

Fig. 8: "One large step" on GPU.

per element. Our block size is a multiple of 32 which
fits with the warp size and, therefore, allow us to achieve
maximum efficiency.

We have h, vx, vy and vz arrays as an input data for the
GPU computations, and dh, dvx, dvy, dvz as an output
data. All the data, used for GPU computations, are stored
in GPU Global memory during the entire NICAM model
computation process. This allows different kernels access
to the common data.

4. Evaluation
In this section we present results of implementation

NICAM code on 1 node and single GPU.

4.1 Evaluation environment
Described approach was implemented on the TSUB-

AME 2.0 supercomputer, established at Tokyo Institute of
Technology.

TSUBAME 2.0 consists of 1408 compute nodes (thin
nodes) of two Intel Xeon Westreme-EP 2.9 GHz CPUs and
tree NVIDIA M2050 GPUs with 52Gb and 3Gb of system
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and GPU memory, running SUSE Linux Enterprise Server
II SP1.

1 node has 2 sockets, 12 cores/node. Each node is
interconnected by dual QDR Infinitband network with a
full bisection- bandwidth fat-tree topology.

NICAM code consists of both FORTRAN and C++
modules. We use PGI CUDA FORTRAN pgfortran
version 2011 compiler for the GPU and FORTRAN code
and mpicc compiler for the C++ code.

4.2 Performance results
In purpose to compare NICAM CPU version perfor-

mance with one for the GPU version we investigated initial
CPU version for the code performance on TSUBAME 2.0
supercomputer. After performing the CPU code analysis
we modified the code, porting the most time-consuming
module to the single GPU, verified and validated our
implementation. Then we compared MPI-parallel code
performance with the single GPU code performance.

4.2.1 CPU performance
As it was described in section II, NICAM CPU code

is based on 2d-domain decomposition with FLAT-MPI
parallel programming model. Initial grid is divided by
regions, managed by different MPI processes. The number
of cores is restricted by the region division level, which can
has limited number of the regions, that is 10∗(2n)2, where
n - the region level order. Therefore, the total number of
processes can be only the divisor of the total number of
regions.

Figure 9 shows strong scalability results for the initial
CPU version on TSUBAME 2.0 supercomputer. Problem
size is grid level 11 with region level 5, which corresponds
to 41943042 grid points. Strong scalability results demon-
strate good speed up resulting on the number of cores up
to 2560.

Figure 10 and Figure 11 present CPU performance
results for the most time-consuming modules, ported to
GPU.

From the CPU performance graph we can see that in-
creasing grid level the scalability is rising due to increasing
of the computational intensity per one process.

We assume 5 processes is a saturation point of the
MPI parallelization and further compare CPU performance
results on 5 processes with the GPU performance results
on single GPU (see Figure 12)

4.2.2 GPU numerical performance
We compared single GPU version performance result

with the performance for parallel MPI-parallel version
(saturation point). We assume that the saturation point for
performance of the MPI-parallel version achieves when
the number of cores equal 5. Due to the fact that we have
6 cores in one socket on Intel Xeon X5670, we compare
1 CPU socket results versus 1 GPU socket.

This comparison results for the 3 main subroutines
of the NICAM Shallow Water model are shown on the
Figure 12. We can see that for the grid level 6 (gl06)

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000 2500 3000

Number of cores

T
im

e
(s

e
c)

0.00

10.00

20.00

30.00

40.00

50.00

0 500 1000 1500 2000 2500 3000

Number of cores
S

p
e

e
d

u
p

Fig. 9: Strong scalability of the CPU version. Average
running time and speedup as a function of the number of
cores for the grid level 11 and region level 5, which is
correspond to horizontal size of grid cell around 3.5 km,
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Fig. 11: CPU performance graph. Average speedup as a
function of the number of cores for the different configu-
rations of the grid and region levels

GPU versions performs 3 times faster then multi-CPU one.
Increasing grid level to gl07 GPU version performs about
5 times faster then parallel-CPU one. It can be explained
by the increasing computational intensity per kernel. We
get 5x acceleration also for the grid level 8.

Due to limitations in GPU global memory, we were
unable to scale NICAM code to a grid level higher then
8. The NVIDIA M2050 GPU only provides 3 GByte of
Global memory. This limitation can be relaxed by using
GPUs with higher amount of global memory. Also, as a
future work, we are going to reduce amount of memory
to be allocated per one GPU by splitting kernels between
multiple GPUs, sharing 1 node.

4.2.3 GPU performance model
In purpose to measure the performance of our GPU

NICAM implementation, we used "roofline" model of
Samuel Willams [15]. This model compares achieved
performance to a "roofline" graph of peak data streaming
bandwidth and peak FLOP/s capacity.

We calculated performance by the next formula (1):

Performance =
FLOP

FLOP
Fpeak + Byte

Bpeak + α
=

=
FLOP/Byte

FLOP
Byte + Fpeak

Bpeak + αFpeak
Byte

Fpeak (1)

Here FLOP - number of floating-point operations for
applications, Byte - byte number of memory access for
applications, Fpeak - peak performance of floating-point
operation, Bpeak - peak memory bandwidth, α - time
taken by other OPs except both FP and memory access.

For TSUBAME 2.0 supercomputer Fpeak =
515GFlops, Bpeak = 148GByte/sec in double
precision, we assume α = 0.

Fig. 12: Average running time for MPI-parallel CPU
module versus time for GPU kernel as a function of the
problem configuration for 3 main modules of the NICAM
code.

Arithmetic intensity was calculated as FLOP/Byte.
Figure 13 shows "roofline" performance model for all

GPU kernels of the GPU NICAM implementation. It is
shown that output data calculations kernel, both vorticity
kernels and gradient kernel give performance, close to
theoretical one. This results indicate that we get maximum
performance from the kernels. Performance of the input
calculation kernel and divergence kernel we get is not the
maximum one, but we will try to increase it by applying
some additional optimization in the following work.

5. Conclusion
In this paper we have described our strategy of map-

ping to GPU a ultra-high resolution atmospheric model
NICAM. We outlined the main steps of the mapping
process and reported about results we got on TSUBAME
2.0 supercomputer.

We ported the most time-consuming modules of the
initial NICAM Fortran code to a single GPU by using PGI
CUDA Fortran. In this work we investigated 2-dimensional
(Shallow water) case of NICAM model, and we plan to
implement our GPU algorithm to the 3- dimensional case
in a future work.

The results of our evaluation show a 5x speedup for a
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Fig. 13: Roofline graph: Visual GPU kernels performance
model.

computationally intensive part of shallow water simulation
model on a single GPU in comparison with a parallel CPU
implementation.

In purpose to investigate performance of our GPU
NICAM implementation, we created a "roofline" perfor-
mance model for the GPU kernels. It was shown, that 4 of
our 6 kernels give us performance close to the maximum
one and, therefore, do not need any optimization. Two
kernels still can be optimized to get better performance.

As our work progresses we will optimize current GPU
implementation to get better performance. Then, we plan
to apply our strategy to the multiple GPUs on one node,
in order to reduce the amount of memory to be stored on
one GPU. After that we plan to finish our MPI-CUDA
implementation and run on multiple GPU nodes. We hope
to see additional significant performance gains.

We also plan to investigate behavior of the NICAM code
with OpenACC and the 3 compilers: PGI, CAPS/OMPP
and Cray. Then it might be interesting to look at the
NICAM code at the Cray XK6, which has been installed
at Tokyo Tech this spring.
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Abstract—Nowadays, a heat and mass transfer simulation 
plays an important role in various engineering and industrial 
fields. To analyze physical behaviors of a thermal environment, 
we have to simulate heat and mass transfer phenomena. 
However to obtain numerical solutions to heat and mass 
transfer equations is much time-consuming.  In this paper, 
therefore, one of acceleration techniques developed in the 
graphics community that exploits a graphics processing unit 
(GPU) is applied to the numerical solutions of heat and mass 
transfer equations.  Implementation of the simulation on GPU 
makes GPU computing power available for the most time-
consuming part of the simulation and calculation.  The nVidia 
CUDA programming model provides a straightforward means 
of describing inherently parallel computations.  This paper 
improves the computational performance of solving heat and 
mass transfer equations with the second boundary and initial 
conditions numerically running on GPU.  We implemented 
simulation of heat and mass transfer using the novel CUDA 
platform on nVidia Quadro FX 4800 and compared its 
performance with an optimized CPU implementation on a 
high-end Intel Xeon CPU.  The experimental results clearly 
show that GPU can perform heat and mass transfer simulation 
accurately and significantly accelerate the numerical 
calculation with the maximum observed speedups 10 times. 
Therefore, the GPU implementation is a promising approach 
to acceleration of the heat and mass transfer simulation. 

Keywords-Genereal: Numerical Solution; Heat and Mass 
Transfer; High Performance Computation; General Purpose 
Graphics Processing Unit; CUDA. 

I.  INTRODUCTION 
During the last 4-5 decades, many scientists and 

engineers working in Heat and Mass Transfer processes have 
focused their attention to finding solutions both 
analytically/numerically, and experimentally.  To precisely 
analyze physical behaviors of thermal environments, we 
need to simulate several heat and mass transfer phenomena 
such as heat conduction, convection, and radiation.  A heat 
transfer simulation is accomplished by combining multiple 
computer simulations of such heat and mass transfer 
phenomena. With the advent of computer, initially the 
sequential solutions were found, and later when super-
computers became available, fast solutions were obtained to 
above mentioned problems.  However, the simulation of heat 
and mass transfer requires much longer execution time than 
the other simulations.  Therefore, acceleration of the heat and 

mass transfer simulation is essential to realize a practical 
large-scale heat and mass transfer simulation. 

This paper exploits the computing power of graphics 
processing units (GPUs) to accelerate the heat and mass 
transfer simulation.  GPUs are cost-effective in terms of 
theoretical peak floating-point operation rates [1].  Therefore, 
comparing with expensive cluster, GPUs is a powerful co-
processor on a common desktop PC that is ready to achieve a 
large-scale heat and mass transfer simulation at a low cost. 
The GPU has several key advantages over CPU architectures 
for highly parallel, compute intensive workloads, including 
higher memory bandwidth, significantly higher floating-
point throughput. The GPU can be an attractive alternative to 
CPU clusters in high performance computing environments. 

Recent announcement like CUDA [2] by nVidia proved 
their effort to extend both programming and memory models. 
CUDA (Compute Unified Device Architecture) is a new 
data-parallel, C-language programming API that bypasses 
the rendering interface and avoids the difficulties of classic 
GPGPU. Parallel computations are instead expressed as 
general-purpose, C-language kernels operating in parallel 
over all the points in a domain.  

This paper investigates the numerical solutions to Two-
point Initial-Boundary Value Problems (TIBVP) of Heat and 
Mass with the second boundary and initial conditions arising 
in capillary porous media.  These problems find applications 
in drying processes, under-ground contaminants transport, 
absorption of nutrients in human bodies, transpiration 
cooling of space vehicles at re-entry into atmosphere, and 
many other science and engineering problems. Although 
traditional approaches of parallel-distributed processing have 
been applied with advantage to the solutions of some of these 
problems, no more seem to have explored the high 
performance solutions to these problems with compact multi-
processing capabilities of GPU, which is multi-processors 
technology on a chip.  With the power of this compact 
technology and develop relevant algorithms to find the 
solution of TIBVP with the second boundary and initial 
conditions and compare with some of the existing solutions 
to simple known problems. All of our experimental results 
show satisfactory speedups. The maximum observed 
speedups are about 10 times.  

The rest of the paper is organized as follow:  Section II 
introduces some previous related work; Section III describes 
the background on GPU and CUDA briefly; Section IV 
presents the mathematical model of heat and mass transfer 
and numerical solutions to heat and mass transfer equations; 
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Our experimental results are presented in Section V; Finally 
Section VI concludes this paper with our future direction. 

II. RELATED WORK 
The simulation of heat and mass transfer has received 

much attention for years.  And there is much work related to 
this field, such as modeling and dynamic simulation.  Here 
we just refer to some recent work closely related. 

Soviet Union was in the fore-front for exploring the 
coupled Heat and Mass Transfer in Porous media was 
researched as a part of chemical engineering discipline, and 
major advances were made at Heat and Mss Transfer 
Institute at Minsk, BSSR.  Later England and India took the 
lead and made further advances in terms of analytical and 
numerical solutions to certain problems. Later Narang and 
Rajiv [4] explored the wavelet solutions and Ambethkar [5] 
explored the numerical solutions to some of these problems. 

 With the programmability of fragments on GPU, Krüger 
et al. [6] computed the basic linear algebra problems, and 
further computed the 2D wave equations and NSEs on GPU. 
Bolz et al. [7] rearranged the sparse matrix into textures, and 
utilized them multigrid method to solve the fluid problem. 
Similarly, Goodnight et al. [8] used the multigrid method to 
solve the boundary value problems on GPU. Harris [9, 10] 
solved the PDEs of fluid motion to get cloud animation.  

GPU is also used to solve other kinds of PDEs. For 
example, Kim et al. [11] solved the crystal formation 
equations on GPU. Lefohn et al. [12] packed the level-set 
isosurface data into a dynamic sparse texture format, which 
was used to solve the PDEs. Another creative usage was to 
pack the information of the next active tiles into a vector 
message, which was used to control the vertices and texture 
coordinates needed to send from CPU to GPU. To learn 
more applications about GPU for general-purpose 
computations, readers can refer to [13]. 

III. AN OVERVIEW OF CUDA ARCHITECTURE 
The GPU that we have used in our implementations is 

nVidia’s Quadro FX 4800, which is DirectX 10 compliant. It 
is one of nVidia’s fastest processors that support the CUDA 
API and as such all implementations using this API are 
forward compatible with newer CUDA compliant devices. 
All CUDA compatible devices support 32-bit integer 
processing.  An important consideration for GPU 
performance is its level of occupancy. Occupancy refers to 
the number of threads available for execution at any one time. 
It is normally desirable to have a high level of occupancy as 
it facilitates the hiding of memory latency. 

The GPU memory architecture is shown in figure 1. 

 
Figure 1: GPU Memory Architecture [2] 

IV. MATHEMATICAL MODEL AND NUMERICAL 

SOLUTIONS OF HEAT AND MASS TRANSFER 

A. Mathematical Model  

Consider the Heat and Mass Transfer through a porous 
slab with boundary conditions of the second kind. Let the x-
axis be directed upward along the slab and the y-axis normal 
to the slab. Let u and v be the velocity components along the 
x- and y- axes respectively. Let us assume that the slab is 

accelerating with a velocity Utu   in its own plane at time 
0t . Then the heat and mass transfer equations in the 

Boussinesq's approximation, are: 
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A prescribed constant heat flux q supplied by the hot 

plate at the left end X=0 of the slab, the initial and boundary 
conditions of the problem are: 

     0),(,0 1111  txut                        (5) 

 T)t,x(T 111  ,  C)t,x(C 111                               

   0111 ),0(,0 Vtut 
        (6) 
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Since the slab is assumed to be porous, Equation (1) 

integrates to 01 vv 
 is the constant velocity.  Here, 1  is 

the velocity of the fluid, pT  the temperature of the fluid near 

the slab, T  the temperature of the fluid far away from the 

slab, pC
 the concentration near the slab, C  the 

concentration far away from the slab, g  the acceleration due 

to gravity,   the coefficient of volume expansion for heat 

transfer, 
'  the coefficient of volume expansion for 

concentration,  the kinematic viscosity,   the scalar 

electrical conductivity,   the frequency of oscillation, k  

the thermal conductivity, q is the heat flux and  1t is the time. 

From Equation (1) we observe that 1v is independent of 
space co-ordinates and may be taken as constant. We define 
the following non-dimensional variables and parameters. 
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Now taking into account Equations (5), (6), (7), and (8), 
equations (2), (3) and (4) reduce to the following form: 
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B. Numerical Solutions 

Here we sought a solution by finite difference technique 
of implicit type namely Crank- Nicolson implicit finite 
difference method which is always convergent and stable. 
This method has been used to solve Equations (9), (10), and 
(11) subject to the conditions given by (12), (13) and (14).  
To obtain the difference equations, the region of the heat is 

divided into a gird or mesh of lines parallel to x  and t  axes. 
Solutions of difference equations are obtained at the 
intersection of these mesh lines called nodes. The values of 

the dependent variables T , u  and C  at the nodal points 

along the plane 0x  are given by ),0( tT , ),0( tu  and 
),0( tC hence are known from the boundary conditions. 

In the figure 2, x , t are constant mesh sizes along x  

and t  directions respectively. We need an algorithm to find 
single values at next time level in terms of known values at 
an earlier time level.  A forward difference approximation 

for the first order partial derivatives of u ,  T and C .  And a 
central difference approximation for the second order partial 

derivative of u  , T and C  are used. On introducing finite 
difference approximations for: 
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Figure 2: Finite Difference Grid 
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The finite difference approximation of Equations (9), (10) 
and (11) are obtained with substituting Equation (15) into 
Equations (9), (10) and (11) and multiplying both sides by 

t and after simplifying, we let  
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 (method is 
always stable and convergent), under this condition the 
above equations can be written as: 
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V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Setup and Device Configuration 

The experiment was executed using the CUDA Runtime 
Library, Quadro FX 4800 graphics card, Intel Core 2 Duo. 
The programming interface used was Visual Studio. 

The experiments were performed using a 64-bit Lenovo 
ThinkStation D20 with an Intel Xeon CPU E5520 with 
processor speed of 2.27 GHZ and physical RAM of 4.00GB. 
The Graphics Processing Unit (GPU) used was an NVIDIA 
Quadro FX 4800 with the following specifications: 
CUDA Driver Version:                                      3.0 
Total amount of global memory:                       1.59 Gbytes 
Number of multiprocessors:                               24 
Number of cores:                                                92 
Total amount of constant memory:                    65536 bytes 
Total amount of shared memory per block:       16384 bytes 
Total number of registers available per block:  16384 
Maximum number of threads per block:            512 
Banwitdh: 

Host to Device Bandwith: 3412.1 (MB/s) 
 Device to Host Bandwith: 3189.4 (MB/s) 

         Device to Device Bandwitdh: 57509.6 (MB/s) 
In the experiments, we considered solving heat and mass 

transfer differential equations in an infinite slab with 
boundary conditions of the second kind using numerical 
methods. Our main purpose here was to obtain numerical 
solutions for Temperature T, and concentration C 
distributions across the various points in a slab as heat and 
mass are transferred from one end of the slab to the other. 
For our experiment, we compared the similarity of the CPU 
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and GPU results. We also compared the performance of the 
CPU and GPU in terms of processing times of these results. 

In the experimental setup, we are given the initial 
temperature T0 and concentration C0 at point x = 0 on the 
slab. Also, there is a constant heat flux q0 and mass flux N0 
constantly working the surface of the slab. The temperature 
at the other end of the slab where x = ∞ is assumed to be 
ambient temperature (assumed to be zero). Also, the 
concentration at the other end of the slab where x = ∞ is 
assumed to be negligible (≈ 0) and so are the heat and mass 
fluxes. Our initial problem was to derive the temperature T1 
and concentration C1 associated with the heat and mass 
fluxes respectively. This we did by employing the finite 
difference technique. Hence, we obtained total initial 
temperature of (T0 + T1) and total initial concentration of (C0 
+ C1) at x = 0. These total initial conditions were then used 
to perform calculations. 

For the purpose of implementation, we assumed a fixed 
length of the slab and varied the number of nodal points N to 
be determined in the slab. Since N is inversely proportional 
to the step size ∆x, increasing N decreases ∆x and therefore 
more accurate results are obtained with larger values of N. 
For easy implementation in Visual Studio, we employed the 
Forward Euler Method (FEM) for forward calculation of the 
temperature and concentration distributions at each nodal 
point in both the CPU and GPU. For a given array of size N, 
the nodal points are calculated iteratively until the values of 
temperature and concentration become stable.  In this 
experiment, we performed the iteration for 10 different time 
steps. After the tenth step, the values of the temperature and 
concentration became stable and are recorded. We run the 
tests for several different values of N and ∆x and the error 
between the GPU and CPU calculated results was 
increasingly smaller as N increased. Finally, our results were 
normalized in both the GPU and CPU. 

B. Experimental Results  

The normalized temperature and concentration 
distributions at various points in the slab are depicted in 
Table 1 and Table 2 respectively. We can immediately see 
that, at each point in the slab, the CPU and GPU computed 
results are similar. In addition, the values of temperature and 
concentration are highest at the point on the slab where the 
heat flux and mass flux are constantly applied. As we move 
away from this point, the values of the temperature and 
concentration decrease. At a point near the designated end 
of the slab, the values of the temperature and concentration 
approach zero. This is depicted clearly in the graphs of 
Figure 1 and Figure 2.  

TABLE I.  COMPARISON OF GPU AND CPU RESULTS (TEMPRETURE)  

X  GPU Results  CPU Results

4.84 1.00000 1.00000
14.52 0.93147 0.93145
24.19 0.86723 0.86476

33.87 0.80299 0.80109
43.55 0.73875 0.73875
53.23 0.67451 0.67765
62.9 0.61028 0.60987

72.58 0.54604 0.54676
82.26 0.48187 0.48188
91.94 0.41756 0.41444

101.61 0.35332 0.35098
111.29 0.28908 0.28567
120.97 0.22484 0.22484
130.65 0.16067 0.15989
140.32 0.09636 0.09907

150 0.03216 0.03216

TABLE II.  COMPARISON OF GPU AND CPU RESULTS 
(CONCENTRATION)  

X  GPU Results  CPU Results

4.84 1.00000 1.00000
14.52 0.93548 0.93345
24.19 0.87097 0.87565
33.87 0.80645 0.80678
43.55 0.74194 0.74094
53.23 0.67742 0.67742

62.9 0.61298 0.63426
72.58 0.54839 0.54546
82.26 0.48387 0.48467
91.94 0.41935 0.41875

101.61 0.35484 0.35484
111.29 0.29032 0.28967
120.97 0.22581 0.22346
130.65 0.16129 0.16034
140.32 0.09677 0.09346

150 0.03226 0.03226
 
Furthermore, we also evaluated the performance of the 

GPU (NVIDIA Quadro FX 4800) in terms of solving heat 
and mass transfer equations by comparing its execution time 
to that of the CPU (Intel Xeon E5520).  

For the purpose of measuring the execution time, the 
same functions were implemented in both the device (GPU) 
and the host (CPU), to initialize the temperature and 
concentration and to compute the numerical solutions. In this 
case, we measured the processing time for different values of 
N. The graph in Figure 3 depicts the performance of the GPU 
versus the CPU in terms of the processing time. We run the 
test for N running from 15 to 1005 with increments of 30 and 
generally, the GPU performed the calculations a lot faster 
than the CPU.  

‐ When N was smaller than 75, the CPU 
performed the calculations faster than the GPU. 

‐ When N was between 75 and 135 both CPU 
and GPU performed around the same speed. 
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‐ For N larger than 135 the GPU performance 
began to increase considerably 

Figure 3 and figure 4 show some of our experimental 
results. 

 
Figure 3: Performance of GPU and CPU Implementations 

 
Finally, the accuracy of our numerical solution was 

dependent on the number of iterations we performed in 
calculating each nodal point, where more iteration mean 
more accurate results. In our experiment, we observed that 
after 9 or 10 iterations, the solution to the heat and mass 
equation at a given point became stable. For optimal 
performance, and to keep the number of iterations the same 
for both CPU and GPU, we used 10 iterations.  

VI. CONCLUSION AND FUTURE WORK 
We have presented our numerical approximations to the 

solution of the heat and mass transfer equation with the 
second kind of boundary and initial conditions using finite 
difference method on GPGPUs.  Our conclusion shows that 
finite difference method is well suited for parallel 
programming.  We implemented numerical solutions 
utilizing highly parallel computations capability of GPGPU 
on nVidia CUDA. We have demonstrated GPU can perform 
significantly faster than CPU in the field of numerical 
solution to heat and mass transfer. Our experimental results 
indicate that our GPU-based implementation shows a 
significant performance improvement over CPU-based 
implementation and the maximum observed speedups are 
about 10 times. 

There are several avenues for future work.  We would 
like to test our algorithm on different GPUs and explore the 
new performance opportunities offered by newer generations 
of GPUs. It would also be interesting to explore more tests 
with large scale data set. Finally, further attempts will be 
made to explore more complicated problems both in terms of 
boundary conditions as well as geometry. 
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Abstract— The arrangement graph An,k has been used as
the underlying topology for many practical multicomputers,
and has been extensively studied in the past. The con-
struction scheme of mutually independent hamiltonian cycle,
abbreviated as MIHCs, on An,k has not been done except
for two special cases with n − k = 1 and n − k = 2. In
this paper, we will prove that any An,k, where n − k ≥ 3
and k ≥ 2, contains k(n − k) MIHCs. More specifically,
let N =| V (An,k) |, v(i) ∈ V (An,k) for 1 ≤ i ≤ N
and ⟨v(1), v(2), · · · , v(N), v(1)⟩ be a hamiltonian cycle of
An,k. We prove that An,k contains k(n − k) hamiltonian
cycles, denoted by Cl = ⟨v(1), vl(2), · · · , vl(N), v(1)⟩ for
1 ≤ l ≤ k(n − k), such that vl(i) ̸= vl′ (i) for 2 ≤ i ≤ N
whenever l ̸= l

′
. The result is optimal since each vertex of

An,k has exactly k(n− k) neighbors.

Keywords: Arrangement graph, hamiltonian cycle, mutually in-
dependent.

1. Introduction
The architecture of an interconnection network is usually

represented by a graph, in which vertices and edges corre-
spond to processors and communication links, respectively.
Thus, we use the terms “graph" and “network" interchange-
ably. Mutually independent hamiltonian cycles, abbreviated
as MIHCs, and its related issues have attracted numerous
studies on graphs and interconnection networks due to its
many applications. (See [6], [10]–[16].) For example, in
communications and in signal processing. When information
has to be processed along all communication nodes, using
the existence of MIHCs on an interconnection network,
one can divide the information into groups and let each
group be processed along different hamiltonian cycles in
parallel. Obviously, it provides a more efficient way for
information processing. The arrangement graph, denoted by
An,k, is a well-studied interconnection network since it has
many pleasant properties. In [2], An,k was shown to be
vertex symmetric and edge symmetric, (k(n − k))-regular
with n!

(n−k)! vertices, and contain a hamiltonian cycle. It
was further shown that An,k can embed multidimensional
grids, hypercubes, and spanning trees all with constant

dilations [4]. Readers can refer to [2]–[5], [7], [9], [17]
for more results. The construction scheme of MIHCs on
any arrangement graph is certainly an important task, but
so far only special cases are done. Researchers have derived
MIHCs on An,n−1 and An,n−2, which are called star graphs
and alternating group graphs, respectively. (See [11] and
[14].) However, a general construction scheme for MIHCs
on An,k with any given pair of n and k is still unknown. In
this paper, we will prove that any arrangement graph An,k

contains k(n − k) MIHCs for given integers n and k with
n − k ≥ 3 and k ≥ 2. The result is optimal in the sense
that each node of An,k has exactly k(n− k) neighbors and
cannot have more cycles emerging from it.

2. Preliminary
For the graph definitions and notations, we fol-

low [1]. Given a graph G = (V,E), the mean-
ings of path, cycle, hamiltonian path, hamiltonian cy-
cle, hamiltonian graph, and hamiltonian connected graph
are as usual. A path P between two vertices v(0)
and v(k) is represented by P=⟨v(0), v(1), ..., v(k)⟩,
where each pair of consecutive vertices are adja-
cent. We also write path P=⟨v(0), v(1), ..., v(k)⟩ as
⟨v(0), v(1), ..., v(i),Q, v(j), v(j + 1), ..., v(k)⟩, where Q
denotes the path ⟨v(i), v(i+ 1), ..., v(j)⟩. Let F ⊆ V (G)
and G−F be the graph obtained by deleting v and all edges
adjacent to v for all v ∈ F . If G − F remains hamiltonian
(resp. hamiltonian connected) for any F ⊆ V (G) with
|F | ≤ k, then G is a k-vertex-fault-tolerant hamiltonian
(resp. k-vertex-fault-tolerant hamiltonian connected ) graph.
If G−F remains hamiltonian (resp. hamiltonian connected)
for any F ⊆ E(G) with |F | ≤ k, then G is a k-edge-fault-
tolerant hamiltonian (resp. k-edge-fault-tolerant hamiltonian
connected ) graph. Let F ⊆ V (G)∪E(G). If G−F remains
hamiltonian (resp. hamiltonian connected) for any F with
|F | ≤ k, then G is a k-fault-tolerant hamiltonian (resp. k-
fault-tolerant hamiltonian connected ) graph.

Two cycles C1=⟨u(1), u(2), ..., u(m), u(1)⟩ and
C2=⟨v(1), v(2), ..., v(m), v(1)⟩ beginning at s in a
graph G are independent if u(1) = v(1) = s
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and u(i) ̸= v(i) for 2 ≤ i ≤ m. Cycles beginning
at s with the same length are mutually independent if every
two different cycles are independent. A graph G is said to
contain n mutually independent hamiltonian cycles if there
exist n hamiltonian cycles in G beginning at any vertex s
such that the n cycles are mutually independent.

Let ⟨n⟩ = {1, 2, 3, ..., n} and p = p1p2...pk be a
permutation of k elements in ⟨n⟩, where n ≥ k. The n-
dimensional arrangement graph, denoted by An,k, is the
graph with the vertex set V(An,k)={p|pi ∈ ⟨n⟩ for 1 ≤
i ≤ k and pi ̸= pj if i ̸= j}, and the edge set
E(An,k)={(p, q)| p, q ∈V(An,k) such that pi ̸= qi and pj =
qj for all j ̸= i for some i∈ ⟨k⟩}. Thus (p, q) is an edge
if and only if there exists some i ∈ ⟨k⟩ such that pi ̸= qi
and pj = qj for all j ̸= i . The k-bit label, p1p2...pk, of
each vertex of An,k is called the vertex id. See Figure 1 for
an illustration.

Fig. 1: The arrangement graph A3,1 and A4,2.

Note that each vertex of An,k is represented by a k-bit
sequence. In [9], it is known that An,k can be decomposed
into n subgraphs An−1,k−1 by fixing each different vertex
id on one particular position among {1, 2..., k}. Without loss
of generality, we partition An,k into n subgraphs An−1,k−1,
denoted by A

(1)
n,k, A

(2)
n,k, ..., A

(n)
n,k, by letting all vertices of

A
(i)
n,k with the rightmost bit being i. For example, A4,2

consists of four copies of A3,1. An illustration is given in
Figure 1. Repeating the partitioning process, it is obvious
that An,k consists of n!/(n− k + 1)! copies of An−k+1,1.

Let p = p1p2...pk ∈ V (An,k). Note that A(n)
n,k is isomor-

phic to An−1,k−1. Moreover, it is easy to see that the k-bit
id’s of all vertices of A

(n)
n,k can be obtained by adding one

bit, the number n, to the rightmost of the (k− 1)-bit id’s of
all vertices in An−1,k−1. That is, pn = p1p2 · · · pk−1n is a
vertex in A

(n)
n,k if p = p1p2 · · · pk−1 ∈ V(An−1,k−1).

The following proposition is an immediate consequence
of the above.

Proposition 1: Let ui ∈ V (An−1,k−1) for 1 ≤
i ≤ m. If ⟨u1,u2, · · · ,ut,ut+1, · · · ,um⟩ is a path
of An−1,k−1 that passes the edge (ut,ut+1), then

⟨u1n,u2n, · · · ,utn,ut+1n, · · · ,umn⟩ is a path of A
(n)
n,k

that passes the edge (utn,ut+1n).

The following two propositions will be useful in our
derivation.

Proposition 2: [7] Let n≥5. For 1 ≤ i, j ≤ n and i ̸= j,
the number of edges between A

(i)
n,k and A

(j)
n,k, denoted by

|Ei,j
n |, is (n− 2)!/(n− k − 1)!.

Proposition 3: [7] For positive integers n, k with n −
k ≥ 2, An,k is (k(n − k) − 3)-fault-tolerant hamiltonian
connected.

3. Main Result
We will construct the k(n − k) MIHCs for An,k using

mathematical induction. Based on the fact that An,k consists
of n copies of An−1,k−1, we must ensure that An−k+1,1

contains (n−k) MIHCs for n−k+1 ≥ 3. It is obvious since
An−k+1,1 is the complete graph Kn−k+1. For the base case
in our induction, we shall show that An,2 contains 2(n− 2)
MIHCs, each of which passes a common edge, in Lemma 1
and Lemma 2. Since MIHCs for An,n−1 and An,n−2 were
already derived [11], [14], we concentrate on MIHCs for
An,k with n − k ≥ 3 and k ≥ 2 in Theorem 2, which is
our main theorem. Figure 2 is the flowchart of the outline
of our derivation.

k

n1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

n-k  1

Lemma 1
Lemma 2, Theorem 1

Theorem 2

Complete

graph

An,1

Star graphAn,n-1

Alternating

group graph

An,n-28

Fig. 2: Outline of the structure of lemmas and theorems in
this paper.

To distinguish numbers and consecutive bits in a vertex
id, we underline each bit in the vertex id should there be
a possible confusion. Let s ∈ V (A

(n)
n,k) with the vertex id

s = n− k + 1 . . . n− 1 n. We will show that An,k contains
k(n− k) MIHCs. This is the maximum number of MIHCs
that can be constructed on An,k since any vertex in An,k

has exactly k(n− k) neighbors. To show that An,k contains
k(n − k) MIHCs, we construct these MIHCs beginning at
any vertex u in An,k. Without loss of generality, let u = s.
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Lemma 1: (1)There exist three MIHCs in A4,1. (2)There
exist six MIHCs in A5,2, denoted by Ci, for 1 ≤ i ≤ 6,
such that the edge (21, 31) belongs to Ci for all 1 ≤ i ≤ 6.

Proof: Since A4,1 is isomorphic to the complete graph
K4, it contains three MIHCs. To prove this lemma for
A5,2, we construct six MIHCs of A5,2 that include the edge
(21, 31) below. Let

C1 =⟨45, 15, 14, 24, 34, 54, 51, (21, 31), 41, 42, 12, 32,
52, 53, 13, 43, 23, 25, 35, 45⟩;

C2 =⟨45, 25, 24, 34, 54, 14, 12, 32, 42, 52, 53, 13, 23, 43,
41, 51, (21, 31), 35, 15, 45⟩;

C3 =⟨45, 35, 34, 54, 14, 24, 23, 53, 13, 43, 41, (21, 31),
51, 52, 32, 42, 12, 15, 25, 45⟩;

C4 =⟨45, 41, 51, (21, 31), 34, 24, 14, 54, 52, 42, 32, 12,
15, 35, 25, 23, 53, 13, 43, 45⟩;

C5 =⟨45, 42, 52, 32, 12, 13, 53, 43, 23, 25, 15, 35, 34, 14,
24, 54, 51, (21, 31), 41, 45⟩;

C6 =⟨45, 43, 53, 23, 13, 15, 35, 25, 24, 34, 14, 54, 51, 41,
(21, 31), 32, 52, 12, 42, 45⟩.

Note that we add a parentheses on the required edge in
Ci for 1 ≤ i ≤ 6. {Ci|1 ≤ i ≤ 6} are the six MIHCs
in A5,2 required by the lemma.

We know that A(i1)
n,k is a subgraph of An,k in which the

rightmost bit of the vertex id of any vertex of A
(i1)
n,k is i1.

A
(i2i1)
n,k denotes a subgraph of A

(i1)
n,k in which the rightmost

two bits of the vertex id of any vertex of A(i2i1)
n,k is i2i1. In

fact, any vertex ikik−1...i2i1 in An,k can be identified as a
vertex in the smallest subgraph A

(ik−1...i2i1)
n,k . For example,

321 is a vertex in A6,3 and it belongs to the smallest
subgraph A

(21)
6,3 . Note that A(21)

6,3 is isomorphic to A4,1 = K4.
Note that s = n− k + 1 . . . n− 1 n. In the following

lemmas and theorems, s is the first (and the last) vertex of
all hamiltonian cycles. For 1 ≤ i ≤ (k−1)(n−k), we define
CI

i as the ith hamiltonian cycle whose second vertex belongs
to A

(n)
n,k. For 1 ≤ i ≤ (n − k), we define CO

i+(k−1)(n−k) as
the (i+ (k− 1)(n− k))-th hamiltonian cycle whose second
vertex is in A

(i)
n,k, where i ̸= n.

In the following, we define a new symbol [r]n ≡
(r mod n) + 1, where (r mod n) denotes the remainder
of n dividing r.

Lemma 2: For n ≥ 6, there are 2(n−2) MIHCs in An,2,
denoted by Ci for 1 ≤ i ≤ 2(n − 2), such that the edge
(21, 31) belongs to Ci, for all i.

Proof: Note that any vertex u ∈ An,2 is labeled by u =
u1u2. Let n ≥ 6, we construct 2(n−2) MIHCs beginning at
n− 1 n, denoted by {Ci|1 ≤ i ≤ 2(n− 2)}, which consists

of {CI
i | 1 ≤ i ≤ (n− 2)} and {CO

i+(n−2)| 1 ≤ i ≤ n− 2}.

Let −→c = (1, 2, ..., n−2) be a (n−2)-dimensional vector,−→
d = (1, 2, ..., n−2, n) be a (n−1)-dimensional vector, and
c(i)(resp. d(i)) denote the ith element of −→c (resp.

−→
d ). Let

Pn−1
i =⟨d([1 + (i− 2)]n−1) n− 1, d([2 + (i− 2)]n−1)n− 1,

· · · , d([(n− 1) + (i− 2)]n−1) n− 1⟩, where Pn−1
i is

the ith path in the subgraph A
(n−1)
n,2 . By Proposition

2, for distinct integers i and j with 1 ≤ i, j ≤ n,
|Ei,j

n | = n− 2. We choose distinct vertices ai, bi ∈ A
(i)
n,2,

such that {(bi, aj)|1 ≤ i, j ≤ n, i ̸= j} ⊆ E(An,2)

and |{a1, b1} ∩ {21, 31}| ≤ 1. By Proposition 3, A
(i)
n,2,

is (2n − 7)-fault-tolerant hamiltonian connected for any
1 ≤ i ≤ n. Thus for 1 ≤ i ≤ n − 1, there exists a
hamiltonian path P i of A(i)

n,2 between ai and bi. Since A
(1)
n,2

is isomorphic to Kn−1, there exists a hamiltonian path P 1

between a1 and b1 on A
(1)
n,2, such that the edge (21, 31)

lies on P 1. For i = 1, 2, ..., (n − 2), we construct (n − 2)
MIHCs as follow:

CI
i = ⟨n− 1 n, c([1 + (i− 2)]n−2) n,

d([1 + (i− 2)]n−2) n− 1, Pn−1
i ,

d([(n− 1) + (i− 2)]n−1) n− 1,

d([(n− 1) + (i− 2)]n−1) c([1 + (i− 2)]n−2),

P c([1+(i−2)]n−2), bc([1+(i−2)]n−2), ac([2+(i−2)]n−2),

P c([2+(i−2)]n−2), bc([2+(i−2)]n−2), · · · ,
ac([(n−2)+(i−2)]n−2), P c([(n−2)+(i−2)]n−2),

c([2 + (i− 2)]n−2) c([(n− 2) + (i− 2)]n−2),

c([2 + (i− 2)]n−2) n, c([3 + (i− 2)]n−2) n, · · · ,
c([(n− 2) + (i− 2)]n−2) n, n− 1 n⟩.

Then we construct the other (n − 2) MIHCs as follows.
By Proposition 2, for distinct integers i and j with 1 ≤
i, j ≤ n, |Ei,j

n | = n− 2. We choose vc(1) = d(n− 2) c(1)

so that the (n + 1)th vertex d(n− 2) n− 1 of CO
1+(n−2)

never collides with CI
i , and distinct vertices ui, vi ∈ A

(i)
n,2

such that {(vi, uj)|1 ≤ i, j ≤ n, i ̸= j} ⊆ E(An,2) and
|{u1, v1}∩{21, 31}| ≤ 1. By Proposition 3, A(i)

n,2, is (2n−7)-
fault-tolerant hamiltonian connected for any 1 ≤ i ≤ n.
Thus there exists a hamiltonian path Qi of A(i)

n,2 between ui

and vi for 1 ≤ i ≤ n − 1, and a hamiltonian path Qn of
A

(n)
n,2−{s} between un and vn. Since A

(1)
n,2 is isomorphic to

Kn−1, there exists a hamiltonian path Q1 between u1 and
v1 on A

(1)
n,2 such that the edge e = (21, 31) lies on Q1. For

1 ≤ i ≤ (n− 2), we define
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CO
1+(n−2) = ⟨n− 1 n, n− 1 c(1), Qc(1), d(n− 2) c(1),

d(n− 2) n− 1, Qn−1, vn−1, uc(2), Qc(2), vc(2),

· · · , vc(n−3), un, Qn, vn, uc(n−2), Qc(n−2),

n− 1 c(n− 2), n− 1 n⟩.

For i = 2, ..., (n− 2), we set:

CO
i+(n−2) = ⟨n− 1 n, n− 1 c([1 + (i− 2)]n−2),

Qc([1+(i−2)]n−2), vc([1+(i−2)]n−2), · · · ,
uc([(n−i−1)+(i−2)]n−2), Qc([(n−i−1)+(i−2)]n−2),

vc([(n−i−1)+(i−2)]n−2), un, Qn, vn, un−1, Qn−1,

vn−1, uc([(n−i)+(i−2)]n−2), Qc([(n−i)+(i−2)]n−2),

vc([(n−i)+(i−2)]n−2), · · · , uc([(n−2)+(i−2)]n−2),

Qc([(n−2)+(i−2)]n−2),

n− 1 c([(n− 2) + (i− 1)]n−2), n− 1 n⟩.

In the construction of CO
i+(n−2) above, Qj denotes a

hamiltonian path between uj and vj in A
(j)
n,k, where j is a

function of i. Thus even in the same A
(j)
n,k, we pick different

uj and vj for CO
i+(n−2) as i is different. The lemma has

been proved.

For instance, we construct the eight MIHCs of A6,2

with the above algorithm. Let −→c = (1, 2, 3, 4),
−→
d =

(1, 2, 3, 4, 6), and c(i)(resp. d(i)) denote the ith element
of −→c (resp.

−→
d ). Let P 5

i =⟨d([i− 1]5) 5, d([i]5) 5, · · · ,
d([i+ 3]5) 5⟩ for 1 ≤ i ≤ 4. For i = 1, 2, 3, 4, CI

i and
CO

i+4 are illustrated in Figure 3 and Figure 4, respectively.
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Fig. 3: An illustration of CI
i in A6,2.
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Fig. 4: An illustration of CO
i in A6,2.

With Lemma 1 and Lemma 2, we have the following
theorem.

Theorem 1: For n ≥ 5, there are 2(n− 2) MIHCs in the
arrangement graphs An,2.

Lemma 3: Let n ≥ 6, n − k ≥ 2 and k ≥ 3.
Given four vertices ui2i1, vini1, ai3i1 and bi3i1 of A

(i1)
n,k ,

where i2, i3 and in are three distinct integers such that
ui2i1 ∈ V (A

(i2i1)
n,k ) vini1 ∈ V (A

(ini1)
n,k ) and (ai3i1,bi3i1)∈

E(A
(i3i1)
n,k ). Then the following two statements are true.

(1) In A
(i1)
n,k \A

(i2i1)
n,k \A(i3i1)

n,k , there exists a hamiltonian path
between vini1 and any vertex di4i1 ∈ V (A

(i4i1)
n,k ), i4 ̸∈

{i2, i3, in}. (2) There exists a hamiltonian path between
ui2i1 and vini1 on A

(i1)
n,k passing through the assigned edge

(ai3i1,bi3i1).
Proof: (1) By Proposition 2, for distinct integers i

and j with i, j ∈ ⟨n⟩\{i1}, there exist (n − 3)!/(n −
k − 1)! edges between A

(ii1)
n,k and A

(ji1)
n,k . By Proposition

3, A
(ii1)
n,k is hamiltonian connected for any i ∈ ⟨n⟩\{i1}.

Let {i4, i5, ..., in} = ⟨n⟩\{i1, i2, i3}, ui4i1=di4i1 and
vini1=vini1. We choose distinct vertices uiji1 ∈ A

(i1)
n,k for

5 ≤ j ≤ n and viji1 ∈ A
(i1)
n,k for 4 ≤ j ≤ n − 1,

such that {(viji1 , uij+1i1)|4 ≤ j ≤ n − 1} ⊆ E(A
(i1)
n,k ).

There exists a hamiltonian path P iji1 on A
(iji1)
n,k between

uiji1 and viji1 for any 4 ≤ j ≤ n. We can construct
a hamiltonian path on A

(i1)
n,k \A

(i2i1)
n,k \A(i3i1)

n,k between ui4i1

and vini1 as P i1
2 = ⟨ui4i1 , P i4i1 , vi4i1 , ui5i1 , P i5i1 , vi5i1 ,

· · · , uini1 , P ini1 , vini1 , ⟩. Thus there exists a hamiltonian
path between di4i1 and vini1 on A

(i1)
n,k \A

(i2i1)
n,k \A(i3i1)

n,k . See
Figure 5 for an illustration.
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Fig. 5: An illustration of Lemma 3 (1).

(2) By Proposition 3, there exists a hamiltonian
path between ai3i1, bi3i1 on A

(i3i1)
n,k . We set

P i3i1 = ⟨ai3i1,Qi3i1
1 ,ci3i1,di3i1,Qi3i1

2 ,bi3i1⟩, where
(ci3i1,ci2i1), (di3i1,di4i1)∈ E(A

(i1)
n,k ) and ci2i1 ̸=ui2i1.

There exists a hamiltonian path ⟨ui2i1,P i2i1 ,ci2i1⟩
on A

(i2i1)
n,k . By (1), there exists a hamiltonian path

⟨di4i1,P i1
2 ,vini1⟩ on A

(i1)
n,k \A

(i2i1)
n,k \A(i3i1)

n,k also. So
there exists a hamiltonian path ⟨ui2i1,P i2i1 ,ci2i1,ci3i1,
(Qi3i1

1 )−1,ai3i1,bi3i1,(Qi3i1
2 )−1,di3i1,di4i1, P i1

2 ,vini1⟩ on
A

(i1)
n,k . See Figure 6 for an illustration.
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Fig. 6: An illustration of Lemma 3 (2).

Theorem 2: For n ≥ 5, k ≥ 2, n − k ≥ 3,
there exist k(n − k) MIHCs in An,k, denoted
by C1, C2, ..., Ck(n−k), such that the edge
( k k − 1 k − 2 · · · 1, k + 1 k − 1 k − 2 · · · 1 )
lies on each cycle Ci for 1 ≤ i ≤ k(n− k).

Proof: We prove this theorem by mathematical induc-
tion. By Theorem 1, the statement holds when k = 2. With
the induction hypothesis, we assume that this theorem is
true for An−1,k−1, where n is an integer and k is an integer
with 3 ≤ k ≤ n − 3. It suffices to show that the statement
holds for An,k. We first construct (k − 1)(n − k) MIHCs
in An,k, denoted by CI

1 , C
I
2 , ..., C

I
(k−1)(n−k), such that the

edge ( k k − 1 k − 2 · · · 1, k + 1 k − 1 k − 2 · · · 1 )

is on each cycle CI
i for 1 ≤ i ≤ (k − 1)(n − k) for

n ≥ 6, 3 ≤ k ≤ n− 2.
By the induction hypothesis, this theorem holds for

An−1,k−1. There exist (k − 1)(n − k) MIHCs in A
(n)
n,k,

denoted by C
′

1,C
′

2,· · · ,C
′

(k−1)(n−k), such that the edge
( k − 1 k − 2 · · · 1 n, k k − 2 · · · 1 n ) belongs to
C

′

i for all 1 ≤ i ≤ (k − 1)(n − k). Assume that
an = k − 1 k − 2 · · · 1 n and bn = k k − 2 · · · 1 n.
Obviously, (an, bn) appears on the (k − 1)(n − k) MIHCs
C

′

1,C
′

2, · · · , C
′

(k−1)(n−k) at different time-steps. Let
C

′

i = ⟨s,Dn
i,1, a

n, bn, Dn
i,2, s⟩ for 1 ≤ i ≤ (k − 1)(n − k),

where Dn
i,1 is a path of A

(n)
n,k between s and an, Dn

i,2 is
a path of A

(n)
n,k between bn and s, and Dn

i,1

∪
Dn

i,2 covers
V (A

(n)
n,k). By Proposition 2, for distinct integers i and j with

1 ≤ i, j ≤ n, |Ei,j
n | = (n− 2)!/(n− k − 1)!. We choose

distinct vertices ai, bi ∈ A
(i)
n,k for 1 ≤ i ≤ n, such that

(an, an−1), (bn−1, a1), (b1, a2), · · · , (bn−3, an−2), (bn−2, bn)

∈ E(An,k). By Proposition 3, A
(i)
n,k, which is isomorphic

to An−1,k−1, is ((k − 1)(n − k) − 3)-fault-tolerant
hamiltonian connected for any 1 ≤ i ≤ n, and hence
is hamiltonian connected. Thus for 2 ≤ i ≤ n − 1,
there exists a hamiltonian path P i of A

(i)
n,k between

ai and bi. With Lemma 3, there exists a hamiltonian
path P 1 between a1 and b1 on A

(1)
n,k such that the edge

( k k − 1 k − 2 · · · 1, k + 1 k − 1 k − 2 · · · 1 ) lies on
P 1. For 1 ≤ i ≤ (k − 1)(n− k), let

CI
i = ⟨s,Dn

i,1, a
n, an−1, Pn−1, bn−1, a1, P 1, b1, a2, P 2,

b2, ..., an−3, Pn−3, bn−3, an−2, Pn−2, bn−2, bn,

Dn
i,2, s⟩.

Now we construct the rest (n−k) MIHCs, which we denote
by CO

i+(k−1)(n−k) for 1 ≤ i ≤ n − k. Our method for
CO

i+(k−1)(n−k) works successfully for all n, k except for
n ≡ 1(mod k) and n ≡ 2(mod k). When n ≡ 1(mod k),
if we follow the same rule for CO

k(n−k), then the vertex

next to s (the starting vertex) will be in A
(n−1)
n,k , which

is impossible. Besides, when n ≡ 2(mod k), it is possi-
ble that CO

k(n−k)−1 collides with any CI
i . Thus we will

construct CO
k(n−k)−1 and CO

k(n−k) with a different rule.
Let −→e = (1, 2, ..., n − 1, n). Define −→c = (1, 2, ..., n −
2, n, n− 1) as a n-dimensional vector, which is constructed
by switching the (n − 1)th element and the nth element
of −→e ;

−→
d = (1, 2, ..., n − k − 1, n− 1, n − k + 1, ..., n −

2, n, n− k) as a n-dimensional vector, which is constructed
by switching the (n − k)th element and nth element of
−→c . Let c(i) (resp. d(i)) denote the ith element of −→c
(resp.

−→
d ). By Proposition 2, for distinct integers i and

j with 1 ≤ i, j ≤ n, |Ei,j
n | = (n− 2)!/(n− k − 1)!.

We choose distinct vertices ui, vi ∈ A
(i)
n,k, such that

{(vi, uj)|1 ≤ i, j ≤ n, i ̸= j} ⊆ E(An,k) and |{u1, v1} ∩
{k k − 1 k − 2 · · · 1, k + 1 k − 1 k − 2 · · · 1}| ≤ 1. By
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Proposition 3, A
(i)
n,k, which is isomorphic to An−1,k−1, is

((k − 1)(n − k) − 3)-fault-tolerant hamiltonian connected
for any 1 ≤ i ≤ n, and hence is hamiltonian connected.
Thus there exists a hamiltonian path Qi of A(i)

n,k between ui

and vi for 1 ≤ i ≤ n − 1, and a hamiltonian path Qn of
A

(n)
n,k−{s} between un and vn. With Lemma 3, there exists

a hamiltonian path Q1 between u1 and v1 on A
(1)
n,k such that

the edge ( k k − 1 k − 2 · · · 1, k + 1 k − 1 k − 2 · · · 1 )
lies on Q1. For all n with n ≥ 6 and for 1 ≤ i ≤ (n−k−2),
let

CO
i+(k−1)(n−k) = ⟨s, uc([1+i−2]n), Qc([1+i−2]n), vc([1+i−2]n),

uc([2+i−2]n), Qc([2+i−2]n), vc([2+i−2]n), · · · ,
uc([n+i−2]n), Qc([n+i−2]n), vc([n+i−2]n), s⟩
for i ̸≡ 1(mod k),

or

CO
i+(k−1)(n−k) = ⟨s, ud([1+i−2]n), Qd([1+i−2]n), vd([1+i−2]n),

ud([2+i−2]n), Qd([2+i−2]n), vd([2+i−2]n), · · · ,
ud([n+i−2]n), Qd([n+i−2]n), vd([n+i−2]n), s⟩,
for i ≡ 1(mod k).

For i = n− k − 1 and i = n− k, we have the following
three cases.
Case 1. n ̸≡ 1(mod k) and n ̸≡ 2(mod k).
If i = n− k − 1,

CO
k(n−k)−1 = ⟨s, un−k−1, Qn−k−1, vn−k−1, · · · , un−3,

Qn−3, vn−3, un−2, Qn−2, vn−2, un, Qn, vn,

un−1, Qn−1, vn−1, u1, Q1, v1, · · · , un−k−2,

Qn−k−2, vn−k−2, s⟩.

If i = n− k,

CO
k(n−k) = ⟨s, un−k, Qn−k, vn−k, · · · , un−2, Qn−2, vn−2,

un, Qn, vn, un−1, Qn−1, vn−1, u1, Q1, v1, u2,

Q2, v2, · · · , un−k−1, Qn−k−1, vn−k−1, s⟩.

Case 2. n ≡ 1(mod k).
If i = n− k − 1,

CO
k(n−k)−1 = ⟨s, un−k−1, Qn−k−1, vn−k−1, un, Qn, vn,

un−k+1, Qn−k+1, vn−k+1, un−k+2, Qn−k+2,

vn−k+2, · · · , un−2, Qn−2, vn−2, un−k, Qn−k,

vn−k, un−1, Qn−1, vn−1, u1, Q1, v1, u2, Q2,

v2, · · · , un−k−2, Qn−k−2, vn−k−2, s⟩.

If i = n− k,

CO
k(n−k) = ⟨s, un−k, Qn−k, vn−k, · · · , un, Qn, vn, u1, Q1,

v1, · · · , un−k−1, Qn−k−1, vn−k−1, s⟩.

Case 3. n ≡ 2(mod k).
If i = n− k − 1,

CO
k(n−k)−1 = ⟨s, un−k−1, Qn−k−1, vn−k−1, un, Qn, vn,

un−k+1, Qn−k+1, vn−k+1, Qn−1, vn−1,

un−k+2, Qn−k+2, vn−k+2, · · · , un−1, un−k,

Qn−k, vn−k, u1, Q1, v1, u2, Q2, v2, · · · ,
un−k−2, Qn−k−2, vn−k−2, s⟩.

If i = n− k,

CO
k(n−k) = ⟨s, un−k, Qn−k, vn−k, · · · , un, Qn, vn, u1, Q1,

v1, · · · , un−k−1, Qn−k−1, vn−k−1, s⟩.

By Case 1, Case 2, and Case 3, the proof is finished.

Readers can refer to [8] for concrete examples where
the desired MIHCs are constructed using the algorithm in
Theorem 2.

4. Conclusion
In this work, we showed that any An,k contains k(n− k)

mutually independent hamiltonian cycles, where and n −
k ≥ 3, k ≥ 2. The cycles are specifically constructed
using the recursive structure of An,k based on the fact
that An,k consists of n subgraphs, An−1,k−1. For the same
topics on special arrangement graphs with n − k = 1,
n− k = 2, the corresponding results are presented in [11]
and [14], repectively. It is natural to explore the existence
of mutually independent hamiltonian cycles on a given
arrangement graph when any fault occurs. That is, given
a set of faulty vertices/edges on an arrangement graph, how
can we construct mutually independent hamiltonian cycles
that include the most non-faulty vertices in any An,k? The
answer to the question is interesting and a thorough study
for such a problem on the alternating group graphs (An,n−2)
or the star graphs (An,n−1) is surely a good start.
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Abstract - Hierarchical-based protocols are some of the most 
popular routing schemes used in wireless sensor networks due 
to their favorable, energy-saving properties. However, when it 
comes to large-scale wireless sensor network applications, 
these algorithms suffer from an increase in computational 
complexity and latency. In this paper, a parallel algorithm for 
the hierarchical-based protocol has been designed based on 
the Low-Energy Adaptive Clustering Hierarchy (LEACH) 
algorithm in order to improve the routing efficiency of 
wireless sensor networks. This algorithm was implemented in 
parallel using the C programming language and mpich2, an 
implementation of the Message Passing Interface (MPI) 
specification. The routing algorithm was evaluated for large-
scale sensor networks on both a shared memory 
supercomputer and two Linux Beowulf clusters. The results 
show that the parallel implementation of the hierarchical-
based protocol improves the overall performance of the 
routing computations, while still maintaining high energy 
efficiency levels compared to previous hierarchical-based 
methods. 

Keywords: LEACH, parallel algorithm, wireless sensor 
networks, routing protocol  

 

1 Introduction 
  In recent years, wireless sensor networks (WSNs) have 
been widely used in a variety of applications ranging from 
home and industry to civilian and military. Technological 
advances in electronics have enabled the development of 
small, low-cost wireless sensors with signal processing and 
communication capabilities that are used to sense various 
types of information among adjacent regions. These 
properties have made large-scale deployments of WSNs much 
more possible. Large-scale WSNs consist of base stations and 
hundreds or thousands of small sensors with sensing, 
computing and wireless communications capabilities. A 
greater number of sensors allow for monitoring physical and 
environmental conditions, such as temperature, barometric 
pressure, presences of smoke, etc., over much larger 
geographical regions with both finer accuracy and an increase 
in resiliency through better fault-tolerance. However, sensor 
nodes are powered by batteries, which are constrained by 
their limited energy supply. Therefore, an energy-efficient 
approach is highly desirable in order to extend the lifetime of 
the sensors in the WSN. 

        A variety of network routing protocols for WSNs have 
been proposed in the literature [1], such as the direct 
communication protocol, the minimum-transmission-energy 
multi-hop routing, and the clustering-based routing protocols. 
In the direct communication protocol, each sensor node sends 
collected data directly to the base station. If the base station is 
very far away from the sensor nodes this kind of 
communication will drain the power of sensor nodes quickly, 
significantly reducing the system lifetime. In minimum-
transmission-energy (MTE) routing, sensor nodes route data 
to the base station in a multi-hop routing fashion via 
intermediate nodes. In this case, the intermediate nodes act as 
routers for other nodes, in addition to sensing the 
environment. The drawback of MTE routing is that the nodes 
nearest the base station will act as routers for the majority of 
data sent to the base station. Thus, the power of these nodes 
will be drained quickly, resulting in a cascading effect on the 
entire network and shortening the lifetime of the WSN. 

        LEACH [2] is one of the first clustering based protocols 
for sensor networks, and it has inspired many other 
hierarchical routing protocols [3, 4, 5, and 7]. Even now, it is 
still one of the most popular hierarchical routing algorithms 
for WSNs. It is a self-organizing, adaptive clustering protocol 
that forms clusters of sensor nodes based on the received 
signal strength and uses local cluster heads as routers to the 
base station. Since clusters and routing cluster heads are 
adaptive (cluster heads change in each round), and only the 
head of the cluster transmits data to the base station, this kind 
of approach can balance the energy usage among all of the 
sensors and save significant amounts of energy across the 
entire WSN, increasing the lifetime of the network. 

         However, in the case of large-scale sensor networks 
which consist of hundreds or thousands of nodes, the 
computational and communication costs of dynamic routing 
protocols such as LEACH are increased significantly, and it 
quickly becomes a significant obstacle to energy efficiency. 
The less time and energy spent on routing decisions, the more 
time we have available for data transmissions. This 
necessitates high-performance, parallel algorithms and 
techniques applied to routing protocols. Unfortunately, little 
work has been done in the design and development of parallel 
routing schemes for sensor networks. In this work, we 
develop a novel, parallel hierarchical-based routing protocol 
based on the LEACH algorithm for sensor networks to 
achieve high routing efficiency. This approach has been 
developed using the C programming language and mpich2. 
The routing algorithm was evaluated for large-scale sensor 
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networks on both a shared memory supercomputer and two 
Linux Beowulf clusters. The performance of our approach has 
been analysed and evaluated based on simulations of a radio 
propagation model and a circuit energy cost model. The 
simulations show that the parallel hierarchical-based routing 
protocol, as compared to previous-work in this field, can 
significantly improve the performance of routing without a 
loss of energy-efficient properties. 

        In this paper, we first give an introduction to the serial 
LEACH algorithm in Section 2. Parallel hierarchical-based 
routing design is given in Section 3. Section 4 mainly 
describes the implementation environment. Section 5 
describes the simulation model. Performance Evaluations and 
Analysis are done in Section 6. Finally, we conclude our 
work in Section 7. 

2 Serial Hierarchical-Based Routing 
Protocol  

 Hierarchical-based routing protocols cluster the nodes so 
that cluster heads with relatively high energy can collect data 
from other low energy nodes and transmit data to the base 
station. In this way, hierarchical-based routing is able to 
achieve the goals of energy savings and lifetime extension. 
LEACH is one of the first and the most popular hierarchical 
routing approaches for sensor networks. We choose it as our 
basic serial program. To better describe the parallel algorithm, 
we first briefly introduce the LEACH algorithm and then 
elaborate on the decomposition and task scheduling involved 
with designing parallel hierarchical-based routing. 

        The following description is the main idea behind the 
LEACH algorithm. Cluster heads change randomly over time 
in order to balance the energy consumption of the sensor 
nodes. The optimal percentage of nodes to be chosen as 
cluster heads is 5%. Each node will randomly choose a 
number between 0.0 and 1.0. If the number is less than some 
predefined threshold, the node is chosen to be a cluster head 
for the current round. The equation is as follows: 

11 *( mod )
( )

0

p

p
p r if n F

R n
otherwise

 





             (1)    

where p is the desired percentage of cluster heads, r is the 
current round, and F is the set of nodes which have not been 
chosen as cluster heads in the last 20 rounds. Each elected 
cluster head then broadcasts a message to the rest of the nodes 
in the network to notify them that they are the new cluster 
heads. After receiving the message, all non-cluster head 
nodes will chose the cluster with the closest cluster head and 
join the cluster. When the setup phase is stable, the sensor 
nodes can begin sensing and forwarding data to the cluster 
heads. The cluster heads receive data from each of the nodes 
in the cluster, aggregate this data, and subsequently send it to 
the base station. After a certain period of time, the network 
will go back into the setup phase, performing another round 
of choosing cluster heads, and then returning to the stable 

phase in which data transmission can occur. This process 
continues, until all of the nodes in the network have 
exhausted their energy supply. 

        There are three steps in one round of the serial LEACH 
algorithm. 

STEP 1: Select heads 

        The head node selections are based on two requirements. 
If the node meets the two requirements, it will be selected as a 
head node. 

The two requirements are:   

1. Generate a random number uniformly from 0.0 to 1.0. If 
the random number is less than )(nR  as in formula (1), where 
p is the desired percentage of heads then we designate it as a 
head node. We set p as 0.05, and r is the current round. 

2. The node has not been selected as a head node in the 
past 20 rounds. 

STEP 2: Clustering 

        Check the distance from each node to each head node 
(based on received signal strength). Then choose the nearest 
head node as its cluster head. The number of clusters equals 
the number of head nodes. 

STEP 3: Transmission 

        Every node in the cluster transmits data to its respective 
cluster head. Each cluster head then gathers and compresses 
all of the information and sends it to the base station. 

3 Parallel Hierarchical-Based Routing 
        In the routing of large-scale sensor networks, which have 
hundreds or thousands of sensor nodes, the serial LEACH 
algorithm will have to go through every sensor node to select 
the heads of clusters and solve a large clustering problem. 
This can have a severe impact on the performance of a time 
sensitive routing procedure such as LEACH. Therefore, it is 
desirable to decompose the head selection and clustering tasks 
onto multiple processors, and have each processor perform a 
sub-task to improve the performance. 

3.1 Data Decomposition 
        The initial data of every sensor node consists of four 
parts:  

1. The location_coordinate. 

2. The flag_head that indicates whether it is the head of the 
cluster. 

3. The flag_head_log which indicates whether it is chosen to 
be a head in the last 20 rounds. 

4. The flag_cluster indicating which cluster it belongs to. 
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        These data are gathered in an array, where each element 
has four attributes as described above. The input data array is 
partitioned into equal-size sub-arrays, which are sent to each 
processor. Figure 1 shows the data decomposition scheme. 

 

Figure 1.  Data decomposition scheme 

3.2 Task Dependency 
        The two main tasks in each round are head selection and 
clustering. Head selection is an independent task but 
clustering highly depends on the results of head selection, 
which can be illustrated by the analysis of the requirements 
and results of the two tasks. The head selection procedure 
requires the data array, but not necessarily the entire data 
array, because it does not depend on other sensors whether a 
sensor will be selected to be a head or not.  In other words, it 
does not depend on other elements of the data array. Results 
of head selection are stored in the flag_head attribute of the 
data array. The clustering procedure requires all the results of 
head selection, since it has to check the distance from each 
sensor node to each head in order to determine which head is 
the closest one. The results of clustering are stored in flag_ 
cluster in the data array. The two main tasks are summarized 
as follows: 

Head Selection Task: 

Requirements: Partial data array, not necessarily the entire 
data array  
Results: The decisions about which sensors are heads 
Task dependency: Selection is an independent task 

Clustering Task: 

Requirements: All the results of head selection task  
Results: The decisions about which head or cluster it 
belongs to. 
Task dependency: Clustering highly depends on the results 
of head selection. 

3.3 Parallel LEACH Algorithm Design 
STEP 1: Data Decomposition 

        Assume there are n sensor nodes, data array (data_array 
(i), i = 1, 2… n) and p processors. The data array with length 
n is partitioned into p sub_arrays with equal length n/p 

(sub_array(j,i), j = 1,2,…,p i = 1,2,…, n/p). The sub-arrays 
are scattered to each of the p processors. 

STEP 2: Head Selection  

        Each processor selects head nodes from its own local 
sub-array according to the same selection process as defined 
in the serial implementation of LEACH, and save the result in 
the flag_head attribute of the local sub-array. We must also 
record the history of whether it has been chosen as a head 
node in the flag_head_log. 

For each processor 
If every element in flag_head_log is 0 
Generate a random number r from [0.0, 1.0] uniformly. 
        R∶= 0.05/ (1-0.05(r mod 20)) 
 If R<threshold 
  flag_head = 1 

flag_head_log for current round = 1 
 Else 
  flag_head = 0 

STEP 3: Gather and Update data_array  

        Gather all the local sub-arrays from each processor into 
the data_array. Then scatter the data_array to every processor. 
At this step, each parallel task holds the information of all 
head nodes.  

STEP 4: Clustering 

        Each processor completes the clustering task on their 
own local sub-arrays based on the information of all head 
nodes. The results are stored in flag_cluster. 

For each node in sub-arrays 
        Calculate the distance between itself and every head 
node 

   Choose the head node with minimum distance 
   This node belongs to the cluster of this head 
   flag_cluster = cluster_index 

STEP 5:  Gather All Results and Go to the Next Round 

        Gather all the local sub-arrays from each processor into 
the global data array. Then go to STEP 1 to repeat the above 
steps. 

4 Parallel Implementation Environment 
        LEACH was first simulated in serial by Wendi, et al 
using Matlab. Our parallel approach was implemented using 
the C programming language and the mpich2 implementation 
of MPI. The Simulations were conducted on two platforms 
available to students of the University of Southern Mississippi 
(USM). One is the Albacore cluster which is the primary HPC 
cluster in the School of Computing at USM [6]. The cluster 
consists of 256 processor cores, 300GB of RAM and 1Gbit 
Ethernet interconnects. Albacore is a hybrid, distributed-
shared memory cluster, consisting primarily of Intel Xeon 
56xx processors, Intel Xeon 55xx processors. The second 
platform available to our research group was Sequoia, an HPC 
Linux cluster at the University of Mississippi’s Center for 
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Super Computing Research (MCSR) [8]. Sequoia is a hybrid, 
distributed-shared memory system, consisting of.  84 compute 
nodes, 22 Altix XE 310, 24 Altix 320 and 38 Rackable 
computing nodes. The overall memory of Sequoia is 2.1 TB. 

5 Simulation Model 
        In this section, we describe the simulation model used for 
performance analysis of our parallel implementation. In order 
to maintain a similar comparison, the same simulation model 
is used for both the serial and parallel implementations. The 
environment configuration and energy cost model for the 
sensor networks are described.  

5.1 Environment Configuration  

 
Figure 2 The coordinates of sensor areas and base station 

        The sensors are deployed uniformly in a 100-by-100 
meter area. Figure 2 shows an example of a sensor area, along 
with its corresponding base station, along with coordinates. 
The base station is allocated 100 meters away from the 
sensing area, which is specifically at the location of (0, -100) 
in Figure2.  

5.2 Energy Cost Model 
        The initial energy of each sensor node is 50J. In each 
round, every sensor node sends 2000 bits data. The energy 
cost of transmission consists of two parts: 

1. The energy cost of transmitter and receiver circuit  
50 /elecE nJ bit                     (2) 

        Every bit the circuit transmits and receives will cost 50nJ 
energy. 

2. The energy loss of radio propagation 
100 2/pJ

amp bit m                        (3) 
        The energy loss of radio propagation is inversely 
proportional to the square of the distance it travels. In addition 
to this loss, the total energy consumed is also proportional to 
the number of bits transmitted.  

        The formulas of energy cost at both transmitter and 
receiver side are given below.  

2( , ) * * *Tx elec ampE k d E k k d                  (4) 

( ) *Rx elecE k E k                                               (5) 

TxE  and RxE  denote the energy cost at transmitter and 
receiver respectively. k is the number of bits transmitted.  

6 Performance Evaluations and Analysis 
6.1 System life time 
        The hierarchical-based routing protocol's main advantage 
is its high energy-efficiency, which supports a much longer 
system lifetime than other routing protocols. Therefore, the 
parallel hierarchical-based routing solution should reflect the 
same energy saving advantages as the serial algorithm.   There 
are two important attributes that indicate the system stability 
and lifetime. One attribute is the number of head nodes in the 
sensor network at each round, as the energy cost of the 
network is highly dependent on the number and length, both 
distance and bit-wise, of the data transmissions.  Since only 
the head nodes of the system do the majority of transmissions, 
it is important to keep track of how many of these are active at 
any time in the system.   Although the nodes have data 
compression capability, the head nodes still have to transmit a 
relatively large amount of data, which is usually a long 
distance, energy consuming transmission. The other attribute 
is the number of sensor nodes at each round which have not 
exhausted their energy supply. The definition of system 
lifetime is the period of time that there is at least one live 
sensor node. 

 
Figure 3 Number of live nodes in every round of both serial and parallel 

programs 

        Both the parallel and serial programs use the same 
header selection strategy, which involved a random 
procedure. Therefore the number of head nodes in each 
round can be slightly different, but the trend should be 
similar. In Figure 3, the number of live nodes decreases 
over time as the overall number of nodes decreases due 
to drained batteries.  The variations in the number of 
live nodes between the serial and parallel plots are due 
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to the random selection of head nodes.  However, the 
general trends of the two plots match well. In addition, 
the initial total energies of both the sensor networks are 
the same so that the lifetimes of system are the same, i.e. 
200. 

6.2 Performance Analysis 
        To evaluate the performance of our parallel hierarchical-
based routing algorithm, the simulation method presented in 
Section 5 is employed. The parallel program was executed on 
Albacore and Sequoia separately using four different initial 
node counts (320, 640, 960 and 1280).  The location and 
environmental conditions, including the initial energies of the 
sensors, were consistent across all simulation runs. The serial 
and parallel run times, denoted as pT  and sT , are recorded 
from the experiment and shown in Tables 1 and 2, as well as 
in Figure 4 and 5. Derived variables used to analyse the 
performance are the speedup and efficiency [9, 10]. The 
speedup is defined as /s pS T T ; the efficiency is defined 

as /S p , where p  is the number of processors. The reasons 
why the speedup and efficiency are chosen are that, for 
speedup, it delineates how much performance gain is achieved 
via parallel design over serial design; and for efficiency, it 
describes how much time spent on the computation, not on 
idle time or communication, for each processor. 

Table 1: The execution times with different number of processors on 
Sequoia (p is the number of processors and column N is the data size) 

 P=1 P=2 P=4 P=8 P=12 
N=320 2.672 1.514 1.140 1.204 0.809 
N=640 10.161 5.476 3.188 2.907 2.839 
N=960 22.252 11.764 6.417 5.748 5.063 
N=1280 39.331 20.451 11.008 6.662 6.706 
N=1600 60.958 31.655 17.005 9.501 7.742 

Table 2: The execution times with different number of processors on 
Albacore (p is the number of processors and column N is the data 
size) 

 p=1 p=2 p=4 p=8 p=12 
N=320 2.727 1.706 1.193 1.005 1.001 
N=640 9.249 5.245 3.094 2.408 2.210 
N=960 19.974 10.808 6.186 3.880 3.830 
N=1280 34.720 18.479 10.151 6.637 6.113 
N=1600 53.644 28.396 15.409 9.811 8.668 

Table 3: Speedup with different number of processors on Sequoia (p 
is the number of processors and column N is the data size) 

 p=1 p=2 p=4 p=8 p=12 
N=320 1.000 1.765 2.343 2.218 3.300 
N=640 1.000 1.855 3.186 3.494 3.578 
N=960 1.000 1.891 3.467 3.870 4.394 

N=1280 1.000 1.923 3.572 5.902 5.864 
N=1600 1.000 1.925 3.584 6.415 7.873 

 

 

Table 4: Speedup with different number of processors on Albacore (p 
is the number of processors and column N is the data size) 

 p=1 p=2 p=4 p=8 p=12 
N=320 1.000 1.597 2.284 2.713 2.723 
N=640 1.000 1.763 2.989 3.841 4.184 
N=960 1.000 1.848 3.228 5.146 5.214 

N=1280 1.000 1.878 3.420 5.230 5.679 
N=1600 1.000 1.889 3.481 5.467 6.188 

Table 5: Efficiency with different number of processors on Sequoia 
(p is the number of processors and column N is the data size) 

 p=1 p=2 p=4 p=8 p=12 
N=320 1.000 0.882 0.585 0.277 0.275 
N=640 1.000 0.927 0.796 0.436 0.298 
N=960 1.000 0.945 0.866 0.483 0.366 

N=1280 1.000 0.961 0.893 0.737 0.488 
N=1600 1.000 0.962 0.896 0.801 0.656 

Table 6: Efficiency of programs with different number of processors 
on Albacore (p is the number of processors and column N is the data 
size) 

 p=1 p=2 p=4 p=8 p=12 
N=320 1.000 1.597 2.284 2.713 2.723 
N=640 1.000 1.763 2.989 3.841 4.184 
N=960 1.000 1.848 3.228 5.146 5.214 

N=1280 1.000 1.878 3.420 5.230 5.679 
N=1600 1.000 1.889 3.481 5.467 6.188 

 

 
Figure 4 The execution time with different number of processors on Sequoia  

 
Figure 5 The execution time with different number of processors on Albacore 
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Figure 6 The speedup with different number of processors on Sequoia 

 
Figure 7 The speedup with different number of processors on Albacore 

 
Figure 8. The efficiency with different number of processors Sequoia 

 
Figure 9 The efficiency with different number of processors Albacore 

 
Figure 10 The execution with different number of processors on Sequoia (up 

to 32 processors) 

From Figures 4 and 5, we can see that the execution time 
drops very fast for large problem size, for instance, 1280 and 
1600. Nevertheless, when the number of processors is above 8, 
the decreasing of the execution time is less significant than 
that below 8. This is consistent with the speedup. Figures 6 
and 7 show that, for different numbers of nodes, the speedup 
increases as the number of processors increases.  However, 
the slope decreases, when the number of processor is over 8. 
The reason is that the communication time increases as the 
number of processors increases. Figures 8 and 9 show that the 
parallel LEACH algorithm have almost the same efficiency 
[11] on both Albacore and Sequoia systems. This is because 
these two systems have nearly identical specifications in 
memory and processors. Figure 10 shows that the execution 
time increases when the number of processors is greater than 
12. This is due to the fact that both Sequoia and Albacore are 
hybrid, distributed-shared memory systems. Each node in the 
cluster consists of a single motherboard with dual-six core 
Intel Xeon 56xx class processors. Therefore, when executing 
this algorithm, the communication costs are negligible within 
a single node (where memory is shared), but cross-node 
communication costs, which occurs over 1Gbit Ethernet, is 
much higher than that within a single node. 

7 Conclusion 
        The parallel hierarchical-based routing algorithm was 
designed and implemented in MPI based on the serial LEACH 
algorithm to achieve high performance routing. The task is 
partitioned and scheduled among all the available processors 
to improve the performance. The simulation results show that 
the high-performance computing techniques and parallel 
implementation can achieve a significant speedup while 
maintaining the energy-efficient properties of hierarchical-
based routing protocols. 
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Abstract In this paper, we propose a new

fault-tolerant routing algorithm for hyper-

cube networks based on directed probabili-

ties. The directed probabilities are obtained

by improving the probabilities proposed by

Al-Sadi et al. The probability represents

ability of routing to any node at a specific

distance. Each node selects one of its neigh-

bor nodes to send a message by taking the

probabilities into consideration. We also

conducted a computer experiment to verify

the effectiveness of our algorithms.

Keywords: multicomputer, interconnection net-
work, parallel processing, fault-tolerant routing,
hypercube, performance evaluation

1 Introduction

Recently, large-scaled computation is required
in many fields, and interests in researches
on parallel processing are increasing. Among
them, studies on massively parallel systems
where many processors are connected to exe-
cute computation are eagerly conducted. With
a progressive increase in the number of proces-
sors in the system, probability of existence of
faulty processors increases. Hence, it is neces-
sary for massively parallel systems to establish
a fault-free routing path. Such path construc-
tion is formulated to be a fault-tolerant routing
problem in graph theory mapping processors
and links between them to nodes and edges,
respectively.

In this study, we focused on hypercubes
[8, 9], which have simple and recursive struc-
ture and low diameter, and provide intercon-
nection networks suitable for massively paral-
lel systems. Figure 1 shows an example of a
4-dimensional hypercube Q4. In an intercon-
nection network, if each node can collect infor-
mation of all the faulty nodes, shortest-path
routing between any pair of nodes is possible.
However, this method asks each node to store
information of all the faulty nodes, and it re-
quires too much memory space. In addition,
collection of such information takes too much
time complexity for communication.

To solve the problem, there are many rout-
ing approaches based on restricted global infor-
mation where each node stores some restricted
information of faulty nodes and executes quasi-
optimal routing [1, 2, 3, 4, 5, 6, 7, 10, 11]. The
approach by Al-Sadi et al. [1] is one such ap-
proach. In their approach, each node calcu-
lates probability of unreachability by minimal
paths to destination nodes with each Hamming
distance, exchanges these probabilities with its
neighbors, and routes based on these proba-
bilities. Although, their approach attains high
reachability in a hypercube with faulty nodes,
we believe that there remains some room for
improvement. Therefore, in this study, we in-
troduce a notion of directed routing probabil-
ity, and try to improve the approach by Al-Sadi
et al.

The rest of this paper is structured as fol-
lows. First, we survey related works in Section
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Figure 1: An example of 4-dimensional hyper-
cube Q4.

2. Next, requisite terminology and notations
are defined in Section 3. Then, in Section 4, we
introduce the algorithm proposed by Al-Sadi et
al. We proposed a fault-tolerant routing algo-
rithm that is obtained by improving the algo-
rithm by Al-Sadi et al. in Section 5. The algo-
rithm is evaluated by a computer experiment
in Section 6. Finally, we give a conclusion and
future works in Section 7.

2 Related Works

For these two decades, there are many at-
tempts in research for fault-tolerant routing
in hypercube networks. Chiu and Wu have
proposed an efficient fault-tolerant routing al-
gorithm by recursively classifying non-faulty
nodes into safe, ordinary unsafe, and strongly
unsafe nodes depending on the classification of
neighbor nodes [5]. Chiu and Chen have im-
proved the algorithm by introducing the rout-
ing capabilities that are obtained by classify-
ing the safety nodes with respect to the Ham-
ming distance to the destination nodes [6].
Wu has also proposed a similar fault-tolerant
routing algorithm independently by introduc-
ing the safety vectors [10]. Moreover, Kaneko
and Ito have proposed a fault-tolerant rout-
ing algorithm based on classification of ordi-
nary and strongly unsafe nodes with respect
to the Hamming distance as well as an efficient
method to obtain classification of them [7].

All of the above attempts are based on in-
formation if a message is surely routed to the

destination node or not. On the other hand,
Al-Sadi et al. have proposed a fault-tolerant
routing algorithm that is based on probabilities
that a message is sent from the source node to
the destination node with a path of length of
Hamming distance between them [1, 2]. In the
algorithm, each non-faulty node exchanges in-
formation at most O(n2) times with its neigh-
bor nodes to calculate the probabilities with
respect to the Hamming distances to destina-
tions. However, there are several cases where
the algorithm fails to find a fault-free path even
if there is a such path.

3 Preliminaries

In this section, we define a hypercube network
and introduce requisite notations.

Definition 1 An n-dimensional hypercube
Qn is an undirected graph, and Qn consists
of 2n nodes. Each node a in Qn is an n-
bit sequence (a1, a2, . . . , an) where ai ∈ {0, 1}
(1 ≤ i ≤ n), and ai is called the bit of i-th di-
mension. For two nodes a and b in Qn, there
is an edge (a, b) between them if and only if
the Hamming distance between them H(a, b)
is equal to 1.

In general, a path in a graph is represented
by an alternate sequence of nodes and edges
a1, (a1, a2), a2, . . ., ak−1, (ak−1,ak), ak. The
length of the path P is the number of edges
included in the path, and it is denoted by L(P ).
If Qn is fault-free, the length of the shortest
path between a and b is equal to H(a, b).

Definition 2 For a node a in Qn, a set of
nodes N(a) defined by

N(a) = {n | H(a,n) = 1}.

is called a set of neighbor nodes of a.

The neighbor node of a that is obtained by
changing the i-th bit (1 ≤ i ≤ n) is denoted by
a(i) in the rest of paper.

In a hypercube Qn with a set of faulty nodes
F , for a source node s and a destination node d
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that are both non-faulty, a fault-tolerant rout-
ing algorithm finds a fault-free path between s
and d.

Definition 3 For two nodes a and b in Qn,
the set of preferred neighbor nodes of a for
b is denoted by N0(a, b), and is defined by
N0(a, b) = {n | n ∈ N(a),H(n, b) =
H(a, b) − 1}. In addition, the set of spare
neighbor nodes of a for b is denoted by
N1(a, b), and is defined by N1(a, b) = {n |
n ∈ N(a), H(n, b) = H(a, b) + 1}.

Note that, in Qn, the number of nodes that
are apart from a node a by Hamming distance
h is equal to nCh. Note also that, for two
nodes a and b in Qn, if H(a, b) = h, then
|N0(a, b)| = h holds.

4 Algorithm by Al-Sadi et al.

In this section, we give the idea of the algo-
rithm by Al-Sadi et al. In their algorithm,
for an arbitrary non faulty node a in an n-
dimensional hypercube Qn with a faulty node
set F , an estimate value of the probability that
there is not any fault-free minimal path from a
to an arbitrary node b such that H(a, b) = h
is calculated, and routing is executed based on
the estimated values.

For simplicity of explanation, we use an esti-
mate value of the probability that there is some
fault-free path instead of the probability that
there is not any fault-free path in our paper. In
addition, we assume that F represents a faulty
node set in Qn in the rest of the paper.

Ph(a) represents an estimate value of prob-
ability of existence of a fault-free minimal path
from a fault-free node a to an arbitrary node at
Hamming distance h from a. Ph(a) is defined
recursively:

Ph(a) =



|N(a) \ F |/n (h = 1)

1 −
n∏

i=1

(1 − Rh(a(i)))

(2 ≤ h ≤ n, a ̸∈ F )

Rh(b) =
{

0 (b ∈ F )
hPh−1(b)/n (b ̸∈ F )

The estimate values of probabilities can be
calculated by the algorithm shown in Figure 2.

function EVP(a, h, F)
begin
if h = 1 then Ph(a) := |N(a) \ F | / n
else begin

P := 1;
for i := 1 to n do begin
if a(i) ∈ F then Rh(a(i)) := 0
else Rh(a(i)) := h × Ph−1(a(i)) / n;
P := P × (1 - Rh(a(i)))

end;
Ph(a) := 1 - P

end;
return Ph(a)

end

Figure 2: Function to calculate estimate values
of probabilities

Their routing algorithm route based on the
estimate values of probabilities is shown in Fig-
ure 3. When a node a has to forward a message
to its destination d, the algorithm is used.

The algorithm first checks whether the cur-
rent node a is the destination node d itself or
not. If a = d, the message is delivered to d im-
mediately. Otherwise, if d is a neighbor node of
a (d ∈ N(a)), the message is also delivered to
d immediately. If H(a,d) ≥ 2, the algorithm
tries to find the preferred neighbor node of a
that has the largest estimate value of probabil-
ity. If the value is positive, then the message
is forwarded to the node. Otherwise, if it is 0,
then the spare neighbor nodes are checked to
find one with the largest estimate value. If the
value is not 0, the message is sent to the node
while if it is 0, the delivery fails.

Their algorithm attains high reachability in
Qn with faulty nodes. However, there remains
some room for improvement. That is, the value
Ph−1(a) may has an effect on Ph(a(i)). Hence,
a may send a message to its neighbor a(i) even
if Ph(a(i)) = 0 without Ph−1(a). Figure 4
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function route(a, d, F)
begin

h := H(a,d);
if h = 0 then begin

deliver the message to a; exit
end;
if h = 1 then begin

send the message to d; exit
end;
i0 := argmaxi{Ph−1(a(i)) |a(i)∈N0(a,d)};
if a(i0) ̸∈ F then begin

deliver the message to a(i0); exit
end;
i1 := argmaxi{Ph+1(a(i)) |a(i)∈N1(a,d)};
if a(i1) ̸∈ F then begin

deliver the message to a(i1); exit
end;
error(’message delivery failed’)

end

Figure 3: Routing algorithm based on estimate
values of probabilities

shows an example of this case. In the fig-
ure, Ph(a(i)) may be positive if Ph−1(a) is also
positive though there is no way out from a(i).
Therefore, in the next section, we introduce a
notion of directed routing probability, and try
to improve the algorithm by Al-Sadi et al.

Preferred nodes

Faulty nodes

a a(i)

Figure 4: An example of an unreachable case

5 Proposed Algorithm

To address the problem mentioned at the end
of the previous section, we have excluded an

effect by Ph−1(a) from calculation of Ph(a(k)).
The new probability is called directed probabil-
ity, and we calculate estimate values of directed
probabilities P⃗ k

h (a) where k represents the di-
rection to which the estimate value is transmit-
ted.

P⃗ k
h (a) =



|(N(a) \ {a(k)}) \ F |/(n − 1)
(h = 1)

1 −
n∏

i=1
i̸=k

(1 − R⃗i
h(a(i)))

(2 ≤ h ≤ n, a ̸∈ F )

R⃗i
h(b) =

{
0 (b ∈ F )
hP⃗ i

h−1(b)/(n − 1) (b ̸∈ F )

The estimate values of directed probabilities
can be calculated by the algorithm shown in
Figure 5.

function EVDP(a, h, k, F)
begin
if h = 1 then

P⃗ k
h (a) := |(N(a)\{a(k)})\F | / (n - 1)

else begin
P⃗ := 1;
for i := 1 to n do begin
if i = k then continue;
if a(i) ∈ F then R⃗i

h(a(i)) := 0

else R⃗i
h(a(i)) := h× P⃗ i

h−1(a
(i)) / (n - 1);

P := P × (1 - R⃗i
h(a(i)))

end;
P⃗ k

h (a) := 1 - P
end;
return P⃗ k

h (a)
end

Figure 5: Function to calculate estimate values
of directed probabilities

Our routing algorithm route2 based on
the estimate values of directed probabilities is
shown in Figure 6. It is similar to the algorithm
by Al-Sadi et al., and it is used when a node a
has to forward a message to its destination d.

The time complexity to calculate estimate
values of directed probabilities P⃗ k

1 (a), P⃗ k
2 (a),
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function route2(a, d, F)
begin

h := H(a,d);
if h = 0 then begin

deliver the message to a; exit
end;
if h = 1 then begin

send the message to d; exit
end;
i0 := argmaxi{P i

h−1(a
(i)) |a(i)∈N0(a,d)};

if a(i0) ̸∈ F then begin
deliver the message to a(i0); exit

end;
i1 := argmaxi{P i

h+1(a
(i)) |a(i)∈N1(a,d)};

if a(i1) ̸∈ F then begin
deliver the message to a(i1); exit

end;
error(’message delivery failed’)

end

Figure 6: Routing algorithm based on estimate
values of directed probabilities

. . ., P⃗ k
n (a) (k = 1, 2, . . . , n) is O(n3), which

is larger than the time complexity of the ap-
proach by Al-Sadi et al. The number of times
that a node exchanges these values with its
neighbor nodes is O(n2). It is same as that
by Al-Sadi et al.

6 Evaluation

To evaluate performance of our algorithm, we
carried out an computer experiment to com-
pare it with the algorithm by Al-Sadi et al.
The experiment is conducted based on the fol-
lowing procedure:

1. In Qn, for the ratio of faulty nodes α =
0, 0.1, . . . , 1.0, repeat Steps 2 to 4 for
10,000 times.

2. Set ⌊α2n⌋ faulty nodes in Qn.

3. Select two nodes s and d randomly such
that there exists a fault-free path between
them.

4. Apply the algorithms route and route2,
and check if the message is delivered to
the destination or not.

Figure 7 shows the result of the experiment
with Q10. According to the figure, we can see
that our algorithm is superior to the algorithm
by Al-Sadi et al. for α = 0.6, 0.7, 0.8 and 0.9.
The reason that the ratios of successful rout-
ings increased for α = 0.9 is that the ratio of
faulty nodes is so high that the pairs of s and d
could be found with short Hamming distance
only.

Our algorithm

Al-Sadi et al.

Ratio of faulty nodes

Ratio of success

Figure 7: Ratio of successful routings by algo-
rithms route and route2 in Q10

7 Conclusion

In this paper, we have proposed a new fault-
tolerant routing algorithm for hypercube net-
works based on directed probabilities, which
are obtained by improving the probabilities
proposed by Al-Sadi et al. The time complex-
ity to calculate all of the estimate values of
directed probabilities is O(n3). The number
of times for each node to exchange these val-
ues with its neighbors is O(n2). We also con-
ducted a computer experiment to verify the ef-
fectiveness of our algorithm, and we showed
that our algorithm is superior to that by Al-
Sadi et al. when the ratio of faulty nodes α is
relatively high (α = 0.6, 0.7, 0.8, and 0.9).
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Future works include reduction of the time
complexity of the algorithm. Applying similar
approach to other topologies is also included in
future works.

Acknowledgement

This study was partly supported by a Grant-in-
Aid for Scientific Research (C) of the Japan So-
ciety for the Promotion of Science under Grant
No. 22500041.

References

[1] J. Al-Sadi, K. Day, and M. Ould-Khaoua.
Probability-based fault-tolerant routing in
hypercube. The Computer Journal, Vol.
44, No. 5, May 2001.

[2] J. Al-Sadi, K. Day, and M. Ould-Khaoua.
Fault-tolerant routing in hypercubes using
probability vectors. Parallel Computing,
Vol. 27, pp. 1381–1399, July 2001.

[3] M. S. Chen and K. G. Shin. Depth-first
search approach for fault-tolerant rout-
ing in hypercube multicomputers. IEEE
Transactions on Parallel and Distributed
Systems, Vol. 1, pp. 152–159, April, 1990.

[4] M. S. Chen and K. G. Shin. Adap-
tive fault-tolerant routing in hypercube
multicomputers. IEEE Transactions on
Computers, Vol. 39, pp. 1406–1416, April,
1990.

[5] G.-M. Chiu and S.-P. Wu. A fault-tolerant
routing strategy in hypercube multicom-
puters. IEEE Transactions on Computers,
Vol. 45, No. 2, pp. 143–155, Feb. 1996.

[6] G.-M. Chiu and K.-S. Chen: Use of rout-
ing capability for fault-tolerant routing in
hypercube multicomputers. IEEE Trans-
actions on Computers, Vol. 46, No. 8, pp.
953–958, Aug. 1997.

[7] K. Kaneko and H. Ito. Fault-tolerant rout-
ing algorithms for hypercube interconnec-

tion networks. IEICE Transactions on In-
formation and Systems, Vol. E84-D, No. 1,
pp. 121–128, Jan. 2001.

[8] Y. Saad and M. H. Schultz: Topological
properties of hypercubes. IEEE Transac-
tions on Computers, Vol. 37, No. 7, pp.
867-872, July 1988.

[9] C. L. Seitz. The cosmic cube. Communi-
cations of ACM, Vol. 28, No. 7, pp. 22–33,
July 1985.

[10] J. Wu: Adaptive fault-tolerant routing in
cube-based multicomputers using safety
vectors. IEEE Transactions on Paral-
lel and Distributed Systems, 9(4):322–334,
Apr. 1998.

[11] Dong Xiang. Fault-tolerant routing in hy-
percube multicomputers using local safety
information. IEEE Transactions on Par-
allel and Distributed Systems, Vol. 12, No.
9, September, 2001.

136 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



Stabilizing Information Dissemination in Wireless Sensor Networks

Sain Saginbekov and Arshad Jhumka
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

Abstract— One important component of network repro-
gramming is code dissemination, when the new program
code is distributed to the relevant nodes. Very few informa-
tion dissemination protocols, if any, tolerate transient data
faults, i.e., faults that corrupt the memory state of nodes.
We address this limitation by proposing a novel protocol,
called Repair, that transforms any fault-intolerant infor-
mation dissemination protocol into a stabilizing protocol
where, eventually, all nodes obtain the updated code. We
conduct simulations to show the performance of Repair,
and we integrate Repair with Varuna, and our results show
that Repair induces low overhead on Varuna, and causes
all nodes to receive the new code. Our main contribution
is the first corrector protocol that stabilizes information
dissemination in the presence of transient faults.

Keywords: Information dissemination; Transient faults; Stabiliza-
tion; Wireless sensor networks; Composition

1. Introduction
Wireless sensor networks (WSNs) have enabled the de-

ployment of several novel classes of applications, such as
monitoring and tracking. However, to be useful, they need
to operate unattended for long periods of time. However,
this operational mode places several requirements on the
network applications, but mainly that the applications are
able to adapt to changing conditions. Given that WSNs are
often deployed in hostile environments, human intervention
is impossible. Thus, over-the-air reprogramming becomes a
fundamental activity.

A network reprogramming protocol consists of several
specific components: (i) a component that decides whether
a complete code needs to be sent or only an update, (ii)
information dissemination component, and (iii) reliability
components [1]. The reliability component is to ensure that
nodes receive all the parts of the code update that may be lost
due to collisions. In this paper, we focus on the information
dissemination aspect of network reprogramming.

Several information dissemination protocols have been
proposed as part of network reprogramming protocols [2],
[3], [4], [5]. However, to the best of our knowledge, none
of them is fault-tolerant, i.e., none of them tolerate transient
faults that corrupt the memory state of the nodes, which are
known to occur in WSNs [6], [7], [8]. Such transient faults
are also called soft errors. Given that several information
dissemination protocols work by advertising the metadata
of the new code, e.g., [2], [3], [9], any corruption of

the metadata can, in the worst case, lead to the network
nodes having stale code. Thus, it is important to have make
these information dissemination protocols fault-tolerant. One
trivial way of addressing this problem is to have the base
station to periodically initiate the dissemination of the new
code. However, this is a very expensive process, not suitable
for WSNs.

In this work, instead of proposing a new fault-tolerant
information dissemination protocol for WSNs, we propose
a corrector protocol, called Repair, that, when integrated
with a fault-intolerant information dissemination protocol,
transforms the protocol into a stabilizing [10] fault-tolerant
dissemination protocol, i.e, a protocol that guarantees that,
eventually, all nodes will download the correct code. The
novelty of our approach is that Repair enables the de-
ployment of several stabilizing fault-tolerant information
dissemination protocols. The corrector protocol, Repair, is
triggered only when an erroneous state exists in the network,
thus no overhead is incurred when no transient failures occur.
Contributions: In this context, we make the following
contributions:

• We present a corrector protocol called Repair that,
when integrated with any fault-intolerant information
dissemination protocol, generates a corresponding sta-
bilising fault-tolerant information dissemination proto-
col, and we prove its correctness.

• We run simulation experiments on Repair using
TOSSIM [11], and show the performance of Repair,
especially its locality property.

• We present a case study where we compose Repair with
an existing dissemination algorithm, namely Varuna [3].
We show that our protocol (Repair) induces very little
overhead over the Varuna in presence of transient
faults. Further, Varuna, when executed in presence of
even a single transient fault resulted in all the nodes
downloading the wrong code. In contrast, when running
Varuna with Repair, all the nodes eventually obtained
the new code.

The paper is structured as follows: In Section 2, we
present an overview of related work. In Section3, we present
the system and fault models assumed in the paper. In
Section 4, we present a corrector algorithm that stabilises
the information dissemination of code updates. We present
the simulation setup to evaluate the performance of the
proposed algorithm in Section 5. The simulation results are
presented in Section 6. In Section 7, we present a case
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study where we integrate the algorithm with an existing
information dissemination protocol to show the viability of
our approach. We conclude the paper in Section 8, and
present some avenues for future work.

2. Related Work
Information Dissemination There exist several dissemina-
tion protocols which update nodes’codes to new ones. While
some of the protocols deliver complete binary image of
the code like [12], [13], [9], [4], some deliver only the
difference between the new code and the old code [14], [15].
Also there exist protocols which deliver tasks [16], network
parameters [17], and queries [18].

In XNP[12], the base station broadcasts the code image to
the nodes which are in its coverage range. The nodes outside
of the range cannot receive the code image. The protocol
proposed in MOAP[13] is a multihop dissemination protocol
that can deliver code images to nodes that are several
hops away from the base station. Each node forwards the
code image further after receiving the complete code image.
Deluge [9], allows large data transmission by fragmenting
data into fixed-size pages. It also supports pipelining page
transmission to make dissemination faster. Unlike MOAP,
nodes in Deluge should not wait for complete code image
before forwarding it. Authors of MNP [4] proposes another
protocol like Deluge, which fragments the code image and
uses pipelining mechanism. However, unlike Deluge, MNP
selects the sender of the code such that there is only
one sender at a time in a neighbourhood. Sender selection
reduces collision and hidden terminal problem. Also, in
MNP, some of the nodes can go to sleep mode to save energy
whenever there is no data to receive and transmit.

Because of the feature of a wireless sensor network, such
as transient link failures and node mobility, not all nodes up-
date their code to the newest one during dissemination phase.
The Trickle algorithm [2] addresses this problem by using
a “polite gossip”policy. In Trickle, every node broadcasts
advertisement messages, a metadata that includes version
number of the code, at most once per period given between
[τ /2, τ ]. If a node hears more than k identical metadata
before it transmits, it suppresses its broadcast and doubles
the value of τ up to τh, which is upper bound for τ . If it
hears different metadata, τ becomes τl, which is lower bound
for τ . Varuna [3] is another protocol which supports code
update maintenance. This protocol saves energy in steady
phase, the phase where no dissemination is being done.
Unlike Trickle, where there is a linear increase of energy
consumption, energy consumption in Varuna is constant in
steady phase. To achieve constant energy consumption in
steady phase, nodes in Varuna send advertisement messages
only when there is a change in neighbourhood topology or
metadata since its last advertisement transmission. In Varuna,
a node detects a fault when its version is less than that of
the sender. These protocols do not consider transient memory

faults, which may lead to a protocol to work incorrectly. For
example, a node with new code may download old code if
such a fault occurs. To the best of our knowledge, the work
presented in this paper is the first to address fault-tolerant
information dissemination. Fault Tolerance In [19], it has
been shown that a class of components, known as correctors,
is sufficient to design non-masking fault tolerance. Thus,
stabilisation, which is a special type of non-masking fault
tolerance, is achieved by adding corrector mechanisms to
a program, thereby transforming the program into a non-
masking fault-tolerant one. Correctors are components that
enforce a given predicate on program executions, whenever
the predicate has been violated. The area of self-stabilization
is mature, and several stabilizing algorithms exist [10].

3. Models: System and Faults
Graphs and networks: We define a wireless sensor node,
or node, as a computing device equipped with a wireless
interface and associated with a unique identifier. A node can
communicate with a set of other nodes that lie at a certain
distance from it. Generally, communication in wireless net-
works is typically modelled with a circular communication
range centred on the node. However, we do not assume that
all nodes have the same communication range and we do
not assume that the range is circular. In this model, a node
is thought as able to exchange data with all devices within
its communication range.

A wireless sensor network is a collection of wireless
sensor nodes and is modelled as an directed graph G =
(V,E) where V is a set of N = |V | wireless sensor nodes
and E is a set of edges or links, each link being a pair of
distinct nodes. A node n ∈ V is said to be a 1-hop neighbour
of a node m ∈ V iff (m,n) ∈ E, i.e., m can send a message
to n. Observe that communication need not be symmetric,
i.e., if m can send a message to n, n may not be able to do
so. We denote by M , the set of m’s 1-hop neighbours (or
neighbours, for short). We say that two nodes m and n can
collide at node p if (p ∈M) ∧ (p ∈ N) 1.
Faults: A fault model stipulates the way programs may fail.
We consider transient data faults that corrupt the state of
the program by artificially corrupting the values held by
variables. These faults are also known as soft errors.

Definition 1 (d-local algorithm): Given a network G =
(V,E), a problem specification ¶ for G, and an algorithm
A that solves ¶. Algorithm A is said to be d-local if a node
n ∈ V executes a transition that requires the state of its
d-hop neighbourhood to be queried.

4. Repair: A Corrector Protocol for Sta-
bilizing Information Dissemination

In this section, we present a corrector protocol, called
Repair. When Repair is composed with a fault-intolerant

1We will say two nodes m and n can collide if such a node p exists
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dissemination protocol Σ, the resulting protocol (Repair||Σ)
(pronounced Repair composed with Σ) is a stabilizing
dissemination protocol, which guarantees that all nodes
eventually download the correct code.

4.1 The Repair Protocol

Repair, shown in Figure 1, works with all reprogramming
dissemination protocols that enable the detection of a fault.
Specifically, Repair is triggered only when an erroneous state
is detected due to a transient fault. Thus, any dissemination
protocol that can interface with Repair must have enough
state information to determine when a state is erroneous
and, to the best of our knowledge, all current information
dissemination protocols enable this. When a dissemination
protocol detects a fault, then Repair is executed. In Repair,
only corrupted nodes upgrade their code, avoiding unneces-
sary code updates.

Repair uses six special types of data packets (we call them
Repair packets), in addition to dissemination packets used
in the dissemination protocol:

• Prob: It contains code metadata and it is used to ask a
neighbouring node to correct a fault.

• Check: It is used to request neighbouring nodes’ code
metadata.

• Rep: It contains a node’s metadata and is used to reply
to Check packet.

• OK: It is used to release some nodes from the correc-
tion process.

• Cor: It contains the correct metadata and is used to
inform nodes about the correct metadata.

• Hello: It contains the correct metadata and is used to
inform nodes that it has correct code.

Informally, Repair works as follows (The detailed al-
gorithm is in Figure 3): When a node n1 detects a fault
after communicating with node n2, it attempts to correct the
fault. A Prob packet is sent to indicate a problem. If the
fault cannot be corrected with n2, then Check packets are
broadcast, creating a correction tree, rooted at the node (n1)
that detected the fault. The leaf nodes of the tree responds
to Check packets by sending Rep packets. If any of the leaf
nodes detects a fault, it will spawn a subtree, within the
main correction tree. Once a region in the network is reached
where there is no fault, then no more subtree is spawned.
This means that a node’s neighbourhood have the same code
version, with the version being presumed correct, since the
probability of identical corruption of the metadata is very
low. Then, this node responds through a Rep packet, and its
subtree “disappears”. Any node sending a Rep packet will
cause its subtree to “disappear”. Ultimately, Cor or Hello
packet will be issued, with node n1 getting the correct code.
Notice that, since Repair ensures f -locality, the correction
tree will be on depth f .

PS 

Wait_Rep 

Wait 

Disseminate 

Temp 

Fault detected 

Prob 

Check 

Download 
complete 

Request 

Fired 

Hello & !f2 

Fired | (OK & f1) 

(Cor | Hello) & f2 

!f3 | (Cor & !f2) 

f3 | ((Hello | Cor) & f2)) 

Hello & !f2 

Any dissemination protocol states 

Fig. 1: The state machine. Two states in dashed area are
the states of any dissemination protocol. f1=TRUE if sender
of OK packet is the node which sent P , f2=TRUE if
Sender.Vers=Receiver.Vers, f3=TRUE if all received meta-
data are the same.

4.2 Proof of Correctness of Repair
Lemma 1 (f -local stabilization): Given a network G =

(V,E), fault model F , and a set S of corrupted nodes, with
the diameter of the corrupted area being f . Then, Repair
guarantees that, eventually, all nodes in S will have the
correct code.

Proof: Assume that a node nf has detected a fault and
wants to correct it. Given the diameter of the corrupted area
is f , i.e., the maximum distance between two corrupted
nodes in an area is f hops, we assume that all nodes on
the path between nf−1 and n0, namely nf−2, nf−3,. . . ,n0
are corrupted. Node n0 has neighbours with correct versions
since corrupted area is of diameter f . We will prove by
induction that node nf will eventually get the correct code.
Base case: Since all neighbouring nodes of n0 have correct
metadata, according to Repair, n0 will receive Rep packets
with all equal metadata. Then n0 requests the correct code
from one of the neighbours and goes to Disseminate state
to download the correct code.
Inductive hypothesis: Assume that a node ni, where 0 <
i < f − 1, eventually receives Hello packet and updates its
code from node ni−1.
Inductive step: We need to prove that a node ni+1, a
neighbour node of ni, eventually receives Hello packet and
updates its code.

We know that in our protocol every node broadcasts Hello
packet periodically upto h times after receiving Hello packet
or updating its code. Now there are two cases that can
happen after ni receives Hello packet and updates its code.

• Case 1: ni+1 receives a Hello packet and updates its
code from ni, which proves the inductive step.

• Case 2: Because of message losses, ni+1 will not
receive Hello packet from ni. In this case, ni+1 waits
Wait_Time and goes to PS state and starts to receive
and send P packets. Eventually, ni+1 or a neighbour
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PacketType ∈ {P, Prob, Check,Hello, OK,Rep}
// {6, 7, 8, 9, 10, 11} if used as timer IDs
Variables of process i:
state ∈ {1, 2, 3, 4, 5} Init state:=1;
//for STABLE, WAIT, WAITREP, TEMP, DISSEMINATE

Collect:=12
version ∈ N
firstProb ∈ {0, 1} Init firstProb:=1
count ∈ N Init count:=0

PeriodProb: Timer
h: Timer
t: Timer
SendType: Timer
STATE_Time: Timer

TableProb and TableRep: set of tuples {(id, version) : id ∈ N, version ∈ N} setTimer(X, Timer): timer with ID
= X ∈ [1, 12] set to Timer

Fig. 2: Variables of Repair algorithm.
state==1
case(upon〈rcv (P, n, i)〉)
state:=2
setTimer(Prob, SendProb, n)
setTimer(WAIT, Wait_Time)
case(upon〈rcv (Check, n, i)〉)
setTimer(Rep, SendRep, n)
case(upon〈rcv (Prob, n, i)〉)
if(firstProb==1)
firstProb:=0
setTimer(Collect, SendProb+t)
else
TableProb ∪ (n, n.version)
endif
case(upon〈rcv (Prob, n, ALL)〉)
if(i.version!=n.version)
state:=3
setTimer(WAITREP, WaitRep_Time)
setTimer(Check, SendCheck, ALL)
endif
endcase

state==2
repeat every PeriodProb
send(Prob, i, n)
until (rcv.type!=P)
case(upon〈rcv (OK, n, i)〉)
state:=1
stopAllTimers()
TableProb:=∅
TableRep:=∅
case(upon〈rcv (Cor, n, i)〉)
if(i.version==n.version)
state:=4
setTimer(TEMP,Temp_Time)
else
bCast(Cor, i, ALL)
endif
case(upon〈rcv (Hello, n, i)〉)
if(i.version==n.version)
state:=4
setTimer(TEMP,Temp_Time)
else
state:=5
endif
endcase

state==3
case(upon〈rcv (Cor, n, i)〉)
if(i.version==n.version)
state:=4
setTimer(TEMP, Temp_Time)
else
bCast(Cor, i, ALL)
state:=2
setTimer(WAIT, Wait_Time)
endif
case(upon〈rcv (Hello, n, i)〉)
if(i.version==n.version)
state:=4
setTimer(TEMP, Temp_Time)
else
state:=5
endif
case(upon〈rcv (Rep, n, i)〉)
TableRep:= TableRep ∪ {(n, n.version)}
endcase

state==4
repeat every SendHello
bCast(Hello, i, ALL)
count:=count+1
until count>h
if(count>h)
state:=1
stopAllTimers()
TableProb:=∅
TableRep:=∅
endif
case(upon〈rcv (Code Request, n, i)〉)
state:=5
count:=0
endcase

if(timeout(WAITREP))
compare all nj .versions ∈ TableRep
if(all and i.version are equal)
send(Hello, i, n)
state:=4
setTimer(TEMP, Temp_Time)
elsif(all are equal and i.version is not equal)
Request and download the code from nj ∈ TableRep
send(Hello, i, n)
state:=4
setTimer(TEMP, Temp_Time)
else
bCast(Prob, i, ALL)
state:=2
setTimer(WAIT, Wait_Time)
endif
endif

if(timeout(Collect))
compare all nj .versions ∈ TableProb
if(all are equal)
bCast(OK, i, ALL)
state:=4
setTimer(TEMP, Temp_Time)
else
state:=3
setTimer(WAITREP, WaitRep_Time)
setTimer(Check, SendCheck, ALL)
endif
endif

case: state==5
send/download the code.
state:=4
setTimer(TEMP,Temp_Time)
endcase

if(timeout(PacketType, j))
if(j==ALL)
bCast(PacketType, i, ALL)
else
send(PacketType, i, j)
endif
endif

if(timeout(TEMP))
state:=1
stopAllTimers()
TableProb:=∅; TableRep:=∅
endif

if(timeout(WAIT))
state:=1
stopAllTimers()
TableProb:=∅; TableRep:=∅
endif

Fig. 3: Repair Algorithm.

node of ni+1 will detect the fault, and executes Repair
again, this time the affected area will be of size (f− i),
assuming no further fault has occurred. Assuming that
the number of message losses is finite, eventually, ni+1

will get a Hello packet. The first case will be eventually
true.

�
Theorem 1 (Correctness of Repair): Given a network G =
(V,E), transient fault model F , a F -intolerant information
dissemination protocol Σ for a specification σ. Then, Repair
is a corrector component of Σ for σ.

Proof: The proof follows from Lemma 1, and from the
fact that Repair is only triggered when a fault is detected. �

Observe also that Repair is self-correcting, i.e., if a
transient fault occurs in Repair when Repair is executing,

leading to a node downloading the wrong code. This fault
will eventually be detected, and Repair will be executed
again to correct the fault. Put otherwise, Repair is a corrector
component for Repair itself.

5. Experimental Setup
We perform TOSSIM[11] simulations on a 20x20 grid

network to evaluate Repair. We set the distance between
neighbouring nodes to 10 feet. Each node has a commu-
nication radius of around 30 feet. Network topology with
asymmetric links is constructed by a tool given on tinyos.net.
Each node is given a noise model from a heavy-meyer noise
trace file.

Parameter values used in our simulation are given in
Table 1. Some of the parameter values depend on other
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parameters. For example, WaitRep_Time is the time for
waiting for Rep packets after broadcasting Check packet. So,
WaitRep_Time ≥ SendCheck+SendRep. Wait_Time should be
set according to the code size and the size of the network. If
the network and code size is large, this time should be large
enough to allow neighbouring nodes to correct their code
and forward it. Usually nodes enter Temp state from Wait
state where it waits less time. The only case when a node
waits Wait_Time is when there is a packet loss. Temp_Time
time does not depend on other parameters. The value of t
should be small because a node waits a maximum SendProb
time to receive all possible Prob packets. The values of h
and p can be set to any values.

In our simulations, each node periodically broadcasts P
packet, with period randomly selected between [0, U ] at the
start. We simulated two scenarios: (i) we incremented the
number of corrupted nodes per circular area, which has
diameter of 60 feet, and (ii) we kept the number of corrupted
nodes to 5 and increased the size of a given (square)
area, i.e., decrease the fault density. In both scenarios, the
corrupted nodes were selected randomly in the given area.
We then counted (i) the number of packets, (ii) the number
of involved nodes, i.e., nodes that sent a Repair packet, and
(iii) the number of nodes which changed their states to Wait
and/or WaitRep states. For each given number of corrupted
nodes in the first scenario and for each length of square
area in the second scenario, we ran simulations 5 times and
computed the min, average and max values.

6. Simulation Results
In this section, we present two metrics to show the locality

property of Repair, namely (i) number of nodes executing
Repair, and (ii) number of packets sent.
Number of nodes: From Figure 4(a), we observe that, on
average, the number of nodes executing the protocol varies
linearly with the number of corrupted nodes. Given that the
number of nodes involved is much less than the size of
the network, it indicates that the number of nodes involved
is proportional to the size of the corrupted area. Further,
in Figure 4(b), we observe that, when 5 transient faults
were injected, the number of nodes executing the protocol
becomes almost constant, on the average. This is because,
with decreasing fault density, the transient faults appear as
single independent faults, with each of them involving a
similar number of nodes, i.e., since the area increases, the
chance of the 5 faulty nodes being neighbours is very low.
These two observations support the fact that Repair in f -
local, where f is the diameter of the fault-affected area.
Number of packets: We observe a similar trend as in Fig-
ure 5, further supporting the f -locality property of Repair.

7. Composition of Repair with Varuna
In this section, we discuss the composition of Repair

with an existing information dissemination protocol, namely

Varuna [3]. The reason for choosing Varuna is that it is one
of the latest information dissemination protocol that have
been proposed.

As mentioned before, Repair is triggered by the detection
of a fault. In Varuna, such a detection is enabled by one
of the following conditions: (i) two nodes’ metadata (i.e.,
version number) are corrupted in such a way that the
difference in versions is greater than 1, and (ii) the receiver
of an advertisement message finds that its version is bigger
than the advertised one and, at the same time, the sender
exists in its neighbourhood table.

We simulated the composite protocol of Varuna and Re-
pair in TOSSIM. All nodes, except faulty nodes, are booted
in the first minute. Faulty nodes are located at the center of
the network. A packet with new version number is injected
at 2 minutes. We simulated three faulty scenarios: (i) with
1 fault, (ii) with 4 faults and (iii) with 7 faults. For each
scenario, we booted the faulty nodes (i) 30 seconds, (ii) 45
seconds and (iii) 60 seconds after injecting the new code, so
that only a proportion of nodes had the new code version.
We are specifically interested in (i) the overhead induced by
Repair on the performance of Varuna and (ii) the number
of nodes with correct code at a given time. We simulated
Varuna in conditions similar to those detailed in Section 5.
Further, the values for Varuna-specific parameters are: DISS-
RAND=2 sec, ADV-RAND=2 sec, τ=8 sec, TMOODY =1
min. For reasons of space, we only present a sample of the
results obtained.
Performance of Repair: As can be observed in Figures 7
and 8, in all cases, injecting transient faults in the network
during Varuna only execution causes the whole network to
disseminate stale code. On the other hand, when Varuna is
composed with Repair, every node downloads the correct
code.
Packet Overhead: In Figure 6(a), it can be seen that the
packets overhead induced by Repair on Varuna is low.
Specifically, with 7 faulty nodes, the packet overhead is less
than 3%. From Figure 5, it can be observed that the number
of packets will increase linearly with increasing number
of corrupted nodes. The reason for the linear increase
(as opposed to a constant value) is that the fault density
increases when more corrupted appear at the centre of the
network (condition under which we simulated the composite
protocol).
Temporal Overhead: In Figure 6(b), it can be observed that
the whole network receives the new code in approximately
80 seconds, after the new code has been injected into the
network. Further, it can be observed that, when there are
faulty nodes in the network, the time for the whole network
to receive the correct code is approximately 80 seconds.
Thus, there is almost no temporal overhead induced by
Repair on Varuna, highlighting the composable nature of
Repair. This is so because Repair executes in parallel with
Varuna, and also corrects only corrupted nodes.
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Table 1: Parameters for the simulation

Wait_Time 50 sec SendRep 2 sec SendHello 1.5 sec Temp_Time 30 sec
SendCheck 2 sec WaitRep_Time 4 sec SendProb 1 sec t 0.2 sec

U 60 sec h 2 PeriodProb 7 sec p 5
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Fig. 6: Varuna || Repair : Network Size: 20 * 20, Nodes Corrupted at Random

8. Conclusion and Further Work
We have presented Repair, which when integrated with

a fault-intolerant information dissemination protocol, trans-
forms it into a stabilizing fault-tolerant one. We have shown
the performance of Repair, and also when it was integrated
with Varuna, one of the most recent information dissemina-
tion protocol. In presence of faults, Varuna causes all nodes
to download the wrong code, while the composite protocol

of Varuna and Repair ensured that all nodes eventually
download the new code, while incurring minimal overhead.
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Abstract— In this paper, we propose new schemes for the
reputation management in P2P applications which discour-
age whitewash while encouraging good behaviors. The basic
idea of the schemes is to design update rules for the
reputation scores to satisfy the following requirements: 1) the
score of a peer is strictly greater than the initial score at any
point in time if it conducted at least one good behavior, 2)
the score gradually increases if it conducted a good behavior
while it rapidly decreases if it conducted a bad behavior, and
3) the strength of penalty is refined by allowing the system
to give a penalty for several consecutive rounds.

1. Introduction
Peer-to-Peer systems (P2Ps, for short) are autonomous

distribute systems which have been used in many applica-
tions such as file sharing, video streaming, IP phone, and
others. Different from traditional Client/Server (C/S) systems
which rely on few dedicated servers, services in P2Ps are
provided by each computer participating in the system in
a “peer-to-peer” manner. In other words, each computer in
P2Ps, called peer hereafter, plays the role of a client and
a service provider at the same time. Such a remarkable
property of P2Ps enables the designer of distributed systems
to increase the scalability and the fault-tolerance of the
constructed system, because it effectively removes the single
point of failure existing in C/S systems as well as the service
bottleneck.

However, such a distributed nature of P2Ps would cause
several critical issues, such that a malicious peer can provide
wrong, devastating services to the client peers, the quality
of the services is not guaranteed by any authority, and the
security of transactions could not be retained. In this paper,
we focus on P2P reputation systems as a way of resolving
such issues. In typical reputation management systems, each
recipient of a service can evaluate the quality of the service
and a collection of such evaluations will be disclosed to
all participants so that it could be used to select safe and
appropriate services in the next time. Examples of reputation
systems include [2], [3], [4], [12], [13], [14]. A key idea
of such reputation systems is to share information on past
transactions among all participants to the system, i.e., if
a transaction conducted by peer i is observed by peer j
and another transaction conducted by i is observed by peer

k (6= j), by merging those two observations, we will have
a more reliable evaluation concerned with the transactions
conducted by peer i than the case in which each peer
individually keeps such an evaluation.

In many P2P applications, a peer to have a high reputation
will be granted to access high quality services such as the
broader communication bandwidth and the video streaming
in HD quality. On the other hand, the reputation of a peer
rapidly becomes worse if it conducted malicious actions,
such as an intentional provision of low quality services and
the distribution of malwares such as spyware and computer
viruses. In other words, the reputation system works as an
incentive mechanism for the participants to conduct good
behaviors. However, such an effect of reputation systems can
be significantly reduced if a peer with a bad reputation could
become a new participant by changing its identifier (ID)
after leaving the system. Such a malicious behavior of peers
is known as whitewash, and it has been recognized as a
crucial issue in many distributed applications with reputation
management [6], [5], [9].

In this paper, we propose new schemes for the reputation
management in P2P applications which discourage white-
wash while encouraging good behaviors. The basic idea of
the schemes is to design update rules for the reputation
scores to satisfy the following three requirements: 1) the
score of a peer is strictly greater than the initial score at any
point in time if it conducted at least one good behavior, 2)
the score gradually increases if it conducted a good behavior
while it rapidly decreases if it conducted a bad behavior, and
3) the strength of penalty is refined by allowing the system
to give a penalty during several consecutive rounds.

The remainder of this paper is organized as follows. After
overviewing related works in Section 2, Section 3 describes
the model of P2P reputation systems. Section 4 proposes
basic update rules for reputation scores, which is extended in
Section 5. Section 6 proposes several reputation management
schemes based on the extended update rules. Finally, Section
7 concludes the paper with future work.

2. Related Work
There are few proposals on whitewash-aware reputation

management in spite of the importance of the problem.
Pinninck et al. proposed a scheme which increases the
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resistance of trust assessment schemes against whitewash
attacks with the aid of social networks [7]. This scheme
assumes that all interactions among peers are conducted
according to the following simple protocol: 1) the initiator
peer p chooses a set of potential partner peers Sp and
evaluates the trust of all members in Sp; 2) p selects a peer q
in Sp and sends an invitation message to q, 3) if q accepts the
invitation, it starts an interaction with p, 4) after completing
the interaction, q sends a feedback about the interaction to
p. The key idea of the scheme is to use a social network
in which each peer must be adjacent with a set of contact
peers. Invitation messages are routed to the receivers through
such contact peers, so that any peer wishing to interact with
other peers must know at least one contact peer in the social
network. Such a restriction makes a simple whitewashing
meaningless, since if it changes ID, contact peers do not
recognize the peer any more, so that the invitation message
will not be routed to any receiver (note that the scheme
could not completely prohibit whitewash if each peer can
have several temporary IDs and tries to connect the network
through a permanent ID among them).

Chen et al. proposed a scheme to identify whitewashers
in P2P file sharing systems using the notion of observation
preordering [1]. This scheme is based on an assumption
such that actions conducted in our daily life are habitual
so that it is hard to change even under different situations.
Whitewashers are no exceptions. Namely, even after re-
entering the system with a different ID, a whitewasher should
contact similar peers to download files in a similar category.
Observation preordering is a data structure to record the
history of actions concerned with a peer, which is observed
and recorded by another peer during the interaction with the
target peer. Thus, for example, after interacting with peer
j, peer i stores (or updates) the observation preordering
concerned with j in its local storage. Suppose that j is
malicious and conducts a whitewash to acquire new ID k (6=
j). By the assumption described above, peer k should contact
peer i again to download files, and such an action is observed
by i which will be stored as an observation preordering
concerned with k. Thus, peer i could identify that k is likely
to be j by comparing observation preorderings concerned
with j and k, and if it concludes that k is j, it recognizes k
as a malicious peer and degrades the reputation score of k
accordingly.

How to encourage peers to conduct collaborative actions
is another important issue in realizing practical incentive sys-
tems. Tseng and Chen proposed a free-rider aware reputation
scheme for P2P file-sharing systems [11]. In this scheme,
peers and files are divided into five levels depending on the
reputation score, and the incentive mechanism is designed
in such a way that a peer which does not share its files
with the other peers can not access files at a higher level;
i.e., in order to access files at a higher level, it needs to
share its files with the other participants. This scheme also

provides a penalty mechanism such that: 1) if a peer tried to
share harmful files with the other peers including malwares
and inauthentic files, and if such a malicious behavior is
reported by the other peers, the reputation of the peer is
reduced according to the penalty function (hence the level
of the peer would also degrade accordingly), and 2) if a
peer shares no files with the other peers, the reputation score
gradually decreases as the elapsed time increases.

3. Model
In this section, we describe the model of P2P systems

considered in this paper. The model of malicious actions of
peers and the basic framework of reputation management
will also be described.

3.1 System Model
In this paper, we consider P2P file sharing systems

consisting of a number of peers which play the role of
a client and a service provider at the same time. Each
peer holds several files which can be shared with the other
peers. Each peer, which wishes to acquire a copy of a
file, firstly sends an inquiry message to the system so that
the inquiry message will be delivered to peers holding the
requested file [8], [10], [15]. The requesting peer will receive
a response from several peers holding the requested file, and
the receiver conducts the selection of a peer from the set of
candidate peers according to the reputation of the candidates;
e.g., high reputation peers are likely to be selected as an
uploader compared with low reputation peers. Download of
the requested file is conducted merely from the selected peer.

After completing the download, the downloader evaluates
the transaction and gives a score to the uploader so that
it reflects the degree of satisfaction of the downloader
concerned with the transaction. In other words, the score
is given for each transaction even if such transactions are
provided by the same uploader. Such scores are aggregated
to a central manager which keeps the reputation scores of all
peers in the system, and if a peer conducts an evaluation of
another peer, the outcome of the evaluation is immediately
notified to the central manager.

3.2 Reputation Score
The reputation score of a peer is a sum of scores given

by the downloaders. In this paper, we assume the existence
of an appropriate incentive mechanism so that a peer with
high reputation score will be granted a right to access high
quality services, such as the higher priority while conducting
a download from service providers and a wider bandwidth
when it uses shared communication channels. Thus, it is
natural to assume that every rational peer should try to
increase its reputation score. If it is an honest peer, such
an increase of the score will be attained by providing
satisfactory transactions to the downloaders, but if it is
dishonest, it tries to cheat by conducting malicious actions,
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such as the issue of incorrect report to decrease the score of
other peers, refusal of given requests, and provision of low
quality services instead of providing requested services.

In general, to encourage honest actions of the peers,
reputation scores should be managed in such a way that:
1) the score of a peer increases if it conducted collaborative
actions to increase the satisfaction of downloaders (e.g., to
increase the score by ∆+), and 2) the score decreases if
it conducted adversarial actions to decrease the satisfaction
of downloaders (e.g., to decrease the score by ∆−). As
the strength of the penalty increases, i.e., as the value of
∆− increases, each peer would likely to conduct collabo-
rative actions without conducting adversarial actions, i.e.,
an incentive to encourage collaborative actions works well.
However, if it was too strong, a peer which conducted an
adversarial action would select a (malicious) way such that
it quits the system once and re-enters the system as a new
participant. Such a malicious behavior of a peer is called
whitewash which is known to degrade the effectiveness of
the underlying incentive mechanisms. In fact, to discourage
whitewash, ∆− must not be too large, but if it is not too
large, the force to encourage honest actions should become
weak.

4. Basic Update Rule
In this section, we propose a collection of update rules

of the reputation scores which discourage whitewashes but
encourage honest actions. The proposed rules are designed
to satisfy the following requiremenrs:

1) The reputation score of a peer increases if it conducts
a collaborative action, while it decreases if it conducts
an adversarial action.

2) The reputation score is strictly larger than the initial
score at any point in time, if it conducted at least one
collaborative action.

The second requirement intends that a peer conducted col-
laborative actions becomes harder to be penalized even if it
occasionally conducts adversarial actions.

4.1 Update Rules
Let Ri ∈ (0, 1) denote the reputation score of peer i.

Ri is initialized to R0 at the time of participation. Suppose
that peer j downloaded a file from peer i, and j is satisfied
with the transaction. Then, peer j notifies the result of such a
positive evaluation to the central manager, and after receiving
it, the central manager updates the reputation score of i as
follows:

Ri := αRi + (1 − α) (1)

where α is a parameter in range (0, 1). The above update
rule indicates that as the value of Ri increases, the “amount
of increase” gradually decreases even if it repeatedly con-
ducts collaborative actions, e.g., if R0 = 0, a sequence of
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Figure 1: Increase of the reputation score along with collab-
orative actions (R0 = 0).
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Figure 2: Badness of the reputation score under whitewash.

collaborative actions monotonically increases the score as

0 → (1 − α) → (1 − α2) → (1 − α3) → · · · .

Figure 1 illustrates the increase of the reputation score
along with collaborative actions, for different α’s. On the
other hand, if j is not satisfied with the transaction, j sends
a negative notification to the central manager, and after
receiving it, the central manager updates the reputation score
of i as follows:

Ri :=
Ri − R0

β
+ R0 (2)

where β is a parameter greater than 1. The reader can easily
verify that the second condition described above is certainly
satisfied for any selection of β > 1. In fact, once Ri > R0

holds, this inequality remains to hold even after any number
of applications of the second update rule.
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4.2 Analysis
In the last section, we observed that by conducting a

whitewash, the reputation score becomes worse than the
score immediately before the whitewash. In this section, we
extend this simple argument. More concretely, we prove
that by conducting a whitewash, the reputation score always
becomes worse than the case without whitewash for any
sequence of collaborative and adversarial actions. Let S
be a ternary string representing a sequence of actions,
where 0 and 1 indicate collaborative and adversarial actions
respectively, and 2 indicates whitewash. Let R(S) denote
the reputation score of a peer after conducting an action
sequence S.

We can prove the following claim.
Remark 1: Let S = a1, a2, . . . , an be a sequence of

actions conducted by a user starting with a collaborative
action, and S′ be a sequence of actions which is obtained
from S by inserting a whitewash after the ith action for some
1 ≤ i ≤ n. Then, R(S) > R(S′).

Proof: Suppose that a whitewash is inserted after the
ith action, i.e., it divides S into two parts S1 = a1, a2, . . . , ai

and S2 = ai+1, . . . , an. Since a whitewash initializes the
reputation score, R(S′) = R(S2). By the second condition
described above, since it is assumed that S1 contains at least
one collaborative action, R(S1) > R0. By the definition of
update rules, as the initial score R0 increases, the resultant
score monotonically glows. Hence the claim follows.

The badness of whitewash with respect to the reputation
score is illustrated in Figure 2.

5. Extension
5.1 Motivation

In the above scheme, each peer who conducted an ad-
versarial action is penalized by “uniformly” reducing the
reputation score to 1/β. Although it certainly penalizes
adversarial actions of malicious peers, those rules give a
penalty exactly once. In other words, after reducing the
reputation score, the system “allows” the peer and treats him
as an honest peer in the succeeding rounds. Thus, it could
not effectively work as a deterrent for addicts of adversarial
actions of malicious peers particularly when they repeat
a sequence of actions consisting of an adversarial action
and few collaborative actions. For example, if α = 0.5,
1/β = 0.6, and R0 = 0, by repeating three collaborative
actions after the participation, the score of the peer becomes
1 − 0.53 = 0.875, and by conducting an adversarial action
at that time, the score reduces to 0.6 × (1 − 0.53) =
0.525, but it is slightly larger than the score after the first
collaborative action. In other words, one penalty is weaker
than two collaborative actions in this case. On the other
hand, the penalty seems to be too strong for the peers which
have repeated many collaborative actions. For example, if
it repeats 1000 collaborative actions in the above example,
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(a) Adversarial action at the sixth step.
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(b) Adversarial action at the 11th step.

Figure 3: Difference of the impact of adversarial actions to
the reputation score.

the penalty for (only) one adversarial action is heavier than
998 collaborative actions. Figure 3 shows the change of the
reputation score according to the difference of the position of
an adversarial action in a sequence of collaborative actions,
assuming R0 = 0 and 1/β = 0.5. When an adversarial
action occurs at the sixth step, it “cancels” three or four
collaborative actions conducted before it (Figure 3 (a)).
However, if it occurs at the 11th step, it cancels 6 steps
for α = 0.9 and 8 steps for α = 0.7 (Figure 3 (b)), which
is larger than the case of the sixth step.

Such an unbalance on the number of consecutive collabo-
rative actions which are comparable to one adversarial action
should be overcome by reducing β as small as possible
(i.e., the difference becomes small by decreasing β), and
by introducing an additional mechanism for the penalization.
The time transition of the reputation score for different β’s is
illustrated in Figure 4. It could be observed that the reduction
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Figure 4: Time transition of the reputation score for different
β (α = 0.7 and R0 = 0).

of the score significantly decreases as β approaches to one.

5.2 Scheme
Our main idea for the improvement of the basic scheme

is to reduce the amount of increase of the reputation score
during n consecutive rounds after detecting an adversarial
action, where n is a parameter determined later. More
concretely, we use the following rule instead of Equation
(1) during n consecutive rounds after encountering an ad-
versarial action:

Ri := γRi + (1 − γ) (3)

for some γ > α. The reader should note that if n is too small,
it does not effectively frighten peers to conduct adversarial
actions, whereas if n is too large, it will encourage adversar-
ial peers to conduct a whitewash. Thus an appropriate value
of parameter n should be calculated carefully, which should
depend on parameters α, β, γ, and the value of Ri at the
time of encountering an adversarial action.

5.3 Analysis
In this section, we derive an upper bound on parameter

n in the sense that if it exceeds the value, it works as an
incentive to conduct a whitewash. Recall that R(S) denotes
the reputation score after conducting an action sequence
S which is represented by a ternary string in such a way
that 0 and 1 indicate collaborative and adversarial actions
respectively, and 2 indicates whitewash.

The following claim is easy to prove since the effect of
whitewash will be maximized if it is conducted immediately
after an adversarial action.

Remark 2: Let S = a0, a1, a2, . . . , an be a sequence of
actions such that a0 = 1 and ai = 0 for 1 ≤ i ≤ n, S′ be
a sequence of length n + 2 which is obtained from S by
“inserting” a whitewash at the second position. Note that in
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Figure 5: Upper bound on n.

sequence S, n consecutive actions are penalized by reducing
the increase of the reputation score. Then, the extended
scheme does not encourage whitewash if R(S) > R(S′).

Let x be the score before conducting action sequence S.
Then, we have

R(S) = γn ×
(

x − R0

β
+ R0

)
+ 1 − γn

and

R(S′) = αn × R0 + 1 − αn

Thus, in order to satisfy R(S) > R(S′), we should have

γn ×
(

x − R0

β
+ R0 − 1

)
> αn × (R0 − 1)

148 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" $" %" &" '" (" )" *" +" ," $!"$$"$%"$&"$'"$("$)"$*"$+"$,"%!"

normal 
whitewash 
g = 0.85 

-./012"34"56175

81
7.

69
:3

;"
5<
32
1

(a) When it does not switch to Rule (1).
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Figure 6: The role of parameter n.

that is, (
α

γ

)n

>
1 − R0 − x−R0

β

1 − R0

= 1 − x − R0

β(1 − R0)

> 1 − 1
β

where the last inequality is due to x < 1. By taking a
logarithm, we have

n log(α/γ) > log(1 − 1/β)

Since α < γ, log(α/γ) < 0. Thus,

n <
log β − log(β − 1)

log γ − log α
. (4)

The numerator of Equation (4) gradually decreases as β
increases, as is shown in Figure 5 (a). In addition, for a
fixed α, the right hand side of the formula decreases as γ
increases from α, as is shown in Figure 5 (b) (in this figure,
we fix β to two). By this figure, we can see that we could
apply Rule (3) at most six times if parameters are determined
as α = 0.7, β = 2, and γ = 0.78, but it decreases to four
times if we slightly increase γ to 0.82.

An example of the time transition of the reputation score is
illustrated in Figure 6. This figure assumes α = 0.7, β = 2,
and γ = 0.85. If we apply Rule (3) instead of Rule (1)
forever, as is shown in Figure 6 (a), the score after white-
wash eventually becomes larger than the penalized score.
However, by switching the rule to Rule (1) after passing
an appropriate number of repetitions (e.g., in this example,
by switching the rule after three times of applications), we
can guarantee that the resulting score is still greater than the
score after whitewash, as in shown in Figure 6 (b).

6. Schemes
In this section, we propose several reputation management

schemes based on the extended update rules.

6.1 Threshold Type
The first idea is to switch the rule from Rule (3) to Rule

(1) by the value of the reputation score. More concretely,
it switches the rule when: 1) it encounters the upper bound
on n, or 2) the reputation score exceeds a predetermined
threshold (e.g., 0.8). This scheme is intended to “allow”
users when their reputation score exceeds the threshold,
since the fact of exceeding the threshold indicates that it
has repeated sufficient number of collaborative actions. In
fact, since the score after applying Rule (2) is at most 1/β,
to reach threshold θ (> 1/β), it should repeat at least m
collaborative actions satisfying the following inequality:

θ < γm(1/β) + 1 − γm.

By solving it, we have the following lower bound on m,

m >
log(1 − θ) − log(1 − 1/β)

log γ
.

6.2 Counting Type
The second idea is to (gradually) increase the number of

repetitions depending on the number of adversarial actions
which have been conducted by the corresponding peer.
More concretely, the scheme works as follows: 1) Prepare
a variable w to count the number of adversarial actions
conducted by the peer. Variable w is initialized to zero and is
incremented when it conducted an adversarial action. 2) The
number of penalizations (i.e., the number of applications of
Rule (3)) is determined as

min{f(w), n∗}
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where f is an appropriate monotonically increasing function
such as f(w) = w and f(w) = w2, and n∗ is an upper bound
on n determined by Equation (4).

6.3 Random Type
The third scheme uses the notion of randomization. In

the last two schemes, each peer can predict the strength of
penalization from the outcome of past trials. For example, in
the first scheme, a malicious peer knows that the penalization
finishes after reaching its score to the threshold, and in the
second scheme, a malicious peer knows from its experience
that the strength of penalization against its next adversarial
action. To effectively hide such information from malicious
peers, a randomization could be used in the following
manner: 1) After detecting an adversarial action of a peer,
the central manager selects a random number r from set
{1, 2, . . . , n∗}. 2) It then penalizes during r consecutive
rounds after reducing the score of the corresponding peer
by Rule (2).

7. Concluding Remarks
In this paper, we propose new schemes for the repu-

tation management in P2P applications which discourages
whitewash while encouraging good behaviors. Our proposed
scheme can control the strength of penalty against adversar-
ial actions.

Topics for our future work are listed as follows:
• The evaluation of the proposed schemes considering

the incentive of users to participate in the system. In
actual P2Ps, each user reserves a right to leave from
the system if she feels that it is not attractive compared
with the required cost. Our current analysis misses such
an issue.

• Combination with other techniques to discourage
whitewash. For example, by combining the proposed
schemes with Adrian and Marco’s scheme described in
Section 2, we could reduce the number of whitewashes
in actual P2P environments.

• Detailed analysis of the fairness in the proposed
schemes. We need to give a formal definition of fair-
ness, as well as the tuning of several parameters to meet
the fairness criteria.

Acknowledgements
This work was supported in part by the Scientific Grant-

in-Aid from Ministry of Education, Science, Sports and
Culture of Japan and the Telecommunications Advancement
Foundation.

References
[1] J. Chen, H. Lu, and S. D. Bruda. “A Solution for Whitewashing in P2P

Systems Based on Observation Preorder.” Proc. of International Con-
ference on Networks Security, Wireless Communications and Trusted
Computing (NSWCTC ’09), pp.547–550, 2009.

[2] C. Costa and J. Almeida. “Reputation Systems for Fighting Pollution in
Peer-to-Peer File Sharing Systems.” Proc. of the 7th IEEE International
Conference on Peer-to-Peer Computing (P2P 2007), pp.53–60, 2007.

[3] Y.-M. Liu, S.-B. Yang, L.-T. Guo, W.-M. Chen, and L.M. Guo. “A
Distributed Trust-based Reputation Model in P2P System.” Proc. of the
8h ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD
2007), pp.294–299, 2007.

[4] Y. Liu, W. Xue; K. Li, Z. Chi, G. Min, and W. Qu. “DHTrust: A Robust
and Distributed Reputation System for Trusted Peer-to-Peer Networks.”
Proc. of GLOBECOM 2010, pp.1–6, 2010.

[5] S. Marti and H. Garcia-Molina. “Limited reputation sharing in P2P
systems.” Proc. of the 5th ACM Conference on Electronic Commerce
(EC ’04), pp.91–101, 2004.

[6] Z. Malik and A. Bouguettaya. “Reputation Bootstrapping for Trust
Establishment among Web Services.” Internet Computing, IEEE , IEEE,
13(1): 40–47, 2009.

[7] A. P. de Pinninck, W. M. Schorlemmer, C. Sierra, and S. Cranefield.
“A social-network defence against whitewashing.” Proc. of the 9th In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010), pp.1563–1564, 2010.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. “A
scalable content-addressable network.” Proc. of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, pp.161–172, 2001.

[9] I. Reitzenstein and R. Peters. “Assessing Robustness of Reputation
Systems Regarding Interdependent Manipulations.” E-Commerce and
Web Technologies, Lecture Notes in Computer Science, 2009, Vol.
5692, pp.288–299, 2009.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A scalable peer-to-peer lookup service for internet appli-
cations.” ACM SIGCOMM Computer Communication Review, 31(4):
149–160, 2001.

[11] Y.-M. Tseng and F.-G. Chen. “A free-rider aware reputation system
for peer-to-peer file-sharing networks.” Expert Syst. Appl., 38(3): 2432–
2440. 2011.

[12] Z. Xu, Y. He, and L. Deng. “A Multilevel Reputation System for
Peer-to-Peer Networks.” Proc. of the 6th International Conference on
Grid and Cooperative Computing (GCC 2007), pp.67–74, 2007.

[13] M. Yang, Y. Dai, and X. Li. “Bring Reputation System to Social
Network in the Maze P2P File-Sharing System.” Proc. of the Inter-
national Symposium on Collaborative Technologies and Systems (CTS
2006), pp.393–400, 2006.

[14] Y. Zhang and Y. Fang. “A Fine-Grained Reputation System for Reli-
able Service Selection in Peer-to-Peer Networks.” IEEE Transactions
on Parallel and Distributed Systems, 18(8): 1134–1145, 2007.

[15] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. “Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing.”
Technical Report, CSD-01-1141. University of California at Berkeley,
2001.

150 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



Distributed Real-Time Environment on Responsive Link

Hiroyuki Chishiro and Nobuyuki Yamasaki
Department of Information and Computer Science

Keio University, Yokohama, Japan
{chishiro,yamasaki}@ny.ics.keio.ac.jp

Abstract— Responsive Link is a communication standard as
specified in ISO/IEC 24740:2008 for distributed real-time
environments. Responsive Link has multiple features to meet
both hard and soft real-time requirements. Unfortunately,
current real-time operating systems do not support the main
features of Responsive Link. In addition, distributed real-
time systems in noisy environments require revealing the
tolerance of Responsive Link to achieve correct communi-
cation. We present APIs for Responsive Link in RT-Est real-
time operating system. Using the APIs, users can make use
of the main features of Responsive Link easily. Experimental
evaluations perform the voltage tolerance test against noise
and reveal the tolerance of Responsive Link.
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sor, Distributed Systems, Real-Time Communication, Tolerance

1. Introduction
Robots [14], [18], [2] in distributed real-time systems have

many nodes and require various topologies. In distributed
real-time environments such as nuclear power plants, deep
sea and outer space, there is much noise to interrupt correct
communication. In addition, packets must be arrived by their
deadlines in such noisy environments. However, existing
communication standards have various limitations such as
real-time requirement, topology and tolerance.

For example, wireless communication standards such as
WirelessHART [7] reduce tolerance compared to wired
communication standards. On the other hand, wired commu-
nication standards such as CAN [1] and FlexRay [6] suffer
from the limitations of topologies. Since there are various
shapes of robots, we require a topology-free communication
standard. Also, these communication standards have priority
inversion problems [17] because higher priority packets can-
not overtake lower priority packets. Due to priority inversion
problems, higher priority packets may miss their deadlines.
In order to overcome the weakness of these communication
standards, we have developed Responsive Link [20].

Responsive Link is a communication standard as specified
in ISO/IEC 24740:2008 for distributed real-time environ-
ments. Responsive Link has multiple features to meet both
hard and soft real-time requirements. For example, Respon-
sive Link has two communication links: event link and data
link. An event link is used to transmit packets with hard
real-time requirements. On the other hand, a data link is

used to transmit packets with soft real-time requirements.
By the separate transmission of the event link and the data
link, Responsive Link is easier to support hard and soft real-
time communication than other communication standards.
Unfortunately, current real-time operating systems do not
support the main features of Responsive Link. In addition,
distributed real-time systems in noisy environments require
revealing the tolerance of Responsive Link to achieve correct
communication.

We present APIs for Responsive Link in RT-Est real-time
operating system [5]. Using the APIs, users can make use of
the main features of Responsive Link easily. Experimental
evaluations perform the voltage tolerance test against noise
and reveal the tolerance of Responsive link.

The contribution of this paper is to implement APIs for
Responsive Link and to build the experimental environment
for tolerance. We believe that the APIs for Responsive
Link help users to build distributed real-time systems easily
and the method to evaluate the tolerance of communication
standards is widely used.

The remainder of this paper is organized as follows:
Section 2 introduces the detail of Responsive Link. Section
3 presents the implementation of the APIs for Responsive
Link. The effectiveness of Responsive Link is evaluated
in Section 4. Section 5 compares our work with related
work in distributed real-time environments. Finally we offer
concluding remarks in Section 6.

2. Responsive Link
In this section, we introduce the detail of main features

in Responsive Link [20].

2.1 Packet Overtaking
Real-time systems require real-time scheduling, which

guarantees completing real-time tasks by their deadlines.
In real-time scheduling, higher priority tasks can preempt
lower priority tasks. In order to achieve this preemption
in real-time communication, higher priority packets require
overtaking lower priority packets in each node. Therefore,
each packet in Responsive Link has a priority. If packets have
the same priority, then the round-robin rule is applied. By
the technique of the packet overtaking, real-time scheduling
such as fixed-priority scheduling [13] and semi-fixed-priority
scheduling [3], [4] can be adapted to packet scheduling.
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(a) Event packet
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2 bytes
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(b) Data packet

Fig. 1: Format of packet

Priority[7-4]          Source Address            Priority[3-0]       Destination Address
     4 bits                        12 bits                        4 bits                        12 bits

Source Node Address                          Destination Node Address

Fig. 2: Format of header

2.2 Format of Packet
Responsive Link supports two kinds of packets: event

packet and data packet. Figure 1 shows the formats of the
event packet and the data packet. An event packet is 16-
byte length consisted of a 4-byte header, an 8-byte payload
and a 4-byte trailer. The main use of the event packet is to
transmit control commands and operations with hard real-
time requirements. A data packet is 64-byte length consisted
of a 4-byte header, a 56-byte payload and a 4-byte trailer.
The main use of the data packet is to transmit image and
sound data with soft real-time requirements.

Figure 2 shows the format of the header. A packet has
a header that includes a 16-bit source node address and a
16-bit destination node address. The source node address
includes a 4-bit priority[7-4] and a 12-bit source address.
On the other hand, the destination node address includes
a 4-bit priority[3-0] and a 12-bit destination address. The
priority[7-4] has the 7-4 bits of the 8-bit priority and the
priority[3-0] has the 3-0 bits of the 8-bit priority. Larger
values have higher priorities in packets. The highest priority
is 255 (0xff) and the lowest priority is 0 (0x00).

Figure 3 shows the format of the trailer. The trailer
includes the following parameters.

• User Defined (UD): sets this bit to the user defined data.
• Full: sets this bit to 1 if all payload data are valid (data

packet: 56 bytes, event packet: 8 bytes). Otherwise, set
this bit to 0.

• Data Length: indicates the length of the valid payload
data (data packet: 0-56, event packet: 0-8).

• Dirty[0-15]: indicates which word (4 bytes) in the
packet has an error in case of a data packet or which
byte in the packet has an error in case of an event
packet. For example, if the 3rd word of the data packet
has an error, then set the Dirty2 bit to 1. If the 4 th word
of the event packet has an error, then set the Dirty3 bit

0      UD       Full                                 Data Length

1    Dirty0   Dirty1   Dirty2   Dirty3   Dirty4  Dirty5   Dirty6   Dirty7

2   Dirty8   Dirty9  Dirty10 Dirty11 Dirty12 Dirty13 Dirty14 Dirty15

3     Start       End       Int.       Fatal   Correct        Serial Number

Byte      0           1           2           3            4           5           6           7

Fig. 3: Format of trailer

to 1.
• Start: sets this bit to 1 if this packet is the start packet.

Otherwise, set this bit to 0.
• End: sets this bit to 1 if this packet is the end packet.

Otherwise, set this bit to 0.
• Interrupt (Int.): generates an interrupt when this packet

arrives the destination node if this bit is set to 1.
Otherwise, set this bit to 0.

• Fatal: sets this bit to 1 by hardware if one byte in the
packet has an unrecoverable fatal error. Otherwise, set
this bit to 0.

• Correct: sets this bit to 1 by hardware if this packet has
an error that has been corrected. Otherwise, set this bit
to 0.

• Serial Number: indicates the serial number. The start
packet has the serial number 0 and the serial number
is incremented in the following packets. The serial
number returns 0 after it arrives 7 and the sequence
is repeated.

2.3 Routing
Responsive Link achieves an end-to-end connection by

setting the routing tables of all nodes along the transmission
path from a source node to a destination node.

Figure 4 shows the routing table of Responsive Link. Each
node has a routing table to control the route of the packet
and the priority exchange function. The 32-bit reference part
is the same as the header of the packet. On the other hand,
the 16-bit referent part includes the following parts.

• Event Enable (EE): sets this bit to 1 if the event link
is valid. Otherwise, set this bit to 0.

• Data Enable (DE): sets this bit to 1 if the data link is
valid. Otherwise, set this bit to 0.

• Priority Exchange (PE): indicates whether the priority
exchange function is valid.

• Priority[7-0] (P[7-0]): includes the new priority level (8
bits) which is valid if PE is set to 1.

• Link[4-0] (L[4-0]): indicates the output link numbers.
The L[4-1] bits indicate the output link numbers of four
physical ports in Responsive Link. On the other hand,
the L[0] bit indicates the output link number to Dual
Port Memory (DPM) in a processor. If multiple bits are
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Priority[7-4]                     Source Address                         Priority[3-0]                     Destination Address

Reference      Referent

EE  DE  P7  P6  P5   P4  P3   P2  P1   P0  PE  L4  L3  L2  L1   L0

EE  DE  P7  P6  P5   P4  P3   P2  P1   P0  PE  L4  L3  L2  L1   L0

EE  DE  P7  P6  P5   P4  P3   P2  P1   P0  PE  L4  L3  L2  L1   L0

EE  DE  P7  P6  P5   P4  P3   P2  P1   P0  PE  L4  L3  L2  L1   L0

ID

 0
 
 1
 
 2

 3

Fig. 4: Routing table

set to 1, then multicast is indicated. If all bits are set
to 1, then broadcast is indicated.

Since the EE bit and the DE bit can be set independently,
the event link and the data link may have different routes to
the same destination.

Responsive Link supports the layer 1 to the layer 4
in OSI reference model. Using Responsive Link, we can
implement communication protocols such as TCP with low
overhead, compared to software implementation using other
communication standards.

Unfortunately, current real-time operating systems do not
support the main features of Responsive Link. Therefore, the
APIs for Responsive Link are required to build distributed
real-time systems easily.

3. Implementation
We implement APIs for Responsive Link in RT-Est real-

time operating system [5]. Using the APIs, users can make
use of the main features of Responsive Link easily.

3.1 Initialization
We implement the device driver of Responsive Link in

init_resplink function. This function initializes the
following parameters.

• SDRAM: sets the size of SDRAM for the packet
overtaking by the priority of each packet selected with
[None,8MB,16MB,32MB,64MB,128MB,256MB].

• Speed: sets the speed of Responsive Link selected with
[50Mbps,100Mbps,200Mbps,400Mbps,800Mbps].

• Switch: initializes the switch, the encoder and the
decoder of Responsive Link. The switch of Responsive
Link supports the following modes.

– Cut Through Mode: The switch starts to forward a
packet before the whole packet has been received,
as soon as the destination address is processed.
This technique has the advantage of reducing la-
tency and the disadvantage of decreasing tolerance.

– Store and Forward Mode: The switch starts to
forward a packet to a node where the packet is kept
and sent at a later time to the destination node or
another intermediate node.

• Interrupt: clears all interrupts of both the event link and
the data link and enables a proper interrupt by users.
For example, Responsive Link supports the following
End Of Packet (EOP) interrupts.

– Down: The cable of Responsive Link is unplugged.
– Wakeup: The cable of Responsive Link is plugged.
– Fatal: A fatal error occurs as described in Subsec-

tion 2.2.
– Data-Out EOP: occurs if sending data packets in

the range of the specified DPM.
– Data-In EOP: occurs if receiving data packets in

the range of the specified DPM.
– Data Packet-In: occurs if receiving data packets,

which enable their interrupt bits.
– Event-Out EOP: occurs if sending event packets in

the range of the specified DPM.
– Event-In EOP: occurs if receiving event packets in

the range of the specified DPM.
– Event Packet-In: occurs if receiving event packets,

which enable their interrupt bits.

• Link[4-0] (L[4-0]): indicates the output link numbers,
as described in Subsection 2.3.

• Serial/Parallel[4-0]: indicates serial/parallel connection
in each output link number. If an output link is parallel
connection, set this bit to 1. If an output link is serial
connection, set this bit to 0.

• DPM: initialize event in/out and data in/out registers.

– Transmission Mode: If the transmission mode is
Mode0, set this bit to 0. In Mode0, each packet
includes each header and trailer. If transmission
mode is Mode1, set this bit to 1. In Mode1, first
of all, Responsive Link transmits the payload of
each packet at the head of the DPM sequentially.
After the payload of each packet, Responsive Link
next transmits the header and the trailer of each
packet sequentially. Therefore, all packets arrive at
the same destination node address.

– Interrupt: If this bit is set to 1, an EOP interrupt
occurs.

– Dreq: If this bit is set to 1, perform DMA transfer
of the packet by the DMA counter.

– From_Addr/To_Addr: These control registers have

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 153



struct resplink_header {
unsigned int high_priority:4;
unsigned int src_addr:12;
unsigned int low_priority:4;
unsigned int dst_addr:12;

} __attribute__((packed));

Fig. 5: struct resplink_header

struct eventlink_packet {
union {

uint32_t addr;
struct resplink_header header;

} u;
uint8_t payload[8];
uint32_t trailer;

};

Fig. 6: struct event_packet

same features. For ease of comprehension to users,
the name of each control register is different.

Users can configure the above parameters for target dis-
tributed real-time applications. Therefore, Responsive Link
can support more various types of distributed real-time
applications than other communication standards.

3.2 Packet
We explain the format of the event packet and the data

packet.
Figure 5 shows struct resplink_header. As shown

in Figure 2, struct resplink_header includes a 4-
bit high_priority, a 12-bit src_addr, a 4-bit
low_priority and a 12-bit dst_addr. In addition,
struct resplink_header has the packed type attribute.

Figure 6 shows struct event_packet. As shown
in Figure 1(a), struct event_packet has a 4-byte
header, a 8-byte payload and a 4-byte trailer. In struct
eventlink_packet, union u has a 4-byte address and
struct resplink_header. For example, this 4-byte ad-
dress is used to write header to the reference part in
routing tables and this header is used to set the priority,
the source address and the destination address.

Figure 7 shows struct data_packet. As shown in
Figure 1(b), struct data_packet has a 4-byte header,
a 56-byte payload and a 4-byte trailer. Like struct
event_packet in Figure 6, struct data_packet also
has union u.

Figure 8 shows send/receive functions in event link
and data link. The first argument of send_eventlink
and send_datalink functions is mode, which selects
Mode0 or Mode1 if the first argument is 0 or 1 re-
spectively. The second argument of send_eventlink is
the pointer of struct event_packet. Also, the second
argument of send_datalink is the pointer of struct
data_packet. The first argument of recv_eventlink

struct datalink_packet {
union {
uint32_t addr;
struct resplink_header header;

} u;
uint8_t payload[56];
uint32_t trailer;

};

Fig. 7: struct data_packet

void send_eventlink(unsigned int mode,
struct event_packet *ep);

void send_datalink(unsigned int mode,
struct data_packet *dp);

int recv_eventlink(uint8_t *buf);
int recv_datalink(uint8_t *buf);

Fig. 8: send/receive functions

and recv_datalink functions is the pointer of the 1-
byte character. This pointer indicates the head of the buffer
receiving event packets and data packets respectively.

3.3 Routing Table
Figure 9 shows add/delete functions to add/delete routing

tables respectively. add_rtable function adds a rule to
both reference and referent parts in the routing table, as
shown in Figure 4. Then the rule is set to the unique
identifier. On the other hand, delete_rtable function
deletes the rule selected by id.

Note that if registering the same rules of routing tables,
the rule with the smallest id in the same rules is applied to
routing packets.

3.4 Example
In this subsection, we explain an example of usage with

APIs for Responsive Link.
Figure 10 shows an example of sending/receiving

data packets in usermain function. First of all, struct
datalink_packet sets the header, the payload and the
trailer of the data packet. The priority of the header is 0x55,
the source address is 0xa5a and the destination address is
0xa5a. Since this is an example of the loopback transmission,
the source address is the same as the destination address.
The trailer of the data packet sets Full bit to 1 because all
payload data are valid.

Next we set new_priority to 0x11. Then
init_resplink function is called to initialize the
parameters of Responsive Link, as described in Subsection
3.1. Now we call add_rtable function to set the routing
table. The first call of add_rtable function sets the
priority, the source address and the destination address of
dp. The priority exchange function is valid and changes the
priority of data packet from 0x55 to 0x11. The output link
of the data packet is L[1]. The second call of add_rtable
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void add_rtable(uint32_t reference,
uint16_t referent);

void delete_rtable(unsigned int id);

Fig. 9: add/delete functions

Table 1: Specification of RMTP

Clock frequency 31.25MHz
SDRAM 64MB
SRAM 256KB
I-Cache/D-Cache each 32KB (Harvard)
Fetch width 8
Issue width 4
Integer register 32-bit × 32-entry × 8-set
Integer renaming register 32-bit × 64-entry
FP register 64-bit × 8-entry × 8-set
FP renaming register 64-bit × 64-entry
ALU 4 + 1 (Divider)
FPU 2 + 1 (Divider)
64-bit ALU 1
FP vector unit 1 (4FPU × 2line)
Branch unit 2
Memory access unit 1

function sets new_priority, the value of which is 0xff.
The source address and the destination address are set
to those of dp. The priority exchange function is also
valid and changes the priority of data packet from 0x11
to 0xff. The output link of the data packet is L[0]. We
call send_datalink function to send the data packet
with Mode0. After sending the data packet, the program
calls recv_datalink function repeatedly until receiving
the data packet. The return value of recv_datalink
function is the length of received data. If receiving the data
packet, the busy loop is finished.

Note that the priority of the data packet is finally set
to 0xff so that the header of the data packet is changed
from 0x5a5a5a5a to 0xfa5afa5a. If the second call of
add_rtable sets new_priority, the value of which
is 0x55, the packet is not transmitted to L[0] because the
original priority of the data packet is 0x55. As a result, the
header of the data packet is changed to 0x5a5a5a5a and the
data packet is transmitted to L[1] repeatedly.

4. Experimental Evaluations
4.1 Experimental Environments

The experimental evaluations use Responsive Multi-
threaded Processor (RMTP) [19] which has prioritized SMT
architecture with MIPS and RMTP-specific instructions.
Table 1 shows the specification of RMTP. We implement
APIs for Responsive Link [20] in RT-Est real-time operating
system [5] on RMTP. In order to transform RMTP-specific
instructions to machine language, we have developed a
cross-compiler for RMTP, which extends gcc version 3.4.3
for MIPS.

Figure 11 shows our experimental environment. There
are two RMTPs, which are connected by Responsive

void usermain(void)
{

unsigned int cur_priority, src, dst,
new_priority;

/* initialize data packet */
struct datalink_packet dp = {
.u.header = {

.high_priority = 0x5,

.src_addr = 0xa5a,

.low_priority = 0x5,

.dst_addr = 0xa5a,
},
.payload = {0},
.trailer = 0x40000000,

};
uint8_t buf[0x40];
new_priority = 0x11;

/* initialize Responsive Link */
init_resplink();

/* add rule to routing table */
add_rtable(dp.u.addr,

(0x3 << 14) |
(new_priority << 6) |
(0x1 << 5) | 0x1);

cur_priority = new_priority;
new_priority = 0xff;

/* add rule to routing table */
add_rtable(((cur_priority & 0xf0) << 24) |

(dp.u.addr & 0x0fff0fff) |
((cur_priority & 0xf) << 12),
(0x3 << 14) |
(new_priority << 6) |
(0x1 << 5) | 0x0);

/* send data packet */
send_datalink(0, &dp);

/* wait until receiving packet */
while (recv_datalink(buf) == 0)
;

}

Fig. 10: Example of sending/receiving data packets

Link. The noise generator covers the cable of Respon-
sive Link. The baud rate of Responsive Link is selected
within [50Mbps,100Mbps,200Mbps,400Mbps,800Mbps]. In
init_resplink function, the switch mode is set to the
store and forward mode because the store and forward mode
has higher tolerance than the cut through mode. In addition,
the transmission mode is set to Mode0 and the connection
method is serial. We use the data link in experimental
evaluations.

We assume the actual noise in noisy environments where
a humanoid robot [14] runs. Table 2 shows the specification
of the noise wave.

In order to evaluate the tolerance of Responsive Link, we
perform the voltage tolerance test. First of all, we set the
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RMTP

Noise Generator

Responsive Link

Fig. 11: Experimental environment

Table 2: Specification of noise wave

Frequency 12MHz
# of bursts 5
Wave shape Triangle

voltage of the noise wave to 1.0V in the noise generator.
Next, we check whether sending/receiving data packets in
the noisy connection. If Responsive Link can send/receive
data packets, we raise the voltage of the noise wave by 0.1V.
If Responsive Link cannot send/receive packets due to noise,
the value subtracting 0.1V from the current voltage is that
of the voltage tolerance against noise in this environment.
We perform this experiment by 10 times in each baud rate
and measure the minimum, average and maximum values of
the voltage tolerance.

4.2 Overhead
Table 3 shows the overhead of APIs for Responsive Link.

init_resplink function sets the various parameters of
Responsive Link. As a result, this function has the most cy-
cles in evaluated functions. add_rtable function has low
overhead because this function only writes a 32-bit reference
part and a 16-bit referent part and sets the identifier of the
rule which is the smallest in empty ids. send_datalink
function also has low overhead because this function sets
the control registers of the data link and the DMAC. We
measure the overhead of recv_datalink function from
entering to exiting this function. recv_datalink function
checks whether receiving data packets. If receiving data
packets, write the data packets to the specified memory.
Therefore, init_resplink function has higher overhead
than add_rtable and send_datalink functions.

4.3 Voltage Tolerance Test
Figure 12 shows the result of the voltage tolerance in the

loopback transmission. If the baud rate of Responsive Link
is faster and faster, the voltage tolerance is usually lower
and lower.

Figure 13 shows the result of the voltage tolerance in
the point-to-point transmission. Each voltage tolerance in
the point-to-point transmission has slightly higher voltage

Table 3: Overhead of APIs

function # of cycles
init_resplink 1,681
add_rtable 91
send_datalink 27
recv_datalink 344
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Fig. 12: Loopback transmission

tolerance than that in the loopback transmission in Figure
12. That is to say, the point-to-point transmission improves
the tolerance compared to the loopback transmission. Like
the loopback transmission, if the baud rate of Responsive
Link is faster and faster, the voltage tolerance is also usually
lower and lower.

5. Related Work
We compare our work with other work in distributed real-

time environments.
TAO [16] is a middleware, which is compliant with RT-

CORBA [8]. In addition, TAO implements IIOP protocol,
which is an TCP/IP implementation of GIOP protocol spec-
ified in CORBA [9], [10], [11] by Ethernet. However, it is
difficult to avoid packet collision by Ethernet. In contrast,
Responsive Link supports layer 1 to layer 4 in OSI reference
model and has four physical ports to avoid packet collision.

Except Ethernet, CAN [1] and FlexRay [6] are also wired
communication standards. CAN supports only bus topology
and FlexRay supports both bus and star topologies. Using
these standards, a message packing algorithm is proposed
[12]. Distributed control robots require various topologies so
that topology-free communication standards such as Respon-
sive Link have more compatibility than CAN and FlexRay.

In wireless communication standards, real-time packet
scheduling over WirelessHART [7] is proposed [15]. Like
Responsive Link, wireless communication standards are also
topology-free. In general, wireless communication standards
frequently occur packet collision/loss compared to wired
communication standards so that the analysis of the worst
case arrival time in each packet is difficult. Therefore,
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Fig. 13: Point-to-point transmission

Responsive Link is better than wireless communication
standards in distributed real-time environments.

6. Concluding Remarks
We presented the APIs for Responsive Link in RT-Est

real-time operating system. In particular, we explain how
to use the APIs for data link. Using the APIs, users can
build distributed real-time systems easily. In addition, we
introduce a method to evaluate the tolerance of communica-
tion standards. Experimental evaluations reveal the voltage
tolerance against noise in Responsive Link. Using the results,
users can select a proper baud rate to communicate between
nodes correctly in noisy environments.

In future work, we will implement the APIs for packet
scheduling with fixed-priority scheduling [13] and semi-
fixed-priority scheduling [3], [4] over Responsive Link. The
analysis of the worst case arrival time in each packet is
intriguing.
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Abstract - Nowadays traffic monitoring is a must for many 
purposes such as QoS monitoring, IDS, antivirus, network 
problem detection and so on. Deployment of high speed 
networks implies problems with this kind of systems to be able 
to cope with all the traffic in the network. Therefore, it would 
be interesting to know in advance whether a traffic monitoring 
system will be able to do its task correctly, or it needs more 
processing power. This paper presents a mathematical model 
for multiprocessor traffic monitoring systems that use 
commodity hardware and general purpose operating systems. 
In order to establish the different elements of the model we 
have identified the different stages of the trip of packets from 
wire to application, as well as the particular behavior of the 
system and the computational cost for each one of them. With 
this information, we have built up a model based on a closed 
queuing network that simulates these different stages of the 
monitoring system and the possible packet losses. This model 
allows us to estimate the performance of the monitoring 
application in terms of throughput. 

Keywords: traffic monitoring; performance evaluation; closed 
queuing network; multi-server system  

 

1 Introduction 
 The performance of network traffic monitoring systems 
has a great importance in all kind of network devices. 
Moreover, there are some applications related to network 
security and packet analysis which are particularly sensitive to 
network capturing performance. These include IDS (Intrusion 
Detection Systems), antivirus, QoS (Quality of Service) 
analysis systems. In order to achieve Gigabit-order analysis 
capabilities, most of these systems are forced to use specific 
hardware and operating systems. This results in more 
expensive devices and longer development processes. 

 On the other hand, traditionally, the performance 
degradation of those systems based on commodity hardware 
and general purpose operating systems is mostly caused by a 
design focused on network applications, not on extensive 
network packets capturing [1]. However, last investigations 
have demonstrated that packet capture has been improved by 
enhancing general purpose operating systems for traffic 
analysis. These results are encouraging because today’s 
commodity hardware offers features and performance that just 
a few years ago were only provided by costly custom 

hardware design [2] [3]. Even then, there are still deficiencies 
to adapt to new architectures such as multithreaded and multi-
cored ones. 

 In order to continue the improvement of this second kind 
of systems, it is necessary to identify the design flaws that 
have an impact on capturing performance. So, it is also 
important to develop theoretic models and simulation tools 
that help us in the design and development cycles. 

 The experience of our research group in the 
development of a traffic capture and analysis system has 
encouraged our study of the packet capturing subsystem in 
general purpose operating systems, especially Linux and its 
effect on the overall packet analysis performance. In order to 
improve the traffic monitoring systems’ performance we need 
data about where the packets are lost and why. These data 
allow us to predict the performance of our system without 
running real simulations and, therefore, without designing and 
implementing several prototypes. So, in order to help us in the 
design and cut down development cycles we have built a 
model of the different stages of the packet capturing 
subsystem of Linux Kernel. After obtaining real 
measurements of the computational costs of each stage we 
have developed a model that provides us with data about the 
packet capturing and analysis capabilities, such as the number 
of packet lost in each stage. 

 The paper is organized as follows. The background of 
our work is presented in Section 2. Then, Section 3 describes 
the analytical model of the packet processing consumptions. 
The model validation is explained in Section 4. Finally, we 
conclude the paper in Section 5. 

2 Background 
 In the previous work [4], our research group proposed a 
prototype of a traffic monitoring system for high speed 
networks called Ksensor. It works at kernel-level and it is 
based on Linux. The experimental study of Ksensor has 
brought some aspects that are worth analyzing.  

2.1 Problem Formulation 

 The aspects mentioned before are related to the time the 
system takes in order to capture or analyze a packet. We have 
noticed that this time depends on the network traffic rate and 
the analysis load which is managed by the traffic monitoring 
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system. In the laboratory, in order to test Ksensor, we 
simulate different analysis loads implementing four loops that 
execute 0, 1000, 5000 and 25000 cycles respectively. 

 Fig. 1 shows the values of a parameter measured 
experimentally on Ksensor. In particular, Fig. 1 presents the 
average softIRQ time per captured packet. This parameter 
belongs to the capturing stage and, as can be observed, it 
varies with the injection rate and the analysis loads. It is worth 
mentioning the three areas that we can observe on the 1 
Kcycle analysis load curve. Moreover, in the graphic it can be 
seen that it takes more time capturing a packet with 0 Kcycle 
analysis load (null) than with 25 Kcycle analysis load. On the 
contrary, the average values of the analysis time per packet 
are similar for all the range of injection traffic rates. 

 
Figure 1.  Average softIRQ per captured packet. 

 Thus, we intend to make a proposal of a mathematical 
model which considers the capturing and the analysis stages 
with their possible variability of CPU consumptions. Certain 
aspects correspond to our group’s own development. 
However, we consider that these characteristics can also be 
extrapolated to more general systems. 

 Our initial hypotheses take us to consider some packet 
losses along the capturing stage. Hence, as it happens when 
duplicate packets or IP fragmentation losses are detected; 
some activities entail a waste of CPU. In the case that 
concerns us, due to the shortage of resources or, even, due to 
control policies of the monitoring application, some packets 
can be discarded in the capturing stage, producing a CPU 
consumption that does not result in a captured packet. 

2.2 Generic Traffic Monitoring Systems 

 If we consider a typical traffic monitoring system, we 
usually come across three different phases: capture phase, 
basic analysis or filtering phase and complex analysis phase. 
The capture phase can be divided into: hardware processing 
stage (network interface card), driver processing stage and 
kernel processing stage. 

 The basic analysis phase is based on classifying each 
received packet after studying its features to determine 
whether the packet must be further analyzed or discarded. 
This task must be carried out for every captured packet. The 
real packet processing (e.g. intrusion detection algorithm, 

QoS algorithm, etc.) is applied in the complex analysis phase 
but only to those packets that successfully passed the basic 
analysis phase. 

 In the next section, we will focus on analyzing the parts 
of the Linux packet capture subsystem. Since the impact of 
each parameter depends on its computational costs, we work 
out the cost of every phase along the capture system and 
identify which stages would lose packets more likely. 

2.3 Packet Losses 

 As it has been said before, we consider that there are 
packet losses in the capturing stage. Because of that, it is 
important to study the capturing system of Linux. 

 After a thoughtful analysis of the path followed by a 
packet through Linux operating system, we can identify the 
points where packet losses are more liable. As a result, these 
points must be considered in the design of packet capture 
model. Although Linux is a specific case, the path followed 
by packets in other operating systems is quite similar to this. 

 
Figure 2.  Packet losses in the packet receiving process with Linux 

networking subsystem 

 Fig. 2 shows the trip of a packet from its ingress into a 
Linux end system to its final delivery to the monitoring 
application, taking into account the possible packet losses 
along the journey. When a packet arrives to the NIC a 
hardware interruption (hardIRQ) is generated. The network 
interface card (NIC) captures packets and copies them in an 
internal buffer. Then, the DMA (Direct Memory Access) 
engine of the card, without CPU intervention, is in charge of 
moving these packets to a special allocation area in the main 
memory of the system called DMA area. The driver is in 
charge of attending the hardIRQ. When arrival rate is high, 
this interruption is generated for a bunch of packets. In order 
to extract the packets from the DMA area, the driver uses 
polling mechanism. After any interruption, a software 
interruption (softIRQ) is scheduled in order to complete the 
capture of packets. Packets are then moved, during the 
softIRQ, from the DMA area to another space in the main 
memory, creating a skb element list. Skb elements are buffers 
in which the kernel handles network packets [5]. Next, the 
softIRQ has to move the packet to the monitoring 
application’s analysis buffer.  

 Packet losses due to capture deficiencies are represented 
by phw and are not very common. Packet losses due to DMA 
transfer errors are represented by pDMA. A pDMA will occur 
when packet arrival rate is very high and the NIC allocates in 
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main memory more packets than the system is able to manage, 
causing an overflow of the DMA’s reserved space in main 
memory. When the packets are moved from the DMA area to 
the skb element list there can be eventual losses, which are 
also very uncommon. These losses are represented by pSKB. 
Finally, penq represents the proportion of packets which cannot 
be enqueued in the monitoring application’s analysis buffer. 
Obviously, the length of this queue is limited, so that an 
overflow of this queue becomes quite likely only at very high 
arrival rates. 

3 Packet Process Consumptions Model 
 This section introduces an analytical model which works 
out, firstly, the different stages which have been identified in a 
multiprocessor traffic monitoring system and, secondly, the 
possible packet losses in the journey from the network card to 
the analysis application. For a large number of arrivals (heavy 
traffic conditions), the multiprocessor architecture can be 
modeled as a closed queuing network [6]. 

3.1 Description of the Model 

 The proposal for modeling packet process consumptions 
of a traffic monitoring system is showed in Fig. 3. It consists 
in a closed queuing network where computer consumptions 
are related to the service capacity of the queues. Two parts 
can be distinguished; the upper one has a set of multi-server 
queues which represents the traffic monitoring system with its 
different stages (capture, filtering and analysis), processing 
abilities (µCi, µF, µA) and possible packet losses (phw_dma, pskb, 
penq). The part on the left models the injection of network 
traffic with λ rate. This simple queue closes the network and 
the number of packets that are permitted is N. With heavy 
traffic conditions, the departure of a packet from the traffic 
monitoring system triggers the injection of an already waiting 
packet. 

 Four different stages have been distinguished for the 
closed network, each one with a specific function: 

• Capture stage: it represents the functionalities 
provided by the operating system which is responsible 
for capturing packets and moving them from the NIC 
to the memory of the analysis application. It comprises 
treatments of device controllers and attention paid by 
kernel to interruptions (hardIRQ and softIRQ) due to 
packet arrival. This stage is divided into three multi-
server queues with rates µC1, µC2, µC3 (measured in 
packets per second) capacity, due to the need to 
differentiate the packet losses inside it. For this, pskb is 
defined as the probability of having every ring buffer 
descriptor full and penq is defined as the probability of 
not enqueuing packets to the analysis buffer. 

• Filtering stage: it is modeled by a multi-server queue 
with rate µF. According to some rules, captured 
packets are filtered and, finally, only selected packets 
are analyzed in the next stage. This stage represents 
the amount of time spent on this basic treatment. 

• Analysis stage: it is integrated by a multi-server queue 
with rate µA. It simulates the complex analysis 
treatment that the system does to packets that need 
further analysis. As not all the packets need to be 
processed in this stage, a rate called qa indicates the 
proportion of the received packets that has to be 
analyzed. 

• Traffic injection stage: it is a simple queue of λ rate. 
This stage simulates the arrival of packets to the 
system with λ rate. 

 Since the number of packets in the closed network is 
fixed to N, the traffic injection queue can be empty. This 
situation simulates the blocking and new packets will not be 
introduced on the system. The model also considers the 
possibility of losing packets due to deficiencies at NIC or 
DMA’s transfer errors with phw_DMA probability. However, 
since it is generally recognized that they are very uncommon, 
those losses will be negligible and phw_DMA=0 for solving the 
model. 
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Figure 3.  Model based on closed queuing network for packet process consumptions
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 We assume that the number of processors of the system 
is K and each stage can be served by a different number of 
processors, having Kc available processors for capturing, Kf 
for filtering and Ka for analysis being Kc≤K, Kf≤K and Ka≤K. 
So, the parallelizing level can be different in each phase. 
Another aspect to consider is that packets cannot flow freely 
in the closed network, because the sum of packets attended in 
the servers that represent the traffic monitoring system never 
exceeds the maximum number of processors available. 

3.2 Simplifications of the Model 

 The model presented in Fig. 3 is very general, but some 
simplifications are possible. First, it is worth mentioning that 
both, the flowing traffic and the processing capacity at the 
nodes, are modeled by Poisson arrival rates and exponential 
service rates. Poisson’s distributions are considered to be 
acceptable for certain types of network traffic, for instance, 
modeling the voice traffic, as explained in [7]. This 
assumption can be relaxed to more general processes such as 
MAPs (Markov Arrival Processes) [8] or non-homogeneous 
Poisson processes. However, for some other types of traffic 
such as Ethernet network, packet arrivals do not follow a 
Poisson process but are rather bursty [9]. The case we are 
dealing with is slightly different because the packet arrival is 
not directly the traffic of the Ethernet network, but it is the 
incoming packets from the network card’s buffer to the kernel 
memory area via DMA. Regarding service rate modeling, 
although program’s code has a quite deterministic behavior, 
some randomness is introduced by Poisson incoming traffic, 
variable length of packets and kernel scheduler uncertainty. 
An analytical solution can become unmanageable when 
considering non-Poisson arrivals, even presuming general 
service times. Despite of these limitations, we will keep 
working with these assumptions for simplicity of the analysis 
and, as will be demonstrated in Section 4, the results obtained 
from our models were closely matching to results obtained 
from real experimental measurements. 

 Apart from that, the main feasible simplification 
preserving the identity of the system is to replace the whole 
traffic monitoring system with its Norton equivalent [10]. Our 
theoretical model has exponential service rates in all stages, 
so applying the Norton equivalence, the new equivalent queue 
will have a state-dependent service rate µeq_TMS(n). 

 
Figure 4.  Simplified model with the Norton equivalent. 

 Therefore, with the aim to obtain the simplified model of 
Fig. 4, we apply the calculation of the Norton equivalent to 
the general model of Fig. 3 several times as we will see later.  

 In the study of this model, we observe that the same 
topology is repeated at different levels of abstraction. This 
topology corresponds with a closed network model with two 
multi-server queues where the output flow of the first queue 
goes to the second one with a probability of 1-p, whereas it 
comes back to the first one with a probability of p, as shown 
in Fig. 5. This structure usually occurs in every processing 
stage. 

 
Figure 5.  Topology repeated at different levels of abstraction. 

3.3 Equations of the Repeated Topology 

 In order to get the Norton equivalent of the traffic 
monitoring system, first, we calculate the state probabilities 
for the repeated topology (see Fig. 5), putting N packets in 
circulation through the closed network, but assuming that the 
total system can have at most K packets being served and the 
rest waiting in the queue. We also take into account the 
limitation of Kc, Kf and Ka processors in each stage. 

 The state diagram for this topology is presented in Fig. 
6. In this model we are representing the state i of the multi-
server queue on the left of Fig. 5 and we will consider µi as 
the service capacity for the state i. N packets are flowing 
through the closed network and when there are i packets in the 
multi-server queue on the left, the rest, N-i, are in the multi-
server queue on the right. The probability of that state i is 
represented as pN(i). Finally, the output of the multi-server 
queue with rate µ2(n2) is the input of the multi-server queue 
with rate µ1(n1). 

 It is possible to deduce the balance equations from the 
diagram of states and, subsequently, the expression of the 
probability of any state i as a function of the probability of 
state zero pN(0). 
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Figure 6.  State diagram for the multiple queue with K1 servers (N≤K). 
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 The term pN(n) indicates the probability of having n 
packets at queue 1 being N the number of packets in the 
closed network. For N≤K (being K the total number of 
processors): 
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 For every value of N, we calculate the throughput of the 
closed network and it will be the Norton equivalent which we 
want. 
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 Taking into account these expressions, we can develop 
the equations of the whole model as will be detailed below. 

3.4 Calculation of the Norton equivalent of the 
traffic monitoring system with losses 

 In order to calculate the Norton equivalence of the 
traffic monitoring system with losses, it is necessary to apply 
equations (1) and (2) several times. 

 First we compute the Norton equivalent for the filtering 
and the analysis stages. Then a second Norton equivalent is 
computed with the result of the first Norton equivalent and the 
multi-server queue with rate µC3. Later, a third Norton 
equivalent is computed with the result of the second Norton 
equivalent and the multi-server queue with rate µC2. Finally, a 
fourth Norton equivalent is computed with the result of the 
third Norton equivalent and the multi-server queue with rate 
µC1. This last result is the Norton equivalent of the traffic 
monitoring system. The service rate of the traffic monitoring 

system will be different for every value of N, i.e. it will be a 
state-dependent service rate. 

 For the calculation of the Norton equivalence, it must be 
remembered that the state diagram makes sense for values of 
N that are less or equal to the highest number of processors. 

3.5 Solution for the Closed Network Model 
with Incoming Traffic 

 The previously explained Norton equivalence takes into 
consideration the internal problems of the traffic monitoring 
system related to the number of available processors. Now we 
complete the model adding the traffic injection queue to the 
equivalent system calculated before and the model of the 
entire system with incoming traffic corresponds with Fig. 4. 
Hence, the entire system under traffic load is modeled as a 
closed network with an upper queue, which is the Norton 
equivalent of the traffic monitoring system, and a simple 
queue on the left of the diagram, simulating the injection of 
network traffic with λ rate. In this closed network, a finite 
number N of packets circulates. This number N is greater than 
K, the number of available processors. 

 The analytical solution of this model is similar to that 
proposed for the repeated topology, taking into account the 
following: the arrival rate is λ and it is not state-dependent; 
the service rates µ1, µ2..., µp correspond with the calculation of 
the Norton equivalent of the traffic monitoring system, thus 
µn=µeq_TMS(n) with values of n from 1 to p; for states n with 
K<n≤N, µn=µK=µeq_TMS(K). 
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Figure 7.  State diagram for the traffic monitoring system with incoming 

traffic (N>K). 

 Fig. 7 shows the related state diagram. This model 
allows us to calculate the theoretical throughput of the traffic 
monitoring system for different loads of network traffic. 

( )( )Np1−⋅λ=γ  (4) 

4 Model Validation 
 This section explains the validation tests of the analytical 
model presented in this paper. The aim is to compare 
theoretical results with those obtained by experimental tests 
over a real traffic monitoring system. Although the model is 
proposed for a generic traffic monitoring system, in this 
section, the model is adapted and validated for the prototype 
called Ksensor. We expect to continue with the model 
validation over other platforms in the near future. It is also 
worth mentioning that some initial values are needed to assess 
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the theoretical model. They have been extracted from 
experimental measurements of Ksensor too. 

4.1 Test Setup 

 Our hardware setup consists, as Fig. 8 shows, of four 
computers: one for traffic generation (injector), a second one 
for capturing and analyzing the traffic (Ksensor), a third one 
for packet reception (receiver) and the last one (manager) for 
managing, configuring and launching the tests. All they are 
physically connected to the same Gigabit Ethernet switch. 

 The basic idea is to overwhelm the system under test, 
Ksensor, with high traffic generated from the injector. In 
order to inject traffic bursts, we have installed an Endace 
4.3GE DAG card [11] on the injector. Regarding software, we 
use a testing architecture designed by our research group [12]. 
The computer called manager is in charge of doing all the 
necessary tasks in order to automate the tests and measure the 
performance metrics of interest. 

 
Figure 8.   Hardware setup for validation tests. 

 The prototype Ksensor is a two-processor probe. One of 
the CPUs is responsible for capturing all the possible packets 
and analyzing some of them, whereas the other CPU is 
responsible only for analyzing packets. 

4.2 Experimental Estimation for Certain Input 
Parameters of the Model 

 The model explained in Section 3 requires some input 
parameters such as µC1, µC2, µC3, µF, µA, pskb, penq and qa. We 
are referring to the service rates and probabilities that appear 
in the model (see Fig. 3) and are needed to obtain theoretical 
results. 

 At the end of every test, the manager (see Fig. 8) collects 
the measurements from Ksensor and the injector. Based on 
some of these experimental measurements (e.g. mean time 
consumed by a packet in every stage identified in the model, 
number of captured packets in softIRQ), we can estimate the 
model’s input parameters. For example, the service rates µC1, 
µC2, µC3, µF and µA are computed as the inverses of the mean 
times experimentally obtained. 

 We have made tests varying the packet injection rate 
between 49487 and 1488000 packets per second, with packets 
of 40 bytes mean length and variable analysis loads (null, 1K, 
5K, 25K) and we have observed that both the service rates 
and the probabilities are dependent on the injection rate and 
the analysis load. The exception is the probability qa, because 
it is set before the test starts. 

4.3 Performance Measurement Evaluation 

 After calculating the necessary values of the input 
parameters, the analytical expressions of Section 3 are 
assessed numerically. Table I and Fig. 9 illustrate this process 
showing, as an example, some numerical values for the case 
of 1K analysis load. 

 First, we have some experimental measurements 
obtained from Ksensor and the injector (e.g. the injection rate 
λ and the number of captured packets in softIRQ in Table I). 
Based on those measurements, we calculate the needed input 
parameters like the probability penq (see Table I). 

TABLE I.  EXAMPLES OF NUMERICAL VALUES USED IN THE EVALUATION 
OF THE ANALYTICAL MODEL 

Experimental measurements 
from Ksensor and the injector 

Input 
param. 

Intermediate 
result 

Injection 
λλλλ (pps) 

Captured 
Packets 

Test 
seconds 

penq 
µTMS(1) 
(pps) 

µTMS(2) 
(pps) 

49487 11924238 240,97 0,00 210690 383526 

151298 36457717 240,97 0,00 210195 382273 

255954 61678719 240,97 0,00 210546 383161 

356470 85898013 240,98 0,00 213581 390861 

453538 100799835 240,97 0,08 219462 399052 

586642 100799835 240,97 0,29 216803 403453 

664903 100037774 240,97 0,36 218532 405820 

906022 105326168 240,97 0,51 224472 417279 

1244992 104778112 240,97 0,65 223863 418296 

1488000 108023963 245,25 0,70 224372 418332 

Values for the case with packets of 40 bytes mean length and 1K analysis load in Ksensor (two-processor 
probe) 

 After that, the Norton equivalent of the traffic 
monitoring system is obtained. As explained before, it is 
necessary to compute the expressions of the repeated topology 
several times. Since we validate the model for Ksensor, the 
values of the parameters related to the number of processors 
are Kc=1 and Kf= Ka=2. Regarding the probability qa, every 
test has been configured with qa=1. Table I shows the values 
of the Norton equivalent of the traffic monitoring system as 
intermediate results. As they are state-dependent service rates, 
they have two values, for n=1 and n=2. 

 Finally, applying the solution for the closed network 
model with incoming traffic, we get the system throughput 
and it can be plotted like in Fig. 9. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 163



 
Figure 9.  Theoretical and experimental throughputs with 1K analysis load in 

Ksensor (two-processor probe). 

 As mentioned, the model’s main result is the theoretical 
throughput and, as seen in Fig. 9, it can be compared to the 
throughput measured by the experimental tests (LAB in Fig. 
9). As we can observe, with N=40, the results are nearly the 
same. This process, which has been illustrated for the case of 
1K analysis load, has also been done for the other cases (null, 
5K and 25K). Acceptable results are obtained too. 

5 Conclusions and Future Work 
 In this paper we have presented and analytical model 
that represents multiprocessor traffic monitoring systems. The 
model is generic and quantifies the system performance. 

 Initially, we detect experimentally an apparently strange 
behavior of the parameter called softIRQ times per packet in 
the traffic monitoring system. This addresses us to set out a 
model based in a closed queuing network which considers the 
capturing, filtering and analysis stages as well as the possible 
packet losses while the packet goes from the network to the 
monitoring application. We obtain the model’s analytic 
solution, identifying a topology repeated at different levels of 
abstraction and applying the Norton equivalent to simplify the 
model. Then, the model is validated comparing theoretical 
results with experimental measurements over a prototype 
called Ksensor. In the validation process we make use of a 
testing architecture that not only measures the performance, it 
also provides values for some necessary input parameters of 
the mathematical model. As seen in the validation section, the 
obtained results are acceptable. Therefore, the model is able 
to represent precisely the behavior experimentally observed 
and also to evaluate the performance of the network traffic 
monitoring system, considering the most representative 
parameters like throughput, number of processors, analysis 
load and so on. 

 Moreover, the model is useful to interpret the variability 
of the processing time per packet in the capturing stage. The 
key is the parameter identified as penq in the model. In this 
work which combines the analytical study with experimental 
measurements, we have observed that this parameter is the 
most significant in the packet losses of the capturing stage. 
So, with high network rates, packet losses can be important 

and the smaller number of packets that reach the monitoring 
application require, in average, less CPU time. 

 Despite the fact that the conclusions have been 
satisfactory with regard to the behavior of the model, there are 
some aspects to be considered in the near future:  

• We have presented a generic model for a traffic 
monitoring system, but we have only validated with 
the prototype Ksensor. We expect to adapt and 
validate the model to other platforms with more than 
two processors and over higher speed networks. We 
are especially interested in multicore systems and 
software probes under virtual machines. 

• We have assumed Poisson processes and exponential 
service times and the results have been acceptable. 
However, we consider interesting to study the 
application of other distributions  

 All in all, we believe this work is one step for a better 
understanding of co-locating capturing process and 
monitoring applications. We can understand how to best 
process packets and whether new modeling techniques can be 
applied to perform network measurement. 
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Abstract - Most of the devices in wireless ad hoc networks use 

battery power as the energy source; it makes the energy 

consumption as an important issue for such networks. Though 

energy maintenance can be performed at each layer but in the 

past, most of the researchers have focussed on MAC layer to 

minimize the energy consumption. The existing power 

controlled MAC protocols stress on reducing the energy 

consumption but they suffer from the disadvantage of 

throughput degradation of the network. In this paper, we have 

proposed a power controlled MAC protocol for wireless ad 

hoc networks that not only reduces the power consumption of 

each node in the network but also improves the throughput of 

the network. Our protocol involves two phases of work. 

Initially the protocol minimizes the power consumption of 

each node by sending the RTS packet with maximum power 

and CTS, DATA, ACK packets with minimum necessary 

power. DATA packets are periodically sent with maximum 

power to avoid unnecessary collisions. In the second phase, to 

improve the throughput of network, the spatial reuse is 

increased by changing the virtual carrier sensing mechanism 

of IEEE 802.11 protocol. 

Keywords: ad hoc networks, energy consumption, MAC 

protocol 
 

1 Introduction 

  Ad hoc networks [1] are the wireless networks in which 

computing or electronic devices (referred as ‘nodes’) join 

together dynamically for transmitting the information from 

one node to another node in the form of data packets. The 

main characteristic which differentiates ad hoc networks from 

its counterpart infrastructure based network is the absence of 

any base-station in the ad hoc networks. 

Wireless nodes use battery as the source of energy. As the 

battery power for any node is limited, it gives rise to the need 

of minimizing the battery power consumption for each node 

in the network. Minimizing the energy consumption of each 

node is the key to keep the ad hoc network functional for a 

long period of time. 

Though energy consumption can be handled at each network 

layer, most of its maintenance is done at medium access 

control (MAC) layer. There are mainly two categories of 

MAC protocols for reducing the energy consumption at each 

node in ad hoc networks; first being ‘Power saving MAC 

protocols’ [2], [3] and second ‘Power controlled MAC 

protocols’ [4], [5], [6]. The first category i.e. ‘Power saving 

MAC protocols’ uses the concept of alternative sleep and 

wake up modes for wireless nodes. The nodes in ad hoc 

network remain in one of the three states: active, idle or sleep. 

Since power consumption in sleep state is less compared to 

other two states, we keep the nodes in sleep mode which are 

not participating in data transmission. On the other hand; in a 

network, power is consumed during computation and 

transmission of packets. But the computation power is 

negligible as compared to transmission power; hence efforts 

are made to reduce the transmission power. This is what 

‘Power control MAC protocols’ uses and sends different 

packet types with different transmission power.  

In this paper, we have focused on ‘Power controlled MAC 

protocols’ in which varying transmission power is used for 

transmitting the packets depending on whether the packet is 

RTS (request-to-send), CTS (clear-to-send), DATA or ACK 

(acknowledgement). In the past, most of the Power controlled 

MAC protocols focused on reducing the energy consumption 

of the wireless nodes without considering the aspect of 

network throughput which degraded on applying those power 

control techniques. 

Our proposed power control MAC protocol not only reduces 

the power consumption of each wireless node of the network 

but also achieves improved throughput as compared to 

previous power controlled protocols. We have made some 

modifications in the virtual carrier sensing (VCS) scheme of 

IEEE 802.11 protocol to improve the spatial reuse of the 

network allowing more number of nodes to transmit frames at 

a time, which in turn, improves the throughput. 

Our paper starts with a brief introduction of MAC protocols 

for ad hoc networks and the issues associated with them. 

Section 2 gives related works on power controlled MAC 

protocols. Section 3 covers the overview of IEEE 802.11 
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protocol which has been used as the base for power controlled 

MAC protocols. In section 4 our proposed power controlled 

MAC protocol is described. Simulation and results have been 

given in section 5. Finally, section 6 concludes the paper. 

2 Related Works 

 Most of the existing Power control MAC protocols are 

based on IEEE 802.11 protocol. It uses CSMA/CA (carrier 

sense multiple access with collision avoidance) scheme, 

where carrier sensing is done using physical (air interface) as 

well as virtual carrier sensing. IEEE 802.11 involves four kind 

of packets namely RTS, CTS, DATA and ACK. Each 

packet’s header contains a duration field that tells the time for 

which the transmission will take place. This duration field is 

used by virtual carrier sensing scheme to avoid collisions. 

Since IEEE 802.11 transmits each packet with the same 

maximum default power without taking any consideration of 

packet type, the energy consumption of each node is very 

high.  

The PCMA protocol [8] allows different nodes in the 

network to send the packets with different transmission power 

levels. It uses four kinds of packets namely RPTS (Request-

power-to-send), APTS (Acceptable-power-to-send), DATA 

and ACK. It follows the sequence RPTS-APTS-DATA-ACK 

for sending DATA packets. It uses two separate channels: 

data channel for RPTS-APTS-DATA-ACK sequence and 

busy tone channel for sending the busy tones while the node is 

receiving DATA packets. It uses busy tones to handle Hidden 

Node Problem instead of RTS-CTS handshake. Whenever a 

node is receiving DATA packets, busy tones are sent 

periodically by receiving node. Busy tone acts as a noise 

tolerance advertisement that can be tolerated by receiver. The 

drawback of PCMA is that it requires a separate signalling 

channel for busy tones. It also creates asymmetric links 

between nodes because each node sends packets with different 

power levels so it is possible that some node N1 can reach to 

any node N2 but not vice versa. 

As a modification to IEEE 802.11 protocol, other power 

controlled protocols use maximum default power for 

transmitting the RTS and CTS packets while DATA and ACK 

packets are sent by minimum required power. This scheme 

has been termed as ‘Basic Power Control Protocol’ [5], [6]. 

Hence, it is possible that nodes in the CSZ (carrier sensing 

zone) that sense RTS-CTS transmission may not be able to 

sense any signal during DATA-ACK. Thus, when these nodes 

start a new transmission by sending RTS with max power, 

collision may occur with both the DATA packet at receiver as 

well as with the ACK packet at sender. This triggers 

retransmission of packets which results in more energy 

consumption and reduced throughput. 

Power Control MAC (PCM) protocol [5] was given to 

remove the deficiency of Basic power control protocols. It is 

similar to the Basic power control protocol, but in addition to 

improving the throughput of the network, the DATA packets 

are sent with the maximum default power periodically. 

F-PCM protocol [6] uses the fragmentation technique along 

with PCM protocol to further improve the throughput. It 

allows fragmenting of large DATA and ACK packets. Here 

also, the RTS and CTS packets are sent with maximum 

default power while the DATA and ACK packets are sent 

with minimum necessary power. But during the beginning of 

sending the DATA packet, the initial DATA fragments are 

sent with maximum power. A similar approach is applied to 

ACK packets. 

Thus, by analysing the previous power control MAC 

protocols, we notice that though they reduce the energy 

consumption of each node but none of them improves the 

throughput of network in comparison to IEEE 802.11 MAC 

protocol. Our work includes both, reducing the power 

consumption of each node and improving the throughput of 

the networks. 

3 IEEE 802.11 MAC Protocol 

 To understand IEEE 802.11 protocol [5], [6], some of the 

basic terms have been defined as follows: 

(i) Transmission range: The range in which any other 

node can both receive the packets as well as 

decode the information contained in the header 

of packets correctly, those were sent by the 

sender. For example, duration field contained in 

the header of a packet. 

(ii) Carrier sensing range: The range in which any other 

node can sense the packets sent by the sender. 

The transmission range is a subset of carrier 

sensing range. 

(iii) Carrier sensing zone: The zone which is outside the 

transmission range but within the carrier sensing 

range of the sender is called carrier sensing 

zone. In this zone, any node can sense the 

transmission of packets by sender but cannot 

decode the packet’s header correctly. 

IEEE 802.11 protocol is based on CSMA/CA scheme and it 

uses four kinds of packets RTS-CTS-DATA-ACK. The 

virtual carrier sensing scheme uses duration field of these 

packets to determine the time for which the current 

transmission would remain continues and the channel would 

remain busy. To avoid any collisions, each node maintains an 

NAV (Network Allocation Vector) in which the remaining 

time of the current transmission is maintained. The NAV 

handling at each node is done as shown in Fig. 1.
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Fig. 1.  RTS-CTS-DATA-ACK handshaking process in IEEE 802.11 [5]

 

4 Proposed Power Controlled MAC 

Protocol with Improved Throughput 

   The existing power control MAC protocols reduce 

the energy consumption of each node but they fail to obtain 

the high throughput compared to IEEE 802.11 protocol. 

The purpose of our work is to design a new power control 

MAC protocol that minimizes the energy consumption of 

each node as well as improves the throughput of the 

network compared to IEEE 802.11 protocol. The work of 

the paper is divided into two phases: 

Phase I: Design a power controlled protocol that 

minimizes the energy consumption of each node. 

Phase II: Associate the designed power control MAC 

protocol with the modified VCS scheme of IEEE 802.11 

protocol for increasing the spatial reuse that will improve 

the throughput of the network. 

4.1 Minimizing the Energy Consumption of 

Each Node 

 Like most of the power control MAC protocols, in 

our paper also, the reduction of power consumption for 

each node can be achieved by sending the packets with 

optimum power (the minimum energy to reach the packets 

at their receiver). IEEE 802.11 sends each kind of packet 

irrespective of RTS, CTS, DATA or ACK with the same 

maximum power. Other power controlled protocols send 

the RTS and CTS packets at maximum power level while 

DATA and ACK packets are sent with minimum necessary 

power that results in the degradation of throughput due to 

increased number of collisions. Hence, in our protocol, 

considering the throughput improvement and minimizing 

the energy consumption, we send the RTS packet with the 

maximum power but all other packets i.e. CTS, DATA and 

ACK are sent with optimum power. DATA packets are 

periodically sent with maximum power to avoid 

unnecessary collisions. 

Implementation of our protocol requires the addition of a 

new field P_RTS to the RTS packet and P_DATA field to 

the CTS packet; where P_RTS is the power level at which 

RTS is sent and P_DATA is the optimum power level at 

which the DATA packets are required to be sent for 

successful receiving. CTS and ACK are also sent with the 

same optimum power. The structures of RTS and CTS 

packets are as shown in the Fig. 2 for IEEE 802.11 and our 

proposed protocol: 

Frame control Duration RA TA CRC 

RTS frame format in IEEE 802.11 protocol 

 

Frame control Duration RA TA CRC P_RTS 

RTS frame format in proposed protocol 
 

Frame control Duration RA CRC 

CTS frame format in IEEE 802.11 protocol 
 

Frame control Duration RA CRC P_DATA 

CTS frame format in proposed protocol 

Fig. 2.  Structure of RTS and CTS frames 

 

The working procedure of our protocol for minimizing 

the energy consumption is as follows: 

 The transmitter node broadcasts the RTS packet at a 

power level P_RTS. Here, P_RTS is equal to the 

maximum transmitted power used in IEEE 802.11 

protocol. 

 The receiver receives the RTS packet at a received 

power Pr. For two ray propagation model, Pr at a 

distance d is calculated as follows 

Pr = 
Ld

HrHtGrGtPt
4

22 
 

Where, Pt is the transmitted power, Gt and Gr are 

the transmitter and receiver gains, Ht and Hr are 

the heights of transmitter and receiver antennas 

and L is the loss factor. 

 The receiver extracts P_RTS from the received RTS 

packet and calculates the value of P_DATA as 

follows and appends it in the CTS packet 

P_DATA = 
Pr

_ RTSP    RxThreshold 

Where RxThreshold is the receiving threshold of 

signal strength at which the receiver can decode 

the signal. 

 The receiver sends the CTS packet at a power level 

P_DATA. 
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 The transmitter sends the DATA packets at the 

power level P_DATA extracted from the received 

CTS packet.  

 The receiver after receiving the DATA packet sends 

the ACK packet at same power which was used to 

send the CTS packet. 

DATA packets are periodically sent with maximum power 

to avoid the unnecessary collisions with ACK packets at 

source node. 

4.2 Throughput Improvement over IEEE 

802.11 

As mentioned in the above section, the nodes use 

different power level for different transmissions based on 

the packet type which may degrade the throughput of the 

network. The throughput of a network can be improved by 

increasing the spatial reuse in the network. In order to 

increase spatial reuse, we modify the VCS (virtual carrier 

sensing) scheme of IEEE 802.11 protocol. 

In 802.11 VCS scheme, if a node overhears an RTS or 

CTS packet, it assumes the channel as busy and sets its 

NAV. Thus, if the node which overhears has any packet to 

send, it defers the transmission for the time of duration 

field’s value extracted from the overheard packet. In our 

protocol, we improve this VCS scheme. 

A node can overhear an RTS packet only or a CTS 

packet only or both RTS and CTS packets. In our protocol, 

since CTS transmission range is less compared to RTS 

transmission range, there is a chance that a node overhears 

the RTS packet only and it has to send a CTS packet, then 

it sends the CTS packet immediately. It doesn’t affect the 

ongoing transmission. For example, consider Fig. 3; 

suppose node N1 has data to send to node N2. So node N1 

sends an RTS packet to node N2. Since N3 is in 

transmission range of node N1, node N3 will overhear the 

RTS packet. After receiving RTS from node N1, node N2 

will respond by a CTS packet. Since the transmission range 

of its CTS is small, it will not be overheard by node N3 and 

therefore N3 will not set its NAV. Now, if node N3 

receives an RTS packet from node N4, it can respond 

immediately with a CTS packet. Thus, it will improve 

spatial reuse because more nodes can send packets at a time 

which, in turn, will improve the throughput of the network.  

To achieve our goal, we propose some modifications in 

the VCS scheme of IEEE 802.11 which are as follows 

 As IEEE 802.11 VCS scheme uses NAV, we 

introduce one more parameter NAVR along with 

NAV. 

 If a node in the transmission range overhears an RTS 

packet, it sets its NAV to a slot time and NAVR to 

the value of duration field extracted from the RTS 

packet. The slot time includes the time to sense the 

channel creating and transmitting the response. 

 

 
Fig. 3.  An example to show transmission ranges of RTS and CTS 

 If a node overhears a CTS packet before the NAV 

expires, it sets the NAV to the value of duration 

field extracted from the CTS packet. 

 Suppose, a node in the transmission range wants to 

send a packet then first of all, it checks the packet 

type. If it is an RTS packet, it can send only if 

NAVR has expired, otherwise, it has to wait for 

backoff time. While, if it is a CTS or DATA 

packet, it can send only if NAV has expired. Like 

IEEE 802.11, ACK packets are sent immediately 

in our protocol also. 

 

5 Simulation and Results 

 We have implemented our proposed protocol on NS-

2.34 network simulator [7]. The metrics, on which we have 

focused, are energy consumption of each node and 

throughput of the network. We setup the scenario of 50 

nodes placed randomly in a terrain size of 800m X 800m. 

The routing protocol used is DSDV. The packet size used is 

512 bytes. We have simulated the same scenario for both 

IEEE 802.11 and our proposed protocol and observed the 

changes in energy consumption and throughput. The 

simulation parameters is be tabulated as below 

TABLE I 

Simulation Parameters 
Terrain size 800m X 800m 

Number of nodes 50 

Application CBR 

Packet size 512 bytes 

Routing protocol DSDV 

Antenna model Omni directional 

Propagation model Two ray ground 
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Fig. 4, Fig. 5 and Fig. 6 show the results obtained at the 

end of simulation. Fig. 4 shows that the energy 

consumption of each node in our proposed protocol is less 

compared to IEEE 802.11. To compare the throughput of 

the network in IEEE 802.11 and our proposed protocol, we 

run the same scenario for different packet sizes. Fig. 5 

shows the results of total energy consumption in the 

network system at the end of simulation on varying the 

packet sizes. It depicts that for each kind of packet size, the 

total energy consumption in the network for our proposed 

protocol remains lesser than IEEE 802.11 protocol. Fig. 6 

clearly shows an improvement in the throughput of the 

network for our proposed protocol in comparison to IEEE 

802.11. 

 

6 Conclusions 

 In this paper, we have proposed a power controlled 

MAC protocol with improved throughput for wireless ad 

hoc networks. MAC protocols given in the past were 

mainly focused on reducing the energy consumption only. 

But the disadvantage associated with those protocols is the 

degradation in the throughput of network while reducing 

the energy consumption of each node. We have developed 

a protocol which improves the throughput of the network 

along with minimizing power consumption of each node. 

For this purpose, we first changed the power levels of 

transmissions for different kind of packets and associated it 

with the modified VCS scheme of IEEE 802.11 protocol to 

increase the spatial reuse allowing more number of 

simultaneous transmissions which ultimately results in the 

increase in throughput of the network. The protocol has 

been simulated on NS-2.34 and the results obtained at the 

end of simulation satisfy the goal of our paper.
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Fig. 4.  Energy consumption of each node in IEEE 802.11 Vs our proposed protocol 

 

 

Fig. 5.  Total energy consumption in IEEE 802.11 Vs our proposed protocol 
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Fig. 6.  Throughput improvement for different packet sizes in our proposed protocol w.r.t. IEEE 802.11 
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Abstract— Wireless sensor networks (WSNs) are used to
collect various data in environment monitoring applications.
The most comprehensive way of data collection is to make
every sensor node report periodically its sensing data to
a base node. To reduce the energy consumption due to
excessive communication, the network is partitioned into a
set of spatial clusters with similar sensing data. For each
cluster, only a few sensor nodes (samplers) report their
sensing data to the base node. The base node may predict
the missed data of non-samplers using the spatial correlation
between sensor nodes. The spatial clustering is vulnerable
to internal security threat such as node compromise. If
the samplers are compromised and report incorrect data
intentionally, then the WSN should be contaminated rapidly
due to the process of data prediction at the base node. In
this paper, we propose intrusion detection algorithms for
secure data collection in the WSN. The algorithms consist
of cluster head monitoring and member node monitoring to
cope with security attacks where either a cluster head or
member nodes are compromised.

Keywords: Wireless Sensor Network, Data Collection, Spatial
Clustering, Security, Attack Detection

1. Introduction
A wireless sensor networks (WSN) typically consist of

a large number of small battery-powered sensor nodes. In
order to sustain sensor nodes to run for a long period, it is
critical to save energy in sensor operations [1]. The primary
functions of WSN are to collect data for observation and
analysis of physical phenomena. There are two types of data
collection in WSN: event-based and periodic approach [5].
In event-based data collection, sensor nodes are responsible
for detecting and reporting (to a base node) events such
as spotting moving targets. They perform local filtering
and sometimes collaborate with each other to detect events.
On the other hand, in periodic data collection, every node
reports periodically its sensing data to the base node. Many
researches prefer the periodic approach because it enables
arbitrary data analysis at the base node [3], [5].

Extracting the vast amounts of data generated by large-
scale, high-density WSN can cause a wide range of prob-
lems. Sensing always and transmitting every data would
cause sensor nodes to drain their batteries soon. Further-
more, the limited communication bandwidth prevents all the
acquired data from being propagated successfully toward the

base node. This means that we need an energy-efficient way
of data collection to prolong the lifetime of WSN by keeping
the energy consumption at minimum.

Spatial clustering is a representative way of saving energy
in periodic data collection [6], [9]. It partitions the network
into a set of clusters where a cluster includes sensor nodes
with similar sensing data. For each cluster, only a few sensor
nodes (samplers) report their data to the base node. All the
rest of sensor nodes can save their energy by keeping in sleep
mode. The base node may predict the missed data using
the spatial correlation between sensor nodes. To balance the
energy consumption, sensor nodes within a cluster can share
the workload equally.

The WSN is vulnerable to security threats both external
and internal due to unreliable wireless channels, unattended
operation of sensor nodes, and resource constraint [2], [12].
Node compromise is a major type of internal attacks. Com-
promised sensor nodes release all the security information
to the adversary. Then, the adversary can easily launch
internal attacks with data alteration, message negligence,
selective forwarding, and jamming [4], [8], [10]. Note that
the node compromise is especially problematic for periodic
data collection applications, where only the samplers may
report data to the base node. If the samplers are compromised
and report incorrect data intentionally, then the WSN should
be contaminated rapidly due to the process of missing data
prediction at the base node. This means that detecting and
defending against node compromise are inevitable tasks to
guarantee the correctness of data collection at WSN.

In this paper, we propose intrusion detection algorithms
for secure data collection in the WSN. The algorithms
consist of cluster head monitoring and sampler monitoring
to cope with internal security attacks where either a cluster
head or member nodes are compromised. In the cluster head
monitoring, neighbor nodes of a cluster head collaboratively
monitor their cluster head. The member node monitoring
algorithm is divided into two variants: monitoring by neigh-
bors (MBN) and monitoring by cluster head (MBCH). They
are based on spatial clustering and try to detect compromised
nodes with energy-efficient manner. The MBN explores the
spatial correlation with a sampler and its neighbors. Neigh-
bors have a role to watchdog. They listen promiscuously to
the sampler’s broadcasting transmission and monitor whether
the sampler is compromised or not. The MBCH does not
impose any additional roles to sensor nodes for security.
Instead, the cluster head has to monitor the transmitted data
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of samplers and compares them with the sensor readings of
non-sampler nodes.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 describes our model of
the WSN and the data collection. Section 4 describes the pro-
posed algorithms in detail and discusses some performance
issues. Finally, Section 5 concludes this paper.

2. Related Work
Most of previous intrusion detection algorithms proposed

for the WSN did not consider the underlying data collection
architectures [4], [8], [10]. The two exceptions are [7] and
[11]. Authors of [7] partition the WSN into several δ-groups
by extending the distributed spatial clustering algorithm [9].
Sensor nodes within the same group are physically close to
each other and their sensed data are dissimilar by at most
δ. To detect compromised nodes, they partition the δ-group
into equal-sized sub-groups. Each sub-group monitors the
entire δ-group in turn to reduce the total power consumption.
However, they did not consider the location information of
monitoring nodes and reporting nodes. If a monitoring node
is not located in the routing path between a reporting node
and the base node, it cannot detect whether the reporting
node is compromised or not. Furthermore, there is no central
decision point and thus every node in the cluster has to
decide the node compromise if alert messages are broadcast
from the monitoring nodes.

Authors of [11] proposed a collaboration-based intrusion
detection algorithm to detect and revoke compromised nodes
in a cluster through less energy consumption. Similar to
this paper, they propose separate algorithms for cluster head
monitoring and member node monitoring. To monitor cluster
head, all member nodes of a cluster are divided into several
groups. Then every monitor group takes turns to monitor
the cluster head in a cluster round time. The cluster head
monitors its member nodes and is responsible to detect the
compromised member nodes. Note that this is contrary to
[7] where every node has to decide the node compromise.

The main problem of [11] is that they did not present how
to detect the misbehavior of each sensor node. This should
be performed on the basis of several monitoring attributes
about sensed data and communication behaviors [7], [8],
[10]. Furthermore, for cluster head monitoring, they did not
consider the location information of monitoring nodes and
the cluster head. This should cause to decrease the detection
accuracy.

Unlike previous cluster-based intrusion detection algo-
rithms, our algorithm is completely integrated into the under-
lying data collection architecture. Our algorithm considers
the WSN structure, cluster formation, and data collection
procedures. This enables our algorithms to optimize energy
consumption for message transmission and sampling.

3. Model of WSN and Data Collection
Figure 1 shows our model of a WSN. The WSN follows

layered network architectures [5]. Let S = {s1, . . . , sn} be
a set of all sensor nodes in the WSN. A data collection tree
is used to propagate the sensed data of each node to the base
node. The base node is the root of the data collection tree.
The WSN is partitioned into disjoint clusters, where a sensor
node is selected as a cluster head (CH). A cluster connection
tree is used to establish the communication between the
CH and the other nodes in the cluster. Each sensor node is
assumed to be able to communicate only with its neighbors.
The set of neighbor nodes of sensor node si is denoted
by nbr(si). The nodes that can communicate with each
other form a connectivity graph. si is forced to sample
periodically, and let D[si] be a vector of sampled readings of
si and L be its length. The correlation of two sensor nodes
si and sj are defined as [5]:

Corr(si, sj) =
(D[si]− E[D[si]]) ∗ (D[sj ]− E[D[sj ]])

T

L ∗
√

Var(D[si]) ∗
√

Var(D[sj ])
(1)

Definition 1. Two sensor nodes, si and sj , are strongly
correlated if 1− |Corr(si, sj)| ≤ δ, where 0 ≤ δ ≤ 1.
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Definition 2. A set of sensor nodes C is called a cluster it
the following two conditions hold for every pair of si ∈ C
and sj ∈ C: (1) si can communicate with sj directly or via
any nodes in C, and (2) si and sj are strongly correlated.

The construction of clusters based on spatial correlation is
an interesting research issue and has been studied by many
researchers [3], [5], [6], [9]. In this paper, we assume that the
WSN is already partitioned into several clusters as Figure 1
shows.

For each cluster, the CH maintains the correlation infor-
mation for every pair of sensor nodes in the cluster. When
a new cluster is established, the CH sends a data mean
vector (E[D[si]]) and a data covariance matrix (Corr(si, sj)∗√

Var(D[si])∗
√

Var(D[sj ])) for every pair of sensor nodes
si and sj to the base node. Each sensor node in the cluster
periodically samples its sensor data and sends it to the CH.
We call the period of sampling as a forced-sampling period
(τf ). The CH evaluates the degree of correlation periodically
and starts a new cluster construction phase if sensor nodes
in the cluster are not strongly correlated anymore.

Each node in a cluster becomes a sampler with a prob-
ability λ. Combining this randomized scheduling with the
round robin scheduling, we can guarantee that at least one
node becomes a sampler for each cluster. A sampler sends its
sensing data to the base node for every τd through the data
collection tree. Then the base node can predict the sensing
data of non-sampler nodes with the data mean vector and the
data covariance matrix [5]. We call τd as a data-sampling
period. Note that we can save energy significantly by setting
τf to be much longer than τd.

4. Secure Data Collection Algorithms
In this section, we first present a cluster head monitoring

algorithm. Then we describe two sampler monitoring algo-
rithms, monitoring by neighbors (MBN) and monitoring by
cluster head (MBCH). Finally, we analyze our algorithms
qualitatively.

4.1 Cluster Head Monitoring
In periodic data collection framework, the CH has a

primary role and thus its security demand is higher than
that of the other sensor nodes. The role of the CH can be
summarized as follows.

• The CH constructs a cluster that consists of sensor
nodes which are strongly correlated to that of the CH.

• After constructing the cluster, the CH sends a data
mean vector (E[D[si]]) and a data covariance matrix
(Corr(si, sj) ∗

√
Var(D[si]) ∗

√
Var(D[sj ])) for every

pair of sensor nodes si and sj to the base node. The
base node will use them to derive the parameters of
the probabilistic models used in predicting the values
of non-sampler nodes.

• For each forced-sampling period, the CH evaluates
the degree of correlation periodically and starts a new
cluster construction phase if sensor nodes in the cluster
are not strongly correlated anymore.

• The CH is responsible to detect compromised nodes in
its cluster.

The first three roles of the CH correspond to the cluster
maintenance. Detecting the misbehavior of the CH at the
cluster maintenance is a challenge, since most decisions
of the CH comes from the raw information of member
nodes such as the history of sensor readings. This cannot be
done simply by neighbor based detection of communication
behavior [8], [10]. A potential solution is to assign several
CHs in a cluster and to make them monitor with each
other. However, member nodes must suffer from heavy
communication overhead to report their sensor readings to
every CH. We let this issue as a future work of this paper.

In this paper, we concentrate the last role of the CH. Some
sensor nodes will report the monitoring information to the
CH using the member node monitoring algorithm of Section
4.2. Then the CH checks the information and announces to
every member node in the cluster when some sampler is
compromised. This decision could be incorrect if the CH
itself is compromised. Suppose that nbr(CH) is the set of
neighbor nodes of the CH. Then each sensor node si in
nbr(CH) executes the following steps.

1) For each data-sampling period, si overhears the mon-
itoring information sent to the CH. It delivers the
information to every other node in nbr(CH).

2) si also overhears the decision message sent from the
CH. If the decision is different from that of itself, it
decides that the CH is compromised and announces
its decision to every other node in nbr(CH).

3) If more than a predefined percentage of sensor nodes
in nbr(CH) decide that the CH is compromised, one of
them reports it to the base node. Then the base node
segregates the CH from the WSN by broadcasting the
decision to every node and assigns a new CH for the
cluster.

Note that neighbor nodes of the CH would drain its
battery rapidly due to the monitoring task. The primary
source of energy consumption is to make consensus among
neighbor nodes. We can reduce the energy consumption by
considering the type of false alarm. For examples, if we
allow false negative errors where a correct node is deter-
mined as compromised, neighbor nodes need not exchange
their decisions when the CH announces that some node is
compromised. Furthermore, most data collection algorithms
select new CH periodically to prolong the lifetime of the
WSN. This means that the energy consumption of neighbor
nodes can also be distributed to other nodes.
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4.2 Sampler Monitoring
The CH has a role to decide whether a sampler is com-

promised or not. For each data-sampling period, samplers
report their sensor readings to the base node through the
data collection tree. If the CH does not locate on the
routing path from the sampler to the base node, it cannot
detect the compromised sampler. Hence, we modify the data
collection process by reporting the monitoring information
to the CH. In this paper, we propose two sampler monitoring
algorithms. The algorithms have different strategies to select
monitoring nodes that report to the CH and to define
monitoring information to be reported.

4.2.1 Monitoring by Neighbors (MBN)
In the MBN, every neighbor node of a sampler has a

role to a watchdog that monitors the message sent from
the sampler. The following modifications of data collection
procedures are required for the MBN to determine whether
a sampler is compromised or not.

• The CH has complete location information for every
sensor node in its cluster to identify neighbor nodes of
the sampler.

• Each sensor node has a correlation vector to every other
sensor node in the cluster.

Suppose that a sensor node ss is selected as a sampler. ss
notifies itself to the CH1, and the CH wakes up the sensor
nodes in nbr(ss). For each node si ∈ nbr(ss), it reads its
sensing data for every τd. Then si overhears the message
from ss no matter whether or not si is involved in the
communication. If the sensor reading sent from ss is not
strongly correlated to that of si, si reports to the CH. If
more than half sensor nodes of nbr(ss) report to the CH,
the CH decides that ss is compromised and reports it to the
base node. After that, the base node ignores the data sent
from ss. Each sensor node also excludes the compromised
node in selecting the next-hop forwarder to realize the secure
routing.

4.2.2 Monitoring by Cluster Head (MBCH)
In the MBCH, the CH has a role to detect the compro-

mised node. The following modifications of data collection
procedures are required for the MBCH to determine whether
a sampler is compromised or not.

• For each cluster, at least two samplers should be se-
lected for every data-sampling period.

• Samplers are required to send its sensor readings to the
CH.

In the MBCH, the CH performs the detection of compro-
mised node by two ways: (1) comparison between samplers

1To force this procedure to compromised node, the CH may assign some
unique id to the sampler in response to the notification. The base node
should reject a message from the sampler if it does not contain the id.

and (2) comparison between sampler and non-samplers.
Suppose that two sensor nodes, si and sj , are selected as
samplers of a cluster. For every data-sampling period, si
and sj send their sensor readings to the CH. The CH then
forwards the message to the base node only if they are
strongly correlated. Otherwise, one of samplers could be
compromised. In this case, the CH does not forward the
message and waits until the next forced-sampling period to
collect every sampling data and to determine the compro-
mised node.

Note that two samplers are not enough if both of them
could be compromised. To check if such condition happens,
the CH compares the validity of samplers with sensor read-
ings of every non-sampler node for some forced-sampling
period. If the samplers are compromised, the CH reports
them to the base node. Then the base node invalidates previ-
ous sensing data sent from the compromised samplers. If we
increase the number of samplers, the WSN should be more
secure at the cost of increased energy consumption. This
shows an interesting tradeoff between energy consumption
and security enforcement.

4.3 Qualitative Analysis
The performance of MBN and MBCH depends on several

factors of WSN, such as network density, capacity of sensor
nodes, sampling cost, and so on. In this section, we analyze
the pros and cons of two algorithms for each factor.

• Network density: The MBN is effective only if there
are sufficient neighbor nodes for each sampler. This is
because the majority vote is performed to determine if
the sampler is compromised. If the number of neighbor
nodes is not enough, the MBN may be exposed to the
unsafe case when both the sampler and its neighbor
nodes are compromised at the same time. On the other
hand, the MBCH is less dependent on the network
density due to the additional step of comparison at the
forced-sampling period. Note that the MBN does not
support the comparison at the forced-sampling period,
since the sampler is not required to send its sensor
readings to the CH.

• Capacity of sensor nodes: The MBN requires that every
sensor node can store correlation information to every
other sensor node in the cluster. Furthermore, neighbor
nodes of a sampler has to (1) sample at each data-
sampling period, (2) overhear the message sent from
the sampler, (3) calculates the correlation between itself
and the sampler, and (4) report to the CH in case of
correlation mismatch. This means that the MBN spends
a lot of memory resources and computing resources of
sensor nodes. On the other hand, the MBCH does not
spend any additional memory space of sensor nodes
for security enforcement. It just requires more samplers.
However, since the CH detects the node compromise for
itself, the CH can drain its energy more rapidly. This
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means that the MBCH depends on the CH replacement
algorithm to prolong the lifetime of WSN.

• Sampling cost: If the sampling cost is not expensive,
the overhead of the MBN to make neighbor nodes
sample at every data-sampling period is not significant.
In this case, maintaining additional samplers at the
MBCH may take much overhead due to communication
cost of the samplers. Note that the message overhearing
at promiscuous mode of the MBN spends much less
energy compared with the message transmission at
samplers. However, if the sampling cost is high, sensor
nodes of the MBN would spend more energy especially
for the dense network.

• Detection time of compromised node: The MBN can
detect the comprised node as soon as the majority of
neighbor nodes vote. On the other hand, the MBCH
cannot determine the compromised node promptly until
the next forced-sampling period. Note that the MBCH
can reduce the delay if it operates many samplers and
applies majority vote between them. However, many
samplers should result in increased energy consumption
and network traffic.

5. Conclusions
In this paper, we propose intrusion detection algorithms

for secure data collection in the WSN. The proposed algo-
rithms are composed of cluster head monitoring algorithm
and sampler monitoring algorithm. The sampler monitoring
algorithm is also composed of two sub-algorithms, moni-
toring by neighbors (MBN) and monitoring by cluster head
(MBCH). They are based on spatial clustering and try to
detect compromised nodes with energy-efficient manner.
Unlike previous security algorithms for WSN, our algorithms
consider the underlying data collection architectures. The
security task is completely integrated to data collection
algorithm. This enables our algorithms to optimize energy
consumption for message transmission and sampling.

We are investigating quantitative analysis of the secure
data collection using our simulation model. The simulation
model is developed with CSIM package and implements
variety of WSN configurations and workloads.
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Abstract - In this paper the general characteristics and 

bandwidth capabilities of Multiprocessor Interconnection 

Networks have been analyzed. We have examined some 

popular FT(Four Tree)[8],MFT(Modified Four 

Tree)[2],THN(Theta Network)[13],NFT(New Four Tree)[4], 

IFT(Improved Four Tree)[5], IASN(Irregular Augmented 

Shuffle Network)[14] and IIASN(Improved Irregular 

Augmented Shuffle Netwrok) [3] networks which are irregular 

in nature[11]. The structural characteristics comparison of 

these networks is presented in terms of number of switches, 

links and stages etc. The bandwidth [15] and probability of 

acceptance of all the networks evaluated by using 

probabilistic approach [6] and their simulation results are 

compared. 
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1 Introduction 

                 Parallel processing systems have a huge 

number of processors and an interconnection network to 

provide interprocess communication. One of the major design 

issues of these system to make these system fault tolerant[12], 

reliable and excellent in performance wise. Multistage 

interconnection networks (MINs) which are widely used in 

designing of multi processor architecture are attracting much 

concentration from parallel processing. The MINs are 

categorized as regular and irregular depending on the internal 

arrangement of switching elements SEs. In irregular the 

number of switches in each stage can vary. Most previous 

work has focused on evolution of the performance of regular 

MINs like as OMEGA, ESC, Multistage Cube, ASEN[11] and 

ABN[7] etc., but little work has been done for irregular class 

of Networks. In this paper we have considered some popular 

irregular networks which are multipath in nature. In this paper 

it is assumed that each processor is attached to an input port 

and an output port of considered MINs. However these results 

are also applicable to processor-memory interaction. The 

performance of all surveyed MINs is evaluated on the basis of 

bandwidth utilization and probability of acceptance of request 

which are coming from source processor to destination 

processor. The structural characteristics of surveyed MINs are 

also summarized in terms of number of switches, link and 

mux/demux used for the construction of them.      

The rest of the paper is organized as follows. Section 

2 discusses the structural characteristics of the surveyed MINs. 

Section 3 discuses the analytical model of probability of 

acceptance and bandwidth analysis of considered MINs. 

Finally conclusions have been given in Section 4. 

 

2  Structural Characteristics of MINs  

                 Table 1 summarizes the structural characteristics of 

surveyed MINs and it has been observed that all the networks 

which are used for inter processor communication are fault 

tolerant. One can choose the network on behalf of number of 

switches, number of links, multiplexers, demultiplexers and 

express links to reduce the cost. In later discussion it is 

summarized that the network with more switches and links 

have great failure rate in comparison to a network with lesser 

switches and links.    

 

3 Probability of acceptance and 

Bandwidth  

Probability of acceptance (POA) is defined as the fraction of 

incoming requests accepted by the output stage of network 

[7].It is the ratio of expected band-width (i.e. total no of 

successful requests) to the expected number of requests 

generated per cycle. Patel et al. suggested a probabilistic 
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approach[6] to evaluate these parameters with following 

assumptions: 

- At each cycle, packets are generated at each source 

independently with probability p. 

- Each packet is send with equal probability to any 

destination. 

- The packet rate i.e the number of packets issued per cycle 

by a processing element , is p where p<=1 

- Requests that are not accepted during a memory cycle are 

discarded. 

For a system with N processors and M memory modules , if a 

processor generates a request with probability p in a cycle 

directed to each memory with equal probability then the 

bandwidth is given by Strecker et al. as : 

BW = M(1-(1-p/M)
N
)                  (1)  

 Table 1: Summary of Structural Characteristics of MINs 

MIN Number of 

2x2 Switches  

Number of   

links/stage 

excluding 

express links   

Number  of 

switches with 

conjugate 

loops    

Number of 

Stages  

Type/ 

Number 

of mux 

Type/ 

Number 

of demux 

Redundant paths 

 

  

FT 

 

N/2 N(input and  

output   

stages) 2N+4 

(interior) 

N+2 Log2N+1 2:1/N 1:2/N Yes 

MFT 

 

N/2 N(input and 

output   

stages) 2N+4 

(interior) 

N+4 Log2N+1 

2:1/N 1:2 /N 

Yes 

THN 

 

N+N/2 N(input and 

output   

stages) 2N 

(interior) 

Zero Log2N 

2:1/N 1:2 /N 

Yes 

NFT 

 

N/2 N(input and 

output   

stages) 2N 

(interior) 

N Log2N+1 

2:1/N 1:2 /N 

Yes 

IFT 

 

N/2 N(input and 

output   

stages) N+N/2 

(interior) 

N-N/4 Log2N-1 

4:1/N 1:2 /N 

Yes 

IASN 

 

N/2 N(input and 

output   

stages) N+N/2 

(interior) 

N-N/4 Log2N-1 

4:1/N 1:2 /N 

Yes 

IIAS

N 

 

N/2+2 N(input and 

output stages) 

N+N/4 interior 

N/2 Log2N-1 

4:1/N 1:2 /N 

Yes 
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            Table 2 : Summary of Bandwidth Analysis of Various MINs when n=4 

 

 

  

 

 

 

 

 

 

  

Where p/M is the probability that a processor requests a 

particular memory module, [1-(p/M)]
N
 is the probability that 

none of the N processors requests the memory module in a 

particular cycle.     

Figure 1: Bandwidth Analysis of various MINs 

The table no. 2 shows that the bandwidth grows with the 

increase of probability of issuing the request.  The graph in 

figure 1 shows that the probability of acceptance of various 

MINs remains constant when the probability of issuing the 

request is higher. It has been also observed that at the last 

stages when the probability of issuing of requests is 0.9 and 

1.0 the difference between bandwidth in case of IIASN is 

0.4304 quite less in comparison to 1.296 at very earlier states 

when probability of issuing the request was 0.1 and 0.2 which 

also lesser costlier[16] among all MINs.     

 

4  Conclusions  

          The general characteristics in terms of structural 

characteristics has been analyzed one can choose the 

interconnection networks on the behalf of compared results. 

The performance in terms of bandwidth, probability of 

acceptance has been analyzed in this paper. The results for 

bandwidth show that the probability of maximum passing of 

request of IIASN network is higher than other networks. The 

bandwidth of IIASN gradually increases with the increase of 

probability of issuing a request.  
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Abstract - Mobility and quality of service (QoS) are becoming the more 
important issues in wireless communications. The traditional Internet 
service is expanding into new access media and applications. Since wireless 
communication services are accompanied by frequent handovers at remote 
sites, scalable and fast handover has become a prerequisite for ubiquitous 
communication.  

In this paper, the differentiated service (Diffserv) model is deployed in 
heterogeneous proxy mobile IPv6 (PMIPv6) networks to satisfy the QoS 
guaranteed service and fast handover requirements. The operational 
procedures for QoS guaranteed global roaming are presented. In addition, 
QoS management and handover cost evaluation schemes based on a mobile 
host’s movement scope are proposed. This paper analyzes the reduction in 
handover delay in a network-based localized mobility management 
framework. We propose and analyze a PMIPv6 optimized with a global 
mobile access gateway (G-MAG), which is a network-based entity, to further 
improve the handover performance in terms of handover delay while 
maintaining minimal signaling overhead in the air interface among 
converged heterogeneous wireless networks. The handover signaling 
procedures with host-based MIPv6 are compared with network-based proxy 
MIPv6 (PMIPv6) and fast PMIPv6 assisted by G-MAG to show how much 
handover delay reduction can be achieved. Analytical results show that the 
handover delay is significantly reduced. 

Keywords: QoS, PMIPv6, handover, global roaming, cost 
evaluation. 

1. Introduction 

 Traditional Internet service does not consider issues with 
host mobility and QoS such as transmission delay, packet loss 
ratio, and bandwidth. However, providing secure and seamless 
mobility and guaranteed QoS become more critical issues in 
wireless mobile services. Furthermore, the services that are 
now being used on mobile networks, including, Internet 
broadcasting, teleconferencing, interactive role playing, and 
telemedicine, tend to require a predefined QoS. 

In the near future, wireless networks are going to fully 
integrate different wireless access technologies to enable their 
users to exploit advantages of these various technologies and 
satisfy the QoS requirements of new applications. Various 
wireless communication protocols developed for different 
purposes are integrating and converging to ubiquitous 
communications, which request QoS-guaranteed, fast, and 
seamless roaming services. The increasing demands for 
ubiquitous and mobile computing will require the integration 
of various wireless access technologies such as WLAN 
(wireless LAN), 3GPP (3rd generation partnership project), 
3GPP2 (3rd generation partnership project 2), and IEEE 

802.16. To visualize these access technologies, wireless 
networks have been converging to the Internet Protocol (IP). 
For instance, the mobile IPv4 (MIPv4) [1] and mobile IPv6 
(MIPv6) [2] protocols were already standardized by IETF 
(Internet Engineering Task Force). In addition, the IEEE 
802.16e amendment [3] enhances IEEE 802.16 with mobility 
support for users moving at vehicular speeds, and the WiMAX 
(Worldwide Interoperability for Microwave Access) Forum 
has adopted IP mobility [4]. An IP level mobility protocol is 
needed to enable the users of these future wireless networks to 
roam freely between various access networks. Global roaming, 
guaranteed QoS, and vertical handover will be prevalent in the 
near future. 

The Internet protocol IPv4 has been slowly progressing 
toward IPv6, and during this period both protocols have 
become a part of the Internet service infrastructure. The 
existing wired core Internet architecture that is linked to 
wireless access networks is going to evolve into wireless 
Internet environments. A large number of different wireless 
access networks are linked using a multi-hop infrastructure, 
including notebook PCs, PDAs, and small sensors, and are 
being served actively. The MIP (mobile Internet protocol) has 
been developed to provide mobile Internet services based on 
host mobility. Although it is a stable and mature technology, 
there are some obstacles to overcome to be widely deployed. 
It is too heavy to be implemented on small mobile devices and 
complicated message exchange procedures must be handled 
by the mobile host itself. As a network-based localized 
mobility protocol, PMIPv6 has been proposed to overcome 
the problems with MIP’s host-based mobility and long 
handover latency [5]. The goal of PMIPv6 is specifying a 
simple extension of MIPv6 that would support network-based 
mobility for IPv6 hosts, while reusing the signaling and 
features of MIPv6. As an alternative to MIP, PMIPv6 reuses 
the MIPv6 entities and concepts as much as possible, but the 
mobility management procedures are carried by the network 
devices. Moreover, the mobility infrastructure in the PMIPv6 
domain can provide mobility to an MN operating in IPv4, 
IPv6, or dual mode, even if the transport network is not an 
IPv4 or IPv6 network. As a result, a new standard for 
supporting an IPv4 host and IPv4 network in PMIPv6 was 
released [6] and a new protocol for supporting MIPv6 hosts 
attached in PMIPv6 is actively being discussed[7]. PMIPv6 is 
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applicable to various networks but is inappropriate for global 
roaming applications.  

To solve the long handover latency of MIPv6 and 
localized movement in PMIPv6, we propose a new scheme 
that provides appropriate QoS and global roaming. This 
scheme adopts a QoS management server and global MAG. It 
extends the localized movement scope of PMIPv6 to 
heterogeneous global networks such as different ISPs or 
international regions without considering the MN’s location 
and movement. It also analyzes the host mobility costs based 
on the MN’s movement scope. 

The rest of this paper is organized as follows. Section 2 
describes the related works for reducing handover cost and 
providing QoS schemes in MIP networks. In section 3, we 
describe the architecture and functionality of PMIPv6 
networks deploying Diffserv. The mobility management 
procedures for handover cost evaluation and supporting 
differentiated services are discussed. Section 4 presents the 
analytical results for Diffserv and the handover cost based on 
the MN’s movement. Conclusions and remarks are presented 
in section 5. 

 

2. Related Works 
 In MIPv4, an MN is identified by its home address, 
regardless of its current point of attachment in the network, 
and the MN is associated with a care-of-address (CoA) when 
it is away from home [1]. This triangular routing causes 
significant delay that degrades the handover performance. It is 
important for the mobility management to support fast and 
seamless handover with negligible delay, which enables active 
services without disruption. Thus, improvements were made 
and incorporated in a newer version of MIP called mobile 
IPv6 (MIPv6) to overcome some of the drawbacks [2]. It has 
been discovered that mobility can be more efficiently handled 
if the mobility management is divided into global mobility 
management and localized mobility management. Extensions 
of MIPv6 such as hierarchical mobile IPv6 (HMIPv6) [8] and 
fast handover for mobile IPv6 (FMIPv6) [9] have been 
proposed by IETF for efficient localized mobility management. 
The main goal of these localized mobility management 
protocols is to reduce the handover delay by localizing the 
registration of an MN [8] so that seamless service continuity 
can be achieved during roaming across wireless networks. 
Handover latency is mainly the result of delays caused by the 
discovery, configuration, authentication, and binding update 
procedures associated with a mobility event. Most of the 
recently proposed mobility management schemes have been 
host based, that is, the MN is directly involved in mobility-
related signaling. Studies on handover cost evaluation to 
reduce these delays have been performed in various MIPv6 
networks [10-16]. Handover anticipation based on layer 2 (L2) 
trigger information is used to reduce the registration delay 
[10-14]. M. Lopez et al. proposed a proactive handover 
scheme [10] that only considers the predictive mode. Both the 
predictive and reactive modes are considered to optimize the 
handover delay in PMIPv6, but the performance was analyzed 

separately for each mode [11-12]. To enhance the handover 
performance, K. Lee [13] proposed a cross-layering 
mechanism combined with IEEE 802.16e networks. For a 
more accurate performance evaluation in FMIPv6, S. Ryu et al. 
proposed combining the two modes and considered the 
probability of predictive mode failure (PPMF), which is 
affected by the radius of a cell, velocity of a mobile host, and 
L2 triggering time [14]. To enhance the handover performance 
in PMIPv6, they proposed optimizing the authentication delay 
and predicting the optimized route in [15, 16], respectively. 
Although PMIPv6 performs better than the typical host-based 
MIPv6 and its extensions in terms of handover performance 
[11, 12], it has a long handover delay when an MN moves 
away from its local area.  
 Mobile Internet traffic has recently increased at an 
exponential rate, and the new class of applications increases 
the need for QoS guarantees, which pose big challenges for 
the current wireless communication environments. The gap 
between QoS provisioning and demand has been significantly 
enlarged. Integrated services (Intserv) [17] and Diffserv [18] 
were proposed to solve the QoS problem in IP networks [19, 
20]. Most QoS-providing models in wired and wireless 
networks focused on the buffer scheduling mechanisms based 
on traffic types. Various QoS provisioning schemes have been 
proposed for mobile IP networks [21-24]. However, these 
studies did not consider the MN’s movement. In this paper, we 
propose a new scheme that allows an MN to move wherever it 
wants while receiving a guaranteed QoS. A priority queue 
model is used to provide differentiated QoS in our model. 
Because the BE traffic has the lowest priority, the highest and 
medium priorities are allocated to the EF class and AF class, 
respectively. To enable a performance analysis of the priority 
queue, we use the M/G/1 [25] queuing model. 
 

3. QoS Guaranteed Global Roaming 
Model in Heterogeneous PMIPv6 
Networks 

3.1. Basic Operation of PMIPv6 
PMIPv6 reuses the infrastructure of existing MIPv6 

protocols but adopts new entities such as a mobile access 
gateway (MAG) and local mobility agent (LMA) for network-
based mobility management. The MAG monitors the MN’s 
movement in access links and sends signaling messages to 
LMA instead of the MN. The LMA is an anchor point of the 
MN that assigns a home network prefix to the MN and 
performs the HA role in PMIPv6 domain. It also manages the 
MN’s reachability state in the domain. Typically, the MAG 
functionalities are embedded in an access router and the LMA 
is stacked in the gateway. There is an IP tunnel for transferring 
signals and data packets between an MAG and LMA. When 
an MN is attached to the PMIPv6 domain, the MAG tries to 
acquire the MN’s profile from the policy server. That profile 
contains the MN’s ID and IP address configuration method for 
access link and may include the MN’s home network address 
of IPv6. When the MAG acquires the profile of the MN, it 
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sends a proxy binding update message to register the MN’s 
location to the LMA. After receiving the proxy binding update 
message, the LMA sends a proxy binding acknowledge 
message, including the MN’s home prefix information, and 
creates a bi-directional tunnel to the MAG. It also manages a 
routing table for transferring data to the MN and maintains the 
MN’s reachability. Then, the MN sets up its IP address 
through a router advertisement procedure to get information 
about its home network prefix and address configuration 
method. When an LMA receives external packets from the 
PMIPv6 domain for the MN, it forwards them through the 
tunnel to the MAG, which will eventually forward them to the 
MN. 
 
3.2. QoS Guaranteed Handover Scheme for 

Global Roaming 
PMIPv6 provides mobility without the participation of 

the host, but its mobility management scope is restricted 
within an LMA domain. However, the host needs inter-LMA 
and inter-Internet service provider (ISP) movement, as well as 
global roaming. In this section, we propose a roaming scheme 
which includes global roaming. Based on the MN’s movement 
scope, which might be intra-LMA, inter-LMAs, or inter-ISP 
domains, we analyze the QoS guaranteed handover costs. 

Fig. 1 illustrates the proposed network architecture for 
QoS-guaranteed, fast, global roaming in heterogeneous 
PMIPv6. In this model, we adopt new entities: a QoS agent 
(QA) to support differentiated service and global MAG (G-
MAG) for fast handover when an MN moves between ISP 
domains. This scheme could provide QoS guaranteed services 
depending on a subscriber’s service level agreement (SLA) in 
PMIPv6 networks. More details of the procedures for an MN’s 
movement and SLA management are provided in [26, 27]. We 
assume that an ISP network is composed of various access 
infrastructures according to its QoS level and locality. An ISP 
has a global QoS agent (GQA or QA) that acts as a global QoS 
manager, like a bandwidth broker in a Diffserv network. 
Neighboring GQAs can communicate with each other to 
establish an inter-domain QoS association such as SLAs. Each 
subnet of an ISP may have its own local QoS agent (LQA or 
QA) and HA for QoS and mobility management within its 
local area. Each LQA can manage the resources within its 
subnet, and serves the MN with a service profile. 

 

 
Fig. 1 Network architecture for QoS-guaranteed, fast, global roaming. 

Three MN movement scope cases are shown in Fig. 1. In 
the first two cases, an MN moves around within the same ISP 
domain, while it moves into a neighboring ISP domain in the 
other case. In this figure, (1) indicates intra-LMA movement, 
which means that an MN attached to MAG1 moves into the 
new access point (AP) linked to MAG2, where both MAGs 
are managed by the same LMA1. Movement (2) represents 
inter-LMA movement. This means that the MN attached to 
MAG2 moves into MAG3, where the MAGs are managed by 
different LMAs, but both of them belong to the same ISP 
domain. Movement (3) shows inter-ISP movement, which 
means that an MN moves into another ISP domain’s access 
point. This movement is called global roaming, which causes 
complicated procedures for handover. It causes long delays 
and QoS degradation. A global MAG (G-MAG) may solve 
this problem. It is geographically located on the border 
between ISP domains and used to connect the domains with a 
security association (SA). Thus, the G-MAG can manage the 
LMAs, AAAs, and QAs of both domains. In addition,  it is 
able to transfer its profile and authentication information from 
one LMA to the other LMA during the pre-inter-domain 
handover. The G-MAG is able to estimate the MN’s location 
and detect its movement by tracing the access point where the 
MN is attached. Thus, it can properly predict the point of the 
inter-domain handover execution. If the MN’s inter-domain 
handover is imminent, the G-MAG performs a pre-inter-
domain handover in advance of the inter-domain handover 
between the previous MAG and new MAG while the MN is 
still connected to the G-MAG. 

 
3.3. Performance Analysis 

This section describes a QoS-guaranteed handover cost 
analysis model that depends on an MN’s movement scope. 
The handover cost of PMIPv6 CHO can be expressed as the 
sum of movement detection latency TMD, proxy binding update 
latency TPBND, and router advertisement latency TRA:  

     
,HO MD PBND RA

PBND AUTH QoS CONF

C T T T

T T T T

= + +

= + +
              (1) 

where TPBND can be expressed as the sum of authentication 
delay TAUTH, QoS management delay TQoS, and address 
configuration delay TCONF.  
 

 
Fig. 2 QoS-guaranteed fast handover cost analysis. 

 
Fig. 2 shows the QoS-guaranteed handover cost analysis 

model based on Fig. 1, which shows all three MN movement 
scenarios. The notations (1), (2), and (3) represent intra-LMA, 
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inter-LMA, and inter-ISP movements, respectively.  
As shown in (1) of Fig. 1, when an MN moves to MAG2 

from MAG1, MAG2 should register the MN to its LMA. 
Since the handover procedure is performed by the MN’s 
movement detection, when an MN attaches to a new AP that is 
covered by a new MAG (MAG2), the AP sends L2 handover 
messages to the MAG2. This causes MN movement detection 
delay TMD. When MAG2 detects the MN’s movement, it sends 
authentication and QoS profile request messages for the MN 
to the AAA and QA servers, respectively. After receiving the 
authentication and QoS acknowledgement messages for the 
above queries, MAG2 sends a proxy binding update (PBU) 
message to its LMA. If the LMA can allocate the home 
network prefix to the MN, it sends a proxy binding 
acknowledgement (PBA) message to MAG2. MAG2 sends a 
router advertisement (RA) message to the MN when it 
receives a PBA message from the LMA. The intra-LMA 
handover in PMIPv6 is now completed. In this case, both 
MAGs (MAG1 and MAG2) are in the same region of LMA1, 
and the MN’s registration procedures follow the conventional 
PMIPv6 protocol [5]. The QoS-guaranteed handover cost of 

intra-LMA movement in PMIPv6 network 
_

_
INTRA LMA
P HOC  can be 

described in expression (2):  
_ _ _ _

_ _ _ _

_ _
_ _

_ _ _ _
_ _ _ _
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where tra is the movement detection delay, tmr and tam are 
wireless and wired delays, and ta and tq are authentication and 
QoS setup delays, respectively.  

An inter-LMA handover cost analysis is shown in (2) of 
Fig. 2. Since PMIPv6 is designed to manage local area 
movement, if an MN is away from its current LMA domain, 
registration procedures for the MN should be carried out 
through its home network. This causes a long delay and QoS 
degradation. To reduce the handover delay through the MN’s 
home network, we propose the use of a pre-handover 
mechanism before detaching the current MAG (MAG2). 
When an MN receives a new router advertisement message 
with a network prefix that is different from its current one, it 
sends a request to its current MAG (MAG2) to send its profile 
to the new MAG (MAG3) before detaching from MAG2.  

In this message, the MN’s profile is included for 
movement management without link disruption. Since MAG3 
receives the MN’s profile from MAG2, it does not need to 
request authentication and QoS properties from its home 
network entities. Thus, we can significantly reduce the 
handover cost. When an MN moves to a new MAG that 
belongs to a new LMA domain, the proposed fast handover 

cost is represented by equation (3):  
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where taml is the delay for the MN’s profile transfer 

between the two MAGs and pre-handover delay 
LMAINTER

REGPREfPT _
__ , 

which occurs before the MN’s movement to support for the 
MN’s movement between LMAs, can be neglected. An inter-
ISP handover cost analysis is shown in (3) of Fig. 2. If it has to 
be executed in the conventional PMIPv6 schemes, the MN 
suffers from a long service disruption because of the home 
registration of the MN. When the MN moves from MAG3 to 
MAG4, the inter-ISP handover latency becomes too long to 
support seamless service continuity. To reduce this long inter-
ISP handover latency, we propose a new scheme that adopts a 
network entity called G-MAG, as shown in Fig. 1. The G-
MAG is located between ISP domains and is connected to 
both domains with a security association (SA). Upon 
predicting an imminent inter-domain handover for the MN, it 
performs the inter-domain handover while the MN is 
connected to the previous MAG (MAG3) in the previous 
domain (ISP A). Since the G-MAG has dual connections 
between ISP domains, it can gather and manage the LMA 
information of both domains. It can also transfer the MN’s 
profile and authentication information from one LMA to the 
other LMA during the pre-inter-domain handover. The G-
MAG is able to estimate the MN’s location and movement 
direction by tracing the AP where the MN attaches. 
Consequently, the G-MAG can properly predict the inter-
domain handover execution point. Thus, because the new 
MAG (MAG4) receives the MN’s profile from the G-MAG, it 
does not need to request authentication and setup QoS 
properties from its home network.  

 
Therefore, the proposed scheme can reduce the inter-

domain handover latency by avoiding the signaling to the 
MN’s home network. When an MN moves to a new MAG that 
belongs to a new ISP domain, the handover cost of the 
proposed scheme is represented by equation (4):  
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(4) 

 
where tamg is the delay between MAGs that belong to 
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different ISP domains.  
To show our model’s handover cost effectiveness, we 

present a handover cost analysis model for the conventional 
PMPv6 in Fig. 3. It shows a cost evaluation for inter-LMA and 
inter-ISP handovers in the conventional PMIPv6. As can be 
seen in this figure, the intra-LMA handover cost is identical to 
(1) of Fig. 2. Thus, the intra-LMA handover cost in the 
conventional PMIPv6 is the same as expression (1). However, 
when an MN moves to LMA2 from its previous LMA (LMA1), 
the new MAG (MAG3) and LMA2 have no information about 
the MN if these events occur in conventional PMIPv6 
networks. The delay associated with acquiring the MN’s 
profile, authentication, and QoS information through the MN’s 
home network should be taken into account, in addition to the 
handover costs for inter-LMA and inter-ISP movements in the 
conventional PMIPv6. 

 

 
Fig. 3 Handover cost analysis in conventional PMIPv6. 

 
In Fig.3, (2) and (3) represent the inter-LMA and inter-

ISP handover cost evaluations. When an MN moves into a 
new LMA or  new ISP domain that does not belong to its 
previous network, there are no benefits to PMIPv6 because it 
was developed as a local movement management scheme. 
Thus, all of the mobility procedures have to be carried out like 
in MIPv6 networks. When a new MAG such as MAG2 or 
MAG3 detects an MN’s movement, it has to acquire the MN’s 
profile, authentication, and QoS information through the MN’s 
home network. After receiving the MN’s profile from its home 
network, the new MAG sends a PBU message to its LMA 
(LMA2 or LMA3). After receiving the PBA message from the 
new LMA, the new MAG sends an RA message to the MN, 
and the inter-LMA or inter-ISP handover is completed. The 
handover costs for these two cases are the same because the 
handover procedures for inter-LMA and inter-ISP movements 
are identical. The handover cost is expressed by (5): 
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where tah, ta’, and tq’ are the delays for the MN’s registration, 
authentication, and QoS management through its home 
network, respectively. 

4. Cost Evaluation Results 

In this section, we compare the handover costs of the 
conventional scheme and our proposed models in 
heterogeneous PMIPv6 networks by service types and the 
MN’s movement scope. The parameters used in this handover 
cost analysis are defined as follows. Let’s assume that a CN 
generates data packets destined for an MN at mean rate α and 
an MN moves from one subnet to the other at mean rate β. 
The packet to Mobility Ratio (PMR), ρ = α/β, is defined as 
the mean number of packets received by an MN from a CN 
per movement. The parameters lc and ld are defined as the 
average length of a control packet and data packet, 
respectively. Then, their ratio, l, can be defined as lc/ld. The 
cost of transmitting a control packet is given by the distance 
between a sender and a receiver. The cost of transmitting a 
data packet is l0 times greater than the average cost of 
processing a control packet at any host (and forwarding data 
packets at an HA). The average delay time and packet loss 
probability are very important factors for QoS. In Diffserv 
networks, ingress edges classify the traffic by SLA. We 
assume three service levels: EF, AF, and BE. We also assume 
that an access router accommodates different types of data 
packets from numerous connections. To serve these three 
types of traffic, we use 3 buffers in the output buffer module 
of each node. In this paper, each node has an M/G/1 queuing 
model for evaluating the performance of prioritized packets. 
Packets are summed to arrive in the queue according to a 
Poisson process with mean rates λ1, λ2, and λ3 for EF, AF, and 
BE packets, respectively. The service times for packets from 
each traffic class follow exponential distributions, with mean 
rates of 1/µ1, 1/µ2, and 1/µ3 for EF, AF, and BE packets, 
respectively. The mean offered load of the EF, AF, and BE 
packets in the buffer are ρ1=λ1/µ1, ρ2=λ2/µ2, and ρ3=λ3/µ3, 
respectively. The packet scheduling at the buffer module is as 
follows. First, the server visits an EF buffer. If packets exist in 
the EF buffer, it serves them until the buffer is empty. 
Otherwise, the server visits an AF buffer, and serves the 
packets in that buffer. After the service is finished for the AF 
buffer, BE packets are served. 

To compare our QoS-guaranteed model with the existing 
extensions of MIPv6, we use the wired and wireless 
experimental results in [11, 12]. The values are tmr = tam = thc 
= 10 ms, ta = tq = ta’ = tq’ = tah = tac = 20 ms, tra = 2 ms, tamg = 
6 ms, and taml = 4 ms. The control packet size and data packet 
size are assumed to be 100 bytes and 1,024 bytes, respectively, 
and the buffer size, K, is assumed to be 100. The traffic arrival 
rates are λ1 = 0.5, λ2 = 0.3, and λ3 = 0.2 under a work-load of 
0.5. 

Figs. 4, 5, and 6 show the handover costs according to 
service type and MN movement scope. Fig. 4 shows the intra-
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LMA handover costs of MIPv6 and PMIPv6. In this case, we 
represent the cost of handover from the conventional PMIPv6 
(cPMIPv6) and proposed fast PMIPv6 (fPMIPv6) as PMIPv6 
because when an MN moves around in an LMA domain, the 
handover procedures are identical, and thus the handover costs 
are the same. As can be seen, the difference between the 
handover costs of MIPv6 and PMIPv6 is significant because 
of the MN’s CoA registration in MIPv6 networks. It also 
shows the service types are a significant element influencing 
the handover costs. As shown in Fig. 4, the main factor for the 
handover cost is the service policy. PMIPv6 shows very good 
performance compared to MIPv6. In the PMIPv6 network, the 
handover costs for the EF, AF, and BE services are 9.64 times 
smaller than MIPv6’s for all of the traffic. 

 
Fig. 4 Intra-LMA handover costs in PMIPv6 networks. 

 
The inter-LMA and inter-ISP handover costs in PMIPv6 

are shown in Fig. 5 and Fig. 6, respectively. In these figures, 
we omit the MIPv6 costs because the results are the same as 
those of Fig. 4. Thus, we compare the results of the 
conventional PMIPv6 and proposed fast PMIPv6 schemes. 
When an MN moves between LMAs, the handover costs of 
fPMIPv6 are significantly lower than those of cPMIPv6. This 
is because when an MN moves to a different LMA in a 
cPMIPv6 network, additional handover procedures to acquire 
the MN’s profile are needed, as in MIPv6. All of the fPMIPv6 
service types show better performance than the AF service of 
cPMIPv6. The handover costs of fMIPv6 are 2.15 times 
smaller than those of cPMIPv6 for all of the traffic. This 
shows that our scheme is effective for inter-LMA movement. 

 
Fig. 5 Inter-LMA handover costs in PMIPv6 networks. 

 

 
Fig. 6 Inter-ISP handover costs. 

 

Fig. 6 shows the inter-ISP handover costs. In this case, 
we adopt a G-MAG to eliminate the MN authentication 
process and QoS setup delay involving its home network. The 
handover costs are shown for BE, AF, and EF traffic in the 
conventional and fast PMIPv6. Our scheme reduces the 
handover cost by 1.65 times compared to cPMIPv6. The 
results show that fPMIPv6 is effective under global roaming 
circumstances and could be adopted in future global networks 
that require an MN that is fast and QoS-guaranteed roaming. 
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5. Conclusions 

Various applications and portable communication 
devices demand various QoS and mobility levels under 
different circumstances. To provide a guaranteed QoS and 
fast mobility, we propose procedures for mobility and QoS 
management in heterogeneous PMIPv6 networks. When 
Diffserv is deployed in a mobile IP network, various 
problems are encountered. The most significant problem is 
related to the acquisition of the service profile for the MN 
when it moves into a different ISP domain. Since the first-hop 
router does not have any information about the newly 
attached MN, a guaranteed QoS could not be provided. To 
solve this problem, we present procedures for acquiring the 
MN’s service profile and additional information based on the 
MN’s movement scope. Through a guaranteed-QoS handover 
cost analysis and evaluation, we reduce the handover cost by 
9.64 times compare to MIPv6 for intra-LMA movement. 
Moreover, our scheme shows handover cost efficiencies for 
inter-LMA and inter-ISP movements that are 2.15 and 1.64 
times better than the conventional PMIPv6, respectively. 
Consequently, our scheme is effective under global roaming 
circumstances and could be adopted in future global networks 
that require a fast speed, guaranteed QoS, and roaming. In 
future work, we will refine the message types and registration 
procedures to manage the MN’s mobility more effectively 
and reduce the total communication cost. An authentication 
mechanism for seamless handover will also be considered to 
construct a service that is more efficient and secure, with a 
guaranteed QoS in heterogeneous PMIPv6 networks. 
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Abstract - The reconfigurable mesh (R-Mesh) was shown to 

be a very powerful model capable of extremely fast solutions 

to many problems. R-Mesh has a wide range of applications 

such as arithmetic problems, image processing and robotics. 

The 2D R-Mesh was shown to be able to solve the path 

planning problem very fast.  

In this paper, we propose an algorithm to compute a 

collision-free path between a source and a destination in an 

environment with the existence of obstacles. Independent of 

the number of obstacles, k, the proposed algorithm runs in 

constant time and requires O(log 
2
N) pre-processing time 

where N is the size of the R-Mesh. This is in contrast to the 

previous work that requires O(k) time with the same pre-

processing time. We then make a modification to the obtained 

path to enhance its length. This enhancement also requires 

constant time.  

 

Keywords-parallel algorithms, reconfigurable mesh, path  

                 planning 

 

1 Introduction 

 

Reconfiguration is a very powerful computing paradigm, 

capable of extremely fast solutions to many problems. 

Models such as the reconfigurable mesh (R-Mesh) [9] (shown 

in Figure 1) have the ability to change the interconnection 

between processors at every step of the computation to allow 
efficient communication as well as performing computation 

faster than conventional non-reconfigurable models. A 2D R-

Mesh is an array of processors with fixed external 

connections between each two neighboring processors. Also 

it has dynamically reconfigurable internal connections within 

each processor. This allows altering the interconnection 

among processors very fast, possibly at each step of the 

computation.  

Robot motion planning algorithms aim to plan a path for 

a moving robot from a source location to a target location. 

The environment that the robot navigates through may have 
obstacles. The main target for the robot is to maneuver 

without colliding with obstacles if any. In general, the 

existent obstacles may be static or dynamic obstacles; i.e. 

moving obstacles. Restrictions on the robot movement from 

source to destination may take into account a number of 

factors. These include the robot shape and type of movement; 

for example translational or rotational. To simply handle the 

path planning problem, the image of robot and obstacles are 

digitized and stored in the R-Mesh, with one processor 

holding one pixel of the image. The R-Mesh was shown to 

handle these kinds of problems very fast. Also some 

techniques use first an algorithm to generate the configuration 

space. The configuration space is a slightly different image 

for the robot and the obstacles than the original image. It can 

be obtained by expanding the obstacles based on the shape of 

the robot and its movement. This way, the robot that is not 

point-like can be converted to a point-like robot. This greatly 

simplifies the design and analysis of the algorithm.  

Since path planning problem is computationally 

intensive, many parallel algorithms have been proposed using 

various algorithmic models and assumed different robot 

shapes. These models include R-Mesh, hypercube computers, 

etc.  

Tzionas et al. assumed a diamond-shaped robot and 

presented a parallel algorithm for collision-free path planning 

[12]. Jenq and Li [4] used hypercube to compute the 

configuration space optimally. The algorithm was shown to 

be optimal where it requires O(log n) time for an n ×  n image 

by using n ×  n Mesh of processors. D. Wang [14] proposed 

efficient algorithms for solving the reachability problem in 

one dimensional space. Dehne et al. [3] presented a systolic 

algorithm for computing the configuration space for obstacles 

in a plane for a rectilinear convex robot. The algorithm takes 

O(n) time for an n ×  n image on an n ×  n mesh of  

processors. 

 H.C. Lee [7] studied the maze-routing problem and it 

was shown that the R-Mesh is suitable for developing 

efficient and fast algorithms to solve the maze-routing 

problem. The maze-routing problem has its application in the 

path planning problem. 
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Fig.1 (a) Example of buses in a 3 ×  5 R-Mesh 
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Fig.2 Illustration of the linear time algorithm [15] 

 

Recently, D. Wang [15], used the 2D R-Mesh to compute 

a collision-free path. The obstacles are assumed to be disjoint 

convex or concave polygons. The algorithm starts by drawing 

a line from the source location to the destination location. 
Then, it finds the obstacles that intersect with that line if any. 

If more than one obstacle is found, then the algorithm 

combines these obstacles into one big obstacle. If only one 

obstacle   is  found  or  using  the   combined  obstacle, the 

algorithm finds the tangent lines to that obstacle and finds if 

new obstacles intersect with these tangent lines. The 

mentioned operation is repeated till the four tangent lines to 

the combined obstacle from the source and destination do not 

intersect with any obstacles. At the end, there will be two 

possible collision-free paths from the source to destination. 

This operation requires all obstacles to be convex or concave 

polygons.  The algorithm runs in O(k) time with 
preprocessing O(log 2

N) time. Figure 2 shows the two 

possible paths from the source s to the destination d for the 

given environment. In the figure, there are four obstacles 

labeled O1, O2, O3 and O4. The obstacles are combined into 

one obstacle, then the tangents t1, t2, t3 and t4 from the source 

and the destination are drawn to this combined obstacle. Thus 

there are two possible paths between s and d. Intuitively, the 

work in [15] finds a path that goes around the obstacles in the 

area between the source and the destination. With an 

O(log2
N) preprocessing time for the given obstacle image, the 

algorithm uses O(k) time to compute a path from a source to a 

destination while avoiding all obstacles in the environment, 
where N is the total number of processors (pixels) and k is the 

number of obstacles. 

In this paper, we consider the R-Mesh for computing a 

collision-free path between a source and a destination in the 

presence of obstacles. Independent of the number of 

obstacles, k, the algorithm runs in constant time and requires 

O(log 2
N) pre-processing time where N is the size of the R-

Mesh. This is in contrast to the work of Wang [15] that 

requires O(k) time with the same pre-processing time. The 

main idea is to start with a straight line between the source s 

and the destination d. We denote this line segment sd . The 

path is generated such that it follows the straight line segment 

sd  with going around each obstacle that intersects with this 

path. The algorithm generates 2m possible paths where m is 

the number of obstacles that intersects with sd , km ≤≤1 . 

Then an enhancement to the generated path is proposed. This 

enhancement tends to decrease the length of the generated 

path.  

 The next section presents some preliminaries and 

definitions. Section 3 describes the preprocessing operations 

that are applied before running the proposed algorithm. In 

Section 4, we describe the proposed algorithm and its time 

analysis. Section 5 presents an enhancement to the algorithm 

that could reduce the length of the generated path. In Section 

6, we summarize our results and make some concluding 

remarks. 

 

2 Preliminaries  
 

In this section we introduce some preliminaries and 

definitions that are used through out this paper. 

  

2.1 Reconfigurable Mesh 

 

An R× C reconfigurable mesh or R-Mesh [13] consists of 

an R-row, C-column array of processors connected by an 

underlying mesh (see Figure 1). Number the rows (resp., 

columns) 0,1..., R-1 (resp., 0,1..., C-1) as shown in Figure 1. 

Each processor has four ports (called North, South, East, and 

West ports in the obvious manner, and abbreviated N, S, E, 
and W (see Figure 1(b)). 

Each processor can independently partition its ports to 

connect certain ports together leaving other ports 

unconnected. For example, in Figure 1(a) the top left 

processor connects its N port to its S port, and its E port to its 

W port. The corresponding partition is denoted by{NS , }EW . 
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Figure 1(a) shows the fifteen possible port partitions of the R-

Mesh. 

An assignment of a port partition to each R-Mesh 

processor is called a configuration. Figure 1(a) shows one 

possible configuration. The port partitions along with the 
underlying mesh connections between neighboring processors 

form buses connecting processors. Figure 1 shows buses 

connecting sets of processors. An assumption central to all 

traditional R-Mesh algorithms is that buses have constant 

delay, regardless of the number of processors they span which 

enables us to design very fast algorithms. An R-Mesh making 

this assumption is called a unit-cost R-Mesh. In this paper we 

consider the unit-cost R-Mesh. 

At each step of an R-Mesh algorithm, a processor could 

perform the following actions: (1) configure (partition) its 

ports, (2) read from or write to its ports, and (3) perform a 

local computation. An R-Mesh could permit concurrent reads 
and writes.  If more than one processor is allowed to write to 

a bus at the same time, then the R-Mesh has concurrent write 

ability and the concurrent write rules [13] are used to resolve 

the values written to the bus. In this paper, we consider 

exclusive read exclusive write (EREW) R-Mesh. 

 

2.2  Configuration Space 

 

Usually the robot that navigates from a source to a 

destination has a certain shape and size. To be able to find a 

path without colliding with the existing obstacles, we need to 

take into account the shape and the size of the robot. One way 
to simplify handling the robot shape and size is to create what 

is called a configuration space. Instead of dealing with the 

robot as an object with a certain shape and size, we deal with 

it as a point and try to find a path from the source to 

destination. The configuration space is a slightly different 

image for the robot and the obstacles than the original image. 

It can be obtained by expanding the size of the obstacles that 

account for the shape and size of the robot. Thus, the robot 

can be reduced to a point. Many algorithms have been 

proposed to compute the configuration space for different 

robot shape and size [6]. For example if the robot is of 

polygon shape, the configuration space can be computed 

using the R-Mesh in O(1) time. In this paper we deal with the 

configuration space directly; i.e. we assume it has been 

already computed. Figure 3 shows the expanded obstacles for 

a rectangular robot.  

 

3 Pre-processing Operations 

 

The preprocessing operation, convexaziation, handles all 

the obstacles in the environment. The process builds a convex 

hull for each obstacle and enumerate the extreme points of 

each convex. Figure 4 shows an obstacle after applying the 

operation of convexaziation. The target is to identify the 

extreme points of the convex hull of the given polygon H. 

The figure shows the polygon after enumerating its extreme 

points. The work of Miller et al. [9] performs this operation 

on all the obstacles in the environment in O(log
2 N) time 

where N is the size of the R-Mesh. After enumerating the 

extreme points, each extreme point processor has a flag to 
identify it as extreme point. Each extreme point processor has 

the following information (1) The ID number of the polygon 

this extreme point belongs to. (2) The number of the extreme 

point in the polygon. (3) The locations of the previous and the 

following extreme points. In other words, each extreme point 

contains segments information associated with it. 

We assume that after convexization, s and d are not 

covered by any convex polygon. If that is not the case, a 

constant time operation treatment discussed later in section 6 

reduces the problem to the assumed situation. 

 

4 Constant Time Algorithm 

 
In this section we describe a constant time algorithm to 

solve the path planning problem on the R-Mesh. In section 5, 

we propose a constant time operation that enhances the 

generated path. Given an environment in the presence of 

obstacles, it is required to find a collision-free path from a 

source location s, to a destination location d. We assume that 

the obstacles to be disjoint convex or concave polygons. If 

two polygon images intersect, we consider them one polygon. 

The input to the R-Mesh is an n ×  n image that represents the 

environment. The image is digitized, stored to the R-MESH, 

one pixel per processor. There is a flag associated with each 
processor. The flag has a value of 1 or 0 based on the 

digitized image. We use an n  n R-Mesh to solve the path 

planning problem.  

Generally speaking, the idea is to start with a straight line 

between the source s and the destination d. The final path 

tries to follow the line segment sd . If sd does not intersect 

with any obstacle, then sd represents the final path. If sd
intersects with a number of obstacles, then the final path 

follows the straight line segment sd  with going around each  

×
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Fig.4 Enumerating the extreme points of a polygon H. 

The bold edges represent the convex hull of H. 
 

obstacle that intersects with this path. We show that this path 

can be computed in constant time. Since going around    an   

obstacle  could  be  in  clockwise  or  counter clockwise 

direction, then there are 2m possible paths from s to d where m 

is the number of obstacles that intersects with segment sd , 

km ≤≤1 .  

Figure 5 shows the same environment as the presented in 

Figure 2. Figure 5 shows the path from the s to the destination 

d provided by the proposed algorithm. 

 

4.1 Basic Operations 

 

In this section we develop some operations on the R-Mesh 

that will be used in the proposed algorithm in Section 4.2. 

 

• Broadcasting Data  
Once the buses of R-Mesh are constructed, data 

movement on the R-Mesh requires constant time. The 

information written on the bus by any processor incident on 

the bus reaches all the processors incident on the bus in 

constant time. To broadcast data to all processors of the R-

Mesh, partition all processors as NSEW . If any processor 

write information on the any port, it reaches all processors in 

O(1) time. Thus broadcasting data to all processors requires 

constant time.  

 

• Adding  a new point as an extreme point 
Let H be the convex hull of an obstacle O. Assume that 

the extreme points are enumerated in counter clockwise 

direction. Each extreme point knows its ID and the locations 

of preceding and following extreme points. In other words, 

each extreme point contains segments information associated 

with it. Consider an edge e with two extreme points x and y 

enumerated as i and i+1. The target is to add a new point z 

that is located on the segment as an extreme point. The 

operation uses the local bus via convex hull H. Let the 
processor representing z cut the local bus from x to y. The 

processor z exchanges the data with extreme points x and y 

using the local bus. The  data  exchanged  include  IDs  of  

s

d

O1

O2

O4

O3

 

Fig.5 Path generated by proposed algorithm in bold 
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     point z

extreme point x

extreme point y

 

 
Fig.6 Addition of a new extreme point to a convex hull of 

an obstacle 
 

 

extreme points and their locations. Now processor x sets its 

following  extreme   point  as z  and   processor y  sets  its 

preceding extreme point as z. Processor z sets its preceding 

and following extreme points as x and y respectively while 

the processors x and y keep their IDs. The processor z sets its 

ID to a special ID to indicate that z is an added extreme point. 

The described operations require constant time. Figure 6 
shows the operation of adding a new extreme point to a 

polygon.  

 

• Constructing a bus from s to d 
The target is to construct a bus from s to d on the R-Mesh 

that represents the segment sd  as follows. Given that the 

locations s and d are known to all processors in the R-Mesh, 

each processor determines whether or not it belongs to the 

segment sd . Then each processor that belongs to the segment 

sd  computes the position of its preceding processor and the 

position of its following processor on the path from s and d. 

This allows each processor to configure its ports to connect 

its preceding processor and its following processor. For 

example, if a processor p finds that its preceding (resp. 

following) processor is the processor on its West (resp. 

North), then processor p configure its ports }{ SENW ,, to 

connect the preceding and following processors. Constructing 

the bus includes a constant number of operations which can 
be done in constant time. 
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4.2 The Proposed Algorithm 

 
In this section, we describe the proposed constant-time 

algorithm. We assume an n  n R-Mesh as the working 

environment. Again, the image of the obstacles is digitized, 
input and stored one pixel per processor. There are k disjoint 

polygonal obstacles. Also, we assume that the robot has been 

reduced to a point using the constant time algorithm proposed 

in [6]. Given the source point s and the destination point d, it 

is required to compute a collision-free path between s and d.  

Let Ps and Pd be the two processors that represent the 

positions of s and d respectively. The high level description 

of the proposed algorithm is as follows. 

 

Collision-Free Path Algorithm 

Input:  The image of the obstacles, the positions of source s   

              and destination d. 

Output: A collision-free path between s and d.   

Model: An N-processor, 2D-EREW R-Mesh 

 
Step 1. Processors Ps and Pd broadcast their positions to    

             all processors of the R-Mesh. 

Step 2. All edges of all convex hulls calculate whether 

            they intersect with the segment sd or not and  

            determine the points of intersections if any. Let  

            convex hull Hi intersects with sd at points li (l-point)  

            and ri (r-point) where { }ki ..,,1∈ . Let         

           }{ kiHS i ..1| ∈= be the set of convex hulls that   

            intersect with sd where mS =|| . 

Step 3. For all SH i ∈ , add points li and ri to the extreme  

            points of convex hull Hi. 

Step 4. Construct a bus from s to d, default bus, and let all  

             processors li and ri cut the bus. Now, the bus from s    

             to d consists of a number of segments. The first  

             segment is from s to an l-point and the last segment  

             is from r-point to d. 

Step 5. Each two neighbouring processors cutting the  

             default bus exchange their positions.   
Step 6. Determine the collision-free path from s to d as a  

             number of consecutive segments as follows.  

• First segment is from s to the following l-point along 

sd . 

• The segment from any r-point processor to the 

following l-point processor is along sd . 

• The segment from any l-point processor to the 

following r-point processor is composed of a number 

of sub-segments along the convex hull of the obstacle 

and taken from the enumeration in the pre-processing.   

• Last segment is from an r-point to d along sd . 

 

Now we describe the algorithm in detail. Step 1 

broadcasts the positions of the source point and the 

destination point to all the processors on the R-Mesh. This 

enables all processors to compute the line segment sd . In 

Step 2, each edge belongs to a polygon determine whether or 

not it intersects with segment sd . If an edge e intersects with 

segment sd , then the terminal points of the edge e determine 

the intersection point. Note that if a polygon Hi intersects 

with segment sd , then it intersects in two points li (l-point) 

and ri (r-point). The l-point (resp. r-point) is the one that is on 

the side of the source (resp. destination).   Figure 7 shows 

four intersection points for the obstacles O1 and O2 with sd . 

Let the set W contains all the intersection points; i.e. W={li,,ri|

ki ..1∈ }. Step 3 adds the two points li and ri to the extreme 

points of the polygon Hi, ki ..1∈ . Thus, each point li knows 

its preceding and following extreme point in the convex hull 

of the obstacle, same for point ri. Since there are two paths 

around the obstacle to reach ri from li, then a certain rotation 

direction should be decided. Here we assume, without loss of 

generality, that we go around the obstacle in clockwise 

direction. Note that the counter clockwise direction could be 

also followed. In Step 4, the algorithm constructs a bus, 

default bus, on the R-Mesh from s to d, as shown in Section 

4.1 and let all processors li and ri, ki ..1∈ , cut the bus. In 

other words, the constructed bus now consists of a number of 

segments. There is a processor belongs to the set W between 

each two consecutive segments. In Step 5, each two 

neighbouring processors in W exchange their positions. This 

enables the start point, s, to know the following extreme point 

(an l-point) and also enables the last intersection point (an r-
point) to know that the next point is the destination, d. Now 

the point s knows the first intersection extreme point (an l-

point) and the last intersection extreme point (an r-point) 

knows the following point, d. Also along the path from s to d, 

each extreme point knows the following extreme point. Step 6 

determines the final collision-free path from s to d. The path 

is composed of a number of segments. All the points li and ri, 

ki ..1∈ , belong to the final path and each represents a 

turning point on the path from s to d.   

The first segment is from s to the following l-point and 

follows the segment sd . The last segment is from an r-point 

to d and follows the segment sd . A segment from any r-

point processor to the following l-point processor follows the 

segment sd . A segment from any l-point processor to the 

following r-point processor follows the convex hull of the 

obstacle and is taken from the enumeration in the pre-

processing in Section 3.  

 

 

 
 

×
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Fig.7 Intersection points for obstacles with segment sd  
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Fig.8 Replacing segments of the path generated by 

the proposed algorithm 

 

4.3 Time Analysis 

 

In this section, we show that the algorithm runs in 

constant time. Step 1 broadcasts the two positions for s and d 

to all processors of the R-Mesh. Broadcasting on the R-Mesh 

requires constant time as shown in Section 3. Step 2 

calculates the intersection points for every edge with segment

sd . Since each extreme point in a convex hull contains the 

information of the two segments on which it is incident. 

Therefore, all the intersection points can be computed in 

parallel in O(1) time. Step 3 uses the sub bus within the 

polygon to add li and ri to the extreme points of the polygon 

as shown before in O(1) time. In step 4, all processors use the 

positions of s and d to configure their ports in parallel such 

that the segment sd is constructed. The computation and 

configuration is done in constant time. Step 5 sends 

information on the constructed segments between each two 

neighbouring processors from Step 2. Sending constant 

number of variables on the bus requires O(1) time. Step 6 

requires local computation at all points li and ri, hi ≤≤1 , 

kh ≤ and this requires O(1) time. Thus, the whole algorithm 

runs in constant time.  

Convex Hull
of Oi

s

d

li

Oi

ri

 
 

Fig.9 Handling the case if s or d is within a convex hull of 

an obstacle 

 

 

5 Enhancing the path length 

 
In this section, we present an enhancement to the 

proposed algorithm that could make a modification to the 

generated path. The target is to decrease the length of the 

generated path using constant time operations. The operations 

try to replace a segment of the path by another segment if this 
would shorten the path length. In particular, the operation 

tries to replace the segment ii yl  of the path, by another 

segment iis yl )(  if the segment of iis yl )(  is outside obstacle 

Oi. Point ls(i)  is  the point of intersection between the segment 

sd and the perpendicular line to sd that passes through y. 

Figure 8 shows an example of the segment sd that intersects 

with two obstacles O1 and O2. The path generated by the 

algorithm is shown in bold. However, when applying the 

operation to the segment  11yl  of the path, this segment is 

replaced by another segment 1)1( yls that would make the path 

shorter.  The same operation is applied to the segment 11rw

and is replaced by the segment  )1(1 srw  because it happened 

to be of shorter length. If the new segment lies within the 

obstacle itself, then no replacement is done. This is the case 

for O2 in Figure 8. The figure shows the path in bold when 

applying this operation to the path of Figure 5. 

The above operation of replacing one segment by another 

can be done in constant time. Point yi (respectively wi) 

computes the point ls(i) (respectively rs(i)) in constant time. If 
the computed point lies within the obstacle Oi then no 

replacement is done. If the computed point, for example ls(i), 

lies outside the obstacle Oi then the replacement would make 

the path shorter. In this case, yi informs li and ls(i) by this 

replacement over the local buses in constant time. 
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6 Source and Destination within convex     

      hulls 

 
In section 4 we proposed the algorithm assuming that the 

source and destination points, s and d, are outside any convex 

hull. In other words, after preprocessing phase neither s nor d 

is located within any convex hull of an obstacle. In this 

section, we deal with the case that s or d or both are within a 

convex hull. Figure 9 shows an example where the source s is 

within convex hull of obstacle Oi. In such case, a minor 
change to the algorithm handles this situation. In Step 2 of the 

algorithm, after determining the intersection points, the 

source s and the first intersection point exchange information 

about their status. The status of a point could be an l-point 

(resp. r-point). If the source s found that the next point is an l-

point, then the algorithm continues as described in Section 4. 

The l-point reaches the r-point through the convex hull of the 

obstacle. If the source s found that the next point is an r-point, 

then the source s decides that the next point on the path is on 

the other side from the destination point d and the algorithm 

continues. The above operation could also be applied for the 
destination d and it requires a constant number of steps and 

can be done in O(1) time. Figure 9 shows the generated path 

in bold in the case where s is within the convex hull of 

obstacle Oi. 

 

7 Concluding Remarks 

     

  In this paper, we proposed an algorithm to compute a 

collision-free path between a source and a destination in an 

environment with the existence of obstacles. We used the 

EREW R-Mesh as the underlying architecture. The algorithm 

was shown to run in constant time and requires O(log 2N) pre-

processing time. This outperforms the previous method that 

required a linear time in the number of obstacles with the 
same pre-processing time. We also proposed a method that 

could shorten the length of the path generated by the 

proposed algorithm. 

One possible extension to this work is to design 

algorithms that get the shortest path between the source 

position and the destination position in the existence of 

obstacles. Other directions include enhancing the 

preprocessing time and using other parallel models to solve 

the path planning problem. 
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Abstract 

 
The mutual exclusion (MX) paradigm can be used as a building block in many practical problems such as group 
communication, atomic commitment and replicated data management where the exclusive use of an object might be 
useful. The problem has been widely studied in the research community since one reason for this wide interest is 
that many distributed protocols need a mutual exclusion protocol. However, despite its usefulness, to our knowledge 
there is no work that has been devoted to this problem in a mobile computing environment. In this paper, we 
describe a solution to the mutual exclusion problem from mobile computing systems. This solution is based on the 
token-based mutual exclusion algorithm. 
Key-words: Synchronous Distributed Systems, Mutual exclusion, Fault Tolerance, Mobile Computing System. 
 
 
1. Introduction 

 
The wide use of small portable computers and 

the advances in wireless networking technologies 
have made mobile computing today a reality. 
There are different types of wireless media: cellar 
(analog and digital phones), wireless LAN, and 
unused portions of FM radio or satellite services. 
A mobile host can interact with the three different 
types of wireless networks at different point of 
time. Mobile systems are more often subject to 
environmental adversities which can cause loss 
of messages or data [8]. In particular, a mobile 
host can fail or disconnect from the rest of the 
network. Designing fault-tolerant distributed 
applications in such an environment is a complex 
endeavor.  
In recent years, several paradigms have been 
identified to simplify the design of fault-tolerant 
distributed applications in a conventional static 
system. Mutual exclusion, simply MX, is among 
the most noticeable, particularly since it is 
closely related to accessing shared resource 
called the critical section (CS) [7], which (among 
other uses) provides an exclusive access basis for 
implementing the critical section. 
The mutual exclusion problem [1] requires two 
properties, safety and liveness, from a given set 
of processes. The problem has been widely 

studied in the research community [2,3,4,5,6] 
since one reason for this wide interest is that 
many distributed protocols need an mutual 
exclusion protocol. However, despite its 
usefulness, to our knowledge there is no work 
that has been devoted to this problem in a mobile 
computing environment.  
The aim of this paper is to propose a solution to 
the mutual exclusion problem in a specific 
mobile computing environment. This solution is 
based on the token-based mutual exclusion 
algorithm that is a classical one for distributed 
systems. The rest of this paper is organized as 
follows: in Section 2, a solution to the mutual 
exclusion problem in a conventional synchronous 
system is presented. Section 3 describes the 
mobile system model we use. A protocol to solve 
the mutual exclusion problem in a mobile 
computing system is presented in Section 4. We 
conclude in Section 5. 
 
2. Mutual Exclusion in a Static 
System 
 
2.1 Model and Definitions 
  

We consider a synchronous distributed system 
composed of a finite set of process Π = {p1, p2,., 
pn} connected by a logical ring. Communication 
is by message passing, synchronous and reliable. 
A process fails by simply stopping the execution 

194 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |

mailto:spark%7D@cbnu.ac.kr�


(crashing), and the failed process does not 
recover. A correct process is the one that does not 
crash. Synchrony means that there is a bound on 
communication delays or process relative speeds. 
Between any two processes there exist two 
unidirectional channels. Processes communicate 
by sending and receiving messages over these 
channels.  
The mutual exclusion problem is specified as 
following two properties. One is for safety and 
the other is for liveness. The safety requirement 
asserts that any two processes connected the 
system should not have permission to use the 
critical section simultaneously. The liveness 
requirement asserts that every request for critical 
section is eventually granted. A mutual exclusion 
protocol is a protocol that generates runs that 
satisfy the mutual exclusion specification. 
 
2.2 Token-based Mutual Exclusion 
Algorithm 
 

As a classic paper, the token-based mutual 
exclusion algorithm, which was published by M. 
Raynal, specifies the mutual exclusion problem 
for synchronous distributed systems with crash 
failures and gives an elegant algorithm for the 
system; this algorithm is called the token-based 
MX Algorithm [2]. The basic idea in the token-
based MX algorithm is that the any process 
holding the token can use the critical section 
exclusively. The token-based MX algorithm is 
described as follows. 
- A distributed system is connected by a 

logical ring. Each process has a unique ID 
that is known by its neighborhood processes.  

- The CS is exclusively used by the process 
holding the token.  

- The token is circulated on the logical ring. If 
a process wants to use the CS, then it just 
waits until receiving a token from its 
neighborhood. Only when it has received the 
token, it has a right to use the CS exclusively. 

- When the process with the token finished its 
use of CS, it immediately passes the token to 
its neighborhood. 

- If a process doesn’t to use a CS when it 
received the token, it just pass the token to it 
neighborhood.  

- There exists only one token and the token is 
continuously circulated upon the logical ring. 

- By doing this, any process eventually 
receives the token and it can use the CS 
exclusively, which means that this algorithm 
satisfies both of the safety and the liveness 
properties.  

 
3. Mobile System Model 
 
  A distributed mobile system consists of two set 
of entities: a large number of mobile hosts (MH) 
and a set of fixed hosts, some of which act as 
mobile support stations (MSSs) or base stations. 
The non MSS fixed hosts can be viewed as MSSs 
whose cells are never visited by any mobile host. 
All fixed hosts and all communication paths 
connect them from the static network. Each MSS 
is able to communicate directly with mobile hosts 
located within its cell via a wireless medium. A 
cell is the geographical area covered by a MSS. A 
MH can directly communicate with a MSS (and 
vice versa) only if the MH is physically located 
within the cell serviced by the MSS. At any given 
instant of time, a MH can belong to one and only 
one cell. In order to send message to another MH 
that is not in the same cell, the source MH must 
contact its local MSS which forwards the 
messages to the local MSS of the target MH over 
the wireless network. The receiving MSS, in its 
turn, forwards the messages over the wireless 
network to the target MH. When a MH moves 
from one cell to another, a Handoff procedure is 
executed by the MSSs of the two cells. Message 
propagation delay on the wired network is 
arbitrary but finite and channels between a MSS 
and each of its local mobile hosts ensure FIFO 
delivery of messages.  
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                     Figure 1: Mobile System Model 
 
- The amount of computation performed by a 

mobile host should be kept low 
- The communication overhead in the wireless 

medium should be minimal. 
- Algorithm should be scalable with respect to 

the number of mobile hosts. 
- Algorithm should be able to easily handle the 

effect of mobile host disconnections and 
connections. 

 
4. Mutual exclusion in a Mobile 
System 

 
In the following, we consider a broadcast group 
G = (G_MSS, G_MH) of communicating mobile 
hosts, where G_MH and G_MSS are respectively 
a set of m mobile hosts roaming in a geographical 
area (like a campus area) covered by a fixed set 
of n MSSs. In so far, local mobile hosts of base 
station MSSi, which currently residing in MSSi 
cell, will refer to mobile hosts that belong to 
group G.  
A mobile host can move from one cell to another. 
If its current base station fails, the connection 
between the mobile host and the rest of system is 
broken. To recover its connection, a mobile host 
must move into another cell covered by an 
operational or correct base station. So, unless it 
crashes, a mobile host can always reconnect to 
the network. A mobile host may fail or 
voluntarily disconnect from the system. When a 
mobile host fails, its volatile state is lost.  

In this environment, the mutual exclusion 
problem is defined over the set G_MH of mobile 
hosts. When a mobile host hk wants to use the CS, 
it sends the request message to a MSS. In this 
case, the mobile host eventually should get the 
permission from the MSS and use the CS. Due to 
the resources constraints of mobile hosts and the 
limited bandwidth of wireless links, the 
distributed algorithm to solve mutual exclusion is 
executed by the set of MSS on behalf of the set 
G_MH of mobile hosts. In a first phase, the MH 
which wants to use the CS has to request the 
permission from the MSS in the cell which it 
belonging to. The MSS receiving those requests 
from the subset of G_MH of mobile hosts 
roaming in their respective cells keeps them in its 
queue. A token is circulated through the logical 
ring which consists of the fixed MSSs. In the 
second phase, when each MSS receives the token 
from its neighborhood, it sends the token to a 
mobile host hk to give permission for the CS. 
 
Finally, the hk received the permission from the 
MSS uses the CS and after using it returns the 
permission to the MSS. The MSS which has got 
the permission back from the hk sends the token 
to the next turn of MSSs. 
 
4.1 Principle 
 

The mutual exclusion protocol proposed in this 
paper is based on the solution described by 
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Raynal in Token-based MX algorithm [2]. The 
outlines of their protocol have been described in 
Section 2. In this section, we give an overview of 
our protocol and identify the major differences 
compared with the original token-based MX 
algorithm. We assume that the mutual exclusion 
is initiated by a mobile host which requests its 
current base station a token to use the CS. The 
contacted base station saves the request into the 
queue until it receives the token from its 
neighborhood.  
During the mutual exclusion, each base station on 
one hand interacts with the mobile hosts located 
in its cell to gather the request of each mobile 
host for CS and on the other hand interacts with 
the other neighboring base stations to send and 
receive a token. In our approach, a base station 
MSS which participates in the mutual exclusion 
protocol, always acts on behalf of a subset of 
mobile hosts.  
More precisely, the initial value of Token_ 
Holdekk is false but the value of it is changed true 
as a mobile host hk that resides in MSSi receives 
the token from its MSSi. After returning the token 
to its base station, the mobile host hk changes the 
value of its Token_Holderk into false again.  
 
The mutual exclusion protocol in such an 
environment consists of two cases depending on 
who the token holder is. As the first case, that is 
when a base station received a token from its 
neighboring base station or its mobile hosts. 
When it received the token from its neighboring 
base station, then it just sends the token to a 
mobile host with highest priority among the 
mobile hosts connected to the base station. In 
case of returning the token from its mobile hosts, 
it just sends the token to the next base station. 
In this case the base station is doing two tasks 
concurrently, i.e., sending a token a mobile host 
with highest priority among the mobile hosts 
connected to the base station and receiving the 
token request message from mobile hosts 
concurrently. Thus the base stations play a role of 
a mutual exclusion coordinator during the mutual 
exclusion period.  
During the mutual exclusion in a mobile 
computing environment, a base station playing a 
role of a mutual exclusion coordinator is needed 
to reduce the message traffic among mobile hosts. 

The mutual exclusion algorithm among base 
stations is similar to the token-based MX in static 
distributed systems. That is, only the base station 
holding the token has a permission to use the CS. 
In the second case, that is when a mobile host 
received a token from its host base station. Then 
it just uses the CS for a while and returns the 
token to its host base station after finishing it.  
In above scenario, we don’t consider the mobility 
of the mobile host in the MX algorithm. But if we 
consider the mobility of the mobile host, then it 
makes the MX problem more complicated than 
the one of static distributed systems.  
The differences of mutual exclusions between 
mobile computing environments and static 
distributed systems are as follows: 
1) During the period of the MH using the CS, the 

MH changes its base station from the one that 
it received the token to the other base station.  
In this case, the MH simply sends the token the 
base station of the cell in which it resides. But 
the base station that received the token takes 
some action to keep the fairness of the MX. 
The base station that did not send the token but 
received the token from its MH simply sends it 
to the base station which waits for the token to 
keep the fairness of the MX. Because, as a big 
difference between mobile computing 
environments and static distributed systems, 
the mobile host with token will appear in any 
cell whenever mutual exclusion protocol has 
started. Therefore, every base station should 
check all other base stations to know which 
base station cover the mobile host holding the 
token in the cell. That causes message traffics 
among base stations. 

2) In mobile computing environment, a handoff 
algorithm is needed to perform mutual 
exclusions correctly, but it is not needed in 
static distributed systems.  

3) Due to the resource constraints of mobile hosts 
and the limited bandwidth of wireless links, 
the distributed algorithm to solve mutual 
exclusion is executed by the set of MSSs on 
behalf of the set G_MH of mobile hosts. 

 
4.2 Protocol 

 
The protocol is composed of three parts and 

each part contains a defined set of actions. Part A 
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(figure 2) describes the role of an arbitrary 
mobile host hk. Part B (figure 3) presents the 
protocol executed by a base station MSSi.  
 

   % Mobile host hk is located in MSSi cell % 
(1) Upon receipt of the request for CS from 

the application  
     Send Req_Token to MSSi 
(2) Upon receipt of Token from MSSi 
% The mobile host (hk) gets into CS  % 
     CS (hk) 
(3) Upon receipt of the release for CS from 

the application 
Send Release_Token to MSSi 

 
Figure 2: Protocol Executed by a Mobile  

Host hk (Part A) 
 
Part B is related to the interactions between a 
base station and its local mobile hosts on one 
hand and the other base station on the other hand. 
Thus, Part B is based on the traditional Token-
based MX protocol adapted to our environment.  

 
Finally, the part C of the protocol is the 

handoff protocol destined to handle mobility of 
hosts between different cells. 
In figure 2, the three actions performed by an 
arbitrary mobile host are: 
(1) A mobile host executes this action when it 

receives a request from an upper application 
program to initiate a mutual exclusion. 

(2) Token message is sent to a mobile host hk by 
the mobile support systems MSSi when it had 
requested a token from the local base station 
where it resides. Upon receipt of such a 
message, the mobile host gets into the 
Critical Section. 

(3) When the application program terminates the 
mutual exclusion protocol, the Token is 
released to the mobile support system, MSSi. 

 
Actions of the protocol in figure 3 numbered 
from (4) to (7) are executed a mobile support 
system, i.e., a base station MSSi. They have the 
following meaning: 
 
(4) When a base station is asked by a mobile host 

to send a Token, it inserts the request into the 
rear of its queue.  

My_Stausi := 0;  
My_Queuei := ∅; 

  Cobegin  
  (4) || Upon receipt of Req_Token( hk ) 

insert Req_Token(hk) to rear (My_Queuei); 
(5) || Upon receipt of Token (MSSi-1) 

         if My_Queuei ≠ ∅ then 
   My_Statusi := 1; 

send Token to front (My_Queuei); 
delete front (My_Queuei); 

 else  
send Token to MSSi+1; 

end-if 
(6) || Upon receipt of Token ( hk ) 

if ( Phasei = 0 ∧ My_Queuei ≠ ∅ ) then 
   My_Statusi:= 1; 

send Token to front (My_Queuei);  
delete front (My_Queuei); 

      else 
My_Statusi:= 0; 
send Token to MSSi+1; 

end-if  
(7) || Upon receipt of Req_Token ( MSSj ) 

insert Req_Token(hk) to Rear(My_Queuei); 
 

Figure 3: Protocol Executed by a mobile support 
station MSSi (Part B) 

 
(5) In case of receiving a Token from other base 

station, the base station checks its queue My_ 
Queuei to confirm whether the queue is empty 
or not. If the queue is not empty, then the base 
station sends the Token to the mobile host that 
is positioned at the front of the queue. And it 
deletes the element from the queue and sets 
its status to true that means it holding Token, 
i.e., My_Statusi := 1. But if the queue is empty, 
then the base station just passes the Token to 
the next base station.  

(6) When a base station receives a Token from a 
mobile host hk, it checks its queue and status. 
If both ( Phasei = 0 ∧ My_Queuei ≠ ∅ )  are 
true, which means that it does not hold the 
token and at the same time the queue is not 
empty, then the base station sends the Token 
to the mobile host that is the front element of 
the queue. And it deletes the element from the 
queue and sets its status to true. Otherwise it 
sends the Token to the next base station and 
sets its status to false. 
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(7) On receiving the Token request message from 
other mobile support system, the MSSi insert 
the request message into its queue. 

 
As shown in Figure 4, the handoff protocol is 

described.  
 
(8) When a mobile host hk moves from MSSj cell 

to MSSi cell, the handoff protocol execution is 
triggered. Mobile host hk has to identify itself 
to its base station by sending a message 
GUEST(hk, MSSj).  

(9) Upon receiving this message, MSSi learns that 
a new mobile host hk, coming from MSSj cell 
has entered in its cell. With BEGIN_ 
HANDOFF(hk, MSSi) message, MSSi informs 
MSSj that it removes hk from the set of mobile 
hosts that reside in its cell.  

(10) Upon receiving such a message, MSSj 
checks its queue to confirm that the token 
request of hk is in the queue. If it is in its queue, 
then it transfers the token request to MSSi and 
deletes the token request from the queue. 

 
Cobegin  
% Role of hk % 
(8) || Upon entry in MSSi cell 
     send Guest(hk, MSSj) to MSSi 
% Role of MSSi 
(9) || Upon receipt of GUEST(hk, MSSj) 

Local_MHi := Local_MHi ∪ {hk}; 
      send BEGIN_HANDOFF(hk, MSSi) to MSSj; 
% Role of MSSj 
(10)||Upon receipt of BEGIN_HANFOFF(hk, 

MSSi)  
     Local_MHj := Loacl_MHj – {hk}; 

If (Req_Token(hk) ∈ My_Queuei ) then  
       send Req_Token(hk) to MSSi; 

delete Req_Token(hk) from My_Queuei; 
     end-if 
 

Figure 4: Handoff Procedure (Part C) 
 

4.3 Correctness Proof 
   

As our protocol is based on the Token-based 
logical ring algorithm proposed by M. Raynal, 
some statements of lemmas and theorems that 
follow are similar to the ones encountered in [2].  
 

Theorem 1 No two different processes can have 
permission to use the critical section 
simultaneously (safety property). 
 
Proof (proof by contradiction). Let assume that 
there exist two mobile hosts to get a permission 
to use the critical section. A mobile host can use 
the CS only if it received a permission token from 
the MSS of the cell to which it belonging (action 
2). In this case, the assumption means that there 
exist two MSSs holding the token or one MSS 
sends the token twice to two different mobile 
hosts each. The first case is false since there is 
only one token circulating under the logical ring. 
The second case is also false since the MSS 
holding the token sends it to mobile host hk only 
once (action 5). So it is a contradiction. �Theorem 1  
 
Theorem 2 Every request for the critical section 
is eventually granted (liveliness property). 
 
Proof If a mobile host sends a message to request 
a token (action 1), at least one MSS eventually 
receives it and inserts it into the queue (action 4). 
After that, there are two cases. In first case, if the 
mobile host hk sent the message does not move to 
other cell, then the message Req_Token 
eventually will be positioned at the front of the 
queue and the MSS received the message sends 
the token. Thus, the mobile host sent the message 
eventually receives the token and uses the CS. In 
a second case, when the mobile host hk sent a 
message Req_Token moves from MSSj cell to 
another MSSi cell before receiving the token, then 
the handoff protocol execution is triggered 
(action 8-10). Mobile host hk has to identify itself 
to its base station by sending a message 
GUEST(hk, MSSj). In this case, by (action 10) the 
request message will be transferred to the MSS of 
the cell to which the mobile host has moved. 
Consequently, the mobile host will receive the 
Token and use the CS when the MSS sends the 
Token. �Theorem 2 
 
5. Conclusion 

 
The communication over wireless links are 

limited to a few messages (in the best case, three 
messages: one to request a token and the others to 
get the token and release the token respectively) 
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and the consumption of mobile hosts CPU time is 
low since the actual mutual exclusion is run by 
the base stations. The protocol is then more 
energy efficient. The protocol is also independent 
from the overall number of mobile hosts and all 
needed data structures are managed by the base 
stations. Therefore, the protocol is scalable and 
can not be affected by mobile host failures.  
  In addition, other interesting characteristics of 
the protocol are as follows. 1) During the mutual 
exclusion period, a base station should keep track 
of every mobile host within its cell to manage the 
request messages and the token. 2) In such a 
mobile computing environment, a handoff 
algorithm is needed to perform mutual exclusions 
efficiently and correctly, but it is not needed in 
static distributed systems.  

The mutual exclusion algorithm in a mobile 
computing environment consists of two important 
phases. One is a local mutual exclusion phase in 
which a mobile host holds and uses the CS. The 
other phase is a global mutual exclusion phase in 
which each MSS takes part in the mutual 
exclusion by passing the token to another MSS.  
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Abstract— Geospatially aware mobile devices, such as
smart phones, rely on an architecture that is power con-
strained and processing power limited. The utility of these
devices can be increased by offloading compute-intensive
applications to parallel high performance computing (HPC)
architectures, thus limiting battery drain, allowing access
to large data, and providing faster time to solution. Such
a paradigm can be achieved through tactical cloudlets that
must operate in environments dominated by mobilead hoc
infrastructure (common in remote environments or military
applications). Executing this paradigm is further compli-
cated in that HPC nodes themselves (with some reduced
mobility) are now deployable through the use of ruggedized
hybrid core technologies. This paper discusses our concept
for cloudlet seeding: the static strategic placement of HPC
assets in deployed settings in such a way to balance compu-
tational load and limit hops to both stationary and mobile
HPC nodes.

Keywords: cloudlets, cloud computing, tactical computing, net-
work emulation, high performance computing

1. Introduction
Army soldiers rely on mobile, fast, and up-to-date process-

ing capabilities to be able to complete a myriad of mission
assignments and tasks. This is often done in remote areas
starved of computing and networking infrastructure or in
urban environments where civilian infrastructure operates
on differing protocols with security risks. Hence, mobile
ad hoc networks (MANETs) will most often provide the
operation frameworks for soldiers and military commanders
[1]. It is within this operational realm that we are conducting
basic and applied research to address how to field High Per-
formance Computing (HPC) capacity within this MANET
topology while at the same time increasing capabilities that
leverage this new level of computing power. Coupling size,
weight, and power with MANET-based operational require-
ments leads us to the establishment of tactical cloudlets as
a way to deliver the required computing power to today’s
soldier [2].

Tactical cloudlets couple traditional connotations of cloud-
based technology with the overarching goal of maximizing
processing power and limiting the time to solution. This is
all done in a mobile environment. Cloud computing has
a history of focusing predominately on providing com-
puting services with distributed processing and access to
data. Commercial processing using high capacity network
infrastructure paid little attention to time to solution as

a key operational metric, although this is changing a bit
with a new-found focus on streaming access speed to data.
Military processing requirements push traditional cloud-
based processing to new requirements in every dimension.
For example, streaming content (such as sensor feeds) to
a hand-held mobile smart phone poses numerous prob-
lems. First, forcing too much processing through mobile
devices will quickly drain power. In a tactical cloudlet the
option of piggybacking on other friendly devices may be
beneficial. Second, the web of deployed devices must be
flexible as signal loss and connectivity maintenance are
known problems in deployed environments. Cyber foraging
and possible process migration within the tactical cloudlet
become critical. These issues are just the start of a long
list of differences between commercial cloud systems and
deployed tactical cloudlets.

The viability and overall success of tactical cloudlets
depends largely on several intertwinded technical challenges
including power-aware computing, cyber foraging (schedul-
ing and process migration), and processing node optimiza-
tion and characterization. In this paper we put forth another
goal that should remain central in the development of tacti-
cal cloudlet technology; especially with regards to pushing
HPC-level processing to the tactical edge. Tactical cloudlet
seeding is an approach that recognizes the importance of
spatial proximity for high performance servers to those
mobile nodes that they serve. Simply put, cyber foraging will
be greatly enhanced if assets are positioned in a way to limit
hopping between and promote load balance within districts
served by HPC nodes formed by this seeding approach.
We discuss the importance of cloudlet seeding as a way
to enhance the overall effectiveness of tactical cloudlets. In
particular, we describe a methodology to perform cloudlet
formation to enhance opportunities for cyber foraging al-
gorithms within a realistic framework for mobile, ad hoc
computing devices. This research directly impacts efforts
to extend Army cloud computing and the capabilities of
analysts and warfighters to the tactical edge.

2. Tactical Cloudlet Seeding
Unlike conventional developed infrastructure, usually con-

sisting of a mix of wired and cellular networks, MANETS
are often the only way of ensuring communication be-
tween entities deploying to remote areas or to areas with
different infrastructure characteristics. Mobile networks are
also important to the military mission as they can provide
higher security profiles since the network is self-contained.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 203



Deployed devices with the MANETS will be digital, vary in
computational power, and operate over networks of varying
data rates. Power figures heavily in this deployment as
mobile nodes will be drained of battery at varying rates
due to connectivity loss, network contention and collisions,
computing load, and other operational conditions.

To address this problem, cloudlets have been proposed to
address resource poor mobile hardware [3]. The central goal
of this paradigm is to leverage computationally powerful
resources with infinite power reserves by way of a cloud,
but to do so by positioning the resources physically close to
the mobile devices to limit the number of hops required for
connectivity. That is, reduced latency between mobile device
and data center will ensure longer battery life for mobile
devices with fast access to information being processed by
proximate computing resources.

Carrying this one step further, and by incorporating new
heterogeneous and advanced computing methodologies, it
is now possible to field near high performance computing
(HPC)-level capabilities to soldiers and others in deployed
settings. For military planners, HPC modeling and simula-
tion have been useful tools for strategic planning. With tacti-
cal HPC using the cloudlet approach, dynamic and real-time
processing of live data feeds can be possible for mounted
and dismounted soldiers in operational environments. This
can have real benefits to improve situational awareness and
thus limit fog of war effects during mission execution.

This is a key point in our conceptualization of tactical
cloudlet design. By incorporating HPC capacity, along with
localized access to the fullest extent possible of mission-
critical data at the HPC node, the overall bandwidth alloca-
tion dilemma faced by military planners if greatly mitigated.
Bandwidth is a scarce commodity in deployed settings using
MANETs [4]. Planning and optimizing the distribution is
mainly relegated to a strictly strategic exercise subject to lack
of complete information, possible exaggerated need from
participants, and overall uncertainty. Cloudlet design with
HPC-node centralization allows for a greedy-type optimiza-
tion at the local level that can carry through to allow for an
overall optimized network design.

However, access to these powerful devices will be key.
While cyber foraging is a way to look for assets to help
with processing demand, it does not address spatial locality
of HPC to nodes requesting processing service. Tactical
cloudlet seeding does just that; it attempts to localize access
and balance demand on deployed HPC resources. Done
properly, the overall goal is to limit foraging to predefined,
seeded HPC districts where the processing load will be
sufficient and balanced.

2.1 HPC Node Characteristics
Tactical networks of the future will be built upon a hier-

archy of connectivity and capabilities. Hand-held radios and
computing devices used by dismounted soldiers will obvi-
ously have different profiles and capabilities when compared
to those housed in vehicles and stationary encampments.
Overall connectivity will depend largely on signal strength,

data transfer rates, contention, and positioning of nodes to
reduce critical node formation.

Highly mobile compute nodes will always be lagging
behind larger, less mobile nodes when it comes to sheer
computing power. However, new hybrid architectures are
being designed that allow for higher FLOP counts in shrink-
ing footprints. These custom-engineered solutions can be
ruggedized and provide a tiered capability for HPC in
military applications. More fixed locations, such as Tacti-
cal Operations Centers (TOCs), have greater infrastructure
and can support elaborate hybrid machines for applications
tailored to them. Larger scale traditional multi-core systems,
as well as more elaborate custom-engineered solutions like
a seven card, water cooled, overclocked GPU-based system
shown in Figure 1, can easily be supported in such a facility.
Mobile and ruggedized GPU hardware can also easily be
supported in platforms such as the High Mobility Multi-
purpose Wheeled Vehicles (HMMWV) or certain Unmanned
Aerial Vehicles (UAVs).

Fig. 1: Customized GPU-accelerated workstation.

2.2 Network Goals

Tactical cloudlets have numerous measures of success
measured largely on security and quality of service (QoS).
Numerous techniques have been developed and proposed
to enhance, improve, and ensure connectivity of MANETs
[5], [6]. HPC nodes within the deployed MANET have
special characteristics and specialized goals. While they
should ideally posses access to large data rate channels,
they should also be configured and distributed in a way that
limits the number of hops that might be required of low-
power hand-helds to reach them. In this regard, placement
becomes critical as these resources should be spatially near
assets that they serve. This is the main point of seeding the
tactical cloudlets. Done properly, it will ensure speedy turn-
around of queries and responses from powerful distributed
computing nodes.
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3. Problem Formulation
We are given a network based of mobile and fixed con-

nected nodes. For the time being we assume that connections
are static and once established are maintained during our
period of interest. We are concerned with the connected
graphG = (V, E) that represents this network. In practice
this will be a geographically constrained subgraph within
a larger, distributed network. The vertices,V , represent
the radios, computing devices, or other electronic systems
capable of communicating within the system. These nodes
will vary in computing capability, power requirements, etc.
The edges,E, represent the communication links between
these devices. We assume only one link edge between de-
vices. The properties of these edges will vary based on data
rates and other network characteristics. These parameters
can become quite complex as various parts of this network
will consist of mobile ad hoc nodes (MANETs) where
geographic and weather effects can impact link capacity due
to signal strength, packet loss, etc.

The vertex set, that is the networked components, is the
setV = 1, 2, . . . , n. We are concerned with fielding tactical
HPC within the cloudlet infrastructure, hence we are actually
attempting to determine how to classify the nodes ofV . In
this case, the setV is actually comprised of three disjoint
subsets. These include the set of fixed HPC capable nodes,
VF , that could reside in deployed settings such as a Tactical
Operations Center (TOC), the setVH of mobile HPC nodes
such as those deployable on vehicles, and the setVM of
mobile and/or deployed nodes that are not HPC capable.
That is, we haveV such that∀x ∈ V, x ∈ VF ∨ x ∈ VH ∨
x ∈ VM . For simplicity we assume nodes of overall equal
properties within these subsets.

Strategically speaking, and for the static nature of the
problem we are currently defining, the initial graph is
constructed based on areas where HPC processing capability
will be required, where HPC nodes exist in fixed locations,
and other areas where dismounted soldier or other sensors
and processors will be located. Node locations will therefore
be a combination of known locations (such as the fixed
nodes) and also areas where some type of coverage is
required. Initial node locations will also be based historical
or geographical data. In practice, HPC-capable mobile nodes
will be positioned in safe areas, be restricted in total number
due to cost or other issues, and be within a limited hop range
from nodes requesting high rates of compute services. Any
node that is not a fixed HPC node has the capability of
being assigned to HPC mobile node status. Recognizing the
fact that these nodes may reside in areas not amiable to that
classification, we also define a setVR that includes those
node numbers that should not be allowed within the setVH .
Determining the initial graph configuration, including node
placement and edge connectivity, is part of a larger research
effort we are undertaking for tactical cloudlet configuration.
How this is being performed through network simulation and
emulation research will be discussed in a later section.

Our problem, therefore, is to assign every vertexv in V
to an HPC node, whether it be mobile or fixed. All elements

in VM are assigned to an element inVH or VF . Since
communication and data transfer happens along these graph
edges, the path traversal becomes very important to fielding
an ideal system. The weight of any pathp = v0 → v1 →
. . . → vm is the sum of the weights of the edges that it
contains:

w(p) =
m

∑

i=1

w(vi−1, vi) (1)

The shortest path fromu to v is therefore defined as:

δ(u, v) = min{w(p) : u
p
; v} (2)

3.1 Constraints
Since we only have a limited number of HPC-deployed

nodes, our goal is to assign every node in our graph to
some HPC-computing node. That is, we are attempting to
determine a partitioning of the setV into k disjoint subsets
V1, V2, . . . , Vk to form a k-way partitioning ofV . In this
casek will be equal to|VF |+ |VH |.

Optimal deployment of HPC computing capability to the
tactical edge will require the solution of a multi-constrained
problem. First, we deal with path traversal or the number of
hops a device must travel to reach HPC capable computing
nodes. Ideally this number should be as small as possible
for several reasons, including amount of data that must be
transferred, risks of intermediate node drop-off, etc. Letui

be the HPC node within partitioni. We are searching for a
total minimum hop count across allk partitions:

min

k
∑

i=1

|Vi|
∑

j=1

w(ui, vj) (3)

In certain cases, it may also be necessary to balance the
data rates as well as hop counts. Depending on the amount of
data stored local on mobile hand-helds versus the HPC node,
the impact of these network links will vary considerably.
Scalar data based on GPS location, or the transmission of
static browser images, will require less total bit transmission
with delay and hop counts taking higher priority. We see
this as the more common operational case, but are currently
in the process of further modifications to equation 3 to
better account for those cases where data rates retain a high
importance. These cases pose extra difficulties since overall
data movement capabilities between two nodes is restricted
to the bottleneck link in the path. In the current formulation
we only concern ourselves with hop counts or distance from
HPC node to the nodes it serves. That is,∀e ∈ E, w(e) = 1.

Second, we want the overall offered computing load to be
balanced within thek-way partitions. Doing so will ensure
that HPC resources will not be overwhelmed by the nodes
that they serve. This computational load is analogous to
the partition weight of theith partition, denoted byw(Vi),
which is equal to the sum of the weights of the vertices
in that partition. Load imbalance then becomes a critical
metric and a number that needs to be minimized. In ak-way
partition, this load imbalance,LI, is a ratio of the highest
partition weight divided by the average partition weight [7].
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With some generality and assuming an average, distributed
computational load, we arrive at∀v ∈ V, w(v) = 1. An ideal
distribution of computing load is hence analogous to seeking
approximately equal cardinality of the subsets formed by the
k-way partitions.

4. Tactical Cloudlet Seeding

Using the constraints developed in the previous section,
we describe the approach specified in algorithm CLOUDLET-
SEEDING that can be used to specify the location of HPC
mobile nodes within the deployed network. The inputs to the
algorithm include then×n adjacency matrixA of the graph
G, the setVF of fixed HPC nodes, the setVR of restricted
nodes that cannot be designated as mobile HPC nodes, and
the scalarq representing the total number of mobile HPC
nodes that are allowed.

The algorithm builds the matrixD[1 . . n, 1 . . n] that gives
the shortest path distance between all pairs of vertices. The
algorithm also builds and iterates over the power set (set of
sets)B = {x ∈ 2V : (|x| = q)∧(∀y ∈ x, y /∈ VF∧y /∈ VR)}.
The matrixB is therefore all possibleq-way combinations
of the vertices inV excluding the nodes that cannot serve as
HPC mobile nodes and those fixed HPC nodes. The number
of these sets is given by the binomial coefficient and in this
case is

(

n−(|VF |+|VR|)
q

)

.

In order to hold information about the various partitions,
we also define a partition typep_type containing a scalar
value of the HPC node in that partition, a scalar keeping
count of the number of nodes assigned to that partition, and
a list of those nodes assigned to the partition. The variables
p andZ are of this type.

The procedure makes use of several ancillary functions.
The function INIT-PART returns an initialized array of struc-
tures of lengthq + |VF | containing information as defined
in the p_type data structure. At each iteration of the loop,
this structure is initialized with the fixed HPC node location
data and also the current combination of possible HPC nodes
selected from the setB. M IN-HOPS is a straightforward
iteration down the rows of shortest path matrix where every
possible HPC vertex location specified inp is compared
against the other for hop counts. In cases where there
is a clear winner, the vertex is assigned to that partition
immediately. The case where the row happens to correspond
to one of the possible HPC locations is a clear example. In
this case the hop value will be 0 and that vertex is assigned to
that corresponding partition. In cases where there are more
than one possible HPC locations with the same minimum
hop, the decision is delayed until the function BAL -PART.
At this time, the value ofpart .count becomes important.
Partitions with a lower total weight (number of vertices
served) win and are assigned that row. In cases of further
ties, we arbitrarily pick the lowest numbered vertex as the
winner. The procedure returns a partition structureZ that
tells theq-way partition assignment ofa[v1 . . vn].

CLOUDLET-SEEDING(G, VF , VR, q)

1 A← ADJACENCY-MATRIX (G)
2 D ← ALL -PAIRS-SHORTEST-PATHS(A)
3 h ←∞

4 for i← 1 to
(

n−(|VF |+|VR|)
q

)

5 do p← INIT-PART(i, V, VF , VR, q)
6 for j ← 1 to n
7 do M IN-HOPS(p, D)
8 for j ← 1 to n
9 do BAL -PART(p, D)

10 if HOPS(p) < h
11 then h ← HOPS(p)
12 Z ← p
13 else if (HOPS(p) = h)

∧(LI < LOAD-BAL (p))
14 then h ← HOPS(p)
15 Z ← p
16 return Z

Consider the graph as shown in Figure 2 as an input to
this algorithm. We assume uniform computational load on
all nodes and equal weight on all edges. Nodes 4 and 7 are
special; they represent fixed HPC-enabled compute nodes
within this graph. All other nodes in the graph represent
locations for possible mobile HPC placement (the vectorr
is empty). In this case we can field one mobile HPC node
(|VH | = 1). We start by computing the all-pairs shortest
paths to determine hop distance between the nodes. Since
HPC nodes under consideration or those fixed will have a
hop distance of 0, they will by default be the HPC element
of their respective partition. We then generate the possible
subsets of size 1 (nodes 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, and
13). Each of these is analyzed according to the criteria in
lines 7 and 9. On the first pass, nodes with a clear shortest
hop to an HPC node are assigned to that node’s partition.
On cases of a tie, the assignment is deferred to the next
pass. Here, the weight of both partitions is assessed and the
node is assigned to the partition with the lower weight. The
weight of this partition is then incremented by that node’s
weight.

Fig. 2: Example MANET connectivity graph. Nodes 4 and
7 are HPC fixed locations.
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The result of this algorithm is shown in Figure 3. Partition
1 is based at HPC node 4, partition 2 at HPC node 7, and
partition 3 at HPC node 11. The solution gives a path no
longer than 3 in partition 1 (P1, total hops = 6), no longer
than 2 in partition 2 (P2, total hops = 5), and no longer than
2 in partition 3 (P3, total hops = 5). The total hop count
is 16 for this partitioning. Partition weights are 4, 4, and 5
for partitions 1, 2, and 3 respectively. The load imbalance
in this 3-way partition is 15%.

Fig. 3: An optimal three-way partition of the graph in Figure
2. Nodes 4 and 7 are assisted by a mobile HPC node at
location 11.

Contrast this to the worst mobile HPC node assignment
discovered by the algorithm which is shown in Figure 4.
The mobile HPC node in this case is node 5.LI is also
15% (not uncommon for such a small problem set), the total
hops is 25 (4 for partition P1 serviced by node 4, 10 for
partition P2 serviced by node 7, and 11 for partition P3
serviced by node 5). The maximum path length in this case
is 4. There is another major problem with this solution. The
cloudlet concept of localized access to HPC nodes is severely
violated. Several nodes, such as node 1, require connectivity
through external cloudlets to connect to their assigned HPC
resource. Such a situation will probably be experienced, at
least transiently, in a tactical situation. However, strategic
solutions should not produce such assignments and routing.

While nodesv1 and vm within the pathp = v1 →
v2 → . . . → vm will be members of the same partition
set, more rigorous analysis will be needed to verify that
nodesv2 . . . vm will reside in the same partition. In a static
analysis, this is not overly important as membership to a
partition is not as important as minimizing the overall hops
and load imbalance. It may become more important if further
refinements for dynamic optimization require members of
partitions to move in such a way to maintain connectivity.

4.1 Analysis
The algorithm CLOUDLET-SEEDING is a combination of

all-pairs shortest path, brute-force methods for generating
the possible subset configurations, and a 2-phase peephole
greedy method optimization for resolving partition assign-
ment. The data structures required will generally include

Fig. 4: A poor three-way partition of the graph in Figure
2. Nodes 4 and 7 are assisted by a mobile HPC node at
location 5.

simple scalars, vectors of sizen, and arrays and structured
data types not exceeding sizes ofn × n. Space can also
be conserved through the use of more elaborate sparse
structures such as linked lists.

We can compute a simple upper bound on the running
time of CLOUDLET-SEEDING. Forming the adjacency matrix
takesO(n2) since there can be at most one edge between
any two vertices. Ideal computation of all pairs shortest
path will depend on restrictions to edge weights (currently
uniform at cost 1). Dijkstra’s algorithm or the Bellman-Ford
algorithm will suffice with varying data structures impacting
overall performance (binary heap versus Fibonacci heap in
the binary-heap implementations). In general though this
runtime will beO(n2 lg n). These times are all incurred once
outside of the main loop.

The generation of the combinations of subsets of size
q−(|VF |+ |VR|) becomes more complex and corresponds to
the beginning of the main processing loop (iteration counter
i). The function INIT-PART is responsible for generating
and initializing partitions for evaluation as HPC nodes. This
function will omit nodes already selected as stationary HPC
nodes (VF ) and nodes that are restricted (VR). This function
could generate these subsets by maintaining a list of static
pointers to the vertices where these pointers are incremented
at each call for the next iteration’s subsets. Of primary
concern, however, is the iteration count to generate these
combinations. In practice we expect the number of HPC
nodes to be a very small percentage of the overall number
of fielded binary systems, and we assume the number of
fixed HPC nodes and restricted nodes are relatively small.
Since the number of HPC nodes within the problem set
will be small, we recognize thatq will be some fraction
of n. We can then rewrite

(

n

q

)

as
(

n

λn

)

, where0 ≤ λ ≤ 1,
with a bounds ofO(2n H(λ)) whereH is the binary entropy
function H(λ) = −λ lg λ− (1 − λ) lg (1− λ) [8].

The calls to procedures MIN-HOPS and BAL -PART each
must iterate over all rows of the shortest path matrix doing
simple minimization comparisons and assignments. Thus
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the time for each of these isO(n (q + |VF |)). HOPS and
LOAD-BAL simply return the current hop count and nodal
balance of the partitions, respectively. The overall runtime
of CLOUDLET-SEEDING is thusO(n (q + |VF |)2

n H(λ)).
Some trivial optimizations are possible. For instance,

should the result of MIN-HOPS yield a result greater than
the already established minimum hop count, there is no need
to try to balance the partitions. Rather the next iteration of
the outer loop can begin immediately.

5. Initial Graph Construction and Opti-
mization

The current static formulation for cloudlet seeding re-
quires some initial configuration of network asset placement
with a corresponding assessment as to how the nodes will
be linked. The heterogeneous nature of the deployed binary
computing devices, from unattended sensors to powerful
systems in areas with supporting infrastructure, makes this
assessment both tedious and difficult. Often this is done
by hand and through empirical data. Locations are based
on historical, geographical, meteorological, and sometimes
“best guess” estimates based on characteristics of the devices
to be deployed.

We are currently designing a system based on network em-
ulation with real-time radio frequency propagation analysis
to determine signal loss of devices communicating wirelessly
and determine the impact on data transmission to HPC
nodes. This will require modifications to the cloudlet seeding
approach where communication edges could be weighted to
better account for the physical problem.

Furthermore, we are also performing calculations based on
line-of-sight (LOS) as a threat assessment tool in an effort
to determine areas that are out of harms way. These areas
will in most cases be the better candidates for districting
HPC resources. Furthermore, with a feedback mechanism
built into the network emulator, areas will be chosen such
that they provide shelter and enhanced network connectivity.
Tactical cloudlet seeding therefore quickly grows into a
multifaceted constraint-based optimization problem.

6. Future Work
While this initial assessment attempts to keep the car-

dinality of the subsets formed roughly equal and limit
hops, we recognize that further research is justified as we
move forward in our goal to push HPC to the edge. For
example, we may wish to specify numerous characteristics
to the edges of this connectivity graph. Bandwidth and
latency characteristics will differ significantly based on the
properties of the nodes (radios versus sensors versus etc.).
It should also be noted that the computational capabilities
of the nodes in the system will be highly disparate, and the
needs of different resources will need to be further developed
and represented to the optimization engine. Computational
request load will create a dynamic situation where the
weights of the nodes will need to be considered. Computing
load and demand must also be further defined.

Furthermore, the current strategy serves a strategic goal
and is static in nature. We are looking into ways to extend
methods to tactical scenarios that are dynamic. Changes on
the ground may require mobile HPC assets to be moved.
Failure of certain nodes, due to loss of battery or signal loss
due to movement, will necessitate a need to recompute HPC-
directed network traffic. Compensating for these situations
will greatly extend the capabilities of this system.

The computational complexity for optimization problems
such as this highlights the need for heuristics especially
moving into dynamic real-time adjustments to the deployed
network. Accordingly, we plan on investigating other ap-
proaches such as those found in multi-level partitioning in
graph partitioners to reduce the time complexity of CYBER-
DISTRICT [9]. Discovering ways to include parameters
such as shortest path distance, along with other parameters
deemed important from network science research, into these
heuristic-based methods will greatly enhance confidence in
an optimally deployed system.

7. Conclusions
Situational awareness and applications demanding at or

near real-time processing speeds will continue to push the
capabilities of hand-held computing devices. This will con-
tinue to be the case even as processor technologies for these
devices continue to improve. However, with advanced com-
puting architectures constructed of hybrid accelerators, a new
higher level of computing is possible and can be deployed
in operational and mobile environments. Accessing these
technologies, connected via wired and wireless networks,
becomes key as hand-held devices try to off-load processing
to both save power and increase computational efficiency.

Tactical cloudlet seeding puts forth an important aug-
mentation to concepts in cyber foraging. Seeking to reduce
network node hops in reaching an HPC-enhanced node and
balance the workload of these servers, it provides a method-
ology to greatly increase the abilities of mobile resources in
resource-poor areas. We have laid the initial groundwork for
this concept, and look forward to expanding the challenging
optimization problems that it presents for both static and
dynamic, strategic and tactical total network capability.
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Abstract - This paper describes the development of a high 

throughput and reliable Cloud Service to perform on-

demand structural analysis over the Windows Azure-based 

Cloud infrastructure provided by the EC VENUS-C project. 

All the simulations in the Cloud are governed by 

Architrave
®

, an advanced software environment for the 

design and analysis of buildings and civil engineering 

structures. The migration to the Cloud has been 

implemented by means of the Generic Worker component, a 

web-role implementation for Windows Azure that manages 

the execution of the remote tasks. The CDMI standard has 

been used for uploading and downloading data. A GUI 

Client has also been implemented, in charge of defining and 

managing the remote simulations, transferring the data and 

informing the user about the status of the simulations. A 

real large building has been chosen as a case study to show 

the advantages of the cost-effective Cloud system with 

respect to the sequential approach. 

Keywords: Cloud Computing, Cloud Service, structural 

analysis, VENUS-C Project 

 

1 Introduction 

  Structural analysis of buildings, or civil engineering 

structures, is the process to determine the response of a 

structure to different prescribed applied loads. This 

response is usually measured by establishing the stresses, 

tensions and displacements at any point of the structural 

elements. 

 In a linear dynamic analysis [1], where the external 

loads (earthquake, wind load, etc.) change along the time, 

the second order differential equations in time that governs 

the motion of structural problems must be solved. Direct 

time integration algorithms are techniques usually applied 

for solving this computationally demanding equation of 

motion, using a time step-by-step numerical integration 

procedure that provides the response of the structure along 

the time. The accuracy of the results depends on the time 

increment employed. 

 The realistic 3D structural dynamic analysis of large 

scale structures can demand an important computational 

power, give place a huge volume of data and become one 

of the most time consuming phases in the design cycle of a 

building or a civil engineering structure. For this reason, 

this analysis has been traditionally solved by introducing a 

variety of simplifications (unsuitable for complex 

structures) in order to reduce the problem size and the 

volume of the data, and obtain the results in reasonable 

simulation times.  

 Architects and structural engineers need thus powerful 

software applications able to simulate efficiently the 

accurate response of the structure. High Performance 

Computing (HPC) techniques provide powerful numerical 

and programming tools to develop applications able to 

simulate, efficiently and in a realistic way, large dimension 

structures, in very reasonable response times. However, 

commercial applications usually offer traditional 

approaches, computing sequential structural analysis on the 

user's local machine. As a result, the size and the 

complexity of the structure to be analysed, the type of 

structural analysis employed and the total number of the 

different structural solutions or even earthquakes evaluated 

are limited by the performance of the computational 

resources used by the users.  With the purpose of 

overcoming these limitations, Architrave® [2], an advanced 

software environment for the design, 3D linear static and 

dynamic analysis and visualisation of buildings and civil 

engineering structures, was developed. Architrave is 

composed of these three different and independent 

components, although interacting among them:  

• The Design Component: An interactive AutoCAD-

based application where the user can draw the model and 

define the structural properties and the external loads. 

• The Analysis Component: An interactive GUI 

application, where the user can modify the structural 

properties and the external loads, analyse the structure and 

visualise the results. 

• The Structural Simulator: A batch MPI-based 

parallel application used by the Analysis Component to 

simulate the response of the structure by means of the 

Finite Element Method. 

 Notwithstanding, studios for architecture and 

engineering rarely own parallel platforms to execute an 

HPC-based application. Thus, the users install and run 

Architrave in their personal computers, and the time spent 

on the calculations by means of the Structural Simulator 

component depends on the performance of their machines. 
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 Fortunately, Cloud Computing technology has 

emerged as a solution for the computational requirements 

of organizations, enabling the usage of non-owned remote 

resources which delivers enough power and storage space 

to satisfy the computational and disk requirements of the 

resource-starved dynamic structural simulations of high-rise 

buildings. Moreover, Cloud technology allows sharing not 

only computing power, but also another kind of resources 

such as storage space, data and even software packages.  

 This document is composed of the following sections. 

First of all, the VENUS-C project and the Generic Worker 

component are described in Section 2. The porting of a 

structural analysis application to the Cloud is explained in 

Section 3. This section describes the design adopted for the 

Generic Worker execution model and the software 

architecture. The different VENUS-C components used are 

explained and the details of the deployment in the platform 

tested are finally exposed. Section 4 presents the 

representative case study selected in order to validate the 

solution implemented in this work. Finally, the Section 5 

contains the conclusions. 

2 The VENUS-C project and the 

Generic Worker component 

 VENUS-C (Virtual multidisciplinary EnviroNments 

USing Cloud infrastructures) [3] is a European Research 

Infrastructure Project that aims at providing an easy-to-use 

computing platform, based on the virtualisation and service 

orientation. In simple terms, it allows researchers to use the 

Cloud Computing model in science.  

 VENUS-C is associated with the concept of PaaS 

(Platform as a Service), which means that an application is 

inserted into an existing Virtual Machine (VM) image with 

an appropriate runtime environment, and then executed. 

The developer need not to maintain, manage or update the 

VM’s operating system or runtime environment. Instead, he 

focuses on the functionality of his application. Also, this 

application can be easily scalable, secure and ensure high 

availability.  

 This is what provides other platforms like Windows 

Azure [4] or Google App Engine. However, the novelty of 

this initiative is, among other ones, the easiness of porting 

an existing application to the Cloud and the interoperability 

between different infrastructures without having to adapt 

the application. In this regard, VENUS-C exposes an OGF 

BES/JSDL [5][6] compliant web service interface and 

client libraries for Java and .NET.  

 VENUS-C is a platform composed by several 

components which provide different services. The two 

essential services are data and job management. The data 

management service includes transferring input data to the 

Cloud and retrieval of output results. It supports the Cloud 

Data Management Interface (CDMI) specification [7], 

developed by the SNIA, and considers also blobs from 

Windows Azure Storage for transferring data. 

 The job management service allows the scientist to 

allocate compute resources in the Cloud, submit tasks, and 

to manage a job’s lifecycle, i.e. to monitor the execution 

status and terminate a job if necessary. Other services 

provided are Elasticity, Monitoring, Accounting, Billing, 

and traffic redundancy elimination. 

 There are two components available that support the 

job management service (Figure 1): the Generic Worker 

(GW) [8][9] from Microsoft Research, and the PMES-

COMPSs [10] from the Barcelona Supercomputing Center 

(BSC). Each of these components has a different 

programming model. In the implementation for this work, 

the first of them has been used, which is intended to be 

deployed on the Windows Azure platform, running over 

VMs with Windows Server 2008 and .NET framework. 

 
Fig. 1. The basic architecture of VENUS-C. 

 Actually, the GW is a Windows Azure web role 

attending for requests of registering a job, getting the status 

of a task, terminating a job, etc. (supporting, in this way, the 

VENUS-C API). In addition, this same web role has 

another process running that checks for new jobs registered 

to be processed. Obviously, one or many instances of this 

web role can be deployed working together in coordination. 

 The GW provides the common glue code that the 

developers have to write in order to port their applications 

to Windows Azure. The difference is that this service 

executes generic jobs, i.e. every job has a description that 

specifies the application to run, the input/output files and 

the parameters to be passed to the executable binary.  

 All interactions with the GW can be authenticated by 

the username and password mechanism and controlled by 

authorization policies, based on certain user roles 

previously defined and a table that specifies which roles 

has each of the users. Also, the communications can be 

protected through WS-Security with security tokens.  

 The GW exposes an additional interface to the 

administrator, through which the number of running 

instances can be scaled up/down to ensure the 

computational resource demands of the clients. Thus, the 

scaling decisions can be taken automatically according to 

different criteria. 
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3 Design and implementation 

 This section describes the design adopted to offer the 

capability to carry out remote structural analysis in the 

Cloud. The implementation was structured in different 

components and layers considering usability and easiness to 

adaptation to the features provided by the VENUS-C 

software.  

 The architecture of the Cloud Service implemented, 

based on the GW component, is shown in the Figure 2.  

 

Fig. 2.  Software architecture of the GW-based Cloud 

system. 

 Firstly, it consists on a Windows client that executes 

the Architrave Analysis Component to modify the structural 

properties, apply the external actions, define the simulation 

and visualise the results. In addition, a GUI tool, called as 

the Remote Simulation Manager Client, has been 

implemented to submit and manage the simulations in the 

Cloud and receive the results. Data communications 

between the local client and the Cloud service are carried 

out by means of the standard CDMI service [11]. On the 

Cloud-side, user authentication is implemented by means of 

the Security Token Service of the GW, and a Notification 

Service, also belonging to the GW, is used to inform the 

user about the status changes of the simulations. Remote 

jobs are managed and submitted thanks to the Job 

Management and Submission Service components of the 

GW. Structural simulations in the Cloud are executed by 

means of the Architrave Structural Simulator component. A 

Structural Analysis Service Manager module, in charge of 

launching the Architrave Structural Simulator Worker with 

the appropriate parameters, depending on the type of 

analysis, and managing the needed simulation input and 

output data has been implemented. Finally, an Elasticity 

Manager component has been developed to provide the 

system with the elasticity capability, using the Scaling 

Service of the GW. A more detail explanation is given in 

the following subsections. 

3.1 The Remote Simulation Manager Client 

 On the client-side, the local or remote simulations are 

defined exactly in the same way, using the Architrave 

Analysis Component, the GUI application where the 

structural properties can be modified and response of the 

structures is visualized, after the simulation. This 

application now incorporates the Remote Simulation 

Manager Client, a tool developed also for .NET with a 

comprehensive GUI to configure and manage the 

simulations in the Cloud, to know in real-time the status of 

the remote executions and to download the results. This 

new application is launched by Architrave Analysis 

Component as an independent executable binary, which can 

even continue running (for downloading results, for 

example) when Architrave Analysis Component application 

is closed. In this tool, some modules can be distinguished: 

• The Job Submission Manager: When the Remote 

Simulation Manager Client is launched, for the first time, 

this module checks the status of all the simulations in the 

Cloud (submitting, pending, running, finished, failed, 

downloading, downloaded) and informs the user. Then, this 

module will be responsible for submitting each new 

simulation to the Cloud. 

• The Data Manager: This component uploads the 

input data and downloads the corresponding results and 

meta-data using a CDMI service or directly the Windows 

Azure Storage service.  

• The Notification Manager: It obtains the changes 

in the simulation status and updates the associated 

information. 

 Every time the Remote Simulation Manager Client is 

launched, the user must be authenticated in the Cloud by 

means of the username and the password. If the user has 

permission to use the Cloud Service, i.e. he has been 

registered in the users table, then a list of his remote 

simulations will be shown, and he will be able to submit 

new simulation jobs, download results, cancel executions, 

and so on. For each simulation, geometric information 

related to the structure analysed, the type of analysis, the 

kind of data to be retrieved, the way of downloaded the 

results, etc. is exposed, including the current status, which 

is updated every time with a configurable frequency by the 

Notification Manager.  

 When the user submits a simulation to be executed in 

the Cloud, the following steps take place: First of all, the 

Architrave Analysis Component writes a binary file 

containing the building geometry, the external loads applied 

(such as an earthquake) and the simulation parameters, and 

sends a message containing the file path to the Remote 

Simulation Manager Client. Then, the Remote Simulation 

Manager Client reads the input binary file and the remote 

simulation is registered. Next, the Data Manager uploads 

the input binary file using the CDMI service to the CS. 

Finally, the Job Submission Manager submits the job to the 

Cloud Service in the way of a .jsdl document and the 

Notification Manager consults periodically the significant 

status changes in the Cloud Service. When the results are 

ready, the Data Manager will download them also by means 

of the CDMI service.  
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 The user can configure the amount of results to be 

generated in the Cloud and to be received in the local 

machine, and the way to be downloaded. Thus, the Data 

Manager can be demanded to retrieve the simulation results 

automatically (when they are available) or manually (when 

the user requests them by clicking on the corresponding 

button). Also, in a dynamic analysis, the user can save on 

the CS the simulation results for all the time steps; the 

simulation results of just the 3 most unfavourable time steps 

according to the X, Y and module base shears or, finally, a 

video with the graphical response of the structure along the 

time. Besides, the user can configure the amount of data to 

be downloaded, obviously depending on the results 

previously computed and stored in the Cloud. In any case, a 

list with the X, Y and module base shears for all time steps 

will be always downloaded in order to allow the user to 

retrieve subsequently the amount of unfavourable and most 

significant simulation time step results that he desires. 

 Moreover, the Remote Simulation Manager Client can 

indicate the Data Manager to remove the input and output 

simulation data automatically (when the data results have 

been successfully received) or manually (when the user 

desires), to cancel the execution of a structural analysis or 

cancel the retrieval of the results. 

3.2 The Structural Analysis Cloud Service 

 On the Cloud-side, the Structural Analysis Cloud 

Service is composed of the following components: 

• The GW Service, i.e. a web-role implementation 

for Windows Azure that manages the execution of the 

remote tasks. This Service is composed of the Security 

Token Service (to perform the user authentication and 

allow that just authorized users can use it), the Scaling 

Service (to increase or decrease dynamically the number of 

worker instances), the Notification Service (to inform the 

user about the status of the jobs), the Submission Service 

(to send the simulations to the worker instances) and the 

Job Management (to provide information related to the 

status of the tasks). 

• The Structural Analysis Service Manager, which 

generates the input files needed by the Structural Simulator 

and launches it and encapsulates the results. 

• The Structural Simulator Worker, i.e. the HPC 

Architrave module that runs the simulations in the Cloud.  

• The CDMI Service, which uploads and downloads 

the data using the standard CDMI protocol. 

• The Elasticity Manager, which sets automatically 

the number of worker instances according to the workload. 

 For each simulation request, the associated input 

binary file is moved from the CS to the local drive of the 

VM by the GW Service, and the Structural Analysis 

Service Manager is launched. This executable file reads the 

input archive and generates the input file needed by the 

Structural Simulator Worker. Next, the Structural Simulator 

Worker is executed with the appropriate parameters, 

depending on the type of analysis, defined by the user. As a 

result, the structure is analysed and the output files are 

periodically generated and saved on the local drive. For 

each simulation time step, in case of a dynamic analysis 

with response along the time, all the multiple output files 

generated are encapsulated in just a single output file and 

sent to the CS during the execution by the Structural 

Analysis Service Manager.  

 A notification scheme is employed, where the 

Notification Service of the GW puts the status changes of 

the simulations into an Azure queue, which is consulted 

periodically by the Notification Manager component of the 

Remote Simulation Manager Client. In this way, the 

Remote Simulation Manager Client informs properly the 

user and downloads the output files to the local machine 

when the execution has finished, or when each simulation 

time step is ready to be retrieved, following a data-driven 

model. As a consequence, the remote simulation execution 

and the result retrieval phase are overlapped in time and, 

thereby, the whole time involved in the simulation is 

dramatically reduced.  

 The Structural Analysis Cloud Service contains an 

Elasticity Manager component able to adjust the number of 

available worker resources through the Scaling Service of 

the GW, depending on the workload in the system. 

Specifically, this component monitors continually the 

number of workers in execution, and a new instance worker 

is launched automatically when the processing workload is 

increasing. For that, when the number of instances waiting 

for jobs is lower than two, a new worker is deployed. On 

the other hand, if all the worker instances are idle, most of 

them will be terminated and the number of workers will 

reduced to the minimum.  

4 Execution results and performance 

analysis  

 This section explains the representative case study 

applied to validate the Cloud system. The following 

subsections describe the structural and computational 

interest of the case study and the expected improvement 

benefits that provides the Cloud Computing solution.  

4.1 Introduction to the case study 

 For the case study, we have selected a structure 

(Figure 3) corresponding to a reinterpretation, according to 

the current usages and regulations, of the original structure 

of the Nordic Bank, located in Helsinki. This is a work of 

the Finnish architect Alvar Aalto in 1962. It consists on a 

portal frame structure, solved by means of slabs over 

interior concrete columns and steel columns at the facade. 

The core of the vertical communication is materialized as 

reinforced concrete walls serving as vertical structure and 

lateral bracing. The spans are moderated, except in some 

zones at lowest levels where the foundation lab is 
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reinforced with hanging concrete beams. The facade steel 

columns are disposed to half spans, with beams of diversion 

at the level of first floor. The foundation consists of a slab, 

due to the presence of the phreatic stratum. The model has 

been designed with bars for columns and beams, and 2D 

medium sized finite elements for slabs and walls. For the 

slabs, a Delaunay mesh has been employed, while the walls 

are solved with a simple mesh. 

 

Fig. 3.  Nordic Bank building. 

 The case study presented consisted on testing and 

simulating 10 different structural solutions that came from 

the same structural design, composed of 253812 degrees of 

freedom, with 1306 columns and beams, and 68751 2D 

finite elements. Each structural solution was composed of a 

variation of the column dimensions, and the slab and wall 

thickness.   Moreover, each of them was dynamically tested 

under the influence of 5 representative earthquakes of 12 

seconds of duration, with a simulation time increment of 

0.01 seconds. These results were stored every 0.05 seconds. 

In this way, 1200 times steps were simulated and 240 of 

them were saved on disk. It should be noted that the aim of 

this case study was to select the best one of the 10 structural 

solutions that accomplished the structural and safety 

regulations and presented the most economic final cost. 

 Therefore, for the case study execution, a set of 50 

independent 3D dynamic simulations were launched and 

computed, firstly locally in a conventional PC (Intel core 

i5, CPU@ 3.20 GHz and 4 Gbytes of RAM), and then in 

the Cloud, following two different configurations. On the 

configuration A, all the simulation time steps remotely 

saved were retrieved by the client; and on the configuration 

B, only the 3 most unfavourable time steps were saved and 

retrieved by the user. Furthermore, the two configurations 

were tested over different deployments composed of 1, 10, 

25 and 50 medium-sized Web role Azure instances (CPU@ 

1.60 GHz and 3.5 Gbytes of RAM). 

4.2 Performance analysis 

 The validation tests demonstrate the behaviour of the 

VENUS-C platform according to the case study described 

in the previous section. For that, a quantitative evaluation 

has been carried out, measuring the efficiency of the 

platform by means of the response time and the speed-up, 

obtained by the Cloud approach with respect to the local 

approach and with respect to employ just one Azure 

instance in the Cloud. 

 Before executing the whole case study, the simulation 

of one of these structural solutions was computed firstly on 

premises and then in the Cloud. The Table 1 shows the 

results when computing the structural solution in the local 

machine of the user, together with the response time, the 

size of the input data and the amount of data downloaded 

by the local client, for the two described configurations. 

Table 1: Results corresponding to the simulation of one of 

the structural solutions in the Cloud. 

Type of execution Response time 

(minutes) 

Input data 

(Mbytes) 

Output data 

(Gbytes) 

Local execution - 

Saving the results of 

the 240 time steps 

120.03 5.43 2.48 

Configuration A 279.48 5.43 2.48 

Configuration B 277.46 5.43 0.12 

 It should be clear that, for the configuration A, all the 

needed data movements (from the VM local disk to the CS 

and from the CS to the user machine) were overlapped with 

the execution. However, for the configuration B, the data 

transference just could start once the simulation had 

finished and the most adverse results had been computed. 

 The results of the Table 1 show a big difference 

between the local response time (120.03 minutes) and the 

remote response time (279.48 minutes for the configuration 

A, and 277.46 minutes for the configuration B).  

 For the itemization of the overhead times, the stages 

that give place to an overhead faced with the local 

execution have been analysed.  Table 2 shows the time 

involved in each of the stages that compose the simulation 

of a single structural solution, where only the most 

unfavourable results are moved to the CS and downloaded 

later (configuration B). As it can be seen, the time involved 

in computation implies a delay of 155.28 minutes, with 

respect to the local execution.  

Table 2: Execution times of each of the different stages 

involved in the simulation in the Cloud (configuration B). 

  

Data and 

job 

submission 

Application 

download 

and job 

initialization 

Structural 

Simulator 

Worker 

execution and 

result 

encapsulation 

Result 

upload 

to the 

CS 

Result 

download 

to the 

client 

machine 

Local 

execution 

- - 120m 02s - - 

Remote 

execution 

6s 39s 275m 19s 50s 34s 

Overhead 

time 

6s 39s 155m 17s 50s 34s 

  The values of the Table 2 reflect that the most of the 

overhead time resides on the execution of the Structural 
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Simulator Worker, responsible of analysing the structure, 

and the Structural Analysis Service Manager, in charge of 

encapsulating the results generated. As the computational 

complexity is similar on the local and the Cloud simulation 

execution, it can be assumed that the main overhead resides 

on the difference on hardware characteristics, especially on 

the CPU features and the speed of accessing the disk for the 

read and write operations. 

 The overhead times at the configuration A shows a 

similar behaviour than in the case of the configuration B, as 

reflected in the Table 3. However, this is due to the fact 

that, as indicated above, the Structural Simulator Worker 

execution time is overlapped with the output data upload to 

the CS and with the result download to the client machine. 

In this way, the column 4 includes the time spent on the 

simulation execution, where the results of most of the time 

steps had been transferred simultaneously to the CS and 

received by the client. On the other hand, the column 5 

shows the time required for the data upload to the CS and 

the result download to the client for the last time steps, i.e. 

once the Structural Simulator Worker execution has 

finished. Therefore, the main overhead appears during the 

simulation of the structure, with a delay of 154.88 minutes 

with respect to the local execution. 

Table 3: Execution times of each of the different stages 

involved in the simulation in the Cloud (configuration A). 

  

Data and 

job 

submission 

Application 

download 

and job 

initialization 

Structural 

Simulator Worker 

execution and 

result 

encapsulation 

Result upload 

to the CS and 

download to 

the client 

machine 

Local 

execution 

- - 120m 02s - 

Remote 

execution 

6s 39s 274m 55s 3m 49s 

Overhead 

time 

6s 39s 154m 53s 3m 49s 

 Once analysed the execution times of a single 

structural solution, the whole case study execution was 

performed, whose fifty different simulations were launched 

at the same time, and the status of the simulations were 

consulted periodically by means the Remote Simulation 

Manager Client. The evaluation compares the response 

time of the local execution, considering that each structural 

solution is analysed after another in the machine of the user, 

with the remote response time, for the two different 

previous configurations, over a set of different Cloud 

deployments composed of 1, 10, 25 and 50 medium-sized 

Azure instances.  The response time was measured as the 

difference of time between the first job submission and the 

final result data downloaded corresponding to the last 

simulation.  

 The execution of the 50 simulations that compose the 

case study spent 100.03 CPU hours in a traditional 

approach, generating output results in the order of 124.04 

Gbytes. In the Cloud deployment, the execution of the 

whole case use configuration A required 271.5 Mbytes as 

input data and 124.04 Gbytes of output data were produced. 

For the configuration B, 271.5 Mbytes were required as 

input data and 5.75 Gbytes of output data were generated. 

 Figure 4 shows the execution times of the whole case 

use, for both configurations and over a Cloud deployment 

composed of different number of Azure instances. 

 

Fig. 4. Response time in hours for the whole case use. 

 As it can be noticed, the response time decreases 

gradually when the number of Azure instances is increased 

at the configuration B. In the case of the configuration A, 

the results show initially a similar trend. However, when the 

number of Azure instances that executes the case study is 

greater than 25, the results acquire a value of around 17 

hours. This is due to the bottleneck of the network in the 

retrieval of this large volume of output data by the client, 

since the time required for downloading all the results 

generated is much greater than the time required for 

executing the simulations. Therefore, although the 

execution and the result retrieval stages are properly 

overlapped, the time required for the complete case study is 

mainly determined by the time spent on the reception of the 

124.04 Gbytes of results generated.  

 In any case, it should be taken into account the 

dramatically reduction of the total time required for the 

execution. Whereas more than 4 days were needed in the 

traditional approach, just 17.02 and 5.22 hours were spent, 

respectively for the configurations A and B, when 

computing remotely all the simulations in the Cloud.  

 Figure 5 shows the behaviour of the Cloud system, 

when the number of Azure instances is increased, in terms 

of speed-up, with respect to the sequential approach (each 

structural solution analysed after another in the client local 

machine) and with regard to the results of the execution 

over just a single Azure instance. In this figure, it can be 

appreciated how the results of the speed-up, compared with 

the sequential approach, are much lower than results of the 

execution in an Azure instance, at the two configurations. 

This difference in the results is mainly due to the difference 

in the hardware characteristics between the local testing 

machine and the Azure instances.  

 Whereas the speed-up at the configuration B with 

regard to an Azure instance obtains values near to the ideal 

case (44.29 for 50 machines), the speed-up with respect to 
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the sequential approach is far from these values (19.16 

when using 50 instances). In the case of the configuration 

A, it can be appreciated how the value of the speed-up does 

not increase appreciably when the number of Azure 

instances is greater than 25, due to the reasons exposed 

above related to the bottleneck of the network in the 

retrieval of the results. 

 

Fig. 5. Speed-up for the whole case use. 

 The behaviour, in terms of efficiency, of the Cloud 

system is reflected in the Figure 6, with respect to the 

sequential approach and with regard to an Azure instance.  

 

Fig. 6. Efficiency for the whole case use.  

 As expected, excellent efficiencies were obtained for 

the configuration B, but worse efficiencies were computed 

for the configuration A. Clearly, it can be noticed how the 

efficiency decrement is very low at the configuration B 

when the number of Azure instances is increased, whereas 

the tendency of the decrement at the configuration A is 

much more pronounced. 

5  Conclusions 

 In this work, a Structural Analysis Cloud Service has 

been implemented, based on the GW component developed 

of the VENUS-C project, and deployed for Windows 

Azure. The software architecture of Cloud system is 

described, together with its design and the different 

elements that composed it. 

 All the remote simulations are managed by 

Architrave, an advanced software for structural analysis. 

The Architrave Analysis Component and the Architrave 

Structural Simulator have been properly adapted to work in 

the Cloud. In order to launch and manage the executions, 

the Remote Simulation Manager Client application has 

been implemented. 

 Thanks to the high throughput and reliable Structural 

Analysis Cloud Service implemented, researchers will have 

available a huge number of computational resources to be 

on-demand employed and lots of cost-effective simulations 

will be launched simultaneously. Thus, more experiments 

will be analysed per time unit, increasing the number of 

structures simulated and speeding up the research process. 

 The structural community will be able to solve larger 

scale problems, increase the complexity of the structure to 

be analysed, and carry out a larger number of realistic 

dynamic simulations. In this way, the reliability and safety 

of the results obtained will be improved and new structural 

problems will be tackled. Since the time spent on the design 

of buildings and civil engineering structures will be 

reduced, the engineering companies and the architectural 

studios will increase their productivity and volume of 

business. 

 Finally, there will be no need of acquiring software 

licenses in property and expensive hardware for solving 

large-scale structural problems (just pay per use), and the 

users will not be worried about new software updates. 
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Abstract – As virtualization technologies become more 
prevalent, Cloud users usually encounter the problem of 
how to build his/her own virtual cluster form cloud 
environment. We provided easy installation toolkit for 
building cloud environment with friendly user interface. 
Ezilla toolkit has been developed by the Pervasive 
Computing Team at the National Center for 
High-Performance Computing (NCHC). Ezilla toolkit 
integrates the de facto Cloud middleware, Web-based 
Operating System (WebOS), and coordinated Cloud 
infrastructure services (hypervisor, storage, and networking) 
to form a cloud environment. With a click, Cloud users can 
easily customize and configure the specified cloud 
environment via Ezilla toolkit. The main feature of Ezilla is 
simplifying a lot complexity of utilizing Clouds. Our goal is 
to make scientists or users painlessly run their works on 
Clouds. 
 

Keywords: Virtualization Techniques; WebOS; Virtual 
Cluster. 

1 Introduction 
Cloud users have to manually build specified virtual 

cluster of cloud environment with the console mode in order 
to manage or generate virtual resources. To improve this 
condition, an Ezilla toolkit has been developed by the 
Pervasive Computing (PerComp) Team at the National 
Center for High-Performance Computing (NCHC). Ezilla is 
built on the “Carry-On-Cloud” concept. On this platform, 
Cloud users can build on demand virtual clusters with one 
click. Furthermore, Ezilla leverages unattended installation 
technique, Cloud middleware, WebOS (Web-based 
Operating System), and DRBL - SSI mode (Diskless 
Remote Boot in Linux - Single System Image) [1], to 
provide the software infrastructure of the Ezilla system. 
Therefore, Cloud users can build the whole Cloud 
environment very easily. 

Ezilla toolkit provides a user-friendly interface that is 
WebOS. The WebOS infrastructure offers a seamless and 
unified access to geographical distributed resources 
connected via Internet, and it can supply most basic 
operating system services [2]. Thus, with one click, Ezilla 
toolkit helps Cloud users to make their own private Cloud 
easily. The progress of Ezilla helps to lower the barrier for 
using Cloud computing environment. The designed Ezilla 
toolkit has become necessary to provide Cloud users with an 
interface that is both user-friendly and straightforward. This 

research focuses on virtual resources management with an 
interactive graphical user environment. 

Furthermore, the “Green Computing,” is especially 
important and timely. As Cloud Computing becomes 
increasingly pervasive, the energy consumption attributable 
to computing is climbing, despite the clarion call to action to 
reduce consumption and reverse greenhouse effects. To echo 
today’s energy saving issues, we also developed a power 
saving approach in Ezilla toolkit to reduce energy utilization 
in Cloud Computing resources. We do this work on the 
integration of local scheduler that aims at reducing power 
consumption such that they suffice for meeting the 
minimizing quality of service required by local cluster or 
physical machines. 

According to the above scenario, those issues 
encourage the motivation of our research and development. 
Specifically, the design and implementation of the proposed 
Ezilla toolkit includes Cloud middleware, WebOS, DRBL – 
SSI mode, and power saving mechanism. The rest of the 
paper is organized as follows. Section 2 presents related 
works, including existing Web-based Operating system, 
virtualization technologies, and Diskless Remote Boot in 
Linux (DRBL). In Sections 3, we propose the 
implementation of Ezilla toolkit and power saving 
Mechanism that we developed. In Section 4, the research 
results. The conclusion and future directions are presented 
in Section 5. 

2 Related Works 
2.1 Existing Web-based Operating System 

(WebOS) Projects 
 Recently, a famous WebOS - Chrome OS, developed 
based on AJAX technique [3]. It can be used to implement a 
web application that communicates with a server in the 
background, without interfering with the current state of the 
page. The developments of Cloud WebOS platform via 
AJAX technique become practicable. However, Chrome OS 
does not provide on-demand applications and computing 
services to users in Clouds.  

 A Web-based Operating System (WebOS) project 
started as part of Network of Workstations [4] at the 
University of California, Berkeley in 1996. So far, there are 
several typical commercial projects of WebOS, such as 
FlyakiteOSX [5], Glide OS [6], Xindesktop [7], … etc. All 
of these systems are online OS with AJAX and PHP 
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techniques adopted. However, these projects are not open 
source and lack of the management of distributed computing 
resources. To tackle the technical issues of distributed 
computing resource management, the Cloud WebOS 
platform is developed in this work, upholding the spirit of 
open source, open standard, and is distributed under 
GNU/GPL license.  

2.2 Virtualization Technologies 
 The virtualization technology is not a brand new 
technology. In the late 1990s, virtualization was achieved by 
complex software (binary translation) techniques given the 
fact that the virtualization technique was not supported by 
processors at the moment and obtained reasonable 
performance. In the late 2006, both the Intel and the AMD 
created new processor extensions to their processors and 
enhanced the support of the virtualization. Furthermore, 
they also implemented the I/O virtualization technology that 
covers memory, disk and network by the chipset. The 
technology was called hardware-assisted virtualization. This 
approach increases the performance by removing a layer of 
complex software techniques between the guest OS and 
hardware. Examples of virtualization platforms that are 
adapted to such hardware include Linux KVM, VMware 
Workstation, Microsoft Hyper-V, to name a few. 

 In the arena of virtualization technology, hypervisor is 
considered as a crucial part of the technology. It is software 
that manages multiple virtual machines on a single computer 
system. Hypervisor is a layer resides between the existing 
operating system and hardware to manage the computing 
hardware and virtual machines. 

 Generally, modern implementations of hypervisor are 
divided into two categories, including Host-based and 
Bare-metal approaches. The host-based approach uses 
modified operating systems to provide virtual machine 
monitoring, such as Linux-VServer [8], Solaris Zones [9], 
and Kernel-based Virtual Machine (KVM) [10]. On the 
other hand, the bare-metal approach employs 
small-dedicated hypervisors to directly run on physical 
machines. The VMware ESX server [11] and the XenServer 
[12] are the famous examples of the bare-metal approach.  

2.3 Diskless Remote Boot in Linux (DRBL) 
 Diskless remote boot in Linux (DRBL) environment is 
based on the network boot mechanism, network file system, 
and centralized authentication mechanism. To boot the 
computing node remotely, a mechanism that can download 
program over network is required. There are many programs 
fulfill this need, such as Preboot Execution Environment 
(PXE) [13], etherboot [14], gPXE [15], and iPXE [16]. The 
DRBL is compatible with all of them. Once the DRBL 
server is ready, the whole computing cluster is ready. It is 
not necessary to install the OS onto computing nodes at all. 

Services, such as dhcp, tftp, NFS, and NIS are executed in 
the DRBL server to serve all the computing nodes.  

By setting computing nodes to boot from network, IP 
addresses will be assigned from server when nodes during 
the booting procedure. Once a computing node gets its IP 
address and kernel, it will boot from the kernel and the 
initialized RAM disk “initrd”. The computing node will then 
load the driver for NIC in the initrd, mount its root directory 
and other necessary directories via NFS. Once the procedure 
is completed, the computing node has all the necessary files. 
Then, the normal boot procedure, just like that of regular 
Linux boot steps in the diskfull nodes, will follow. 
Standardized procedure and packages needed to setup a 
DRBL server has been developed for various Linux 
distributions, including Debian, Red Hat, Fedora, and 
Mandrake. The whole setup procedure is easy, 
straightforward and productive. Following the 
documentation on the DRBL project website, one can setup 
a DRBL server in about half an hour, depending on the 
packages chosen to be installed and the network speed. 

 To boost the performance of a DRBL cluster, 
performance tuning in the DRBL setup program was carried 
out. One of the examples is that, there are more than 100 
device files under the directory /dev in a diskless node. If 
these small but numerous devices files exist in the NFS 
server and share with the clients via NFS, the cluster 
performance won't be good. So the tmpfs file system in the 
diskless clients is used and these device files are created in 
this tmpfs file system when diskless clients boot. With most 
of these tmpfs files systems for directories /etc/, /var, /tmp/, 
and /dev/ included in the DRBL clients, which is called 
Single System Image (SSI) mod, loading of the file server is 
greatly reduced. 

 With success of the virtual technologies, we integrate 
virtualization technology – KVM, WebOS, and DRBL. This 
research comes up with a new and lightweight approach to 
access virtual computing services via the Ezilla toolkit.  

3 The Implementation of Fast 
Deployment Ezilla Toolkit and 
Power Saving Mechanism 

3.1 Research Objective 
The key idea of Cloud Computing lies in its 

component-based nature, which are reusability, 
substitutability and user friendly. By integrating 
virtualization technologies, DRBL – SSI mode, and WebOS, 
a web environment to access Cloud services via Ezilla 
WebOS Interface is provided. This progress helps to lower 
the barrier for using Clouds. This research focuses on virtual 
resources management with an interactive graphical user 
environment. More specifically, the Ezilla toolkit 
implements an autonomic virtual computing resources 
management system based on decentralized resource 
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discovery architecture. At the same time, a power saving 
mechanism is also crucial to the utilization of Cloud 
resource. Therefore, the designed power saving mechanism 
is used for the virtual cluster and physical cluster. 

3.2 Implementation of Fast Deployment Ezilla 
Toolkit 
There are three components in the Ezilla toolkit, 

including Ezilla Server, Ezilla Client and intuitive Ezilla 
WebOS Interface, as sketched in the Figure 1. The Ezilla 
Server responses for orchestrating computing resources and 
monitors the status both of physical and virtual machines via 
cloud middleware. In addition, the most important feature is 
the image file server used to manage virtual machine images. 
The VM images are stored in the file system that controlled 
by the Ezilla server. Responding to the request from Cloud 
users, the images will be dispatched to Ezilla clients and 
used to generate virtual machines in turn by Ezilla clients. A 
Cloud user can use his personal Ezilla WebOS interface to 
create a Cloud environment linking storage, networking, and 
computing power timely and easily.  

 
Figure 1. The System Architecture of Ezilla 

 The Cloud users can create dynamically a virtual 
cluster consisting of VMs through Ezilla WebOS Interface. 
Users determine the scale and the life span of the virtual 
cluster. Once the virtual cluster is no longer needed, it can 
be dismissed subjected to the decision of the user. The 
computing resource is then released for other users to use. 
Due to the adoption of the XML-RPC based API for the 
development of the WebOS; the whole operation can be 
manipulated via a web browser, such as Chrome. There are 
several middlewares embedded in the designed Ezilla 
Toolkit:  

Ø Integration with basic Operation System and 
packages – The Ezilla toolkit supports the Debian 
OS and basic packages, including KVM hypervisor, 
and Libvirt [17]. In order to improve the 
performance, the Virtio [18] driver is also adopted 
in the virtual machines created by the Ezilla. Virtio 

driver provides paravirtualized functions for 
network virtualization and disk I/O virtualization. 
On the scenario of Network, the Bridge mode is 
configured by Ezilla toolkit as well. 

Ø Integration with OpenNebula [19] – OpenNebula is 
used as central cloud management. It is responsible 
for allocating available computing resources, 
creating VMs based on user selected VM image, 
and deploying the image onto the physical 
computing resources. It also manages unique MAC 
address, IP address, and virtual network (vNet) ID. 
Therefore, each user’s virtual cluster lives on its 
own vNet without interfering with other virtual 
clusters. 

 Once the Ezilla Server is in place, Ezilla Clients can be 
setup automatically via the DRBL–SSI Mode and existing 
virtualization technologies. With such a mechanism 
implemented, a physical machine can be easily turned into 
Ezilla Client via PXE (Preboot Execution Environment) with 
the local disk untouched. Hence, computing resources can be 
added dynamically without any reconfiguration, thus to 
enhance the flexibility of Cloud resource allocation. 

3.3 Power Saving Mechanism 
 We developed an approach to reduce energy utilization 
in Ezilla cluster. We do this work on the integration of 
OpenNebula and remote power management system that 
aims at reducing power consumption such that they suffice 
for meeting the minimizing quality of service required by 
cluster. In particular, our approach relies on recalling 
services dynamically onto appropriate amount of the Ezilla 
Clients according to user’s job request (virtual machines 
request) and temporarily shutting down the Ezilla Clients 
after finish in order to conserve energy.  

 As shown in Figure 6, the power saving mechanism 
will wake up every minute to check job (virtual machines 
request) queue if there exist jobs, and make sure Ezilla 
Client become available, the power saving mechanism then 
will fetch the applicable jobs, parses the requirements, and 
remotely powers on the correct number of machines by 
Wake-on-LAN [20] protocol or IPMI [21]. After the job 
completes, the power saving mechanism powers the 
machines down. Our implementation currently relies on 
checking the scheduler’s job pool and then decides to shut 
down which Ezilla Client when no new job was submitted. 
By powering off idle Ezilla Client, it can significantly save 
more energy than always keeping all Ezilla clients running. 
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Figure 2. Scenario of Power Saving Mechanism  

4 Research Results 
4.1 Fast Deployment of the Ezilla Toolkit 

The installation of the Ezilla was designed to be as 
effortless as possible so that a Cloud environment can be 
deployed quickly and easily. In fact, an Ezilla Server can be 
deployed in just three simple steps via DRBL – SSI mode, as 
shown in the following Figure 3, 4, and 5. 

Ø Step1 – Boot the server with a genuine Debian 
CD-ROM and select “Help”, for example, in Figure 
3. 

 
Figure 3. Step1 - boot the server with a genuine Debian 

CD-ROM and select “Help” 
Ø Step2 – Key in “auto url=ezilla-nchc.sf.net” once 

the system enter the “Help Index”, in Figure 4. The 
installation of the server is fully automated with all 
the needed packages and source codes downloaded. 

 
Figure 4. Step2 - key in “auto url=ezilla-nchc.sf.net” 

Ø Step3 - Per the illustration in the Figure 5, the Local 
Area Network requires static IP instead of the 
DHCP. 

 
Figure 5. Step 3 – the setup of network 

After completion of all the three steps above when the 
Ezilla server is ready for further use, the automatic 
installation process for building the Ezilla environment takes 
over.  The installation will proceed without requiring the 
attention from system admin. The installation is completed 
and the Ezilla Cloud environment is ready for use once the 
boot menu page is shown, as in the Figure 6. 

 
Figure 6. The boot menu on Ezilla Client with PXE  

4.2 Ezilla WebOS Interface and Widgets 
More advanced Cloud Computing Widgets are 

attempted as well. One of the most important results in this 
paper is that we have developed many Cloud Widgets with 
friendly graphical user interface via Ezilla WebOS Interface. 
The kernel of this system architecture consists of four 
Widgets, including Image Creator Widget, VM Creator 
Widget, VM Monitor Widget, and VM Control Widget. 
Users without much learning effort can easily manage all of 
these widgets. These Widgets allow users to customize and to 
arrange their complicated computing tasks according to their 
requirements. 

The Image Creator Widget, in the figure 7, is to 
generate the customized base image and on-demand/specified 
application from the end users’ requirements. This Widget 
provides a complete and integrated HPC software stack that 
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consists of operating system, management tools, resource 
monitor, and even commercial package, such as the Matlab. 
VM Creator Widget - with the profile of virtual cluster 
demanded by the user provided, it will generate a 
specification, shown in the figure 8, which in turn is parsed 
by the VM Creator engine to create an on-demand virtual 
Cluster on the physical computing resources. 

 
Figure 7. Image Creator Widget 

 
Figure 8. VM Creator Widget  

In the figure 9, the main task of the VM Monitor 
Widget is to monitor the all the status of virtual machines, 
Networks, and the physical hardware. In addition, this 
Widget makes use of the information and the status provided 
by the Monitoring & Reporting Cloud Middleware. The VM 
Control Widget is designed for such a purpose with Cloud 
visualizer integrated as the core of its Cloud service, as 
shown in the figure 10. 

 
Figure 9. VM Monitor Widget  

 
Figure 10. VM Control Widget Cloud Visualizer – 

Windows 7 Booting Status 

Moreover, we used Ezilla toolkit to implement the 
following two customized applications for biological 
simulation and information security simulation in Eziila 
WebOS. The F-motif Simulation Widget provides specialized 
Cloud services to search and analyze the sequence of gene in 
real time, in figure 11. The other customized Cloud Widget 
about information security is called ICAS (IDS-log Cloud 
Analysis System) Widget. As long as user selects the ICAS 
base image, the Hadoop DB and virtual cluster are 
constructed automatically, and then users can analyze the 
IDS-log as the figure 12 shown.  

In the figure 13 and 14, Ezilla WebOS also provides two 
methods to control virtual machines. One is VNC, the other is 
SSH on Web. 
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Figure 11. F-motif Widget in Ezilla WebOS 

 
Figure 12. ICAS Widget in Eziila WebOS 

 
Figure 13. Using VNC to Control VM 

 
Figure 14. Using SSH to Control VM 

 

5 Conclusions Conclusion and Future 
Work 

  The proposed toolkit – Ezilla [22], it not only helps 
user to build virtual cluster easily and automatically, but also 
provides different varieties of computing environment such 
as Linux, Win7, and so on. Furthermore, the ability to 
distribute and balance the workload across multiple physical 
as well as virtual computing resources will be tackled in the 
future development of this research.  

 The NCHC's Ezilla Development Team hopes that 
others will use Ezilla to create diverse applications, which 
incorporate additional Cloud services that can be accessed 
anytime.  The ultimate goal of Ezilla is to achieve “Every as 
a Service” usability. 
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Abstract— In this paper, we propose a resource assignment
scheme in the computational grid based on the notion of
market equilibrium. Market equilibrium is a key concept
commonly used in the field of game theory, and in this
framework, we determine the “price” of resources owned by
the service providers so that it fulfills the Nash equilibrium of
the given market consisting of clients and service providers.
The degree of satisfaction of clients is modeled as a linear
utility function of acquired resources, and as a constraint
concerned with the clients, we use the notion of budgets.
Our proposed scheme a semi-algorithm which finds an
assignment of resources to the clients so that it maximizes
the utility of the clients provided that: 1) all resources are
completely exhausted and 2) the surplus of the clients is at
most ε using O(n log(nM/ε)) maximum flow computations,
where M is the total amount of budgets given to the clients
at the initial state and ε is a positive real representing the
accuracy of approximation.

1. Introduction
1.1 Background

Our daily life is being enriched with the aid of advanced
distributed systems such as cloud computing (e.g., Google
Apps and Amazon EC2), social networking services (e.g.,
Twitter and Facebook), and on-line streaming services (e.g.,
YouTube and Ustream) which have a high computational
availability compared with classical distributed systems with
respect to the performance, reliability, usability, and the
fault-tolerance. As the availability of such advanced systems
increases, however, it has raised another crucial issue so that
how to utilize miscellaneous resources distributed over the
network in an efficient and productive manner. In fact, the
resource management has been recognized as a key issue
to realize an efficient utilization of fully distributed systems
such as volunteer computing and peer-to-peer systems, and
in the past three decades, a huge number of resource
management schemes have been proposed (see [11], [3] for
survey).

Computational grid, which is often called Grid, is an
emerging technology to improve the utilization of shared
resources in large-scale distributed systems. Grid has been
used to solve many important problems in the field of busi-
ness, finance, medicine, and Grand Challenge applications

in many fields of science and technology. In addition, there
are several national projects concerned with the development
and the utilization of Grid, e.g., Fusion Collaboratory Project
in United States [14], EU DataGrid in EU [15], China
National Grid in China [12], NAREGI in Japan [13], and
others. The reader should note that the resource management
in Grid should satisfy the requirement from both of “clients”
and “service providers.” More specifically, from the client
side, it is required that spending the least money and getting
the highest satisfaction. On the other hand, from the service
provider side, it is required to make a full utilization of given
resources.

There are many resource management schemes proposed
in the literature, and some of them could certainly improve
the efficiency of resource utilization in Grid. Agent-based
scheme [7] and reputation-based scheme [1] are two repre-
sentatives in this direction. A resource management based
on the notion of economics, which is referred to as Grid
Economy, has also received considerable attention in the past
few years [16], [8]. The Grid Economy provides mechanisms
to trade-off QoS parameters, deadline and computational
cost, and offers an incentive for relaxing their requirements.
However, most of those conventional schemes are based on
a classical model of distributed systems such that resources
should be assigned to clients so that a certain cost function
is optimized subject to a certain constraint. In other words,
it defines the problem from the viewpoint of the system
manager and ignores the “emotion” of individual clients
(clients) such as incentive, satisfaction, and regret.

1.2 Our Contribution
To overcome such a critical problem existing in con-

ventional schemes, in this paper, we adopt the notion of
market equilibrium to satisfy requirements issued by clients
and service providers. Market equilibrium is a key con-
cept commonly used in the field of game theory. In this
framework, we will determine the “price” of each resource
owned by the service providers so that it fulfills the Nash
equilibrium of the given market consisting of clients and
service providers. More concretely, we assume the existence
of a centralized manager, and instead of determining the
price of resources using an autonomous (but one-sided)
mechanism such as buyer initiated or seller initiated auction,
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the price of resources will be determined by the centralized
manager so that:

1) the satisfaction of each client is maximized, and
2) given resources are fully utilized.

The degree of satisfaction is modeled as a linear utility
function which is independently defined for each client, and
as a constraint concerned with the clients, we use the notion
of budget in the price determination process.

As a concrete method to calculate such a market equi-
librium, we focus on a polynomial time algorithm proposed
by Devanur et al. in 2002 [9]. This algorithm calculates a
market equilibrium using O(n4(log n + n log U + log M))
max-flow (maximum flow) computations, where n is the
number of service providers, U is the maximum coefficient
in the utility functions and M is the total money possessed
by the clients at the initial state (the details of the algorithm
will be described in Section 4). Thus, although it is in fact
polynomial time and always outputs an exact solution, it
rapidly glows as the size of the given instance increases. In
this paper, we reduce the time complexity of Devanur et al.’s
algorithm using the notion of approximation. More precisely,
our proposed scheme is a semi-algorithm which calculates
the price of resources maximizing the utility of clients
provided that: 1) all resources are completely exhausted and
2) the surplus of the clients is at most ε for any ε > 0, using
O(n log(nM/ε)) max-flow computations. The reader should
note that our scheme solves (slightly) different problem from
the original problem in the sense that we allow the remaining
of very small surplus (of at most ε) whereas such surplus is
strictly prohibited in the original problem.

The performance of the proposed scheme is experimen-
tally evaluated with respect to the following factors: 1) the
percentage of instances successfully solved by the proposed
scheme (recall that our scheme is not an algorithm but
a semi-algorithm), 2) comparison of the execution time
with the Devanur et al.’s algorithm, and 3) certification on
the approximation, i.e., whether or not the surplus in the
resultant solution is certainly smaller than given ε.

The reminder of this paper is organized as follows. Sec-
tion 2 overviews related work. Section 3 defines a service
model of Grid adopted in this paper. Section 4 outlines the
primal-dual algorithm proposed by Devanur et al. Section 5
describes our proposed scheme. Section 6 shows the result
of experiments. Finally, Section 7 concludes the paper with
topics for future work.

2. Related Work
This section overviews several resource management

schemes proposed in the literature which can be applied to
the resource management in the Grid.

2.1 Economic Model
In order to encourage the incentive of the clients, Buyya et

al. introduced the notion of economy to the grid environment

Figure 1: An auction mechanism proposed by Buyya et al.

[6]. In their model, the manager can increase the degree
of satisfaction of the clients by allocating resources to the
clients through an auction mechanism. The auction mech-
anism supports one-to-many negotiation between a service
provider and a set of clients, and will derive a single value
(i.e. price) as an outcome of the negotiation. The manager
regulates rules of the auction, which should be acceptable
for both of clients and service providers, and uses the “force
from the market” so that the negotiation should derive a
clearing price for the service.

An outline of the auction mechanism is illustrated in
Figure 1. The steps of an auction process are as follows:

Step 1: A service provider (GSP in the figure) announces
available services and invites bids from clients.

Step 2: Clients offer their bids (and they can see what
other clients offer if it is an open auction).

Step 3: Step 2 goes on until no one is willing to bid a
higher price or the auctioneer stops if the minimum
price line is not met.

Step 4: The GSP offers the service to the one who wins.
Step 5: The consumer uses the offered resource.

To evaluate the performance of the scheme, Buyya et al.
conducted experiments on the World-Wide Grid (WWG).
From the experiments it can be observed that, the manager
selects the most powerful but cheapest resources to process
a given job, as cost minimization was the top priority as
long as the deadline of all jobs could be met. This indicates
that their economic model certainly realizes a mechanism
to effectively control the trade-off among QoS parameters,
deadline and the computational cost. However, this model
has a flaw such that it could not fully utilize the given
resources (i.e., it may waste a huge amount of resources)
since it commonly occurs a situation in which the request of
clients will concentrate on specific high quality resources. In
addition, it could not maximize the satisfaction of the clients
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Figure 2: Architecture of a reputation service proposed by
Alunkal et al.

since under the auction mechanism, each client should pay
much money to get a good resource although there may exist
resources that are less attractive but with a reasonable price.

2.2 Reputation Model
Alunkal et al. introduced the notion of reputation to

the resource management in Grid [1]. More concretely,
their resource management scheme adopts the concepts of
dynamic trust and reputation adaptation, which are based
on the community experiences such as the classification,
selection, and the tuning of the allocation of entities such
as resources and services. They proposed a sophisticated
architecture to select trusted resources which best satisfies
the application requirements with respect to a predefined
trust metric.

The overview of an individual reputation service is shown
in Figure 2. It consists of a calculation manager, collection
manager, storage manager and reputation reporter. The cal-
culation manager is responsible for calculating the reputation
value of the entities according to a prespecified context and
providing the calculated values to the storage manager which
stores them to maintain a global and historical view. The
collection manager evaluates the quality statement, describes
the requested reputation, and collects relevant data from the
entities. The reporter contacts the storage manager to make
a report whenever it is requested by the other clients in the
Grid.

With the aid of reputation, Alunkal et al.’s model can
reduce the influence of malicious entities, while it still
ignores the satisfaction of clients. In addition, it faces to
the same problem with the economic model such that the
given resources could not be fully utilized in many cases.

2.3 Broker Model
Elmroth proposed a resource management scheme based

on the notion of decentralized brokers [10]. The role of a
broker is to select a resource which minimizes the com-
pletion time of a given job, considering the time for file
staging, batch queue waiting, and the job execution. A grid
architecture based on decentralized brokers is shown in
Figure 3. In this architecture, each resource registers itself to

Figure 3: Interactions between resources, index servers and
brokers.

Figure 4: The structure of the central manager.

at least one index server, where each index server can also
register itself to index servers at a higher level; i.e., it forms
a hierarchy of index servers. All clients can access resources
only through their own broker, where each broker contacts
index servers to discover what resources are available in
the system. After acquiring the name and the contact of the
resources from index servers, a broker requests individual
resources for their detailed information, and performs job
submission and job control by directly communicating with
the resources.

3. Service Model
3.1 Model

The objective of resource management considered in this
paper is described as follows. Consider a distributed system
consisting of a set of resources A, a set of clients B, and a
central manager C. Each resource in A models a particular
service provided by the grid computer, e.g., disk space, CPU
power, peripheral devices, and so on. Let n = |A| denote
the number of resources and n′ = |B| denote the number of
clients. For each resource j ∈ A, the price pj of the resource
(per unit) is determined by the manager. Each client i ∈ B
is given budget ei, and client i can request several kind
of resources to maximize her profit, provided that the total
expense does not exceed ei.

The main role of central manager C is to manage the
assignment of resources to the clients so that all resources
are completely assigned to the clients while maximizing the
profit of each client. In this system, such an assignment is
realized by using a market model. More concretely, each
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client selfishly tries to maximize its profit, and the total cost
of requested resources does not exceed her budget. In order
to “clear” such a market (i.e., in order to realize a situation
in which all resources are assigned to clients and all clients
exhaust their budget), central manager C can “control” the
price of each resource. That is, by increasing the price of
a resource, it becomes less attractive for all clients and it
relaxes the congestion of requests to the resource, and by
decreasing the price of a resource, we could attain a full
utilization of the resource since it becomes attractive for all
clients interested in the resource.

The objective of the central manager is to find a market
clearing price such that a collection of selfish requests which
maximizes the satisfaction of clients clears the market. In
other words, under a market clearing price ~p = (p1, . . . , pn),
after each client is assigned an optimal set of resources
relative to these prices, there is no surplus or deficiency of
any of the resources. The structure of the central manager is
illustrated in Figure 4. As shown in the figure, it consists
of four components, i.e. task manager, utility manager,
resource manager and the allocation manager, where the
most important part is the allocation manager which is
responsible for computing and allocating resources to the
clients. Task manager is responsible for receiving tasks from
the clients and utility manager is responsible for receiving
the utility function from the clients. Finally, the role of
resource manager is to manage the resources coming to or
leaving from the system.

3.2 Utility Function

As was described previously, we model the satisfaction of
clients by a collection of utility functions. In this paper, we
assume that the utility functions are linear with respect to
the amount of assigned resources. Let xi,j be the amount
of resource j assigned to client i under price vector ~p.
Then, the utility of client i with respect to the assignment
is represented by

n∑
j=1

ui,j × xi,j

using n constants ui,1, . . . , ui,n. The reader should note
that such an assumption on the linearity of utility functions
makes the analysis of algorithms much easier than the case
of other utility functions such as concave ones, although it
is less practical than those general ones. In fact, in actual
situations in the real world, it is unlikely that the degree of
satisfaction “linearly” increases as increasing the amount of
acquired resources, e.g., although a kid could increase her
satisfaction twice as increasing the number of candies from
one to two, her satisfaction does not increase to the twice
by increasing the number of candies from one hundred to
two hundreds.

3.3 Match Making in Grid
A typical scenario for the match making in Grid proceeds

as follows. At first, all clients register their utility function
to C. Tasks issued by the clients are managed by C in a
synchronous manner i.e., C repeats synchronous rounds in
each of which:

1) tasks issued by the clients are received at the beginning
of a round,

2) tasks are assigned resources, and
3) assigned resources are used by the tasks until the

beginning of the next round.
As was mentioned previously, how to calculate an appropri-
ate assignment is the main concern in this paper.

4. Original Algorithm
4.1 Graph N(~p)

The following price determination algorithm is borrowed
from [9]. The goal of this algorithm is to find a price vector
~p∗ such that both resources and budgets are exhausted under
~p∗. Since the budget is limited and we are assuming linear
utility functions, for any price vector ~p, a reasonable client
wishing to maximize her profit must spend her money to the
resources which maximize her profit per price, i.e., ui,j/pj .
In other words, αi = maxj {ui,j/pj} is considered to be the
bang per buck for client i. Note that client i is interested
in any resource j such that ui,j/pj = αi, and if there
are several such resources, she is equally happy with any
combination of such resources.

To represent such a preference of clients (under price
vector ~p), we use a directed capacitated graph N(~p) =
(V, E), which is defined as follows:

• V = A ∪ B ∪ {s, t}, where A is the set of resources,
B is the set of clients, and s and t are vertices which
are not contained in A ∪ B.

• For any j ∈ A and i ∈ B, (i, j) ∈ E, (s, j) ∈ E, and
(i, t) ∈ E.

• Edge (i, j) connecting vertices in A∪B is given infinite
capacity, edge (s, j) is given capacity pj , and edge (i, t)
is given capacity ei. Note that pj is the price of resource
j and ei is the budget given to client i.

By definition, any combination of resources allocated along
the edges of N(~p) will make clients happiest under price
vector ~p. Computing the largest amount of resources which
can be allocated in this manner, without exceeding the
budget of clients or the amount of resources available, can
be accomplished by computing a max-flow in N(~p).

With graph N(~p), the algorithm tries to increase the price
of each resource starting from an initial price vector, by
keeping an invariant such that

“({s}, A ∪ B ∪ {t}) is a min-cut of graph N(p).”
See Figure 5 for illustration. This invariant ensures that all
resources can be allocated to some clients (i.e., exhausted)
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Figure 5: Network N(p).

and an increase of the price vector monotonically decreases
the surplus money of each client. In other words, it guar-
antees that when the surplus vanishes, a market clearing
price vector which exhausts all resources and all budgets,
is obtained.

4.2 Tight Sets
The second idea of the algorithm is to identify a set

of resources whose price is to be “frozen” during the
succeeding steps of the algorithm. Such a set of resources is
called a tight set, which is formally defined as follows: For
a set S ⊆ A of resources, let p(S) denote the total expense
of resources in S, and for a set T ⊆ B of clients, let m(T )
denote the total money possessed by the clients in T . Let
Γ(S) denote the set of clients adjacent to S; i.e., Γ(S) is
the set of clients who are interested in a resource in S at the
current price vector ~p. A resource set S is said to be tight if
it holds p(S) = m(Γ(S)), i.e., if the expense of S exactly
equals to the money possessed by the clients interested in S.
The reader should note that clients in Γ(S) are completely
satisfied with the current prices of S, and such a satisfaction
does not change even if we increase the price of the other
unfrozen resources.

In the algorithm, the price of unfrozen resources monoton-
ically increases, where instead of increasing the price of all
resources at the same time, we focus on a subgraph of N(~p)
called active graph, and try to increase the price of resources
in the graph (detailed definition of the active graph will be
given later). The price of resources in the active graph is
conducted in such a way that it ensures that the edges in the
active graph are retained during the increasing process (i.e.,
it does not become “too high”). To this end, we (uniformly)
multiply the price of these resources by x and gradually
increase x. It is shown in [9] that we will have a tight set
when x is set to the following value:

x∗ = minS⊆A
m(Γ(S))

m(S)
.

Here value x∗ and the corresponding tight set S∗ can be
found in polynomial time using n max-flow computations.

4.3 Balanced Flows
Given a flow f in network N(~p), the surplus of

client i denoted by γi(~p, f), is the residual capac-
ity of edge (i, t) with respect to f , which equals to
ei minus the flow sent through (i, t). Let γ(~p, f) :=
(γ1(~p, f), γ2(~p, f), . . . , γn(~p, f)) denote the surplus vector
of clients with respect to ~p and f . In order to accelerate the
increase of ~p, the algorithm focuses on resources adjacent to
“high-surplus” clients, since it would increase the chance of
significantly increasing the price while keeping the invariant.
However, the surplus of clients may take different values
for different maximum flows even in the same graph. Thus,
in order to well-define the surplus of clients, the algorithm
defines a kind of canonical flow defined as follows: Given
a price vector p, a maximum flow that minimizes ||γ(~p, f)||
over all choices of f is called a balanced flow, where ||~v||
denotes the l2 norm of vector ~v. If ||γ(~p, f)|| < ||γ(~p, f ′)||,
then we say f is more balanced than f ′, and for a given ~p
and a flow f in N(~p), we denote the residual network of
N(~p) with respect to f by R(~p, f).

4.4 Main Algorithm
The main idea of the algorithm is to reduce ||γ(~p, f)|| in

every phase. This goal is achieved by finding a set of high-
surplus clients in the balanced flow and by increasing the
price of resources interested by the clients, i.e., resources
adjacent to the high-surplus clients in N(~p). If a subset of
resources becomes tight after such an increase, then we have
reduced ||γ(~p, f)|| since the surplus of high-surplus clients
is now dropped to zero. Another possibility is that a new
edge is added to N(~p), but such an edge will also help us
to make the surplus vector more balanced.

In each phase, it identifies a subgraph of N(~p) induced by
a set of clients H ⊂ B and a set of resources H ′ ⊂ A where
initially, H is the set of clients whose surplus equals to the
maximum surplus δ in B and H ′ is the set of resources
adjacent to H . Such a subgraph is called active graph.
As was previously described, the price of resources in the
active graph increases in such a way that all edges in the
graph retained, which can be ensured by multiplying the
price of resources in the subgraph by x, and by gradually
increasing x. Each phase is divided into several iterations.
In each iteration, x increases until either a new edge is
added to N(~p) or a subset of resources becomes tight. In the
former case, we recompute the balanced flow f , and add all
vertices which can reach a member of H in R(~p, f) \ {s, t}
to subset H . If a subset becomes tight as a result of increase,
the iteration terminates. If A becomes tight, the algorithm
terminates.

Finally, the initial price vector satisfying the invariant is
determined as follows [9]:

• Fix the price of each resource to 1/n.
• If there exists j ∈ A such that Γ({j}) = ∅ (i.e., if no

client is interested in resource j due to high price), then
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reduce the price of j to maxi{ui,j

αi
}, and repeat such a

modification until no such resource exists.

5. Proposed Scheme
In this section, we propose a scheme to find a market-

clearing price vector in an approximated manner. The time
complexity of the proposed (semi-)algorithm is mush lower
than the original (exact) algorithm described in Section 4,
although it merely generates an approximated solution to the
problem in the sense that the amount of remaining budget
is at most ε for any ε > 0. Similar to the previous section,
in the following explanation, we will continue to use graph
N(~p) to represent the relation between the set of resources
A and the set of clients B under the given price vector ~p,
while there are two additional vertices s and t, as before.
The reader should remind that in graph N(~p), client i is
connected with resource j by an edge if and only if j is a
resource which maximizes uij/pj .

5.1 Algorithm
Similar to the original algorithm, the proposed algorithm

starts with finding a price vector which does not violate the
invariant, which is ensured by making the sum of prices is
less than or equal to the surplus of clients. The algorithm
is divided into phases. In each phase, it identifies an active
graph consisting of a set of clients H ⊂ B and a set of
resources H ′ ⊂ A, and increases the price of resources
contained in H ′, i.e., the price of resources not in H ′ is
not increased. Such an increase of the price is conducted in
such a way that the edges in the active graph are retained,
which is ensured by multiplying the price of all resources
in H ′ by x and by gradually increasing x from 1, as before.
Let δ be the maximum surplus in B (under current price
vector ~p). Initially, active graph is constructed such that H
is a set of clients whose surplus equals to δ and H ′ is the
set of resources adjacent to H . Let p(H ′) be the sum of
prices of resources in H ′ and m(H) be the total money
possessed by the clients in H . In order to accelerate the
increase of parameter x, in the proposed algorithm, we repeat
to “double” the value of x to find a sufficiently large value,
and then conduct a binary search to find a value satisfying
the given approximation ratio.

More concretely, in the first step, we double the value of
x until one of the following conditions holds:

Case 1:m(H) − ε/n < p(H ′) ≤ m(H),
Case 2:p(H ′) > m(H), or
Case 3:(i, j) with i ∈ H and j ∈ A\H ′ becomes an edge

in the active graph.
In Case 1, it terminates the phase by moving all resources

in H ′ to the frozen set. It then recomputes the balanced flow
to obtain a new active graph for the next phase. If we met
Case 2 for the first time, on the other hand, it starts a binary
search to find x satisfying Case 1. For example, if x = 128,

the value of x is updated as (128 + 64)/2 = 96. If the
updated value still meets Case 2, the value further reduces to
(64 + 96)/2 = 80 while it increases to (128 + 96)/2 = 112
if it meets neither of Cases 1 and 2 at x = 96. Such an
update-and-check is repeated until it meets Case 1.

Finally, in Case 3, it tries to find the largest x using
another binary search such that all resources existing in the
last active graph are still being members of the new active
graph, i.e., every resource in the active graph consisting of
old and new resources is connected to the clients in the
active graph so that the mount of budgets of those clients is
at least the current price of the resource (such a condition
is necessary to guarantee that all resources are exhausted).
If it could not identify such x, it terminates the algorithm
without outputting a solution. However, if there is such x,
after adding new resources and all clients interested in the
set of resources to the active graph, and starts the procedure
from the beginning of the phase.

5.2 Analysis
The correctness and the time complexity of the algorithm

are proved in the following claims.
Theorem 1: If the proposed algorithm outputs a price

vector ~p∗ as the solution, it guarantees that under ~p∗ all
resources are exhausted and the surplus of the users is at
most ε.

Proof: By the description of the algorithm, when
resources in set H ′ is moved to the frozen set, the surplus in
H , which is the set of clients interested in H ′, is at most ε/n.
Set H ′ is not empty even in the worst case. In addition, each
user is interested in at least one resource at the initial price
and all resources in A should be eventually moved to the
frozen set if it outputs a solution. Thus, we can conclude that
the surplus of users in B is at most ε after the termination
of the algorithm.

Let M denote the total budget initially given to the clients
in B, i.e., M = m(B). Let k be the number of iterations
spent to meet Case 1 in a phase. An upper bound on k could
be given as in the following lemma.

Lemma 1: k = O(log nM
ε ).

Proof: Since the doubling of x is repeated at most
dlog2 Me times, it takes O(log M) time to identify an upper
bound on the target value. After identifying the upper bound,
it takes O(log M) time to identify a range of size one
including the target value since the upper bound is at most
M , and it needs O(log(n/ε)) additional time to identify the
target within a range of size at most ε/n. Thus the lemma
follows.

The time complexity of the proposed scheme is proved in
the following theorem.

Theorem 2: The proposed scheme executes at most
O(n log nM

ε ) max-flow computations.
Proof: Since each phase moves at least one resource

to the frozen set, the algorithm repeats the phase at most n
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Figure 6: Failure ratio of the proposed algorithm.

times. In each phase, it executes the max-flow computation
in one of the following three cases: 1) at the beginning
of the phase to identify an initial active graph, 2) after
increasing the value of x to check which of Cases 1, 2 and
3 is met, and 3) after encountering Case 3 to identify an
updated active graph. The third case occurs at most n times
during the execution of the algorithm, since once a resource
is included in an active graph in a phase, it is moved to the
frozen set at the end of the phase or the algorithm gives
up to output a solution. By Lemma 1, the increase of x
is repeated O(log nM

ε ) times in each phase. Thus the total
number of executions of max-flow computation is given by
O(n log nM

ε ). Hence the theorem follows.

6. Experiments
6.1 Setup

We experimentally evaluated the performance of the
proposed scheme using GridSim environment [5]. In the
simulation, we consider a Grid consisting of 100 resources
and 100 users (i.e., n = n′ = 100). The budget of each user
is 100 dollars, so that the total budget is 10000 dollars, and
the initial price of each resource is randomly selected from
10 to 50 dollars. We use MIPS (Million Instructions Per
Second) value to represent the characteristic of resources.
The MIPS value of each resource is randomly selected from
range [300, 500] and the MIPS value requested by each user
is randomly selected from range [200, 400]. The value of ε
is varied as 50, 100, 150, 200 and 250, and for each value of
ε, we conducted 20 runs. Finally, as the concrete max-flow
algorithm, we used the Edmonds-Karp algorithm [17].

6.2 Results
The result of simulations is summarized as follows. At

first, we evaluated the ratio of failed instances for each
ε. The result is shown in Figure 6. The ratio gradually
decreases as ε increases, and in total, it successfully outputs
an approximated solution for 53% of the examined instances
(even if ε is set to 0.5% of the given budget, it successfully
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Figure 7: Guaranteed surplus and average surplus.

outputs an approximated solution for 40% of the instances).
As for the average execution time, we found that for any ε,
it takes less than 3 sec for succeeded instances whereas it
takes less than 0.5 sec for failed instances. Since the original
exact algorithm proposed by Devanur et al. takes more than
5 min for the same instances, we can conclude that the
proposed scheme effectively gives an approximated solution
provided that it is executed as a preprocessor of Devanur et
al.’s algorithm.

Parameter ε represents the maximal surplus at the end
of succeeded computation. Thus finally, we evaluated the
average surplus for the succeeded instances. Figure 7 shows
the results. From the figure, we can observe that the average
surplus is much less than ε, and specifically, we could attain
an average surplus of 120 when we set ε to 250.

7. Concluding Remarks
In this paper, we propose a resource assignment scheme

for computational grid based on the notion of market equi-
librium. The proposed scheme is a semi-algorithm which
outputs an approximated solution by using O(n log(nM/ε))
max-flow computations if it successfully terminates.

There are several issued to be addressed as the future
work. The first issue is to increase the success ratio of the
proposed scheme. To this end, we need to refine the scheme
so that the change of the configuration of the active graph
is appropriately managed. The second issue is to reduce
the execution time. Although it could certainly reduce the
number of max-flow computations in the original algorithm,
it is still too large since the max-flow computation is an
expensive task.
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Abstract—Demand for multi-process resource 
invariably outstrips supply and users must often share 
some common provision. Where batch-based, whole 
processor allocation proves inflexible, user programs 
must compete at runtime for the same resource so the 
load is changeable and unpredictable. We are 
exploring a mechanism to balance the runtime load by 
moving computations between processors to optimize 
resource use. In this paper, we present a generic 
algorithmic farm skeleton which is able to move worker 
tasks between processors in a heterogeneous 
architecture at runtime guided by a simple dynamic 
load model. Our experiments suggest that this 
mechanism is able to effectively compensate for 
unpredictable load variations. 
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1 Introduction 
In recent years, there has been a dramatic increase 

in the amount of available computing and storage, but 
dedicated High-Performance Computers are expensive 
and rare resources. Emerging multiprocessor 
architecture techniques offer the opportunity to 
integrate individual high-performance computers into a 
unitary high-performance system. This entails several 
technical challenges: difficulty of effective utilization, 
high communication latency, and unpredictable 
effective speeds. 

Researchers are investigating the possibility of 
exploiting the computational power and resources 
available in global networks. Mobile computation is a 
way to use the resources available on both local and 
global networks. Mobile computation gives the 
programmer control over the placement of code or 
active computations across a network to chart and 
better use the available computational resources. A 
mobile program can transport its state and code to 
another location where it resumes execution [27], so in 
an application that uses mobile computation, the 
program can move between locations for better 
utilisation of computational resources. By using load 
management techniques, the program has a mechanism 
for distributing the tasks to worker locations to achieve 
performance goals (balancing the load or minimising 
the execution time).  

The main obstacle to the commercial uptake of parallel 
computing is the complexity and cost of the associated 
software development process. A promising way to 
overcome the problems of parallel programming is to 
exploit generic programs structures, called skeleton 
[17]. Skeletons capture common algorithms which can 
be used as components for building programs. The 
main advantage of the skeleton approach is that all the 
parallelism and communication are embedded in the 
set of skeletons.  

     We are exploring a mechanism to balance the 
runtime load by moving computations between 
processors to optimize resource use. In this paper, we 
present a generic algorithmic farm skeleton which is 
able to move worker tasks between processors in a 
heterogeneous architecture at runtime guided by a 
simple dynamic load model. Our experiments suggest 
that this mechanism is able to effectively compensate 
for unpredictable load variations. 

2 Background and related work 
Mobility, which refers to the change of location 

achieved by system entities [10], involves moving 
computations amongst processors on a network to 
distribute the load, giving better use of resources and a 
faster performance [25, 27]. Mobility has different 
forms: hardware and software mobility, process 
migration, mobile languages, weak and strong 
mobility. Hardware mobility means the mobility of 
devices, such as laptops and PDAs. In contrast, 
software mobility moves the computations from one 
location to another location [6], typically through 
process migration or mobile languages. In process 
migration, the system determines load movement e.g. 
MOSIX [4], which is an operating system that supports 
process migration. In contrast, in mobile languages, the 
system gives the programmer the ability to control load 
movement. Weak and strong mobility are alternative 
forms of mobility defined by Fuggutta and Picco and 
Vigna [5]. Weak mobility involves moving the code 
from one location to another. Strong mobility involves 
moving the code and state information from one 
location to another and resuming the execution from 
the stop state [26].  Strong mobility is also known as 
transparent migration. Many mobile languages support 
weak and strong mobility, e.g. JavaGo [2], but Java 
Voyager [3] supports only weak mobility. 
Checkpointing is the main operation in mobile systems 
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to move computations amongst processors in a 
network or cluster by snapshotting the state of 
application [14], e.g. CONDOR [11]. 

A novel Autonomous Mobile Program (AMP) 
decentralised load management technique has been 
developed by Deng [25].  AMPs seek to execute on 
“better” locations and take movement decisions 
depending on whether the resource needs can be 
served locally or on another location. This movement 
decision also depends on future resource needs, and 
whether it is better to continue locally or to move to 
another location.  

Algorithmic skeletons offer an approach in parallel 
programming to abstract the complexities that exist in 
the parallel implementations [17]. They are common 
parallel programming patterns that avoid the parallel 
and communications details for the programmer so that 
they are not responsible for the synchronization 
between the application parts. Skeletons are closely 
related to functional languages, so higher order 
functional structures can be produced by using 
skeletons [9].  Each skeleton has an implicit parallel 
implementation hidden from the application user. The 
main advantages of using skeletons are having a higher 
order programming interface and a general 
implementation for portability and efficiency.  

Skeletons are polymorphic higher order functions, 
so that there are various kinds of skeletons to cover 
different program classes over different data types 
[13]. These functions are implemented by libraries. 
Many implementations of computations on distributed 
and parallel architectures support skeletal libraries 
which offer task parallel and data parallel skeletons. 
An example of a C library with MPI functions is eSkel 
[18], and an example of a C++ library with MPI 
functions is SkeTo [16]. 

Google developed a C++ library that offers parallel 
programming model, called MapReduce [12]. The 
MapReduce skeleton is a programming model for 
processing large sets of data. This model has an 
abstraction level where it is possible to perform 
computational operations while hiding communication 
and parallelism details, fault-tolerance, and data 
distribution. This model has two primitives map and 
reduce. The map operation applies a function to pairs 
of key/value to produce output key/value; the reduce 
operation combines the shared key results to produce 
the final result. The mapped function is written by the 
user, and the user specifies the data sets with pairs. 
Similarly, the reduced function is also written by the 
user. The closely related open-source Apache Hadoop 
is a Java library used to process large data sets on 
distributed parallel architecture such as cluster [1]. 

A cost or performance model may be used to 
estimate the costs of programs such as time and space 
[24, 7].  While algorithmic skeletons involve the 
parallelism process, communication and coordination 
[8], their cost models typically measure the 

computation and communication cost. Many cost 
models have been developed for algorithmic skeletons 
on parallel architecture. Some models determine the 
task placement statically [15], while others determine 
the whole skeleton placement dynamically [24].  

Our approach is based on dynamic task placement 
for skeletal programming. We have developed a 
parallel farm skeleton using C with MPI functions 
which is able to move tasks between workers while 
preserving the execution state during moving 
operation. We have explored three approaches to 
implementing mobility in our skeleton: data mobility, 
data and state mobility, and data, state and code 
mobility.      

Data mobility involves moving the data between 
locations on a network [14]. For state mobility, the 
program can correctly save its state and resume work 
from the saved point properly. Code mobility involves 
moving the whole program code, as well as the data 
and execution state, to a different machine [5]. This 
paper proposes as task mobility approach of moving 
the data and state for a sub-computation between 
processors, rather than the whole program. Our 
skeleton is implemented using C and MPI, but MPI 
clones the code to the workers so there is no need for 
moving the code. Code mobility is difficult to 
implement in heterogeneous structures, and this 
remains future work for our research: our work is a 
first step in implementing a skeleton fully able to move 
arbitrary code amongst machines on a network. 

3 An overview of hwFarm skeleton 
Our skeleton has the name hwFarm. In general, the 

main idea of skeleton is to abstract all the parallelism 
and communication details, but the hwFarm skeleton is 
also able to move tasks amongst the worker processors 
at run-time. 

The hwFarm skeleton: 

• is self-mobile which means that our skeleton is 
able to mobilize the task from one worker to 
another one during task execution when the 
overhead increases; 

• supports parallelism on a distributed memory, 
high-performance architecture;  

• hides parallelism and communication details 
from the program;  

• presents a high-level function implemented 
using C and MPI [20]. 

3.1  Definition of hwFarm skeleton  
The term task farming is used to describe parallel 

applications that have specific properties. Ordered and 
structured collections of data items, known as tasks, 
are each processed by the same operation. Processing 
the task can be performed in parallel because the tasks 
are independent [19]. In general, the static scheduling 
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Figure 2. Skeleton with task mobility (data only) 

 
Figure 1. Standard skeleton 

 
Figure 3. Skeleton with task mobility (data and state) 

of tasks to a similar number of processes gives poor 
load balancing. A task farm solves this by 
implementing dynamic scheduling to ensure a better 
balance. The farmer acts as the scheduler while the 
workers process the tasks assigned by the farmer. The 
hwfarm skeleton has the same characteristics but with 
the ability to move its tasks amongst workers. 

The implementation is divided into three steps: 

1) Implementing skeleton with workers without 
mobility: This is a simple skeleton which contains a 
farmer responsible for distributing the tasks to the 
workers executing these tasks, as shown in “Fig. 1”. 

2) Implementing skeleton where data has been 
sent between two workers: This is the first step in 
making a task mobile, but the task will be processed by 
the worker from the beginning. See “Fig. 2”. 

3) Implementing skeleton where data and state 
have been sent between two workers: The skeleton can 
move the data and state of the task between workers. 
The moved elements contain the processed data and 
unprocessed data, so the target machine will start 
processing not from the beginning of the data but from 
the beginning of the unprocessed data. A fuller 
explanation of the implementation will be given in the 
next section. See “Fig. 3”. 

3.2 How to move state? 
The mobility process needs to save the state of 

execution to continue working from the stop state. As 
noted, the skeleton hides the parallel and 
communication details from the programmer so that 
the programmer is not responsible for the 
synchronisation between application parts. The 
programmer has to write their own general function 
that should be executed by the skeleton. This function 
has three arguments: the input data to be processed, the 
output data which is the result, and parameters for the 
user function. An array of parameters contains the 
variables that the function needs to process the data. 
The state of execution depends on the values of these 
parameters. During mobility, the skeleton moves the 
input data that was not yet processed by the first 
worker, the sub-the result of the processed data and the 
array of parameters for the function at stop point. The 
new worker receives this data and continues processing 
from the stop point. 

3.3  Movement decision: 
One of the biggest issues in parallel and distributed 

systems is developing techniques for distributing 
processes to multiple locations [24, 23], to minimize 
the execution time and increase performance. Our 
skeleton balances load by using information collected 
from machines at run time to move a task from heavily 
loaded processors to lightly loaded processors.  

The movable element in our skeleton is the task. 
The task computes the function for specific data so for 
task mobility we should move the function and the 
data. Since the function already exists in all workers, 
we only move the data and state between workers. 

A movement decision by a skeleton depends on 
several polices:  
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o Information policy: Determines the load 
information to make a task placement or task 
mobility. This information is collected from the 
processors at runtime to know their load changes. 

o Selection policy: Decides what task should be 
moved. The movement decision is taken by 
collaboration between the master and workers. A 
worker decides if its task should be moved 
depending on its load and the load on free workers. 
When the worker decides to move its task, it sends 
a request to the master. 

o Placement policy: Identifies where a task should be 
transferred. The worker, after deciding that it is 
unable to process its task, or becomes heavily-
loaded, determines the best free worker available to 
process the task. 

3.4 Activities of hwFarm skeleton: 

The sequence of activities that may happen during the 
execution of the skeleton is: 

o The  load of all workers in a system is acquired; 

o The best workers are chosen where the number of 
workers is static. The system load in a worker, also 
known as its load average, is the measure of the 
amount of work that a computer system performs. 
The load average represents the average system 
load over a period of time. It is most easily 
available from a host operating system in the form 
of three numbers which represent the system load 
during the last one, five-, and fifteen-minute period 
[21]. The hwFarm skeleton assumes that the load 
for the last one-minute period; 

o Each worker sends load information to the master, 
and then the master sends the load information to 
all workers; 

o The tasks are distributed to the chosen workers; 

o The master (farmer) awaits the results from workers 
and distributes new tasks; 

o When the master receives a result, it will check the 
load for all free workers and then choose the best 
one to send the next task to; 

o Depending on the load and percentage of increased 
load in this worker and the load on free workers, the 
worker decides if the task should be moved to a free 
worker or not. 

o The task may then be moved from one worker to a 
new worker, and the destination worker continues 
executing the task from the stop point. 

4 Experiments 
In these experiments, we evaluate the performance 

and the behaviour of the hwFarm skeleton on 
heterogeneous distributed memory architecture. We use 
a ray tracer program that generates the image for 100 
rays for 150000 objects in the scene.  A ray tracing 

algorithm is used to produce an image by imaginary 
rays of light from the viewer’s eye through pixels to the 
objects in the scene [22]. 

4.1 Platform: 
The hwFarm skeleton is tested with a Beowulf 

cluster located at Heriot-Watt University. The cluster 
consists of 32 eight-core machines (8 quad-core 
Intel(R) Xeon(R) CPU E5504, running GNU/Linux at 
2.00GHz with 4096 kb L2 cache and using 12GB 
RAM). 

4.2 Evaluation: 

The skeleton is tested in 4 modes: 
o Static task allocation: The skeleton places the tasks 

without using load information; we will refer to 
this mode as Static. See “Table 1”. 

o Dynamic task allocation: The skeleton depends on 
load information collected from [processors for 
placing the tasks but without mobility; we will 
refer to this mode as Dynamic. See “Table 2”. 

o Dynamic task allocation with load and no mobility: 
The skeleton uses the load information for placing 
the tasks but without mobility. In this case, 
additional loads will be applied in different 
periods to some workers; we will refer to this 
mode as Load. See “Table 3”. 

o Dynamic task allocation with load and mobility: 
The skeleton balances the load by moving tasks 
from heavily loaded workers to lightly loaded 
workers where additional loads are applied to 
workers; we will refer to this mode as Mobility. 
See “Table 4”. 

The results of these experiments presented in the 
following tables: 

 

 
 
 
 
 
 
 
 
 
 

Table 1 shows that our skeleton gives good speed 
with the ray tracer program and static task allocation. 

 
 
 
 
 
 
 
 
 
 

Table 1. STATIC TASK ALLOCATION TIME (SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 186.363 184.034 188.476 187.443 188.626 

2 186.681 97.948 121.437 97.304 110.800 

3 187.031 97.580 68.674 88.795 74.177 

4 186.276 97.411 69.121 50.945 71.665 

5 186.321 97.707 68.602 51.323 43.105 

 

Table 2. DYNAMIC TASK ALLOCATION TIME (SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 193.168 186.973 185.559 187.703 185.978 

2 193.227 96.788 120.203 93.854 107.920 

3 193.664 97.462 70.462 87.707 74.052 

4 194.076 98.460 69.216 53.102 71.751 

5 193.043 98.474 69.074 52.977 43.500 
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Figure 4. 1-5 Workers, 1 Tasks 
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Figure 6. 1-5 Workers, 3 Task 
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Figure 7. 1-5 Workers, 4 Tasks 
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Figure 5. 1-5 Workers, 2 Tasks 
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Table 2 shows show that our skeleton retains good 
speed with some modest difference in result from 
collecting and computing load information. 

  
 
 
 
 
 
 
 
 
 
 

Table 3 shows that the skeleton may retain speed 
when there is additional external load but worker 
performance deteriorates and execution time became 
slower. 

 
 

 
 
 
 
 
 
 
 
 

Table 4 shows that the performance is improved 
with task mobility when local loads change. However, 
the performance is still worse than for the static and 
dynamic modes. 

The following graphs compare the execution time 
of the program with different numbers of tasks on 
different numbers of workers.  

Figure 4 shows the time for executing one task on 1 
- 5 workers. The execution time in the static and 
dynamic modes is approximately the same; the 
difference comes from the cost of computing and 
collecting load. The execution time in the load mode 
depends on the load applied to the workers. In the 
mobility mode, the task is moved to a free worker 
when the current worker becomes unable to effectively 

process the task, so the execution time will be smaller. 
The task will not be moved when there are no free 
workers. 

Figure 5 shows the time for executing two tasks on 
1 - 5 workers. In the static and dynamic modes, the 
execution time is approximately the same. The 
improvement in the mobility mode comes from moving 
the tasks from heavily loaded workers to lightly loaded 
workers.  

Figure 6 shows the time for executing three tasks 
on 1 - 5 workers. The improvement of execution time 
in the mobility mode is related to the availability of 
free workers.  

Figure 7 shows the time for executing four tasks on 
1 - 5 workers. The time in the mobility mode 
approaches the time in the static and dynamic modes. 

Table 3. DYNAMIC TASK ALLOCATION WITH LOAD AND NO MOBILITY 
TIME(SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 335.513 292.372 316.453 309.019 294.252 

2 332.121 166.745 192.063 154.189 162.842 

3 297.927 167.259 113.712 140.200 121.476 

4 298.318 163.596 116.965 95.658 80.906 

5 300.889 151.549 110.554 93.430 79.428 

Table 4.  DYNAMIC TASK ALLOCATION WITH LOAD AND MOBILITY 
TIME(SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 329.445 315.098 312.860 311.969 291.501 

2 195.449 137.300 131.514 135.443 121.701 

3 196.673 127.245 103.468 93.554 94.028 

4 197.781 109.565 92.112 71.096 73.512 

5 197.454 105.680 83.069 69.257 62.329 
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Figure 8. 1-5 Workers, 5 Tasks 
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Figure 8 shows the time for executing five tasks on 
1 - 5 workers. The executing time in mobility mode is 
better than the executing time in load mode but is still 
worse than the static and dynamic modes. 

5 Conclution and future work 
We have proposed a new type of skeleton for high 

performance, distributed memory architecture. This 
skeleton is implemented using C and MPI library. This 
skeleton is self-mobile and able to move tasks from a 
heavily- loaded to a lightly-loaded worker. Our 
experiments show that, for the ray tracer program with 
small numbers of processors, the hwFarm skeleton is 
able to mitigate the performance effects of external 
load on individual processors by dynamically moving 
tasks across processors 

We next intend to conduct considerably larger scale 
experiments, on much larger numbers of processors, 
with a variety of applications, systematically exploring 
mobile task behaviour in the presence of different 
patterns of external load. To aid this, we propose to 
construct a “load skeleton” which runs alongside an 
hwFarm application program to apply additional loads 
in predictable ways. 

 In future work, the hwFarm skeleton will be 
extended to be able to move code, as well as data and 
state, amongst processing units. In addition, we will 
define a richer cost model for the skeleton to take 
account of heterogeneity in the processing 
environment. 
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Appendix: 
 

Using hwFarm skeleton 
The prototype of hwFarm skeleton is implemented 

in C and MPI. Our skeleton gives the programmer the 
ability to write their program in a sequential manner in 
C . They should specify the input data and identify the 
high-ordered function which represents our skeleton to 
run the program with all data in an implicit, parallel 
manner. Our implementation uses the MPI library to 
provide the communication, so we need to initialise the 
library before calling the skeleton. 

 There are some constraints on the programmer in 
writing the function which must have six parameters: 
the input data and its length, the output data and its 
length, and an array of parameters used in the function 
and its length, and these values should be initialised 
before function. 

The main steps to write a parallel program using 
hwFarm skeleton are: 

o Write the sequential code that should be 
executed in parallel on the data items as  a 
parameterised function above. 

o Initialise the MPI library. 

o Initialise the input data. 

o Call the hwFarm skeleton. 

o Finalise the MPI library. 

 
The prototype of the main function of hwFarm 

skeleton is : 

void hwfarm(fp worker, int tasks,  
    void *input,int inSize, 
    int inLen, MPI_Datatype taskType, 
    void* output, int outSize, 
    int outLen, MPI_Datatype   
 resultType, void*FunPars,  
 int parsSize, int procCount) 
 {...} 

 
Glossary of parameters: 

worker:  worker function. 
tasks:  total number of tasks. 
input:  array of input data. 
inSize:  size of input data type. 
inLen:  size of one task. 
taskType:  type of MPI input data. 
output:  array to output data.  
outSize:  size of output data type 
outLen:  size of data in one  
resultType: type of MPI output data 
FunPars:  array of function parameters  
parsSize:  size of parameters 
procCount: number of processors 

 
We assume that the chunk size and number of 

workers are static but may be made dynamic by the 
skeleton. 

 

 

The prototype of the general function that the user 
writes to  be called from the hwFarm skeleton is: 

void doProcessing( 
 void *inputData,int inputLen,  
 void *result, int outputLen, 
 void* pars, int parsSize) 
 {...} 
 

Glossary of parameters: 

inputData:  input data. 
inputLen:  length of input data. 
result:  output data. 
outputLen:  length of input data. 
pars:   array of paremeters. 
parsSize:  length of parameters. 
 

Each worker will execute their task by calling the 
doProcessing function on their data chunk. All 
variables the function need should be parameterised so 
we can save the execution state of the function. 
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Abstract— The growing computerization in modern academic
and industrial sectors is generating huge volumes of electronic
data. Hierarchical distributed systems based on Grid and Cloud
technologies promise to meet the tremendously rising resource
requirements of heterogeneous, large-scale and distributed data
mining applications. Scheduling plays a pivotal role in such envi-
ronments. While most schedulers addressing these new challenges
have a strong focus on compute-intensive applications, we intro-
duce a new scheduling algorithm to support both compute- and
data-intensive applications in dynamic, heterogeneous, hierarchical
environments. The developed data-aware scheduling algorithm
aims to minimize the completion times of the applications as well
as their costs leading to an efficient utilization of all available
resources. The algorithm is specifically designed for combined
storage and compute resources as these allow jobs to be executed
on resources storing the data sets and thus are the key to avoid
time-consuming and expensive data transfers. Simulations and first
real-world usage experiences in the Fleet Data Acquisition Miner
for analyzing the data generated by the Daimler fuel cell vehicle
fleet show that the algorithm is suited for the different aspects of
today’s data analysis challenges.

Keywords- data-intensive; scheduling; Cloud; Grid.

I. INTRODUCTION

Increasing data volumes in many industrial and academic
sectors are fueling the need for novel data analysis solutions
to extract valuable information. Data mining, as the key
methodology to address these information needs, requires
effective and efficient resource management to transform the
growing data into knowledge. There have been multitudes of
efforts to provide specialized resource management solutions
for complex data mining scenarios, including peer-to-peer
data mining, distributed data stream mining and parallel data
mining [1] [2].

Recently, data mining research and development has
put a focus on highly data-intensive applications. Google’s
publications on MapReduce [3][4] inspired many projects
working on large data sets. MapReduce frameworks, like
Hadoop [5], simplify the development and deployment of
peta-scale data mining applications leveraging thousands
of machines. MapReduce frameworks are highly scalable
because the scheduler uses data location information to avoid
data movement and rather send the algorithms to the data.

Other current distributed data mining research is mo-
tivated by the sharing of heterogeneous, geographic dis-
tributed, dynamic resources from multiple administrative
domains to support the cooperation of different organizations
[6] [7] [8]. This field is generally referred to as data mining
in Grid computing environments and is highly related to
the Cloud computing paradigm. Most research focused on
compute-intensive applications following scheduling prin-
ciples that are correct for compute-intensive, but not for
data-intensive data mining applications. Though different
scheduling algorithms have been proposed to optimize the
relation between data transfer and execution time [9][10]
[11], for data-intensive applications where the limiting factor
is not CPU-power but rather storage and network speed, the
underlying architecture and environment assumptions may
lead to non-optimal schedules. In addition, with the almost
unlimited resources available through Cloud providers the
traditional scheduling concept where jobs have to be as-
signed to a set of limited resources is not valid any more.
Instead the scheduler has to assign jobs to the resource(s)
that best fits the needs of the job while considering the cost
to execution time ratio.

As current data mining applications are both compute-
and data-intensive we developed an architecture based on
the notion of combined compute and storage resources
to bring the advantages of the MapReduce paradigm into
worldwide, heterogeneous general-purpose computing envi-
ronments [12]. In this article we present a multi-objective
scheduling algorithm for this dynamic, hierarchical Grid
architecture incorporating the Cloud computing resource
concepts. This article is organized as follows: First, we
briefly introduce the generalized architecture and the impli-
cations to data- and compute-intensive scheduling. Then we
describe the developed multi-objective scheduling algorithm
and compare it with existing Grid scheduling algorithms.
Finally, we present the simulation results of the developed
scheduling algorithm.

II. A GENERALIZED GRID SCHEDULING ARCHITECTURE

Grid scheduling algorithms are responsible for mapping
application resource requests to available resources. In com-
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parison with other scheduling problems the scheduler has to
make a decision under the following environmental charac-
teristics:

• An application is represented by one or more jobs
which might have dependencies. Each job consists of
an executable with parameters, a set of input and output
data specifications and requirements. The execution
time for a given job is not known in general. A job
may require one or more compute resources.

• A data set may be stored on multiple storage resources.
• The Grid environment is dynamic and resources are

heterogeneous. There is no reliable source of informa-
tion.

• Jobs arrive at an unpredictable rate.

The main goal of the Grid scheduler is to produce a
schedule for all jobs arriving over time that minimizes a
given objective function - makespan, average completion
time or cost - under these constraints. As this scheduling
problem is related to problems that are known to be NP-
complete, there is little chance a polynomial algorithm exists
to solve it [13]. Therefore Grid Scheduling algorithms use
the structure of the Grid environment to implement heuristics
or approximations.

For compute-intensive application scenarios the main re-
source and the limiting factor is CPU-power and the focus of
the Grid scheduler is to efficiently use the compute power of
multiple compute clusters. In these scenarios it is commonly
assumed that the time needed to transfer the input and output
data is relatively small compared to the overall execution
time. These assumptions lead to the following architecture
which forms the basis of current Grid schedulers:
(1) Specialized storage servers to store input and output data
as well as executables. (2) A set of compute clusters from
different organizations each composed of multiple compute
nodes for running the algorithms. To provide a high level
of transparency, these clusters are treated as one multi-CPU
resource. (3) In a traditional Grid scheduling setup multiple
clusters from different organisations are connected through
relatively slow wide area networks whereas the network
bandwidth within an organization is assumed to be infinite.
A setup like this fits the needs of compute-intensive applica-
tions: To schedule a compute-intensive application request-
ing n computational resources, the scheduler only has to
look for a cluster that has the best n free compute resources.
As data transfer time is small compared to the execution time
the transfer overhead is sometimes neglected.

For most data-intensive applications this assumption can
not be hold. In contrary, not CPU-power but storage and
network speed are the limiting factors of data-intensive ap-
plications. Data-intensive applications therefore require new
scheduling strategies as the input data transfer time may well
exceed execution time. Now, the scheduler should choose
compute and storage resources so that the overall time or

cost - depending on the scheduling objective - is minimized.
Obviously, a scheduler assuming infinite bandwidth within
an organization may produce non-optimal schedules.

Another aspect of traditional Grid schedulers is the as-
sumption that there is only a very limited resource set the
jobs have to be scheduled to. But with the advances in
Cloud computing almost unlimited (compute-) resources are
available to the scheduler.

We identified the need for some major conceptual en-
hancements to traditional Grid scheduling architectures to
efficiently support compute- and data-intensive applications
considering Cloud resources:

(1) As the amount of data increases, data can not be
efficiently stored and processed from a single storage server
within a cluster but has to be distributed over multiple
machines. Therefore any resource may provide storage and
compute capacity. This combined resource type forms the
basis for scalable data-intensive applications as data can
be processed directly on the storage location. To increase
storage capacity and speed, computational resources of com-
pute clusters may become combined resources by storing
data on their local disks. It is important to point out that
the combined resources are suitable for data- and compute-
intensive applications as only new functionality is added.

(2) The environment is hierarchical. Resources are mainly
organized within a cluster; an organization may have mul-
tiple clusters on-site or in the Cloud; and multiple organ-
isations may want to share their resources. This not only
implies an administrative hierarchy but also the network
connecting the different entities has a hierarchical struc-
ture. Resources within a cluster are generally connected
through a high-bandwidth low-latency interconnect (Infini-
band), whereas inter-cluster or inter-organization network
speed is typically much slower.

(3) Data-intensive applications are limited by two fac-
tors: the storage and network speed. Scheduling algorithms
should efficiently use these resources and avoid unnecessary
input data transfer through processing the data directly on
the resources storing the data or resources nearby.

(4) There exist internal and external resources. There
are only a limited number of internal resources while any
number of external resources may be added at an additional
cost.

III. A MULTI-OBJECTIVE SCHEDULING ALGORITHM

A basic algorithm trying to minimize the average runtime
of all jobs (J) for combined compute and storage resources
in Grids was presented in [14]. With the increasing avail-
ability of Cloud resources this basic scheduling has to be
adopted to include the cost of the Cloud resources as well
as the cost associated to the wide area networks needed
to integrate these resources. Also internal resources might
be assigned with costs to encourage a more efficient usage.
In addition to low job execution costs (Kj), the users are
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interested in getting their results as soon as possible so that
the completion time of the jobs (Cj is another dimension of
the scheduling problem. To balance between the cost and the
completion time of all jobs the scheduler should minimize
the following objective function:

F (J) =
∑
j∈J

Cj ·Kj (1)

As not all jobs are known to the scheduler in advance
(offline-scheduling) but rather appear over time (online-
scheduling) the minimum of F (J) can only be computed
retrospectively. Therefore the scheduler can only schedule a
subset of the jobs at a time and can only approximate the
minimum of F (J).

Data-intensive jobs might be defined as a tuple j = (p,D)
where D = d1, ..., dm are the data sets to be processed by
program p. The task of the scheduler is to select a tuple
(r, S) for each job minimizing the objective function, where
r is a compute resource and S = (s1, ..., sm) is the set of
storage resources providing the m data subsets. It is assumed
that all data subsets d ∈ D have to be available on the
execution resource before they can be processed by p.

The algorithm presented in this paper uses the hierarchical
structure of the environment and a cost to completion time
ratio to decide what set of resources should be used for
a job. This dual-objective hierarchical scheduling algorithm
(DOHS) is depicted in Figure 1. As described above, the
algorithm has to produce a schedule with little information
about the current state of the system and the jobs. Therefore
the algorithm was designed to only require relative storage
and compute speeds of the resources as well as the corre-
sponding relative costs.

The inputs of the scheduling algorithm are the set of
input data D, the program p, the data transfer scheduling
weights α1 to α4 and the data to compute ratio weights
β1, β2. As all data subsets d ∈ D have to be available on
one execution resource, the scheduler has to select a tuple
(r, S) for each job where r is a compute resource and S
is the set of storage resources providing the data subsets.
First, the algorithm produces the set of candidate execution
resources as the best (highest compute speed to cost ratio
fc) resources from each cluster in the Grid and all resources
storing at least one of the data sets d ∈ D. For each of
these candidate resources the set of storage resources with
minimal aggregated transfer overhead fs with regard to D
is generated. From all candidates the scheduler chooses the
one with the highest priority. The priority of a resource
assignment (r, S, t, c) is computed as the weighted sum of
the normalized transfer (t) and compute overhead (c).

The algorithm and the functions are based on the follow-
ing definitions:
P := all programs available in the Grid;
R := {r1, . . . , rn} is the set of all n resources;
D := {d1, ..., dm} is the m data sets of the job;

N := {(r, s)|r, s ∈ R, r and s can exchange data directly};
Rd := { r | r ∈ R stores d ∈ D };
Dr := { d | d ∈ D is stored on r ∈ R };
cr is the cluster of resource r;
gr is the grid site of resource r;
spr is the storage speed of resources r and scr is its
corresponding cost;
and cpr is the compute power and ccr is the compute cost
of resource r with respect to program p, where cpr = 0
and ccr = ∞ if r does not fulfill all requirements of p.
Different properties of a resource may be used to define the
computing and storage power and cost of a resource, but at
least the current usage has to be taken into account.

The data transfer overhead of a candidate resource tuple
(r, S) is computed as the sum of all transfer overheads (r, s).
Due to the incomplete environment information, especially
missing or imprecise network information, the scheduler
uses the weights α1 to α4 that represent the hierarchical
structure. The data transfer overhead function fs 13 assigns
the weights α1 to α4 to the product of storage power
and cost of s according to the distance between s and
r: α1 if d is stored on the resource itself r = s; α2 if
d is stored on a resource on the same cluster cr = cs;
α3 if d is on the same Grid instance gr = gs; and
α4 if d is on another Grid instance gr 6= gs. In case
both resources are not able to exchange data directly, each
resource needed to transfer the data set d from s to r is also
considered.
FUNCTION fs(r ∈ R, s ∈ R, d ∈ D+)

Choose shortest path s1, . . . , sk from s to r with
s0 = s so that (s0, s1), . . . , (sk, r) ∈ N
t← size(d) ·

∑k
i=0 scsi/spsi

if r = s then
t ← α1 · t

else if cr = cs then
t ← α2 · t

else if gr = gs then
t ← α3 · t

else
t ← α4 · t

end if
return t

END FUNCTION

As can easily be seen the data transfer scheduling
weights α1 to α4 may be chosen to approximate the
actual network bandwidth topology and cost or can be
used minimize inter-cluster or inter-organization trans-
fers.
FUNCTION fc(p ∈ P, r ∈ R)

if r fullfils not all requirements of p then
return ∞

end if
ncr ← number of CPUs of r
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FUNCTION DOHS (p ∈ P , R, D ⊆ D+, α1−4, β1−2)
Rm ← { r̂ | r̂ ∈ R ∧ fc(p, r̂) = min{fc(p, r) | r ∈ R ∧ cr̂ = cr} }
Rs ← { r | r ∈ RD ∧ fc(p, r) <∞}
Z ← ∅
for all r ∈ Rm ∪Rs do
tr ← 0 , Sr ← ∅
for all d ∈ D do

Find ŝ ∈ Rd with fs(r, ŝ, d) = min{fs(r, s, d) | s ∈ Rd}
tr ← tr + fs(r, ŝ, d)
Sr ← Sr ∪ {ŝ}

end for
Z ← Z ∪ {( r, Sr, tr, fc(p, r) )}

end for
tmin ← min{ t | (r, S, t, c) ∈ Z }
cmin ← max{ c | (r, S, t, c) ∈ Z }
Find (r̂, Ŝ, t̂, ĉ) ∈ Z with β1 · tmin

t̂
+ β2 · cmin

ĉ = max{β1 · tmin

t + β2 · cmin

c | (r, S, t, c) ∈ Z}
return (r̂, Ŝ, t̂, ĉ)

END FUNCTION

Figure 1. DOHS algorithm for scheduling a program with multiple data sets

ur ← currently reserved CPUs of r
cpur ← CPUs speed of r
cpumin ← min{cpuo | o ∈ R ∧ nco > uo}
if ncr = ur then
cpr ← cpur

else if ncr ≤ ur ∧ ∃o ∈ R with nco > uo then
cpr ← (ncr · cpumin)/(ncr + ur)

else
cpr ← (ncr · cpur)/(ncr + ur)

end if
return ccr/cpr

END FUNCTION

The compute overhead function fc 15 returns the compute
power to cost ratio of the resource with respect to program p.
If r does not fulfill all requirements of p the function returns
∞. In case there is at least one free CPU, the compute power
is simply the CPU speed of the resource. If all CPUs are
used but another resource in the Grid has a free CPU, the
compute power is defined as the product of the number of
CPUs times the CPU speed of the slowest available resource
divided by the number of CPUs plus the reserved CPUs.
Using the speed of the slowest available resource ensures,
that the compute power of a busy resource is never higher
then the compute power of a resource with free CPUs. If
there is no free CPU in the Grid, the compute power is
defined using the resource’s CPU speed.

IV. SIMULATION RESULTS

To evaluate the presented algorithm we developed a
simulation environment for executing data- and compute-
intensive jobs in Grids with additional Cloud resources. In
the first step of a simulation a random number of resources
(> 100), clusters and organisations are created. Compute,
storage and network speeds of each resource are randomly
generated as well. Also the number of jobs, the number of
computations per MB and the data sets per job are generated
randomly. In the next step different scheduling algorithms
are used to schedule the jobs as they arrive over time in the
created Grid environment. For each algorithm the resulting
schedule is simulated and the exact cost and time consump-
tion of each job is computed. Based on the consumed cost
and time F (J) is calculated for each algorithm.

Following the Monte Carlo simulation approach 20 of
these simulations were conducted and the

∑
j∈J Cj · Kj

of each was recorded. As a benchmark we use a brute-force
algorithm evaluating all possible resource combinations for
each job minimizing different objective functions. As this
requires n · sm (n compute resources, jobs have in average
m data sets and each data set is stored in average on s
resources) objective function evaluations it is not feasible
to use this algorithm for real-world scheduling. But as a
benchmark, it ensures that the (locally) optimal resources are
chosen according to the objective function. In contrast to the
developed algorithm the benchmark algorithm is also pro-
vided with all environment and job information, including
exact network bandwidth and the job’s execution time. The
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benchmark algorithm is used to compute a schedule based
on the following objective functions that are commonly used
for grid scheduling:
• Cost-Time. Minimize the product of the jobs cost and

completion time.
• Time. Minimize the completion time of the job.
• Cost. Minimize the cost of the job.
• Transfer. The scheduler chooses an execution resource

that has a minimum transfer overhead.
• Time-Grid. Minimize the completion time of the job

based the assumption that transfer overhead and cost is
zero within an organisation.

As shown in Figure 2 the developed DOHS schedul-
ing algorithm provides good performance compared to the
benchmark algorithm using the different objective functions.
The DOHS algorithm achieves almost the same performance
as the benchmark algorithm using the Cost-Time objective
function and all information. The Time-Grid objective func-
tion may be regarded as a representative of current Grid
schedulers that assume that transfer overhead and cost is
zero within an organisation. It does not only require the
more execution time but also consumes the more costs as
the Time objective function, especially for data-intensive
applications. Only the Transfer objective function, which can
be seen as a generalization of the MapReduce scheduling
approach of minimizing the transfer overhead, is worse. We
evaluated the algorithms for a mix of compute- and data-
intensive jobs. Figure 2 a) shows two different values for the
DOHS algorithm. The DOHS-1 represents a scenario where
users classify the jobs as compute-intensive (β1 = 0.9,
β2 = 1) or data-intensive (β1 = 1, β2 = 0.9). DOHS-
2 shows the results for a scenario where users do not
provide any classification (β1 = 1, β2 = 1). As the DOHS
algorithm provides parameters to adapt to different resource
environments and job characteristics it was configured with
the following parameters: α1 = 1, α2 = 1.5, α3 = 5 and
α4 = 50.

V. RELATED WORK

Recently, various systems and approaches to grid-based
data mining and data-intensive scheduling have been re-
ported in the literature. Some of those that are particularly
relevant to this work are briefly reviewed here.

The GridBus resource broker [15] provides functions
for scheduling data- and compute-intensive applications. In
combination with the Storage Resource Broker[16] GridBus
is able schedule data-intensive jobs based on various dif-
ferent metrics, including network bandwidth and utilization.
The GridBus scheduler as most heutistic Grid schedulers,
including the DIANA scheduler [9], follows the common
separation between storage and compute resources, requires
detailed information about the jobs and the environment and
also assumes that transfer overhead within an organization
is zero.
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Figure 2. Scheduling simulation results.

Another class of Grid schedulers uses genetic algorithms
to solve the data-intensive scheduling problem [17][18]. The
main disadvantages of these approaches are the computa-
tional complexity of the genetic algorithm and the require-
ment to have detailed information about the environment.

Hadoop [5] is the most well known open source im-
plementation of Google’s MapReduce paradigm. Hadoop’s
MapReduce framework is build on top of the Hadoop
distributed file system (HDFS) containing all data to be
mined. The map and reduce functions are typically writ-
ten in Java, but also executables can be integrated via a
streaming mechanism. MapReduce frameworks like Hadoop
do not offer the functionality to efficiently execute compute-
intensive applications on a cluster, making them unsuitable
for a general-purpose data mining system. Hadoop On
Demand in combination with the SUN Grid Engine try to
overcome these limitations by running Hadoop on top of
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a cluster management system, thus adding another layer of
complexity. Still, the resources to use for MapReduce are
reserved exclusively for Hadoop and can not be used by
other compute-intensive jobs. Hadoop and similar MapRe-
duce frameworks simplify the development and deployment
of data-intensive applications on local clusters and cloud
resources but are currently not suited for large-scale, het-
erogeneous environments comprised of multiple independent
organizations.

Anteater [1] is a web-service-based system to handle large
data sets and high computational loads. Anteater applications
have to be implemented in a filter-stream structure. This
processing concept and its capability to distribute fine-
grained parallel task make it a highly scalable system. Due
to the restriction on a filter-stream structure Anteater shares
some downsides of MapReduce frameworks: Applications
have to be ported to this platform which makes it almost
impossible to integrate existing applications.

VI. CONCLUSION

In this article we introduced a multi-objective scheduling
algorithm for data-intensive applications in Grid environ-
ments. The new concept of combined Grid resources in com-
bination with the developed data location aware scheduling
algorithm provides an infrastructure to build scalable data-
intensive applications in worldwide, heterogeneous environ-
ments. The scheduling algorithm also supports compute-
intensive applications so that a single environment can be
used for both data- and compute-intensive applications. In
addition the DOHS algorithm is specifically designed for
Grid environments with Cloud resources where information
is generally scarce. The simulation results show that the
algorithm is competitive or even surpasses current Grid
schedulers requiring detailed information.

Future work may focus on additional Cloud related topics
such as setup time of a resource or dynamic cost.
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Abstract - As the number of users of cloud services increase 
all over the world, cloud service providers keep deploying 
geographically distributed data centers more. Since resource 
capacity of a data center is limited, cloud service providers 
need to distribute load to data centers. However, when the 
provider distributes load, SLAs (service level agreements) 
established with consumers should be guaranteed in an 
environment where a cloud provider operates geographically 
distributed data centers. Therefore, this paper proposes a 
SLA-based cloud computing framework to facilitate temporal 
and locational load-aware resource allocation. The 
contributions of this paper include 1) design of a cloud 
computing framework including an automated SLA 
negotiation mechanism and a workload and location aware 
resource allocation (WLARA) and 2) implementation of an 
agent-based cloud test bed of the proposed framework. 
Empirical results using the test bed show the proposed 
WLARA performs better than other related approaches in 
terms of guaranteed SLAs. 

Keywords: Cloud computing, Distributed data centers, 
Resource allocation, VM placement, SLA negotiation, SLA 
management 

 

1 Introduction 
Cloud computing is a computing paradigm that provides 

computing resources as services through a network to Cloud 
users. A cloud consists of a type of parallel or distributed 
systems that consists of combinations of interconnected 
computing resources and virtualized computing resources [1]. 
There are many existing cloud computing environments such 
as Amazon EC2 and Amazon S3 [2]. Considering such 
interests and business willingness of IT leaders, cloud 
computing paradigm is already important and to be essential 
in various business. In such cloud computing environments, a 
cloud service user consumes cloud resources as a cloud 
service and pay for the usage of the service. Before a cloud 
provider provisions a service to a consumer, the cloud 
provider and consumer need to establish a SLA in advance. 
The SLA is an agreement including the level of QoS (quality 
of service) between a service provider and a consumer. 

Usually, an SLA includes the price of a service, and the level 
of QoS can be adjusted by the price of the service. For 
instance, a cloud provider can charge a higher price to a 
consumer who requires a high level of QoS. 

According to the increased number of cloud service users 
all over the world, cloud service providers keep implementing 
geographically distributed data centers. Since the resource 
capacity is limited in a data center, a cloud providers need to 
distribute resource load to the data centers for system 
performance and stability. In addition, resource load can be 
distributed in temporal manner since resource load in a cloud 
generally fluctuates by time [3]. Because of the limited 
resource capacity, it is hard for cloud providers to handle 
resource demand that exceeds the resource capacity. 
Therefore, to cloud providers, a load balancing scheme is a 
very important issue to design a cloud computing framework, 
and it is directly related with cloud providers’ profit. Whereas 
it is important to design a cloud computing framework that 
facilitates efficiency and stability of a system, SLA-based 
cloud computing framework considering both temporal and 
locational resource load have not been sufficiently studied so 
far. Also we need to consider a load distribution for a cloud 
provider who operates geographically distributed data centers. 

In [4], B. Sotomayor, R. S. Montero, I. M. Llorente, and I. 
Foster provided a comparison between OpenNebula and 
several well-known virtual infrastructure managers such as 
Amazon EC2, vSphere, Nimbus, and so on. The comparison 
includes several resource placement policies (i.e., resource 
allocation policies) of virtual infrastructure managers. For 
example, there are static-greedy resource selection, round 
robin resource selection, and placement considering average 
CPU load. However, whereas the resource placement schemes 
are focused on placing resources in a data center, they are not 
focused on resource placement in which a cloud provider 
operates geographically distributed data centers. With 
geographically distributed data centers, we need to consider 
response time violation because of geographical distance. In 
addition, [5] investigated energy-aware resource provisioning 
and allocation algorithms that provision data center resources 
to client applications in a way that improves the energy 
efficiency of the data center. However, whereas [5] guides 
research directions in resource allocations, [5] does not 
consider a cloud provider that operates multiple 
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Figure 1. Design of SLA negotiation and management based cloud computing framework. 

 

geographically distributed data centers to balance resource 
load and response time by geographical distance, and [5] does 
not include a specific negotiation mechanism.  

[6] considers load placement policies on cooling and 
maximum data center temperatures in cloud providers that 
operate multiple geographically distributed data centers. 
Whereas [6] proposes dynamic load distribution policies that 
consider all electricity-related costs as well as transient 
cooling effects, [6] does not focus on guarantees of SLA. [6] 
noted that the policies delay jobs to avoid overheating or 
overloading data centers and violate SLAs sometimes in their 
simulation configuration. Moreover current providers such as 
Amazon EC2 do not employ sophisticated load placement 
policies, and the consumers themselves manually select a data 
center to place their virtual machines. 

There are several automated negotiation mechanisms for 
grid or cloud resource negotiation ([7] for a survey). These 
negotiation mechanisms are designed for price negotiation, 
but these mechanisms have a lack in considering other SLA 
issues such as service time slot and response time. Also, they 
do not consider both temporal and locational load 
distributions to geographically distributed data centers. 

Hence, this paper proposes a cloud computing framework 
to facilitate temporal and locational load-aware resource 
allocation, and we implement a test bed of the proposed cloud 
framework to verify the usefulness of the proposed framework 
in a case study. The contribution of this paper are 1) design of 
a cloud computing framework to facilitate temporal and 
locational load-aware resource allocation, and 2) 
implementation of a test bed of the proposed cloud computing 
framework. Using the proposed system, a cloud consumer can 
establish SLA about service price, time slot, and response 
time by an automated SLA negotiation scheme, besides a 
cloud provider can facilitate load balancing by a pricing 
strategy. As such, the purpose of this work is to: design a 
cloud computing framework facilitating resource allocation 
(Section 2). Also, Section 2 includes both SLA negotiation 
mechanism and workload and location aware resource 
allocation. In Section 3, we introduce the implementation of a 
simulation test bed for the proposed framework and evaluate 
performances of the proposed framework in terms of the SLA 

violation in Section 4. Finally, Section 5 concludes this paper 
with a list of future works. 
2 A cloud computing framework to 

facilitate resource allocations 
2.1 SLA-based cloud computing framework 

The proposed cloud framework adopts an automated SLA 
negotiation mechanism to support establishing SLA. Whereas 
the variety of SLA options is limited for consumers within 
enforced SLA strategies, the different preferences between a 
consumer and a provider can be efficiently narrowed with an 
automated SLA negotiation mechanism. In case of price of a 
service, a negotiation mechanism between both a consumer 
and a provider helps to find an equilibrium satisfaction state 
for price. Whereas there should be many SLA issues or 
options in cloud services in practice, this paper focuses on 1) 
service price, 2) time slot to specify range of service time, and 
3) service response time among several SLA issues in 
designing the SLA-based cloud framework. In addition to the 
SLA negotiation mechanism, service providers need a SLA 
management scheme to guarantee established SLA with a 
consumer. In the proposed cloud framework considers service 
response time to consumers as QoS. To guarantee service 
response time agreed with a consumer, a SLA management 
scheme in the proposed framework considers geographical 
distance between a consumer and distributed data centers of a 
provider when the cloud provider select a data center to 
allocate resources for the consumer. 

In Fig. 1, the proposed framework consists of cloud service 
broker and cloud provider. Cloud service broker is an 
interface between a consumer and a cloud provider. The cloud 
service broker gets information of a consumer’s preference for 
services and proceeds for cloud service discovery to find a 
matched service with the consumer’s preference. After the 
broker finishes service discovery, the broker can be connected 
to a cloud provider who own the service. The next step is 
establishing SLA between the provider and the service broker 
on behalf of the consumer by the SLA negotiation component. 
If the negotiation is successful regarding service price, time 
slot, and response time, the broker makes the consumer pay 
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for the service in the agreed price and reserves the service. 
A cloud provider consists of four components: 1) 

reservation controller, 2) SLA negotiation mechanism, 3) 
SLA management, and 4) distributed data centers. Cloud 
provider responds to service broker’s service discovery 
requests. And SLA negotiation component makes a 
negotiation session between the provider and the broker to 
establish SLA. If the automated negotiation is successful, 
which means they came to a mutually acceptable agreement 
regarding price, time slot, and response time, so that an SLA 
has been established, the provider receives charge from the 
consumer through the broker.  

Service reservation controller reserves the requested service 
by input information of the name of consumer, the service 
type, the start time of service, the end time of service, and the 
threshold of response time to the service reservation queue 
which is reservation list. Reservation controller sequentially 
checks the reservation queue to initiate the start of the 
services according to the start time of services. It forwards 
agreed response time for the services to SLA management 
component.  

The SLA management component selects a data center 
among distributed data centers to allocate requested service. 
The conditions of selecting a data center are specified in the 
SLA (response time in this paper). Each data center includes a 
physical machine manager (PMM), and a PMM manages 
physical computing nodes in a data center. All PMMs monitor 
physical computing nodes to evaluate average response time 
of a data center to the consumer, and SLA management 
component selects a data center and specific a physical 
computing node by evaluated average response times. In 
conclusion, a service provider and a consumer can not only 
establish SLA about service price, time slot, and response 
time, but also the service provider can guarantee established 
SLA with a consumer through the SLA management 
component. 
2.2 Automated SLA negotiation mechanism 

In general a negotiation mechanism consists of negotiation 
protocol, negotiation strategy, and utility functions. 
Negotiation protocol is a set of rules in a communication (e.g., 
possible actions, language, and utterance turn) for a 
negotiation among negotiation parties. As a negotiation 
protocol, the negotiation mechanism in this work follows 
Rubinstein’s alternating offers protocol [12] which lets agents 
make counter-offers to their opponents in alternate rounds. 
Both agents generate counter-offers and evaluate their 
opponent's offers until either an agreement is made or one of 
the agents’ negotiation deadlines is reached. Counter-
proposals are generated according to a negotiation strategy 
that consists of a concession algorithm and a tradeoff 
algorithm. When an agent generates a counter-proposal, the 
agent needs to concede a proposal since it is hard to reach an 
agreement without a concession. A concession algorithm 
determines the amount of concession for each negotiation 
round [13]. Also, a tradeoff algorithm is required to generate 
a proposal in multi-attributes negotiation. In a multi- attributes 

negotiation, there are multiple issues to negotiate, and a 
tradeoff algorithm generates a proposal by combining 
proposals of individual issues; the mechanism adopted a 
tradeoff algorithm in [14]. 

The utility function U(x) represents an agent’s level of 
satisfaction of a negotiation outcome x. A negotiator (i.e., a 
cloud participant) can specifies utility functions. To define a 
price utility function, the negotiator needs to specify the most 
preferred price (IP, initial price) and the least preferred price 
(RP, reserve price). In general, the range of utility function is 

min{0} [ ,1]u∪ , and U(P)= minu  represents the least preferred 
price (RP) and U(P)=1 represents the most preferred price 
(IP). If price is outside of IP and RP, then U(P) is 0.  

To support cloud users negotiation for service price, time 
slot, and response time in the proposed framework, it is 
necessary to define utility functions of the negotiable SLA 
issues. In this paper, utility functions defined in [14] are 
adopted which are price utility function (P)PU  and time slot 
utility function ( )TSU TS . Especially, the time slot utility 
function defined in [4] supports cloud participants to 
represent temporal preferences in cloud services. In addition 
to price and time slot issues considered in [14], this paper 
considers service response time as a SLA negotiation issue. 
The service response time represents the minimum response 
time that a provider provides. Let IRT (Initial response time) 
and RRT (Reserve response time) be the most preferred 
response time and the lease preferred response time 
respectively. A RT (Response time) given to a consumer can 
be evaluated by the response time utility function of a 
consumer ( )C

RTU RT  as follows, 
( )
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Contrarily, a RT given to a provider can be evaluated by 
the response time utility function of a provider ( )P

RTU RT  as 
follows, 

min min

( )

(1 ) ,

0                             ,     otherwise.

P
RT

P
P P

P P

U RT

RT RRTu u RRT RT IRT
IRT RRT

 −
+ − ⋅ ≤ ≤= −




 (2) 

minu  is the minimum utility that a consumer and a provider 
receive for reaching a deal at their reserve prices. To 
differentiate between not reaching an agreement and reaching 
an agreement at the reserve price, minu  is defined as 0.01. 
Finally, the aggregated total utility function ( ), ,TotalU P TS RT  
that includes price, time slot, and response time is as follows, 

( ), ,

0,            if either 0,  0,  0
,       otherwise.

Total

P TS RT

P P TS TS RT RT

U P TS RT

U U U
w U w U w U

= = =
=  ⋅ + ⋅ + ⋅  

(3) 

Pw , TSw , and RTw  are the preference weights for price, time 
slot, and response time, respectively. A negotiator can adjust 
the importance among the issues by differentiating the weights 
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where the weights satisfy 1P TS RTw w w+ + = . A consumer who 
cares price only, the consumer can assign 1 to Pw  and 0 to the 
other weights. According to the (3), Total PU U= . The consumer 
can have a high chance to use a service in a low cost.  

So, with the SLA negotiation mechanism, cloud 
participants can narrow preference differences (i.e., service 
price, time slot, and response time) so that the parties 
successfully reach an agreement for SLA. 
2.3 Workload and location aware resource 

allocation 
A cloud provider needs to properly allocate the provider’s 

resources to a data center for a service provisioning so that the 
provider can guarantee the SLA agreed with a consumer. The 
response time for users depends on the utilization level of 
physical nodes in the data center and the location of the data 
center. The performance of VM depends on the allocated PM 
(Physical machine). If the allocated PM is under heavy 
workload, the performance of VM will be degraded. In 
addition, cloud computing services are delivered over the 
Internet that does not guarantee reliable delivery. Also, the 
response time may depend on network delay in service 
delivery. If the distance between a user and a data center is far, 
the response time of VM will be slow. So, both workload and 
geographical location are important factors to guarantee the 
SLA in terms of response time. WLARA selects a data center 
according to a utility function to evaluate the appropriateness 
in VM placement to data centers. 

2.3.1 Utility function 
To find an appropriate physical computing resource which 

fits user’s SLA, this paper suggests an allocation model 
considering 1) the geographical location of users and provider 
and 2) the workload of computing resources. The proposed 
model uses utility function to measure an appropriateness of 
each data center. The utility function is described as follows: 

UL RT
m m mU U Uα β= ⋅ + ⋅  (4) 

In (4), there are two terms in the utility function: 1) 
machine workload utility Um

UL, and 2) expected response time 
Um

RT. Each term is multiplied by the preference weight (α + β 
= 1.0) respectively. The weight of each value can indicates 
that a provider’s preference for placing user VM. If α→1.0 
and β→0, the provider emphasizes workload of data center in 
placing VM. Likewise, if β→1.0 and α→0, the provider 
emphasizes finding a more close data center.  

The utility function (5) for machine workload represents 
level of workload of a data center when the data center 
accepts VM placement. Let Wτ be the upper bound of 
workload value, and Wθ and Wc be the expected workload in 
the data center including requested VM placement and current 
workload of the data center respectively. (5) shows higher 
utility if the placement does not affect increasing the workload 
of the data center. When Wθ is higher than Wτ than the utility 
function returns the minimum utility 0. 

1 ,

0 ,  otherwise.

C
CUL

Cm

W W W W W
W WU

θ
θ τ

τ

− − ≤ < −= 


 (5) 

(6) describes utility function for expected response time 
Um

RT. Let TSLA be the threshold of response time in SLA, and 
Te and Tc be the expected response time when a user’s VM is 
placed in a data center and current average response time by 
the workload and location of the data center. This utility 
function returns values when Te is in between Tc and TSLA. 
Otherwise, the utility returns the minimum utility 0. 

1 ,

0 ,  otherwise.

e C
C e SLART

SLA Cm

T T T T T
T TU

− − ≤ < −= 


 (6) 

By utility function (4), the provider can find appropriate 
data center for user’s VM in terms of the workload and the 
location between user and data center. 

2.3.2 Resource allocation strategy 
When a provider receives the request from user, the 

provider asks to a reservation manager, who is in charge of 
managing resources to allocation and reservation, for 
evaluating appropriateness of each data centers. To find 
proper datacenter, the proposed allocation model uses utility 
function (4). When the reservation manager finds appropriate 
datacenters by the evaluation, the reservation manger asks to 
allocate the request of user to coordinator agent, who is in 
charge of managing numbers of PMs in the datacenter. Then, 
the coordinator receives resource allocation request, the 
coordinator also finds a proper PM that has light workload 
because we assumes that data center consists of number of 
PMs. Consequently, the request of user is allocated in the PM 
that closes to user with light workload. Therefore, when the 
provider uses the proposed allocation model, the request of 
user is allocating in the PM that guarantees reasonable 
response time under SLA. 

3 Simulation and empical results 
3.1 Simulation test bed 

A simulation test bed for the proposed cloud computing 
framework has been implemented based on JAVA and JADE 
(Java Agent Development Environment) [15]. JADE is a 
software framework implemented by JAVA, and it is efficient 
to implement multi-agent systems with JADE since the 
implementation of JADE concretely follows FIPA 
(Foundation for Intelligent Physical Agents) [16] standard. 
The components of the proposed cloud framework were 
implemented as agents in the simulation test bed, and the 
agents communicate each other by exchanging messages 
needed among components by using message types defined in 
FIFA. The agents for the framework are as follows: 1) Service 
broker, 2) Service registry, 3) Reservation manager, 4) Data 
center coordinator, 5) PMM, and 6) PM. 
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Figure 2. SLA negotiation outcomes (price and response time). 

 

3.2 Experimental settings 
To show performance of the proposed framework, this 

experiment is focused on evaluating the number consumers 
who experience any SLA violation (i.e., slower response time 
than the response time limit descried in SLA). Also, we show 
1) SLA negotiation outcomes in terms of price and response 
time (time slot is omitted to focus on the performance of the 
resource allocation in this evaluation), 2) load distribution to 

data centers, and 3) distance between user and data center.  
Table 1 shows input data source which is assigned to 

components in the test bed. Using the SLA negotiation 
options in Table 1, all consumers and provider select 
preference range for price and response time so that 
negotiation agents negotiate price and response time. The 
negotiation outcome regarding response time is then subjected 
to the limit of response time that the provider guarantees. At 
the end of each experiment, the response time of each user 
was calculated and checks whether the provider violated 
consumers’ SLA or not. Also, consumer agent can have three 
different types of resources: 1) the number of vCPUs (virtual 
CPUs of a VM); 2) size of storage and 3) the VM location 
(Table 1). The test bed generates random value to assign types 
of resources as consumer’s service request according to the 
input data range. Since the workload is depended how many 
virtual CPUs are waiting for allocate to physical CPU in this 
test bed, the number of vCPUs affects workload, and the limit 
of workload to a data center is bounded by 2.0. We assumed 

all datacenters are homogenous (i.e. same amount of 
resources).  

In Table 1, as we described in Section 2.3, the geographical 
location between a data center and a consumer is an important 
factor that affects response time. For simulation purpose, we 
design ten different zones (i.e. zone 0 to 9) that represent 
geographical distance. In this experiment, a network delay is 
increasing gradually according to increasing differences 
between zones (20ms per each hop in the experiments). Each 
datacenter has a corresponding zone, and consumers can be in 
different zones as their locations. For each simulation, 1000 
consumers, who request different amount of resources and are 
located in different locations, have been simulated. When a 
consumer agent is generated, a location is given to the 
consumer agent. For more realistic simulation, the distribution 
of locations to the ten zones follows a normal distribution (i.e. 
mean is 4.5, standard deviation is 2.0) so that some data 
centers face swamped situation with high demand while in the 
experiments. 

The proposed framework especially the resource allocation 
model (i.e. Workload and Location Aware Resource 
Allocation, WLARA) is compared with related allocation 
models, which are widely used in resource allocation (i.e., 
VM placement) : 1) Greedy, 2) Random, 3) Round Robin 
(RR), and 4) Manual Zone Selection. According to the survey 
in [4], 1) Greedy, 2) Random, 3) RR have been used by 
Nimbus and Eucalyptus for placing VM to a PM in a data 
center. In addition, 4) the manual zone selection is a load 
placement scheme which is similar to current providers such 
as Amazon EC2. So, with the manual zone selection, 
consumers themselves manually select a data center to place 
their virtual machines. Since the manual zone selection 
assumes a human is aware and selects the closest data center, 
the manual zone selection used in this simulation makes all 
consumers’ VM be placed to a data center deployed in the 
same location (i.e., zone) with each consumer. Manual zone 
selection is classified into ideal case and non-ideal case for a 
simulation purpose. With the ideal case (i.e., ideal manual 
selection, IM), a consumer’s VM is placed to the closest data 
center. With the non-ideal case (i.e., non-ideal manual 
selection, NIM), a consumer’s VM is placed to a close data 
center by applying random values that follow normal 
distribution so that we can simulate situations where users 
sometimes make a mistake in selecting the closest data center. 

Table 1 Experimant settings 

SLA Negotiation Options Consumer Provider 
SLA Preference range  
for price  

IP:0.1($/hour) 
RP:1.0($/hour) 

IP:1.0($/hour) 
RP:0.1($/hour) 

SLA Preference range  
for response time 

IRT:100(ms) 
RRT:250(ms) 

IRT:250(ms) 
RRT:100(ms) 

Consumer’s Resources Range of Values 
Number of virtual CPUs [1, 32] 
Size of Storage [10.0, 1000.0] 
Response time of SLA [100, 250] 
Location {zone 0, …, zone 9} 
Physical Machine Resources Values 
Number of CPUs {4} 
Number of Threads per CPU {8} 
Data Center Specification Values 
Number Of Physical Machines {100} 
Storage Capacity {1000000.0} 
Number of Monitoring Agents {10} 
Number of Coordinator Agents {1} 
Location {zone 0, …, zone 9} 

Experimental Constraints Values 

Allocation 
Model 

Reservation Manager {Greedy, Random, RR, IM, NIM, 
WLARA} 

Coordinator and 
Monitoring agent {Adaptive} 

Number of User Requests {1000} 
Number of Data Centers {10} 
Limitation of Workload in 
Physical Machines {2.0} 
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Figure 3. Performance results of resource allocation models. 
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Figure 4. Performance results of WLARA with varing weights  
({α, β}={0.7, 0.3}, {0.5, 0.5}, {0.3, 0.7}). 

3.3 Empirical results and observations 
Fig. 2 shows SLA negotiation outcomes in terms of service 

price and response time. According to Fig. 2, SLA negotiation 
mechanism properly worked since threshold of response time 
is low (fast, respectively) when the price is low (high, 
respectively). Also, the response times and the prices for 
SLAs are well distributed (100<Agreed Response Time<250; 
0.1<Agreed Price<1.0) according to the given preference 
range in Table 1.  In addition, Fig. 3 shows the performances 
of all resource allocation models. According to the 
experiments, the proposed allocation model shows the best 
performance in terms of the number of SLA violations and 
allocation failures; 2) a balanced resource loads distribution 
and distance of data center. The detailed observation is 
described as follows. 

Fig. 3 (a) shows the number of SLA violations and 
allocation failures. The consumers have different threshold of 
response time according to the outcomes of negotiated SLA. 
At the final stage of an experiment, the response time of each 

consumer’s VM is aggregated to check whether it violate 
given response time threshold or not. In Fig. 3 (a), when the 
provider uses the proposed model WLARA, it guarantees the 
least number of SLA violations (170) and no allocation failure 
(0) whereas Greedy, Random, RR, NIM, and IM occurred 753, 
637, 624 342, 288 SLA violations, respectively. This is 
because WLARA is considering both workload and response 
time including network delay by the utility function (4). 
Hence, WLARA can allocate consumer’s request to a PM in a 
data center that has less workload and is in a close location to 
guarantee the threshold of response time in SLA.  

Fig. 3 (b) shows load distribution in data centers. Each 
allocation model shows different trends of load distribution in 
data centers. To represent the trends, we indicated standard 
deviations for each model. WLARA shows less biased and 
smoothly distributes loads in data centers. Since the user’s 
request is distributed to follow the random normal distribution 
(i.e. mean is 4.5, standard deviation is 2.0), the provider may 
be requested more for allocating user’s VM at certain location 
of data center. Hence, the load distribution trend has basically 
in a triangle shape like WLARA and IM. The worst case is 
greedy model. It allocated user requests by order of data 
centers. Therefore, the load distribution is biased. In Fig. 3 (b), 
random and RR allocation model shows slight uniform 
distribution of load and less standard deviation. But, as shown 
in Fig. 3 (a), since these allocation models are not considering 
workload and location, the models violated SLAs too 
frequently. 

Fig. 3 (c) shows the average geographical distance between 
users and allocated data centers. When the provider uses IM 
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selection, the average distance is zero because the IM model 
always places VM to the data center which has the same 
location with each user. IM selection is slightly better than the 
NIM in SLA violations. However, considering standard 
deviation of load distribution to data centers in Fig. 3 (b), 
both NIM and IM show bad performances. This may lead low 
performances in SLA violations and the number of allocation 
failures. When user request is not acceptable to selected data 
center due to the capacity limit, the data center may deny to 
allocation. The average distance with WLARA was 0 to 1. 
Although WLARA sometimes does not allocate user’s VM to 
exactly same location, WLARA shows less number of SLA 
violations because WLARA considers both workload and 
response time together. 

Fig. 4 represents the performance among WLARA with 
different experimental settings (the weights α and β in (4)). 
WLARA uses the utility function (4) that allows provider to 
adjust each weight of preference (i.e. considering workload 
more or location more). Hence, the results are slightly 
different by the weight. In Fig. 4, when the provider uses 
load-prefer allocation (i.e. load weight α is 0.7, and location 
weight β is 0.3), the distribution of load shows also best 
results in Fig. 4 (a). However, Fig. 4 (b) shows WLARA (α 
=0.7) gives relatively longer distance than with other 
preferences. 

4 Conclusion and future work 
This paper proposed a SLA-based Cloud computing 

framework to facilitate temporal and locational load-aware 
resource allocation in which a cloud provider has several data 
centers geographically deployed., and we implement a test 
bed of the proposed cloud framework to verify the usefulness 
of the proposed framework in a case study. 

The main functionalities of the proposed cloud computing 
framework include a SLA negotiation mechanism and a 
resource allocation mechanism. Hence, by using the proposed 
framework, we expect cloud computing providers can 
facilitate distributing resource load (i.e., resource demand) in 
temporal and locational perspectives. In summary the 
contributions of this paper are as follows: 1) Design of a 
cloud computing framework to facilitate temporal and 
locational load aware resource allocation in a cloud 
computing environment which is similar to Amazon EC2 that 
has multiple data centers geographically distributed. 2) 
Implementation of an agent-based cloud computing test bed 
according to the proposed cloud computing framework. The 
evaluation in this paper was focused on the performance of 
the resource allocation algorithm. The empirical result shows 
WLARA performs better than other related schemes such as 
greedy, random, round robin, and manual selection like 
Amazon EC2 in terms of the number of SLA violations. 

Using the proposed system, a cloud consumer can establish 
SLA about service price, time slot, and response time by an 
automated SLA negotiation scheme, and a cloud provider can 
facilitate load balancing by a pricing strategy. As future works, 
the proposed framework requires a thorough evaluation that 

includes cost effectiveness, resource load, average resource 
utilization, and so on. In addition, we need to research and 
classify negotiable cloud SLA issues to be included in the 
framework considerations. 
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Abstract—An effective workflow application scheduling on 

shared resources largely contributes to achieving a high 

performance in Utility Grids. Users share resources and 

these resources are autonomously managed in these 

environments. Users submit application-tasks to the 

resources, in turn, the resources eventually schedule the 

application-tasks due to their own allocation policy. 

Obviously, there is no explicit control on allocating 

resources to application-tasks on the part of users, the fact 

that results make users fail in optimizing the application 

makespan and allocation cost. The application scheduling 

problem is, in general, proven to be NP-complete. In the 

current paper, firstly, a Workflow Scheduling Cost-based 

(WSC) model is developed in order to effectively schedule 

an application in Utility Grids so that the application 

makespan and allocation-cost can be minimized. Secondly, 

a Minimum First-fit Cost-Makespan Trade-off (MinFCMT) 

heuristic algorithm is introduced to solve the WSC model. 

Based on the existing application scheduling algorithm, 

widespread simulation of the real parallel workload models 

as well as the synthetic workflow is exploited to evaluate the 

MinFCMT heuristic algorithm. The results show that the 

MinFCMT algorithm is more effective than the present 

algorithms due to optimizing the application makespan and 

allocation-cost in a very low runtime. 

Keywords: Utility Grids; Performance Optimization; 

Resource Provisioning; Workflow Scheduling. 

1  Introduction 

Grid computing can control many heterogeneous 

distributed resources for executing the computations and 

data intensive applications. Grid computing has recently 

been oriented towards pay-as-you-go models. In these 

models, the resource providers receive fees from the users 

for presenting computing and data services. That is why, the 

industry pioneers such as IBM, HP, Intel and SUN which 

have a large share in this business are more inclined toward 

the grid computing. IBM, for instance exploits “e-business 

on demand” model, HP exploits “Adaptive enterprise” 

model and Sun Microsystems apply to “pay-as-you-go” 

model [1]. 

The shared distributed infrastructures supply the grid 

environment software and hardware resources, in order to 

conduct large-scale computations. These infrastructures 

turned out to be efficient for executing applications in 

sciences such as astronomy [2], high energy physics [3], 

earthquake [4]. The challenge faced by the scientists in 

these fields is how to use cyber-infrastructure for 

transferring knowledge from the scientific environments to 

the distributed computing environments. The workflow is 

the most common approach to describe an application in a 

high level form regardless of the distributed computing 

environment. The workflow is represented in a “Direct 

Acyclic Graph” (DAG) with nodes and edges representing 

the tasks and data dependencies between the tasks, 

respectively. Once an application is transformed into the 

workflow structure, a workflow management system will be 

ready to control and manage the execution of workflow on 

the distributed infrastructure. In these environments, indeed, 

access to the shared computational resources is carried out 

through the queue-based Local Resource Management 

(LRM) system including Portable Batch System (PBS) [5] 

and Local Sharing Facility (LSF) [6]. 

In an interactive Grid computing environment the 

users are expecting to receive services whereas the resource 

providers are ready to offer services to them. The resource 

providers advertise the available resources planned by the 

application-level schedulers who receive fees upon 

providing services. An environment characterized with the 

above-mentioned users and service providers is known as 

Utility Grids. A competition develops among users caused 

by the resources-pricing policies so that users begin being 

involved in a competition with one another only to gain a 

resource with an affordable cost and an efficient processing 

capability. Hence, the resource providers are driven into a 

competition with one another to sell their idle resources to 

the users for more profits as well as to enhance the resource 

utilization. The scheduling problem becomes highly 

complicated and NP-complete [7] in such an environment 

due to the different resource consumers and providers so 

that each side pursues its own profits. It is worth noting that 

the resource consumers and providers are acting 

independently with conflicting aims. The resource 

consumers seek the minimum makespan and allocation-cost 
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for scheduling application, whereas the resource providers 

seek the resource utilization gains. Thus, the main challenge 

confronted by the users in this environment, will be 

scheduling an application on the heterogeneous resources in 

which the users have no explicit control so that both 

makespan and allocation-cost can be minimized.                       

The present paper deals with developing a Workflow 

Scheduling Cost-based (WSC) model in order to effectively 

schedule an application in the Utility Grids so that the 

application makespan and allocation-cost can be minimized. 

In fact, the WSC model allows the users to make a trade-off 

between an application makespan and allocation-cost. Next, 

a Minimum First-fit Cost-Makespan Trade-off (MinFCMT) 

heuristic algorithm is employed to solve the WSC model. 

The MinFCMT is a heuristic algorithm scheduling an 

application in a form that both makespan and allocation-

cost can be optimized due to a trade-off factor. The trade-

off factor shows the preference of the allocation-cost 

optimization to the turnaround-time. Finally, to study and 

evaluate the efficiency of the proposed algorithm on the 

proposed model, a handful of experiments have been 

conducted and simulated. The simulation results show that 

the MinFCMT algorithm is very effective in a workflow-

application scheduling. The main contributions of the 

present paper are as follows: 

 Developing a WSC model based on provisioning the 
resources for the workflow scheduling so that the task-
execution dependencies are satisfied and its application 
makespan and allocation-cost can be minimized. 

 Developing a MinFCMT heuristic algorithm based on 
the WSC model so that it is an algorithm scheduling an 
application in a form that both makespan and 
allocation-cost can be optimized due to the trade-off 
factor.  
The rest of this paper is organized as follows: Section 

2 introduces an execution environment. A proposed detailed 

model and heuristic algorithm is described in section 3. 

Section 4 involves a simulation setup and an analysis of the 

results and its relevant experiments in order to evaluate the 

efficiency of the proposed algorithm. Section 5 discusses 

the related works. Finally, section 6 ends with a conclusion 

and future work. 

2 Execution environment 

The agreement-based resource management allows an 

application-level scheduler to attain the resources in the 

desired time. The workflow management system, therefore, 

ensures access to the desired resources within the agreed 

time and cost. In the most resources, an agreed structure is 

reached between the provider and consumer in terms of 

available time slots. In clusters, for instance a slot indicates 

the availability of a number of the related processors, start 

time, duration and cost. Once a slot is obtained, it can 

subsequently be used without an extra interaction between 

the provider and consumer. 

A workflow-application is represented in a DAG. A 

DAG is defined as G = (V, E), where V is a set of nodes, 

each node representing a task, and E is a set of links, each 

link representing the execution precedence order between 

two tasks. For example, a link (i, j) ∈ E represents the 

precedence constraint that task vi needs to be completed 

before task vj starts. The data is a V*V matrix of the 

communication data, where dij is the amount of the data 

required to be transmitted from the task vi to the task vj. As a 

workflow may consist of sub-workflows with multiple 

entries and exits so the first thing to be done is to add two 

pseudo-tasks, a top task and a bottom task, with zero 

execution time indicated by 0 and n + 1, respectively. The 

top task spawns all actual entry tasks of the workflow to be 

linked to a single node, while the bottom task joins all 

actual exit tasks to a single node. 

The user submits the application characteristics to the 

application-level scheduler only to be executed on the grid 

environment. The user expects to have his application 

executed with the minimal makespan and allocation-cost. 

Certainly, the users exploit trade-off factor in order to show 

a preference for cost to makespan. In cases where this factor 

is not specified by the users, the default trade-off factor is 

considered as equal. 

In fact, the application-level scheduler acts as a 

mediator between the resource providers and users. Due to 

the reports of the available slots obtained from the resource 

providers, the application-level scheduler plans the 

application. The entire slots exploited in planning the 

application, will be submitted to LRM in order to provision 

the resources. All of the computational resources can act as 

a service-provider (site) for time-slots. 

We suppose that the application-task performance 

models are clear on each resource. The execution time of a 

certain task, therefore, may be obtained from a certain 

resource due to application performance models. Also, the 

execution of a single task consists of three phases: (a) the 

input data retrieval from the resource executing the 

immediate predecessors of the task (b) the task execution 

and (c) the output data communication from the current 

resources to the resources presumed to execute successors 

of the task.       

To transfer the data between the application-tasks, 

three data-management strategies have been proposed by 

Deelman et al. [8] known as the regular, dynamic cleanup 

and the remote I/O (on demand). In this paper, the remote 

I/O (on demand) strategy has been used, so that the output 

data are submitted to the resource that is seeking to execute 

immediate the successor-tasks from the immediate 

predecessor-tasks using the existing high-speed network 

among the resources. 
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3 The proposed model and algorithm 

In general, the users are in need of two QoS: the 

deadline and  budget of their applications on the pay-per-

use services [9]. The users normally tend to run their 

applications in as the lowest makespan and cost as possible. 

Thus, a trade-off factor indicating the significance of the 

cost to time will be used. In this section, the issue of 

application scheduling will be stated and the WSC model 

will be presented and then solved in order to optimize the 

application cost-makespan. Finally, a heuristic algorithm 

will be developed to conduct the application scheduling 

with the aim of optimizing the cost and makespan.    

3.1 The proposed cost-based model 

The model consists of a set of heterogeneous 

consumers and resource providers where the consumers 

seek to schedule their workflow applications with the 

minimum cost and makespan. In the WSC model, R stands 

for a set of available heterogeneous resources. Each 

resource consists of a set of slots.  

The application model is defined in section 2. If task vi 

is executed on the slots available to resource rj, then, the 

Task Execution Time (TET) will be TETij and the Task 

Allocation Cost (TAC) is obtained by  

, , ,ij ij j i i jTAC TET C RNP   v V r R     
        

(1) 

where Cj is the allocation cost of rj resource slots and RNPi 
is the Required Number of Processors (RNP) of the task vi. 
To make sure that each task is executed only on the slots of 
the same resource, binary decision variable xij is to be 
defined by  

1       
,

0                                                                 

j i

ij

 if  the resource slot  of  r is selected for executing task v
x

otherwise


 


  

(2) 

to achieve that, it is essential to satisfy  

1,   .
j

ij i

r R

x v V
 

  
                        

(3) 

Now, the execution time and allocation-cost of each 

task vi can be obtained, provided that the task is executed 

only on the slots of the same resource according to 

,   v ,
j

i ij ij i

r R

TET TET x V
 

  

          

    (4) 

,   v .
j

i ij ij i

r R

TAC TAC x V
 

              (5) 

The data transfer rates of the resources are stored in 

the matrix B and dij is the amount of the data supposed to be 

transmitted from the task vi to the task vj. L stands for the 

average latency cost of the resources. The Data 

Communication Cost (DCC) from the task vi (scheduled 

onto the resource rm) to the task vj (scheduled onto the 

resource rn) is defined by 

, , , , .
ij

ij i j m n

mn

d
DCC L v v V r r R

B
                  (6) 

The Total Data Communication Cost (TDCC) between 

the tasks vi and vj is obtained by 

1 , , ,
k

ij ij ik jk i j

r R

TDCC DCC x x v v V
 

 
     

 


       

  (7) 

in case, both tasks vi and vj are scheduled on the slots of the 
same resource, the acquired summation in (7) becomes one, 
as a result TDCCij will be zeroed. 

The Earliest Start Time (EST) of the task vi on the 

resource rj is known as ESTij. The EST of the entry task is to 

be initialized with the Simulation Current Time (SCT) by 

0 , .j jEST SCT r R               (8) 

For the rest of the workflow tasks, the EST value is 

computed by  

  
( )

max , max ,
j m i

ij j m mi
r R v pred v

EST AV SFT TDCC
   

                         (9) 

so that their computations recursively start with the entry 
task, where AVj is the earliest start time of the slots of the 
resource rj which is capable of  executing the task vi. The 
secondary max block in (9) computes the starting ready time 
of the execution of task vi. To obtain a task ready time, 
firstly, execution time of the entire immediate predecessor 
tasks is computed. Secondly, all required data of the task vi 
need to have reached the resource rj. The Earliest Finish 
Time (EFT) of the task vi on the resource rj is known as 
EFTij which is computed by  

, , ,ij i ij i jEFT TET EST v V r R                            (10) 

to compute the EFT of the task vi, the entire immediate 
predecessor tasks need to be scheduled beforehand. After a 
task vi is selected to be scheduled on the resource rj (due to 
(11)) the EFT of the task vi on the resource rj is equal to the 
Selected Finish Time (SFT) of the task vi. 

Supposing α as a trade-off factor indicating the 

preference of the allocation-cost to the execution time, the 

trade-off cost metric of the execution of the task vi on the 

resource rj is obtained by 

 1 , , ,ij ij ij i jNTAC NEFT v V r R                              (11) 

where NTACij and NEFTij are the normalized TACij and 
EFTij, respectively, so that they are computed by  
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        (13) 

respectively. The normalization is important because we do 
not know what the range of values the allocation-cost and 
finish time will take, are for a given solution. 

Thus, the objective function of the application 

scheduling problem is obtained by the minimization of the 

sum of the trade-off cost metrics for the whole application-

tasks reached by 

min( min ).
j

i

ij
r R

v V


 

 



        

  (14) 

The application scheduling problem involves mapping 

each task vi onto the suitable resource rj, so that the 

application makespan and allocation-cost can be minimized. 
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Upon the completion of the whole application tasks, 

makespan and allocation-cost will be computed by 

( 1) ( 1) 0 0 ,
j j

n j n j j j

r R r R

makespan EFT x EST x 

   

                        (15) 

cos .
i j

ij ij

v V r R

allocation t TAC x
   

            (16) 

In the following section, a heuristic algorithm is 

presented to solve the WSC model as a whole.  

3.2 The proposed MinFCMT heuristic 

algorithm 

The MinFCMT is a heuristic algorithm which is 

employed to solve the WSC model. This algorithm 

schedules an application in a form that both makespan and 

allocation-cost can be optimized due to the trade-off factor. 

There is a handful of choices for each task, among 

which the choice capable of minimizing the cost metric of 

(11) will be selected as the best solution. According to the 

best solution, the EST needs to be computed to execute 

immediate successor tasks and this procedure will be 

carried on so long as the execution of the whole application 

tasks will be finished. 

The MinFCMT pseudo-code is presented in algorithm 

1 which operates according to the WSC model. The 

algorithm obtains the available slot lists to all resources and 

the unscheduled tasks as an input parameter (lines 1, 2). 

Moreover, the EST is initialized with simulation current 

time (line 3). The application-level scheduler carries out the 

planning of each application task due to available slots list 

characteristics with an eye on the cost metric presented in 

(11), (lines 4 to 14).  Initially, a list of unplanned tasks 

which are eligible to be executed is selected (line 5). Next, 

the eligible tasks are defined as the ones whose parents’ 

tasks execution is completed, though the very same tasks 

have not been executed yet. The available slots list of each 

resource is obtained by line 7. In line 8, the EST of the task 

T is computed recursively due to (9). Eventually, the EFT 

of the task T is computed by (10), (line 9). 

The EST is computed on the basis of the completion-

time of the latest parents tasks T. Next, the best slot capable 

of executing the task is selected for each task T on each 

resource. In cases, the selected resource does not match 

with the resource which executes the parents’ tasks, the 

data-transfer time needs to be added to the EST due to (7) 

and (9). 

 Once the best slot for executing task T is obtained on 

each resource, the resource which minimizes the cost metric 

in (11) will be selected as the best resource ( line 10). Now, 

it comes to allocating the task T to a selected resource (line 

11) as well as updating the slots list of the selected resource 

(line 12). This procedure needs to be continued as long as 

there still exists an eligible task (lines 4 to 14). Finally, 

when the entire application tasks are planned, the makespan 

and allocation-cost need to be computed according to (15) 

and (16), respectively. At the end of the completion of the 

whole application tasks, the slots assigned to the application 

tasks will be released. 

4 The simulation setup and the results 

To conduct an experimental evaluation of the 

efficiency of algorithm 1, the GridSim [10] is used to 

simulate the application-level scheduler in the Utility Grids 

environment. The Grids environment which is modeled in 

this simulation consists of ten sites belonging to a subset of 

the European Data Grid (EDG) spread across five countries 

which are interconnected via a high-speed network [1, 11]. 

The workload simulated on these sites follows the workload 

model generated by Lublin [12]. The main purpose of the 

use of this model is to create a realistic simulation 

environment where the tasks compete with one another. 

Table 1 shows the workload parameters values applied to in 

the Lublin model. Table 2 shows the configuration of the 

resources on the Grids test-bed. The configuration of the 

resources is used in order to show the heterogeneity of the 

execution environment.  

Table 1: Lublin workload model parameter values. 

Workload parameter Value 

JobType 
Maximum number of CPUs required 
by a job(p) 
uHi 
uMed 
Other parameters 

Batch JOBS 
1000 
Log2(p) 
uHi-2.5 
As created by Lublin 
model 

 
 
 

Algorithm 1: The pseudo-code for the MinFCMT heuristic algorithm 

Input: 
 

 

An application characteristics with an instruction length for 
each task and the required CPUs 
The resource characteristics and the available slots to each 
resource 

Output: The workflow scheduling 

1 Get the list of the available time slots for all resources. 
2 UnScheduledTask = get the list of the tasks which have not 

been scheduled yet. 
3 Assign the simulation current time to the EST.  
4 While UnScheduledTask  is not empty do 
5 
 

 
 

EligibleTasks = select all tasks which executions of their 
parents have been completed. 

6  for each T in the EligibleTasks do 
7   Acquire the available slots of each resource.  
8 

  
Compute the EST of the task T on each resource by 
(9). 

9   Compute the EFT of the task T due to (10).  
10 
 

 
 

 
 

Find a time slot (TS) which is feasible for the task T 
while minimizing the cost metrics as defined in (11). 

11   Allocate the TS on the resource r to the task T 
12   Update the list of available slots to the resource r. 

13  end for 
14 end while 
15 
 

Compute the makespan and allocation-cost of the application 
respectively, as defined in (15) and (16). 
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Table 2: Simulated EDG testbed resources. 

Site name (Location) 
Number 
of CPUs 

Single CPU 
rating(MIPS) 

Processing 
cost(G$) 

RAL(UK) 20 1140 0.0061 

Imperial College(UK) 26 1330 0.1799 

NorduGrid(Norway) 265 1176 0.0627 

NIKHEF(Netherlands) 54 1166 0.0353 

Lyon(France) 60 1320 0.1424 
Milano(Italy) 135 1000 0.0024 
Torina(Italy) 200 1330 1.856 

Catania(Italy) 252 1200 0.1267 
Padova(Italy) 65 1000 0.0032 
Bologna(Italy) 100 1140 0.0069 

 
To conduct experiments, a parameterized graph 

generator is used to create a synthetic workflow application 

[13]. The application characteristics contain n=100 tasks 

with an average execution time of 1000 s [14]. The 

workflow on the average consists of n  levels (the 

workflow graph depths) and n  tasks at each level. Each 

task on the average needs 25 CPUs for executing. The mean 

value of the data transfer among the tasks is 1000 Gb. The 

mean bandwidth value among resources is 10 Gb/s with a 

mean latency time of 150 s.  

At this stage, the scheduling algorithm that uses the 

best-effort QoS for scheduling, is simulated and tagged as 

the BE. In BE, the exploited heuristic method selects a 

resource with the minimum number of tasks in the waiting 

and running queues.  

An application scheduling algorithm that uses a cost 

model, is presented by Singh et al. [14, 15]. This cost-

modeled algorithm makes a trade-off between scheduling 

and allocation-cost based on trade-off factor. The 

scheduling takes place using a multi-objective genetic 

algorithm, as well as simulating the algorithm. It is tagged 

as the MOGA for brevity [14, 15]. 

The MinFCMT, the MOGA and the BE algorithms are 

simulated and their performance is evaluated through 

conducting a number of experiments. Finally, the results 

from the algorithms are compared with one another where 

“trade-off factor=0.5”. Due to the considerable 

discrepancy among the experiments’ results, the scales of 

the y-axis of the diagram are shown in the logarithmic 

scales which are based on 10. 

Fig. 1 reveals the simulation experiment results from 

the allocation-cost of the three algorithms. The MinFCMT 

algorithm allocation-cost declines nearly 40% compared to 

the MOGA algorithm as well as almost one order of 

magnitude compared to the BE algorithm. 

Fig. 2 reveals the simulation experiment results from 

the makespan of the three algorithms. The makespan of the 

MinFCMT algorithm declines nearly 14% compared to the 

MOGA algorithm and almost one order of magnitude 

compared to the BE algorithm. 

To obtain the slots for planning, the MOGA algorithm 

uses a genetic algorithm whose genes of each single 

chromosome correspond with a slot from a specified 

resource. Due to the Grids environment which is a dynamic 

one, the MOGA algorithms decision-making takes place 

based on the static information of the slots. That is why, it 

cannot effectively optimize the performance. In addition, 

the user has no explicit control on allocating the resources 

to the tasks, thus this model cannot optimize the 

performance either. As a result, the allocation-cost and 

makespan of the proposed algorithm is less than both 

above-mentioned algorithms. 

Fig. 3 reveals a comparison of runtimes of the three 

algorithms: the MinFCMT, the MOGA and the BE. The 

MinFCMT algorithm runtime shows an outstanding 

decrease, approximately three orders of magnitude relative 

to both the MOGA and the BE algorithms runtimes. The 

very low runtime of the MinFCMT algorithm is explained 

by the fact that the MinFCMT selects the best resource just 

once for each task, so its runtime will be very low. Whereas 

the MOGA algorithm uses genetic algorithm, that is, it 

needs to repetitively test a handful of the solutions in order  

 

 
Figure 1. The allocation cost of the application. 

 

 
Figure 2.  The makespan of the application. 

 

 
Figure 3. The runtime of the application. 
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to make decisions at each stage for planning the entire tasks. 
Therefore, this approach requires a high time-complexity to 
obtain the best solution. Compared to both the MinFCMT 
and the MOGA algorithms, the best-effort service has the 
highest runtime, because this approach does not supply the 
resources in advance. As a result, the proposed algorithm 
reveals a better performance compared to both algorithms.  

5 Related works 

As shared multiprocessing systems advance, the issue 

of the application scheduling has been the main concern. 

There is a comprehensive introduction on the job 

scheduling strategies [16, 17]. Moreover, in [18], the 

computational models are surveyed for Grid scheduling 

problems. 

In the queue-based systems, the delivered quality of 

service to the users is the best effort QoS. However, the 

alternative approach is one of the planning-based systems 

[19]. In these systems, according to agreements the start 

time of the task can be established in advance instead of the 

task waits in queue in order to get access to the resource 

[20]. The above-mentioned agreements are based on an 

abstract description, so-called “slot”.  

In [21], a resource model is adopted similar to the 

proposed model. This model differs from the proposed 

model so that in this model, the resource provisioning takes 

place just for one task on a single resource, whereas in the 

proposed model, the resources are provisioned for the entire 

application tasks.  

In [1], a heuristic algorithm is presented for 

scheduling many parallel applications on the Utility Grids 

that optimizes the cost-to-time trade-off. This approach is 

close to the studies conducted for this paper and its main 

difference from that of the proposed approach lies 

scheduling the parallel applications, whereas the approach 

adopted by present paper is based on scheduling the 

workflow application.  

 In [8], the Cloud computing for scheduling the 

scientific workflow is shown that uses the cost performance 

trade-off of the resource provisioning plans. This approach 

differs from the proposed approach, in that, it examines cost 

performance trade-offs disregarding the minimization of the 

multi-objective allocation-cost and makespan.  

In [22], similar to the current paper, a genetic 

algorithm is proposed to find an optimized mapping of the 

tasks to the resources which minimizes both financial cost 

and makespan. This approach is developed in [14, 15], that 

is a multi-objective genetic algorithm. In [14, 15], the entire 

resources possess identical CPU ratings and cost processing 

whereas in the proposed model, all resources are constituted 

of the heterogeneous clusters with different processing cost 

and CPU ratings, that is the main difference between the 

proposed model and those models. Hence, removing this 

resource homogeneity complicates the identification of an 

appropriate resource selection.  

Since, in [14, 15], the algorithms are genetic-based 

ones, the runtime takes a longer time. In case, the slots’ 

characteristics undergo a change during scheduling, the 

slots’ characteristics are to be updated and a rescheduled 

resulting in a far longer runtime. Hence, these approaches 

do not serve the purpose in the dynamic environments such 

as the Grids. In contrast, in the proposed approach, the 

WSC model is presented for the workflow scheduling 

problem which is highly adaptive to the dynamic 

environments. Also, this model is solved by the MinFCMT 

heuristic algorithm in an effective runtime.  

6 Conclusion and future work 

The present paper deals with designing, 

implementation and evaluation of the MinFCMT heuristic 

algorithm in order to schedule the applications. The paper 

seeks to optimize the cost-makespan based on the proposed 

WSC model. To develop a real distributed environment, the 

resources workload is simulated based on the Lublin model. 

Due to many experiments conducted on the generated 

syntactic workflow, it was shown that the MinFCMT 

heuristic algorithm is far more effective than the existing 

algorithms. The results indicate that the runtime of the 

MinFCMT algorithm decreases more than three orders of 

magnitude compared to the existing algorithms.  

In future, we intend to develop an architecture by 

which the expected application performance can be 

determined with certainty and enhance our proposed 

algorithm.  

 

7 References 

[1] S. K. Garg, R. Buyya, and H. J. Siegel, "Time and cost trade-off 

management for scheduling parallel applications on Utility 
Grids," Future Generation Computer Systems, vol. 26, pp. 

1344-1355, 2010. 

[2] D. S. Katz, J. C. Jacob, G. B. Berriman, J. Good, A. C. Laity, E. 
Deelman, C. Kesselman, G. Singh, M. H. Su, and T. A. Prince, 

"A comparison of two methods for building astronomical image 

mosaics on a grid," in proceedings of the 34th International 
Conference on Parallel Processing Workshops (ICPP 2005 

Workshops), Oslo, Norway, 2005. 

[3] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, 
K. Blackburn, P. Ehrens, A. Lazzarini, R. Williams, and S. 

Koranda, "GriPhyN and LIGO, building a virtual data grid for 

gravitational wave scientists," in 11th IEEE International 
Symposium on High Performance Distributed Computing 

(HPDC-11), Edinburgh, Scotland, UK, 2002. 

[4] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. 
Gupta, V. Gupta, T. H. Jordan, C. Kesselman, and P. 

Maechling, "Managing large-scale workflow execution from 

resource provisioning to provenance tracking: The cybershake 
example," in Proceedings of the Second IEEE international 

Conference on E-Science and Grid Computing Amsterdam, 

Netherlands, 2006. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 257



[5] R. Henderson, "Job scheduling under the portable batch 

system," in Job Scheduling Strategies for Parallel Processing: 
IPPS '95 Workshop, Santa Barbara, CA, USA, 1995, pp. 279-

294. 

[6] S. Zhou, X. Zheng, J. Wang, and P. Delisle, "Utopia: a load 
sharing facility for large, heterogeneous distributed computer 

systems," Software: Practice and Experience, vol. 23, pp. 1305-

1336, 1993. 
[7] J. D. Ullman, "NP-complete scheduling problems," Journal of 

Computer and System Sciences, vol. 10, pp. 384-393, 1975. 

[8] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, 
"The cost of doing science on the cloud: the montage example," 

in Proceedings of the 2008 ACM/IEEE conference on 

Supercomputing, NJ, USA, 2008, pp. 1-12. 
[9] J. Yu, R. Buyya, and C. K. Tham, "Cost-based scheduling of 

scientific workflow application on utility grids," in First 

International Conference on e-Science and Grid Technologies 
(e-Science'05), Melbourne, Australia, 2005, pp. 140-147. 

[10] R. Buyya and M. Murshed, "Gridsim: A toolkit for the 

modeling and simulation of distributed resource management 

and scheduling for grid computing," Concurrency and 

Computation: Practice and Experience, vol. 14, pp. 1175-1220, 

2002. 
[11] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. 

Stockinger, "Data management in an international data grid 

project," in Grid Computing - GRID 2000: First IEEE/ACM 
International Workshop, Bangalore, India, 2000, pp. 333-361. 

[12] U. Lublin and D. G. Feitelson, "The workload on parallel 
supercomputers: modeling the characteristics of rigid jobs," 

Journal of Parallel and Distributed Computing, vol. 63, pp. 

1105-1122, 2003. 
[13] H. Topcuoglu, S. Hariri, and M. Wu, "Performance-effective 

and low-complexity task scheduling for heterogeneous 

computing," IEEE Transactions on Parallel and Distributed 
Systems, vol. 13, pp. 260-274, 2002. 

[14] G. Singh, C. Kesselman, and E. Deelman, "An end-to-end 

framework for provisioning-based resource and application 
management," Systems Journal, IEEE, vol. 3, pp. 25-48, 2009. 

[15] G. Singh, C. Kesselman, and E. Deelman, "A provisioning 

model and its comparison with best-effort for performance-cost 
optimization in grids," in Proceedings of the 16th international 

symposium on High performance distributed computing, 

Monterey, CA, USA, 2007, pp. 117-126. 
[16] D. Feitelson and L. Rudolph, "Parallel job scheduling: Issues 

and approaches," in 1st Workshop on Job Scheduling Strategies 

for Parallel Processing, Santa Barbara, CA, 1995, pp. 1-18. 
[17] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. 

Wong, "Theory and practice in parallel job scheduling," in 3rd 

Workshop on Job Scheduling Strategies for Parallel Processing, 
Geneva, Switzerland, 1997, pp. 1-34. 

[18] F. Xhafa and A. Abraham, "Computational models and heuristic 

methods for Grid scheduling problems," Future Generation 
Computer Systems, vol. 26, pp. 608-621, 2010. 

[19] M. Hovestadt, O. Kao, A. Keller, and A. Streit, "Scheduling in 

HPC resource management systems: Queuing vs. planning," in 
9th Workshop on Job Scheduling Strategies for Parallel 

Processing, Seattle, WA, 2003, pp. 1-20. 

[20] K. Czajkowski, I. Foster, and C. Kesselman, "Agreement-based 
resource management," Proceedings of the IEEE, vol. 93, pp. 

631-643, 2005. 

[21] T. Rbِlitz, F. Schintke, and J. Wendler, "Elastic Grid 
reservations with user-defined optimization policies," in 
Proceedings of the Workshop on Adaptive Grid Middleware, 

Antibes Juan-les-Pins, France, 2004. 

[22] G. Singh, C. Kesselman, and E. Deelman, "Application-level 
resource provisioning on the grid," in E-SCIENCE '06 

Proceedings of the Second IEEE International Conference on e-

Science and Grid Computing Amsterdam, The Netherlands, 
2006, pp. 83-83. 

 

 

258 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



A Generic resources allocation approach for better 

 Cloud Computing IaaS Services 

EssamAlgizawy 
Computer Engineering  

Department 

Benha University 

Shoubra-Cairo, Egypt 

Essam@feng.bu.edu.eg 

AlaaEldeenSayed Ahmed  
Computer Engineering 

Department 

Benha University 

Shoubra-Cairo, Egypt 

alaaeldeen.sayed@feng.bu.edu.eg 

Abdulwahab K. Alsammak 
Computer Engineering 

Department 

Benha University 

Shoubra-Cairo, Egypt 

sammaka@gmail.com 

 

 
Abstract -The distributed Computation world is becoming 

complex and very large; Cloud Computing has emerged as a 

popular computing model to support large data processing 

using commodity hardware. In this context, the number of 

physical units (dedicated servers) may suffer shortage 

problem at peak time due to the increasing needs of using 

resources. In this paper we introduce a solution for resolving 

this problem by adopting the use of idle general purpose 

machines that exist within homes, universities or enterprises 

to be part of the cloud computing environment. The proposed 

solution is implemented and tested through the provision of 

the modified IaaS by using CPU cycles denoted by public and 

OpenStack Cloud Computing platform. On experimenting the 

proposed model ,the performance of the cloud has improve 

significantly ,which confirm that this  mixing of generic and 

dedicated resources allocation leads to the provision of 

inexpensive resources with the guarantees of the quality of 

services. 
 

 

Keywords:Cloud Computing, CPU Cycle-Harvesting, Cloud 

Computing Infrastructure, Architecture 
 

I. INTRODUCTION 
The rapid growth in the distributed computing environment 

technologies has led away from the in-house Public Resources 

Computing to Grid computing and now to Cloud Computing 

paradigm. In this paradigm, Cloud resources are delivered in a 

flexible and service-oriented manner to consumers on an on-

demand pay-as-you-go manner. This differs from common 

practice in IT whereby resources are procured and used in a 

more coarse-grained and less flexible manner. Cloud 

Computing  is not a completely new concept for development 

and operations of the web application [3,12] .In the cloud we 

have to address a set of Cloud Computing fundamentals like 

virtualization management, scalability, interoperability, fail 

over mechanism and elasticity which represent one of the 

major attractions of the cloud. In Cloud Computing there are 

different delivery or deployment models such as Public, 

private, and Hybrid Clouds [13]. These models focus on the 

cloud architecture, and services as well. In Private Cloud, 

Data and processes are managed within organization 

boundaries without any restrictions on the network bandwidth, 

security exposures, or legal requirement for using service like 

these on public services. In Public Cloud, it describes the 

cloud computing in the traditional mainstream sense, whereby 

resources are dynamically provisioned on a fine grained, self-

serviced basis over web services from an off-site third parity 

provider. Finally, in Hybrid Cloud, the environment is 

consists of two or private and public cloud computing 

providers. 

 

Although private Cloud Computing is more secure than Public 

Cloud Computing, its elasticity is limited depending on the 

maximum hardware capacity and at the peak time it is bound 

to fall short of demand which is known as Cloud burst. As the 

needs for computational and storage resources increase the 

technology needs to develop to fulfil this increasing needs of 

using resources. We propose a new architecture to ad-hoc 

additional computational resources with reliable computing 

power using CPU cycles denoted by public (Organization 

PC.s) through the use of OpenStack Cloud computing 

software platform for on-premises Infrastructure as a Service 

(IaaS). 

 

 

The availability of volunteer desktop machines as a part of the 

cloud leads to various benefits to individual organizations. It 

could reduce the numbers of dedicated machines needed to be 

purchased. Also it reduces the need for specialized 

infrastructure for resilience, such as redundant power and 

cooling systems, battery backup,… etc., which represents 25% 

of datacentre costs [8].Rather than ensuring resilience of a 

small number of physical buildings, the grain of resilience 

could be expanded by using more widely distributed machines 

and tolerating individual building failures [7]. As well as it 

reduces overall power consumption through the reduction in 

the total number of machines since the energy cost of 

manufacture for a computer has been estimated as four times 

that used during its lifetime [9]. 
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The paper is organized as follows. Section 2 presents the 

related works on Cloud Computing IaaS implementations, 

Desktop Grid and public resources computing.  The proposed 

Architecture is described in section 3.  The architecture 

implementation and results is described in section 4.  Finally, 

section 5 presents the conclusion. 

II. RELATED WORK 
The work presented in [14], explains an opportunistic cloud 

computing IaaS model implementation.It provides service at 

lower cost than dedicated cloud infrastructures based on basic 

computing resources (processing, storage and networking) 

through the opportunistic use of idle computing resources 

available in a university campus. UnaCloud uses a commodity 

and non-dedicated underlying infrastructure to implement the 

opportunistic design concepts which broadly has effect on; 1) 

the cloud services availability as the computing resources is 

dependent on the behavioural pattern of their currently owners, 

as the availability of the service represent an effective term to 

ensure any type of QoS or SLA. 2) Service scalability will 

always depend on the available resources on the opportunistic 

idle desktop machine which will limit the service scalability. 3) 

The architecture doesn’t support integration with any of the 

currently used Cloud Computing platform APIs which 

limitsits use at peak times or at cloud burst. 

Private cloud would provide flexible service availability and 

scalability while addition of hybrid clouds will providenot 

only elasticity but also would provideself-managing in terms 

of resilience, performance and balancing potentially. 

 

In [25],an architecture is proposed to integrate grid and private 

cloud such that grid resource requirements are fulfilled by 

fetching resources from cloud when needed and vice versa 

with additional storage clusters to enhance the performance as 

Grid Computing resources are not utilized optimally most of 

the times. 

 

In [7], an outline of the major implementation challenges has 

been introduced on how underused computing resources 

within an enterprise may be harnessed to improve utilization 

and create an elastic computing infrastructure, In contrast to 

the datacentre cloud model. This model is analogous to 

volunteer computing as exemplified by Condor [18] and 

BOINC [16, 17], although it poses considerable additional 

implementation challenges. 
 

Volunteer computing (VC), Public Resources Computing 

(PRC) sometimes described as a paradigm of a large number 

of computers, on which individual users’ machines are used to 

perform computationally tasks. SETI@home, 

Climateprediction.net, and LHC@home are the most popular 

projects based on the BOINC (Berkeley Open Infrastructure 

for Network Computing) framework [16, 17] or based on 

Condor [18]. Volunteer computing is being used in high-

energy physics, molecular biology, medicine, astrophysics, 

climate study, and other areas. 

In the context of IaaS models, OpenStack Cloud Computing 

platform [19, 20] is a collection of open source software 

projects that service providers can use to run their cloud 

compute and storage infrastructure. It is backed by Rackspace, 

NASA, Dell, Citrix, Cisco, and Canonical and over a hundred 

other organizations but it uses only dedicated servers to setup 

such Cloud Computing platform like that platform which 

created using Eucalyptus [21] 
 

Our proposed approach focuses on extending the available 

Cloud Computing platform infrastructure which ensures 

service availability with the opportunistic use of idle resources 

which will provide services elasticity and service scalability 

through the using of both of the dedicated and non-dedicated 

infrastructures. It uses the same idea behind the building 

methodology of OpenStack Cloud Computing platform 

extending the infrastructure used by harvesting the idle 

computing resources donated by the public desktop machines. 

III. PROPOSED ARCHITECTURE  
In this approach we use the same idea behind the methodology 

of building the OpenStack Cloud Computing platform but 

with extending the used infrastructure by harvesting the idle 

computing resources donated by the public. 

The architecture has three major components; Cloud 

Computing platform, Harvesting Middleware, and Resources 

allocation desktop agent. 
 

1) Cloud computing platform:The Cloud Computing 

platform consists of Cloud Controller which receives 

submitted user requests and passes them to the 

underlying components. It represents the interaction 

between computing nodes, block storage volumes, the 

networking controllers (software which controls network 

infrastructure), and API endpoints.  
 

This interaction is represented in terms of managing and 

scheduling resources between different mentioned 

components.  Since computing nodes have different operating 

systems running, there is virtualization machine manager 

called Hypervisor that mediates between the guest operating 

systems (Virtual machine or the Cloud Service) and the native 

hardware. The hypervisor is responsible to bring up 

virtualization by handling a set of certain protected 

instructions. 
 

In our implementation we use Kernel Based Virtual Machine 

(KVM). KVM is a full virtualization solution that is unique in 

that it turns a Linux kernel into a hypervisor using a kernel 

module. This module allows other guest operating systems to 

then run in user-space of the host Linux kernel. 

 

Each time a request for a new cloud computing services is 

submitted, the cloud controllers checks-up the available 

resources such as cores, memory, and storage to deploy the 

virtual machine. If there is a provisioning for deploying such 

virtual machine,the cloud controller will process the request 

by deploying the requested service. But if the virtual machine 
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can’t be deployed on the current cloud infrastructure due to 

lack of resources, the cloud controller will ask the harvesting 

middleware local resources manager to free up resources. This 

is done by moving one of the currently running cloud services 

to the most suitable registered desktop machine.  

 

 

Figure 1 Harvesting Middleware Architecture 

 

 

2) Harvesting Middleware:The harvesting middleware 

consists of five daemons. Each one of these daemons 

plays a vital role in running any of the desktop machines 

included within the cloud computing. The five daemons 

are Resources index information service (RIIS), Cloud 

Resources and Service, Local Resources manager (LRM), 

Virtual machine manager (VMM), and Services Listener 

(SL) figure 1. 

a. Resources index information service (RIIS): RIIS 

represents a lightweight directory of the attached 

desktop machines, containing the basic information 

about local desktop resources and its aliveness 

status. This is done through a periodically heart 

beat message received from each registered desktop 

machine. RIIS collects information from several 

LRIS to allow searching the information to find the 

most suitable resources. The Desktop machine local 

resources information offered by the RIIS includes 

cores, memory, load status, desk storage and cloud 

service (Virtual machine) running on it if any. 

 

b. Cloud Resources and Service (CRS): it contains a 

complete list of Cloud platform resources e.g. 

computing node, network nodes, and storage. For 

each computing node there is a list of different 

running services associated with service 

information. This list may include, instance name, 

memory, virtualization type, kernel, desk source, 

interface type, service IP, DHCP server and all 

other information contained with a libvirt XML 

generated files. 

 

c. Local Resources manager (LRM): LRM is 

responsible for managing the execution of any 

cloud computing services on a desktop machine. It 

keeps track of all cloud computing services running 

on desktop machines, It also periodically query the 

status desktop running tasks from RIIS. If the 

Cloud Controller request the LRM to free up 

certain cloud resources, the LRM select the most 

suitable desktop machine from information 

provided by RIIS and CRS. Finally, it takes a 

snapshot of the running virtual machine to be 

deployed on the selected desktop machine. 

 

d. Virtual machine manager (VMM): VMM works in 

conjunction with the LRM to manage virtual 

machines in both the cloud environment and the 

desktop machines. It is responsible for creating 

image snapshots, suspending and starting running 

cloud services. Also, it can issue a deployment 

commends for starting , stopping , and monitoring 

cloud computing virtual machines on desktop PCs. 

 

e. Services Listener (SL): All users requests (Start, 

Terminate, Snapshot …etc.) are submitted to the 

cloud controller with the associated service 

identification. SL listen to all requests passed to the 

cloud controller and redirect basic requests to LRM 

registered cloud service running on desktop 

machines instead of passing it to either the compute 

nodes running these services or these that have a 

suspended image to guarantee service availability 

in case that desktop service failure.  

 

3) Resources allocation desktop agent (RAD):RAD consists 

of a simple four module, if we start from the bottom both 

of the Machine Information Providers (MIP) and Local 

Resources Information Service (LRIS) represent the 

resources discovery system which is responsible for 

publishing, and queuing the state of resources and their 

configurations. Up on installing the RAD agent on any 

desktop machine the MIP start by capturing information 

about the local resources which in turn passed to LRIS 

which represents the interface for RIIS on each desktop 

machine. Image Manager (IM) is responsible for issuing a 

simple virtualization commands for starting new virtual 

machine, terminating or monitoring. Also, it manages 

desktop virtual machine networking. The last module is 

the service command manager. It is used to execute basic 

requests redirect form SL Daemon on the running desktop 

cloud services. 

IV. ARCHITECTURE IMPLEMENTATION 

AND RESULTS 
In our implementation, the Cloud computing environment is 

established with the OpenStack [19,20] as a Cloud Computing 

middleware, KVM virtualization [6] as a hypervisor to 
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provide scalability and user isolation on OpenStack Cloud, 

and Libvirt [23] for hypervisor communication with cloud 

middleware. 

 

The desktop Cloud services deployment includes the 

provisioning of the necessary data for its remote access using:

1) standard SSH [24] mechanisms 

2) QEMUas a desktop virtualization tool

3) Libvirt for virtualization interfaces.
 

Through the implementation we measure the values of the 

following parameters: 

1) CPU utilization %: which depends

programs runningon this virtual machine

MySQL server or Apache server,… etc

2) System Operation %: refers to the kernel’s internal 

workings 

3) IO requests wait%: is time spent waiting for I/O, 

such as a disk read or write 

measurement parameter for the data intensive 

applications. 

4) Memory used %: refers to the percentage of RAM 

used in performing tasks. 

 

To test the previous parameters get results, we apply the 

following scenario: 

1) Create Cloud computing services for monitoring 

various ways that CPUs spent on system performing 

different operations. 

2) Monitor the system after the creation of cloud 

services without performing any user tasks whether it 

is by administration or by cloud client.

3) Load cloud services using a stress workload 

generator with half load and monitor system 

components performance. 

4) Monitor cloud on peak load (peak usage time).

5) Suspend services on the cloud working node and 

monitor server performance. 

6) Monitor number non-dedicated machined running 

windows 7 and display the average performance of 

all machines. 

7) Move cloud service to desktop machine and record 

the machine performance. 

By applying the previous scenario we recorded the following 

effects: 

 

1) Effect on resources usages when creating N IaaS 

Cloud computing services. 

From the client point of view, providing IaaS (Infrastructure 

as a service) is no more than creating a set of virtual machine 

by selecting the appropriate OS system required for the cloud 

client from those offered by the cloud provider. Upon creating 

service the client will have a virtual machine with a specific 

hardware specs running the chosen OS like any physical 

machines. IaaS Services/virtual machine creation consume 

almost all resources of the computing node host.  The created 

virtual machine, effects on the performance of other 

isolation on OpenStack Cloud, 

] for hypervisor communication with cloud 

The desktop Cloud services deployment includes the 

provisioning of the necessary data for its remote access using: 

desktop virtualization tool [26] 

Libvirt for virtualization interfaces. 

Through the implementation we measure the values of the 

depends on the software 

on this virtual machine, such as 

,… etc. 

refers to the kernel’s internal 

is time spent waiting for I/O, 

such as a disk read or write as an important 

for the data intensive 

%: refers to the percentage of RAM 

To test the previous parameters get results, we apply the 

Create Cloud computing services for monitoring 

various ways that CPUs spent on system performing 

Monitor the system after the creation of cloud 

services without performing any user tasks whether it 

is by administration or by cloud client. 

Load cloud services using a stress workload 

generator with half load and monitor system 

Monitor cloud on peak load (peak usage time). 

Suspend services on the cloud working node and 

dedicated machined running 

windows 7 and display the average performance of 

ce to desktop machine and record 

By applying the previous scenario we recorded the following 

Effect on resources usages when creating N IaaS 

From the client point of view, providing IaaS (Infrastructure 

as a service) is no more than creating a set of virtual machine 

by selecting the appropriate OS system required for the cloud 

client from those offered by the cloud provider. Upon creating 

ce the client will have a virtual machine with a specific 

hardware specs running the chosen OS like any physical 

machines. IaaS Services/virtual machine creation consume 

almost all resources of the computing node host.  The created 

on the performance of other 

VMs/services running on this host. Creating concurrent N 

service put the computing node under great stress as shown in 

fig 2. The Great stress effect is shown especially for the CPU 

and Memory utilization curves. 

 

Figure 2 N Services (VM) Creation

 

2) Effect on resources usage rate after the time of 

creating N IaaS services and without loading any cloud 

services. 

By monitoring different system parameters after IaaS services 

creation is done.  We can see that about 90%of the computing 

node memory still used or reserved even through these 

services isn’t using these resources in any useful work.  The 

reason behind is that each virtual machine lock its own 

memory, which make it so difficult (consume longer ti

create another service on the same machine.

 

Figure 3 Cloud working node load 

loading a cloud service

 

3) Effect on the resources percentage rate when half load 

running services occupied the 

Upon putting the services under half load stress, , we can see 

that memory reach its maximum values and the CPU reach 90% 

at some points. System is fully utilized however the full load 

services are not reached yet. 

 
 

Figure 4Effect of Loading (N/2) of the running cloud services

VMs/services running on this host. Creating concurrent N 

service put the computing node under great stress as shown in 

. The Great stress effect is shown especially for the CPU 

 

 

N Services (VM) Creation 

Effect on resources usage rate after the time of 

creating N IaaS services and without loading any cloud 

By monitoring different system parameters after IaaS services 

that about 90%of the computing 

node memory still used or reserved even through these 

services isn’t using these resources in any useful work.  The 

reason behind is that each virtual machine lock its own 

memory, which make it so difficult (consume longer time) to 

create another service on the same machine. 

 

load after service creation without 

cloud service 

Effect on the resources percentage rate when half load 

running services occupied the system. 

Upon putting the services under half load stress, , we can see 

that memory reach its maximum values and the CPU reach 90% 

at some points. System is fully utilized however the full load 

 

Loading (N/2) of the running cloud services 
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4) Effect on the resources percentage rate when full load 

running services occupied the system. 

 
Now, on full loading the cloud services, the computing node 

memory and CPU reach it maximum values which cause the 

system to reset a lot of tasks as we can see on 

but also the IO requests will wait for a significant amount of 

time. All these cause bad effect of the system throughput for 

the requested services. 

Figure 5 Effect of Loading N Cloud Service

 

5) Effect on computing node performance after suspending 

and moving service to a public desktop machine.

 

Now we apply our proposed solution by m

services (or part of the cloud load) to any available d

machines (non-dedicated windows machines) with the same 

load. This movement is expected to increase the computing 

node performance due to decreasing its load an

act well for the remaining part of the cloud services.

Figure 6 Cloud Computing node performances after suspending and 

moving service to desktop machine

 

6) Effect on desktop machine after completing the services 

movement process. 

In normal cases we consume small part of our desktop 

machine computing power capabilities, as we can see on the 

following fig 7. Loading all services will have normal effect 

on desktop machine performance. As show in figure, over 

than 55% of machine memory is free to be used. Also, 80 % 

of CPU utilization is free to be used by desktop normal user. 

This indicates the good performance that we get when 

harvesting any available non-dedicated machines and use for 

freeing up the dedicated cloud computing nodes.

Effect on the resources percentage rate when full load 

full loading the cloud services, the computing node 

memory and CPU reach it maximum values which cause the 

system to reset a lot of tasks as we can see on fig 5. Not only 

but also the IO requests will wait for a significant amount of 

bad effect of the system throughput for 

 

Effect of Loading N Cloud Service 

Effect on computing node performance after suspending 

and moving service to a public desktop machine. 

proposed solution by moving Cloud 

e cloud load) to any available desktop 

dedicated windows machines) with the same 

load. This movement is expected to increase the computing 

node performance due to decreasing its load and helping it to 

act well for the remaining part of the cloud services. 

 

after suspending and 

moving service to desktop machine 

Effect on desktop machine after completing the services 

In normal cases we consume small part of our desktop 

s we can see on the 

. Loading all services will have normal effect 

on desktop machine performance. As show in figure, over 

machine memory is free to be used. Also, 80 % 

of CPU utilization is free to be used by desktop normal user. 

This indicates the good performance that we get when 

dedicated machines and use for 

uting nodes. 

Figure 7 Regular usage desktop machine performance

7) Effect on performance when desktop and cloud 

computing users occupy the desktop machine,

 

The following two figures show the performance effect due to 

two cases. The first, when running IaaS service on the desktop 

(windows) machine while not running any other tasks need by 

the cloud computing our the desktop machine users. It still 

show the good performances showed in both memory and 

processor underutilization leve

underutilized. 

 

Figure 8 Run Cloud Service on windows 

and service not loaded)

In the other hand, when user load services (whether 

cloud user or desktop machine 

working in the safe mode range. This mode will allow both 

users perform their tasks without affecting each other.

 

Figure 9 Run Cloud service on windows machine (Both of the Client 

and service loaded)

V. CONCLUSIONS

In this paper we presented a new approach which focus on 

extending the available Cloud Computing platform 

infrastructure to ensure service availability with the 

opportunistic use of idle resources which will provide services 

elasticity and service scalability through the using of both of 

the dedicated and non-dedicated infrastructure. Based on our 

implementation results, the action of moving cloud computing 

services to generic resources such as 

 

Regular usage desktop machine performances 

Effect on performance when desktop and cloud 

computing users occupy the desktop machine, 

The following two figures show the performance effect due to 

The first, when running IaaS service on the desktop 

(windows) machine while not running any other tasks need by 

the cloud computing our the desktop machine users. It still 

show the good performances showed in both memory and 

processor underutilization level. Memory is about 55% 

 

Run Cloud Service on windows machine (Both of the Client 

and service not loaded) 

In the other hand, when user load services (whether it’s by 

cloud user or desktop machine owner), the system is still 

working in the safe mode range. This mode will allow both 

users perform their tasks without affecting each other. 

 

Run Cloud service on windows machine (Both of the Client 

and service loaded) 

ONCLUSIONS 
In this paper we presented a new approach which focus on 

extending the available Cloud Computing platform 

infrastructure to ensure service availability with the 

opportunistic use of idle resources which will provide services 

elasticity and service scalability through the using of both of 

dedicated infrastructure. Based on our 

on results, the action of moving cloud computing 

generic resources such as public desktop machines 
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easily available in homes, universities or enterprises will not 

affect the provided cloud services. On contrary it will help in 

improving the services and doesn't affect the public desktop 

machines performance at the same time. 
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Abstract - Scientific applications have special requirements 
of availability of a massive computational power for 
performing large scale experiments and huge storage 
capacity to storage terabyte or petabyte range of outputs. 
Scientific Cloud provides scientists computational, storage 
and network resources with a inbuilt capability of utilizing 
the infrastructure. The scientific applications can be 
dynamically provisioned with the required cloud solutions 
that are tailored to the application needs. Centre for 
Development of Advanced Computing (CDAC) under 
Department of IT, is the pioneer in HPC in India with ~70TF 
compute power. The authors of this paper have discussed the 
need and benefits of scientific cloud. Authors have explained 
the model, architecture and components of CDAC scientific 
cloud. CDAC HPC resources can be provisioned on-demand 
to the scientific research community and released when they 
are not required. For Indian researchers and scientists, 
CDAC scientific cloud model will provide convenient access 
to reliable, high performance clusters and storage, without 
the need to purchase and maintain sophisticated hardware. 

Keywords: HPC, HPC as a Service, Map Reduce, Cloud 
Vault 

 

1 Introduction 
  High Performance Computing (HPC) allows scientists 
and engineers to solve complex science, engineering and 
business problems using applications that require high 
bandwidth, low latency networking, very high compute and 
storage capabilities. Scientists in the areas of high-energy 
physics [13], astronomy [14], climate modeling [15], chemo 
informatics [16] and other scientific fields, require massive 
computing power to run experiments and huge data centers 
to store data.  Typically, scientists and engineers must wait 
in long queues to access shared clusters or acquire expensive 
hardware systems. 

Cloud computing [17] is a model for on-demand access to a 
shared pool of configurable computing resources (e.g., 
networks, servers, storage, applications, services, and 
software) that can be easily provisioned as and when needed. 
Cloud computing aggregates the resources to gain efficient 

resource utilization and allows scientists to scale up to solve 
larger science problems. It also enables the system software 
to be configured as needed for individual application 
requirements.For research groups, cloud computing will 
provide convenient access to reliable, high performance 
clusters and storage, without the need to purchase and 
maintain sophisticated hardware. It has been said by Pete 
Beckman, director of Argonne’s Leadership Computing 
Facility  that “Cloud computing has the potential to 
accelerate discoveries and enhance collaborations in 
everything from providing optimized computing 
environment for  scientific applications  to analyzing data 
from climate research, while conserving energy and lowering 
operational costs”. However, there are various challenges of 
HPC on demand [29] like performance, power consumption 
and collaborative work environments. In this approach 
paper, we present the concept of scientific clouds, HPC as a 
service and its benefits to the scientific research community. 
The authors also propose a prototype for CDAC scientific 
cloud that will provide the following offerings 

I. Infrastructure as a Service(IaaS)[18] by providing 
traditional MPI enabled HPC with parallel file 
system like GlusterFS[19] and by provisioning 
Hadoop[20] clusters with  map reduce[21] with the 
support of  Hadoop distributed file 
system(HDFS)[20].   

II. Storage as a service (StaaS) [22] to provide petabytes 
of data storage to the scientific communities.  

 
The rest of the sections of this paper are organized as 
follows: Section 2 describes the concept of HPC as a Service, 
the challenges of HPC on cloud and how cloud computing 
benefits the scientific community. Section 3 talks about the 
other scientific cloud projects and their objective and the 
relevant work. Section 4 details about the CDAC scientific 
cloud and its offerings. Section 5 details the proposed model 
and architecture for the CDAC scientific cloud. Section 6 
talks about the applications that will be enabled on CDAC 
scientific cloud. Section 7 concludes and tells about the 
future plan of the work. 
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2 HPC as a Service on Cloud 
 Bringing HPC facilities to cloud will provision the 
scientists and researchers with a crucial set of resources and 
enable them to solve large-scale, data-intensive, advanced 
computation problems on research topics across the 
disciplinary spectrum.  HPC as a service is an on-demand 
provisioning of high-performance, scalable HPC 
environment with high-density compute nodes and huge 
storage on high performance interconnects like Infiniband 
[4] and Myrinet [5]. HPC as a service is provisioned to meet 
the HPC application demands, whether one server (Virtual 
machine) or a large cluster (Virtual cluster). A Virtual 
cluster is a collection of Virtual Machines configured to 
interact with each other as a traditional Linux cluster. 
Scientific cloud or HPC as a Service enables greater systems 
flexibility and eliminates the need for dedicated hardware 
resources per applications and would help researchers cope 
with exploding volumes of data that need to be analyzed to 
yield meaningful results. It also simplifies usage models and 
enables dynamic allocation per given task.  
[6] Described a demonstration of a low-order coupled 
atmosphere-ocean simulation running in parallel on an EC2 
system. It highlights the significant way in which cloud 
computing could impact traditional HPC computing 
paradigms. The results show that the performance is below 
the level seen at dedicated, supercomputer centers, however, 
performance is comparable with low-cost cluster systems. 
Also it has been concluded that it is possible to envisage 
cloud systems more closely targeted to HPC applications, 
that feature a specialized interconnect such as Myrinet or 
Infiniband. 

Scientific Cloud benefits to the Scientists & research 
Community: 
• Dynamic Provisioning of HPC Clusters: Access to 

on-demand cloud resources enables automatic 
provisioning of additional resources from the  HPC 
service to process peak application workloads, 
reducing the need to provision data center capacity 
according to peak demand. Hence, scientists will   
benefit from the ability to scale up and down the 
computing infrastructure according to the 
application requirements and the budget of users. 

• Virtual ownership of resources : Virtual 
ownership of cloud resources will reduce 
uncertainty concerning access to those resources 
when you need to use them 

• Ease of deployment and access: The use of virtual 
machine images offers the ability to package the 
exact OS, libraries, patches, and application codes 
together for deployment. Scientists can have easy 
access to large distributed infrastructures and 
completely customize their execution environment, 
thus providing the perfect setup for their 
experiments. 

• Reduction in overall Job execution time: Jobs will 
be scheduled using intelligent data aware job 
scheduling algorithms. 

 

Figure 1 depicts the layered architecture of scientific cloud. 
The lowest layer of the stack is the physical resources 
(compute, storage and network) that will be connected 
through a high speed link. The first software layer above the 
physical hardware is the host operating system. Since 
scientific cloud will be catering HPC applications, 
performance of such applications on such infrastructure will 
be of prime importance. Hence, Type 1 or bare-metal 
hypervisor should be preferred for virtualization that will 
run directly on the host's hardware to control the hardware 
and to manage the guest operating systems.  

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Scientific Cloud Architecture 

 
A guest operating system will run on another level above the 
hypervisor.  Hypervisor actually controls the host processor 
and resources, allocating what are needed to each operating 
system in turn and making sure that the guest operating 
systems (called virtual machines) cannot disrupt each other. 
The virtualized resources include the basic cloud computing 
services such as processing power, storage, and network. The 
Cloud middleware software stack is the key component that 
handles resource provisioning and scheduling, volume 
management, system monitoring for all the higher-level 
components and services. 
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Cloud management is a crucial component as it monitors and 
manages all the cloud resources at physical and virtual level. 
The various management components that will be part of 
scientific cloud are : Resource Inventory search,  Hardware 
monitoring & Management , Storage maps and reports, 
Alerts & notifications with automated rectification, 
accounting and billing(to recover costs, capacity planning to 
ensure that consumer demands will be met) , policy 
management & SLA(Service level Agreements- management 
to ensure that the terms of service agreed to by the provider 
and consumer are adhered to, and reporting for 
administrators). 
 
3 Science Cloud Projects  
The following are some of the science cloud projects have 
been executed in the direction to achieve HPC as a Service: 
 
3.1 Cumulus 

Cumulus [2] is a project to build a Scientific Cloud for a 
Data Center. It is a  storage cloud system that adapts existing 
storage implementations to provide efficient 
upload/download interfaces compatible with S3.It provides 
features such as quota support, fair sharing among clients, 
and an easy to- use, easy-to-install approach for 
maintenance. The most important feature of Cumulus is its 
well-articulated back-end extensibility module. It allows 
storage  providers to configure Cumulus with existing 
systems such as GPFS [9], PVFS [10], and HDFS [11], in 
order to provide the desired reliability, availability or 
performance trade-offs. Cumulus is part of the open source 
Nimbus toolkit [12]. Cumulus is implemented in the python 
programming language as a REST service. The Cumulus 
API is a set of python objects that are responsible for 
handling specific user requests. 

3.2 OpenCirrus 
Open Cirrus [3] tested is a collection of federated datacenters 
for open-source systems and services research. It is designed 
to support research into the design, provisioning, and 
management of services at a global, multi-datacenter scale. It 
is designed to encourage research into all aspects of service 
and datacenter management. 

3.3 GridGain 
 
GridGain[30] is Java based open source middleware for real 
time big data processing and analytics that scales up from 
one server to thousands of machines. It  enables the 
development of compute and data intensive High 
Performance Distributed Applications. Applications 
developed with Gridgain can scale up on any infrastructure - 
from a single Android device to a large cloud. Gridgain 

provides two major functionalities of Compute Grids and In-
Memory Data Grids 

3.4 StratusLab 
 
Stratus Lab [31] is developing a complete, open-source 
cloud distribution that allows grid and non-grid resource 
centers to offer and to exploit an Infrastructure as a Service 
cloud. It basically enhances the grid infrastructure with 
virtualization and cloud technologies. It is particularly 
focused on enhancing distributed computing infrastructures 
such as the European Grid Infrastructure (EGI). 
Each of the above mentioned projects focuses either on 
provisioning data centers on cloud or compute power on 
cloud. Amazon Web Services alone provisions the various 
services required for variety of HPC applications like 
Amazon Elastic Compute cloud EC2, Amazon Elastic Map 
Reduce (EMR), Amazon Simple Storage Service (S3) [32]. 
CDAC Scientific cloud is an effort to provide the services 
like compute and storage for the HPC community along with 
the software technologies like map reduce, MPI , mobile 
applications that will accelerate discoveries and enhance 
collaborations in science. 
 
4 CDAC Scientific Cloud (CSC)  
C-DAC [7] is the pioneer in HPC in India and its HPC 
facilities on cloud can be linked by a 1 Gbps National 
Knowledge Network (NKN) [8], developed by NIC. The 
bandwidth offered by NKN will facilitate rapid transfer of 
data between geographically dispersed clouds and enable 
scientists to use available computing resources regardless of 
location. In addition, CDAC Scientific cloud will provide 
data storage resources that will be used to address the 
challenge of analyzing the massive amounts of data being 
produced by scientific applications and instruments. Storage 
as a service is of particular importance to scientific research, 
where volumes of data produced by one community can 
reach the scale of terabytes per day .CDAC will make the 
Scientific cloud storage available to science communities by 
aggregating a set of storage servers .It will make use of 
advanced technologies to provide fast random access storage 
to support more data-intensive problems. The test bed will be 
a mix of virtual clusters and storage options, traditional HPC 
cluster, Hadoop cluster, distributed and global disk storage, 
archival storage. The system provides both a high-
bandwidth, low-latency InfiniBand network as well as a 
commodity Gigabit Ethernet network. This configuration is 
different from a typical cloud infrastructure but is more 
suitable for the needs of scientific applications. 
Using CDAC Scientific cloud instances, users can expedite 
their HPC workloads on elastic resources as needed .Users 
can choose from Cluster Compute or Cluster Hadoop 
instances within a full-bisection high bandwidth network for 
tightly-coupled and IO-intensive workloads or scale out 
across thousands of cores for throughput-oriented 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 267



applications. This will let scientists focus on running their 
applications and crunching or analyzing the data generated 
by applications without having to worry about time-
consuming set-up, management or tuning of clusters or 
storage capacity upon which they sit. Users will be able to 
run HPC applications on these instances including molecular 
modeling, genome sequencing & analysis, and numerical 
modeling across many industries including Biopharma, Oil 
and Gas, Financial Services and Manufacturing. In addition, 
academic researchers will be able to perform research in 
physics, chemistry, biology, computer science, and materials 
science. 
Following will be the supported features of CDAC High 
Performance Computing as a service (HPCaaS): 

 Dynamic Provisioning of clusters :On demand 
Provisioning MPI and Map reduce clusters to 
support compute intensive and data intensive 
applications 

 On-demand dynamic provisioning of storage 
volumes: Dynamic provisioning of clusters and 
storage will be handled by the Cloud Resource 
Broker (CRB) or cloud metaschedular. 

 Security : Simple , Secure and quick  access to HPC 
clusters 

 Provisioning of customized  libraries, softwares 
workflows ,etc on HPC clusters as per the 
applications requirement Users will be provided 
with an option of selecting the specific MPI versions 
or compiler versions to suffice the application 
requirements 

 Performance: To reduce the hypervisor overhead 
type-1 kind of hypervisor will be used. The 
distributed locations will be connected with 1Gbps 
link and within the site nodes will be connected 
with infiniband interconnect to reduce the 
latencies.VM allocation to form a cluster will be 
done by the cloud scheduler based on nearness to 
storage nodes to minimize the data movement on 
cloud. 

Following are the services that will be provisioned on the 
CDAC Scientific Cloud 
 
4.1 Infrastructure as a Service (IaaS) 
 C-DAC has its HPC facilities at various CDAC 
locations like Bangalore, Pune, Chennai, and Hyderabad 
with approximately 70TF. Figure 2 depicts the prototype 
model for dynamic provisioning of the computational 
resources when requested by the user. Users will be able to 
access the CDAC scientific cloud services through cloud 
portal. First time users will have to register with their 
required details and also the details about the kind of 
applications they want to run on the cluster. Based on the 
type of the application mentioned by the user resources will 
be allocated by the cloud broker and the cluster instance will 
be created on the fly. Immediately user will be intimated 

online and through mail about their login credentials and the 
IP address for the ssh access to the compute cluster. The 
allocation of the cluster and its nodes (master & worker 
nodes) will depend upon the CPU, memory, IO requirements 
of the application. The applications that will need more of 
data processing and less of communications will provided 
with the best suited map reduce cluster. The applications 
that are more compute and memory intensive will be 
provisioned by the MPI enabled clusters with parallel IO 
facility. 

 

 

 

 

 

 

 

 

 

 
Figure 2 Infrastructure as a Service (IaaS) 

 

4.2 Storage As a Service (StaaS) 
A service of supplying data storage capacity over Internet is 
Storage as a Service. In context of scientific cloud, StaaS 
provisions petabytes of data storage to the scientific 
communities. CDAC’s Cloud Vault based on OpenStack 
Swift Object Storage software will provide scientists and 
researchers partners with a convenient and affordable way to 
store, share, and archive data, including extremely large data 
sets. CDAC Cloud Vault is an object based storage system 
and multiple interface methods make the Cloud Vault easy to 
use for the average user. It also provides a flexible, 
configurable, and expandable solution to meet the needs of 
more demanding applications. In this, files (also known as 
objects) are written to multiple physical storage arrays 
simultaneously, ensuring at least two verified copies exist on 
different servers at all times. Figure 3 depicts the flow of the 
Storage as a service (StaaS).The user registers himself by 
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providing the required details and the required amount of 
storage. After the users request gets validated and approved, 
user is sent the access details of the storage through email. 
The various interfaces through which user can access Cloud 
Vault are as follows: 
4.2.1 Web Interface 
Web interface will allow access to the cloud vault files 
through browser. User will be able to list, create containers, 
Upload/Download files, and Delete files using this interface. 
There will not be any need of installation of any clients to 
access cloud files. 
 
4.2.2 Desktop GUI Application 
 
Cloud Vault files will be accessible using open source 
desktop application called cyberduck. It is an FTP-like stand 
alone GUI application for accessing files. It supports file/ 
directory listing, upload, download, synchronize, editing, etc. 
Cyberduck is a open source desktop application available for 
MAC and Windows system 
 
 
 

         
 
 
 
 
 
 
 
 
 
 

    
 
 
 

Figure 3 Storage as a Service (StaaS) 
 
4.2.3 Command Line 
 
Command line access will allow the access to cloud vault 
files with the UNIX shell. Client installation of the scripts 
needs to be done on the user machine or laptop. 
 
4.2.4 Mobile Interface 
 

Cloud Vault will also be accessed by mobiles using mobile 
application for the basic file operations like list, upload, 
download, and synchronize. There will also be a facility to 
auto synchronize  users mobile with his cloud  vault files so 
that he can keep his mobile backup on cloud vault. 

 
4.2.5 APIs 
Files of any size can be stored in the Cloud Vault, from small 
personal document collections to multi-terabyte backup sets 
routed directly to the cloud using Rack space or S3 API in 
applications. 
 
5 CSC Architecture and Components 
 
Figure 4 depicts the components of CDAC scientific cloud. 
The various components of CDAC scientific cloud are as 
follows: 
 

5.1 Hypervisor 
A hypervisor, also known as a virtual machine 
manager/monitor (VMM), is computer hardware platform 
virtualization software that allows several operating systems 
to share a single hardware host. The hypervisor controls the 
host processor and resources so that systems/virtual 
machines are unable to disrupt each other. As virtualization 
adds overheads to the cluster performance, we choose to use 
type-1 or bare-metal hypervisors for virtualization. Type-1 
hypervisors run directly on the host's hardware to control the 
hardware and to manage guest operating systems. Some of 
the examples of type-1 hypervisors are Citrix XenServer 
[24], VMware ESX/ESXi [25], and Microsoft Hyper-V 
hypervisor. CDAC scientific cloud will be using Xen 
hypervisor for the same. 
 

5.2 Cloud middleware 
Cloud Middleware or Cloud OS: Cloud middleware is the 
software stack for provisioning the large networks of virtual 
machines on demand. It also handles   scalability & 
reliability of the resources provided to the users. There are 
various open source & commercial cloud middleware 
available like Nimbus [12], Open Nebula [26], and vCentre 
[27], Eucalyptus [28]. 
 

5.3 Cloud resource broker 
Cloud Resource Broker and Meta scheduler: Cloud resource 
broker is a common gateway to provision access to the HPC 
resources like compute clusters, storage on cloud .It is an 
intelligent scheduler that will provision the best pool of 
available resources to the users by using policy based 
decision. The various components that will build up a cloud 
resource broker are as follows: 
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5.3.1 Resource Discovery  
Resource discovery of the available resources based on the 
kind of user application that can be Compute intensive or 
Data intensive or Memory Intensive 
 
 
 
 
 
 
 
 
 
 
 
 

                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Components of CDAC Scientific Cloud (CSC) 
5.3.2 Policy based resource selection  
Resource  selection and provisioning will be done 
considering the various aspects like Load balancing, 
resources utilization, power aware. 
 
5.3.3 Data aware Job scheduling  
Data aware scheduling enables computation to be done 
nearest to the location of the data .In this case, the cloud 
resource broker will talk to the cloud file system components 
to find out the nearest storage nodes where data resides 

5.4 Cloud Management and Monitoring 
 
Cloud Infrastructure monitoring & management tool is the 
control point for the virtual environment in cloud. This tool 
will provide a single point access for administrators to 
monitor & manage the resources of cloud. The following 
features that will be supported :  

  Resource Inventory search:   inventory including 
virtual machines, hosts, data stores, and networks at 
the administrators fingertips from anywhere  

 Hardware monitoring & Management  
 Storage maps and reports: Provides storage usage, 

connectivity and configuration. Customizable 
topology views give you visibility into storage 
infrastructure and assist in diagnosis and 
troubleshooting of storage issues.  

 Alerts & notifications with automated rectification   
 Utilisation, Performance & Energy Consumption 

Trends 
 Accounting and billing (to recover costs, capacity 

planning to ensure that consumer demands will be 
met), Policy management & SLA. 

 

5.5 Cloud Portal 
 

5.5.1 Portal for IaaS Provisioning and Problem Solving 
Environments (PSE)  

The scientific cloud portal will be the access point for 
the users for requesting & accessing the on demand HPC 
clusters. There will also be customized PSEs for 
bioinformatics & climate modeling domains that will 
provide the complete environment and workflow for the 
domain specific applications. 
 

5.5.2 Portal for Storage as a Service 
The portal for storage as a service will an access point 
for the cloud storage through which user can register 
himself and ask for the required amount of storage .Also 
user will be allowed to request for expanding the 
allocated storage  on the fly 

 
6 Target Applications on CDAC 

Scientific Cloud 
 On-demand cloud computing can add new dimension 
to HPC, in which virtualized resources can be sequestered, 
in a form customized to target a specific application 
requirement, at any point of time. [6] Described the 
feasibility of running Coupled Atmosphere-Ocean Climate 
Models on an EC2 computing cloud and found that the 
performance is below the level seen at dedicated clusters. 
However, cloud systems that feature a specialized 
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interconnect such as Myrinet or Infiniband and  support MPI 
or Map reduce are more closely targeted to HPC 
applications.[23] states that Life Sciences are very good 
candidates for Map Reduce on cloud including sequence 
assembly and the use of BLAST and similar algorithms for 
sequence alignment. On the other hand partial differential 
equation solvers, particle dynamics and linear algebra 
require the full MPI model for high performance parallel 
implementation on cloud. The two application domains that 
have been identified as pilot applications for CDAC 
scientific cloud are Bioinformatics applications like Blast, 
Climate Modeling like Seasonal Forecast model (SFM). 
Seasonal Forecast Model (SFM) is an atmosphere general 
circulation model used for predicting the Indian summer 
monsoon rainfall in advance of a season. It involves the 
single operation on multiple data sets that makes it a suitable 
case for using map reduce in this particular application 

7 Conclusions and Future Plans 
Scientific applications require the availability of massive 
compute and storage resources. Cloud computing can be of 
great help in on demand provisioning of the HPC resources. 
The applications can scale up heavily using HPC as a service 
on cloud. However, the performance related challenges have 
to be addressed by fine tuning the cloud middleware stack 
and the software libraries. The proposed model of CDAC 
scientific cloud is an attempt to address the requirements and 
challenges of HPC as a service on cloud. Currently, the test 
bed setup for the same is in progress and in future we plan to 
develop the cloud system software components like Cloud 
Resource Broker and Meta scheduler, management and 
monitoring tools, portal & PSEs 
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Exploiting Instruction Level Parallelism for REPLICA
– A Configurable VLIW Architecture with Chained

Functional Units
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Abstract— In this paper we present a scheduling algo-
rithm for VLIW architectures with chained functional
units. We show how our algorithm can help speed up
programs at the instruction level, for an architecture
called REPLICA, a configurable emulated shared memory
(CESM) architecture whose computation model is based
on the PRAM model. Since our LLVM based compiler
is parameterizable in the number of different functional
units, read and write ports to register file etc. we can
generate code for different REPLICA architectures that
have different functional unit configurations. We show for
a set of different configurations how our implementation
can produce high quality code; and we argue that the high
parametrization of the compiler makes it, together with
the simulator, useful for hardware/software co-design.

Keywords: Scheduling, VLIW, Compiler, LLVM,
instruction-level parallelism

1. Introduction
The REPLICA architecture, which is currently under

development, is a chip multiprocessor with configurable
emulated shared memory (CESM) architecture [1]. Its
computation model is based on the PRAM (Parallel
Random Access Machine) model [2]. The PRAM model
gives a simple deterministic synchronous and predictable
model of programming, where parallelism is homogeneous
and explicit. The REPLICA core architecture is a VLIW
architecture that supports chained functional units so
that the result of one VLIW sub-instruction can be used
as input to another sub-instruction in the same (PRAM)
execution step. The architecture has support for parallel
multi-(prefix)operations on the hardware level [3]. It
enables the user to access the same memory location
from a multitude of parallel threads. There is no need
for explicit locking as it would be in conventional parallel
programming. By running a high number of threads in
parallel, latency at memory accesses is effectively hidden
by the architecture. Shared (physically distributed across
on-chip memory modules) memory is in PRAM mode
accessed in a UMA (Uniform Memory Access) fashion
as if it was local memory.

REPLICA also has support for NUMA mode execu-
tion, for being able to run sequential and parallel legacy
(NUMA) programs.
At the moment a high-level programming language

for REPLICA is under development and should be
transformed to the REPLICA baseline language using
a source-to-source transformer which is currently under
development using ANTLRv3 and written in Scala [1].
The baseline language is based on C with some built-

in variables to support parallelism, at the moment these
are for example _thread_id, _number_of_threads and
_private_space_start.
Programs written in the baseline language can be

compiled using Clang to LLVM IR and then compiled to
REPLICA target code and tested and evaluated on the
REPLICA simulator. The key feature of the compiler is
the parametrization of the scheduling algorithm. In an
earlier version of the compiler [4] there was only support
for one basic architecture configuration.
The focus in this paper is to show how the compiler

actually utilizes instruction level parallelism for different
configurations of the REPLICA architecture in which we
have different combinations of chained functional units.
As a proof of concept we have written, in the baseline

language, some test programs such as thread parallel
blur and threshold filter as well as sequential programs
such as multiply & move, discrete wavelet and inverse
discrete cosine transformation. We compiled them for
different configurations using our parametrized back-end.
The compiled programs are run on the simulator. They
all show speed-ups from instruction level parallelism.
The rest of the paper is organized as follows. We

introduce the REPLICA assembly programming model
in section 2. We give an overview of how the dependency
graphs of basic blocks are created in section 3, and in
section 4 a method of reducing register use is shown. In
section 5 we present our scheduling algorithm, and how
the compiler is parametrized is shown in section 6. We
compare our scheduling algorithm to previous work in
section 8. Results can be found in section 7. Finally the
conclusion and future work are in section 9.
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2. REPLICA assembly program-
ming model

We refer to a single chained VLIW word as a line. Sub-
instructions on the same line are to be issued at the same
time. In contrast to traditional VLIW architectures, the
sub-instructions can be dependent due to chained func-
tional units. Different types of sub-instructions are exe-
cuted in different functional units, in REPLICA we dis-
tinguish between the following sub-instruction types[4]:

• Memory unit sub-instructions: Load, store and
multi-prefix instructions.

• ALU sub-instructions: add and subtract etc.
• Compare unit: Compare sub-instructions which, set

status register flags.
• Sequencer: branch instructions, jump etc.
• Operand: sub-instruction for loading constants, la-

bels etc. into an operand slot
• Writeback: sub-instruction for copying register con-

tents.
In Table 1 different configurations are shown. The sim-
plest configuration, T5, has one ALU before the memory
unit and then a compare unit and a sequencer after each
other.

When programming on assembly level for the architec-
ture, one has to distinguish between two types of register
storage for intermediate results:

• general purpose registers R1 to R30 can store values
persistently;

• output buffers O0 to Ox 1, A0 to Ax, M0 to Mx are
transient and only valid inside the line.

Both types, however, can be used in the same way:
ADD0 R1,R2
ADD1 O2,A0

Listing 1: Using registers and output buffers as operands

As shown in Listing 1, every functional unit is bound
to one output buffer, denoted by the number following
the instruction mnemonic. Only one dedicated functional
unit type, the write-back stage, can write values to the
register file.

By using the output buffers inside the super-
instruction different operations can be chained and the
output of one functional unit is fed as an input to another
one. This saves a lot of cycles compared to a way where
every intermediate result first would have to be written
back to the register file. A slight drawback is that results
can only be used from the left to the right. Memory

1Here, x denotes the number of functional units of that type
minus 1. For example the T7 configuration has 3 ALUs, and thus
the ALU output buffers are named A0 to A2. The Oi buffers are for
result of OPerand instr., the Ai of ALU instr. and the Mi of memory
unit instr., respectively

operations are an exception. They cannot be chained as
latency hiding would not work any longer.
OP0 16 ADD0 O0,R1 LD0 A0 WB1 A0 WB2 M0
OP0 2 MUL0 O0,R2 ST0 A0,R0

Listing 2: REPLICA assembly example [4]

The example in Listing 2 computes at line 1 an address
by adding 16 to R1 using the first ALU, ADD0, the result
will be available in A0 and used to load a word. The
result (available in M0) is copied to R2 using the writeback
instruction WB2, at the same time A0 is copied to R1. In the
second line (next execution step) R2 is multiplied with 2;
the intermediate result is in A0 and will be stored at the
address contained in R0.

3. Dependency Graph
In both this version and the earlier version [4] of the

compiler, the support of VLIW is implemented by match-
ing a set of pre-defined combinations of sub-instructions
which we call super-instructions. Of course the instruc-
tion scheduling and register allocation will not be opti-
mal. We try to solve this problem by splitting each super-
instruction into its respective sub-instructions. User-
written inline assembly code is also split up. After split-
ting, any dependency graph between the instructions
previously built is no longer valid. We therefore need
to build a new one, suited to the requirements given by
both the register compression (see section 4) and the ILP
scheduling pass (see section 5).
A new graph is constructed by adding one instruction

after another in the existing order and determining de-
pendencies to all previous instructions. Two classes are
used to store and structure the acquired information, as
shown in Listing 3.
class MINode {
public:

MachineBasicBlock::iterator I;
list<MIEdge> edges;
unsigned predecessors;
bool scheduled;
// [...]

};

class MIEdge {
public:

int latency;
MINode* to;
// [...]

};

Listing 3: Definition of the MIEdge and MINode class

The first one, class MINode, is used to encapsulate
the MachineBasicBlock::iterator to one instruction. Fur-
thermore it stores, among other attributes used later
on, a list of edges to other nodes which depend on this
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Name operands pre ALU memory post ALU compare unit sequencer unit
T5 2 1 1 0 1 1
T7 3 2 1 1 1 1
T11 7 5 1 2 1 1
T14 7 5 4 2 1 1

Table 1: list of available standard configurations

instruction. These edges are formed by instances of the
class MIEdge.

The attribute latency2 of an edge represents whether
the two instructions:

• must stay within the same super-instruction, e.g. OP0
42

=0−−−→ LD0 O0: The operand O0 is only valid within
a line.

• the depending one has to be scheduled in a later
super-instruction, e.g. TRAP R0

>0−−−→ ADD0 R1,R2: We
cannot mess with the order before and after a trap.

• or it does not matter ( ≥0−−−→).

The information what was previously part of one
super-instruction is only important to such a degree as to
determine how long transient registers are alive. Between
the instruction defining the output buffer and the one
using it will be an edge with latency constraint = 0.

In order to simplify the scheduling pass later on,
additional edges are inserted between instructions that
are not directly depending on each other.

A B C

(a) before

A B C

(b) after

Fig. 1: Additional edges

This is only necessary for instructions that have to go
into the same super-instruction. As shown in Figure 1(b),
an additional edge is inserted between nodes A and B.
This is required because node A would otherwise only
force C into the same super-instruction and leave out B
as the edges only provide a forward reference.

Compared to the dependency graph construction in the
previous version of the compiler, the methods determin-
ing the dependencies have been optimized to report fewer
unnecessary conflicts which results directly in fewer edges
between the nodes. This in turn enables the scheduling
algorithm later on to change the order of the instructions
more freely and give a better result.

2Latency k of a data dependence edge (i,j) is usually defined as
if i

≥k−−−→ j then tj ≥ ti + k must hold for a correct schedule.

4. Register Compression
The number of slots provided for each functional unit

type is limited per super-instruction. Therefore it is quite
self explanatory that replacing instructions with shorter
versions that do the same job. renders the resulting code
more compact. As a result scheduling can pack the same
code in fewer super-instructions and thereby speed up
its execution. Up to now, the following substitutions are
implemented:

• If the constant number 0 is required, use the register
R0 (which is there for that very purpose) instead of
defining an operand with OP 0 and then using the
operand. Hence one operand slot is saved and can be
used for something else. This is applicable whenever
a variable is initialized or reset to zero.

• If an addition at which one operand is a constant
zero (R0) is performed, the operation can be omitted
and instead of the result the non-zero operand can
be used. The same holds true for subtractions where
the subtrahend is constant zero. This saves one slot
in the ALU.

• With the last substitution we might end up with a
situation where a register is written back to itself.
Such a constellation can of course be removed en-
tirely.

• If a constant zero (R0) is written back to a general
purpose register, all upcoming usages of that register
can be replaced with R0 up to the next redefinition
of that register.

To enforce the compiler to use register compression a
flag, -enable-replica-register-compression, can be
used. While at this point the compiler and simulator still
operate under the assumption that we have unlimited
write-back slots, this will not hold true in future versions.
At that point saving WB operations will pay off.

5. ILP scheduling
5.1 Motivation
As REPLICA is a VLIW architecture, the compiler

should identify operations that can be executed in paral-
lel when there are no dependencies and resource conflicts
between them, and put them in one super-instruction.
Additionally the REPLICA architecture offers the pos-
sibility to chain instructions. That means that we can
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use the output of one functional unit inside a super-
instruction as an input to the next one. Thereby we don’t
have to wait until the result is written back to the register
file.

When the LLVM intermediate representation is low-
ered to the REPLICA instruction set, the created VLIW
super-instructions do represent the correct semantics, but
they utilize the available functionality quite poorly. An
addition operation, for example, will only make use of one
ALU and one write-back slot in a super-instruction. All
other slots are idling at that time. To make better usage
of both the available ILP and the possibility to chain
instructions, we have provided an optimization pass that
reschedules the instructions, at basic block level, into new
super-instructions.

Another important advantage is that this also helps us
to generate code for different REPLICA configurations,
i.e. providing different amounts of available slots per
functional unit type.

Before we start with a description of the scheduling
algorithm, some naming conventions that we will use
should be introduced. The scheduler is written in a way
that we support an arbitrary number of slots per func-
tional unit type. The available slots per functional unit
type as a whole will be referred to as a bucket (operand
bucket, pre-memory-ALU bucket, memory bucket, . . . ).
A chain of instructions is a list of instructions that must
be scheduled in the same super-instruction. A chain is
characterized by edges with latency constraint = 0. We
call an instruction ready if all its predecessors in the
dependency graph are scheduled. We call an instruction
schedulable when it is ready and all the instructions in
the chain are ready as well as there is enough space in
the respective buckets to schedule the whole chain. An
instruction is emitted when it is finally moved from its
respective bucket to the output. Instructions that are
scheduled but not emitted yet have a special influence
during the scheduling.

5.2 Algorithm
As Figure 2 shows we start the scheduling by creat-

ing a dependency graph as described in Section 3. By
implementation, this directly provides us with a list of
instructions that are ready. These instructions are put
into the ready set.

The main part of the work is split between two major
steps “find next schedulable instruction” and “schedule
instruction”, and a third step “emit instructions” which
are explained in the following.

5.2.1 Find next schedulable instruction
In this first step, we try to determine the next instruc-

tion that is schedulable. Naturally, this instruction has
to be picked from the ready set. Hence, isSchedulable is

everything
scheduled?

find next
schedulable instruction

found one?

done

No

Yes

schedule instruction
Yes

emit instructions

No

• create
dependency
graph

• add root nodes
to ready set

Fig. 2: Flowchart of the scheduling algorithm

called on one element (instruction) after another until we
find a result. The challenge here is, that we not only have
to consider the instruction itself, but the entire chain; so
there has to be enough space in the respective buckets
for all the instructions involved.
A goal was to implement this in an efficient way such

that we can start with an arbitrary instruction but if
find at some point halfway through the chain that there
is not enough space, we don’t have to do a complicated
roll-back of the involved data structures.
Our greedy approach does this by starting with a

resource vector of type struct RemainingSlots that holds
the amount of slots left in each bucket. This resource
vector is passed by reference to recursive isSchedulable
calls.
Every instance of isSchedulable now does the following

steps:
• It is checked if the instruction has to be stalled

because of an instruction that is already scheduled
but not yet emitted. This can happen because of
sequencing or memory instructions.

• The resource vector is checked if there is enough
space in the respective bucket. If so, the correspond-
ing counter is decremented by one.

• isSchedulable is called recursively on all depending
instructions with latency = 0.

If one of these tests fails the entire attempt on the chain
fails and the next ready instruction is tested.
One of the important features of the REPLICA ar-
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chitecture is the chaining of instructions. Therefore
isSchedulable checks if the current instruction is depend-
ing on a write-back (WB) that is scheduled but not emitted
yet. If this is the case and all other prerequisites are met,
we save a note that we bypass the write-back and use
the output of the functional unit directly that the write-
back would otherwise have to save first. Thereby we save
one step. If this instruction is the only one that uses the
register until it is redefined, the write-back is marked
for removal altogether. At the same time we have to be
aware of the order inside the super-instruction: E.g. a
post-memory-ALU output cannot be used as an operand
to a store instruction.

As an example, see the code in Listing 4:

OP0 1337 WB2 O0
OP0 42 LD0 R2,O0 WB2 M0

This will be rearranged to:

OP0 1337 OP1 42 LD0 O0,O1 WB2 M0

Listing 4: Skipping a writeback instruction

5.2.2 Schedule instruction

Now that we determined that an instruction plus all
recursively dependent ones are schedulable, the instruc-
tions are all put in their respective buckets.

Two types of register modifications now have to be
applied. Both can be observed in Listing 4.

1) The replacements that were earlier noted because
we skip a writeback. LD0 now uses O0 instead of R2.

2) If we have more than one slot in a bucket, we
replace the output buffer that is used. OP0 42 was
moved from slot 0 to slot 1.

All instructions that are pulled in by a latency = 0
constraint are scheduled as well. This goes fine as it was
part of the isSchedulable check earlier.
All instructions depending on this one have now one

predecessor less. Those that have reached zero predeces-
sors are ready. Hence they are put in the ready set.

5.2.3 Emit instructions

If “get next schedulable instruction” can’t find a suit-
able instruction, there are apparently not enough slots
left. In this case the instructions are emitted as a VLIW
and the buckets are emptied. This way of picking the
next instruction will eventually cover all instructions
because the initial packing into superinstructions derived
by the LLVM IR sub-tree matching only imposes minimal
requirements (i.e. only one slot per functional unit) and
the algorithm will terminate.

6. Parametrization
In order to enforce the compiler to generate target

code for a specific configuration we have introduced a set
of compiler flags that we will explain briefly. Since the
flags are quite many, the compiler is actually run from
a script. The first parameter is -enable-replica-ilp
which tells that the rescheduling should be applied in
order to increase instruction level parallelism (ILP); for
debugging purposes it can be switched off. The concept
of having buckets is mentioned in the previous section,
where the idea is to collect instructions that go into the
same functional unit. This is intentionally built in a way
that there is no restriction as to how many slots there are
per bucket. The limitation of the number of slots is only
imposed by passing a resource vector from an instance of
isSchedulable to another. The initial amount (how many
slots are there per bucket in a new super-instruction)
is not defined in advance but rather given as a com-
mand line parameter to the compiler; -num-ops tells the
number of integer or floating point constants available
per super-instruction, -num-alus tells how many ALUs
are available before the memory unit, -num-mus tells
number of memory units, finally -num-alus-post tells
the number of ALUs available after the memory access is
done. All these parameters can be shown by calling llc
-help-hidden.
As explained extensively, rescheduling tries to use the

output of one functional unit as an input to another one
and thereby bypass write-back operations. Furthermore,
the PRAM model implementation by REPLICA requires
to hide the latency to memory with different access times.
Due to internal matters, this only succeeds when memory
accesses are executed in parallel and not sequentially.
Therefore chaining data going to and coming from mem-
ory is not possible:-chained-mus is therefore set to false
by default. -enable-replica-inline-integration tells
if an inline assembly string be split up into separate
instructions and be subject to following optimization
passes. The option to not split and reschedule inline
assembly can be useful for debugging purposes. It is
important to notice that the dependencies of inline
assembly are actually taken care of. For evaluation
purposes we have the parameter -num-reg-read and
-num-reg-write to limit the number of general purpose
registers that can be read and written respectively in each
super instruction, the default is 32 (number of general
purpose registers per thread).

7. Evaluation
In order to measure the improvement achieved through

the different optimization passes, several test programs
were written in REPLICA baseline language. Even
though the focus was on instruction level parallelism
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Fig. 3: Instruction level speed-up comparison with differ-
ent configurations, no constraints on number of read and
write ports to reg. file

we have also used some thread parallel programs as
benchmark, to see their characteristics for instruction
level parallelism. We have benchmark programs threshold
image filtering and blur filtering which are both thread
parallel, moreover a single threaded discrete wavelet
transform (DWT), where our implementation is based on
[5], and one simple test multiply & move where elements
in an array are multiplied and then moved to another
array. We also tested an inverse discrete cosine transform
(IDCT), this computation kernel was extracted from the
Mediabench [6] mpeg2 package.

The baseline case with unoptimized code means that
no rescheduling is done, which means that unsplitted
super-instructions are used directly from the mapping
of the LLVM IR. For each configuration (T5, T7, T11
and T14) we did two test series for each benchmark
program. One puts no constraints on the number of
register read and writes, which can be seen in Figure 3. In
the second test series we limited the number of both read
and write ports to the register file to a maximum of four.
Figure 4 displays a relative comparison with respect to
performance between the two cases. It shows the expected
behavior: When we increase the number of functional
units without also increasing the number of available reg-
isters, speed-up will suffer. For the benchmarks multiply
& move and image blur with limited register read and
write ports, we will still get almost the same speed-up as
in the unlimited case, this is because the functional units
can be utilized well since the data dependencies allow us
to make use of the buffers in the chained functional units.

8. Comparison to Previous Work
There has been a lot of work done in instruction

scheduling, see e.g. [8], [9], [10], [11].
It is well-known that the time-optimal instruction

scheduling problem for basic blocks is for most target
architectures NP-complete [12]. While smaller scheduling
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Fig. 4: Relative slowdown when limiting the number of
read and write ports to four

problems can, today, be solved to optimality using integer
linear programming and similar techniques, the general
case is typically solved by heuristic algorithms.
One classical heuristic solution of the scheduling prob-

lem is Graham’s greedy algorithm for scheduling tasks
[13], known as “list scheduling”. It maps tasks to a set of
processors, where the tasks can be dependent on each
other. The tasks are kept in a list ordered by their
dependencies and other priorities so to assign a task to an
idle processor it goes through the list and picks the next
ready task. If no runnable task is found the processor
will idle. Another scheduling algorithm is critical path
scheduling [12].
Finlayson et al. [14] show how compiler support can

help reducing power consumption without adversely af-
fecting performance when introducing internal registers,
that are read and written explicitly, instead of pipeline
register. These internal registers reminds a lot of REPLI-
CAs explicit functional unit result registers.
When it comes to VLIW scheduling for architectures

with chained functional units we are only aware of the
following two, which we compare in detail.

8.1 Original virtual ILP algorithm
Scheduling for a more generalized version of this type

of architecture has been proposed by [7]. The algorithm
proposed there proceeds in a different way than we do. It
is more focused on filling the available memory slots. It
sees the next free slot (both memory slots and other ones)
and then tries to find a suitable instruction that is inde-
pendent of all the remaining unscheduled instructions.
From our point of view, this has some disadvantages:

• a lot of instructions are inspected which then turn
out to have the wrong type.

• it is only taken into account that this instruction de-
pends on other ones, not that other instructions (in
this chain) might depend on this one and therefore
have to fit into the same super-instruction/ VLIW.

Our algorithm, on the other hand, scans through the set
of ready instructions and checks if they can be scheduled.
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This seems to be more flexible if dependencies in both
directions have to be considered.

8.2 Earlier ILP scheduler for the
REPLICA compiler

Together with the general compiler back-end, Åkesson
[4] also implemented an optimization pass that aims at
exploiting more ILP. The implemented algorithm is based
on [7] but looks for the next instruction (as we do) instead
of the next slot. As the necessity to manage instructions
in a different stage was recognized, different containers
exist for holding instructions:

• those that have to be scheduled immediately (within
the same super-instruction)

• those that have to be scheduled whenever there is
enough space

• those that have to be scheduled at the earliest in the
next super-instruction.

One can see that this corresponds to the different latency
constraints defined in the dependency graph. This design,
however, turns out to be rather cumbersome when we
try to use short-cuts and skip write-backs. In order to
do this scheduling, a dependency graph was required as
well in [4]. The implementation however took in many
cases a too conservative approach (e.g., it ignored the
fact that output buffers are only valid inside a super-
instruction) which resulted in too many unnecessary
dependencies that rendered rescheduling more difficult
or even impossible. [4] only support one basic REPLICA
configuration.

9. Conclusion and future work
We have shown that our implementation of a

parametrizable instruction scheduling algorithm for a
VLIW processor with chained functional units produces
high quality code for different hardware configurations.
The high parametrization of the compiler makes it, to-
gether with the simulator, useful for evaluating different
hardware configurations.

Future work includes the extension of scheduling be-
yond basic blocks, for example for loops using software
pipelining techniques. It can be interesting to evaluate it
for the REPLICA architecture since the case of chained
functional units is a different one compared to standard
VLIW architectures.

Another interesting idea would be to try to formulate
and solve the scheduling problem as an integrated code
generation problem of instruction selection, scheduling
and register allocation together, for instance using integer
linear programming both at basic block level and beyond.
In earlier work Eriksson [15],[16] models integrated code
generation for clustered VLIW DSPs using this tech-
nique. One example of similarity is that clustered VLIW

DSPs have different register files which give constraints
on which registers can be used by the different func-
tional units; in our case we have the transient functional
registers which are exposed to the programmer and can
only be used from left to right and are only valid during
one super-instruction step. Both lead to strong coupling
between register allocation and instruction scheduling,
for which integrated code generation provides higher code
quality, see Eriksson [15].
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Abstract— Traditional discrete event simulations enumerate
the event-space in a sequential manner to guarantee the
consistency of the simulation. Rrecent asynchronous agent-
based scheduling work has demonstrated that it is also
possible to achieve consistent simulations under certain
constraints even when all agents are at different time steps.
This paper extends asynchronous event-based scheduling
for agent-based simulation by introducing a scheduling
policy based on the notion of Dynamic Goal-based Agent
Prioritization (D-GAP) which provides the opportunity for
evaluating a simulation signifcantly faster and with fewer
computational steps.

Keywords: parallel scheduling, discrete event simulation, asyn-
chronous scheduling policies, scheduler efficiency

1. Introduction
Scheduling in traditional discrete event simulation enu-

merates the event-space sequentially by updating all entities
at time t before evaluating any entity at the next time
step t+1. This serial temporal updating limits the utility
of large-scale computational resources by requiring paral-
lel processes to synchronize at every time step in order
to maintain a consistent state configuration. Scheutz and
Schemerhorn defined a methodology to identify entity sets
that are “update-independent” and could temporally advance
in the simulation without requiring synchronization updates,
thereby maximizing parallel processing for discrete event
simulations [1]. Scheutz and Harris, utilizing the notion
of asynchronous discrete event scheduling, published a set
of policies explicitly aimed at minimizing the runtime of
distributed agent-based simulations [2]. This paper builds
upon that prior work. First, we introduce an important
performance optimization to the previously published gen-
eral asynchronous scheduling algorithm. This improvement
identifies the minimum set of agent state updates required by
simulations to asynchronously advance a given agent to the
next time step. Secondly, we introduce a novel scheduling
policy, Dynamic Goal-based Agent Prioritization (D-GAP).
This method utilizes a directed search technique to explore
a simulation’s discrete event-space targeting the events that
will lead to simulation completion as defined by the modeler.
Together, these two advances further optimize discrete event
simulations for both serial and parallel execution environ-
ments by evaluating a simulation faster and with fewer
computational steps.

2. Background and Related Work
The study of discrete event simulation has been driven by

the need to efficiently model complex system interactions.
To facilitate the development and execution of these models,
formalisms such as the Discrete Event System Specification
(DEVS) have been created [3]. Parallel and distributed re-
sources are commonly leveraged to increase the performance
of model execution runtime environments for DEVS and
other discrete event simulators. (See [4] for an example of an
agent-based simulation modeled using DEVS methodology
and executed in parallel using the High Level Architecture
(HLA) distributed simulation protocol.)

Though these discrete event systems utilize parallel re-
sources, their efficiency is reduced by the need to continu-
ously synchronize the distributed resources and update each
agent in the simulation at each time step. It is sometimes
interesting (or required) to evaluate the state of every element
in a simulation at simulation termination, but it is often
common for a modeler to only be interested in a small set of
critical simulation elements (e.g., whether one agent reaches
a particular location in the environment)..

In 2006, Scheutz and Schermerhorn introduced the no-
tion of “update-independence” for segregating groups of
agents across distributed resource pools and for determining
how long they could operate in isolation without sharing
agent state information. Formally, an agent A1 is update-
independent from A2 if A1 will advance from configuration
state C at time t to C ′ at t+1 regardless of the existence
of A2 in the simulation. Fortunately, it is possible to iden-
tify some forms of update-independency without actually
advancing a simulation from t to t+1 provided that there
is some a priori constraints on agent interactions (e.g., for
spatial agent-based simulation: maximum velocities, sensory
ranges and effector ranges of agents). For example, if an
agent A1 is outside of agent A2’s maximum interaction range
and A2 is outside of A1’s maximum sensor range then A1 is
update-independent of A2. However, the reciprocal relation
must also exist for A2 to be independent of A1. Both A1

and A2 must be mutually update-independent for either to
update without causing a misconfiguration in the simulation.
Clearly, it is possible that A1 would not be affected by A2

even if it was not outside of these ranges, but this cannot
be known for certain without executing the simulation. A
conservative estimation of dependence in a simulation will
always ensure consistent configurations are produced.
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The notion of an agent’s “event-horizon” was introduced
to facilitate update-independence determination. An “event-
horizon” defines the spatial region containing all possible
positions for that agent in a future time step. This region is
determined by assuming an agent traveled at its maximum
velocity from current simulation time to the projected fu-
ture time in all directions simultaneously. This assumption
allows “event-horizons” to be calculated using only simple
geometry. Using “event-horizons”, it is possible to identify
agents that must be update-independent from other agents
even when they exist at different simulation times.

When determining update-independence and projecting
“event-horizons” of an agent, a subset of interdependent
agents are identified for a given time step. This subset
of agents defines a local world that could function inde-
pendently from the rest of the agents in the simulation.
This local world is essentially a “transitive closure” of
dependency, where dependency is recursively identified for
a given agent and time. Scheutz and Schemerhorn exploited
this characteristic of local world independence and used it
to aid the parallelization of agent-based simulations. By dis-
tributing these sets of agents across different computational
resources, performance gains were achieved. These parallel
units could update asynchronously until the “event-horizons”
of agents inside and outside the closure intersect. When such
an intersection occurs the independence of the sets is re-
moved and the agents at the future time step become blocked
and unable to continue to advance asynchronously without
additional information. Therefore, to maintain a consistent
simulation, the asynchronous scheduler must never run an
agent asynchronously beyond the point of being blocked [1].

The formalism and correctness proofs of Scheutz and
Schermerhorn provided the foundation for future agent-
based asynchronous discrete event scheduler research. Sub-
sequent research by Scheutz and Harris explored new update
scheduling algorithms to optimize the discrete-event sched-
uler and minimize the runtime of simulations [2]. From that
work novel asynchronous agent-based scheduling policies
were presented; each optimizing different heuristics. For
example, the Remote − Event − First policy attempted
to minimize simulation runtimes by minimizing the oc-
currences of blocked agents in a distributed context. This
was accomplished by preemptively advancing agents whose
projected “event-horizons” would first interact with agents
on other parallel systems.

3. Improving Asynchronous Scheduling
This section outlines efficiency improvements made to

the general asynchronous scheduling algorithm originally
proposed by Scheutz and Harris [2]. These advancements
focus on minimizing the number of dependent agent updates
required to advance a given agent asynchronously in the sim-
ulation. Before the new algorithm is proposed, the original
methodology is discussed as a counterpoint. Following the

description of the new algorithm, a proof for correctness is
presented.

Algorithm 3.1: ORIGINAL METHOD(W )

procedure ISCOMPLETE(W )
return (has terminating criterion been met)

procedure PICK(W )
comment: select and return an agent to update

procedure GETTRANSITIVECLOSUREFOR(a, t, W, S)
comment: gets a’s recursively dependent set at time t

for each d ∈ senseOrAffectAt(a, t, W ) and d /∈ S
do S ← S ∪ {d} ∪ GETTRANSITIVECLOSUREFOR(d, t, W, S)

return (S)

procedure ISOLATEDEPENDENTSUBSET(a, W )
Ta← GETTRANSITIVECLOSUREFOR(a, time(a), W, ∅)
return (Ta)

procedure UPDATESET(S)
comment: advance agents youngest to oldest

St← sortByLocalT ime(S)
for i← 0 to size(St)− 1

do if i < size(St)− 1

then

8><>:
if time(St[i]) <= time(St[i + 1]

then


UPDATEAGENT(St[i], S)
i← 0

else UPDATEAGENT(St[i], S)

procedure UPDATEAGENT(a, transitiveClosureForA)
comment: transitions a’s state from time(a) to time(a)+1

main
repeat
a← Pick(W )
S ← IsolateDependentSubset(a, W )
UPDATESET(S)

until ISCOMPLETE(W )

3.1 Full Transitive Closure Update
The original algorithm, Full Transitive Closure Update,

ensured consistency in simulations by fully synchronizing a
set of agents when a dependency relationship was identified.
For example, suppose agent A1 is at time t and agent A2

is at time t0 | if agent A1’s sensory range intersects with
the projected “event-horizon” of agent A2 then agent A2

would have to advance to time t before agent A1 could
update. Furthermore, this update requirement for agent A2

is recursively required for any agents that agent A2 could
potentially have interacted with when projected to time t.
Essentially, the sum of all A1’s recursive dependencies when
projected to time t would have to be updated to time t
before A1 could advance. (See Algorithm 3.1 above for the
abstracted pseudocode description.)

To maintain a consistent simulation configuration, the
original method updates the entire transitive closure to
the same time step; however, this level of synchroniza-
tion is not necessary. When utilizing a Full Transitive
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Closure Update, notice that an agent returned in the
IsolateDependentSubset calculation will be updated to
t+1 even if the agent’s actions removes the possibility of any
future interactions with other agents after a single time step.
For example, if the agent travels in the opposite direction
its projected “event-horizon” would look very different after
just a single update.

Algorithm 3.2: NEW METHOD(W )

procedure ISCOMPLETE(W )
return (has terminating criterion been met)

procedure PICK(W )
comment: select and return an agent to update

procedure INCREMENTALDEPENDENTSET(a, t, W, S)
comment: gets a’s incrementally dependent set

for each d ∈ senseOrAffectAt(a, t, W ) and d /∈ S

do

8<:i← time(d)
S ← S ∪ d
S ← S ∪ INCREMENTALDEPENDENTSET(d, i, W, S)

return (S)

procedure ISOLATEDEPENDENTSUBSET(a, W )
comment: isolate youngest dependent subset

D ← INCREMENTALDEPENDENTSET(a, time(a), W, ∅)
if for all b : b ∈ D and time(a) = time(b)

then return (D)
Y ← getY oungestElementsInSet(D)
return (Y )

procedure UPDATESET(S)
comment: advance agents in the temporally synchronized set

for i← 0 to size(S)− 1
do UPDATEAGENT(St[i], S)

procedure UPDATEAGENT(a, transitiveClosureForA)
comment: transitions a’s state from time(a) to time(a)+1

main
repeat
a← Pick(W )
S ← IsolateDependentSubset(a, W )
UPDATESET(S)

until ISCOMPLETE(W )

3.2 Incremental Dependency Removal
The new algorithm, Incremental Dependency Removal,

‘loosens’ the constraints on an agent’s update-independence
by updating only a subset of the agents identified by the
original Full Transitive Closure Update method a single time
step on each scheduler iteration. This allows for the possibil-
ity that dependencies between agents will be removed with
the additional state information provided by the incremental
update. Like the previous algorithm, an agent is identified to
update asynchronously at the beginning of each scheduling
loop; however, unlike the previous algorithm, that agent will
not update unless every agent in its transitive closure is at

the same time step as that agent; otherwise, only a subset of
that transitive closure will run (see Algorithm 3.2).

This means that after picking an agent to
advance (A), we first identify the youngest agents
within agent A’s IncrementalDependentSet. The
IncrementalDependentSet is generated by recursively
identifying partial agent dependencies starting with
agent A. This is different from at transitive closure
calculation only in that the transitive closure calculates
all dependencies projected to agent A’s time, while
IncrementalDependentSet calculates the recursive
dependency relative to the local time of each agent. From
this IncrementalDependentSet, we then obtain the
set of youngest dependent agents (Y ). Note that Y is
update-independent, since all agents in the transitive closure
for any agent in Y is also contained in Y . (A proof sketch
is provided below.) The agents in Y are then advanced
one time step in the simulation. For agent A to advance, it
would have to be selected by the scheduler’s Pick method
until it no longer has dependencies remaining in the past
and, therefore, would advance as a member of set Y .

To prove correctness of Incremental Dependency
Removal we must show that the agents returned from
IsolateDependentSubset are update-independent
of all other agents in the simulation. Note that
IsolateDependentSubset selects the youngest members
(Y ) returned from IncrementalDependentSet; therefore
these members must all be at the same time step
t = time(youngest). Since dependency calculations
were made for each of these agents in Y (because
IncrementalDependentSet calls senseOrAffectAt for
each of them and their dependents), it follows that these
dependents must all be at the same time step. Now observe
that IncrementalDependentSet is the same algorithm
as GetTransitiveClosureFor when the time of each
agent is the same, since each recursive call will pass
in the same value (t) for the time parameter. Therefore,
IncrementalDependentSet contains a transitive closure
for each of the youngest agents in that set and no member
of these transitive closures exist at a time step other than
t. Furthermore, selecting all the youngest agents at time
t results in a set with no external dependencies (i.e., an
update-independent set).

3.3 New Dynamic Goal-based Agent Prioriti-
zation (D-GAP) Policy

Past asynchronous scheduling policies were designed to
optimize system resources and minimize simulation run-
times in parallel environments. However, often times the
schedulers would pick suboptimal agents to advance asyn-
chronously through the simulation due to the fact that they
had no knowledge of the simulation goals or an agent’s
likelihood of achieving those goals. This issue motivated the
idea of biasing the scheduler’s agent selection process by
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dynamically prioritizing agents based on their probability of
achieving a desired goal for the simulation. While still main-
taining all the constraints required for ensuring consistent
simulation configurations, the Dynamic Goal-based Agent
Prioritization Policy (D-GAP) allows agent priorities to be
adjusted during a simulation execution thereby influencing
which agent will advance sooner.

The D-GAP policy, like any other asynchronous schedul-
ing policy, will not speed up every simulation. For example,
if a modeler wants to know the cause of death for all agents
in a simulation, the D-GAP policy would have to make
the same number of updates as a traditional discrete event
scheduler. However, in a distributed context it may still be
beneficial to run different asynchronous policies for maxi-
mizing parallel resources and ultimately reaching simulation
completion faster. However, there are many scenarios when
simulations are carried out with a more refined termination
condition or goal for a simulation. For example, suppose a
modeler designed a simulation experiment with the intent to
understand what the cause of death will be for a particular
agent. The modeller would set the terminating condition for
the simulation to be when that partial agent is no longer
alive. For this event to occur it is quite likely that not all
agents need to be updated to the same simulation cycle, but
instead only the agents required for the particular event to
occur. The ideal scheduling policy for this example would
be to utilize the D-GAP policy.

In situations involving a subset of agents from the sim-
ulation, where a particular event or phenomenon is being
studied the D-GAP policy can greatly improve a scheduler’s
efficiency and lead to much faster runtimes. Setting the
agent of interest to a higher priority will let the scheduler
identify the agents to update that will push the agent of
interest through the simulation event-space fastest. This will
ultimately lead to any phenomena relating to those higher
priority agents to also take place sooner since less super-
fluous updating of other agents would occur. The agents of
interest do not exist separate of their environment and other
agents; therefore, other agents with lower priority would
still need to be updated. These lower priority agents would
update when the agents of interest progress far enough into
the simulation timeline that they required additional updated
state information from agents at lower priority levels.

4. Evaluation Method
The performances of the D-GAP policy and the new

asynchronous scheduler optimizations were measured using
a new standard metric for evaluating asynchronous agent-
based schedulers. Scheduling efficiency is determined by
comparing the number of agent updates conducted in the
new methods with what would have been required using a
traditional sequential discrete event scheduler. The number
of agent updates can be calculated by incrementing a counter
each time an agent’s update function is called or by summing

the local simulation times of each agent in the simulation.
This method of comparing the entity’s update count is
preferable to simply comparing runtimes because the former
efficiency metric is more general in that it is not dependent
on confounding factors such as simulation-unique agent
computational costs or communication delays of a particular
distributed context. Therefore the evaluation of the D-GAP
policy and new asynchronous scheduler updates focused
on comparing the three different configurations running a
simulation using: (1) a traditional sequential discrete event
scheduler, (2) the D-GAP policy with the original asyn-
chronous scheduler, and (3) the D-GAP policy with the
improved asynchronous scheduler.

To evaluate the scheduling policies, an a-life simulation
was constructed within the SimWorld agent-based simulation
framework [12]. The SimWorld system provides an extensi-
ble framework for authoring agent-based simulations com-
plete with an integrated reusable asynchronous scheduling
system. This scheduler was modified to include the new
agent-based prioritization policy as well as the ability to
use the incremental dependency removal method. The Alife
simulation consisted of a modified version of Scheutz, Harris
and Boyd’s computational agent-based model of biological
model organism Hyla versicolor (“gray treefrog”) that was
originally used to identify the dominant mating strategy of
these animals [13].

In the model, each male calls at a given rate and females
select the closest mate that exceeds some threshold of call
quality. The distribution of the agents can be observed in
Figure 1. In this modified configuration the simulations
were run until a particular agent of interest (i.e., male2)
mated. After each scheduler iteration, the SimWorld sched-
uler checks if the simulation should terminate (i.e., if male2
has mated). Also at this time the agent update priorities were
dynamically modified to bias the scheduler towards updating
agents that would bring about the terminating condition.

5. Case Study: Results
This section contains the results of the three different run

conditions discussed in the previous section. Results consist
of an image for the final state of each simulation configura-
tion as well as an efficiency metric, update count, presented
for each simulation. Finally, an efficiency comparison is
made between the three conditions.

a) Traditional Sequential Discrete Event Simulation.:
The base case for this comparison was to execute the simu-
lation using a traditional sequential discrete event system.
This provides a total picture of all agent updates in the
simulation, including those of interest and those that are
irrelevant to the phenomenon of study. After running the
initial base case of the simulation (see top image in Figure 1)
we see that the simulation terminates after 49 time steps with
female9 mating with the agent of interest, male2. To reach
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Fig. 1: Top: Traditional Sequential Discrete Event Simulation; the final configuration of the Alife tree-frog mating simulation.
Female tree frogs (red) approach male tree frogs (blue) based on proximity and male call quality. Ultimately male2 mates
with female9 (light blue) at time step 49 after executing 735 agent updates. Middle: D-GAP policy + Original Full Transitive
Closure Update Asynchronous Scheduler. Bottom: D-GAP policy + New Incremental Dependency Removal Asynchronous
Scheduler

the simulation’s terminating condition (i.e. male2 finding a
mate), 735 agent updates had to be calculated. From this
image we see that a total of 3 females set out to attempt

to mate with male2 at the beginning. By the time that the
mating occured at time step 49, we can see that 2 other
females had also chosen and began to pursue male2 for a
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mate, however we also can notice that most of the other
agents in the simulation have no bearing on male2.

b) D-GAP policy + Original ‘Full Transitive Closure
Update’ Asynchronous Scheduler.: The simulation was
then reinitialized using the exact same conditions and ter-
minating criteria using the D-GAP policy with the origi-
nally published asynchronous scheduling algorithm. Since
the simulation only updated agents in a way to ensure no
inconsistent simulation states could emerge, the predictions
of the simulation were identical to that of the base case;
that is, male2 mated at cycle 49 with female9. However,
in this case it only took 347 agent updates to generate
this mating prediction. This algorithm, therefore, produced
a scheduling efficiency gain of almost 53% for this scenario
[(735−347)/735∗100]. This a massive speed up given that
the same number of processors were used in both cases and
the predictive models of the simulation were not changed
in anyway. When studying the middle image of Figure 1,
we notice that most of the agents in the simulation did not
advance far into the simulation’s timeline. We will now walk
through the logic by which some agents were updated and
others were not. Upon simulation initialization all agents had
the same priority level (unset) and all agents therefore were
allowed to advance synchronously one time step. Following
this initial step the isComplete check ran, returned false,
and set the priority of the 3 leftmost females to have a
higher priority since they had chosen to pursue the agent
of interest Since females in this simulation do not interact
with each other, these agents were update-independent until
they could interact with a male. Therefore, the following
simulation iterations allowed these three females to update
asynchronously until female9 entered the interaction range
of male2. Since male2 was in the past, he would need to
be updated before female9 could advance and mating could
take place. However, male2 could not advance independently
to the female9’s local time step since the “event-horizons”
of two other females when extrapolated to female9’s time
could have potentially caused an earlier interaction with
male2. Furthermore, these additional females could also
have interacted with an another male when projected to
female9’s local time step, and, therefore, this male would
also have to be included into the group that defined female9’s
transitive closure which would need to be updated before
female9 could advance. From the simulation graphic we
see that these additional female agents chose to travel in
the opposite direction from male2 and essentially removed
themselves from blocking female9’s update-independence.
Unfortunately the original general asynchronous scheduling
algorithm still updated these agents to the female9’s time.
Following these updates female9 was free to proceed to mate
with male2 at time step 49.

c) D-GAP policy + New Incremental Dependency Re-
moval Asynchronous Scheduler.: Like the previous con-

dition, the final condition utilized the D-GAP policy for
selecting agents to run. However, in this case the new In-
cremental Dependency Removal optimization to the general
asynchronous scheduling algorithm was also implemented
resulting in the calculation of even fewer agent updates.
Notice from the bottom image of Figure 1 that the two
middle females only progressed a few time steps into the
simulation’s timeline as compared with the previous simula-
tion (middle image of Figure 1). In this condition only 221
agent updates had to be calculated to produce the same pre-
dictions as the previous 2 cases. This results in a scheduling
efficiency gain of almost 70% [(735− 221)/735 ∗ 100].

The logical event trace for this simulation starts out
similarly to the previous case. All agents update one cy-
cle since no agent priority is initially set. Following that,
the 3 females that chose to pursue the agent of interest
(male2) receive higher priority in the system. The 3 female
agents can all update independently until female9 becomes
dependent on male2’s state prior to attempting to mate.
Male2 was then required to update to the same time step
as female9. However, unlike the previous case, male2 was
allowed to update by only one time step per scheduler cycle.
At each scheduler cycle the high priority agents including
female9 were selected. This again resulted in a male2
update and this continued until male2 was no longer update-
independent with respect to the top middle females. The
additional females were incrementally run for one step. The
process continued with female9 requiring male2 to update,
but in some cases male2 was able to update independently
through the timeline since the top middle females actually
move away from the agent of interest. The result of this
incremental update strategy was that the two top middle
females did not have to progress through the simulation
timeline nearly as far and did not require the additional male
to update at all (see bottom image of Figure 1).

5.1 Efficiency Comparison
Ultimately this case study illustrates a large performance

gain from using the D-GAP algorithm and addition effi-
ciency gain as a result of the optimization added to the
general asynchronous scheduling algorithm (see Figure 2).

The D-GAP policy when coupled with the original asyn-
chronous algorithm drastically outperforms the traditional
synchronous discrete event simulator for this scenario. This
improvement comes from the ability of the policy to prune
unnecessary computations from the timeline based on prior-
itizing agents that are most likely to accomplish the research
goals of the simulation. Essentially the timeline is expanded
in a greedy manner such that the important events occur
sooner and with less updating of agent configurations.

The additional efficiency gain achieved from using the
Incremental Dependency Removal stems from the way this
algorithm handles updating dependent agents. Instead of
blindly updating agents to the point of projected possible
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Fig. 2: Comparison of the efficiency of the 3 scheduling
methods in terms of the number of agent updates that had to
be accomplished before reaching simulation completion. The
D-GAP policy with the improved asynchronous scheduling
algorithm produced the most efficient runs.

interaction, dependent agents are updated only as far as
necessary. Instead of updating all the agents in female9’s
original transitive closure, only the most dependent agents
had to be updated incrementally. This allowed them the
possibility of removing themselves from future dependencies
and the need to update as much.

6. Discussion and Conclusion
The power of the D-GAP policy, like any greedy heuristic

search, is only as strong as the heuristic used. In the case
study, the priority assignment was clearly connected to
the agent that could bring about the terminating condition.
However, if priority was assigned to agents in an unrelated
way to the goals of the simulation or even in an opposite way,
the simulation could potentially take longer than traditional
sequential scheduling. In the extreme case, it is possible for
agent prioritization to be assigned such that the simulation
never terminates. For example, if agent was given the highest
priority in the simulation and that agent moved at maximum
velocity away from the rest of the agents, it is possible that
it would not interact with any other agent’s projected “event-
horizons” and maintain update independence indefinitely.
This would lead to an agent being updated each simulation
cycle that would never bring about simulation termination.

Therefore, the assignment of priority to agents must
be done in an admissible way that guarantees simulation
termination. There are many ways that this can be imple-
mented. For example, adding stochasticity to the priority
assignment will guarantee simulation termination even in the
worst-case scenario when agent prioritization is completely
assigned backwards. Another method would be to progres-
sively penalize agents too far in the future so that there
is a maximum time gap between the oldest and youngest

agents in the simulation. The latter provides a bounded
level of asynchrony and greedy search while maintaining
the assurance of simulation termination.

Asynchronous discrete event scheduling is an extremely
new concept. There have only been a handful of algorithms
and policies developed to exploit the advantages of asyn-
chronous scheduling. Policies developed so far have either
optimized the characteristics of the distributed environment
in which they were implemented (e.g. Remote − Event −
First or Y oungest − Unblocked − First [2]) or have
attempted to optimize the scheduling using some heuristic
to bias local scheduling of agents (e.g., the D-GAP policy
described in this paper). Interesting future work would
include policies that consider both the goals of the simulation
and the distributed environment in which they are executed
when making decisions on which agent to asynchronously
guide through the simulation space first.
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A Multi-criteria Class-based Job Scheduler for Large Computing
Farms
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Abstract— In this paper we propose a new multi-criteria
class-based job scheduler able to dynamically schedule
a stream of batch jobs on large-scale computing farms.
It is driven by several configuration parameters allowing
the scheduler customization with respect to the goals of
an installation. The proposed scheduling policies allow to
maximize the resource usage and to guarantee the ap-
plications QoS requirements. The proposed solution has
been evaluated by simulations using different streams of
synthetically generated jobs. To analyze the quality of our
solution we propose a new methodology to estimate whether
at a given time the resources in the system are really
sufficient to meet the service level requested by the submitted
jobs. Moreover, the proposed solution was also evaluated
comparing it with the Backfilling and Flexible backfilling
algorithms. Our scheduler demonstrated to be able to carry
out good scheduling choices.

Keywords: Job scheduling; Deadline Scheduling; Software Li-
cense Scheduling; Computing Farm.

1. Introduction
In large computing farms providing utility computing for

a large number of users, with different functional and non-
functional requirements, a scheduler plays a basic role in
order to efficiently and effectively schedule submitted jobs
on the available resources. The objective of the scheduling is
to assign tasks to specific resources maximizing the overall
resource utilization and guaranteeing the QoS required by
applications. The scheduling problem has shown to be NP-
complete in its general as well as in some restricted forms
[3]. The scheduling on utility computing environments is
multi-criteria in nature [8]. In fact, these environments
generally manage computational requests dynamically time
varying, and with different computational requirements and
constraints that compete to access shared resources. Even
if in the past research efforts has been devoted to develop
multi-criteria job scheduling algorithms [7], [6], [1], [2],
there is still the need to improve the scheduling techniques
able to manage an increasing number of jobs and to address
all the application and installation requirements as well as
sets of constraints for the afore mentioned computational
environment. In this paper, we propose a scheduler able
to schedule a continuos stream of batch jobs on large-
scale computing farms. As typical scenario we consider a

computing farm made up of heterogeneous, single-processor
or SMP machines, linked by a low-latency, high-bandwidth
network. Some characteristics of the computing nodes (e.g.
processor type, memory size, number of CPUs, link band-
width) are static and known whereas some others are dy-
namic (e.g. floating sw licenses). The adopted scheduling
policies permit us to optimize the scheduling with respect
to different objectives, even contrasting, such as maximize
the resource usage and to guarantee the non-functional
applications requirements. The rest of this paper is organized
as follows. Section 2 describes some of the most common
job scheduling algorithms. Section 3 gives a description of
the problem. Section 4 describes our solution. Section 5
outlines and evaluates our job scheduler. Finally, conclusions
and future work are described in Section 6.

2. Related work
Batch jobs scheduling are mainly divided in two main

classes: on-line and offline. On-line algorithms are those that
do not have any knowledge about the whole input job stream.
They take decisions for each arriving job without knowing
future inputs. Conversely, offline algorithms know all the
jobs before taking scheduling decisions. Many of these
algorithms are exploited into commercial and open source
job schedulers [4]. The Backfilling algorithm [9] is a widely
adopted scheduling approach, it is an optimization of the
FCFS algorithm [10]. It requires each job specifies its execu-
tion time, so that the scheduler can estimate when jobs finish
and other ones can be started. The main goal of Backfilling
is to exploit a resource reservation approach to improve the
FCFS policy by increasing the system resource usage and by
decreasing the average job waiting time in the scheduler’s
queue. In order to improve performance, some backfilling
variants, such as Flexible backfilling [5] have been proposed.
The Flexible backfilling algorithm is obtained by exploiting
a different order of queued jobs. Jobs prioritized according
to scheduler goals are queued according to their priority
value, and selected for scheduling. Even if the multi-criteria
approach seems to be the most viable one to solve the
resource management and scheduling problem in heteroge-
neous and distributed computational environments, only a
few research efforts have been done in such direction [1], [7],
[2], [11]. In [1] a multi-criteria job scheduler for scheduling
a continuous stream of batch jobs on large scale computing
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farms is proposed. It exploits a set of heuristics that drive the
scheduler in taking decisions. Each heuristics manages a spe-
cific constraint, and contributes to compute the measurement
of the matching degree between a job and a machine. The
scheduler allows its extensions to manage a wide set of re-
quirements and constraints. In [7] K. Kurowski et al. propose
a two-level hierarchy multi-criteria scheduling approach for
Grid environments. All participants of a scheduling process,
i.e. endusers, Grid administrators and resource providers,
express their requirements and preferences by using two
sets of parameters: hard constraints and soft constraints. A
Grid broker at higher level exploits the hard constraints to
compute a set of feasible solutions, which can be optimized
by using soft constraints describing preferences regarding
multiple criteria, such as various performance factors, QoS-
based parameters, and characteristics of local schedulers. In
[2] a bi-criteria algorithm for scheduling moldable jobs on
cluster computing platforms is proposed. It exploits two pre-
existing algorithms to simultaneously optimize two criteria:
job makespan and weighted minimal average completion
time. Such criteria are complementarity, and well represent
the objectives of both users and system administrators. The
algorithm was evaluated by simulations using two different
synthetic workloads. In [11] a solution based on advanced
resource reservation that optimizes resource utilization and
user QoS constraints for Grid environments is proposed. It
supports advanced reservations to deal with the dynamic of
Grids and provides a solution for agreement enforcement.
The proposed advanced reservation solution is structured
according to a 3-layered negotiation protocol. Preferences
of end-users are taken into account to start a negotiation to
select resources to reserve. The user can select the best suit-
able offer or can decide to re-negotiate by changing some of
the constraints. End-users preferences are modeled as utility
functions for which end users have to specify required values
and negotiation levels. In [6] is proposed a schedule-based
solution for scheduling a continuous stream of batch jobs
on computational Grids. The solution is based on Earliest
Deadline First (EG-EDF) rule and Tabu search technique.
The EG-EDF rule incrementally builds the schedule for all
jobs by applying technique which fills earliest existing gaps
in the schedule with newly arriving jobs. If no gap for a
coming job is available EG-EDF rule uses Earliest Deadline
First (EDF) strategy for including a new job into the existing
schedule. The schedule is then optimized by using a Tabu
search algorithm to move jobs into earliest gaps. Scheduling
choices are taken to meet the QoS requested by the submitted
jobs, and to optimize the hardware resource usage.

3. Problem Description
We consider jobs and machines annotated with informa-

tion describing their requirements and features, respectively.
Jobs in a stream can be sequential or multi-thread, and
all the jobs are independent one from each other. To each

job is attached a description containing both an identifier
and a set of functional and non-functional requirements.
Functional requirements include the number of processors,
the RAM size and the software licenses a job needs to
be executed. Non-functional requirements (also referred as
QoS) are job slowdown equal to one, job deadline and job
advanced resource reservation. The description also includes
an estimation of the time required to compute the job and the
features describing the processor exploited to perform such
estimation (benchmark score). Each job is executed on a
single machine, and all jobs are preemptable. Job preemption
can be performed when either a job submission or a job
ending event takes place. The machines composing the farm
are described by a benchmark score, the number and type
of CPUs, the size of the RAM installed and the non-floating
(i.e. bound to a machine) and floating (i.e. not bound to any
specific machine) software licenses they can run. Processors
installed on each machine has associated a weight. Every
machine can execute multiple jobs at the same time in a
space-sharing fashion. All the machines support two basic
forms of job preemption: stop/restart and suspend/resume.
The checkpoint/restart form is possible only if the running
job is properly instrumented. Machines are assigned to jobs
in the shape of sub-machines, namely a subset of a machine’s
processors. A submachine is managed by the scheduler as an
instance of the machine from which it is originated. Floating
sw licenses can be assigned to any machine able to run
them. The only limit is that the total number of licenses
in use can not be greater than their availability. In our study,
we consider the association of licenses to machines. As a
consequence if a set of jobs requiring the same license can
be executed on the same machine, only one license copy is
accounted.

4. The scheduler achitecture
The proposed scheduler is based on multiple job classes.

Each job is assigned to a class on the basis of its functional
and/or non-functional requirements. Figure 1 depicts the
architecture of our scheduler. Three main components are
represented: Job-Dispatcher, Class-Scheduler and Control-
Scheduler. The Job-Dispatcher receives, classifies, and dis-
patches each job to the proper class. A class is an entity
characterized by a set of dynamically assigned computational
resources, a job queue and a Class Scheduler. The classes
are ranked according to a priority value assigned statically
by the installation on the basis of the functional and non-
functional requirements managed. To each class is associated
a Class-Scheduler (CLS). This component is specialized for
managing a specific class of job requirements. To each CLS
is associated a job queue and a set of resources. The CLS
extracts jobs from its queue and allocates them resources
to be run. In case of resource shortage, it issues a request
for additional resources to the Control Scheduler. A class
releases the assigned resources when they have not been used
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Fig. 1: The scheduler architecture.

for a predefined quantum of time, fixed by the installation.
The Control-Scheduler (CNS) is devoted to manage requests
issued by CLSs. CNS allocates resources to CLSs in the form
of sub-machines or floating sw licenses. As an example,
consider a job asking for four processors in a computing
farm composed by only eight-processors machines. The
CNS assigns four free processors from an available suitable
machine to the requesting class. That class becomes the
temporary owner of the assigned resources until it will not
release them. Requests issued by higher ranked classes are
scheduled first than the other ones, and requests issued by the
same CLS are managed according to the FCFS order. CNS
defines new sub-machines according to two alternatives: 1)
The sub-machine is defined on a machine already assigned
to the requesting class, 2) The sub-machine is defined on
a machine not assigned to any class, i.e. a free machine.
If no machine is available, the CNS can decide to enact
a resource stealing process. The definition of a new sub-
machine is performed by exploiting the principle of the least
privilege, namely, from all the available machines is chosen
the one with the least amount of resources that is sufficient to
satisfy the requested assignment. Sub-machines are managed
using a data structure consisting in a vector V FM which
length equals to the number of processors P of the largest
machine in the computing farm. Each element in the vector
contains a list in which each elements represents a farm’s
machine. A machine belongs to list at index i if its actual
availability of processors equals to i. The lists are arranged in
increasing order with respect to machine memory size, and
then the number of floating sw licenses the machine can run.
In order to find a machine with p processors, a RAM of size
r and l licenses, CNS starts its search from the V FM [p]
element and continues until it finds a machine addressing
the assignment requirements or the vector ends. When a
proper machine is found and a new sub-machine is created
the number of available processors in that machine decreases
correspondently. The data structure is updated consequently.
The idea behind this data structure is to keep lager machines
available for subsequent requests and to reduce machines

fragmentation. Floating sw licenses are managed using a
specific data structure consisting in a vector which length
equals to the number of available floating sw licenses S.
Each vector entry addresses a list storing the number of
currently usable copies for a specific license. Such lists are
structured according to three sublists storing respectively the
number of available copies, the number of copies assigned
to a class but not used, and the number of copies assigned
to a class and in use. Floating licenses belonging to the first
two sublists are available for assignment to classes, whereas
the copies in the third list are already assigned. When a
free copy of a floating sw license is assigned to a class, it
is removed from the first sublist and assigned to the third
sublist. When a job using a floating sw license finishes its
execution the license copy is moved to the second sublist.
After an installation-defined quantum of time licenses in the
second sublist are released and moved to the first sublist. In
our study we considered six job classes (0÷5) The first three
classes (0, 1 and 2) manage jobs with both functional and
non-functional requirements whereas the other three ones
(3, 4 and 5) manage jobs with only functional requirements.
Jobs are assigned to the classes according to the following
criteria:

• Class 0: Jobs requiring a slowdown equal to 1. Jobs
are managed by the related CLS according to the First
Come First Served (FCFS) order.

• Class 1: Jobs requiring advanced resource reservation.
Jobs are scheduled according their closeness to the
reservation. Jobs for which the resource reservation fails
are discarded. Alternatively, but not in our study, they
could be moved to Class 3, 4 or 5 depending on their
functional requirements.

• Class 2: Jobs with deadline. Jobs are scheduled accord-
ing to the expected time they have to start to meet their
deadline. The queue position of a job is determined
exploiting the solution proposed in [6]. According to
such solution, the closer the deadline of a job is, the
higher its position in the job queue is.

• Class 3: Sequential or parallel jobs requiring floating
sw licenses.

• Class 4: Parallel jobs not requiring any floating sw
license.

• Class 5: Sequential jobs not asking for floating sw
licenses.

Jobs within classes 3, 4 and 5 are selected by the related
CLS according to the FCFS order. If a job has requirements
to be assigned to two different classes, it will be assigned
to the class having a higher priority. The assignment of
resources to classes permits to exploit the locality in job
requirements. In fact, after a initial time, it is highly probable
that a class managing jobs with similar requirements owns
in advance the resources to run the jobs to it assigned.
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Resource stealing: When a class is experiencing a lack of
free resources to satisfy a request its CLS issues a request
to CNS. As a consequence, the execution of jobs belonging
to classes with a lower priority have to be interrupted to
release the needed resources. However, the interruption of a
job has a cost for the computing farm. Actually, interrupting
a job is convenient only if the gain resulting from the use of
the released resources overcomes this cost. To evaluate this
cost several parameters should be considered, e.g. the time
elapsed in execution by the job candidate to be interrupted,
the number of sw assigned to that job, etc. In our model a
resource r can be moved from a class A to a class B if the
following expression is verified: RankA > CostB(r), where
RankA is the rank value of Class A and CostB(r) is the cost
associated to the interruption of jobs running on resource r
and belongs to B. Considering a generic class C, a resource
r, and the number k of jobs running on r such cost can be
computed as: CostC(r) = RankC +

∑k
i=1 PC(i), where

PC(i) = Wi · ( Tex(i)
Ttot(i)

) ·Wdead+(Wpr ·Pr(i))+(Wl ·L(i)).
Tex(i) is the time spent executing the job i and Ttot(i) is the
total estimated execution time of the job i. Wi is the weight
associated to the form of preemption adopted to interrupt
the execution of the job i. This is small if the job supports
checkpoint/restart, it increases in case of suspend/resume and
it is maximum if the only option is stop/restart. Wdead is the
weight associated to jobs having a deadline. It equals to 1
for jobs without deadline. Wpr is the weight associated to
a processor and Pr(i) is the number of processors assigned
to i. Wl is the weight associated to a floating sw license
and L(i) is the number of floating sw licenses used by i.
The idea of this approach is to allow an installation to tune
Wi, Wpr, Wl and Wdead values and class ranks according
to its objectives. As an example, suppose that an installation
goal is to respect in a very strict way the prioritization given
by the jobs classes.To this end, the Rank associated to two
consecutive classes have to differ by a value greater than
the maximum value that PC(i) can assume. Such value is
obtained when a job i (it makes no difference to have just
one or several jobs if the overall resource usage is the same)
is using all the processors of the largest farm’s machine, all
the available floating sw licenses, and is approaching the
end of its execution. Let’s assume that the largest farm’s
machine has 1024 processors, and that the total number
of floating sw licenses is 20. Moreover, consider weights
assuming these values: Wi = 200, Wpr = 1, Wl = 0.5 and
Wdead = 2. Hence, the maximum value PC(i) can assume
is: PC

max = 200 ∗ 1 ∗ 2 + 1 ∗ 1024 + 0.5 ∗ 20 = 1434. As
a consequence, the rank values of the six classes have to
be fixed as follows: Rank_Class5 = 0, Rank_Class4 =
1500, Rank_Class3 = 3000, Rank_Class2 = 4500,
Rank_Class1 = 6000, and Rank_Class0 = 75001.

1These rank values are the ones exploited in the conducted tests

Resource search: Considering a job i belonging to a class A
and requiring Prx ≤ P processors and Lx ⊆ S floating sw
licenses the resource search algorithm is structured according
to the following steps:

1) Starting from the entry Prx, the VFM data structure
is analyzed to find jobs to be interrupted.

2) For every machine m suitable for executing i indexed
by Prx, a list of jobs that could be interrupted is
created. The list also includes free processors.

3) The first Nx jobs, which interruption permits us to
obtain the required Prx processors are selected.

4) If selecting the first Nx jobs a number of proces-
sors greater than Prx is obtained, a refined step is
conducted to fix the number of selected processors.
The list of selected jobs is visited in reverse order to
remove exceeding processors.

5) The cost Costr is computed as the sum of the costs
related to the jobs being interrupted on m. If Costr is
smaller than the costs computed for the other analyzed
machines, the machine m is selected, and the jobs on
it executing are selected to be interrupted.

6) Steps from 2 to 5 are repeated from Prx + 1 to P to
find machines suitable for executing i.

7) At the end of step 6, the list of jobs that cloud be
interrupted (i.e. jobs running on the machines with
associated the lowest costs) is carried out.

The interruption of the selected jobs may lead to free
some required licenses. In this case, the found licenses are
removed from Lx and the following steps are executed:

1) The floating sw licenses search starts from the queue
l ∈ Lx of the floating sw license data structure.

2) The cost Costr due to the interruption of a job using
l is computed. The job corresponding to the smallest
Costr is selected and its execution interrupted.

3) Steps 1 and 2 are repeated until all the licenses needed
to run the job i are found.

4) At the end of step 3, the set of jobs to interrupt is
found.

This phase is the most computation expensive one. In fact,
the search of free processors requires in the worst case to
analyze all the available machines and floating sw licenses.
The search of processors needs to sort the N jobs running on
each of the M machines in the farm. Since the sort operation
has complexity NlogN , in the worst case, the resource
search algorithm has complexity C = M ·NlogN . To search
a floating sw licenses in the worst case has complexity |L|.

5. Performance Evaluation
The evaluation of the proposed scheduler was conducted

by simulations using different streams of jobs and farms
of different size. Job and machine parameters have been
randomly generated from a uniform distribution in the ranges
shown in Table 1. Moreover, we compared our solution
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with Backfilling and Flexible backfilling algorithms. The job
priorities of the Flexible backfilling algorithm are updated
at each job submission or ending event and the reservation
for the first queued job is maintained through events.

Table 1: Parameters used to generate jobs and machines.

Description Range

Processor Type 1÷ 5
Number of processors 1÷ 128
Benchmark score 0.5÷ 2
RAM 500Mb÷ 5Gb
Job estimated execution time (secs) 16000÷ 20000
Number of licenses copies 50÷ 70
Number of different licenses 20

For each simulations the percentages of jobs requiring
specific functional and non-functional requirements have
been generated according to the values shown in Table 2.

Table 2: Percentages used to generate the job steams.

Percentage Description

5% requires a slowdown equal to 1
30% has a deadline
5% needs of advanced resource reservation
60% needs a software license
30% needs a floating software license
10% needs a specific hardware
2% supports checkpointing
40% needs 1 processor
40% needs 2 processors
10% needs 4 processors
0.8% needs 8 processors
0.08% needs 16 processors
0.06% needs 32 processors
0.04% needs 64 processors
0.02% needs 128 processors

The duration of each simulation was set at 43200 time
units (i.e. the number of seconds in 12 hours). For each
simulation unit the system: (1) Generate a job and put it
in the Dispatcher’s job queue, (2) Update of the running
jobs status (3) Update of the status of the resources (4)
Execute the CLSs, (5) Execute the CNS, (6) Store the sim-
ulation statistics. In the conducted experiments the number
of generated machines varied from 1000 to 1200, and to
obtain stable values each simulation was repeated 50 times
with different farm configurations and job streams. The
performance metrics have been evaluated versus the system
contention. Usually, this value is roughly computed as:
ResourceR/ResourceA, where ResourceR is the amount
of a specific resource requested by the jobs in the system,
and ResourcesA is the available amount of such resource.
This ratio does not provide an accurate information on
resource availability because it ignores the jobs allocation
implied constraints. In fact, all the requirements of a job
must be satisfied to allocate it, so the variables describing
the available resources cannot be considered independently.

To clarify this point, let us suppose that the value computed
by using the above expression is less than 1. In principle,
it indicates an availability of the considered resource. As a
consequence, a scheduler should be able to properly allocate
the jobs on the available resource. However, this is not
always true. As an example consider an availability of 20
processors in the system and a job to schedule requiring 16
processors. Clearly, if at least 16 of the 20 free processors
are not available on the same machine the job can not be
scheduled even if a rough analysis would suggest enough
processors availability. Unfortunately, in general can be hard
to understand if the resource shortage is caused by the
ineffectiveness of the adopted scheduler or by an insufficient
number of available resources. To overcome this problem
we introduce the RRI index. Its aim is to exploit a simple
allocator to measure, with a certain degree of approximation,
if at a certain time, the resources in the system are sufficient
to meet all the jobs requirements. In particular, in this paper
we only consider the resource processor for computing the
RRI index. To this end, we considered the following four
job scheduling algorithms (but in principle others can be also
considered), each one basing its strategy on a different job
allocation policy: 1) Largest Machine, which allocates a job
on the machine with the largest number of free processors, 2)
Smallest Machine, which allocates a job on the machine with
the smallest number of free processors, 3) Smallest Residue,
which allocates a job on the machine where remains, after
the allocation of a job, the lowest number of free processors,
4) Largest Residue, which allocates a job on the machine
where remains, after the allocation of a job, the largest
number of free processors. These algorithms were evaluated
to find the one leading to the best processor usage in the
simulated environment. To this end, a workload able to
use all the available processors of the simulated farm was
designed according to the following four steps: 1) A random
generation of a set of machines, 2) For each machine a
proper set of jobs were generated, 3) A random distribution
of all the processors belonging to each machine to the
generated set of jobs, 4) Assignment of the generated jobs
to a free computation slot in such a way that they finish their
execution on the target machine all at a fixed time. RRI is
computed as: (Processorsr+Processorsq)/Processorsa,
where Processorsr are the processors request by the al-
located jobs, Processorsq are the processors request by
the not allocated jobs, and Processorsa are the available
processors. The higher the RRI value is, the higher the
system contention is. Smallest Residue is the method that
obtained the best results in 500 simulations we conducting
varying the number and the type of the machines inside the
simulated farm. This is the allocator we used for computing
the RRI index. It behaves as a sort of probe to measure the
processors availability throughout a simulation. It is executed
each time a job execution is started. To evaluate the scheduler
efficiency, we analyzed the algorithms exploited by CNS
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to handle sub-machines. Figure 2 shows the percentages of
new sub-machines definition and expansion we obtained by
the simulations. When the RRI value is low (RRI < 0.4)
there is a high rate of new sub-machines definition because
the classes have only a few resources assigned. When the
value of RRI is between 0.4 and 0.8 there is a higher sub-
machines expansion rate because the classes already have
a large number of sub-machines and at the same time there
are enough available processors on the farm machines. When
the value of RRI is greater than 0.8 the percentages of the
expanding and new definition processes tend to stabilize at
values of 30% and 40%, respectively. This result means that,
when the system is heavily loaded, for example, when RRI
is equal to 2 the classes in about 35% of cases already have
a submachine able to execute a submitted job. While, in the
other 65% of cases, CLSs require to CNS to extend a sub-
machine (25%) or to define a new sub-machine (40%).
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Fig. 2: New sub-machines definition or expansion.

The graph of Figure 3 shows the percentage of processors
used by the running jobs. When the RRI index is greater
than 1, i.e. when the requested resources begin to be unavail-
able, the processor utilization approaches to 100%. But the
shape of the curve clearly shows that in some cases there
are free processors even if the values of RRI are greater
than 1. In fact, also when the value of RRI is greater than
1.2 (i.e. when the estimated number of requested resources
go over in the available ones) the figure shows that some
processors are not used. This happens because, also when
the number of requests is much greater than the available
resources, the last are not able to run any one of the waiting
requests. However, it is worth to point out that our scheduler
is able to schedule jobs in a way that keeps low the number
of unused resources.

We also investigated the degree of satisfaction of non-
functional job requirements. We evaluated the quality of
service provided by the Control-Scheduler on the basis of
decisions it has made to allocate resources to the classes.
This analysis has been conducted to assess the choices made
in the following areas: (1) Job classification policies and rank
values assigned to classes; (2) Resource stealing technique.
Bad choices can cause long queuing times for some types of
jobs, in particular the ones belonging to low ranked classes.

To evaluate the satisfaction level of the resource demands

0 0.5 1 1.5 2
RRI

0

20

40

60

80

100

Pe
rc
en
ta
ge

Fig. 3: Processor usage.

we used the slowdown metric. This measures the ratio
between the response time of a job (i.e. the time elapsed
between its submission and its termination) and its execution
time. It is computed as: (Tw + Te)/Te, with Tw the time
that a job spends waiting to start and/or restart its execution,
and Te the job execution time [9]. Figure 4(a) shows the
average slowdown obtained executing job belonging to the
following job classes: Class 0, i.e. jobs requiring a slowdown
equal to 1; Class 3, i.e sequential or parallel jobs requiring
floating license, Class 4, i.e. parallel jobs do not requiring
floating license, and Class 5, i.e. sequential jobs do not
asking for floating license. In this evaluation jobs requesting
advanced reservation or a deadLine were not considered
because for such jobs the slowdown is not indicative. In
fact, depending on their characteristics, such jobs can spend
some time enqueued before to be executed without affecting
their performances. In our tests all the requests of advanced
resource reservation were satisfied. Figure 4(a) shows that,
when the resources are available (i.e. RRI < 1) all the
jobs obtain a slowdown equal to 1. When RRI > 1, i.e.
the job competition to access the available computational
resources increases, jobs are forced to spend some time
in the queues resulting in an increase of the job average
slowdown. It can be seen that in the conducted tests the job
requirement slowdown=1 is satisfied also when the value
of RRI reaches 1.6 (i.e. high system contention). The
slowdown value of jobs asking floating software licenses
remain under 1.2 also with high system contention, while
the slowdown increases only up to a 20% for parallel jobs.
Instead, the value of the slowdown of the serial jobs is the
worst, their completion time can increase up to 80%. Figure
4(b) shows the percentage of jobs executed respecting their
deadline. The results obtained by the proposed scheduler
were compared with those obtained by running a Backfilling
and Flexible backfilling algorithms with the same simulation
conditions, i.e. with both the same machines and the same
job streams, used to evaluate the proposed scheduler. As
expected, the lower the system contention is (RRI ≤ 1),
the higher the percentage of the jobs meeting their deadline
is, and all the schedulers are able to satisfy all deadline
requests. The proposed scheduler is able to obtain better
results than the other algorithms. It obtains a percentage of
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(c) Slowdown of jobs requiring slowdown = 1

Fig. 4: Slowdown

jobs that respect their deadline very close to 100% also with
a high system contention (RRI ≥ 1.5). As the system con-
tention increases the Flexible backfilling algorithm reaches a
performance that is 16% lower than the one obtained by the
proposed scheduler, while the Backfilling algorithm obtains
a performance significantly lower than the one obtained by
our scheduler. In Figure 4(c) we show the results obtained
from the execution of jobs requiring a slowdown value
equal to 1. It can be seen that when the resources are
not longer available the Backfilling and Flexible backfilling
algorithms are not able to guarantee this QoS. The proposed
class scheduler, by using the technique of resource stealing,
makes available the resources needed also when the system
contention is high (RRI ≥ 1.5). It is worth to point out that
the Flexible backfilling algorithm maintains the slowdown
value within an acceptable level, offering in this test a
performance comparable to the one obtained by the proposed
scheduler.

6. Conclusion
In this paper, we propose a new multi-criteria scheduler

to dynamically schedule a continuous stream of batch jobs
on large-scale non-dedicated computing farm made of het-
erogeneous, single-processor or SMP machines, linked by a
low-latency, high-bandwidth network. The proposed solution
aims at scheduling arriving jobs respecting several functional
and non-functional job requirements and optimizing the
hardware and software resource usage. Several configuration
parameters allow the scheduler customization with respect to
the goals of an installation. The scheduler was evaluated by
simulations using different job streams synthetically gener-
ated. To conduct the evaluation a technique to measure the
system contention throughout a simulation was adopted. The
scheduler has been evaluated comparing it with Backfilling
and Flexible backfilling schedulers. In the conducted tests,
the proposed scheduler demonstrated to be able to carry out
good scheduling choices As future work, we plan: (1) to
enhance the current scheduler refining the adopted advanced
resource reservation technique, and to manage jobs requiring
co-allocation to be executed on more than one machine,

(2) to introduce energy efficiency policies dispatching work-
loads to more energy-efficient machines, (3) to evaluate the
scheduler when applied to computing platforms made of
distributed computing farm, (4) to investigate the feasibility
of different scheduling criteria to estimate the RRI index.
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Abstract - This paper studies the improvement of performance 

and execution time of a single compute-node in a Beowulf 

cluster. We want to implement a load balancing approach 

through the Linux scheduler which improves the performance 

and execution time of High Performance Linpack (HPL) 

benchmark.  We compare the performance and execution time 

when spawning processes for two processing cores in a local 

processor up to all eight cores in two processors. The results 

showed that this approach helped to improve performance 

throughput since the load balancing approach created a 

higher L2-cache awareness, with increased hit rate, while 

reducing the number of times processes accessed the Front-

side Bus (FSB) and Memory Controller Hub (MCH) during 

execution. Performance and execution time peaked with block 

sizes of 64 and 128 for different HPL matrix size and problem 

sizes; however, the performance throughput decreased for 

other sizes due to hardware contentions in the FSBes and 

MCH. 

Keywords: cluster, performance, quad-core, benchmark
1
 

 

1 Introduction 

   Beowulf clusters are scalable performance clusters 

constructed with off-the-shelf hardware components, 

communicating on a private system network, with an open 

source software infrastructure [1]. A Beowulf cluster consists 

of a front-end machine that communicates with the outside 

world, and manages and distributes jobs to identical compute-

nodes. The compute-nodes are connected to the front-end via 

a private network that normally uses a commonly available 

communication protocol such as Ethernet or InfiniBand for 

communication. Together, the compute-nodes and associated 

private network form a homogenous environment that make-

up the structure of the cluster. The compute nodes are servers 

that are always listening for incoming requests and provide 

the necessary processing computational power to the assigned 

tasks coming from the front-end machine. 

 

                                                           
1
 This work was supported by National Science Foundation under 

Grants No. CNS-0709438 and CNS-1059430. Any opinions, 

findings, and conclusions or recommendations expressed in this 

material are those of the author(s) and do not necessarily reflect the 

views of the National Science Foundation. 

Virgo 2.0 is a Beowulf cluster system that consists of a 

front-end machine, twenty-one compute nodes and two 

memory nodes [2]. Throughout Virgo 2.0, the processing 

architecture is constant in all compute-nodes that consist of 

two Intel Quad-core Xeon processors [4]. Both processors can 

communicate with each other and to the rest of the system by 

their perspective Front-side Bus (FSB) into the Memory 

Controller Hub (MCH). The focus is to analyze the 

architecture of the two processors in this type of cluster 

environment in order to prevent performance bottlenecks that 

might be present during execution.  

 

Benchmarking was utilized to measure the performance and 

execution time of the system in order to come understand the 

architecture [3]. High Performance Linpack (HPL) 2.0 was 

utilized in order to perform the benchmark on a single 

compute-node and spawn the desired number of processes to 

the cores. For the subprogram support of HPL, the 

Automatically Tuned Linear Algebra Software (ATLAS) 

3.8.2 was installed which carries the Basic Linear Algebra 

Subprograms (BLAS) for the HPL algorithm to execute 

properly. And MPICH 2.0 was installed in order to carry the 

Message Passing Interface (MPI) standard libraries for proper 

communication between the processors and cores. 

 

Assuming that the Linux Scheduler is applied to all 

compute-nodes in the cluster system, it is developed for its 

specific instruction set for the hardware, and it is the only 

mechanism that schedules all of the tasks that are executed for 

all users and applications. We hypothesize that the scheduler 

can be modified to further take advantage of the hardware 

configuration, in being more aware of the pre-existing 

limitations to the load balancing caused by specific hardware 

limitations, and by redefined the decision-making when 

performing load balancing of tasks.  An average of double 

digit percentage improvement in performance and execution 

time for large computational jobs executed on Virgo 2.0 can 

be obtained. 

 

2 Virgo 2.0 Overview 

  Virgo 2.0 is a Beowulf cluster that consists of a front-end 

machine, twenty-one dedicated compute-nodes and two 

memory-nodes. All compute-nodes consist of homogenous 

architecture parts which include two Intel Quad-core Xeon 

processors without hyper-threading capabilities. In effect, the 
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cluster can have up to one hundred and eighty-four processing 

cores working on a single application not including the front-

end machine. Therefore, it gives the opportunity to explore the 

possibilities of improving the load balancing of tasks on Virgo 

2.0 through reprogramming of the Operating System (OS) 

kernel to improve performance and execution time. 

 

Virgo 2.0 is a cluster system in which a user has access to 

all compute-nodes once the user accesses the front-end 

machine. The user is able to launch individual and/or 

concurrent applications on each compute-node. If distributed 

applications are needed, the user must employ a 

communication protocol to spawn the processing to all needed 

compute-nodes.  Such protocols include sockets; Remote 

Procedure Calls (RPCs) and the Message Passing Interface 

(MPI). All scheduling and job creation is interactive.  This 

cluster system does not contain an internal batch queue 

program that launches and distributes jobs to its compute-

nodes. However, the configuration of the cluster system 

provides an opportunity to improve performance of a single 

compute-node and replicate to all others. 

 

Two Harpertown processors [4] is the architecture 

implemented on each compute-node with a total of eight 

processing cores. Each of the processing cores has their own 

Level 1 (L1) cache memory and each pair shares a 6MB Level 

2 (L2) cache memory. The pair of processing cores also shares 

a FSB which provides the communication path for data and 

address buses.  

 

Each of the Intel Quad-core Xeons is labeled with a 

physical identification number as shown in Figure 1.  The 

physical identification given to the processor helps the system 

to identify the processing cores with even numbers assigned to 

processor physical id zero and odd numbers assigned to 

processor physical id one. 

 

 

 
 

Figure 1. Harpertown Block Diagram Configuration in a 

Computer-Node 

 

Each processor combines the signals from the two FSBs 

into a single dedicated FSB bidirectional interface to the 

Memory Controller Hub (MCH). Each of the FSBs has a 38-

bit address bus, a 64-bit data bus, and associated control 

signals. The setup time for actually requesting the 

address/data buses is four FBS-clock cycles and the request of 

the busses can last up to a maximum of twenty FBS-clock 

cycles for that one single request [4], if the four clock cycles 

are not enough for the task to complete before another request 

must be issued. 

 

As we try to improve the performance and management of 

tasks within the compute-node, we must consider the 

functionality and design of the FSBs.  The merger of data 

from the two FSBs within each Harpertown and the merger of 

data of the FSB interfaces from the two processors within the 

MCH must be considered as tasks normally access the 

addresses and data from memory many times. What we can 

expect is that the larger the tasks become and the more 

memory accesses are needed, bottlenecks will start to occur as 

more and more data is moved through the FSBs and the MCH 

to each pair of processing cores within the Harpertown 

processor. 

 

The Memory Controller Hub (MCH) is the main chipset 

that bridges both of the Harpertown processors together and is 

the pathway to the I/O Controller Hub.  The MCH provides 

two FSB processor interfaces, four fully buffered DIMM 

(Dual In-line Memory Module) memory channels, nine x4 

PCIe (Peripheral Component Interconnect Express) bus 

interfaces configurable with x8 or x16 ports, an Enterprise 

South Bridge Interface (ESI), six SM Bus interfaces for 

system management, and DIMM Serial Presence Detect 

(SPD) [4]. Figure 2 show a block diagram of the MCH with 

all of its interfaces. 

 

 
 

Figure 2. Intel’s 5400 Chipset Memory Controller Hub 

Block Diagram 

 

 

The MCH can play a big role when developing a load 

balancing mechanism of processes. One of the main decisions 

of the scheduler is to know when it is appropriate to migrate 

tasks from one core to another. It may not be a problem to 
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move the task to a neighboring core within the same die since 

all of the resources of the task are located in the same area.  

However, the decision can be expensive if the migration 

occurs from one core to another core in a different processor. 

This is because the task and all of its resources are too big to 

migrate completely within a single request and therefore 

forces a context switch.  The migration can occur but the new 

destination might not have all the necessary space to 

accommodate all the migrating resources. That is why there 

must be an understanding in how the MCH can treat this 

scenario of task migration between two processing cores on 

different die. 

 
Completely Fair Scheduler (CFS) is a scheduling algorithm 

that will run each process for some amount of time in round-

robin order, then context switch, selecting next the process for 

execution that has run the least. Rather than assign each 

process a timeslice, CFS calculates how long a process should 

run as a function of the total number of runnable processes.  

And instead of using the nice value to calculate a time slice, 

CFS uses the nice value to weight the proportion of processor 

time a process is to receive: Higher valued (lower priority) 

processes receive a fractional weight relative to the default 

nice value, whereas lower valued (high priority) processes 

receive a larger weight [6]. 

 

The O(1) Scheduling algorithm is the current scheduler on 

the Linux 2.6.18 kernel. The big-O notation is used to denote 

the growth rate of an algorithm’s execution time based on the 

amount of input [7].  Previous schedulers contained O(n) 
algorithms which indicated that the algorithm increases 

linearly or more as the input grows in size n. For example - 

the running time of O(n
2
) grows quadratically. Therefore, an 

O(1) algorithm is one that guarantees to operate at a constant 

time independently of the load size coming in to the input. 

The Linux 2.6.18 O(1) Scheduler includes per-core structures 

called run-queues, which contain the set of runnable threads 

assigned to each core in the MCA environment [8]. 

 

This becomes ideal for the Virgo 2.0 system because as the 

number of tasks increases for execution, the scheduler will be 

able to handle more tasks to be scheduled without additional 

system overhead. The idea of implementing a CFS Scheduler 

for the kernel would be unnecessary since none of the 

compute-nodes have any interaction processes to execute at 

any time. Therefore in combining the O(1) Scheduler 

algorithm and the SCHED_FIFO policy of each of the tasks 

executing on each compute-node, will help to improve system 

performance.  SCHED_FIFO tasks do not have time slices 

and they may run indefinitely, which is desirable by avoiding 

preemption and increase processing core utilization.  A 

SCHED_FIFO task can only be interrupted or preempted by 

other FIFO tasks that have higher priority or by system 

interrupts [7]. 

 

3 Procedure 

  The load balancing modification of the Scheduler deals 

with how the processes will be balanced and affinity 

assignments is made to match tasks with the processing cores. 

Assigning affinity of processing cores to each of the tasks 

immediately starts. The manner in which each task is assigned 

to a processing core is implemented using the load_aff() 

function. 

 

The load_aff() function is a modification that load balances 

the tasks that are ready to execute and assigns the task’s 

affinity to a processing core. The load_aff() function is as 

follows: 

 
• It first determines if the previous modification was able to 

group single or multiple tasks for execution, if not, the 

function returns control as shown in the code below. 

 
if(arraypid[0][0]==NULL) 
return; 

 

• Next, the load_aff() function performs an availability test of 

the processing cores through the idle cpu(int cpu) function. 

The processing cores that are idle and ready for execution are 

saved in a vector array in order to use the list during the load 

balancing part of the function. 

 
for(go through processing cores) 
ready[] = idle_cpu(order[]); 

 

• The ready[] array keeps the information of the available 

processing cores that are available for execution. 

 
• The order[] array is a defined array which holds the 

sequence of processing core identification numbers. 

 
• The order[] array is ordered by pairs of processing cores that 

share the L2 cache memory. 

 

After initial checks, the load_aff() function begins load 

balancing the tasks that were grouped in the previous 

modification and begins assigning affinity to processing cores. 

The simplest form of load balancing is when the number of 

tasks equals or is greater than the number of processing cores 

available for execution. In this case the load_aff() function 

will: 

 

• Check that the order[] array and the ready[] array have the 

same number of elements and value of each element in order. 

 
• For each element, the function begins to assign affinity to 

each task by their PID and the order of the processing cores. 

 
• The pseudo-code below demonstrates in how tasks are 

assigned in this scenario. 
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if(check readyarray == orderarray) 
for(arraypid[][]) 
if(tskcore= 
sched setaffinity(p->arraypid[][], 
cpumask of cpu(ready[])) == 0) 
if(ready[indx++]!= NULL) 
indx++; 

else return; 
else return -1; 

 

• tskcore is an int-type variable which checks the return value 

of the sched_setaffinity() function.  

 

• The sched_setaffinity() function is a defined function in the 

Scheduler which is used to set any task to a CPU. Each time 

the sched_setaffinity() function is called, it must also have the 

two parameters: the PID of the task and the mask-type value 

of the CPU. 

 

• Each PID of tasks in the group is obtained from the 

arraypid[][] array used in the grouping of tasks modification.  

 

• For the second parameter, each processing core ID that is in 

the ready[] array must be changed to cpumask_t type. 

 

• The function cpumask of cpu(int cpu) is used to do this 

conversion correctly. The cpumask of cpu(int cpu) is a 

defined function in the Scheduler. The int cpu value is 

obtained from the ready[] array.  

 
• If the sched_setaffinity() function returns a zero, the task 

affinity will be set to the indicated processing core. 

 
• Also, it needs to keep track of the indexing of the ready[] 

array. It will check if it is at the end of the array. 

 

This keeps repeating, setting affinity to each task, until all 

are assigned. However, many other scenarios of processing 

core availability can be presented when trying to execute a 

program with eight tasks. The load balancing would need to 

decide where the tasks in the group need to execute and assign 

affinity to all. Therefore, the load balancing must take into 

account the number of processes each instance of the HPL 

benchmark is asked to execute and decide the best affinity 

assignment accordantly when the number of tasks is greater 

than the available processing cores. 

 

Once the number of concurrent threads continues to 

increase, the IPC performance and the L2 hit rate begin to 

decrease. Therefore, the load_aff() function must consider 

performance decreases that can occur by assigning affinity to 

all the processing cores. The way the load balancing is 

modified is by setting affinity in pairs of two processing cores 

that share L2 cache memory. The main reason to pair the 

processing cores in this manner is to take advantage of the L2 

cache share capabilities. Secondly if any process 

communication is needed, the tasks will have minimal 

latency. Finally, as the processes share L2 cache memory to 

execute the same instance of the benchmark, it reduces the 

number of L2 miss rates which in effect reduces the number 

of main memory accesses and creates less contention in the 

FSB and MCH. 

 

The load balancing decision making is shown in Figure 3. 

The decision making begins with finding the number of 

available processing cores and servicing the number of tasks 

that are ready to execute. If the number of processing cores is 

greater than or equal to the number of tasks, the function will 

set affinity for all tasks and then continue scheduling.  

However if the number of processing cores are less than the 

number of tasks that are ready to execute, then the function 

must check the number of available processing cores and 

begin deciding the course of action that can be taken as 

follows: 

 

  
 

Figure 3. Low Balancing Flowchart 
 

 

• Once the number of available of processing cores is less than 

the number of tasks, the function checks if the number of 

available processing cores is less than or equal to two. 

 
• If the number of processing cores available is less than or 

equal to two, the decision is to not set affinity to the available 

processing cores in order to: 

 

– Avoid using all of the processing cores which causes a 

decrease of IPC performance. 

– Lowers the overall L2 hit rate for all processing cores. 

– Avoid increase of traffic through the FSBuses and MCH. 

 

• Instead, the function will set affinity to processing cores that 

are currently busy in order to schedule them next. 

 
• This keeps the available processing core free and next group 

of tasks out of the way of the currently execution of tasks. 

 

When checking that the number of available of processing 

core exceeds two, then the number can be either an odd or 

even number of available processing cores. The decision of 

the load balancing will need to consider the availability of 

processing cores in pairs and if no pair exits, then continue to 

wait for processing cores to become available. 

 

The configurations of the HPL benchmark used for current 

test are similar to previous work [3] but each run contained a 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 299



heavier load.  In where, N – The number of problems sizes 

that will be used for execution of the benchmark.  Ns – This 

specifies the exact value(s) of the problem size.  NBs – It 

specifies the values of each block size to be executed for each 

problem size defined in Ns.  Ps – Specifies the number of 

processes row value.  Qs – Specifies the number of processes 

column value. 

Eight different problem sizes Ns = {6000, 7000, 8000, 9000, 

11000, 12500, 15000, 17500} were used for each instance of 

the benchmark. From [3], it could be seen that the benchmark 

provided better data with problem sizes higher than 5000. The 

matrix dimensions were varied for different Ps and Qs values 

and also depended on the scenario that needed to be tested 

(i.e. all eight cores, seven cores, down to just two cores). 

Block sizes NBs = {64, 128, 256, 512, 1024, 2048} were used 

for each of the problem sizes. 

 

Different instances of the HPL benchmark are necessary 

since it introduces an environment that tests the modifications 

made to the Scheduler. Each instance of the benchmark can 

spawn other processes that will test the grouping of the 

processes with the parent process. After each instance of the 

benchmark finished execution, process termination and the 

dead state of the parent process was tested to determine if 

revising the state of the processing core was possible in order 

to assign affinity to the next group of tasks that are ready to 

execute. 

 

4 Results 

The low concurrency case was expanded to include up to 

and including four processes. This qualifies as a low 

concurrency case because it provides enough concurrent 

processes to create small contentions in the FSB and MCH 

and test the Scheduling modifications. This number of 

concurrent processes also illustrates higher number of HPL 

benchmark instances that were launched to test low 

concurrency scenarios. Figure 4 summarize the percentage 

improvements of execution time for this scenario for problem 

sizes 6000 (smallest problem size) and 175000 (largest 

problem size). The improvements are listed by different 

matrix dimensions and different block sizes during execution.   

 

Figure 5 shows the improvement percentage of performance 

throughput in GFLOPS of the same problem sizes shown in 

Figure 4. The percentage improvements from Figures 4 and 5 

indicate it is hard to improve the performance and execution 

time when the processing core executes small loads. This is 

due to several factors: 

 

1. When the computational load does not employ all of the 

available processing cores, the performance of the overall 

compute-node does not reach its maximum performance. This 

is true even with customized load balancing and affinity task 

allocation. 

 
 

 

Figure 4. Execution Time Percentage Improvement in a 

Four Process Execution 

 

 

 
 

Figure 5. Performance Throughput Percentage 

Improvement in a Four Process Execution 
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2. The small improvements that were attained are due to the 

load balancing modification, which provided task affinity, 

which allowed the processing cores to share L2-more 

efficiently. This is achieved by the decision making of having 

tasks allocated with processing cores 

 

Spreading out the tasks between the two processors 

alleviates traffic in both FSBs; and each task has an increase 

amount of L2-cache since not all cores are in use. The 

following case shown in Figures 6 and 7 is of high 

concurrency with eight concurrent processes occupying all the 

processing cores. The configuration consists of having two or 

more instances of the HPL benchmark running in which the 

total of processes equal to the number of all the processing 

cores. More than one instance of the benchmark is needed to 

make the Scheduler group and load balance all processes. 

 

 
 

Figure 6. Execution Time Percentage Improvement in an 

Eight Process Execution 

 

 

In order to summarize the percentage improvements of the 

eight concurrency execution scenario, Figure 6 shows the 

improvement in execution time of problem sizes 6000 

(smallest problem size) and 175000 (largest problem size). 

The improvements are showed by different Nb block sizes, 

each using different PxQ matrix dimensions during execution. 

Figure 7 shows the improvement percentage of performance 

throughput, in GFLOPs, for the same problem sizes shown in 

Figure 6. The improvements are showed by different matrix 

dimensions each through different block sizes during 

execution. The percentage improvements from Figures 6 and 

7 indicate that for low PxQ matrix dimensions, there is greater 

improvement in performance and execution time. However, it 

is much harder to improve the performance and execution 

time when executing with all of the processing cores. This is 

due to several factors: 

 

1. The other instances of the benchmark concurrently 

executing increases the traffic in the FSB and MCH. 

 

2. As the problem size increases, the limitations of the 

hardware (bus sizes, cache sizes) begin to decrease processing 

core utilization. 

 

3. As the bottlenecks and limitations become more apparent 

during execution, the modifications made to the Scheduler 

converge to very low to no improvement regardless of the 

affinity set to all tasks. 

 

 
 

Figure 7. Performance Throughput Percentage 

Improvement in an Eight Process Execution 

 

 

5 Conclusions 

Overall, the results for low concurrency show that the 

improvements in both GFLOPS and execution times were less 

than 10% for low numbers of processing cores.  Regardless of 

the block sizes, the small improvements are due to the affinity 

assignment which help increase the L2 cache hit rates. 

However, the affinity assignments can sometimes create 

contention to the FSB when load balancing other instances of 

the benchmark which can be seen by the negative percentage 

numbers at different problem sizes in Figures 4 and 5. With 

larger numbers of processes (dimensions) performance cannot 

be improved since FSB and MCH contention increases; in 

fact, the GFLOPS decreases and execution times increases. 
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Overall the results for medium to high concurrency show 

that the larger improvements were obtained by these common 

factors: 

 

• Small block sizes of 64-128 show the highest improvements 

than other block sizes due to the width of the data line that 

exists in the hardware. 

 
• The larger the block sizes, the harder it is to improve 

GFLOPS and execution time due to the time to transmit 

information; although improvements were still achieved with 

smaller percentages from the smaller block sizes. 

 
• Small numbers of processes (dimensions) are easier to 

allocate affinity to processing core pairs. In this case the load 

balance modification helps increase the processing core 

utilization which yields a higher improvement of GFLOPS. 

 
• Larger number of processes (dimensions) are difficult to 

speed up as contention on the FSB and MCH increases; 

therefore, the GFLOPS decrease and execution time increases. 

 
• All of the benchmark runs and instances were executed in 

row-major format. This means that the elements of the matrix 

are placed in a contiguous form in memory. Therefore, single 

row dimensions of the benchmark show higher peaks in 

GFLOPS and execution time. 

 

A few cases of large peaks indicate high percentage 

improvements in GFLOPS and execution time, such as in the 

bottom figure in Figure 7 where matrix size dimensions are 

[1x3] at block size 64 or similar dimensions. This is due to a 

non-modified run under-performed in this instance of the 

benchmark which causes the modified run to show higher 

increases in percentage in GFLOPS and execution times. 

Also, the matrix dimensions are favorable for the row-major 

execution of the matrix during each run.  Furthermore, the 

small block size that is able to use the full bandwidth of data 

lines and the L2 cache awareness which helped improved hit 

rates for the instance of the benchmark. 

 

Other cases of large peaks that indicate high percentage 

improvements in GFLOPS and execution time, such as in the 

bottom figure in Figure 7 where matrix size dimensions [4x1] 

at block size 2048 or similar dimensions are attributed to the 

non-modified run under-performing which causes the 

modified run to show higher increases in percentage in 

GFLOPS and execution times. Also, the load balancing 

modification helped increase the percentages due to the 

affinity assignments of the instance of the benchmark. 
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Abstract - Load balancing is very important for 

achieving high performance in distributed computer 

systems which often consist of heterogeneous 

computing and communications resources. In this 

paper, we study a cooperative load balancing scheme 

for central-server node distributed systems (CCOOP-

IO) and evaluate its performance using simulations. 

The objective of CCOOP-IO is to minimize the mean 

response time of jobs in a heterogeneous distributed 

computing system and also to provide fairness to all 

the jobs in the system. We consider a heterogeneous 

computing system model connected by a single-

channel communications network. A central-server 

model is used to model the computers in the system. 

The performance of CCOOP-IO is evaluated using 

simulations with various system loads and 

configurations.  

Key words: Load balancing, Resource Allocation, 

Distributed Systems, Fairness. 

1.  Introduction 

The computing resources (computers or nodes) in 

distributed computing systems are often 

heterogeneous. Jobs may arrive with different job 

arrival rates to these nodes. Also, the 

communications networks that connect the 

computing resources may have different bandwidths. 

The above factors may degrade the performance of 

distributed systems if load is not properly balanced 

among the computers. Hence, load balancing is very 

important for achieving high performance in 

distributed computer systems. 

The problem of load balancing in distributed systems 

has been studied extensively. For example, in [4, 11, 

15, 16, 10], static load balancing schemes for single-

class and multi-class job distributed systems were 

proposed and analyzed by considering various 

network topologies. Various models for dynamic load 

balancing were studied in [1, 6, 14]. A 

macroeconomic model for resource allocation in 

distributed systems was studied in [12]. Most of the 

past work on load balancing in distributed systems 

considered the minimization of the overall system 

expected (mean or average) response time (job 

execution time) as their main objective. However, 

some jobs might experience much longer response 

time than the others in such allocations. Providing 

fairness to all the jobs in the system is to find an 

allocation of jobs to computers that yields an 

approximately equal expected response time for all 

the jobs of approximately the same size. Fairness is a 

major issue in many modern computing systems.  

Load balancing in distributed systems based on game 

theory with the objective of providing fairness has 

been studied ([2, 5, 7, 17] and references there-in). 

However, in most of the above studies, the computer 

model considered has only a processor. Game-

theoretic scheduling in cognitive radio systems has 

been studied in [13] and references there-in. Here, we 

consider a central-server computer model which is 

very common in modern computer systems. A 

central-server computer model consists of a CPU 

(processor) and one or more input/output (I/O) 

devices. A central-server node model for static job 

allocation in E-commerce systems and utility-

computing systems has been studied in [8, 9] and for 

dynamic job allocation in [6].  

In this paper, we study a cooperative load balancing 

scheme for central-server node distributed systems 

(CCOOP-IO). CCOOP-IO is derived from the 

cooperative scheme studied in [7]. The objective of 

CCOOP-IO is to minimize the mean response time of 

jobs in a heterogeneous distributed computing system 

and also to provide fairness to all the jobs in the 

system. We consider a heterogeneous computing 
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system model connected by a single-channel 

communications network. Jobs arrive at each 

computer according to a time-invariant exponential 

process. We achieve load balancing by transferring 

some jobs from the heavily loaded nodes to the nodes 

that are idle or lightly loaded.  

The performance of CCOOP-IO is evaluated using 

simulations with various system loads and 

configurations. Expected response time (execution 

time) and fairness index are used as the performance 

metrics. For comparison, we also implemented two 

representative load balancing schemes. These 

schemes are: OPTIM-IO (which minimizes the 

expected response time of all the jobs in a system) 

and PROP-IO (which allocates the jobs to the 

computers in proportion to their processing speeds in 

the system).  

2. Cooperative Load Balancing 

A distributed computing system model having n 

nodes connected by a single channel communications 

network is considered. The nodes in the system are 

typically heterogeneous having different processing 

speeds. Each node is modeled as a central-server 

model as shown in Figure 1 similar to [6]. The 

terminology and notations used similar to [3, 6, 7] are 

as follows: 

 tIO: The service time of an input/output (I/O) 

device. 

 µi:  The service rate of node i. 

 фi: The external job arrival rate at node i. 

 Ф:  The total external job arrival rate of the 

system. So, Ф =    
 
   . 

 βi   : The job processing rate (or load) allocated 

by the load balancing algorithm for node  . 
 xij: The job flow rate from node   to node   (i.e. 

the number of jobs sent from   to   per unit time). 

 t:  Mean communication time for sending or 

receiving a job from one node to another. 

 P0: Probability that a job after departing from the 

processor finishes.  

 P1: Probability that a job after departing from the 

processor requests I/O service.  

 P1/P0: Average number of I/O requests per job.  

 

Each node is assumed to have a single computing 

resource (processor) with a round-robin service 

discipline and jobs arrive in a single queue. The 

nodes and the communications network have an 

exponential service-time distribution [3] and the 

external jobs arriving at each node and jobs being 

transferred by the communications network follow a 

Poisson distribution [3]. 

 

  

Figure 1. Node Model 

A job arriving at node i may either be processed at 

node i or transferred to node j through the 

communications network for remote processing. The 

mean communication delay from node i to node j is 

independent of the source destination pair (i, j) but 

depends on the total traffic through the network 

denoted by λ where         
 
   

 
   . Based on the 

above assumptions and assumptions similar to [7], 

the mean node delay (mean response time or total 

execution time) of a job at node i is given by: 

        
 

      
  

  

  
   ,           . 

The mean communication delay for a job is given by: 

      
 

    
,     

 

 
. 

The inverse of the node delay is given by: 

            
 

    
  
  

    
   if      

 

  
  

  

  
    

            if       
 

  
  

  

  
    

We also assume that the communication delay 

incurred as a result of sending a job directly from 

node i to node j is less than or equal to the sum of the 

delays from node i to node k and from node k to node 
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j. Based on this assumption, nodes are classified into 

Sinks (S), Idle Sources (Rd), Active Sources (Ra), and 

Neutrals (N) similar to [7]. 

The load balancing problem for providing fairness to 

all the jobs in the system is formulated as a 

cooperative game among the computers and the 

communications subsystem similar to [7]. Based on 

the Nash Bargaining Solution (NBS) which provides 

a pareto optimal and fair solution, we provide an 

algorithm (CCOOP-IO) for computing the NBS for 

our cooperative load balancing game.  

In the following, we present the CCOOP-IO 

algorithm. The cooperative load balancing game 

among the computers and the communication 

subsystem, theorems, and properties which are the 

basis for the below algorithm are similar to the ones 

described in [7] by replacing d, g, and d
-1

 in [7] by d, 

g, and d
-1 

presented in the previous section. 

 

CCOOP-IO Algorithm: 

Input:    Node job service rates:            

Node job arrival rates:            

Mean communication time: t 

Service time of an I/O device:     

Probabilities:       

 

Output: Load allocation to the nodes:            

 

1. Initialize the loads of all the nodes to their job 

arrival rates and label all the nodes as Neutrals. 

2. Sort the computers in increasing order of their 

node delays.  

3.  Categorize the nodes into Sinks (S), Idle 

Sources (Rd), Active Sources (Ra), and Neutrals 

(N) using a binary search (for finding an optimal 

point (say, α) that categorizes) similar to Step 3 

of the CCOOP algorithm in [7].  

4. Determine the loads on the computers as 

follows: 

      ,  if node i is an Idle Source. 

                 , if node i is an Active 

Source. 

            , if node i is a Sink. 

        , if node i is a Neutral. 

3. Experimental Results 

In this section, we evaluate the performance of the 

CCOOP-IO scheme. The performance metrics that 

are used in the experiments are the expected response 

time and the fairness index. The fairness index [7] is 

used to quantify the fairness of load balancing 

schemes.  We also implemented the Overall optimal 

load balancing scheme (OPTIM-IO) [4] and the 

Proportional load balancing scheme (PROP-IO) [1] 

for comparison purposes.  

System utilization represents the amount of load on 

the system and is defined as the ratio of the total 

arrival rate to the aggregate service rate of the 

system. A heterogeneous distributed system 

consisting of 16 computers was simulated (as shown 

in Table 1) to study the effect of system utilization. 

The system has computers with four different service 

rates. For each experiment, the total job arrival rate in 

the system is determined by the system utilization 

and the aggregate service rate of the system. We had 

chosen fixed values for the system utilization and 

determined the total job arrival rates. The mean 

communication time is assumed to be 0.001 sec. We 

assumed that I/O operations were evenly spread 

throughout the execution of each job (similar to [6]) 

and that each disk I/O request took 0.06 milliseconds. 

The number of I/O requests for each job was chosen 

from a normal distribution with a mean of 12 and a 

standard deviation of 10 and was assumed to be 

greater than 0. 

Table 1. System Configuration. 

Relative service rate 1 2 5 10 

Number of computers 6 5 3 2 

Service rate (jobs/sec) 10 20 50 100 

 

In Figure 2, we present the expected response time of 

the system for different values of system utilization 

ranging from 10% to 90%. The performance of 

CCOOP-IO is very similar to OPTIM-IO for system 

utilizations ranging from 10% to 40% and is around 

50% better than PROP-IO for system utilizations 

ranging from 50% to 60%. CCOOP-IO approaches 

PROP-IO for high system utilizations. 
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Figure 2. Expected Response Time v/s System Utilization 

 

The effect of the system utilization on the fairness 

index of the various schemes is presented in Figure 3. 

It can be observed that the fairness index of CCOOP-

IO is almost 1 for any system utilization and the 

fairness index of OPTIM-IO drops from 1 to around 

0.85. PROP-IO has a constant fairness index which is 

around 0.72. This shows that CCOOP-IO provides 

fairness to all the jobs in the system independent of 

the computers to which they are allocated. 

 

Figure 4 presents the expected response time at each 

computer for all the schemes at a system utilization 

of 70%. It can be observed that CCOOP-IO 

guarantees almost equal expected response times for 

all the computers. This means that all the jobs will 

have almost the same expected response time 

independent of the allocated computers. In the case of 

OPTIM-IO and PROP-IO, the expected response 

times are less balanced than CCOOP-IO.  

Figure 3. Fairness Index v/s System Utilization 
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Figure  4. Expected Response Time at each Computer (System Utilization = 70%) 

 

In the following, we study the effect of heterogeneity 

(speed skewness) [7] on the performance of CCOOP-

IO. Speed skewness is defined as the ratio of 

maximum service rate to the minimum service rate of 

the computers in the system. A heterogeneous 

distributed system of 16 computers (2 fast and 14 

slow) was simulated to study the effect of 

heterogeneity. Slow computers have a relative 

processing rate of 1 and the relative processing rate 

of the fast computers is varied from 1 (homogenous 

system) to 20 (highly heterogeneous system). 

Figure 5 presents the effect of speed skewness on the 

performance of CCOOP-IO. For low skewness, the 

performance of CCOOP-IO is similar to PROP-IO. 

However, as the skewness increases, the performance 

of CCOOP-IO approaches to that of OPTIM-IO. 

Figure 6 presents the effect of speed skewness on the 

fairness index of CCOOP-IO. It can be observed that 

CCOOP-IO has a fairness index of almost 1 over all 

range of speed skewness. The fairness index of 

OPTIM-IO and PROP-IO falls from 1 at low 

skewness to 0.95 and 0.9 respectively at high 

skewness. This shows that CCOOP-IO provides 

fairness in highly heterogeneous systems for all the 

jobs in the system. 

Figures 7 and 8 present the expected response time at 

each computer for all the schemes at medium system 

utilization for a skewness of 8 and 12. CCOOP-IO 

guarantees almost equal expected response times for 

all the computers. This means that CCOOP-IO 

provides a fair and load balanced allocation 

compared to OPTIM-IO and PROP-IO where the 

jobs are treated unfairly. 

 

4. Conclusions 

In this paper, a cooperative load balancing scheme 

(CCOOP-IO) for heterogeneous distributed systems 

was studied and evaluated. A distributed system with 

central-server nodes was considered. The 

performance of CCOOP-IO is evaluated by varying 

the system utilization and heterogeneity. 

Experimental results showed that CCOOP-IO is not 

only fair but also is comparable with that of the 

system optimal scheme in terms of the mean response 

time. 
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Figure 5.  Expected Response Time v/s Heterogeneity  

 

Figure  6. Fairness Index v/s Heterogeneity 

 

Figure 7. Expected Response Time at each Computer (Speed Skewness = 8) 
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Figure 8. Expected Response Time at each Computer (Speed Skewness = 12) 
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Abstract— Divisible load applications occur in many scien-
tific and engineering applications and can easily be mapped
to a distributed environment, such as computational grids
or clouds, using a master-worker pattern. However, dividing
an application and deploying it on a set of heterogeneous
computing resources pose challenges to obtain an optimal
performance due to the underlying system processing and
networking capacities. We provide a dynamic scheduling
algorithm for allocating divisible loads on a set of het-
erogeneous resources to decrease the overall application
execution time. The algorithm uses a single-round strategy
which is a known approach adopted by the majority of
the developers as it is simple to design and implement.
Our algorithm computes the chunk size that should be
distributed to each worker. We analyze the performance
of the algorithm in different scenarios of heterogeneous
computing and networking capacities.

Keywords: Distributed Systems, Divisible Load Application,
Dynamic Scheduling, Performance

1. INTRODUCTION
The capacity of today’s infrastructures, the ubiquity of

network resources, and the low storage cost has led to the
emergence of heterogeneous distributed memory systems
such as Grid and Cloud computing. These platforms are
promising technologies to run parallel applications in a low
cost [1] [2] [3] [4] [5].

In this work, we propose a dynamic scheduling algorithm
to obtain an optimal performance when distributing divisible
load applications [6] to a set of heterogeneous resources in a
computational platform, such as a Grid or a Cloud. Divisible
load model represents a class of applications, where an
application can be divided into a number of tasks that can
be processed independently in parallel ( [6], [7]) with no
or negligeable inter-tasks communication. Many scientific
and engineering applications fall into this category, such as
search for a pattern, compression, join and graph coloring
and generic search applications [8], multimedia and video
processing [9], [10], convolution [11], and image processing
[12] [13].

The tasks of a divisible load application are amenable to
a master-worker model [14] that can be easily implemented
and deployed on computing platforms, such as clusters,
computational Grids, or computational Clouds. The master

is a processor which divides an application load into tasks
and assigns each task to a separate worker. In this work,
we compute the chunk sizes of an application that should
be distributed to a set of computing workers to obtain an
optimal performance. The algorithm takes into consideration
the communication and the computation capacities of the un-
derlying platform. It also accounts for computing delays and
communications latencies. In our scenarios, our algorithm
shows a maximum of 1.29 of relative makespan to theideal
algorithm in the heterogeneous environments we have set,
and with no specific selection policy. Theideal algorithm
determines a chunk size in an ideal situation in which all
computing workers are homogeneous, and that networking
and computing overheads are negligeable.

Several works have been done to find an optimal schedul-
ing algorithm to schedule a divisible load application [15]
[16] [17] [18] [19]. The multi-installment algorithm, studied
in [15], proposed a model of scheduling tasks in a single
round, but communication time and computation time are
assumed to be proportional. A multiround algorithm [16]
was built based on [15] by adding communication and
computation latencies to the model. The algorithm aims
at optimizing the number of rounds to obtain an optimal
makespan of the application. Consequently some computing
workers will be waiting, while others are working within
a single round. [20] studies the complexity of multi-round
divisible load schedule, and concluded that the selection
process of computing workers, their ordering and the distri-
bution of the adequate chunk sizes remain an open problem.
[17] has built up a scheduling model with the assumptions
that computations are suspended by communications. Other
works have been done on specialized infrastructure, such as
in [21] for distributed bus network.

The rest of the paper is structured as follows. Section
2 describes the system model we consider. Our dynamic
scheduling algorithm is described in section 3. In section 4,
we evaluate the proposed model and discuss the obtained
results. Section 5 concludes the work.

2. SYSTEM MODEL
The computing platforms that we are targeting are Grids

and Clouds of computing resources. As shown in Figure 1, a
computing platform consists of nodes which are connected
via a network link whose speed dictates the speed of the
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Fig. 1: Computing Platform Model

communication processing when data is transmitted among
the nodes. A node consists of multiple cores. A core is the
smallest processing unit available in the system. A core can
be a context, a processor or a physical core.

Upon receiving of an application or a user’s request, the
master divides the whole application, of a total load of
Wtotal, into different tasks and schedules these tasks to
the selected computing workers based on their individual
capability in terms of: the conditions of the communication
link between the master and each computing worker, and the
existing computing power of each computing worker. Each
computing worker in the system has a computing capacity,
µi, wherei = 1, ..., N , andN is the number of computing
workers in the system. In the rest of the paper, we use the
terms task and chunk interchangeably.

Consider a portion of the total load,chunki ≤ Wtotal,
which is to be processed on workeri. We model the time
required for a computing worker to perform the computation,
TPi, as:

TPi = θi +
chunki

µi

(1)

whereθi, is a fixed latency, in seconds, for starting the
computation at the computing workerr.

We model the time for sendingchunki units of load to
computing workeri, TCi, as:

TCi = λi +
chunki

Ci

(2)

where the componentλi in TCi, is a latency, in seconds,
incurred by the master to initiate data transfer to workerr.
Ci is the data transfer rate in terms of units of computing
loads per second that can be provided by the communication
link from the master to the workeri. Theλi component may
caused by the delay when initiating communicating from the
master to the workeri by using SSH or any Grid or Cloud
software which is used to access the workeri.

3. SCHEDULING ALGORITHM
To obtain an optimal performance for a single round, our

main objective is to determine the chunk size that is to be
assigned to each computing worker so that all computing

Fig. 2: Distribution of Chunk Sizes to Computing Workers
in a Single Round

workers complete their computations at the same time.
The total loadWtotal computation units is divided intoN
computing worker. We assume that the master starts to send
chunks toN available computing workers in a sequential
fashion. Consequently, every computing workeri will get its
chunk sizechunki to process. Figure 2 shows an example,
in which four computing workers are used.

Let us defineαi = chunki

Ci
, is the time required to transfer

chunki form the master to the workeri by using the commu-
nication link between the master and the computing worker
Ci, and βi = chunki

µi
is the time required to compute the

chunk chunki by the computing workeri with computing
processing capacity ofµi. The time required by the first
computing worker to complete the assigned task,chunk1,
is given by the following formula:

T1 = TC1 + TP1 (3)

= λ1 +
chunk1

C1
+ θ1 +

chunk1

µ1

= λ1 + θ1 + chunk1

(

1

C1
+

1

µ1

)

The time required by the second computing worker to
complete its task,chunk2, is given by the following formula:
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T2 = TC1 + TC2 + TP2 (4)

= λ1 +
chunk1

C1
+ λ2

+
chunk2

C2
+ θ2 +

chunk2

µ2

= λ1 +
chunk1

C1
+ λ2 + θ2 + chunk2

(

1

C2
+

1

µ2

)

In general, the time required by the computing workeri

to complete its task,chunki, is given by:

Ti =

j=i−1
∑

j=1

TCj + TCi + TPi i = 1, ..., N (5)

=

j=i−1
∑

j=1

(λj +
chunkj

Cj

) + θi + chunki

(

1

Ci

+
1

µi

)

The time required by the last computing workerN to
complete the task,chunkN , is given by:

TN =

j=N−1
∑

j=1

TCj + TCN + TPN (6)

=

j=N−1
∑

j=1

(λj +
chunkj

Cj

) + θN + chunkN

(

1

CN

+
1

µN

)

To achieve the goal that all workers complete the compu-
tation of their assigned chunks at the same time, it is required
that:

T1 = T2 = ... = TN = T (7)

To simplify the formulas, we assume that:

λ1 = λ2 = ... = λN (8)

and

θ1 = θ2 = ... = θN (9)

Then based on the Equation 7 and the Equations 3, 4, 5,
and 6, we obtain:

chunk1

µ1
= λ + chunk2

(

1

C2
+

1

µ2

)

(10)

chunk2

µ2
= λ + chunk3

(

1

C3
+

1

µ3

)

(11)

...
chunki−1

µi−1
= λ + chunki

(

1

Ci

+
1

µi

)

(12)

...
chunkN−1

µN−1
= λ + chunkN

(

1

CN

+
1

µN

)

(13)

Based on Equation 10, we obtain the following equation:

chunk2 = C2µ2chunk1

µ1(C2+µ2)
−

C2µ2λ
C2+µ2

(14)

Based on Equations 11 and 14, we obtain the following
formula:

chunk3 =
C3µ3chunk2

µ2(C3 + µ3)
−

C3µ3λ

C3 + µ3
(15)

=
C2C3µ3chunk1

µ1(C2 + µ2)(C3 + µ3)

−
C2C3µ3λ(1 + C2+µ2

C2
)

(C2 + µ2)(C3 + µ3)
(16)

Based on Equation 12, and by substitutions, for a com-
puting workeri, we obtain the following formula:

chunki =

∏j=i

j=2 Cjµichunk1

µ1

∏j=i

j=2(Cj + µj)

−λ

∏j=i
j=2 Cjµi(1 +

∑k=j
k=2

∏k=j

k=2(Ck+µk)
∏k=j

k=2 Ck

)
∏j=i

j=2(Cj + µj)
(17)

As Wtotal =
∑i=N

i=1 chunki, and based on Equation 17,
then we obtain the value ofchunk1 as follows:

chunk1 =

Wtotal + λ(
∑i=N

i=2

∏ i=N
i=2 Cjµi(1+

∑ k=i−1
k=2

∏k=i
k=2(Ck+µk)

∏k=i
k=2

Ck
)

∏ j=i
j=2(Cj+µj)

)

1 +
∑i=N

i=2

∏ j=i
j=2 Cjµi

µ1

∏ j=i
j=2(Cj+µj)

(18)

Based on Equation 17, the remaining chunks,chunki,
i = 2, ..., N , can be obtained by substituting the value of
chunk1 obtained by Equation 18.

4. PERFORMANCE EVALUATION
In this section, we evaluate the efficiency of our schedul-

ing algorithm in different scenario. The efficiency of the
algorithm is measured and compared to theideal makespan.
The best makespan is calculated by dividing the total work-
load over the summation of the computing powers of the
individual workers( Wtotal

∑

i=N
i=1 µi

, i = 1, ..., N ). In particular, we
analyze the impact of the system parameters (µi, Ci) on the
performance of our scheduling algorithm.

4.1 Experimental Runs
The experiments use a set of 10 computing workers. We

vary the heterogeneity degree of the workers and study
the performance of the scheduling algorithm. In a first
step, we study the performance of the algorithm running
on homogeneous clusters with increasing network capacity.
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Table 1 shows the experimental values in which all the
computing workers of the cluster have similar computing
powers and they are connected to the master via similar
network capacity. In a second step, we run the experiments
with heterogeneous processing powers and homogeneous
network connecting the master to the computing workers. We
study the performance of the algorithm with increasing net-
work capacity. Table 2 shows computing processing powers
which have been randomly generated. In these experiments,
the network and the processing powers have been chosen
in a way that the computation to communication ratio can
represent realistic scenarios. To that purpose, we have run
a parallel MPEG video compressor in our heterogeneous
Lab cluster. An input video is composed of frames and each
frame can be processed independently [22]. Table 4 shows
the communication and the execution times of 600MByte of
raw video and the ratio of communication time to execution
time in our experimental environment.

In order to analyze the impact of the degree of heterogene-
ity of resources on the scheduling algorithm, experiments
are conducted using clusters of different heterogeneity. We
randomly generate computing and communication resources
by variating the standard deviation and by using the same
mean of 0.50 and 30 for computation and communication
respectively. Table 3 shows the standard deviations for
generating the different set of communication and computa-
tion respectively. For every run, we compute a normalized
makespan relative to theideal makespan. Every run is
executed for 100 times and the average over the runs is
taken.

Table 1: Experimental Runs using Homogeneous Resources
(N = 10,Wtotal = 2000, µi = 1, λ = θ = 1)

Run Value of Ci(i =
1, ..., N)

1 10
2 20
3 30
4 40
5 50

Table 2: Experimental Runs using Homogeneous
Resources (N = 10,Wtotal = 2000, µi =
0.45, 0.65, 0.84, 0.5, 0.4, 0.44, 0.37, 0.55, 0.64, 0.4, λ =
θ = 1)

Run Value of Ci(i =
1, ..., N)

1 10
2 20
3 30
4 40
5 50

Table 3: Heterogeneity Change for Communication and
Computation in Experimental Scenarios

Standard Devia-
tion for µ

Standard Devia-
tion for C

0.05, 0.1, 0.15,
0.2, 0.25, 0.3,
0.35, 0.4, 0.45,
0.5

0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5

Table 4: Video Compressor Communication and Computa-
tion Times

Transfer Time
(Sec)

Computation
Time (Sec)

Ratio of Commu-
nication to Com-
putation

26.375 578.9375 21.95023697

4.2 Performance Analysis
In devising a scheduling algorithm for a single-round-

based applications, several requirements have to be consid-
ered. Those requirements considerations have an impact on
the experimental results:

a) Minimize waiting time of processes. This waiting
time can be generated in 2 cases:

• Processes wait for other processes to complete:
after being assigned their chunks, processes
which complete their executions first will wait
for other processes to complete their execu-
tion. Our scheduling algorithm imposes that all
computing workers complete their executions
at the same time.

• Processes wait for other processes to start: as
our algorithm distributes the chunks to the
processes in a sequential fashion, processes
wait to receive their chunks. A selection policy
of resources can decrease the impact of this
problem on the overall performance of the
scheduler. Our algorithm does not impose a
selection policy and any selection policy can
be used.

Figure 3 shows the relative performance of our scheduling
algorithm on a homogeneous environment. The makespan
decreases when the network capacities increase to become
close to the ideal makespan with large network capacities;
i.e., C=60. Figure 4 shows the chunk sizes that are distributed
to the computing workers according to the scheduling al-
gorithm. It shows that as the network capacity increases
between the master and the computing worker, the chunk
size decreases. This is to accommodate quicker transfer
time for a current process during which previous processes
are being executed. The scheduling algorithm shows a
good performance with heterogeneous computing powers
as shown in Figure 5. Figure 6 shows the corresponding
chunk sizes distribution. To know the performance of the
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scheduling in a heterogeneous environment for both com-
puting and networking resources, we calculate the relative
makespan in different heterogeneous sets of computing and
networking scenarios as shown in Figure 7. The scheduling
algorithm achieves a relative makespan of 1.21 for low
processing heterogeneity (standard deviation of 0.1) and
medium networking heterogeneity (standard deviation of
6). The performance of the algorithm decrease with high
computing heterogeneity (standard deviation of 0.35) and
high network heterogeneity (standard deviation of 10).

At the performance level, while it looks intuitive that a
selection policy by increasing of networking capacities will
achieve a better performance than using no selection, as
the waiting time of the remaining processes waiting for the
chunk to be distributed to the previous processes will be
less, yet our first experiments were to schedule loads without
any selection policy. By sorting the resources based on their
computing capacities of resources in an increasing order,
the scheduling algorithm achieves a minimum makespan of
1.20 and a maximum is 1.31, as shown in Figure 8. When
resources are sorted by network capacities the algorithm
achieves a relative performance of a minimum of 1.19 and
a maximum of 1.22, as shown in Figure 9; an improvement
over the performance of the algorithm with no selection
policy or with computing-based selection.

Fig. 3: Relative Performance of the Scheduling Algorithm
on Homogeneous Clusters with Increasing Network Capac-
ities.

5. CONCLUSION
In this paper, we presented a dynamic scheduling algo-

rithm for divisible load applications to a set of heterogeneous
computing workers to obtain an optimal performance. The
algorithm uses single round, as this is the most used design
algorithm by developers for its simplicity to program. Taking
into consideration the processing and the networking capac-
ities, our algorithm shows a good performance compared

Fig. 4: Chunks Allocated to Computing Workers on Homo-
geneous Clusters with Increasing Network Capacity.

Fig. 5: Relative Performance of the Scheduling Algorithm
with Heterogeneous Computing Powers and No Selection
Policy versus Increasing Network Capacity.

to the ideal performance, in particular whenever a selection
policy is applied. The performance results show that our
algorithm has a relative makespan of 1.19 with increasing
network and processing heterogeneity of of 9 and 0.3 respec-
tively, by using a network-based selection with increasing
order of network capacities.
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Abstract. Effective job scheduling schemes play a critically important role in cluster-based parallel processing sys-

tem for remote sensing image. However, the recent job scheduling strategies without accurate estimated run time of 

algorithms commonly treat various parallel algorithms as undifferentiated jobs, which could cause blindness in re-

source allocation, and always lead to low system utilization and long average weighted turnaround time of job. To 

properly settle the problems above, APKB an Adaptive Prior-Knowledge-Based parallel job scheduling strategy is 

proposed in this paper. The length (average run time of processing per unit data) of various parallel algorithms that 
recorded in the prior knowledge database with self-learning ability are used for estimating the accurate run time of 

parallel jobs. With the accurate estimates of job run time and system load that dynamically computed by fuzzy 

model, the optimized resource allocation policy will be used in APKB strategy to shorten the average weighted 

turnaround time of job, and finally to achieve the load balancing of the entire system. Through experimental and 

comparative analysis, its outstanding scheduling efficiency is showed in this paper. 

Key words. Parallel Processing System for Remote Sensing Image; Dynamic Scheduling Strategy; Load Balancing 

1   Introduction 

Remote sensing image processing is a compute-intensive and time-consuming task. And the increasing image 

scales pose many computational challenges for cluster-based processing system for remote sensing image. A 

suitable parallel job scheduling strategy is the key to achieving high parallel efficiency 
[1-4]

. Commonly, the 

Operation and Management sub System (OMS) which responsible for parallel job scheduling always uses some 

cluster scheduling strategies like FIFO, First-Fit, Greedy, Priority, Weighted round-robin, Backfilling and so on. 

Due to the lack of accurate estimated run time of jobs and real-time load of system, those scheduling approaches 

which simply assigned to different jobs with the same number of computing resources, always suffered from 

poor system utilization and long average weighted turnaround time of job. 

To properly solve the issue above, APKB an Adaptive Prior-Knowledge-Based parallel job scheduling strate-

gy is proposed in this article. In this strategy, the prior knowledge database is imposed for accurately estimating 

the run time of parallel jobs. And with the accurate estimates of job run time and system load gained dynamical-

ly, the system utilization and performance could be greatly improved through proper allocation of system re-

sources during job scheduling.    

2   Adaptive Prior-Knowledge-Based Scheduling Strategy 

Adaptive Prior-Knowledge-Based scheduling strategy is a dynamic parallel job scheduling scheme for cluster-

based parallel remote sensing image processing system. By using adaptive resource allocation policy, APKB 

strategy dynamically allocates the system resources to various parallel jobs that enter the system according to 

the accurate estimates of job run time and current system load. Rather than the simple even allocation policy 

used by other scheduling strategies, this adaptive resource allocation policy would automatically adapt to the 

changing system load conditions and randomly arrived jobs. The mechanism of APKB strategy is illustrated as 

follows. 
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Fig. 1. The mechanism of APKB strategy 

The mechanism of APKB strategy is implemented under following steps: 

1) Estimates the accurate run time of job. By querying prior knowledge database with algorithm name of job, 

the relevant length (average run time of processing per unit data) of that parallel algorithm will be get to calcu-

late the average run time per unit data with single node. Accordingly, this average run time together with the 

data amount of image to be processed are used for estimating the accurate run time of job.  

2) Gain system load of the cluster. Through continuously monitoring of the load conditions of all nodes, like 

CPU utilization, Memory utilization, I/O speed of disk and response time, the load of each computing node 

would be dynamically gained. And the system load of the cluster is the weighted value of the node load. 

3) Implement adaptive resource allocation policy. Dynamically allocates the system resources to the arriving 

parallel jobs according to the accurate estimates of job run time and current system load.  

4) Job submission. Finally the jobs submit to cluster scheduler for execution.  Update the actual run time of 

the algorithm into the prior knowledge database when finishing job execution. 

2.1 The Accurate Estimation of Job Run Time 

The accurate estimates of job run time is determined by Tave which is the average run time of processing per unit 

data with single computing node and m which represented for the total data amount of remote sensing image to 

be processed. When arrives a new job request, the value of Tave would be queried from prior knowledge data-

base by the APKB strategy. And obviously the accurate estimates of job rum time would be equals to

mTT ave ×= . 

The prior knowledge database is used for storing the basic information of various parallel algorithms, like 

Tave and Ntal which is the total number of algorithm runs. Whenever the task is completed, the value of Tave and 

Ntal in prior knowledge database should be updated. 

The new value of Tave is:    )1/())*/(( ++×= talrtalaveave NmntNTT                         (2.1) 

Assume that the actual job run time is tr when using m assigned computing nodes and dealing with image da-

ta of m MB. 

2.2 Estimating System Load Using Fuzzy Membership Functions 

The system load which considered as a synthesized metrics of whole cluster is closely related to CPU utilization, 

memory Utilization, disk I/O speed and system responding time. Usually, it is hard to exactly tell whether the 

utilization of CPU or memory is high or low, as the problem its self have some kind of uncertainties. Therefore, 

three simplified fuzzy membership functions fL(u), fM(u) and fH(u) depicted in figure 2 are put forward to 

respectively define three levels High, Middle and Low. 

According to fuzzy statistical method, the expression of those three simplified fuzzy membership functions [5-

7]
 put forward is as follows, where u is the utilization of CPU.  
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When given the CPU utilization u  of any time, the CPU utilization level could be pointed out as L, M or H 

according the above fuzzy membership functions. Similarly, when considering four factors CPU utilization u1, 

memory utilization u2, disk I/O Speed u3 and responding time u4, we will get four similar groups of fuzzy mem-

bership functions. While define a factor Set U={ u1,u2,u3,u4 } , then there exists a fuzzy relationship from factor 

set to decision-making set V={L,M,H}. This fuzzy relationship is expressed by
43×R , and ijr indicates the level 

set that factor j belongs to.  
Obviously, the larger r1jis, the higher possibility that u1 would belong to L set. Considering that the node with 

low CPU utilization leads to low CPU load, so the CPU load is like r11×(-2) + r21×0 + r31× 2. Similarly, the 

calculate method of each node load factor is showed in following table. 

 CPU Memory I/O Reponses 

L r11×（-2） r12×（-2） r13×（-4）  r14×2 

 M r21×0 r22×0 r23×0 r24×0 

 H r31×2 r32×2 r33×4 r34×（-2） 

Table. 2.1. The calculate method of each load factor of node 

It is indicated that the coefficients (2, 2, 4, 2) given in the above table can also be regarded as weight of each 

factor (0.2, 0.2, 0.4, 0.2) in calculating system load. Accordingly, the load of each computing node is:  

Load =[r11×(-2)+  r31×2 + r12×(-2) +r32×2 +r13×(-4)+ r33×4 +r14×2 +r34 ×(-2)]        (2.4)                            
Finally, the system load of the entire cluster is Loadave:  
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iiave LoadLoad
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Assume that there are N computing nodes in the cluster, and the load of the ith node is 
iLoad , 

iω  is the 

weight of each node and 
∑
=

=
N

i

i

1

1ω
. The nodes with high performance will have a high weight value

iω . 

2.2 Adaptive Resource Allocation Policy 

The main ideal of the adaptive resource allocation policy is: the parallel algorithms are classified into four 

different categories according to Tave the average run time when processing per unit data with single node. Also, 

the job queue is divided into four separated sub queue by the amount of resources to be allocated. The mapping 

relationship from algorithm categories to job queue is as follows. 
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Furthermore, Loadave the real-time system loads of the whole cluster are classified to four levels, each level 

have its Corresponding index valueλ , the mapping relationship between λ and Loadave is expressed as fol-
lows. 
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Eventually, the amount of resource to be allocated is dynamically determined by the accurate estimates of job 

run time and the real-time system load of cluster.  And the accurate estimates of job run time could be calculated 

by Tave and data amount. Therefore, the amount of resources allocated to each job equals to λ×= Nn . 

As a matter of fact, when more parallel jobs are processed in the system, the estimates of job run time will be 

more accurate due to the self-learning ability of prior knowledge database, and finally the resource allocation 

would be much more reasonable and adaptive.  Just benefit from the proper resource allocation, the  run time 
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gap between long parallel job and short parallel job is shorten, and also the time overhead caused by long paral-

lel jobs and short parallel jobs waiting for each other is reduced. Accordingly the optimized performance of the 

whole system would be achieved. 

3   Performance Evaluation and comparison 

Through the quantitative evaluation of the average weighted turnaround time and system utilization of both 

APKB and FIFO strategy, their performances are comparatively analyzed. 

3.1. Comparative Analysis of Average Weighted Turnaround Time 

Suppose that n parallel jobs are requested randomly, Tprocess, Twait and Tweight are respectively the actual run time, 

waiting time and average weighted turnaround time. And the TFIFO-process-i and TFIFO-wait-i are stands for the run 

time and waiting time of the ith jobs when using FIFO strategy, the TAPKB-process-i and TAPKB-wait-i are stands for 

the run time and waiting time of the jth jobs when using APKB strategy. 

The average weighted turnaround time for FIFO strategy TFIFO_average is: 

∑
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The average weighted turnaround time for APKB strategy TAPKB_average is: 
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The differences between TFIFO_average and TAPKB_average is : 
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As the waiting time of both two scheduling strategies iwaitFIFOT __  and iwaitT __APKB  are almost equivalent 

due to the random job requests, we assume that this waiting time equals to to . The difference between 

TFIFO_average and TAPKB_average is estimated in equation 3.3. From the above formula we can infer that the when 

using FIFO strategy, there is a big gap between the run times of the long jobs and short jobs, but when using 

APKB strategy, the run time of each job is trend to be similar especially when lots of parallel jobs are requested. 

Suppose that the sums of processing time of each job when using these two scheduling strategies are nearly the 

same, which is showed in equation 3.4. And when there are lots of jobs requested, the time of iprocessT __APKB

will trend a mean value processing time Tp/n. So according to theory expressed in equation 3.5, the average 

weighted turnaround time for APKB strategy is much smaller. Obviously, when the gaps between the long par-

allel jobs and short parallel jobs are widen, the performance improvement will be more significant.  

3.2. Comparative Analysis of System Utilization 

The system utilization is the ratio of current system load and total ability of system load. When do job schedul-

ing the load balancing between computing nodes is an effective way to raise system utilization. 

The system utilization η  is:   %100×=
total

busy

N

N
η                          （3.6） 

During a period time of T (T is big enough) which equals to T=Thigh +Tmiddle +Tlow, the system load could 

be divided into three phases as High load, middle load and low load.  

So the system utilization when using FIFO strategy FIFOT _η is: 

FIFOlow
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____ ηηηη ×+×+×=         （3.7） 

 And the system utilization when using APKB strategy APKBT _η is: 
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While the system is high loaded, the FIFO strategy which allocated to each parallel job with same amount of 

nodes will finally leads to over loaded of some nodes, so the 
APKBhighFIFOhigh __ ηη < . When the system is phase 

of middle loaded, these two strategies will implement nearly the same resource allocation, so

APKBmiddleFIFOmiddle __ ηη ≈ . But when system is poor loaded, the FIFO strategy will result in the idle of some 

nodes, thus 
APKBlowFIFOlow __ ηη < .To draw the conclusion that APKB scheduling strategy would achieve a much 

better system utilization. 

4 Experiment & Analysis 

The experimental performance comparison of FIFO and APKB will be taken on Lenovo Deepcomp 6800 which 

composed of 18 nodes, each with dual Intel(R) 3.0Ghz processors. Network capability is 1000MBps. The re-

source amount allocated to each is 4 for FIFO.  

(1) Comparative analysis of total time and average weighted turnaround time 
As is showed in the figures the APKB scheduling strategy outperforms FIFO strategy with smaller total run 

time and average weighted turnaround time. 

 

Fig. 2. Comparison of total time and average weighted turnaround time 

(2) Comparative analysis of system utilization 

   
(a) 50 samples of jobs                (b) 100 samples of jobs 

  

 
 (c) 200 samples of jobs                 (d) 300 samples of jobs   

Fig. 3. Comparison of system utilization  

As is demonstrated in figures above, the APKB strategy gains more system utilization than FIFO. And with 

increasing of job samples, the system utilization trends to be stable rather than FIFO. 

5 Conclusions 

In this paper introduced and implemented a practical and efficient adaptive prior-knowledge-based parallel job 

scheduling strategy for cluster-based parallel processing system of remote sensing image. Trough accurate esti-

mation of job run time using a prior-knowledge data base and real-time system load of cluster, an adaptive re-

source allocation policy is used avoid the blindness in resource  allocation. Experimental results have shown that 
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the average weighted turnaround time of jobs is greatly reduced by the proposed scheduling strategy, and also a 

better system utilization and performance enhancement is achieved. 
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Abstract— Multicore-GPU platforms are now common and
affordable, yet capitalising on their parallel processing
capability is not straightforward. Existing sequential and
parallel software must be tuned, or designed anew, to
efficiently capitalise on these platforms.

This paper presents the design of parallel data list pro-
cessing in multicore-GPU platforms, wherein application
data is organised into various lists, one list for each core
and GPU device, for the purpose of balancing the workload
through work (data items) stealing. A novel aspect of our
design is the processing ofnew data dynamically gen-
erated within GPUs. We present experimental results for
three applications with different granularities and access
patterns. Overall the use of GPUs can significantly improve
performance, but using them profitably may not be simple.

Keywords: Parallel Computing, Multicores, GPUs, Load Balanc-
ing, Shared Memory

1. Introduction
Multicores and GPUs are now common in laptops, desk-

tops and compute nodes in clusters, offering unprecedented
compute power to improve application performance sub-
stantially in many cases. And the cost is rather reasonable.
However, not all of this compute power is readily usable.
Existing software must be tuned to be able to capitalise
on the parallel processing capability of such platforms.
Sequential applications must be redesigned anew and im-
plemented into a parallel multi-threaded version with shared
memory communication based on semaphores, locks and/or
conditional variables [1].

Many parallel application were designed for cluster com-
puting using the message passing interface (MPI). In clusters
of uniprocessor nodes, they would run in parallel with a
single process running on each node. In cluster of mul-
ticore nodes, they can capitalise on the parallel capacity
of these platformsunmodified, running as many processes
for each multicore node as cores available in each node.
However, processes running in the same node will com-
municate through message passing which, in principle, is
less efficient than shared memory communication between
threads because of the need to prepare, send, receive and

unpack messages. Also, MPI applications must be modified
to capitalise on the parallel capacity of GPUs, as using GPUs
involves shared memory communication between the host
platform and the GPU device [2], [3].

The Data List Management Library (DLML) is a middle-
ware to process data lists in parallel that has undergone the
above tuning in order to run more efficiently on clusters of
multicore nodes with GPUs attached to some nodes. The first
version of DLML was based on multiprocess parallelism and
communication based on MPI message passing.MultiCore
(MC) DLML is based on multithreaded parallelism and
shared memory communication for intra-node parallelism
and message passing for inter-node parallelism; it has been
reported in [4], [5].

This paper presentsMultiCore-GPU (MCG) DLML,
a version able to capitalise on the parallel capacity of
multicore-GPU platforms. The main issues we addressed in
the design of MCG-DLML were: i) communication between
the multicore platform and the attached GPU, and ii) the
processing of dynamically generated data within the GPU.
The last aspect is novel in that most GPU applications
involve some form static processing, wherein a GPU is
allocated a fixed amount of work (e.g., a scalar-vector
multiplication) that is processed until completion before the
GPU is allocated more work. In contrast, one of our DLML
applications, the Non-Attacking Queens (NAQ) problem [6],
generates new data items dynamically, which is handled as
follows in MCG-DLML. Application threads running on the
multicore platform insert new items back into its list. Appli-
cation threads running on the GPU share an input buffer from
which they read items to process and an output buffer onto
which they write new items dynamically generated. Once
the input buffer is exhausted, the input buffer is turned into
the output buffer and the previous output buffer is turned
into the input buffer.

The paper continues as follows. Section 2 presents the
motivation for parallel data list processing. Section 3 outlines
the organisation of MC-DLML. Section 4 presents the design
of MCG-DLML. Section 5 presents our experimental plat-
form and applications to compare the performance of MC-
DLML and MCG-DLML. Section 6 presents our results. We
present results for three applications with different granular-
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ities and data access patterns running on a single multicore
with a GPU attached, as using two or more multicore nodes
would involve message-passing overhead which will become
dominant. Two of our applications show much improved
performance on the multicore-GPU platform; the other appli-
cation shows some performance loss due to communication
between the host multicore and the GPU device, but we
believe it can be tuned. We conclude in Section 7.

2. Parallel Data-List Processing
In designing DLML [7], our purpose was to simplify the

parallel programming of some applications through provid-
ing users with a simpler interface than that provided by
MPI or Pthreads, or both. Other middlewares for parallel
computing that have the same purpose are Skeletons [8]
and Mapreduce [9]. In DLML, users only need to organise
their data into items toinsert into andget from a list using
DLML functions. DLML applications run under the Single
Program Multiple Data (SPMD) model: all processors run
the same program but operate on distinct data lists. When
a list becomes empty, it is refilled throughstealing data
items from another list transparently to the programmer.
Only whenDLML_get() does not return a data item, the
calling application thread knows that no more data items
are available and it can terminate. DLML functions hide
synchronisation communication from users, while automatic
list refilling tends to balance the workload according to the
processing capacity of each processor, which is essential for
good performance.

The first version of DLML [10] was designed with clusters
composed of uniprocessor nodes in mind, and thus was
designed based on multiprocess parallelism and message-
passing communication with MPI. In this version, an appli-
cation process and a DLML process are run in each node.
The former runs the application code while the latter is in
charge of: i) making data requests to remote nodes when
the local list becomes empty, and ii) serving data requests
from remote nodes whose list has become empty. Both tasks
follow a message-passing protocol. Message passing is also
used between an application process and itssibling (in-
same-node) DLML process to move list items between their
address spaces.

Note that the first version of DLML can rununmodified
in clusters of multicore nodes and yet capitalise on intra-
node parallelism, i.e., running in parallel on the various cores
available within each multicore node. We only need to run
an application process and a DLML process for each core.
However, message passing would be used between DLML
processes running in the same multicore node. An obvious
improvement was to reduce the communication overhead
of message passing between the cores in the same node,
through multithreaded parallelism and communication based
on shared memory.

void application_thread( void *my_id ) {
DLML_dataitem item;
DLML_list *L = DLML_thread_list( my_id );

if ( DLML_Iam_master_thread( my_id ) ) {
insert_data_items();

while ( DLML_get( L, &item ))
process_data_item( &item );

}

int main(int argc, char *argv[]) {

DLML_init( argc, argv );
application_thread( (void *) 0 );
DLML_finalise();
return 0;

}

Fig. 1: General organisation of an application in MC-DLML.

3. MultiCore DLML
Multicore DLML, or MC-DLML, was designed based

on multi-threaded parallelism and shared memory com-
munication for intra-node parallelism [4], [5]. Figure 1
shows a typical application in MC-DLML. The code in
the main() procedure in Figure 1 is run by the master
thread (id=0) only. The callDLML_init() initialises the
DLML lists for each application thread, and then creates
as many applications threads as cores available (by default)
or as many as the user indicates as a parameter in the
command running the application. The master thread then
itself runs the code corresponding to application threads,
application_thread(), passing as parameter its id 0.
Within the application thread, the user code must distinguish
between the master thread and all other threads: the master
thread typically inserts the data items to be processed, or just
the initial data items if the application dynamically generates
data items, and then loops whileDLML_get() returns a
data item to process it. The user code deals with a single
list, while internally several lists are implemented.

The main issues addressed in designing MC-DLML were
the following: i) the locking overhead for MPI calls to be
thread safe, ii) cache locality and memory consumption, and
iii) intra-node synchronisation cost.

i) MC-DLML uses various application threads, usually
as many as the number of cores available in each mul-
ticore node, and only one thread to make requests to
remote nodes and to serve requests from remote nodes
usingMPI_THREAD_FUNNELED support, which does not
involve thread-safe locking. Using one thread to make
requests and another thread to serve requests simplifies
coding, but requires usingMPI_THREAD_MULTIPLE or
...SERIALIZED level support, which involves thread-
safe locking whose overhead with fine-grain applications we
found to be quite high.

ii) MC-DLML uses a list for each application thread,
each thread getting items from, and inserting new items
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dynamically generated at, the front of the list, i.e., using lists
as stacks. Hence items that have just been placed on the
list are sooner removed from the list and processed while
still resident in the cache. Using other list organisations,
we found we were losing cache locality. We also found
that, one of our applications, the non-attacking Queens
(NAQ) problem, consumes much less memory when we
use lists as stacks (a problem similar to traversing a tree
either depth-first or breadth-first). Thus our design of MC-
DLML that outperforms DLML uses a single list for each
application thread, with gets from and inserts at the front.
This design decision has various points in common with the
“data structures in the multicore age” described in [1].

iii) Application threads running in a multicore share a
workload. Although each thread uses a list to get and insert
the data items, when a list becomes empty, the owner thread
stealsdata items from another list. Hence the workload gets
balanced according to the processing capacity of each thread.
The simplest work stealing synchronisation algorithm is for
a thread to lock its list every time it inserts or gets a data
item from its list, and for a work stealing thread to lock its
list and the lists of other threads when attempting to refill
its list.

To optimise performance, we identified twooperating
modesfor each thread:normal operationand stealing op-
eration. A thread is in normal operation when it is either
inserting or getting a data item. A thread is in stealing
operation when it is attempting to steal data items to refill
its list, or when a thread stops using its list as a result of
acknowledging the synchronisation required by a stealing
thread. In one of our synchronisation algorithms [5], nor-
mal operation requires no synchronisation. Each thread that
inserts or gets a data item onlyreadsa flag to check if a
stealing operation has been signalled in order to change its
operating mode. Thus in normal operation no overhead but
that read is incurred. Under a stealing operation, synchro-
nisation is needed for threads to stop using their lists so
that the stealing thread does not interfere with the normal
operation of the other threads. This synchronisation requires
all other threads to stop using their lists in order for the
stealing thread to choose the largest list to refill its list.
We call this algorithmGlobal Locking(GL). Choosing the
largest list is in principle a good policy, as it should tend
to reduce the number of work stealing operations and the
corresponding overhead.

In another algorithm we designed [4], we identify safe
phases to access the lists of other threads with no or little
synchronisation, thereby reducing the overhead of stealing
operations. The purpose was to avoid potentially long idle
periods running coarse grain applications. We call this al-
gorithm Low-synchronisation Locking(LSL). LSL requires
each thread to lock its list every time it entersDLML_get()
or DLML_insert(), and unlock it when it returns from
those procedures. The locking and unlocking consists of

01 int DLML_get( LIST *L, ITEM *item ) {
02 synchronise if needed // SYNCHRONISE
03 if L->size > 0
04 *item = L->first // GET ITEM
05 return 1
06 else // REFILL LIST
07 signal synchronisation for
08 exclusive access to other
09 list/s
10 if data items available
11 steal some
12 return 1
13 else
14 return 0
15 }

Fig. 2: DLML_get() main phases.

turning on and off a flag with atomic operations — not a
mutex lock which is more costly. Then, a stealing thread only
attempts to steal data items from a list that is not currently
locked.

For different workloads, each of the algorithms above
can be superior. GL will tend to perform well with fine-
grain applications, while LSL with coarse-grain applications.
Figure 2 shows the main phases of DLML_get() under either
GL or LSL.

4. MultiCore-GPU MCG-DLML
4.1 Introduction

Recall that MPI parallel applications can run unmodified
on multicore-node clusters, although not as efficiently as
they would run if they were tuned to use multithreaded
parallelism and shared memory communication. On GPUs,
however, an application cannot run unless it is adapted to
capitalise on the parallelism that GPUs offer.

GPUs are designed to perform well in compute-intensive,
highly parallel computation typical of graphics rendering and
many scientific applications that model physical phenomena.
Their design devotes more transistors to data processing
than to data caching and flow control [11]; the opposite is
the case in general purpose processors. GPUs can process
many data elements in parallel using the same program.
However, thissame programis not quite the same as that in
the term Single Program Multiple Data (SPMD). In GPUs,
the same programis synchronised by hardware, while in
SPMD it is synchronised through message passing and/or
shared memory synchronisation primitives specified by the
programmer.

In GPUs, thesame programis scheduled as follows. First,
a thread in the host platform (e.g., a multicore) copies the
data to be processed from host memory onto GPU memory,
and theninvokesthe GPU threads to run thesame programto
process the data. When the GPU finishes processing the data,
it signals the host thread, which may again schedule new
work. Below, we describe the main components of MCG-
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DLML related to processing data items in GPUs: GPU work
scheduling and GPU dynamic data processing.

4.2 GPU work scheduling

Scheduling work onto a GPU consists of first copying
the data to be processed from host memory onto GPU
memory, and then invoking the GPU threads. This is as
follows in MCG-DLML. Recall that MC-DLML uses, in
each multicore node, various application threads, usually as
many as the number of cores available in each multicore
node, and one thread to make data requests to remote nodes
and to serve requests from remote nodes. In addition to those
threads, MCG-DLML uses a Host-GPU (HG) thread to move
data from host memory onto GPU memory and vice versa,
and multiple GPU threads in charge of processing data in
GPU memory.

The HG thread is similar to the application thread shown
in Figure 1 in that it repeatedly calls DLML_get() to get
items while items are available. The HG thread runs on the
host and the items it gets it copies them to GPU memory
as described shortly. As DLML_get() steals data items from
other lists if need be, the workload gets balanced among the
cores and the attached GPU/s.

Getting and copying items to GPU memory is different for
each of our applications in order to improve performance.
Our applications include the NAQs problem, a matrix mul-
tiplication (MM) algorithm, and an image segmentation (IS)
algorithm. We describe each application in detail in Sec-
tion 5, and here only the general aspects of their processing
in cores and the GPU. For NAQs and MM, the HG thread
calls DLML_get() a number of times, say N, storing the
obtained data items contiguously in host memory without
processing them. It then copies the N data items to GPU
memory and invokes the GPU threads to process the items.

For IS, the HG thread gets and copies to GPU memory
only one item which is an image. GPU threads are then
invoked to process each a pixel of the image. Each image is
a matrix of size 217 rows and 181 columns, and thus 39277
GPU threads are invoked at once. For MM and NAQ, the
HG thread gets and copies to GPU memory 5000 and 500
items respectively; it then invokes that many GPU threads to
process each an item. The items are described in Section 5.

Invoking GPU threads is asynchronous: the HG thread
can do something else immediately after invoking the GPU
threads, but in our current implementation of MCG-DLML
we do not capitalise on this. Copying data from GPU
memory to host memory (e.g., some totals) is synchronous,
however; the HG thread must wait for its completion.
Moreover, a copy from GPU memory to host memory can
only take place until the GPU has finished processing the
last scheduled work.

4.3 GPU dynamic data processing
The NAQs problem dynamically generates new data items

that need GPU memory to hold them. Hence, not all of
the GPU memory is used to hold items copied from host
memory. A portion of GPU memory is reserved for new
items dynamically generated. Thus GPU memory is logically
divided into two portions. A portion is used as input buffer
to hold items copied from host memory by the HG thread;
the other portion is used to hold items dynamically gener-
ated (out of processing items in the input buffer). Reading
items from the input buffer and writing new items to the
output buffer occur concurrently. When the input buffer is
exhausted, the input buffer is turned into the output buffer
and the previous output buffer is turned into the input buffer
without synchronising with the host thread.

(As MM does not generate new data, we copy as many
items to GPU memory as possible. In the case of IS, we try
to process each image as soon as possible.)

Recall that items to copy to GPU memory are first stored
contiguously in host memory. When copied into the GPU
input buffer, items are also stored contiguously. Also, a
pointer variable is set to point to the beginning of the output
buffer. Then, all items in the input buffer are processed
simultaneously: as many GPU threads as the number of
items in the input buffer are run concurrently, each GPU
thread accessing and processing an item whose location in
the input buffer is computed based on the GPU thread ID.

When processing an item, if a GPU thread generates a new
item, such threadatomically increasesthe pointer variable
pointing to the output buffer, and stores the new item in the
address returned by the atomic operation (i.e., the address
of the previous location).

Once the input buffer is processed, the number of new
items generated, sayNEW , is computed from the value
of the pointer variable to the output buffer. The previous
input buffer is turned into the output buffer, and the previous
output buffer into the input buffer, andNEW GPU threads
are run to process the new input buffer. Turning input/output
buffers into the other continues until no new items are
generated and control is given back to the HG thread in
the host platform.

Note that the processing of an item can generate various
new items, but only one for each processing of an input
buffer. If an item can still potentially generate new items
(not all queens have been placed), it is sent back to host
memory, inserting it into the list of the HG thread with
DLML_insert().

5. Experimental Platform and Applica-
tions

This section describes the experimental platform and
applications we used to compare the performance of both
MC-DLML and MCG-DLML. We will present results for a
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single multicore with a GPU attached, as using two or more
multicore nodes would involve message-passing overhead
which will become dominant.MULTICORE specification:
Intel(R) Core(TM) 2 Quad CPU Q6600 (4 cores in total) at
2.40GHz, 4 x 32KB L1 instruction caches, 4 x 32KB L1 data
caches, 2 x 4MB L2 caches (each cache shared between 2
cores), and 6GB DRAM.GPU specification: GeForce GTX
460, 1.53 GHz 336 CUDA Cores (7 Multiprocessors x 48
CUDA Cores/MPK), 1023 MB, 512MB L2 cache.

SOFTWARE used: CentOS release 5.7, Open MPI 1.4.4,
gcc version 4.1.2, NVIDIA Corporation Cuda compila-
tion tools, release 4.0, V0.2.1221, CUDA Driver Ver-
sion/Runtime Version 4.10/4.0, CUDA Capability Ma-
jor/Minor version number: 2.1. The work stealing algorithm
used by both MC-DLML and MCG-DLML is the Low-
synchronisation algorithm reported in [4].

Our applications include: i) image segmentation (IS) using
the Mean-Shift (MSH) method, ii) a matrix multiplication
(MM) algorithm, and iii) the Non-Attacking N-Queens
(NAQ) problem. Image segmentation (IS) with the Mean-
Shift method (MSH) is used to reconstruct 3D brain images
[12], [13], through applying such method to each pixel on
several 2D images (cuts). The method is expensive for the
large number of cuts and high resolution required. The
number of cuts is fixed, but the processing cost of each
cut varies according to MSH cost, which depends on the
intensity of pixels of each cut. In the DLML version, each
list item is an integer value that identifies an image cut; our
experiments processed 165 image cuts.

Matrix multiplication (MM), C = A × B, is a static
application because all data is known in advance. In the
DLML version, each list item contains all the data to
compute an element in the results matrixC, i.e.: a full row
of A, a full column ofB, and thex, y position of the element
in C. A, B andC areN×N matrices, and we experimented
with N = 500 and600.

The NAQ problem consists of finding all possible ways of
placing N queens on an N×N chessboard, so that no queen
attacks another queen [6]. The search space of NAQ can
be modelled with an N-degree search tree. The solutions
are found exploring the search tree for possible solutions,
eliminating those that can not be solved. In the DLML
version, each list item contains a possible solution to explore
formed by the number of queens to be placed and an array
of size N with the position of the queens placed so far.
The listdynamicallyincreases and decreases as new possible
solutions are generated and failed solutions are eliminated.
The cost of finding a solution is a function of the depth of
the relevant item in the search tree.

6. Results
This section presents experimental results on the perfor-

mance of MC-DLML and MCG-DLML running our applica-
tions. In the figures shown below, theY axis shows response

time and theX axis the number of (application) threads
used to run an application code. The results corresponding to
MCG-DLML are labelled with the prefixgpu-. In the results
of gpu- runs, the number of application threads shown, say
N , means thatN − 1 application threads were run in a
core in the host multicore platform, while1 thread was the
HG thread responsible for scheduling work to the GPU as
described in Section 4. The HG thread does not process
application data; it only schedules work to the GPU.
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Fig. 3: MC-DLML vs MCG-DLML (gpu-) running IS.

6.1 Image Segmentation (IS)

Figure 3 shows the performance of MC-DLML and MCG-
DLML (gpu-) running IS with 165 image cuts/files, using 2-8
application threads, one of which is the HG thread in MCG-
DLML runs. IS is a static application: all the images to be
processed are known at the start of each run (no new images
are generated dynamically throughout each run). The master
application thread inserts the id of each image into its list at
the start of computation; then other application threads steal
work from the master thread or other application threads that
have stolen work.

The figure clearly shows MCG-DLML having much better
performance than MC-DLML. This is because IS is an
application that is both coarse-grain and compute-intensive.
IS is a coarse-grain application in that processing each
image is relatively expensive compared to getting its id
from a list and reading the image file onto main memory
to be processed; IS is compute intensive in that it involves
relatively many floating point operations. The use of a GPU
by MCG-DLML clearly helps in this kind of workload,
since the GPU processes each image in parallel using many
GPU threads (one for each pixel), while a core (in the host
platform) processes each image sequentially, i.e., all the
floating point operations involved in processing an image
are carried out sequentially by each core.
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The GPU processes most of the workload because it is
much faster for this kind of workload than each core: the
performance plot of MCG-DLML shows that using only 2
threads (one of which is the HG thread that only schedules
work to the GPU) yields as good performance as using more
threads. Using 3 threads shows only a marginal performance
gain over using 2 threads; using more than 3 threads in-
creasingly deteriorates performance due to synchronisation
overhead, particularly the bottleneck of reading image files
into main memory.

The performance plot of MC-DLML is typical in that
it shows improved performance as more cores (processing
elements of same capacity) are used. The best performance
corresponds to using the same number of application threads
as the number of cores available, 4.
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Fig. 4: MC-DLML and MCG-DLML (gpu-) running MM.

6.2 Matrix Multiplication (MM)
Figure 4 shows the performance of MC-DLML and MCG-

DLML (gpu-) running MM with N = 500 and 600, using
2-8 application threads, one of which is the HG thread in
MCG-DLML runs. MM is a static, medium-grain applica-
tion. MM runs for a relatively short time (less than1s for
those values ofN ), and thus any of its threads that gets
delayed significantly affects overall performance.

MC-DLML performs better than MCG-DLML, nearly
twice as fast in most cases. The way we chose to use the
GPU within MCG-DLML was not profitable for MM. Recall
that each list item contains all the data to compute an element
in the results matrixC, i.e.: a full row of matrixA, a full
column of matrixB, and thex, y position of the element in
C to compute. We decided to move a number of items to
the GPU and process each item using only a GPU thread.
This is conceptually simple, but it involves a wait to get
that number of items to move to the GPU, and also that
each GPU thread carries out sequentially all the operations
to compute the corresponding element in matrixC.
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Fig. 5: MC-DLML and MCG-DLML (gpu-) running NAQ.

Such use involves a relatively high communication to
computation ratio; the communication consists of that wait
to get all the items to move to the GPU at once and the
actual copying of the items from the host multicore memory
to the GPU memory.

The number of items we are moving from host memory
to GPU memory is 5000. The rationale behind this number
was to use as many GPU threads as possible and thus make
the most out of the GPU without modifying the multicore
code substantially. However, this number apparently imposes
a coarse granularity in the use of the GPU. We need to
investigate further how to better use GPU threads for this
kind of workload in the context of MC-DLML.

6.3 The Non-attacking Queens (NAQ) problem

Figure 5 shows the performance of MC-DLML and MCG-
DLML running NAQ for 14− 16 queens, using 2-8 applica-
tion threads, one of which is the HG thread in MCG-DLML
runs. NAQ is a fine-grain application: processing an item
(usually adding a queen) is very quick compared to getting
or inserting an item. It is thus prone to high contention
overhead. However, NAQdynamicallygenerates new items
which each thread inserts into its own list and thus keeps
busy doing work.

The figure shows that MCG-DLML significantly out-
performs MC-DLML. Despite NAQ being a data-intensive
symbolic application, the use of the GPU is very profitable.
This is because the communication to computation ratio
between (the host multicore and the GPU) is relatively low:
the NAQ application generates data dynamically, and most
of the data generated by the GPU is processed by the GPU
itself. Note that MCG-DLML performs much better MC-
DLML for all the problem sizes of the application shown in
Figure 5; Figure 6 shows the same results (response times)
in logarithmic scale.
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7. Conclusions
We have presented a design and an evaluation of paral-

lel data list processing in multicore-GPU platforms. These
platforms offer a very good price-to-computation ratio, and
overall our work shows that they can be used profitably both
in compute intensive applications (e.g., our IS application)
and in symbolic intensive applications (e.g., NAQs appli-
cation). However, performance may deteriorate substantially
because of the communication cost of moving data between
the host platform and the GPU device (MM application).
Although this is to be expected (in retrospect), we initially
thought our MM application would do better running on
a mixed multicore-GPU platform (MCG-DLML) than on a
single multicore platform (MC-DLML).

The rationale behind the design of (MC-MCG-) DLML
is that an application workload gets balanced according
to the processing capacity of the processors running an
application. It obviously needs further tuning for a multicore-
GPU platform. The way a GPU is used imposes a granularity
for scheduling work into the GPU, and it can adversely affect
performance. We will investigate further how to efficiently
use GPUs within MCG-DLML.
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ABSTRACT 

The issue of static scheduling of tasks is of particular 

importance in multiprocessor systems due to optimal use of 

processors and taking less time. It is a NP-Hard problem 

and obtaining the optimal solution involves a high time 

complexity.  Thus the heuristic method is used to solve this 

problem. The genetic algorithms and Automata are suitable 

method for scheduling of multiprocessor systems. In this 

paper a solution is introduced for algorithms of scheduling. 

The main idea in designing these algorithms is to obtain the 

least run time and the highest possible parallel with 

minimum critical path. By using of this solution the graphs 

with many tasks can be transformed in to fewer ones. We 

use a combination of both tasks merging technique and 

scheduling with genetic of algorithm to shorten the length 

of critical path. 

A new genetic algorithm is introduced to schedule of 

multiprocessor systems in which the scheduling priority of 

performing the tasks is based on the number of child. The 

results show that the new proposed algorithm achieves the 

optimal scheduling solution in acceptable time compared to 

other common methods. 

Keywords 

Scheduling, tasks gragh, merging, Multiprocessors, 

genetic algorithm. 

1. INTRODUCTION 

The issue of scheduling in multiprocessor systems and 

heterogeneity distributed systems is a NP –Hard problem. 

In the classical method it is time-consuming to obtain of a 

complete optimal solution of a minimum scheduling and in 

many cases running the tasks randomly takes too much 

time. Thus the heuristic complete optimal solution is not 

necessarily obtained but within reasonable time span an 

answer will be obtained which almost close to optimal 

solution. Many heuristic methods have been introduced 

include: Duplex[14,12], OLB[14,12,4],  

GA[19,20,17,24,21], SA[1,2,19,13,3], LMT[11], MCT[14], 

A*[16,2,19,15], Min-min[14,12,10], Max-min[14,12,10], 

DLS[5], GSA[13], Tabu search[18,19]. One of the best 

heuristic method is to use the genetic algorithm. In this 

paper a new genetic algorithm based on earliest tasks run is 

simulated given their priority on the number of child.  

In order to increase the program efficiencies in parallel 

systems an accurate scheduling of tasks is highly taken into 

consideration. The scheduling should be performed so that 

the total run time of the program with regard to tasks run 

time and the relation between processors can be minimized. 

Certainly the more the number of processors during 

running, the simpler the planning carries out. Today it is 

common to use a lot of processors in super computers, 

quick processing clusters, the distributed networks like 

grids. Hence it is important to optimize along the critical 

path. By using the tasks merging the length of this path can 

be decreased considerably. 

Given being NP-Complete of the scheduling task the 

approaches based on uncertainty methods in this field will 

not ever efficient. In the past decades much works have 

been performed by this algorithm, however many of which 

had not the required efficiency. Therefore, use of 

uncertainly method and mainly the genetic algorithm is 

very effective for solving such problems.  

In this paper, we use a combination of both task merging 

technique and scheduling in order to shorten the critical 

path. Accurately merging of the tasks before scheduling the 

task graphs have significant impact on scheduling result. 

The results obtained by applying our algorithm on the 

different graphs for evaluating the  scheduling algorithm 

represents a positive impact of merging on scheduling.    

2. RELATED WORKS 

In order to improve the performance of scheduling 

algorithms of task graphs, before applying the algorithms, 

they can be prepared by using two solutions i.e. clustering 

[6]and tasks merging [22,26] for suitable scheduling. The 

results from multi processors scheduling algorithms can be 

greatly improved by using of both solutions.  In the 

following, the two above solutions will be examined to 

solve multiprocessors scheduling problems. 

A lot of works have been done on task scheduling in the 

multiprocessor systems by genetic algorithm [19,20,17],. 

Some of them have employed the random genetic algorithm 

and some others used genetic algorithm and prioritizing 

tasks based on height [20]. In this research a new genetic 

algorithm has been simulated based on earliest task run 

given their priority and also on the number of their child.  
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2.1. Clustering the tasks 

A task clustering solves only a part of multiprocessor 

scheduling problem. A cluster of tasks is a set of tasks that 

together are run on a processor. In turn all the edges inside 

a cluster of a graph their relation cost equals to zero. 

Although the sequence of running tasks within a cluster is 

often determined by algorithms of clustering, the main aim 

of them is to increase granulating of tasks graph. However 

the tasks within clusters are not summed together. In the 

other word, the resulting data from each of tasks are sent as 

soon as provided.  It is considered as a substantial 

difference between task clustering technique and task 

merging [2]. 

In order to cluster the tasks some optimal or nearly optimal 

processors are determine for task graph scheduler.         In 

the other word, the more processors are needed from 

generated clusters by algorithm of task scheduling. Also it 

shows where the task clustering is performed prior to 

scheduling. The balancing (LB) for merged cluster is 

proffered because LB is fast and is easily implemented and 

yields better final scheduling. In short, two phase method 

of jobs scheduling and balancing have significant effect 

strategically for job graph scheduling on distributed parallel 

architecture.  

2.2. Algorithm of Merging Task 

In [4] a merging task algorithm is presented which its input 

is a graph with micro granulating. The main idea is iterative 

selection of a pair node for merging. If merging of these 

two nodes lead to decrease the length of critical path, then 

it select two new nodes. 

2.3. Algorithm Based on Graph Rewriting 

System 

Graph Rewriting System (GRS) Is an algorithm used for 

merging tasks[22]. It is employed as a way for reducing the 

length of critical path. The transformation is specified by 

several graph rewriting rules. 

2.4. Prioritizing scheduling algorithm 

based on height or based on offspring 

(children) 

The aim of scheduling in a multiprocessors system is to 

assign N job to M processor so that the finished run time of 

final job in this system is minimized. For simplicity, if two 

tasks are scheduled on two different processors, then the 

communication cost for sending data between two tasks is 

taken as zero. The algorithm of task scheduling generation 

in term of height or offspring is as follows: 

a. Arrange the tasks in order of incremental in term of 

their height or offspring (children).  

b. Repeat the stages 3,4 in the tasks. 

c. Generate a random number r, so that 1<r<m (m is the 

number of processors)  

d. Select the first task from arranged ones and allocate it 

to processor rth then eliminate it. 

By repeating the algorithm of scheduling generated, an 

initial population is generated from search nodes.The path 

from input node to output node is the longest critical path 

where we denote it by and length of path by representing 

the run time of the program in a state in which the 

maximum number of processors can be used. (Each 

existing task in task graph is sent to a processor) the value 

of upper bound of output node reflects the length of critical 

path of the graph. 

 

3. PROPOSED ALGORITHM 

This novel scheduling algorithm is a combined technique 

resulting from task merging as well as tasks scheduling. In 

order to manage large graph with micro granulating, the 

tasks are merged so that in addition to improve the graph 

specifications such as length of critical path, the amount of 

granulating is increased as well. It is done through graph 

rewriting system which consist the series of codes 

transforming graph on task graph. 

It is NP-Complete. Therefore, the approaches based on 

conclusive methods are not so efficient in this field. Using 

of evolutionary processing algorithm and mainly genetic 

algorithm given their non-conclusive nature will be 

effective for solving problems. Genetic scheduling 

algorithm is ever seeking to find the closest answer. In 

order to find a closest answer, this paper presents a two-

step algorithm as follows: 

The first step is to receive a task graph with micro 

granulating. After receiving the task merging algorithm 

graph, it analyzes the graph and attempts to merge the tasks 

for modifying the parameters of qualitative program. The 

next one, the obtained graph from this merging is carried 

out by priority genetic scheduling algorithm based on child. 

The cost sending data between the tasks equals to L+n/B 

where n is the delivered data cost, (B) is the bandwidth an 

(L) is the delay time of the dispatched data. Similarity the 

scheduling problem can be considered as triple (G,B,L) in 

which G is the task graph, B is bandwidth and L is the 

delay time.  

In the general state, the algorithm of rewriting graph system 

can be taken into account as three independent rules: 1: 

Merging single children, 2: Merging all parents, 3: 

Replicate Parent Merge . 

The rule of Merging single children has the lowest cost 

since it does not involve any condition but a sub-graph 

pattern (figure 1). 

 

Figure 1. Merging single children 

As shown in figure 1, by using this rule we can merge two 

nodes with each other if in the tasks graph a node has a 

single children and its children owing a single parent. In 

such conditions, the node C for running will wait the results 
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from node p. If this merging is failed these two nodes may 

be assigned to two distinct processors in a scheduling and it 

is obvious that a such action only will lead to delayed 

entering in to system as large as edge weight connecting 

between both nodes C and p. By merging two above 

mentioned nodes the possibility of wrong decisions will be 

removed when scheduling tasks graph. 

At first glance, it seems that if using of an ideal scheduling 

algorithm taking such implications in to account it can be 

replaced by above method. However by now such 

algorithm is not introduced because of high complexity of 

scheduling. In this paper by distinguishing the problem of 

tasks graph quality improvement from scheduling one the 

complexity of the problem has reduced and the possibility 

of   actual implementation has also provided. 

The merging of propagated parent includes second merging 

all parent rule (figure2). In this rule a task of parent is 

divided in to a number of tasks based on the number of its 

child and each of these copies is merged by one of the 

child.  The first row in the list of conditions will be decisive 

so that the upper bound for each children and their child is 

not increased by merging copy p. 

In the other word if the greatest delay factor of running the 

nodes ci is the node p, then by merging it this amount can 

be reduced (set of nodes C) for each of child having such 

situation.  

 

Figure 2. Merging all parents 

 

As shown in figure 2, by using this rule we can If the node 

p is not the factor affecting the maximum delay of running 

child ci, though by merging the node p with nodes ci the 

upper bound of that node is not increased, but due to 

increased volume of running the negative impact of upper 

bound is transferred to child ci.  Thus, as shown in figure 2, 

the node p is propagated for the whole child existing within 

C set and merged in to them; if the node ci does not exist in 

C set it will be left alone. 

The last rule is the merging of the whole parents As shown 

in figure 3. Here all of the parents’ child of C node denoted 

by pij are examined. If merging the whole parents with C 

causes the level of upper bound of these child is not 

increased the node of interest is added to C set. 

 

Figure 3. Replicate Parent Merge 

The algorithm generating tasks scheduling for initial 

population in term of the number of offspring is as 

follows[25]: 

a. Arrange the tasks in the order of descending in 

term of the number of their offspring. 

b. Put separately the task with the same number of 

offspring. 

c. Select a task from group of tasks randomly and 

eliminate it from group. 
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By using of this algorithm the degree of task graph 

parallelization will be increased due to decrease the length 

of critical path. It means that we can obtain a more suitable 

solution by increasing the number of processors. Having 

applied the above rules, the graph is prepared for applying 

the scheduling. The graph resulting from this technique is 

introduced as an input to prioritized genetic scheduling 

algorithm based on the number of offspring for scheduling. 

In the algorithm evaluation section it has shown that by 

using of this method a suitable scheduling will be 

established. The proposed method passes the tasks based on 

prioritizing the new offspring on processors in order to be 

run. It means that the more the tasks have offspring the 

sooner scheduling is done. Then that tasks are dedicated to 

processors P1 to Pm based on EST method in such a way 

that start time for that task on the processors became short 

for other processors. 

 

4. SIMULATION AND EVALUATION 

In order to evaluate the solution presented in this paper the 

priority genetic scheduling algorithm based on offspring is 

used and also the graph resulting from merging is assessed. 

The scheduling problem is NP-Hard and so far many 

algorithms have been suggested for it [27,6]. The above 

optimizing algorithm is applicable before any scheduling, 

and can be used in place of proposed genetic algorithm. 

The solution of the problem or completed time of running 

the final task in the scheduling algorithm after averaging 

for any similar number of processors / number of work is 

shown in table 2. By over viewing the results it is seen that 

the proposed algorithm has a solution close to optimal one.  

By running the proposed algorithms on graph in the 

figure4, a graph with 16% modification in parallel as well 

as 6% improvement in length of critical path will be 

obtained. Also 5% decrease is seen in number of task graph 

nodes. Figure 5 shows algorithm stability. 

 

Figure 4. A standard task graph 

 

 

Figure 5. Algorithm stability 

 

This graph is introduced into scheduling algorithm as an 

input. A run time 38 is obtained with six processors. In the 

table 1 and figure 6, we see the results of graph figure 4 

with algorithms ETF [9], HLFET [7], MCP [8], EZ [16],LC 

[10]. 

Table 1. Comparison of the figure 4 graph with existing 

scheduling algorithm. 

 

 

 

Figure 6. Comparison of the figure 4 graph with 

existing scheduling algorithm 

In order to evaluate the proposed algorithm, a series of 

simulation has been performed by Visual Basic.net 2005 

package on a computer Pentium IV equipped with 

processor AMD 2.8 MHZ with 512 megabyte memory. By 

using a formulated program for automatically generating 

graph, a set of task graphs including 57 graphs with the 

number of 30, 70, 90 tasks with tasks dependency 

percentage between 1 to 100 have been established in such 

a way that the task run time can be varied in the range of 1 

to 1000. These graphs were scheduled on multiprocessors 

with the number 5,7,9  ones for genetic algorithm without 

applying any priority, genetic algorithm based on offspring 
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as well as new proposed algorithms. In order to take other 

thing being equal, the experiment of all the running steps 

and operators have been considered the same for all the 

three algorithms except for prioritizing and establishing 

initial population. The values of parameters of initial 

population for algorithms are the number of tasks and 

replications (number of generations) respectively. 

Prioritizing based on the number of offspring is better than 

on the height because it is possible that a task has higher 

height than the other one and at the same time has more 

offspring. Logically, running the tasks with more offspring 

have a greater priority compared to the ones having lower 

height.  It allows more tasks to be run, because its prior task 

has been done. On the other hand, it is impossible, that the 

task has more offspring to be the task with less offspring. 

Therefore, its running does not depend on finishing the task 

with less offspring. 

The solution of the problem or completed time of running 

the final task in the scheduling algorithm after averaging 

for any similar number of processors / number of tasks is 

shown in table 2. By over viewing the results it is seen that 

the proposed algorithm improves the solution close to 

optimal one 39% and 24 % compared to priority based on 

height algorithm  and 17 % compared to random genetic 

algorithm and priority genetic algorithm in term of number 

of offspring respectively. However, the computing time and 

implementation of the four algorithms are within the same 

place since only the parts of the four algorithms differ with 

each other; each is computed once and initially for 

generation of primary population. 

 

Table 2. The schedules for last algorithms and proposed algorithm (Merge and Priority based on children) 

Algorithms 

Total Finish Time (TFT) (seconds) 

Number of 

processors =  3 

Number of 

processors =  5 

Number of 

processors =  7 

Number of tasks Number of tasks Number of tasks 

30 50 70 30 50 70 30 50 70 

Algorithm Genetic(A) 1066 2729 7223 2604 2135 3498 855 2314 2919 

Priority based on height(B) 978 2440 6003 1882 2005 3222 850 2199 2888 

Priority based on children(C) 918 2300 5792 2222 1981 3197 809 2065 2742 

Merge and Priority based on children(D) 803 1947 4475 1491 1644 2588 736 1789 2251 

Optimal percent (D) to (A)  32 40 61 74 30 35 16 29 30 

Optimal percent (D) to (B) 21 25 34 26 21 24 15 22 28 

Optimal percent (D) to (C) 14 18 29 5 20 23 10 15 21 

 

Table 2 shows the schedules and TFT for four scheduling 

algorithms. The results indicate that our suggested new 

algorithm finds better schedule with minimum TFT 

compared to the other heuristics. While the computation 

time of the two above genetic algorithms is more than the 

other heuristics obviously, and is quite similar, as only their 

initial population producing step is different, the step is 

calculated once.As it is shown, while the number of tasks, 

the number of processors and task implementation within 

specified time are taken constant.  

As the task dependency percentage increases, 

corresponding to proposed algorithm optimized percentage 

for obtaining the answer close to optimal one, it increases 

over the two other algorithms. The main reason of this 

feather is attributed to merge the tasks prior to prioritize the 

tasks based on the number of offspring. Since the higher 

task dependency percentage is taken into account, the more 

merging of tasks and offspring is and the scheduling 

became better. 

 

5. CONCLUSION 

In this paper, a method is presented for improvement of 

scheduling algorithm efficiency on graph through technique 

of merging tasks GRS. First the existing rules in GRS are 

applied on graph of interest then the output is given to 

genetic scheduling algorithm based on the number 

offspring (children). The results from applying the 

proposed solution on graphs show that after merging the 

task, the existing tasks within graph become small, the 

parallel increases and the length of critical path is shorten. 
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Abstract - The Configurable Emulated Shared Memory (CESM)
is a chip multiprocessor (CMP) architecture. It implements a
dual computational model—the strong synchronous Parallel
Random Access Machine (PRAM) and weaker but more con-
ventional asynchronous Non-Uniform Memory Access
(NUMA)—so that a programmer can make use of easy-to-use
fine-grained parallel algorithmics of the PRAM paradigm for
functionalities with enough parallelism and standard coarse-
grained NUMA algorithms for low parallelism cases. In this
paper we propose adding local memories to CESM processors for
storing thread-private data in the PRAM mode for performance
and safety reasons. While this kind of solutions typically intro-
duce a partitioning problem, most parallel computing lan-
guages make use of the concepts of shared and private data that
provide natural and orthogonal partitioning of data to global
and local subspaces. Preliminary performance evaluation of
the proposed solution on our CESM architecture along with pro-
gramming/implementation considerations are provided.

Keywords: Parallel computing, CESM, PRAM, memory system,
local memories, private and shared data

1 Introduction
Although all the processor manufacturers have moved to

multicore processors, programming of them has remained chal-
lenging. This is partially because the computational models
defined by the underlying architectures are asynchronous and
locality-sensitive, forcing a programmer to constantly orches-
trate execution threads with barrier synchronizations and locks
and play with functionality mapping schemes and data parti-
tioning to obtain even decent performance. The rest of the chal-
lenge is due to the fact that by far the most programming-relat-
ed education is given using the sequential computing paradigm.
Instead of trying to incrementally refine the current tools and the
architectures, we take a radical approach of studying new archi-
tectures that would provide stronger models of computation
and make it possible to program multicore machines in a much
simpler way.

The Configurable Emulated Shared Memory (CESM) is a chip
multiprocessor (CMP) architecture [Forsell09]. It implements a
dual computational model—the strong synchronous Parallel
Random Access Machine (PRAM) [Fortune78] and weaker but
more conventional asynchronous  Non-Uniform Memory Access
(NUMA) [Swan77] scheme—so that a programmer can make use
of easy-to-use fine-grained parallel algorithmics of the PRAM
paradigm for functionalities with enough parallelism and stan-
dard coarse-grained NUMA algorithms for low parallelism cases.

In this paper we propose adding/making use of local memo-
ries to CESM processors for storing thread-private data in the

PRAM mode for performance and safety reasons. While this kind
of solutions would typically introduce a partitioning problem,
most parallel computing languages make use of the concepts of
shared and private data that provide natural orthogonal parti-
tioning of data to global and local subspaces. Preliminary per-
formance evaluation of the proposed solution on our CESM
architecture along with programming/implementation consider-
ations are provided.

The rest of the article is organized so that in Section 2 we
describe the basic concepts used in this paper, including the
PRAM-NUMA and CESM, the way how local memories are
employed in the PRAM mode is described in Section3, in Section
4 we discuss language and compiling support with practical
examples, in Section 5 we evaluate the performance of the pro-
posed solution on our CESM architecture, and finally in Section
6 we give our conclusions.

2. Basic concepts
In order to extend the success story of the sequential com-

puting paradigm also to parallel computing, we have developed
the CESM architecture. It realizes the PRAM-NUMA model of
computation, which can be seen as a physically feasible exten-
sion of the model of sequential computation. In the following
the basic concepts related to this attempt are explained.

2.1 PRAM-NUMA

The PRAM-NUMA model of computation is a configurable
synchronous shared memory model developed by us
[Forsell11a]. It consists of T processors grouped as P groups of
Tp processors, a word-wise accessible global shared memory, P
local memory blocks, a metric defining distance between the
processor groups and target memory blocks, and distance-
aware interconnection network (see Figure 1). Each processor is
attached to the shared memory and each processor group is
attached to its own local memory block. The interconnection
network connects the local memory access paths of processor

Locality-aware memory system for PRAM mode private
data storage in the CESM architecture

Martti Forsell
Platform Architectures Team

VTT
Oulu, Finland

Figure 1. PRAM-NUMA model (P=processor, L=local memory).
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groups together so that remote local memories can be accessed.
This network is distance-aware in a sense that the latency of
routing is proportional to the distance between the source
processor and destination memory. The bandwidths from a
group of processors to the shared memory and local memory
are the same. Each processor can be configured to either the
PRAM mode or NUMA mode. Along with configuration from the
PRAM mode to the NUMA mode, one can set the state of the
processor to point an arbitrary state within the group it belongs
to. With this indirection of states, two or more processors
belonging to the same group can be configured to form a NUMA
bunch so that they execute a common instruction stream and
share their state with each other, i.e. can be seen as executing
code like a single processor would do.

Execution in the PRAM-NUMA model happens in synchro-
nous steps during which every processor of each group executes
exactly one instruction in the PRAM mode and every bunch exe-
cutes exactly as many instructions for a single instruction stream
as there are participating threads in the bunch.

The PRAM-NUMA model solves the low-TLP execution prob-
lem of standard Emulated Shared Memory (ESM) machines by
providing a possibility to configure two or more processors of a
group to use a common state like they were a single processor
and to perform NUMA access to the local memories. In the case
of low TLP portion of code, a programmer can just set up to Tp
processors per group to run that portion as a NUMA bunch and
gain more performance proportionally to the number of proces-
sors in the bunch.

2.2 CESM

The CESM architecture is a hybrid architecture implementing
the PRAM-NUMA model of computation to support both high-
speed execution of functionalities with sufficient parallelism and
full utilization in low parallelism cases [Forsell09]. A CESM CMP
consists of P Tp-threaded (in total constituting T = PTp threads)
F-functional unit MultiBunched/Threaded Architecture with
Chaining (MBTAC) processor cores [Forsell10] connected to a
distributed memory system (see Figure 2). The memory system
has P dedicated instruction memory modules, P local data mem-
ory modules, P Tp-line step caches and scratchpads attached to
processors, P fast data memory modules with active memory
units, and a high-bandwidth multimesh interconnection net-

work. Step caches, scratchpads and active memory units are
used to support concurrent memory access and multioperations
in the PRAM mode [Forsell06]. A MBTAC processor features A
ALUs, M memory units, compare unit, and sequencer organized
as a chain for the PRAM mode and a single ALU, memory unit,
and sequencer organized in parallel for the NUMA mode. In
order to save in hardware costs and to provide as seamless con-
figurability as possible between the PRAM and NUMA models,
the execution pipelines for the modes are merged and share
some units like fetcher, operand select, and the first ALU (see
Figure 3). The effective length of the pipeline is Tp for the PRAM
mode and 4 for the NUMA mode. The CESM architecture imple-
ments support for fast and synchronous switching between the
PRAM and NUMA modes for groups of threads with dedicated
machine language instructions JOIN and SPLIT [Forsell09].
Synchronous switching is necessary because a NUMA bunch
may get switched back to the PRAM mode in the middle of a
PRAM step.

3. Supporting PRAM mode local access
In order to increase the performance of processors, providing

sufficient memory system bandwidth is often one of the most
critical things. In the following we propose adding local memo-
ry access to the PRAM mode of the CESM architecture.

3.1 PRAM mode local access

At the first glance, adding local memories to a PRAM-based
architecture may sound to be against the basic idea of the
model. If we however take a more detailed look at the models
at hand, we can observe that the PRAM-NUMA model features
already local memories but they are dedicated for local/distance
aware remote access in the NUMA mode only. Since also our
PRAM-NUMA implementation architecture, CESM, implements
local memories for the NUMA mode and connects them togeth-
er with a help of the PRAM mode intercommunication network,
it is quite straightforward to consider using these local memories
also in the PRAM mode. This does not require extra hardware
except for adding the local memory operation code field to the
PRAM mode instruction word and adding logic that controls the
local memory unit with this code in the PRAM mode (see Figure
3).

Figure 2. Block diagram of the CESM architecture (P=processor, M=shared data memory, L=local data memory, I=instruction memory,
a=active memory unit, c=step cache, and t=scratchpad)..
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The local memory space of the CESM is easier to extend with
techniques used in sequential computers than the shared mem-
ory. One can just provide each local memory with a standard
memory hierarchy with multiple levels of caches like in the
sequential machines. There will be no coherency problems
since the local memories are distinct from each others assuming
the standard NUMA model is used.

In theory it is possible to extend this technique to multiple
local memory units per processor core but this would make the
partitioning problem much worse.

3.2 Related work

To our best knowledge, this is the first attempt to add local
memories to an ESM architecture. However, there exist some
prior work for the ESM architectures as well as for the memory
systems for them.

The shared memory emulation was first attempted in the late
70’s soon after the PRAM model was introduced [Schwarz80,
Gajski83, Pfister85]. These attempts, however left much room
for improvements in performance, implementability and scala-
bility. The second wave of attempts [Alverson90, Abolhassan03]
included much more sophisticated techniques to address syn-
chronicity and bandwidth constraints of existing parallel archi-
tectures. The current ESM projects include the TOTAL ECLIPSE
[Forsell02a, Forsell10] and XMT [Vishkin11]. The former pro-
vides fully scalable sparse/multimesh interconnection network
while the latter relies on low-latency mesh of trees network fea-

turing link length proportional to square root of P divided by
logarithm of P and thus having weaker scalability. They both
aim to implement ESM as a Chip MultiProcessor (CMP) making
use of the huge communication potential of on-chip networks.

The memory systems for ESM computers has been studied in
the TOTAL ECLIPSE research line. Balancing the slow data
memory access/cycle time with the processor clock rate is con-
sidered in [Forsell02b]. Providing sufficient bandwidth to the
instruction memory in ESM is studied in [Forsell02c]. Active
memory techniques supporting the partial and full multiopera-
tion support are considered in [Forsell05] and [Forsell06], respec-
tively. Local memories are used in many commercial applica-
tion-specific processors, e.g. DSPs, to improve the memory
bandwidth.

Intercommunication belonging to essential parts of memory
systems of ESM computers is considered in a wide variety of
studies. For a summary of the work done before the year 1996,
[Leppänen96] reviews communication solutions that can be
used for PRAM realization. Our recent study [Forsell11b] evalu-
ates the bandwidth, silicon area, and power consumption of var-
ious sparse networks, e.g. sparse meshes, making use of multi-
dimensional embeddings. Various aspects of memory systems in
ESMs making used of networks on chip are studied in
[Forsell11c].

4. Methodological considerations
Widely used distinction between shared and thread-private

data is the key mechanism for simple exploitation of the local
memories in the PRAM mode. In the following we will take a
look at needed language and compiler support.

4.1 Language support

Most parallel programming languages make use of the con-
cept of sharity of a variable. The two most popular forms of
sharity are shared and private. A shared variable is accessible by
all the execution threads while a private variable can be access-
es only by a single thread for which it is declared. The former
raises the question of concurrent access models in synchronous
architectures and exact timing and order of accesses in asyn-
chronous architecture. In the synchronous PRAM mode of a
CESM architecture a programming language could make use of
this distinction to provide a natural partitioning of data to glob-
al and local memories. With these assumptions, programming
the proposed CESM architecture with a high-level parallel lan-
guage happens exactly in the same way as that of the baseline
CESM machines. Explicit assembler programming is a bit more
difficult than that of the baseline machine since one must assign
data to corresponding global and local memory units explicitly.

Consider functionality computing the prefix sum of a vector
of integers. With the high-level e-language, it can be easily
implemented for the PRAM mode of CESM (see Figure 4a). The
compiled version with explicit memory operation assignments is
shown in Figures 4b and 4c. Since global and local memory
accesses can be made during a single step for each thread, the
number of the instructions in the inner loop (L5_LF0) is reduced
by 20%. The speedup is not higher in this case since the local
variable data is stored in a register making the data storage
always private.

Figure 3. Pipeline for the local memory aware solution.
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--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark Tbase Pbase Wbase Tprop Pprop Wprop N Description
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
barrier 1 N N N 1 1 T Perform a barrier synchronization for the threads in the group
block 1 N N N 1 1 T Copy a table of N integers to another place in the memory
prefix 1 N N N 1 1 T Compute an ordered multiprefix of a table of N integers
setup 1 N N N 1 1 T Setup the local variables
update 1 N N N 1 1 T Update the thread numbering for a synchronous construct
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Table 1. Benchmarks used in evaluation.

Configuration E4 E16 E64 C4 C16 C64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Memory system baseline baseline baseline proposed proposed proposed
Number of processors P 4 16 64 4 16 64
Number of functional units F 10 10 10 10 10 10
Number of threads per processor Tp 512 512 512 512 512 512
Number of global memory units Mg 1 1 1 1 1 1
Number of local memory units Mg 0 0 0 1 1 1
Size of data memory (MB) Sm 4 16 64 4 16 64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Table 2. CMP configurations used in the evaluation.

Figure 4. Prefix as e and assembler programs for the baseline and proposed local memory -aware solutions. Local memory subinstructions
are shown with bold typeface.

(A) The E-LANGUAGE source
#include "e+.h"
#define size 65536
int sum_=0; // Shared variable
int source_[size]; // Shared array
int main()
{ int i,p; // Private variables

for (i=_thread_id; i<size; i+=_number_of_threads) // Constant time prefix sum algorithm
{ prefix(p,MPADD,&sum_,i);

source_[i]=p;
}
return 0;

}

(B) The BASELINE version (global memory unit id is 0)
_main           

OP0 -4 ADD0 O0,R29 ST0 R30,A0 WB30 R29
OP0 -8 OP1 8 OP2 ___main  ADD0 O0,R29 SUB1 R29,O1 ST0 R31,A0 JMPL O2 WB29 A1

__BLOCK18
OP0 176 OP1 __thread_id OP2 65535 ADD0 O1,R32 LD0 A0 SLE M0,O2 TRAP O0 WB3 O2 WB31 M0 WB1 AIC
OP6 L3_LF0 BEQZ O6

__BLOCK26
OP0      _source_ OP1 __group_table_ WB5 O0 WB4 O1

L5_LF0
OP0 _sum_ OP1 2 SHL0 R31,O1 ADD1 A0,R5 BMPADD0 R31,O0  WB6  O0 WB1 A0 WB1 A1 WB2 M0
SMPADD0 R2,R6
OMPADD0 R2,R6 WB2 M0
ST0 R2,R1
OP6 L5_LF0 LD0 R4 ADD5 R31,M0 SLE A5,R3 BNEZ O6 WB31 A5 WB1 AIC

__BLOCK41
L3_LF0

OP0 180 TRAP O0 WB1 R0
OP0 _exit JMPL O0

(C) The LOCAL MEMORY -aware version (local memory unit version id is 0, global memory unit id is 1)
_main

OP0 -4 ADD0 O0,R29 ST0 R30,A0 WB30 R29
OP0 -8 OP1 8 OP2 ___main  ADD0 O0,R29 SUB1 R29,O1 ST0 R31,A0 JMPL O2 WB29 A1

__BLOCK18
OP0 176 OP1 __thread_id OP2 65535 ADD0 O1,R32 LD0 A0 SLE M0,O2 TRAP O0 WB3 O2 WB31 M0 WB1 AIC
OP6 L3_LF0 BEQZ O6

__BLOCK26
OP0   _source_ OP1 __number_of_threads ADD0 O1,R32 WB5 O0 WB4 A0

L5_LF0
OP0 _sum_ OP1 2 SHL0 R31,O1 ADD1 A0,R5 BMPADD1 R31,O0  WB6 O0 WB1 A0 WB1 A1 WB2 M1
SMPADD1 R2,R6
OMPADD1 R2,R6 WB2 M1
ST1 R2,R1 OP6 L5_LF0 LD0 R4 ADD5 R31,M0 SLE A5,R3 BNEZ O6 WB31 A5 WB1 AIC

__BLOCK41
L3_LF0

OP0 180 TRAP O0 WB1 R0
OP0 _exit JMPL O0
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4.2 Compiling challenges

The compiling for the proposed architecture can be made
similarly as for the baseline CESM. The challenge is to assign the
correct memory operations to right memory units. This can be
made similarly as in the virtual instruction-level optimization
algorithm [Forsell03] but knowledge about the access space is
needed. It should, however, be noted that this technique would
provide only suboptimal results, since for the optimal reasons,
full parallel alias analysis would be needed.

5. Evaluation
In order to evaluate the performance and utilization of the

proposed local memory -aware technique, we applied it to the
TOTAL ECLIPSE framework being developed at VTT [Forsell10].

5.1 Preliminary performance simulations

We measured the performance of the solutions outlined in
Sections 2 and 3 by simulating execution of five benchmark
problems representing important and widely used primitives of
parallel computing and standard RTL  (see Table 1) in six CESM
CMP configurations having 4 to 64 512-threaded MBTAC proces-
sor cores featuring global memory only or both local and glob-
al memory aware memory systems in the PRAM mode (see
Table 2).

The benchmark programs were compiled with the e-compil-
er, ec, with –O2 and –ilp optimizations on. The resulting pro-
grams were simulated with the IPSMSim tool modified for the
proposed solution. The results of the simulations are shown in
Figure 5.

5.2 Discussion

As expected, CMPs using the proposed memory system solu-
tion executed benchmark programs faster than the baseline
CMPs assuming that both private and shared variables were
used. The individual speedups ranged from 8.7% to 202% while
the average speedups were 34%, 36% and 46% for C4, C16 and
C64, respectively. The results are close to that of the 40% rule-
of-thumb (characterizing typical benefit of an additional memo-
ry unit). The overheads with respect to a similar machine with
ideal memory system were less than 1% in average in the pro-
posed machine. This is only one fifth of that in the baseline
machine. The main reason for this is reduced traffic in the inter-
communication network since the private data accesses are tar-
geted the local memories. The selected benchmark set showed
quite different kinds of memory patterns, some providing equal-
ly high utilizations for both local and shared memory units,
while two had more shared memory accesses than local memo-
ry accesses and one benchmark had more local memory access-
es than shared memory accesses.

6. Conclusions

We have described adding/making use of local memories to
CESM processors for storing thread-private data in the PRAM
mode for performance and safety reasons. While this kind of
solutions typically introduces a partitioning problem, most par-
allel computing languages make use of the concepts of shared
and private data that provide natural orthogonal partitioning of
data to global and local subspaces. According to our evaluation,
the performance increases 40% in average while individual
speedups range from 8.7% to 202%. The hardware implementa-
tion of the proposed solution is very simple since the CESM

Figure 5. Execution time (top left), overhead with respect to ideal machine with the same instruction set (top right), achieved speedup (bot-
tom left), and utilization of memory units (bottom right). Note that the problem size is proportional to the total number of threads in
the architecture.
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architecture provides the local memories and memory units for
the NUMA mode operation anyway.

Our future work includes implementing an FPGA prototype
of the CESM making use of this technique. We will also study
possibilities to implement compiler support for automatic
assignment of right data to rights units/memories.
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On Maximizing Resource Utilization for Simultaneous
Multi-Threading (SMT) Processors by Instruction Recalling∗
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Abstract— Simultaneous multi-threading (SMT) has been
a very popular design in improving resource utilization by
sharing key datapath components among multiple indepen-
dent threads. When critical resources are shared by multiple
threads, to effective use of these resources proves to be the
most important factor in fully exploiting the system potential.
Allowing any of the threads to overwhelm these shared
resources not only leads to unfair thread processing but
may also result in severely degraded overall performance.
How to prevent idling threads from clogging the critical
resources in the pipeline becomes a must in sustaining
system performance. In this paper, we show that, if one can
manage to recall instructions of idling threads from Issue
Queue (IQ), a very important shared resource in the SMT
pipeline, the system performance is easily enhanced by a
significant margin. An even more noteworthy feature about
this technique is that the ensuing hardware overhead is very
insignificant and its effect in clock timing also is negligible.
The feature proposed in this paper can also be easily coupled
with other advanced techniques employed in other stages of
the SMT pipeline.

Keywords: SMT, Instruction Recalling

1. Introduction
Simultaneous Multi-Threading (SMT) offers an improved

mechanism to enhance the overall performance by exploiting
Thread-Level Parallelism (TLP) [1], [2] to overcome the
limited of Instruction-Level Parallelism (ILP), based on the
traditional superscalar processors. The most common char-
acteristic of SMT processors is the sharing of key datapath
components among multiple independent threads, which
ensures improved resource utilization. Subsequently, due to
the sharing of resources, the amount of hardware required in
an SMT system is significantly less than employing multiple
superscalar machines while achieving similar performance.

Due to the requirement in resource sharing (those resource
that are cost-wise better to share such as Issue Queue,

*This material is based in part upon work supported by the National
Science Foundation under Grant Number HRD 0932339. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

functional units, etc.), these hardware components tend to
remain busy in order to accommodate more instructions
from all threads. Although allowing these instructions to
share these resources ensures the full performance potential
afforded by SMT [13], it tends to induce extra control
complexities in managing the critical timing path and the
processors cycle. To retain the exploitation of both TLP
and ILP, a necessary solution must be introduced in order
to minimize the complexity among these shared resources
without affecting the ILP exploitation significantly. At the
same time, an appropriate level of intelligence has to be
incorporated into the resource sharing mechanism to ensure
that threads share these components in the most efficient and
fair manner.

Recently there have been many research activities targeted
in improving SMT performance through modifying various
stages in the pipeline. These include: improvement of thread
co-scheduling by using probabilistic modelling for prediction
in [8], avoiding register allocation by predicting transient
values from branch misprediction in [3], packing instructions
in issue queue to reduce delay and power consumption
in [14], improving SMT fetching with an estimation of
outstanding work in the system for each thread in [18], early
deallocation of registers in association with cache misses
in [12], dynamically reconfigurable cache design for better
IPC in [6], a modified fetch policy with adaptive resource
partitioning in [19], and another fetch policy by considering
memory-level parallelism in [7]. None of these techniques
specifically addresses the contention in the issuing stage and
most come with a significant requirement in extra hardware
to implement the desired intelligence.

In this paper, we show that, if one can manage to recall
instructions of idling threads from Issue Queue (IQ), a very
important shared resource, potential clogging from threads
that are temporarily idle can be drastically relieved, and the
system performance is easily enhanced by a significant mar-
gin. An even more noteworthy feature about this technique is
that the ensuing hardware overhead is very insignificant and
its effect in clock timing also is negligible. This technique
can also be paired with all the techniques aforementioned in
the literature which emphasize on other stages of pipeline to
further improvement the performance.
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2. Instruction Dispatch
There have been many different terminologies adopted

for instruction pipelining stages (e.g. issue, dispatch, etc.)
in a superscalar system. Throughout this paper, we choose
to adopt the terminologies used by most SMT articles, which
is also showed in Figure 1.

In a typical single-thread superscalar system, instructions
are “dispatched” from ROB into the reservation stations (ei-
ther centralized or functional unit-specific) whenever space
is available and then “issued” to the corresponding functional
unit whenever the issuing conditions are met, i.e. operands
are ready and the requested functional unit becomes avail-
able. However, in a basic SMT system, each thread has its
own ROB and instructions from these thread-specific ROBs
have to “compete” for a shared Issue Queue (IQ) through a
dispatching scheduling algorithm. This IQ can be considered
as Centralized Research Station not only shared among the
functional units but also shared among the threads in real
time. A basic functional block diagram of this basic design
is depicted in Figure 1.
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Fig. 1: A Simple Four-Thread SMT Instruction Processing
Flow

Due to the significantly large size of each IQ entry, the
number of entries in this shared resource usually is much
smaller than the number of ROB entries. Having its output
sent into a tightly shared resource, the instruction dispatch
stage is considered one of the most critical stages that dearly
affect the overall system performance.There have been many
non-adaptive dispatching algorithms proposed, including
simple round-robin, within-clock-cycle-round robin [5], and
some other techniques intend to exploit ILP by scheduling

instructions to be dispatched from ROB, which relies on
simple instruction-level readiness to reduce the instructions’
waiting time in IQ [15]. To better utilize the shared IQ
entries, instructions from different threads should be given
different priorities depending on the threads’ “activeness”
in real time. Threads have been shown to demonstrate
various types of transient behaviors throughout their life
span, including stretches of time durations with fluctuating
ILP. Instructions from thread(s) of lower ILP (or simply
“slower” in instruction issuing) would clog the IQ if they
are allowed to continue to be dispatched into IQ. On the
other hand, instructions from higher ILP (or simply “faster”
in instruction issuing) should be given a higher priority
in utilizing the IQ. There have not been many research
results on how to share the IQ in a more time-adaptive
manner allowing different threads to utilize (occupy) the
IQ in an “on-demand” basis. In [11], an adaptive technique
is proposed to allow each of the ROBs to be “partially”
used to accommodate threads that are not as active, in
which “activeness” of a thread is based on a ratio between
number of issue-bound and commit-bound instructions in a
thread’s ROB. Other more advanced scheduling techniques,
such as the one presented in [20], combine more informa-
tion from different stages in the pipeline to optimize the
scheduling/dispatching result, albeit requiring significantly
more hardware and control logic.

Our analysis shows that the activeness of a thread can be
fluctuating very unexpectedly in time due to cache misses,
branch miss-predictions, write port latencies, etc. A thread
that has been active can suddenly become “inactive” and stay
“idle” in the pipeline for a long duration of time. To make it
worse, these threads that have been just recently more active
(than other threads) tend to occupy more shared resources
(e.g, the IQ) than others. When these threads suddenly
become inactive, the shared resources typically cannot be
released for other threads to use, mainly due to various
system or operating limitations inhibiting it from doing so
and consequently limit the potential performance. Besides,
to further improve the system resource utilization at this
level of high-speed instruction processing, one cannot afford
employing any design that involves too much intelligence for
real-time implementation.

In this paper, we choose to retain the per-thread ROBs
without any sharing among them, and rely on a simple
scheduling algorithm in dispatching instructions from differ-
ent threads. The basis for performance comparison in this
paper will be with a more advanced round-robin dispatch
scheduler in which all threads take turn dispatching at most
one instruction in its own turn during a clock cycle until the
bandwidth is consumed. The average and Harmonic mean
of IPC will be compared to see the improvement.
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3. Simulation Environment
The simulation environment including the simulator and

the workloads used for our simulations are first described in
this section.

3.1 Simulator
We used M-Sim [10], a multi-threaded micro architectural

simulation environment model, to estimate the overall per-
formance of the proposed scheme. M-sim includes accurate
models of the pipeline structures such as explicit register
renaming, concurrent execution of multiple threads, detailed
power estimation using Wattch framework [16], separate
Reorder Buffer, and Load-Store Queue (LSQ) which are
necessary for an SMT model. The Issue Queue and execution
functional units are shared among the threads, but register
files and branch predictor is exclusive to each thread. The
detailed processor’s configuration is shown in Table 1.

Parameter Configuration
Machine Width 8 wide fetch/dispatch/issue/commit
L/S Queue size 48-entry Load/Store queue

IFQ size 32-entry Instruction Fetch queue
ROB& IQ size as mentioned

Function Units & 8 Int Add (1/1)
Latency (total/issue) 4 Int Mult (3/1) / Div (20/19)

4 Load/Store (2/1), 8 FP Add (2)
4 FP Mult (4/1) / Div (12/12) /

Sqrt (24/24)
Physical registers 256 integer and floating point

L1 I-cache 64KB, 2-way set-associative
128 byte line

L1 D-cache 32 KB, 4-way set-associative
256 byte line

L2 Cache unified 2 MB, 8-way set-associative
512 byte line

BTB 2048 entry, 2-way set-associative
Branch Predictor 2K entry gShare

10-bit global history per thread
Pipeline Structure 5-stage front-end (fetch-dispatch)

scheduling (for register file access:
2 stages, execution, write back, commit)

Memory 64 bit wide, 200 cycles
access latency

Table 1: Configuration of the Simulated Processor

3.2 Workloads
For multi-threaded workloads, we use the mixed SPEC

CPU 2000 benchmark suite [4], [9], [16] based on ILP classi-
fication. Each of the benchmarks is initialized in accordance
with the procedure mentioned in Simpoints tool [17] and
then up to 100 million instructions are simulated in a simple
scalar environment. As shown in Table 2, three types of
ILPs - low ILP (memory bound), medium ILP and high ILP
(execution bound) - are identified, and 12 mixes of multi-
threaded workloads are used based on different combinations
of ILP types.

Mix Benchmarks Classification (ILP)
Low Med High

Mix 1 swim, locus, galgel, twolf 0 0 4
Mix 2 locus, galgel, twolf, applu 0 0 4
Mix 3 equake, vpr, mesa, ammp 0 4 0
Mix 4 vpr, mesa, ammp, gap 0 4 0
Mix 5 gcc, perlbmk, crafty, mgrid 4 0 0
Mix 6 crafty, mgrid, apsi, bzip2 4 0 0
Mix 7 crafty, mgrid, lucas, galgel 2 0 2
Mix 8 gcc, perlbmk, twolf, applu 2 0 2
Mix 9 apsi, bzip2, equake, vpr 2 2 0
Mix 10 mgrid, apsi, ammp, gap 2 2 0
Mix 11 swim, lucas, vpr, mesa 0 2 2
Mix 12 twolf, applu, ammp, gap 0 2 2

Table 2: Simulated Multi-threaded Workload

4. Proposed Method
In a typical SMT system, a shared IQ (Issue Queue),

which is used as a set of centralized reservation stations
for all functional units, is required to hold all the necessary
information for instructions. Thus, further increasing the
number of entries in the shared IQ usually is hampered
by the cost factor, and therefore the utilization of these
limited resources becomes very critical to the overall system
performance.

Issue Queue (IQ)

(Centralized RS)

dispatchreorder / write

rename

FUFU

ROB-0 ROB-1 ROB-2 ROB-3

issue

Ready

Waiting

instruction recall

Fig. 2: Instruction Recalling

Once an IQ slot is allocated to an instruction, all known
architectures will allow it to stay in IQ until it eventually
becomes ready for execution, even it may take hundreds
of clock cycles. Our proposed technique instead will recall
such an instruction if the owning thread shows a sign of
inactiveness. Figure 2 shows a simple illustration of such
instruction recalling. Since a dispatched instruction recalled
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is still in ROB, recalling it actually involves setting/resetting
a flag in each of the two entities, one in the IQ entry and the
other one in the original ROB entry. This process essentially
re-declares the IQ slot to become available (empty) and
resets the instruction in ROB to become “yet-to-dispatch”.
To determine whether a thread is “inactive” may require
some extra intelligence incorporated into the system. Any
of the operands that have become ready after the instruction
was dispatched can be easily re-established (read) again
when the instruction is dispatched again.

4.1 Motivation
The proposed technique is based on the conjectures that,

if IQ is not properly managed, instructions do stall in IQ for
a long period of time, its imbalanced occupancy scenario
among threads does exist. This section will be devoted to
the discussion to support these conjectures.

4.1.1 IQ Occupancy Latency Analysis
We first look into behavior of instructions after they are

dispatched into the IQ; namely, how long they stay in IQ
and how long it takes for them to become ready for issuing
to the corresponding functional units. Figure 3 shows the
cumulative percentage of instructions that spend in IQ for
at least the given number of clock cycles, where R is used
to denote the number of ROB entries and q is the size of
IQ used. As Figure 3 shows, close of 30% of instructions
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Fig. 3: IQ Latency Cumulative Distribution with (R, q) =
(96, 24)

encounter an IQ latency of at least 5 clock cycles, and there
are a significant number of instructions that get stuck in IQ
for a long period of time, e.g., about 1% of instructions spend
more than 30 clock cycles in the IQ. These IQ slots could
have been better used if these instructions can be recalled
after their latency exceeds a certain threshold.

4.1.2 Per-Thread IQ Occupancy Analysis
Another scenario we want to look into is how exactly the

IQ may be dominated by a single thread among the threads
in SMT processing. Figure 4 shows the average percentage
of time (out of the 12 mixes used) that at least one thread
is occupying at least the given number of IQ entries. This
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Fig. 4: Average IQ Occupancy Rate

clearly shows that on the average in over 60% of clock cycles
there is at least one thread occupying more than 50% of IQ
slots, and three quarters of resources are tied up by one
thread in over one third of time. Once such a dominating
thread somehow becomes “inactive”, the consequence can
be significant.

4.2 IQ Instruction Recalling
One straightforward method in effectively using the IQ

is to allow the slots that have been occupied by stagnant
instructions to be freed for other instructions. To “correctly”
classify whether an instruction (or more specifically its
owning thread) is considered “stagnant” may require an
intelligence too expensive or too execution-time-critical to
implement. We choose to simply set a time threshold for
a thread to be considered “inactive” (or “blocked”) when
this thread has not (1) any of its instructions in IQ become
“ready” and (2) any of its instructions committed during this
time period. The complete algorithm is depicted in Figure 5.
This threshold is referred to as “Cycles-of-Stall-to-Blocked”
(CSB). Such a condition is chosen due to the consideration
that a blocked thread usually displays one or both of the
two symptoms. In our algorithm, once a thread reaches this
threshold value, all its instructions in IQ that are not ready
for issuing will be recalled. This condition-checking step is
shown in the flowchart as “stall cc==CSB?”. As aforemen-
tioned, the recalling process of an instruction involves two
simple logical operations: resetting the “free” flag of the
IQ slot back to “1” (yes), and resetting the “dispatched”
flag of the instruction in ROB to “0” (no). This thread,
once recalled, will not be allowed to dispatch again until
(1) it starts resuming instruction committing, or (2) a time-
out is reached. If a thread so-declared “blocked” starts to
commit instructions again, then most likely the condition
that rendered this thread stagnant is resolved. On the other
hand, there may exist situations that a thread simply does
not have any instruction dispatched in the system after the
recalling and thus will not be able to resume the active status
by committing an instruction. In such a case, this time-out
is a necessary mechanism for the thread to have a chance to
become active again, even it may not be ready yet. Such a
time-out value will be referred to as the “Cycles-of-Blocked-
to-Reactivate” (CBR) value. In the flowchart this time-out is
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"blocked"?
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became ready?
any instruction

any instruction
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"blocked" = N

Y

N

Y

Y

Y

Y

N

N
N

N

Y

N

stall_cc==CSB?

block_cc = 0

block_cc ++

block_cc==CBR?

Fig. 5: Instruction Recalling Algorithm

checked with the “block cc==CBR?” condition.
Note that the selection of CSB value and CBR value

greatly influences the effect of this technique in improving
the overall performance. A too small CSB value will lead
to unnecessary recalling which will be a waste of resource,
while a too large CSB value will diminish the effect of this
technique. Similarly, the adoption of a proper CBR also may
have a significant impact on the performance. A too small
CBR will dampens the effect of recalling and a too large
CBR will jeopardize specific thread from effectively using
resource. One should suspect there should be a pattern of
matching CBR and CSB leading to best resource utilization,
which will be discussed in our simulation results.

5. Simulation Results
Based on the simulation environment and workloads

described in Section 3, our proposed technique is tested
compared to the default dispatching system. An average
of overall performance from 12 mixes as described in
Section 3.2 is used for presentations. Figure 6 shows the
average IPC improvement percentage values when different
CSB values are applied, with the reactivation delay CBR
fixed at 20 clock cycles. Three different combinations of
ROB size (R) and IQ size (q): (R, q) = (128, 32), (96, 24)
and (64, 16) are tested. From this chart, one can tell among
the three (R, q) combinations the one with the smallest IQ
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Fig. 6: IPC Performance Improvement by Using Instruction
Recalling

size leads to the best improvement, up to 7% in average
IPC. The larger the IQ size is the smaller the improvement
is obtained. This scenario can be easily explained by the
more critical effect of our instruction-recalling technique on
a smaller IQ than on a larger one. Also note that no matter
what combination of (R, q) is used, the best improvement
in IPC happens when the CSB values is set to about 3
or 4. The fact that the “optimal” CSB value is so small
indicates that the benefit from recalling more instructions
(with a small CSB value), even though these instructions
may not be exactly “blocked”, may clearly outweigh the
loss in dispatching capacity utilization due to the recalling.
When the CSB value is set to an even smaller value, the
effect of loss quickly diminishes the benefits.

Comparison of individual IPC values for each mix be-
tween the default and the proposed techniques is presented
in Figure 7, with (R, q) = (64, 16) and (CSB, CBR) =(4,20).
From these results, the proposed technique consistently leads
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Fig. 7: IPC Performance Comparison for Each Mix

to improved IPC over the default technique throughout all
mixes and all combinations of queue sizes, with improve-
ment percentage up to 20% on some mixes.

To further demonstrate that overall IPC improvement
achieved by the proposed technique does not jeopardize the
fairness of threads’ execution due to the recalling process,
Figure 8 shows the harmonic mean IPC values for all mixes
between the default and proposed techniques when (R, q) =
(64, 16). The formula used to calculate the harmonic mean
follows the standard definition in H = n/

∑n
i

1
IPCi

, where
n is the number of threads in this case. From these, one
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Mix

can tell that the improvement on the overall IPC from the
proposed recalling process not only does not lead to any
imbalance among the threads but mostly incurs positive
effect (up to 8% in improvement) in raising individual IPC
for all threads.

From Figure 6 we can tell that the impact of setting a
proper CSB value and it shows that the optimal CSB value
stays very consistent throughout different combinations of
buffer sizes, (R, q). Figure 9 shows the impact of CBR
on overall performance when CSB is fixed. When the CSB
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value is set to the optimal value of 4, the IPC performance
stays relatively unchanged once the CBR is set to be more
than 10. It is reasonable because most threads can reactive
themselves by resuming committing, thus a large CBR
affects very little on the performance. However, if the CSB
is set to a very small value, e.g., 1 as shown in the figure, the
IPC drastically suffers once the CBR is set to a value higher
than 1. This can be explained by the fact that with such a
small CSB, a lot of instructions are unnecessarily recalled,
and if these instructions are not re-dispatched soon again
(under a larger CBR value), then the performance degrades
easily. From this result, one can tell that the selection of
CSB is much more critical than selecting CBR as long as
the latter is not set to a value too small.

One analysis that can somewhat reveal the true impact
of the proposed recalling technique is on the percentage of
all executed instructions that have been recalled. Figure 10
shows this percentage value when a different CSB threshold

is adopted. One can see that less than 3% of dispatched
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instructions are recalled when the CSB value is set to at
least 4, and only about 11% of instructions are recalled when
CSB is set to 1.

Out of all the instructions dispatched that are recalled,
some of them actually are of the same instructions that
are recalled multiple times. The next analysis is to see,
among all the instructions that are recalled, how often an
instruction is recalled multiple times. Figure 11 shows the
percentage of instructions that are recalled a given number
of times with different (CSB,CBR) patterns. The figure
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Fig. 11: Percentages of Instruction Recalled vs. Recalled
Times under Different (CSB,CBR) Patterns

shows a very interesting pattern in having a clear spike
indicating that some significant number of instructions are
recalled a somewhat specific multiple times, and this specific
number depends on both the CSB and CBR value. A close
investigation into these patterns reveals that

p× (CSB + CBR) ≈ C (1)

where p is where the peak appears at, when multiplied
by the total cycles for each repeated recall, the product is
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approximated by a constant C, in the range of 250 to 300
in all cases.This somewhat constant value corresponds very
close to the cache miss penalty. This indicates that this peak
corresponds to the group of instructions that were delayed
by a cache miss situation. Based on this observation, extra
intelligence can be further incorporated into the system to
specifically detect the occurrence of a “blocked” situation
due to cache miss and subsequently set a proper CBR value
to prevent redundant repeated recalls of the same instructions
from the thread.

To further analyze the effect of recalling on the IQ oc-
cupancy rate, the average per-thread IQ occupancy analysis
is performed again when the recalling technique is applied,
similar to the one shown in Figure 4. Figure 12 displays
the comparison. Note that after the recalling technique is
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Fig. 12: IQ Occupancy Rate Comparison

applied, the “blocking” from a thread in IQ is not as severe
– there was about 65% of clock cycles in the default case
that at least one thread takes up more than half of the IQ
slots, and, with the recalling, only about 51% of time such a
situation happens. Three quarters of slots were occupied by
a thread in 34% of time, while it is reduced to about 19% by
the recalling method. This analysis clearly shows the effect
of instruction recalling in relieving the IQ blocking.

6. Conclusion
This paper clearly demonstrated that utilization of re-

sources shared among the threads in an SMT system could
significantly affect the overall performance. By recalling
idling instructions from the critically shared resources, over-
all performance can be vastly improved without sacrificing
fairness of execution among the threads. In addition, such
an improvement is achieved without having to invest much
extra hardware or imposing extra constraints on the clock
rate. Incorporating further intelligence into such a recalling
process will likely improve the performance more while one
would need to justify the potential in leading to excessive
hardware requirement.
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Abstract: This paper reviews the history and current use of multi-threading in software development.  Over the last 
decade, there has been a complete paradigm shift in computer hardware. Currently, increased computing 
power is supplied using an increasing number of core processors. This paradigm shift has led to the 
development of higher level programming constructs and frameworks in many popular languages. 
Therefore, it is clear that both the hardware and software of the future are going to be based heavily upon 
concurrency. Despite this, software developers are still resistant to embrace multi-threading. This 
resistance is understandable due to the complexity of coding concurrency. However, this paper proposes 
that Concurrency is no longer an option but a necessity. In conclusion, the paper presents a case study 
based on the visualization of large quantities of Neurophysiological data. This application was developed 
using the Java concurrency framework. 

 

  

1. Introduction 

During the early days of Computing, there was a 
considerable difference between the operating speed of 
CPUs and the speed of connected peripherals. Back then, 
CPU time was expensive, thus it was highly inefficient to 
pause the execution of a program to enable the execution 
of a slower input/output peripheral.  

The first attempt to address this problem was the LEO 
III (Lyons Electronic Office) developed in 1961. LEO III 
employed the first multiprogramming system [1] which 
enabled a batch of programs to be loaded into the CPU 
simultaneously thereby essentially queuing for CPU time. 
In this system, the first program would execute until it 
reached an instruction which required the use of a 
peripheral device. At this point, the context of the first 
program would be stored thereby enabling the next 
program to execute. Subsequently, the use of CPU time 
was maximised. The main limitation of this system was 
that it required multiple programs to maintain this level 
of CPU usage. Nowadays this would be recognised as a 
problem of granularity, the executing units were too large 
to maximise the CPU usage.  

The limitations of multiprogramming became obvious 
as computer systems moved from batch processing to 
interactive use. Multiprogramming was not capable of 
delivering well designed systems. One of the key 
benchmarks for well-designed systems was the set of 

“Golden rules” defined by Shneiderman [2]. These rules 
were, and still are, widely adopted throughout the 
industry. They emphasise the importance of providing 
“informative feedback” to the user. 

Initial attempts to provide interactive feedback to 
users involved the co-operation of software developers. 
This was known as co-operative multitasking. This relied 
on developers ensuring their applications yielded CPU 
time to other applications.  

Initially, this approach was successful. The earlier 
versions of Windows (prior to Windows 95) and the Mac 
operating system (prior to MAC OS X) employed co-
operative multitasking [3, 4]. Whilst co-operative 
multitasking was increasingly deployed as a multitasking 
solution, another option called pre-emptive multitasking 
evolved. 

In contrast, pre-emptive multitasking paradigm 
provides slices of CPU time to each of the executing 
processes. Effectively, this enforces the sharing of the 
CPU time. This implicit guarantee of CPU time enables 
developers to provide user with well- designed systems 
capable of proving “informative feedback” quickly. In 
1969, this approach was selected for use in the UNIX 
operating system. It is standard in UNIX and its derived 
operating systems [5]. 

By the mid 1990’s, Microsoft Windows had adopted 
the pre-emptive multitasking system incorporating it into 
both Windows NT and Windows 95. Apple Inc. followed 
suit with the MAC OS 9.x, released in October 1999. 
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2. The Pre-emptive Model 

In the pre-emptive model, processes are separated into 
two categories: 

• I/O Bound processes where the total computation 
time to complete the process is limited by the speed at 
which data can be requested and delivered [6]. Typically 
processes that make long read / write operations to disk 
would be I/O Bound and 

• CPU Bound processes where the total computation 
time to complete the process is limited by the operating 
speed of the CPU. Typically a process that primarily 
‘crunches numbers’ will be CPU bound. 

This blocking mechanism enables the CPU time being 
consumed by these “waiting” processes to be re-allocated 
to processes in the CPU bound category. This continues 
until an interrupt signals to the I/O bound process that the 
blocked process can proceed. 

As this pre-emptive model evolved, programmers 
began to develop applications as a collection of 
interacting (co-operating) processes. In turn, this raised 
the issue of how to efficiently share data between 
multiple processes. As originally conceived, a process ran 
in its own protected memory space isolated from other 
processes. However, this was not conducive to data 
sharing. The solution was that co-operating processes 
should share the same memory space. This approach 
would become known as multi-threading with multiple 
‘threads of execution’ sharing a single processes memory 
space. 

 

2.1 The paradigm shift from Moore’s Law 
to Amdahl's law 

Moore’s Law states that the power of computer 
processing would double approximately every two years. 
Since its formulation in 1965, this law has provided a 
reliable guide to the growth of computing power. This 
predictable growth in computing power has been quietly 
exploited by software engineers worldwide. Until now, 
developers have enjoyed ever faster performance from 
their software simply by updating to newer hardware. 
However, it is proposed [7] that Moore’s Law cannot be 
sustained as physical limitations for miniaturisation are 
encountered. Conversely, it is argued that advancing 
technologies will enable the law to survive far into the 
future [8].  

Regardless of these opposing opinions, developers 
must consider how current and future technologies will 
deliver computing power. It is clear that hardware 
manufacturers have moved to the idea of delivering 
computer power through multi-core systems. Almost all 
forms of computer now employ multi core hardware as 
standard. This ranges from the mobile phone through to 
desktop computers of major research projects. Whilst 
considering highly compute intensive operations such as 
weather forecasting, computing power is now delivered 
by massively parallel super computers, grid computing 

and the opening of graphics processing cores for general 
non-graphical use (for example using Nvidia’s CUDA) is 
becoming more widespread in research. Yet, it is still not 
enough. 

 Consequently, another law is now dominating the 
current expansion of computer processing and 
throughput. This is Amdahl's law which describes the 
performance increases that can be achieved through the 
parallelisation of software. Essentially a program is 
divided into two portions, the parallelisable and the 
sequential components. Additional compute cores will 
improve the execution speed of the parallel component of 
the program but these will have no effect on the 
sequential component [9].  

2.2 Recent developments in hardware 

In the last decade computer power has expanded 
based on the development of multithreaded execution 
architectures as well as the delivery of additional power 
using multicore systems. However, this increased 
processing capability can only be realised when software 
developers change their programming styles to exploit 
this new paradigm. Fundamentally, the latest hardware 
advances are completely dependent on the understanding 
and adoption of these new techniques by software 
developers. David Stewart CEO of CriticalBlue and 
chairperson for the Multicore Programming Practices 
(MPP) working group comments on this situation stating 
that “There's capability in (multicore) platforms which is 
not being utilized or not being optimized by the software 
development community" [10].  

Developers are often deterred due to the difficulty of 
using threads and locks to control access to shared 
memory. Goetz [11], a key developer of the Java 
languages Concurrency Framework, states “writing 
correct programs is hard; writing correct concurrent 
programs is harder.” Indeed, this style of programming 
has “a well-deserved reputation for introducing bugs that 
are difficult to find and fix." [10]. Even Apple Inc. 
dismisses it stating that "the dominant model for 
concurrent programming - threads and locks - is too 
difficult to be worth the effort for most applications." 
[12] 

 Despite the difficulties Goetz notes that “threads are 
the easiest way to tap the computing power of 
multiprocessor systems”. Furthermore, “as processor 
counts increase, exploiting concurrency effectively will 
only become more important” [11]. Therefore if the true 
power of multicore systems is to be realised, it is 
essential that the next generation of developers will have 
the tools and the training to address the difficulties of 
concurrent programming.  

2.3 Recent developments in software 

Over the last few years several mainstream 
programming languages have evolved to address the tools 
needed for concurrent programming. These tools provide 
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concurrency frameworks that allow developers to work 
with abstract concepts rather than the lower level threads 
and locks. 

This trend is likely to continue. Intel is currently 
experimenting with the Intel Array Building Blocks 
(Intel® ArBB) framework that will integrate with 
standard C++ applications without any compiler specific 
extensions [13]. This would remove a major 
compatibility hurdle to developing C++ parallel code. 

Table 1 shows a selection of the major coding 
languages that have released a concurrency framework 
over the last decade. Stack-less Python represents a 
significant fork of the language that has enjoyed 
commercial success and development support (via CCP 
Games Inc). The Java Concurrency Utilities merged a 
concurrency framework with cross platform support to 
produce a flexible and widely deployable solution. 
Microsoft’s Task Parallel Library went a step further 
seeking the same goal for a whole range of languages 
supported by the .NET framework. While all of these 
were high level languages, Intel have addressed the lower 
level C++ language. Note that they too are now 
experimenting with a new more general solution than the 
existing Threading Building Blocks (TBB). 

 The development of frameworks to remove the 
complexity of task and thread management is essential to 
promote multi-threaded computation and ensure it is 
accessible to the software development community. This 
is very helpful. However, software engineers must also be 
able to able to design, debug, validate and optimise code.  
Tools to support all these area of software development 
are at an early stage of their development. Areas such as 
debugging and validation are challenging. Patterson [14] 
states that multi-threaded code is well known to be 
notoriously difficult to debug and validate.  The non-
deterministic behaviour of concurrent code and the 
dangers of deadlock as well as race conditions are well 
understood. Despite these challenges, the tools to detect 
such errors during development are only now beginning 
to emerge.  

For example, it was 2008 when Intel announced the 
development of a dedicated package of software 
engineering tools called the Intel® Parallel Studio suite 
[15]. The package was released to the development 
community in May 2009 [16]. With such tools only just 
beginning to emerge most developers remain uncertain 
how to validate and debug parallel code beyond repeated 
testing and code inspections. Issues of code optimisation, 
identification of parallelisable code and its long term 
maintenance are seldom considered by most developers. 

3. Future Trends 

Over the next decade, parallelism in software 
development will become more important both in 
research and in commerce applications. Indeed, the 
development company, CCP based in Iceland, is already 
crediting its commercial success to Stackless Python [17]. 
With the preference for multicore architectures firmly 

entrenched with manufacturers, the demand for software 
to exploit its power is unavoidable. However, this raises 
one of the primary issues, namely that of training 
software developers to exploit the hardware capability. 
Many of the current generation of programmers seldom 
consider parallel execution of code. This is 
understandable as it has mirrored the underlying 
hardware (subject to processor time slicing providing an 
illusion of parallel execution).  

However, the next generation of developers must 
embrace the harder task of parallel code development as 
‘standard practice’. To achieve this training programs 
both in universities and industry must to be updated to 
emphasize parallel coding principles and to introduce the 
software engineering tools that will support the design, 
implementation, validation and tuning of parallel 
programs.  

3.1 Power and Environmental issues 

Power has traditionally been seen as being in 
abundant supply, but this view is changing. The 
emergence of cloud computing has led to the formation 
of warehouse sized data centres that “are now consuming 
more energy than heavy manufacturing in the United 
States” [18]. Subsequently, this has led to political 
pressures (in light of carbon emission targets and taxes) 
to reduce energy consumption and waste.  

 
Table 1: Concurrency Frameworks for major coding languages 

 
One of the primary benefits of the multicore 

architecture is that such systems “feature more even 
power density and do not show dramatic temperature 
peaks” [23]; nevertheless “the power consumption of the 
basic multicore component is critical to its cost and 
operation” [18]. 

Language Frame-work Re-lease 
Date 

Source 
 

Java JSR 166: 
Concurrency 
Utilities 

09/04 [19] Lea 
(2004) 
 

.Net 
Frame-
work (v4) 
 

Task Parallel 
Library 
(available in all 
.Net languages) 

04/10 [20] 
Microsoft 
(2010) 
 

Python Stack-less 
Python 

01/00 [21] 
Tismer, 
(2000) 

C++ Intel® Threading 
Building Blocks 

08/06 [22] 
Reinders 
(2007) 
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4. Case Study: Visualization of large 
Neurophysiological datasets 

This case study of the VISA (Visualisation of Inter 
Spike Associations) software demonstrates that 
concurrent programming is already a necessity in current 
applications. This software is the main output of an 
established research VISA project at the Visualization 
Lab, University of Plymouth. The main aim of this 
research is to develop a new approach to the analysis of 
experimental data in neurophysiology based on the use of 
modern computer science techniques such as graphical 
engineering, visualization and virtual reality. This new 
approach will provide neuroscientists with an interactive 
environment within which to explore their data sets. The 
primary focus of this research is on the analysis of multi-
dimensional spike train datasets. 

4.1 VISA Project Goals 

Due to increasing size of data, the VISA software was 
completely redeveloped to fully exploit the Java 
concurrency framework. It was essential for the software 
to maintain throughput in order to achieve three main 
project goals: 
• To enable the Neurophysiologists to process 

exponentially larger datasets than earlier versions in 
order to manage current and future demand.  

• To develop the software in a language that offered 
cross platform compatibility to enable easy 
distribution 

• To target a “typical researchers computer” with the 
option to execute with increased efficiency and speed 
on more powerful systems.  

• To introduce a workflow based interface loosely 
based on “visual programming languages”. This 
workflow interface would enable users to control the 
ordering of data pre-processing operations. This 
would provide users with greater control over the 
types and ordering of pre-processing operations. 
Ultimately the goal is to enable users to create their 
own pre-processing code modules to fine-tune their 
workflows in the future 

4.2 Spike train data 

In general, a neuron accumulates electrical stimulus, 
from other neurons coupled to it, until some internal 
threshold is reached. Once its threshold is reached, the 
neuron initiates an action potential. When a neuron 
initiates action potentials over time, we say that the 
neuron is firing. Note that action potentials are more 
commonly referred to as spikes and a series of these 
spikes over time is known as a spike train. Spike train 
data is one of the main types of data collected during 
Neurophysiological experimentation. 

Spike train datasets are records of the activity of a 
collection of neurons under investigation. It is well 

established that information is encoded in this data. In the 
VISA project, the spiking frequency and thus, inter-
spike-intervals carry information. Therefore, research is 
focused on the analysis of multidimensional spike train 
data to uncover information about the synchronisation of 
spike trains and the connectivity of neurons. 

4.3 Quantity of Data 

VISA is currently in its third edition. The first two 
development cycles of the VISA project incorporated the 
development of a cross platform tool [24, 25]. 

When the project began, laboratories were typically 
recording from at most 64 electrodes simultaneously. 
This was deemed to be a very large amount of data and it 
was recorded using an 8 by 8 multi-electrode array. 
Currently, due to recent improvements in electrode 
hardware, Neurophysiologists are now able to routinely 
capture data using 4096 electrodes simultaneously. For 
example, the Plexon Array [26], can now record data for 
over 30 minutes at a sampling frequency of 7.702 kHz 
when matched with appropriate hardware.  

With typical trials lasting anywhere from a few 
milliseconds to tens of minutes, datasets sizes have vastly 
increased. For example: During an experiment when 
recordings are taken from all 4096 electrodes sampling 
data every millisecond, a 30 minute trial would result in a 
data file of 10.43 MB with approximately 1 million data 
points.  

4.4 Introduction to VISA 

The VISA3 interface is effectively a visual programming 
language which enables the user to create a workflow.  
 

 
Figure 1: Directed Graph of a VISA3 Visual Program 
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A workflow is a set of processes joined together. It is 
understood that such a programming model is naturally 
parallelisable; processes are able to execute as soon as all 
inputs are available.  
A typical VISA3 workflow is shown in Figure 1. This 
workflow shows 12 processes on the workflow interface. 
Note that these processes are selected by the user from a 
Toolbox and dragged on to the interface. These processes 
have parameters set by the user and they are connected 
together into the workflow as shown by dragging the 
mouse between process “ends”. This workflow is dealing 
with three input files, two of which subsequently sorted 
and then exported to an external file. Eventually, all this 
data is visualised using the iRaster visualization.  
The iRaster visualization enables the Neurophysiologists 
to investigate their data interactively using a traditionally-
based raster plot representation. In addition to the 
functionality delivered by classical raster plot 
visualization, iRaster also provides the user with the 
following core functionality: data zooming methods, 
multiple views of data with view synchronization, and the 
contextual labelling of spike train identifiers and time 
points. iRaster also enables users to interactively and 
dynamically remove spike trains or time periods and to 
zoom in onto specific time periods to look at spike trains 
in greater detail. The software also provides an extensive 
list of spike train reordering functions. The majority of 
software tools currently available provide the usual static 
raster plots that are merely snapshots of the spike train 
data. In contrast, iRaster enables the user to interactively 
navigate through and directly manipulate spike train data, 
providing a dynamic experience of the data. 

4.5 Concurrency in the VISA Interface 

The key benefits of this interface are apparent. 
Scientists are not confronted with the need to learn a text 
based interface, the interface is designed to be intuitive.   

The structure of the workflow, which may exploit 
parallel execution, is also apparent. If you refer to Figure 
1, three sections of the workflow that could execute in 
parallel are obvious. Each process, such as the Import 
File process or the “Merge Datasets” process, represents 
a processing activity that may commence execution as 
soon as its inputs are available. The connections between 
various processes show the precise flow of data within 
the program. 

Within the Java language, parallel execution is 
achieved through the concurrency framework. It operates 
as follows: 

A ‘pool’ of threads each capable of executing a code 
module is created. Note this applies only to code modules 
that implement the concurrency frameworks ‘Callable’ 
interface. Pool size is dynamically determined based on 
the processors available on the executing machine but 
aims to optimise for CPU bound tasks. It is reasonable to 
assume that most tasks in VISA3 will fall into this 
category. 

At the beginning of execution the application 
determines all paths, through the directed graph, that 

comply with the requirements of the information 
processing cycle. Specifically this ensures that some 
input is received (usually from a data file), some 
processing is performed and finally some output is 
generated (typically a data visualisation module is 
triggered). 

Each processing node of the directed graph is 
implemented as a “binary latch” [11]. This latch acts a 
synchroniser which simulates a gate that can only be 
opened once. Until the conditions for opening the gate are 
met, all threads reaching the latch will be unable to 
proceed. The latch will be converted into the terminal 
state once these conditions are met. In the case of VISA3, 
the conversion requires all preceding operations to have 
completed and delivered a dataset to the waiting process. 
When the gate opens, all datasets from previous nodes are 
delivered to the next node and processing begins on that 
thread. 

The datasets flowing through the directed graph are 
required to implement the VISA3 interface 
IProcessingResult. Note that IProcessingResult is 
designed to wrap any data structure. Therefore, classes 
implementing this interface serve as the ‘tokens’ that 
drive the dataflow processing [27] and are placed onto 
the nodes input/output paths (triggering the ‘latches’ as 
required). 

In addition to the development of a workflow 
interface, the Java Concurrency Framework was further 
leveraged to improve performance of the iRaster 
visualisation. As described in section 4.4, this 
visualisation provides an interactive raster plot of the 
spike trains.  

The re-engineering of the visualisation was critical to 
maintain interactivity, due to the increase in dataset size. 
The original implementation typically worked with 
several hundred spike train recordings simultaneously 
whereas the new version works with thousands. Note that 
scientists are particularly keen to embrace this software 
as their traditional means of analysis do not scale.  

4.5.1 Exploiting multiple-cores in VISA 

Maintaining the responsiveness of an interactive 
application while filtering and processing this amount of 
data is challenging. Given this complexity, effective use 
of computing power in the rendering and display of the 
raster plot is essential. Recall that it has already been 
established that future increases in computer power will 
be delivered through multiple compute cores. The Java 
Concurrency Framework provides a natural means to 
access and manage this increased computing power in the 
future. 

To exploit multiple cores, the VISA3 data model was 
redesigned as a set of thread safe classes that could be 
shared across multiple executing tasks in the 
Concurrency Framework. The iRaster visualization 
process was designed using the model, view, controller 
design pattern with the synchronisation of shared data 
occurring in the model. Subsequently, the rendering 
could easily be adapted for parallel execution.  
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This required a concurrent task that accepted a screen 
area and spike train to render within the area. Therefore, 
rendering the display focuses on the individual 
components of the data model that are to be shown as 
well as generating a collection of concurrently executable 
tasks. A latch is again employed to ensure the various 
tasks complete before the final display is presented. The 
raster chart is then cached with re-rendering occurring 
only as data is filtered into/out of the display. Interactive 
components, such as selection highlights, scale sliders, 
are sequentially rendered over the cached chart. 

4.6 Future VISA3 Development plans  

The workflow interface and the iRaster visualisation 
have clearly demonstrated that parallel execution of data 
pre-processing and visualisation activities can scale the 
application to 2000+ data recordings each with thousands 
of data points while maintaining responsiveness. There 
are now two primary tasks. The first task is the 
conversion of the iGrid visualisation [24] to use the Java 
Concurrency Framework to enable the new larger 
datasets to be visualized in this way. This will enable the 
popular visualization iGrid to exploit multicore 
processors, thus enabling the visualization of new, larger 
datasets. This is challenging as iGrid is based on the 
production of numerous cross-correlograms. These 
calculations become so numerous that it is likely to be 
necessary to move to general-purpose computing on 
graphics processing units (GPGPU) model to ensure the 
user requirement for responsiveness are delivered. 

The second task is to deploy the iRaster software 
more widely. The CARMEN Project is developing a 
‘workflow’ system similar to the VISA interface [28] for 
processing neural recordings. In principle, this should be 
directly connectable to the iRaster visualisation. Whilst it 
requires conversion to a client-server model to support 
deployment on the CARMEN hardware, it will be offered 
as a downloadable client to view data stored in the 
CARMEN repository. The intention is to make this 
software freely available for all non-commercial use. 

5. Conclusions 

Multi-Threaded code originally arose from the need to 
manage long running tasks without the executing 
application becoming unresponsive to the user. However, 
over the last decade a new use of this technique has 
arisen. This is attributed to the fact that hardware 
manufacturers now deliver increased computing 
performance through multiple compute cores. Threads 
have been used as a natural way of writing applications 
that fully exploit delivery of computing power. 
Nevertheless, this application of threads falls outside their 
original purpose. Therefore, its use has been limited by a 
lack of software tools and developer training.  

Now that hardware manufacturers have committed 
themselves to multi-core hardware systems, the software 

developer must acknowledge that to continue to benefit 
from ever faster hardware, the way in which they write 
programs must change. 

 Developers are beginning to accept this need to 
change and this is supported by the availability of 
development tools such as Intel® Parallel Studio suite and 
the addition of concurrency frameworks to major 
programming languages.  

Despite the availability of these support tools, 
threading and concurrency continue to be seen as 
advanced concepts with training continues to lag behind 
the deployment of hardware capable of executing 
concurrent code.  

In the next few years, this must change with the next 
generation of developers being trained to expect their 
code to execute in a concurrently on multi-core hardware. 
In many research fields multi-core hardware will be 
combined with clustering and grid technologies (cloud 
computing) to dramatically increase data processing 
throughput. In business, every employee can expect to be 
using multi-core devices as standard (from desktop PC to 
mobile phones and tablets). The developers of today 
graduate with a firm understanding of object orientated 
development; the developer of tomorrow will need to add 
concurrent programming and the experience of a 
concurrency framework to these skills if they are to meet 
the needs of business tomorrow! 

 The value of these skills has been demonstrated in 
the case study of the VISA3 project. In VISA3, the 
number and length of neural spike train recordings that 
need to be processed by the software has been scaled up 
by a factor of ten. Finally the application of a workflow 
based interface to the VISA3 software demonstrates that 
visualising a concurrent application in this manner may 
offer a means to effectively design and debug concurrent 
software. 
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Abstract - This paper presents the design, implementation and 

evaluation of a novel cooperative caching algorithm, called 

SKALA, which is based on the bloom filter data structure. The 

algorithm is designed using decentralized architecture and 

offers highly scalable solution. It resolves the problems related 

to an inefficient use of the manager’s resources. The scalability 

of the algorithm is maintained by distributing the global cache 

information among cooperating clients. Furthermore, the 

memory overhead is decreased due to a bloom filter data 

structure which reduces the global cache size. The correctness 

of the algorithm is evaluated by running experiments. The 

experiment results demonstrate that SKALA decreases the 

manager load by the factor of nine which implies that it is more 

scalable compared to existing algorithms. The results also 

show a significant reduction in the memory overhead which 

implies that SKALA uses manager’s resources more efficiently.  

Keywords: bloom filter, global and local cache, scalability, 

decentralized architecture, memory hierarchy 

 

1 Introduction 

The distributed systems, such as distributed file systems (DFS) 

and content distribution networks (CDN), usually employ 

caching mechanism. The primary goal of this mechanism is to 

temporarily store the frequently or recently accessed data, so 

that future data requests can be served faster. The benefit of 

caching can be extended by implementing a cooperative 

caching mechanism in these systems. Cooperative caching is 

implemented using two layers of memory – local and global 

cache. The distributed systems based on client/server 

architecture usually use the local cache to provide data 

reusability at client side. While the local cache is dedicated to 

specific client, the global cache is shared among all clients. 

The global cache’s primary goal is to help clients benefit from 

earlier accesses (to the same data) by other clients sharing the 

global cache. The content of the local and global caches are 

managed by special caching algorithms such as N-chance [4] 

and hint-based algorithms [5]. 

 

1.1 Research problems 

The existing cooperative caching algorithms, such as N-chance 

and hint-based algorithms face several problems that prevent 

them from being applicable for wide variety of distributed 

systems. First, these algorithms do not scale when the number 

of clients or the local cache size is increased. The primary 

reason for such behavior is due to a centralized architecture 

implemented in these algorithms. This architecture uses single 

manager node which is responsible for the maintenance of the 

global cache. When the number of clients increases, the 

manager is required to handle more requests coming from 

clients and eventually becomes overloaded. Second, existing 

algorithms create a memory overhead on the manager side. As 

the number of clients increase, the global cache size at the 

manager also increases gradually which causes a memory 

overhead. 

 

1.2 Proposed solution 

This paper addresses the research problems by introducing a 

novel cooperative caching algorithm, called SKALA, which is 

based on a bloom filter data structure. SKALA uses 

decentralized architecture that relieves the manager from 

global cache maintenance and distributes the global cache 

among client nodes. Thus, clients would have their own copy 

of the global cache so that they avoid contacting the manager 

for the data. This feature reduces the load on the manager to 

maintain the scalability of the algorithm. Moreover, SKALA 

decreases memory overhead by incorporating the bloom filter 

into the global cache. The proposed solution is suitable for 

distributed systems that operate in client/server environment.  

In order to evaluate the performance of the algorithm, a trace-

driven software simulator has been developed. The experiment 

results demonstrate the effectiveness and correctness of the 

algorithm. According to the results, SKALA performs better 

compared to the existing algorithms when the number of clients 

or the local cache size increases. In particular, the bloom filter 

reduces the global cache overhead by factor of nine and 

maintains the algorithm’s scalability over many client nodes. 
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1.3 Motivation 

The primary motivation of this paper is to measure the 

scalability of the cooperative caching algorithms. Another 

motivation is to explore the relationship between cryptography 

and caching algorithms. The bloom filter data structure, for 

example, establishes this relationship, because it uses a 

cryptographic hash function to insert, lookup and delete its 

elements. Moreover, it was also claimed that bloom filter can 

be applied for caching algorithms to save memory space [2]. 

The bloom filters and hash functions are relatively new in the 

current research area, thus it is interesting to see how they help 

cooperative caching algorithms be scalable. 

 

1.4 Organization of paper 

The current paper is organized as follows: Section 2 describes 

the required background knowledge and concepts. Section 3 

elaborates more into existing cooperative caching algorithms. 

Section 4 examines the research problem and introduces the 

novel caching algorithm. Section 5 describes the experiments 

and the metrics used to evaluate the algorithms. The limitations 

of this paper and the future works in this research field are 

discussed in Sections 6 and 7, respectively. Finally, Section 8 

summarizes the paper by presenting the conclusions drawn 

from the experiment results. 

 

 

2 Background 

2.1 Cache memory 

A cache memory transparently stores the data so that future 

data requests can be served faster [9]. It can be used to increase 

the performance of secondary storage devices, such as a hard 

disk, by saving the copies of frequently or recently accessed 

blocks. In a client/server environment, caching is used to 

reduce the request latency, service time (i.e. round trip time) 

and the network traffic. The data stored in the cache may either 

be a previously computed value or the block that has been 

requested before. 

 

The cache memory is a part of the computer memory hierarchy 

ordered from the fastest memory at the top to the slowest one at 

the bottom. In such setting, cache filters out the data request 

directed toward the slower layers of the hierarchy. For 

example, when the client requests the data block, it first checks 

the cache. If the requested data is in the cache (i.e. a cache hit), 

it is served directly from the cache memory, which is relatively 

faster. Otherwise (i.e. a cache miss), the data has to be fetched 

from the slower memory layer such as a disk. Therefore, the 

performance of the system will be improved if more data is 

read from the cache [9]. The size of a cache depends on the 

requirements of the system, but it is usually kept small to 

maintain its efficiency.  

 

2.2 Cooperative caching system 

A typical cooperative caching system in client/server 

environment usually implements the local and global caches. 

The local cache is implemented in the client side as part of its 

memory hierarchy. The global cache is also considered as a 

layer in the hierarchy and it is positioned between a local cache 

and the server’s storage [5]. Its content is managed by a 

cooperative caching algorithm using the logic of least recently 

used (LRU) and least frequently used (LFU) algorithms.  

 

The architecture of cooperative caching system usually 

involves a manager, clients and a server. The manager 

implements and maintains the global cache; the server hosts the 

data blocks and the client sends the read requests to these 

blocks. The manager is responsible for the coordination of the 

clients’ requests to the blocks. The extent of coordination is 

different among various cooperative caching algorithms and it 

is considered a major distinction between them [5]. Moreover, 

the clients have to cooperate with each other when accessing 

the blocks. Cooperation takes place when one client does not 

have the required block in its local cache and it probes caches 

of other clients for the required data. 

 

Cooperative caching systems are usually designed using a 

centralized architecture. In this architecture, if client 

experiences local cache miss, then it contacts the manager to 

lookup the global cache. The manager usually knows which 

client’s cache contains the required block through its global 

cache. If there is a global cache hit, the manager redirects the 

request to the appropriate client. Otherwise, the manager 

fetches the block from the server which may be a slow and an 

expensive process. Figure 1 illustrates an example of such 

centralized architecture. 

 

 

Client 1

Client 2
Client 3

Client 4

Manager Server

LOCAL CACHE

LOCAL CACHE

LOCAL CACHE

GLOBAL CACHE

LOCAL CACHE

 

Figure 1: A centralized cooperative caching system. In this 

system, a single manager is responsible to maintain the global 

cache. 
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3 Existing algorithms 

3.1 N-chance algorithm 

The N-chance algorithm is one of the pioneers in the field of 

cooperative caching. It uses a centralized architecture which 

includes clients, the manager and the server. In this algorithm, 

the local cache is located in the clients’ side. But the global 

cache is maintained by the manager and has the comprehensive 

view of the all local caches. Local cache content is managed by 

LRU cache replacement algorithm, but the global cache is 

coordinated using a more sophisticated policy. In this policy, 

the data block is either discarded or kept in the global cache 

based on its quantity in the cooperative caching system. If there 

is only one specific block in entire system, it is called a singlet; 

otherwise it is considered as a non-singlet. The singlet data 

blocks are forwarded to a randomly selected client to further 

retain them in the system; otherwise, they are discarded 

immediately. Each singlet block is given a recirculation count 

N such that every time the block is forwarded, the count is 

decremented. In other words, the block is given N chances to 

stay in the cooperative caching system. When the count reaches 

zero, the block is discarded regardless of its singlet status [4]. 

The central manager component plays an important role in the 

N-chance algorithm. It is responsible for global cache 

maintenance and lookup, and forwarding the block requests to 

the clients and the server. Every time client inserts or removes a 

block from its cache, it reports these changes to the manager. 

The manager uses this information about changes to maintain 

the consistency of the global cache [4]. 

 

3.2 Hint-based algorithm 

In N-chance algorithm, the information contained in the global 

cache is considered as facts. This is because global cache 

reflects the factual data stored in the local caches of clients. 

However, maintenance of these factual data increases overhead 

on the manager. The hint-based cooperative caching algorithm 

attempts to solve this overhead problem by relaxing the 

centralized control of global cache. In particular, the algorithm 

distributes the portions of the global cache information among 

clients as hints, so that clients can make local caching 

decisions. Thus, the global cache is maintained by both clients 

and the manager [5]. In such setting, the manager still retains 

the control of the global cache, but it incurs much less 

overhead from clients.  

Facts and hints are main components of the hint-based 

algorithm. They usually contain the information about the 

location of a master block, which is the original block fetched 

from the server. The hints reduce the client’s dependence on 

the manager when performing caching operations. However, 

the hints are not always accurate, because they are local to the 

client and they do not reflect the changes taking place in the 

caches of other clients. For example, if a hint tells the client 

about the location of a particular master block, it is not 

guaranteed that the block is present at the remote client’s 

cache. The chances are that the remote block might have been 

forwarded to another client or it has been discarded entirely. 

Also, the information about this change might not have been 

reflected in the client’s hint. Thus, the hint gives client only a 

clue about the probable location of a block in the cooperative 

caching system. However, managing hints is less costly for a 

client than managing facts, because the accuracy of hints needs 

not to be maintained at all times [5]. 

 

4 New algorithm: SKALA 

4.1 Problems with existing algorithms 

There are several problems associated with existing cooperative 

caching algorithms. The first problem is related to their 

scalability – the algorithms do not scale when the number of 

clients increase in the cooperative caching system. Increased 

number of clients generate excessive amount of block requests 

towards the manager and causes it to get overloaded. For 

example, in the N-chance algorithm, the singlet block is 

relocated to the remote client through the manager. When the 

number of clients increases, such block relocation procedures 

happen more often which causes a communication overhead 

among the clients and the manager. In the case of hint-based 

algorithm, the local hints may become obsolete, thus clients 

will be required to contact the manager to obtain the fact. Such 

algorithm also produces a communication overhead as the 

number of clients increases. Also, it may take a while until hints 

are updated, so there is a risk for a client to perform an 

inaccurate caching operation based on the obsolete hint. The 

outcome of this operation is unfavorable since inaccurate 

decisions increase the cache miss rate [8].  

 

Another problem of existing algorithms is associated with a 

memory overhead placed on the global cache. As more clients 

are added to the system, the manager has to allocate more 

memory space for the global cache. While the hint-based 

algorithm mitigates this problem by using hints, it still 

maintains facts in the global cache at the cost of manager’s 

resource. This may result in a waste of memory resource when 

the number of obsolete facts becomes excessive.  

 

4.2 Proposed solution 

In order to overcome the problems with existing algorithms, 

current research paper proposes a solution to reorganize the 

components presented in Figure 1. In this solution, the global 

cache component is removed from the manager and distributed 

among the clients. Thus, each client maintains its own copy of 

the global cache besides its local cache. A client periodically 

updates the state of its global cache. Updating procedure 

involves calculation of bloom filter from local cache and 

broadcasting it among the other clients. Figure 2 shows the 

overall architecture of the proposed solution.  
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Figure 2: The architecture of the proposed solution. In this 

architecture, the global cache component is removed from the 

manager and distributed to each client. 

 

The proposed solution is implemented by a novel cooperative 

caching algorithm called SKALA. It is designed using 

decentralized architecture and requires each client to maintain 

local and global cache components. The local cache stores the 

accurate state of the data block including its content. But, the 

global cache stores only approximate information about blocks. 

Due to such approximate information, the global cache lookup 

operation may return false positive (i.e. false cache hit) and 

false negative (i.e. false caches miss) results. However, in 

SKALA, the local cache is accessed more frequently than the 

global cache. Therefore, the algorithm does not keep the global 

cache up-to-date at all times and false positives and negatives 

happen occasionally within tolerable threshold. SKALA also 

reduces the global cache size by using bloom filter. This 

assures that global cache uses less space in client’s memory 

which increases the local cache hit rate.  

 

4.3 Data structures used in SKALA 

SKALA uses traditional and novel data structures to implement 

the cache memory (Figure 3). The local cache is implemented 

using a hash table which keeps each data block as a key/value 

pair. The key represents the block’s ID and the value denotes 

the block’s content. Unlike a hash table, a bloom filter only 

stores the block’s ID as a key, but the block contents are not 

stored [6]. Such design gives an advantage during caching 

operations. For example, a bloom filter spends less time to look 

up the block information compared to the hash table. But, the 

time to access the block contents stored in the local cache 

becomes significant because of the network latency [1].  

 

The bloom filter data structure is considered as an exceptional 

feature of the SKALA. It is a probabilistic data structure which 

basically is an array. Similar to an array, it supports insert, 

delete and lookup operations. However, the result of the lookup 

operation is returned with some level of probability. For 

example, the lookup operation may result in false positives and 

negatives. The false negative happens when the particular block 

is stored in the cache, but the bloom filter says otherwise. On 

the other hand, the false positive occurs when the block is not 

stored in the client’s cache, but the bloom filter says otherwise. 

Even though these errors affect the cache hit ratio, bloom filter 

keeps the logic of the cooperative caching algorithm intact. For 

example, a false cache hit does not result in a wrong block 

being served [2]. The probability of getting false positives and 

negatives can be controlled by proper choice of values for 

bloom filter parameters (such as its size and expected number 

of elements).  One of the advantages of bloom filter is its fixed 

size so that the capacity of the global cache does not change 

over time. On the other hand, the bloom filter can only be used 

for cache lookup operation, and it cannot directly be used to 

store the block’s other attributes such as its size [7].  
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Figure 3: The data structures used in the local and global 

cache. 

 

4.4 Algorithm limitations 

Even though the SKALA has significant advantages over the 

existing algorithms, it exhibits some limitations. First, SKALA 

only works in block level granularity; thus, the algorithm 

requires the data to be split into blocks. Thus, SKALA accepts 

block ID as an input, but not a whole file name. Second, the 

performance of SKALA under large cooperative caching 

systems such as CDNs is not predictable. The algorithm is only 

tested with a cache memory which size is 64 – 2048 KB. Such 

test sizes are significantly small compared to the cache sizes of 

real-world distributed systems. Third, SKALA executes its 

operations sequentially and is not tailored to run in parallel. In 

order to develop a parallel version of the algorithm, a special 

parallel library has to be used. Also, applying parallelism into 

algorithm requires an external synchronization of internally 

used data structures.  
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5 Evaluation 

5.1 Evaluation metrics 

The following metrics are used to evaluate the performance of 

the cooperative caching algorithms: 

- Manager load measures the overhead a client imposes on the 

manager. The overhead is expressed as a number of messages 

generated by the client to communicate with the manager. This 

metric is important because it represents the amount of work 

completed by the manager for cooperative caching operations.  

- Memory overhead measures the overhead imposed on the 

manager’s memory. The size of the global cache is used to 

determine the memory overhead. Such measurement is also an 

important factor in estimating the algorithm’s scalability.  

 

5.2 Experiment results 

In order to conduct the experiments, a special software 

simulator is developed in Java which implements all 

cooperative caching algorithms under investigation. The 

simulator used a single Java Virtual Machine and its input 

parameters are adjusted through a configuration file. List of 

algorithms tested are provided below: 

- N-chance algorithm; 

- Hint-based algorithm; 

- Non-bloom filter based algorithm; 

- Bloom filter based algorithm (SKALA).  
The input parameters of the simulator specific to caching 

algorithms (local cache size, the number of clients and the 

network latency) are adjusted regularly based on the 

requirement of the experiment.  

 

5.2.1 Manager load 

Figure 4 shows the measurement of the load imposed on the 

manager. The load is directly proportional to the amount of 

messages exchanged between clients and the manager. These 

messages are broken down to consistency, replacement and 

lookup messages. According to the figure 4, the N-chance 

algorithm imposes most load on the manager compared to the 

rest of the algorithms. Its centralized architecture requires 

clients to make frequent contacts to the manager to lookup the 

global cache. Another reason is because a client constantly 

updates the manager with the change in its local cache content 

for the purpose of global cache maintenance. Consistency 

messages put most of the load on the manager due their 

importance for the global cache. In the case of the hint-based 

algorithm, the manager load is three times less than that of N-

chance. Despite using hints, the algorithm still requires clients 

to contact the manager in order to maintain the facts in the 

global cache. Finally, the decentralized architecture of SKALA 

imposes fewer loads on the manager making the algorithm 

scalable. Because the global cache is locally stored in each 

client, it does not contact the manager at all for lookup, insert 

and delete operations.  

 

 
Figure 4: The average load imposed on the manager by each 

algorithm. The load is defined as the number of messages sent 

and received by the manager. The manager load is broken 

down to consistency, replacement and lookup messages. 

 

 

 
Figure 5: The variation of the manager load as the number of 

clients increase. 

 

It is important to measure the scalability of the algorithms when 

number of clients increases in the cooperative caching system. 

If algorithm’s load on the manager does not change as more 

clients join the system, then it is considered as a scalable. The 

outcome of the experiment for scalability is presented in Figure 

5. According to the figure, the manager load on bloom and non-

bloom filter based algorithms grows slower than the rest of the 

algorithms. The decentralized architecture of these algorithms 

keeps the communication among the clients and the manager to 

low regardless of the number of clients. However, the N-chance 

and hint-based algorithms demonstrate a gradual increase of the 

manager load under the same conditions. The reason is that 

algorithms require the clients to contact the manager to 

maintain the global cache consistency. Increased amount of 

messages degrade the manager’s performance which eventually 

reduces the algorithm’s scalability. 

 

5.2.2 Memory overhead 

Figure 6 shows the result of the experiment which evaluates the 

memory overhead of the algorithms. This research used the 
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value of the global cache size to estimate the memory overhead. 

This value is variable and depends on the aggregate sizes of 

local caches. According to figure 6, the memory overhead of 

SKALA is significantly low compared to that of other 

algorithms. SKALA uses a bloom filter to implement the global 

cache which keeps its size fixed regardless of number of 

blocks. On the other hand, the memory overhead is the highest 

in case of non-bloom filter based algorithm. Such huge 

difference is due to the method used to store the blocks in the 

global cache. This algorithm stores the exact copy of each 

block in the global cache. However, the rest of the algorithms 

use block’s ID to populate the global cache and the actual 

block contents are stored in the local cache. 

 

 
Figure 6: The memory overhead in the cooperative caching 

algorithms. 

 

Another experiment evaluates the scalability of the algorithms 

when the local cache size varies between 64 – 1024 KB. The 

experiment assumes that the size of the global cache is 

proportional to size of the local caches in all algorithms. The 

result of experiment is shown in figure 7. In case of the non-

bloom filter based algorithm, the global cache size increases 

exponentially as local cache size reaches the 1024 KB mark. 

This algorithm stores the block contents in the global cache, 

thus local cache content consumes more space in the global 

cache. N-chance algorithm shows similar behavior but at lesser 

extent due to allocation of global cache maintenance to the 

manager. The hint-based algorithm achieves the better result 

than  N-chance through keeping merely master block 

information in the global cache. Finally, SKALA demonstrates 

immunity to the increase in the local cache size due to the fixed 

size of the bloom filter used in its global cache. 

 

The final experiment uses the number of clients to evaluate the 

scalability of the algorithms (Figure 8). According to the figure 

8, the number of clients in the system directly affects the 

memory overhead. N-chance and hint-based algorithms 

demonstrate that the overhead on the memory grows 

exponentially when number of clients increase. Such 

exponential growth indicates that these algorithms are not 

scalable due to increased block access time and increased load 

on the manager. Moreover, both of these algorithms use a 

variable size global cache which can grow infinitely. Thus, 

when the number of clients increases, the amount of cached 

block information consumes more space in the global cache. 

On the other hand, SKALA’s global cache size remains 

relatively stable until the number of clients reaches 50. The 

global cache allocates one bloom filter for each client’s local 

cache information, thus exceeding this threshold of 50 clients is 

sufficient for to increase the size of the global cache. 

 

 
Figure 7: The sensitivity of the memory overhead to the 

variation of the local cache size. 

 

 

 
Figure 8: The sensitivity of the memory overhead to the 

change in the number of clients. 

 

 

6 Limitations of proposed solution 

The proposed solution faces some limitations that could affect 

its performance. For example, the bloom filter data structure 

only stores the approximate state of the global cache. This may 

result in false positives and negatives which means not all 

global cache lookup operations return accurate answer. 

Inaccurate answers are primary reasons for the local and global 

cache misses. Consequently, this increases the block access 

time and reduces the performance of SKALA. Therefore, the 

bloom filter has to be created with appropriate input 

parameters. Moreover, SKALA does not implement the cache 
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writing policy. However, integrating this policy into SKALA 

would make the contents of cache memory and server disk 

more consistent. On the other hand, such modification may not 

change the outcomes of the experiments, because cache writing 

and block reading policies are mutually exclusive and they do 

not affect the cache hit/miss rates. Another shortcoming of 

SKALA is associated with the input data used in the 

experiments. The input data (trace) is synthetic meaning that it 

is randomly generated which does not reflect the real world 

block access pattern. However, using real world traces would 

increase the credibility of the experiment results. 

 

 

7 Future work 

Even though SKALA proved itself as scalable caching 

algorithm, there are some enhancements that could be applied 

for the algorithm. One of them entails implementing a cache 

writing policy in SKALA. According to this policy, when the 

content of the cache is changed, the updated blocks are written 

back to the server’s disk. Thus, the consistency of the cache 

memory and the disk is maintained. Another extension to 

SKALA is to implement an offline caching algorithm. All of 

the algorithms presented in this paper are all considered online 

algorithms. The offline algorithm can be used in the 

experiments to measure the upper performance bound of these 

online algorithms. Such measurement would help optimize the 

performance of the existing algorithms. Finally, implementing a 

multithreading would improve the performance of SKALA. For 

example, the computation of the bloom filter can be 

parallelized with multithreading so that each hash functions are 

calculated by separate thread.  

 

 

8 Conclusion 

A cooperative caching system usually implements two layers of 

cache memory: local and global caches. The system 

components usually consist of the manager, the clients and the 

server all of which works under the rule of the specific caching 

algorithm. The algorithm is also used to coordinate the contents 

of the local and global caches. The level of coordination is an 

important factor and is the main difference between various 

cooperative caching algorithms. The current paper introduces 

the bloom filter based decentralized caching algorithm, called 

SKALA, which focuses on the scalability and efficient use of 

global cache memory. SKALA achieves the scalability by 

removing the maintenance of the global cache from the 

manager. Instead, it distributes the entire global cache among 

the clients. The content of the global cache is composed of a set 

of bloom filters, one filter to represent each client’s local cache. 

The bloom filter simplifies the implementation of the global 

cache replacement policy in SKALA which does not involve 

the manager. The experiments on SKALA show that the load 

on the manager is decreased due to algorithm’s decentralized 

architecture. This assures the scalability of SKALA without 

reducing its performance. Moreover, the bloom filter reduces 

the memory overhead for the global cache. This signifies that 

SKALA is better at using the manager’s resources efficiently 

compared existing solutions. 
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Abstract— The increase in computational power of process-
ing units and the complexity of scientific applications which
use high performance computing require more efficient In-
put/Output (I/O) systems. In order to efficiently use the I/O
system it is necessary to know its performance capacity
to determine if it fulfills applications I/O requirements.
Evaluating the performance capacity of the I/O system is
difficult due to the heterogeneity of its architecture and the
complexity of I/O software stack. It is necessary to under-
stand the application’s access patterns, the architecture, the
software stack and its interaction to evaluate the I/O system
utilization.

We propose a methodology to evaluate the I/O system
utilization taking into account parallel applications behavior
and the I/O system performance capacity. To analyze the I/O
system we evaluate the I/O path of computer clusters. We use
a hierarchical scheme of the I/O system with its performance
capacity at I/O library level and at I/O device level.

We propose a method to identify I/O phases of parallel
scientific applications depending on its temporal and spatial
patterns. We have evaluated the I/O system utilization taking
into account the I/O phases behavior of applications in I/O
devices.

Keywords: Parallel I/O System, I/O Architecture, Mass Storage,
I/O Configuration

1. Introduction
Due to the historical “gap“ between the computing and

Input/Output (I/O) performance, in many cases, the I/O
system becomes the bottleneck of parallel systems. In order
to hide this "gap", the I/O factors with the biggest effect on
performance must be identified. Furthermore, the increased
computational power of processing units and the complex-
ity of scientific applications which use high performance
computing require more efficient Input/Output Systems. The
parallel I/O system is complex because it is composed of
different components of hardware and several layers of
software. Also these I/O components are heterogeneous in
computer clusters. The designer or system administrator
has the difficulty either to select components of the I/O
subsystem (JBOD (Just a Bunch Of Disks), RAID (Redun-
dant Array of Inexpensive Disks) level, filesystem, intercon-
nection network, among other factors) or to choose from
different connection models (DAS, SAN, NAS, NASD) with
different parameters to configure (redundancy level, stripe,

among others). Programmers can modify their programs to
efficiently manage I/O operations, but they need to know
the I/O system, especially the I/O software stack. The system
administrators and programmers need information to answer
the following questions, When is it convenient to use a
parallel or distributed file system? When is it convenient
to use I/O nodes for management the Input/Output? When
is it convenient to use RAID or single disks? When is
it convenient to use local storage or remote storage? We
propose a methodology to evaluate the I/O system utilization
taking into account the parallel I/O of the application and the
I/O subsystem. To analyze the I/O subsystem we try to cover
the I/O path of data on the subsystem of computer cluster.
We use a hierarchical scheme of the subsystem with its
performance capacity at I/O library level and at I/O devices
level. Our methodology requires extracting access patterns
of the application to identify the I/O phases from to which
we define an I/O model of application. To do this, we have
used a tool (PAS2P [1] library) developed by our research
group. This tool traces parallel applications I/O operations
at MPI-IO level.

We evaluate the utilization of two I/O configurations
(where we have used parallel filesystem PVFS2 and network
filesystem NFS). Furthermore, we show the I/O model for
two I/O benchmark of scientific applications.

The rest of this article is organized as follows: in Section
II we review the related work, Section III introduces our
proposed methodology. In Section IV we review the exper-
imental validation. Finally, we present our conclusions and
future work.

2. Related Work
There are several works which present evaluation of the

I/O configurations for improving the performance of the I/O
subsystems. Since the I/O systems are complex to evaluate,
generally, the studies are focused on specific supercomputers
or computer cluster.

The I/O performance analysis developed in the Sandia
National Laboratories over the Red Storm platform is pre-
sented in [2]. In order to arrive at a theoretical estimation for
the Red Storm configuration, they started with a single end
to end path definition, across which I/O operation travels.
This study differs from our work since we evaluate the I/O
path at I/O Library level and at devices level taking into
account the different I/O configurations of the computer
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cluster. Furthermore, we use these information to evaluate
how much of the I/O system capacity is being used by the
application.

Kunkul and Ludwig [3] presented an evaluation of perfor-
mance for computer cluster on parallel filesystem PVFS2.
They introduced a systematic approach for performance
analysis for parallel filesystem’s architecture for various
request types. This study differs from our work since we
have used the IOR benchmark at I/O library level to evaluate
different patterns and the IOzone benchmark at level devices
to obtain the peak values of the I/O architecture.

Carns et. al. [4] presented a multilevel application I/O
study and a methodology for system wide, continuous, scal-
able I/O characterization that combines storage device instru-
mentation, static filesystem analysis, and a new mechanism
for capturing detailed application-level behavior. Our work
differs from his study because we evaluate the I/O system
utilization taking into account I/O phases of application
which are used to represent an I/O model of application.

Byna et. al. [5] defined the access patterns to identify the
I/O signatures for parallel I/O prefetching. They presented
a classification of I/O patterns for parallel application. We
use her I/O pattern classification. Our work differs from his
study because we define I/O phases of the application at I/O
library level. The I/O model is independent from architecture
allowing us to analyze the application behavior on different
I/O system configurations.

3. Proposed Methodology
In order to evaluate the I/O system configuration utiliza-

tion by scientific applications it is necessary to know its
performance capacity and I/O patterns of the application.
We characterize the behavior of the application at I/O library
level and we also evaluate its behavior on I/O configuration
at I/O devices level. Figure 1 shows our methodology. This
is composed of three stages: Characterization, I/O analysis
and Evaluation.

3.1 Characterization
The characterization of application is done with PAS2P

tracing tool. Also, we define the I/O phases of application
and show the I/O model for the application. We characterize
the I/O subsystem of a computer cluster following the
structure of the I/O system of Figure 1. The data travels
along an I/O path from application to I/O devices in writing
operations and from I/O devices to application for reading
operations. Depending of I/O system, data can cross over
interconnection networks to arrive to data storage.

3.1.1 Scientific Application
I/O patterns of parallel applications can be divided in local

patterns and global patterns. Local patterns are determined
per process, showing how a file is accessed by a process.
Global patterns show how the file is accessed temporally

Fig. 1: Methodology to evaluate the I/O system utilization
by parallel scientific applications

and spatially for processes of parallel application. We use
the classification of local patterns of [5] and we define
global patterns from analyzing local patterns. We define a
I/O phase as a repetitive sequence of I/O patterns of a parallel
application.

We represent the I/O model of an application by three
major characteristics: i) the meta-data; ii) the temporal global
I/O pattern; and iii) the spatial global I/O pattern. We
characterize the application off-line and once at I/O library
level because it provides us two important benefits. First, to
obtain a model of the application’s I/O independent from the
execution environment, i.e. the computer cluster. Second, to
evaluate the behavior of the application with different I/O
configurations, avoiding the overhead of the tracing tool.

We have implemented an extension of PAS2P library to
characterize application at process level. PAS2P identifies
and extracts phases of the application, and by similarity
analysis, this selects the significant phases (by analyzing
compute and communication) and their weights. The rep-
resentative phases are used to create a Parallel Application
Signature which allows us to predict the application perfor-
mance in target machines. PAS2P instruments and executes
applications in a parallel machine, and produces a trace log.
The data collected is used to characterize computational and
communication behavior. The extension of PAS2P library
traces I/O operations of the MPI-2 standard. MPI-2 has three
aspects to data access: positioning (explicit offset or implicit
file pointer), synchronism (blocking, non-blocking and split
collective), and coordination (non-collective or collective).
Also there are two types of file pointers (individual and
shared) [6].

From MPI-IO routines we extract: type of I/O operation,
initial offset, displacement, request size, filename, and file
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type . Then, the traces are analyzed and we extract the access
patterns for the parallel application. We incorporate the I/O
primitives to the PAS2P tracing tool to capture the relation-
ship between the computations and the I/O operations. Thus,
we created a library libpas2p− io.so which is loaded when
the application is executed with LD_PRELOAD.

We identify the I/O phases with an access pattern and
their weights (number of repetitions of the pattern). With
the characterization, we try to find the application phases
which are used as units for behavior analysis in the I/O
system. Due to the fact that scientific applications show a
repetitive behavior, m phases will exist in the application.
We represent a local access pattern by the tuple: (Operation,
initialOffset, displacement, requestSize, repetitions).

The I/O phases are a repetitive sequence of same pattern
on a file for a number of processes of the parallel application,
thus an I/O phase is represented by the tuple: (IDPro-
cess[i], accessPattern[i], weight, accessMode, accessType,
FileName) where i ∈ {0..Pph}, Pph is the number of
processes of the I/O phase.

To explain the I/O phases’ identification we present an
example for the benchmark MADBench2 [7]. MADbench2
is a tool for testing the overall integrated performance of the
I/O, communication and calculation subsystems of massively
parallel architectures under the stress of a real scientific
application. MADbench2 is based on the MADspec code,
which calculates the maximum likelihood angular power
spectrum of the Cosmic Microwave Background radiation
from a noisy pixelated map of the sky and its pixel-pixel
noise correlation matrix. MADbench2 can be run as single
or multi-gang; in the former all the matrix operations are
carried out distributed over all processors, whereas in the
latter the matrices are built, summed and inverted over all
the processors (S & D), but then redistributed over subsets
of processors (gangs) for their subsequent manipulations (W
& C).

MADbench2 can be run on IO mode, in which all cal-
culations/communications are replaced with busy-work, and
the D function is skipped entirely. The function S writes,
W reads and writes, C reads. This is denoted as S_w,
W_w, W_r, C_r. MADbench2 reports the mean, minimum
and maximum time spent by each function during calcula-
tion/communication, busy-work, reading and writing in each
function. Running MADbench2 requires a n2 number of
processors.

By tracing MADBench2 with our tool we have obtained
its metadata:

• Individual file pointers, Non-collective I/O operations,
Blocking I/O operations.

• Sequential access mode, Shared access type.
• A file shared by all processes
Figure 2 shows the first phase which is composed of eight

writing operations, in the second phase all processes read
their positions two first, the third phase is composed of six

Fig. 2: Temporal and Spatial I/O pattern of MADBench2 for
4 processes (process, operation, {initialOffset, displacement,
requestSize}, #repetitions)

writing/reading operations, in the fourth phase, processes
write their last two positions, and in the fifth phase, pro-
cesses read all their positions. This information is useful
to determine the spatial pattern (the view of file and the
access mode by process). However, to define the I/O phases
we also need the temporal pattern (order occurrence of I/O
operations on the file). Figure 2 shows the global temporal
pattern of MADBench2. Note that each process shows a
similar pattern (the events occur in the same order). If we
analyze the phase 3 of process 0 it observes that a process
repeats a writing operation six times (#6) on initial offset
0 and displacement 50 MB and request size 50MB, this
is followed by a reading operation on initial offset 100MB
and displacement 50MB with a request size 50MB. Figure
2 shows this pattern in the 4 processes, but with different
initial offsets because each process works on disjoint sets of
contiguous data.

We define five I/O phases for MADBench2 due to the
similarity of its I/O patterns. Figure 2 shows the five I/O
phases in purple boxes.

3.1.2 I/O System

In this step we identify the I/O system configuration. An
I/O configuration depends on number and type of filesystem
(local, distributed and parallel), number and type of network
(dedicated use and shared with the computing), state and
placement of buffer/cache, number of I/O devices, I/O de-
vices organization (RAID level, JBOD), and number and
placement of I/O node. For example, we define the follow-
ing I/O configurations for an own cluster which is named
Aohyper. This has the following technical characteristics: 8
nodes AMD Athlon(tm) 64 X2 Dual Core Processor 3800+,
2GB RAM memory, 150GB local disk. Local filesystem is
Linux ext4 and two global filesystem: NFS and PVFS2. The
NFS server has a RAID 1 (2 disks) with 230GB capacity and
RAID 5 (5 disks) with stripe=256KB and 917GB capacity,
both with write-cache enabled (write back). The nodes of
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Fig. 3: I/O system configurations for Cluster Aohyper

PVFS2 are Intel(R) Pentium(R) 4 CPU 3.00GHz processors,
80 GB disk, and a Gigabit Ethernet network interconnection
for data and communication.

The local filesystem is ext4 Linux for computing nodes
and server NFS, and ext3 for nodes PVFS2. NFS server
is an I/O node for shared accesses and there are eight I/O
nodes for local accesses where users are responsible for data
sharing. There are three storage nodes and a metadata Server
for PVFS2 filesystem. PVFS2 is used by applications that re-
quire parallel accesses to files. The I/O nodes and computing
node are interconnected with two Gigabit Ethernet networks,
one for communication and the other for data. Figure 3
shows I/O configurations used in the cluster Aohyper.

3.2 Input/Output Analysis
There are three requirements that an I/O system must

provide: storage capacity, availability and performance. Our
work is focused on performance capacity. The performance
is expressed by transfer rate (MB/sec) metrics, IOPs (In-
put/Output operations per second) and latency. This perfor-
mance capacity is different at each I/O system level. The
performance also depends on the connection of the I/O
node, the management of I/O devices, placement of I/O
node in network topology, buffer/cache state and placement,
availability data and service. We obtain the performance
capacity of I/O system at I/O library level for different access
patterns through benchmark IOR [8]. Furthermore, we obtain
the peak value at I/O devices level with benchmark IOzone
[9].

We have executed the benchmarks in each I/O configu-
rations with different I/O patterns and we have generated
a data base by configuration with performance measures
(bandwidth, latency, iops). The following data structure is
used to store the I/O system performance (I/O devices, local
and global filesystem, and I/O library): Operation Type (enu-
merate {write,read}), Request size (long integer (MBytes)),
Access Type (enumerate {0 (Unique), 1 (Shared)}), Accesses
Mode (enumerate {0 (Sequential), 1 (Strided), 2 (Ran-
dom)}), Transfer Rate (double (MBytes/second)), Latency
(double (microsecond)), Number of processes (integer).

To compare the I/O pattern of the application with
benchmarks, we define the following data structure for

I/O phases: ID of phase (integer), ID of files (integer),
Operation Type (enumerate {write,read}), Request size (long
integer (MBytes)), Access Type (enumerate {0 (Unique), 1
(Shared)}), Accesses Mode (enumerate {0 (Sequential), 1
(Strided), 2 (Random)}), Number of repetitions (integer),
Number of processes (integer).

We analyze the I/O phases of the application and its
weight to select the candidate configurations. We search the
I/O patterns of phases on performance databases. Then, we
calculate the I/O time for the I/O phases and we select the
I/O configurations with the lowest I/O time. We applied the
following algorithm to calculate the I/O time:

• Reading of patterns from each I/O phase
• Searching on the file of Performance the characterized

transfer rate in the different I/O path levels based on
I/O phases of application.

• The I/O time of the application is calculated with
DataTransferred(phase[i])

transferRate by each I/O phase, where i
is the number of phase, DataTransferred is the data
amount read or written in the phase i, TransferRate is
the characterized value at I/O library level.

The algorithm to search the transfer rate for the I/O pattern
is explained with the following steps:

• Opening the table of performance and setting the vari-
able "found" to stop the searching when the values are
found.

• If the operation type, access mode, and access type are
equal to a value in the performance table, and the block
size of the operation is:

– less than minimum block size of the performance
table then it selects the transfer rate corresponding
to minimum block size.

– greater than maximum block size of performance
table then, it selects the transfer rate corresponding
to the maximum block size.

– equal to a block size of the performance table then
it selects the transfer rate corresponding to such
block size.

– a value between the characterized values then it
selects the closest upper value to the searched
value.

• When the search finishes then the performance table is
closed and the TransferRate is returned.

To explain this stage we evaluate the I/O phases to MAD-
Bench2 for 16 processes, 8KPIX, shared filetype, 32 MB
request size. Figure 4 shows the I/O phases of MADBench2.
Table 1 shows the I/O phases of MADBench in a general
format. The I/O model of MadBench2 is represented with
Fig. 4, Table 1 and its metadata.

We can observe that MADBench2 always writes and reads
at the same I/O phases, when the number of processes
increases the problem is divided among processes, therefore
each process writes or reads a smaller block size. When
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Table 1: I/O phases description of MADBench2 for 16
processes

Phase #Oper. InitOffset Rep.
1 16 write IdProcess ∗ 8 ∗ 32MB 8
2 16 read IdProcess ∗ 8 ∗ 32MB 2
3 16 write IdProcess ∗ 8 ∗ 32MB 6

16 read IdProcess ∗ 8 ∗ 32MB+ 6
+2 ∗ 32MB

4 16 write IdProcess ∗ 8 ∗ 32MB− 2
−2 ∗ 32MB

5 16 read IdProcess ∗ 8 ∗ 32MB 8

Fig. 4: I/O phases of MADBench2 where "tics" indicates the
order of events occurrence

problem size increases (increases KPIX) then block size also
increases.

Following our example, we show in Figure 5 the char-
acterization at I/O library level for I/O configurations of
cluster Aohyper. We have selected NFS on RAID5 and
PVFS2 on JBOD configurations to evaluate their utilization
by MADBench2.

The results for reading operations shown in Figure 5(a)
present lower performance values in NFS on RAID5 when
working with block sizes below 8MB. In contrast, the
transfer rate of writing operations increases proportionally
to the increase in the block size. As could be seen in Figure
5(a), both writing and reading operations behave similarly
for block sizes over 64MB. It is possible to infer from Figure
5(b) that in PVFS2, the transfer rate of reading operations is
lower than the rate of writing operations. These results show
that: the block size is the I/O factor with the highest impact
in performance; while the evaluated file sizes have no high
impacts in performance. Additionally, results of Figure 5(b)
show a drop in performance for block size of 512MB for
16 processes, caused by timeouts in the file system due to
network congestion.

The results of the characterization of both file systems,
NFS (Figure 5(a)) and PVFS2 (Figure 5(b)), show two
important things: i) PVFS2 on JBOD presents bigger transfer
rates when working with smaller block sizes (< 64KB); and
ii) NFS on RAID5 achieves greater transfer rates for bigger
block sizes (> 64MB).

(a) I/O library on NFS

(b) I/O library on PVFS2

Fig. 5: I/O library on global filesystem Characterization

3.3 Evaluation
We evaluate the utilization of I/O system by the relation

between the bandwidth characterized (BW-CH) and mea-
sured (BW-MD) where BW-CH depends on access patterns
of each I/O phase. We define the utilization of I/O system
as: SystemUsage = BW−MD

BW−CH . When a phase has two or
more I/O operations then the BW-CH is calculated how the
average of the BW-CH of each I/O operation that composes
the I/O phase.

We can observe in the stage of I/O analysis that an applica-
tion with a block size of 32MB, sequential access mode, and
shared file will obtain higher transfer rates in NFS on RAID5
than in PVFS2 on JBOD (Figure 5). With this information
we can select an candidate I/O configuration where possibly
the application will have more performance. However, it is
worth noting that we are not analyzing the absolute I/O
time, because NFS on RAID5 and PVFS2 on JBOD are not
directly comparable in terms of the storage capacity and the
speed of devices. We compare performance results of these
two I/O configurations from the characterization introduced
in subsection 3.2 to observe how much from of the I/O
capacity is used in each I/O configuration.
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Table 2: I/O system utilization, BW-CH and BW-MD in
MB/second for MADBench2 with 16 processes, file size 4
GB and a shared file on NFS

Phase #Oper. Data BW-CH BW-MD System
transferred on NFS on NFS Usage

1 128 W 4096 MB 85 93 1.09
2 32 R 1024 MB 76 68 0.90
3 192 W-R 6144 MB 80 63 0.79
4 32 W 1024 MB 85 89 1.04
5 128 R 4096 MB 76 66 0.84

Table 3: I/O system utilization, BW-CH and BW-MD in
MB/second for MADBench2 with 16 processes, file size 4
GB and a shared file on PVFS2

Phase #Oper. Data BW-CH BW-MD System
transf. on PVFS2 on PVFS2 Usage

1 128 W 4096 MB 71 60 0.84
2 32 R 1024 MB 44 39 0.87
3 192 W-R 6144 MB 58 34 0.59
4 32 W 1024 MB 71 54 0.75
5 128 R 4096 MB 44 37 0.84

Table 2 shows the utilization of NFS on RAID5 and Table
3 shows the utilization of PVFS2 on JBOD. We also show
the amount of data transferred in each I/O phase, the number
and type of I/O operation (W=write, R=read, W-R=write-
read), BW-CH and BW-MD in MB/second.

We can observe in Table 2 that the I/O system for the NFS
on RAID5 is used at about 100% in phases with writing
operations (phases 1 and 4) and 85% in phases with the
reading operations (phases 2 and 5). This influences in the
I/O time of phases 1 (49 sec.) and 4 (11 sec.) which are
lower than in phases 5 (61 sec.) and 2 (16 sec.) in spite of
to transfer the same amount of data.

Table 3 shows that the I/O system for PVFS2 on JBOD is
used at about 80% in phases with writing operations and
85% in phases with the reading operations. I/O time in
phases 2 (17 seconds) and 5 (43 seconds) is lower than in
phases 4 (18 seconds) and 1 (61 seconds).

We can conclude from the evaluation that PVFS2 on
JBOD is more efficient in the system usage in reading
operations and NFS is more efficient in the system usage
in writing operations. Finally, we can say that NFS on
RAID5 provides lower I/O time than PVFS2 on JBOD to
MADBench2.

4. Experimentation
To validate the methodology, the I/O phases identification

is applied to Block Tridiagonal(BT) application of NAS
Parallel Benchmark suite (NPB)[10]. The BTIO benchmark
performs large collective MPI-IO writes and reads of a
nested strided datatype, and it is an important test of the
performance a system can provide for non-contiguous work-
loads. After every five time steps the entire solution field,
consisting of five double-precision words per mesh point,
must be written to one or more files. After all time steps

Table 4: I/O phases description of NAS BT-IO subtype
FULL for 16 processes

Phase Oper. InitOffset Rep.
1-40 16 W in RS ∗ IDProcess+ 1

each phase +(RS ∗ (N − 1)+
+(RS ∗ 15) ∗ (N − 1))

41 16 R RS ∗ IDProcess+ 40
+(RS ∗ (Rep− 1)+

+(RS ∗ 15) ∗ (Rep− 1))

Fig. 6: I/O phases of NAS BT-IO

are finished, all data belonging to a single time step must
be stored in the same file, and must be sorted by vector
component, x-coordinate, y-coordinate, and z-coordinate,
respectively. We have obtained the following meta-data of
NAS BT-IO in the FULL subtype with our tool:

• Explicit offset, Blocking I/O operations, Collective op-
erations.

• Strided access mode, Shared access type.
• MPI-IO routine MPI_Set_view with etype of 40.
• Request size 10MB.

Figure 6 shows I/O phases for 16 processes, Class C and
FULL subtype. Table 4 shows description of I/O phases for
NAS BT-IO where N is the number of phase (1− 40) and
RS is request size, IDProcess is the rank of MPI processes
(0− 15).

We have executed NAS BT-IO in the Aohyper cluster:
NFS on RAID5 and PVFS2 on JBOD, and we have evaluated
their utilization.

4.1 Evaluation
Table 5 and Table 6 show the utilization of the I/O system

on NFS and PVFS2. We also show the amount of data
transferred in each I/O phase, the number and type of I/O
operation (W=write, R=read, W-R=write-read), BW-CH and
BW-MD in MB/second.

Table 5: Bandwidth Characterized (BW-CH) and Measured
(BW-MD) in MB/sec for NAS BT-IO with 16 processes, file
size 6.4GB and a shared file on NFS

Phase #Oper. Data BW-CH BW-MD System
transferred on NFS on NFS Usage

1 to 40 640 W 6.4GB 85 65 0.76
41 640 R 6.4GB 63 47 0.74
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Table 6: Bandwidth Characterized (BW-CH) and Measured
(BW-MD) in MB/sec for NAS BT-IO with 16 processes, file
size 6.4GB and a shared file on PVFS2

Phase #Oper. Data BW-CH BW-MD System
transferred on PVFS2 on PVFS2 Usage

1 to 40 640 W 6.4GB 71 58 0.81
41 640 R 6.4GB 44 45 1.02

We observe that the I/O patterns of NAS BT-IO will obtain
similar performance in both configurations, as infered from
the I/O analysis stage presented in subsection 3.2.

NAS BT-IO reported that NFS on RAID5 has lower I/O
time than PVFS2 on JBOD with a difference of 14 sec.
(NFS on RAID5=244 seconds and PVFS2 on JBOD=259
seconds). PVFS2 on JBOD uses 80% of I/O capacity for
writing operations, and 100% to reading operations; while
NFS on RAID5 uses 76% of its I/O capacity for writing
operations, and 74% in reading operations.

In principle, the two I/O configurations are suitable to
I/O phases of NAS BT-IO FULL in its class C. When
the problem is increased, NFS on RAID5 presents some
interesting characteristics because of its I/O devices (higher
storage capacity and data availability). However, PVFS2
on JBOD can be more suitable in situations where there
are multiple processes accessing to a shared file (dynamic
distribution of data through its scheme of the metadata and
I/O servers), despite having less capacity and speed than
NFS on RAID5. Besides, it is an option with low cost
because we have configured PVFS2 with single disks and
we have obtained acceptable performance.

5. Conclusion
A methodology to evaluate the I/O system utilization

of parallel computers for the parallel scientific applications
has been proposed and applied. It allows us to determine
how much of the system’s capacity is being used. The
methodology can be used for selecting the more convenient
configuration from the available configurations in an I/O
system. We have presented an I/O model of the application
depending on its I/O phases. The I/O model of application
is defined by three characteristics: metadata, spatial global
pattern and temporal global pattern. We instrument the
application to obtain the access pattern and we analyze the
pattern to find the I/O phases. This instumentation is done at
MPI-IO level which does not requiere the source code. We
have evaluated the I/O system utilization of different I/O
configurations by considering the I/O model of application
and the I/O system.

This methodology was applied in two different configura-
tions for the NAS BT-IO benchmark and MadBench2. The
characteristics of both I/O configurations were evaluated, as
well as their performance usage by the application. We have
extracted I/O models of applications and we evaluated the

difference of performance on I/O configurations taking into
account the I/O phase behavior of application in I/O devices.

As future work, we will extend the I/O phases identi-
fication to different applications which show different I/O
behaviors. We are analyzing real scientific applications to
obtain their I/O models. We will use the I/O model to
support the evaluation, design and selection of different
configurations of the I/O system.
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Abstract

The MASS (Multi-Agent Spacial Simulation) library fa-
cilitates parallelization of applications that are viewed as
interaction among up to millions of agents behaving over
a shared virtual space and that are thus fitted to simula-
tion of ecological, social, and physical mechanisms. The li-
brary invokes user-defined functions of all agents and array
elements as well as exchanges data among them in paral-
lel. The key to success of this library implementation is to
accelerate function invocation with preprocessor-generated
code and to facilitate an application debugging environ-
ment. This paper presents the design strategy, implemen-
tation, and usability of the MASS library preprocessor and
debugger.

1 Introduction

Multi-agent individual-based models view computation
as interaction among agents and individuals, each au-
tonomously behaving in a shared simulation environment.
They have been used for years to simulate ecological, so-
cial, and physical mechanisms that are generally difficult
only with mathematical formulae. To parallelize these mod-
els, we are developing the MASS (Multi-Agent Spatial Sim-
ulation) library that updates the status of all objects at once
with thecallAll method and exchanges data among all ob-
jects at once withexchangeAllmethod. These methods are
attributed as (1) one-sided parallel communication from the
main function to all array elements and (2) one-sided par-
allel communication from each element. Therefore, MASS
benefits not only multi-agent models but also data-intensive
computation with its parallelization.

We implemented MASS in Java from the viewpoint of
its widely used and convenient graphics features. How-
ever, due to Java’s nature as well as the multi-agents’ be-
havioral complexity, MASS encounters the following four

∗Corresponding author. Email: mfukuda@u.washington.edu, Phone:
1-425-352-3459, Fax: 1-425-352-5216

challenges: (1) parallelization is killed by the slow Java
reflection that is used to identify a user function called
from callAll/exchangeAll; (2)exchangeAllincurs substan-
tial communication overhead if applied to computationally
fine-grained elements; (3) a programmer needs to check
inter-element communication flow at an application level;
and (4) agent migration is difficult to keep track of at a user
level.

To address these problems, we have developed a
language preprocessor and GUI-based debugger for the
MASS library. The preprocessor inserts additional code
in a given application for calling a user function from
callAll/exchangeAllwithout using Java reflection and for
transferring multi-element data in bulk. The debugger runs
between a user application and the underlying MASS li-
brary to capture all the library calls so that it graphically
shows each object’s status, monitors inter-object communi-
cation, keeps track of agent migration, and stops/resumes
the user program at a break point.

This paper describes the preprocessor-assisted MASS
performance improvement and library extension, presents
the features and internal design of the MASS debugger, and
demonstrates the uniqueness and usability of these software
tools in comparison with related work.

2 MASS Library

2.1 Execution Model

PlacesandAgentsare keys to the MASS library.Places
is a multi-dimensional array of elements that are dynam-
ically allocated over a cluster of multi-core computing
nodes. Each element called aplace, is pointed to by a set
of network-independent array indices, and is capable of ex-
changing information with any otherplaceobjects.Agents
are a set of execution instances that can reside on aplace,
migrate to any otherplacewith array indices, and interact
with otheragentobjects as well as multipleplaces.

As shown in Figure 1, parallelization with the MASS li-
brary uses a set of multithreaded communicating processes
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that are forked over a cluster and are connected to each other
through ssh-tunneled TCP links. The library spawns the
same number of threads as the number of CPU cores per
node. Those threads take charge of method call and infor-
mation exchange amongplaces andagents in parallel.

LAN

Process Rank
0

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Process Rank 1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Process Rank 2

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

C
PU

 C
or

e 
0

C
PU

 C
or

e 
1

C
PU

 C
or

e 
2

C
PU

 C
or

e 
3

C
PU

 C
or

e 
0

C
PU

 C
or

e 
1

C
PU

 C
or

e 
2

C
PU

 C
or

e 
3

C
PU

 C
or

e 
0

C
PU

 C
or

e 
1

C
PU

 C
or

e 
2

C
PU

 C
or

e 
3

A Bag of Agents

Agents

Places

Agents Agents

socket

(x,y)

X-
axis

Y-
axis

socket

M
A

S
S

 L
ib

ra
ry

 
A

pp
lic

at
io

n 

mnode0.uwb.edu mnode1.uwb.edu mnode2.uwb.edu
System Memory System Memory System Memory

Figure 1. Parallel execution with MASS library

2.2 Library Specification

A user designs behaviors of aplaceand anagentby ex-
tending thePlaceandAgentbase classes respectively, pop-
ulates them through thePlacesandAgentsclasses, and per-
forms their computation through the following methods.

Places Class

• public Places( int handle, [String primitive,] String
className, Object argument, int... size )instantiates
a shared array withsize from classNameor a primi-
tivedata type as passing anargumentto theclassName
constructor. This array receives a user-givenhandle.

• public Object[] callAll( String functionName, Ob-
ject[] arguments ) calls the method specified with
functionNameof all array elements as passingargu-
ments[i] to element[i], and receives a return value
from it into Object[i]. Calls are performed in paral-
lel among multi-processes/threads. In case of a multi-
dimensional array,i is considered as the index when
the array is flattened to a single dimension.

• public Object[] callSome( String functionName, Ob-
ject[] argument, int... index )calls a given method
of one or more selected array elements. Ifindex[i] is
not negative, it indexes a particular element, a row, or
a column. If index[i] is negative, say−x, it indexes
everyxth element. Calls are performed in parallel.

• public void exchangeAll( int handle, String function-
Name, Vector<int[]>destinations)calls from all ele-
ments a given method of all destination elements, each
indexed with a differentVectorelement. Each vector
element, saydestination[]is an array of integers where
destination[i] includes a relative index (or a distance)
on the coordinatei from the current caller to the callee
element. The caller passes itsoutMessage[]data mem-
ber to the callee as a set of arguments, and receives
return values in itsinMessage[].

• public void exchangeSome( int handle, String func-
tionName, Vector<int[]>destinations, int... index)
calls each of the elements indexed withindex[]. The
rest of the specification is the same asexchangeAll().

Agents Class

• public Agents( int handle, String className, Object
argument, Places places, int population )instantiates
a set of agents fromclassName, passes theargumentto
their constructor, associates them with a givenPlaces
matrix, and distributes them over these places, based
onmap()that is defined within theAgentclass.

• public void manageAll()updates each agent’s status,
based on its latest calls ofmigrate(), spawn(),kill(),
sleep(),wakeup(), andwakeupAll(). These methods
are defined in theAgent base class and may be in-
voked from other functions throughcallAll() andex-
changeAll().

2.3 Design Issues

From the user viewpoint,PlacesandAgentsare theoret-
ically considered as an array or a collection ofPlaceand
Agentobjects respectively. However, their underlying im-
plementation is not so simple in order to not only serve
as a general simulation framework but also to work over
a distributed-memory cluster. We need to address the two
design challenges below:

Language Issues:Unless a user implements base meth-
ods of thePlaceor Agentclass,PlacesandAgentsdo not
know any methods of a user-defined class. This in turn
means that thecallAll/SomeandexchangeAll/Somemethods
cannot invoke a user function simply through object cast-
ing. Instead we need to use Java reflection to interrogate a
user-defined class. The problem is that the reflection works
one order slower than a direct function call in general. This
slow performance kills parallelization where MASS calls
the same function of all objects at once. To pursue both
naming flexibility and high-speed invocation of user func-
tions, we design a Java preprocessor that inserts additional
code to match the names of user functions defined in MASS
methods and the actual function bodies to invoke, so that the
library calls user functions without the reflection.
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Debugging Issues:SincePlacesandAgentsmay be al-
located over a distributed-memory cluster, the status and
execution of their elements is not always visible and trace-
able where the main program is running. For debugging
purposes, users are responsible to collect remote element
status by manually inserting combinations ofcallAll/Some
andexchangeAll/Somemethods as well as adding additional
graphics code into their application programs. In particular,
it is tedious work for application designers to keep track
of migratingAgentobjects over different computing nodes.
We address these debugging issues by designing a wrapper
that covers the original MASS library and facilitates GUI-
based debugging features.

The next two sections explain these solutions.

3 Preprocessor Design

3.1 Library Extension

We extend MASS to avoid Java reflection and to accel-
erate message exchange amongPlaceobjects as follows:

Eliminating Java Reflection: Given a function name in
the MASS methods, we need to quickly identify its func-
tion body to invoke. A trivial but naive idea is to store user
function names in a symbol table at compile time and there-
after to compare each symbol table entry with a function
name specified in a MASS method each time it is invoked at
run time. The problem is repetitive string comparisons that
may weigh more than actual computation at eachplaceor
agent. Instead we use integer comparisons where user func-
tion names found in MASS methods receive a different inte-
ger, (i.e., a function id) at compile time and a MASS method
invokes the user function corresponding to a given function
id. Figure 2 shows preprocessor-generated example code
that jumps from two MASS methods to a different user
function: two user function names such as “exchangeAr-
ray” and “putArray” inexchangeAll()andcallAll() (lines 1-
2) receive a function ID respectively (lines 6-7); the original
exchangeAll()andcallAll() calls the preprocessor-generated
callMethod()(line 12); and the control branches off to the
corresponding user function, based on the function id (lines
14-15).

Exchanging Each Place’s Boundary Information:
The MASS library originally assumes that aPlaceobject is
used as an individual element of a distributed array. How-
ever, the cost forexchangeAll/Someis substantial to fine-
grained computation at eachPlace object, because data
exchange generally takes place with multiple neighbors.
Therefore, a user wants to include a collection of array el-
ements in eachPlaceobject that then exchanges its bound-
ary elements (or shadow elements) in fewer packets with
neighbors as shown in Figure 3. This reduces the frequency
of communication over an entire array while increasing the

1 // the original MASS methods
2 myPlaces.exchangeAll(h, exchangeArray, neighbors);
3 myPlaces.callAll(putArray, args);
4
5 // preprocessor-generated code to jump user functions
6 public static final int exchangeArrayP_ = 0;
7 public static final int putArrayP_ = 1;
8
9 myPlaces.exchangeAll(h, exchangeArrayP_, neighbors);

10 myPlaces.callAll(putArrayP_, arggs);
11
12 public Object callMethod(int funcId, Object args) {
13 switch(funcId) {
14 case exhangeArrayP_: return exchageArray(args);
15 case putArrayP_: return putArray(args);
16 }
17 return null;
18 }

Figure 2. Two MASS methods and their
preprocessor-generated code

Figure 3. Communication among neighboring
Place objects

computation amount perPlace. A new MASS library func-
tion namedexchangeBulkexchanges such boundary infor-
mation among neighboringPlaces. As shown in Figure 4,
we achieve it by translatingexchangeBulkinto a combina-
tion of exchangeAllandcallAll (lines 6-7): the former calls
a given function of all neighboringPlaceobjects to retrieve
their boundary information, and the latter put the informa-
tion into the localPlace’s boundary space. The MASS pre-
processor assumes that a user definesexchangeArrayand
putArray, whereArray is a user-definedPlaceobject, each
actually achieving data retrieval and saving operations. If
not, the preprocessor generates simple stub functions (lines
9-15). Thereafter, it converts this pair ofexchangeAlland
callAll into those calling the user functions with their func-
tion IDs as described in Figure 2.

3.2 Design Strategies

We design and implement the MASS preprocessor,
based on the following two strategies. First, we use an
existing Java compiler-compiler tools: JavaCC and JJTree
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1 // A new MASS method to exchange boundary data
2 myPlaces.exchangeBulk(h, Array, neighbors);
3
4 // preprocessor-generated exchange/callAll from
5 // exchangeBulk
6 myPlaces.exchangeAll(h, "exchangeArray", neighbors);
7 myPlaces.callAll(h, "putArray", neighbors);
8
9 public Object exchangeArray(Object src) {

10 return (Object)Array.getBoundary((int[])src);
11 }
12 public Object putArray(Object arg) {
13 Array.putBoundary(inMessages);
14 return null;
15 }

Figure 4. exchangeBulk and its preprocessor
generated code

for parsing and optimizing MASS user programs. Sec-
ond, we carry out two passes of MASS program transla-
tion: pass 1 convertsexchangeBulkinto a combination of
exchangeAll/callAll, and pass 2 generates additional code
to call a user function from a MASS library method with
its function ID. The following details an implementation of
our MASS preprocessor.

3.3 Implementation

The preprocessor performs its optimizations by running
the input code through a Java parser. The parser emits to-
kens in response to the input code. Actions are taken on
specific tokens to check conditions, set flags, and mod-
ify output. A grammar defines a roughly correct version
of Java. It has been modified to create Abstract Syntax
trees. From the grammar, a parser is generated (as Unpar-
seVisitor.java) which by default will output any input which
matches the Java language as defined by the grammar. As
shown in Figure 5, the parse methods can be overwritten
with MASSOptimizer, ExchangeBulkOptimizer, or Reflec-
tionOptimizer to perform MASS optimizations. For exam-
ple, when parsing aMethodDeclarationtoken, a flag will
be set to indicate that a new method is being parsed and that
a new scope must be placed on the stack. Subsequently, if
a ResultTypetoken is parsed while theMethodDeclaration
flag remains set, the return type of the parsed method can
be recorded. These optimizers in Figure 5 set flags in their
visit() methods and implement the logic to respond to those
conditions in theirfind(Token)methods.

The preprocessor has been tested on some MASS
programs including two-dimensional wave simulation
(Wave2D) and three-dimensional computational fluid dy-
namics (CFD). The verification and performance evaluation
has been conducted by comparing manually-translated ver-
sus preprocessor-generated code. Figure 6 demonstrated the
competitive performance of preprocessor-generated code in

ExchangeOptimizer ReflectionOptimizer
MASSOptimizer
UnparseVisitor
Java Grammar

Figure 5. MASS preprocessor implementation

Code Total exchangeAll callAll
Manual 9730.5ms 4605.25ms 1505.5ms
Preprocessor 9785ms 4366.25ms 1705.75ms

Wave2D

Code Total
Manual 9730.5ms
Preprocessor 9785ms

CFD

Figure 6. Preprocessor-generated code exe-
cution

Wave2D and CFD when running the code four times on a
64-bit 2.27GHz Intel Core.

4 Debugger Design

A simple debugging program was implemented to assist
MASS developers. Currently, the debugger uses the multi-
threaded Java version of MASS. It allows users to view a
logical arrangement of their computational spaces’ values
through a 2D or 3D graphical view.

4.1 Debugging Features

The basic objective of the debugger is to display the con-
tents of computational nodes in a human-understandable
format, as shown in Figure 7. Its features are designed to
support this goal:

• Displays results in a flat view or hawk’s eye view.
• Opens windows to display additional dimensionality.
• Allows debugging in code or in GUI.
• Sets break points and defines iteration points.
• Advances to next break point or by iteration.
• Shows communication between logical nodes.
• Saves and restores computational values.

The developer can set break points in program iteration.
This differs from traditional debugging code break points,
and is more akin to setting break points based on variable
values. However, the developer can specify when in the
driving code that an iteration occurs, allowing a more fine-
grained approach than might be initially apparent.
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Figure 7. Debugger GUI’s hawk’s eye view of
computational node values.

4.2 Design Strategies

Design of the debugger followed a twofold strategy. The
debugger wraps functions of the MASS class library as
shown in Figure 8, and development is driven by the need
for features to show information in terms of the MASS ap-
plication developer’s perspective. The development of the
debugger relied on an iterative approach that focused on de-
sign, planning, and prioritization of features. A basic goal
is to implement features as simply as possible. Early in the
process it became apparent that there were two challenges:
accessing MASS and creating the graphical interface. Com-
paring the two, using MASS was simpler than creating the
graphics, but had yet to be thoroughly explored. The de-
bugger is the first application to demonstrate that multiple
classes can utilize MASS concurrently.

4.3 Implementation

The debugger program exists separately from the MASS
library. Therefore, it is not affected by changes in the MASS
implementation that don’t affect MASS function signatures.
In effect, it serves as an intermediary layer that wraps
MASS functions. In addition to the debugger class, there
are classes for graphical control objects: the display win-
dows and buttons. When data is returned from the MASS
classes, in addition to returning the data to the user, the de-
bugger also instantiates graphical objects using Java’s awt
classes, and displays the results. The organization of the re-
sults are based on the user-defined sizes of the arrays that
are passed to MASS when it is initialized. In this context,
the implementation of the debugging features only has to
use simple private counters and Booleans to keep track of it-
erations and breakpoints. When a breakpoint is hit, further
function calls to MASS are suspended. Since all MASS
results are returned in single arrays, there is no latency in
updating individual node results from the debugger or user
perspective. Depiction of exchange results are more dif-
ficult, because MASS does not provide return values for

Figure 8. Interaction between the debugger, a
user application, and MASS.

them. The user provides a vector of relative node coordi-
nates where data is exchanged. The debugger applies the
vector to each computational node to determine the coor-
dinates where the data exchange occurred, and shows the
last computation (from a MASSCallAll function) as the
data that is sent. Checkpoints take the return values from
a computation and store them in a file. The file is read back
into an array of objects when the checkpoint is restored, and
passed to MASS. It is important to note that this method of
restoring a checkpoint is only valid if the user’s places do
not rely on local resources, such as a local system clock, for
their calculations. The debugger offers three general types
of public methods, as shown in the sample code of a simple
driver application in Figure 9:

• MASS-equivalent functions with identical signatures

• MASS-equivalent functions with extended signatures
for the debugger

• Debugger-only functions, such as setting break points.
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The MASS functions with extended signatures combine
MASS-equivalent functions with debugger functions, trad-
ing fewer function calls for ones with more parameters.
Control buttons also implement debugger functions for fea-
tures such as advancing one iteration or continuing to the
next break point while the user’s program is running.

1 // Initialization of MASS through debugger
2 debugger.degubInit(totalSize, totalDimensions,
3 ‘‘DebuggerDriver’’, threads, 0, 999);
4
5 // Pure debugger functions
6 debugger.setTotalIterations(iterations);
7 debugger.setBreakPoint(20);
8 debugger.setStopOnBreakPoint(true);
9

10 // Use of MASS through debugger
11 while(!debugger.isFinished()) {
12 // MASS-equivalent function called through
13 // debugger (shows results in GUI by default)
14 debugger.debugCallAll(0, (Object[])null);
15
16 // ...with iteration set separately
17 debugger.iterate();
18
19 // MASS function with debugger parameters
20 // (ticks iterator shows results in GUI)
21 debugger.debugIterateCallAll(0, (Object[])null,
22 true);
23 }
24
25 // end debugger operations and clean up graphics
26 debugger.finish();

Figure 9. Code using debugger; breakpoint
set for every 20 iterations

5 Related Work

5.1 Preprocessors

Our MASS library and preprocessor design involves
library-assisted parallel execution, preprocessor-assisted
code generation, and code manipulation. Those techniques
are found in the following four language systems.

Parallel Java Library promotes hybrid SMP cluster pro-
gramming in Java by combining multithreaded program-
ming constructs and MPI-based message-passing func-
tions [4]. MASS and Parallel Java libraries both take a
similar approach in hiding all underlying parallelization
work with their Java library classes and methods. How-
ever, the major difference is that MASS does not distinguish
shared and distributed memory but gives a consistent view
of multi-agents running on a shared array regardless of un-
derlying memory architectures.

Extensible PreProcessor (EPP) defines plug-ins for gen-
erating tiny data-parallel Java code [3], where the special
modifier “parallel” given to a Java class generates addi-
tional multithreading code in itsrun() method that handles

all data with virtual processors in parallel. Although MASS
and EPP use a preprocessor approach for parallelization,
EPP focuses on multithreading, whereas the MASS prepro-
cessor extends its scope to hybrid SMP cluster computing.

MPIPP is another preprocessor tool that converts a user-
defined data structure into MPI-derived data types [6]. It
is similar that ourexchangeBulk()function converts a cer-
tain range of boundary array elements toPlace.outMessage
as well asPlace.inMessagesback to the original elements.
However, our MASS preprocessor is different in generat-
ing get()andput()methods to automate entire boundary-to-
boundary element transfers.

Javassist facilitates a compiler-assisted Java bytecode
manipulation that defines new classes, freezes existing
classes, and customizes class members [1]. Therefore,
Javassist can works as another option to optimize theex-
changeBulk()function and to match user function names
in the MASS library and their actual function bodies, by
directly manipulating a user program. However, it would
be the same amount of work required if our preprocessor
were redesigned to introspect and manipulate all MASS
keywords with Javassist.

5.2 Debuggers

The MASS debugger is a framework-oriented, library-
based, visualization-focused, and data-parallel application
debugger. In these categories, we found similarities to and
differences from the following four products.

Hadoop and the MASS debugger are both framework-
oriented debugging utilities. Hadoop uses a Java class based
on the JUnit3 test case and performs testing using a virtual
map cluster [8]. The MASS debugger debugs through the
actual execution of the MASS program, as MASS controls
where its computational spaces run. Hadoop Test Case out-
put is console output, shown through the user’s IDE. MASS
debugger output uses its own graphical interface.

MPI Debugging Interface is used to provide the concep-
tual message passing state of the program [2]. The debug-
ger implementation studies the communicator queues; the
MASS equivalent of these are the parameters of its major
functions. Both applications conclude that accessing the li-
brary class must be led by the debugger. Specific interfaces
to display data are not implemented by the MPI debugger
in contrast to the MASS debugger’s GUI.

TotalView is a feature-heavy, commercial debugging in-
terface designed for distributed software [7]. TotalView,
like MASS, makes use of a GUI for data visualization but
lacks concurrent display of values. The TotalView software
is more sophisticated than MASS but also more compli-
cated, and is not free. MASS, in contrast, is geared specifi-
cally to MASS users and is currently free. Using TotalView
with MASS would strip away all the abstraction that the
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MASS library is providing.
Global Arrays are a means to solve data-parallel jobs,

and intersects with MASS’s application areas [5]. It gives
the user very fine-grained control over the data objects it
uses, but at the cost of a great deal of programming com-
plexity in implementation. In contrast, MASS aims explic-
itly to simplify and abstract away complexity. Global Ar-
rays do not in themselves provide explicit debugging tools;
while the MASS debugger is an extension of MASS that
does not currently exist in Global Arrays.

In summary, we believe that our design strategy for the
MASS preprocessor and debugger fits user requirements for
multi-agent spatial simulation.

6 Future Work

6.1 Preprocessor

At present our preprocessor has the following limitations
and issues: (1) MASS applications to be processed should
not contain a method named “callMethod” or use a trailing
underscore (“”) as part of a method name; (2) all meth-
ods to be called fromcallAll/Someor exchangeAll/Some
must accept the same set of parameters in the same order;
(3) user-owned non-MASS methods should not have names
identical to MASS methods; and (4) MASS variables may
not be recognized if they are cast or assigned to other classes
at runtime. We believe that these limitations are acceptable.

As our future work items, we are developing C, C++,
and CUDA-C versions of the MASS library. Since C and
C++ allow programmers to use dynamic linking and func-
tion pointers, we do not see any necessity of developing a
MASS preprocessor for them. However, CUDA-C has its
own extensions to C. Although these extensions are quite
unique to GPUs, we are planning to develop a preprocessor
that assists C programmers in running MASS applications
on GPUs. Our ultimate goal is to facilitate a Java or C++
version of the MASS library for GPU computation through
a cascading code translation to CUDA-C.

6.2 Debugger

Currently, the MASS debugger focuses on the step-by-
step display of computational node data and communica-
tion. The limitations include: (1) agents and their migration
are not displayed; (2) the interface is still only a proof-of-
concept design; (3) break points are not based on computa-
tional node values; and (4) analysis and step-through of the
developer code itself is not implemented.

Implementation of agent status and migration view is the
immediate next step in terms of future development. The
interface must be improved for the overall user experience.
Allowing break points based on computational node values

will give the user more flexibility. However, the goal of the
MASS debugger is to provide an easy way to view MASS
computations, not to become a commercial debugger with
a full feature set. Consequently, certain debugger features:
the ability to step through code and to set break points in
the code itself, are not prioritized for future development.

7 Conclusions

The MASS library eases parallelization of multi-agent
individual-based models as well as data-intensive applica-
tions. In this paper, we analyzed the current issues in code
development and execution with the library, addressed them
with our preprocessor approach and debugger design. The
MASS library and tools will be made available upon an
email request sent todslab@uw.edu.
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Abstract— It is widely known that nested loops with data
dependency can be parallelized by transforming the original
loops by techniques such as loop skewing, loop interchange
(so called software pipelining and/or wavefront method).
However, these loop transformation techniques need to solve
the equation of simultaneous inequalities and modify loop
index variables by ”human”. These procedures require com-
plicated formalities to programmers. We have developed
a much simpler method to parallelize nested loops with
data dependency, which is an straightforward application
of asynchronous handshaking stream programming on the
continuation-based multithreading.

In this paper, we discuss our new approach in detail and
show the enough performance enhancements can be exploited
by our approach by evaluating the parallelized version of
nested loop programs, on the Fuce runtime system on a
commodity machine.
Keywords: stream processing, multithreading, loop paral-
lelization

1. Introduction
The importance of high performance computing (HPC)

have been widely recognized in the world and a lot of the
researches on HPC have been conducted in past decades.
High performance scientific computations are mostly large
array operations. The speedup of array operations relies on
basically the parallelization of multi-level nested loops for
array. A variety of techniques for the loop parallelization
was developed. In particular, for nested loops with data de-
pendency, parallelization methods such as loop skewing, loop
interchange (so called software pipelining and/or wavefront
method) are noted. However, these loop transformation tech-
niques need to solve the equation of simultaneous inequalities
and modify loop index variables by ”human”. These proce-
dures require complicated formalities to programmers.

We need a simpler approach to the parallelization and the
programming techniques. We researched and developed the
parallel architecture called Fuce[1] and its programming lan-
guage CML (Continuation-based Multithreading Language)
based on the idea of continuation and non-interruptible
thread. The CML is designed for writing low-level event-
/demand-driven concurrent processes, stream processing, mu-
tual exclusions, memory management and so on in a unified
form.

In this paper, we introduce the stream processing based
on the asynchronous handshake multithreading. And then
we discuss the simpler parallelization technique for nested
loops with data dependency as an application of our stream
processing approach. Also we describe the implementation
of the Fuce runtime system for commodity machines and
show evaluation results of the stream processing programs
executed on the Fuce runtime system.

2. Conventional Method for Paralleliza-
tion

The wavefront method[2] is known as a typical method for
parallelizing multi level nested loops with data dependency.
We briefly explain the wavefront method using the following
sample program[3]:

for (i = 2; i <= 6; i++)
for (j = 2; j <=6; j++)

a[i][j] = (a[i-1][j] + a[i][j-1]
+a[i+1][j] + a[i][j+1]) / 4

To eliminate data dependencies inside the loop, first we
have to do loop-skewing and then interchange the outer and
the inner loops. The transformed program looks like:

for (j = 4; i <= 12; j++)
for (i = max(2,j-6);

i <= min(6,j-2); j++)
a[i][j-1] = (a[i-1][j-i]

+ a[i][j-1-i] + a[i+1][j-i]
+ a[i][j+1-i]) / 4

After a modification of this program with support of a
parallel programming library, we execute the program in data
parallel manner on parallel machines.

However, we have to solve a simultaneous inequality on
variable i and j by hand to find the range of index variable
i and j. We think this is not always a simple method. In
addition, the users or programmers of such a wavefront
program would not obtain high performance computation if
they are not so familiar with a parallel programming library.

The idea of wavefront method itself seems to be simple and
beautiful. But a implementation of a data parallel program
based on this idea will become complicated. If we devise
a different approach from the data parallelization, We will
benefit from the basic idea of wavefront method without
complicated procedures.
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3. Stream Processing and the CML lan-
guage

We introduce a special language called CML
(Continuation-based Multithreading Language) to understand
a basic behavior of stream processing. The large portion
of the CML is derived from the ANSI C language. Some
new grammatical constructs are designed and extended for
stream processing. In this section, we give an outline of
new constructs only for stream processing. The detail of the
CML is described in the papers[4], [5].

3.1 The Language CML
On the stream processing, temporal data storage space is

usually set up between the sender and the receiver of data.
Normally it is a bounded FIFO buffer. Here, for this purpose,
we define a simple buffer storage called channel which can
store basically only one data.
Channel Struct

struct chan {int flag, value,
from, to;}

The stream is closed if flag==0. A variable value
holds a single stream data. The type of value is not only
integer type, but also float or double is acceptable. We
just re-define a new chan type as usage. A variable from
holds sender process id and a variable to holds the receiver
process id.

Process Definition

process P(chan *ch, ...) <2> {...}

*ch is a pointer to a channel struct. <2> is the number of
fan-in of process P. If this notation is abbreviated. the number
of fan-in is 1. {...}is a body of process P.

Here, the number of fan-in of a process means the number
of data which the process requests to send from other
processes. Therefore, Once the process is scheduled and the
value of fan-in of the process is initialized, the value of
fan-in is simply decreasing in each data arrival. When the
value of fan-in becomes zero, the process becomes ready to
run 1.

Instance Creation
int p = new P();

A data area and instance of process P are reserved.

Track-laying of Stream
Set the variable from in channel struct to the data sender

process id and set the variable to to the receiver process id.

Process Invocation

1Processes in the CML are fundamentally equivalent to threads in the
Fuce execution model.

When invoking a process, pass the channel name as actual
parameter. And use mode indicator <+> for a sender process,
<-> for a receiver process.
For example:

p(ch1<+>, ch2<->);

q(ch1<->, ch2<+>);

Here, the process p sends a data to the process q via
channel ch1 and the process q sends a data to the process p
via channel ch2.

3.2 Basic Behavior of Stream
Consider a pair of processes 〈w, r〉 connected by a channel

ch and that w generates a series of values for x, and sends
them to r. This stream processing can be written in CML
as in Figure 1. The action of w and r is controlled by cont
instructions. Here we call init-, trigger-, or ack-cont for each
cont instruction according to its usage. Init-cont is issued
to invoke a newly created process instance. Trigger-cont is
issued to invoke or prompt to invoke the other processes.
Ack-cont is issued to the other process by the process which
becomes ready to receive the next data.

When W is invoked by an init-cont or an ack-cont issued
by R, W puts a value of x to ch, then issues a trigger-cont
to R so that R can get the value. When R is triggered by
W , R gets the value of x from ch, then issues an ack-cont to
W so that W can put the next value. Note that the number
of fan-in for W (R) is two since it requires a recur-cont plus
a trigger-(ack-)cont.

It never happens that both W and R run at the same time,
and that ch is accessed by both. Moreover, W and R run
alternately, and it never happens that W puts values to ch
in succession, and that R tries to get the next value from ch
before another data is put.

This behaviour is easily understood by using a Petri net-
like graph depicted in Figure 2. A token represented by a
black disk corresponds to an issue of cont instruction. The
token in the right arrow entering w is an init-token, the tokens
in the left arrows of w and r are recur-conts.

3.3 Dynamic Growth of Stream
In the examples in section 3.2 the number of processes

is small and fixed. They may be unworkable in the real
world. In general, the number of processes will increase
dynamically. The length of stream will grow accordingly.

Consider a process named Create which manages a process
creation. Create process is written in CML for example as
following:

process create(chan *ch) <2> {
darea chan ch1;
new RW(ch<*>, ch1<+>);
new create(ch1<->);

}

Here, a storage for a variable declared as darea is dy-
namically allocated at run time. After Create process creates
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process main() {

w = new W(); r = new R();

ch->from = w; ch->to = r;

w(ch<+>); // w’s recur-cont

r(ch<->); // r’s recur-cont

}

process W(chan *ch) <2> {

/* computing x’s value */

ch->value = x;

cont ch->to; //trigger-cont to r

recur;

}

process R(chan *ch) <2> {

x = ch->value;

cont ch->from; // ack-cont to w

/* using x’s value */

recur;

}

Figure 1: A CML code for a basic stream pro-
cessing.

¾
s
⊗ ¯

??
s²

<̄ 2 >

µ´¶³
w±°
??

s²
<̄ 2 >

µ´¶³
r±°±°

Figure 2: Petri net for a simple stream processing among two
processes.

and invokes a process RW, it re-creates itself 2. The second
parameter of RW process is ch1<+> and the parameter of
the new Create process is ch1<->. Therefore RW process
and Create process form a stream processing among two
processes as seen in Figure 1. The notation <*> added to
the first parameter of RW process means that the channel is
used for both of sending and receiving.

We define process RW in which the behavior of process
W is added to process R in Figure 1. The CML code is as
follows:

process RW(chan *in, chan *out)<3>{
int x;
in ?? x; // read from channel
out !! x; // write to channel

2Note that Create process is not re-activated in tail-recursive manner by
recur, it disappears after it creates another Create instance.

recur;
}

Here, ’in ?? x’ and ’out !! x’ are respectively the
syntax sugar of
’x = in->value; cont in->from;’,
’out->value = x; cont out->to;’,
The operators ??,!! are derived from CSP[6]. The number
of fan-in of process RW is three because process RW is the
sender as well as the receiver.

Next, in the definition of process main we replace the
creation and invocation part of process R with them of
process Create as follows:

process main() {
int w = new W(ch<+>);
new create(ch<->);
cont w;

}

By this modification, process W and Create form a stream
processing among two processes. And as mentioned above,
process RW and Create also form a stream. When process
Create is invoked, it creates process RW then pass a received
data to process RW immediately. So data generated by
process W are sent indirectly to process RW. Meanwhile
process RW sends the data to process Create as soon as it
receives. As the result as long as process W generates data,
process RW is kept on being created and the size of the
stream keeps on growing. Both ends of the stream is process
W and Create. Between them there are myriad of process
RW (refer to Figure 3).

4. Parallelization of Nested Loop
4.1 Parallelize Two-Level Nested Loop

We introduce local (instance) variable i to process W, j to
process RW and Create which are defined in the section 3.3.
When process W is invoked it increments the variable i and
send the value of i (indirectly) to process RW via channel
ch. Process Create increments variable j and creates process
RW and Create with the value of j. Process RW keeps the
value of j which is given at its creation.

Variables added to a parameter list of a process definition
are treated as instance variables. For example, process Create
is defined as follows:

process create(chan *ch, int j) <2>{
darea chan ch1;
j++;
new RW(ch<*>, ch1<+>, j);
new create(ch1<->, j);

}

Figure 3 shows the behavior of three kinds of the processes
W, Create, RW which are completely moving in sync. In this
figure the longitudinal direction shows passage of time, the
lateral direction shows growth of the stream. Note that all
these processes on the stream are moving in parallel.
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Figure 3: Ideal Stream Processing.

As mentioned above, process RW is kept on being created
between process W and Create with time. The caption such
like <1,2> in the figure is a pair of a data which is received
from a immediate left process and the value of the instance
variable j of the process RW. A data process RW receiving
is initially sent by the process W, that is, the value of variable
i.

We label the process immediate right of process W as
RW0. The initial value of j of process RW0 is set to 0.
A data received from process W (that is, the value of i)
is incremented with time. The value of j of process RW1

(RW0’s neighbor) is set to 1. A data RW1 received from
RW0 is the data which the process W sent two clocks before.
Therefore the value of the data RW1 received is just as small
by 1 as that of RWo. In like wise manner, at the clock t, the
pair of values process RWn holds is <t-n, n>.

Now we consider the pair of values as a element of two
dimensional array and observe every pair of values process
RW holds at every clock. Array elements referred at same
clock on the stream is completely same as the elements
referred by the wavefront method[2].

That is, by using a stream processing driven by only three
kinds of processes W, RW and Create, it is possible to
parallelize a two-level nested loop for two dimensional array.
The following loop program in C is mostly equivalent to the
above stream processing:

for (i = 0; i < M; i++)
for (j = 0; j < N; j++) {

... A[i][j]...; // array access
}

4.2 Parallelize Nested Loop with Data Depen-
dency

Consider the following nested loop:

!"#
$

#
%&"'()!*!

+!

,$

Figure 4: Wavefront on two dimensional array.

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

A[i][j] += A[i+1][j-1];

In this case there is a data dependency among a loop. To
eliminate these kind of data dependency we have to change
the direction of the wavefront movement. Figure 4 shows
a movement of wavefront on a two dimensional array. The
dotted line is the original wavefront. A data dependency(red
arrow) exists just on the original wavefront. If the direction
of the wavefront can be changed as the solid line, a data
dependency disappears. To obtain the safe direction of the
wavefront, we slow the speed of i-direction down by half of
the speed of j-direction. When we reduce the supply of data
(the value of i) passed on the stream by half per clock, the
speed of i-direction is reduced by a half.

So, we introduce a dummy process D immediate left of
process W and make process W trigger not only process RWo

but also process D. Process D triggers process W immediately
when D is invoked. The number of fan-in of D is 2 and
that of W is changed to 3. These modification make the
speed of data supply reduced by a half because process W
can run every two clocks. Figure 5 depicts the safe stream
processing. Running or stopped processes is shown as white
circle or gray circle respectively. A straight or curved arrow
indicates a trigger-cont or a ack-cont respectively. A recur-
cont is abbreviated in this figure.

While a half of processes is stopped at the same time as
shown in the figure, the maximum parallelism of the stream
is limited to a half number of all processes.

By the way, as we mentioned in section 3.2, in fact
neighboring two processes cannot run at the same time.
Therefore when we write a stream processing code naturally
in CML, we get the safe stream processing like Figure 5. This
is the default behavior of our stream processing approach.
Such kind of data dependency disappears automatically. We
don’t need to care about.

Next, consider a data dependency in a loop as following:
A[i][j] += A[i+1][j-2];
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Figure 6: Stream Processing for a Three-level nested Loop.

The direction of the wavefront have to be changed also in
this case. We introduce two dummy processes on left-side
of process W. And each process issues ack-cont to not the
neighbor process but after the next process. As a result,
process W can only run every three clocks, the speed of
data supply is reduced by one third. The direction of the
wavefront changed to the way which satisfies i : j = 1 : 3.

4.3 Parallelize Three-level Nested Loop
With a small expansion of stream processing approach to

a two-level nested loop, it is not so difficult to parallelize a
three-level nested loop.

We modify the definition of process RW for a two-level
nested loop so that process RW can act as same as process W
and can make links to two different Create processes. Then
two different streams will grow from a single process RW.

Figure 6 depicts a stream processing for a three-level
nested Loop. A process on the crosswise stream named RWk

and that on the lengthwise stream named RWj . The process
RWk sends the value of i which is passed from the process
W to lengthwise and crosswise. The behavior of process
RWj is mostly as same as the process RW defined for a
two-level nested loop. The wavefronts are generated as many

base-addr: pointer to data area
sync: # of waiting continuations
fan-in: fan-in value of thread
code: pointer to a thread code
lock-bit: semaphore

codesync

base-addr

fan-in

........
...

........

........

... ...

lock-bit

instances

Instance thread-entry

base-addr
thread0
thread1

......

......

Figure 7: ACM.

as the number of the process RWj and move continuously
on a two dimensional array. The following three-level loop is
mostly equivalent to the stream processing explained in this
section:

for (i = 0; i < L; i++)
for (k = 0; k < M; k++)

for (j = 0; j < N; j++)
...A[i][k] = A[k][j]...;

By the way, if a new stream grows from RWj , this
stream processing corresponds to a four-level nested loop. In
like wise, if every process on every stream has the ability
to generate a new stream, a n-level nested loop can be
parallelized by our stream processing approach.

5. Fuce Runtime System
We implemented the Fuce[1] processor as a software

runtime on commodity OSes and parallel machines to judge
the effectiveness of the idea of non-interruptible threads on
Fuce.

5.1 ACM
The Fuce program is written as a set of functions. Each

function is programmed using threads, and the corresponding
function instances are executed in its runtime. Information
of function instances is stored in a special storage called
Activation Control Memory (ACM). Figure 7 depicts the
structure of ACM. The information for controlling thread
execution; sync-count, fan-in, code-entry and lock-bit, are
stored in ACM.

5.2 TAC and TE
In this runtime, multiple thread execution engines are

implemented. The key components of Fuce to support con-
current thread execution are the Thread Activation Controller
(TAC), multiple Thread Execution units (TEs).

Each TE holds a ready thread queue independently. TE
has the ability to steal a thread from the queue of another
TE when its queue is empty. In order to realize this ability
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Figure 8: Multiple TEs and the ACM.

efficiently, we use ABP Deque[7] which is one of simple
lock-free algorithm and can be used as a queue or a stack.
With ABP Deque, a ready thread is pushed to the deque as
a stack without any mutual exclusion. A thread is popped by
the TE from its deque. If the deque is empty, the TE try to
steal (dequeue) a thread from another TE’s deque. Figure 8
shows multiple TEs accessing simultaneously to the ACM.

The main part of TE is implemented in C as following:

int thid;
Te_Env *env =

(Te_Env *) GET_TE_ENV(thid);
while (!fuce_halt) {

if (env->direct != NO_THREAD) {
thid = env->direct;
env->direct = NO_THREAD;

} else {
thid = pop(env->deque);
if (thid == NO_THREAD)

thid = steal_thread();
}
/*get thread info from ACM*/
acm_page *page =

&ACM[PAGE_NUM(thid)];
thread_t *thinfo =

&(page->entries[OFFSET(thid)]);
void *da = page->darea;
uint id = thinfo->id;
Thread thr = thinfo->thread;
thinfo->syncc = thinfo->fanin;
/*invoke a thread as a func*/
thr(id, da);

}

Each TE can be executed concurrently on commodity OSes
when the above routine is setup as a pthread.

5.3 Handling Cont Signals
a cont instruction as in Figure 1 is handled by the runtime

function cont() with a thread id as a parameter. When
the size and address of a stack for a TE (as a pthread) are
properly initialized according to the pthread specification, we
can determine which TE calls the function cont(). For
example, if stack size is set to 1MB and some local variable
is defined, we can obtain the stack address by the following
operation:

#define GET_TE_ENV(ver)
(((unsigned long) &ver)
& (unsigned long) ~(0x100000 - 1L))

By using this macro the runtime function cont() can be
simply defined as follows:

void cont(thid id) {
Te_Env *env;
int syncc;
thread_t *target = get_thread(id);
ATOMIC_DECREMENT(target->syncc);
if (target->syncc < 0)

ERROR(...);
if (target->syncc == 0) {

/*get current TE’s env */
env = (Te_Env *) GET_TE_ENV(id);
if (env->direct == NO_THREAD)

env->direct = id;
else

/* push thrd to ABP Deque*/
push(env->deque, id);

}
}

ACM is modified inside the function cont(). This modi-
fication must be done by a atomic operation because multiple
threads executed in TEs would access the same location in
the ACM at the same time.

6. Evaluation of Stream Processing
We evaluated the performances of stream processing CML

codes on the Fuce runtime system. The program codes are
transformed from two-level nested loop with data depen-
dency. We used two benchmark programs, ISC’07 loop and
the levenstein distance.

6.1 ISC’07 Loop
This sample program was created when we discovered and

published[5] the basic idea of stream processing on Fuce for
the first time. the program code is as follows:

for (i=1;i<N;i++)
A[i][0] += A[i-1][0];

for (j=1;j<M;j++)
for (i=0;i<N;i++) {

if (i==0) A[i][j] += A[i+1][j-1];
else if (i==N-1) A[i][j] += A[i-1][j];
else A[i][j] += A[i+1][j-1] + A[i-1][j];

}

Pay attention to the second nested loop. a data dependency
at the last else clause seems mostly as same type as that
of example in section 4.2. We don’t need to care about
safety. The data dependency disappears naturally when it is
transformed to a stream processing. The first loop can be
fused into the inner loop of the second nested loop.

6.2 Levenstein Distance
The second benchmark program is the Levenstein distance

algorithm, one of dynamic programming (DP) example.
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Many other DP algorithms have similar structure to this
program. the Levenstein code looks as follows:

int A[M+1][N+1];
for (i=0; i<M; i++) A[i][0] = i;
for (j=0; j<N; j++) A[0][j] = j;
for (i=1; i<=M; i++) {

for (j=1; j<=N; j++) {
int cost =

(str[i-1] == str[j-1]) ? 0 : 1;
A[i][j] = minimum(A[i-1][j] + 1,

A[i][j-1] + 1,
A[i-1][j-1] + cost); }}

The first two loops can be fused into the inner loop of the
last nested loop. The data dependency of this program also
disappears as well as that of ISC’07.

6.3 Performance Evaluation
The two transformed benchmark programs are executed on

a Linux machine in which two Intel Xeon 3.3GHz processors
is equipped. Each processor has six cores, in total twelve
processor cores are utilized. Both transformed benchmark
programs are configured so that input array size=16Kx16K,
tile size=256 (256 array elements). Note that each process is
defined with tiling[8] to operate 256 elements of array in a
single process.

Figure 9 shows the scalability against the number of CPU
cores for each program. On the basis of sequential execution
times of the original programs, the speedups of the stream
processing is shown on the graph. The performance of the
levenstein is good enough. However that of ISC’07 reaches
a ceiling around 8 CPU cores. We think that it is not so easy
for the stream processing, especially for ISC’07 to utilize
CPU caches sufficiently. Therefore the bandwidth of memory
bus would be consumed away and it would interfere with
communications between processes.

7. Conclusion
In this paper, we introduced the stream processing which

is based on the asynchronous handshake multithreading tech-
nique and explained in detail a new approach to the wavefront
method.

With our approach, it’s possible to parallelize easily multi-
level nested loops which hold strong data dependencies.
Nested loops with data dependency appear frequently in
dynamic programming algorithms. Many important time-
consuming algorithms especially in biology fields are built
up based on dynamic programming. We expect that the
applications of our stream processing approach help to reduce
time consumption of bioinformatic analyses greatly.
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Abstract— Parallel programming poses additional chal-
lenges over sequential programming. In particular, parallel
programming raises complexities in design, implementation,
and debugging. In this work, we analyze the mistakes that
student programmers make on several parallel programming
problems so that we can better understand their difficulties.
We administer surveys for several parallel programming
projects that use MPI in two graduate level courses. The
survey records the problems that the programmer had with
respect to error type, and location in the parallel program-
ming domain, the time spent on each, and the tool usage. We
classify the types of errors that they encounter and find that
a large percentage of the errors are sequential; these errors
turned out to be the fastest to correct. We also found that
the most time consuming errors to correct are associated
with the messages in the message passing system. The
results of the study raise implications that we can address
in the classroom and through improved programming and
debugging tools.

Keywords: Parallel Programming Errors, Debugging, Multilevel
Debugging, Parallel Programming

1. Introduction
Debugging parallel and multi-threaded programs can be

a challenging task when programmers need to reason about
multiple processes running on different physical machines
and exchanging messages, sometimes asynchronously. In
this work, we collect and analyze data that provides insight
into how students debug these problems so that future work
can build upon this understanding. Specifically, we seek to
better understand the why, how, and what of errors in several
parallel programming assignments submitted by senior and
graduate students in an upper division elective course.

Research by Eisenstadt [5] and Pancake [13] has shown
that upwards of 90% of programmers debugging sequen-
tial programs primarily use print statements. Whether this
number has remained this high with the introduction of
development environments like Eclipse [1] and xCode [2]
is not currently known, but it is probably reasonable to
assume that programmers who do not utilize development
environments still debug using print statements. Naturally,
using debuggers like gdb [8] is wide spread, but simply
attaching a number of sequential debuggers, one for each
process in the parallel system, is not the way to go; it leads

to information overload [14], and complicates the process
even further.

A natural next step is to develop tools that support
efficient debugging of parallel programs. In this paper we
concentrate on parallel message programs which utilize the
de-facto standard for message passing, namely MPI [4].
These programs are typically written in C.

A number of debugging tools have been proposed over the
years, but none have been widely adopted (Most Unix/Linux
installations come standard with gdb, but no parallel version
of this tool exist, and no other tool is installed by default). A
number of reasons have been given for the lack of adoption
of debugging tools for parallel programming [14], these
include information overload, incompatible granularity, and
restrictive interfaces. We believe, that the lack of adoption
of these tools resonates with Pancake’s reason given in [12],
namely that many tools are used only by their own develop-
ers, and without taking into account the types of errors that
programmer make most frequently, we will not know where
to focus the tool development. That is, if we understand
what kind of errors the programmers make, then we can
better pinpoint the type of tool support that will make a
difference. A necessary first step, before tool development,
is thus to take a closer look at the types of error found, where
in the programming domain they occur, and how they are
found and corrected.

In this paper we explore and categorize a number of
programming errors made by student programmers in a
graduate class at the University of Nevada, Las Vegas.
Throughout the course the programmers reported all the
errors they made (through a web classification interface),
they classified the errors according to location within the
parallel programming domain, as well as in a 3 dimensional
why/how/what matrix inspired by Eisenstadt [5].

We present the findings of these error reports, as well as
draw parallels to a previous study we did with a different
class of programmers (using the same programs). The results
of the previous study [16] (henceforth referred to as the old
study or the old survey) inspired us to dig deeper and ask
more questions in order to get a better understanding of the
parallel debugging process.

Surprisingly, the results show that a majority of the errors
are in the sequential code, followed by errors in the message
passing and program decomposition.

In the remainder of this paper, section 2 discusses related
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work on parallel programming and parallel fault classifica-
tion, section 3 describes the framework we utilized for this
research, section 4 describes the programs and the survey
that the programmers completed, section 6 discusses our
results and section 7 provides a summary of the results and
directions for future work.

2. Related Work
This section is divided into two main parts; the first part

looks at the parallel programming domain, and the second
part explores the error classification domain.

2.1 The Parallel Programming Domain
In this section we briefly present the parallel programming

domain with respect to parallel message passing programs. It
should be noted that we do not take aspects concerned with
performance into account. While performance is extremely
important, correctness is even more crucial, and that is the
focus of this investigation.

We start by looking at a four stage model for constructing
parallel programs (referred to as PCAM) proposed in [6].
This model consists of four parts: Partitioning, which is
the task of partitioning both the data and functionality of
the algorithm being implemented. Communication, which
is the task of determining and implementing interprocess
communication, as well as the over all protocol for the
algorithm. Two other parts, Agglomeration, which is an
evaluation of performance and Mapping, which is the task
of maximizing process utilization, exist, but since they are
performance related, they are of no importance here.

Partitioning and Communication can be further decom-
posed. Partitioning can be either a decomposition of the data
or the functionality of the program. Data decomposition is
the task of determining how the data (typically originating
from a sequential program) should be distributed across the
multiple processes of the message passing program. This in-
cluded resizing arrays, implementing additional supplemen-
tal data structures etc. Functional decomposition is the task
of determining which part of the overall computation each
process should perform. An example is the implementation
of a pipe-line like computation; each process is in charge of
one stage of the pipe-line.

Apart from the obvious need for each process to contain
sequential code, which is injected with communication calls,
the communication task can be decomposed into two further
sub-categories. The first is Data Exchange (later on referred
to as Messages), which in a message passing program
means explicitly programming send and receive calls into the
code. Typically these calls are point-to-point communication
involving one sender and one receiver. Since most message
passing programs utilize buffered asynchronous message
passing, messages can be sent to an incorrect receiver, or to
non-existent receivers, without causing any run-time errors;
naturally this will cause the program to stop working at

some point when messages are not properly received. Stray
messages can be caused by incorrect use of the message
passing API, or it could be caused by a problem with
the overall communication scheme, that is, the protocol.
The second sub-category is Protocol Specification, where
we consider not just point-to-point communication, but the
overall communication scheme.

The two sub-categories data exchange and protocol spec-
ification, along with the obvious sequential nature of the
actual code running in each process, clearly make up an
onion-like structure consisting of three layers: At the core
is the sequential level, which is responsible for the actual
calculations. The second layer is the message level (earlier
referred to as Data Exchange), which is concerned with the
point-to-point communication between two processes, and
finally the outer layer is the protocol level, which we just
described.

We now have a model consisting of two main categories:
Decomposition (data and functional) and implementation
(sequential, messages, and protocol), which means that we
have five ‘buckets’ into which we can categorize errors.

This categorization can help us pin-point the overall place
in the development process where the most errors are made,
which in turn can help us better develop tools that target the
specific category. It should be noted that developing tools
for decomposition errors might be a challenging task. If the
design of the program is incorrect, no amount of debugging
will make it right; if the data is incorrectly distributed no
amount of debugging will save such a program. Decompo-
sition errors include design flaws that must be rectified at
the time the algorithm is designed.

2.2 The Why, How and What of Errors
Eisenstadt describes in [5] a 3-dimensional space in which

sequential errors are placed according to certain criteria. The
3 dimensions are:

• Dimension 1: Why is the error difficult to find?
• Dimension 2: How is the error found?
• Dimension 3: What is the root cause of the error?

Eisenstadt’s original survey surveyed 51 programmers about
errors they encountered in sequential programming, but
we feel the 3 dimensions are equally applicable to the
parallel programming domain. The numbers reported in the
following paragraphs are the numbers reported by Eisenstadt.

Unfortunately we do not have enough space in this pa-
per to thoroughly go through the subcategories for the 3
dimensions (there are 6, 5, and 10 respectively), but it is
worth noting that almost 30% of dimension 1 (why was
the error hard to find) is categorized as the Cause/effect
chasm problem. (Section 3 lists the categories, but we refer
to [5] for a more thorough explanation). What describes
errors in this category is the fact that the symptom of
the error is far removed in space and time from the root
cause. This category is bound to be an issue in the parallel
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programming domain where this separation of cause and
effect is further exacerbated by message passing; now the
cause and effect can be in different processes, or even in
different source code files. The second most frequent answer
was Tools inapplicable or hampered, which covers the so
called ’Heisen bugs’ [9]. It is notable that over 50% of the
cases are caused by these two categories.

In dimension 2, concerned with how an error was found,
the most frequent answer was Gathering data (53% of
answers fell in this category). This category covers the use
of print statements, debuggers, break points etc. The second
most frequent answer was Inspeculation1, which covers hand
simulation and thinking about the code. 25.5% of answers
fell in this category.

An interesting, but not surprising, result is that data gath-
ering (e.g., print statements) and hand simulation account
for almost 78% of the techniques reported in locating errors
(in Eisenstadt’s study). This result corroborates the result of
Pancake [13]: up to 90% of all sequential debugging is done
using print statements.

While the use of print statements is straightforward when
working with sequential programs, their use in parallel
programs is more complicated. Often, processes run on
remote processors, which makes redirecting output to the
console difficult. Even when output can be redirected to
the console, all processes are writing to the same window,
thus making the interpretation of the output a challenging
task. This is an example of the information overload theory
mentioned earlier. Furthermore, the order of the output (i.e.,
the debugging information from the concurrently executing
processes) is not the same for every run, as the processes
execute asynchronously and only synchronize through mes-
sage passing. A possible solution is to have each process
write its output to a disk file. However, this introduces the
problem of non-flushed file buffers; if a process crashes,
the buffer might not be flushed, thus missing output written
by the program. Of course this can be solved by inserting
calls to flush the I/O buffers, but if these are missing, the
programmer ends up spending time on debugging the code
he added for debugging purposes! In the worst case this
can lead the programmer to believe that the process crashed
somewhere between the last print statement that appears in
the file, and the first one that does not. A lot of time can
then be wasted looking for an error in a place where no error
can be found.

The third dimension, the root cause of the error, contains
10 different categories; the most noteworthy is the most fre-
quent one, Memory, which covers errors such as overwriting
a reserved portion of the memory causing the system to
crash, and array subscripts out of bounds, pointer errors etc.
25.5% of answers fell on this category. The second most fre-
quent root cause was faulty hardware (the Vendor category)

1See section 4 for an explanation of this made-up word.

(with 17.7%) and in third and fourth place, with 13.7% and
11.8% respectively, came faulty design logic (Algorithmic
design/implementation problems) and initialization, which
covers wrong types, redefinition of the meaning of system
keywords, or incorrectly initialization of a variable.

Nearly 50% of the errors are caused by the first two
categories. This also perfectly agrees with previous studies
where tools and runtime systems are described as a source
of errors [13]. The classification used in dimension 3 is a
mixture of deep plan analysis [10], [17] and phenomenolog-
ical analysis [11]. Deep plan analysis states that many bugs
can be accounted for by analyzing the high level abstract
plans underlying specific programs, and by specifying both
the possible fates that a plan component may undergo (i.e.,
missing or misplaced). An alternative phenomenological
taxonomy can be found in [11] where the root causes are
divided into nine categories.

If we accept the decomposition of the parallel pro-
gramming domain as we stated it above, as well as the
overall debugging technique of hypothesis development and
verification (as described in [3]), we still need to gather
information about the error types like Eisenstadt did for
sequential errors. This is the study presented in the following
sections.

3. The Framework
In out first attempt at classification of parallel message

passing errors [16], we established the usability of the
PCAM modelc̃iteFo95, the decomposition of the parallel
programming domain as well as introduce the 3-D model
of Eisenstadt. We also reported a number of results, some
of which we will recap at the appropriate places in the result
section of this paper. We stated in that paper that:

“The main goal of this research is to clarify a
number of subjects related to parallel programming
and debugging of parallel programs. First of all,
we wish to obtain some insight into the types of
errors the programmers encounter, and secondly
obtain data about the techniques they used to locate
and correct them. We believe that this information
serves as a good basis for how programming and
debugging tools for parallel (message passing)
programs should be developed. It is important
to understand the programming domain (in this
situation, the parallel programming domain with
message passing) in order to make qualified deci-
sions about how to correct the errors.”

This naturally still stands as the overall goal, but in
addition, we would like to “fine tune” the survey using the
3 dimensions of Eisenstadt. We used the same assignments
in this second survey as we did in the old survey described
in [16], which we believe will make the results comparable.

Naturally, the end goal should be proper tool develop-
ment to support debugging and error finding/correction in
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parallel message passing programs; we believe that the kind
of research described in this paper can help alleviate the
biggest problem with current debugging tools, as described
by Cherri Pancake in [12]: tools for parallel programming
and debugging are often only used by their developers. She
claims that this is caused by the fact that the tool developer
and the tool user might have different foci on what they
want/need from a tool.

4. The Error Reports
The programmers completed a web-based questionnaire

to record the run-time errors they encountered throughout
the semester. The web-based questionnaire contains seven
questions:

1) Why was the error hard to find? (pick one of the fol-
lowing): 1.) Cause/effect chasm. 2.) Tools inapplica-
ble/hampered. 3.) What You See is Probably Illusory,
Guv. 4.) Faulty Assumption. 5.) Spaghetti code. 6.)
Other.

2) How did you find the error? (pick one of the follow-
ing): 1.) Gather data2. 2.) Inspeculation. 3.) Expert rec-
ognized cliche. 4.) Controlled experiment. 5.) Other.

3) What was the root cause of the error? (pick one of
the following): 1.) Memory. 2.) Vendor. 3.) Design
logic. 4.) Initialization. 5.) Variables. 6.) Lexical. 7.)
Unsolved. 8.) Language. 9.) Behavior. 10.) Other

4) Did you mostly use print statements?
5) Did you use any debugging tools?
6) Place the error in one of the following categories: 1.)

Sequential error (including API errors). 2.) Message
error. 3.) Protocol error. 4.) Data decomposition error.
5.) Functional decomposition error. 6.) Other.

7) How long did it take to correct the error?
Questions 1, 2, and 3 correspond to Eisenstadt’s 3 dimen-

sions why, how and what. Each of the sub categories for
the three first questions were equipped with a more detailed
explanation. As an example, this is the explanation for
Inspecuation: “This term covers inspecting the code, hand
simulation, and speculation. Speculation involves leaving the
code to think about the problem, then later returning to try
to correct it.” Questions 4 and 5 pertain to tool usage and
the use of print statements as a primary debugging tool.
Question 6 is concerned with the placement of the error in
the decomposed parallel programming domain, and finally,
question 7 deals with the time spent debugging.

4.1 The Programs
In this section we briefly describe seven programming

assignments that they completed during the course of the

2This category has six sub categories: step-and-study, wrap-and-profile,
print-and-peruse, dump-and-diff, conditional break and inspect, specialist
profile tool. Note, print-and-peruse is the classic ’debugging with print
statements’.

semester. These programs are (listed in the order in which
the assignments were given):

• Mandelbrot — Use one master and n slaves to com-
pute a Mandelbrot set.

• Differential Equation Solver — Solve a differential
equation using a discrete method.

• Equation Solver — Use one master and n slave pro-
cesses to solve an upper triangular system of equations.

• Partial Sum — Implement a partial sum algorithm that
runs in time O(log n).

• Pipeline Computation — Use functional decomposi-
tion to implement a multistage pipeline with dispersers
and collectors that allow for multiple instances of stages
of the computation to achieve a good load balance.

• Matrix Multiplication — Implement the Pipe-and-Roll
matrix multiplication algorithm [7].

• A project — This could be any parallel message
passing program of the programmer’s choice.

4.2 Programming Domain Decomposition
We classify the types of errors from the survey questions

into six overall categories; this mirrors the approach taken in
the first survey [16]. These six categories are based on the
first two categories of the PCAM model (partitioning and
communication) as well as the three levels of the parallel
programming domain. For completeness, we have added an
other category for errors that the programmers could not
place in any of the other categories. The list of the six
categories are as follows:

• Data Decomposition — The root of the bug had to
do with the decomposition of the data set from the
sequential to the parallel version of the program.

• Functional Decomposition — The root of the bug
was the decomposition of the functionality when im-
plementing the parallel version of the program.

• Sequential Error — This type of error is the type we
know from sequential programs. This includes using =
instead of == in tests etc.

• Message Problem — This type covers send-
ing/receiving the wrong data, that is, it is concerned
with the content of the messages, not the entire protocol
of the system.

• Protocol Problem — This error type is concerned
with stray/missing messages that violate the overall
communication protocol of the parallel system.

• Other — Bugs that do not fit any of the above
categories are reported as ’other’. This include wrong
permissions on programs to be spawned, faulty parallel
I/O etc.

5. Result of Error Reporting
In this section we consider the results obtained from the

error reports. First we consider the replies to question 6 (see
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subsection 4.2) (Where in the decomposed domain did the
error fall), in the next section, we look at the answers to
questions 1, 2 and 3 (corresponding to the 3 dimensions from
Eisenstadt’s matrix). Section 5.3 looks at the debugging time
(question 7), and finally in section 5.4 we conclude with the
results of questions 4 and 5 pertaining to debugging using
print statements and tool usage.

5.1 Error Categorization According to Domain
Decomposition

Table 1 summarizes the results of the online error re-
porting survey and figures 1 and 2 illustrate the results
in two different ways: figure 1 shows the number of errors
for a given category for each of the programs (e.g., for the
partial sum algorithm, 11 errors fell in the sequential error
category). Figure 2 illustrates what the percentage of errors
within each program fell in which category (e.g., 68.75%
of the errors reported for the partial sum algorithm fell in
the sequential error category). The percent number in square
brackets in table 1 are the corresponding percentages from
the old survey [16].

Fig. 1: Number of errors for each program categorized ac-
cording to the parallel programming domain decomposition.

For the new survey, 19.63% of the errors were associated
with the decomposition of the problem (for the old survey,
this number was 25.16%), and 72.90% (versus 69.68% in
the old survey) fell into one of the three parts of the parallel
programming model. The Other was 7.48% (5.16% in the
old survey). These results show, that the overall results from
the old survey in [16] compare favorably to the result of the
new survey. Now, let us look at the distribution of the errors
within the parallel programming domain: In the old survey,
the sequential errors made up 34.84% and in the new survey
this number increased by approximately 15% to 49.53%.
The message errors went from 10.32% to 15.89% and the
protocol errors from 24.53% to 7.48%. (These numbers are
the results excluding the project). We see that the sequential

Fig. 2: Percent of errors for each program categorized ac-
cording to the parallel programming domain decomposition.

errors have gone up a fair amount, and if we look at the
results for the project (where no assignment or guidance
was given), the sequential errors makes up a 67.63% of the
errors here.

These overall results lead us to believe that support
for debugging parallel programs should be focused on the
sequential errors. It seems that the majority of errors (from
the parallel programming domain decomposition) fall into
the sequential error category; naturally support at this level
must be tailored according to the already known issues such
as information overload issues and granularity mismatch etc.

The old survey also reached the conclusion that sequential
debugging was important, but one thing that we believe this
survey revealed by including the project, is that when no
guidance or development advice is given, that is, when the
programmer must develop the algorithm and implement it
himself from scratch, the number of sequential errors rises.

5.2 Eisenstadt’s 3 Dimensional Error Matrix
The extension of the new survey was to include the

categories from Eisenstadt’s survey of sequential errors
(Questions 1, 2, and 3). Table 2 shows the results of this
categorization. The most frequently chosen category for why
the error was hard to find was the other category (44%); un-
fortunately that does not tell us much. The second category
is not surprisingly the cause/effect chasm with 23.4%; that
was not unexpected as the introduction of message passing
can spread the cause and the effect of an error over multiple
files. These errors can greatly benefit from a tool that lets
the users inspect the messages that flow from process to
process. The third most reported category is the What You
See is Probably Illusory, Guv. with 14.9%. This category
covers the errors where the programmer misinterprets part
of the code, that is, it does something other than he thought it
would do. The fourth most reported is the Faulty Assumption
with 13.5%. This category covers issues like assuming the
stack grows down when it in fact grows up!

The most frequently chosen category for how the error
was found was gather data with 48.2%. This category covers
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Table 1: Result of the the online error reporting from (new) survey (Results from old survey in [16]).

Data Functional
Decomposition Decomposition Sequential Error Message Error Protocol Error Other

Mandelbrot 5 4 18 5 3 4
(n1=39) 12.82[20.41]% 10.26[14.20]% 46.15[32.65]% 12.82[10.20]% 7.69[14.20]% 10.26[8.16]%

Differential Eq. 6 2 6 3 1 4
(n2=22) 27.27[8.57]% 9.09[0.00]% 27.27[48.57]% 13.64[11.43]% 4.55[25.71]% 18.18[5.71]%

Pipeline Comp. 0 0 4 2 2 0
(n3=7) 0.00[0.00]% 0.00[25.00]% 50.00[50.00]% 25.00[0.00]% 25.00[25.00]% 0.00[0.00]%

Partial Sum 0 0 11 3 2 0
(n4=16) 0.00[7.69]% 0.00[7.69]% 68.75[38.46]% 18.75[11.54]% 12.50[30.77]% 0.00[3.85]%

Equation Solver 0 1 5 2 0 0
(n5=8) 0.00[20.00]% 12.50[0.00]% 62.50[12.50]% 25.00[12.50]% 0.00[37.50]% 0.00[12.50]%

Matrix Mult. 2 1 9 2 0 0
(n6=21) 14.29[27.27]% 7.14[9.09]% 64.29[24.24]% 14.29[9.09]% 0.00[30.30]% 0.00[0.00]%

Project 1 0 23 8 1 1
(n7=34) 2.94% 0.00% 67.65% 23.53% 2.94% 2.94%

Total w/ Project 14 8 76 25 9 9
(n = 141) 9.93% 5.67% 53.90% 17.73% 6.38% 6.38%

Total w/o Project 13 8 53 17 8 8
(n = 107) 12.15[16.77]% 7.48[8.39]% 49.53[34.84]% 15.89[10.32]% 7.48[24.53]% 7.48[5.16]%

Table 2: The result of categorizing the errors according to Eisenstadt’s three dimensions.

Program Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9 Cat. 10
Equation Why 2(25.0%) 0(0.0%) 1(12.5%) 0(0.0%) 0(0.0%) 5(62.5%)
Solver How 3(37.5%) 3(37.5%) 1(12.5%) 0(0.0%) 1(12.5%)

What 1(12.5%) 0(0.0%) 1(12.5%) 0(0.0%) 1(12.5%) 0(0.0%) 0(0.0%) 0(0.0%) 5(62.5%) 0(0.0%)
Mandelbrot Why 11 0 4 10 0 14

How 15 11 7 0 6
What 5 0 8 7 9 0 1 1 8 0

Matrix Why 0 0 5 0 0 9
Mult. How 5 5 1 1 2

What 2 0 5 0 1 0 0 0 6 0
Partial Sum Why 4 0 2 1 0 9

How 9 6 0 0 1
What 1 0 5 0 3 1 0 1 5 0

Pipeline Why 3 0 1 1 1 2
Comp. How 4 3 0 0 1

What 0 0 4 0 1 0 0 1 2 0
Differential Why 7 1 0 7 2 5
Equation How 8 4 1 4 5

What 5 0 3 3 5 0 2 0 4 0
Project Why 6 2 8 0 0 18

How 24 7 1 0 2
What 6 0 12 1 9 0 1 0 5 0

Total Why 33(23.4%) 3(2.1%) 21(14.9%) 19(13.5%) 3(2.1%) 62(44.0%)
How 68(48.2%) 39(23.7%) 11(7.8%) 5(3.6%) 18(12.8%)

What 20(17.5%) 0(0.0%) 38(33.3%) 11(9.7%) 29(25.4%) 1(0.9%) 4(3.5%) 3(3.5%) 35(30.7%) 0(0.0%)

the use of print statements, debugging with break points etc.
Second was inspeculation with 23.7%. Inspeculation is an
amalgamation of inspection and simulation and covers for
example hand simulation of the code. The other category
made up 12.8%.

Design Logic was the most frequently chosen category
for what caused the error (it was chosen 33.3% of the time),
and it basically means incorrect algorithm implementation.
Behavior came second with 30.7%, and this category covers

for example users using the program in an incorrect way.
Variables (covering incorrect use of operators and operands)
with 25.4% and Memory with 17.5%. This category covers
pointer errors, array out of bound errors etc. In the following
subsection we briefly consider debugging time.

5.3 Debugging Time
Both in the old and in the new survey we asked the pro-

grammer to report the amount of time spent on debugging.
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Table 3 shows the results of this question. Note, the standard
deviation is only available for the new survey. In the old
survey, the average time for finding and correcting a bug
was 51 minutes, in the new survey the average time was 41
minutes.

One error report reported one error taking 840 minutes
(this was in the Project category); this might be a mistake.
Not taking this one error into account, table 4 shows the the
average time it took to correct an error; it also shows the
total amount of time spent in the different categories as well
as a percent-wise break down of how much time was spent
in the different categories in total.

Table 4 shows that the average time for finding and
correcting a sequential error was approximately 24 minutes
(in the old survey, his time was 37 minutes), but it also shows
that a total of 1,846 minutes was spent on finding sequential
errors and that made up almost 38% of the time (counting
a total of 76 out of the 141 errors) spent debugging in total.

Although the sequential errors take the least amount of
time to fix per error, a majority of time is spent on this
particularly category; a total of almost 38% of debugging
time is spent on finding and correcting sequential errors. It
should also be noted that the message errors on average take
more than twice as long to correct (61.4 minutes per error),
and a total of 31.14% of the overall debugging time is spent
on correcting these errors.

5.4 Tool Usage and Debugging-by-print-
statements

Questions 4 and 5 cover the tool usage and debugging by
the use of print statements. Table 5 tabulates the result of
these two questions. As expected, the number of replies in
the affirmative for tool usage is almost non-existing, and the
percentage for print statements as the primary debugging
tool is very high; at almost 86% it matches the numbers
reported by Pancake for sequential programs. This is not
unexpected, but it is disconcerting that a poor debugging
technique from sequential debugging has been adopted in
the parallel programming domain. The main reason for this
is of course the lack of tools, something we hope to help
alleviate.

6. Results
The results of the surveys show that a large number

(76) of the errors are sequential in nature. Even though the
sequential errors are amongst the quickest to correct, the
overall time spent on finding and correcting the sequential
errors (which count more than 3 times as many as the second
most frequent category) is in the vicinity of 40%. In addition,
the message errors are reasonably frequent and they take a lot
longer to correct (more than twice as long as the sequential
errors). It should be mentioned that approximately 16% of
debugging time (and approximately 16% of the errors) is
found at the decomposition level; but as stated earlier, these

are hard to develop tool support for as they are errors that
have to do with the algorithm rather than the implementation.

Interestingly, the category that rose to near the top in
Eisenstadt’s survey for what caused the error, namely the
vendor category covering hardware and software errors
scored 0% in our survey; this is perhaps not strange, as
hardware and compiler software is extremely stable.

7. Conclusions and Future Work
This work presents the results of a survey concerning

errors made by student programmers in a parallel pro-
gramming course in which they implement a number of
parallel message passing programs. We contrast the results
obtained in this survey with a similar survey done in 2006,
but also expand the survey to include a 3 dimensional
matrix suggested by Eisenstadt into which the errors were
categorized. The results show that the most frequent error
types are sequential errors, whereas, those that take the
longest to locate and correct are the message errors. Future
tool development should focus on these errors because they
are frequently made and take a long time to find and correct.

Within the sequential category we see that cause/effect
chasm contributes to a large percentage of the errors, and
interestingly enough, these errors are exacerbated further
by the introduction of message passing, which again points
to necessary tool support for message errors. The most
frequently applied techniques for locating the error was
gathering data and inspeculation (account for almost 72%
of the answers), and the error was most frequently caused
by behavior, errors in design logic, variables and memory
issues.

The results motivate us to pursue the development of
debugging tools for parallel programs. In particular, a mul-
tilevel debugging approach [15] may help programmers to
more efficiently identify and correct the errors; Multilevel
debugging is tailored to focus on the decomposition of the
parallel programming domain as explained in section 2.
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Table 3: Average debugging time and number of responses.

Average Time Standard
Program in Minutes # Responses Deviation

New Old New Old
Equation Solver 73 43 8 8 122
Mandelbrot 34 45 39 49 37
Matrix Multiplication 31 47 13 33 47
Partial Sum 45 63 16 26 52
Pipeline Computation 12 28 7 4 10
Differential Equation 42 61 22 35 90
Project 49 — 34 — 142
Overall 41 52 139 155

Table 4: Debugging Time.

Data Functional Sequential Message Protocol
Decomp. Decomp. Error Error Error Other

Average Time 19.9 68.1 24.3 61.4 50.0 30.6
Total Time Spent 278 545 1,846 1,536 451 245
# Errors 14 8 76 25 9 8
Total Time Spent in % 5.67% 11.12% 37.67% 31.34% 9.20% 5.0%

Table 5: Tool usage and debugging by print statements.

Tool used Print statements
for debugging primary debugging tool

Yes 1 (0.70%) 121 (85.8%)
No 137 (97.2%) 19 (13.5%)
N/A 3 (2.10%) 1 (0.70%)
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Abstract— One of the scalability issues in parallel applica-
tions, in which each process creates each file and writes data
to the file, is the scalability of file management due to the in-
creasing number of files. To mitigate this issue, a new file ag-
gregation mechanism, called the file composition technique,
is proposed. Unlike existing aggregation mechanisms, the file
composition technique aggregates multiple files created by
parallel processes into a single shared file without changing
the code of file I/O operations. In contrast with the metadata
operations in existing aggregation mechanisms, the metadata
operations are distributed to each process in order to carry
out scalability. The proposed file composition technique is
evaluated using a climate simulation code, called SCALE.
The result shows that the elapsed time of file output is
approximately 30% faster than that of original POSIX I/O
functions.

Keywords: File I/O, Parallel file system, File aggregation

1. Introduction
I/O access patterns of parallel applications are broadly

classified into three patterns: N-1, N-N, and N-M. The
N-1 pattern means that all processes access some shared
files, and the N-N pattern means that each process accesses
some individual files. For example, in a climate simulation
program, all processes save their local data to a single file
or save each individual file. In the former case, the file I/O
access pattern is called N-1 and is called N-N in the later
case. Contrasting with applications employing the N-1 or N-
N pattern in other parallel applications, such as data mining
and processing huge sensor data, all processes following
the N-M I/O pattern handle many files whose sizes are not
uniform.

I/O access patterns of many parallel applications are
categorized as the N-N pattern. For example, it was reported
that, in ten projects using the Blue Gene/P at the Argonne
National Laboratory [1], four, seven, and two projects em-
ploy the N-1, N-N, and N-M patterns, respectively. In the
N-N pattern, as the number of processes increases, the
number of files grows and the I/O performance becomes the
bottleneck of scalability. For example, Figure 1 shows the
execution time of parallel processes creating one individual
file each. The execution time linearly increases according
to the increasing number of processes. This is the result
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Figure 1: Time it takes parallel processes to create one file
each

of using a cluster with the Lustre file system described in
Section 4.

An approach to mitigating the above problem is introduc-
ing a file aggregation mechanism that gathers multiple data
generated by an application and stores these data into one or
a few files in order to reduce the number of files accessed
by these processes. Several libraries carry out such a file
aggregation mechanism, e.g., MPI-IO [2], PnetCDF [3], and
SIONlib [4]. All of them assume that parallel applications
are based on the single program multiple data ‘SPMD’
execution model, that is, all processes access files at the same
time. Those libraries have two main issues, If an application
is written using Posix file I/O APIs, it must be rewritten
using their APIs. In the case that an application is not written
in the SPMD manner, its modification cost is much higher.
The other issue is the metadata management of libraries such
as PnetCDF and SIONlib. Because the metadata of files is
sequentially handled at the user level, metadata operations,
such as creation and extension of files, limits scalability.

In this paper, a new file aggregation mechanism called the
file composition technique is proposed. It makes application
programmers select the I/O pattern such that each process
may access multiple individual files. In the proposed tech-
nique, the middleware gathers files created in the application
and stores them into a single shared file in a parallel file
system. The Lustre file system [5] is currently utilized.
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Figure 2: SIONlib

The remainder of the paper is structured as follows. In
Section 2, existing file aggregation techniques are intro-
duced. The concept of the file composition technique is
proposed, followed by its design and implementation, in
Section 3, and its basic performance is evaluated in Section
4. Section 5 presents a summary.

2. Related Work
Several techniques gather multiple data and store them

into one file and that support mechanisms to access the
gathered file by parallel processes.

2.1 SIONlib
Figure 2 shows the basic concept of SIONlib [4]. If the

I/O pattern of a parallel application is such that each process
creates multiple files, N , then the collective SIONlib func-
tion must be called N times, and this yields N aggregated
files. As a result, the performance gain by the file aggregation
can be degraded.

2.2 NetCDF and HDF5
NetCDF [6] and HDF5 [7] are the other I/O aggregation

libraries providing self-describing data formats. NetCDF
primarily supports a way to access files containing array-
oriented data. HDF5 primarily supports a way to access
hierarchical data. By using these libraries, the application
programmer can describe and store various data into one
file with the meta-information about the data and the data
format. Parallel NetCDF [3] and Parallel HDF5 [7] are the
parallel versions of NetCDF and HDF5, respectively. Both
are extended by using MPI-IO and support storing data
dispersed among parallel processes (Figure 3).

In both netCDF and HDF5, the data aggregation takes
place so that the data structure is preserved. (P)netCDF and
(parallel) HDF5 give users a good view of a complex data
structure. However, when a user tries to change the file
structure, then the aggregated file must be restructured. Thus,
users sacrifice the flexibility of their data format.
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Figure 3: PnetCDF and Parallel HDF5
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Figure 4: Concept of the file composition technique

3. File Composition Technique
In this section, we propose a new approach to store

multiple data generated by a parallel application into a single
shared file.

3.1 Proposal
We propose another approach to store multiple data gen-

erated by a parallel application into a single shared file
by holding an application’s I/O pattern. We call the new
approach file composition technique. Figure 4 shows the
basic concept of the file composition technique.

This file composition technique composes data, which
looks like a file from the viewpoint of the application, into
an aggregated larger file. Unlike SIONlib, (P)netCDF, and
(parallel) HDF5, no restrictions are on how the “files” format
the application view, and how they are organized and/or
structured. Thus, the file composition technique can provide
more flexibility than can the existing techniques.

In this paper, we call a file from the application view a
“logical file,” and a composed file “a physical file.” In the
application layer, application processes can access various
data as if they are individual files. But in the file system
layer, all logical files are stored on a single physical file.
The file composition library aggregates I/O requests of
application processes and translates them into I/O operations
for a single shared physical file.
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3.2 Design
In this subsection, a design of the implementation of the

file composition library is described. We explain how to
manage a logical file, how to map logical files to physical
files, and how to access the physical file. Figure 5 shows a
design overview of the file composition library.

Logical files are managed by our library at the computing
node where each logical file has been created, not by a
single server such as a metadata server. Even if parallel
processes access each individual logical file at the same
time, requests are not concentrated at a particular node. Thus,
it is expected that the I/O performance does not decrease.
Each library process treats logical files as separately divided
into a metadata object and data objects. A metadata object
holds the information about every logical file, filename, size,
position in the physical file, and so on. A data object is an
entity of each logical file.

The metadata object and the data objects are split into
blocks of a constant size and are distributed into a logical
file. By making the block size the same as the stripe
size of the file system, each library process can access
each individual stripe block without collisions with other
processes.

The stripe size of a parallel file system is the maximum
message size with which clients and the storage server
can communicate. If each library accesses a physical file
with the stripe size, then it is expected to have a higher
I/O performance. So, each library process has a buffer for
data objects with the length equal to the stripe size. If an
application process writes many small logical files, then the
buffer holds the data of these logical files and writes to a
physical file when the buffer becomes full.

4. Evaluation
We implemented the file composition library and eval-

uated its performance on the Lustre file system. Figure 6
shows the evaluation environment where all of the following
experiments took place. The cluster consists of 32 computing
nodes and a parallel file system, Lustre. Each computing
node has two Intel X5670 CPUs and 96 GiB memory and is
connected with the other nodes and the file server nodes
by Infiniband 4xQDR. Lustre consists of one Meta Data
Server (MDS) and 12 Object Storage Servers (OSSs). Each
OSS has 128 Object Storage Targets (OSTs) and the total
capacity of the file system is 10 PB. Each OSS has 192 GiB
memory. Two switches for the computing nodes and the file
system servers are connected with four links. Throughout
this evaluation section, the buffer size of the file composition
technique is set to 16 MiB.

4.1 Micro Benchmark
We measured the basic performance of our file com-

position library and the performance of POSIX I/O for

comparison. We show the performance of the create, write,
and read operations. In each benchmark, the number of
processes is increased from one process to 32 processes.
Each process runs on one computing node.

On the Lustre file system, files are split into multiple
object blocks and each object block is distributed to multiple
servers. The size of each object block is called the stripe size,
and the number of OSTs used to distribute the object blocks
is called the stripe count. These parameters are factors of
the I/O performance. In the case of POSIX I/O, the stripe
count is set to 4 and 64, while in the case of using the file
composition library, the stripe count is set to 64 and 160.
The stripe size is set to 16 MiB constant in all cases.

File Create

Figure 7 shows the time of file creation. Each process
repeats the procedure of calling the create and then the
close functions for a file 128 times, yielding 128 files.
The creations of each file are synchronized and the time
is measured from the time to the first create call until the
termination of the slowest call of close on the 128th file.

In the case of 32 processes, POSIX with the 4 stripe count
took 0.69 seconds and POSIX with the 64 stripe count took
37 seconds. The file composition with the 64 stripe count
and with the 160 stripe count took 0.08 seconds.

In all cases, the elapsed time increases as the number
of processes increases. But the increasing rate of the file
composition case is smaller than that of POSIX. This phe-
nomenon can be considered as that the I/O requests are
concentrated on the Meta Data Server in the POSIX I/O.
In contrast, the file composition technique can decrease the
degree of concentration.

In the POSIX case, when the stripe count gets larger,
the creation time gets slower. This is because each create
operation involves the operation on the Object Storage
Target. In the file composition case, the creation time is
constant over the number of processes, independent from
the stripe count.

Write

Figure 8 shows the throughput of open-write-close. In
this case, each process calls open, write, and close. Each
process accesses 128 individual files. The open calls are
synchronized and the time is measured from the time to
the first create call until the termination of the slowest call
of close on the 128th file.

The upper graph of Figure 8 shows the result of the case
of setting the file size to 1 MiB, and the lower one shows
the result of the case of setting the file size to 16 MiB.

In the case that the file size is set to 1 MiB, the file
composition performance is almost twice better than that of
POSIX. The assumed reason for this performance improve-
ment is that the file creation time is reduced and that the
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Figure 5: Design overview of the file composition library

!"#$%&'(")*+",-.*/01*)",-.2*

!34*5*6)&-7*89:;<*=*1*

>-#"?@*5*A:*BC*

6)D)EF'),*GHE&IJ*

6)D)EF'),*GHE&IJ*

K%.&?-*L<3C*

L*>MG!L1*NGG/L90:*NGO2!

"""!
6)D)EF'),*P=QMR**

/S'IJ*I'F7-*I"))-I&.*")-*)",-T2!

6)D)EF'),*P=QMR*/P7E)U.2!

"""! 6)D)EF'),*P=QMR**

/S'IJ*I'F7-*I"))-I&.*")-*.-?V-?T2!

Figure 6: Evaluation environment

buffering in the composition technique decreases the number
of write calls.

In the case that the file size is set to 16 MiB, the perfor-
mance of the file composition is approximately twice faster
than that of POSIX. This is because the file creation cost
is reduced with the file composition technique. However, in
the file composition case, when the stripe count is small and
the number of processes is large, its performance gain is not
high. This is because the number of Object Storage Targets
that all processes can access is limited to the stripe counts
with the file composition technique.

Read
Figure 9 shows the throughput of open-read-close. Each

process opens a file and reads data from the file and closes
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Figure 7: Time of create-close

the file. Each process accesses 128 individual files that were
created in the previous write benchmark runs. To eliminate
the effect of page cache in the Linux kernel, the cache of
all computation nodes and all file system servers is cleared
before running this benchmark.

The upper graph of Figure 9 shows the result of the case
that each file size is set to 1 MiB, and the lower graph shows
the result of the case that each file size is set to 16 MiB.

In the case that the file size is set to 1 MiB, the perfor-
mance of the file composition is approximately three times
faster than that of POSIX. In the case that the file size is
set to 16 MiB, the performance of the file composition is
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Figure 8: Throughput of open-write-close

almost the same as that in the POSIX case. The assumed
reason for this performance improvement in the case of 1
MiB is that the process can read the same stripe block as in
the case of the file composition. In contrast, in the case that
the file size is set to 16 MiB, which is the same size as the
buffer of the file composition technique, the file composition
technique has no buffering effect.

4.2 Evaluation with a real application
Finally, our file composition technique is applied to a

real application that is a climate simulation program, called
SCALE, being developed by RIKEN AICS Computational
Climate Science Research Team.

When the program is running in parallel, each process
periodically calls a file-output function that creates a new file
and writes data into the file. When the file-output function is
called, first, a new file is created and a file header is written.
The file header has meta information about the data to be
written in the file. Then, 16 arrays in the program are written
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and the file is closed.
We rewrote the file-output function by replacing the

POSIX I/O functions with the function that our file composi-
tion library provides. The file composition library aggregates
all files that the SCALE program creates and stores them into
a single shared file throughout the whole program execution.

We executed the SCALE program in parallel and mea-
sured the elapsed time of the file-output function called by
each application process. The program was executed with
32 processes and the size of one array was 10.1 MiB. The
SCALE program was set up so that it repeated the file output
10 times. In the POSIX case, the stripe count was set to 0,
because that was the fastest parameter variable setting. In
the case of the file composition library, the stripe count was
set to 160, which is the maximum value we can set.

Table 1 shows the result of the total elapsed time of the
output function. The performance of the file composition
library was approximately 30% faster than that of POSIX.
The assumed reason for this performance improvement is
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Table 1: Time of SCALE’s file output.

the fastest the slowest average of
process process all processes

POSIX 12. 75 15.33 14.43
File Composition 8.79 12.17 10.37

[sec]

that the file composition technique could successfully reduce
the number of accesses to a metadata server when each
process creates files.

5. Summary
In this paper, we proposed the file composition technique

that achieves good I/O scalability of parallel applications
without changing the code using the POSIX file I/O inter-
faces. The library employing this technique aggregates I/O
requests of parallel processes and translates them into I/O
operations in a single shared file in a parallel file system,
which is currently the Lustre file system. Two techniques
are integrated to achieve good scalability of I/O operations.
The metadata information is separately managed by each
process to avoid the contention of metadata operations. The
middleware of each process accesses its own stripe block
exclusively in the parallel file system to avoid the contention
of read/write operations.

The result of the basic performance showed that the
proposed library is eight times faster than the regular POSIX
I/O library in the case that 32 parallel processes create
128 files each. The results two times better throughput of
parallel open-write-close operations and three times better
throughput of parallel open-read-close operations. We also
applied the file composition technique to the file-output
function of a climate simulation program called SCALE.
The elapsed time of the file-output function with the file
composition library was approximately 30% faster than that
of the POSIX I/O. These experiments demonstrated that I/O
performance can be improved by using the file composition
technique without changing the POSIX file I/O interfaces.
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Abstract – During the course of our careers we have 
written a variety of high performance computing programs  
(parallel Genetic Algorithms [12, 13], genetic sequence 
analysis [4], automated reasoning applications such as 
theorem provers [5], and an asynchronous, dynamic, load-
balancing library [1, 3, 7, 10]).  In our projects we often 
found ourselves using a bilingual programming model to 
gain the advantages of both high performance execution 
and advanced language features like garbage collected data 
structures.  D gives us access to both facilities in a single 
language.  While D [8] is not a new language in the 
Computer Science scheme of things, it has only recently 
advanced to the point where we could begin to consider it 
as a solution to our dilemma.  In this paper we discuss how 
we use D for rapid development of high performance code, 
and how we link it to legacy code such as MPICH2 [11] and 
ADLB.  

 
Keywords:  D Programming, Bilingual Computing, High 
Performance Computing 

1  Introduction 
As computer scientists we recognize the value in 

learning multiple languages.  Each language brings a unique 
set of features to the table that has the potential for 
providing elegant solutions to various problems.  However, 
in a perfect world, we would only need to be an expert in 
one language, and that language would have all the features 
needed to easily create well-designed code.  Since the world 
is not perfect, we have typically in the past focused on one 
language per project.  In practice, the high performance 
world typically relies on Fortran or C, and in our case it was 
C.  But the lure of scripting languages such as Python would 
occasionally draw us in.  When our project needed the ease 
of built-in advanced data structures such as associative 
arrays along with automatic garbage collection of those 
structures, we used a high level scripting language such as 
Python.  When high performance was absolutely critical or 
if we were doing low-level programming such as memory 
management, then we typically used some language that 
was a C-derivative.   

Over time, we began to incorporate both scripting 
and compiled languages into one project in such a way that 
distinct pieces of the project might be in different languages, 
but the interaction between pieces written in different 
languages was minimal.  For example, initially the mpd 
component of MPICH2 [11] was written in Python while 
the rest of the modules were written in C [9].  The mpd 
component is a stand-alone process management system that 
has a trivial interface for connecting to other systems.   

Because we always want both performance and 
ease of development, we have ended up doing bilingual 
computing.  In the bilingual model of computing the 
interactions between the components written in different 
languages involve the concept of shared high-level data 
structures.  The reason for two languages was sometimes to 
overcome a missing feature in C (the high-level data 
structure) [5].  And sometimes we used two languages to 
overcome a limiting feature in Python (the global interpreter 
lock) [6].   

However, bilingual computing can be problematic.  
Besides the obvious requirement of being expert in two 
languages, bilingual computing introduces the problem of 
what parts of the project to do in each language and how to 
interface the various pieces with each other.  These are not 
always trivial problems to overcome.  So we are left with 
the dilemma of do we choose only one language for a 
project and lose important features of the other language, or 
do we choose two languages and deal with the problems of 
interfacing the two languages?  And if we choose two 
languages, someone has to maintain both.  As we mentioned 
previously, MPICH2 was written in C, but its process 
management component was written in Python.  The 
MPICH2 team, however, felt compelled to rewrite the mpd 
component in C not for performance reasons but largely for 
ease of maintenance.   

The solution to our dilemma is that we need a 
single programming language that has all the features to 
elegantly solve our problems.  The D programming 
language [8] was initially developed with the idea of 
improving C++, and has recently stabilized into what we 
believe to be the answer to our dilemma.  In this paper we 
begin by discussing salient attributes of D.  We then 
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describe our interfaces to legacy code – specifically 
MPICH2 [11] and ADLB [1, 3, 7, 10].   

2  Why D? 
 The obvious question to ask is, "Why D?"  It 
doesn't even appear on the TIOBE Programming 
Community Index [14] of the top 20 most used 
programming languages.  It is interesting to note, however, 
that the top five programming languages on the list are C 
derivatives, and four of the remaining languages in the list 
are scripting languages.   
 As mentioned before, D was initially developed 
with the idea of improving C++.  Specifically, the 
developers asked this question: 

Can the power and capability of C++ be 
extracted, redesigned, and recast into a 
language that is simple, orthogonal, and 
practical? Can it all be put into a package 
that is easy for compiler writers to correctly 
implement, and which enables compilers to 
efficiently generate aggressively optimized 
code?  [8] 

 Because of this, it has many of the features of C/C++ that 
we consider to be important for high performance 
computing: 

• It is so compatible with C that it will link with 
existing C programs. 

• It has all the features of C from pointers to inline 
assembly language. 

• It has all the features of C++ including a simplified 
method of handling templates. 

• Programming can look like C or C++. 
• Performance is equivalent to C. 
• The developers claim that on average it compiles 

100 times faster than C++ and four times faster 
than GO. [2] 

So we have the performance and features of the C derivative 
languages.  But we also want the high-level data structures, 
automatic garbage collection, and rapid development time 
of scripting languages.  D actually has many of these 
features as well.  For instance: 

• Rapid development can be done with the rdmd 
wrapper to dmd (the original D compiler) that 
allows for compiling, linking, and executing 
without appearing to compile and link. 

• D has advanced data structures such as lists and 
associative arrays. 

• D has automatic garbage collection. 
• It has Perl-compatible regular expression handling. 

In addition to having the aforementioned features of the C 
derivative languages and the scripting languages, D has 
some features that can be very helpful for high performance 
computing projects.  Features such as: 

• built-in language support for it's own thread model 
(it should be noted that memory is not shared by 
default, but it can easily be annotated as shared), 

• built-in language support for unit test – both with 
compiler options and within actual code, 

• facilities for contract programming 

3  Interfacing D to Legacy HPC Code 
 Because D is link-friendly with C, i.e., it just links 

with C functions, one would be inclined to believe that it 
would also be compile-friendly with C.  What we mean by 
that is you might think that it would allow you to include C 
header files.  But that is not the case.  Instead D imports its 
own modules.  For example, you might expect to be able to 
include the mpi.h header file.  Instead, the mpi.h header file 
has to be converted to a D  

 
/* -*- Mode: C; c-basic-offset:4 ; -*- 
*/ 
/*   
 *  (C) 2001 by Argonne National 
Laboratory. 
 *      See COPYRIGHT in top-level 
directory. 
 */ 
/*src/include/mpi.h.  Generated from 
mpi.h.in by configure.*/ 
#ifndef MPI_INCLUDED 
#define MPI_INCLUDED 
/* user include file for MPI programs */ 
/* Keep C++ compilers from getting 
confused */ 
#if defined(__cplusplus) 
extern "C" { 
#endif 
/* Results of the compare operations. */ 
#define MPI_IDENT     0 
#define MPI_CONGRUENT 1 
#define MPI_SIMILAR   2 
#define MPI_UNEQUAL   3 
typedef int MPI_Datatype; 
#define MPI_CHAR           
((MPI_Datatype)0x4c000101) 
#define MPI_SIGNED_CHAR    
((MPI_Datatype)0x4c000118) 
#define MPI_UNSIGNED_CHAR  
((MPI_Datatype)0x4c000102) 
#define MPI_BYTE           
((MPI_Datatype)0x4c00010d) 

Figure 1.  A portion of mpi.h. 
 
module.  To facilitate this process, there is a htod program.  
htod is quite useful in that it accomplishes most of the task, 
and most of what needs to be done by hand is annotated in 
the converted file with comments.  Admittedly there is some 
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hand-crafting necessary to make the project work.  The 
transformation process is shown in Figures 1 – 3 where we 
list a portion of the mpi.h header file, what that same portion 
looks like coming out of htod, and what the final hand-
crafted portion looks like.   
 
/* Converted to D from 
\mpich2i\include\mpi.h by htod */ 
module mpi; 
/* -*- Mode: C; c-basic-offset:4 ; -*- 
*/ 
/*   
 *  (C) 2001 by Argonne National 
Laboratory. 
 *      See COPYRIGHT in top-level 
directory. 
 */ 
/* src/include/mpi.h.  Generated from 
mpi.h.in by configure. */ 
//C     #ifndef MPI_INCLUDED 
//C     #define MPI_INCLUDED 
/* user include file for MPI programs */ 
/* Keep C++ compilers from getting 
confused */ 
//C     #if defined(__cplusplus) 
//C     extern "C" { 
//C     #endif 
/* Results of the compare operations. */ 
//C     #define MPI_IDENT     0 
//C     #define MPI_CONGRUENT 1 
const MPI_IDENT = 0; 
//C     #define MPI_SIMILAR   2 
const MPI_CONGRUENT = 1; 
//C     #define MPI_UNEQUAL   3 
const MPI_SIMILAR = 2; 
const MPI_UNEQUAL = 3; 
//C     typedef int MPI_Datatype; 
extern (C): 
alias int MPI_Datatype; 
//C  #define MPI_CHAR           
((MPI_Datatype)0x4c000101) 
//C     #define MPI_SIGNED_CHAR    
((MPI_Datatype)0x4c000118) 
//C     #define MPI_UNSIGNED_CHAR  
((MPI_Datatype)0x4c000102) 
//C     #define MPI_BYTE           
((MPI_Datatype)0x4c00010d) 
Figure 2.  A portion of mpi.h that has been run through htod 

 

 
 
/* Converted to D from 
\mpich2i\include\mpi.h by htod */ 
module mpi; 
/* -*- Mode: C; c-basic-offset:4 ; -*- 
*/ 
/*   
 *  (C) 2001 by Argonne National 
Laboratory. 
 *      See COPYRIGHT in top-level 
directory. 
 */ 
/* src/include/mpi.h.  Generated from 
mpi.h.in by configure. */ 
//C     #ifndef MPI_INCLUDED 
//C     #define MPI_INCLUDED 
/* user include file for MPI programs */ 
/* Keep C++ compilers from getting 
confused */ 
//C     #if defined(__cplusplus) 
//C     extern "C" { 
//C     #endif 
/* Results of the compare operations. */ 
//C     #define MPI_IDENT     0 
//C     #define MPI_CONGRUENT 1 
//C     #define MPI_SIMILAR   2 
//C     #define MPI_UNEQUAL   3 
const MPI_IDENT = 0; 
const MPI_CONGRUENT = 1; 
const MPI_SIMILAR = 2; 
const MPI_UNEQUAL = 3; 
//C     typedef int MPI_Datatype; 
extern (C): 
alias int MPI_Datatype; 
//C     #define MPI_CHAR           
((MPI_Datatype)0x4c000101) 
//C     #define MPI_SIGNED_CHAR    
((MPI_Datatype)0x4c000118) 
//C     #define MPI_UNSIGNED_CHAR  
((MPI_Datatype)0x4c000102) 
//C     #define MPI_BYTE           
((MPI_Datatype)0x4c00010d) 
const MPI_CHAR = 
cast(MPI_Datatype)0x4c000101; 
const MPI_SIGNED_CHAR =  
           cast(MPI_Datatype)0x4c000118; 
const MPI_UNSIGNED_CHAR =  
           cast(MPI_Datatype)0x4c000102; 
const MPI_BYTE = 
cast(MPI_Datatype)0x4c00010d; 
Figure 3.  A portion of mpi.h that has been run through htod 

and then hand-crafted to work correctly 
 
While the conversion process was a bit tedious, it 

was not difficult, and we were successful in using a small 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 403



subset of MPICH2 in D programs.  We turned our results 
over to the current MPICH2 support team, and discussions 
are being held to determine if MPICH2 is going to support 
D as it already does C, C++, and Fortran.   

Having this experience behind us, it was relatively 
trivial to perform the same operation on ADLB and begin 
using ADLB in D programs.  Encouraged by these results, 
this semester we have provided D as an option in our 
graduate level parallel processing class which uses both 
MPI and ADLB.   

As a purely intellectual exercise to convince 
ourselves that D would be a good replacement for C and/or 
Python, we did the necessary work to convert portions of 
mpd, ADLB, and the theorem prover into D.  In cases where 
our major concern was nothing but performance, we found 
that writing D code was essentially equivalent to writing C 
code.  If we wanted to, we could use pointers and write 
memory managers. On the other hand, if we wanted to let D 
handle memory management we could.  In fact, D was able 
to handle practically all that we wanted it to handle.  There 
were only two places where D was somewhat less than 
perfect for our needs. The first tiny flaw is that D's 
definition of associative arrays is not as elegant as Python's.  
If you want to map a single data type to another single data 
type, D is fine.  But if you want to use multiple data types as 
the key, you have to use a Variant – so technically D is up 
to the task but it is not as elegant as Python.  The second 
tiny flaw is that as far as we can tell, there is no serialization 
library right now in D.  There is one proposed that has not 
been accepted.  But to fully re-implement some of the mpd 
code, we would need serialization.  As part of our exercise, 
we implemented a small serialization library suitable for our 
own needs, but it would be nice to have serialization as part 
of the distribution libraries.  

4  Conclusions and Future Work 
During the course of several decades of writing 

high performance code our goals have evolved.  Initially the 
aim was simply to improve performance – which meant 
programming in C (or some C derivative).  Over time our 
goals evolved to allow more features of scripting languages 
for small parts of a large project – features such as advanced 
data structures and automatic garbage collection.  
Eventually our goals would require the sharing of data 
structures between high-level scripting code and low-level 
performance code in a single project.  The desire for both 
caused us to develop a bilingual programming model, thus 
requiring us to deal with the problems associated with 
sharing data structures between languages.  This was not an 
ideal situation.   

We believe the dilemma of whether to code a 
project in a single language or two languages can be solved 
by coding in D.  D provides the power and capability of the 
C derivative languages.  It also provides the flexibility of the 
scripting languages.  And D has some added attributes that 

aren't available in the others.  It is trivial to link D code to C 
code, and it is fairly easy to interface D to legacy code using 
the htod software.  The interface to legacy code does require 
some manual labor to get the project to work, but it is 
minimal. 

We have begun using D in our graduate Parallel 
Processing class as well as in our research.  The elegance of 
the D threading model and its ease of use with MPI and 
ADLB have led to plans to use D next year in a Software 
Design and Development course which might not otherwise 
be able to use high performance computing facilities.   

While we can use D on our own cluster, on 
machines like the BlueGene/Q, this might not currently be 
possible.  Typically you can only be guaranteed C/C++ and 
Fortran.  Since D is under consideration by the MPICH2 
team, this may lead to availability of D on the bigger 
clusters/machines. 

Just as people constantly argue about what 
language is better.  They also have frequent discussions 
about whether or not languages are scalable.  For example, 
they might say, "Perl's fine for quick and dirty hacks, but it's 
not scalable."  Or they might say, "Python is elegant and 
scalable."  We doubt that anyone would argue that C/C++ is 
not scalable.  On the other hand, the large projects done in 
C/C++ may not be as elegant or as maintainable as those 
done in Python.  All arguments aside, if you want 
performance, rapid development, elegance, scalability, safe 
language features, ease of maintenance, and advanced 
software engineering functionality, then it is really hard to 
find it all in one place other than D.  At this point we see no 
reason to use anything other than D for new projects. From 
our point of view it scales elegantly, and gives us all the 
features we need. 
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Abstract 
The present work investigates using non-blocking and 

minimum-blocking Java library classes as a basis for 

improving performance of parallel bidirectional search 

on a multiple-instruction multiple-data (MIMD) 

processor. The approach represents individual states as 

minimum-size, immutable objects. It uses a work queue 

to distribute states-for-expansion among worker threads, 

and it uses two sets for keeping track of states previously 

explored in each direction. The queue class is thread-

safe and non-blocking, and the set class is thread-safe 

and non-blocking for read operations, with parallel 

locking of subsets for write operations. It is essentially a 

dataflow approach as opposed to a state machine 

approach. Rather than step worker threads through state 

transitions using blocking synchronization, it flows states 

to be expanded to worker threads in the order required 

by bidirectional search. This approach has clear, 

measurable advantages over approaches that use 

blocking synchronization. 

 

Keywords 
bidirectional search, concurrent programming, Java, 

multiprocessing, parallel programming 

1. Introduction and related work 
This report is an outcome of curriculum development for 

a senior and graduate-level course in multiprocessor 

programming.
1
 The course uses the Java™ programming 

language because of its extensive library of thread-safe 

container classes and atomic data types, and its explicit 

memory model that supports aggressive optimization of 

dynamically compiled code [1]. We have found that for 

some algorithm benchmarks Java outperforms statically 

optimized C/C++ using the native compiler. This report 

focuses on applying Java library classes to the problems 

of parallel bidirectional search. 

 Bidirectional search is a classic approach to solving 

search space problems when both the initial and final 

states of the search are known in advance [2]. It searches 

for paths that connect these two states, typically 

                                                                 

1 This work was made possible by equipment grants from 

Sun Microsystems and the NVIDIA Corporation, and 
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PA State System of Higher Education. Please see the 
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searching for minimum-length paths. In problems with 

exponential growth of the search space size as a function 

of search path length, bidirectional search reduces the 

number of states inspected over unidirectional 

approaches by integrating the results of two shorter paths 

that grow simultaneously from the initial and final states. 

 Bidirectional search is an interesting algorithm for 

adaptation to parallel programming because it aims at 

improving run-time performance over simpler search 

algorithms such as depth-first or breadth-first search, and 

because it lends itself to parallel implementation. Figure 

1 is a schematic view of bidirectional search as 

exploration of a maze in search of the shortest path, 

given knowledge of both the entrance and exit locations. 

Regardless of the concrete problem being solved, 

bidirectional search always requires knowledge of the 

starting and ending states of the search. It often utilizes 

problem-specific heuristics to prune the search space of 

dead ends, but it is not required to do so. 

 

 
 

Figure 1: Bidirectional Search as a Maze 
 

 The fundamental point of bidirectional search is to 

limit the exponential growth in number of states explored 

in a single direction by exploring two shorter paths, one 

from each direction, and then detecting states in which 

those opposing paths meet. The outermost set of states 

currently being explored in either direction constitutes 

that direction’s frontier. A single-threaded search based 

on breadth-first search uses a first-in first-out (FIFO) 

queue of states to expand as a work queue. The algorithm 

first enqueues the initial state and final state in the work 

queue, after which it iteratively removes a state, 

computes its single-step expansions, checks for cycles 

and converging DAG paths within the states of its 
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originating direction, and checks for collisions with 

states coming from the opposite direction. Cycle / 

converging paths and collision checking require storing 

explored states in a set (keyed on location in the space + 

search direction) or two sets (keyed on location only). 

Detection of opposing-path collisions uncovers shortest-

path solutions to the problems. In the absence of cycles / 

converging paths and solutions, the algorithm enqueues 

one or more single-step expansions and repeats these 

steps until it locates a solution. 

 The worst case time, space complexity for 

unidirectional breadth-first search is O(b
d+1

), where base 

b is the number of alterative branches (branching factor) 

in the search path that can be taken at any step, and 

exponent d is the depth (or equivalently length) of the 

path. When b==3, for example, an un-pruned frontier 

contains 3 possible states after 1 step, 9 possible states 

after 2 steps, and so on, generalizing to b
d
 states at the 

frontier, although some may be eliminated through 

detection of cycles, converging DAG paths, or via 

application-specific heuristics. The total states explored 

leading up to the frontier + the frontier itself grows at the 

rate O(b
d+1

). 

 Bidirectional breadth-first search, in contrast, grows at 

the much lower rate O(b
d/2

). Each of the two search 

directions in bidirectional search grows to only half the 

length of the corresponding unidirectional search, 

thereby cutting down on the massive exponential growth 

in explored states that comes with the relative doubling 

of length in unidirectional search. 

 Recent work reported on integrating parallel processing 

with bidirectional search focuses on applying parallel 

implementation of heuristic strategies to prune the search 

space [3-5]. Using application-oriented heuristics to 

radically reduce the number of states explored is the 

primary means for accelerating the basic bidirectional 

algorithm. Observing the incremental state expansion of 

a search domain often uncovers useful heuristics. 

2. Minimum Blocking Approach 
Our initial solution to parallel bidirectional search used 

the following algorithm, which implements a two-phase 

state machine. Each immutable state object contains its 

internal state fields and an immutable reference to its 

predecessor in its search path. 

 

enqueue initial state into work queue 

enqueue final state into work queue 

set forwardStatesSet to the set of {initial state} 

set backwardStatesSet to the set of {final state} 

set setOfSolutions to empty set {} 

set direction to Forward 

set isdone flag to False 

while not isdone 

  dequeue a state-to-expand from front of work queue 

  if directionOf(state-to-expand) not equal direction 

   post a pending-change-of-direction to all threads. 

   block until all threads ready to reverse direction. 

   set direction to its reverse. 

  for each single-step expansion of state-to-expand 

   if expansion is in StatesSet from opposing side 

    if 1
st
 solution or cost equals solution’s cost 

     add expansion’s path to setOfSolutions 

    else (cost is greater) 

     set isdone flag to True 

   else if expansion is in StatesSet from this side 

    // a cycle or converging DAG path detected 

    do not use this expansion 

   else 

    add expansion to StatesSet from this side 

    enqueue expansion in work queue 

 

Listing 1: Parallel, blocking state machine 

 

 Enqueues into the work queue and dequeues from the 

work queue do not block in this algorithm. The viability 

of non-blocking retrieval depends on the fact that 

exponential growth of the search space ensures that most 

dequeue operations will receive a state-to-expand from 

the work queue. It is only at the beginning of the search 

that some threads do not initially find states-to-expand 

via the non-blocking dequeue operation within a given 

phase (forward or backward). Those threads resort to a 

polling loop, trying the queue repeatedly until they 

receive data or until another thread posts a pending-

change-of-direction flag.  Idle polling consumes 

processors only until the work queue begins to grow at 

an exponential rate. Our implementation uses the 

ConcurrentLinkedQueue from the java.util.concurrent 

library package as the work queue. The documentation 

for that class states that, “This implementation employs 

an efficient "wait-free" algorithm.” [6, 7]  

 The forwardStatesSet and backwardStatesSet of Listing 

1 are objects of class ConcurrentHashMap of 

java.util.concurrent. There is no comparable Set class per 

se, but the keys of a Map can serve as elements of a Set. 

The documentation for this class states, “However, even 

though all operations are thread-safe, retrieval operations 

do not entail locking.” Write locks are distributed across 

a number of stripes, where a stripe is a subset of the 

buckets in the hash table [8]. When two writers do not 

collide on the same stripe, they do not impede each other. 

Application programmers can adjust the number of 

stripes, trading increased parallelism against the memory 

cost of maintaining additional lock stripes. 

 A change of direction in the algorithm of Listing 1 

entails waiting until all threads have completed 

expansion of the current direction, forward or backward. 

Referring to Figure 1, all threads expand the frontier of 

only one direction at a time during one phase of this state 

machine approach. Our thinking was to keep the set of 

states coming from the opposing side stable for collision 

testing during the expansion of states in the current side. 

We implemented blocking using the CyclicBarrier class 

from java.util.concurrent [6]. This library class blocks all 

calling worker threads until the last worker thread has 

entered the barrier. The final thread to enter reverses the 

direction of the search state variables, and then all 

threads enter the next phase of the search. CyclicBarrier 

provides very coarse-grain synchronization. The intent in 
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using CyclicBarrier was to minimize fine-grain 

synchronization while supporting stability in testing for 

state membership in the opposing StateSet. 

 After working with our implementation of Listing 1 we 

realized that we could eliminate locking altogether. 

Listing 2 gives the revised algorithm. 

 

enqueue initial state into work queue 

enqueue final state into work queue 

set forwardStatesSet to the set of {initial state} 

set backwardStatesSet to the set of {final state} 

set setOfSolutions to empty set {} 

set isdone flag to False 

while not isdone 

  dequeue a state-to-expand from front of work queue 

  for each single-step expansion of state-to-expand 

   if expansion is in StatesSet from opposing side 

    if 1
st
 solution or cost equals solutions’ cost 

     add expansion’s path to setOfSolutions 

    else (cost is greater) 

     set isdone flag to True 

   else if expansion is in StatesSet from this side 

    // a cycle or converging DAG path detected 

    do not use this expansion 

   else 

    add expansion to StatesSet from this side 

    enqueue expansion in work queue 

 

Listing 2: Parallel, minimum-blocking dataflow 

machine 

 

 The dataflow algorithm of Listing 2 dispenses with the 

CyclicBarrier waiting of Listing 1. The dequeue 

operation remains a non-blocking poll with looping until 

the work queue begins to fill, tests for StatesSet 

membership are non-blocking, and insertion of new 

states into StatesSet occurs using concurrent lock stripes. 

With a high lookup-to-insertion ratio for StatesSet 

members (all insertions are preceded by lookups to detect 

cycles and solutions), locking is minimal and 

configurable via the StatesSet’s stripes constructor 

parameter. 

 Dispensing with coarse-grain synchronization of the 

two-phase state machine is possible because states flow 

through the work queue in approximately the correct 

order. Forward states-to-expand alternate with reverse 

states-to-expand, partitioned by frontier-being-expanded 

for the most part. 

 This temporal sequencing of wave fronts is stochastic, 

not deterministic. A thread that finds most (but not all) of 

its state expansions to be dead ends (cycles or 

converging DAG paths) for a series of dequeue 

operations places frontier states onto the work queue 

quickly; some worker threads could be two phases ahead 

of other threads, expanding a path of length L+1 for a 

given direction while some threads are expanding paths 

of length L for that same direction. There is no particular 

problem in occasionally “getting ahead,” as implied by 

the overlapping frontiers of Figure 1. A thread that has 

gotten ahead on one turn may find an opposing path one 

level deeper into the opposing side’s search space, but 

the discovered path is still a solution path. The algorithm 

retains only the set of minimum-length solution paths. 

Normally, by the time a thread has reached level N+1 in 

the search from its dequeued state-to-expand’s origin, all 

other threads have dequeued all level N states from the 

work queue, and they will complete expansion of those 

N-level states before checking the isdone flag set by the 

first solution’s discovery. Some of those N level 

expansions may be redundant with the N+1 level solution 

from the thread that “got ahead.” The algorithm discards 

such redundant solutions. 

 There is still a potential problem, although we have not 

seen it in practice. The algorithm of Listing 2 makes it 

possible for some advanced state-to-expand to be 

multiple frontier levels ahead of other states being 

expanded in the same direction. If the thread that is 

expanding a level N+2 (or higher) state sets the isdone 

flag while other level N states are being expanded in the 

same direction, then some solutions could be missed in 

an exhaustive search for all distinct minimum-length 

paths. The fix is to discard a state-to-expand after a 

solution has been found, if the state-to-expand has a path 

length greater than the integer ceiling of ½ of the known 

solution’s length, setting the isdone flag at that point. 

The length of the first known solution helps to prune 

state expansions. At the point that the work queue 

becomes empty after the isdone flag is set to True, 

worker threads can terminate their work. Of course, a 

thread may detect this condition and terminate just before 

another thread enqueues a state-to-expand, but at that 

point processing is converging on the last of the 

solutions, and the thread that enqueued the state-to-

expand is guaranteed to be available to dequeue that 

state-to-expand, if no other thread gets there first. States-

to-expand in possible solution paths will not be left in the 

work queue by all terminating threads, and detection of 

the isdone flag in combination with an empty work 

queue indicates convergence on the last of the solution 

paths. 

 One final problem with the fact that some states-to-

expand may get multiple levels ahead of most states 

being expanded in a direction is the fact that these states 

may not lie in a solution path. The advanced state has 

gotten outside of the intersecting cones of the frontiers of 

Figure 1. This problem is a small efficiency concern, not 

a bug. There may be some unnecessary searching outside 

the intersecting frontiers of Figure 1, but the performance 

impact is insignificant compared to the benefits of the 

minimum-blocking algorithm. Exploration of such states 

does not lead to false solutions or premature termination. 

3. Shortest path performance 
For the performance measurements of this section we ran 

two representative applications of bidirectional search. 

The first finds the solution of the so-called “Penny-Dime 

problem,” where there is an arrangement of some number 

N of pennies P, followed by one blank space, followed 

the same number N of dimes D. The goal is to find the 

series of moves that will reverse a sequence such as 
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PPPPPP_DDDDDD to the sequence 

DDDDDD_PPPPPP. Legal moves consist of moving a 

coin one location into the space, or jumping a coin over a 

single neighbor (as in checkers) to the space. Heuristics 

such as avoiding retrograde moves can accelerate the 

search, but the overall form of the algorithm remains 

unchanged. 

 The other benchmark, which is the one reported here, is 

a simplification of a maze construction problem. The 

original algorithm searches for non-shortest paths that 

match some minimum-length threshold, in the interest of 

constructing interesting mazes. 

 For the benchmark reported here, we use an algorithm 

that simply searches for the shortest path from the maze 

entrance to its exit by crossing empty space with no 

obstacles other than outside walls. When the program 

starts, there is a pseudo-randomly selected entrance 

location, exit location, and outer walls, but the inside of 

the proposed maze is empty at that point. The algorithm 

simply finds the shortest path between two points, where 

the search from the entrance does not have knowledge of 

the location of the exit, and the search from the exit does 

not have knowledge of the location of the entrance. This 

is essentially blind search. 

 The machine used for this benchmark is a 64-threaded 

Sparc server obtained via a 2009 grant from Sun 

Microsystems [9]. It houses 8 cores x 8 threads-per-core 

= 64 hardware threads, 16 Gbytes of main memory, and a 

1.2 Ghz clock speed. Each core is limited to a rather 

small 16 Kbytes of L1 instruction cache and 8 Kbytes of 

L1 data cache, with 4 Mbytes of L2 cache distributed 

across the cores. While not the best fit for large data sets 

with random access patterns due to the limited cache, it 

performs admirably when running Java programs with 

good memory locality or modest memory consumption. 

The individual states of the bidirectional search problems 

that we have benchmarked are small, although references 

to a large number of these small state objects can reside 

in the work queue and sets of the algorithm. 

 

 
 

Graph 1: Multithreaded bidirectional maze construction 

 

 Graph 1 plots execution time in real seconds on the Y 

axis as a function of number of threads on the 

logarithmic X axis for construction of a minimal path of 

length 2947 in a 2500 x 2500 space using blind 

bidirectional search. The dashed cyclic barrier curve of 

Listing 1 reaches its peak performance at 8 threads (56.1 

seconds compared to 74.7 seconds of its single-threaded 

case), after which execution time grows with the number 

of hardware threads employed. Normally adding threads 

beyond some optimal spot for an algorithm increases 

start-up and scheduling overhead, although in this case 

scheduling overhead is minimal because all 64 hardware 

threads are available for execution. The problem here is 

that when one or two threads lag behind the others in the 

exploration of a frontier, the remaining 30-to-31 or 62-

to-63 threads block idly in the cyclic barrier until those 

one or two threads enter the barrier. With only 8 

hardware threads employed, each thread has more states 

to expand for a given frontier, and the cost of exploration 

averages more evenly across the threads, so there are 

fewer opportunities for entering this degenerate state 

repeatedly. More threads wait repeatedly until time-

consuming laggards complete their work in the 64-

threaded case. In the 8-threaded case the per-thread 

workload averages out, minimizing the stalling effect of 

the cyclic barrier. 

 The dotted minimum blocking curve of Listing 2 starts 

at 74.3 seconds, shows a loss of performance due to two-

threaded contention at 101 seconds, after which 

execution time decreases consistently to 34.5 seconds for 

64 threads. 

 The final, blocking queue curve shows the result of 

replacing the ConcurrentLinkedQueue of minimum 

blocking case with the LinkedBlockingQueue class of the 

Java library, and using the blocking take() method 

instead of the non-blocking poll() method for dequeueing 

states-to-expand. Replacing queue polling with blocked 

waiting increases processing and scheduling overhead by 

the Java Virtual Machine and operating system. Polling, 

even when its finds no work in the queue, is better for 

this application because it avoids calls into the operating 

system.  Given the exponential growth in number of 

states to be searched, most dequeue  calls for 

LinkedBlockQueue do not block, yet the cost of calling 

dequeue methods that must acquire and release locks is 

clear from looking at Graph 1. After starting at 75.4 

seconds for the single-threaded case and then rising to 

104 seconds for the double-threaded case, the blocking 

queue approach drops to 52.4 seconds at 8 threads and 

then essentially levels off. 

 

 
 

Graph 2: Improved nonblocking data structures 
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 Because the overall halving of execution time in going 

from 1 thread to 64 threads for the minimum blocking 

approach is disappointing, we decided to attempt to tune 

the thread-safe data structures to get additional gains. 

Graph 2 shows the results. The dotted minimum blocking 

curve is the same as in Graph 1. The solid enhanced set 

curve shows the modest gains resulting from initializing 

the StatesSet implemented using ConcurrentHashMap to 

its known maximum size (4 million elements, determined 

empirically), reducing its load factor from the default .75 

to .5, and increasing its number of lock stripes from the 

default 16 to 128. Initializing the set size reduces 

repeated growth overhead. Reducing the load factor 

reduces hash table collision overhead, and increasing the 

number of lock stripes reduces contention among 

concurrent writing threads. 

 More substantial gains come with the multiple queues 

test case that allocates one work queue per worker 

thread. Whenever a worker thread is about to enqueue a 

new state-to-expand, it increments an atomic integer and 

uses that value as an index to a thread-specific queue. 

The round-robin nature of enqueuing reduces the 

probability of thread contention for enqueuing, because a 

given queue will have its enqueue operation invoked 

only once for every T enqueue operations, where T is the 

number of worker threads. A given queue will have 

dequeue invoked only by its worker thread, eliminating 

dequeue contention entirely. This multiple queues 

approach bottoms out at an execution time of 16.2 

seconds for the 64-threaded case, as compared with 27 

seconds of the enhanced set approach and the 34.5 

seconds of the basic minimum blocking approach at 64 

threads. The multiple queue approach basically yields a 

second doubling of performance from its 66.4 second 

starting point when compared to the other approaches of 

Graph 2. 

 

 
 

Graph 3: Graph 1 benchmarks on a 16-threaded Opteron 

 

 Graphs 3 and 4 repeat the benchmarks of Graphs 1 and 

2 on a 16-threaded AMD Opteron server also obtained 

via a grant from Sun Microsystems. The server houses 8 

cores x 2 threads-per-core = 16 hardware threads, 32 

Gbytes of main memory, and a 2.7 Ghz clock speed. 

Each core has a substantial 128 Kbyte L1 cache and a 1 

Mbyte L2 cache. 

 

 
 

Graph 4: Graph 2 benchmarks on a 16-threaded Opteron 

 

 Differences in machine architectures such as 

instruction sets or cache sizes can make substantial 

differences in performance curves, but in this case the 

curves of Graphs 3 and 4 repeat the dynamics of Graphs 

1 and 2. 
 

4. Conclusions and future work 
Bidirectional search is amenable to minimum blocking 

implementation using immutable state objects, non-

blocking queuing of states-to-expand, non-blocking set 

membership tests in checking for cycles, converging 

DAG paths and solutions, and parallel lock stripes for 

updating sets. Java’s ConcurrentLinkedQueue and 

ConcurrentHashMap library classes are excellent 

matches for the queue and set data structures required by 

this approach. Adjusting initial set size, load factor and 

lock striping can contribute modest performance 

enhancement. Replacing a single non-blocking work 

queue with multiple work queues that are written by all 

threads in round-robin order, and that are read 

respectively by only a single worker thread, leads to a 

second doubling of performance over the basic minimum 

blocking approach. 

 We anticipate porting this work to a NVIDIA Tesla 

graphical processing unit (GPU) in search of further 

performance gains. Initial study indicates that a 

heterogeneous MIMD CPU / GPU approach may be 

effective. A multithreaded CPU can construct multiple 

queues for GPU processing elements, one per element, 

during a CPU phase, along with building the required 

sets in GPU global, read-only memory. During a GPU 

phase, the processing elements drain their respective 

queues, discard cyclic and converging-path states, and 

send queue and set updates back to the CPU phase. The 

CPU can update set membership in global, read-only 

memory incrementally, redistribute the queues, and 

resume the GPU phase for the next round of state 

expansion. There are many details remaining to be ironed 

out in this basic plan. 
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Abstract - This paper explores long lived transaction 

processing in the virtualized environment. The employment of 

the virtualization is motivated by the information sharing 

among database servers, which enhances concurrency of long 

lived transaction processing system. Our long lived 

transaction processing system is characterized by the 

combination of concurrency control and recovery. Our 

protocol exploits priority ceiling instead of traditional locking 

method, while employing and extending the concept of ‘wait’ 

inherent to altruistic locking approach. The recovery is 

efficient due to information sharing log, active list, commit list 

and abort list. Also, we have evaluated the performance of 

our approach and shown its effectiveness. 
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1 Introduction 

  As the database technologies are adapted to a wide range of 

applications, long lived transaction processing models are 

inevitably required to support various semantics associated 

with the applications for throughput enhancement. The ability 

to maintain concurrency control, and recover from erroneous 

execution or failure is essential requirement for long lived 

transaction processing system.  

Long Lived Transactions (LLT), have long duration 

compared to the other transactions, therefore these 

transactions cause significant delays for Short transactions in 

the database systems, this compromises concurrency of the 

system. 

In this paper, our goal is developing protocols to motivate 

concurrency of those database systems that contain long lived 

transactions. Our approach is exploiting priority ceiling to the 

long lived transactions in a virtual environment. Furthermore 

enhancement in the properties of altruistic locking is proposed. 

We claim that our proposed method brings more concurrency 

to transaction processing system. The concurrency control is 

the activity of coordinating concurrent accesses to database in 

multi-user database system. Concurrency in virtual 

environment permits users to access a database in a multi-

programmed fashion with the illusion that access to databases 

of various location and servers is possible from one and 

nearest server. The concurrency control has been actively 

investigated several times for the past decade. One standard 

solution accepted to cope with the problem is Two-Phase-

Locking method, which is applicable to any type of transaction 

processing  system.  

Considering the fact that long lived transactions (LLTs) 

conduct lengthy computation over database objects and their 

process interval is longer than others, applying two-phase-

locking sounds too rigid.  

By two-phase-locking method transactions encountering lock 

conflict are blocked for long period of time, which slow down 

the processing system. Basic Altruistic locking  is a pioneering 

attempt to cope with concurrency control of LLTs; this 

concept sets the term of donating database objects (release 

before unlock). Database objects which are no longer needed 

by the transaction are released during the process interval of 

that transaction before it’s terminated. Using altruistic locking, 

short lived transactions (SLT) can go into the state called 

wake of LLTs which means they can access the database 

objects donated by LLT. 

 

 

2 Proposed Approach 

 Database servers from distinct and  remote locations are 

virtually centralized in a way that gives user the illusion as 

they are located together in one and closest server. In virtual 

environments transaction manager TM, scheduler and 

database manager DM are centralize and share. This makes 

long lived transactions processing smoother than the 

distributed system with many TM, DM and servers. 

 

2.1 Concurrency in  virtual environments 

. Virtual enviromet is clearly structured by figure1. 

 

By the time that the LLT(long lived transaction) reaches the 

terminal of TM (Transaction Manager), its structure is 
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revealed to the TM, the requested data within a list is pitched 

to the transaction scheduler, Transaction scheduler checks for 

the availability of the data, while negotiating with Database 

manager if the data is available, the DM (Database manager) 

creates a temporary cache, this temporary cache contains all 

the requested data, at this time scheduler acknowledges TM 

the acceptance of the transaction, thus the transaction can 

accesses the required data within the temporary cache.  

By the time that the transaction is terminated (commit or 

abort) the temporary cache is also terminated. And the updated 

data is flushed to the stable storage. 

This way if a transaction comes in the wake of  LLT, it will 

access the temporary cache created for the LLT. 

  

Transaction Scheduler also has a pending queue which 

contains all the conflicting transactions. 

 

 
 

Figure 1, the transaction processing system in virtual environment 

 

 

Advantages of VE 

1. Since database servers share their databases, the 

maintenance of updates in the system is easier, therefore, 

consistency of database state is guaranteed. 

2. Having centralized TM, DM, and scheduler is less 

complicated and time saving during transaction 

processing.  

3. System recovery is easier with virtually shared 

environment since transaction dosn’t need to roll-

back/roll-forward in so many servers. 

 

 

2.2 Enhancement of Altruistic Locking (EAL) 

 We want to further enhance the properties of altruistic 

locking: 

 

2.2.1 Properties of Basic Altruistic locking (BAL)  

 1. Two transactions can’t hold simultaneous locks on same 

database object, unless one of them has locked and released  

the object before the other locked it (second lock holder is in 

the wake of the releasing transaction ). 

2. If a transaction (SLT) is in the wake of other 

transaction(LLT) it should be completely in the wake of that 

transaction. It means that SLT  can’t access any data object 

outside of the wake for that transaction. 

 
 
Figure 2, SLT can access data inside the wake of by LLT 

 

 

2.2.2 EAL (Enhanced Altruistic Locking) properties 

In order to represent our terms let’s take a look at the 

following example. 

 

Consider two virtually shared databases : 

z[A,B,C,D,E] and y[F,G,H,I],  

LLT with two SLT. 

Long Lived Transaction list, LLT locks 

[Read(A),Write(B),Reading(C),Read(E)] 

(The underlined C means LLT is now operating on C, and has 

successfully finished A and B, but has not yet reached E) 

. 

First Short Lived Transaction list, SLT1 try to lock 

[Read(E),Write(F),Read(A)]  

 

Second Short Lived Transaction list, SLT2 try to 

lock[Write(A),Write(B)]. 

 See also figure (3) bellow. 
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Figure3. Access of transactions, priority is based on arrival 

time 

 

If we look at SLT1’srequest list, its approach is inside and 

outside process interval of LLT, according to altruistic locking 

rule SLT’s lock requestcan’t be granted. 
However SLT2 can be granted, sinceSLT2’sapproach is 
only insidet hewake of LLT. 

According to our conducted experiment to invoke enhanced 
altruistic locking (EAL), lets consider that the system grants 

lock request by SLT1. 

The result is, 

Because SLT1 is a commute transaction with LLT 

 

SLT(reqData) ∩ LLT(reqData) = Commute 

 

It means the action committed by one of these transaction will 

not interrupt the other. 

This proves that: commute Short-Lived-Ttransaction scan 

enter inside the wake of long-lived transactions, but they 

don’tneed to be restricted during LLT’ sprocess interval 

(wake). 

Based on the above assumption we canenhance the Basic 

Altruistic Locking (BAL) as following: 

Enhanced  Altruistic Locking’s (EAL) properties for long 

lived transactions in virtual environments 

1.Acquire a floppy lock before every read of database object 

bytransaction. 

2.Acquire a solid lock before every write of database object by 

transaction. 

The floppy-lock is a kind of lock by which, the second 

transaction can enter the wake of the first transaction without 

following the BAL rule (restricted during LLT’s proces 

sinterval), for example, commute transactions. 

The solid-lock is the one by which the second transaction has 

tobe completely under wake of the first transaction and its 

termination state(commit/abort) depends onfirsttransaction, for 

example, conflicttransactions. 

EAL properties for short transactions in virtual environment 

1. Acquire access to the release of floppy-locked data 

objects without entering the wake of LLT. 

2. Acquire access of SLT to the release of solid-locked-data 

objects only by entering the wake of LLT. 

 

 

2.3 Protocol 

 The priority between transactions can be implemented 

further as bellow: 

Pursuing our method EAL combined with Priority ceiling 

between simultaneous transactions in virtual Environments, 

The overall protocol is listed bellow in a set of 3 steps: 

Step1. The structure of all transactions becomes known to the 

TM, by the time the transaction arrives at the TM terminal. 

Step 2. TM assigns priority based on the arrival time of T.  

Step 3. Scheduler initiates and periodically updates the array-

Table of current simultaneous transactions prior to their access 

to manage the priority of transactions. This array-Table 

contains notation as T[PC(i,j)=k], where T is the specific 

transaction, (i) shows priority of transaction, (j) is the innings 

of holding the lock on a single database object and (k) is the 

number of times T wants to access one specific object (as in 

table a  LLT accesses data object (b) two times so k(b)=2. 

 

Table A, shows the transaction priority and innings. 

 

 

Furthermore, the acceptance of transaction’s attempt of 

accessing objectis based on the following priorityceiling 

terms: 

1.No higher priority (T) exists for the same object. 

2.Access times (k) of transaction over data is zero PCT (i,j)=0. 

Commit in this case belongs to the easy calculation of T1(i,j) 

and T2 (i.j). 

For example,PCT1(1,1)>PCT2(2,2) therefore T1which is 

LLTgets to commit first. 

However, in case of  PCT2 (2.2)=1 and PCT3 (3,1)=1 don’t 

care since their timing and Required list is different. 

The chart bellow shows theoverall structure of our 

methodology. 

 

Transactions A B C E F 

LLT[PC(i,j)=k] PC(1.1)=

0 

PC(1.2)=

0 

PC(1.3)=1 PC(1.4)=

0 

 

PCT(1.5)=

0 

SLT1[PC(i,j)=k

] 

PC(2.1)=

0 

  PC(2.2)=

0 

PC(2.3)=0 

SLT2[PC(i,j)=k

] 

PC(3.1)=

0 

PC(3.2)=

0 

   

414 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



 
 

Figure 4, Based on transactions (commute and conflict) 

situation the structure of BAL is enhanced. 

 

 

3 Recovery 

 Recovery rule is obtained by rollback procedure. Our 

proposed system contains periodical checkpoints, each 

checkpoint is in charge to backup the state of data (under 

manipulation by transaction) and over all states of the system 

from the last the checkpoint. The logging is essential part of 

this task. If any type of failure occurs in the system, recovery 

manager rolls back the system to the previous checkpoint in 

order to omit the aftermaths of failure and to recover the 

consistent state of the system. 

Each checkpoint must maintain three important lists: 

 (1) active list which contains live operating transactions and 

live manipulated data object. 

 (2) commit list, list of the transactions that were committed by 

the time they reached the specific checkpoint. 

(3) Abort list, is a list of transactions which were aborted by 

the time they reached particular checkpoint. 

 

1.  Commit 
When the transaction processing is completed at the final 

server, contents of the cache slot are flushed to the 

corresponding database at each server. 

 

2.  Abort 
The abort is caused by the following two cases. 

Case1, the fault of the transaction itself occurs at the executing 

server, despite on the way or final servers. 

Case2, the committed transaction read the object x which 

transaction T1 wrote, at this time transaction T1 is executed 

normally. However, later, transaction T1 becomes a situation 

where this transaction T1 must be aborted. 

 

3.  Restart 
The restart must be carried out for two cases. 

Case1, the restart must be executed by the normal periodical 

checkpoint. 

Case2, the restart is also executed in emergency for fault 

occurrence. 

 

Table 2, concurrencycontrol and recoveryin two different 

situation (Global Commit and Local Commit). 

 

 

3.1 Index 

Based on the proposed protocol using priority ceiling for the 

Long Lived Transaction processing, we simulated the 

concurrency control and obtained experimental results. The 

concurrency of transaction processing with respect to varying 

parameters was evaluated, in this case, number of objects 

located at different servers.  

The concurrency of transaction processing is defined by the 

following equation: 

 Global Commit Local Commit 

Concurrency 

Control 

Keep updated data 

at cache before 

commit. 

Flush updated data 

to DB before 

commit. 

 Transaction exists 

in active list. 

Transaction exists 

in local commit list 

and local active list. 

 Updated log is 

generated. 

Updated log is 

generated. 

 When commit is 

issued at the final 

server, commit log 

is broadcast. 

When commit is 

issued at the final 

server, commit log 

is broadcast. 

 Flush is done at 

every server 

simultaneously. 

Flush is done at 

each server step by 

step. 

Recovery When abort is 

needed, abort log 

is broadcast to 

every server. 

When abort is 

needed, abort log is 

broadcast to every 

server. 

 Transaction is 

removed from 

active list and 

added to abort list. 

Transaction is 

removed from local 

commit list and 

added to abort list. 

 The updated data 

at cache is not 

flushed. 

The before image of 

the updated data is 

flushed into DB 

(undo). 
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Concurrency of transaction = (number of object) x (issued 

number of transactions) －  (observed access number to 

objects) 

 

(N x I) – O 

 

Where we assume that, every transaction accesses the same 

number of objects. 

 

 

3.2 Experimental Results of Concurrency 

 The experimental result is illustrated in Figure 5 and 6 also 

shown in Table 3. As the result of performance evaluation, the 

concurrency ratio is 27.42 percent for three objects, the 

concurrency ratio is 28.94 percent for four objects, and the 

concurrency ratio is 29.02 percent for five objects. The 

simulation result showed that concurrency meaning the 

simultaneous accesses for different objects at different server’s 

increases according to the increase of parameters. Meanwhile, 

for fixed five objects, the concurrency ratios are 28.96 %, 

29.02 % and 28.94 %, when the issued numbers of 

transactions are 1000, 2000 and 3000, respectively. This 

experimental result indicates the concurrency of transaction 

processing almost same in spite of increase in the issued 

number of transactions’.  

 

 

 

The figure 5, shows concurrency ratio as per the number of 

transaction 

26.5

27

27.5

28

28.5

29

29.5

3 4 5
 

Figure 6, Comparison of concurrency ratios for different 

number of objects. 

 

Table 3 Comparison of concurrency ratios for different 

number of objects 

 

 

4 Conclusions 

 The enhanced altruistic locking for Long Lived Transaction 

processing was proposed in virtual environment.  

The motive was to promote concurrency in virtual 

environments with Long Lived Transactions. 

The performance evaluation showed tendency of the 

concurrency ratio. The concurrency of Long Lived 

Transaction Processing in Virtual Environment was proposed. 

Priority Ceiling of transactions based on their arrival time was 

proposed as best option to bring more management in the 

system. 

Aside from that, Recovery mechanisms were highlighted and 

over viewed. 
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Abstract – The Cyberinfrastructure Web Application 

Framework (CyberWeb) simplifies access to heterogeneous, 

computational environments required by high-performance 

computing applications. CyberWeb has three core 

components: a Pylons Web2.0 framework, including XML, 

JavaScript, AJAX, Google APIs, social networks, and 

security; a Database and Web interface for configuring 

installations, applications, users, remote services;  a job 

distribution service framework for task execution and 

management. CyberWeb design philosophy includes: “plug-

n-play” mode - applications dynamically discover 

modifications to the system and automatically reload new 

components;  “non-invasive” philosophy - no software is 

required to be installed on remote resources, it interfaces 

existing software and services. CyberWeb supports basic 

job functions (accounts, authentication, execution, task 

history); operates in heterogeneous environments from 

remote large-scale systems (XSEDE/TeraGrid) to local 

systems; applications built on top of the core framework 

(ocean, thermochemistry, education). In this paper we 

present the CyberWeb architecture, highlighting the 

database and JODIS architectures, and demonstrate its 

usefulness with application examples. 

1. Introduction  

Advances in technologies and languages used for 

parallel and distributed computing have often presented the 

science researcher with the challenge of migrating a model 

or application to ever increasingly complex systems. Often, 

many science applications require tremendously large 

compute, data and archival resources and high-speed 

networks in order to manage results, or the model is often 

legacy code that is stable, but no longer ports to the high-

end systems that are available. Cyberinfrastructure (CI) 

integrates hardware and software for computing, data 

management and information retrieval, visualization and 

analysis using interoperable software/middleware and 

services that are based on Web and Internet technologies. 

The NSF's Cyberinfrastructure Framework for 21
st 

Century 

Science and Engineering (CF21) sets an ambitious goal that 

next generation of cyberinfrastructure software must 

seamlessly couple high-end and low-end CI resources, 

networks and services, with users and applications using 

these commodity Internet and Web technologies [1]. The 

US DOE held a workshop in 2008 addressing the grand 

challenges and limitations that exist today in the field of 

high-resolution climate and Earth modeling systems [2]. 

The outcome of these efforts have helped to define the 

requirements for the next generation of HPC applications: 

new/updated models are needed that can take advantage of 

these cyberinfrastructure based environments; the NSF and 

DOE need to construct and support this cyberinfrastructure 

over the long run; and new tools and libraries are needed to 

facilitate the development of these applications. 

There are many efforts to develop common tools that 

can be reused at all layers of the science gateway 

architecture, including services to resources (data, compute, 

visualization, network), middleware, and user interfaces and 

portals and science gateways. Science gateways (and 

computational environments) are terms used to characterize 

the systems and tools that facilitate the utilization of CI by 

science applications; gateways typically involve a user 

interface [3][4]. This research is part of this effort: the 

software developed is contributed to the suite of tools 

developed by the NSF funded Open Grid Computing 

Environments (OGCE) project [5], which focuses on the 

development of gateways and tools. In this paper we 

describe advances made the SDSU Cyberinfrastructure Web 

Application Framework (CyberWeb, [6]) which is designed 

to simplify the development of advanced computational 

environments (CEs) used by high-performance computing 

(HPC) applications and science gateways. CyberWeb 

improves on standard CI toolkit functions (job execution, 

account management, task history, GSI authentication, etc) 

by hosting all applications as Web services, portal Web 

pages, or Web 2.0 gadgets. CyberWeb is being used to 

develop applications that need to operate across large-scale 

grids such as the XSEDE/TeraGrid, local university clusters, 

and commercial or public systems.  

In this paper, and overview of the CyberWeb 

architecture (Section 2), highlighting the database and 

JODIS architectures are presented. In Section 2.5, 

installation and deployment experiences are present, and 

Section 4 presents application examples.  

2. CyberWeb Architecture 

The Cyberinfrastructure Web Application Framework 

(CyberWeb) architecture is shown in Figure 1. It reflects the 

standard 3-tier architecture found in systems that connect 

clients (human, computer) to remote resources via 

middleware. Front-end clients can be applications, services, 

or human (browsers, desktop apps, command line 

interfaces). The backend tier (cyberinfrastructure) includes 

local services, web services, other applications, and remote 
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grid, computing and data services. CyberWeb uses the 

Pylons Web Application Framework [7] for its core Web 

2.0 services. 

2.1 Pylons Web Application Framework 

Pylons is a component based, lightweight Web 2.0 

application framework that using only Web 2.0 

technologies, including WSGI (Web Server Gateway 

Interface, relational databases, XML, JavaScript, AJAX, 

Google Gadgets, social networks, and security. Any number 

of components and libraries developed by other projects are 

part of the system and new ones are easily integrated. 

Pylons uses the model-view-controller (MVC) request-

response architecture (Figure 1). The Model contains the 

data used by applications. Often the model refers to 

database tables. The View reads the data from the model and 

displays it to the user. The Controller manages the logic of 

the application, activates views to display data to the user, 

or parses information from the user and stores them to the 

models. CyberWeb application developers work with all 

three components. The MVC approach decouples the 

services layer from the logic of the code behind it, allowing 

the same application to be hosted as different service types 

(Web service, Web page, XML request, iGoogle gadget). 

Pylons supports dynamic routing via Routes (Python 

version of Rails), and is used for mapping URL's to 

Controllers/Actions and generating URL's. Routes makes it 

easy to create “pretty” and concise RESTful 

(REpresentational State Transfer) URIs (uniform resource 

indicators). Template packages are used to build dynamic 

Web pages from a variety of sources: HTML file, XML 

generators, scripts (perl, php), or templates.  

2.1.1 Key Features 

Pylons has several features that are beneficial to science 

application and gateway developers. A key philosophy of 

the Pylons project is external components can be plugged 

into the framework with only the minimal code-base 

necessary. This facilitates customization. Although the 

features of Pylons are as rich as the libraries and modules 

that are available to run with it, a few key features of 

importance to this research are listed here. 

Routing and “Beautiful URLs:” The feature makes it easy 

to create “pretty” and concise RESTful (REpresentational 

State Transfer) URIs (uniform resource indicators). With 

RESTful URI’s, the information being transferred is 

stateless, and independent of resource details.  

SQLAlchemy database: Pylons supports many databases, 

including SQLAlchemy which is a Python SQL toolkit and 

Object Relational Mapper (ORM). ORMs map the database 

structure to objects. 

Interfaces to multiple template packages: Templates are 

used to build Web pages in a dynamic manner. Pylons 

allows any type of HTML file, XML generators, or template 

modules to be used. xx This allows application developers 

flexibility in choosing how they want to build their 

application. 

Dynamic update and interactive debugger:  An important 

feature of Pylons is the “reload” feature:  it supports 

dynamic class loading for all MVC layers; modifications to 

the code cause the compiler to update the binary and re-load 

it into the server while keeping the server live. 

Web 2.0 and Open Social Interfaces: Pylons’ RESTful 

Web services allows Pylons components be published as 

services, widgets and gadgets, and desktop applications. 

Pylons interfaces to other toolkits including: Google 

Application Engine and OpenSocial gadgets; PyWebKitGtk 

(an API for developers to program WebKit/Gtk). 

In addition, AJAX/JavaScript support for libraries such 

as the Yahoo! UI Library (YUI).  The YUI, CSS, AJAX, 

and Javascript are used by CyberWeb for nearly all demo 

web pages. 

2.2 Model and Database Services 

At the core of CyberWeb is its database system, where 

most of its configuration data is stored (users, hosts,

 

Figure 1.  CyberWeb Architecture Showing client, middleware and backend resource cloud. Middleware layer 

includes the Pylons framework, the CyberWeb database and Jodis services [6]. 

422 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



 

authentication, jobs, job history, etc.). In addition to using 

this database to store session and user information, a key 

design goal was to develop a database architecture must be 

easily modified, populated dynamically, and then be used to 

configure and build virtual organizations (VO’s). 

Furthermore, the system must operate in a “plug-n-play” 

mode: once modifications are committed, the new 

information be readily available to the relevant components 

of the system. This includes adding compute and archival 

resources, defining and naming services, and configuring 

these services on a resource. Once set up, all internal 

services use this database to discover active resources, the 

operational status of services, and the ACL of a CWuser for 

that service or resource, and relevant user preferences. 

2.2.1 Schema Design 

The schema design was based on an evaluation of 

schema used by multiple projects (TeraGrid [8]; Open Grid 

Forum [9]; and W3C/IETF standards). The requirement that 

the schema be simple, and useful to non-database experts 

developing small applications, drove the design approach to 

simplify and reduce the number of tables and elements in 

them to a minimal set. The assumption is that an application 

developer can expand the initial database to meet project 

requirements. The perspective is from the point of view of a 

high-performance computing environment: a resource is 

typically a host computer (cluster, archival); services run on 

these resources (SSH, FTP); and users have access to them 

via authentication such as username/password or GSI 

certificates.  

The database is initialized using a JSON input file, and 

can be populated dynamically. The database design has four 

key components: (1) SQLAlchemy: a Python SQL toolkit 

and Object Relational Mapper (ORM) that interfaces to 

multiple RDBs; (2) SQLite: a lightweight, easy to install 

database, the data is stored in memory within the server 

(note that CyberWeb has also used MySQL, which is 

desirable for larger databases); (3) The Model is coded into 

a python module, and loaded into the Pylons server at 

startup; and (4) Data is initialized using a flat text file 

written in JavaSript Object Notation (JSON) format, and 

easily edited to seed the database.  

Because the model is defined in an ASCII file, the 

developer can easily add new or modify existing tables to 

the initialization database or make modification at run-time. 

Note that for the examples shown in Table 1, all examples 

can be modified or new ones added via the Database Admin 

Interface (CW-DAI), described below. However, caution 

should be used to ensure that core services are not adversely 

affected. A good practice is too define all core components 

and services in the initialization database. 

If the codebase is loaded into a developer environment, 

the file can be viewed easily with JSON markup tags; if 

using an SVN, then an SVN viewer (eg. TRACS) allows for 

easy viewing of the model. This is a key advantage for 

developers who are not database experts. As part of the 

codebase, there is a demo portal which contains examples of 

how to query the model (database) for common tasks. 

2.2.2 Database Admin Interface 

The database can be managed via the SQLite (or 

MySQL) command line interface. CyberWeb also has a 

comprehensive Web based Database Admin Interface (DAI) 

that is used to dynamically add, delete, modify, configure 

and test resources, the services that will run on them, and a 

users/groups access control list (ACL). The DAI module is 

designed using the very Rich User Interface design. User 

Interface guides user to do operations like add, edit or delete 

on any entit, along with JQuery, Ajax, and javascript. Figure 

2 captures a usecase of the workflow used to configure and 

activate accounts for CyberWeb users (CWusers) on a 

remote compute resource.  

CyberWeb securely manages accounts (using HTTPS, 

and sensitive data is encrypted and stored outside Web 

space, and no passwords are stored), maps CWuser accounts 

to accounts on remote resources, and tracks preferred 

authentication schemes (e.g. PKI/SSH, GSI/SSH). All users 

have PKI serverside credentials; GSI credentials can be 

uploaded or obtained from a MyProxy server. For PKI 

authentication, CyberWeb configures a password-less SSH 

service for the Cyberweb user. To activate the resource for 

the CWuser, a secure test is performed using an SSH 

command. The CWuser must have an account on the remote 

resource.  

Table 1.  List of CyberWeb model category and table names. 

Table Category Table Names Description 

Group Users, Groups CyberWeb user accounts (chosen by user), Groups (used for authentication & 

authorization; e.g. admin, developer, application) 

Accounts Account Accounts on remote resources; owned by a CyberWeb user account. 

Protocol Protocol HTTP/HTTPS, TCP/IP, SSH, GSISSH, 

Services Service Type, 

Name, Service 

Used to define service types (authentication, queue, application, archival); names of 

specific services (SSH is type authentication); a Service (e.g. an SSH Service) has a type, 

name, and is installed onto a Resource.  

Queue Systems QueueType, 

Name, Info 

QueueService 

Used to define queuing service types (batch, condor, grid); names of specific services 

(LSF, PBS, Torque, SGE); a QueueService (e.g. an SGE Service) has a type, name, infor, 

and is installed onto a Resource. 

Resources Resource Defines compute, archival, and networks used (primarily) for remote job execution. A 

Resource has DN or IP address; and are used (typically) to host Services. 

Job Job CyberWeb tracks internal Jobs and Tasks, maintaining job history. This is independent 

from job ids used on remote resources. 

Message MessageTypes, 

Message 

Used for communication among CyberWeb users and applications, messages types 

include news, events, jobnotification; a Message has a type.  
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2.3 Job Distribution Service (JODIS) 

The job distribution Web service framework (JODIS) 

was allows CyberWeb applications to distribute jobs across 

several campus compute clusters each running a different 

resource manager and each controlled by a different system 

administrator. Its main duty is to distribute application 

workloads across heterogeneous computing systems by 

abstracting middleware and resource management systems. 

The JODIS Web Service application framework based on 

the master/worker design pattern  using common 

commodity software allows us to bridge these systems 

unbeknownst to the developer and user. It has been tightly 

coupled with the SDSU Cyberinfrastructure Web 

Application Toolkit (cyberWeb) framework making it a full-

scale web application [10].  

2.3.1 JODIS APIs 

Job Management: The job management API is the one 

component of JODIS that does not ease development by 

abstracting a layer in the application stack, instead, this API 

tracks and manages jobs run with this system. It aggregates 

every aspect of the job from what kind of job, how many 

tasks, when it was run and the run time. We believe all of 

these aspects are useful for the administrator of the portal 

and will ultimately be used to measure how well an 

application is running.  

Job Queue: This API allows the developer to interface to 

any queuing system. The current system includes Condor, 

PBS and Sun Grid Engine (SGE). There are many more in 

use at SDSU and elsewhere. Each application has varying 

syntax and command-line parameters. The JODIS job 

queuing API abstracts these allowing the developer to make 

one call to a system’s queuing application regardless of 

what that may be. This allows a developer to quickly move 

to a new system or handle system configuration changes. 

File Transfer:  The second API that JODIS provides is 

file transfer. The API mimics that of a secure copy 

command. This API allows a developer to move and copy 

files from one machine to the next regardless of the protocol  

you are using to connect. A big use case for this 

functionality is easy on-the-fly deployment of an application 

and transferring data as needed by your application. A 

second common use for this is allowing a user to access 

his/her data results and move it back to another machine 

possibly for visualization, archiving or sharing with 

colleagues. This file transfer view method discussed earlier 

in the paper extensively utilizes the JODIS file transfer API. 

Raw System Calls:  Jodis allows the developer to run raw 

commands on the remote resources as if he/she were at the 

command prompt. This gives the developer the ultimate 

flexibility when developing applications using CyberWeb 

and JODIS. A user can call the raw method and pass in the 

command to run. Unfortunately, this is done synchronously. 

The user must wait for the command to return before an 

HTTP response is sent back to the user. 

2.3.2 JODIS Services 

JODIS consists of multiple services offered through a 

Web 2.0 server environment. Providing each component as 

a service allows JODIS to 

scale horizontally. In the 

web application 

environment, these 

services work together to 

provide end-to-end job 

dispatching service 

simultaneously to multiple 

clients. The architecture 

for the JODIS system can 

be found in Fig. 1. The 

Web server environment 

(based on CyberWeb, see 

below) provides users 

with methods of 

communicating with 

JODIS using either a 

Python client API or Web 

Service to access the Job 

Service. 

The Web Service allows a 

wide variety of 

applications to interact 

with JODIS regardless of 

location, device or 

programming language. 

The Job Service provides 

a provides a majority of theuser-accessible function calls 

and manages a user’s jobs regardless of the resource. The 

Resource Service works on the back end as a singleton to 

manage the various connections between the JODIS and the 

compute resources being used. The ability for JODIS to 

gather usage information and use this data for predicting job 

runtimes and for selecting where to run a job provides a 

useful approach to running MTC jobs. 

Job Services: Clients primarily interact with the JODIS 

Job Service API. It is responsible for integrating all the 

services that make up Jodis. This service is used for job 

submission and monitoring. This service wraps the the 

resource management systems and abstracts the 

complexities involved with job submission such as job 

syntax, tracking and management of all jobs across the 

different resources. CyberWeb interfaces to batch queue 

systems (LSF, PBS, SGE) and schedulers ( Condor, SGE). 

JODIS uses a job runtime “Guesstimation” to forecast job 

runtimes and a distribution policy to dynamically choose 

which compute resource to use for each job.  

Resource Service: The resource service provides one 

essential functions to JODIS and that is controlling 

middleware. The resource service offers communication to 

the compute resources and client targets via Secure Shell 

(SSH) or GSI-Enabled SSH. This service leverages the 

CyberWeb database for fast and flexible storage of resource 

metadata, user account information and access control data. 

This service can also be used to stage files on the various 

compute resources and target machines.  

Client Services: JODIS hosts a general client Web 

Service for authorized job submission. Clients interact with 

JODIS directly using the Python API, or more popularly,

 
Figure 2.   Admin flowchart 

for configuring user 

accounts on a resource. 
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through the RESTful Web Service interface. JODIS also 

hosts a WSDL that allows users to find the service as well 

as keep up-to-date on the latest API.. Developers can extend 

zzthe client service for specific applications with the use of 

the Job Builder Client interface. The client service can hook 

into the JODIS job service to provide functions such as pre-

processing, post-processing and more. The client service is 

responsible for clustering the tasks, for each resource, which 

are then passed as a collection of jobs to the JODIS job 

service and distributed. An example of the Jodis job cycle 

can be found in Figure 3. An example of the client service is 

described below in Section 3.4.  

2.4 Authentication 

CyberWeb security works at two levels: requests and 

responses processed by the Pylons Web server; and 

transactions performed on behalf of a CWuser on a remote 

resource or service using PKI or GSI authentication. To 

authenticat users, CyerWeb uses the Pylons AuthKit module 

[7] which is a complete authentication and authorization 

framework for WSGI applications, and was written 

specifically to provide Pylons with a flexible framework for 

managing these tasks. This module queries the user table in 

the CyberWeb database. Once the user is authenticated, the 

user’s ID and group information is stored with the user 

session data. Based on the ACL for an application, 

CyberWeb automatically requires the user to re-authenticate 

their session after a 5-minute period of idle time. 

Decorators have been built using AuthKit to allow 

developers to permission applications based on the user or 

the group of a user. These decorators wrap access to the 

decorated method and redirect the user to the login page or a 

404 – “permission denied” page depending on whether the 

user is not authenticated or lacks permission. The advantage 

to using these decorators is that the developer has fine-grain 

control over access and can control user interaction based on 

the application. For eample, a user might be able to create a 

workload to be run, but must have permission before the 

user can submit this workload.  

For remote transactions, two methods are currently 

supported: Public Key Infrastructure (PKI) and Grid 

Security Infrastructure (GSI) developed by the Globus 

project [11]. PKI is used for ssh (secure shell) transactions. 

Users must set up passwordless access in order to use a 

resource (see Section 2.2.2). A credential associated with 

the server is created for all CWuser accounts. If the user has 

an account on a resource, then CyberWeb will put a copy of 

the credential into the appropriate file on the remote 

machine. For grid based transactions, CyberWeb uses the 

MyProxy API [11] to obtain a user proxy certificate, which 

is stored out of Web space, and gsissh to connect to remote 

resources for job execution. 

2.5 Installation and Deployment  

CyberWeb applications can be run from most modern-

day operating systems: it has been tested on linux, Windows 

and Mac OS X. CyberWeb is written using the Pylons web 

framework. It requires minimally two Python libraries a) 

Pylons, the web framework core of CyberWeb, b) Paramiko, 

a Python wrapper for the SSH library. After installing the 

pre-requisites, download the CyberWeb source code: it can 

be run from any directory on your machine. An installation 

challenge is where the CyberWeb server is located. Network 

access to  resources behind firewalls is a common issues. 

For example, in order to access the clusters at San Diego 

State University, servers must be on the campus network. 

A key aspect of the OGCE project is its use of Maven 

[12] to install the entire framework and all software 

dependencies automatically for the client. In Python, this is 

done using the Easy Install package. Easy Install 

automatically downloads, builds, installs, and manages 

Python packages. It installs the tar or jar equivalent called 

the Python Egg. The Easy Install software comes with 

commands (configured by Pylons) that allow you to bundle 

your application into an egg for distribution. Earlier 

experiments with extending the Paste installation egg to 

include all software and versions needed for a complete 

CyberWeb package were successful and this will be done 

for future releases. The system administrator will be able to 

fire up CyberWeb out of the box. Settings for the CyberWeb 

installation can be found in the development.ini or 

production.ini depending on the environment. In many 

aspects, these two files will mirror each other. The main 

difference between the two should mainly be the debug 

variable. The production.ini file should have debug set to 

 

 
Figure 3.  Diagram of a typical JODIS job cycle for job 

submission from a CHEQS client. 

Figure 4.  Log-log plot of the runtime vs. number of nodes as 

a function of the number of tasks on anthill.sdsu.edu [15]. 
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false. This prevents the stack trace from being displayed 

when an uncaught error is encountered. 

Straight out of the box, the development.ini file directs 

CyberWeb to create a folder in the top level directory of 

CyberWeb to store user data files. The top level directory is 

referred to by the variable “%(here)s”. This CyberWeb data 

directory stores users’ public/private keys at the top level 

and user directories and data in a directory below.   The top 

level CyberWeb data directory is not accessible via 

CyberWeb or Paster, which is the same level of security that 

the linux operating system uses to store these keys.  

New Pylons projects are built using Paste - a Web 

development and application installation tool similar to Ant 

or Make.  It creates python middleware modules (router, 

config, and mapper template files), a simple python 

Webserver that can process WSGI requests, and the 

directory structure needed for a full site (to be populated by 

the developer). A single command installs the application 

template (all the codebase needed including the directory 

structure, basic files, and data to support a new portal): 

%paster create –-template=pylons pyGateSite.  The portal 

server is started using the following command: $paster serve 

–reload development.ini, which lauches the welcome page. 

Alternatively, you can install all software into a “virtual 

environment” which is essentially an isolated working 

directory with all libraries contained within it. This allows 

developers to work independently of the host operating 

system, to keep stable versioning control, and locally 

manage development tasks. This facilitates distribution and 

deployment of a project. This will be useful for providing a 

reusable toolkit or deploying a Pylons application to a cloud 

computing resource.  

3. Application Examples 

CyberWeb has been used to develop Web services, 

Social gadgets, and portals in the biology, geospatial 

mapping, and ocean application areas. The examples below 

demonstrate client-server use of Web services, portals, and 

visualization Web pages. 

3.1 CyberWeb Demo Portal  

As part of our development of CyberWeb, a user portal has 

been developed that demonstrates how to build CI enabled 

applications and for testing services. Figure 5 is a composite 

image of the UCOAM portal (see Section 3.2), and many of 

the components are contained in the demo portal The portal 

system is intended to be used as a startup application for 

new projects. The portals capabilities include: secure login 

with group access control to selected pages; user and 

account management with the MyCyberWeb customization 

section; MyProxy credential management; job tracking and 

history; and data management using the Jodis file transfer 

widget; interactive Web pages for a Job execution and file 

management that are also part of a planned unit test system 

for checking resources and services. The portal also hosts 

the Database Admin pages. Through the myCyberWeb 

interface, a user can update preferences, send/receive 

messages, track jobs, and configure authentication on 

remote resources.  

3.2 Unified Curvilinear Ocean and 

Atmospheric Model (UCOAM) 

The UCOAM model differs significantly from the 

traditional approach, where the use of Cartesian coordinates 

forces the model to simulate terrain as a series of steps. 

UCOAM utilizes a full three-dimensional curvilinear 

transformation, which has been shown to have greater 

accuracy than similar models and to achieve results more 

efficiently [13] [14]. CyberWeb is being used to develop a 

computational environment for the UCOAM project with 

the following features: community access portal for expert 

and non-expert users (see Figure 5); running and managing 

jobs, and interacting with long running jobs; managing input 

and output files; quick visualization of results; publishing of 

computational Web services to be used by other systems 

such as larger climate models [Error! Bookmark not 

defined.] [10]. 

3.3 Data Viewer Tool 

The Data Visualization tool is a custom application that 

is being developed for the UCOAM application. provides 

portal users with the ability to run a suite of post processing 

tasks including analysis of parallel performance, and model 

simulations. The Data Viewer utilizes several CyberWeb 

components (database, JODIS), and emerging technologies 

including python, pylons, AJAX, javascript, jQuery, gnuplot 

and gnuploy.py library. The tool allows users to select a job 

through the data browser and then to run the Job Analyzer. 

The Job Analyzer presents a job summary and a variety of 

plot options. These plotting options support different plots 

for viewing timing/performance, or contours of the velocity, 

temperature, or and pressure changes (see Figure 5). The 

plotting options are stored dynamically, and are extensible. 

Once the user selects any particular plot, an Ajax call is sent 

to the server, which uses Jodis to send commands to the 

archival host to create the image on remote using gnuplot 

scripts. This image file is then returned to the client browser 

in the form of data-bytes for display. 

3.4 CyberCHEQS 

This example highlights the use of JODIS and 

CyberWeb, we developed a simple job distribution Web 

service (Jodis), which runs a many-task computing (MTC) 

[15] jobs for the CyberCHEQS thermochemistry 

applications [16]. The tasks were run in a heterogeneous 

environment (Figure 4), using TeraGrid and SDSU 

machines simultaneously, on hundreds of nodes, moving 

data and results between remote resources. Using 

CyberWeb, the resolution of Flame3D was increased from 

10
3
 to more than 10

6
 control volumes and significant 

reduction in run times (by a factor of over 40 for a large test 

case of 128 processors and 10
7
 tasks)  
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Figure 5.  The UCOAM Simulation Portal. Composite image shows file management, user/account management, 

simulation job submission and history, and visualization [Error! Bookmark not defined.]. 

 

4. Conclusions and Future Work 

CyberWeb applications have been developed that 

demonstrate its usefulness for client-server access to Web 

services, portals, and visualization Web pages. CyberWeb is 

able to operate in a “plug-n-play” mode: applications 

dynamically discover modifications to the database, check 

the service status, and when available, use that service or 

resource. It has a “non-invasive” philosophy: no software is 

required to be installed on remote resources; rather 

interfaces using existing software and services are created. 

CyberWeb has been used to develop applications in ocean 

modeling, thermochemistry, and education; it has been used 

to access large-scale (EXSEDE/TeraGrid) and local 

compute and archival systems. 

Future plans include enhancing or developing: 

visualization tools; interactive job management; full third 

party file transfer; integration of cloud computing resources; 

interface to modifying the initialization JSON data for the 

database; addition of new authentication systems such as 

OAuth or Kerberos (both are used among in the scientific 

Cyberinfrastructure community); additional queuing 

systems. Plans are underway for the software to be bundled 

into a Python egg, and the software will be added to the 

NSF funded Open Grid Computing Environments (OGCE) 

project [5], which develops gateways and tools. 
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Abstract – Internet traffic has increased due to the 

development of richer web content and services. In particular, 

IP telephony, Messengers, and Twitter are composed of a 

large number of small packets, and these services are 

expected to increase. Thus, routers need to handle large-

bandwidth fine-grain communication. We proposed a network 

processor called P-Gear, which has a special cache 

mechanism that reduces the processing load by taking 

advantage of the localizations of network traffic. In this paper, 

we describe cache architecture for P-Gear and we propose an 

enhanced cache mechanism, Multi-Context-Aware Cache. 

Multi-Context-Aware Cache can improve the cache-hit ratio 

because it can control cache entry by analyzing the packet’s 

header. We implemented P-Gear as software and we 

simulated this mechanism using real network traces. The 

simulation showed that Multi-Context-Aware Cache is 

effective in reducing the processing cost of processing arrays 

on a network processor. 

Keywords: Cache-based Network Processor, Layer-7 

Analysis, Network Processor, Network Traffic Engineering  

 

1 Introduction 

 Internet traffic has increased due to the popularization of 

personal computers, smartphones, and growth of richer web 

contents and services. Furthermore, services that are 

composed of a large number of small packets such as video 

traffic, IP telephony, and Messengers are expected grow in 

popularity. If these enormous fine-grain packets are 

concentrated in a router, its processing capacity might exceed 

its limit. Future backbone network router need to handle 

large-bandwidth fine-grain communication. 

 Conventional network processors utilize the 

characteristic independency of packets, where each packet can 

be processed independently by a Processing Unit (PU) or in 

parallel by increasing the number of Processing Units (PUs) 

or by implementing a multithreading mechanism to achieve 

high throughput packet processing [1][2]. However, the 

leakage of current or electrical power consumption makes it 

difficult to improve the number of PUs accumulated due to 

the scaling rule of semiconductors. Therefore, it is necessary 

for network processors to reduce PU processing costs. 

 In earlier research, a mechanism was proposed that the 

reduced costs of packet processing when retrieving routing 

tables [3][4][5]. This mechanism resolved the processing 

when retrieving routing table by using cache architecture. 

Thus, we proposed an architecture for a network processor, 

called P-Gear, which was an extension of this mechanism 

[6][7]. Eliminating the cache-miss ratio is significant for P-

Gear and all cache-based network processors. P-Gear takes 

advantage of the temporal locality of network traffic to reduce 

processing costs like general network processors. It caches to 

process the packet, which improves the potential of cache-

based network processor. However, the cache-hit ratio 

depends on the number of processing units required and the 

cache memory size. Reducing the cache-miss ratio is an 

important issue for P-Gear type network processors. In this 

paper, we propose and evaluate a mechanism that allows us to 

control cache entry by focusing on trends in network traffic to 

produce a lower cache-miss ratio using the same cache entry 

size. 

2 Related Work 

 Various cache-based network processors have been 

proposed in earlier research. These processors exploit the 

temporal locality of network traffic, where many sequential 

packets arrive during a short period of time. In previous 

studies [3][4], a cache architecture for the high-speed 

processing of routing table lookup on layer 3 was proposed. 

This architecture utilized a quarter of the L1 cache to store the 

destination IP address and the results of routing table lookups. 

Part of the destination IP address was used as the virtual 

address of a cache. The ID of an output port was obtained 

when the cache was hits. Moreover, they considered that the 

cache entry size, block size, and associativity size were 

important and they proposed a method for compressing the 

entry size of the routing table [8]. In paper [5], another cache 

mechanism was proposed for routing table lookup, which was 

evaluated using real network traces. This study showed that it 

was effective to use the upper half of an IP address as a cache 

tag and the lower half of an IP address as an index in the 

cache. In another study [9], the cache architecture was 

partitioned according to a prefix length for routing table 

lookup. They demonstrated that IP traffic had temporal and 

spatial locality. 

428 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



 Thus, cache-based network processors are used for 

resolving the lookup of routing table entry. However, because 

of the emergence of rich services, recent network processors 

are required to execute a lot of complex processing in 

addition to routing table lookup, e.g., packet encapsulation, 

and these processes may be a bottleneck in packet processing. 

Thus, we proposed a cache-based network processor called P-

Gear, which facilitates high-speed processing for various 

processes by caching the IP address, port, and protocol. 

3 P-Gear 

 In this section, we provide an outline of P-Gear. P-Gear 

utilizes two features of packets. The first is that packets are 

processed by the same process in the same session. The 

second is that packets often arrive continuously in a short 

period. P-Gear caches before processing the packet and 

applies the cached process to later packets during the same 

session. The later packets in the same session can be 

processed without using PU. P-Gear defines a five-tuple 

(Source IP, Destination IP, Source Port, Destination Port, and 

Protocol) as one session. The architecture of P-Gear is shown 

in Figure 1. 

Fig. 1 Architecture of P-Gear 

 When PLC hits, P-Gear can process the packet without 

using PU by applying a cached process to packet processing. 

If there is a cache-miss, the packet is sent to the Cache Miss 

Handler (CMH), and P-Gear processes the packet normally 

using PU. After processing the packet, the session information 

of the packet and the results of the packet processing are 

stored in PLC. As a PLC address, the hashing value of the 

session information is used to analyze the spatial locality of 

packets. However, if a later packet arrives in PLC while an 

earlier packet is still being processed by a PU in the same 

session, the later packet does not match the cache entry in 

PLC, so the packet will be processed by another PU. To 

reduce this inefficient allocation of PU, we implemented a 

Cache Miss Table (CMT) and Cache Miss Queue (CMQ) in 

CMH. CMT stores a packet that has been processed by PU. 

When a later packet arrives in CMH, CMH checks whether 

CMT has the table entry for this packet. If the packet matches 

a table entry, the packet is sent to a queue called CMQ. After 

the earlier packet in the same session is processed by PU, the 

later packet in CMQ is processed based on the processing 

results for the earlier packet without being allocated to PU. 

Thus, the total cache-hit ratio is the summation of the hit ratio 

in PLC and CMH, while the cache-miss ratio for P-Gear is the 

ratio of packets allocated to PU. 

 In previous research, we concluded that four methods for 

associativity and a ca. 4K entries cache were an appropriate 

structure of PLC. It was also appropriate to use ca. 1K entries 

CMT and ca. 16K entries CMQ, respectively, according to the 

scaling limitation. We now propose a method for increasing 

the cache-hit ratio by adding a small hardware or 

implementing a tiny routine into the processing units of P-

Gear. 

4 Multi-Context-Aware Cache 

 P-Gear can utilize the temporal locality of packets 

effectively and it aims to achieve high throughput using a 

small number of PUs. In this section, we propose and describe 

Multi-Context-Aware Cache, which extends the cache 

mechanism of P-Gear to exploit the PLC cache more 

efficiently. 

 P-Gear captures the results of a process during one 

session into a PLC cache entry. When a cache hit occurs, P-

Gear can process the packets of a stream using special wired 

logic. However, all the packets are cached to PLC with same 

priority. Because there are other trends of network traffic in 

addition to the temporal locality, we consider that it is 

effective for PLC to cache packets with different priorities 

instead of a uniform priority. For example, if a large number 

of packets with various headers are concentrated into P-Gear 

in a short period of time, degradation occurs in the cache-hit 

ratio because PLC stores useless entries. To prevent these 

useless entries, PLC is required to determine whether an 

incoming entry is reused based on implicit information in the 

IP layer and application layer. This context-based cache 

management is required to improve the efficiency of 

processing. Here, we propose a Multi-Context-Aware Cache, 

which facilitates controlled insertion and deletion of the cache 

entry by using several contexts simultaneously to achieve a 

higher cache-hit ratio without increasing the size of cache 

entries. 

 It is possible to use the specification of the services of an 

application layer as a context to determine whether the first 

packet from a service follows succeeding packets. For 

example, File Transfer Protocol (FTP) has a specification. It 

uses a control port and a data transfer port for communication. 

When a packet arrives at PLC and the source or destination 

port indicates that the packet is an FTP control packet, PLC 

can predict that it should not cache the control packet but that 

it should make a another cache entry for following data 

packets. This is called an FTP-Aware Cache. As another 
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example, the Session Initiation Protocol (SIP) of the Voice-

of-IP Protocol also has the same behavior and this is known as 

an SIP-Aware Cache. These cache architectures were 

proposed and evaluated in our previous studies, and these 

architectures improved the cache-hit ratio by several percent 

when used in an IP backbone router [7]. In this paper, we 

propose a DNS-Aware cache: Rare-DstPort-Aware Cache and 

P2P-Aware Cache as a new cache architecture based on this 

strategy. 

 It is also possible to use request-and-reply transactions 

as a context, which is generally used in network services. The 

headers of reply packets can be predicted by interchanging the 

source and destination information of a request packet, which 

will be effective for making a cache entry that is generated 

according to this rule beforehand. We propose a Look-Ahead 

Cache based on this strategy. 

 Furthermore, it is also possible to use the characteristics 

as a context in a network attack. For example, when the 

packets of a port scan attack are concentrated in P-Gear, P-

Gear generates cache entries for a large number of packets 

that have different destination IP addresses or ports in a short 

period. These entries will not be reused and they disturb the 

registration of PLC entries that will be used. Because the 

packets in a network attack are sent from a source to various 

destinations and they will not be sent to the same address 

again, it is effective for the cache not to make entries for 

packets that are generated by a source node and that are 

distributed to many different destinations. Similarly, attacks 

from a worm and DoS attacks often use specific source or 

destination ports, so it would be effective not to store packets 

with specific port numbers. We propose an Attack-Aware 

Cache based on these strategies. 

 In this paper, we propose and evaluate DNS-Aware 

Cache, Rare-DstPort-Aware Cache, P2P-Aware Cache, Look-

Ahead Cache, and Attack-Aware Cache as subsets of Multi-

Context-Aware Cache. 

4.1 DNS-Aware Cache 

 Sessions on a Domain Name System (DNS) have no 

temporal locality because DNS communication is composed 

of one request packet and one reply packet, while the session 

is composed of only one packet. DNS transactions are cached 

by domain name server and they are rarely reused. Thus, we 

propose a DNS-Aware Cache, which is a mechanism that does 

not store the packets from DNS port #53. 

 We analyzed network traffic to find the ratio of DNS 

sessions traffic. The analysis showed that over 50% of all 

sessions were composed of only one packet. These types of 

sessions are known as one packet sessions. Table 1 and Table 

2 show the frequent port numbers and the percentages of >1 

packet sessions and one packet sessions. Packets from port 

#53 mainly appeared in one packet sessions when comparing 

Table 1 and Table 2. Furthermore, Table 2 shows that 73%of 

one packet sessions were DNS packets. Therefore, DNS-

Aware Cache allows us to reject most of the one packet 

sessions and to utilize the cache entry more effectively. 

4.2 Rare-DstPort-Aware Cache 

 Sessions with rarely used destination ports have no 

temporal locality, so there is no need to store them. We 

propose a Rare-DstPort-Aware Cache, which finds rarely used 

destination ports in a time window and does not store them in 

the next time window. The mechanism is shown below. 

1. We set a window size and threshold, while a counter 

counts how many packets with the same destination port 

arrive in the window per destination port. 

2. When the counter reaches the window size, Rare-

DstPort-Aware Cache determines the destination ports 

that are not over threshold as rare destination ports. 

3. In the next window, Rare-DstPort-Aware Cache does not 

store the packets with rare destination ports. 

4.3 P2P-Aware Cache 

 A P2P protocol such as BitTorrent connects with 

extremely many nodes and the communication of the P2P 

protocol often finishes with only one packet. These situations 

will cause a disturbance in the cache. For this reason, we 

propose a cache mechanism that does not store packets with 

the specific ports used in the P2P protocol. This is known as a 

P2P-Aware Cache. It is known that BitTorrent uses 6881 to 

6999 as a destination port and it mainly uses 6881. However, 

some P2P sessions are composed of >1 packets. Because of 

TABLE I 

Rate of frequent ports in >1 packet sessions 

Port 

number 

Source Destination 

Quantity Rate[%] Quantity Rate[%] 

53 89,998 4.9 149,415 8.1 

80 267,924 15 292,905 16 

445 169,822 9.2 3,969 0.22 

1433 430 0.023 211 0.011 

6000 0 0 369 0.020 

6881 17,398 0.94 16,725 0.91 

 

TABLE II 

Rate of frequent ports in one packet sessions 

Port 

number 

Source Destination 

Quantity Rate[%] Quantity Rate[%] 

53 1,649,237 36 1,700,323 37 

80 8,642 0.19 54,057 1.2 

445 10,022 0.22 170 0.0037 

1433 198,260 4.3 2,200 0.048 

6000 5,348 0.12 424,482 9.2 

6881 39,249 0.85 37,581 0.81 
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this, the P2P-Aware Cache determines whether a BitTorrent 

session is finished by a packet by utilizing the packet length 

values of the packet headers, so it does not create a new cache 

entry if the packet lengths of the packets are less than certain 

values. 

4.4 Look-Ahead Cache 

 When a packet arrives in a router, reply packets will 

often arrive soon after, while the difference between the 

arriving and replying packet header shows the source and 

destination IP and port that are exchanged. We propose a 

Look-Ahead Cache, which is a mechanism that creates a 

cache entry for reply packets based on the incoming packets 

by exchanging the source and destination information in 

advance. Figure 2 shows the architecture of the Look-Ahead 

Cache. In this figure, a packet arrives at the router, which 

comes from line card A and goes to line card B. At the ingress 

of Line card A, a cache entry of its egress is created at the 

same time during the ingress processing. This information is 

forwarded to the Line card B. Line card B creates a cache 

entry based on the header information of the outgoing packet 

or the forwarded information from Line Card A. The cache 

entry of egress of Line card B is also created at the same time.  

The ingress and egress network processor in line card A and 

B can process the concerning packet without allocating a PU. 

4.5 Attack-Aware Cache 

 As described earlier, a port scan attack disturbs effective 

cache entries because P-Gear tries to store port scan packets 

with different destination ports. Therefore, it causes 

degradation of the cache-hit ratio. To reduce this degradation, 

we propose an Attack-Aware Cache that identifies network 

attack packets in network traffic and does not create a cache 

entry for these packets. In this paper, we propose two dynamic 

methods and one static method for determining network 

attacks.  

 Dynamic methods focus on the fact some types of 

attacks often send a large number of packets from a specific 

source node to a large number of destination nodes. To 

determine whether attackes are waged or not, it is effective to 

analyze the trend of traffic in increments of a certain amount 

of network transactions. If the number of connections exceeds 

a threshold in a window, a new entry is not created in the 

following window. We set the window size to 512 packets and 

the method applies results for each window to the next 

window to prevent entry creation. Dynamic method 1 

processes network streams by two processing phases. In phase 

1, a dominant source IP at the point of the number of receving 

packets is marked. Figure 3 shows the mechanism of this 

method. When a packet arrives, PLC calculates the hashed 

value of its source IP address using CRC. A 7-bit value is 

used as the hashed value. Next, A 5-bit counters count the 

number of packets arriving with the same hash value. If the 

counter causes an overflow, the IP addresses group that has 

the same hashed value is a candidate of dominant source in 

this window. In phase 2, the group is determined whether it 

conteins an attack source or not. Figure 4 shows the 

mechanism of this method. The method uses a memory that 

has three bits addresses. When a packet that has the dominant 

source arrives, 3-bit counters are incremented accrding to the 

destination address. As this counters, the 3-bit hash value of 

its destination IP address is used as an address in the memory. 

If the number of the counters which is not zero exceeds a 

threshold exist, this source IP group of the same hashed value 

is regarded as an attack source. PLC does not cache the 

packet from this IP group in the following window. Next, we 

describe dynamic method 2. Figure 5 shows the mechanism 

for this method. This method generates a hashed value for the 

source and destination IP address based on the arriving packet 

respectively using CRC. It calculates a 7-bit value as the 

 Fig. 3 Mechanism of dynamic method 1 in phase 1 

 

 Fig. 4 Mechanism of dynamic method 1 in phase 2 

 

 
Fig. 5 Mechanism of dynamic method 2 

 
Fig. 2 Architecture of Look-Ahead Cache 
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hashed value and it stores the hash value of the destination IP 

address in memory. At this point, it uses the hash value of the 

source IP address as an address in its memory. When the same 

address is accessed again, it compares the hash values with 

the destination IP address. If the values are different, it 

increments a 3-bit counter. If the number of the counter 

exceeds a threshold, a new cache entry is not created until the 

counter is reset. 

 Static methods focus on the fact that some types of 

attacks use specific ports. For example, DoS attacks exploit 

the vulnerability of particular applications such as database 

services, so the attack packets used the specific ports for 

database services. Furthermore, the headers of these attack 

packets are often very variable. We analyzed the network 

traffic to find the ports used by attacks, and Table 1 and 2 

show the results. We found that packets with destination port 

#1433 and source port #6000 were sent in bulk during one 

packet sessions. Packets with the destination port #1433 were 

sent to SQL as worm attacks, while packets with source port 

#6000 were sent as port scan attacks. By analyzing the 

network traffic, we found that packets with source port #1434 

and source port #3306 could also be regarded as network 

attack packets. The static method identifies packets using 

these ports as attack packets and it does not create cache 

entries for them.  

5 Evaluation 

 In this section, we show the simulation results, where we 

evaluate the five proposed cache mechanisms. We used P-

Gear simulator and WIDE trace (150Mbps) as real network 

traffic for this evaluation. P-Gear simulator was written in 

C++ while PLC was implemented as a set associative cache 

using four methods. The size of cache entries was 1,024 

because we considered a 394-bit PLC tag and 365-bit PLC 

data, so the capacity of the cache memory was estimated as 89 

Kbytes. This size of the cache can be implemented as a high-

speed on-chip L1 or L2 cache. The number of PUs was 32 

and a delay when processing a packet was 2 μs in the 

simulations. 

5.1 Results with the DNS-Aware Cache 

 We simulated the DNS-Aware Cache and compared it 

with a normal cache mechanism that caches all ports. Figure 6 

shows the cache-miss ratio with the normal mechanism and 

the proposed mechanism over 12 hours (from 0:00AM to 

12:00AM). The cache-miss ratio with DNS-Aware Cache was 

reduced by roughly 1-2 points, which led to a ca. 6% 

improvement in the packet processing costs of the PU. The 

DNS-Aware Cache eliminated most of the one packet sessions 

by preventing the creation of new entries for DNS packets, 

which was effective for reducing the cost of packet processing.  

5.2 Results with the Rare-DstPort-Aware  

 Figure 7 shows the simulation results for the cache-miss 

ratio with each window size. We changed the window size (x-

axis) and the threshold n for the Rare-DstPort-Aware Cache, 

as shown in the different graphs. With all thresholds, the 

cache-miss ratio was improved by increasing the window size. 

However, the cache-miss ratio with this mechanism was never 

less than the ratio when all destination ports were cached. 

This was because the destination port identified in the 

previous window appeared in the next window in some cases. 

When the window size was 5,000,000 packets, the number of 

unique destination ports was 8,426. However, one of these 

destination ports appeared in next window, which led to an 

increase in the cache-miss ratio. Furthermore, caching 

destination ports that never appeared in the window was 

sometimes ineffective because they may also appear in next 

window. We needed to consider a method that could identify 

rare destination ports more accurately. 

 
Fig. 6 Simulation results for the Cache-miss ratio with 

the DNS-Aware Cache 

 
Fig. 7 Simulation results for the Cache-miss ratio with the 

Rare-DstPort-Aware Cache for each window size 
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5.3 Results with the P2P-Aware Cache 

 We simulated the P2P-Aware Cache using the same 

traffic and we compared the four mechanisms shown below. 

A) Caching all ports (all ports cached) 

B) Not caching port 6881 only, as mainly used by 

BitTorrent (P2P_6881) 

C) Not caching port 6881 to port 6999, as used by 

BitTorrent (P2P_6881-6999) 

D) Not caching port 6881 and less than 256-byte length 

packets (P2P_P-Length) 

 By analyzing packet length values of the packet headers, 

mechanism D determined whether the P2P sessions consisted 

of one packet or more. The threshold of the packet length was 

256 bytes. If the packet length value was over the threshold, 

we identified the packet as a session with one packet. 

 We compared the cache-miss ratio with the P2P-Aware 

Cache and the cache-miss ratio using the all ports cached 

mechanism, and Figure 8 shows the results. All the P2P-

Aware mechanisms improved the cache-miss ratio in many 

cases. However, P2P_6881 and P2P_6881-6999 sometimes 

increased the cache-miss ratio. This was because these 

mechanisms did not create entries for sessions composed of 

>1 packets, although packets for these sessions appeared in 

some cases. However, with P2P_P-Lngth, this increase in the 

cache-miss ratio was less than one-third, while the cache-miss 

ratio was improved by about 0.5%. 

5.4 Results with the Look-Ahead Cache 

 We simulated the Look-Ahead Cache using the same 

traffic. This simulation assumed that request-and-reply 

transactions were processed on the same line card. Figure 9 

shows the cache-miss ratio in the simulation. This shows that 

the mechanism reduced the cache-miss ratio by 2% compared 

with the normal mechanism while the cache-miss ratio using 

this mechanism was always lower than the normal mechanism. 

This demonstrates that the Look-Ahead Cache was effective 

and it improved the packet processing costs by about 9%. 

5.5 Results with the Attack-Aware Cache 

 We simulated two dynamic mechanisms and one static 

mechanism with the Attack-Aware Cache. In the simulations 

of dynamic mechanisms, we changed the threshold from 4 to 

32. Figure 10 and Figure 11 show the results of simulations 

for dynamic mechanisms each second. If the cache-miss ratio 

increased suddenly, both mechanisms reduced the cache-miss 

ratio by about 2 points. However, they increased the average 

of the cache-miss ratio because the source port determined by 

the dynamic mechanisms included sessions composed of >1 

packets. As shown in figure 10 and Figure 11, dynamic 

mechanism 2 was more effective than dynamic mechanism 1. 

 In the simulations with the static mechanism, the 

mechanism did not cache packets that included destination 

port #1433, #1434, and #3306, and source port #6000. Figure 

12 shows the shift in the cache-miss ratio during each second. 

As shown in Figure 12, when the cache-miss ratio increased 

suddenly, the static mechanism reduced the cache-miss ratio 

by 4%. The mechanism did not degrade the average cache-

miss ratio in many cases. Therefore, this static mechanism was 

effective during network attacks and improved the packet 

processing costs by about 10% when the cache-miss ratio 

increased suddenly due to network attacks. 

 
Fig. 10 Simulation results for the cache-miss ratio using 

the dynamic Attack-Aware mechanism 1 

  
Fig. 8 Simulation results showing the increased cache-miss 

ratio with the P2P-Aware Cache 

  
Fig. 9 Simulation results for the cache-miss ratio with the 

Look-Ahead Cache 
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6 Conclusions 

 We proposed P-Gear, which has a special cache 

architecture that efficiently utilizes the temporal locality of 

network traffic to achieve a higher throughput with a limited 

number of PUs. For P-Gear, the reduction of the cache-miss 

ratio is a significant requirement for reducing the processing 

costs of PUs. We proposed a cache mechanism known as 

Multi-Context-Aware Cache to improve the cache-miss ratio 

with P-Gear. Multi-Context-Aware Cache estimates trends in 

network traffic by continuously analyzing the packet headers 

and it optimally manages cache entry. 

 In this paper, we proposed and simulated five 

mechanisms that formed a subset of Multi-Context-Aware 

Cache. DNS-Aware Cache, Rare-DstPort-Aware Cache, and 

P2P-Aware Cache utilized port information to determine 

whether sessions had temporal locality. Look-Ahead Cache 

utilized the relationships of request-and-reply transactions. 

Attack-Aware Cache utilizes the trend in network attacks. In 

simulations, the DNS-Aware Cache eliminated about 70% of 

a session composed of one packets and it improved the cache-

miss ratio by 6%. However, it was difficult to estimate rare 

destination ports using Rare-DstPort-Aware Cache. This 

method did not improve the cache-miss ratio, so there is still a 

need to estimate rarely used ports more accurately. P2P-

Aware Cache eliminated the packets of BitTorrent, which 

often communicates using one packets and it improved the 

cache-hit ratio by 0.5%. However, we need to find a more 

precise method for determining whether sessions of packets 

are composed of only one packet. Furthermore, the Look-

Ahead Cache estimated the reply packet headers and 

improved the cache-hit ratio by 9%. Finally, the Attack-Aware 

Cache identified network attack packets and improved the 

cache-hit ratio by almost 10% when the cache-miss ratio 

increased suddenly.  
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Abstract—How the topology of Internet is evolving? In this 

research we present a large scale longitudinal analysis of 

the changing topological pattern of Internet Autonomous 

Systems Network (ASN). Analysis of topological patterns 

for large scale network is not trivial.  We introduce a novel 

technique called generating function signatures (GFS). It 

finds statistical signatures of various pattern graphs and 

observes the changes in snapshots of ASN collected over a 

period of five years. The study reveals several interesting 

trends about the evolutionary state of the ASN including its 

increasing trellis-like topological evolution. 

Keywords- topological analysis; generating function; internet. 

I. INTRODUCTION 

The Internet is a network of autonomous systems (AS). 
Each AS itself is a network –operated as one administrative 
domain owned by regional and national ISPs, large 
organizations, and customers. Autonomous systems are the 
basis of the distributed management of the Internet. Long haul 
Internet routing is performed on the basis of autonomous 
systems [1].  

A number of researchers have studied various properties of 
on the ASN [2,3,4,5,6], such as size, degree distribution, 
clustering etc. However, very little previous studies exist on the 
evolution of its topological structure. This is because, the 
topological property study of the autonomous systems poses 
many challenges, making it difficult to examine and monitor 
them.  First of all, the size of the ASN is very large. Fig- 1 
shows the ASN in March 2004. The numbers of autonomous 
systems were over 7000 and the peer connections between 
them were 15000 about ten years ago. Since, then both 
numbers are increasing rapidly – at times reported to be 
exponentially [2,7] – on an annual basis. Secondly, there is no 
ideal pattern in such scale. The very concept of any concrete 
pattern degenerates in large scale systems making it hard, if not 
impossible, to apply any deterministic graph traversal 
technique.  As evident in Fig-1 the network is complex- it has 
few recognizable topological features; the highly-connected 
nodes are in the center and the lower degree nodes branch out 
into points similar to a star topology. However, such visual 
recognition of structure has become impossible over time. The 
ASN also exhibits a steady level of dynamism. The network is 
in a constant state of evolution. 

Despite the difficulties, nevertheless the analysis of the 
topological structure of the ASN can provide fundamental 
insight about the requirements and design on next generation 

internet. Oliveira et al [8] writes: “It [the Internet topology] 
provides an essential input to the understanding of limitations 
of existing routing protocols, the evaluations of new designs, as 
well as the projection of future needs; and it will help advance 
our understanding of the interplay between networking 
technology, the resulting topology, and the economic forces 
behind them”. Lee and Kalb [9] from Sandia Lab details 
strategic advantages those can be derived from various network 
topologies ranging from familiar patterns like stars and rings to 
complex three- and four-dimensional structures like cubes and 

toroids in large scale communication networks. Kit is well 

known that knowledge about topological structure can help 
improving efficiency of systems [10, 11, 12]. 

In this paper we introduce a new technique based on 
generating functions (GF) that can overcome few of the 
difficulties. In this study we demonstrate a general process 
detailing the ways generating function signatures (GFS) can be 
used to trace the presence of various topological patterns in a 
large scale network by searching for the signature of specific 
topological patterns. These signatures are conceived to be a 
statistical characterization for each of these structures. With the 
aid of such GFS we are able to undertake one of the most 
comprehensive studies of the structural evolution for the ASN. 

The data set used was obtained from Oliveira et al [13] for the 
analysis. This extensive trace of the ASN is built from data 
available from various AS observation sites such as BGP route 
tables and updates collected from numerous large networks, 
including RouteViews, RIPE-RIS, Abilene, CERNET route 
servers at Internet Exchange, BGP View, Packet Clearing 

 

 

Fig-1 A map of the topology of the ASN in March 2004. 
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House, UCR, traceroute.org, Route Server Wiki, and Looking 
Glasses like NANOG and the Looking Glass Wiki. We present 
our findings on this paper. 

The paper is organized in the following way. Section 2 
covers recent research related to this work. Sections 3 and 4 
then explain the process by which generating functions can be 
used for structural property analysis in a complex graph. We 
explain four specific topological patterns before discussing the 
method of searching for signatures of such patterns in a large 
complex network such as the ASN, including networks that 
mix multiple patterns. Finally, Section 5 presents the analysis 
and observations of the ASN as it evolved during the years 
2004-2009. 

II. RELATED WORKS 

One of the earliest studies of ASN is attributed to Magoni 
and Pansiot [7] which analyzed six snapshots of ASN from 
November 1997 to May 2000 based solely on BGP data [7] and 
analyzed its size growth. Vazquez et al [2] used the 
autonomous system map from May 2001 and also took 
measures of the clustering coefficient and average betweenness 
of the nodes. Among other notable works are [3, 6] which 
found progressively more ASNs. Clegg et al [4] seems yto be 
the first to bring attention to topological analysis and proposed 
a ‘Framework for Evolutionary Topology Analysis’ (FETA) for 
the study of evolutionary topology. FETA provides a fast 
process comparing a model of a network to its real-world 
counterpart and taking measurements on its evolutionary 
qualities. This framework was used to study the ASN from 
January 2004 to August 2008. Their study revealed information 
such as degree 1 and degree 2 node count, maximum degree, 
and clustering based on the size of the network. Clegg et al 
reported declining degree 1 node counts and increasing degree 
2 node counts as the number of connections rose. In addition, 
the clustering coefficient remained less than 0.06 regardless of 
network size. None of the studies however could proceed to 
analyze the topological pattern evolution of such a large ASN. 
This is because high computational cost of such analysis in 
complex networks with degenerated patterns.  

In this endeavor we have also concluded an extensive 
longitudinal analysis of various complex network properties of 
the ASN (such as size, community structure, degree distribution 
etc) with unprecedented ev0olutionary view of the ASN. 
Interested researcher might want to read [14]. This paper 
particularly focuses on the evolution of topological pattern of 
ASN. As indicated before the proposed analysis is based on a 
novel use of generating functions (GF). Although GFs have not 
been used in such a way before, but GF techniques have been 
very useful in the analysis of idealized random graphs. 
Newman et al [15] introduced degree sequences in the form of 
generating functions and then derived various composite 
properties of graphs with specific distribution. Callaway et al 
[16] used generating functions in order to find analytical 
solutions to site percolation in random graphs and provide a 
process for testing the robustness of a network to the random 
failure of nodes and links by manipulating the generating 
functions of their random graphs. Generating function has also 
used to study directed ideal network graphs. Dorogovtsev and 
Mendes in [17] involved generating functions (called Z-

transforms in their paper) for the degree distributions of 
networks in a directed graph that show preferential linking to 
solve Masters equations and demonstrated an efficient method 
for finding solutions to network evolution problems. 
Dorogovtsev and Mendes also developed a Master equation 
that represents the in-degree distribution of a network over 
multiple iterations as a Poisson generating function. It was 
based on the distribution of nodes, number of edges added to 
the network, and additional attractiveness of nodes to receive 
those new edges. 

In this paper we use GFs as a signature of various 
topological pattern families and try to find topological 
resemblance in ASNs. 

III. SPECIAL PATTERN GRAPHS 

The method of topological analysis proposed in this paper 
makes use of ordinary generating functions (OGF). A 
generating function is a polynomial function that represents 
some aspect of a network. They most commonly contain the 
degree distribution information for the nodes in a specific 
network. The ordinary form is used, similar to the form used by 
Newman et al in [15]: 

 ����� � ∑
�
	
� �	�

	. (1) 

Each k value represents the degree while the pk coefficients 
hold the probability that one node out of all nodes in the 
network has degree k. For example, the generating function 
G0(x) = 0.5x2 + 0.5x contains the information for a network 
that has an even distribution of degree 1 and degree 2 nodes. 

 Generating functions are used in this paper as a means of 
identification of various patterns in the network. The generating 
function of a network is compared to the generating function 
for special patterns to determine their likeness to each other. 

A pattern graph is a regular topological structure. Fig-2 
shows examples of four such patterns. Equation (2) is the GF 
of a fully connected mesh pattern when it has n nodes. 

Fig-2 Examples of mesh, long star, chain and trellis 

(clockwise from top). 
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A star, as it is commonly known, is a structure of n nodes 
similar to a tree with the central node being degree (n-1) and 
the other n-1 nodes being degree 1. For the purposes of this 
paper, we consider a generalized star with long legs referred to 
as long star. A long star has nodes of three types: the center, the 
apexes, and the annexes. The center node in the star has the 
highest degree d from which the points branch off. A long star 
pattern with n nodes and dimension d has generating function: 
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A chain structure of n has generating function: 
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The trellis mesh (or simply just trellis) is a system of nodes 
arranged like a square matrix defined by a height and width p x 
q, requiring that p ≥ 2 and q ≥ 2. All nodes in this pattern have 
a degree of 2, 3, or 4 based on their position. One generating 
function for a trellis provides for many combinations of squares 
and crosses formed by the edges between each set of nodes. 
Fig-2 shows an illustration of a 3x4 trellis. A trellis structure 
with dimensions p x q has generating function 

 ����,����� �
����������

��
�� +

��������

��
�� +

�

��
��. (5) 

IV. COMPARISON & SIMILARITY ANALYSIS 

The analysis process begins by analyzing- (even visually if 
needed) the shape of the graph, utilizing it to discover its 
likeness to certain patterns. Network and pattern pairs should 
look similar to each other; they must share a similar signature, 
a common topological feature, with one another such as points 
of a star or a region of high clustering like a trellis. The terms 
in their generating functions also need to be comparable. 
Exponent in the pattern must also exist in the network.  

Once the patterns have been decided upon for analysis, the 
network generating function (the function for the degree 
distribution of the network) and the generating function 
signature (the signatures such as (2)-(5) that characterize the 
generating functions for all patterns within an ensemble using 
parameters) need to be compared in order to find the right 
dimensions of the pattern graph.  

Comparisons are always done using the dominant 
coefficients, the highest or most significant values from the 
generating function signature ����� � ∑���, �. Consider a 

generating function signature ����� �
�����

�
�	 +

�

�
�	-� +

�

�
�	-�where n is the total node count, m is a distinct quality of 

the pattern that directly contributes to the node count, and c and 
k are constants. If the network is very large, the function 

becomes lim
�→�

����� ≈ &��
	 + &��

	��where r1 and r2 are 

fractions of the remaining terms. While the degree (k-2) term 
disappears, the other coefficients remain large and are 
considered dominants. 

With the dominant coefficients decided upon, the 
parameters for the generating function signature need to be 
calculated. The ratios of dominant coefficients are used in 

situations involving multiple dominant coefficients.  The 
parameters from the dominant coefficients are then substituted 
into the generating function signature to obtain the specific 
pattern generating function (the function for the pattern graph 
closest to the network.) The error between the network 
generating function and pattern generating function is then 
minimized. The error value, E, can be calculated as: 

 ' � ∑ ∣ )	 − �	+ ∣	∈-  (6) 

Here ak is the coefficient for the degree k part of the network 
generating function, fk is the coefficient for the degree k part of 
the pattern generating function, and ∆ is the value that must be 
calculated to produce the smallest possible value for E. The 
L

1-
norm is used here since a median of the limited terms is 

sufficient and for ease of calculation. The inversion of ∆ 
produces a percentage that represents the resemblance between 
the network and its matching pattern.  

A. Chain Similarity 

The GF signature of chain (Eq-4) only contains x and x
2
 

terms and the x term has a dominant coefficient. The only 
dominant value here is the x

2
 coefficient, and it must be set 

equal to the x
2
 coefficient in the network generating function.  

Then the number of nodes n can be found by solving the 
equation: 

 
���

�
� )�or	� �

�

���/0�
. (7) 

The value of a2 is the x
2
 coefficient in the network 

generating function. Replace n in the generating function 
signature with the value calculated from (7) to obtain the 
pattern generating function. Finally minimize the error between 
the two sets of coefficients for the x and x

2
 terms and invert the 

∆-value to find the chain similarity of the network. 

B. Star Similarity 

The GF signature of chain (Eq-3) has three terms; however, 
the x

d
 coefficient is 

1
/n so it is deemed non-dominant. The x

2
 

and x terms are dominant since it relies heavily on the node 
count. The coefficient of the x

2
 term is the largest, and the 

coefficient for the x term is then the second largest. As stated 
earlier, the ratio of the most dominant and the second most 
dominant coefficients are taken when two dominant 
coefficients exist. The node count can then be decided by 
solving for n where a2 and a1 are coefficients of x

2
 and x. 

 � �
/0�

/1
+ 2 + 1 (8) 

Any fractional part of the n value can be removed from the 
result of (8) to form the (d,n)-pair. These values are then used 
to create the pattern generating function by substituting them 
into the generating function signature.  

C. Trellis Similarity 

The x
3
 and x

4
 parts of (5) are the most dominant in the 

trellis structure as they are based on the dimensions of the 
trellis. The x

2
 term, again being a constant value over the node 

count, does not carry anything significant. The ratio is then the 
x

4
 to x

3
 coefficients: 

 
����������

��������
�
/4

/5
 (9) 
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The a4 and a3 variables represent the x
4
 and x

3
 coefficients of 

the network generating function. 

In order to obtain the p and q parameter values, some error 
testing is necessary. A value for q within the range 2 ≥ q ≥ 
diameter of the network must be found that produces the lowest 
error from the nearest integer. In other words, the (p,q)-pair that 
creates the best fit for (9) is needed. The following equation 
can be used for error testing: 

 � �
�67��6�87��

�����7
for& �

/4

/5
. (10) 

It is advised to remain within a threshold of ±0.1 when 
determining proper values for p. Since both p and q are equally 
significant in these functions and their values need to be 
integers, it is important to find the values that best fit the 
dimensions of the dominant trellis in the network. The error 
testing is the same as the other structures. 

D. Similarity Analysis with Multiple Patterns  

Analysis of network is non-trivial when there are multiple 
patterns present in the network. The simplest case of 
compounding is when the network is built from multiple 
occurrences of congruent pattern graphs (all with exact same 
generating function). It can be called homogeneous forest of 
congruent patterns. Complex networks may also be made of 
non-congruent patterns. These can be called homogeneous 
forests. The generating functions for two non-congruent 
patterns will differ in at least one of the coefficients or 
parameters. Further networks can be made of completely 
dissimilar patterns. These can be called heterogeneous forest. 
The pattern graphs in the forest may be disjoint from each other 
or linked together by relatively small number of additional 
edges in some manner. If the pattern features are significant, 
the small interconnection links may not disturb the analysis in 
the limit. The GF for complex networks can be stated as: 

 �����∈9��� � ∑)���. ;���. (11) 

This formula represents a network with a set of patterns, F, 
each basis with its own generating function h(n). Here a(n) is 
the proportion of nodes attributed to n

th
 pattern.  

The GF of homogeneous forest of congruent patterns holds 
the same ratios of nodes of different degrees in the network like 
the pattern network. It causes no change in the pattern 
generating function in the limit. The analysis can proceed in the 
same way as that of the basic pattern signature analysis. Based 
on the node counts in basis pattern, the repetition factor can 
also be estimated. 

The analyses of other type of forests are more complex and 
do not have guaranteed solvability. To analyze forests it is 
necessary to isolate each individual pattern. If a pattern GF has 
unique exponent (which is normally the case for heterogeneous 
forests)- then it normally can be isolated. When they share 
exponents then various constraints equalities can be formed by 
analyzing the ratio coefficients. The difficulty by which these 
equations can be solved lend to three different solvability 
categories for patterns: inseparable, separable, and separable 
with difficulty. 

The approach to separating the network between patterns 
starts by determining the first pattern to isolate. It may involve 
visualize inspection. Separable structures should be isolated 
before patterns that are separable with difficulty. Once a pattern 
is chosen, and determined to be present significantly all 
subgraphs of that pattern from the network is removed. All 
remaining nodes for the shared terms contribute to the terms in 
the next pattern search. 

  

Long stars are normally separable, especially when they have 
high dimension. Each apex of individual long star can be pulled 
from the network by taking its exponents and determining 
whether or not they form stars by determining their node counts 
using the ratio of annex nodes to apex nodes as in (9). On the 
other hand, the chain is a prime example of an inseparable 
pattern. It relies only on node count, and the only information 
held in the coefficients of a pattern generating function for a 
chain is the number of degree 1 nodes, a constant. With only a 
constant and an unknown variable, there is no way to solve 
equations dealing with chains. Trellis, when it is mixed with 
long-star, is normally separable. However, the non-congruent 
trellis patterns are only partially separable. Two trellis patterns 
normally yields under-constraint set of equations. 

V. ANALYSIS & OBSERVATIONS 

A. Data Set 

The extensiveness of the study derives from the massive 
data set of [13]. It creatively combines data from (a) BGP 
advertisements and updates observed at various AS observation 
sites such as large networks including Route Views, RIPE-RIS, 
Abilene, CERNET, (b) route server data at various Internet 
Exchanges such as BGP View, Packet Clearing House, UCR, 
traceroute.org, Route Server Wiki, and (c) data at Looking 
Glasses such as traceroute.org, NANOG, Looking Glass Wiki. 
This is the most extensive trace of the ASN available to-date. 
All data is obtained with publicly available software that allows 
for the viewing of routing information for the autonomous 
system of a single entity. 

 
Fig-3. The evolution of degree distribution Darker grays and 

blacks are closer to pk = 0.5 in (a) and pk = 0.01 in (b). 

White blocks are pk = 0. 
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To improve accuracy, the data set did not combine any trace 
route data since AS paths cannot be accurately inferred from IP 
paths. The data, however, is still may not perfect. This method 
still can potentially miss links and nodes [18]. This is due to 
two reasons- unwillingness of service providers to allow their 
nodes to be discovered or drop of information in routing tables. 

  

The data set taken from [13] contains the nodes and links 
from the first day of every third month for all viable years, 
ending with the month this project began. A topology map is 
built each day from these collections. The collected maps span 
over every March, June, September, and December from 
March 2004 (the first year the maps were created) to March 

2009 (the date this project began.) Although more data is 
available, these 21 maps are used in the data set for this project. 

Each iteration of the network is divided into two files. One 
carries the list of monitored nodes while the other contains a 
list of links. The records for these files start with the unique 
identification numbers of the ASes assigned by the IANA. The 
node files have one ID and the link files have two IDs, one for 
each AS connected to that link. The next two fields are the 
times the node or link was first and last monitored by the 
software, represented as Unix timestamps (seconds since the 
epoch.) The last piece of information represents the node or 
link's position in a customer-provider chain. A 0 is used for the 
start of a path, 1 for the middle, and 2 for the end. 

The degree information and node counts stored for the 
graph of each month in the study were used to build the 
generating functions for each one. The functions were written 
in the form 

 ����� � ∑
<=

�
�	�

	
�  (12) 

where k is the degree, tk is the total number of nodes that were 
of degree k for that month, and n is the node count for the 
entire network. The generating functions were formulated this 
way to preserve each piece of data for future use. 

B. Degree Distribution Trends Observed 

The degree distributions showed some interesting results as 
illustrated in Fig-3. Each block represents the pk value, 
distribution for nodes of degree k, for the corresponding degree 
and month in the study as indicated by the axes. The degree 1 
and degree 2 node counts were the highest. They show up as 
distinct, dark colored bands that grow lighter over time. This 
trend shows that the ASN is slowly moving away from the stub 
configuration. The bands for the degrees between 3 and 10 
follow the opposite pattern, starting light and gradually 
becoming darker as time moves on. These changes indicate that 
autonomous systems with one or two peers appear to be 
obtaining more links to providers or peers over time. Going 
across the chart from month to month, the contrast of the bands 
varies at all values of k. It can be seen that the darker colored 
blocks (the distributions of higher pk) are moving higher over 
time, causing diagonal bands. 

C. Dominant Pattern Analysis  

The generating functions, metrics, and visual graphs were 
used to determine the pattern graphs to be tested. Among the 
many observations, the ASN shows signatures of the long star 
and the trellis mesh ensemble as the x, x

2
, x

3
, and x

4
 terms of 

the generating functions were all fairly high. These two 
patterns share the x

2
 term, however, so the degree 2 nodes 

would need to be divided between the two patterns. 

Fig-4 shows the separation of the degree 2 nodes in the 
ASN for the long star ensemble. Since the long star is under the 
separable solvability category, the degree 2 nodes for the long 
stars were separated from the nodes that did not belong to 
them. The leftover nodes would be attributed to the trellis mesh 
ensemble. Due to the difficulty of separation for trellises, each 
iteration of the network was considered to contain only one 
trellis when determining their trellis similarity percentages. For 

 

Fig- 4. The separation of the degree 2 nodes in the network 

between the star and non-star parts prior to analysis. 

(a) 

 

(b) 

Fig- 5. (a) The distributions of the degree 1 and degree 2 

nodes in the autonomous system network. (b) The calculated 

star similarity, resemblance of the ASN to its corresponding 

long star for each month of the study. 
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the separation of the star nodes, the system of equations is not 
used here since the x

d
 term is most significant in determining 

the star parameters and too many large degree numbers exist 

for the number of degree 1 nodes. In this case, all degree values 
less than 5% of the node count were used as potential 
dimension numbers in order to limit m. The dimension values 
were substituted into (9) and then tested for error from the 
nearest integer. If the error was under 0.1 then the dimension 
and node count were kept as part of the pattern GF. 

The view of the network as a heterogeneous forest of long 
stars and one trellis weighs heavily on the separation of degree 
2 nodes in the network. Fig-4 shows that the majority of these 
nodes are part of the long star structures in the network.  The 
trellis pattern has a small constant for the x

2
 term in its 

generating function, so the low numbers help the error testing 
phase of trellis similarity calculation. 

D. Star Ensemble Similarity Analysis 

The visualization of the early network graphs (as in Fig- 1) 
showed significant presence of long star like ensembles at the 
edges of the network. In Fig- 5a we show the degree measures 
for significant components of the long star ensemble i.e. the 
numbers of nodes with degree 2 and degree 1 within the ASN. 
These were higher than all other numbers and several centers 

appeared to exist as many of the high degrees had pk values of 
1
/n. These two aspects made finding the star similarity of the 

ASN favorable.  

The dimensions and sizes of the long stars within the ASN 
loosely followed few trends. The stars did have a tendency to 
grow over time as they obtained more points; however, the 
higher the number of nodes the star accumulated, the more 
connected it became until it was too well-connected to be 
considered a star pattern. 

The star ensemble analysis of the network exceeded 50% 
mark for the first year of the study; however, the number ended 
up dropping below that mark for the remainder of the study. 
The star similarity for March 2004 was nearly 65%. The next 
two months remained close to 60% before a sharp decrease 
occurs at the end of 2004. Month 15 was the first month in the 
study in which the star similarity value dropped below 50%. 
The star similarity percentage reaches its lowest point in March 
2009 when it is slightly higher than 34%. 

Fig-5a and 5b compare the dominant long star terms from 
the ASN against the calculated star similarity percentages for 
each iteration. Both charts show a steady decline in all values 
over the course of the study. Some differences are notable 
between the two statistics. The x and x

2
 terms of the ASN 

remain on a decline from period to period; on the other hand, 
the star similarity percentages display a slight rise in value (less 
than 2.5%) during several iterations of the network. 

(a) 

(b) 

Fig- 6. (a) The distributions of the degree 3 and degree 4 nodes in 

the ASN. (b) The calculated trellis similarity of the ASN to its 

closest trellis for each month of the study. 

ratio q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9 q=10

0.38 0 11.5 4.5 3.7 3.4 3.3 3.2 3.1 3

0.39 0 12.6 4.6 3.8 3.5 3.3 3.2 3.1 3.1

0.4 0 14 4.7 3.8 3.5 3.3 3.2 3.2 3.1

0.43 0 20.4 5 4 3.6 3.5 3.3 3.3 3.2

0.46 0 36.5 5.4 4.2 3.8 3.6 3.4 3.4 3.3

0.47 0 49 5.5 4.3 3.8 3.6 3.5 3.4 3.3

0.48 0 74 5.7 4.4 3.9 3.7 3.5 3.4 3.4

0.5 0 0 6 4.5 4 3.8 3.6 3.5 3.4

0.51 0 -151 6.2 4.6 4.1 3.8 3.6 3.5 3.5

0.53 0 -51 6.5 4.7 4.2 3.9 3.7 3.6 3.5

0.54 0 -39 6.7 4.8 4.2 3.9 3.8 3.6 3.6

0.55 0 -31 6.9 4.9 4.3 4 3.8 3.7 3.6

0.59 0 -18 7.8 5.2 4.5 4.2 4 3.8 3.7

0.61 0 -15 8.3 5.4 4.6 4.3 4 3.9 3.8

0.63 0 -13 8.8 5.6 4.8 4.4 4.1 4 3.9

0.64 0 -12 9.1 5.7 4.8 4.4 4.2 4 3.9

0.65 0 -11 9.4 5.8 4.9 4.5 4.2 4.1 3.9

0.66 0 -10 9.8 5.9 5 4.5 4.3 4.1 4

0.7 0 -8.5 11.3 6.4 5.2 4.7 4.4 4.3 4.1

Table-II Dominant Trellis Error Testing 

Note: Light gray values represent best fit. Dark gray values 

are too far out of the range. 

Table-I Dominant Trellis Dimension over Time 

Months since March 2004 Year p q

0 - 9 2004 4 5

21-Dec 2004 4 6

24 - 36 2005-06 4 7

39, 42 2006-07 4 8

45, 48 2007-08 4 9

51 - 60 2008-09 4 10

Note: Based on error testing as in Table II. 
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E. Trellis Ensemble Similarity Analysis 

The visualizations of the ASN showed a separation between 
the star-like points at the edge and the core of the network. The 
outer part of the core consists of low degree nodes that appear 
grid-like. The numbers for degree 3 and degree 4 nodes were 
fairly high and in proportion similar to the trellis generating 
function signature. In combination with the low count of degree 
2 nodes outside the long stars, it helps support the presence of a 
pattern from the trellis ensemble within the ASN. 

Table II shows the results for the dimensions for the 
dominant trellis in the network at each iteration, and Table III 
demonstrates the process used to find the dominant trellises. 
The p and q values represent height and width of the trellis 
mesh respectively. The first trellis observed was a 4x5 pattern. 
Roughly every twelve months, the trellis pattern became 
slightly larger as the width continually increased by 1. Rather 
than using a different dominant trellis with a different p value 
(a 5x6 trellis showed error less than 0.1) from the months 
before, the experiment was conducted with the 4x10 trellis for 
the final year of the study. The error in this adjustment did not 
alter the results much. 

Fig-6a and 6b show the relationship between the dominant 
trellis terms from the ASN and the trellis similarity for each 
month in the study. The ASN appeared to go through two 
phases: the first phase in which it increased from 25% to 38% 
until the midpoint of the study (month 30) and the second 
phase in which it remained steady between 35% and 38%. The 
trellis similarity percentages are still below 40%. Side by side 
the two charts distinctly share a trend. The x

3
 term of the ASN 

and the trellis similarity percentages follow almost exactly the 
same pattern over the course of the project. 

VI. CONCLUSIONS 

The work makes two main contributions in the area. This paper 
uses the novel technique of generating function signature GFS 
and extends their usefulness. The main advantages of GFS like 
techniques are twofold- that they can handle perturbation of 
target as well as pattern graphs which is very important for 
analysis of large scale complex networks. The method is also 
computationally efficient. It can be extended even to mega 
scale complex networks- if their degree distribution can be 
sampled with reasonable confidence.  

However, GFS do have fundamental limits. Besides the 
difficulty in pattern separation, generating functions cannot 
pinpoint the location of a pattern within the topology or 
determine that the structure exists in one place. Pattern analysis 
through generating functions is only able to locate signatures of 
familiar patterns. The nodes belonging to any pattern could be 
scattered throughout the network without being visible. 

This study also reveals another important trend possibly 
great engineering implications and not reported earlier- that the 
autonomous systems are becoming more trellis-like and 
continuously moving away from this single-home or star-like 
configuration. This transformation has been rapid from the very 
beginning of this study to the middle of 2006. Finally, there 
seems to be a fundamental transformation of the relative 
weights of edge and core ASN network where the ratio has 

shifted from roughly 70:30 to about 45:55 based on star and 
trellis similarity.  

What are the implications of such trend? This pattern of 
evolution of ASN indeed call for a new regime of routing and 
transport protocols- than currently one- which can take 
advantage of increased parallel paths and regularized topology 
based communication. This indicates it might be time for a suit 
of next generation protocols (across layers) in the line of 
parallel communications in Internetworking. 
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Abstract— It is essential to keep networking system avail-
able in emergency. Power consumption will therefore be
one of the most important issues to realize both platform
and communication environment. This paper describes about
comprehensive evaluation of ultra-low-power data-driven
networking system (ULP-DDNS). ULP-DDNS, which is a
research project, is aiming at development of data-driven
networking system which can achieve ultra-low-power con-
sumption: 1/300 less than the present system. This paper
firstly reports the effect of power saving schemes in ULP-
DDNS. The authors have implemented ULP-DDNS node and
platform simulator for evaluation of ULP-DDNS comprehen-
sively. This paper then describes evaluation scheme of ULP-
DDNS with ULP-DDNS node and simulators. Furthermore,
this paper describes an implementation of ULP-DDCMP
platform simulator and shows current status of experimental
study. Finally, the authors propose data-driven load balanc-
ing scheme to maintain the networking system in working
without over-loaded state.

Keywords: ultra-low-power, data-driven principle, networking

architecture, self-timed elastic pipeline, chip multiprocessor

1. Introduction
For rapid evacuation, it is important to keep communica-

tion environment available in emergency. It is necessary to
realize such robust environment because some earthquakes
and tornadoes occur in Japan in a few years. Infrastruc-
tureless communication environment can be then supposed
in emergency. And power consumption is crucial issue to
keep communication environment available for a long time
as possible [1]-[3].

Currently, so-called pervasive networking environment as
social infrastructure has been widely studied [4]. Further-
more, there are many studies about mobile ad hoc network[5]
which is an infrastructureless network and is a group of
wireless devices that organize themselves in a mesh topology

to find routes and relay packets from the hardware plat-
form through the network layer to application. Considering
the case where next generation of pervasive networking is
realized over ad hoc network suitable for emergency and
some tentative accidents, some of authors study data-driven
implementation of ad hoc communication environment [6].

The authors have started research project named
"ultra-low-power data-driven networking system (ULP-
DDNS)"[7]. ULP-DDNS project is aiming at development
of data-driven networking system which can achieve ultra-
low-power consumption: 1/300 less than the present system.

This paper firstly reports the effect of power saving
schemes in ULP-DDNS. In ad hoc networking application
layer, we have evaluated reducing the number of packets in
broadcasting with load-aware flooding scheme. On platform,
the authors have studied effective protocol handling such
as data-driven implementation of UDP/IP, and optimized
circular pipeline. Furthermore, this paper reports power
saving scheme such as power gating and runtime voltage
scaling on the platform. Toward comprehensive evaluation
of ULP-DDNS, the authors have implemented ULP-DDNS
node and platform simulator. This paper then describes
evaluation scheme of ULP-DDNS. In ad hoc networking
application layer, the authors have evaluated traffic in all
of the ad hoc network with network simulator. We use logs
of the network simulator as input of platform simulator for
comprehensive evaluation. Furthermore, this paper describes
an implementation of ULP-DDCMP platform simulator and
shows current status of experimental study. Finally, the
authors discuss about data-driven load balancing scheme to
maintain the networking system in working without over-
loaded state.

2. Power Saving Schemes in ULP-DDNS
This section reports power saving schemes in each layer

of ULP-DDNS. Fig. 1 shows layer of ULP-DDNS. A node
of ULP-DDNS is a platform which is used data-driven
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chip multiprocessor(UDP-DDCMP) and self-timed elastic
pipeline(ULP-STP). Runtime voltage scaling is implemented
in the platform for ultra low power consumption. Ad hoc
networking Application and UDP/IP handling is also imple-
mented on the platform.

The method of reducing the number of UDP packet in
ad hoc networking application layer and reducing power
consumption on platform is described in following sections.

2.1 Power Saving Schemes of Ad hoc Network-
ing Architecture

The authors have studied mobile ad hoc network as
an applicable network architecture to disaster situation. In
disaster situation, effective information discovery is firstly
important. At a same time, effective secure communication
is needed. They should be realized under the effective data
transfer on ad hoc network. We have proposed these schemes
in ultra low power consumption. Refer to [8] about these
schemes. This paper reports about load-aware flooding[9]
because this scheme is used in all communication on ad hoc
network.

When an ad hoc network is to be used in a disaster
situation, it is likely that emergency information will be
broadcast by voice streaming from a small number of
nodes. Conventionally, simple flooding (SF) has been used
as a method of broadcasting streams to the entire network.
However, if SF is applied to information flows in which
packets are generated at a high rate, as is the case with
voice streams, packet loss will occur frequently, causing
degradation in the quality of service.

As a method of broadcast streaming, we have already
proposed a Load-aware Dynamic Counter-based Flooding
(LDCF), and showed that LDCF results in fewer unnecessary
packets being sent and less degradation in quality of service
(QoS) than SF or other methods. Furthermore we showed
that the application of LDCF to broadcast voice streaming
in an ad hoc network results in fewer instances of packet
loss than SF. Nodes used in an ad hoc network are normally
powered by a battery of finite capacity. Therefore a reduction
of the number of exchanged packets is desirable, not only
because of the reduction in traffic load itself, but also
because it results in reduced power consumption. As a
results, we have evaluated that LDCF generates less traffic
and consumes less power per node than SF.

2.2 Data-Driven Implementation of UDP/IP for
ULP-DDCMP

The authors have studied the effectiveness of an imple-
mentation of protocol offloader using networking-oriented

Ad hoc NetworkingApplicationData-Driven Implementation of UDP/IP HandlingULP-DDCMP/ULP-STP/Runtime Voltage Scaling
Reducing the number of UDP PacketReducing Power Consumptionon Platform

Fig. 1: Power Saving Schemes on Platform

data-driven processors CUE (Coordinating User’s require-
ments and Engineering constraints) designed by CUE project
[10], [11]. In ad hoc network, it is necessary to realize
connection-less protocol such as UDP/IP for flexible rout-
ing and realtime communication. We proposed data-driven
implementation of UDP/IP for ULP-DDCMP to minimize
overheads in protocol handling.

Then we studied architecture of CUE-v2/CUE-v3 for ad
hoc networking environment [12], [13]. And we evaluated
effectiveness of protocol handling offloader using CUE pro-
cessor system. It shows that data-driven protocol offloader
can keep minimum turn-around time in comparison with
conventional PC(Personal Computer) [14]. We realize header
processing and data processing concurrently utilizing multi-
processing capability of data-driven processor without run-
time overheads.

This paper shows evaluation of UDP/IP on ULP-DDCMP
in power consumption in Section 3.2

2.3 Data-Driven Chip Multiprocessor

2.3.1 Self-Timed Power-Aware Elastic Pipeline:ULP-STP

The authors have studied data-driven chip multiprocessor
based on self-timed elastic pipeline for ultra-low-power in
realtime multiprocessing.

In data-driven chip multiprocessor, both the dynamic and
static power dissipations are minimized by distributing the
processing load over multiple processing cores which is
slowed down by using runtime/dynamic voltage scaling
(DVS) technique as long as the required processing speed is
satisfied[15]. In addition, the voltage-supply to idle circuit
blocks or cores is cut by using fine-grained power gating
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(PG) technique[16]. It is therefore intended that the ultra-
low-power DDCMP would be implemented by self-timed
power-aware elastic pipeline named ultra-low-power self-
timed pipeline (ULP-STP)[17]. Because of self-timed elastic
data-transfer mechanism of the original STP, it can work well
under variable voltage without adjusting clock frequency
even if the altered voltage could transiently fluctuate at
individual pipeline stage. Since the pipeline throughput can
be adaptive to its processing load only by altering supply-
voltage appropriately, a power-aware pipeline scheme can
be realized naturally in terms of dynamic power saving.
For instance, proportional-integral differential (PID) control
method can be applied to such voltage control by monitoring
consumption current of a target power domain within the
chip. The STP is also suitable for gating power-supply to fine
grain circuits since its stage-by-stage data-transfer control
independently activates only pipeline stages with valid data.
We therefore proposed a stage-by-stage power gating scheme
adopted in the STP. This scheme provides natural signal
gating, i.e., it stops the unnecessary signal propagation and
transistor-switching at pipeline stage level without any global
control mechanisms resulting in both power dissipation and
processing speed degradation. Moreover, it makes it possible
to scale the voltage even when the stages are activated
because it can be realized without any global oscillator such
as phase-locked loop (PLL) circuit, which forces pipeline
flush ahead of the frequency and voltage change. In order to
analyze the low-power characteristics of the ULP-STP and
to estimate power-performance of various ULP-STP based
systems, an experimental LSI chip has been fabricated by
using 65 nm CMOS process. We have implemented ultra-
low-power data-driven chip multi processor: ULP-DDCMP
based on evaluation of the experimental LSI.

2.3.2 An Implementation of Ultra-Low-Power Data-
Driven Chip Multiprocessor: ULP-DDCMP

In our previous study on the data-driven processor, it
is already revealed that the networking protocol handling
consists of several sequential processing parts such as a
processing part to generate output data by reading an array
sequentially. To prevent such sequential processing part from
being the bottleneck of the networking protocol handling,
some of the authors has already proposed a hybrid processor
architecture in which a control-driven instruction execution
is realized by out-of-order execution scheme suitable for the
sequential processing in addition to the ordinary data-driven
instruction execution[13]. Based on this previous study, it
is revealed that the sequential processing parts should be
efficiently executed in parallel with the execution of the other

non-sequential processing parts. However, from a viewpoint
of low-power processing, the previously proposed hybrid
architecture is unsuited for the ULP-DDNS, because the
control-driven execution requires additional controls to exe-
cute instructions in contrast to the pure data-driven processor.
Therefore, the ULP-DDCMP is designed to exploit the data-
driven principle and its instruction execution pipeline is dis-
cussed in this paper by focusing on the utilization frequency
of the instruction execution pipeline stages activated by
unary-operation instructions which are the main constituent
of the sequential processing parts. In the ULP-DDCMP, a
processor core is realized by a circular pipeline necessary
for instruction execution, and each pipeline stage is activated
or driven only when a packetized data is transferred, and
thus signal gating at pipeline stage level is naturally realized
without any additional circuit[18]. In fact, ULP-DDCMP
has no dynamic power dissipation. On the other hand,
it is important to reduce the amount of leakage current
which is the dominant cause of the increase of static power
dissipation, in order to exploit the benefits of the scaling
of transistor to the improvement of the performance of the
ULP-DDCMP. We focused on the utilization frequency of
the instruction execution modules, and have proposed an
instruction execution pipeline structure in which infrequently
used modules are bypassed and/or powered off to shorten the
instruction execution time and to reduce static power dissi-
pation. The effectiveness of the proposed pipeline structure
is estimated based on a prototype LSI implementation.

The authors have studied reasonable mechanism for avoid
over-loaded state by using processor core configuration of
ULP-DDCMP and observability of ULP-STP. Conventional
schemes for avoid over-loaded state is relatively much power
consumption in each service because restriction is excess for
performance. We proposed mechanism which is combined
DVS function and I/O control for observation of load with
load-distribution by round-robin. It is effective to realize
ultra-low-power networking environment which is suitable
for demanded performance. In addition, we have developed
ULP-DDNS node. Refer also [18] about this node in detail.

3. Comprehensive Evaluation of Power
Saving Scheme by Platform Simulator

This section proposes comprehensive evaluation scheme
with network simulator and platform simulator. Fig. 2 shows
image of summation of power consumption. Network sim-
ulator have already used evaluation in ad hoc networking
application. As comprehensive evaluation, we proposes us-
ing logs as a network simulation result to input of the
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Fig. 2: Comprehensive Evaluation of ULP-DDNS

platform simulator. Platform simulator can evaluate power
consumption and turn-around time of program on data-
driven chip multiprocessor. Platform simulator is necessary
to evaluate energy of platform in UDP/IP handling because
analog electronic circuit simulator which is SPICE is too
complicated to measure power and turn-around time in
UDP/IP handling according to network simulation log. In ex-
ecution program, logs which has input time and data length
can be used as input for the platform. Summation power
consumption in each platform is a total power consumption
of ULP-DDNS.

Platform simulator has hierarchy among self-timed elastic
pipeline (ULP-STP), cores (ULP-CUE), and platform (ULP-
DDCMP) as shown in Fig. 2. Firstly, platform simulator
evaluates power consumption and switching time of stages of
ULP-STP. Power in each stage and send/ack time between
stages are then derived from ULP-DDNS node, prototype

of ULP-STP and gate simulation. In PID control, time
in change supply voltage and target Vdd is simulated by
platform simulator. Parameters such as some gain is tuned
by data of gate simulation. Platform simulator sums up
energy of stages of which a module consist. ULP-CUE
consists of some module such as firing control (FC), function
processor (FP), instruction decode (ID), etc. All modules of
which ULP-CUE consists is connected as a circular pipeline.
Platform simulator also sums up energy of all stages of
a circular pipeline which is elements of an ULP-CUE.
Furthermore, the simulator sums up energy of all cores on
an ULP-DDCMP. It is power consumption of a platform.

3.1 Platform Simulator for ULP Platform

It is necessary to validate power consumption of ULP-
DDNS in detail. So the authors proposed power simula-
tor/validator as a platform simulator[19]. Then, we have
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implementedthe platform simulator. This paper shows how
to use of the platform simulator.

Fig. 3 shows input to platform simulator and output from
it. Platform simulator requires schedule of token stream as
an input. This schedule is generated from network simulation
logs. Platform simulator also demands UDP/IP program to
evaluate power consumption in UDP/IP handling. Platform
simulator has a topology of platform, a topology of core and
parameters which indicate specification in each stage such
as power and switching time in order to calculate power
consumption of platform. Platform simulator then outputs
energy and turn-around time in UDP/IP Handling.

Fig. 4 shows pipeline structure in the simulator and simu-
lation results. Fig. 4(a) shows a circular pipeline structure of
ULP-CUE. The platform simulator can freely design pipeline
structure of core and router in a platform. Then, the simulator
can set parameters power and time which is evaluated in a
platform flexibly.

When input datagrams concretely create, it is neces-
sary to collaborate with network simulator which evaluates
networking architecture. The authors have studied how to
communicate between our simulator and network simulator.
We uses data log in network simulator can use information of
data input in our simulator. On the other hand, specification
of CMP in our platform simulator may apply to a node in
network simulator.

Multi pipeline loop of ULP-CUE is applied to pipeline
structure of core in this simulation because ULP-CUE has
same pipeline. Fig. 4(b) shows graph as a simulation result.
X axis of the graph is execution time of UDP/IP on a
platform which is target of simulation. And y axis of the
graph is power consumption in each time. We evaluate and
tune a platform on ULP-DDNS, and show effectiveness in
ultra-low-power of ULP-DDNS. Then, it is necessary to
adjust parameters in PID control to runtime/dynamic voltage
scaling mechanism. So the authors have been simulating
UDP/IP on ULP-DDCMP architecture in several settings of
PID control by using platform simulator.

3.2 Evaluation of ULP Platform

This section reports current status of the comprehensive
evaluation. The authors have validated logs of network
simulation. Fig. 5 shows percentage of sending packets in
LDCF to SF. X axis of the graph is node ID which identify
node on the network. Y axis of the graph is percentage of
sending packet in LDCF to SF. Almost node is less than
10% of SF in sending packet. Fig. 6 shows the distribution
of its percentage. X axis of graph is percentage of sending
packet in LDCF to SF. And y axis of the graph is the number

Schedule of Inputting Token Stream(Using Network Sim. Log) Program of UDP/IP HandlingPlatform SimulatorTopology in CoreTopology in PlatformSpec(Power, Time, etc.) in Each StageEnergy in UDP/IP Handling Turn-Around Time in UDP/IP Handling
Fig. 3: Specification of Platform Simulator

of nodes of which sending packet is in each percentage. For
comprehensive evaluation, 10 nodes is enough to sampling
node in logs of network simulator because of estimation in
confidential interval.

Furthermore, the authors have evaluated power consump-
tion of conventional processor to compare power consump-
tion with ULP-DDCMP. ULP-DDNS node has Atom as a
application processor which driven Linux OS. So, we have
evaluated power consumption of Atom on ULP-DDNS node.
On Atom, it is necessary to drive OS in order to handle
UDP/IP. To evaluate power consumption in just UDP/IP
handling, we firstly measured power consumption in stand
by mode of Atom. Its power was 210.7µWsec./packet. We
then measured power consumption in UDP/IP handling on
Atom. Its power was 232.6µWsec./packet. Thus, power in
just UDP/IP handling is 21.9µWsec./packet. Then we need
to consider power consumption of L2 cache because L2
cache is not used in UDP/IP handling. We estimated power
consumption of L2 cache and deduct it from measured power
consumption. As a result, power consumption of L2 cache
is 10.9µWsec. because ratio of circuit area of L2 cache to
a chip is less than 1/2. Therefore, we have evaluated that
power in UDP/IP handling on Atom is 11.0µWsec./packet.

On the other hand, power in UDP/IP handling on ULP-
DDCMP is 3.2µWsec./packet. Hence, power consumption
of ULP-DDCMP is 1/3 of Atom in UDP/IP handling. So
we evaluated that ULP-DDCMP is enough to have ultra-
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low-power effect.
As a future direction, we will firstly analyze UDP/IP

handling on ULP-DDCMP when packets input according to
time of network simulation log. This simulation result can
be compare with power consumption on ULP-DDNS node
which handle UDP/IP on ULP-DDCMP. At the same time,
we will tune simulation model of power consumption more
concretely. For example, it is necessary to tune power con-
sumption model in DVS because current model in platform
simulator is too simple to evaluate power consumption in
DVS. Furthermore, tuning instruction set on ULP-DDCMP
is important to save power. We then need to study offload-
ing scheme, which is to optimize executing application on
ULP-DDCMP. At least, it is necessary to implement ad
hoc networking application on ULP-DDCMP because we
verificate evaluation of platform simulator whether it match

05101520
2530354045
50

5 10 15 20 25 30 35 40 45 50The Number of Node
s

Percentage of Sending Packets (LDCF/SF)
Fig. 6: Distribution in Percentage of Sending Packets in
LDCF to SF

the evaluation of network simulator. And the authors have
studied implementation of overload avoidance function on
ULP-DDCMP. Refer to [20], [21] about these study.

4. Conclusion
This paper firstly reports power saving schemes of each

layer in ULP-DDNS project. It is clear to achieve high effect
in reducing power consumption with proposed schemes.
The authors then proposed comprehensive evaluation method
which uses output of network simulator as input of platform
simulator. We showed that power consumption of ULP-
DDNS can be evaluated by its cooperation. Furthermore,
we analyzed logs of network simulator, and we showed
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the distribution of percentage of sending packet in LDCF
to SF. As a standpoint of estimation considering confiden-
tial interval, 10 nodes is enough as sample nodes for the
evaluation. This paper describes implementation of platform
simulator, and reports current status and future direction of
the comprehensive evaluation.

As a further works, the authors will comprehensively
evaluate power consumption of ULP-DDCMP as shown
in previous section. And Tuning platform simulator will
be needed to evaluate power consumption precisely. Fur-
thermore, we have studied overload avoidance function in
platform and networking system to realize robust networking
system.
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Abstract – This paper describes the up-to-date results got 

through Ultra Low-Power Data-Driven Networking System 

(ULPDDNS) project mainly about the network portion.  The 

ULPDDNS has been aiming at achieving reduction of power 

consumption to 1/100 – 1/1000 compared with the existing 

systems.  We have been tackling with the networks applicable 

to the emergency situation such as natural disaster.  In the 

emergency case, the need of low power consumption systems 

and networks are really essential due to lack of power 

infrastructure. We believe the most applicable network to 

disaster situation is Mobile Ad hoc NETwork (MANET).  This 

paper shows the evaluation results on the ULPDDNS 

networking layer activities on MANET by integrating three 

techniques to establish highly efficient and energy saving 

MANETs with reasonable performance: (1) GPS-aided target 

information discovery, (2) Load-aware broadcast-type 

contents delivery, and (3) Trust relationship list based key 

management.  

Keywords: Mobile Ad hoc Network, broadcasting, 

information discovery, trust management  

 

1 Introduction 

  The ULPDDNS consists of mainly two parts: one is the 

platform (processor) and the other is the network. Our 

objective is to develop a data-driven networking system that 

can achieve reduction of power consumption to 1/100-1/1000 

compared with the existing systems, especially in the 

situation just after a disaster happens.   

 We believe the most applicable network architecture to 

disaster situation is Mobile Ad hoc NETwork (MANET) 

[1][2]. A MANET is defined as a group of wireless devices 

that are capable of organizing themselves in a mesh topology 

in order to find routes and relay packets from each node to 

any other node within the network without a support of a pre-

installed infrastructure.  The deployment of these networks is 

expected to take place in critical environments such as during 

disaster or on battlefield, where pre-installed infrastructure is 

not available.  We assume the network portion of ULPDDNS 

is to be MANET and have been studying MANET 

architecture that can achieve the high efficiency to reduce 

power consumption with keeping possibly high performance.  

In order to make both network efficiency and performance 

(QoS and security) better, we have to consider that 

emergency network has two network usage phases such as (1) 

network setting-up phase (just after a disaster happened) and 

(2) stable phase.  

 Regarding the intermediate reports of our activities has 

already been shown in [3]. There we had three main 

approaches, (1) GPS-aided target information discovery, (2) 

Load-aware broadcast-type contents delivery, and (3) Trust 

relationship list based key management.  This paper will 

show the integrated effects of those three approaches as the 

final stage evaluation of our ULPDDNS project. It firstly 

shows three main approaches we have been proposing one by 

one. Then it shows the each result got so far for each 

approach. Then, assuming a traffic model that could be 

realistic in case of emergency, the paper shows the integrated 

evaluation results of our approaches.   

2 MANET for disaster 

 Although we have already reported in [3] the relation of 

MANET to disaster situation and possible solutions, we 

would like to summarize them here. 

 

2.1 Applicability of MANET to the disaster 

situation 

 As shown above, MANET has no infrastructure, no 

centralized controllability, dynamically changing network 

topology, and multi-hop information transmission. It is an 

infrastructure-less and a group of wireless and mobile devices 

that organize themselves, can be an alternative to the existing 

network infrastructure in case of emergency and/or events, 

and will play an important role for achieving low power 

consumption network. Our target is reduction of “number of 

packets (redundant packet transmission)” to 1/10 of the 

present in case of emergency (just after disaster happens).  

MANET is most applicable to the disaster situation and the 

situation needs ultra low power consumption to make battery 

have longer life time.  

 After the disaster, we have to consider network life time.  

We consider following two phases. 
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- Phase 1 (transient): This phase means that of just after the 

disaster happened.  Several nodes in some area may organize 

a MANET but each node may not know IDs of other nodes 

such as IP addresses.  So, usual routing (unicast or multicast 

data transfer) cannot be executed.  In this phase, however, 

useful information must be sent all over the network urgently 

such as “where is a refuge, hospital?”, “how is my house?”, 

and so on.  Both “Pull” (Information discovering) and “Push” 

(Information broadcasting) are needed without use of IP 

addresses. 

- Phase 2 (stable): In this phase, each node has each routing 

table and the network becomes stable. Usual communication 

based on routing with possibly high QoS and security will be 

required. We have clarified main three study issues in 

association with two phases above after MANET setting up.   

 As for phase 1, “effective information discovery” 

without IP addresses is needed because people in the network, 

just after the disaster, would probably need such information 

as refuges, hospitals, and his own house.  For this purpose, we 

have proposed “a GPS based discovery mechanism” 

[4][5]with reduced control packets.  For phase 1, “Effective 

data transfer” is also needed because people who have some 

useful information would like to let as many people as 

possible know the information without IP addresses.  For this 

purpose, we have proposed “Load-aware flooding”.  This 

flooding mechanism needs no IP address and can reduce 

redundant packets.  Of course the flooding can be used in 

phase 2 also. 

 As for phase 2, networks become stable and usual 

communication by use of IP addresses will be executed.  In 

some cases, “effective secure communication” with ciphering 

will be needed.  For this purpose, we have proposed “Self-

organized key management based on trust relationship list”. 

 Below, we show how these mechanisms are effective. 

2.2 GPS-aided target information discovery 

 In case of an emergency phase 1 (just after the disaster 

happens), local information is probably needed.  For 

instance, for people in the MANET, information about 

refuges, hospitals and their own houses is urgently needed.  

This fact requires some information or contents discovery 

mechanism. Those who need such information would like to 

inquire other people in the MANET about the information. 

However, in phase 1, there are some constraints, one of which 

is that each node address is not well known to other nodes 

and usual routing based communication (unicasting and 

multicasting) is unavailable to use.  In this situation, only 

available way of inquiry is using “Simple Flooding (SF).”  

The SF mechanism is as follows: Simple Flooding is used to 

deliver messages to the whole network. A node that originates 

a packet broadcasts it. The packet reaches all the nodes that 

exist within the area covered by the radio wave transmitted by 

the origin node. A node that has received the packet re-

broadcasts it. This process is repeated by subsequent nodes 

until the packet reaches all the nodes in the network. In the 

information discovery, a node sends an inquiry packet to the 

whole nodes using SF.  But, multiplication and contention of 

inquiry packets will occur and result in waste of electric 

power.  Hence, Effective information discovery with reducing 

wasteful inquiry packets is needed. 

 We have proposed a discovery method, which uses 

location coordinates of nodes using Global Positioning 

System (GPS), and successive queries and replies between 

adjacent nodes [4][5]. This method assumes that (i) a node 

inquiring information (start node) knows the location of 

destination of which the starting node needs information, for 

example by use of a map, (ii) some node in the neighbor area 

of the destination may have the information about the 

destination which itself is not a ad hoc node, and (iii) each 

node has GPS terminal.  Fig.1 shows a rough sketch of our 

proposed procedure. To prevent the widespread diffusion of 

messages in the network which is the major problem with SF, 

the proposed method uses the location information so that 

reply packets are sent in response to queries only which have 

been sent in the pre-defined reply area (hatched area in Fig. 1) 

direction of the destination.   

 

(a) Outline of the proposed method (Step 1) 

 

(b) Outline of the proposed method (Step 2) 

Fig.1 Outline of the GPS based discovery mechanism 

 By the computer simulation, it is clarified that this 

method reduces to 25% of simple flooding in best case both 

the number of packets transmitted/received and the power 
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consumed in the entire network (Fig. 2), and showed power 

needed to GPS operation is negligible. 

 

Fig.2 Effect of GPS based discovery 

2.3 Load-aware broadcast-type contents 

delivery  

 In emergency situation (phase 1), a number of specific 

nodes may send urgent audio or video messages, such as 

evacuation instructions for disaster victims or instructions for 

rescue teams, to the entire network at a high bit rate without 

using any routing protocol. Flooding is the only delivery 

method to achieve this. However, as described in 3.2, 

conventional SF is not well suited for this purpose because it 

results in broadcasting too many unnecessary packets, which 

increases the chance of data collisions and buffer overflows, 

resulting in an increase in packet loss. Nodes in an ad hoc 

network are generally powered by batteries with a finite 

capacity and so reducing power consumption is an important 

issue. Since the transmission of redundant packets accelerates 

the consumption of battery power, an effective network 

protocol-based solution to reducing power consumption is to 

reduce the transmission of redundant packets. 

 Hence, we have proposed an effective data broadcasting, 

“Load-aware flooding” [6][7]. Our method uses the number 

of packets waiting for transmission in the MAC output queue 

of each node to obtain neighboring load information without 

periodical transmission of Hello messages. The reason why 

our method uses the number of packets in the queue is that at 

the time when the packets exist in a node’s queue, the node is 

going to transmit frames exceeding its link capacity. If the 

node rebroadcasts a message in this situation, frame loss and 

collision due to buffer overflow are likely to happen. 

Therefore, the number of packets in the queue is useful 

information to recognize the load conditions without any 

status informing packet transmission. 

 By the computer simulation, it is clarified that this 

method reduces to 15% of simple flooding in best case for 

both the number of packets transmitted/received and the 

power consumed in the entire network (Fig.3). Our method 

also increases packets reachability from 71% to 99.9%, which 

means most of packets  penetrate all over the network. 

 

Fig.3 Effect of Load-aware Flooding 

2.4 Effective secure communication 

 After contents discovery and routing table construction, 

the network enters stable phase 2.  In phase 2, secure 

communication may be needed also in the MANET.  The 

main problem of any public key based security system is to 

make each user’s public key available to others in such a way 

that its authenticity is verifiable. In mobile ad hoc networks, 

this problem becomes even more difficult to solve because of 

the absence of centralized services, and possible network 

partitions. More precisely, two users willing to authenticate 

each other are likely to have access only to a subset of nodes 

of the network. The best known approach to the public key 

management problem is based on PKI (public Key 

Infrastructure) [8]. A public key certificate is a data structure 

in which a public key is bound to an identity by the digital 

signature of the issuer of the certificate. However, in a 

MANET without any infrastructure support, most traditional 

solutions are not directly applicable. The goal of our research 

is to understand the specific challenges for providing key 

management in MANETs and use this understanding to 

design an effective key management framework. 

 We, for the purpose, proposed a Trust Relationship 

based Self-Organize Key Management system [9][10] that 

allows users to create, store, distribute, and revoke their 

public keys without the help of any trusted authority or fixed 

server. Web-of-Trust fits naturally with MANETs, relying on 

each mobile node to issue certificates to other nodes at their 

own discretion [11]. This approach, however, suffers from 

frequent communication and much memory spaces because it 

must collect all the public key certificates beforehand. In 

order to resolve this defect, our approach, instead of 

collecting certificates themselves, generates and modifies 

“trust relationship lists” describing the trust relationship only 

without certificates among users. 
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 By computer simulation, our proposal drastically 

reduces number of packets (1/100 to the existing method) 

(Fig.4). 

 

Fig.6 Effect of Trust Relationship based Self-Organize Key 

Management 

3 Integrated evaluation   

 As shown in the previous chapter, our proposing 

methodologies are effective to reduce redundant packets that 

results in reduction of power consumption.  In this chapter, 

we will evaluate what methodologies are used in a real 

situation and to what extent integrated three methodologies 

are effective. 

3.1 What methodologies are used in real 

situation 

 In section 2.1, we have defined two different phases 

after the disaster happened, that is Phase 1: transient and 

Phase 2: stable.  In those phases, what kind of communication 

is needed? And what kind of communication is executable?  

The purpose of network is of course communication. The 

MANET that might be established after the disaster is also 

aiming at communication.  

3.1.1 Phase 1 

 Suppose emergency situation happens and neither 

communication nor power infrastructure becomes out-of-

order. It is very difficult to realize one-to-one- 

communication. It is because as shown in 2.2, in Phase 1, IP 

addresses are not known to others. But in this phase you 

probably need communication to get information from and to 

tell your situation to other people. The former is "information 

discovery" related to 2.3 and the latter is information 

distribution (broadcasting) related to 2.3. Fortunately, these 

communications can be executed without any specific 

addresses but with "broadcast" address only. 

3.1.2 Phase 2 

 After appropriate time, the MANET will be stable. What 

is stable means that each node has his own routing table and 

is able to make a point-to-point (p-p) communication. In this 

phase, normal p-p, ciphered p-p related to 2.4, and 

broadcasting communications will be needed. As for the 

discovery, p-p communication may cover the need. 

3.2 Effect of methodologies when combined 

 Here we evaluate the integrated effect of our proposal in 

a real traffic condition according to the investigation in 3.1. 

Assumed parameters and values are as follows. Values are 

used and got in the simulation. Here, traffic ratio means ratio 

of how many users try the methodology to number of all the 

users during the observation time frame. 

Table 1 Parameters 

name of 

methodologies 
items parameters/values 

common 

number of network 

nodes 
100 

average # of hops 

between nodes 
3 

discovery 

traffic ratio Rd 

#of packets sent (SF) 

for 1 trial 
100 

# of packets sent 

(proposal) for 1 trial 
25 

# of response packets 5 

broadcast 

traffic ratio Rb 

# of packets (SF) for 

1 trial 
35,000 

# of packets (LDCF) 

for 1 trial 
5,000 

p-p 

 data traffic ratio  Rp 

traffic ratio of OLSR 

hello 
0.1 

# of packets per 

communication 
5 

secure 

communication 

data traffic ratio 

(ciphered) 
Rc 

 

3.2.1 Phase 1 

 As discussed in 3.1.1, in this phase, Discovery and 

Broadcasting are the main methodologies used. 
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(1) Discovery 

 100*Rd nodes initiate discovery.  Simple Flooding 

discovery needs 100 packets for one discovery but our 

proposal needs 25. After discovery, discovered node responds 

to the initiator with 5 packets (same number as normal p-p 

data) and those make 3 hops. So, the average number of each 

methodology for discovery produces following numbers of 

packets. 

SF:                      [packets] (1) 

Our proposal:                  [packets]    (2) 

(2) Broadcasting 

        nodes broadcast information.  Simple 

flooding case delivers 35,000 packet in average for one 

broadcast.  Our proposal (LDCF) sends 5,000 packets. 

SF:                   [packets] (3) 

Our proposal:                packets]    (4) 

(3) Packet reduction effect in phase 1 by our proposal 

 By equations (1) through (4), the average number of 

transmitted packets for existing and our proposed methods 

will be; 

Existing (SF):                          [packets] (5) 

Our proposal:                       [packets]    (6) 

3.2.2 Phase2 

 As described in 3.1.2, in this phase 2, normal p-p 

(ciphered and unciphered), ciphered p-p, and broadcasting 

communications will be needed.  

(1) normal p-p data (ciphered + unciphered) 

        nodes make p-p data communications each of 

which contains 5 packets in average and travels through 3 

hops. Here we assume all the nodes use OLSR [12] as a 

routing protocol. Then average number of packets related to 

normal p-p data communication is: 

                     [packets]  (7) 

(2) Secure communication (ciphered) 

         nodes make secure communication. In the 

existing method, all the nodes must exchange their own 

certificates beforehand.  Each exchange is made by 

broadcasting so that one certificate must be broadcasted 100 

times. On the contrary, our method exchanges certificate only 

when normal p-p data communication happens. So, assuming 

number of packets to send a certificate is 2, average number 

of packets needed to ciphered communication becomes as 

follows. 

Existing:                       [packets] (8) 

Our proposal:                                 

                   [packets]  (9) 

(3) Broadcasting 

 This is same as equations (3) and (4). 

(4) Packet reduction effect in phase 2 by our proposal 

 By equations (7), (8), (9), (3) and (4), the average 

number of transmitted packets for existing and our proposed 

methods will be; 

Existing:  

                               [packets]  (10) 

Proposal: 

                               [packets]  (11) 

3.2.3 Evaluation 

 Here, we assume actual number for traffic ratio and 

evaluates the effect of our proposal specifically. 

(1) Assumption (phase 1) 

- Rd: 0.05 (about 5 users will make discovery) 

- Rb: 0.05 (about 5 users will make broadcast) 

 Then, equation (5) becomes 175575 and (6) does 25200, 

so that reduction ratio is 14%. 

(2) Assumption (phase 2) 

Rp: 0.5  (about 50 users will make p-p communication) 

Rc: 0.01 (about 1 user will make discovery) 

Rb: 0.01 (about 1 user will make discovery) 

 Then, (10) becomes 55750 and (11) becomes 5752, 

so that reduction ratio is 10%. 

 These are just an example value but anyhow, in both 

phases 1 and 2, dominant traffic is broadcasting. In phase 2, 

however, the reduction effect of our proposal for secure 

communication is a kind of large, so that total reduction 

ratio is less than that in phase 1. 
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4 Conclusion 

 This paper summarizes achievement of ULPDDNS 

project for the network layer. It explained our proposed 

methodologies to reduce redundant packets for information 

discovery, broadcasting, and secure communication. It also 

shows effectiveness of each proposal. And it evaluates the 

integrated effects of those three proposal and shows our 

proposals drastically reduces redundant packets, that is , the 

reduction ratio becomes around 10% under some assumption. 

 From now, to finalize our project, we will make easy-to-

understand explanation and deploy fruitful results to coming 

implementation oriented projects. 
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Abstract – Ad hoc networks are being studied as being 

resilient in a disaster situation. This paper considers cases 

where a specific number of nodes in an ad hoc network 

broadcast video and audio streams to the entire network. For 

this purpose, we have already proposed Load and Battery 

Charge Oriented Flooding (LBF) which reduces degradation 

in delivery quality, and energy consumption, and prevents 

nodes from being interrupted due to the complete discharge of 

their batteries. This paper shows performance evaluation of 

our method through the network simulation and confirms that 

LBF can prolong a network life time without degradation of 

delivery quality. 

Keywords: Ad Hoc Network, Broadcast, Flooding, Battery, 

Low Power Consumption 

 

1 Introduction 

 Large-scale disasters often disable existing 

communications infrastructures or render stable power supply 

to communications terminals or base stations difficult. It is 

therefore important to study networks that can operate with 

low power consumption. Ad hoc networks are being studied 

as being resilient in a disaster situation [1]. 

 This paper considers cases where a specific number of 

nodes in an ad hoc network broadcast video and audio streams 

over the entire network. In a disaster, several numbers of 

specific nodes will send urgent audio or video messages, such 

as evacuation instructions for disaster victims or instructions 

for rescue teams, to the entire network at a high bit rate 

without using any routing protocol. Flooding is the only 

delivery method to achieve this. However, conventional 

Simple Flooding (SF) [2] is not well suited for this purpose 

because it results in broadcasting too many redundant packets, 

which increases the chance of data collisions and buffer 

overflows, resulting in an increase in packet loss. Therefore, it 

is necessary to study how to maintain sufficient packet 

reachability. There have been some proposals for revising 

Simple Flooding to reduce redundant re-broadcasts [3-5]. 

 Nodes in an ad hoc network are generally powered by 

batteries with a finite capacity and so reducing power 

consumption is an important issue. When an ad hoc network 

delivers video and audio streaming data, which generates 

packets at a high rate, the battery charge of nodes will 

dissipate rapidly. As a result, many nodes will stop 

functioning and the network’s delivery capacity will fall. It is 

imperative to reduce redundant transmissions of packets in 

order to reduce the power consumption of nodes. In addition, 

it is necessary to reduce the chances of nodes becoming 

inoperative due to the complete discharge of their batteries. 

 To sum up, if we are to broadcast streaming video and 

audio data in a disaster situation, it is necessary (1) to achieve 

high packet reachability and reduce the degradation of 

delivery quality, (2) to reduce the energy consumption of 

nodes to make effective use of their battery charge, and (3) to 

reduce the chances of nodes becoming inoperative due to the 

complete discharge of their batteries. To achieve broadcast 

streaming method satisfying above three requirements, we 

have already proposed Load and Battery Charge oriented 

Flooding (LBF) [6]. This paper shows the evaluation of basic 

performance of LBF through the network simulation and 

confirms that our method can improve energy efficiency 

maintaining packet reachability. In addition this paper shows 

the evaluation of a network running time and confirms that 

LBF can prolong network running time without degradation 

of delivery quality. 

 Section 2 explains existing methods and their problems. 

Section 3 describes the proposed method. Section 4 shows the 

effectiveness of the proposed method using network 

simulation in terms of energy efficiency and packet 

reachability. Section 5 shows the evaluation of the network 

running time. Section 6 gives the conclusions. 

2 Existing methods and their problems 

 As mentioned in Section 1, Simple Flooding (SF) 

[2] is the most frequently used broadcast-type delivery. The 

basic operation of SF is as follows: A node that originates 

packets (initiator node) broadcasts them. These packets reach 

all the nodes that exist within the area covered by the radio 

wave transmitted by the initiator node. A node that has 

received one of these packets re-broadcasts it. This process is 

repeated by subsequent nodes until the packets reach all the 

nodes in the network.  When it is applied to the streaming 

delivery of video and audio data, which generates packets at a 

458 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



high rate, redundant re-broadcasts occur, increasing the 

chances of collisions and buffer overflows, and resulting in a 

considerable degradation in delivery quality. 

2.1 Counter-based schemes 

 There have been several proposals to revise Simple 

Flooding in order to reduce redundant broadcasts [3-5]. A 

well-known revision of Simple Flooding that does not depend 

on a special device, such as a Global Positioning System 

(GPS), is a Counter-based Scheme [3-4]. 

 In this scheme, a node determines whether to re-

broadcast a packet on the basis of the number of times the 

same packet has been received. A packet is identified by the 

combination of the ID of the node that generated it and the 

packet sequence. The basic operation of this scheme is as 

follows. When a node receives a packet, it sets the counter for 

that packet to “1”. If it receives the same packet again during 

an arbitrary pre-defined time (decision_time), “1” is added to 

the counter. When the counter value reaches the counter 

threshold (c_threshold), re-broadcasting of that packet is 

suspended. If the counter value has not reached the counter 

threshold (c_threshold) after an elapse of decision_time, the 

packet is re-broadcast. 

 It is to be noted that the performance of this scheme 

greatly depends on c_threshold [4]. In a network in which 

nodes are scattered sparsely, re-broadcasts are limited when 

c_threshold is small (e.g., 2), but packet reachability is 

reduced. In a network in which nodes are distributed densely, 

c_threshold does not affect packet reachability too much. It is 

desirable to set c_threshold to 3 or 4. It has been reported that 

if c_threshold is as large as 6, this scheme behaves much like 

Simple Flooding, and thus cannot reduce redundant re-

broadcasts [7]. 

 To solve the above problem, Adaptive Counter-

based Scheme, which sets c_ threshold dynamically, has been 

proposed [8]. In this scheme, each node sends a Hello packet 

periodically. These packets enable a node to determine the 

number of its surrounding nodes. The node determines 

whether to re-broadcast a packet on the basis of this 

information. A problem with this scheme is that the periodic 

transmission of Hello packets consumes the battery charge of 

each node and the wireless resources of the network. 

 While these two schemes reduce redundant re-

broadcasts, they do not take the remaining charge of node 

batteries into consideration. They make no attempt to reduce 

re-broadcasts by nodes with low remaining battery charge, 

thereby increasing the chance that such nodes become 

inoperative due to the complete discharge of their batteries. 

2.2 Existing battery-aware flooding methods 

 There have been a few proposals that take the remaining 

charge of node batteries into consideration [7-8]. Koide et al. 

[7] proposed a flooding scheme that uses a routing protocol. It 

sets a delay time that is dependent on the remaining battery 

charge. If a node receives the same packet again within its 

delay time, it discards the packet. Kasamatsu et al. [10] 

proposed a scheme in which the delay time set for each node 

is dependent on the distance from neighboring node, which is 

obtained using GPS, and the remaining battery charge. A node 

that has received the same packet again within its delay time, 

discards the packet. This scheme operates in such a way that 

nodes with a low battery charge are less likely to be selected 

for the re-broadcasting of packets. The scheme presented in 

[7] assumes the use of a routing protocol for the propagation 

of messages, and does not assume applications that generate 

packets at a high rate, such as a streaming delivery of video 

and audio data. Nor has it been evaluated for such 

applications. The scheme presented in [8] assumes that each 

node has a GPS and thus can obtain its location and distance 

information. However, in a disaster, it cannot be ensured that 

the correct location information can be obtained using a GPS. 

Therefore, it is unclear whether these schemes can be applied 

to the situation described in Section 1. 

 

3 Proposed method 

3.1 Assumed network environment and requirements 

  This paper focuses on unidirectional live streaming 

delivery. The network nodes are mobile communications 

terminals that are not equipped with any special device, such 

as a GPS, and can communicate over an IEEE802.11-series 

wireless LAN. No QoS (Quality of Service) control is 

considered. Packets are sent on a best-effort basis using 

UDP/IP. 

 We consider the application of our method to the 

situation described in Section 1, and study how to meet the 

following three requirements for the streaming delivery of 

video and audio data, which generates packets at a high rate. 

(i) The redundant transmissions of packets should be reduced 

in order to reduce degradation in delivery quality due to 

collisions and power consumption by terminals. (ii) Re-

broadcasts by nodes with a low remaining battery level should 

be avoided in order to reduce the chance of these nodes 

becoming inoperative due to complete discharge of their 

batteries. (iii) Packets for checking the network state, such as 

Hello packets, should not be used, in order to reduce the 

network load and power consumption by nodes. 

3.2 Load and Battery Charge Oriented 

Flooding (LBF) 

To meet the requirements listed in Section 3.1, We have 

already proposed a flooding method that is sensitive to the 
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remaining battery levels of nodes, the existence of packets on 

the MAC transmission queue, and uses a counter in 

determining whether a packet should be re-broadcast or not 

[6]. We call this scheme Load and Battery Charge Oriented 

Flooding (LBF). Requirement (i) is met as follows. Each node 

monitors the number of packets existing in its MAC 

transmission queue at certain intervals. Then, if there is at 

least one packet in the MAC transmission queue, the node 

judges it is in a high load condition, and abandons re-

broadcast. In addition, as is used in existing counter-based 

schemes, LBF determines whether to re-broadcast packets on 

the basis of the number of times that the same packet has been 

received, thereby reducing the transmission of redundant 

packets. Requirements (ii) and (iii) are satisfied as follows. 

Existing counter-based schemes use a fixed value for 

c_threshold, and thus cannot operate in a way that is sensitive 

to the remaining battery level of each node. LBF sets 

c_threshold dynamically in such a way as to reduce re-

broadcasts by nodes with a low battery level. This makes it 

unnecessary for each node to send monitoring packets to its 

surrounding nodes in order to learn about their remaining 

battery levels. Nodes can operate autonomously. 

 

 The specific operation of the proposed method is as follows: 

For each node, the user sets, in advance, the maximum value 

of the counter threshold (max_c_threshold), and defines the 

range of a value generated by Random(), a function that 

generates a random value. Each node monitors its remaining 

battery level at certain intervals (get_interval), and reflects the 

value obtained in a variable, remain_battery. Then, 

c_threshold is calculated using the following equation: 

c_threshold = 

ceil( max_c_threshold * (remain_battery / max_battery))   (1) 

where ceil(Real x) returns the value of a real variable, x, 

rounded up to the nearest integer. The value set in 

max_c_threshold and the value set in c_threshold, which is 

determined according to the remaining battery level. 

A node that receives a packet from a node that initiated the 

packet (initiator node) operates as follows: 

1. The node that has received the packet sets the packet’s 

counter (counter) to “1” if it had not received the same 

packet earlier. 

2. The time (decision_time) for which the node waits 

before it determines whether to re-broadcast the received 

packet is determined as follows: 

decision_time = Random() * 2(max_c_threshold – c_threshold)  (2) 

3. The node waits during decision_time. If during this time 

it receives the same packet again, it adds “1” to counter. 

Variables and parameters 

 ○Variable: Integer queue 

 // The num. of packets at the MAC transmission queue. 

○Variable: Real remain_battery 

 // The remaining battery level at the node. 

○Variable: Real max_battery 

 // The maximum battery level at the node. 

○Variable: Integer c_threshold 

 // The threshold value of the counter. 

○Variable: Integer max_c_threshold 

 // The maximum value of c_threshold 

○Variable: Integer counter 

 // The number of times that the same packet has been received. 

○Parameter: Integer get_interval 

 // The time interval for getting the num. of packets at the 

MAC transmission queue and the remaining battery level. 

○Procedure: getQueue() 

 // The function to get the num. of packets at the MAC transmission queue. 

○Procedure: getBattery() 

 // The function to get the remaining battery level. 
 

 

(a) The method of getting data on the remaining battery level 

Executed at certain intervals (get_interval) 

 queue  getQueue() 

if (queue > 0) 

 then (b) is not executed (all re-broadcast is canceled) 

 else  remain_battery  getBattery() 

 c_threshold 

 ceil(max_c_threshold*(remain_battery /max_battery)). 

end if  

End.  
 
 
(b) The receiving and rebroadcast procedure 

 
Receiving a packet. 
if (The same packet as one that the node has already received) 

then END. 

else counter  1. 

 decision_time  Random() * 2
(max_c_threshold - c_threshold)

 . 

 while (decision_time) 

    if (Receiving the same packet again)  

  then counter++. 

  end if  

 end while 

 if (counter >= c_threshold) 

 then Rebroadcast is cancelled. 

 else Rebroadcast the packet. 

 end if 

end if 

End. 
 

Fig.1 The operation of a node for LBF 
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4. If, at the expiry of decision_time, counter does not 

exceed c_threshold, the received packet is sent to the 

lower layer and re-broadcast. 

4 Evaluation of basic performance 

 This section compares the basic performance of the 

proposed LBF with those of existing schemes, in the video 

streaming, using a network simulator, OPNET [9].  

4.1 Simulation configurations 

 The simulation configuration is as follows: Two 

geographical network areas are considered for simulation. In 

Space A, the area is 1000 m x 600 m, representing a network 

in which nodes are densely distributed. In Space B, the area is 

2000 m x 1200 m, representing a network in which nodes are 

sparsely distributed. There are 100 nodes in the network, of 

which two nodes originates the video streams. The MAC layer 

is IEEE802.11b. The data rate is 2Mbps. The transmission 

power is 0.005W. The MAC layer of the nodes is 

IEEE802.11b. The data rate is 2 Mbps. The transmitted power 

is 0.005W. The received power threshold above which 

packets can be received successfully is -85 dBm. Nodes are 

initially located at random. All nodes move at a speed of [0.00, 

4.00] m/s according to the random waypoint model. This is 

intended to simulate the walking of humans. A node that has 

received a packet from the initiator node re-transmits it using 

one of three delivery methods: the existing Simple Flooding 

(SF), the existing Counter-based scheme using a fixed 

c_threshold, and the proposed method. The parameters used 

in each method are as shown in Table 1. Using different 

values of the fixed c_threshold, three cases are considered for 

the Counter-based scheme: C4, C3 and C2. Similarly, using 

different values of max_c_threshod, three cases are 

considered for the proposed method: LB4, LB3 and LB2. In 

LBF, the interval at which the remaining battery level is 

monitored (get_interval) is 1 seconds. 

Specific details of the video streams used are as follows: 

The use of H. 264 codecs [10] is assumed. The initiator node 

generates video streams as follows. On the “highway” [11] 

that uses the Quarter Common Intermediate Format (QCIF), 

1,000 frames are encoded using jm14.2 [10]. The frame rate is 

30 frames/s (i.e., a frame is generated every 33 ms). There are 

I frames and P frames and the group of pictures (GoP) is 10. 

Figure 2 shows the packet size distribution for 1,000 initiated 

packets. The initiator node repeats the transmission of these 

1,000 frames 54 times, so generating 54,000 packets, which is 

equivalent to a 30-minute-long video stream. To take account 

of the rate at which packets are generated, the value generated 

by Random() at each node is set to [0, 33] ms. 

 The remaining battery level of a node is simulated as 

follows. The maximum battery level (max_battery) is 500 

W*s. At the start of the simulation, the initial battery level of 

the initiator node is 500W*s (i.e., 100% full), and those of 

other nodes are random in the range [100, 400] W*s (i.e., 

20% to 80% full). 

 Feeney et al. [12] have indicated that the transmission 

power, tp [μW*sec], and the reception power, rp [μW*sec], 

for a single packet are as follows: 

tp = 2. 000 * frame length [byte] + 270  (3) 

rp = 0. 500 * frame length [byte] + 60  (4) 

 We assume that the above power is consumed by a node each 

time it sends or receives a packet. Any power that may be 

consumed while no packet is being sent or received is 

disregarded. When the remaining battery level of a node is 

zero, the node ceases to operate. 

4.2 Evaluation items 

 The simulator executes 10 trials for each random seed. 

The average for all the trials is calculated for each of the 

following evaluated items. 

(i) Average remaining battery level at the end of the 

streaming [W*s] 

This is the average remaining battery level at the end of the 

streaming for all the nodes in the network. The larger this 

value, the better. 

(ii) Average energy consumed by a node till the end of the 

streaming [W*s] 

This is the average energy consumption per node from the 

start until the end of the streaming for all the nodes in the 

network. The smaller this value, the better.  

Table 1 Parameters for each delivery method 

 c_threshold max_c_threshold 

SF - - 

C4 4 (fixed) - 

C3 3 (fixed) - 

C2 2 (fixed) - 

LB4 Determined by Eq.(1) 4 

LB3 Determined by Eq.(1) 3 

LB2 Determined by Eq.(1) 2 
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Fig.2 Frame size distribution of generated video 
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(iii) Percentage of nodes whose operation was stopped due 

to complete battery discharge [%] 

This is the percentage of the nodes that had ceased to operate 

by the end of the streaming among all the nodes in the 

network. The smaller this value, the better. 

(iv) Average packet reachability [%] 

Packet reachability is the percentage of the nodes that have 

received successfully a packet generated by the initiator node 

among all the nodes in the network. The average packet 

reachability is the average for all the packets generated by the 

initiator node. The larger this value, the better. 

4.3 Evaluation results 

 The evaluation result is shown in Fig. 3. 

(i) Average remaining battery level at the end of the 

streaming 

 LB2 to LB4 registered higher values than any existing 

scheme, in both Spaces A and B. In particular, LB2 produced 

the highest value in both Spaces A and B. These results 

indicate that the proposed scheme can preserve a higher 

battery level than the existing schemes. 

(ii) Average energy consumed by a node till the end of the 

streaming 

 In both Spaces A and B, LB2 to LB4 consumed less 

energy than the existing schemes. In particular, LB2 

consumed the least power, 29.6% down from SF, and 33.4% 

down from C2 in Space A. 55.4% down from SF and 42.9% 

down from C2 in Space B. 

(iii) Percentage of nodes whose operation was stopped due to 

complete battery discharge 

 The deviation bars show the (average +/- standard 

deviation). LB4 to LB2 produced a lower percentage than any 

existing scheme in both Space A and B. These results indicate 

that the proposed method results in fewer cases in which 

nodes become inoperative due to complete discharge of their 

batteries than the existing schemes. 

(iv) Average packet reachability [%]  

 The deviation bars show the (average +/- standard 

deviation). LB4 and LB3 produced higher average packet 

reachability than any existing scheme in both Spaces A and B. 

In Space B, the average packet reachability value of LB2 is 

lower than that of C2, which registered the highest value 

among the existing schemes. 

4.4 Discussion 

  The simulation results described in the above 

section allow us to conclude the following. In comparison to 

existing methods, the proposed method can (i) increase the 

average remaining battery level at the end of streaming, (ii) 

reduce the average energy consumed by nodes from the start 

to the end of the streaming, and (iii) reduce the percentage of 

nodes which became inoperative due to complete battery 

discharge. These affects are due to LBF’s mechanism of 

dynamically setting c_threshold according to the remaining 

battery level of each node -- in particular of avoiding cases 

when nodes with a low battery level re-broadcast packets. 

LB2 produced the best performance in these three respects, (i), 

(ii), and (iii). The delivery quality was evaluated in terms of 

(iv) the average packet reachability. In networks where nodes 

are distributed densely (Space A), the proposed method 

produced higher average packet reachability than Simple 

Flooding or Counter-base schemes with fixed c_threshold 

(C4-C2). In networks where nodes are distributed sparsely 

(Space B), LB2 performed the lower packet reachability than 

C3, LB4 and LB3. To maintain packet reachability at that 

time, max_c_threshold should not be too small value such as 

2. On the other hand, packet reachability for LB4 and LB3 are 

greater than SF and C4-C2. Therefore, LB4 and LB3 should 

be applied to the delivery parameter in the proposed method. 

5 Evaluation of network runninng time 

and packet reachability 

 To evaluate the proposed method can prolong network 

lifetime without degradation of delivery quality, in this section, 
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we evaluate the network running time, which is the elapsed 

time when specific percentage of nodes stopped due to 

complete battery discharge, and packet reachability. 

5.1 Simulation configurations 

 The simulation configuration is the same in Section 4.1. 

Each initiator node generates 1,000 frames repeatedly based 

on the frame size distribution which is shown in Fig.2.  

5.2 Evaluation items 

 The simulator executes 10 trials for each random seed. 

The average for all the trials is calculated for each of the 

following evaluated items. 

(v) % of stopped nodes against elapsed time 

The elapsed times when specific percentages (1-5%) of nodes 

stopped ware evaluated. The longer time, the better. 

(vi) Average packet reachability against % of stopped nodes 

The percentage of the nodes that have received successfully a 

packet generated by the initiator node among all the nodes in 

the network was evaluated at the time when 1-5 percentages 

of nodes stopped. The larger this value, the better.  

5.3 Evaluation results 

 The evaluation result is shown in Fig. 4.  

(v) % of stopped nodes against elapsed time 

LB2 to LB4 performed the longer running time than the 

existing methods, in both Space A and B. In particular, LB2 

performed the longest running time. These results indicate 

that our methods can prolong the network lifetime. 

(vi) Average packet reachability against % of stopped nodes 

The result in Fig.4b shows that LB4 performed the highest 

value regardless of the percentage of stopped nodes. In other 

words, LB4 is the best in terms of packet reachability. 

Considering the both results Fig.3b and Fig.4b, the packet 

reachability for LB4 and LB3 are greater than or equals to 

that for the existing methods at the time when several nodes 

stop. This means that LB4 and LB3 can maintain the packet 

reachability whether several nodes stop or not. On the other 

hand, as shown in Fig.3b, the packet reachability for LB2 was 

not as high as that for LB4 and LB3. On the contrary, Fig.4b 
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indicats that LB2 performs extremely low packet reachability 

at the time when several nodes stops. 

5.4 Discussion 

 The simulation results described in the above section 

allow us to conclude the following. In comparison to existing 

methods, the proposed method (LB2-LB4) can prolong the 

network running time. LB2 which sets the lowest 

max_c_threshold value performed the longest running time. 

However, considering the case where several nodes stop due 

to the battery discharging, LB2 performed the lower packet 

reachability than any other delivery parameters. To maintain 

packet reachability at that time, max_c_threshold should not 

be too small value such as 2. On the other hand, packet 

reachability for LB4 and LB3 are greater than or equal to SF 

and C4-C2. Therefore LB4 and LB3 should be applied to the 

delivery parameter in the proposed method. 

6 Conclusions 

 This paper has considered broadcast streaming in ad hoc 

networks which can achieve to maintain delivery quality and 

long network lifetime. For this purpose, we have already 

proposed Load and Battery Charge Oriented Flooding (LBF), 

in which re-broadcast at the loaded nodes are canceled and the 

counter threshold used to determine whether a packet should 

be re-broadcast or not, c_threshold, is dynamically set 

according to the remaining battery level of each node. In this 

paper, the basic performance of the proposed method has 

been evaluated using the network simulation. The evaluation 

results have shown that, in comparison to existing flooding 

schemes, the proposed method can reduce energy 

consumption by nodes, reduce the chances of nodes becoming 

inoperative due to battery complete discharge of node 

batteries, and avoid degradation of delivery performance. This 

paper also evaluated the network running time and the packet 

reachability. The evaluation results have shown that, in 

comparison to existing flooding schemes, LB4 and LB3 in the 

proposed method can prolong the network running time 

without degradation of delivery performance. In future, we 

will evaluate the QoS of played-back video and audio streams 

and implement on communication devices. 
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Abstract— Ultra-low-power protocol handling is indispens-
able to realize and sustain the communication in ad hoc net-
work established by battery-operated devices, especially in
emergent situations. To realize the ultra-low-power, real-time
multiprocessing essential for the protocol handling should be
realized with essential power consumption in which power
consumption is confined into only target program execution.
In this paper, a data-driven processor, named ULP-CUE,
is proposed to realize the real-time multiprocessing with the
essential power consumption. The ULP-CUE is fully realized
by self-timed elastic pipeline which consumes power only for
circuits contributing processing as a result of localized and
exclusive data transfer, and its instruction execution pipeline
is designed to transfer data to only stages essential for
executing instructions. The power-performance evaluation
with a prototype LSI shows that the proposed ULP-CUE
can work with approximately 40% of energy consumption
compared to the conventional implementations of the real-
time multiprocessing.

Keywords: data-driven processor, protocol handling, real-time
multiprocessing, self-timed pipeline

1. Introduction
Low-power communication protocol handling is indis-

pensable to enhance the sustainability of communication,
especially in ad-hoc networks of mobile devices linked
by wireless communication schemes such as MANET [1].
To ensure the communication, processors should execute
required communication protocol handling in real-time for
satisfying both turn-around and response times required, and
also realize multi-processing dealing with multiple streams
input into the communication protocol handling as long as
their processing capability is available in order to satisfy a
given throughput.

To realize such real-time multiprocessing without any
extrinsic overheads on program execution, a data-driven pro-
cessor named CUE and its successors are already studied [2],
[3], [4]. By fully utilizing the no-extrinsic-overhead real-
time multiprocessing of the CUE, the authors conduct a
collaborative research project, named ULP-DDNS, to realize
an ultra-low-power networking system [5].

The CUE is a realization of data-driven processing scheme
in which instruction execution is initiated on the arrival of
input data. This passive instruction execution realizes the
real-time multiprocessing without extrinsic controls such as
context switching violating both the real-time constraint and
power saving. The circuit of the CUE is realized only by self-
timed elastic pipeline (STP) in which only pipeline stages
with valid data drive their pipelined logics autonomously,
i.e., the signal gating is provided naturally at pipeline stage
level. Moreover, the empty stages without valid data can be
powered-off by using a stage-by-stage power gating scheme
to reduce leakage current through the empty stages [6].

However, the instruction execution pipeline in the
originally-proposed CUE harms power-performance effi-
ciency of the protocol handling. This is because the conven-
tional pipeline executing instructions enforces every data to
pass through the matching stage which detects the arrival
of two operands for an instruction even though most of
instructions in the protocol handling can be executed with
single operand. To eliminate the redundant processing time
and power dissipation due to the matching-centric instruc-
tion execution pipeline, ultra-low-power CUE (ULP-CUE)
realized by a circular pipeline with a shortcut to bypass the
matching stage is already being studied [7].

In this paper, the power-performance of the ULP-CUE
is evaluated by using a prototype LSI chip of the ULP-
CUE. To verify the essential power consumption of the
ULP-CUE, the power consumption of a protocol handling is
measured by using its evaluation board and it is compared
with that of the conventional CUE. The rest of paper is
organized as follows. Section 2 describes the requirement
for a networking platform to realize the ultra-low-power
protocol handling, and the architecture of the ULP-CUE is
explained in Section 3. The power-performance verification
is shown in Section 4, and then our conclusion is discussed
in Section 5.

2. Requirement to realize ultra-low-
power networking platform

To realize the real-time multiprocessing with ultra-low-
power, the power should be consumed only for executing
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instructionsof target programs. This unique but absolutely
necessary feature is called essential power consumption in
this paper. The passive behavior realized by data-driven
principle makes it possible to realize the essential power
consumption.

This section describes how the real-time multiprocessing
with essential power consumption is realized based on the
data-driven principle.

2.1 Real-time multiprocessing with essential
power consumption

The real-time multiprocessing can be achieved if the
execution of each target process is initiated as soon as its
input data arrive while the target processes are executed
simultaneously and independently from each other in a pro-
cessor. To realize the real-time multiprocessing with ultra-
low-power, any overheads on process execution should be
eliminated.

The simultaneous and independent process execution
can be realized by either concurrent processing scheme
or pipeline processing scheme. The former divides spa-
tially a computational resource into multiple computational
resources to execute one process on each computational
resource, and the latter divides temporally a computation
resource into multiple computational resources which are
called stages to execute multiple processes at the differ-
ent stages. In the networking platform to execute protocol
handling, the execution order of the processes is unde-
termined before the execution because it depends on the
arrival timing of communication packets, i.e., it depends on
user’s demands. This fact imposes the dynamic allocation of
the computational resources on the processing schemes. To
realize the dynamic allocation, all computational resources
should be monitored to detect whether they are idle or not,
and target processes are assigned to the idle resources in the
concurrent processing scheme. In contrast, the dynamic allo-
cation can be realized only by assigning the target processes
to the first stage when the first stage is idle in the pipeline
processing scheme, and this simplicity results in less power
consumption; therefore the pipeline processing scheme is
indispensable to realize the real-time multiprocessing with
essential power consumption.

To realize the pipeline, the passive behavior of the data-
driven principle is exploited for providing the essential
power consumption. Self-timed elastic pipeline, which is
abbreviated as STP in this paper, is a realization of the
passive behavior of the data-driven principle in circuit im-
plementation.

In the STP, only pipeline stages with valid data are
driven exclusively, and thus power consumption is confined
into the circuit essential to execute the target processes.
This exclusive driving is realized as a result of the local
negotiation between adjacent stages. Figure 1 shows the
basic structure of the STP whose each stage consists of a
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Fig. 1: Self-timed elastic pipeline.

data-latch (DL), functional logic (FL) and transfer control
unit (C). The STP is a kind of asynchronous bundled-
data pipelines, and the local negotiation is realized by a
four-phased handshake [8]. The valid data in the STP are
transferred between adjacent stages as follows.

• Reset: After the assertion of the reset signal, the C
negates both its send signal representing transfer request
and ack signal representing acknowledge.

• The C asserts its ack signal after its send signal is
asserted.

• After the assertion of the ack signal, the preceding C
negates its send signal.

• After the negation of the send signal, the C asserts both
its gate open signal and its send signal and negates
concurrently its ack signal, only if the ack signal is
negated. As a result, the token is latched in the stage
to which the C belongs.

• The succeeding C repeats the above steps similarly to
the C.

This localized data transfer naturally results in the signal
gating at the stage level, and thus the STP confines the power
consumption by transistor switching into only the stages
executing the target processes. Moreover, the stages in the
STP can be powered off only when they are empty, i.e.,
they latch no valid data [6]. Therefore the essential power
consumption can be realized by the STP.

2.2 Data-driven processing scheme for essential
power consumption

In the real-time multiprocessing with the pipeline pro-
cessing scheme, target processes should be divided into
finer processes which can be executed concurrently, and the
pipeline execution of each finer process should be initiated
immediately after the process become executable, i.e., the
input data for the process arrives. Figure 2 illustrates the
real-time multiprocessing with pipeline processing scheme.

To keep the real-time processing of each target process,
the target processes should be finely divided for sharing a
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Fig. 2: Real-time multiprocessing.

pipeline among the target processes, and thus fine-grain par-
allelism inherent in the target processes should be exploited.
That is, instruction level parallelism (ILP) which is the
parallelism of instruction should be exploited exhaustively
because instruction is the finest executable unit of processes.

The arrival timing of the input data depends essentially
on the user’s communication demands and thus it is unfore-
seen and determined at runtime. Therefore, the data-driven
processing scheme in which instructions become executable
only after their input data arrive is a natural processing
scheme and thus should be introduced to realize the real-
time processing with pipeline processing scheme.

Figure 3 illustrates how the programs are executed by the
data-driven processing scheme. As illustrated in the figure 3,
the programs are defined by data-flow graph (DFG). The
DFG consists of nodes and arcs, and each node describes
an instruction while each arc represents the data-dependency
between two nodes. The data-dependencies between instruc-
tions represent naturally the ILP inherent in the programs,
and thus describing target program by using DFG results
in extracting the ILP in the target programs. To execute
instructions concurrently at the different pipeline stages, the
instruction execution logic is pipelined. In the figure 3,
the first stage of the pipelined instruction execution logic
is illustrated with the passage of time, by supposing the
number of pipeline stages is 3 for ease of explanation, i.e.,
the execution of each instruction is completed after 3 ticks.

The figure 3 shows that the instructions are executed
only after their input data arrive. Based on the data-driven
processing scheme, the instructions with input data can be
executed independently from each other, and thus the execu-
tion of each instruction is independent of that of the others
in the same pipeline. Therefore, the instruction execution
can be realized without any extrinsic control which stops
and resumes the execution of instructions, and the power is
consumed only for the instruction execution in principle.

In contrast, conventional non-data-driven processing
schemes are essentially the extensions of von-Neumann type
sequential processing scheme in which single program is
executed in a pipeline, and they achieve real-time processing
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Fig. 3: Data-driven processing scheme for real-time multi-
processing.
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Fig. 4: Conventional quasi-multiprocessing scheme.

by switching divided executable process units called tasks
in a pipeline. In such conventional quasi-multi-processing
schemes, data transfer among instructions is realized by
using a temporal memory mechanism called registers, and
the content of the registers, called context, belongs to one
program basically; therefore, the context of the currently
executed program should be saved and then the context of
another program to execute should be recovered into the
registers. This saving and recovering of the context is called
context-switching. Moreover, the pipeline should be flushed
before the context-switching if instructions are being exe-
cuted in the pipeline, and this pipeline flushing depends on
the arrival timing of input data. That is, to switch the tasks,
the context-switching is executed as illustrated in figure 4,
and the power is consumed not only the instruction execution
but also the context-switching and pipeline flushing. This
fact violates obviously the essential power consumption.

Consequently, the data-driven processing scheme with
the self-timed pipeline is necessary to realize the real-time
processing with essential power consumption.
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Fig. 5: Block diagram of CUE processors.

3. Ultra-low-power CUE
As described in the previous sections, the CUE and its

successors, collectively called CUE processors in this paper,
are already proposed as the implementations of the data-
driven processing scheme with the STP. The CUE processors
are designed by focusing on the performance efficiency
within a given circuit area, and thus the essential power
consumption is unrealizable by using them.

This section reveals how the CUE processors can be
optimized for the essential power consumption, and presents
an optimized CUE processor, named ULP-CUE.

3.1 Optimization of CUE processors
Figure 5 shows the functional block diagram of the CUE.

The CUE processors represents directly the data flow of
tracing the data-dependencies between instructions, and it
consists of matching memory (MM), program storage (PS),
functional processing unit (FP) and memory access (MA).
As shown in the figure 5, the CUE processors are realized
by a circular pipeline connecting the MM, PS, FP and MA
by using merge and branch stages. The merge stage accepts
tokens from two preceding stages in order of arrival and
transfers the tokens to a succeeding stage while the branch
stage transfers each token to one of two succeeding stages
selectively.

In the CUE processors, each data is packetized with
information required to execute instruction in order to pro-
cess every data independently, i.e., instructions are executed
independently from each other. This self-contained data is
called token, and the contained information is called tag. The
tag consists of operation code, destination node number and
generation. The generation is the number used to identify
the stream to which the data belongs and specify the order
of the data in a stream. On the other hand, every instruction
is assigned unique number which is called destination node
number, and the destination node number is used to identify
an instruction to which the data is input.

The MM, PS, FP and MA are used to execute an in-
struction according to the tag. The MM provides temporal
storage to keep tokens whose operation code represents
binary operation, until the arrival of the paired tokens, and
it outputs either a token containing two operands for binary
operation or a token containing single operand for unary
operation. To realize the pairing of tokens, the MM is

realized by a content-addressable memory (CAM) whose
key consists of the generation and destination node number.
The operand or a pair of operands in the token output
from the MM is processed according to the operation code
in the FP, and the FP outputs a token whose data is the
result of the operation. After that, the operation code of the
token is replaced with that of an instruction specified by
the destination node number of the token in the PS storing
instructions of the target programs.

In contrast to the original circular pipeline proposed in [2],
the PS is placed between the MM and FP to reduce power
dissipation. The MM outputs a token for binary operation
after two tokens input to the binary operation arrive, i.e., the
operation code of one of the tokens is discarded; therefore,
the power dissipation to read the operation code from the
PS can be eliminated if the PS is placed after the MM. This
change has no effects on the function of the circular pipeline
because the function of the PS is independent from that of
the FP and MA.

The circular pipeline is commonly used to execute every
instruction in order to reduce the circuit area which is rather
limited in early sub-micron process technology era and is
becoming inconsequential compared to power consumption
in deep sub-micron and beyond era. As for the power
consumption, the MM may occupy more than a half of
the power consumption required to execute an instruction
because the detection of the arrival of the tokens in the MM
is typically realized by using the CAM in which the keys
stored are thoroughly compared to the input key for every
incoming token.

Fortunately, more than a half of the instructions of
the protocol handling can be executed without driving
the MM. Such instructions are classified into two types:
single-operand instructions and single-operand with constant
instructions. An example of the former is an instruction
to realize increment/decrement operation and that of the
latter is an instruction to read/write memory with absolute
address. In this paper, these two types of instructions are
collectively called single token instructions, because they
can be executed after an input token arrives. Our previ-
ous implementation of the protocol handling reveals that
the single token instructions occupy the most part of the
DFG. For example, a DFG of UDP/IP handling shows that
approximately 80% of the executed instructions is the single
token instruction. Consequently, the circular pipeline of the
CUE processors should be revised to realize the essential
power consumption.

3.2 Optimized circular pipeline
To realize the essential power consumption, the circular

pipeline to connect the MM, PS, FP and MA should be
optimized. Obviously, the PS to fetch instructions and the FP
to operate data are indispensable to execute every instruction.
The PS and FP are used repeatedly to execute instructions
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Fig. 6: Block diagram of ULP-CUE.

in programs by tracing the data-dependencies between the
instructions. To realize this repetition directly and naturally,
the PS and FP should be connected by using a circular
pipeline as shown in figure 6(a).

To actualize the operation between two operands, the
operand arrived first should be temporally stored until the
other operand arrives. As described in the previous sec-
tion, the real-time multiprocessing is realized by concurrent
execution of multiple instructions. To make it possible to
execute instructions concurrently, the operands arriving first
should be stored separately for each instruction, and they
should be drawn after companions arrive. The storing and
drawing operands should be realized immediately after the
operands arrive in order to avoid any delay on the instruction
execution. This requirement leads to the introduction of the
MM because the CAM of the MM can realize the dynamic
allocation of memory space for newly arrived operands and
all contents of the CAM can be searched concurrently and
thus the storing and drawing can be realized without any
delays.

Unfortunately, the MM realizes such fast storing and
drawing at the expense of a large amount of the power con-
sumption as described above. In contrast, memories realized
by SRAM can store relatively large amount of data with
less power consumption, and thus they are indispensable to
store large size data. For example, the payload data of a
packet should be buffered during header manipulation of the
packet. In addition, they should store data commonly used
among the target programs. The table of IP addresses is an
example of such data. Moreover, the data determined before
the program execution, such as constants or default values
should be also stored into the SRAM-based memories. These
facts lead to the instruction of the MA stage to realize the
read/write of the SRAM-based memories.

In principle, the single token instructions can be executed
without the MM, and thus the MM should be bypassed
during the execution of them. On the other hand, the MA is

required by not only the single token instructions because the
result of the operation may be stored into the SRAM-based
memory at least. To realize the bypass for the single token
instructions, the circular pipeline shown in the figure 6(a)
should be extended as illustrated in figure 6(b). Conse-
quently, a data-driven processor realized by the optimized
circular pipeline can execute the protocol handling with the
essential power consumption. This data-driven processor is
named ULP-CUE, which stands for ultra-low-power CUE,
in this paper.

4. Evaluation on energy consumption
The ULP-CUE proposed in the previous section realizes

the protocol handling with the essential power consumption.
As a result, the ULP-CUE can reduce the energy and
execution time of the protocol handling in comparison with
the CUE processors because the single token instructions are
executed without the MM in the ULP-CUE. The reduced
execution time makes it possible to supply low-voltage
resulting in less energy. To verify the power-performance
efficiency of the ULP-CUE, the energy and execution time
of the ULP-CUE is compared to that of the CUE processors,
and the energy reduction is estimated based on a prototype
LSI of the ULP-CUE.

As a target protocol handling, UDP/IP handling is fo-
cused on because its connection-less communication real-
izes streaming with less energy in comparison to TCP/IP
handling and thus it is indispensable for the broadcast-type
information transfer in the ad hoc networks especially in the
emergent situations.

4.1 Prototype LSI
To verify the ULP-CUE experimentally, a prototype LSI

housing four ULP-CUE’s in a4.2mm2 die is designed and
fabricated by using a 65nm CMOS 7-metal-layer process.
Figure 7 shows the layout of the ULP-CUE which is
consisted of a 13-stage circular pipeline realizing the PS,
FP, MA, MM, Merge and Branch. The ULP-CUE has an
instruction set sufficient to execute the UDP/IP handling, and
the function of the ULP-CUE is verified by checking that
the outputs of the UDP/IP handling on the ULP-CUE are
identical to the expectation values of the UDP/IP handling.

Although the prototype LSI’s of the CUE processors are
already fabricated to show the feasibility and effectiveness,
they have different instruction sets and are fabricated by
using different process and CAD tools. To eliminate these
differences and clarify the difference derived from the cir-
cular pipeline, the energy and execution time of the CUE
processors are estimated based on the measured results of
the prototype LSI of the ULP-CUE.

The difference between the circular pipeline of the ULP-
CUE and the CUE processors is a bypass realized by
the BMerge and BBranch stages. To estimate the energy
and execution time for the CUE processors, the energy
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Fig. 7: Layout of prototype LSI.

and processing time of both the BMerge and BBranch is
subtracted from the energy and execution time of the UDP/IP
on the prototype LSI without any drawbacks on the CUE
processors.

4.2 Power-performance verification
To verify the essential power consumption of the ULP-

CUE, the energy required to execute the UDP/IP on the
ULP-CUE is measured by using the prototype LSI. The
program of the UDP/IP handling is consisted of two in-
dependent parts, sending-side and receiving-side programs.
Figure 8(a) shows the measured energy for the sending-
side and receiving-side programs. On the other hand, the
total amount of executed instructions is shown for each
program in figure 8(b). The energy increases approximately
in proportion to the amount of executed instructions. This
strong correlation is an evidence of the essential power
consumption, i.e., the power is consumed only for instruction
execution.

Additionally, the energy and execution time of the UDP/IP
handling on the ULP-CUE is compared that of the UDP/IP
handling on the CUE processors to show that the essential
power consumption results in the energy reduction or ultra-
low-power consumption. As discussed at the front of this
section, the reduction of the execution time results in the
energy reduction because the slack time can be used to lower
the supply voltage. To show the total energy reduction, the
energy required to execute the UDP/IP is estimated and then
the energy reduction with low-voltage supply is estimated.

To estimate the energy of the UDP/IP handling on the
CUE processor, the energy is measured by using the proto-
type LSI in which the bypass of the ULP-CUE is disabled
and then the energy consumed by the BMerge and BBranch
is subtracted from the measured energy. Generally, SPICE
simulators are used to estimate energy of circuit but their
transistor-level simulation requires tremendous amount of
time to simulate the whole circuit of the practical processors
with specific programs, and thus they are impractical in this
estimation. In the circular pipeline, the energy is consumed
mainly in the data-latch and logic circuit in every stage. The
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Fig. 8: An evidence of essential power consumption.

logic circuit of the BMerge and BBranch is consisted of only
a MUX, and its circuit size is equal or smaller compared to
the logic circuit of the other stages; therefore it has less
energy consumption compared to the others. To estimate the
energy consumed in the CUE processors without drawbacks
on the CUE processors, the logic circuits are ignored and the
energy consumed in the data latch is simulated by using the
SPICE simulator. Table 9 shows the ratio of the simulated
energy of the data-latch in every stage, and it reveals that
the energy consumed in the BMerge and BBranch is 11.78%
of the energy of the ULP-CUE. That is, the 11.78% of
the energy measured with the bypass disabled should be
subtracted to estimate the energy of the UDP/IP handling on
the CUE processors. The result of the subtraction is shown
in the figure 10.

As for the execution time of the UDP/IP handling, the time
required to execute the instructions in the critical path of the
UDP/IP handling is measured by using the prototype LSI
and the measured results are shown in figure 11. Similarly
to the energy estimated, the execution time of the UDP/IP
handling on the CUE processors is estimated by subtracting
the processing time of the BMerge and BBranch stages
from the measured execution time. The processing time of
the BMerge and BBranch is revealed by conducting gate-
level simulation with the gate-net-list and delay information
extracted from the layout of the ULP-CUE. The ratio of the
revealed processing time of every stage is shown in table 9
in which it is shown that the processing time of the bypass is
6.89% of that of the circular pipeline of the ULP-CUE. Fig-
ure 11 shows the execution time estimated by subtracting the
6.89% execution time from the execution time of the UDP/IP
handling on the ULP-CUE. Generally, the execution time of
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Fig. 9: Estimated energy and processing time of each stage.
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Fig. 10: Reduced energy.

programs is assumed to be in proportion to the supplied
voltage, which is denoted byVDD, and the energy required
to execute the program is assumed to be in proportion to
(VDD)2. Based on these assumptions, the energy of the
UDP/IP handling on the ULP-CUE is estimated as follows:
2.89 × ( 344466 )

2 approximatelyequals 1.57 for the sending-
side, and6.40× (34,59047,581 )

2 approximatelyequals 3.38 for the
receiving-side; therefor,1.57+3.38

3.97+8.29 approximatelyequals 40%
for the UDP/IP handling.

Consequently, the essential power consumption of the
ULP-CUE reduces the energy required to execute the
UDP/IP handling to approximately 40% compared to the
CUE processors.

5. Conclusion
In this paper, an optimized circular pipeline is revealed

to realize real-time multiprocessing with essential power
consumption toward ultra-low-power protocol handling, and
its essential power consumption and power-performance
is evaluated by using the prototype LSI of a data-driven

�

���

���

���

���

���

������������

�	
��

��������

���
�����

������������

�	
��

��������

����
�����������

�
�
�
��
��
�
	

�
��

�

�
	

�
��
�

�

�����

�����

�����

�����

�����

��������������

�	
��

��������

���
�����

��������������

�	
��

��������

����
�����������

�
�
�
��
��
�
	

�
��

�

�
	

�
��
�

���

���

���� !

�"��#$

Fig. 11: Reduced execution time.

processor, which is named ULP-CUE and realized by the
optimized circular pipeline. As a result of the evaluation, it is
revealed that the ULP-CUE can execute the UDP/IP handling
indispensable for ad hoc networking by consuming 40% of
energy in comparison with ever-proposed implementations
of the real-time multiprocessing.

The ULP-CUE is the central core to realize the networking
platform in the ULP-DDNS project, and its circuit level
power control scheme is also proposed in the project. The
total energy of the networking platform realized by both the
ULP-CUE and the power control scheme will be evaluated
in our future works.
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Abstract— This paper describes a runtime fine-grain power
supply scheme based on the self-timed pipeline (STP) cir-
cuits. The STP works with its local hand-shake signal so
that it does not require the global clock distribution, i.e.,
centralized control. Therefore, various power supply control
for the STP can be naturally localized in both spatial and
temporal domains without stopping its effective data transfer,
e.g., program execution in case of microprocessors. As a
result, the power supply scheme proposed in the paper can
efficiently incorporate both commonly used voltage scaling
and power gating techniques and it can further produce
synergetic effects on its total power saving nature.

In the paper, effective power-performance characteristics
of the STP supported by the proposed scheme are discussed
and analyzed in terms of break-even model for power
reduction effect against its control overhead. Furthermore,
the scheme is applied to an ultra-low-power data-driven
networking processor, named ULP-CUE, designed in 65
nm CMOS process and then it is evaluated through typical
UDP/IP traffic of a wireless ad hoc network. In this case,
total power can be reduced to about 13% compared with
the normal-STP-based data-driven processor.

Keywords: self-timed pipeline, runtime power gating, runtime
voltage scaling, file-grain power-supply

1. Introduction
Lowering power dissipation of LSI systems is now more

and more crucial to realize greener devices, while fully
utilizing the potential speed of transistors under deep-
submicron process technologies. In order to facilitate such
low power consumption of the LSI chips, both dynamic and
static power dissipation should be cut or reduced as much
as possible. The main causes of the dynamic power dissipa-
tion are the transistor-switching unnecessary for processing
and the excessive switching frequency higher than required
processing speed, while the leakage current through inactive
transistors increases the static power dissipation mainly.

Voltage scaling and power gating are well-known tech-
niques for reducing switching power and static power
respectively[1][2]. Mostly those techniques have been ap-
plied to relatively coarse grain power domain of the LSI
chip, e.g., a whole die or processor core, and they are

assumed to be controlled by the operating system. In order
to achieve ultimate reduction of the power consumption, it
is essential to control power supply more finely in terms
of both spatial and temporal domains. To realize such
fine control, a powered circuit block itself has to behave
autonomously without any centralized control such as a
global clock signal. Therefore, in our collaborative research
project to establish ultra-low-power data-driven networking
system (ULP-DDNS)[3], we have fully introduced self-
timed pipeline (STP) circuits to implement our ultra-low-
power data-driven processor (ULP-CUE) without any global
clock signal. To minimize overheads caused by the fine-
grain power control, our ultra-low-power self-timed pipeline
(ULP-STP) circuit has been designed to work in part even
during supply voltage scaling or power gating. That is, the
ULP-CUE processor core can execute programs without
evacuation of their contexts even when the power supply
voltage is altered or power supply is cut in part.

Because of self-timed elastic data-transfer mechanism of
the original STP [4], it can work well under variable voltage
without adjusting clock frequency even if the altered voltage
could transiently fluctuate at individual pipeline stage. Since
the pipeline throughput can be adaptive to its processing
load only by altering supply-voltage appropriately, a power-
aware pipeline scheme can be realized naturally in terms
of runtime power saving. For instance, the proportional-
integral-derivative (PID) controller can be applied to such
voltage control by monitoring consumption current of a
target power domain within the chip.

The STP is also suitable for gating power-supply to fine
grain circuits since its stage-by-stage data-transfer control
independently activates only pipeline stages with valid data.
We therefore proposed a stage-by-stage power gating scheme
adopted in the STP [5]. This scheme provides natural signal
gating, i.e., it stops the unnecessary signal propagation and
transistor-switching at pipeline stage level without any global
control mechanisms resulting in both power dissipation and
processing speed degradation. Moreover, it makes it possible
to scale the voltage even when the stages are activated
because it can be realized without any global oscillator such
as phase-locked loop (PLL) circuit, which forces pipeline
flush ahead of the frequency and voltage change.

By introducing both the voltage scaling and power gating
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into the STP, synergetic effects on its total power saving
nature will be further expected. Apparently power gating
will be conducted at the lowest voltage scaled so that the
power overhead of power gating will be minimized.

As for the remaining part of this paper, the follow-
ing section describes the circuit design of the ULP-STP
with runtime fine-grain power-supply. Section 3 discusses
a break-even model for power reduction effect against its
control overhead to implement various ULP-STP systems.
Section 4 shows the quantitative analysis of the ULP-
CUE implemented by the optimized ULP-STP under 65 nm
CMOS process and then we conclude in the final section.

2. Runtime fine-grain power-supply
scheme for STP

By the runtime fine-grain power-supply scheme proposed
in the paper, voltage scaling and power gating will be
adaptively performed along with the present processing load
within a system. In general, the processing load in the system
may alter due to both the intrinsic parallelism of a program
and the extrinsic request traffic to the program.

In this section, the autonomous behavior of the self-timed
elastic pipeline (STP) is briefly introduced and then its
natural contribution to the runtime fine-grain power-supply
control is discussed.

2.1 Self-timed elastic pipeline
Each pipeline stage of the STP consists of a data latch

as a pipeline register, function logic, and transfer control
unit named C-element. The basic structure of the STP is
shown in figure 1. The data latch, function logic, and C-
element are denoted by DL, Logic, and C, respectively. The
data is packed with tag into packet form, and the packet
is transferred between the pipeline stages as a result of the
communication between the C’s in the adjacent stages. The
communication is performed stage-by-stage according to the
4-phase handshake protocol [6] by using transfer request
and acknowledge signals which are called send signal and
ack signal respectively. The stage-by-stage transfer control
changes the states of each pipeline stage independently, and
the states of the stages are defined below according to the
handshake protocol. Here, the C-element in thei-th stage is
denoted byCi.

• Reset state: The send and ack signals are negated after
the assertion of the reset signal.

• Idle state: TheCi waits until thesendi−1 is asserted.
• Busy state: Thesendi−1 is asserted at the beginning of

the transfer of the packet from the precedent (i− 1)-th
stage. After the assertion of thesendi−1, theCi asserts
its ack signal (acki−1). In response to the assertion, the
Ci−1 negates thesendi−1. After that, if and only when
both thesendi−1 andacki are negated, theCi asserts
the ToDLi to open theDLi and it assertssendi at

Pipeline Stage

DL2DL1 DL3Logic Logic

C1 C2 C3

Ds1

Da1

Ds2

Da2

ToDL1 ToDL2 ToDL3

send0

ack0

send1 send2 send3

ack1 ack2 ack3

DL: Data Latch
Ds: Delay Element of send Signal
Da: Delay Element of ack Signal

C: Transfer Control Circuit

Fig. 1: Basic structure of self-timed pipeline.

the same time. As a consequence, the packet is latched
in the i-th stage, and thei-th stage goes to idle state.
Otherwise, theCi waits until theacki is negated while
it keeps its send and ack signals.

The successive stages receiving the assertion of the send
signal go to busy state and their C’s repeat the same transfer
control sequence individually. During the handshakes, the
send signals are delayed to assure the completion of the
primitive logic function and ack signals are delayed to assure
the setup-hold timing of the DL’s.

This stage-by-stage transfer control of the STP suggests
the timing of the power controls. That is, in the idle stages,
the circuit of the DL, and combinational Logic can be
powered-off, i.e., the supply-voltage can be cut while that of
the C and sequential Logic can be powered-down, i.e., the
supply voltage can be lowered enough to keep the circuit’s
states. Moreover, in the busy stages, those circuits should
be powered-down enough to assure the switching of the
transistors, i.e., the supply-voltage can be lowered as long
as the required switching speed is achieved.

2.2 Stage-by-stage power gating
To realize stage-by-stage power controls finely, we have

already proposed an ultra-low-power self-timed pipeline
(ULP-STP) structure illustrated in figure 2 [5]. In the ULP-
STP structure,VDD supplied to all circuits is scaled by using
DVS technique. In addition, to cut the power-supply to the
DL and Logic, a high threshold NMOS transistor, called
power switch (PS), is placed betweenVSS and the ground-
side terminals of the DL’s and combinational logics which
are composed of low-threshold transistors. In this case, an
isolation element (ISO) must be inserted between adjacent
stages in order to block the propagation of the electrically
unstable signals from the gated stages to the other active
stages. This ISO function can be implemented in a part of
a data-latch so that the circuit overhead (i.e., power and
delay time) for the ISO is negligible. Each power switch is
controlled by its power control circuit (PC) which observes
the send and ack signals.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 473



DL2DL1 DL3Logic Logic

C1 C2 C3

Ds1

Da1

Ds2

Da2

ToDL1 ToDL3

send0

ack0

send3

ack3

PC

Scaled VDD

VSS PS
VVSS

PS: Power Switch PC: Power Control Circuit

Fig. 2: Power-supply control for STP.

The ULP-STP structure makes it possible to power-down
or power-off stage-by-stage, and thus the necessary power
is supplied only to the processing stages having a valid data
while the leakage power at other idle stages are finely cut.
Therefore this power gating scheme is named runtime fine-
grain power gating (RTPG) in this paper. In addition, the
power gating for each core is achieved without any additional
mechanism because all of the stages in an idle core are
powered down as a result of the stage-by-stage power gating
in each stage. Since each stage will consecutively wake up
along with travelling of a newly arriving data within the STP,
total rush current of the whole STP system can be temporally
distributed when the PS is powered on.

2.3 Runtime voltage scaling
With the proposed structure, the DVS and the PG can be

enabled independently or simultaneously. The supply voltage
to the STP can be autonomously altered without adjusting
the clock frequency since the STP itself is clockless. The
supply voltage can be controlled based on the consumption
current which is proportional to the amount of processing
load in the STP system.

On scaling the supply voltage in runtime, sharp scaling
may cause overshooting or undershooting the voltage and
thus power noise and malfunction may be generated. On
the other hand, dull scaling may bring down to degrade
its prompt operation. Since the consumption current of
the STP may fluctuate usually, adaptive control mechanism
is necessary. Thus, we introduce the proportional-integral-
derivative (PID) controller to our voltage scaling scheme to
minimize the error by adjusting the process control inputs,
i.e., consumption current values.

Figure 3 shows the runtime voltage scaling mechanism
(RTVS) introducing the PID controller. At the I-V lookup
table in the figure, the appropriate supply voltage is indexed
by a sampled consumption current value. For instance, the
target voltage in the I-V table may be designed to achieve
the maximum throughput per power. How to optimize the

CORE

DC/DC 
Converter

PID
ControllerI-V

Lookup
Table

Target
Voltage

Voltage

Operation

Voltage Control Circuit

Shunt 
Resistance

Current

Scaled VDD

VSS

Fig. 3: Voltage controller.

DC/DC 
Converter

VDDmax�VDDmin

on die

�

Circuit

CL,
CVDD

CVVSS

��

VSS CPS

�VVSS

off die

Fig. 4: Equivalent load capacitance of ULP-STP.

I-V table may depend on the low-power policy of the target
application. Note that a transfer function of a target system
can be simply approximated by its dead time and first-order
lag. Thus, the PID parameters for our RTVS can be adjusted
by using the same approximation.

Those advanced features indicate that the STP is more
robust than the clocked pipeline, especially in the nanometer-
scale processes with more variation in transistor perfor-
mance.

3. Break-even model of the ULP-STP

Although voltage scaling and power gating can reduce
the switching power and the leakage power of the tran-
sistors respectively, there are power overheads such as
charge/discharge current during scaling supply voltage and
switching current of the power switch transistors for the
power gating, and so on. In this section, a break-even model
of power reduction effect against its overhead is discussed,
especially in terms of runtime and fin-grain of RTPG and
RTVS.

Figure 4 illustrates a simple equivalent circuit model of
the ULP-STP. With the voltage scaling, there are equivalent
load capacitancesCV DD of on-die/off-die power lines and.
With the power gating, there are some equivalent load ca-
pacitances,CL, CV V SS , andCPS each of which is extracted
from the target power domain circuit, the virtual ground line
(VVSS), and the power switch (PS) respectively. Here, the
switching energy of the PS,EPS , is represented as follows:
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EPS = CPS×V DD2 (1)

It is assumed here that the power of ISO is negligible
because the ISO can be overlapped onto the data-latch. When
the power switch is powered on, the power consumption due
to the rush current to the circuit,Erush, can be calculated
based on [7] as follows:

Erush =
(

CV V SS +
1
2
CL

)
×V DD×∆V V SS (2)

where ∆V V SS denotes the increased amount of VVSS
before wake-up. Based on equations 1 and 2, the lower
bound of the sleep time to get power reduction effects,BET
can be represented as follows:

BET =
CPS×V DD2 +

(
CV V SS + 1

2CL

)
×V DD×∆V V SS

Pleak
(3)

wherePleak denotes the leakage power of the target power
domain circuits.

As for the break-even condition related the voltage scal-
ing, it depends on the processing load. Thus, the break-even
processing load,BEPL can be expressed as follows:

BEPL =
CV DD

CL×α
(4)

where α denotesthe average switching provability of the
transistors within the target power domain circuits. Although
the PID controller itself must consume the energy, it can
be negligible compared to the charge/discharge energy of
CV DD.

The equation 3 and 4 represents the basic break-even
conditions of the proposed runtime fine-grain power-supply
control scheme. As represented in those equations, the
break-even conditions depend on those load capacitances of
the target system. In the following section, the low-power
characteristics of the ULP-CUE as an actual STP system will
be evaluated through the execution of a practical networking
application program.

4. Power-performance evaluation
In our collaborative research project on ultra-low-power

data-driven networking system (ULP-DDNS), a data-driven
processor ULP-CUE based on the self-timed pipeline has
been implemented by using 65 nm CMOS process. In this
section, the ULP-CUE is briefly introduced and then the
basic power-performance characteristics are evaluated by
integrating actual measurement results of the ULP-CUE chip
and SPICE simulation results. Finally, total power reduction
effects of the proposed runtime fine-grain power-supply
are revealed in the case the ULP-CUE executes a UDP/IP
protocol handling program based on a typical traffic log
of an ad hoc wireless network simulated by the network
simulator[8].

Fig. 5: Layout of the experimental ULP-CUE (65nm CMOS
7ML process).

4.1 Circuit configuration of ULP-CUE
The ULP-CUE is a 32 bit dynamic data-driven processor

implemented by the 13-stages ring-shaped STP and each
STP stage is composed of the following elemental functional
module.

• M: merging function of input tokens and internally
circulated tokens.

• FC: firing control function to detect a pair of operand
tokens for its instruction execution. It is divided into
two STP stages, FC0 and FC1.

• MB: merging function for tokens bypassing the FC
stages.

• IF: instruction fetching function. It is divided into two
stages, IF0 and IF1.

• ID: instruction decoding function.
• EX: execution function, i.e., ALU. It is divided into two

stages, EX0 and EX1.
• MA: data-memory access function. It is divided into

two stages, MA0 and MA1.
• BB: branch function to bypass the FC stages or not.
• B: branch function to ether output port or the circular

STP.

Those stages are placed and routed on a die shown in
figure 5. As shown in the figure, area of each stage is
different from others so that the load capacitance of each
stage is different. This means its break-even condition is
different.

4.2 Evaluation procedure
Because each STP stage of the ULP-CUE is implemented

as different circuits, the break-even time is different. For
each stage, it is difficult to measure every parameter in
equation 3. Thus, in this evaluation, PS switching energy
EPS , energy consumption caused by rush currentErush,
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Fig. 6: An example measurement result of RTVS (25◦C).

and leakage powerPleak are evaluated by SPICE simulation
of each stage. This is because the detailed breakdown of
each stage’s power consumption cannot be measured on the
fabricated ULP-CUE chip. Since the voltage of the VVSS
depends on sleep time, the SPICE simulation is conducted in
many times in the case of different sleep time. Furthermore,
the gate width of the power switch NMOS transistor is
designed to reduce the voltage drop to less than 5%. Wake-
up delay time of the stage is hidden by asserting a power-on
signal from the preceded STP stage.

As for the voltage scaling, total power of the ULP-CUE
processor can be measured on the fabricated chip as shown
in figure 6. This measured wave shows an example of
consumption current of the ULP-CUE in the case the supply
voltage VDD is changed from 0.8 V to 1.3 V by using the
PID controller. This consumption current includes charge
current to bothCV DD and CL. Since the VDD can be
forced to alter from 0.8 V to 1.3 V, only the charge current
to CV DD can be measured. Thus, the difference of both
measurement values expresses that toCL. As a result, the
break-even processing load can be calculated based on the
equation 4.

4.3 Basic evaluations on break-even model
As described in the previous subsection, the basic charac-

teristics of power consumption in the ULP-CUE have been
evaluated in the case it execute the UDP/IP protocol handling
program. Figure 7 shows the break-even time and power
reduction effect of each STP stage composing the ULP-CUE
at 0.8 V, 25◦C. The solid line shows the break-even time,
and the solid bar shows the amount of power reduction when
the sleep time is 250 ns. If the sleep time is longer than 250
ns, the total power reduction of the ULP-CUE can be gained
by the stage-by-stage power gating.

The FC0 stage has the shortest BET, 159 ns. This is
because its area is the largest in all stages. Furthermore,
the gate width of the PS can be shortened because the
switching probability of transistors composing the FC0 is
not so high compared with other stages. The IF0 has the
longest BET, 839 ns. It is about 5 times longer than the
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Fig. 7: Break even time of each STP stage (0.8 V, 25◦C).
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Fig. 8: Break even processing load of ULP-CUE (0.8 V
1.2 V, 25◦C).

shortest one. Those results implies that it is important to
introduce an adaptive power gating mechanism such as an
invalidation scheme of individual power gating based on a
leakage current monitor[9].

As for the voltage scaling, the break-even processing load
is evaluated based on the equation 4. Figure 8 shows the
break-even processing load of the ULP-CUE based on the
measurement current of the chip when the supply voltage
is changed from 0.8 V to 1.2 V. The diamond-shape plots
indicateCL, i.e., the denominator part of the equation 4, and
the square-shape plots indicateCV DD, i.e., the numerator
part of that. From this result, the BEPL is about 113 tokens.

In order to estimate an acceptable voltage scaling fre-
quency, potential performance-power characteristics of the
ULP-CUE have been measured at 0.8 V to 1.3 V. Those
results are shown in figure 9. From this result, the maximum
performance of the ULP-CUE is 87K UDP/IP packet/sec. at
1.3 V where the length of a UDP/IP packet is 512 bytes.
When the throughput of UDP/IP packets is 29K packet/sec.,
total power consumption at 0.8 V can be reduced to 38%
compared to that of 1.2 V. Therefore, the evaluated BEPL,
i.e., 113 tokens, indicates that the acceptable voltage scaling
frequency is at most 32.7 KHz.

The measured chip is not equipped with the on-die DC-
DC convertor. If a DC-DC convertor can be implemented
on a die, the load capacitance of the power line,CV DD,
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Fig. 10: Performance-power characteristics of RTVS (25◦C).

can be reduced to one-tenth of that. In this case, the break-
even processing load can be reduced to 11 tokens. This
assumption indicates that the runtime voltage scaling may
be conducted at most 336 KHz.

Figure 10 shows the measured transient power-
performance ratios and voltage rise times when the
supply-voltage is altered from 0.8 V to 0.9 V, 1.1 V, and
1.3 V. Even during such transient time of supply-voltage,
the ULP-CUE can work at reasonable power-performance
ratio. Therefore, total performance-power ratio could be
improved as well as better dependability against hard
real-time constraints can be obtained.

4.4 Evaluations on typical network traffic
Since the ULP-CUE has been designed to implement

network protocol handling efficiently, its practicality should
be evaluated based on actual network traffic pattern. There-
fore, we used a network simulator, OPNET, to obtain such
benchmark traffic logs. In this evaluation, an ad hoc wireless
network [8] is assumed and then simulated by OPNET to get
traffic logs. From those traffic logs, a set of input token to the
ULP-CUE is extracted and the data-driven UDP/IP program
is executed on it.

In the case that the basic wireless transmission rate of this
network is 54M bit/s or 162M bit/s, the power consumption

Fig. 11: Power comparisons of the ULP-CUE (54 M bit/sec.,
25◦C).

Fig. 12: Power comparisons of the ULP-CUE (162 M
bit/sec., 25◦C).

of the ULP-CUE is estimated based on the above basic eval-
uation results. Figure 11 and 12 show the power comparison
among the normal STP, the STP with RTPG, the STP with
RTSV, and the STP with the proposed runtime fine-grain
power-supply scheme (i.e., with both RTPG and RTSV).

In figure 12, the STP with RTPG can reduce its leakage
power to 48uW. This is 6% leakage power compared to the
normal STP. The STP with RTVS can reduce its switching
power to 51.7uW and its leakage power to 235uW. This is
32% switching power compared to the normal STP. In the
case of the STP with the proposed power-supply scheme, the
ULP-CUE can reduce the total power to 13%. Because of the
synergetic effects between RTPG and RTVS, the switching
power of the PS in RTPG can be reduced to 68%.

5. Conclusion
In this paper, a runtime fine-grain power-supply mech-

anism based on the self-timed elastic pipeline (STP) was
proposed to realize lower-power LSI circuits and then it was
analyzed by defining a break-even model in terms of power
trade-off. The proposed circuit introduced both the power
gating and voltage scaling techniques so that it could utilize
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the synergetic effects between them. The low-powered STP
circuit was then applied to an ultra-low-power data-driven
processor, ULP-CUE, and evaluated through typical UDP/IP
traffic of a wireless ad hoc network. In this case, total power
can be reduced to about 13% compared with the original
STP-based CMP.

Since the break-even condition of the proposed scheme
may change depending on the temperature and process
variations, a kind of self-checking circuit of typical leakage
and switching power should be introduced on a die and
its monitoring result should be dealt with as a feedback to
power-supply controller. Furthermore, in order to verify such
on-die mechanism in terms of power consumption and per-
formance, a microarchitecture simulator must be developed
which can simulate not only architectural behavior but also
transient power consumption. We are now developing such a
platform simulator [10] in our collaborative research project
and then we will report the comprehensive evaluation results
using this simulator iin near future..
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Abstract – Since an ad hoc network does not need a base 

station and can constitute a network locally, it is important 

for a sensor network or a temporary network in emergency. 

Especially at the time of a disaster, power-saving is required 

for a long battery life. Since the power consumption is 

proportional to a processing load linearly and the essential 

power is only consumed, ultra-low power data-driven 

networking system (ULP-DDNS) utilizing a passive data-

driven principle is low power consumption. We consider that 

the feature that processing time does not change in multi-

processing enables an overload condition to be avoided in 

advance if a content of a process is obtained. In this paper, 

we describe an overload-avoidance scheme for congestion-

free networking system. 

Keywords: ad hoc network, Data-driven networking system, 

Congestion-free, Overload avoidance  

1 Introduction 

Wireless ad hoc network communication does not need 

an infrastructure such as an access point or a base station, and 

transmits information by a function being had in a node and 

hop-by-hop manner. Therefore, it attracts attention as an 

urgent communication tool when an infrastructure is down in 

a time of disaster. However, in order that a host may move, 

communication route changes. It is difficult to determine the 

communication route in that situation. A simple flooding is 

used as a one method to solve the problem. The simple 

flooding makes an unwanted traffic increase in ad hoc 

network, it causes increases of collision and retransmit, and it 

causes a congestion finally. 

In order to reduce the increases in the unwanted traffic, 

efficient information discovery system [1] and efficient 

broadcast type transmission mode [2] have been proposed. 

Moreover, in an ad hoc network, since the certificate 

authority in an infrastructure cannot be used, a 

communication partner cannot check whether you are a 

partner who wants truly. Therefore, the efficient technique of 

attesting a communication partner from the confidential 

relation between nodes has been also proposed[3]. 

Furthermore, energy saving is required for ad hoc 

network node which is supplied energy by a battery in many 

cases in order to enable a long time communication. 

Especially in case of disaster, electric power may be lost in a 

long time, thus more energy saving is required to the network 

nodes. In order to satisfy these requirements, we paid our 

attention to a feature of a data-driven processor of which 

processing period is constant even for multi-processing 

condition required by a network processing and a self-timed 

elastic pipeline which consumes energy only in pipeline 

stages in which valid data exists. And, we have developed a 

data-driven processor with a self-timed elastic pipeline as 

hardware realization of the processor [4][5]. 

In order to achieve congestion-free ad hoc network 

communication, it is also necessary to avoid an overload 

condition of network nodes for preventing degradation of the 

communication quality. There are two reasons that congestion 

occurs. One is that a traffic exceeding a bandwidth of a link 

between nodes flows into the link. Another is that a traffic 

exceeding a processing performance of a node flows into the 

node.  Because the node can control the flow when a 

processing load is low, the congestion can be avoided. 

However, when the node is overload, the node cannot also 

control the flow. Therefore, an overload of the node must be 

avoided. A processing period on ULP-DDNS is predictable as 

described before, and if a traffic pattern is obvious, overload 

avoidance can be performed in advance. There, in this paper, 

we considered about an overload avoidance scheme being 

appropriate for ULP-DDNS applied in ad hoc network. 

2 Ultra-low-power data-driven 

Networking System: ULP-DDNS 

ULP-DDNS is a networking system which can provide 

longer lifetime or stronger dependability under severe power 

budget and traffic condition. Each networking node only 

consumes the minimum and essential power without any 

runtime overhead by ultimately utilizing passive data-driven 

principle throughout ad hoc networking scheme, CMP 

platform dedicated to multiple UDP/IP processing and its 

self-timed VLSI realization. 

2.1 ULP-DDNS node 

Fig. 1 shows a block diagram of ULP-DDNS node. This 

ULP-DDNS node is constructed so that ad hoc networking 

system is executed on an application processor and UDP/IP 
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processing is executed by offloaded to ULP-DDCMP. 

Therefore, ULP-DDCMP and the application processer are 

embedded in ULP-DDNS. However, the architecture of ULP-

DDNS is not restricted by this architecture. It is assumed that 

the ad hoc networking system is executed on ULP-DDCMP 

in future. 

An electrical power for ULP-DDCMP is supplied by 

using dynamic voltage scaling (DVS) with PID control, a 

processing load of ULP-DDCMP is estimated by an observed 

electrical current consumption of ULP-DDCMP and electrical 

power is supplied by autonomously controlled voltage 

according to the processing load. In this way, DVS is 

constituted by a simple mechanism without observing an 

internal condition of ULP-DDCMP. 

Off-loading I/F translates data received from MAC/PHY 

or the application processor into tokens by 4 Byte so that 

ULP-DDCMP is able to process them, and sends the tokens to 

ULP-DDCMP adequately. The I/F coordinates a timing 

between synchronous and asynchronous signals since ULP-

DDCMP performs in asynchronous. In this paper, ULP-

DDNS node is used to explain an operational timing of some 

kind of processes and packet sending and receiving. 

2.2 Ultra-low-power data-driven chip multiprocessor: 

ULP-DDCMP 

ULP-DDCMP is a chip multiprocessor in which four 

ULP-CUEs are connected by a token router. The tokens sent 

to ULP-DDCMP are sent to either ULP-CUE through the 

token router. Since an electrical current of each ULP-CUE is 

observed individually, a load distribution is also possible by 

observing electrical current varying according to processing 

load of each ULP-CUE. 

2.3 Ultra-low-power data-driven CUE: ULP-CUE 

ULP-CUE is constituted by a self-timed elastic pipeline 

of a circular type with short-cut path in order to shorten a 

turn-around-time of unary operations and to improve a 

processing performance. A feature of ULP-CUE is that a 

processing latency is constant at multi-processing condition 

unlike von Neumann processor. Since ULP-CUE is 

constituted by a circular pipeline, an execution time for one 

instruction is a turn-around-time that a token goes around the 

circular pipeline. The number of multi-processing is also 

represented by the number of tokens existing in the circular 

pipeline.   Fig. 2 shows the experimental result of the turn-

around-time of when the number of tokens in the circular 

pipeline is varied by repeated issuing multiply instructions. 

Fig. 2 shows that the turn-around-time is constant when the 

number of tokens is between one to five, therefore, a constant 

processing time is kept by five multiple process. 

In this way, it is studied about overload avoidance 

scheme for congestion-free network of when ULP-DDNS 

which is appropriate for a network processing and is ultra-low 

power is applied to ad hoc network. 

3 Urgent ad Nohoc networking system 

3.1 Migration to an urgent ad hoc network 

Network nodes communicating through base stations of 

an infrastructure when the infrastructure can be used will 

migrate to an ad hoc network and will try to communicate 

with the other nodes if the communication between the nodes 

and the base stations is lost by disaster etc. the nodes 

migrating ad hoc mode send packets to neighbor nodes by 

using flooding, and the neighbor nodes relay the packets as 

the relay nodes. The packets spread in whole ad hoc network, 

it increases traffic. Since the location of the relay nodes is 

determined in ad hoc network, traffic concentrates at a part of 

the relay nodes. Therefore, a collision in wireless area and 

traffic exceeding a processing performance of the nodes cause 

congestion. 

To achieve an efficient ad hoc communication by 

solving these problems, some schemes are proposed [1][2][3]. 

It is explained that a discovery of a node stored any 

information, an authentication of the node, and obtaining data 

from the node which are assumed to be used in urgent ad hoc 

network communication 

Fig. 1. Block diagram of ULP-DDNS 

Fig. 2. Turn-around-time of ULP-CUE 
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3.2 Discovery 

There is a demand that it wants to know a current state 

of a particular place at the time of disaster etc. A method 

finding a network node being in this particular place and 

having desired information has been proposed, and the 

method makes an inquiry efficient. A procedure is as follows. 

 A node requiring to obtain an information sends a 

query packet. A reply area is determined an angle a 

on either side of the line that connects itself with 

the destination. 

 A node in a reply area calculates a distance of a 

destination node coordinate included in the query 

packet and a local node coordinate obtained by 

GPS and reply.  

 The node requiring the information requests the 

discovery to a node which is closest  to the 

destination 

 By a repeat of these operations, a node which is 

closest to the destination is selected, and offers 

information. 

In this way, the node holding necessary information is 

discovered efficiently. 

3.3 Authentication 

It is necessary to confirm whether a communication 

partner is correct or incorrect even if the communication uses 

ad hoc network. A public key certificate collection method 

based on a trust relationship list has been proposed. The 

method collects only the necessary certificate when a 

communication is required. Some trust relationships are 

created between neighbor nodes in the initial phase of 

constructing the network. Based on the initial trust 

relationship, the nodes collect the information of the trust 

relationship by a trust chain. In this way, the method makes 

authenticating a node efficient 

3.4 Forwarding 

As described above, since it is difficult to determine a 

route in ad hoc network, a communication utilizes flooding 

mainly. However, simple flooding causes many collisions. 

Information can reach only nodes of 70% in ad hoc network 

by the collision. Therefore, Load-aware Dynamic Counter-

based Flooding (LDCF) has been proposed. LDCF forwards 

information efficiently by using a load state of local node. 

LDCF measures a current processing load of a local 

node by a queue length in layer 2. LDCF judges by a queue 

length of to whether send or discard packets received at node. 

When the queue length is large, the queue length makes 

LDCF conscious of the high-load of a node and LDCF 

inhibits the forwarding packets. An inhibition of a sending 

packet is operated as follows. 

 One or more relay nodes transmit the same packets 

from a same information source and the number of 

times same packets reception caused by above 

reason is counted in certain interval.  

 Thresholds which allow transmission dynamically 

are configured for each information source and 

each packet, and the transmissions are canceled if 

the number of counts exceeds the threshold. 

In this way, packets are forwarded efficiently. 

4 Overload avoidance for congestion 

free network 

4.1 Condition for avoiding overload 

Generally, there are two reasons that a network go into 

congestion condition. One is the case that a packet is not able 

to send by a collision caused by attempting a packet sending 

of a traffic exceeding the network bandwidth. Another is the 

case that packet is not able to forward by receiving packets 

exceeding a processing performance of a network node. 

Former is able to give a notice to reduce a transmission rate to 

a packet sending host by checking a status of a packet sending. 

However, since latter is in overload condition, it cannot give a 

notice to another host to reduce a transmission rate based on a 

status of a packet sending. Therefore, it is necessary to 

consider a scheme to avoid an overload before a node 

becomes overload. 

When ULP-DDNS is used, a constancy of processing 

period is kept even if processes are multiple by the feature of 

ULP-DDCMP and ULP-CUE as described above. Here, 

IEEE802.11 standard which is typical wireless 

communication method is described. IEEE802.11 has adopted 

Carrier Sense Multiple Access/Collision Avoidance 

(CSMA/CA) as an access control, and a data frame 

transmission is prohibited during a back-off control period 

even if wireless area is not used. 802.11 headers are also 

added to UDP/IP packet. These overhead decrease an actual 

transmission rate. For instance, in the case of IEEE802.11g, 

maximum wireless transmission rate is 54Mbps, however, 

UDP/IP transmission rate is less than 25Mbps. period when 

wireless area is used by sending and receiving packets 

depends on UDP/IP packet length. Therefore, minimum 

interval of sending and receiving packets depend on UDP/IP 

packet length. ULP-DDCMP will not be an overload if a 

packet process is completed in a period shorter than this 

minimum packet receiving interval as one view. 

In this paper, as an example, Discovery (Phase 1), 

Authentication (Phase 2), and forwarding (Phase 3) which are 

needed to obtain certain information by using ad hoc network 

communication were considered about conditions for 
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overload avoidance for starters. As an ad hoc network used by 

this examination, we assumed that ten nodes are placed at 

same distance on a line. A wireless range of each node also 

assumes three nodes. Then, sending and receiving data frames, 

a receiving process (Rx), a forwarding process (Fwd), and a 

sending process (Tx) are considered in ULP-DDCMP at a 

request node, a relay node, and an information node.  

Moreover, UDP/IP packet lengths by using discovery, 

authentication, and forwarding are 100Byte, 1000Byte, and 

500Byte are assumed, respectively. The packet lengths are 

average packet lengths in each protocol. Then, in this 

examination, LDCF sending packet efficiently was used since 

it decreases flooding in wireless range at transmission 

4.2 Discovery phase 

The state of packet sending and receiving and internal 

processing  in node 1, 4, 10 is shown in Fig. 3. Node 1 

requires to obtain a information, node 4 receives a request 

as next discovery node, and node 10 holds the required 

information. Moreover, Fig. 3 shows the process until an 

information discovery is completed. Colored rectangles 

represent periods that radio wave is transmitted  and 

received in wireless area,  Rx, Fwd, and Tx represent 

periods of a receiving process, a forwarding process, and 

transmitting process, respectively. Additionally,  a 

downward arrow shows that MAC/PHY tries to transmit a 

packet, however, that the transmission is waited because the 

wireless area is used by receiving packet. 

At first, node 1 sends a query packet by broadcast to 

discover node 10 having an information being desired by 

node 1. Node 2, 3, and 4 which receive the query packet from 

node 1 reply distances between a destination coordinate and 

each node according to the information discovery protocol. 

Node 1 sends a request packet to request next information 

discovery to node 4 which is nearest to node 10 in the 

received reply packet. Node 4 which received the request tries 

the information discovery similar to node 1. In Fig. 3, a 

processing flow of the discovery processing in node 4 is 

omitted because it is same as the processing flow in node 1. 

When the request packet is received at node 10 that is the 

information source,  the destination coordinates are 

forwarded to node that transmitted this request packet. The 

packet replied from node 10 is sent to the node having 

requested the information discovery. Finally, this information 

discovery is completed when the reply packet arrives at 

node 1. 

The examination that uses Fig. 3 leads following result. 

 Since destination of packets received at when each 

node perform a transmission process is not local 

node, processes does not overlap in ULP-DDCMP 

 If a period of packet receiving process is shorter 

than a packet receiving interval, processes will not 

overlap in ULP-DDCMP. 

For these reasons, when a period of packet receiving 

process is shorter than a packet receiving interval, ULP-

DDCMP does not enter a state of an overload. 

4.3 Authentication phase 

To consider packet flows, we assumed that node 1 

obtains a certificate of node 5 (refer Fig. 4). And, processing 

flows on ULP-DDNS and sending and receiving packet at 

node 1, node 5, and node 2 which are relay nodes. Since node 

1 and node 5 does not exist in each range of wireless access. 

The packets are transmitted by using LDCF. Colored 

rectangles represent periods of transmitted and received 

packets so as described above, and Rx, Fwd, Tx, and Auth 

represent periods of a the received packet process, the 

forwarding packet process, the transmitted packet process, 

and Authenticated process, respectively.   

Fig. 3. Discovery phase 
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In T1, node1 judges that the acquisition of the certificate 

of node 5 is necessary from a trust relationship list, and node 

1 send a packet to node 5. The packet is sent by using LDCF 

that is forwarding of flooding base because Node 5 is out of 

range of wireless area. The packet sent from node 1 is 

received at node2, node 3, and node 4. Node 2, node 3, and 

node4 judge that destination of the received packet is not 

local node. Each node starts a forwarding process and a 

transmission process to forward the packet. 

In T2, node 3 that previously acquired the transmission 

right by CSMA/CA forwards the packet for the node 5 by 

using LDCF. This packet is also received at node 1, 2, 4, 5, 6. 

Node 2 and node 4 try to send the packet received in T1, 

because transmission timing was taken by node 3, the packet 

transmissions of node2 and node 4 are waited until next 

transmission timing in a MAC/PHY 

Node2 that obtained transmission timing sends the 

packet of the node 5 addressing in T3, and the packet is 

received by node 1, 3, 4, and 5. In T2, node 5 which received 

the packet to local node has performed a process issuing the 

certificate. However, it is difficult to expect a processing 

completion time if this process is not performed with a data-

driven processor. Thus, it cannot be guaranteed that a 

certificate issue processing, forwarding, and a transmission 

processing are completed by next packet reception. In the 

worst case, a packet might be arrived while processing 

forwarding or transmission. There is a possibility those 

processing and a packet receiving processing are executed at 

the same time. 

When these are taken into consideration, a processing of 

requirement most strict in authentication phase is a process in 

T1 and in node 2. Thus, when a period of packet receiving 

process is shorter than a packet receiving interval, ULP-

DDCMP does not enter a state of an overload. 

4.4 Relay phase 

A packet which is sent from node 10 is relayed in ad hoc 

network with LDCF and arrives in node 1. It is assumed that 

nodes relaying the packet are node 8, node 7, and node 4 until 

the packet arrives in node 1. Fig. 5 shows transmission and 

reception of packets and an internal processing of node 1, 4, 7, 

and 10. Node10 is a sender of information, node 1 is a 

receiver, and node 4 and node 7 are relay nodes as a 

representative. 

At T1, a packet which will be sent from node 10 to the 

node 1 with flooding is received in node 7, and node 7 starts 

forwarding with LDCF. 

At T2, node 8 sends a packet which has been received at 

T1 and is forwarded to node 1. Node 7 tries to send a packet, 

however, node 8 has sent the packet before, and the packet is 

stored in MAC/PHY until next transmission timing. Moreover, 

ULP-DDCMP has sent the packet addressed to node 1 to 

MAC/PHY at T1, as a packet that has already been processed. 

Only forwarding process is executed for the packet. A 

transmission process is not executed. 

At T3, node 7 gets an opportunity to send the packet. 

Since the packet which has already been received, node 10 

performs a forwarding process, however, node 10 does not 

perform a sending process. Node 4 starts a transmission 

process because node 4 received this packet for the first time. 

And, at T4, the node send a packet, node 1 receives the packet, 

and when a traffic of the packets addressed to node 1 which 

are flooded in ad hoc network disappears, a series of 

processing is completed. 

Fig. 4. Authentication phase 

Fig. 5. Relay phase 
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Packet forwarding process according to reception of 

new packet similar to authentication phase is required most 

processing power in relay phase. Thus, when a total period of 

packet receiving process, forwarding process, and 

transmission process is shorter than a packet receiving 

interval, these processes does not overlap. By using ULP-

DDNS, the period from start to completion of processing can 

be guaranteed, an overload can be avoided in advance. 

5 Consideration 

5.1 Overload avoidance scheme for sparse condition 

Wireless communication is processed with one port 

generally. A sending packet and a receiving packet do not 

overlap unless a collision occurs. And, packet interval is also 

prepared. Therefore, shortest time until next packet is 

received can be predicted when the packet has been received. 

When each node works as a relay node, ULP-DDNS node 

executes a receiving process, a forwarding process, and a 

sending process and sends a packet according to following 

packet reception. It has been described that an overload is 

avoided when the receiving process, the forwarding process, 

and the sending process complete until next packet arrives. 

On the other hand, it was suggested that a receiving process 

and the other process may overlap in authentication phase. An 

overload avoidance scheme in case of a local node is source 

will be considered. 

Basically, it cannot predict when a packet is received. 

Therefore, when local host sends a packet, forwarding process 

or transmission process and receiving process required 

according to packet reception might overlap. If a receiving 

process has started before a forwarding or transmission of 

which local host is source, the forwarding or transmission 

process can be delayed easily. In contrast, forwarding or 

transmission of which local host is source starts before a 

packet is received. Receiving process should be delayed, 

since refusing a receiving packet is the congestion itself. The 

overload avoidance scheme for an overlap of these processes 

is described in next sub section in detailed. 

5.2 Overload avoidance scheme for dense condition 

The case of one node in an ad hoc network acquiring 

information was examined. In actual case, since many nodes 

send and receive packets, a node might become in overload 

condition. Therefore, overload avoidance scheme in this 

situation was examined. If an internal process and a packet 

transmission process which are performed in local node delay, 

we can consider what is happen and can control the node. 

However, it is difficult to assume an influence when packet 

receiving and forwarding process delay. Therefore, to 

consider an overload avoidance scheme, the process is 

separated to a network process and an internal process. In this 

case, it is considered that the internal process can be delayed 

as described above, and a network processing is considered in 

this paper. 

There are two processes for network processing. One is 

a receiving process, and another is a transmitting process 

including a forwarding process. Moreover, there are a 

broadcast and a unicast for types of packet, and there are a 

local node and remote node for source and destination of a 

packet. These can be shown like Table. 1. A process that can 

be refused and a process that can be delayed are arranged for 

these network processing. And overload avoidance scheme is 

considered by refusing or delaying the process if ULP-DDNS 

node seems to be overload condition. 

A transmitting and a receiving were examined at first in 

broad term. It is possible to delay or refuse the process so that 

a transmitting process is possible to confirm a content of a 

packet. However, it is impossible to delay or refuse a packet 

so that a receiving process cannot confirm a content of a 

packet until the process is completed 

Next, decision from how each transmitting packet is 

used was tried. A packet of No. 5 is used as a source packet in 

a discovery phase or a source packet of LDCF forwarding. 

Since the packet is also used as reply for a request, it is 

possible to delay the packet processing. However, the 

processing is not permitted to be refused.  A packet of No.6 is 

used at a relay node. Since the packet is sent to many nodes 

by flooding and LDCF has a mechanism to cancel a 

forwarding process depending on a processing load of a local 

node. The processing can be refused. Moreover, the delay is 

not permitted because there is a possibility that other nodes 

have already forwarded it and there is no meaning to delay 

processing. It is basically the same as No.5 though No.7 

becomes the node is also source node in the unicast. No.8 is 

used for the unicast forwarding, and it is necessary to process 

in priority over other transmission processing because 

delaying this processing will greatly decrease the 

communication quality. Table 1 shows these summaries of 

the idea. 

From these considerations, the transmission processing 

of No.6 is refused and the processing of No.5 and No.7 are 

delayed when the load of the node is high. In this case, 

because a unicast forwarding process is only performed as 

transmission process, an overload is not only avoided, but the 

increase of traffic is also avoided. 

Table 1. Packet types 
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The delay and the refusal of the transmission process 
can be controlled by a local node. However, there is a 

situation that a receiving process must be delayed  as 

described in the authentication phase. The local node cannot 

control a receiving packet,  there is possibility that next 

packet cannot be processed by the delay of a receiving 

process. On the other hand, method controlling between 

nodes is proposed [6]. The method decreases a transmission 

rate of a remote node according to an allowable receiving 

rate noticed from peer node. The allowable receiving rate is 

obtained from an electrical current of ULP-DDCMP. When 

the receiving process delay occurs, an overload is avoided by 

a notice which lower value is less than a value obtained from 

current to reduce a transmission rate from a remote node 

temporary. The overload is avoided like this by the control of 

the transmission process delay in the local node and the 

control of the reception rate control between nodes. 

6 Conclusion 

scheme to avoid an overload of a network node required 

to achieve congestion-free ad hoc network communication 

was considered. Since a processing period of ULP-DDNS is 

constant even if multi-processing is required, it is possible to 

predict a period of processing. When ULP-DDNS is applied 

to urgent ad hoc network as an example, it was considered 

whether overload avoidance achieves by using the traffic 

pattern and packet types. 

We have described an overload avoidance scheme as 

follows, (1) when the processing load becomes high, a 

transmission process is delayed before a receiving process, 

(2) Appropriate allowable throughput is notified to a remote 

node to lower the receiving packet rate when it is necessary to 

delay the receiving processing according to timing. 

In future, we will evaluate the overload avoidance 

scheme and an appropriate scheme distributing tokens to each 

ULP-CUE will be examined. 

Acknowledgement  

Although it is impossible to give credit individually to 

all those who organized and supported the CUE project, the 

authors would like to express their sincere appreciation to all 

the colleagues in the project. 

The CUE project is partially supported by Core 

Research for Evolutional Science and Technology (CREST), 

Japan Science and Technology Agency, SCOPE (Strategic 

Information and Communications R&D Promotion 

Programme), Ministry of Internal Affairs and 

Communications, Japan, the Grants-in-Aid for Scientific 

Research of Japan Society for the Promotion of Science and 

Semiconductor Technology Academic Research Center 

(STARC). And, this work is supported by VLSI Design and 

Education Center (VDEC), the University of Tokyo in 

collaboration with Synopsys, Inc. and Cadence Design 

Systems, Inc. 

Reference 

[1] Keisuke Utsu, Naohide Fukushi and Hiroshi Ishii, “A 

Query-based Information Discovery method using Location 

Coordinates and its Contribution to Reducing Power 

Consumption in an Ad Hoc Network,” Proc. of the 2010 Int’l 

Conf. on Parallel and Distributed Processing Techniques and 

Applications, pp. 610–615, July 2010. 

[2] Keisuke Utsu, Hiroshi Sano, Turganzhan Kassymov, 

Hiroaki Nishikawa, and Hiroshi Ishii, “Proposal on Battery-

aware Counterbased Flooding over Ad Hoc Networks,” Proc. 

of the 2011 Int’l Conf. on Parallel and Distributed Processing 

Techniques and Applications, PDP5141, July 2011.  

[3] Hideaki Kawabata, Hiroshi Ishii, “Evaluation of Self-

Organizing Key Management Framework Based on Trust 

Relationship Lists,” Proc. Of the 2009 Int’l Conf. on Parallel 

and Distributed Processing Techniques and Applications, pp. 

609–615, July 2009. 

[4] Shuji Sannomiya, Ryotaro Kuroda, Kazuhiro Aoki, 
Kei Miyagi, Makoto Iwata, and Hiroaki Nishikawa, “Chip 

Multiprocessor Platform for Ultra-Low-Power Data-Driven 

Networking System: ULP-DDNS,” Proc. of the 2011 Int’l 

Conf. on Parallel and Distributed Processing Techniques 

and Applications, pp.428–434, July 2011. 

[5] Hiroaki Nishikawa, Kazuhiro Aoki, Hiroshi Ishii, and 

Makoto Iwata, “Intermediate Achievement of Ultra-Low-

Power Data-Driven Networking  System: ULP-DDNS,” 

Proc. of the 2011 Int’l Conf. on Parallel and Distributed 

Processing Techniques and Applications, pp.421–427, July 

2011. 

[6] Hideki Yamauchi and Hiroaki Nishikawa, “Proposal of 

Applying  ULP-DDNS to Congestion-Free Networking 

System,” Proc. of the  2012 Int’l Conf. on Parallel and 

Distributed Processing Techniques  and Applications, 

PDP6031, July 2012. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 485



Proposal of Applying ULP-DDNS to  

Congestion-Free Networking System 
 

Hideki YAMAUCHI     Hiroaki NISHIKAWA 
Graduate School of Systems and Information Engineering, University of Tsukuba 

Tsukuba Science City, Ibaraki, 305-8573 Japan 
 
 

Abstract – The importance of the ad hoc network is paid 
attention in order to secure communication under emergency 
or disaster. Traffic control in order to avoid the network 
congestion and to secure communication is also paid attention 
for same reason. However, traffic control method of packet 
communication on the ad hoc network has not been well 
established. Ultra Low Power Data Driven Networking System 
(ULP-DDNS) works based on the principle of data driven 
processing and achieves low power consumption networking 
system. The ad hoc network realized by the ULP-DDNS 
enables simple and effective node load measurement by power 
consumption and throughput linearity. Efficient traffic control 
method with the advantage to achieve congestion-free network 
is proposed. 
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1 Introduction 
East Japan earthquake disrupted not only the public 

switched telephone network (PSTN), but also the Internet, and 
it caused congestion. However, because of the nature, while 
the throughput was very low, communication connection over 
the Internet was more secured and relatively better 
communication than PSTN. Moreover short message 
communication such as Twitter which can exchange 
information with less bandwidth was found applicable for 
minimum level of communication. For these reasons, IP 
communication was considered as an important means of 
securing emergency communication so that IP traffic control 
becomes more and more important. 

In the East Japan earthquake, existing network 
infrastructure was swept by Tsunami and lost. When the 
infrastructure has been lost by such disaster, IP 
communication over ad hoc network has been attracting 
attention as a means of communication in order to secure 
emergency communications The communication in such 
situation, reachability to communication party is important, 
and to achieve effective communication, a certain level of 
other quality such as throughput and packet delivery ratio 
must be guaranteed as well. However, in the ad hoc network 
employed in an event of disaster is unable to have enough 

network capacity because of multi-hop communication and 
vulnerability caused by unstable power supply and node 
mobility or insufficient bandwidth. On the other hand, 
bandwidth demand such as large size video data transmission 
or data access concentration to specific information on servers 
is increasing even under disaster situation. For example, 
sharing a certain remote location situation with video and 
sharing necessary information on a server is popularly used. 
Therefore, appropriate traffic control is more and more 
important to avoid congestion caused by traffic concentration.  

Traditional telephone network has traffic control system 
to avoid network congestion caused by traffic concentration 
such as ticket reservation, inquiries on the radio and TV or 
telephone of safety confirmation in the event of a large scale 
disaster such as catastrophic disasters of large earthquake and 
Tsunami in east Japan. The traffic control system detects the 
traffic concentration to a specific number or areas, or high 
traffic exceeding node capacity or trunk circuit capacity. Then, 
it limits or stops connecting the call to prevent network 
congestion and affection to not-related calls. The system is 
independent from network and centralized control is 
employed. It widely monitors network resource usage and loss 
of calls to detect congestion and control calls. Once 
congestion is detected, it controls switches preventing 
connection of calls to a congested number or area. However, 
such independent control system is not only increase cost and 
power consumption, but also it is not suitable for the ad hoc 
network whose nodes have more autonomy and distributed 
functionality. So, network system with autonomous and 
distributed traffic control capability which is applicable for ad 
hoc network has been desired. 

Authors have been studying data-driven networking 
system, ULP-DDNS. Applying ULP-DDNS to the emergency 
ad hoc network under an emergency situation like loss of 
infrastructure by earthquake has also been studied to utilize its 
advantage of low power consumption.  

This paper proposes a method of applying ULP-DDNS 
as a node to achieve congestion free emergency ad hoc 
network. It is distributed flow control of ad hoc network node 
to avoid congestion with maximizing throughput and network 
resource utilization without losing ULP-DDNS advantages. 
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2 Congestion and flow control 
In this section, various congestion controls are described 

and their characteristics are discussed whether they are 
suitable to ULP-DDNS ad hoc network. 

2.1 Existing congestion control mechanism 

Congestion occurs when a network or a part of network 
have more traffic than its performance. Existing network 
congestion control system is to maintain traffic amount within 
network performance. From a network system point of view, 
there are three important parameters which represents network 
performance. 

� Trunk bandwidth 
� Node throughput(bandwidth) 
� Switching rate 
In the PSTN, traffic control system measures these 

performance indexes and related resource usage. When the 
system detects congestion occurrence, it commands 
originating switches to limit number of calls to the congested 
numbers, switches or areas. In the ATM network, traffic flow 
is managed by virtual circuit or virtual path bases. A traffic 
flow reserves network resources based on the requested 
bandwidth and the traffic is shaped and polished to be within 
the reserved bandwidth. Different from ATM and PSTN, IP 
packet network like the Internet does not carry out aggressive 
traffic control, but it simply discards overflowed packets. 
Traffic control is dependent on congestion avoidance scheme 
of TCP/IP which is widely deployed [1] [2] [3]. Also, if a new 
communication flow is added to network, it is difficult to 
avoid congestion reoccurrence. 

Congestion avoidance of emergency ad hoc network is 
important to reduce unnecessary traffic and help reserving 
battery capacity when utility power is lost. Moreover, real 
time communication such as voice or video over IP network 
uses UDP which has no flow control mechanism. So that 
congestion avoidance dependent on TCP is insufficient for 
traffic control and is unable to avoid congestion completely. 

2.2 Flow control for congestion avoidance 

There are two approaches of flow control for congestion 
avoidance. They are open loop method and closed loop 
method. By the open loop method, a traffic source requests 
necessary bandwidth and traffic characteristics at beginning of 
transfer and network reserves necessary network resource and 
if the network resource is not enough, the request is rejected 
by the network. The source controls its traffic throughput 
within the bandwidth and characteristic. If the source violates 
their limit, the exceeding traffic is discarded. SBR and VBR 
of ATM are the example of the method. With the closed loop 
method, network monitors resource usage and feedbacks to 
the traffic source or transit nodes if traffic exceeds threshold. 
ABR of ATM or congestion control of PSTN belongs to the 
method.  If the network resource is known, open loop is easier 
to guarantee quality of service (QoS). However, in the ad hoc 

network, especially when it is deployed for emergency, it is 
hard to assume that static network configuration is known. In 
addition, the network configuration dynamically changes due 
to new participants or out such as battery exhaust. So that 
closed loop control is more suitable to emergency ad hoc 
network because it is able to reflect network condition in real 
time. 

There is another classification of flow control approach. 
One is controlling traffic after congestion occurrence and the 
other is controlling traffic before congestion occurrence. 
TCP/IP approach is former one. It is assumed that packet drop 
is due to network congestion and the discarded packet is 
retransmitted with fallen down rate to resume non-congestion 
communication. Even the network resume normal state, the 
retransmission consumes network resources additionally. On 
the other hand, flow control has a risk of over control. The 
network performance can be lower than its maximum 
allowance when traffic is not properly limited. However, this 
paper focuses on the flow control because it can achieve 
perfect congestion free. 

Traffic control within network is not sufficient to avoid 
congestion. A traffic source may be requested to reduce or 
stop traffic eventually. End terminal must be included within 
flow control mechanism. Accurate flow control needs enough 
network resource usage or traffic load information in timely 
manner, however measuring them also consumes a certain 
amount of network resource. It is necessary to consider 
measurement and accuracy balance for cost and energy 
efficient traffic control. 

2.3 Flow control implementation 

The ad hoc network is composed of nodes which are 
autonomous and distributed nodes. In case of emergency, it is 
hard to implement flow control system in parallel with ad hoc 
network. Therefore, it is requested for the each ad hoc 
network nodes equipped with the flow control function 
control as well as traffic switching and routing functions. 

Controlling traffic flow is necessary to know network 
load. In the emergency ad hoc network, it is not suitable to 
know whole network load or load of entire network nodes. On 
the other hand, flow control without other node load 
information is unable to prevent the node from causing other 
node congestion. As a result, at minimum, adjacency node 
load information is necessary to prevent neighbor node 
congestion. Such load information must be exchanged over 
the ad hoc network, because of its distributed and loose 
coupled nature. But the information exchange increases 
network load. Efficient method of information exchange is 
necessary. To control other node traffic directly is also not 
suitable for ad hoc network congestion control. Such control 
request must be passed via network connection if necessary. 

In the emergency ad hoc network, the ULP-DDNS nodes 
are connected via wireless network. There are two types of 
congestion in the case. One is congestion within ULP-DDNS 
node which is caused by overload of resources in the node. To 
control the congestion it is necessary to measure resource 
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usage and mechanism to reduce the load using the resource. 
The other is wireless network congestion. The air section for 
wireless network is shared with neighbor nodes so that only 
one node is able to send data and other nodes which have data 
to be sent need to wait while the air is occupied. There is a 
possibility of congestion if neighbors have transmission 
requests same time. In this case a node is able to monitor air 
section usage because all node are able to monitor wireless 
signal same time except nodes out of range 

3 Congestion in ULP-DDNS node 
Figure 1 describes the block diagram of ULP-DDNS 

[4] which is developed for evaluation purpose. It has enough 
functions as an ad hoc network node. Congestion within the 
ULP-DDNS is discussed in this section and ULP-DDCMP, 
Communication Device and Application Processor are point 
of congestion and need a control for congestion avoidance. 

 

 

3.1 Congestion in ULP-DDCMP 

ULP-DDNS has an ultra-low-power data-driven chip-
multi-processor: ULP-DDCMP whose block diagram is 
shown in Figure 2. The ULP-DDCMP functions as a network 
processor and an IEEE 802.11g wireless LAN interface is 
used as communication device. It also has an application 
processor, a camera and an LCD, they are usable for 
demonstration purpose of the ad hoc network application. The 
ULP-DDNS has enough functionality as an ad hoc network 
node.  

Off-loading interface converts between tokens and data. 
Tokens are processed in ULP-DDCMP and data are processed 
in AP or transferred through communication device. With a 
data-driven principle, data arrives at ULP-DDCMP or in 
ULP-DDCMP begins to be processed when its data set is 
ready. After the data is processed, it leaves ULP-DDCMP and 
transferred to AP or communication device via off-loading 
interface. 

ULP-DDCMP consists of 4 ULP-CUE data-driven 
processor cores. The ULP-CUE processes based on data-
driven principle whose data and instruction sets flow in a 
packet format and it is called token in this paper. The tokens 

in the ULP-CUE are processed and sent to other ULP-CUE if 
necessary. Also, to communicate with outside device, Off-
loading interface   

 

 

 Figure 3 shows ULP-CUE block diagram which 
consists of pipeline of function stages. FC invokes a token 
which has a set of data and ready to be processed flows the 
circular pipeline. Instruction in a token is decoded at ID and 
executed at EX. The circular pipeline has a bypass circuit BB 
to MB for unary-operation which mating is unnecessary. 
 

 

 

 

Figure 3 ULP-CUE Block Diagram 

Figure 4  Self Timed Pipeline 

Figure 2  ULP-DDCMP 

Figure 1  ULP-DDNS 
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The pipeline stages in the ULP-CUE are based on self-
timed pipeline (STP) principle shown in Figure 4. A latched 
token is transferred to next data latch through function logic. 
Each latch is controlled by a transfer control which 
communicates with adjacency transfer control with handshake 
signal. Since the handshake is asynchronous and demand 
based, the STP realizes data driven principle. [5] 

With above mentioned principle, ULP-CUE has almost 
flat turnaround time independent from number of threads as 
shown in Figure 5 and achieves scalability in throughput with 
number of processors. [6] 

 

 

With above mentioned principle, ULP-CUE has almost 
flat turnaround time independent from number of threads as 
shown in figure 5 and scalability in throughput with number 
of processors. 

Figure 6 shows the relation between throughput and 
power consumption of ULP-STP. The ULP-STP has power 
gating (PG) function and the graph shows the relationship in 
three voltages. According to the result, power consumption 
and ULP-STP throughput relationship is almost in linear when 
voltage is same.  

Processor load of ULP-DDCMP is measured by number 
of tokens processed and it is equivalent to packet throughput. 
Instead of counting the number of tokens in pipeline, it is able 
to measure processor load through power consumption with 
these characteristics of ULP-STP which compose ULP-
DDCMP. Measuring power consumption is measuring electric 
current when voltage is same. Measuring current can be easily 
achieved without consume processing power of ULP-DDCMP. 
This enables easy load measurement without affecting 
processor performance. On the other hand, because TAT is 
almost flat, it is hard to assume load through TAT which is 
often used to measure processor load from outside. 

From congestion control point of view, knowing other 
nodes load is necessary to control traffic. However, in the 
emergency ad hoc network, it is difficult to implement 
separate congestion control system so that nodes are requested 
to implement autonomous traffic control mechanism 

 

 

 

In this distributed traffic control implementation each 
node need to know load of other nodes, at least neighbor node 
load which the node communicates  In order to know other 
node load, there are two strategies, measure node load from 
outside or announce self-measured load to other nodes. As 
mentioned above, TAT is useless but power consumption 
indicates load. However, it is difficult to measure power 
consumption from other nodes. Considering this, a ULP-
DDNS is requested to announce its load to other nodes which 
is measured by its own power consumption. 

3.2 Congestion of other blocks 

There are other congestion of ULP-DDNS, high load 
of AP and communication device. AP congestion or high load 
and its load control are not discussed in this paper because it 
is an application level control and depends on the application 
in the AP. Although it is assumed that AP has However, the 
AP has to be informed available throughput of the network in 
order to avoid unnecessary traffic generation which can be 
waited or reduced resource allocation. 

Another type of congestion exists in wireless network 
portion. The air section is shared with neighbor nodes and can 
be congested even the node load is low enough. If the air is 
busy because of the high usage, packet is queued and waiting 
until it is ready to be sent. If the waiting packet queue is 
already full, the queue will be dropped and discarded so that it 
is necessary to stop the packet queuing before the queue 
become full. The resource usage is not only immeasurable by 
ULP-DDCMP power consumption but also the power 
consumption decreases whichever the queue is implemented 
outside of ULP-DDCMP or within. If the queue is outside of 
ULP-DDCMP, its power consumption decreases when a 
packet leaves ULP-DDCMP. If the queue is implemented in 
ULP-DDCMP it means the packet related token(s) is stopped 
in the pipeline including FC so that power consumption of 
logic switching decreases. Therefore, the ULP-DDNS node 

Figure 5   Number-of-Threads and TAT 

Figure 6  Throughput to Power Consumption 
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looks operating under low load when only power consumption 
is measured. It is necessary to implement the queue length 
counter for wireless network load measurement purpose.  

4 Proposed flow control 

4.1 Throughput margin announcement 

As it is mentioned previously, ULP-DDNS node load is 
represented by power consumption of DDCMP and a queue 
length of the communication device. However, from other 
node point of view, the load information are useless because 
they do not explicitly tell the amount of data or throughput 
which they can transfer to the node. Although a ULP-DDCMP 
load may be useful for the ULP-DDNS node, the load is 
necessary to be converted into an index which represents 
available resource for other nodes. The queue length of 
communication device is also same. The load and queue 
length are different dimension but they are not completely 
independent. It is convenient for other nodes when these two 
indexes are merged into an index.  

Following is the representative indexes popularly used 
for network system and useful for other nodes 

� Available bandwidth (throughput) 
� Available packet rate 
� Available data size 
� Available queue length 
Bandwidth and packet rate are convertible when 

average packet size is fixed. Data size and queue length are 
also convertible because of same reason. Data size and 
bandwidth can be convertible when maximum burst rate and 
duration are defined as traffic characteristics. In this proposal, 
available bandwidth is selected as node load index because of 
following reason. 

1.  Bandwidth is physically defined and solid.  
2.  Packet length and necessary bandwidth depend on the 

protocol even if pay load data size is the same. 
3.  Bandwidth is popular and often used for performance 

index 
Available network throughput ),(_ IVth ddcmpulpavail −  is 

calculated from available ULP-DDCMP throughput measured 
by volts and current. A conversion ratio of average UDP/IP 
packet size and average number of tokens is necessary. This 
depends on program implementation on ULP-DDCMP, its 
parallelism and stages. 

There is another throughput margin of queue of 
communication device. When ULP-DDNS communicates with 
other node, it is via communication device and the throughput 
consists of the communication device throughput and air 
section throughput. To use the communication device, there is 
a queuing buffer to absorb the throughput difference. The 
throughput of the queue )(._ QTh devcommavail is described as 

following 
1. No queue: the throughput is equal to or less than network 

throughput and there is throughput margin to be 
increased.  

2. The queue length is constant: the throughput is equal to 
network throughput and there is no throughput margin. 

3. Increasing queue length: the throughput is higher than 
network throughput and throughput must be decreased 
until the queue length decreasing. Throughput margin is 
negative. 

4. Decreasing queue length: the throughput is lower than 
network throughput and keep the throughput until the 
queue disappear. The throughput margin is 0. 

In the ULP-DDNS, ULP-DDCMP and communication 
device are series connected as it is shown Figure 7. In the 
model, throughput is limited by the slowest one so that 
announced is throughput availableth is 

                  (1) 

 

 
 
 

 
The ULP-DDNS ad hoc network employs wireless 

communication so that the throughput margin can be 
broadcasted to neighbor nodes within transmission range. The 
broadcasted announcement helps reduce time and power of 
node. On the other hand, nodes which can receive the 
announcement are requested to monitor and check it for next 
transfer. Otherwise, it has to wait until next announcement. 

 

4.2 Simultaneous transmission and throughput allocation 

Simple data transfer control mentioned above has a 
simultaneous transmission problem shown in Figure 8. If a 
node which receives an announcement can transfer within the 
announced throughput, total throughput may exceed the 
announced throughput. To avoid the problem, throughput 
allocation protocol is necessary. 

For example, when Node 1 announces available 
throughput 1Mb/s and Node 2, Node 3 and Node 4 has 
500kb/s throughput request for each. The simultaneous 
transfer cause overload of Node 1 because total throughput is 
1.5Mb/s. To avoid the congestion, Node 1 have to permit or 
deny transfer request each by each or reallocate lower 
throughput to keep total throughput being available throughput. 
However, generally speaking Node 1 does not know 
characteristic of data transfer except it is clearly mentioned so 
that whether other nodes can accept lower throughput or not is 
not guaranteed. Considering this, ULP-DDNS node also need 
throughput allocation mechanism with permit or deny basis. 

 

))(),,(min( .__ QthIVthth devcommavailddcmpulpavailavailable −=

Figure 7 
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4.3 Flow control mechanism and protocol 

In the communication, there are two type of traffic. 
One is not always expected to be reached. Like a broadcast, 
the traffic may be discarded when receiver is busy or off. The 
other is communication which needs a certain level of 
reachability and may need to know who the receiver is the 
later type of communication is the first priority for congestion 
free network. Although the broadcast type of traffic is 
considered as “load”, flooding traffic is not described in this 
protocol. It is assumed that flooding traffic may not be 
received or discarded by node whenever a node is in high load 
or occupied. 

Flow control functional model is shown in Figure 9 and 
Figure 10 describes the proposed flow control protocol 
sequence. Figure 9 describes relationship of nodes in series. A 
node may have other relationship such as a hub-spoke model  
 
 
 

 
 
 

 
The flow control protocol described in Figure 10 is 

following. Example in Figure 10 is written in brackets. 
 

1. An ad hoc network node (Node 1) has a function to measure 
its throughput margin based on voltage and current of 
ULP-DDCMP and queue length of communication device.  

2. Throughput margin is calculated from them. It is announced 
in broadcast (Thav1) 

3.  Among the neighbor nodes (Node 2, Node 3, Node 4 and 
Node 5) which have transmission request to Node 1 send 
transmission request with Thn (Node 2, Node 3 and Node 
4 ; Th2 < Th4 < Th5 < Th3) within the timer T1. 

4. If there is no request, the node (Node 1) announce again 
after T3 

5. The node (Node 1) accepts traffics in the order of lower to 
higher while  is less than Thav1 and if it exceeds 

Thav1 the request is denied.(Node 2 and Node 4 are 
accepted and Node 5 and Node 3 are denied) 

6. The node (Node 1) announces new available throughput 
(Thav_1). The announcement is with ACK list of accepted 
request and NAK list of denied request (ACK Node 2, 
Node 4and Node 5: NAK Node 3) 

7. Each node begins data transfer within the requested 
throughput. 

Figure 8  Simultaneous transmission 

Figure 9 Proposed flow control mechanism 

Figure 10  Proposed flow control protocol 
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8.  When data transfer finishes, a node notifies termination 
with transfer request termination with the node throughput 
in negative figure (Node 4) 

9. While a node continuously transfers data within T2 it is 
regarded as sending request 0 (Node 5) 

10. When there is no transfer within T2 and no transfer until 
announcement, it is regarded as termination of transfer 
(Node 2). 

11. A node is able to make new request even just after 
termination. (Node 4 with Th4_1) It is also able to request 
to decrease throughput with negative figure. 

12. After T3 the node announces new available throughput 
(Thav1_2) with all ACK list of accepted requests and NAK 
list of denied requests. (ACK Node 4 and Node 5: NAK 
Node 2) 

12. T2 time out flow is explicitly listed in NAK (Node 2) in 
order to inform termination. 

13. When the node is requested to decreased due to the node 
internal reason, it announces available throughput in 
negative figure in order to request nodes to reduce  

14. All nodes (Node 4 and Node 5) suspend their transfer 
upon negative available throughput announcement. 

15. Each node decide new request referring requested 
throughput decrease. The new requests are expected to be 
decreased. The same throughput request is also acceptable 
although the request has higher risk of being denied. 

15. “Same procedure in 3 and 4.” Each nodes send 
transmission request with new throughput (Th2_1, Th3_1, 
Th4_1 and Th5) within the timer T1. If there is no request, 
the node (Node 1) announce again after T3 

16. “Same as procedure in 5.” The node (Node 1) chooses 
request. (Node 2 and Node 3 are accepted, and Node 4 and 
Node are denied) 

16. “Same procedure in 6.” The node (Node 1) announces new 
available throughput (Thav1_4). The announcement is with 
ACK list of accepted requests and NAK list of denied 
requests (ACK Node 2 and, Node 3: NAK Node 4 and 
Node 5) 

5 Conclusion 
This paper described congestion in the emergency 

ULP-DDNS ad hoc network and proposes a method of 
congestion avoidance to achieve congestion free network. The 
proposed flow control is based on distributed control 
therefore independent flow control system is unnecessary.  It 
is proposed simple and non-load measurement with utilizing 
the ULP-DDCMP advantage whose load is measurable with 
its power consumption. It also takes in account of sending 
queue. The flow control protocol considering distributed 
implementation is also proposed. 

The proposed measurement has assumption that the 
number of tokens in the ULP-DDCMP and UDP/IP packet 
traffic is in proportion. It is also assumed that communication 
device queue and throughput is convertible in certain ratio. 
Further study and experiment is needed in this area.  

Throughput control described in the paper is not yet 
implemented. Although the traffic shaping mechanism is 
widely implemented in many network components, a study 
may be requested for data-driven shaper implementation. 
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Abstract - Support Vector Machines (SVM) are powerful 
classification and regression tools. They have been widely 
studied by many scholars and applied in many kinds of 
practical fields. But their compute and storage requirements 
increase rapidly with the number of training vectors, putting 
many problems of practical interest out of their reach. For 
applying SVM to large scale data mining, parallel SVM are 
studied and some parallel SVM methods are proposed. Most 
currently parallel SVM methods are based on classical MPI 
model. It is not easy to be used in practical, especial to large 
scale data-intensive data mining problems. MapReduce is an 
efficient distribution computing model to process large scale 
data mining problems. Some MapReduce software were 
developed, such as Hadoop, Twister and so on. In this paper, 
parallel SVM based on iterative MapReduce model Twister is 
studied. The program flow is developed. The efficiency of the 
method is illustrated through analyzing practical problems. 

Keywords: Parallel SVM, Large scale data, MapReduce, 
Twister 

 

1 Introduction 
 With the development of electronic and computer 
technology, the quantity of electronic data is in exponential 
growth [1]. Data deluge has become a salient problem to be 
solved. Scientists are overwhelmed with the increasing 
amount of data processing needs arising from the storm of 
data that is flowing through virtually every science field, such 
as bioinformatics [2-3], biomedical [4-5], Cheminformatics 
[6], web [7] and so on. Then how to take full use of these 
large scale data to support decision is a big problem 
encountered by scientists. Data mining is the process of 
discovering new patterns from large data sets involving 
methods at the intersection of artificial intelligence, machine 
learning, statistics and database systems. It has been studied 
by many scholars in all kinds of application area for many 
years and many data mining methods have been developed 
and applied to practice. But most classical data mining 
methods out of reach in practice in face of big data. 
Computation and data intensive scientific data analyses are 
increasingly prevalent in recent years. Efficient 
parallel/concurrent algorithms and implementation techniques 
are the key to meeting the scalability and performance 
requirements entailed in such large scale data mining 
analyses. Many parallel algorithms are implemented using 

different parallelization techniques such as threads, MPI, 
MapReduce, and mash-up or workflow technologies yielding 
different performance and usability characteristics [8]. MPI 
model is efficient in computation intensive problems, 
especially in simulation. But it is not easy to be used in 
practical. MapReduce is a cloud technology developed from 
the data analysis model of the information retrieval field. 
Several MapReduce architectures are developed now. The 
most famous is the Google, but the source code is not open. 
Hadoop is the most popular open source MapReduce 
software. It has been adopted by many huge IT companies, 
such as Yahoo, Facebook, eBay and so on. The MapReduce 
architecture in Hadoop doesn’t support iterative Map and 
Reduce tasks, which is required in many data mining 
algorithms. Professor Fox developed an iterative MapReduce 
architecture software Twister. It supports not only non-
iterative MapReduce applications but also an iterative 
MapReduce programming model. The manner of Twister 
MapReduce is “configure once, and run many time” [9-10]. It 
can be applied on cloud platform. It will be the popular 
MapReduce architecture in cloud computing and can be used 
in data intensive data mining problems. 
 Support Vector Machines are powerful classification 
and regression tools [11]. Many SVM software models have 
been developed, such as libSVM, lightSVM, ls-SVM and so 
on. LibSVM is taken as the most efficient SVM model and 
widely applied in practice because of its excellent property 
[12]. But SVM’s compute and storage requirements increase 
rapidly with the number of training vectors, putting many 
problems of practical interest out of their reach. The core of 
an SVM is a quadratic programming problem (QP), 
separating support vectors from the rest of the training data. 
For improving the training speed of SVM, many efforts have 
been done. Reference [13] accelerates the QP with 
‘chunking’, where subsets of the training data are optimized 
iteratively, until the global optimum is reached. Sequential 
Minimal Optimization (SMO) [14], which reduces the chunk 
size to 2 vectors, is the most popular of these algorithms. 
Eliminating non-support vectors early during the optimization 
process is another strategy that provides substantial savings in 
computation. Parallelization has been proposed by splitting 
the problem into smaller subsets and training a network to 
assign samples to different subsets [15]. Variations of the 
standard SVM algorithm, such as the Proximal SVM have 
been developed that are better suited for parallelization [16], 
but how widely they are applicable, in particular to high-
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dimensional problems, remains to be seen. A parallelization 
scheme was proposed where the kernel matrix is 
approximated by a block-diagonal [17]. Most of parallel SVM 
are based on MPI programming model. Little research work 
has been done with MapReduce work. 
 Based on current research work of SVM and Twister 
MapReduce framework, the paper develops a parallel SVM 
model based on MapReduce. In this model, training samples 
are divided into subsections. Each subsection is trained with a 
SVM model. In this paper, libSVM is used to train each 
subSVM. The non-support vectors are filtered with subSVMs. 
The support vectors of each subSVM are taken as the input of 
next layer subSVM. The global SVM model will be obtained 
through iteration. The MapReduce based SVM model is 
encoded with Java language. 
 The following of the paper is organized as follows. 
LibSVM method is introduced briefly in part 2. The Twister 
model is introduced in part 3. MapReduce based parallel 
SVM model and its program flow is introduced in part 4. Two 
practical examples are analyzed with the proposed model in 
part 5. At last some conclusions are summarized.  
2 LibSVM 
2.1 Support Vector Machines 
 SVM first maps the input points into a high-dimensional 
feature space with a nonlinear mapping function  and then 
carries through linear classification or regression in the high-
dimensional feature space. The linear regression in high-
dimension feature space corresponds to the nonlinear 
classification or regression in low-dimensional input space. 
The general SVM can be described as follows. 
 Let 𝑙  training samples be 𝑇 = {(𝑥1,𝑦1),⋯ , (𝑥𝑙 ,𝑦𝑙)}, 
where 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {1,−1} (classification) or 𝑦𝑖 ∈ 𝑅 
(regression), 𝑖 = 1,⋯ , 𝑙. Nonlinear mapping function is 
𝑘�𝑥𝑖 , 𝑥𝑗� = ∅(𝑥𝑖)∅�𝑥𝑗�. Classification SVM can be 
implemented through solving the following equations. 

min
𝑤,𝜉𝑖,𝑏

�
1
2
‖𝑤‖2 + 𝐶�𝜉𝑖

𝑖

� 

𝑠. 𝑡.𝑦𝑖(Φ𝑇(𝑋𝑖)𝑤 + 𝑏) ≥ 1 − 𝜉𝑖   ∀𝑖 = 1,⋯ ,𝑛     (1) 
𝜉𝑖 ≥ 0     ∀𝑖 = 1,⋯ ,𝑛 

 By introducing Lagrangian multipliers, the optimization 
problem can be transformed into its dual problem. 

min
𝛼

�𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)
𝑖,𝑗

−�𝛼𝑖

𝑙

𝑖=1

 

𝑠. 𝑡.  𝑦𝑇𝜶 = 0                              (2) 
0 ≤ 𝛼𝑖 < 𝐶, 𝑖 = 1,⋯ , 𝑙 

 After obtaining optimum solution  𝑎∗, 𝑏∗, the following 
decision function is used to determine which class the sample 
belongs to.  

𝑓(𝑥) = 𝑠𝑔𝑛�∑ 𝑦𝑖𝛼𝑖∗𝐾(𝑥𝑖 , 𝑥)𝑙
𝑖=1 + 𝑏∗�              (3) 

 The classification precision of the SVM model can be 
calculated as  

Accuracy =
#correctly predicted data

#total testing data
× 100% 

2.2 libSVM 
 LibSVM is taken as the most efficient SVM software. It 
is an integrated software for support vector classification, 
regression, and distribution estimation. Most efficient 
analysis models are included. For example, C-SVC and nu-
SVC classification models, epsilon-SVR and nu-SVR 
regression models, and one-class SVM distribution 
estimation. For improving the classification correct rate, cross 
validation is adopted. For processing unbalancing 
classification problem, weighted and probability models are 
adopted. The detail of libSVM can be found in [12]. In this 
paper, C-SVC libSVM model is selected to analyze the 
classification problems. 

3 Architecture of Twister 
 There are many parallel algorithms with simple iterative 
structures. Most of them can be found in the domains such as 
data clustering, dimension reduction, link analysis, machine 
learning, and computer vision. These algorithms can be 
implemented with iterative MapReduce computation. 
Professor Fox developed the first iterative MapReduce 
computation model Twister. It has several components, i.e. 
MapReduce main job, Map job, Reduce job, and combine job. 
Twister’s programming model can be described as in figure 1. 

 
Fig. 1   Program model of Twister 

 MapReduce jobs are controlled by the client node 
through a multi-step process. During configuration, the client 
assigns MapReduce methods to the job, prepares KeyValue 
pairs and prepares static data for MapReduce tasks through 
the partition file if required. Between iterations, the client 
receives results collected by the Combine method, and, when 
the job is done, exits gracefully. The message communicate 
between job is realized with message brokers, i.e. 
NaradaBrokering or ActiveMQ. 
 Map daemons operate on computation nodes, loading 
the Map classes and starting them as Map workers. During 
initialization, Map workers load static data from the local disk 
according to records in the partition file and cache the data 
into memory. Most computation tasks defined by the users 
are executed in the Map workers. Twister uses static 
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scheduling for workers in order to take advantage of the local 
data cache. In this hybrid computing model, daemons 
communicate with the client through messages. 
 Reduce daemons operate on computation nodes. The 
number of reducers is prescribed in client configuration step. 
The reduce jobs depend on the computation results of Map 
jobs. The communication between daemons is through 
messages. 
 Combine job is to collect MapReduce results. It operates 
on client node. Twister uses scripts to operate on static input 
data and some output data on local disks in order to simulate 
some characteristics of distributed file systems. In these 
scripts, Twister parallel distributes static data to compute 
nodes and create partition file by invoking Java classes. For 
data which are output to the local disks, Twister uses scripts 
to gather data from all compute nodes on a single node 
specified by the user.  

4 Parallel SVM based on Twister 
4.1 Architecture of Parallel SVM  
 The parallel SVM is based on the cascade SVM model. 
The SVM training is realized through partial SVMs. Each 
subSVM is used as filter. This makes it straightforward to 
drive partial solutions towards the global optimum, while 
alternative techniques may optimize criteria that are not 
directly relevant for finding the global solution. Through the 
parallel SVM model, large scale data optimization problems 
can be divided into independent, smaller optimizations. The 
support vectors of the former subSVM are used as the input 
of later subSVMs. The subSVM can be combined into one 
final SVM in hierarchical fashion. The parallel SVM training 
process can be described as in figure 2.  

 
Fig. 2   training flow of parallel SVM  

 In the architecture, the sets of support vectors of two 
SVMs are combined into one set and to be input a new SVM. 
The process continues until only one set of vectors is left. In 
this architecture a single SVM never has to deal with the 
whole training set. If the filters in the first few layers are 
efficient in extracting the support vectors then the largest 
optimization, the one of the last layer, has to handle only a 
few more vectors than the number of actual support vectors. 
Therefore, the training sets of each sub-problems are much 
smaller than that of the whole problem when the support 
vectors are a small subset of the training vectors. In this 
paper, libSVM is adopted to train each subSVM.  

4.2 Program flow 
 From the parallel SVM architecture, the pseudo program 
code based on Twister is as follows. 
Preparation 
 Computation environment configuration 
 Data partition and distribution to the computation nodes 
 Create partition file 
Main class 
 JobConf; //configure the MapReduce parameters and classnames  
 TwisterDriver; //to initiate the MapReduce tasks   
 While(condition)  //not combined to one SVM 
     JobConf;  //reconfigure the MapReduce parameters;  
     TwisterDriver; // initiate new MapReduce tasks, Broadcast combined 

support vectors to each computation node;  
     Get feedback results; 
 If(condition) break; // if one SVM obtained, program finished 
End mian class 
Map class 
 If(the first layer SVM) 
     Load data from local file system; 
 else 
     Read data broadcasted by Main class 
 End if 
 Svm_train(); //the parameters of the SVM model are transformed through 

jobConf. 
 Collector;  //sent the training result to Reduce job through message. 
End Map class 
Reduce class 
 Read data transformed from Map job; 
 Combine support vectors of each two subSVM into one sample set. 
 Collect; //feedback all the trained support vectors 
End Reduce class 

 Firstly, computation nodes should be available. The 
program can be described as follows. Original large scale data 
D should be partitioned into smaller data sections 
{D1,⋯ , Dn}. These data sections are put to computation 
nodes. Then create partition file according to Twister 
command. The partition file will be used in Twister 
configuration. 
 Based on the available computation environment,  
jobConf is used to configure the computation parameters, 
such as Map, Reduce, and Combine class names, number of 
Map tasks and Reduce tasks, partition file and so on. 
TwisterDriver will initiate the MapReduce task. Dynamic 
parameters will be transformed to each computation node 
through API interface.  
 In each computation node, Map tasks are operated. In 
the first layer of figure 2, sample data are loaded from local 
file system according to partition file. In the following layers, 
the training samples are support vectors of former layer. 
LibSVM is used to train each subSVM. In the LibSVM, 
Sequential Minimal Optimization is used to select the workset 
in decomposition methods for training support vector 
machines [14]. C-SVC model is used to train classification 
SVM. Trained support vectors are sent to the Reduce jobs.  
 In the Reduce job, all support vectors of all Map jobs are 
collected together and feed back to client. Through iteration, 
the training process will stop when all subSVM are combined 
to one SVM.  
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4.3 Computation time analysis 
 The time cost of SVM can be divided into following 
sections. The computation time complexity of libSVM is 
O(n2). The transformation time of data between Map and 
Reduce nodes is depend on the bandwidth of the connection 
network. The transfer time can be described as ttrans. The 
combination time cost of two SVMs is O(n). When training 
data set is divided into m partitions, the computation cost is 
calculated as follows. The layers of cascade SVM is N =
log2 m. Suppose that the ratio between the number of support 
vectors and that of whole training sample is α (0 < α < 1) 
and the ratio between support vectors and that of training 
sample except the first layer is β(1 < β < 2), i.e. the number 
of the last layer in Fig. 2 is  nN = nαβ and the number of 
training sample of the first layer is almost 𝑛1 = 𝑛/𝑚.  The 
number of training samples of the 𝑖 layer is 𝑛𝑖 = 𝑛𝛼𝛽 ∗

�𝛽
2
�
𝑁−𝑖

. So the computation time can be calculated as follows. 

𝑡 = 𝑂 ��𝑛
𝑚
�
2
� + ∑ 𝑂 ��𝑛𝛼𝛽 ∗ �𝛽

2
�
𝑁−𝑖

�
2
�2

𝑖=𝑁    

+𝑂 �∑ 𝑛𝛼𝛽 ∗ �𝛽
2
�
𝑁−𝑖

∗ 2𝑁−𝑖2
𝑖=𝑁−1 � + 𝑡𝑡𝑟𝑎𝑛𝑠             (4) 

 Overhead of data transfer mainly includes three parts. 
The first part is data transfer from Maptask nodes to 
Reducetask nodes. The transferred data are the support 
vectors obtained by Maptask nodes. The second part is data 
transfer from Reducetask nodes to server node. The 
transferred data is the support vectors also. The third part is 
the data transfer from server nodes to Maptask node. The 
transferred data is the training samples combined by two 
subSVM’s support vectors. The overhead of data transfer 
depend on the bandwidth of the MapReduce cluster.  
 From the architecture of parallel SVM, we can find that 
it is hierarchal structure. The low level SVM training has to 
be performed when all the upper level subSVM be trained. In 
the last level of the architecture, all the support vectors should 
be included in the training samples. The sample size must be 
bigger than the number of support vectors. When the ratio 
between support vector and training sample is bigger the 
speed up will be less. It is the shortcoming of the cascade 
SVM model. 

5 Examples 
 All examples are analyzed in India cluster node of 
FutureGrid. Eucalyptus platform is adopted to configure the 
MapReduce computation environment. Twister0.9 software is 
deployed in each computation nodes. ActiveMQ is used as 
message broker. The configuration of each virtual machine is 
as follows. Each node is installed Ubuntu Linux OS. The 
processor is 3GHz Intel Xeon with 10GB RAM. 

5.1 Adult data analysis 
5.1.1 Data source 
 The source data are downloaded from NEC laboratory 
American Inc. website http://ml.nec-

labs.com/download/data/milde/. In the adult database, 123 
attributes are labeled 2 classes. Each attribute denoted by 
binary variable, i.e. 0 or 1. Labels are denoted by +1 or -1. It 
is a binary classification problem. The database includes two 
files. One is used for training and the other is used for testing. 
The training file includes 32562 samples. The testing file 
includes 16282 samples. In this example, 5 computational 
nodes are used. Training data are partitioned into n sections 
randomly. Each section has roughly equal number data.  

5.1.2 Training process 
 The problem is taken as a binary classification problem. 
C-SVC model is adopted. The parameter of the SVM model 
is set as follows. Constant C is set 1, radial basis function is 
taken as kernel function, and gamma is set as 0.01. Firstly, the 
example is analyzed with only 1 computation node, i.e. 
classical SVM method is used to train the SVM model. The 
trained model is used to predict the testing samples. The 
training time and classification correct rate are listed in Table 
1. Secondly, the example is analyzed with the parallel SVM 
based on map/reduce. For comparison, the sample is 
partitioned into 2, 3, 4, 5 sub-samples respectively. When the 
sample is partitioned into 2 sub-samples, 2 computing nodes 
are used. The training time and classification rate of each 
partition form are listed in table 1. And so forth to the other 
partitions. 

Table 1   analysis result of SVM with different partition nodes 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 11957 490.591 84.82 
2 11933 281.152 84.98 
4 11908 239.914 83.06 
8 11887 237.441 82.74 

5.1.3 Feature selection with correlation coefficient 
 In the example, there are 123 attribute variables. Most 
variables provide minor contribution in the classification. For 
improve the training speed and reduce the noise effect of 
attribute variables, correlation coefficient is used to measure 
the correlation between class variable 𝑌 and attribute variable 
𝑋. The attribute variables are selected according to the 
correlation values. The correlation coefficient is calculated as 
the following equation. 

𝜌𝑋,𝑌 = 𝑐𝑜𝑣((𝑋,𝑌)
𝜎𝑋𝜎𝑌

= 𝐸[(𝑥−𝜇𝑋)(𝑦−𝜇𝑌)]
𝜎𝑋𝜎𝑌

             (5) 
where 𝑐𝑜𝑣((𝑋,𝑌) is the covariance of the two variables, 
𝜎𝑋,𝜎𝑌 are the standard deviations of 𝑋 and 𝑌. After 
calculating the correlation coefficient, the pruning value is set 
0.1. At last, 34 attribute variables are selected. The training 
result is listed in table 2.  

Table 2   analysis result of SVM based on feature selection 
nodes 

Number  
Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 11702 154.098 84.10 
2 11694 94.338 84.06 
4 11710 86.142 83.95 
8 11692 83.57 82.99 

5.1.4 Results analysis 
 The analysis results are shown as in Fig.3 and Fig. 4. 
From Fig.3 we can find that the training time can be reduced 
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greatly when the sample is partitioned 2 parts. But with the 
increase of partition number, the training time reduction will 
become slow. From Eq. (8), the computation cost mostly 
concentrate on the training calculation of each subSVM. The 
example was analyzed in HPC cluster. The data transfer time 
cost is minor. In this example, the ratio α ≈ 0.35 and β ≈
1.2. The last layer will occupy the mainly part computation 
time and it will not decrease with the increase of partition 
number. With the decrease of α, the computation time can be 
reduced more. With the introduction of feature selection, the 
computation can be reduced greatly without decreasing the 
correct classification rate.  

 
Fig. 3   Training time based on different partition nodes 

 
Fig. 4 Correct rate based on different partition  

5.2 Forest Cover type Classification 
5.2.1 Data source 
 The source data are downloaded from 
http://ftp.ics.uci.edu/pub/machine-learningdatabases/covtype/. 
The data is used to classify forest cover type. The original 
data are collected by Remote Sensing and GIS Program, 
Department of Forest Sciences, College of Natural Resources, 
Colorado State University. Natural resource managers 
responsible for developing ecosystem management strategies 
require basic descriptive information including inventory data 
for forested lands to support their decision-making processes. 
The purpose is to predict the forest cover type according to 
cartographic variables’ values. The square of each observed 
section is 30 x 30 meter cell. There are 54 columns in each 
data item. They denote 12 variables, i.e. Elevation, Aspect, 
Slope,Horizontal_distance_to_hydrology,Vertical_Distance_
To_Hydrology,Horizontal_Distance_To_Roadways,Hillshade
_9am,Hillshade_Noon,Hillshade_3pm,Horizontal_Distance_
To_Fire_Points, Wilderness_Area, and Soil_Type, where 
Wilderness_Area is denoted by 4 binary columns and 
Soil_Type is denoted by 40 binary columns. They are labeled 
as 7 cover types, i.e. Spruce/Fir, Lodgepole Pine, Ponderosa 

Pine, Cottonwood/Willow, Aspen, Douglas-fir, and 
Krummholz. There are 581012 samples in total. In this 
example, 28000 samples are taken as training samples and the 
left are taken as test samples. 

5.2.2 Analysis preparation 
 In this example, 5 computational nodes are used. 
Training data are partitioned into n sections randomly. Each 
section has roughly equal number data. Each attribute is 
normalized according to the following equation. 

 Let X denote attribute variable. The maximum value of 
X is xmax and the minimum value is xmin. The range of 
normalized attribute is set [0, 1]. The normalized equation is 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥min

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

5.2.3 Training process 
 The problem is taken as a multi-value classification 
problem. Multiclass classification is realized with pairwise 
method, i.e. k class SVM is realized through k(k − 1)/2 
binary SVMs. The “one against one” strategy, also known as 
“pairwise coupling”, “all pairs” or “round robin”, consists in 
constructing one SVM for each pair of classes. Thus, for a 
problem with k classes, k(k-1)/2 SVMs are trained to 
distinguish the samples of one class from the samples of 
another class. Usually, classification of an unknown pattern is 
done according to the maximum voting, where each SVM 
votes for one class.  
 In this example, C-SVC model is adopted. The 
parameter of the SVM model is set as follows. Constant C is 
set 1, radial basis function is taken as kernel function, and 
gamma is set as 0.01. Firstly, the example is analyzed with 
only 1 computation node, i.e. classical SVM method is used 
to train the SVM model. The trained model is used to predict 
the testing samples. The training time and classification 
correct rate are listed in Table 2. Secondly, the example is 
analyzed with the parallel SVM based on map/reduce. For 
comparison, the sample is partitioned into 2, 3, 4, 5 sub-
samples respectively. When the sample is partitioned into 2 
sub-samples, 2 computing nodes are used. The training time 
and classification rate corresponding to each partition form 
are listed in table 3. 

Table 3  analysis results with different partition nodes 
nodes 
Number  

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 22177 396.125 58.76 
2 21831 297.32 58.35 
4 20941 251.402 58.24 
8 20139 219.346 57.96 

5.2.4 Feature selection with correlation coefficient 
 In the example, there are 54 attribute variables. Most 
variables provide minor contribution in the classification, 
especially the Soil_Type variables. For improve the training 
speed and reduce the noise effect of attribute variables, 
correlation coefficient Eq. (9) is used to select attribute 
variables. After calculating the correlation coefficient, the 
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pruning value is set 0.1. At last, 18 attribute variables are 
selected. The training result is listed in table 4.  

Table 4   analysis result of SVM based on feature selection 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 14624 82.022 57.46 
2 14198 58.899 57.99 
4 13298 55.154 58.57 
8 12207 45.029 58.65 

5.2.5 Result analysis 
 This example is a multiclass classification problem. 
How to improve classification correct rate of multi-class is 
still a big problem. From Fig.5 we can find that the training 
time can be reduced greatly when the sample is partitioned 2 
parts. But with the increase of partition number, the training 
time reduction will become slow. In this example, the ratio 
α ≈ 0.4 and β ≈ 1.2. It is similar to the analysis problem of 
example 1. With the introduction of feature selection, the 
computation can be reduced greatly. From the analysis correct 
rate we can find that correct rate will not decrease too much.    

 
Fig. 5   training time based on different partition nodes 

 
Fig. 6  Correct rate based on different partition 

5.3 Heart disease classification  
5.3.1 Data source 
 There are 270 clinic reports. Each report includes 13 
factor variables.  Clinic is divided into 2 classes. For testing 
the efficiency of the proposed cascade SVM, we replicate the 
data 500 times, 1000 times, and 2000 times separately. The 
generated data sets has 135000, 270000, 540000 samples 
separately. The initial data set is used to test the SVM model. 
The training time and correct rates based on different partition 
styles are listed in table 5, table 6 and table 7 respectively.  

 
 
 

Table 5  analysis result with data replicated 500 times 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 7585 313.755 99.629 
2 7712 148.184 99.259 
4 7690 87.523 98.518 
8 7487 76.773 98.148 

Table 6  analysis result with data replicated 1000 times 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 8972 539.28 100 
2 9055 234.49 99.63 
4 8739 123.887 98.15 
8 8688 86.503 97.41 

Table 7  analysis result with data replicated 2000 times 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 N/A N/A N/A 
2 9901 578.507 100 
4 9650 266.587 99.63 
8 9202 158.531 99.63 

 The analysis result is shown as in figure 7, figure 8 and 
figure 9.  

 
Figure 7   training time based on different partition nodes 

 
Figure 8  Correct rate based on different partition 

 
Fig. 9   training time based on different parallelism corresponding to 

different sample size 
5.3.2 Result analysis 
 From the above analysis results we can find that the 
bigger the sample size the more obvious of the speed up. 
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From figure 7, we can find that when the sample size is very 
big, i.e. 540000 samples, it can’t be processed with one single 
computation node. It is out of the memory. It is necessary to 
process big size problem with parallel style. The training time 
will decrease slowly when the parathion number is bigger 
than 8. It is because of two reasons. The first reason is that he 
ratio between optimum computation time and data transform 
overhead is less. The other reason is that the sample size of 
the last level can’t be less than the number of support vectors. 
The computation cost will account a big proportion. So the 
computation will decrease very slowly.   From fig. 9 we can 
find the computation time based on different partition style is 
approximate linear relationship to sample size.   

6 Conclusions 
 Data-intensive data mining is still a big problems faced 
by computer scientist. SVM is taken as a most efficient 
classification and regression model. The computation cost of 
SVM is square proportion to the number of training data. 
Classical SVM model is difficult to analyze large scale 
practical problems. Parallel SVM can improve the 
computation speed greatly. In this paper, parallel SVM model 
based on iterative MapReduce is proposed. It is realized with 
Twister software. Through example analysis it shows that the 
proposed cascade SVM based on Twister can reduce the 
computation time greatly. But it doesn't mean that it is better 
to partition sample data into many parts. The computation 
time will not decrease through the analysis of the computation 
time. The partition number can be estimated according to the 
concrete problems. For increase the computation speed, the 
cascade SVM can be combined with other feature selection 
and feature extraction methods. In total, the analysis results 
show that the parallel SVM based on iterative MapReduce is 
efficient in data intensive problems. 
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CUERA: A generic data- and undo/redo-consistency framework
for realtime interactive collaboration applications

Daniel Stolzenberg and Erika Müller
Institute of Communications Engineering, University of Rostock, Germany

Abstract— Existing solutions for eventual consistent any-
undo/redo in collaborative applications are very limited
to specific domains. Thus a widely applicable framework
based on entity-relationship-models is introduced. It defines
generic state-focusing action types and undo/redo meta-
actions. Convergence is based on a transitive precedence
order and is achieved by applying a last-writer-wins scheme
to an efficient scope organization of action history. Its
performance scales for data and action history, but degrades
regarding the number of sites.

Keywords: CSCW, any-undo/redo, entity relationship models,
eventual consistency, precedence transitivity

1. Introduction
Realtime interactive collaboration applications (RTICAs)

let multiple users at different locations interact within a
shared context at the same time. Since users demand high
responsiveness and fluid interactivity, all data making up
the shared context has to be optimistically replicated [1].
Consequently, the most challenging aspect of RTICAs is to
ensure eventual consistency. That many systems developed
so far are error-prone [2] or inefficient [3], highlights the
severeness and importance of this consistency challenge.

Moreover, users must be able to recover from erroneous
actions any user may have performed. Therefore RTICAs
have to provide collaborative undo/redo features, that further
complicate consistency maintenance. And since existing
correct and efficient solutions for collaborative undo/redo
are very limited to specific domains, consistency has to be
solved independently for every non-trivial project.

To reduce complexities and efforts of this task, the generic
collaborative undoable entity-relationship-actions (CUERA)
framework is introduced. It provides a state-based solution
sufficient for many RTICA projects. When better conflict
resolution is needed, it can be extended to a domain specific
operation-based solution. This way, developers are freed
from designing a consistency solution from scratch.

But CUERA‘s full potential is in building the core of
a data modeling, propagation and persistency platform for
collaborative applications. Such an replicated model layer
"out-of-the-box" would completely free developers from
dealing with the intricacies of consistency maintenance: Just
specify the desired data model and use derived model objects
in the application‘s controllers and views.

Site 1 Site 2 Site 3

A1 A2 A3

A4
A5

Controller

View

Model Interface
(public)

Model State
(private)

Site 3

Site 2

Site 1

Fig. 1: Collaboration Network, Time-Space-Diagram

2. System Model and Problem Definition
2.1 Collaboration Network

The collaboration network is a dynamic set of sites Si

with equal roles. Sites can enter or leave the network at any
time and any pace. Each site maintains a local replica of
shared context data. Any local replica can be modified at
any time by performing some action Aj . Local actions are
executed immediately, assigned a unique IDact and then
propagated asynchronously in the network. No assumptions
are made on propagation technique, time and order, but
eventually all actions are received and executed at every site
in the network - including late joining sites.

Each site in the network provides a graphical interface,
that enables user interaction with the collaboration context.
The underlying design follows the MVC pattern: The user
interface elements make up the view, that is mediated by
controllers to represent the current state and interaction
facilities of the model, where replicated context data resides.
Typically the view represents only a part of the model bound
to the current region of interest. Moreover, the model sends
change notifications to controllers observing this region.

In principle, the model layer is a graph of objects, each
featuring a private state of encapsulated member variables
and references to other objects. Based on this state, a
programmatic model interface exposes functionality and
behavior to the controllers (Figure 1). In general, all parts
of this model interface, that actively update the model state,
must be captured by actions propagated in the collaboration
network. But since model interfaces usually provide rich
and complex capabilities and are subject to regular changes,
assuring consistency is a daunting task. In addition, model
interfaces are highly application specific and thus cannot be
generalized directly.
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2.2 Consistency of RTICAs
To target consistency of user experience in RTICAs, Sun

introduced the CCI model [4]. Its requirements depend on
timings of action propagation and execution, which are
commonly depicted in time-space-diagrams like Figure 1.

Causality Preservation: Users expect that semantic
cause-effect-relations between actions are preserved. Since
sequential timing is a necessary condition for causality, each
pair of actions is determined to be either in happened-before
(→) or concurrent (‖) relation [5]. Then strict preservation of
happened-before relations at all sites is sufficient to respect
any potential causality. Therefore execution of an action
has to be delayed, until all actions that happened-before its
generation have been executed – so A4 in Figure 1 is queued
at Site 3 until A2 from Site 2 is received and executed.

Convergence: Due to asynchronous propagation, sites
can significantly differ regarding actions already executed
(Figure 1) and replicas diverge temporarily. But optimistic
replication assumes, that replicas converge to a consistent
state, when eventually all actions are executed at all sites.
But this assumption of convergence is questionable for
actions that were initiated concurrently: Because they are
not ordered a priori, they can and will be executed in
differing sequences (7→) (Figure 1). Since actions do not
inherently commute in general [4], different execution orders
lead to diverging states and permanent replica inconsistency.
Therefore commutativity of concurrent actions has to be
forced in order to achieve convergence [3].

Intention Preservation: But in order to meet intuitive
expectations of users, it is not sufficient to converge to any
consistent state. Rather this state has to preserve intentions
of all concurrent actions [4]. The intention of an action is
commonly defined as the effect of its local execution at the
initiating site [4], [3]. Preserving effects of all actions is
not always possible, since actions can express conflicting
user intentions. As manual conflict resolution is no option
in RTICAs, convergence can only be assured by coherent
automatic conflict resolution [1]. This criterion has turned
out to be quite problematic, because it is under-formalized
and hard to prove [6]. Despite this criticism, intention/effect
preservation has to be taken account of when designing
eventually consistent RTICAs.

2.3 Undo/Redo
Supporting undo/redo is essential, even for single user

applications. But research has shown that it has to be
recognized as an error recovery user intention rather than a
fixed system function [7]. So several undo/redo modes have
been proposed, that enable users to express intentions for
error recovery (Figure 2).

Meanwhile chronological undo has become the de facto
standard, because it is powerful, yet easy to use and users can
anticipate its behavior. But its simplicity also causes a major
restriction: To undo an action, all subsequent actions have to

Undo Undo(A2)
I

Undo

Do(A4)Do(A4)
IV

Do(A4)

Single-Step/Flip
Undo

Chronological
Undo/Redo

Selective
Undo/Redo

Redo(A2)RedoUndo
III

II
Undo(A1)UndoUndo (Reflexive Redo)

0

A2A1 A3 A2A1 A3 A1 A3

A2A1 A3 A2A1 A3 A2A1 A3

A1 A3 A2A1 A3 A2A1 A3A2

A2

A1 A2A1 A2A1 A3A2 A4A4 A4

A2A1 A3 A2A1 A3 A2A1 A3

Fig. 2: Important Undo/Redo Modes

be discarded as well. To overcome this limitation, selective
undo allows users to undo/redo any action. But simply
employing the inverse action does not always reveal the
correct result for this undo mode. So achieving the correct
effect is more difficult for the system and its anticipation
more demanding for users.

Generally, RTICAs should be compatible to features of
applications, users are accustomed to [8]. But in addition,
error recovery in RTICAs is of increased importance:

• Errors potentially have impact on other users‘ work.
• Probability of errors increases due to concurrency.
• Conflict resolution can produce unintended results.
• Fear of irreversible errors hinders explorative usage.
• Acts of vandalism are possible in open systems.
If undo/redo provides a powerful way to recover from

errors caused by collaboration, it can help users managing
its complexity [9]. But supporting collaborative undo/redo in
a compatible way is more complex. Fortunately, undo/redo
concerns can be separated into different components [8]:

A history component stores all actions performed in the
network, including initiating site and local execution order.

The selection component keeps track of all information,
that is needed to identify, which actions are intended to be
undone/redone. The user facing details of selection depend
on the current state, mode and scope (local/global) of
undo/redo and are out of the focus of this paper.

The algorithm component has to assure, that replicated
data consistently reflects the actions as specified by their
undo state. Undo/redo itself underlies concurrency as well
and therefore has to converge to achieve consistency. As
undoing and redoing the same action is non-commutative
per se, convergence control beyond actual data is needed.
And even plain data convergence is influenced by undo/redo:
Because concurrent actions of all users are interleaved and
executed in different orders, actions may be located very
differently in the history of each site. Still undoing/redoing
an action has to reveal consistent data.
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3. Related Work
Based on the previous section, relevant research related

to the scope of this paper can be identified. Most of this
is rooted in the field of collaborative text editing systems,
featuring insert and delete operations on a linear data type.
Operational Transformation (OT) [10] dominates research
in this area and has been extended to a wide range of
domains [11], [12]: Conceptually, concurrent operations are
transformed against each other to let different execution
orders converge. In fact, elaborating this basic idea has led to
a plethora of algorithms [13], most of them failing in special
situations called "puzzles" [14], [6]. Algorithms known to
be correct are very complex to design in practice and
computationally expensive when implemented [15], [16].

In reaction, some recent research targets convergence
by commutativity of operations without transformation. In
particular, Shapiro et al. [2] and Roh et al. [3] developed
commutatively replicated variants of important abstract data
types (Counters, Registers, Sets, Arrays and even Graphs).
But none of them offers the spectrum of capabilities targeted
in this paper and especially undo/redo has been neglected.

Though many OT based systems support undo/redo of
any action [17][18], non-OT research on this matter is rare.
Most of it is related to text editing in P2P-Wikis [19]
[20]: Besides the limitation to sequential data, their counter-
based undo/redo results in a user experience not suitable for
realtime collaboration. The latter also holds for the XML tree
editing system in [9], but XML nodes and attributes at least
partly resemble the model object graph concepts identified
in Section 2. Hence, some of its approaches can inspire
the development of the intended CUERA framework: The
history organization of operations in their respective scope
and the LWW technique for attribute convergence. But most
aspects of a generic data and undo/redo consistency solution
are still unresolved and motivate this paper.

4. CUERA Framework
4.1 Data & Action Representation

One of the most promising and generic abstractions of
data has not yet been directly considered in RTICA research.
Entity-Relationship Models (ERMs) [21] formalize a domain
of interest for a given project. Its constituting elements are
classified into several entity-types (Tent). Relevant properties
of these elements are identified to become attribute-types
(Tatt). Similarly connections and dependencies of elements
are represented as relationship-types (Trel) between their
corresponding entity-types, where cardinalities and labels
for both directions are attached. Advanced features of ERMs
are beyond the scope of this paper, but will be examined in
future investigations: Specialization/generalization of entity-
types, aggregation/composition of entities and inherently
ordered relationships.

ERMs are the de facto standard in data modeling [22] and
the vast majority of software projects start with some form
of ERM to derive database schemas and class structures.
Therefore ERMs can be assumed to be a widely applicable
abstraction of common data needs. Moreover, concepts of
ERMs match those of model object graphs (Section 2).
Consequently, ERMs serve as the conceptual foundation for
the intended collaborative data framework.

So a replicated entity relationship graph (RERG) data
type is introduced, literally realizing an ERM: Its vertices
and edges are incarnations of entity- and relationship-types.
Actions on this data type are composed of an ordered set
of operations, in order to capture user intentions involving
more than one of the defined operation-types (Figure 3):

• EntityOperation (Tent, IDent)

- CreateEntity
- DestroyEntity

• AttributeOperation (Tatt, IDent, [Parameters])

- SetAttribute (. . . , V alue)

• RelationshipOperation (Trel, IDsrc, IDdst)

- AddRelationship
- RemoveRelationship

Entities are identified by unique and unambiguous IDent

generated at the initiating site. In addition, entities are
non-reviving: Once destroyed they cannot be created again.
Relationships are bidirectional per se and unambiguousness
is assured by a unique source-destination-direction for every
type. So relationships and attributes do not need dedicated
IDs, since they are identified by type and entity IDs.

In order to ensure integrity of this graph, relationships
using destroyed entities are considered invalid. Moreover,
ERM conformance implies another constraint: An entity can
only be connected to a single entity for a relationship-type
with singular cardinality in this direction (”To-One”). Hence
such relationships are considered to be replaced by new
relationships involving the same type and entity.

In RTICAs, these constraints have to be obeyed in face
of concurrent changes. This is simplified by the RERG
approach, because relationships are represented explicitly in
comparison to the implicit reference representation normally
used in model object graphs. Nevertheless, the familiar
reference representation can be translated to and from the
explicit relationship representation.

This representation of data and actions focuses on the
private state underlying the model interface to the controller
layer. So of any kind of interaction, only the resulting
changes to the state of entities, attributes and relationships
are captured. This state-based approach is the enabling factor
for the generic abstraction of rich, complex and application
specific model interfaces. Particularly, the amount of action-
types is drastically reduced and consistency maintenance is
simplified. But of course, this state-based replication also
has disadvantages [1], that will be discussed in Section 5.
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4.2 Convergence Control
Section 2.2 demonstrated that assuring CCI consistency

is dependent on commutativity of concurrent actions. So all
combinations of operation-types are analyzed for inherent
commutativity in a naive implementation, that respects the
aforementioned relationship invalidation and replacement. It
is obvious, that concurrent actions are commutative as long
as affected entities and relationships do not overlap. Within
the same region of the graph, some combinations can never
occur: Due to unique and non-reviving entities, strictly no
action can involve an entity created concurrently. Only three
of the remaining combinations do not commute inherently:

• Concurrently setting the same attribute of the same
entity to different values does not commute, since the
attribute always reflects the last executed operation.

• Concurrently adding and removing the same relation-
ship does not commute, because the relationship always
reflects the last executed operation.

• Concurrently adding different relationships to the same
singular cardinality does not commute, because the last
executed addition replaces all previous ones.

Convergence of concurrent actions, that do not commute,
must be forced. This requires both a conceptual framework
and a solution specific to the RERG data type. This paper
makes use of the Operation Commutativity by Precedence
Transitivity (OCbyPT) framework by Roh et al. [3], because
it provides a useful guideline for the design and proof of
eventually consistent systems. Conceptually, it establishes
an artificial total precedence order of actions, that respects
happened-before relations. The convergent state is then
defined as the result of naively executing actions in this
precedence order, thereby automatically resolving intention
conflicts. Any other valid causal execution order has to
reveal exactly this state by commuting actions, as if they
were executed in precedence order. This can be achieved by
keeping some metadata: Based on the knowledge of already
executed actions and their precedence relations (PR) to a
received action, its correct execution effect leading towards
the consistent state can be inferred. Although this approach
resembles serialization, it does not restrict action execution
to precedence order.

When OCbyPT is applied to the RERG data type, it allows
to utilize the simple Thomas‘ write rule (LWW - Last Writer
Wins) to force convergence and resolve intention conflicts.
Because of the state-based approach, only one operation is
effective for every RERG element:

• The set-attribute with the highest precedence is effective
for an attribute and defines its value.

• The addition or removal with the highest precedence is
effective for a relationship and defines its existence.

• The relationship with the highest addition precedence is
effective for a singular cardinality – regardless of being
removed, invalidated or replaced (in "One-To-One").

To preserve semantic cause-effect-relations, precedence
relations ( ) must include and generalize happened-before
relations (→). So in practice, they are derived from the
same distributed clock mechanisms needed for causality
preservation anyway [3]. Thus, in addition to expressing
happened-before relations, timestamps unambiguously order
and identify actions by precedence. Although no particular
technique is assumed in this paper, disadvantages related to
distributed clocks in general are discussed in Section 5.

4.3 Undo/Redo Representation
The convergence control based on OCbyPT and LWW

already implies the fundamental approach to undo/redo: The
correct effect is defined by the result of executing only
actions in precedence order, that are active (i.e. not undone).
So it must be defined, how this state of actions is altered.

Since a closed action expressing a user intention generally
involves several RERG operations, undo/redo must reflect
this by restricting granularity to the action level. In addition,
the same holds for undo/redo itself: Expressing an error
recovery user intention generally requires to undo/redo more
than one original action. And because performing undo/redo
does not directly alter the RERG state, but rather the state of
actions, undo/redo is represented by meta-actions composed
of an ordered set of meta-operations (Figure 3):

MetaOperation(IDact)

- UndoAction
- RedoAction

Affected actions are identified by their IDs and if only
original actions are targeted, undo/redo is non-reflexive: To
undo an undo meta-operation, the original action has to be
redone. This allows to hide the existence of meta-actions,
which simplifies user experience to the state of original
actions. Concurrently undoing and redoing the same action
does not commute, so undo/redo convergence has to be
forced as well. Thus meta-operations take part in the same
LWW scheme used in RERG operations: The meta-operation
with the highest precedence is effective for an action and
defines its meta-state. Because of the many commonalities,
actions and meta-actions are abstracted by events.

4.4 Model State Retrieval
To enable efficient model retrieval, the CUERA frame-

work exactly reflects LWW convergence and undo/redo
meta-state control at runtime. Each element references its
affecting (meta-)operations sorted by precedence. The one
with the highest precedence and active meta-state is tracked
as its effective (meta-)operation. This scope organization is
depicted in the timestamp event graph (TEG) in Figure 3.

To capture replacement at any singular cardinality,
relationships additionally track their topmost preceding
AddRelationship operation. This allows entities to track
the effective relationship at singular cardinalities. Model
state retrieval is carried out based on this scope organization:
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Fig. 3: CUERA Framework

• For an entity to exist, its effective operation must be of
CreateEntity type.

• If an attribute‘s surrounding entity exists, its state is
defined by the effective operation‘s V alue parameter.

• To provide a familiar model interface, relationships
have to be translated into a reference representation: If
the entity at the origin of the retrieval exists, connected
relationships of the type in question are inspected (for
a singular cardinality at the origin of retrieval only the
effective relationship is considered):

– The existence of the relationship itself is
checked: Its effective operation must be of
AddRelationship type.

– The target entity is tested for existence.
– In case of singular target cardinality, it is examined

if the relationship is the effective one.
– If all conditions are met, a reference to the target

entity is included in the result.
• An action is only active regarding meta-state, if no

UndoAction operation is in effect.

4.5 Local & Remote Event Execution
Local interaction with the public model interface has to

be recorded into a (meta-)action object. To assure that a
local event always precedes all existing events, first the
timestamps are attached to the event with the clock being
incremented in between. Then the event components can be
recorded:

• Create/DestroyEntity operations for entities. More-
over, a fresh IDent is generated for created entities.

• SetAttribute operations for attributes.
• Again, the reference representation has to be translated

into relationships: From the IDent of each reference the
Add/RemoveRelationship operation can be build. In
addition, the relationship element in the RERG has to
be created if necessary.

• Undo/RedoAction meta-operation for actions.

To be reflected in the private model state, each recorded
(meta-)operation must be inserted into its affected elements‘
scope. Because of its most recent timestamp, it immediately
becomes the effective operation, which in turn triggers a
change notification: For example, when an UndoAction
meta-operation becomes effective on its affected action, the
action changes to inactive meta-state. So it notifies all its
contained operations, which notify their respective affected
elements of becoming inactive. This process goes down
the chain of dependent elements, updating the scope of
each affected element and notifying all model observing
controllers in the end.

Finally, the local event is encoded and propagated in the
collaboration network. After reception at a remote site, the
event is decoded before it can be executed. But causality
constrains the execution of remote events: If happened-
before relations were violated, the execution must be delayed
until all these events are received and executed (Section 2.2).

When it is causally ready for execution, the remote event
is integrated in the private model state representation. At
first, affected elements must be retrieved or created, if they
do not exist yet. Then, the same as for local events, each
(meta-)operation is inserted into the scope of its affected
element: Precedence of the received (meta-)operation is
compared to all existing ones in this scope in top-down
progression. If it becomes effective and the resulting state
changes, a change notification is triggered.

4.6 Undo/Redo Selection
Any framework has to support various undo/redo selection

modes, that depend on a total order of all executed actions.
Thus the perceived causal execution sequence (pCES) is
provided, that mirrors the unique history of every site by
appending actions upon execution. A selection order equal
for all sites is the precedence ordered sequence (POS), that is
particular useful, since it exactly reflects convergence control
and thus eases anticipation of the undo/redo effect for users.
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5. Evaluation
5.1 Consistency Correctness

The CUERA framework preserves causality by delaying
execution of remote events that violate happened-before
relations. Convergence can be divided into two conceptual
layers. The RERG and TEG representations are inherently
commutative: Elements are only added and element orders
are based on the globally consistent precedence definition.
Thus RERG and TEG are eventually consistent. Finally, the
model state is retrieved and converges by applying LWW
rules theoretically backed by the OCbyPT framework.

While CUERA preserves causality and convergence, its
intention preservation capabilities are limited for conceptual
reasons. In general, any generic data consistency solution
has to abstract application specific model interfaces. The
CUERA framework accomplishes this by focusing on the
model state: Syntactical results of interactions are captured,
while their semantical meaning is lost. So state convergence
can be achieved, whereas the full potential of conflict
resolution and intention preservation cannot be tapped [1].

For example, imagine two concurrent interactions that
both result in incrementing the same "counter" attribute.
An application-specific solution could increment the counter
twice, but the state-based RERG ignores one incrementation,
since both are interpreted as setting the counter to the same
value. While in this example all intentions can be preserved
in theory, this is not always possible. Another interaction,
e.g. resetting the counter to zero, will inherently contradict
concurrent incrementations as well.

While some intentions are inherently contradicting and
cannot be preserved, still a significant fraction of intentions
violated by the generic RERG could be preserved by specific
data types. To which extent such conflicts are caused in
practice, is a really complex matter dependent on many
different factors (like concurrency interval, interaction rate,
number of participants, group focus, application domain,
model interface, ERM design . . . ). If their overall probability
and frequency as well as their percentage increase beyond
a certain degree, the user experience is affected perceivably
and becomes ineffective and distracting.

Therefore the generic state-focusing operation-types of
this framework can be insufficient. In the "counter" example
above, an alternative ERM design is possible: Both the
counter itself and its incrementations can be refactored
into connected entity-types. Using these, a "virtual" counter
attribute can be derived for the public model interface.

In addition, CUERA can be enhanced with application
specific operation-types. In this case, CounterAttribute can
be added, that accumulates effective IncrementCounter
operations with higher precedence than the effective
SetAttribute. Hence CUERA still provides a valuable
framework, even when the need for better conflict resolution
arises.

5.2 Time Complexity
RTICA performance is dependent on time complexity

regarding factors that underlie scaling. Thus model retrieval
and event execution in the CUERA framework must be
analyzed regarding the number of:

• sites in the network s
• events in the history |H|
• data elements N

Entities and actions can be retrieved in constant time
using ID maps. The same holds for attributes, since they are
linked to their surrounding entity. Retrieval of references
involves translation of multiple relationships, entities and
replacements: Still their number is independent from the
above factors in practice, since only connected relationships
of the type in question and their target entities are inspected.
Because each element tracks its effective (meta-)operation,
state retrieval performs with constant time complexity O(1).

Upon execution, both local and remote events and their
components are integrated in the RERG and TEG. This
process involves several tasks: Element retrieval, creation
and registration all perform in O(1). Then (meta-)operations
are inserted in the affected elements‘ scope. This is carried
out in top down progression, because final locations of
operations are likely to be near the top. Hence, insertion
only involves precedence comparisons to operations with the
same scope and higher precedence. Therefore this subset
is denoted as |h |. In particular, it is independent from
and significantly smaller than the total number of events
in the history. But the amount of operations already present
and of higher precedence depends on the number of sites,
so |h | ∼ s. Fortunately, distributed clock techniques
allow precedence comparisons in constant time after initial
computation. So insertion performs with O(s).

If becoming effective, event components trigger change
notification down the chain of affected elements, which is
of constant size. To reflect the inserted event, each affected
element has to update its current effective operation and
state. This involves a number of precedence comparisons to
operations in its scope, which is independent of the factors
in question. So change notification performs in O(1).

In summary, CUERA performs in linear time in regard
to network size O(s) due to precedence comparison in
scope organization. As a consequence, scalability is limited
in terms of participating sites. But on the other hand,
performance scales perfectly in respect to data and event
history, which is the benefit of operation scope organization.

5.3 Space Complexity
The CUERA framework features linear space complexity

regarding events and data (including obsolete elements). In
addition, events maintain timestamps and although there are
efficient distributed clock mechanisms, space consumption
increases with the number of sites. Thus space complexity
is O(N + s× |H|).
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Obviously, the space overhead in respect to the current
model state is huge: Not only obsolete events in the TEG,
but also unnecessary elements in the RERG must be kept
to support full undo/redo of any action. But the undo/redo
scope is limited in practice, since the probability of a user
undoing/redoing an action rapidly decreases with its age.
Furthermore, undo/redo in single user applications does
not stretch beyond persisted states. How these fact can be
exploited to purge the RERG and TEG is left open for future
research.

6. Conclusion

To ease the development of collaborative applications, this
paper has introduced the CUERA framework - a generic
solution to data and undo/redo consistency. It is applicable
in a wide range of domains, because data is represented in
a literal realization of an entity relationship model (RERG).
To provide a generic consistency solution, a set of state-
focusing operation-types has been defined. In addition, non-
reflexive meta-operations allow to undo/redo any action. To
ensure convergence, a LWW scheme based on transitive
precedence relations is employed (OCbyPT). Efficient state
retrieval, event execution and notification of changes are
facilitated by the precedence ordered scope organization of
event components (TEG). Beyond undo selection in local
execution order (pCES), the global precedence order (POS)
is provided, that exactly mirrors convergence control and
thus eases undo/redo effect anticipation for users.

Correctness of the CUERA framework according to CCI
has been evaluated and two optimization strategies have
been proposed to overcome the conceptual weakness of
the generic solution regarding intention preservation. And
furthermore, performance has been examined: All processes
perform in O(s) or better, therefore the framework does not
scale well in terms of network size. But on the other hand
it scales perfectly in regard to data and event history.

In summary, the CUERA framework provides a generic
and efficient consistency solution for RTICAs: Developers
are freed from the most complex intricacies of collaborative
applications. But only if the framework is employed as the
core of a distributed data platform, its full potential is un-
leashed: By simply specifying the desired ERM, developers
can be provided with an "out-of-the-box" data layer. So the
CUERA framework can potentially lead to a proliferation of
realtime interactive collaboration applications.

In future research, the missing ERM features will be
added to tap the full potential of this approach. Moreover,
some performance experiments will be conducted to prove
the scalability and efficiency claims of this paper. Finally,
removal of obsolete history and data elements will be
examined to reduce space overhead of unlimited undo/redo.
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Abstract— The problem addressed is the distributed recon-
figuration of a system of two-dimensional, hexagonal mobile
robots (modules), from an initial straight chain into an
arbitrary shaped, connected goal configuration that satisfies
a simple admissibility condition.

We present algorithms that improve the efficiency of the
deterministic algorithms presented in [16] and [15]. In this
paper, we first present a new algorithm for optimally filling
a chain of cells that bisect the goal configuration. Then we
present reconfiguration algorithms that combine techniques
used in the goal-filling algorithm papers cited above com-
bined with the bridging algorithms presented in [7] and
[4]. We compare the performance of our new algorithms
to existing goal-filling algorithms via simulation using a
discrete event simulator. The results of our simulation are
presented and discussed.

Keywords: Metamorphic robots, distributed reconfiguration,
self-reconfiguration

1. Introduction
A self-reconfigurable robotic system [5] is a collection

of independently controlled, mobile robots, each of which
has the ability to connect, disconnect, and move around
adjacent robots. Metamorphic robotic systems [3] are a sub-
set of self-reconfigurable systems. In metamorphic systems,
each module is identical in structure, motion constraints,
and computing capabilities. The modules have a regular
symmetry so that they can be assembled with no gaps
between adjacent modules. In metamorphic robotic systems,
robots achieve locomotion by moving over a substrate
composed of one or more other robots. The mechanics of
locomotion depend on the hardware and can include module
deformation to crawl over neighboring modules [3], [13]
or to expand and contract to slide over neighbors [14].
Alternatively, moving robots may be constrained to rigidly
maintain their original shape, requiring them to roll over
neighboring robots [10], [19], [20].

Shape changing in these composite systems is envisioned
as a means to accomplish various tasks, such as bridge
building, structural support, satellite recovery, tumor ex-
cision [13], and automated movement of two-dimensional
arrays of solar collectors or shields. The complete inter-
changeability of the robots provides a high degree of system

fault tolerance. Self-reconfiguring robotic systems may be
potentially useful in environments that are not amenable to
direct human observation and control (e.g., interplanetary
space, undersea depths) or for tasks that are monotonous
for humans.

The motion planning problem for a metamorphic robotic
system is to determine a sequence of robot motions required
to go from a given initial configuration (I) to a desired goal
configuration (G).

Many existing motion planning strategies rely on cen-
tralized algorithms to plan and supervise the motion of
the system components [3], [5], [13], [14], [18]. Others
use totally distributed approaches which rely on heuristic
approximations or require communication between robots
in each step of the reconfiguration process [2], [10], [11],
[19], [20].

We focus on a system composed of planar, hexagonal
robotic modules as described by Chirikjian [3]. We present
a motion planning strategy that assumes knowledge of all
initial coordinates of cells in G. We start with a centralized
phase in which modules match themselves to a position
in G. This is followed by a distributed phase when as
many robots as possible move in parallel. Our distributed
approach offers the benefits of localized decision making,
the potential for greater system fault tolerance, and less
communication between modules than other approaches.
We have previously applied this approach to the problem
of reconfiguring a straight chain to an intersecting straight
chain [17] and a straight chain to a goal configuration that
satisfies a general “admissibility” condition [16], [15]. We
modify the admissibility requirement on G in this paper.

2. Related work
Chirikjian [3] and Pamecha [13] discuss centralized al-

gorithms for planar hexagonal modules that use the distance
between all modules in I and the coordinates of each goal
position to accomplish the reconfiguration of the system,
moving a single module in each time step. Pamecha et
al. [13] define the distance between configurations as a
metric and apply this metric to system self-reconfiguration
using a simulated annealing technique to drive the process
towards completion. In [6], motion planning time is shown
to be in O(n) for n modules when particular motion
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constraints are used on hexagonal metamorphic robots.
They do not address the reconfiguration time as we do in
this paper.

Centralized motion planning strategies for systems of
two dimensional robotic modules are also examined by
Nguyen et al. [12] and analysis is presented for the num-
ber of moves necessary for specific reconfigurations. A
centralized motion planning strategy for three dimensional
cubic robots is presented by Rus and Vona [14]. A set
of distributed motion planning algorithms for a system of
cubic robots is presented by Butler et al. in [2]. In another
paper [1], Butler et al. present a rule set that can be run by
vertical "layers" of cubic modules and a distributed control
algorithm for locomotion is described that will work in any
system composed of cubic modules.

Distributed approaches are taken by Murata, et al. to
reconfigure a system of two dimensional hexagonal modules
[10], and a system of three dimensional cubic modules [11].
Yim et al. [19] and Zhang et al. [20] present distributed
algorithms to reconfigure three dimensional rhombic do-
cecahedral modules. In [9], Miao et al. present algorithms
to reconfigure two dimensional hexagonal modules to en-
velop obstacles. Unlike the planning algorithms presented
in this paper, these algorithms are probabilistic and require
message passing between neighboring modules.

2.1 Our approach
This paper examines distributed motion planning strate-

gies for a planar metamorphic robotic system undergoing
a reconfiguration from a straight chain to a goal configura-
tion satisfying certain simple properties. In our algorithms,
robots are identical but act as independent agents making
decisions based on their current position and the sensory
data obtained from physical contacts with adjacent robots.
We have shown that collision-free reconfiguration in certain
scenarios, like those presented in our earlier papers [17],
[16], [15], can be accomplished using algorithms that do not
require any message passing. Our long term goal is to seek
an understanding of the necessary building blocks for recon-
figuration, starting with algorithms in which no algorithm
messages need to be passed between participating robots
during reconfiguration. Therefore, our algorithms are more
communication efficient than the distributed approaches of
[2], [10], [19] and [20].

Our proposed scheme uses a classification of robot
types based on connected edges similar to the classification
used by Murata et al. [10] for connected vertices. In the
algorithms presented in this paper, each robot independently
determines whether it is in a movable state based on the
cell it occupies in the plane, the locations of cells in the
goal configuration, and which of its sides are adjacent to
occupied cells. Robots move from cell to cell and modify
their states as they change position. Since the robots know

the coordinates of the goal cells, we show that each of them
can independently choose a motion plan that avoids module
collision.

One of the contributions of this paper is the presentation
of algorithms that allow modules to move with only a
single space between them while also ensuring that moving
modules do not come into contact in acute angle corners. To
accomplish this, we use ideas developed in our earlier work
on bridging algorithms [7], [4]. In these algorithms, certain
modules temporarily halt during reconfiguration, forming
bridges for other modules to cross. After all modules have
passed over a bridge module, the bridge module resumes
motion. We use a similar technique to avoid module colli-
sion in this paper.

3. System Model
The plane is partitioned into equal-sized hexagonal cells

and labeled using the same coordinate system as described
by Chirikjian [3].

Our model provides an abstraction of the hardware
features and the interface between the hardware and the
application layer.

3.1 Assumptions about modules

(a) (b)

C2C2

M

S

M

S

C1

f
e

g

e
C3

f

g

Fig. 1: Before (a) and after (b) module movement: M is moving
module, S is substrate, and shaded cells are unoccupied.

- Each module is identical in computing capability and runs
the same program.

- Each module is a hexagon of the same size as the cells
of the plane and always occupies exactly one of the cells.

- Each module knows at all times:
• its location (the coordinates of the cell that it currently

occupies),
• the location of the cells in G,
• its orientation (which edge is facing in which direction),

and
• which of its neighboring cells is occupied by another

module.
Modules move according to the following rules:
1) Modules move in lockstep rounds.
2) In a round, a module M is capable of moving to an

adjacent cell, C1, iff (see Fig. 1 for an example)
(a) cell C1 is currently empty,
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(b) module M has a neighbor S (called the substrate)
that is also adjacent to cell C1 and does not move
in the round, and

(c) the neighboring cell to M on the other side of C1

from S, C2, is empty.
3) Only one module tries to move into a particular cell

in each round.
Note that the modules may be deformable, in which case

each module moves by changing joint angles to crawl over
an unmoving substrate. Alternately, the modules may be
rigid, using sliding movements as specified in [9] to move
over the substrate.

If the algorithm does not ensure that each moving
module has an immobile substrate, as specified in rule 2(b),
then the results of the round are unpredictable and can lead
to deadlock. Likewise, collision may result if the algorithm
does not ensure rule 3.

4. Centralized Pre-processing Phase
Our objective is to design a deterministic distributed

algorithm that will cause the modules to follow a collision-
free plan from an initial straight chain configuration, I , to
an admissible goal configuration, G. This algorithm should
ensure that modules do not collide with each other, and the
reconfiguration should be accomplished in the most efficient
way possible (in terms of time of reconfiguration).

We assume G is oriented such that cells have flat
surfaces facing north (N) and south (S). This way we can
unambiguously describe the eastmost, westmost, and inner
columns of G.

Definition 1: An admissible goal configuration is con-
nected and has no vertical gaps within columns.

For simplicity, we require that the straight chain I
consists of n modules and that it initially intersects G in
one cell. The module in the cell that overlaps G does not
move during reconfiguration.

In a centralized pre-processing phase, modules determine
their positions in straight chain I based on their distance
from the cell in I that overlaps G. Module numbering pro-
ceeds from 1 (at the greatest distance from the overlapping
cell) to n− 1 (the cell adjacent to the overlapping cell). At
the start of the reconfiguration, there are n− 1 empty cells
in G.

Our previous strategy, presented in [16], to fill G while
avoiding collision, was to find a contiguous path (what we
call the substrate path, or SP) of goal cells that most evenly
bisects G. After the SP cells are filled, the cells to the N and
S of this path are filled in parallel, with minimal intermodule
spacing. Filling the SP first guarantees that no module
on the N will collide with a module on the S, allowing
both segments to be filled in parallel. We designed our
algorithms to further ensure that no pair of moving modules
becomes adjacent throughout the reconfiguration, and for

that reason, our earlier algorithms required two unoccupied
spaces between each pair of modules traversing the same
surface. This spacing was also applied to the modules filling
the SP. Figure 2 shows the result of 2-cell versus 1-cell
separation when modules move through an acute angle.

Substrate cell Moving module

(a) (b) (c)

(d) (e)

Fig. 2: Modules rotating clockwise over a substrate surface. Parts
(a)-(c) show the outcome for modules with 2-cell separation. Parts
(d) and (e) show how moving modules come in contact in acute
angle corners if there is only 1-cell separation. In part (e), the
modules are in a configuration in which the choice of substrate
could jeopardize the reconfiguration if a moving module chooses
another moving module as a substrate (we call this a deadlock
situation).

In this paper, we place a restriction on the SP so that
modules can move with a single unoccupied cell separation
in both the clockwise (CW) and counter clockwise (CCW)
directions.

Definition 2: An admissible SP is contiguous and has
no vertical sections.

Our procedure for finding a SP in an admissible goal
configuration is given below:

1. Find the midpoint cell in each column of the goal config-
uration and assign that cell to be a SP cell. If a column
length is even, choose the path cell north or south (based
on the distribution of cells in the next column) of where
the midpoint would be if the column length was odd.

2. Check if SP found in step 1 is contiguous. If not, use
algorithms presented in [16] that test every possible path
in G from left to right. If any SP with no vertical segments
is found, continue with reconfiguration algorithms given
in this paper.

3. If the only SP found contains vertical segments, use
reconfiguration algorithms described in [16] to complete
reconfiguration. These algorithms use a more conserva-
tive 2 cell inter-module spacing to avoid collision and
deadlock.
Since we are assuming that G is oriented in columns

with cell sides normal to N and S, the slope of I (i.e.,
the direction from module 1 to the cell in I that overlaps
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G) must be either NE or SE. If the SP has no vertical
segments, there is an algorithm to fill the path using single
cell spacing between each pair of moving modules. The
FILLSUBSTRATEPATH algorithm is given in Fig. 4.

With one exception, to be discussed in Sect. 5, all
modules in I begin moving in the round they become free,
based on the cell in G to which they have been mapped.
A free module is one that has one of the FREE contact
patterns shown in Fig. 3. It can be seen from this figure
that a FREE contact pattern is one in which a module i has
at least 2 sides that are not occupied by another module and
in which module i’s movement (in i’s local view) will not
cause the system to become disconnected.

                Indicates contact edge
                Indicates non−contact edge

FREE

TRAPPED

OTHER

Fig. 3: Contact patterns possible in algorithm.

From Fig. 5(a) we can see that initially, the only free
module in I is in position 1, furthest from G. Modules
become free in order of increasing position number, with
module i becoming free after the second rotation of module
i− 1.

Modules running the FILLSUBSTRATEPATH algorithm
in positions i and i + 1 (where i ≥ 1 and i + 1 < length of
SP) will be in the same N-S column as they move toward
G. When modules move with this orientation and spacing,
they are guaranteed not to collide in a contiguous SP that
contains no vertical sections and that spans all columns of
G. To see why, consider that exactly one of the N or S
modules, x, in a moving pair of modules will always be
closer, in terms of grid distance, to a particular SP cell
because of the restriction on either NE or SE SP slope, and
the closer modules x will therefore reach the path first.

Variables used in algorithm FILLSUBSTRATEPATH:
• num: Length of SP, not counting initial overlapping

cell.
• initialSlope: Slope of I , SW to NE (called NE in

algorithm) or NW to SE (called SE in algorithm).
• lastSlope: Slope of last two cells on SP (NE or SE).
As shown in Fig. 5, in most cases the first num modules

fill the SP (although not always sequentially, as explained
below). However, when num is odd and initialSlope 6=
lastSlope, the module in position num+1 reaches the SP
before the module in position num.

Once the SP cells are calculated, the remainder of the
modules are matched to positions on the N and S of the SP.
Figure 5 shows the order the modules fill the SP when the
length of the path is odd and the initialSlope 6= lastSlope.

Algorithm FILLSUBSTRATEPATH()
1. if (initialSlope == NE):
2. module 1 rotates CW
3. else: // initialSlope == SE
4. module 1 rotates CCW
5. if (num is even) or (lastSlope == initialSlope):
6. modules 2. . .num alternate directions, starting in

direction opposite of module 1 with no delay after
the round in which they become FREE.

7. else: // (num is odd) and (lastSlope != initialSlope)
8. modules 2. . .num+1 alternate directions, starting in

direction opposite of module 1 with no delay after
the round in which they become FREE.

Fig. 4: Algorithm for modules on substrate path.
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Fig. 5: Illustration of module placement when the path length
is odd and initialSlope 6= lastSlope. Configurations are labeled
sequentially (a) through (r). Modules 5 and 7 would fill cells to
the south of the SP (not shown).

To see why this algorithm works, observe in Fig. 5 how
pairs of moving modules are in the same vertical column
at each step. Every time the SP has a bend (which must be
either to the NE or SE), the relative ordering of the module
position numbers in the SP may change. So, for example,
suppose the odd numbered modules start filling the path,
each followed by an even numbered module. After the path
bends, the even modules may begin filling the path before
the odd ones.

Algorithm FILLSUBSTRATEPATH assumes the first num
(or num+1) modules will be the first to enter cells on
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the SP. Every obtuse bend followed by a straight chain of
two or more modules in the SP changes the sequence of
module positions on the path from odd/even to even/odd
(and vice versa). If num is even, the first num modules
will enter the path, although not necessarily in position
order. If num is odd and the last path direction equals
the initial path direction, the final module on the path (an
odd numbered module) will reach the path before its even
numbered counterpart.

The most complicated case is handled by lines 7–8 of
FILLSUBSTRATEPATH. In this case, the final bend causes
the even numbered module in position num+1 to reach the
SP before the module in position num. In this case, the
module in position num will fill a goal cell on either the N
or S side of the SP (see modules 5 and 7 in Fig. 5, which
will fill cells to the S).

5. Distributed Reconfiguration Phase
Each module calculates its rotation direction and delay

before moving, after it determines its position in I .
Modules that will end the reconfiguration on the SP do

not have to choose final goal destinations because the first
module to enter a SP goal cell stops in that cell. However,
the algorithm matches the remainder of the modules to goal
cells on the N and S of the SP, alternating between CW and
CCW rotation. Modules fill the N and S columns from right
to left and from the SP northward and southward, like the
algorithms presented in [15]. These modules choose their
final destination from a list of goal cells that is generated
by and is the same at every module.

Single-cell spacing between moving modules is the most
efficient movement pattern since a module can’t move into a
neighboring occupied cell. However, this spacing may cause
deadlock problems when the SP forms an acute angle with
a goal column (see Fig. 2). To solve this problem, we use
a technique like that presented in [7], [8] and [4] to either
permanently or temporarily halt particular modules in areas
where collision or deadlock may occur.

Each module runs a mapping algorithm in which certain
goal cells are marked as WAIT-INDICATOR (WI) or STOP-
INDICATOR (SI) cells. Each WI cell has an adjacent empty
cell marked as a WAITCELL (WC) and each SI cell has an
adjacent goal cell marked as a STOPCELL(SC). Modules
mapped to SC cells choose the SC cell as their final
destination. A module mapped to a WC cell temporarily
halts in the WC cell when the adjacent WI cell is occupied
(this only occurs once per WI per reconfiguration). The
modules that temporarily stop in WC cells are matched to
the extreme N or S cell in the column directly to their
right. These modules temporarily stop until all cells but the
extreme N or S cell in the column to the right are filled,
when they resume movement.

To prevent trapping modules in WC cells, particular goal
cells are marked as DELAYSET (DS). Any module mapped
to a DS goal cell will delay 3 steps before it begins moving
out of the initial chain after the first round in which it
becomes FREE. Note that SI and WI markers are only
needed when modules will collide in acute angle corners,
which cannot happen if the column immediately to the right
is short enough (see, for example, the 4th goal column from
left side of goal configuration in Fig. 6).

WI
WC

WI
WC

SI
SC

SI
WI

WC

WI - wait indicator

WC - wait cell

SI - stop indicator

SC  - stop cell

SC

Path cell Initial Line cell Goal cell

DS - delay set
DS

DS

Fig. 6: Placement of markers in each module’s map of G to avoid
deadlock in acute angle corners.

The modules in WCs or SCs prevent moving modules
from making contact in acute angle corners by filling
the corner with a module, either permanently (SC) or
temporarily (WC). Filling this corner cell allows the rest
of the modules in the column immediately to the right to
move over the corner with no deadlock.

Below we describe scenarios in which SC and WC cells
are used. For the examples given in Figs. 7 and 8, we will
concentrate on the columns of G on the north side of the
SP (the south side is symmetric).

1) The first time a module i enters an SC in column A
when there is an occupied adjacent SI cell in column
B (as shown in Fig. 7), module i permanently stops
in the SC. Column A must be non-empty in this case.

2) The first time a module i enters a WC in column
A when there is an occupied adjacent WI cell in
column B (as shown in Fig. 8), module i delays
further movement until all but one goal cell in column
A (the N-most cell in this case) is filled. The module
in the WC then starts to move again to fill the N-
most cell in column B. Column A is empty in this
case. When there is a non-empty goal column to the
left of empty column A with an associated WC cell,
the module matched to the DS goal cell waits for 3
steps after it becomes FREE in the initial line before
starting to move. Note that a goal cell may be marked
as both a WI and DS.

After the proper cells are marked, each module creates
a list of the goal cells, in the order they are to be filled.
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SI
SC

BAColumn:

SI
SC

SI
SC

SI
SC

SI
SC

SI
SC

SI
SC

SI
SC

BA BA BA

BA BA BA BA

(a) (b) (c) (d)

(e) (f) (g) (h)

Path cell
Module in 
final position
of goal

Empty goal cell Moving module

Fig. 7: Segment of N side and SP with cells marked as SI and SC.
Figure (a) shows a segment of the map at each module after cells
are marked initially; figures (b)–(h) show the consecutive states
after modules rotating CW begin filling column B from the left
in a S to N fashion. At this point, all N columns to the right of
column B are filled. Once the SI cell in column B is occupied, the
next module to enter the SC cell in column A stops and column
B continues to be filled.

WI
WC

BAColumn:

WI
WC

WI
WC

SI
WC

SI
SC

SI
SC

SI
SC

SI
SC

BA BA BA BA BA

BA BA

(a) (b) (c) (d) (e) (f)

(g) (h)

Path cell
Module in 
final position
of goal

Empty goal cell Moving module

SI
SC

BA

(i)

SI
SC

BA

(j)

SI
WC

BA

(k)

DS DS DS

DS DS DS DS SI
WC

BA

(l)

Waiting module

Fig. 8: Segment of N side and SP with cells marked as WI, WC,
and DS. Fig. (a) shows the initial map at each module; figures (b)–
(l) show the consecutive states after modules rotating CW begin
filling column B from the left in a S to N fashion. At the time
step shown in part (b), all N columns to the right of column B are
filled. Once the WI cell in column B is occupied, the next module
to enter the WC cell in column A waits until column B is filled
except for the N-most cell. Then the module in the WC begins
moving to the N-most cell in column B. Parts (k)–(l) show the
delay between the module ending in the DS cell and the module
in the WC.

Since modules know their position in I before the start of
motion planning, once each module has created the list,
each chooses the goal destination that corresponds to their
position number. Final destinations and take-off delays are
chosen prior to the distributed reconfiguration phase and
the timing of temporary module halt periods are determined
by each module according to its local environment during
distributed reconfiguration.

6. Simulation
In this section, we briefly describe the results of running

our new and old algorithms on the same configurations,
both for filling the SP and for filling the rest of the
goal configuration, using a discrete event simulator. The
main difference between the algorithms presented in this
paper and the original algorithms is the amount of inter-
module spacing between moving modules. In order to avoid
deadlock in acute angle corners, the original algorithm
required there to be at least 2 empty spaces between moving
modules. The new algorithm requires only a single space
between moving modules.

We are still in the process of testing the performance
of the new versus the old algorithms, but in every trial
the number of rounds for the reconfiguration was lower for
the new algorithms. Table 1 shows the number of rounds
needed for reconfiguration on square goal configurations
of increasing size (for example, see Fig. 9). For each
configuration of the same size, identical SPs were used.

Table 1: Comparison of algorithms on square configurations.
Number of Modules Number of Rounds Old Number of Rounds New

25 (5X5) 71 53
100 (10X10) 282 222
400 (20X20) 1070 833
625 (25X25) 1616 1268

Table 2: Comparison of algorithms on comb configurations.
Number of Modules Number of Rounds Old Number of Rounds New

29 115 93
59 237 179
119 477 359

Path cell Initial Line
cell

Goal cell

SI - stop indicator
SC - stop cell

Module
initially
in goal

SI
SC

SI
SC

SI
SC

Fig. 9: Square configuration with 25 modules.
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When no modules experience a temporary delay, as in the
square configurations listed in Table 1, the new algorithms
are more efficient than the older ones. The number of rounds
used by the new algorithms remained consistent at just over
twice the number of modules in the square configurations as
the number of modules increased, making the running time
linear in the number of modules. The number of rounds
used by the old algorithms grows faster than those used by
the new algorithms as the number of modules increases.

WI
WC

WDWDWDWD
WCWCWC

Path cell Initial Line
cell Goal cell

WI - wait indicator
WC - wait cell

Module
initially
in goal

WD - WI and DS
WC

Fig. 10: Comb configuration with 29 modules. Larger combs had
same length vertical columns but a longer horizontal backbone.

When some modules experience a temporary delay and
the SP does not bisect the goal, as in the comb configuration
shown in Fig. 10, the reconfiguration time of the new
algorithms is more than double the number of modules, but
is still better than the performance of the old algorithms as
the number of modules increases (see Table 2).

Even though the new algorithms we present in this paper
are more efficient than our previous algorithms, they do
not work for as many goal configurations as do the older
algorithms. Because they use the conservative two cell
inter-module spacing, the older algorithms require fewer
constraints on the SP. In particular, the older algorithms
work as long as the SP is right-monotone. Moreover, they
result in a collision and deadlock free reconfiguration even
when the SP contains vertical sections, as long as the
vertical sections are separated by at least 3 columns [16].
We do not feel that this difference is a major problem
considering that the goal configuration can be separated into
segments that end at the first vertical column in the substrate
path and the new algorithms can be applied to each such
segment, from right to left.

7. Conclusions and future work
We have presented algorithms for filling an arbitrary goal

configuration in a column-wise fashion. These algorithms
guarantee that collision and deadlock do not occur when
run on an admissible goal configuration. The algorithms
were shown via simulation to be more efficient (although
not asymptotically so) than our older algorithms.

For future work, we are continuing to write algorithms
to comprise a complete, deterministic planner for the re-
configuration of hexagonal, metamorphic robots. As part of
this complete planner, we are concentrating on deterministic

algorithms to reconfigure an arbitrary but admissible shape
initial configuration into a straight chain.
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Reducing Fragment Oscillation of Dynamic Fragment Allocation in
Non-Replicated Distributed Database System
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Abstract— Production and consumption of data has seen
an exponential increase in recent times thus necessitating
a solution which addresses the issues related to physical
storage, reliability and accessing speed limits of centralized
system. Distributed Database System is the solution, which
overcomes these limits [1]. Designing Distributed Database
System has many issues, and one of them is fragment al-
location/movement. Various fragment allocation algorithms
already exist in Distributed Database System. There are
strengths and shortcomings of these algorithms. This paper
gives the brief overview of these algorithms and proposes one
new algorithm (Reduced Fragment Oscillation Algorithm).
RFO algorithm moves the fragment from source node to
target node by considering both the frequency of fragment
access by region as well as individual nodes. It increases the
overall system performance. RFO algorithm also reduces the
amount of topological data required in decision making.

1. Introduction

Distributed Database System is the Database System in
which data is stored at multiple computers (node) either
placed at the same physical location or spread over several
geographical locations. These computers are connected to
some network, via internet, intranet or extranet. Demands
of Distributed databases are increasing rapidly than ever
before, because it overcomes the limitations of centralized
system [1]. Distributed database hides the distribution of
logical and physical components of databases from users.
The prime motivation in distributed database systems
are to improve performance, to increase the availability,
expandability and access facility of data [8]. In Distributed
database the major challenge is how to distribute the
data in the best manner. If the architecture of distributed
database is not perfect, then its performance will be worse
in comparison to centralized database architectures.
Although distributed systems are highly desirable, the
heterogeneity and lack of adherence to standards, makes it
difficult to build a proper functioning system. Complexity in
designing distributed database architecture is in maintaining
multiple disparate systems instead of one big centralized
system. Different design techniques are used to maintain
the consistency in Distributed Database Architectures.
Various design techniques used in Distributed Database
System are replication, duplication, fragmentation, local

autonomy, synchronous and asynchronous techniques etc.
In case of replication technique any change in the database
is replicated over all the databases stored over multiple
nodes. This process is significantly time consuming and
requires high network bandwidth. In duplication technique,
a copy of the master database is regularly maintained
in another database but it is a simple process compared
to replication. In local autonomy technique, each node
of distributed database can define their own policy. In
asynchronous technique, a constraints of time, execution
latencies and message latencies does not exist. On the other
hand synchronous technique have both upper and lower
bound for time constraint, execution latencies and message
latencies. Depending upon the requirement for distributed
databases, these technologies are used. Major concern in
Distributed Database System is how to architect a good
design for fragmentation of data and data allocation [2,9].
Data fragmentation as the word suggest is to distribute the
data into fragments over multiple nodes either physically
co-located or present at several geographical locations.
Data fragmentation technique helps increase the efficiency
of data access/query performance, as it enables a mechanism
to store the fragment of data at a node where it is frequently
used. It increases the parallelism, because large transaction
can be divided into sub transaction and all sub transaction
start processing concurrently. Data fragmentation can be
horizontal fragmentation, vertical fragmentation or mixed
fragmentation [7]. Horizontal fragmentation can be achieved
using either by range or hash fragmentation [3].
These fragmentation techniques work on static environment,
in which data access pattern and/or query pattern is static.
For dynamic environment, where access pattern change
dynamically, static allocation decreases performance. Data
fragmentation algorithms used in dynamic environment
include Optimal algorithm [6], Threshold algorithm [11],
NNA (Near Neighborhood Allocation) algorithm [4], BGBR
algorithm [5], FNA (Fuzzy Neighborhood Allocation)
algorithm [10] etc. Main objective of these algorithm is to
minimize the access cost as well as data transfer cost in
executing the set of queries.
A brief overview of existing algorithms is presented in the
following sections and various notations/terms used in the
entire paper are listed in TABLE 1.
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2. Existing Algorithms

In Optimal algorithm [6], a static environment method is
used to initially distribute the fragments to all nodes in the
distributed network and an optimal algorithm is executed at
each node. This algorithm depends highly on the frequency
of access. The transfer of fragments from one node to the
other is influenced by the change in frequency of access of
fragments by each node. And if the frequency of access of a
fragment changes frequently then there is an increase in the
cost of transfer of fragment and network traffic. This would
also result into significantly high oscillations of fragments
between nodes. In this algorithm the access time of the
fragment with highest frequency of access is significantly
reduced but has a negative effect on the access time for the
other nodes. The reason being the transfer of the fragment
between nodes does not take the network topology into
consideration.

Table 1
NOTATIONS

Node Node is the physical locations of database,
where data of distributed database stored. Each
node contains multiple fragments. Number of
fragments at each node can vary.

Source Node Source node is the node, from where accessing
fragment transfer to other node.

Target Node Target node is the node, which has highest
access count to fragment of source node.

Neighbor Node Neighbor node is the node, which is in between
the path of source node to target node and also
nearest to source node.

Region Group of Nodes makes Region, where each node
stored data of distributed database.

Ni Ni is known as ith Node.
F Whole unit of database at each node is known

as F, which contains more than one Fragment.
F=F1 + F2 + F3...+ Fk. Value of k can vary at
each node.

A Node-Fragment Access counter matrix. Where
each element axy represents, how many times
fragment x access by node y.

R Region-Fragment Access counter matrix. Where
each element rxz represents, how many times
fragment x access by Region z.

Threshold t Predetermined Region-Fragment access count
value. Whenever Region-Fragment access count
reaches to this value, fragment moves from
source node.

Storage space requirement of an Optimal algorithm [6]
is more as each fragment has to store the access counter
value corresponding to each node. The heuristic threshold
algorithm [11] addresses this drawback.
In the threshold algorithm a counter value at each fragment is
initialized to 0. The counter value is incremented, whenever
remote access to the fragment occurs, and its value is reset
to 0 when local access to the fragment occurs. Counter value
is incremented only at remote access and not at local access.
When counter value of fragment exceeds the predefine
threshold value, then the ownership of the fragment is

transferred to the remote node that recently accessed the
fragment. If the threshold value is t, then this algorithm
assures that the fragment remains at the new node for at
least t+1 accesses [11]. Threshold value plays a major role
in this algorithm. If threshold value more, then migration
of fragments at the node is less. But if threshold value
is less, then migration of fragments at the node is more.
Approach of this algorithm is heuristic, as the ownership of
the fragment is transferred to the node which has recently
accessed the fragment which may or may not be node which
has highest access to the fragment. The algorithm does not
use the knowledge of topology so optimal node chosen for
migration may not be the globally optimal node.
Near Neighborhood Allocation (NNA) [4] algorithm is a
variation of Optimal Algorithm where finding the node (say
target node) to which the fragment needs to be transferred
from the original node (say source node) is same as optimal
algorithm. However the fragment is transferred to the nearest
neighbor of the source node which is in the path between
the source node and target node. Routing algorithm is used
to find the nearest neighbor of the source node Here the
knowledge of network topology is taken into consideration
while selecting the node for transfer of fragment. NNA
algorithm avoids fragment oscillation, which occur in
optimal algorithm and also avoids multihop transfers. This
also helps in reducing the access time from the target node.
The NNA performs better than Optimal Algorithm when
the size of fragment and size of network is very large.
However in NNA algorithm, by moving fragment from
source node to neighboring node, decreases the delay in
access time for only those nodes which are in the path of
between source and target nodes but for others node this
may increase. If fragment access count value of the nodes,
which are not in the path between target and source nodes
is much more than nodes in the path then performance
of system decreases. NNA algorithm avoids oscillation,
so it reduces the consumption of network resources. For
small fragment size, optimal algorithm is better than NNA
algorithm, because cost of movement of small fragment is
not more than access cost.
An improved version of NNA algorithm called FNA (Fuzzy
Neighborhood Allocation) algorithm [10] is able to detect
oscillation conditions and provides a solution to prevent
redundant fragment migration. FNA uses a fuzzy inference
engine to detect oscillations in fragment requests and ignore
fragment migrations.
BGBR Algorithm [5] is an improvement on NNA algorithm.
It reduces the response time and fragment migration time
from source node to target node compared to NNA algorithm.
BGBR algorithm requires the knowledge of the complete
network topology for migrating fragment from source node
to target node. It avoids fragment oscillation. Although NNA
algorithm reduces oscillation by knowledge of topology but
it does not use the complete knowledge of topology. In
NNA algorithm for transfer of fragment from source node
to neighboring node, the shortest path does not give the
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assurance of best path according to global topology. BGBR
performs better in both small as well as large fragment sizes
however NNA performs better only when size of fragment
is large. BGBR reduces fragment mobility as compared to
Optimal, Threshold and NNA algorithm. BGBR algorithm
shows better result, but it requires significant amount of
calculations and also it requires capturing of significant
amount of data about network topology.
Ulus et. al. [12] has proposed an algorithm based on Markov
Chain Model where the each node autonomously decides
whether to transfer the ownership of a fragment in DDS to
another node or not and it depends on the past accesses of
the fragment. Each fragment continuously migrates from the
node where it is not accessed locally more than a certain
number of past accesses, namely a threshold value.
A new dynamic fragment allocation algorithm in Non-
Replicated allocation scenario proposed by Nilarun [8],
incorporates access threshold time constraint of database
access and most importantly the volume of data transmitted
to dynamically reallocate fragments to sites at runtime in
accordance with the changing access probability of nodes to
fragments .
The next section discusses the proposed algorithm which
addresses few drawbacks in the existing approaches of
Dynamic Fragment Allocation in Non-Replicated Distributed
Database System.

3. Reduced Fragment Oscillation (RFO)
Algorithm

The proposed algorithm (RFO Algorithm) for dynamic
allocation of data in non replicated distributed database
system is designed to address the issues in the existing
approaches where the movement of the fragment depends
only on the node which has the highest frequency of access
to a fragment. But in RFO algorithm consideration is also
given to the highest fragment accessing region instead of
considering the target there by reducing the access time
from more than one node.
Steps of Reduced Fragment Oscillation (RFO) Algorithm are:

Step1: Group all the nodes into regions, with each region
having approximately equal number of nodes subject to the
constraint that the nodes are in near proximity to each other.

Figure 1 shows the layout of the regions and the access
patterns of each node in the region. The steps of grouping
the nodes into different regions is given below:

Step 1 a: Decide the value of m, through which whole
network will divide in regions.

Step 1 b: Calculate the physical location of database in
degree term by projection on map.

Fig. 1
DIVIDE THE WHOLE REGION OF FRAGMENT ACCESSING NODES

Step 1 c: According to value of m (Number of region),
The region to which database belongs is given by: ((Degree
of physical location of database / (3600 / m)) + 1).

Number of fragments at each node can vary. Each
fragment can be accessed by local node and/or global
(remote) nodes. Global nodes can access the fragment at a
node either directly or by more than one hop.

Fig. 2
FRAGMENTS INTERACTION WITH NODES.

Figure 2 shows Node x contains fragments F1 to Fi,
Node y contains F1 to Fj and Node z contains F1 to Fk.
Number of fragments at each node can vary. Each fragment
can be accessed by the local node and/or remote nodes. For
example fragment F1 of Node x is accessed locally by Node
x as well as remotely accessed by Node y and Node z. A
fragment can be accessed directly or indirectly by more than
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one hops. Here fragment F2 of Node y is accessed by Node
x through Node z.

Step2: For each locally stored fragment initialize the
Node-Fragment Access Counter matrix A as axy=0, where
x is index of all fragments and y is index of all nodes.

Step3: For each locally stored fragment initialize the
Region-Fragment Access Counter matrix R as rxz=0, where
x is index of all fragments and z is index of all regions.

Step4: Check access request for each stored fragment
from both local node and remote nodes.

Step5: Fragment Access Counter matrix A, increases the
access counter value for access of fragments from a node.
If node y access the fragment x then axy=axy+1.

Fig. 3
NODE-FRAGMENT ACCESS COUNTER MATRIX A.

Figure 3 shows Node-Fragment Access Counter matrix
A is the size of k by n, where k denote the number of
fragments and n denotes the number of nodes.

Step6: Region-Fragment Access counter matrix R,
increases the access counter value for accessing fragments
from the regions. If region z access the fragment x then
rxz=rxz+1.

Figure 4 shows Region-Fragment Access counter matrix
R is the size of k by m, where k denotes the number of
fragments and m denotes the number of regions.

Figure 5 shows Node contains local database F, which
consist of more than one fragment. It contains Node-
Fragments Access counter matrix A and Region-Fragment
Access counter matrix R.

Step7: Migrate the fragment from source to the target in
the region which has max count in R and then in that region

Fig. 4
REGION-FRAGMENT ACCESS COUNTER MATRIX R.

Fig. 5
INFORMATION AT EACH NODE.

move the fragment to the node in that region which has max
count in A.
The algorithm only considers fragments at each node which
has Region-Fragment Access counter value greater than a
predefined threshold t.

Figure 6, 7 and 8 explains the process of identifying the
target node for migrating the fragment.

Figure 6 shows Fk is one of the fragment of Node N13 in
Region 3, which is accessed by Nodes (N1,N2,N3,N4 and
N5) from Region 1,(N6,N7,N8) from Region 2, (N9,N10)
from Region M-1 and (N11,N12) from Region M.

Figure-7 shows only rows of Node-Fragment and Region-
Fragment Access Counter matrix of Fragment Fk according
to access in Figure-6 .
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Fig. 6
FRAGMENT Fk ACCESS FROM ALL REGIONS.

Fig. 7
ROWS OF NODE-FRAGMENT AND REGION-FRAGMENT ACCESS

COUNTER MATRIX OF FRAGMENT Fk .

The Region-Fragment access count for each region is
calculated. The region which has the maximum count is
chosen as the region where the fragment would be moved.
Region 1 has the highest access count to Fragment Fk in
comparison to other regions. Therefore Fragment Fk moved
to Region 1. In Region 1 the Node-fragment access count
for all the nodes is computed for the Fragment Fk.The node
which has the maximum count is chosen as the target node.
Therefore (in the current example Figure 8) within Region
1, Fragment Fk moved to Node N2.
If Optimal/Threshold algorithm is used instead of RFO
algorithm then fragment Fk will be moved to Node N11
in Region M. Because it has the maximum Node-Fragment
access count of 150, which is greater than that of all other
nodes.
Transferring the Fragment Fk to Node N11 in Region
M decreases the access time of node N11 for the
fragment Fk, but increase the access time to all the

Fig. 8
FRAGMENT MOVED TO HIGHEST ACCESSING REGION.

nodes(N1,N2,N3,N4,N5) of Region 1. Resulting in decrease
in total access time for the fragment Fk from Region
M, which had Region-Fragment access count of 155, but
increasing the access time of the fragment Fk from Region
1, which had Region-Fragment access count of 270.
RFO algorithm addresses this issue and therefore it reduces
the global access time of fragment Fk by transferring the
fragment Fk to node N2 instead of node N11.

4. Conclusion

Proposed algorithm decreases the migration/oscillations of
fragments in comparison to optimal, and threshold algorithm
using the knowledge of network topology which is not
the case with both Optimal and Threshold. In comparison
to NNA algorithm, RFO algorithm moves the fragment
from source node to destination target node by considering
both the frequency of fragment access by region as well
as individual nodes, there by increasing the overall system
performance. RFO algorithm also reduces the amount of
topological data required in decision making in comparison
to BGBR algorithm.
RFO algorithm depends on two parameters. One is the
choice of threshold value which also directly impact
fragment oscillation. Another parameter is division of
whole network into m regions, where each region contains
approximately equal nodes.
RFO Algorithm is suitable for Distributed database
architectures where the access pattern to a fragment changes
dynamically and distributed database is not replicated. This
algorithm significantly minimizes the data transfer and also
decreases the amount of complexity required in identifying
a suitable target node.
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Abstract— A covering array (CA) is a combinatorial struc-
ture specified as a matrix ofN rows andk columns over an
alphabet onv symbols such that for each set oft columns
everyt-tuple of symbols is covered at least once. Given the
values oft, k, andv, the optimal covering array construction
problem (CAC) consists in constructing aCA(N ; t, k, v)
with the minimum possible value ofN . There are several
reported methods to attend the CAC problem, among them
are: direct methods, recursive methods, greedy methods,
and metaheuristics methods. In this paper, three parallel
approaches for simulated annealing, i.e. the independent,
semi-independent and cooperative searches are applied to
the CAC problem. The empirical evidence supported by
statistical analysis indicate that the cooperative approach
offers the best execution times and the same upper bounds
than the independent and semi-independent approaches.
Extensive experimentation was carried out, using 96 well-
known benchmark instances, for assessing its performance
with respect to the best-known bounds reported previously.
The results show that cooperative approach attains 78 new
bounds and equals the solutions for other 6 instances.

Keywords: Covering Array, Simulated Annealing, Parallel Com-
puting

1. Introduction
A covering array, denoted byCA(N ; t, k, v) is a matrix
M of sizeN×k which takes values from the set of symbols
{0, 1, 2, . . . , v−1} (called the alphabet), and every submatrix
of sizeN × t contains each tuple of symbols of sizet (or
t-tuple), at least once. The valueN is the number of rows of
M, k is the number of parameters, where each parameter can
takev values and the interaction degree between parameters
is described by the strengtht. Each combination oft columns
must cover all thevt t-tuples. Given that there are

(

k
t

)

sets
of t columns inM, the total number oft-tuples inM must
be vt

(

k
t

)

. When at-tuple is missing in a specific set oft
columns we will refer to it as a missingt-wise combination.
Then,M is a covering array if the number of missingt-wise
combinations is zero.

When a matrix has the minimum possible value ofN to
be aCA(N ; t, k, v), the valueN is known as the Covering

Array Number. The Covering Array Number is formally
defined as (1):

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)}. (1)

Given the values oft, k, and v, the optimal covering
array construction problem (CAC) consists in constructing a
CA(N ; t, k, v) such that the value ofN is minimized.

A major application of covering arrays (CAs) arises in
software interaction testing, where a covering array can be
used to represent an interaction test suite as follows. In a
software test we havek components or factors. Each of these
hasv values or levels. A test suite is anN × k array where
each row is a test case. Each column represents a component
and a value in the column is the particular configuration.
By mapping a software test problem to a covering array
of strength t we can guarantee that we have tested, at
least once, allt-way combinations of component values.
Thus, software testing costs can be substantially reduced by
minimizing the number of test casesN in the covering array.
Please observe that software interaction testing is a black-
box testing technique, thus it exhibits weaknesses that should
be addressed by employing white-box testing techniques. For
a detailed example of the use of covering arrays in software
interaction testing the reader is referred to [1].

Because of the importance of the construction of (near)
optimal covering arrays, much research has been carried
out in developing effective methods for construct them.
There are several reported methods for constructing these
combinatorial models. Among them are: direct methods [2],
[3], recursive methods [4], [5], [6], greedy methods [7], [8],
[9], [10], [11], and metaheuristics methods [12], [13], [14],
[15], [16], [17].

In this paper, we aim to develop an improved imple-
mentation of a simulated annealing algorithm for construct-
ing covering arrays. Simulated annealing algorithm is a
general-purpose stochastic optimization technique that has
proved to be an effective tool for approximating globally
optimal solutions to many optimization problems. However,
one of the major drawbacks of the technique is its very
slow convergence. To address this drawback, we propose
three parallel simulated annealing approaches to solve the
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CAC problem. The objective is to find the best bounds to
some ternary covering arrays by using parallelism. To our
knowledge the application of parallel simulated annealing
to the CAC problem has not been reported in the literature.
A parallel algorithm for the verification of covering arrays
is presented in [18]. The methods of parallelization of
simulated annealing are discussed in [19], [20], [21], [22],
[23].

Contrary to existing simulated annealing implementa-
tions [12], [13], our algorithm has the merit of improving
two key features that have a great impact on its performance:
an efficient heuristic to generate good quality initial solutions
and a compound neighborhood function which combines two
carefully designed neighborhood relations.

The remainder of this paper is organized as follows:
Section 2describes the components of our sequential anneal-
ing algorithm, inSection 3three parallel simulated annealing
approaches are discussed,Section 4describes the experimen-
tal results, and finally,Section 5presents the conclusions
derived from the research presented in this paper.

2. Sequential simulated annealing
In this section, we briefly review simulated annealing (SA)

algorithm and propose an implementation to solve the CAC
problem.

SA is a randomized local search method based on the
simulation of annealing of metal. The acceptance probability
of a trial solution is given by (2), whereT is thetemperature
of the system,∆C is the difference of the costs between the
trial and the current solutions (the cost change due to the
perturbation), (2) means that the trial solution is accepted
by nonzero probabilitye−∆C/T even though the solution
deteriorates (uphill move). In this case, because the cost of
the solution increases, we call this update on the solution an
uphill move.

(P ) =

{

1 if ∆C < 0
e−∆C/T otherwise

(2)

Uphill moves enable the system to escape from the local
minima; without them, the system would be trapped into a
local minimum. Too high of a probability for the occurrence
of uphill moves, however, prevents the system from converg-
ing. In SA, the probability is controlled by temperature in
such a manner that at the beginning of the procedure the
temperature is sufficiently high, in which a high probability
is available, and as the calculation proceeds the temperature
is gradually decreased, lowering the probability [24].

In order to use the simulated annealing metaheuristic for a
combinatorial optimization problem in particular, there are a
number of decisions to be taken. Johnson et al. [25] classified
these decisions as follows:

• Problem-specific choices:
– The problem must be clearly formulated, so that

the set of feasible solutions is defined.

– The neighborhood of any solution must also be
defined as well as a way of determining the value
of the objective to be minimized.

– An initial solution must also be generated.

• Generic choices:

– Initial Temperature
– Cooling schedule, a temperature function,T (t), to

determine how the temperature is to be changed
– Maximum neighboring solutions per temperature,

viz. the number of iterations,N(t), to be per-
formed at each temperature

– A stopping criterion to terminate the algorithm

The following paragraphs will describe each of the com-
ponents of the implementation of our SA. The description
is done given the matrix representation of a covering array.

2.1 Internal representation

A covering array can be represented as a matrixM of size
N × k, where the columns are the parameters and the rows
are the cases of the test set that is constructed. Each cell
mi,j in the array accepts values from the set{1, 2, . . . , vj}
wherevj is the cardinality of the alphabet ofj-th column.
The size of the search spaceM is then given by (3):

|M | = vNk. (3)

2.2 Initial solution

The initial solutionM is constructed by generatingM as
a matrix with maximum Hamming distance. The Hamming
distanced(x, y) between two rowsx, y ∈M is the number
of elements in which they differ. Letri be a row of the
matrix M . To generate a random matrixM of maximum
Hamming distance the following steps are performed:

1) Generate the first rowr1 at random.
2) Generates rows c1, c2, . . . , cs at random, which will

be candidate rows.
3) Select the candidate rowci that maximizes the Ham-

ming distance according to

g(ri) =

i−1
∑

s=1

k
∑

v=1

d(ms,v,mi,v),

where d(ms,v,mi,v) =

{

1 if ms,v 6= mi,v

0 Otherwise

and added to thei-th row of the matrixM .
4) Repeat from step 2 untilM is completed.

An example is shown inFig. 1. The number of symbols
different between rowsr1 andc1 are 4 and betweenr2 and
c1 are 3 summing up 7. Then, the hamming distance for the
candidate rowc1 is 7.
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Rows







r1 =
{

2 1 0 1
}

r2 =
{

1 2 0 1
}

c1 =
{

0 2 1 0
}

Distances







d(r1, c1) = 4
d(r2, c1) = 3
g(c1) = 7

Fig. 1: Example of the hamming distance between two rows
r1, r2 that are already in the matrixM and a candidate row
c1.

2.3 Evaluation function
The evaluation functionC(M) is used to estimate the

goodness of a candidate solution. Previously reported meta-
heuristic algorithms for constructing covering arrays have
commonly evaluated the quality of a potential solution
(covering array) as the number of combination of symbols
missing in the matrixM [13], [14], [15]. Then, the expected
solution will be zero missing. In the proposed SA imple-
mentation this evaluation function definition was used. Its
computational complexity is equivalent to (4):

O

(

N

(

k

t

))

. (4)

2.4 Neighborhood function
Given that SA is based on Local Search (LS) then a neigh-

borhood function must be defined. The main objective of
the neighborhood function is to identify the set of potential
solutions which can be reached from the current solution in
a local search (LS) algorithm. In case two or more neigh-
borhoods present complementary characteristics, it is then
possible and interesting to create more powerful compound
neighborhoods. The advantage of such an approach is well
documented in [26]. Following this idea, and based on the
results of our preliminary experimentations, a neighborhood
structure composed by two different functions is proposed
for this SA algorithm implementation.

Two neighborhood functionswere implemented to guide
the local search of our SA algorithm. The neighborhood
functionN1(s) makes a random search of a missingt-tuple,
then tries by setting thej-th combination of symbols in every
row of M . The neighborhood functionN2(s) randomly
chooses a position(i, j) of the matrix M and makes all
possible changes of symbol. During the search process
a combination of bothN1(s) and N2(s) neighborhood
functions is employed by our SA algorithm. The former is
applied with probabilityρ, while the latter is employed at a
(1−ρ) rate. This combined neighborhood functionN3(s, x)

is defined in (5), wherex is a random number in the interval
[0, 1).

N3(s, x) =

{

N1(s) if x ≤ ρ
N2(s) if x > ρ

(5)

2.5 Cooling schedule

The cooling scheduledetermines the degree of uphill
movement permitted during the search and is thus critical
to the SA algorithm’s performance. The parameters that
define a cooling schedule are: an initial temperature, a final
temperature or a stopping criterion, the maximum number
of neighboring solutions that can be generated at each
temperature, and a rule for decrementing the temperature.
The literature offers a number of different cooling sched-
ules, see for instance [19], [27]. In our SA implementation
we preferred a geometrical cooling scheme mainly for its
simplicity. It starts at an initial temperatureTi which is
decremented at each round by a factorα using the relation
shows in (6). For each temperature, the maximum number
of visited neighboring solutions isL. It depends directly on
the parameters (N , k, andv) of the studied covering array.
This is because more moves are required for covering arrays
with alphabets of greater cardinality.

Tk = αTk−1 (6)

2.6 Termination condition

The stop criterion for our SA is either when the current
temperature reachesTf , when it ceases to make progress,
or when a valid covering array is found. In the proposed
implementation a lack of progress exists if afterφ (frozen
factor) consecutive temperature decrements the best-so-far
solution is not improved.

2.7 Simulated annealing pseudocode

The Algorithm 1 presents the SA heuristic as described
above. The meaning of the three functions is obvious:
INITIALIZE computes a start solution and initial values
of the parametersT andL; GENERATE selects a solution
from the neighborhood of the current solution, using the
neighborhood functionN3(s, x); CALCULATE_CONTROL
computes a new value for the parameterT (cooling schedule)
and the number of consecutive temperature decrements with
no improvement in the solution.

Unlike the classical method which takes as a solution to
the problem, the last value obtained in the annealing chain.
We memorize the best solution found during the whole
annealing process (see lines 3 and 12).

In the next section, it is presented three parallel SA
approaches for solving the CAC problem.
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Algorithm 1 Sequential SA approach for the CAC problem.

1: function SA( )
2: INITIALIZE (M,T, L)
3: M⋆ ←M
4: repeat
5: for i← 1 to L do
6: Mi ← GENERATE(M )
7: ∆C ← C(Mi)-C(M )
8: x← random ⊲ x in the range [0,1)
9: if ∆C < 0 or e−∆C/T > x then

10: M ←Mi

11: if C(M ) < C(M⋆) then
12: M⋆ ←M
13: end if
14: end if
15: end for
16: CALCULATE _CONTROL(T, φ)
17: until stop_criterion
18: end function

3. Parallel simulated annealing

Parallelization is recognized like a powerful strategy to
increase algorithms efficiency; however, SA parallelization
is a hard task because it is essentially a sequential process.

In evaluating performance of a parallel simulated anneal-
ing (PSA), it needs to consider solution quality as well as
execution speed. The execution speed may be quantified in
terms ofspeed-up(S) andefficiency(E). TheS is defined
as the ratio of the execution time (on one processor) by the
sequential SA to that by the PSA (onP processors) for an
equivalent solution quality. In the ideal case,S would be
equal toP . TheE is defined as the ratio of the actualS to
the idealS(P ).

Next, we propose three parallel implementations of the
SA algorithm described inSection 2. For these cases, letP
denote the number of processors andL the length of Markov
chain.

3.1 Independent search approach

A common technique to parallelizing SA is theindepen-
dent search approach(IS) [19], [21], [28]. In this approach
each processor independently perturbs the configuration,
evaluates the cost, and decides on the perturbation. The
processorsPi, i = 0, 1, . . . , P − 1, carry out the inde-
pendent annealing searches using the same initial solution
and cooling schedule as in the sequential algorithm. At each
temperaturePi executesN × k× v2 annealing steps. When
each processor finishes, it sends its results to processorP0.
Finally, processorP0 chooses the final solution among the
local solutions.

3.2 Semi-independent search approach
Our semi-independent search approach(SS) is an imple-

mentation of thedivision algorithm [19]. In the division
algorithm, parallelism is obtained by dividing the effort of
generating a Markov chain over the available processors. A
Markov chain is divided intoP sub-chains of the length
⌊L/P ⌋. In this approach, the processors exchange local
information including intermediate solutions and their costs.
Then, each processor restarts from the best intermediate
ones.

Compared to the IS, communication overhead in this SS
approach would be increased. However, each processor can
utilize the information from other processors such that the
decrease in computations and idle times can be greater than
the increase in communication overhead. For instance, a
certain processor which is trapped in an inferior solution
can recognize its state by comparing it with others and may
accelerate the annealing procedure. That is, processors may
collectively converge to a better solution.

3.3 Cooperative search approach
In order to improve the performance of the SS approach,

we propose thecooperative search approach(CS), it used
asynchronous communication among processors accessing
the global state to eliminate the idle times. Each processor
follows a separate search path, accesses the global state
which consists of the current best solution and its cost
whenever it finished a Markov subchain and updates the
state if necessary. Once a processor gets the global state,
it proceeds to the next Markov subchain with any delay.

Unlike SS, CS having the following characteristics:

• Idle times can be reduced since asynchronous commu-
nications overlap a part of the computation.

• Less communication overhead, an isolated access to the
global state is needed by each processor at the end of
each Markov subchain.

• The probability of being trapped in a local optimum
can be smaller. This is because not all the processors
start from the same state in each Markov subchain.

4. Experimental results
This section presents an experimental design and results

derived from testing the parallel IS, SS, and CS algorithms
described inSection 3. In order to show the performance
of these approaches, two experiments were developed. The
first experiment had as purpose to compare the three ap-
proaches in terms of parallel execution time. Among the
three approaches, the CS approach was the fastest. The
second experiment evaluated the quality solutions of CS
approach over a new benchmark proposed in this paper.
The results were compared against the best-known solutions
reported in the literature [29] to construct covering arrays.
The three parallel approaches were implemented using C
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language and the message passing interface (MPI) library.
The implementations were run on theTirant supercomputer1.
Tirant comprises 256 JS20 compute nodes (blades) and 5
p515 servers. Every blade has two IBM Power4 processors
at 2.0 GHz running Linux operating system with 4 GB of
memory RAM and 36 GB of local disk storage. All the
servers provide a total of nearly 10 TB of disk storage
accessible from every blade through GPFS (Global Parallel
File System). Tirant has in total 512 processors, 1 TB of
memory RAM and 19 TB of disk storage. The networks
that interconnect the Tirant are:

1) Myrinet Network: High bandwidth network used by
parallel applications communications.

2) Gigabit Network: Ethernet network used by the blades
to mount remotely their root file system from the
servers and the network over which GPFS works.

The following parameters were used for all SA implemen-
tations:

1) Initial temperatureTi = 4.0
2) Final temperatureTf = 1.0E − 10
3) Cooling factorα = 0.99
4) Maximum neighboring solutions per temperatureL =

N × k × v2

5) Frozen factorφ = 11
6) The neighborhood functionsN1 andN2 are applied

with a probability of p1 = 0.3 and p2 = 0.7
respectively.

4.1 Comparison of algorithms

To test the performance of the IS, SS, and CS approaches,
we propose the construction of a covering array withN =
80, t = 3, k = 22, andv = 3. Each approach was executed
31 times (for provide statistical validity to experiment) using
P = {4, 8, 16, 32}.

The performance of the algorithms has been compared
based on median speed-up as a function of the number of
processors, the results are shown inFig. 2.

The IS approach, had difficulty in handling the large
problem instances, it does not scale. The SS approach
provides reasonable results, however, because it is a syn-
chronous algorithm, the idle and communication times are
inevitable. The CS approach is who offers the best results, it
reduces the execution time of the SS approach by employing
asynchronous information exchange.

In the next subsection, it is presented the second exper-
iment of this work, the purpose is to measure the perfor-
mance of the CS algorithm against the best-known solutions
reported in the literature.

1The Tirant supercomputer:http://www.uv.es/siuv/cas/
zcalculo/res/informa.wiki
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Fig. 2: Median speed-up as a function of the number of
processors for the IS, SS, and CS approaches.

4.2 The cooperative search approach against
the state-of-the-art procedures

The purpose of this experiment is to carry out a per-
formance comparison of the bounds achieved by the CS
approach with respect to the best-known solutions reported
in the literature [29], which were produced using the fol-
lowing state-of-the-art procedures: orthogonal array con-
struction, Roux type constructions, doubling constructions,
algebraic constructions, Deterministic Density Algorithm
(DDA), Tabu Search and IPOG-F.

For this experiment we have fixed the maximum com-
putational time expended by our PSA for constructing a
covering array to 72 hours and 50 processors. We create
a new benchmark composed by 96 covering arrays with
strengtht = 4, degree5 ≤ k ≤ 100, and orderv = 3.
The detailed results produced by this experiment are listed
in Table 1. The first two columns in this table indicate the
strengtht and the degreek of the selected instances. Next
two columns show, in terms of the sizeN of the covering
arrays, the best-known solution reported in the literature and
the improved bounds produced by the CS.

The analysis of the data presented in theTable 1lead us
to the following observation. The solutions quality attained
by the CS approach is very competitive with respect to that
produced by the state-of-the-art procedures summarized in
column 3 (ϑ). In fact, it is able to improve on 78 previous
best-known solutions.

5. Conclusions
The long execution time of SA due to its sequential nature

hinders its application to realistically sized problems, in this
case, the CAC problem whent > 3, 5 ≤ k ≤ 100, and
v = 3. A more efficient way to reduce execution time and
make the SA a more promising method is to parallelize
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Table 1: Improved bounds onCAN(4, k, 3) for strength 4 and degrees5 ≤ k ≤ 100 produced by our PSA.ϑ represents
the best-known solution reported in the literature [29]. β represents the best solution in terms ofN produced by our PSA.
Last column depicts the difference between the best result produced by our PSA and the best-known solution (∆ = β−ϑ).

(a)

t k ϑ β ∆

4 5 81 81 0
4 6 111 111 0
4 7 123 123 0
4 8 141 135 -6
4 9 159 135 -24
4 10 159 164 5
4 11 183 183 0
4 12 201 201 0
4 13 219 219 0
4 14 237 251 14
4 15 237 252 15
4 16 237 277 40
4 17 300 287 -13
4 18 307 300 -7
4 19 313 313 0
4 20 315 321 6
4 21 315 341 26
4 22 315 348 33
4 23 315 360 45
4 24 377 375 -2
4 25 384 375 -9
4 26 393 387 -6
4 27 393 387 -6
4 28 393 403 10
4 29 393 403 10
4 30 393 410 17
4 31 440 427 -13
4 32 445 432 -13
4 33 454 439 -15
4 34 462 447 -15
4 35 471 451 -20
4 36 471 459 -12

(b)

t k ϑ β ∆

4 37 471 461 -10
4 38 471 466 -5
4 39 471 468 -3
4 40 499 480 -19
4 41 506 484 -22
4 42 509 491 -18
4 43 518 495 -23
4 44 522 499 -23
4 45 526 505 -21
4 46 530 507 -23
4 47 534 511 -23
4 48 542 517 -25
4 49 549 523 -26
4 50 549 525 -24
4 51 549 531 -18
4 52 560 534 -26
4 53 565 537 -28
4 54 568 539 -29
4 55 572 545 -27
4 56 578 548 -30
4 57 581 553 -28
4 58 585 558 -27
4 59 589 560 -29
4 60 596 562 -34
4 61 596 567 -29
4 62 604 570 -34
4 63 604 574 -30
4 64 612 575 -37
4 65 617 581 -36
4 66 618 585 -33
4 67 623 587 -36
4 68 627 591 -36

(c)

t k ϑ β ∆

4 69 627 592 -35
4 70 627 597 -30
4 71 638 601 -37
4 72 639 601 -38
4 73 642 607 -35
4 74 645 607 -38
4 75 648 610 -38
4 76 653 613 -40
4 77 657 615 -42
4 78 657 618 -39
4 79 659 620 -39
4 80 663 624 -39
4 81 666 628 -38
4 82 668 631 -37
4 83 669 631 -38
4 84 669 635 -34
4 85 669 635 -34
4 86 669 639 -30
4 87 669 643 -26
4 88 669 643 -26
4 89 669 648 -21
4 90 669 649 -20
4 91 669 650 -19
4 92 669 653 -16
4 93 669 655 -14
4 94 669 657 -12
4 95 669 660 -9
4 96 669 661 -8
4 97 669 662 -7
4 98 669 664 -5
4 99 669 664 -5
4 100 669 665 -4

sequential SA. It is a challenging task. In fact, there are
many approaches that may be considered in parallelizing SA.
However, an inappropriate strategy used will likely result in
poor performance.

In this paper, we have used three different approaches to
do this work. From the experimental results, we found that
the IS approach is the worst performing option, it does not
scale. The SS approach offers reasonable execution times;
compared to the IS, communication overhead in the SS
approach would be increased. However, each processor can
utilize the information from other processors such that the
decrease in computations and idle times can be greater than
the increase in communication overhead. For instance, a
certain processor which is trapped in an inferior solution
can recognize its state by comparing it with others and
may accelerate the annealing procedure. That is, processors
may collectively converge to a better solution. The CS
approach is who offers the best results, it significantly
reduces the execution time of the SS approach by employing
asynchronous information exchange.

The quality of the solutions attained by the CS approach is
very competitive with respect to that produced by the state-
of-the-art procedures, in fact, it is able to improve on 78
previous best-known solutions and equals the solutions for

other 7 instances.
Finally, the covering arrays are available in CINVESTAV

Covering Array Repository (CAR), which is available un-
der request athttp://www.tamps.cinvestav.mx/
~jtj/CA.php. We have verified all covering arrays de-
scribed in this paper using the tool presented in [30].
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Exact and Approximate Median Splitting on Distributed Memory
Machines

Matthieu Garrigues and Antoine Manzanera
UEI, ENSTA-ParisTech, Paris, France

Abstract— We present in this paper a new fine grained me-
dian split algorithm which places the median on the middle
index of an input array of size N . Running on P processors,
the randomized version converges in O

(
N
P × (log(N) + µ)

)
average time where 0 < P < N

4 and µ is the time to swap
a pair of elements between two nodes. At each iteration, the
nodes process only its local elements and exchange part of
them with another processor of the network. This makes it
a decentralized parallel algorithm and offers the possibility
to take advantage of massively parallel computing networks
based on distributed memory systems.

Keywords: median splitting, parallel algorithms, distributed mem-
ory machines

1. Introduction
Useful in many fields like statistics or signal processing

median selection has been widely used in computer science
in the last decades. Given a set of N elements from a
totally ordered space, it consists in picking the element that
is superior and inferior to the same number of elements. A
expensive way of solving the problem would be to sort the
whole input so that the median index is dN2 e.

Several non parallel algorithms exist. Given a pivot
value p, quickSelect [1] splits the input array in two parts,
places inferior elements before p and superior elements
after, then recursively processes the part that contains the
median. In average, it divides the problem size by a factor
two after each iteration. Its average run-time is in O(N)
but at worst in O(N2). Median of median [1] provides a
method for choosing a pivot that ensures that the run-time
stays in O(N) but is less efficient in practice. [2] is a
randomized algorithm that successively estimates an interval
that contains the median value.

Many works present algorithms that efficiently run on
different PRAM models. [3] shows how median selection
can map on coarse-grained computers, when the input size is
an order of magnitude higher than the number of processors.
It presents and benchmarks parallel implementations of [1]
and [2] on the connection machine 5 (CM-5). In theses
approaches, which reduce the number of elements to
process after each iterations, load balancing is needed in
order to feed all processors at any iteration. Randomized

parallel algorithms in [4] and [5] require O(loglog(N))
steps for convergence. In [6], the author presents some fine
grained and real-time hardware implementation of median
filtering.

In this paper, we present a new fine grained dis-
tributed median randomized algorithm. In opposition to
the state of the art algorithms, it is efficient on networks
(See Fig. 2) containing O(N) (up to N

4 − 1) processing
units running in parallel. Its average observed run-time is
O
(
N
P × (log(N) + µ)

)
where N is the input size, P the

number of processors and µ the time required to swap
2 elements between two nodes. This paper is organized
as follows: We first introduce the basic operators used as
building blocks. Then, we present three algorithms in their
sequential form, from the simpler to the most efficient one.
Finally, we discuss about the parallel aspects of the final
method in Sect. 5 and its convergence in Sect. 6.

2. Primitives and Notations
Let A be an array of elements drawn from some totally

ordered set. ∀i ∈ {0, N−1}, A[i] represents the ith element
of the array.

The algorithms presented in this paper make use of the
following primitives:

• reorder(A, i, j) (and by extension reorder(A, i, j, k))
reorders the ith and jth (resp. the ith, jth, and kth)
elements of A, such that A[i] ≤ A[j] (resp. A[i] ≤
A[j] ≤ A[k]) after the call.

• selectmin(A, i, j, k) (resp. selectmax(A, i, j, k))
exchanges, if smaller (resp. greater), A[i] with
min(A[j], A[k]) (resp. max(A[j], A[k])).

Each instance of these operations is said effective and
returns true if it actually modifies the input array. If not,
it returns false.

3. Swap on Tree
In this section we present the basic version of our algo-

rithm: the principle is to map the input vector A onto a binary
tree, reorganizing the data such that the left half subtree is
a inf-semilattice, the right half subtree is a sup-semilattice,
and the median is on the root. See Fig. 1 for a graphical
representation, showing the left (resp. right) part of the tree
under (resp. over) the root.
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Fig. 1: A vector of 31 elements mapped on a binary tree
made of an inf-semilattice (upper branch), a sup-semilattice
(lower branch) and a middle node (median). Each node is
labelled with its position in the array. The triangles represent
the selectmin and selectmax operators.

The algorithm updates the input A using selectmin (in
the upper branch), selectmax (in the lower branch), and
reorder (at the middle node). For simplicity we suppose
that dimension N = 2k − 1, k > 1.

Listing 1: Algorithm swap on tree
1 middle = (N-1)/2
2 repeat {
3 for (i = (middle - 1)/2; i ≥ 1; i--)
4 //lower branch
5 selectmax(A, middle-i, middle-2i, middle

-2i-1)
6 //upper branch
7 selectmin(A, middle+i, middle+2i, middle

+2i+1)
8 endfor
9 //middle node

10 eff = reorder(A, middle-1, middle, middle
+1)

11 } until not eff

a) Complexity Analysis: Every iteration exchanges the
greatest element of the lower branch with the smallest of the
upper branch. Convergence occurs as soon as the reorder
instruction (line 10) becomes uneffective, which takes at
most N/2 iterations.

Considering the binary tree, the inputs of even levels are
the output of odd levels (and vice versa). Then, half the tree
can be processed in parallel, using N/4 concurrent tasks.
However the number of iterations remains in O(N), then the

run time is O
(

N2

P

)
using P processors. The poor efficiency

of this basic version comes from the fact that all the elements
that are not placed in the good half of the array (at most
N/2 in every half) will have to pass through the middle
node, because only one element can travel from the upper
branch to the lower branch at each iteration. We address this
bottleneck issue in the next section.

4. Swap Inter Branches
We describe here an algorithm that improves the connec-

tivity between the lower and upper branches by providing
shortcuts to travel from one branch to the other.

Keeping the instructions of the swap on tree version,
we also reorder each node of the lower branch with its
counterpart in the upper branch; more precisely, ∀i ∈
[0, bN/2c − 1], A[i] and A[N − i − 1] are reordered. In
a nutshell, the select operators guarantees the convergence,
whereas reorder works as a catalyst.
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Fig. 2: Binary tree drawn on a vector of 31 elements.
The circles and dashed lines show the additional reorder
operators of the algorithm swap inter branches. Each node
is labelled with its position in the array.

Note that elements in the upper branch are only reordered
with elements of the same level in the lower branch. The
method takes advantage of the fact that at iteration i the
probability of an element in the level l to be in the wrong
branch is higher if l is close to the middle node. This
property becomes stronger when i increases.

a) Complexity Analysis: This version keeps the high po-
tential of parallelism, since all the instructions in the swap
inter branches loop can be executed concurrently on N/2
processors.

After one iteration of swap inter branches instructions
(line 4), there remain at most N/4 misplaced elements in
every branch (otherwise it would mean that k > N/4
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Listing 2: Algorithm swap inter branches
1 middle = (N-1)/2
2 repeat {
3 for (i = 0; i < middle; i++)//swap inter

branches
4 reorder(A,i,N-i-1)
5 endfor
6 for (i = (middle - 1)/2; i ≥ 1; i--)
7 //lower branch
8 selectmax(A, middle-i, middle-2i, middle

-2i-1)

9 //upper branch
10 selectmin(A, middle+i, middle+2i, middle

+2i+1)

11 endfor
12 //middle node
13 eff = reorder(A, middle-1, middle, middle

+1)
14 } until not eff
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Fig. 3: Worst case for swap inter branches. the label and
the color of a node represent the ranks of the value that it
stores. The bottleneck is highlighted in dashed black.

elements smaller than the median are smaller than k other
elements in the other branch and then there would be 2k >
N/2 elements smaller than the median, which is absurd).
Unfortunately, the number of iterations is still N/4 in the
worst case (see Fig. 3), so only two times faster than the
swap on tree version. It turns out that this version still suffers
from a bottleneck: in the swap inter branches instructions,
every node is always reordered with its vertical counterpart
in the other branch. Then, if some elements belonging to two
diagonally opposed quarters of the tree need to be compared
(like in Fig. 3), they still have to go through the middle node.
Furthermore, the selectmin and selectmax operations (lines
8 and 10) often perform the same comparisons, since many
elements do not move during one iteration (this is especially

true during the last iterations). Finally, a lot of operations are
not effective. In the next section we present the final version
of the algorithm, adding horizontal motion at each level to
improve the data mobility.

5. Final Algorithm
This section presents our final algorithm, which improves

the previous version by changing at every iteration the
counterpart of every node, thanks to index shifting at each
level of the tree. The purpose is to minimize the bottle-
neck effect by allowing diagonal motion in the swap inter
branches instructions, and to maximize the efficiency of the
selectmin and selectmax operations, by a constant renewal
of the data caused by the horizontal motion (see Fig. 4).
These improvements allow to converge in O(log(N)) steps
instead of O(N) with the previous algorithm. We present
the sequential version (List. 3), where RANDOM(N) is a
random integer between 0 and N-1, and MOD(p,n) is the
remainder of the Euclidean division of p by n, and then
discuss about parallelization.

Listing 3: Final algorithm, sequential form
1 middle = (N-1)/2
2 repeat {
3 eff = false
4 //size of the leaf level
5 Lsize = (N+1)/4
6 //first index of the leaf level (lower

branch)
7 Plow = Lsize-1
8 //first index of the leaf level (upper

branch)
9 Pupp = N-Lsize

10 //shift offset of the leaf level (lower
branch)

11 Olow_son = RANDOM(Lsize)
12 //shift offset of the leaf level (upper

branch)
13 Oupp_son = RANDOM(Lsize)
14

15 repeat {//Processing of one level
16 Olow_dad = RANDOM(Lsize/2)
17 Oupp_dad = RANDOM(Lsize/2)
18 for (k = 0; k < Lsize/2; k++)
19 Ilow_dad = Plow + Lsize/2
20 - MOD(k + Olow_dad, Lsize/2)
21 Iupp_dad = Pupp - Lsize/2
22 + MOD(k + Oupp_dad, Lsize/2)
23 Ilow_child1 = Plow - MOD(2k + Olow_son,

Lsize)
24 Ilow_child2 = Plow
25 - MOD(2k + 1 + Olow_son,

Lsize)
26 Iupp_child1 = Pupp + MOD(2k + Oupp_son,

Lsize)
27 Iupp_child2 = Pupp
28 + MOD(2k + 1 + Oupp_son,

Lsize)
29 //lower branch
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30 selectmax(A, Ilow_dad, Ilow_child1,
Ilow_child2)

31 //upper branch
32 selectmin(A, Iupp_dad, Iupp_child1,

Iupp_child2)
33 //swap inter branches
34 eff = eff || reorder(A, Ilow_dad,

Iupp_dad)

35 endfor
36 Plow = Plow + Lsize/2
37 Pupp = Pupp - Lsize/2
38 Olow_son = Olow_dad
39 Oupp_son = Oupp_dad
40 Lsize = Lsize/2
41 } until (Lsize == 1)
42 //middle node
43 reorder(A, middle - 1, middle, middle + 1)
44 } until not eff

At each iteration, we scan the nodes from the leaves to
the middle node using reorder, selectmax and selectmin. A
select operation rearranges one element of a pair of nodes at
level l with its parent node at level l − 1. But, unlike swap
inter branches, relations between levels are shifted with a
random offset drawn before each iteration. Figure 4 shows
the resulting relations. Arguments of reorder are affected
using the same method.

a) Convergence detection: The variable eff tracks
whether during one iteration a reorder between branches
has been effective (see line 34 of listing 3). If not, we can
ensure that the median is on the middle node.

b) Parallelization: At a given time, one iteration reads and
writes two opposite children branch levels, and two opposite
father branch levels. Since each iteration processes nodes
from the leaves to the middle of the tree, we can pipeline the
iterations without breaking write/read dependencies. Thus,
using a pipeline of log2(N)/2 stages, as many iterations
can run in parallel (see Fig. 5).

c) Complexity Analysis: If we suppose that the random
number generator used to compute offset always returns
0, the algorithm is equivalent to swap and shift. In this
case, the number of iterations in the worst case is still
N/4. Section 6 shows that this algorithm takes in average
2× log2(N) pipeline steps to converge. Using P processors,
one pipeline step runs in time O(NP ). This gives an average
time complexity of O

(
log(N)× N

P

)
. Figure 6 compares the

convergence of the three presented algorithms.

6. Convergence
Let us consider the input array being re-arranged at a

certain step of the algorithm. We define the event e as
follows: an element drawn at random from the array is
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Fig. 5: Dependencies between steps of two iterations. Plain
arrows show dependencies between the steps of one iteration,
dependencies between iterations are dotted.
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Fig. 6: Average pairs of pipeline steps before convergence
on different algorithms. Means of 100 executions on random
inputs.

misplaced (i.e. inferior (resp. superior) to the median and
located in the upper (resp. lower) branch). In this section
we model the evolution of the probability P (e) over the
pipeline steps. First, we analyze how P (e) is affected by
the operators selectmin, selectmax and reorder. Then we
observe the average number of pipeline steps needed to place
all elements.

Let a and b be two consecutive levels, a carrying the
parents of nodes on level b. The event ex (resp. fx) occurs
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Fig. 4: Example of index shifting using an offset of size 1. Unmodified (left) and shifted (right) relations between two levels.
select operators are shown in gray. Each nodes is labeled with its position in the array.

when an element is misplaced on level x before (resp. after)
the select operation. On each branch, level 0 contains the
root and level l contains the parents of level l + 1. Given
px = P (ex), we search Sp and Sl such that:{

P (fa) = Sp(pa, pb)
P (fb) = Sl(pa, pb)

Figure 7 shows all the possible configurations for the three
operators.

Sp(pa, pb) =
8∑

i=1

P (fa|Ki)× P (Ki)

= 1− P (fa|K1)× (1− pa)× (1− pb)2

= 1− (1− pa)× (1− pb)2

Sl(pa, pb) =
8∑

i=1

P (fb|Ki)× P (Ki)

= P (fb|K4)× (1− pa)× p2b + P (fb|K6)×
pa × (1− pb)× pb + P (fb|K8)× pa × p2b

=
(1− pa)× p2b

2
+ pa × (1− pb)× pb + pa × p2b

= pb ×
(
pb × (1− pa)

2
+ pa

)

Using the same method, we model how reorder affects
P (e) on level l of lower and upper branches. The event
e (resp. f ) occurs when an element is misplaced on level
l before (resp. after) the operation. The probability of e is
noted p = P (e). R defines the relation between p and P (f):
P (f) = R(p).

R(p) =
4∑

i=1

P (f |Li)× P (Li)

= P (f |L1)× (1− p)2+(
P (f |L2) + P (f |L3)

)
× p× (1− p) + P (f |L4)× p2

= (1− p)× p

Let esl denote the following event: an element of level
l is misplaced after running the step s. It occurs with a

probability P s
l = P (esl ). Knowing that a step is a select

followed by a reorder we can build P s
l by recurrence on s:

P s
l =

{
R(Sp(P

s−1
l , P s−1

l+1 )) if l mod 2 = s mod 2

Sl(P
s−1
l−1 , P

s−1
l ) otherwise

P 0
l is given by the distribution of the input array. In case

of all orderings of the input are equally likely, we have:
∀l, P 0

l = 1
2 . On the root and leaf levels of each branch, the

previous formula is undefined every two pipeline steps. In
this special case, we have P s

l = P s−1
l . Figure 8 draws the

convergence of P s
l and the probability P s that an element

of the input is misplaced after step s:

P s =

log2(N+1)−1∑
i=1

2i × P s
l

N
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10−1 P s
0

P s
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P s
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P s
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P s
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P s
6

P s
7 P s

Pipeline steps

P
s l

Fig. 8: Evolution of P s
l and P s for a input of 29−1 elements

with P 0
l = 1

2 ∀l. P
s shows that in average, the number

of placed elements is divided by two after each pair of
pipeline steps. The larger levels are the first to contain placed
elements with high probability. For clarity, only values with
s odd are displayed.

a) Approximation: Figure 8 shows that the probability for
an element to be misplaced is reduced by a factor two every
two pipeline steps. If we stop the algorithm after a given step
s, we can estimate, for each level, the probability P s

l that
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Fig. 7: All possible configurations for reorder and select operators. Misplaced elements are shown in black and placed
elements are shown in gray. Each node is marked with the probability that its contains a misplaced element after the
operation.

one of its elements is misplaced. Figure 9 shows the average
percentage of misplaced elements after each pair of pipeline
steps. For example, whatever the input size, we note that 10
pipeline steps are enough to place 99% of the elements in
average.
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Fig. 9: Evolution of the percentage of misplaced elements
over the pipeline steps. Each curve represents the mean of
10 executions of the final algorithm on random arrays.

7. Conclusion
The algorithm we presented in this paper converges to a

median split of an array of N elements, placing the median at
index N

2 in an observed run-time of O
(
N
P × (log(N) + µ)

)
average time where µ the time to swap a pair of elements
between two processors.

To make the coarse-grained parallel approaches of [3]
efficient, we need to provide each processing units (PE) with
enough elements, limiting their number. Because the three
operators involved process locally only 2 or 3 elements with-
out global knowledge, our approach is expected to bypass
this limitation by taking advantage of architectures with a
very high number of PEs (in the same order of magnitude of
N ). We believe that this can lead to efficient implementations
on specific networks on chip with thousands of PEs.
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Abstract- The Support Vector Machine (SVM) is one of the most 

effective machine learning algorithms for data classification, 

which have a significant area of research. Since the training 

process of large datasets is computationally intensive, there is a 

need to improve its efficiency using high performance computing 

techniques. In this paper, we developed an efficient parallel 

algorithm, SMC-PBC-SVM, which combines a Parallel Binary 

Class with Serial Multi-class Support Vector Machines for 

classification. The SMC-PBC-SVM algorithm was implemented 

using the object-oriented C++ programming language and 

standard Message passing Interface (MPI) communication 

routines. The parallel code was executed on an ALBACORE 

Linux cluster, and then tested with four datasets with different 

sizes: Earthworm, Protein, Mnist, and Mnist8m. The results 

show that the SMC-PBC-SVM implementation can significantly 

improve the performance of data classification without the loss of 

accuracy. The results also demonstrated a form of 

proportionality between the size of the dataset and the SMC-

PBC-SVM efficiency. As the dataset becomes larger, the SMC-

PBC-SVM achieves a higher efficiency. 

Keywords- Classification; SVM;  parallel computing. 

I.  INTRODUCTION 

Classifying different categories among large datasets has 
become one of the most important computing problems. The 
main objective in classification is to identify patterns in a data 
set, which helps to analyze the data in order to make decisions. 
Support Vector Machines (SVMs) are a class of machine 
learning algorithms based on statistical learning theory, which 
has received wide attention for classification problems because 
of its accuracy and generalization property.  

SVM classification involves three stages. The first one 
involves training the model for the classification with the 
training dataset. The second stage is the testing stage where the 
model is tested with a combination of the training data and 
similar unseen data. The third stage involves the actual 
prediction with unseen data. The training stage is the most 
computationally expensive process of SVMs. 

The main idea behind the SVM classification algorithm is 
to separate two point classes of a training dataset, 

 

                              
                             

, with a surface that maximizes the margin between them [1]. 
This separating surface is obtained by solving a convex 
quadratic problem (QP) of the form [2] 

         
 

 
              

 

   

                                                    

          

 

   

                                                          

, where the entries of the symmetric positive semi-definite 
matrix G are defined as  

                                                                              

                                                      

SVM has been modified to handle non-linear classification. 
Since the complexity of training of non-linear SVMs has been 
estimated to be quadratic in the number of training examples 
[3], it is computationally expensive when large datasets with 
tens of thousands of training examples are used. To reduce the 
training time, the optimization problem can be broken into 
smaller QP problems [4]. Originally, SVM was introduced for 
binary classification, and then it was extended for multi-class 
classification. It was improved by caching the kernel 
calculations [5]. Because of the wide use of the Internet, a large 
amount of data is being collected. Hence, the importance of 
using an efficient SVM that utilizes parallel computing 
facilities and multi-core processing elements for (multi-class) 
classification of large datasets grows even larger.  Therefore, a 
lot of research efforts were directed to find the optimal parallel 
algorithm for the different kinds of datasets. For large binary 
classification problems, there is a need to break it down into 
smaller pieces, so that the smaller partitions can be computed 
concurrently. Research has been conducted in this area, and 
some progress has been made in [6], [7], and [8]. On the other 
hand, for large multi-class classification problems, progress has 
been made in [3] and [9]. Also, a lot of work has been done in 
[5] and [10] to develop kernel computation costs. Some other 
efforts have been achieved in [11], [12], [13] and [14] to 
optimize working set size selection. Additionally, other tries 
have been done in [15], and [16] to develop SVM training by 
quickly removing most of non-support vectors. 

The LIBSVM [17] software is developed for a working set 
of size two, which tends to minimize the computational cost 
per iteration. In this case, the inner QP subproblem can be 
systematically solved without requiring a numerical QP solver 
and the updating of the objective gradient only involves the 
two Hessian columns corresponding to the two updated 
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variables. On the other hand, if few variables are updated per 
iteration, slow convergence is normally implied. The SVM

light
 

[18] algorithm uses a more general decomposition strategy, 
also by common sense it can exploit working sets of sizes 
larger than two. By updating more variables per iteration, such 
an approach is more suitable for a faster convergence, but it 
introduces additional difficulties and costs. A generalized 
maximal-violating pair strategy for the working set selection 
and a numerical solver for the inner QP subproblems are 
required. Moreover, as more variables are updated per iteration, 
the objective gradient updating is more expensive. While 
SVM

light
 can run with any working set size, numerical 

experiences prove that it effectively faces the above difficulties 
only in the case of small sized working sets,          , 

where it often exhibits comparable performance with LIBSVM.  

Following the SVM
light

 decomposition techniques, another 
effort to strike a balance between the convergence rate and cost 
per iteration was introduced in [6]. Unlike SVM

light
, it is 

medium or large sized working sets, (                  

      , that allow the method to converge in a small number 
of iterations where the most costly tasks are. For example, 
subproblem solving and gradient updating can be simply and 
effectively distributed between the available processors. Based 
on this idea, a new parallel gradient projection-based 
decomposition technique (PGPDT) is developed and 
implemented in software to train support vector machines for 
binary classification problems in parallel as in [8].  

Even though all previous results were encouraging, more 
research was needed to improve the performance of the 
process. In this paper, we introduce a new classification 
algorithm which merges parallel binary classification with 
serial multi-class classification to produce an efficient parallel 
algorithm for classification. We named the new algorithm 
SMC-PBC-SVM.  

II. SMC-PBC-SVM ALGORITHM 

The SMC-PBC-SVM algorithm combines Parallel Binary 
Class with Serial Multi Class Support Vector Machines for 
classification. It includes seven steps and works as follows: 1) 
Reads a dataset from an input file, 2) Groups samples of the 
same class together, 3) Collects each two classes into one task, 

4) Sorts  
      

 
  tasks based on its size, 5) Divides processes 

group into two subgroups, mulgroup and bingroup, such that 

mulgroup is used to build  
      

 
  binary tasks where K is the 

number of classes in the dataset, and bingroup is used to solve 

each binary task from  
      

 
  tasks in parallel, 6) Builds SVM 

model after solving all binary tasks, and 7) Writes the SVM 
model into an output model file which is used to predict testing 
dataset file.   The algorithm flowchart is illustrated in Figure 1.   

Since the SMC-PBC-SVM is based on the Parallel Binary 
Class algorithm implemented by PGPDT, we briefly explain 
here the fundamental principles and decomposition technique 
used in [8]. We start that by stating some fundamental 
principles. At each decomposition iteration, the indices of the 
variables                   are split into the set B of basic 
variables, usually called the working set, and the set N = 
{1,2,…,n} \ B of nonbasic variables. In consequence, the 

kernel matrix G, the vectors                
 , and the 

vector                
  can be arranged with respect to B 

and N as follows: 

    
      
      

 ,                 
  
  

 ,                          
  
  
   

Then, suppose that     is the size of the working set, where 

       and     is a solution of QP (2), and    is the number 

of processes which are used for solving that QP, and each of 
them has a local copy of the training set D (1), where the 
entries of  G are defined by G(3). The decomposition technique 
used by the PGPDT falls within the general idea stated in 
PGPDT algorithm, which is shown in Figure 2. Label 
“Distributed task” in A2 and A3 of PGPDT algorithm refers to 
the steps where the    processors cooperate together to 

perform the required computation. In these steps, 
communications and synchronization are needed. In the other 
steps, the processors asynchronously perform the same 
computations on the same input data to obtain a local copy of 
the expected output data. 

 

 

 

Figure 1. Serial Multi Class Parallel Binary Class Support Vector Machines 
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Figure 2. Parallel Gradient Projection Decomposition Technique Algorithm 

 

III. SMC-PBC-SVM RESULTS ANALYSIS 

The SMC-PBC-SVM algorithm was implemented using the 
object-oriented C++ programming language and the standard 
MPI communication routines [19]. The experiments are carried 
out on two different parallel platforms at the Mississippi Center 
for Supercomputing Research (MCSR) [20], and ALBACORE 
Linux clusters [21]. The performance analysis was visualized 
using Jumpshot software [22]. The best performance was 
achieved with ALBACORE, which contains 12 compute 
nodes, each node has 2 chips, and each chip has 4 cores. Each 
core is an Intel(R) Xeon(R) CPU X5570 with 2.93 GHZ and 
8192 KB Cache. Each node of node0 and node1 has 16 GB, 
and node2 to node11 has 12 GB.  

The SMC_PBC_SVM has been tested using different size 
datasets, Earthworm, Protein, Mnist, and Mnist8m, which are 
small, medium, large, and very large datasets respectively. 
Table I includes the description of these datasets. The results 
show that SMC-PBC-SVM is very efficient with very large 
datasets as Mnist8m dataset, highly efficient with large datasets 
as Mnist dataset, reasonably efficient in medium datasets as 
Protein dataset, and less efficient with small datasets as 
Earthworm dataset. For more details, see Table II, which shows 

the training run time when number of processes 1, 2, 4, 9, 16, 
25, and 36 are used. 

TABLE I.  DATASETS DESCRIPTION 

Dataset 

Name 
Earthworm Protein Mnist Mnist8m 

Reference [23] LY10 [24] JW02 [25] YL98 [26] GL07 

Classes 

Number 
3 3 10 10 

Features 

Number 
869 357 780 784 

Training 

Samples 

Number 
248 17766 60000 8100000 

Testing 

Samples 

Number 
30 662 10000 10000 

Best 

C 
32.0 32.0 32.0 32.0 

Best 

ɤ 
0.001953 0.001953 0.001953 0.001953 

Accuracy 

% 
100 69.55 98.21 98.73 

 

TABLE II.  TRAINING RUN TIME IN SECONDS 

Processes 

Number  
Earthworm Protein Mnist Mnist8m 

NP = 1 460.000 2427.840 4118.800 5111.370 

NP = 2 454.031 2299.361 3915.277 4641.645 

NP = 4 421.053 1618.583 2187.881 2961.146 

NP = 9 398.174 933.000 1409.055 1824.251 

NP = 16 367.177 732.000 986.758 1252.153 

NP = 25 347.444 516.617 814.520 945.837 

NP = 36 334.620 431.059 701.696 768.011 

 

The complexity for the multi-class classification 
is           , where K is the number of classes, M is the 
number of features, and N is the number of training samples 
[3]. This serial complexity is the worst case scenario for 
multiclass classification using binary classifiers. But when this 
job is distributed among P processors, the parallel complexity 

becomes    
      

 
       where    is the complexity due to 

communication for task scheduling and combining the results.  

We evaluate the parallel performance by the relative 
speedup (S), which is defined as the ratio of the time taken to 
solve a problem on a single processing element to the time 
required to solve the same problem on a parallel computer with 
p identical processing elements, then 
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Then, 

          
      

      

 
    

                                                                        

                 
                                                         .  

Efficiency (E) is another way to analyze the parallel 
implementation, which is defined as the ratio of speedup to the 
number of processing elements, then 

   
 

 
  

       

                
                                                                                                                    

 Then, 

           

      

      

 
    

 
                                                                     

                 
                                                         .  

Figures 3, 4, and 5 show the relationship between the 
number of processors and run time, speedup, and efficiency 
respectively. Also, Figures 6 and 7 show the output of 
Jumpshot, which is a visualization tool to study the 
performance of parallel programs using log files that are 
generated from the execution of the SMC-PBC-SVM 
implementation to Earthworm and Mnist datasets using 16 
processors.  

 

 

Figure 3. The relationship between Run Time and Number of Processors 

 

 

Figure 4. The relationship between Speedup and Number of Processors 

 

 

Figure 5. The relationship between Efficiency and Number of Processors 

 

In Figure 3, we can see that the training execution time 
goes down as the number of processors is increased. It shows 
that when there is a sufficient work to be done concurrently on 
an increasing set of processors, there is a related improvement 
in performance.  For small datasets, as Earthworm, there is not 
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enough work to be done concurrently. Therefore, there is no 
significant improvement in performance in that case. On the 
other hand, for very large datasets, as Minst8m, there is a 
sufficient work to be done concurrently. Therefore, there is a 
significant improvement in performance with very large 
datasets. By the same concept, the performances of medium 
and large datasets, such as Protein and Mnist, fell between the 
performances of small datasets and very large datasets. We 
used a Portable batch system (PBS) script which allows us to 
choose number of processors which are needed for job 
execution.  

Referring to the speedup (5), we can see that, the size of 
datasets and the size of classes are significant factors in 
speedup. Therefore, it may not be possible to avoid the idling 
of some processes. Also, as the number of processes is  
increased, the speedup is less than linear, indicating idle time 
for few processors while waiting for other processors. In Figure 
4, we can observe that the speedup is closed to linear speedup 
from very large dataset to small dataset.  

Efficiency (7) is defined as the ratio of speedup to the 
number of processors. Therefore, a higher speedup ensures 
good efficiency, implying efficient use of the parallel 
resources. In Figure 5, we can see, the efficiency of SMC-
PBC-SVM is gradual from a very large dataset to a small 
dataset.  

In Figure 6, we can observe that there is a lot of lost time 
through idling especially with a large number of processes 
where the dataset size is small. Therefore, this explains the low 
efficiency with small datasets. While in Figure 7, we can see 
that there is no lost time because most time is spent in 
computation without idle time, where the dataset size is large. 
Therefore, this explains the high efficiency with large datasets. 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper, the problem of solving multi-class 

classification using an efficient parallel support vector machine 

implementation was investigated. SMC-PBC-SVM is an 

efficient parallel algorithm, which combines Parallel Binary 

Class with Serial Multi-Class Support Vector Machines for 

classification. The SMC-PBC-SVM algorithm was 

implemented using the object-oriented C++ programming 

language and standard Message Passing Interface (MPI) 

communication routines. The parallel code was executed on an 

ALBACORE Linux cluster, and then tested with four datasets 

with difference sizes: Earthworm, Protein, Mnist, and 

Mnist8m. The results show that the SMC-PBC-SVM 

implementation can significantly improve the performance of 

data classification without loss of accuracy. As the dataset 

becomes larger, the SMC-PBC-SVM achieves a higher 

efficiency. In this paper, we used one processor in mulgroup 

which means SMC, and more than one processes in bingroup 

which means PBC.  

 
Figure 6. Jumpshot Timeline, Histogram and legend windows 

of Earthworm dataset using 16 processors 

 

 
Figure 7. Jumpshot Timeline, Histogram and legend windows 

of Mnist dataset using 16 processors 
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In the future work, the scope of mulgroup will extend to 
include more than one processor, (Add comma) where each of 
which has its own bingroup. Therefore, these processes in 
mulgroup work in parallel, and then we will produce PMC-
PBC-SVM implementation which will improve the 
performance and will address the limitations of SMC-PBC-
SVM.  
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Abstract- Horizontal and vertical partitioning are 

important aspects of physical design in relational 

database system that has a significant impact on 

performance and cost optimization. However, the 

distribution design also involves making decisions 

on the fragments allocation across the sites of a 

computer network. In this paper we address the 

allocation and re-allocation phases of distributed 

database systems by adopting an efficient 

algorithms that leads to a proper data allocation 

schemes. A new data allocation algorithm for 

DDBSs is presented in this work, the proposed 

Algorithm  explores and improves some concepts 

used in previously developed algorithms to 

reallocates fragments to different sites by adopting 

the shortest path method to transfer fragments 

between the old location and the new one when 

migration decision is made. Experimental results 

proves that the proposed algorithm efficiently 

reduces transmission cost and speed of fragment 

migration over the network sites improving the 

overall DDBS performance.  
 

Keywords: Allocation, DDBMS, Partitioning, 

Distribution, Optimization. 
 

1 Introduction 

The allocation technique is the process of placing 

fragments to different sites after the database has 

been partitioned [13]. However, because this 

process plays a key role in DDBSs performance, it 

needs to be performed in an optimal way to reduce 

communication cost during query execution to 

achieve the proposed objectives. 
 

There are several allocation techniques that have 

been employed in [2,7, 12,15,20] for dynamic 

allocation in distributed database systems to 

improve performance. They addressed dynamic 

environments, where sites access probabilities to 

fragments change over time. The objective of this 

paper is to design an effective allocation algorithm 

that guarantees minimum data transfer cost in a 

dynamic environment.  
 

The allocation problem of the DDBS had been 

studied extensively in [6, 11] for redundant and 

non-redundant scenarios. In [5,2], data allocation is 

performed in static environment where site access 

probabilities to fragments never change. However, 

this static allocation would degrade the database 

performance if these access probabilities change. 
 

A framework for dynamic data allocation was 

presented in [3]. A query processing cost model to 

evaluate the performance of the system is covered 

in the context of complex value databases in [10] in 

which a heuristic approach was proposed for 

performing fragmentation and allocation. In [7] a 

model for dynamic data allocation and 

redistribution was given. [4] suggested incremental 

allocation and reallocation based on changes in 

workload. SAGA approach was proposed in [1] to 

determine the optimal places for data fragments 

where data access pattern and transmission cost 

were used to help in specifying the optimal places. 
 

A dynamic object allocation and replication 

algorithm with centralized control has been 

proposed in [12]. In [16] an optimal algorithm for 

non-replicated database systems was presented. In 

[15, 20] two algorithms for non-replicated 

distributed databases were proposed, while [20] 

used a threshold algorithm where the fragments are 

continuously reallocated according to changes in 

data access patterns while [15] added time 

constraint to reallocates data with respect to the 

changing data access patterns. A more 

comprehensive algorithm for a dynamic fragment 

allocation that incorporates time constraints, 

threshold value and the volume of data transmitted 
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to reallocate fragments to sites dynamically at 

runtime was presented in [12].  
 

In [8] data allocation model was presented to 

maintain and solve DDBS problems by studying the 

initial allocation and post allocation problems.  [9] 

Presented a solution for data allocation and 

optimization in distributed database systems that 

performed by means of mobile agents. A 

decentralized approach for dynamic table 

fragmentation and allocation in DDBS based on 

observation of the sites access patterns had been 

proposed in [14] that performs fragmentation, 

replication, and re-allocation based on recent access 

history. An integer programming formulation for 

the non-redundant version of the fragment 

allocation problem is presented in [13].  
 

Our proposed algorithm is considered as an 

optimization to the optimal algorithm of [2], a 

threshold algorithm of [19, 20], TTCA algorithm of 

[15] and synthesis algorithm of [12]. Thus, the 

proposed algorithm incorporates and improves the 

concepts proposed in [2,12,15,19,20]. Our proposed 

algorithm migrates fragment (Fi) to site (Sj) only if 

the following conditions are satisfied: (i) Site Sj has 

made highest query costs for fragment Fi than all 

other sites, (II) The average transfer cost of 

fragment Fi is greater than the threshold value, and 

(iii) The remote access counter for fragment Fi is 

greater than its local access counter over several 

time intervals. Moreover, the proposed algorithm 

adopts the shortest path technique when moving 

fragment Fi from the old location to the new 

location. 
 

1.1 The Paper Contributions 

This paper contribution can be summarized in the 

following; first, it re-allocates data fragments 

according to the fragment accesses given that sites 

constraints are not violated. Second, it calculates 

and chooses the threshold value based on data 

transmission costs (which adopted different 

calculation method compared to that used in 

previous algorithms). Third, calculating and using 

the query cost QCi
j
 between sites Si and Sj, and QCi

k
 

between site Si and all other sites (excluding Si) as 

an alternative to the data transmission volume 

method used in the synthesis algorithm. Forth, it 

adopts the shortest path algorithm when moving 

fragments between the old and the new locations to 

minimize the transmission cost. 
 
 

1.2 Paper Organization  

The rest of this paper is organized as follows; 

Section 2 presents the proposed methodology for 

non-replicated dynamic data allocation. The 

proposed algorithm is presented in section 3. A 

comparison based on performance factors is given 

in section 4. Finally, conclusions are given in 

section 5. 

 
 

2 The Proposed Methodology 

In our proposed algorithm all the advantages of the 

dynamic algorithms presented in [2,19,15,20,12] 

will be incorporated to produce a more efficient 

algorithm that minimizes transmission cost given 

the site constraints. It is believed that this technique 

will prove to be a potential progress not only in 

reducing transfer cost but also in enhancing the 

overall performance of the DDBSs. 

 

2.1  DDBS Environment 

Assuming that, we have a fully connected network 

that consists of M sites, where each site has N 

fragments that initially distributed in a static way as 

shown in Figure1. Every fragment Fi at site Sj has 

two variables, the LACi (representing the number of 

local accesses to fragment Fi at site Sj) and the 

RACi (representing the number of remote accesses 

to fragment Fi at site Sj). And every site Sj has two 

constraints: Capacity Cj (indicating that no site will 

receive more than its capacity) and Fragment Limit 

FLj (representing the maximum number of 

fragments each site can handle). The following 

migration conditions need to be satisfied for 

fragment Fi to be moved from Sh to site Sj.  
 

 

 . .   . .  ,        1,2, .,                1j i j iS F RAC S F LAC j m  
 

     

1 1

   , ,   1,2, .,   ,         2
m n

j k

h h

j i

QC QC k h m m j
 
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Equation (1) states that the remote access counter 

should be greater than local access counter for 

fragment (Fi) under consideration. Equation (2) 

states that the average query cost between site Sh 

and site Sj should be higher than average query cost 

between site Sh and all other sites accessing 

fragment Fi (excluding site Sj). Equation (3) is used 

to compute the query cost between site Sh and site 

Sj (the same equation can be used to compute the 

total query cost between site Sh and all other sites). 

the query cost between sites Sh and Sj can be 

calculated by multiplying the transmission cost unit  

between them (TChj) by the resulted volume of data 

(DRhj) which represents the data obtained by 

executing site Sj queries that require a particular 

data volume from fragment Fi allocated at site Sh). 

Equation (4) is used to give fragment transmission 

cost across sites Sh and Sj for fragment Fi. Equation 

(5) calculates the threshold value for fragment Fi. 

Equation (6) states that the fragment transmission cost 

should be greater than the threshold value. 
 

The following constraints have to be considered 

throughout the allocation process.  
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Equation (7) represents the capacity constraint 

which indicates that no site will receive more than 

its capacity. Equation (8) states that a fragment will 

be allocated to only one site. Equation (9) states 

that each site will not handle more than a given 

number of fragments denoted by fragment limit 

(FL). Table 1, shows the notation used in this work. 

 

TBALE1: The Notation Used 

RAC Remote Access Counter 

LAC Local Access Counter 

F The fragments DDBSs. 

S DDBSs sites 

C Site capacity 

Z The data fragment size in DDBSs 

FL Fragment limit for each site 

FI The accessed Fragment Identifier 

Q Site query 

I Fragment index 

N Fragments number 

M Sites number 

K Query index 

J Site index 

ASA Accessing Site Address 

CSA Candidate Site Address 

AC Access Counter for each accessed site 

TFA Time of the fragment accessed 

TCS Time the candidate site address has been selected 

DRij Fragment size (in bytes ) resulting from site Si query 

accessing fragment Fi located at site Sj  

AT Access Time for each accessed site 

QCh
j Average of query cost between Sh and Sj 

QCh
k Average of query cost between Sh and any other site Sk 

Reqij Equal 1, if Fi is required by Sj and 0, otherwise 

RFrj Retrieval frequency of retrieval operation from site j  

UFuj Update frequency of update operation from site j  

QFij Access frequency of the ith query at site j 

V Volume of fragment allocation i (characters) 

SC Storage cost ($ / 5,OOO char/month) 

Xij Equal 1, if Fi allocated to site Sj and 0, otherwise 

TCij Cost for site Si accessing a fragment located at site Sj 
 

 

3 The Proposed Algorithm  
 

The proposed algorithm is performed in the 

following three steps: 

A. Determining the shortest path and their 

values. 

B. Initializing and determining variables. 

C. Running the proposed algorithm while 

regularly checking sites constraints. 

3.1 Determining the Shortest Paths 
 

Occasionally, after any network topology change 

the algorithm begins by running Dijkstra’s 

algorithm of [10] in every site to obtain the shortest 

path from one site to every other site. This 

algorithm is consistently repeated until the shortest 

path between sites is obtained.  Having a weighted 

directed graph G = (V, E), with a weighted function 

W: E → R mapping edges of real valued weights 

with sites S1, S2, S3 and S4 (see Figure 1). The 
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shortest path matrix would look like the one in table 

2. 

  

 

 

 

 

 

 

 
 

 

 

 

TABLE 2: Shortest Path Matrix 

Source Site Destination Site Path Path value 

S1 S2 S1----S2 5 

S1 S3 S1----S3 9 

S1 S4 S1---S2---S4 9 

S2 S3 S2---S1---S3 14 

S2 S4 S2----S4 4 

S3 S4 S3----S4 11 

3.2 Threshold Calculation 
 

Each fragment is accessed by at least one site. 

Accesses are represented by the Access Cost Matrix 

(ACM). ACMi,j gives the number of times site Sj 

accesses fragment Fi. In this work, based on the 

Site Access Record (SAR) shown in the paper 

example (table 7), the ACM matrix is constructed as 

shown in table 3.  
 

TABLE 3: Fragments Access Cost Matrix (ACM) 
 

S/F F1 F2 F3 F4 F5 F6 

S1 1 1 0 1 0 0 

S2 1 3 1 0 2 2 

S3 2 0 0 1 1 1 

S4 0 1 2 0 0 2 
 

The transmission cost matrix TCM (table 4) gives 

the cost of accessing fragment Fi by site Sj. Using 

these matrices, the threshold value is computed 

based on Fragment Usage Matrix (FUM) which is 

produced by multiplying ACM matrix by the TCM 

matrix. Using FUM, we select the site whose 

average access cost for fragment Fi is the highest 

among all other sites for the same fragment. An 

illustrating example is given next. 

 
 

TABLE 4: The Transmission Cost Matrix (TCM); 

Sites S1 S2 S3 S4 

S1 0 5 9 18 

S2 5 0 16 4 

S3 9 16 0 11 

S4 18 4 11 0 

3.3 Initializing  Variables 
 

a. There are a number of N fragments distributed 

across M sites, where each site contains one or 

more fragments. Queries may access several 

fragments allocated at different sites. And each 

site has two constraints: fragment limit (FL) and 

site capacity (C) as shown in table5. 
 

b.  A separate data structure called Site Access 

Record (SAR) is kept for each site. The SAR 

stores information about fragments accesses at 

each site, denoted by SAR
k
j , indicating the. k

th
 

access at site Sj, where (k = 1,2,3,…to unlimited 

access number, and j = 1,2,3,...m). SAR stores the 

following information for each access:  

 
 

1. Accessed Fragment Identifier (AFI), see 

table 6. 

2. Accessing Site Address (ASA).  

3. Data Record (DR) on executing a query Q 

from site Si on fragment Fi located at site Sj 

(in bytes).   

4. Access Time (AT) by site Sj to fragment 

Fi.  

5. Access Counter (AC) to keep the number 

of access times for each accessed site. 
 

c. Also for each site a data structure named Access 

Counter Record (ACR) is kept for every fragment 

in the site. The ACR record stores the following 

information about the fragment after each access:  

i. Candidate Site Address (CSA): The address 

of the site that incurred a query cost value 

that is higher than that of all other sites over 

a time interval (t1 to t2). Initially, CSA is set 

to the address of the site where the fragment 

is currently located.  

ii. The number of local accesses to the stored 

fragment (LAC). 

iii. The number of remote accesses to the stored 

fragment (RAC). 

iv. The time of the candidate site address 

selection (TCS). 
 

For each locally stored fragment, initialize both the 

local and remote counters to zero (LAC = 0, RAC = 

0). 
 

 

 

 

16 

S4 
18 

Figure 1: Network Sites 

 

F4, F5 
F3 

F6 
F1, F2 

11 5 

4 

9 

S1 

S2 
S3 

544 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



5 
 

3.4 Our Algorithm 
 

After processing different site accesses to fragment 

Fi allocated at site Sj over time t, the following 

steps are performed: 

Main { 

// Enter SAR and ACR data 

Enter-data ( ); 

// Calculate query costs 

Compute- QC ( );  

// Calculate threshold values 

Compute-threshold (T1,T2,OCS: J, NCS: h ) 

// Check whether the accesses are local or remote 

Checki-ASR ( ); 

// Make sure if the migration conditions satisfied 

Migrate-data( ); 

}// end main 

 

Enter-data ( ){ 

{for j=1 to m do 

   For h = 1 to k do // Enter site data 

    Read(S[j].AC, S[j].FI, S[j].ASA, S[j].AT, 

S[j].DTV) 

End h 

For i=1 to n do //Enter fragment data 

   Read(S[j].F[i].CSA, S[j].F[i].DCA) 

End i 

End j} 

 

Compute- QC (T1,T2, old site: J, new site h ){ 

{Sj=0; Sall=0; // the sum performed among T1 andT2 

For l=1 to m do 

For i=1 to k do  

If ((S[j].ASA= h) and (AT between (T1,T2))) 

Sj=Sj+ S[L].DRjh* TCjh// QC for Si and Sh 

 

Else //  If ((S[l].ASA<> h) and (AT between 

(T1,T2))) 

Sl= Sl+ s[j].DRjl * TCjl ; //QC for Si and all others 
 

End for i 

End for l 

// test QC condition 

If (Sj>Sl) return true 

Else return false} 

End for l 
 

Compute- threshold ( ){ 

{// Build FUM matrix using ACC and TC 

// Enter number of fragment Fi and the targeted site 

for which threshold value will be calculated 

Thv = FUM(i, h); S=0; //threshold value 

assignment 

For j = 1 to m do 

// cumulative access cost for all sites other than Sh 

If j < > h then 

S = S + FUM (i, j)  

End i 

If ( S/(m-1) > thv) //threshold condition satisfied 

Return (false) 

Else return (true) 

End j} 

 

Checking-ASR ( ){ 

{// determine local access from remote access 

if S[j].ASA=’k’ 

   {If S[j].F[i].CSA<>’k’ 

      F[i].CSA=’k’; 

      LAC++; // local access} 

Else 

 {{if S[j].F[i].CSA<>’k’ then 

     F[i].CSA=’k’;     

     RAC++;    // remote access }} 

 

SPA(CCM);{ 

// output is the shortest path matrix 

For k=1 to m do 

 For i=1  to m do 

  For j=1  to m do 

    valueij = minimum (ccij,ccik + cckj)  

    keep (SPA[i],SPA[j], valueij); 

  End for j 

 End for i 

End for k} 

 

Migrate-data{// fragment migration decision 

If ((F[i].RAC > F[i].LAC) && Compute- QC && 

Compute- threshold) then 

If (there is no site constraints violation) then 

  SPA(CCM); // to produce the shortest path matrix 

  Migrate (F[i],OCS,NCS, SPA(OCS,NCS)); 

Else 

{Reset-zero(F[i].RAC, F[i].LAC); 

Cancel fragment migration;} 

}// end migrate-data 
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4 Comparing Algorithms Based On 

Performance Factors  

The comparison of our algorithm with the existing 

(Optimal, Threshold, TTCA and Synthesis) 

algorithms presented in [2], [19], [15,20] and [12] 

respectively, is clearly showed in (Figure 3) based 

on the following factors:  

1. Fragment migration decision 

2. Storage cost (SC). 

3. Transmission cost (TC), Computation overhead 

(CO) and Network Traffic overhead (NT). 
 

1. Fragment migration decision: the optimal 

algorithm of [2] moves fragment Fi when the 

counter for the remote site in the access matrix is 

greater than the counter of the owning site for that 

fragment. The threshold algorithm migrates the 

fragment when the counter for fragment Fi is 

greater than the threshold value. The TTCA 

algorithm migrates fragment Fi when the counter of 

the remote site is greater than the threshold value (t) 

and all the last “t+1” accesses made in a specified 

time (T). In synthesis algorithm of [12], the 

fragment is migrated to the intended site when that 

site has made data transfer cost that is higher than 

all other sites and is greater than the threshold value 

consistently in some recent time intervals. 

However, our algorithm migrates the fragment 

when the remote counter for fragment Fi is greater 

than the local counter of the owning site and the 

resulted query cost (QC) between the old site and 

new site is greater than the query cost between the 

old site and any other accessing site for that 

intended fragment, given that the shortest path 

between the old site and the new site is maintained. 
 

2. Storage cost factor: it is clear from Figure 3, 

that the optimal algorithm of [2] consumes much 

storage space since it stores several access counters 

for each fragment. The threshold algorithm requires 

less storage space as compared to the optimal 

algorithm because it stores only one counter for 

each fragment. The TTCA algorithm requires more 

storage space as compared to optimal and threshold 

algorithms. The synthesis algorithm of [12] needs 

high storage space and thus cost because it 

maintains several data structures. Our algorithm 

requires more storage space compared to the 

algorithms of [2, 19, 20, 15] and almost the same 

space as that of [12]. This high space requirement is 

again because our algorithm maintains several data 

structures. 
 

3. Transmission cost and computation overhead: 

Figure 3, clearly shows that the optimal algorithm 

sustains the highest transmission cost. This is 

because the basic rule of thumb that, the more 

access frequency acquired, the more transmission 

cost and network traffic overhead will be incurred. 

The threshold algorithm minimized the network 

traffic and transmission cost as a result of using the 

threshold factor. It also obtained less computation 

overhead compared to optimal algorithm. However, 

the TTCA algorithm used time constraint and 

threshold value to further decrease the network 

traffic and transmission cost compared to optimal 

and threshold algorithms. More computational 

overhead is produced for the synthesis algorithm of 

[12], due to the total volume computation for a 

fragment transmission to all sites accessing it 

within a time interval (τ). Our proposed algorithm 

minimizes the transfer cost for fragments migration 

dramatically compared to other algorithms because 

of the following added features: the remote counter 

(has to be greater than local counter for the 

transmitted fragment Fi). The threshold value 

(differently computed compared to that used in the 

other algorithms). Query cost (QC) calculation (the 

query cost QCh
j
 between sites Sh and Sj and QCh

k
 

between site Sh and all other sites excluding site Sj) 

compared to data transmission volume used in 

synthesis algorithm, and finally the adoption of the 

shortest path method. According to our proposed 

algorithm, the fragment will stay at the owning site 

as long as there are site constraints violations. 
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4.1  A Practical Example 

The following example is to test the validity of our 

algorithm. In this example there is a network of 

four sites in which six fragments are initially 

distributed according to a random allocation 

method. Our proposed re-allocation method will be 

tested based on the information presented in tables 

(5 and 6). 
 

TABLE 5: DDBS Fragments 

Fragment F1 F2 F3 F4 F5 F6 

Identifier 1 2 3 4 5 6 

Size 810B 620B 900B 660B 521B 701B 
 

TABLE 6: DDBS Sites 

Site S1 S2 S3 S4 

Capacity 2350B 1650B 2020B 3200B 

Fragments 

Limit 
3 1 3 4 

 

First; we apply the minimum algorithm of [18] on 

the communication cost matrix to obtain the 

shortest path matrix. Then we keep the shortest 

paths values based on the given network graph as 

shown in section III.A.  

Second; assuming that multiple accesses are 

performed, the site access record (SAR) is 

constructed as shown in table 7. 
 

TABLE 7: Sites Access Records SARi
j 

AC SN FI ASA AT DR 

1 S1 1 1 2:10 30B 

2 S1 1 2 3:05 28B 

3 S1 1 3 3:10 27B 

4 S1 1 3 2:00 31B 

5 S1 2 1 3:10 33B 

6 S1 2 2 3:10 33B 

7 S1 2 2 3:12 12B 

8 S1 2 2 2:10 20B 

9 S1 2 4 3:00 26B 

1 S2 3 4 2:10 25B 

2 S2 3 2 3:00 25B 

3 S2 3 2 4:05 41B 

1 S3 4 1 1:50 43B 

2 S3 4 3 2:10 39B 

3 S3 5 3 3:00 28B 

4 S3 5 2 4:05 31B 

5 S3 5 2 4:50 29B 

1 S4 6 2 3:10 32B 

2 S4 6 2 3:50 34B 

3 S4 6 3 3:10 28B 

4 S4 6 4 3:10 20B 

5 S4 6 4 3:12 20B 

Based on the sites access records (SAR), the Access 

Cost Matrix (ACM) will be constructed as 

mentioned earlier and shown in table 3 above. 
 

Third: The ACM matrix is multiplied by TCM 

matrix to compute fragment usage matrix (FUM = 

ACM * TCM), FUM matrix is presented in table 8; 
 

TABLE 8: Fragments Usage Matrix (FUM) 

S4 S3 S2 S1  F/S 

44 25 37 23 F1 

58 54 9 33 F2 

4 38 8 41 F3 

29 9 21 9 F4 

19 32 16 19 F5 

19 54 24 55 F6 
 

 

Based on FUM matrix, the threshold value can be 

calculated for fragments and sites individually 

when needed (table 9). Finally, based on threshold 

values and the access counter records ACR, the 

migration decision will be made for each fragment 

as shown in table 9. 
 

TABLE 10: Migration Decision 

FI 
Migration 

(Y/N) 

Constraints 

violations 

(Y/N) 

Threshold 

value 

Migration Fails 

(F)/successes (S) 

1 N N 24,  34.6 F 

2 Y N 45,5, 32 S 

3 N N - F 

4 N N - F 

5 Y Y 
24,    

23.3333 

Migration fails 

because violation 

of S2 constraints 

6 Y N 
36,75,  

32.68 
S 

 
 

5 Conclusions  

In this paper, we have presented a novel approach 

that handles data allocation problem during the 

design of distributed databases. A comparative study 

for different data allocation algorithms has been 

conducted to reach to the most efficient allocation 

scheme that leads to a better performance and less 

communication cost. 

Our proposed algorithm is the most efficient one 

among all compared algorithms for dynamic data 

allocation as it has improved the DDBS performance 

by maintaining strict restrictions for fragment re-
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allocation causing a significant reduction in the 

frequency of fragment migrations across sites which 

minimized network traffic and reduced data 

transmission cost by adopting the shortest path 

algorithm for data movement. However, the only 

drawback of our algorithm is that it requires more 

storage space relevant to some of the compared 

algorithms. However, this is considered as a very 

trivial drawback due to the dramatic fall down in the 

storage hardware prices.  

 

Future work is in progress towards extending this 

algorithm to optimize non-replicated inter-active 

distributed database systems. 
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Abstract - This paper describes a design of a content-based 
publish/subscribe mechanism attached to large-scale storage 
network. The network is built as an infrastructure to support 
wide-area sensors network, or the Internet of Things. We want 
to collect the scattered computing resources of each node in a 
massive storage network to take up the heavy task of 
dissemination of a great amount of data produced by variety 
of sensors. Be inspired by the virtualization technology, we 
separate task to different functional units called bricks which 
can be self-tuning in large-scale network that composed by 
inexpensive commercial hardware. And we use Bloom filter to 
record algorithm status for effective forwarding. With less cost 
we could add more flexible data distribution mechanism to 
massive storage network. 

Keywords: content-based forwarding; distributed; Bloom 
filter; publish/subscribe 

 

1 Introduction 
  During last few years, content-based publish/subscribe 
system has becoming more and more popular [1]. In 
publish/subscribe model, those who want data (be called as 
messages or events) from some kind of sources do not receive 
all the data that being produced, but only a subset for what 
they are interested in. Data’s producers are called publisher 
and those who have provided sets of conditions to indicate 
their interests are called subscribers. The process of selecting 
messages for reception and processing is called filtering. In a 
content-based publish/subscribe system, data are only 
delivered to a subscriber if the attributes of those data exactly 
match constraints pre-registered in the system by the 
subscriber.  

 Our original propose of introducing content-based 
publish/subscribe mechanism to a large-scale storage network 
is to bring storage system the ability of supporting the wide-
area sensors network [2], or the Internet of Things [3]. With a 
massive storage system in the cloud, data produced by wide 
variety of sensors can be aggregated and disseminated. The 
basic way of getting aggregated data is the searching service 
provided by underlying storage: users asking for data using a 
series of conditions and receiving all those data that exactly 
meet the conditions. The shortcoming is obvious that users 
must make queries by themselves. For a large scale of sensors 
network, there may be some sceneries like, (1) a user need to 

listen to some kind of sensor’s data, whose time of occurrence 
can not be predicted, (2) some urgent data need to be 
delivered to users as soon as possible and can not wait for 
querying, and (3) continuous data should be automatically 
and continuously transferred to users without frequently 
querying. It is necessary to add a content-based 
publish/subscribe service to such a massive storage system 
for such sceneries. With this service, the only thing a user 
need is to register a subscription in system, and the data 
meeting conditions will be pushed to specified address 
automatically when occur. 

 Many distributed schemes have been proposed for 
content-based forwarding in wide-area sensors network [4-6], 
but our design focuses on some different goals. We are trying 
to integrate the content-based network with the storage 
networks. According to our observations, the massive storage 
network always contains a mass of computing nodes whose 
scale varies form thousands to millions. We try to collect 
these scattered computing resources so that we can design an 
effective content-based forwarding mechanism for massive 
storage system to support the sensors network. 

 For such a systems, there are still some constrains 
special. First, we should make full use of each node’s limited 
computing resources, but do not affect the normal procedures 
of storage. The massive storage is designed to built using 
inexpensive commercial hardware whose computing power is 
not strong, so the additional forwarding mechanism need to 
undertake the enormous amount of data’s forwarding tasks 
but only use as few resources as possible on each single node. 
Second, since the network’s stability is built form a large of 
unstable components, and taking into account the natural 
dynamic of P2P architecture, the design must have a strong 
fault-tolerant ability. That’s is, for example, when some of the 
participating peers left or crashed, the forwarding procedure 
should not be affected. At last, because of (1) the massive-
storage will be distributed in different geographical regions as 
a city-wide or even world-wide infrastructure to support the 
wide-area sensors network, (2) the traffic caused by 
procedures and the contents of data may vary over time, and 
(3) not all data produced by sensors need to be delivered 
immediately using content-based information, content-based 
forwarding mechanism should have the capacity of self-
tuning to meet such demands. In this paper, we introduce a 
architectural design of building a robust content-based 
forwarding mechanism above the large-scale storage network. 
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2 Background  
2.1 P2P Massive Storage 
 More and more massive systems are built using peer-to-
peer technology now [7-11]. Each node has the same 
functionality in a P2P storage network. The benefits of using 
P2P architecture includes, (1) system has a naturally highly 
scalability and there is no single node will became the 
bottleneck of performance since there is no any master node, 
(2) deleting and adding node is simpler since all node is same 
in functionality, and (3) few nodes’ failure can not endanger 
the whole storage system. With these advantages of a P2P 
massive storage, we build our storage system which designed 
to support wide-area sensors network on a P2P overlay 
network referenced to existing systems like OceanStore [11] 
and BitVault [8]. 

 For now, the main problem of a P2P storage network is 
the conflict between the reliability and persistence needed by 
storage applications and the dynamics of a P2P network [12]. 
But we assume that our storage network is deployed in a 
controlled and relatively fixed environment since we will 
build such a storage system as a public infrastructure, 
therefore, by using p2p technology we can make full use of 
the advantages while eliminating its shortcomings. 

2.2 Bloom Filter 
 A Bloom filter [13] is a space-efficient probabilistic data 
structure that is used to test whether an element is a member 
of a set. An empty Bloom filter is a bit array of m bits, all set 
to 0. There must also be k different hash functions defined, 
each of which maps or hashes some set element to one of the 
m array positions with a uniform random distribution. To add 
an element, feed it to each of the k hash functions to get k 
array positions. Set the bits at all these positions to 1. And to 
query for an element (test whether it is in the set), feed it to 
each of the k hash functions to get k array positions. If any of 
the bits at these positions are 0, the element is definitely not 
in the set – if it were, then all the bits would have been set to 
1 when it was inserted. If all are 1, then either the element is 
in the set, or the bits have by chance been set to 1 during the 
insertion of other elements, resulting in a false positive (but 
with a very small probability). While risking false positives, 
Bloom filters have a strong space advantage over other data 
structures for representing sets. On the other hand, an 
interesting property for Bloom filter is that union and 
intersection of Bloom filters with the same size and set of 
hash functions can be implemented with bitwise OR and 
AND operations, respectively. 

3 Preliminary  
3.1 Design Goals 
 Though the forwarding algorithm should be designed as 
quickly as possible, the performance of the massive storage 
network is more related to the storage procedures. For 

example, if one node can process only a few hundred objects 
pre second, an advanced content-based forwarding algorithm 
which is capable of processing thousands of objects but need 
more resources including CPU clocks and memory spaces 
maybe not significant better than a slower one. So what we 
mostly focus is not the speed or the total time used to finish 
all steps of algorithm, but the usability of the storage system, 
i.e. the attached content-based forwarding services should not 
affect the other aspects of a good storage system. At the same 
time, we think separating task to several sub-tasks and 
distributed them to different nodes is better than doing all by 
one node. Because by this way we can drop the average CPU 
load per node, that is, building a massive storage network 
using less total cost and lower power consumption. 

 Resisting to the instability of system is another thing we 
must pay much attention to. Our storage network has been 
designed to build from a mass of inexpensive commodity 
components, such as normal PC, or even embedded system 
attaching large storage devices that need lower power 
consumption to work. The failures of component will be 
inevitably frequent. That is said, we cannot presume that each 
node involved in always works just as we want. Our design 
must include some mechanism to ensure the algorithm’s 
enforcement. 

3.2 Terminologies 
 An object contains the data producer want to store and 
some information to describe data. For instance, a camera 
may take photos and send them to the storage. The photos 
will be preprocessed to attach some information to indicate 
the time and location. Such kind of descriptive information is 
called metadata, and is usually arranged in a form of key-
value pairs. We call keys in key-value pairs the object’s 
attributes. 

 Subscriptions are the information registered in the 
storage system by users who want data. A subscription 
contains a disjunction of conjunctions of predicates [14] and 
a forwarding address. A conjunction is also called a filter. For 
instance, subscription {{“Location” = ”A5” ∧ “Time” > 20 
∨ “Type” = ”image” ∧ ”Producer” IN {“Camera-30A4”, 
“Camera-30A5”}}, address = user0@example.com} has two 
filters, {“Location” = ”A5” ∧ “Time” > 20} and {“Type” 
= ”image” ∧  ”Producer” in {“Camera-30A4”, “Camera-
30A5”}}, and every object that make all filters true will be 
sent to user0@example.com. 

 Predicates are pairs of constrains and its related 
attribute’s name. For example, [“Location” = “A5”] is a 
predicate with a constrain of [“=”, “A5”] and an attribute with 
name “Location”. Constrains are atom units for checking and 
each contains a value and an operation. Different types have 
different operations. Every operation need two operands and 
produces a Boolean value. We call one value satisfy a one 
constrain if the result is True by feeding the attribute’s value 
(in left) and the value in constrains (in right) to its operation. 
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 For purpose of this paper, we consider two common 
types of data: number and string. We do not discuss Boolean 
since it can be represented by integer. We assume attribute 
name is a string. In this paper, we consider ‘<’, ‘=‘ and ‘>’ 
for number and on string we defined ‘=’, ‘prefix of’ (shorten 
it to ‘PF’), and “IN”. An “IN” operation finds out if one 
string is in a set of strings. 

  Update the Bloom filter “a” with “b” is to add items in 
b into a since a bloom filter represents a set. This can be done 
by a bitwise OR operation. 

4 Design  
4.1 Overview  
 When an object arrives, the metadata will be picked out 
and assign an id. An id is a unique key generated by storage 
to identify an object. We only use this information but no 
actual data to reduce network traffic. After whole algorithm, 
we will get a set of forwarding addresses and send object’s id 
to those addresses. Users can then use id to fetch data. By this 
way the storing procedure and the forwarding procedure can 
be handled separately and executed in parallel. 

 In a massive storage network, the first node that receives 
an object from outside always plays an important role in 
storing procedure, which includes routing, generating id and 
many other computing that need more resources. We do not 
start testing on this node because we still have enormous 
amount of nodes in our large-scale storage network. On the 
contrary, we just push the metadata identified by id to other 
ones with lower load. Note that we will use request to 
describe these information the algorithm need. 

 Actually, the request is send to functional bricks but not 
the nodes. We use functional bricks to build our system and 
each brick perform a certain part of the forwarding procedure. 
One physical node may host more than one functional bricks 
in parallel. There are two types of functional bricks: checking 
bricks and matching bricks. A checking brick can only handle 
a certain part of constrains assigned to a certain attribute and 
a matching brick can match the merged result produced by 
participating bricks with subscriptions. A request containing 
metadata and id will be send to several checking bricks one 
by one. Every checking brick checks if there is any attribute 
in metadata can be checked by self and send the remaining 
message to next brick. If such attribute exists, all related 
constrains will be calculated and produce a set of passed 
constrains, represented by some kind of Bloom filter. The 
result will be merged with those produced by other functional 
bricks. At last the final result will be send to a matching brick 
where the real forwarding addresses will be calculated. 

4.2 Functional Brick 
 Functional bricks are basic computing units in our 
design. 

4.2.1 Brick or node 
 First, limited to the scale of storage, one node may need 
to host several bricks to enforce our mechanism, though this 
should rarely happen since we are talking about large scale 
storage network. 

 Second, One physical node may have the capacity of 
hosting several functional bricks. For example, modern 
computing devices often contain several computing units in 
boxed, such as one or more GPUs and as well as multicore 
processors. It is likely to have the capacity of running several 
functional bricks at the same time. 

 Third, the functional brick actually defines the minimal 
size of computing that can be performed in parallel: different 
attributes can be handled at the same time and constrains 
share same attribute should be checked without being 
separated since many constrains are in partial order and most 
computing can be eliminated.  

 At last, another critical factor driving us to introduce the 
brick is that we can dynamically adjust the number of bricks 
to satisfy the fluctuant needs for computing resource and 
implement the system’s self-tuning property. 

4.2.2 A brick as a virtual machine 
 The idea of functional brick is inspired by system 
virtualization [15,16] and the architecture of Cloud 
Computing [17,18]. A functional brick is some kind of 
function-limited, lightweight virtual machine. Just like a 
virtual machine host in the cloud, a functional brick can be 
lunched from an image stored somewhere.  

 In our design, functional bricks are lunched using an 
executable functional image (FI), and a virtual storage image 
(SI) would be attached to it after launching. Both those 
images are stored in storage system just like other objects and 
can be fetched using their id. There are only several kinds of 
read-only standard functional images providing designed 
functions and many different storage images to store different 
runtime data. A functional image for checking brick provides 
programs to perform checking on a certain kind of data type 
while a functional image for matching brick provides binaries 
mapping the set of satisfied constrains to real world addresses. 
For example, a checking brick’s functional image may be 
launched to a checking brick to perform all string constrains 
related to a certain attribute while an matching brick launched 
by a matching functional image can find out if there are any 
filter in the set being exactly satisfied and take out assigned 
addresses related to those filters in a subscription. Additional, 
the implement of function-specific functional image do not 
need to be unique in one storage system, there are maybe 
more than one implements to satisfy varying environment and 
a node can choose one of them to launch a new functional 
brick. A storage image contains information related to 
specific attribute, such as, a binary search tree contains all 
strings occurred in constrains related to attribute “producer”. 
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With the combination of different functional image and 
storage image, a functional brick can act as different role. For 
example, a checking brick lunched from an functional image 
of handling strings and attaching a storage image which 
storing all constrains related to attribute “name” can check all 
predicates for attribute “name”. When new subscription 
registers in system, new constrains will be merged into 
related virtual storage images.  

 Specific storage image usually have many copies to 
fasten the lunching time of functional bricks, but that may 
need additional mechanism to ensure the consistency of all 
copies on the other hand. Our suggestion is keeping few 
copies since the time used to launch is not so important and 
copying data to host’s memory periodically to shorten the 
access time. The different copies using storage’s duplicate 
mechanism to sync.  

4.2.3 Self-tuning 
 An excellent advantage of using bricks is to make 
system self-tuning. For example, when too many forwarding 
requests occur in the storage network, more bricks can be 
launched to fit the need, and when fewer objects need 
forwarding we can terminate some of them to lighten 
system’s load (then to reduce power consumption), or save 
resources to other tasks. 

 When a functional brick receives a request, first it will 
check whether it can handle such request, if not, it passes the 
request to other. Every request in the storage network with 
hold a number “hops” to record how many functional bricks 
have passed without being processed. If its “hops” reached a 
limited maximum value, a host can choose to launch a new 
corresponding functional brick for processing this request, if 
the physical host has resource to host another brick. If for a 
long predefined time a functional brick do not process any 
request, the brick will be terminated. Every functional brick 
keeps a queue for buffering and the queue’s size should be 
carefully selected to trade-off the cost of transmission and the 
benefits of distribution. 

4.3 Checking Constrains 

 A checking brick only handles predicates with a certain 
attribute, which calls its “target attribute”, or “target string” 
since all attributes have type of string. Although checking 
bricks launched from different functional bricks have 
different behaviors, they still share some pattern in common. 
First, when received a message containing metadata, every 
checking brick need to find out if there any attribute can be 
test by self. Second, every checking brick enforce same 
mechanism to send remaining metadata to other checking 
bricks, to monitor subsequent checking bricks and merge 
self’s result with others.  

 First, such a brick check if the request is a checking 
request. If not, the brick will pass it to another brick. Then it 

will find out if its target attribute is in the set of metadata’s 
attributes. If not, the brick also pass it to another. 

 Second, the brick delete own target attribute and its 
value from metadata, and send remaining metadata to another 
brick at the same time. After this the brick set another thread 
to wait for the response. 

 Third, a brick use specific algorithm to calculate the 
result set (the result would be a Bloom filter to represent the 
set), which indicate those constrains satisfied by target 
attribute’s value. 

 At last, when receives response from other brick, the 
brick update owns just calculated result with the received one 
and send response with new updated result to previous brick 
following the request’s path. If not receiving the response for 
a limited time, the brick will send the remaining metadata to 
another neighbor. 

4.3.1 Target attribute 
 When a request receives, one needs to quickly find out if 
there is any attribute that can be processed and pass the others 
to next. We use ternary search tree [19] to arrange the 
metadata. It takes O(logh) times to such in the tree, where h is 
the height of tree. Since all attributes are known when 
building the tree, we can build an optimal tree by, for 
example, sorting attributes and building by bisection method. 
Such a Tree performs much quicker for failed searching, and 
most of the searching would fail according to the relatively 
small size of the set of attributes for single object, so this 
should be quite fast. 

4.3.2 Remote Bloom filter update 
 Bloom filters can effectively represents a set of all 
constrains that satisfied by an object. But the size is still too 
big to transmit. The simple method we used is to only 
transmit the non-0 bits. Although the total scale of the set 
containing all constrains is quite large, they are divided into 
different attributes and the number of constrains one object 
satisfied would not be too big. A functional brick holds self’s 
Bloom filter and receives another Bloom filter with its non-0 
bit, and set them to 1 on self’s filter. We call this a method a 
remote bloom filter update. We use a general concept here 
since we are still seeking for a better algorithm. 

4.3.3 Checking brick for numbers  
 For number attributes, we describe a quick checking 
algorithm as below. 

 For each attribute, we maintain an Lx4 table, where L is 
the total number of different values in all constrains related to 
this attribute. First column in the table records all values 
occurred in constrains, and the table has been sorted by this 
row. Every cell in Second to fourth column records a Bloom 
filter representing a set containing all constrains that would be 
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satisfied if this constrain is satisfied. We use F(i, op) to 
indicate the Bloom filter assigned constrain {op, v} in this 
table, where v is value in i-th row first column, and f(i, op) to 
indicate original Bloom filter of that constrain. Notes f(i, op) 
is all-0-Bloom filter if no such constrain exists. We fill the 
table using below rules, 

F(i, ‘=’) = f(i, ‘=’),                                (1) 
F(0, ‘>’) = f(0, ‘>’),                             (2) 

F(i, ‘>’) = F(i-1, ‘>’) OR f(i, ‘>’),                 (3) 
F(L, ‘<‘) = b(L, ‘<‘),                             (4) 

F(i, ‘<‘) = F(i+1, ‘<‘) OR f(i, ‘<‘).                (5) 

 Take an example shown in Fig. 1, if we get a value 0.5. 
We could easily find the value −13.59 and 5.99, and the value 
in (5.99, <) indicates all satisfied constrain with an operation 
of “<” while the value in (-13.59, >) indicates those satisfied 
constrains of “<”. After applying bitwise OR operation on 
these values, we get Bloom filter {2023, 2632, 3005, 5010, 
5564, 5647, 6297, 7130, 7631, 7898}. Such a Bloom filter 
represents a set of {{“>”, −13.59}, {“>”, −33.90}, {“>”, 
−26.93}, {“<”, 5.99}, {“>”, − 45.64}}, which is the set 
containing all constrains value 0.5 satisfied. 

4.3.4 Checking brick for strings 
 To keep simplicity, we only consider checking 
constrains of ‘=’, ‘PF’ and ‘IN’ operations, which can also be 
tested together. 

 For each attribute, we maintain a ternary search tree 

(TST) containing Bloom filters, whose each node represents a 
prefix of stored strings. All strings in the middle sub tree of a 
node start with that prefix. The string stored in TST contains 
the ending 0 which indicates the end of a string. If arrives in a 
node with the character ‘\0’, we would have matched a string 
exactly the same with the string it represented. For 
explanation, we call such a node 0 node, and others non-0 
nodes. Each node in TST stores a character as well as an 
assigned Bloom filter. For 0 node the Bloom filter is the 
result of applying OR operations on constrain with “=” 
operation and all constrains with ‘in’ operations which string 
list contains this node’s represented string. On the other hand, 
for non-0 node, the Bloom filter represents constrain of ‘PF’ 
operation (0 if no such constrain). 

 When searching, the algorithm follows the path and 
update a Bloom filter whose bits are all 0 at first with each 
matched node’s Bloom filter. When finished, the final Bloom 
filter would already contain all constrains satisfied. Take the 
example shown in the Fig. 2 (Bloom filter of all bits are 0 is 
hided), if we get a string “andrea”, we can get the filter {981, 
3868} and {2354, 8975, 9087, 9194} following searching 
path. And the final Bloom filter is {981, 2354, 3868, 8975, 
9087, 9194}, or, the set of constrains {{“pf”, “and”}, {“in”, 
{“andrea”, “expert”}}, {“=”,”andrea”}}. 

4.3.5 Monitoring chain 
 In our original design, we just send request to another 
node after finishing own computing on target string, 
containing the result this brick have just produced. After that, 

  
Figure 1. Example of an Lx4 table maintained by numbers checking brick. 

 
Figure 2. Example of a ternary search tree contains Bloom filters 
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previous node does not care about anything about this object. 
When building the prototype, we found the problem soon. 
Our forwarding mechanism will be built on the massive 
storage network constituting large number of inexpensive 
commodity components. Due to the instability of such 
components, a message one node pushed to another may lose 
during the transmission, or the receiving node may crash and 
fail to finish the procedure. To resist the instability of 
components, we use monitoring chain to supervise the bricks 
involved. After pushing metadata to anther brick, the brick 
does not be terminated immediately, but remains a thread to 
wait for the response. This waiting uses few computing 
resources. If there is no response for a pre-set limited time. 
This brick will choose another brick to send request again. 
Now the question is: when to send the question? 

 One scheme is after processing. When having produced 
result, sending the metadata as well as the current checking 
result will reduce the network traffic since the response just 
need to contain a simple signal of having finished its work. 
By this way the last checking brick can also immediately send 
current result which is merged following path to matching 
brick and then push id to matched subscribers. But the 
disadvantage is inevitable: it may make users receive the id 
more then one times. For instance shown in Fig, when 
checking brick C2 not having received a response from C3, it 
does not know whether C3 have done its work and forwarded 
the request yet or not. So C2 may send request to another 
brick, said C5. If C3 has already finished its work and passed 
the remaining metadata to C4, C4 will continue the process 
since it does not know anything of previous bricks. For now 
there are two processes in whole system and those related 
subscribers would be likely to receive the id twice. 

 Another scheme is, on the contrary, sending the 
remaining metadata, if exists, to another brick before starting 
computing and waiting for response containing subsequent 
result. When receives, own result will be updated with the 
received Bloom filter and be send to previous brick after 
updating. Each brick only handle the first reply and ignore the 
others. By this way, we can ensure the id be sent to user only 

once. Fig. 4 shows the example. 

 We do not consider the situation that the head of 
monitoring chain fails because this brick hosted on the node 
that plays an important role in the storage procedure and 
failure occurred in this node may interrupt the storage 
procedure. Without having stored available copy of object, 
the forwarding result is senseless. So we leave such failure at 
chain’s head to the underlay storage network. 

4.4 Matching subscriptions 
 When a Bloom filter representing all satisfied constrains 
be produced, which would finally arrive the first brick started 
the algorithm, the Bloom filter and its id will be send to a 
matching brick for matching with all (or part of) subscriptions 
and find out the addresses the id should be send to. We say A 
matches B when A AND B equals to B, where AND is 
bitwise AND operation. The final matching procedure accepts 
a Bloom filter and a one-to-one list of addresses and its 
related Bloom filters and output the addresses that the id 
should be send to. 

4.4.1 Subscription's Bloom filter 
 A subscription’s Bloom filter represents a set containing 
all constrains that that subscription contains. That is, the 
result of feeding all constrains’ Bloom filters to bitwise OR 
operation. For example, a subscription containing constrains 
which assigned Bloom filters are {1345, 7892}, {2363, 4654} 
and {2363, 9988} will be assign a Bloom filter {1345, 2363, 
4654, 7892, 9988}, and Bloom filter {876, 1345, 1424, 2363, 
4654, 7892, 9988, 9999} will match it. 

4.4.2 Quick matching 
 We can check if A matches B using (NOT ((A AND B) 
XOR B)), where NOT, AND and XOR are bitwise operations. 
We do not use the bftree or sbstree used by Jerzak [20], 
because we think that (1) in our sceneries, there are many 
different subscriptions’ Bloom filters can be matched. If we 
arrange these subscriptions into a tree, we need complex data 
structures and operations to travel among the nodes again and 
again. (2) This part of computing can be the most time-
consuming part of whole procedure, but at the some time, is 
highly independent for each other and simple enough for just 
some bitwise operations. We can play a trick here: push this 
tasks to GPU, which can do these in parallel. We keep all 
subscriptions’ Bloom filters in video memory to reduce the 
low-speed host to device copying and just send non-1 bit to 
GPU every time and output a list of wanted address’s indexes.  

4.5 Register subscriptions 
 The first thing for a subscribe/publish system is to 
register a subscription. The procedure is as below: 

1) A subscription containing disjunction of conjunctions of 
elementary predicates will be separated to several 

 
Figure 3. Failure example in scheme of no monitoring chains 

 
Figure 4. Failure example in scheme of no monitoring chain 
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subscriptions containing only one filter (conjunction of 
predicates) with same target address. 

2) For each one-filter-subscription, a Bloom filter will be 
assigned to every constrains in it, and the subscription’s 
Bloom filter will be calculated as well. 

3) New subscription’s Bloom filter and its target address 
will be added to the list hosted by matching brick and 
will be merged into its storage image. And all 
constrains and their Bloom filters will be merged into 
corresponding attribute’s structures in storage images.  

5 Conclusion 
 It’s necessary for a massive storage system to provide a 
content-based publish/subscribe service to support wide-area 
sensors network. Using this flexible object forwarding 
mechanism, data produced by wide variety of sensors can be 
aggregated and disseminated more effectively. By carefully 
using the limited computing resources of nodes in massive 
storage network, we proposed a scheme for this heavy task. 
Inspired by the development of system virtualization and the 
Cloud Computing, we introduced a concept of “brick” to 
dynamic schedule resources and tasks. Different functional 
bricks can be created from images to handle different 
attributes in a object, and at the same time they can be 
launched and terminated by actual demands and the resource 
situations of their host. We also provided same sample 
implements for checking brick of Integers and Strings. For 
every type of attribute, we have shown a fast constrains 
checking algorithm 
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Abstract - The data presented by Light Detection and Ranging 
(LiDAR) systems are in a dense and accurate three dimensional 
pattern without point classification, such as trees, roads, and 
buildings. Extraction of boundary points is essential for recognizing 
buildings. However, it is complicated to process the LiDAR data due 
to its irregularity and a large number of collected data points. In 
order to find boundary points in a quick and accurate way from a 
huge number of data points, a parallel algorithm for building 
extraction is proposed. In this paper, every processor reads the 
LiDAR data points and builds a quadtree respectively. Thus, a 
quadtree is built and shared through a network file system. Later, a 
breadth first search (BFS) is applied on every processor. The 
position of a node in the quadtree, in which has the number of 
children smaller than a predefined grain size, is stored in an array 
called as BFSArray. Process farming paradigm has been applied to 
process each nodes using MPI. In our primary experiment, results 
show significant speedup for multiple processors compared to a 
sequential algorithm. 

Keywords: Boundary point, process farming, MPI, LiDAR 

 

1 Introduction 
  Recently Light Detection And Ranging (LiDAR) has 
become a reliable technique for 3D data collection [1]. The 
LiDAR system consists of three data collection tools: a laser 
scanner, Global Position System (GPS) for sensor position 
information, and an Inertial Measuring Unit (IMU) for 
orientation information. The laser scanner transmits and 
detects infrared signals to measure ranges.  

LiDAR offers many advantages over traditional photo-
grammetric methods for collecting elevation data. These 
include high vertical accuracy, fast data collection and 
processing, robust data sets with many possible products, and 
the ability to collect data in a wide range of conditions [2]. 
Therefore, LiDAR system has been introduced as a new tool 
that efficiently provides accurate data collection from 
extensive areas.  

In LiDAR processing there are two completely different 
possible approaches for processing images. One is using 2-D 
images. The advantages of 2-D images are less time required 
for processing and less cost. However, images in 2-D format 
are inadequate for accurate modeling and for defining road 
boundaries and other building boundaries due to their lack of 
high resolutions [3]. Accordingly, recent demand and 

utilization of 3-D terrain information has been increased in 
various field and researchers have already investigated 3-D 
extraction methods of geographical features, buildings, and 
road networks [4]. 

Obviously more time is required for processing 3-D images. 
In order to find boundary point in a 3-D images format in a 
quick and accurate pattern, parallel computing algorithm is 
one option. In our paper, parallel computing algorithm is 
applied. Firstly, all LiDAR points are built in a quadtree 
structure in every processor. Hence, a shared quadtree is 
accomplished. Secondly, BFS search is used on every 
processor for finding all nodes, in which the number of 
children is smaller than a predefined grain size. Experiment 
results show that building a quadtree and BFS searching take 
only a small amount of time compared to finding boundary 
point. At this point, all preparation work for our parallel 
computing algorithm is finished. Afterwards processor 
farming is performed for distributing tasks to processors. 
Messages Passing Interface (MPI) is employed as a 
communication tool during the whole process. Details 
description will be presented later. 

The rest of the paper is organized as follows. Section II 
introduces quadtree representation of LiDAR data and the 
concepts of processor farming model. In Section III we 
discuss the detail operation of our algorithm. Experiment 
results and discussion are described in Section IV. Conclusion 
is drawn in the last section. 
 

2 Quadtrees and processor farming model 
2.1 Quadtree and its properties 
 In the field of image processing, computer graphics, and 
remote sensing two dimensional point and ranging data are 
often indexed using quadtrees[5]. A quadtree is a tree data 
structure in which each internal node has up to four children. 
All data information are stored only in the leaf nodes. Data in 
a quadtree is often collected in point format, for example, a 
height measurement is made at that location, and represented 
by an (x,y,z) triplet with x and y representing coordinates and 
z representing a measurement at that location. Nevertheless, a 
parent node only has the information of the number of 
children and the area range of its all leaf nodes locate in. 

556 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



Quadtrees are most often used as a representation of a 
regular partitioning of space where regions are split 
recursively into quadrants until there is only one point in each 
quadrant. In other words, each quadtree block (also referred 
to as a cell, or node) only contains one particle. In Fig. 1, the 
region is recursively divided into four parts if more than one 
particle exists inside a single block. 

 

 
Figure 1. Quadtree structure 

 
Quadtree-based spatial domain decomposition algorithm is 

designed for general use, and it can produce scalable 
geographical workload [6]. As we mentioned previously, 
LiDAR points are in a dense pattern, it is necessary to reduce 
the size of quadtree first before extracting boundary point. A 
quadtree with either a threshold or a maximum-depth limit 
allows us to reduce the size of tree at the cost of prediction 
accuracy, as it is no longer an exact copy of the original data. 
Setting the accurate threshold helps smooth the experimental 
data [7]. In this paper, a threshold value of height was set to 
compress a quadtree. A threshold means a criterion to merge 
any adjacent blocks as a single block if the height difference 
for the adjacent blocks is smaller than the predefined 
threshold.  

 

 
Figure 2. Reduced quadtree structure 

 
Assuming the different height values in block 120, 121, 122, 

123 in the Fig. 1 fall into the threshold, we can consider them 
as a single block and merge them. Equally, we assume the 
difference of height in block 10 and 11 is smaller than the 

threshold and the different height values in remaining blocks 
are bigger than the threshold. Therefore, block 10 and block 
11 can be taken as a single block. After two block are merged, 
we use the average height as a new value to represent the 
height information in such block. Fig. 2 illustrates the reduced 
quadtree structure from Fig. 1 based on our assumption.  

In this paper, the parallel computing algorithm is mainly 
focused. Therefore, finding the optimized threshold value for 
merging is out of scope of our problem. Adjusting the 
different threshold values will produce a more precise image. 
 
2.2 Processor farming 
 The processor farming model works well even in a 
condition where pipeline structure cannot balance tasks or 
there are not enough buffers. Cok[8] also stated that efficient 
parallel algorithms could be implemented with processor 
farming.  

Processor farming is defined as a group of independent 
tasks. The processors consist of a master processor and a 
number of worker processors [9]. A master processor controls 
the whole parallel processing. Our quadtree is not well 
balanced, that is, some nodes contain a little number of 
children, while other nodes contain a large number of children 
in BFSArray. It degrades the efficiency of algorithm if a 
master only sends one index of BFSArray to a worker 
processor at each time.  

To solve the problem, we define a lower bound as grain size 
- α, and a upper bound as grain size + α at first. The α has 
been chosen to be equal to approximately 10% of the 
predefined grain size. When parallel computing algorithm 
begins, a master processor starts from the first index of the 
array. We call it a start index. If the number of children of a 
target node is smaller than a lower bound, then we move the 
pointer to the next index of array, until the total number of 
children of all nodes reaches lower bound or exceeds upper 
bound. Now, we mark the position of current pointer as an 
end index. If the second situation happens, we prefer to move 
the pointer back by one index. Surely, if the total number of 
children for all rest of nodes in BFArray is smaller than lower 
bound, then master sends the start index and the last index of 
BFSArray to a worker processor and broadcasts a “finish” 
signal to all worker processors. Worker processors stop 
receiving tasks as long as a “finish” signal received from 
master processor.  

Likewise, a “finish” signal is sent back by a worker 
processor to the master processor as soon as it finished the 
assigned task, then the master processor repeats the previous 
procedure and sends start and end index to that worker 
processor until no more tasks are available in BFSArray. 
 Fig. 3 illustrates the first 13 elements of a hypothetical 
BFArray when grain size is defined as 40,000. The smaller 
number denotes the index of array. The number in the array 
box presents the number of children the node has. Actually, 
BFSArray is a pointer array and stores the address of those 
nodes and each node contains the information of number of 
children it has. 
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Figure 3. BFS array 

When a grain size is 40,000, the lower bound and upper 
bound of grain size is 36,000 and 44,000, respectively. 
Consequently, a master processor stops moving a pointer to 
next index value if total number of children either falls 
between a lower bound and a upper bound or is beyond the 
upper bound scope.  

The first element of BFSArray only has 42 children, and 
then master processor moves the index pointer to next one and 
calculates the summation of number of children. The index 
pointer stops at the index 10. Because the accumulated of 
children of the first eleven elements is 36916 ∈ [lowerbound; 
upperbound]. After that, a master processor sends start index 
0 and end index 10 to a worker processor. A master processor 
repeats this procedure until all tasks are assigned to each 
worker.  

In next section, a detail operation for how the boundary 
points is generated by a proposal parallel computing 
algorithm will be discussed and our parallel computing 
algorithm will be presented. 

 
3 Parallel Monotone Chain algorithm  

Andrew’s Monotone Chain algorithm [10] is implemented 
for extracting boundary points in this paper. The “Monotone 
Chain” algorithm computes upper and lower hulls of a 
monotone chain of points. It runs in O(nlog n) time due to the 
sort time. After that, it only takes O(n) time to compute the 
hull, a hull has the same meaning of boundary point in our 
paper.  

As we have introduced the LiDAR data previously, an 
object, such as a roof or a road, is represented by a set of 
dense data points. In order to extract the boundary points for 
an building, a reduction on quadtree size is preferred at first. 
Finding a group of neighbor points is a priori for extracting 
boundary points of an building. Without reducing the size of 
quadtree, it increases the computation time of finding groups 
of neighbor points. A group of neighbor points could be an 
object or multiple adjacent objects and the computation time 
for determining a group of neighbor points is O(n2). Because 
every point has to look for all other points for one time and 
the final neighbor points are determined. In our experiment, 
we find out reducing a quadtree does not take too much time. 
In contrast, looking for a group of neighbor points at the same 
height consumes most of computation time. Thus, reducing 
quadtree size is essential for speeding up the whole process. 

Each index in BFSArray points to a node, in which has less 
number of children than a grain size. When a worker 
processor receives a start and end index of BFSArray, 
reducing each sub-quadtree according received index 

information. It starts to reduce the sub-quadtree, which is 
pointed by start index, and finishes until the sub-quadtree that 
is pointed by end index is compressed. After that, processor 
collects all the remaining data points in each sub-quadtree and 
sorts them by their height values. 
 Andrew’s Monotone Chain is designed for 2D-image. In 
order to apply Andrew’s Monotone Chain in 3D-image, we 
have to extract 3D-image points at different height level. 
Therefore, a reasonable threshold of 0.1 meter is used. When 
height threshold is used, all points with the height difference 
is smaller than the height threshold are considered on the 
same plane. With all the data points that a worker processor 
collects from reduced sub-quadtrees, a worker processor 
classifies all these data points. It starts from the data with the 
lowest height value and finds all other data points which are 
on the same plane. Afterwards, processors look for group of 
neighbor points on this plane. Finally, boundary points of 
each group of neighbor points can be found at this height 
level. After that, worker processor moves to next height level 
and find boundary point until all data points from reduced 
sub-quadtrees are searched. 
 

 
Figure 4. Finding boundary points 

 
Suppose all the points in Fig. 4 are the remaining points 

after a processor performed a sub-quadtree reduction. Since 
all data points are sorted by height value, we know the data 
point whose height is the lowest. In Fig. 4, all height values 
have subtracted the lowest height value. Hence, the value of 
height starts from 0 in our example. Basically, we use the 
divide and conquer method to speed up the whole process. 
Instead of allowing one processor to find all groups of 
neighbor data points and then extract boundary point from 
each group of neighbor data points, we first store all LiDAR 
data points in a quadtree tree and master sends the index of 
BFSArray to processors, which can be considered as sending 
a small number of data in a small area each time to processors. 
With small amount of data points, worker processors finish 
the task much faster, since a huge amount of time on finding 
neighbor data points is saved. A master processor sends 
another task to a worker processor as soon as the worker 
processor finished previous assigned task. 

Worker processors store the boundary point into a buffer 
and send the list of boundary points back to a master 
processor if buffer is full. We have not proved the optimal 
buffer size; however, the performance is acceptable in the 
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experiment when the buffer size is chosen as 4 or 5 times of 
grain size. When a master processor receives a boundary 
point list from a worker processor, then it resorts the all the 
boundary points and extracts a new list of boundary point as 
the same way as worker processor does. 

Processor farming plays a key role in our parallel 
computing algorithm for extracting boundary point list. Fig. 5 
presents the processor farming model of our parallel 
computing algorithm and the parallel computing algorithm for 
extracting boundary point is presented in Fig. 6. 

 

 
Figure 5. Message flow in process farming 

 
 

Algorithm 1: Parallel Extraction of  Boundary Points            
Master part; 
Build a quadtree and creates a BFSArray; 
Distribute a new task as soon as a worker finished an 
assigned task; 
if the buffer is full in a worker then 

Receives the list of boundary point in the buffer and 
resort all boundary points ; 

end 
Collect all boundary point list from workers when no 

available task in BFSArray; 
Produce the final boundary point list; 
Worker part; 
Build a quadtree and creates a BFSArray; 
Receive a task and compresses sub-quadtrees; 
Extract boundary point of buildings; 
if buffer is full then 

Sends a list of boundary points back to master; 
end 
Send the list of boundary points when all assigned tasks 

were finished;  
 

Figure 6. Parallel algorithm for boundary extraction 

4 Experiment results 
 The implemented parallel computing algorithm for 
abstracting boundary point was experimented on a clustering 
system, which has a master processor and 17 worker nodes. 
the master processor is Intel Xeon 2.8GHZ and each worker 
processor is Pentium 4 630, 3GHz. The parallel library is MPI 
2.0 which was released by the MPI Forum [11]. The total 
number of data set is over four millions, which were collected 
by LiDAR from urban area.  
 Fig. 7 shows a sample LiDAR data and corresponding 
buildings extracted. Since LiDAR data are a set of 
coordinates with its height, the height values have been 
visualized as shown in Fig. 7 (a) using a rainbow bar. The 
extracted buildings were outlined connecting points from the 
Andrew’s Monotone Chain algorithm. We confirmed visually 
that every building has been extracted correctly with an aerial 
photograph. 

  
(a) 
 

 
(b) 

 
Figure 7. (a)Visualized sample LiDAR data (b) 

Corresponding buildings extracted 

During the experiment, we tested the time for extracting 
boundary point with three different grain sizes. With over 4 
million test data in this experiment, we chose the grain size 
4,000, 40,000 and 400,000 respectively, and execution time is 
plotted in Fig. 8. 

From Fig. 8, the performance is the best when the grain size 
is defined as 400,000, which is around 10% of all test data. 
When the grain size is small, the communication overheads 
increase. In our algorithm, worker processor takes much less 
time to finish an assigned task when the grain size is small. 
The reason is the complexity for finding neighbor points is 
O(n2). With less number of data points, the time for extraction 
of boundary points is much less. However, a master processor 
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takes more time for computation boundary point list from 
receiving worker processors and communication overheads 
were increased sharply. 

From Fig. 8, it also indicates that scalability fails earlier 
when a very small grain size is applied. In our case, the 
scalability fails only after 3 processors involve, when grain 
size is chosen as 4,000, which is only 1/1000 of our test data. 
This issue should be taken care of in further study. 

 

 
 

Figure 8. Excution time for extracting boundary points 

5 Conclusions 
 Extraction of buildings from 3-D LiDAR data requires 
heavy computational processing. A parallel computing 
algorithm with processor farming model is proposed in this 
paper to reduce the processing time. Our algorithm is starting 
with building a quadtree on every processor and performs a 
BFS search. A BFSArray stores all the position of nodes, in 
which has less number of children than a predefine grain size. 
Processor farming distributes the indices of BFSArray to 
worker processors. The worker that completes a task first 
always asks for another task from the master. Boundary points 
only are sent among workers and master when the buffer is 
full in the workers or workers have finished all tasks in order 
to reduce the communication overheads. Grain size affects the 
performance of our parallel computing algorithm. With a 
small grain size, the scalability fails earlier and load balancing 
becomes an issue, since a master is busy at most time with 
extracting boundary points. The experiment results show our 
parallel computing algorithm improves the processing time 
six times faster than a sequential approach, which only one 
processor works. 

In this paper, we do not focus on the accuracy of boundary 
points. However, with adjusting threshold or applying more 
sophisticated building extraction algorithms will generate 
more precise buildings. During the experiments, it proves that 
our parallel computing algorithm with a processor farming 
model works well for a large number of data set. Therefore, it 
is suitable for a vast range of parallel computing applications. 
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Abstract - A novel method for fault diagnosis in analog 

circuits using S-transform (ST) as a preprocessor and 

Particle Swarm Optimization (PSO) based neural network 

(NN) identifier for classification is proposed in the paper. ST 

provides a frequency-dependent resolution and the features 

obtained from the ST are distinct, and easy to understand. 

The identifier, evolving with PSO, is a promising method to 

train NNs. It is faster and gets better results, and avoids some 

problems of conventional backpropagation (BP) algorithms. 

The comparison between the ST-based method and the 

wavelet-transform based method, and comparison between 

the ST and PSO method and the traditional NN method for 

analog fault diagnosis is provided. Simulation results show 

that the proposed method is effective in enhancing the 

efficiency of the training phase and the performance of the 

fault diagnostic system. The results clearly indicate higher 

correct classification of fault classes in the example circuits 

of similar faults. 

Keywords: analog fault diagnosis, PSO, S-transform, mixed-

signal test, neural networks 
 

1 Introduction 

         Analog circuit fault diagnosis has been an active area of 

research since the mid-1970s with significant work carried out 

at the system, board, and chip level [1]–[10]. A survey of the 

research conducted in this area clearly indicates that analog 

systems are among the most unreliable and least testable 

systems due to poor fault models, component tolerances, and 

nonlinearities compared with digital circuits  [3-7]. This makes 

application of neural networks to this area very appealing 

since no mathematical model or comprehensive examination of 

these effects is required. The work in [2] is a pioneering effort, 

directly feeding samples of the impulse response of the linear 

circuits to the NNs as their inputs without any preprocessing. 

Nonlinear circuits are considered [3] in the frequency domain 

at different frequencies. Reference [4] presents a global 

parametric method, whose features are calculated from time 

domain response to a voltage step. It is executed with the use 

of an NN supplied with extracted features. The authors in  [5] 

present a NN based method without preprocessing. The 

method requires a significant number of inputs even for a small 

circuit. Literature [7] presents a NN based system for linear 

circuit diagnosis, with preprocessing by wavelet 

decomposition, principal component analysis (PCA), and 

normalization to generate features for NNs. This technique is 

extended to actual circuits in [8]. References [9-10] deal with 

soft and multiple faults based on the parameter method.  A 

wavelet NN method is presented in [11]. A method of 

designing specialized a-periodic excitation signal in time 

domain is described in [13], where single parametric faults are 

investigated by applying wavelet transform and genetic 

algorithms for further improvement.  

       Some outputs of a circuit are similar because of various 

factors such as element tolerance. In some cases, the outputs 

are so similar or even overlapped in their input space that we 

cannot successfully classify them. So they are often 

considered as ambiguous sets, which is not beneficial to real 

diagnosis applications. Therefore it is necessary to distinguish 

among fault classes with similar feature values, which always 

lead to a significant overlap. The work in [7] reveals that R6⇑ , 

R7⇓ , and R9⇑  (⇑ and ⇓ here indicate values higher and 

lower than the nominal values respectively in Fig.2) are similar 

faults, and a wavelet based method can successfully identify 

the faults of the circuit only if these similar faults are placed 

into one fault class  [7]. Thus they are ambiguous sets. 

Otherwise, NNs cannot convergent at all.  
        The ST, as a hybrid of short-time Fourier transform (STFT) 

and wavelet transform (WT), has the similar form of STFT 

except its window width changing with frequency. So the 

progressive resolution can be provided by ST, just similar to 

WT. Moreover, ST interprets more straightforward frequency 

information than WT because a time-frequency axis is used in 

ST rather than a time-scale axis in WT. Hence ST provides a 

frequency-dependent resolution and the features obtained 

from ST are distinct, and immune to noise. 

        In this paper, we propose a S-transform based approach 

to analog fault diagnosis that overcomes the shortcomings of 

conventional methods. In this approach, we use ST as a 

processor to extract fault features. The outputs of a circuit 

under test are preprocessed by ST decomposition, PCA, and 

normalization to generate features . We adopt a PSO based NN 

identifier, which doesnot involve the gradient descent method 

and usually has fewer and less sensitive NN parameters than 

BP. This suggests that the PSO based NN identifier may be 

more robust. 

2 S-Transform 

         Time-frequency analysis  [13-16], as a tool of analyzing 

signals in both time and frequency domains simultaneously, is 

Analog Fault Diagnosis based on S-Transform and PSO  
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very powerful in signal processing. Among the various 

proposed time-frequency analysis methods, STFT and WT are 

the most well-known and widely used linear transforms, which 

have the advantage of high efficiency and flexibility in the 

time-frequency filters. The progressive resolution can be 

provided by ST with its window width changing with 

frequency. And the ST, with a time-frequency axis is used 

rather than a time-scale axis in WT, is a more straightforward 

interpretation of frequency information than WT. So ST is a 

novel frequency-dependent resolution and the features 

extracted from ST are distinct and immune to noise. 

        The S-transform [13-16], is a powerful linear time-

frequency representation. The filters in S-transform may 

consist of data adaptive weighting window with higher values 

for signal and lower for noise. The ST of x(t) [13] is 

  
      2, , i fts f x t w t f e dt 





                  (1)  

Where f, t and τ   are  frequency,  time and the center of the 

Gaussian window, w(t). w(t) is defined as 
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Where k  is the dilation (window width) parameter, which 

determines the time frequency resolution. Unlike STFT, the 

width of window varies with frequency in S-transform. The S-

spectrum of x(t)   ,t   can be written as 

     
      2, , i fts f d x t w t f d e dt   

  

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         (3) 

Letting T  be the sample interval, the discrete realization of 

the ST can be calculated by taking the fast Fourier transform 

(FFT) and the convolution theorem: 
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         (4) 

Where , , 0,1,2, 1j m n N  and N is the number of 

sampling points.  , /s jT n NT  is available once the Fourier 

spectrum of  x t are obtained. And then compute the 

localizing Gaussian for the required frequency. We can get the 

S-spectrum by repeating the steps until all the rows of 

 ,s n j to every frequency n have been obtained.  

3  PSO based NN classifier 

  Conventional NNs have been widely used as trainable 

classifiers because of their generalization ability and function 

approximation [l8-21]. NN has the ability to form arbitrary 

nonlinear surfaces, and to respond consistently to data that 

are not trained with. However, the NNs use sharp decision 

boundaries to partition the feature space so their ability to 

estimate is limited. They are unable to correctly estimate class 

membership of data belonging to regions of the feature space 

if there is overlapping between the classes.  

        Particle Swarm Optimization (PSO) algorithm is a method 

for function optimization [18-20] based on social- 

psychological principles and provides insights into social 

behavior. The particles, which are a swarm of individuals, 

explore a multidimensional search space. The velocity vector is 

adjusted according to which particle goes through the search 

space.  Therefore prior personal successful positions and the 

best position are found within a specific neighbourhood and 

act as attractors. 

         In PSO, a swarm of particles moves through a multi-

dimensional search space [18-20]. A particle is defined by its 

current position x and velocity v. Each particle remembers the 

location y at which it has found the so far best solution to. 

The updating of velocity is  

            
       1 1 2 2

ˆ1v t wv t c r y x c r y x     
               (5) 

Where r1 and r2 are uniformly distributed random numbers 

from [0 1]. w is the inertia neural network weights, y is the 

personal best attraction potential. ŷ , the neighbourhood best 

position, is varied with the respective weights 1c  and 2c . The 

position ŷ  is either the best position of all particles (gbest) or 

the best positions within a local neighbourhood of the particle. 

The local neighbourhood (lbest) is to number the particles 

from 0 to 1m and the neighbourhood of particle i consists 

of particle i itself and the two particles  1 mod i m . After 

the velocity has been updated, all particles move one step with 

their newly determined velocity as  

                        1 1x t x t v t    .                                  (6) 

4 S-Transform and PSO based NN for 

Analog Fault Diagnosis  

     In this approach, the responses of the circuit under test 

(CUT) are simulated under the pre-assumed faults. And the 

sampled responses are processed by S-transform. The outputs 

of the ST are the so-called fault features. The features are 

applied to a BP neural network during the training phase. A 

unique code is given to a certain number of fault classes in 

advance. All the features and the associated fault codes are 

presented to a neural network as input–output pairs, when the 

BPNN is trained to its balance state after adjusting its weights 

and bias parameters. In the testing phase, we measure the 

responses of CUT stimulated by the same sources. Then the 

outputs of the ST are the features as input to the trained NN.  

       To investigate the effectiveness of the proposed approach 

in our fault diagnostic sys tem, we use two circuits. The first 

real circuit is the Sallen–Key bandpass filter with a center 

frequency of 25 kHz [7], as shown in Fig.1.The nominal values 

for the components are also shown in Fig. 1. The tolerances of 
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the resistors and capacitors are assumed to be 5% and 10%, 

respectively. The faulty responses of the circuit are obtained 

when any of the components R3, C2, R2, and C1 is higher or 

lower than its nominal value by 50%, with the other three 

components varying within their tolerances. We cons ider the 

following fault classes: R3⇑ , R3⇓ , C2⇑ , C2⇑ , R2⇑ , R2⇑ , 

C1⇑ , and C1⇑ . The input source is an pulse of 5V peak and  

10μs duration.   

 
Fig. 1 25kHz Sallen–Key bandpass filter 

The second circuit is a two-stage four operational 

amplifier (op-amp) biquad low-pass filter [7], shown in Fig.2. 

The authors in [7] pointed out that R6⇑ , R7⇓ , and R9⇑  are 

similar faults, and traditional fault diagnostic systems can 

successfully identify the sampled faults of the circuit only if 

these similar faults are placed together into one class of fault 

sets [7]. Otherwise, a neural network cannot be trained to 

distinguish among all the faults in [7].  

 

 Fig.2. Two-stage 4-opamp biquad low-pass filter 

Using our proposed approach, we can successfully 

classify all the faults, including the similar faults as mentioned 

above. By using ST processor, the difference of the contours 

for different faults becomes distinct. The features are obtained 

by principal component analysis and data normalization, after 

the S-transform of the responses of the circuits is available. 

The features are applied to NN and its outputs indicate the 

fault classes. The average difference feature vectors of 500 

Monte-Carlo runs when considering the three faults R6⇑ , R7

⇓ , and R9⇑  are presented in Fig.3, which shows that the 

differences are distinct.      

 

 
(a)The average differences feature vectors relating to v(out1) 

 
(b)The average differences feature vectors relating to v(out2) 

Fig.3. The average differences of feature vectors of 500 

Monte-Carlo runs when considering the three faults R6⇑ , R7

⇓ , and R9⇑  

(*: the average differences of feature vectors between R6⇑  

and fault free 

(o: the average differences of feature vectors between R7⇓  

and fault free 

(+: the average differences of feature vectors between R9⇑  

and fault free) 

To perform diagnosis for Fig.1, the work requires a two-

layer BP network with 15 inputs, 10 neurons in layer 1, and 3 

neurons in the output layer. The network was able to properly 

classify 100% of the test patterns.  

The BP network for Fig.2 is with 50 inputs, 36 neurons in 

layer 1, and 5 neurons in the output layer. We put R6⇑ , R7⇓ , 

and R9⇑  in three different ambiguity groups. We input the 

feature vectors to the NN after sampling the circuit response, 

running S-transform, calculating the amplitude of the ST 

output, and conducting PCA and data normalization. Training 

and testing data for fault free are randomly generated using 

Monte-Carlo method. The data for fault free is obtained by 

varying the circuit components to their nominal values with in 

their tolerances, and the data for fault classes are obtained by 

varying the circuit components to their faulty values 

respectively. For each fault pattern, we run Monte-Carlo 

analysis 1000 times, 500 for training data and the rest for 

testing data. Binary outputs are adopted here to classify the 

fault sets. The transfer functions of neural networks are a 

sigmoid function. The population size is 25, 1 2 2c c  , the 

maximum value of  v(t) is 0.9, the minimum error is 0.0001,the 

range of inertia weights  is [0.9,0.4],  the ranges of NN weights 
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and  bias for search are [-100,100] and  [-8,8],  respectively. We 

compare the proposed method with the conventional WT and 

BPNN method for analog fault diagnosis in the paper. The 

NNs are with the same structure and parameters. The results 

are shown in Table 1.  

Table 1: comparison of the proposed technique and WT 

techniques 

 

      circuit 

Accuracy based  

on WT(%) 

Accuracy based 

on ST (%) 

BPNN PSO  BPNN PSO  

Fig.1 94.72 95.13 95.03 95.22 

Fig.2 (case1) training 

failure  

training 

failure  

89.54 91.47 

Fig.2 (case2) 92.76 94.01 93.01 96.82 

case1: R6⇑ , R7⇓ , and R9⇑ is considered as a fault set 

case2: R6⇑ , R7⇓ , and R9⇑ is considered as three fault sets  

        Table 1 shows that the performance of our proposed 

technique is better than the wavelet based technique ([7]) for 

both circuits, especially for the circuit in Fig.2. We can 

correctly identify the faults R6⇑ , R7⇓ , and R9⇑ . However, 

the wavelet based technique cannot be trained to separate all 

the faults shown in Table I. The proposed approach leads to a 

higher correct classification of the test data for all circuits 

even when R6⇑ , R7⇓ , and R9⇑  are considered as three 

different fault sets. 

 

5   Conclusions 

        We have developed a ST preprocessor and PSO based 

neural network identifier based analog fault diagnostic method. 

The ST, as a combination of STFT and WT, has the similar 

form of STFT with more straightforward frequency information 

than WT because a time-frequency axis is used in ST rather 

than a time-scale axis in WT. All the features are extracted 

from the output of ST. The method significantly enhances the 

efficiency of the training phase and the performance of the 

fault diagnostic system. Our results clearly demonstrate the 

superiority of the method, which leads to higher correct 

classification of fault classes in example circuits in the 

presence of similar faults. The PSO based NN identifier leads 

to higher correct classification. 
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Abstract – This paper considers the problem of finding a 

minimum cost partitioning of a large logic circuit which is a 

collection of sub-circuits implementable with chips selected 

from a given library. Each chip in the library has a different 

price, area, and I/O pin. We propose a multi-way partitioning 

algorithm based on a simulated-annealing bi-partitioning. 

Chip set selection algorithm finds the sorted list of chip sets 

from minimum cost to maximum cost. Using the minimum cost 

chip set by chosen chip set selection algorithm, a multi-way 

partitioning algorithm will find a solution satisfied with area 

and pin constraints. We used MCNC benchmark circuits and 

the results satisfy the constrain conditions. 

 

Keywords: integrated circuit, MCNC benchmark, multi-way 

partitioning, simulated-annealing. 
 

1 Introduction 

As semiconductor’s integration is increased, we can 

integrate many modules into only one circuit. However, it 

may not integrate into one circuit in real case because of size, 

cost or chip complexity. Therefore, we sometimes face with 

the situation that we must partition to several chips from one 

chip. In this reason, multi-way partitioning problem has 

become very important for many years ago. Goals for the 

partitioning are to make chip’s partition satisfy area constraint 

and minimize interconnection between each chip. The reason 

to minimize interconnection between chips is that if the 

number of interconnections is increased, numbers of required 

pins are increased in each chip. This increases the size of 

entire system and degrades system efficiency. 

Most of the previous partitioning algorithm has 

concentrated on heuristic method [1]. Partitioning algorithms 

using heuristic method need a proper initial solution, because 

heuristic methods start with temporary solution [2]. Having a 

better initial solution can make the final solution better. In this 

paper, we used low cost chip set selection algorithm that we 

proposed for initial solution and partitioning problem is 

proposed when variety of chips of different sizes are given in 

a library. We solved the multi-way partitioning problem using 

the simulated annealing bi-partitioning heuristic algorithm 

repeatedly with the low cost chip set selection algorithm [3]. 

In Chapter 2, we define basic definitions and explain the 

algorithm to find most suitable chip set. In Chapter 3, we 

explain multi-way partitioning algorithm. Next, Chapter 4 

analyzes the results of the experiment. Finally, Chapter 5 is 

the conclusion. 

 

2 Lowest Cost  Chip Set Selection 

This experiment defines partition size beforehand and 

process multi-way partitioning of different size. Here, we 

consider chip’s cost according to its size so we decide on each 

block’s size to materialize in a lowest cost. 

Therefore, within greatest partition number, we find 

chip set with lowest cost. Then according to chips that makes 

up that chip set, multi-way partitioning is processed to get 

final partitioning result that satisfies each chip’s pin limitation. 

 

2.1 Basic Definition 

(Definition 1):  k number of partitioning, Pk = {C1, C2, … , 

Ck}, is done by k’s clusters, C1, C2, … , Ck.  At that instant, 

it gets relationship of C1C2…Ck = V. If k is 2, it 

becomes Bipartition problem.  

 

(Definition 2)signal net, or net: A collection of pins which 

must be electrically connected [4]. 

 

Fig. 1 is an example of partitioning. If a netlist of n module V 

= {v1, v2, …, vn} are given, partitioning is set by already 

defined k number of clusters that each module is assigned [5]. 

Minimized objective function is defined as F(Pk) and this is 

partitioning result’s cost function. Each cluster is assumed to 

be mutually exclusive. 

 

 

Figure 1 Example of partition to cluster 
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To express circuit’s netlist in most regular way is hyper 

graph, H(V, E).  Here, E = {e1, e2, … , em} is collection of 

signal net.  Each e is collection of modules that connects this 

net. In all graphs, it is assumed that eE, |e| 2. Weight 

function w:VR is used in each module’s area.  If it is 

expanded to clusters, it becomes W(C) = vcw(v) and 

another weight function, w’:ER can be defined by net. 

 

(Definition 3):  For each module v, nets that are adjacent to v 

are N(v) = {eE|ve}, and collection of modules neighboring 

v is expressed as M(v) = {wV|e v, we, vw}. 

 

(Definition 4):  Each signal net e is created by one source 

module S(e) and collection of destination modules D(e).  This 

allows knowledge of direction of the signal. 

 

(Definition 5):  Collection of Hyper-edge Cut due to cluster c 

is expressed as in next formula. E(c) = {eE s.t 0<|eC|<|e|}.  

Here, at minimum, if some of pins in net e are in cluster c, 

relationship, eE(c), is formed. 

 

2.2 Problem Definition 

Table 1 shows costs according to chip’s area.  As shown 

in Table 1, as chip’s area increases, cost also increases greatly.  

Especially, when area is increased from 1(cm2) to 1.56(cm2), 

die cost and packaging cost in greatly increased so that it 

becomes noticeable. System made with 1.56(cm2) can be 

made with two 1(cm2) chips so looking at Table 1, system can 

be made with lower cost.  

Most of the previous partitioning algorithm has 

concentrated on heuristic method [1]. Partitioning algorithms 

using heuristic method need a proper initial solution, because 

heuristic methods start with temporary solution [2]. Having a 

better initial solution can make the final solution better. 

 

2.3 Most Suitable Chip Set 

There can be many chip sets depending on number of 

types of chips and number of chips that consist chip set. 

According to Table 2, if there can be 8 types of chips, number 

of chip sets available as much as greatest number of partition 

are collection that are with some duplication.  Here, n is 

number of greatest partition. 

As n gets larger, number of available collection increases.  

As n gets larger, system speed will get lower so n must be 

kept in reasonable value. This value made to be determined by 

the user's discretion. Next are assumptions for algorithms for 

selecting chip set. In net list, all cell's area is 1. 

① Area between each chip's connection is ignored. 

② Chip's decrease in speed is ignored from greatest 

partition number input from chip.tec file. 

 

Each chip's factors, according to change in technology, 

like each chip's area, number of pins, and cost, are input from 

chip.tec file to get correct result.  As situation changes, 

contents can be altered so we can get results from latest data. 

Greatest partition number is chosen by the user. This was 

done so that user can pick degree of system's decrease in 

speed due to partition. 

 

2.4 Lowest Cost Chip Set Selection Algorithm 

 
 

While satisfying limitation of greatest partition number, 

to find lowest cost chip set, all chip sets that satisfies this 

condition have to get cost calculated (first step). For all the 

chip sets that are acquired through this, we get area (A) and 

cost (U).  In second step, chip sets that have smaller area than 

input netlist get ignored.  In third step, we find chip set that 

can materialize input netlist fastest that can use smallest 

partition. Its cost should be considered one of highest cost that 

can materialize input netlist.  In fourth step, remaining chip 

sets are sorted by cost. Chip sets that are with higher cost than 

given cost are eliminated. Through this way, remaining chip 

sets are considered for materialization. In sixth step, chip set 

with lowest cost is applied multi-way partitioning algorithm to 

find partition that satisfies pin limitation.  If it can’t be found, 

① All chip set (dj=(Aj,Pj,Uj) j=1,2,…,m) are put in array 

 – Dset={d1,d2,d3,…,dm} 

②  Eliminate all chip sets that has less area than Input 

circuit’s area (Ainput) from Dset. 

③  Among remaining chip set (dj={ c1,c2,…,ck}), where k 

is 4. minimum, find lowest chip set’s cost (Umin). 

④  Eliminate all chip sets (dj) from Dset where Umin＜¼ Uj. 

⑤  All remaining chip sets in Dset are arranged by cost. 

⑥  Select lowest cost chipset (dmin) to be multi-way 

partition.  When - dmin= { c1,c2,…,ck}), all chips get 

condition cj=( aj,pj,uj), (j=1,2,…,k) 

Table 2 Cost for several die size[6] 

Area 

(sq. cm) 

Die 

/Wafer 

Die yield 

/wafer 

Cost of 

die 

Cost 

to test die 

Packaging 

costs 

0.06 2778 79.72% $0.25 $0.63 $5.25 

0.25 656 57.60% $1.46 $0.87 $5.25 

0.56 274 36.86% $5.45 $1.36 $5.25 

1.00 143 22.50% $17.09 $2.22 $5.25 

1.56 84 13.71% $47.76 $3.65 $52.25 

2.25 53 8.52% $121.80 $5.87 $52.25 

3.06 35 5.45% $288.34 $9.17 $52.25 

4.00 23 3.60% $664.25 $13.89 $52.25 

 

Table 1 Number of chipset according to partition 

Maximum Partitioning Number Number of Chipset 

N=1 8 

N=2 36 

N=3 120 

N=4 330 

N=5 792 

N=6 1716 

… … 
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next lowest chip set is applied multi-way partitioning 

algorithm. 

 

3 Multi-Way Partitioning Algorithm 

In this thesis, problem that must be solved is multi-way 

partitioning problem. This problem must accept input of chips 

comprising of those satisfying given input netlist. It requires 

mostly at least three partitions. So we suggest algorithm that is 

altered appropriately from bi-partitioning algorithm to 

partitioning into number we want it to be partitioned. 

 

3.1 Initial Partitioning 

Basically, SA algorithm starts with temporary solution 

then finds best solution [7]. For this, initial solution is 

necessary.  Information that needs to be input are partition 

number, each partition's greatest area, and each partition's 

greatest number of pins. Conditions for initial solution are 

partition number and each partition's area limitation. To 

satisfy these minimum conditions, given netlist is voluntarily 

partitioned. It can be formed into two ways like Fig. 2 

depending how each block's cells are placed. 

 

 

Maximum Area 50
Current Area 50

(a) (b)

Maximum Area 50
Current Area 30

Maximum Area 50
Current Area 40

Maximum Area 50
Current Area 40

Figure 2 Initial partition 

 

If given netlist's area is 80, and chips are partitioned 

into two chips with area of 50, like Fig. 2 (a), it can be 

partitioned so that most of cells can be in one block, or like 

(b), it can proportionally placed according to each chip's 

greatest area.  In case of (a), in the beginning, cell's movement 

is limited but in case of (b), it's possible for easier movement.  

In case of (a), one side at greatest area limitation and the other 

is at lowest area limitation. Therefore, if cell from smaller side 

tries to move into larger side, it is limited. In this paper, for 

more free movement of cells, we applied method (b) for 

processing initial partitioning. 

 

3.2 Selection of New Solution 

 After initial partition, each block that was partitioned 

must satisfy minimum and maximum area condition by 

moving one cell for new solution. Here, one cell is voluntarily 

chosen.  However, in case if k partition, it can be moved to k-

1 blocks.  Here, requirements for new solution are lower 

number of cut set and high temperature even if number is high. 

Requirement for temperature may get lower as time passes but 

requirement for low number of cut set is in category of 

important condition.  Therefore, selection of new solution is in 

direction where one cell moving through k-1 blocks with most 

reduction in cut sets. This would give increase in chance of 

accepting new solution in early stage in SA algorithm and 

lowers solution space that is created for multi-way 

partitioning. From each cell's movement point, k-1 movement 

direction's cost is each calculated and decide to go to most 

advantageous one. However, this decision does not guarantee 

that new solution is going to result in better results. Blocks 

that are earned when netlist is partitioned into k, each blocked 

is called A1, A2, A3, ...,  Ak.  If one cell from A1 group is 

moving to different group, it's direction is becomes A2, A3, ...,  

Ak.  Here, cost change is defined as below.  Here, cost is rise 

in cut set number. 

 

3.3 Limitations That Final Solution Must 

Satisfy 

Partitioning result that used SA algorithm have goal of 

reducing number of cut set (pin number) so final result would 

be a solution that have lowest number of cut set.  However, if 

the result does not satisfy chip.tec file's pin limitation 

condition, we would not find solution that meets our demands. 

In this case, it comes to conclusion that it is impossible to find 

partition that fits input demands. 

Since algorithm's goal is to minimize total number of 

pins, even if each partition satisfies pin limitation, it can move 

to solution that has smaller pin number but it does not satisfy 

pin limitation in partial blocks.  So this means that in the end, 

it can reach solution that does not satisfy pin limitation. 

Like Fig. 3, if netlist of area 758 is initially partitioned 

into two, pin number is each 634 and 357. While partitioning 

is continued, it meets solution that meets input requirements 

and pin limitation in the middle. However, partitioning still 

goes on so that at the end, it does not satisfy conditions. Of 

course, in total, it is possible to get a case with required pin 

number is 14, which is small, but it does not satisfy pin 

limitation of each chip.  This thesis will solve this problem by 

continuously remembering solution with minimum number of 

pins that satisfies pin limitation during partitioning process. If 

final result does not satisfy pin limitation, output will be the 

solution that was memorized, which satisfies pin limitation. 

This case can be shown in result like Table 3 using t2 netlist.  

This case can be shown in result like Table 3 using t2 

netlist. As shown in Table 3, final result's block 4 exceeds pin 

limit of 120.  Therefore, it is impossible to be materialized.  

However, result in the middle satisfies pin limitation. Program 

will maintain such result in the middle so when final result 

does not satisfy pin limitation, output will be the result in the 

middle. 

celA1, A2:  cost of A1's cell is moving to group A2 

celA1, A3:  cost of A1's cell is moving to group A3 

netA1, B1: rise of net B1's cut set when one of A1's cell is 

moving 
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Chip area: 500
Cell area: 486

Pin: 200
Current Pin:634

Chip area: 500
Cell area: 486

Pin: 200
Current Pin:198

Chip area: 500
Cell area: 486

Pin: 200
Current Pin:182

Chip area: 280
Cell area: 272

Pin: 120
Current Pin:357

Chip area: 280
Cell area: 272

Pin: 120
Current Pin:120

Chip area: 280
Cell area: 272

Pin: 120
Current Pin:121

Input Netlist 
area: 758

 

Figure 3 The relationship of the final solution with the final 

result 

 

3.4  Simulated Annealing Algorithm 

c(V1, V2) = |{{u,v}∈E:u∈V1 & v∈V2}| + α(|V1|-|V2|)
2 
  (1) 

c(V1, V2) = |{{u,v}∈E:u∈V1 & v∈V2}| + α*∑fi             (2) 

Cost function applied to partitioning in SA[8], is equal 

to (1).  Using this formula, during partition, as each block's 

area gets bigger, cost will get bigger. This would limit cell's 

free movement so it will downgrade solution's quality. In 

more improved version, SA[9], tried to fix this by making cost 

function to be (2). By making cell to freely move possible in 

between each block's area's Min and Max, final partitioning 

result becomes better. Fig. 4 is multi-way partitioning 

algorithm using simulated annealing. The most suitable chip 

set which is selected in previous level is partitioned to another 

chip set using the Fig. 4 algorithm. 

 

4 Experimental Results 

Program is written in C and circuit that was applied for 

this experiment is MCNC Benchmark circuits. Table 4 shows 

circuits that were used in the experiment. Most of circuits 

output results with first selected chip set but in case of 

industry2, it could not find satisfactory results from many chip 

sets.  

Table 5 shows result when same information is used 

with maximum partitioning number of 4 and 6. Basically, as 

number increases, arrangement can be created with lower cost.  

Especially in case of t5.net, as greatest partitioning number is 

increased, cost is greatly reduced.  However, as partitioning 

number is increased, circuit speed would decrease so it must 

be selected appropriately. 

 In case of industry2.net, selected chip set could not be 

partitioned so, many multi-way partitioning attempts occurred 

so this number would affect program process time.  So when 

partitioning number is 6, unlike other cases, it would take less 

processing time. 

 

 

Figure 4 Simulated annealing algorithm[5] 

 

5 Conclusion 

The proposed algorithm is verified by C language with 

MCNC benchmark circuit. The C program is comprised of 

two big parts. First part is the algorithm that finds lowest cost 

chip set. Second part is algorithm that uses SA algorithm to do 

multi-way partitioning. In algorithm, input are net list file and 

library file. Outputs are each chip’s area and result of 

partitioning that satisfies each chip’s area and pin limitation. 

User inputs currently possible type of chip information 

through library to let program get information of each chip’s 

size, pin number, and cost in given library. Program would 

find chip set with lowest cost with given information. That 

chip set would be input into multi-way partitioning algorithm. 

Multi-way partitioning used SA algorithm through new 

Table 3 Number of chipset according to partition 

Block 
Maximum 

Pin 
Initial Pin 

Middle of 

Process 
Final result 

Blk 0 200 891 93 93 

Blk 1 120 633 88 86 

Blk 2 120 672 34 34 

Blk 3 120 614 50 51 

Blk 4 120 696 120 121 

  dissatisfaction satisfaction dissatisfaction 
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neighbor structure. In process of multi-way partitioning, there 

could be result that satisfies pin limitation. It would be 

memorized so when final result does not satisfy pin limitation, 

even if it has more pins, result that satisfies pin limitation 

would be chosen as output. From partitioning algorithm, if 

result does not satisfy pin limitation, it is decided that given 

chip set cannot partitioned. Next lowest cost chip set would be 

then chosen for partition. It would repeat until chip set that 

satisfies pin limitation to get final result. Through experiment 

results, most got output that all chips’ limitation is satisfied 

from first set of chip set. This result is partitioned system with 

lowest cost. 
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Table 4 MCNC benchmark circuits 

Circuit Pin Number Net Number Cell Number 

p1 2908 902 833 

p2 11219 3029 3014 

t2 6134 1720 1663 

t3 5807 1618 1607 

t4 5975 1658 1515 

t5 10076 2750 2595 

t6 6638 1641 1752 

19ks 10547 3282 2844 

Industry2 48158 13419 12637 

S15850P 24712 10383 10470 

S38584P 55203 20717 20995 

S9234P 14065 5844 5866 

structP 5471 1920 1952 

 

Table 5 Partitioning cost with maximum partition number 

Circuit 

Maximum Partition Number 

4 6 

cost area time cost Area time 

p1 39 840 11.7 39 840 26.9 

p2 438 3030 65.1 306 3185 408.5 

t2 94 1780 29.8 87 1745 107.8 

t3 89 1625 31.7 78 1680 61.9 

t4 80 1560 31.6 73 1525 63.4 

t5 280 2625 66.7 143 2625 99.9 

t6 94 1780 41.7 92 1900 59.7 

19ks 368 2905 69.4 162 3000 118.5 

Industry2 4918 12840 13617.4 4910 12650 13175.1 

S15850P 4081 10560 706.0 3597 10590 631.5 

S38584P 8162 21120 1375.4 8162 21120 1251.2 

S9234P 1552 6120 176.4 1008 5905 272.9 

structP 108 2000 32.9 101 1965 60.8 
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Abstract - Internet of Things is the network of 
interconnection between people and things, and between 
things themselves by embedding additional gadgets, such as 
sensors, RFID tags. Mass data are usually collected, 
transmitted, processed and stored in Internet of Things. In 
this paper, a novel sampling method, i.e. compressed 
sensing, is used in processing mass data in Internet of 
Things. Compressed sensing can significantly lower the 
network communication burden by reducing sampling rates 
of sensors, but it is nonadaptive and its algorithm is high 
computational complexity. For this reason, we introduce 
redundant dictionary into compressed sensing for 
increasing the flexibility and put forward the idea that is 
parallel processing of compressed sensing algorithm in 
order to improve computing speed in this paper. In the 
latter part of this paper, we describe the framework of 
parallel compressed sensing algorithm and point out our 
current experimental results and future work. 

Keywords: Internet of Things; compressed sensing; 
parallel processing; optimal recovery; adaptive 

 

1 Introduction 
 The term Internet of Things (IoT), also known as Web 
of Things, was first used in 1999 [1]. In 2005, The Internet 
of Things [2] of ITU reported that: the Internet of Things is 
“any time, any place, and any things connection” and 
“ubiquitous networks, ubiquitous computing”. In brief, 
Internet of Things is the Internet of things to things by 
embedding intellisense system, such as RFID [3], sensor 
technologies. In Internet of Things, at first, the information 
about things are acquired by intellisense system; and then 
the data will be sent to data processing server through a 
variety of transmission networks; the next, these data are 
processed in the data processing server; as a result, the 
interactions of Human to Human, Human to Thing and 
Thing to Thing will be implemented [2]. This is similar to 
wireless sensor network (WSN) [4], and somebody think 
that Internet of things is wireless sensor network, but they 
are different, such as network architecture [5], [6]. 

 Generally, the wireless sensor network protocol 
consists of five layers: application layer, transport layer, 

network layer, data-link layer, and physical layer; but the 
structure of Internet of Things can be classified into three 
layers [7] as shown in Figure 1. Perception layer can 
identify and acquire information of things; the primary 
function of transport layer is data transmission by various 
communication networks; and sundry different applications 
can be achieve in application layer. 

Application
Layer

Industrial
Monitoring

Mine
Safety

Smart
Home

Environmental 
Monitoring … …

Traffic
Monitoring

Transport
Layer

Internet
Mobile

Network

Information 
Center of IoT
Management 
Center of IoT … …

Private
Network

Perception
Layer

Bar Code 
Reader
RFID

Sensors

Sensors
Access

Network … …

Intelligent
Terminal

 
Figure 1.  The structure of Internet of Things 

 Internet of Things is a popular scientific and technical 
terminology and it has been classified as national key 
technology in many countries. Internet of Things can be 
used for various application areas, such as mine safety, 
smart home, forest fire detection, traffic monitoring and 
logistics monitoring. Figure 2 shows the examples of 
application areas of Internet of Things. 

IoT of
Traffic

Monitoring

… …

IoT of
Smart Home

IoT of
forest fire
 detection

Internet

The simple IoT of mine safety
Alarm   Sensor

Mine

Wireless 
Network

Alarm   Sensor

Mine

Alarm   Sensor

Mine

Monitor Server

Monitoring Center
 

Figure 2.  The applications of Internet of Things 

 There are usually mass data in Internet of Things. For 
example, a large-scale intelligent traffic or real-time 
ecological monitoring system, the amount of data generated 
can be achieved TB every day and PB each year. The 
existence of mass data would seriously affect sensors life, 
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Internet of Things coverage, and data processing and 
storage capacity of Internet of Things. To reduce the 
amount of data in Internet of Things, compressed sensing 
that proposed by Donoho [8], [9] and Candès [10], [11] is a 
good choice. Compressed sensing can significantly lower 
the network communication burden by reducing sampling 
rates of sensors, but it is nonadaptive and its algorithm is 
high computational complexity. So, it is necessary that 
parallel computing [12], [13] of compressed sensing 
algorithm for improving computing speed and redundant 
dictionary be introduced into compressed sensing for 
increasing the flexibility. 

 The remainder of this paper is organized as follows: 
In Section 2, we introduce compressed sensing theory. A 
new compressed sensing algorithm framework is the 
subject of Section 3. In the end, the conclusions and future 
study are given in Section 4. 

2 Compressed sensing 
 Compressed sensing or compressive sampling (CS) is 
a new sampling mean that data sampling and compressing 
can be done simultaneously. Compressed sensing goes 
against the common principle (i.e. Nyquist density 
sampling theory), and it can sample at a low rate and later 
reconstruct the full-length signal based on numerical 
optimization algorithm [11], [14]. 

2.1 Compressed sensing theory 
 We suppose that there are an one-dimensional linear 
vector XN×1 (which can be signal, image, etc) and a sparse 
transformation basis ΨN×N=[ψi, i=1, 2,…, N]. The 
transformation basis are assumed to be orthonormal basis at 
the beginning of compressed sensing be proposed. Then, 
we can obtain the conversion coefficient Θ about vector X 
based on transformation basis Ψ: 

Θ=ΨTX        (1) 

where Θ= [θi=<X, ψi>=ψi
TX, i=1, 2,…, N] is sparse. Here, 

the sparse means that the vast majority entries of Θ are zero 
[15]. 

 The design of measurement matrix ΦM×N (M<<N) is 
the next work. Φ must be independent of the transformation 
basis Ψ. Observation data Y about vector X would be 
obtained from the following equations: 

Y=ΦΘ=ΦΨTX        (2) 

where Y is the compressed data. Matrix representation of 
the equations (2) is shown in Figure 3. 

=

=

Y Φ Θ

Φ ΨT X

Y=ΦΘ=ΦΨTX
 

Figure 3.  Matrix representation of observation vector 

 According to compressed sensing theory, we can 
reconstruct original signal X from the observation data Y 
via solving the 0-norm optimization problem: 

min || Θ ||0               (3) 
s.t.  ΦΘ=ΦΨTX= Y 

where || Θ ||0 is the number of nonzero entries in Θ. 

 The computing process of compressed sensing is 
shown in Figure 4: 

original signal
XN× 1

sparse transform
Θ=ΨTX 

observation data
Y= ΦΘ

reconstruction
min || ΨTX ||0
s. t. ΦΨTX= Y

  
sampling

processing
transmission

 
Figure 4.  Theoretical framework of compressed sensing 

2.2 Critical issue 
 The compressed sensing theory involves three key 
issues [16], [17]: 

2.2.1 Sparse representation 
 Sparse representations of signal can be attributed to 
design of transformation basis. The transformation basis is 
orthonormal basis at the beginning of compressed sensing 
be proposed and it is nonadaptive. Peyré expand the 
requirement of transformation basis to orthogonal basis 
dictionary [18] that is formed by multiple orthogonal bases, 
and it can be adaptive to find an optimal orthogonal basis 
even unknown any information about signal in the 
dictionary. 

2.2.2 Measurement matrix 
 The equations (2) are underdetermined and generally 
we cannot solve it. But if we suppose that ΦΨT obey the 
restricted isometry property (RIP) [19], the equations (2) 
can be solved either exactly or accurately. The necessary 
and sufficient condition of RIP is transformation basis Ψ 
independent of measurement matrix Φ. 

 Gaussian stochastic matrix [20] is independent of 
most of matrix composed of orthogonal basis and it can act 
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as measurement matrix. In addition to Gaussian stochastic 
matrix, Noiselet matrix [21] and Rademacher stochastic 
matrix [22] obey the RIP too. But now, any measurement 
matrix can not guarantee 100% accurate reconstruction 
signal, the design of measurement matrix is still a hot topic 
of research. 

2.2.3 Reconstruction 
 Accurate and exact reconstruction signal, looking for 
exact or approximate object X̃ having coefficients with 
smallest 0-norm from the expression (3), is a nonlinear 
optimization problem. We almost can not solve it because 
its solution is NP-hard [20]. However, a new theory was 
proposed by Donoho, Chen and Saunders [23]: when 
measurement matrix Φ was independent of transformation 
basis Ψ, we can solve the expression (4) instead of 
considering the expression of (3): 

min || Θ ||1    s.t. ΦΘ=ΦΨTX= Y      (4) 

where the expression of (4) is a convex optimization 
problem and we can solve it as a linear programming 
problem.  

2.3 Reconstruction algorithm 
 Currently, the compressed sensing reconstruction 
algorithms can be grouped under three categories [24]: 
greedy algorithm, convex relaxation method, combination 
algorithm. 

2.3.1 Greedy algorithm 
 Greedy algorithm is iterative algorithm. It can 
gradually approache the original signal by selecting a local 
optimal solution in each iteration. This family of greedy 
algorithm includes Matching Pursuit (MP) [25], Orthogonal 
Matching Pursuit (OMP) [26], Stagewise Orthogonal 
Matching Pursuit (StOMP) [27] and Regularized 
Orthogonal Matching Pursuit (ROMP) [28], etc. 

2.3.2 Convex relaxation method 
 Convex relaxation method is linear programming 
method for minimization 1-norm and it can solve original 
signal by transforming non-convex problem into a convex 
problem. This family of convex relaxation method includes 
Basis Pursuit (BP) [23], Gradient Projection for Sparse 
Reconstruction (GPSR) [29], Iterative Thresholding (IT) 
[30], Bregman Iterative (BI) [31], etc. 

2.3.3 Combination algorithm 
 Combination algorithm can quickly reconstruct 
original signal by group testing. This family of 
Combination algorithm includes Fourier representations 
[32], Chaining Pursuit (CP) [33], Heavy Hitters on Steroids 
Pursuit (HHSP) [34], etc. 

3 Parallel compressed sensing 
 In this section, we will describe a new compressed 
sensing algorithm framework and its technical details. 

3.1 Parallel compressed sensing algorithm 
framework 

 Compressed sensing is a sampling method to achieve 
data compression while data is sampled, and the method 
can significantly reduce the amount of sample data in 
Internet of Things. However, everything has two sides; 
compressed sensing algorithm has also many inadequacies. 
For example, the transformation basis is nonadaptive, it 
cannot adapt the change of the signal types; compressed 
sensing algorithm is high computational complexity, 
especially the reconstruction algorithm. Such as BP 
algorithm, when length of signals is 8192, calculation scale 
of reconstruction is equivalent to solving linear 
programming problem with 8192×262144 [23]. 

 According to our study, we propose an improved 
algorithm framework as shown in Figure 5: 

original 
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XN× 1
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Θ=ΨTX

observation 
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reconstruction
min || ΨTX ||1
s. t. ΦΨTX= Y
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Parallel 
Computing
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Figure 5.  Theoretical framework of parallel compressed sensing 

 Compared with original compressed sensing 
algorithm, the new algorithm adds tow steps of redundant 
dictionary construction and transformation basis selection, 
and parallel computing is introduced into the new 
algorithm framework. In the section 3.2, we will further 
describe the parallel algorithm framework in detail. 

3.2 Detailed description of parallel algorithm 
framework 

3.2.1 Parallel computing of compressed sensing 
 Parallel computing [35] is a form of computation and 
carries out many calculations simultaneously. The principle 
of parallel computing is that many large problems can be 
divided into smaller parts. High-performance computing 
[35] is often regarded as parallel computing, because it 
cannot do without the support of parallel processing. Now, 
parallel computing has become the dominant paradigm in 
computer architecture, mainly in the form of multicore 
processors. In general, multicore parallel processing can 
select CPU programming or GPU programming [13]. 
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Recently, the development of hybrid systems on the CPU 
and GPU is attracting our more and more attention. 

 Compressed sensing theory involves a large number 
of matrix operations, such as selection of transformation 
basis, sparse representation of signal, data compression and 
reconstruction signal. This facilitates the parallel 
processing of compressed sensing algorithm. And 
compressed sensing algorithm is high computational 
complexity, especially the reconstruction algorithm. So, 
parallel processing of compressed sensing algorithm is 
necessary and our study will focus on it. Parallel processing 
can involve in all the operations of compressed sensing 
algorithm, such as redundant dictionary construction, 
transformation basis selection, sparse representations, 
observation data obtainment, and reconstruction, would be 
implemented in the parallel algorithm framework. 

3.2.2 Redundant dictionary 
 Sparse representation of signal is premise and base of 
the compressed sensing applications and it is determined by 
the transformation basis. We hope that the representation 
can adapt the change of the signal types but orthonormal 
basis is nonadaptive in original compressed sensing 
algorithm and the orthogonal basis dictionary cannot solve 
the problem.  

 Our selection about transformation basis is redundant 
dictionary in the parallel algorithm framework. Sparse 
representations that are based on redundant dictionary [36] 
are new theory of signal representation. In redundant 
dictionary, traditional orthogonal basis functions are 
replaced by over-complete redundancy function system. 
The use of redundant dictionary increases the flexibility of 
signal sparse representation, and we can choose 
transformation basis depending on the different needs. Now, 
we are studying the construction algorithm of redundant 
dictionary to fit sensors. In general, the design of redundant 
dictionary needs to spend a lot of computing and its parallel 
processing would be study. 

3.2.3 Measurement matrix and observation data 
 According to Section Ⅱ, Ψ must be independent of Φ 
in compressed sensing. Stochastic matrix, such as Gaussian 
stochastic matrix, Rademacher stochastic matrix, is widely 
used as measurement matrix Φ. However, in practice, it is 
difficult to apply in large-scale problems because of the 
high computational complexity of stochastic matrix. 

 In compressed sensing theory, data compression is to 
calculate the observation data Y by the equations (2). In 
order to fast to process mass data, it is important to 
construct adaptive measurement matrix based on sampling 
mechanism of sensor and design fast calculation method of 
the equations (2). Parallel processing, clearly, can provide 
support for these. 

3.2.4 Reconstruction algorithm 
 All compressed sensing reconstruction algorithms can 
be grouped under three categories: greedy algorithm, 
convex relaxation, combination algorithm. Parallel 
processing of the reconstruction algorithm can improve the 
calculation speed, reduce the execution time, and enhance 
real-time. In our experiments, under the same conditions, 
the reconstruction algorithm used dual-core CPU than 
single-core CPU can save the execution time of 
approximately 40% and 4-core CPU than single-core CPU 
can save the execution time more than 70% (shown in 
Figure 6), then we think that parallel reconstruction 
algorithm is feasible. The experiments of GPU parallel 
computing have not been completed and we are working on 
it. In addition, the hybrid systems on the CPU and GPU and 
cloud computing platform are also worth trying. 

 
Figure 6.  Execution time of OMP algorithm 

 According to our experience and studies, combination 
algorithms are more suitable for parallel computing in the 
three families of algorithms. The next work, we will focus 
on studying the mainstream combination algorithms, 
finding suitable algorithms to handle mass data and 
improving appropriately these algorithms. In the last, one 
of the most appropriate algorithms will be selected and 
achieved parallel processing. 

3.2.5 Sensors 
 In our parallel algorithm framework, the terminal 
sensors were not concerned. As the basic data acquisition 
equipment, improving sensors performance will greatly 
promote the development of Internet of Things because the 
computing power and storage capacity of sensors are so 
limited. We have two ideas to improve the end of data 
collection: 

 1) Compressed sensing sensors: The compressed 
sensing sensors can be classified according to the 
application environment. Different sensors configure 
different simple redundant dictionary, and these redundant 
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dictionary can only adapt to limited choices. Sensors can 
compress sample data by compressed sensing system and 
send compressed data to backend server. Backend server 
can support parallel computing and any compressed 
sensing algorithms about all redundant dictionaries. In this 
way, the data transmission burden can reduced and 
computing speed can be improved. 

 2) Other sensors: Data processing platform of 
compressed sensing is added near the sensors. Each data 
processing platform can receive sample data from its 
neighboring multiple sensors. The sample data are 
compressed on data processing platform, and then 
transferred to the backend server. The server can support 
parallel computing and any compressed sensing algorithms 
about all redundant dictionaries, too. 

4 Conclusions 
 In this paper, we try to process mass data in Internet 
of Things by using the compressed sensing theory, and 
propose a new idea that parallel computing of compressed 
sensing algorithm. In order to improve the adaptability of 
compressed sensing, redundant dictionary is added in the 
parallel compressed sensing algorithm framework. But we 
have not implemented a complete algorithm, which will be 
our next study work. In addition, it is a good research that 
compressed sensing algorithm be done on cloud computing 
platform and we will try it. 
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Parallel Random Search Algorithm for Large-Scale 
Constrained Pseudo-Boolean Optimization Problems

L.A. Kazakovtsev
Department of Information Technologies, Siberian State Aerospace University, Krasnoyarsk, Russia

Abstract -  Random search methods are successfully  
implemented for variety of discrete optimization NP-hard  
problems when any exact solution approaches cannot be  
implemented due to large computational demands. Initially  
designed  for  unconstrained  optimization,  the  probability  
changing  method  gives  an  approximate  solution  for  
various  linear  and  non-linear  pseudo-Boolean  
optimization problems with constraints. Although, in case  
of  large-scale problems, the computational demands are  
also significant and the precision of the result depends on  
the spent time. For constrained optimization, the search of  
any feasible solution may take significant computational  
resources.

In this paper, we consider an approach to developing  
parallel versions of the algorithms based on the modified  
probability  changing  method  for  constrained  pseudo-
Boolean  optimization.  Optimization  algorithms  are  
adapted for  the systems  with shared  memory (OpenMP)  
and  cluster  systems  (MPI).  The  parallel  efficiency  is  
estimated  for  the  large-scale  non-linear  pseudo-Boolean  
optimization  problems  with  linear  constraints  and  
travelling salesman problem.

Keywords: Discrete optimization, parallel computing, MPI 

1 Large-scale pseudo-Boolean 
optimization problem

Most  exact  solution  approaches  to  the  problem  of 
discrete (combinatorial)  optimization (knapsack problem, 
the traveling salesman problem etc.) are based on branch-
and-bound  method  (tree  search)  [1,2,5].  Unfortunately, 
most of such problems are in the complexity class NP-hard 
and  require  searching a  tree  of  the exponential  size and 
even parallelized versions of such algorithms do not allow 
us to solve some large-scale pseudo-Boolean optimization 
problems  in  acceptable  time  without  significant 
simplification of the initial problem.

The  heuristic  random  search  methods  do  not 
guarantee any exact solution but random search methods 
are statistically optimal.  I.e.  the percent  of  the problems 
solved  “almost  optimal”  grows with  the  increase  of  the 
problem dimension [1]. 

Let's consider the problem:

F  X =∑
i=1

N⋅V

a i x i∑
i=1

N⋅V

ci x imax; (1)

∑
i= 1

N⋅V

bik x i≤Bk∀1≤k≤N constr (2)

∑
i=l⋅V −1 1

l⋅V+ 1

x i≤1∀1≤l≤N; . (3)

Here,  a i ,ci ,b i 1≤i≤N⋅V   are some constants, 
x i1≤i≤N   are  Boolean  variables.  The  objective 

function is non-linear.
The  real  large-scale  problems  have  sometimes 

millions  of  variables.  For  example,  the  problem  of 
assortment planning of the retail trade company [6] may 
include  thousands goods names to be selected which can 
be shipped from hundreds suppliers and have 3-10 variants 
of retail price. In general, problems of such kind can be 
solved only with random search algorithms.

Being  initially  designed  to  solve  the  unconstrained 
optimization  problems,  the  probability  changing  method 
(MIVER)  is  a  random search  method  organized  by  the 
following common scheme [1,2].

1. k=0,  the  starting  values  of  the  probabilities 
Pk={pk1,  pk2,  ...  ,  pkN}  are  assigned  where  pkj=P{xj=1}. 
Correct  setting of  the the starting probabilities  is  a  very 
significant  question  for  the  constrained  optimization 
problems. 

2. With  probability  distributions  defined  by  the 
vector  Pk,  we generate  a  set  of  the  independent  random 
points Xki.

3. The function values in these points are calculated: 
F(Xki).

4. Some  function  values  from  the  set  F(Xki)  and 
corresponding points Xki are picked out (for example, point 
with maximum and minimum values).

5. On  the  basis  of  results  in  item 4,  vector  Pk is 
modified.

6. k=k+1, if k<R then go to 2. This stop condition 
may differ.

7. Otherwise, stop.

To be implemented for the problems like (1-3), this 
method has to be modified. The modified version of the 
variant  probability method,  offered in [6,7]  allows us  to 
solve large-scale problems with dimensions up to millions 
of Boolean variables.

In  case  of  the  large-scale  problems,  even  the 
calculation of the linear objective function takes significant 
computational resources. The number of constrains usually 
also grows with the increase of the problem dimension. So, 
the calculation of the objective function and the constraints 
is a very large computational problem if it is repeated lot of 
times. 
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Figure 1. Parallel algorithm for systems with shared memory

That  is  why,  the  distribution  of  the  computational 
tasks  between the parallel  processors  or  cluster  nodes is 
very important. 

In  this  paper,  we  do  not  consider  greedy  search 
algorithms (which are deterministic or also randomized [8, 
10]) though they are often used to improve the results of 
the random search methods as the final step of them.

Also,  we  do  not  consider  the  parallel  genetic 
algorithms  [11]  though  some  approaches  offered  for 
genetic algorithms may be implemented for random search 

algorithms parallelization.
Here,  we  offer  an  approach  of  adaptation  of  the 

existing programs realizing the random search methods of 
constrained  pseudo-Boolean  optimization  to  be 
implemented in the parallel systems.

2 Serial version of the algorithm and 
its parallelization with OpenMP

The scheme of the algorithm for the serial systems is 
shown in Figure 1, variant 1.
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At  the  step  of  initialization,  all  the  variables  p 
(components of the probability vector  P) are set  to their 
initial  values  (0<pi<1  ∀ pi∈P ).  Since  our  algorithm 
realizes the method of constrained optimization, the initial 
value  of  the  probability  variables  is  sometimes  very 
important. Then, we generate the vectors  X of optimized 
boolean variables.  In our case of constrained problem of 
knapsack type, the large  values of vector  P components 
generate  the  values  of  X which  are  out  of  the  feasible 
solutions area due to the constraints (9,10).  Due  to  the 
constraints  (3),  the  optimal  initial  values  of the vector P 
components do not exceed 1/(L+1) [7]. 

We set the initial values of the vector P to 1/(L+1) but 
we  have  to  reduce  this  value  if  several  starts  of  our 
algorithm give us no results in feasible solutions area. This 
process is not illustrated in the Figure 1 for the simplicity.

Instead of maximum number of steps (M in Figure 1), 
we can use the maximum run time as the stop condition. In 
some cases, it is reasonable to use the maximum number of 
steps which do not give us the result better than previous 
ones as the stop condition. 

In the cycle (i=1,N), we generate the set of N vectors 
Xki in accordance with the probability vector  P. Then, the 
objective  function  is  calculated  for  each  Xki.  Also,  we 
calculate the values of the left parts of our constraints, and 
introduce  the  second  objective  function  f p (penalty 
function): 

f ki =F P  X =C PENALTY ∑
k=1

N CONSTR

F Pk  X  ; (4)

f ki
P =F Pk  X ={

0,∑
i=1

N⋅V

b ik≤Bk ;

∑
i=1

N⋅V

b ik

Bk

,∑
i= 1

N⋅V

bik >Bk . }  (5)

Here, CPENALTY is some coefficient. If some estimation 
of  the  maximum  value  of  the  objective  function  is 
available,  we  can  use  it  as  the  value  of  the  coefficient 
CPENALTY. For linear objective functions:

CPENALTY=∑
i= 1

N⋅V

∣ai∣ . (6)

The modified objective function f M is the sum of the 
objective function and penalty.

When all the values of fki and f M
ki  are calculated, we 

choose the best (maximum) value for fM
ki and, if there were 

the  variants  of  the  vector  Xki which  satisfy  all  the 
constraints (f p

ki=0) then we choose the maximum value of 
the objective function fki  for that variants of the vector Xki.

In case of the constrained optimization, we have to 
use a special  method of adaptation of  the vector  P.  The 
solution of different practical tasks shows the best result if 
we  use  the  multiplicative  adaptation  with  rollback 
procedure [2,6]. In this case, the components of the vector 

P are never set to the value of 0 or 1 which may cause that 
all the further generations of the  X vector have the same 
value of the corresponding component which does not give 
the feasible solution due to constrains (3).

pk , j={
p k−1 , j⋅d , xkj

max
=1∧xk j

min
=0∧p k−1 , j0.5 ,

1−
1−pk−1, j

d
, x kj

max
=1∧x kj

min
=0∧p k−1 , j≥0.5 ,

p k−1 , j

d
, xkj

max=0∧xkj
min=1∧p k−1  , j0.5 ,

1−1−p k−1 , j ⋅d , x kj
max=0∧x kj

min=1∧p k−1 , j≥0.5 ,

p k−1 , j , xkj
max

=x kj
min .

}
    (7)

Here,  d is  the  adaptation  coefficient.  In  case  of 
multiplicative adaptation, it  does not depend on the step 
number  k.  In  this  case,  the absolute value of  adaptation 
step depends on the corresponding value of  pkj.

After several steps, the values of  P vector elements 
are close to 0 or 1 and the decrease of the adaptation step 
(d) results in generation of the similar vector X exemplars 
which correspond to some local maximum. The rollback 
procedure  is  helpful  to  avoid  that  situation.  It  sets  the 
values of  P vector and its adaptation step  dk   to initial (or 
other) values. In simplest case, rollback is performed after 
several  steps  which  do  not  improve  the  best  objective 
function value.

The  best  results  are  demonstrated  with  methods  of 
partial  rollback  procedure  which change some part  of  P 
vector components or change all  the components so that 
their new values depend on previous results. We can use 
the following rollback formula:

pkj = (pk-1 j  +qk p0 )/(1+qk), if pk-1 j <p0. (8)

Here,  p0   is  the initial  value of the probability.  The 
coefficient  qk may be constant  or vary depending on the 
results of previous steps. For example, it may depend on 
the  quantity  of  the  steps  which  do  not  improve  the 
maximum result (sm).

qk = w / sm. (9)

The  weight  coefficient  w has  to  be  chosen 
experimentally.

In case of constrained optimization, the choice of the 
initial value  p0 can be very important. In some cases, the 
incorrect initial value causes the generation of X vector sets 
that  lay  out  of  the  feasible  solutions  area.  After  several 
steps, the penalty function minimization process results in 
adaptation of  P vector which allows to generate  X vector 
exemplars  that  satisfy  our  constraint  conditions.  But  the 
rollback  procedure  returns  the  probability  vector  to  its 
initial (usually incorrect) value. Let's  consider a simplest 
example.  Let  our problem have only one constraint  like 
that:

b1x1+b2x2+b3x3 + ... +bDxD < B. (10)

Here,  D is the dimension of our problem (D=N V). 
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The elements of the vector X at the first steps are generated 
so that it is set to the value of 1 with probability  p0. The 
expectation of the left part of (10) is

M= p0b1+p0b2+p0b3 + ... +p0bD  = 
 = (b1+b2+b3 + ... +bD) p0.  (11)

The maximum values  of  the  objective  function  are 
usually achieved at the points where the condition is barely 
satisfied  (b1x1+b2x2+b3x3 +  ...  +bDxD ~= B  in  our  case). 
Therefore, the optimal value of the initial probability is

p0 = B/(b1+b2+b3 + ... +bD). (12)

The negative effect of the rollback procedure can be 
reduced by adaptation of the initial value of p0: 

p0 k = (p1 k -1+p2 k -1 +...+pD k-1)/D. (13)

This version of rollback procedure is most actual in 
case of partial rollback which  performed at each step of 
our  algorithm.  The  implementation  of  this  kind  of 
adaptation&rollback procedure is described below for the 
parallel version of the optimization algorithm for systems 
with  no-remote memory access (clusters).

The adaptation of  our  algorithm for  multiprocessor 
systems  with  shared  memory  can  be  performed  by  the 
parallel  generation of the exemplars of the  X vector and 
their  estimation.  The  scheme  of  that  version  of  our 
algorithm is shown in Figure 1, variant 2. If our system has 
NP processors, the cycle of generation of  N exemplars of 
the vector  X can be divided between the processors. Each 
processor has to generate N/Np exemplars of the vector  X 
and calculate the value of the objective function, left parts 
of  the  constraint  conditions  and  calculate  the  modified 
objective function values.

Organizing  of  the  parallel  thread  takes  significant 
computational  expenses.  In  [14],  they  estimate  that 
expenses as 1000 operations of real number division. The 
experiments  at  4-processor  system  with  linear  100-
dimension problem (105 constraints) show that the parallel 
version runs 2.8 times faster than the serial one.

3 Version for clusters

Our  experiments  [6,7]  with  adaptation  of  random 
search  discrete optimization algorithms [1,2]  for  parallel 
execution  gave  us  rather  effective  results  with  use  of 
multiprocessor systems with shared memory and OpenMP 
[14].  But  the  intensive  data  interchange  in  running 
mechanisms of MPI reduce the efficiency of the realization 
of the same algorithms for PVM and MPI clusters when 
the number of the nodes increases. That issue makes the 
usage  of  the  computing  cluster  ineffective  even  in 
comparison with low-cost multi-core systems.

For testing purposes, we used the following form of 
the objective function and constraints:

F  X =∑i= 1

N⋅V

∑
j= 1

V

a
ij

x
ij∑i=1

N

1−c
i
x ∑

j=1

V

x
ijmax; (14)

with constraints:

{
∑
i=1

N

∑
j= 1

V

b
ij1

x
ij
≤B

1
;

∑
i= 1

N

∑
j=1

V

bij2 x ij≤B2 ;



∑
i=1

N

∑
j=1

V

bijNConstr
xij≤BN Constr

;
} (15)

∑
j= 1

V

x ij≤1∀1≤i≤N . (16)

The coefficients in the constrains in the test set are 
generated  so  that  the  feasible  solutions  set  is  1000-
1000000  smaller  than  2N  (depends  on  N and  randomly 
selected values). The algorithm replaces the whole set of 
constraints  with  penalty  function  [2,  6,  7].Problem of  a 
traveling salesman [1, 2, 11]:

F  X =−∑
i= 1

N

a ij x ijmax; (17)

The only constraint in this case is that the matrix of 
Boolean variables X must describe the adjacency matrix of 
Hamiltonian graph. This cycle must be the only path in that 
graph. Here, aij is the distance (cost, time, etc.) between i-
th and  j-th places (cities),  aii =0  ∀ i,  aij=aji ∀ i,j.If  xij=1 
then it means that the salesman must go from i-th place to 
the j-th one.

We tried to solve the optimization problems in Argo 
cluster  (SISSA,  Trieste,  Italy).  The  program  code  was 
adapted for MPI running. Algorithm designed for OpenMP 
parallelizing (see Figure1, variant 2) was implemented for 
paralellizing via MPI. MPI synchronizing procedure was 
used  at  the  step  “Synchronization”.  Following  this 
flowchart gave negative results in comparison even with a 
single node (8 nodes, 2 processes per node, 50 variants of 
X sets in each generation on each node,  10000 Boolean 
variables, 11000 constraints).

Analysis of the problem showed that  at the step of 
synchronization,  each  node spent  approximately  12% of 
time waiting for the other nodes to finish the calculation, 
data  interchange  between  nodes  in  this  case  is  rather 
intensive  (10000 Boolean  variables  had  to  be sent  from 
each  node,  then,  each  one  had  to  receive  10000  real 
numbers of the probability vector after each step).

Reconstruction  of  the  algorithm  so  that  each  node 
performs N steps (100-500 for that scale of the problem) 
separately, and comparing the results after the  N-th step, 
choosing the best ones by master nodes and broadcasting 
new probability  vector  gave much better  results.  But,  in 
this case, each node had to spend up to 43% of time (!) 
waiting for the others to complete their calculations.

Another way to organize the parallel execution of the 
search  processes  with  the  maximum independence  from 
each other is to organize multiple starts of the algorithm at 
all the nodes.  The algorithm starts at the nodes with the 
same or different initial parameters (for example, different 
initial  values  of  the  probability  vector  elements).These 
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multiple simultaneous starts are performed instead of the 
rollback procedure in the serial version of the optimization 
algorithm.  Each  node  starts  the  cycle  of  the  random  X 
vector generation with probability vector adaptation. If the 
algorithm  does  not  improve  the  best  objective  function 
value  during  several steps,  the  rollback  procedure  is 
performed. When all the nodes reach the stop condition, 
the results of all the nodes are compared to figure out the 
best one as the final result of the optimization problem. 

In  its  simplest  form,  the  above  approach  does  not 
need any modification of the implemented software. The 
serial  version  of  the  algorithm  runs  at  all  the  nodes 
simultaneously  and  the  results  of  the  nodes  are  then 
compared by the operator or by the special node.

The simultaneous execution of the serial  version of 
the  algorithm  improves  the  results  of  the  calculations 

insignificantly due to the similar behavior of the algorithm 
at  all  the nodes.  The comparison of the  P vector values 
from  different  nodes  after  several  steps  shows  that  the 
difference between them is reduced with each following 
step and the nodes generate the new exemplars of the  X 
vectors in the very close area. In case of the algorithm with 
no  average  probability  adaptation,  the  simultaneous 
execution  of  the  serial  version  of  the  algorithm  with 
different  initial  probability  value  gives  the  results  much 
better than the serial algorithm executed at the single node. 
But  in  most  cases,  the  version  of  the  optimization 
algorithm with the average probability adaptation executed 
at  the  single  node   shows  even  better  results.  So,  our 
approach must support the average probability adaptation 
for the optimization algorithms executed at different nodes 
(13).

a) Initialization (at each node), MPI_INIT
b) Generating N random sets of variables X, estimating F(X) and constraints (at each node)
c) Choosing the best and the worst X sets, adaptation of the probability vector P (at each node
     separately)
d) if I am the master node then:

d1) check if any data transfer started at the previous steps has been completed
d1.1) if so, then if it was the maximum result reached by the k-th node, 

check if this result is better than the global result
d1.1.1) if so, send message “OK” to the k-th node
d1.1.2) if not so, send “NOT OK” to the k-th node and 
  send the actual global maximum and the corresponding
  X vector to the k-th vector

d1.2) if the completed data transfer contains the best vector X 
d1.2.1) then recaclulate F(X) and if it is better than the 
  global maximum, assume that this is the new global maximum

d2) if  there are any messages from the other nodes waiting to be received and
no receiving processes are in progress, start 
receiving (non-blocking, continue processing)

d3) check if the stop conditions are reached. If so, send “STOP” message to all the
     processes, wait for all of them to receive it and then MPI_FINALIZE, stop

e) if I am not the master node and I have already started any sending process then
e1) check if this process has been completed
e2) if so, start receiving of the answer from the master node

f) if I am not the master node and I am waiting for a response from the master then
f1) check if the master node has started sending anything
f2) if so, start receiving (non-blocking)

g) if I am not the master node and I have already started receiving smth. from the 
master node then
g1) if the receiving has been completed then
    g1.1) if it was “OK” message, start sending my best X vector (non-blocking)
    g1.2) if it was “NOT OK” message, start receiving global best X vector

 (non blocking)
    g1.3) if it was the global best X vector, recalculate F(X) and,

if it is better than my own maximum, partially restart local process
to perform further search around the global maximum

    g1.4) if it was the “STOP” message, then stop, MPI_FINALIZE
h) Checking for the restart conditions (at each node separately), algorithm has to be restarted 

if it hasn't improved the best results during several last steps
i) if the restart conditions are reached then 

e1) if I am not the master node, start sending the best F(X) value
e2) reset probability vector 

j) go to step b

Figure 2. Parallel algorithm description
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The algorithm was re-written (Figure 2) so that all the 
data transfer was performed at the step of checking of the 
restart  conditions  (text  in  bold  used  for  the  steps 
performing  message  passing).  If  the  algorithm does  not 
improve  the  local  maximum  values  of  the  objective 
functions  after  cmax generations,  the  process  tries  to 
communicate to the other processes to check if any other 
node has improved the previous global maximum. If so, 
the process  receives  that  value  and  the corresponding  X 
vector values. If the local maximum value is better than the 
received one then we report our values as the new global 
maximums.

In  our  algorithm,  we  do  not  send  P vector  values 
which are rather long. The vector  P for the problem with 
10000 variables needs 40000 bytes to be sent. The node 
having achieved global optimum sends this value and the 
values  of  the  vector  XG

*  (1250  bytes  in  case  of  10000 
Boolean  variables).  The  values  of  the  new  probability 
vector are calculated as 

pi=
Ccorr1−2Ccorr xG i

*
pG

AVG

C corr1−2Ccorr pG
AVG . (18)

Here,  x*
G i is the  i-th element of the received vector 

XG
*,  D is  the  dimension  of  the  problem (number  of  the 

elements of XG
*), Ccorr is some small real value, pG

AVG is 
the average value of the probability vector generated the 

vector XG
*. If the received message does not contain it then 

the node which has received the message evaluates it:

pG
AVG≈

∑
i=1

D

xG i
*

D

. (19)

Taking into consideration the constraints (3) if they 
exist, the value of the constant  Ccorr can be calculated as 
0.5/V. 

The last version of the algorithm, though it is rather 
efficient, has very low data interchange between nodes (log 
shows that there was only 31-152 data transfer sessions for 
each node during 1 hour). So, with this intensity of data 
traffic,  there  is  no  need  to  implement  any  expensive 
network  to  build  an  efficient  MPI  cluster  for  random 
search problems solution. 

4 Results
In case of the problem (14), the results achieved by 

the  program  working  on  8  nodes  separately  with 
comparison of the best result after the last step (4 nodes, 2 
processes  per  node,  10000  Boolean  variables,  11000 
constraints,  non-linear objective function) this version of 
the  algorithm  achieves  in  half  time  (2  hours  for  the 
separately working nodes and 63 minutes for this version 
of the algorithm). 

 Figure 3. Comparison of the results of serial and parallel versions of the algorithm

Traveling  salesman  problem  with  1000  points 
(1000000 Boolean variables) after 4 hours of calculation 
on 4 nodes had not given the exact results, the results were 
still improving at the last steps, problem with 500 points 

(250000 variables) after 4 hours of calculation gave rather 
good result, very close to the optimal solution. 

The  parallel  efficiency  for  the  cluster  system of  6 
nodes is 0.81. An example (Figure 3) shows the results of 
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running  of  the  algorithm  on  cluster  and  on  a  single 
computer  which  is  a  part  of  that  cluster.  To  build  this 
diagram, we included in our algorithm special block which 
stores the maximum objective function value reached by 
the algorithm and the current time after each 10 steps to a 
special  array.  The  horizontal  line  shows  when  the 
algorithm achieves the control value (65015.17). To reach 
this control value, the serial version of the algorithm has 
spent  229  minutes  (13748 seconds),  the  parallel  version 
has spent 59 minutes (3556 seconds). 

The average value of the parallel efficiency (0.81) is 
calculated as the average speed-up coefficient after 10 runs 
for 5 different objective  functions. It is interesting, that at 
the very first steps, the parallel efficiency coefficient is less 
than at the following steps. The possible reason of this fact 
is the process of parameters tuning which is performed by 
each  node  at  the  first  steps  and  the  intensive  message 
passing.

5 Conclusions
-  Blocking  MPI operations give  negative  results  in 

comparison with non-blocking ones for the random search 
problems.  In case  of  fine  granularity  parallelization [12, 
13], results are negative even in comparison with a single 
node;

- Though the realization of the simplest protocol with 
6 kinds of messages is rather a complicated problem, non-
blocking operations work fine, their implementation gives 
significant  (2x)  speedup  in  comparison  with  the 
simultaneous running of the same code at separate nodes;

-  Using the high-performance clusters  increases  the 
maximum scale of the problems solved;

-  To  build  the  MPI  cluster  for  random  search 
problems,  expensive  high-performance  network  is  not 
needed because of very low intensity of data traffic;

-  Implementation  of  MPI  does  not  decrease  the 
productivity of a single node, OpenMP still gives perfect 
results in comparison with serial code.
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Abstract - The IT industry is developing fast and more 

and more large scale data center and supercomputing 

center were built or in building, which improve scientific 

research and data service also bring about huge energy 

consumption. This paper aims to make a discussion of 

energy conservation of data center from the evaporative 

cooling technology of HPC. Firstly, the developing 

tendency of data center and the traditional cooling 

technology are introduced; secondly, much more 

concentration were put on the newly high performance 

evaporative cooling technology for HPC and we showed a 

prototype of the spray evaporative cooling HPC 

developed by IEECAS, finally, a prospective blueprint was 

drawn up for the future construction of data center with 

evaporative cooling HPC.   

Keywords: Energy conservation; Evaporative cooling 

technology; Data center; HPC 

1. Perface 

  During more than one hundred years since the 

industrial revolution, the people’s demand for the energy 

is dramatically increasing, which gives much more 

pressure to the supply of the energy and also bring about 

the serious environmental crisis. 

  With the deepening of the informationization 

development, the super computer or high performance 

computer (HPC) is developed quickly and being 

extensively applied in many fields.  

  Data center provided with lots of IT equipments 

especially HPC makes great contribution to the scientific 

researches especially in the field like astronomy and 

meteorology relating to a lot of data processing and 

computing.  

  Whereas, with the continuously improvement of the 

data processing capability, computing speed and storing 

ability, the data center will consume a huge amount of 

electricity during its daily operation and at the same time 

brings about serious energy consumption problem to the 

society.  

  Besides the energy consumption of the hardware in the 

data center, in order to secure the normal and safety 

operation of the IT equipment, an additional electrical 

energy must be used to dissipate the heat. The cooling 

problem of the IT equipment shows up and becomes a big 

challenge for the cooling technology. Among that, the 

energy consumption of HPC is predominant.  

  Aiming at the HPC cooling, the traditional method 

include air cooling, water cooling and heat pipe cooling 

etc. Water cooling and heat pipe are belong to closed loop 

cooling method, the manufacture technology is a little bit 

complex and the cost is relatively higher than others. The 

most important is the water cooling has the potential of 

leakage which will lead to an electrical accident. Air 

cooling is easiest and has been widely used in HPC. But 

the disadvantage is that is the noise is big and the cooling 

capability is limited. Due to its usage of air conditioner, 

the energy cost is very high. According to the statistic, in 

a nowadays air cooling data center , the minimum of 50% 

average carbon exhaust come from the cooling system 

rather that the IT equipment itself.  

  Recently, the research of high effective cooling 

technology is becoming the hot point globally and 

promoting the energy efficiency is a huge challenge.  

Evaporative cooling technology takes advantage of phase 

change to realize the cooling effect of the object. Its 
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cooling capability is far larger than the other heat transfer 

method using specific heat.  

  This cooling technology has been successfully used to 

the large electrical machine in china and we have priority 

of intellectual property right. The recent application of 

this technology to the large electrical machine is the 

world famous Three Gorges hydropower project. It’s the 

largest hydropower plant in the world. There are two sets 

of 840MVA hydrogenerators using this kind of cooling 

technology designed by IEECAS.  

  The characteristic of this cooling technology include: 

high efficiency for the heat transfer, high safety and most 

important low energy cost or zero energy cost from the 

cooling system itself. All of these characteristics show 

cases it will be very suitable for the HPC and data center. 

2. The development and challenge of   

the modern data center 

Pushed forward by the explosive increase of demand 

for the data services and rapidly development of IT 

technology, the data center has experienced a tremendous 

development and the increase tendency will be lasting, the 

annual growth rate will be no less than 10%. Whereas, the 

energy cost of data center becomes un-neglecting.  

With the increase of demand for the computing 

capability, more IT equipment and more density of the 

equipment in the data center will be needed. The general 

tendency of the development of data center is limited 

space with as many as cabinet, high integration level, 

small sized chips and high density, which means more 

energy consumption per unit space.  

According to statistics, the electricity consumption of 

data center is increasing annually at the rate of 15-20%, 

the price for the energy is soaring at the same time. So the 

maintaining cost for a data center is very high. It was said 

that the biggest single cost for Google is for the electricity. 

That is why they want to arrange their data center near a 

hydropower plant. . 

The energy consumption of data center has its 

specialties, the verity of energy consuming IT equipment 

is much and the construction is very complicated. In 

general, the energy consumption of data center mainly 

covers the following aspects: high performance IT 

equipment itself (including CPU, RAMS, CHIPSET and 

external appliances), power supply equipment (power 

losses during the conversion of power sources) and 

cooling system. The typical power flow is introduced in 

the following Fig.1. 

 

Fig.1 Power flow in a typical data center 

Among that, cooling system for data center should not 

be belittled and it has very close relation with the cooling 

technology and cooling structure. 

The recently built data center and supercomputing 

center has more concern about the energy saving, but it’s 

still in a high level. Take ShangHai supercomputing 

center for example, since the Dawning “4000A” super 

computer system put into operation in August 2004, its 

stable load rate is relatively high, and the main CPU 

usage is retaining about 85%, it has a lot of consideration 

about the arrangement of the rack shelf and the ventilating 

passage design. Analysis on the basis of statistic of mean 

quarter operating data of whole supercomputing system 

showed the energy consumption in the following table1. 

From this table, we can see that the energy consumption 

of the cooling system account for more than 50% of that 

of IT equipment itself. See from this point of view, 

focusing on the energy saving of the cooling system will 

be obviously productive for decreasing the energy 

consumption of data center. 

Table1. Energy consumption of “4000A” 

Cooling 

method 

Real cases IT hardware 

electricity 

consumption 

Cooling 

system 

account for 
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Air 

cooling 

“4000A” 285kW 54.4% 

3. The traditional cooling method for  

the HPC 

Recently, the cooling technology is becoming newly 

researching hot point of HPC, improving the energy 

efficiency of the computing system and data center is a 

huge challenge. There are many cooling method for tackle 

with the heat dissipation of HPC, but from the point of 

view of putting into commercial use, the most traditional 

or easiest realizing method is air cooling and water 

cooling has the potential to show up due to it high 

performance of heat transfer 

3.1 Air cooling  

  Air cooling is the most-easily-realized cooling 

method, but it needs the use of CRWC and its cooling 

effect rely more on the surrounding temperature and its 

cooling capacity has utmost. Theoretically, the design 

value for the cooling capacity is 1500w/m2 that means the 

unit computer cabinet is 6kW, the utmost is 8kW.  

  The most serious problem relating to the air cooling 

method is the fan noise and the huge energy consumption. 

The cooling effect and the noise of the fan is a big 

contradiction seems cannot be easily solved. This cooling 

method conform to the convective heat transfer, in order 

to promote the cooling effect, we must increase the speed 

of wind flow, so the increase of numbers of fans and the 

rotating speed of fans is inevitable (normally, the speed 

for the CPU is above 5000rpm), which lead to big noisy 

pollution. If for an open air cooling atmosphere, the air 

flow also arouse the dust flow inside the mainboard and 

deposited on that, bring about the decrease of safety and 

maintenance inconvenience.  

  For air cooling data center, the arrangement of the 

cabinets and the design for the ventilation passage is very 

complex, even the design is theoretically practical, and in 

real application, the operator of data center found that the 

cooling effect of different cabinet differs a lot from each 

other, there will appear local high temperature area and in 

some extreme circumstance, a few cabinet cannot working 

due to high temperature.  

  In reality, in air cooling data center and 

supercomputing center, up to 50% energy cost is not for 

computation, but for the necessary cooling system, if we 

concern more about the energy efficiency of the data 

center, this cooling method is far beyond our desire. And 

such problem will become more serious with the 

development of the chip capacity and IT cabinet 

integration. Lot of giant company such as IBM is 

struggling to solve this energy problem caused by cooling 

demand.  

3.2 Water cooling  

Due to the thermal load limit of the traditional air 

cooling and some other problem, the alternative is 

necessary. So, for large processor or supercomputing 

system, the water cooling method shows up the 

practical significant. Water is a good fluid having 

bigger specific heat than air, so the cooling effect can 

be promoted a lot. Google is programming its largest 

super computer with two 4-layer building used for 

cooling system. K-computer with water cooling 

system (Fig.2 and Fig.3) ranked No 1 in the last 

year’s world top 500 in the supercomputer field.  

For cooling method itself, there is no technique 

knowhow and easy to be extended. But higher safety 

risk (water is of electrical conductivity and water 

leakage cannot be easily avoided due to high flowing 

pressure), higher manufacturing cost (technology is 

complex and hard to assembly and maintain) and 

having no positive contribution to the energy saving 

make it commercial prospective not very well. 

 

 

 

 

 

 

 

 

 

Fig.2 Cooling main board of K computer 
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Fig.3 K computer cabinet 

4. The application of the evaporative       

Cooling technology to the HPC 

 The evaporative cooling takes advantage of the 

physical process of phase change to take away heat losses 

when an appropriate liquid-phase coolant becomes 

gas-phase coolant. The evaporative cooling technology is 

kinds of liquid cooling method combined with specific 

cooling structure design which can avoid the fatal 

disadvantages of the water cooling completely due to it 

adopt some special coolant with high insulation.  

  The Institute of Electrical Engineering, Chinese 

Academy of Sciences (IEECAS) has been doing the 

evaporative cooling research since 1958. During more 

than 50 years’ developing process, the evaporative cooling 

technology has experienced some stage of innovation and 

has been used to various electrical equipments, such as 

turbogenerators, hydrogenerators, electrical power 

transformers and power electronic component equipment 

etc.  

  Due to the urgent demand of high efficiency cooling 

technology for HPC, we try to use it to the HPC on the 

basis of our experiences on applying of it to the power 

electronic component equipment. Its application to the 

HPC not only can solve the heat dissipation problem but 

can obtain the goal of energy saving.     

  Phase change heat transfer is of high efficiency, it 

can realize the good cooling effect for the HPC, at the 

same time the stability and safety of HPC can be 

guaranteed due to the selection of the evaporative coolant. 

The evaporative coolants are all liquid material with 

proper boiling temperature best matched with the cooling 

target. It is primarily environmental protected, is of high 

insulation, it has on toxicity, no liable to inflame and good 

chemical and physical stability.  

  As to energy conservation, for different cooling 

structure, the energy saving level varies. The following 

will introduce two kinds of evaporative cooling HPC 

design. The energy saving target is different. 

4.1 Spray evaporative cooling HPC 

We have developed a kind of spray evaporative cooling 

super computer with the cooling medium directly contact 

with the heated chips, during the phase-changing 

procedure, the large amount of latent heat will be 

absorbed by the coolant from the heated chip without 

increase its temperature, so it very fit for the high density 

computer cabinet cooling, the cooling effect is better than 

air cooling at the same thermal load level, and most 

important effect is that the coolant circulation just need a 

little momentum provided by the pump, the energy 

consumption for this kind of cooing system is just for the 

energy cost of pump.  

When the HPC start working, the liquid phase 

evaporative coolant sprayed out from the nozzle and have 

a direct contact with the heated chips distributed in the 

HPC cabinets, part of them vaporizes when absorbing heat 

and gas phase coolant rise to the condenser. The pump 

provides the momentum for the coolant circulating in the 

closed loop. In the equipment, the nozzle is located near 

the mainboard and spays liquid coolant toward the main 

heated chips shown in Fig.4. 

We have built a prototype of spray evaporative cooling 

super computer in our lab (Fig.5), it unit cabinet thermal 

capacity is 50kW, but the max energy cost for the pump is 

just 3.06 kW accounting for only 6.12%. If a group of 

computer cabinets operate parallel, the proportion of 

pump energy cost will decrease due to the power of pump 

is non-linearly increased. So, for a data center with many 

hundreds of cabinet, the energy saving effect is more in 

evidence. 

4.2 Self-circulating evaporative cooling HPC 

For more energy saving cooling system, we come up 

with the self-circulating evaporative cooling system for 
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HPC, which have some thin liquid boxes attach to the 

heated chips and all these boxes can be connect together 

or form circulation branches separately.  

 

Fig. 4 Spry of coolant to the heated chips 

 

Fig.5 Prototype of spray evaporative cooling HPC 

The self-circulating evaporative cooling HPC consists 

of blade units, blade cases, cabinet, condenser, liquid 

boxes and some connecting tubes. The principle diagram 

is shown in the fig.6. the liquid box shown in Fig.7 is fill 

with the evaporative coolant with the boiling temperature 

of 40-50℃. When the chip heated, it will transfer the heat 

to the box attached on it, the coolant inside the box absorb 

the heat, part of them boiling and liquid coolant becomes 

gas phase coolant and flow upward along the gas tube due 

to the density difference and flow back along the liquid 

tube after it is cooled into liquid phase in the condenser. 

So, the whole circulation system is closed loop, and the 

coolant flow momentum is aroused from the density 

difference between liquid phase and gas phase coolant, 

there is no need of external forcing momentum. So, there 

is no energy consumption at all.  

The use of thin box brings about additional contact 

thermal resistance and a thermal conductive link along the 

direction of box wall thickness. For improve it, some 

researches on surface conductive and convective 

enhancement methods are underway in our lab.   

In a long run, this kind of cooling system for HPC is the 

best choice for the data center and supercomputing center. 

The prototype is under construction in our lab. The 

cooling system itself can completely realize zero energy 

consumption and is self-circulating, no fan or pump noise, 

self-adaptive and safety. The only problem is a little 

higher primary investment for the fabrication of liquid box 

due to its odd-shaped. When it can be standardization and 

realize mass production, the initial investment will not be 

a problem anymore. 

5. The prospect for the construction of 

the future low energy consumption 

data center 

  For the next generation of HPC, air cooling cannot be 

satisfying and water cooling was hampered by the high 

cost, safety and maintenance. So, introducing the high 

efficiency evaporative cooling technology to the IT 

equipment, especially the data center with centralized use 

of IT equipment is a good resolution for high cooling 

effect and lower energy consumption. 

 

Fig.6 The diagram of self-circulating evaporative 

cooling HPC 
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Fig.7 Liquid box with connecting tube 

 The evaporative cooling system is closed loop and has 

direct cooling effect to the heated chip, so there is no need 

of installation of CRWC, it can eliminate to the maximum 

the noisy pollution aroused form the fan of air cooling in 

the data center and can save a lot of money for the 

electricity usage relating to the cooling system. It can 

provide a clean, high capacity, quiet environment for the 

future scientific research and large scale numerical 

calculation. By adopt micro-force circulation and 

self-circulation system to realize the high-performance of 

cooling system, it provide more rooms for increase the 

density of single chip; it can also increase the density of 

cabinet or data center; it has more flexibility to get a good 

use of space of data center. Due to its low or zero energy 

cost, it will have a great contribution to push forward the 

energy conservation of data center and with no doubt will 

play a positive influence on the sustainable development 

of IT industry. 

Furthermore, lower power consumption or zero power 

consumption evaporative cooling technology combined 

with the architecture energy-saving and the reasonable 

usage of afterheat should attract more attention when 

sketching the future construction of data center and some 

auxiliary facilities. 
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Abstract— Parallel computing has been in use for decades,
and throughout many researchers have sought to define a
model for algorithm design for such a platform. Valiant
developed a model for parallel computing, which was later
extended to later include multi-core processors, but it still
may not be best suited for the unique GPU architecture. With
the current advances in high performance computing, it is
easy to see the role that GPUs can play, and even easier to
see the need for a model for GPU algorithm development.
Here we propose a parallel GPU model which offers both
a general design and a fine-grained approach, intended to
accommodate nearly any GPU architecture. We show how
our model can result in significant increases in performance
when algorithms are designed based on its principles.

Keywords: GPU, parallel processing, algorithm design

1. Introduction
The rapid advancement of the Graphics Processing Unit,

or GPU, over the last few years has opened up a new
world of possibilities for high-speed computation, ranging
from biomedical to computer vision applications. Recent
examples include [1], [2], and [3]. However, the GPU
architecture is unlike that of any other, and designing al-
gorithms to fully harness the capabilities of a GPU is not
an easy task, especially when one considers the advantages
and disadvantages of the various resources that a GPU has
available to it. In this paper we introduce a parallel algorithm
design model for the GPU architecture which addresses these
issues. In Section 2 we discuss related work; in Section 3 we
present a brief overview of the GPU architecture, focusing
on NVIDIA’s CUDA architecture; in Section 4 we present
the model in its entirety; in Section 5 we illustrate the use
of our model as we apply it to template and shape matching
algorithms; in Section 6 we discuss the results of our model
as applied to these template and shape matching algorithms;
and finally in Section 7 we conclude and remark on future
work.

1.1 Contribution
We believe that our main contribution with this work is

to provide an easily accessible parallel algorithm design
model for the GPU architecture. Our model addresses the

limitations of other parallel models in that it accounts for
the unique architecture of the GPU, in particular the various
types of memory that the GPU possesses and their individual
attributes. Our model is also designed to include single
or multi-core CPUs as part of the system, if the designer
chooses to do so. Finally, our model is intended to be easily
accessible for a wide variety of reseachers from all scientific
fields interested in GPU algorithm design, ranging from the
novice to the experienced.

2. Related work
We present the following parallel model designs in suc-

cession to demonstrate the evolution of our Parallel GPU
Model (PGM) and give it proper context.

2.1 The PRAM model
The PRAM model is generally regarded as one of the orig-

inal parallel algorithm design models. The main shortcoming
of the PRAM model lies in its unrealistic assumptions of
zero communication overhead and instruction-level synchro-
nization. Another drawback of with the PRAM model is that
the time complexity of a PRAM algorithm is often expressed
in big-O notation, which is often misleading because the ma-
chine size n is usually small in existing parallel computers.
Consequently, the PRAM model is generally not used as a
machine model for real-life parallel computers.

2.2 The BSP model
The BSP, or bulk-synchronous parallel model, was pro-

posed by Leslie Valiant [4] to overcome the limitations
of the PRAM model [5], while maintaining its simplicity.
In the BSP model, a BSP computer consists of a set of
n processor/memory pairs (nodes) that are interconnected
by a communication network. The BPS model is Multiple
Instruction Multiple Data (MIMD) in nature, and uses the
concept of a superstep, which is comprised of a computation
step, a communication step, and a synchronization step. The
BSP model is also variable grained, loosely synchronous,
has non-zero overhead, and uses message passing or shared
variables for communication.

The program executes as a strict sequence of supersteps.
In each superstep, a process executes the computation oper-
ations in at most w cycles, a communication operation that
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takes gh cycles, and a barrier synchronization that takes l
cycles. Note that in the communication overhead gh, g is
the proportional coefficient for realizing a h relation. The
value of g is platform-dependent, but independent of the
communication pattern. In other words, gh is the time that
it takes to execute the most time-consuming h relation.

Within a superstep, each computation operation uses only
data in its local memory. This data is put into the local
memory, either at the program start-up time or by the
communication operations of previous supersteps. Therefore,
the communication operations of a process are independent
of other processes.

The BSP model is more realistic than the PRAM model
because it accounts for all overheads except for the paral-
lelism overhead for process management. The time for a
superstep is estimated by the sum

w + gh+ l (1)

This model is highly regarded and has formed the basis for
other parallel models, such as the parallel phase model [5],
which we will briefly discuss next. However, its generality
is its shortcoming when one attempts to apply it to more
specific architectures, such as that of the GPU. Valiant
recently extended his model to include multi-core CPUs [6].
While this model is much more akin to the architectural
nature of the GPU, it still does not take into considera-
tion the complexities of the typical GPU architecture, in
particular the various types of memory, which as we will
demonstrate in later sections have a tremendous impact on
the performance of a given GPU algorithm.

2.3 The parallel phase model
Kai Hwang and Zhiwei Xu [7] proposed a phase parallel

model for parallel computation that is further refined from
the above two abstract models. This model is similar to
the BSP model with the following distinctions: a parallel
program is executed as a sequence of phases: the parallelism
phase, the computation phase, and the interaction phase.
The total execution time of the superstep on n processors
is expressed by

Tn = Tcomp + Tinteract + Tpar

= (w + σ
√
2logn)tf + t0(n) + α ∗ w ∗ tc(n) + tp(n)

(2)

where w is the number of cycles, as with the BSP model,
α is the communication-to-communication ratio (CCR) of
each superstep, and tf is the average time to execute a flop
by a processor.

Improved from the PRAM and the BSP models, the phase
parallel model is closer to covering real machine/program
behavior. In this model, all types of overheads are accounted
for, as shown in Eq. (2): the load imbalance overheads, the

interaction overhead (t0 and tc terms), and the parallelism
overhead (tp term).

While these models represent the evolution of parallel
algorithm design in general terms, they are limited in scope
as they ultimately fall short when applied to the unique
architecture of the modern GPU. The need for a model suited
to this architecture was vocalized in a paper from MIT [8]
in which the authors identify that official documentation for
CUDA from NVIDIA was rather sparse, the forums required
a lot of searching to find an answer to a particular problem,
and the trade-offs between various programming options
were difficult to discern. We attempt to address these issues
by providing a model which was designed to not only include
the more general models identified above, but to also take
into consideration the unique nature of the GPU architecture,
as it differs considerably from the CPU architecture.

3. GPU architecture
In this paper we will often refer to the machine containing

the GPU as the “host" and the GPU itself as the “device”.
The NVIDIA GeForce 8800 series is an example of a typ-
ical GPGPU (General Purpose GPU) device, which utilizes
NVIDIA’s CUDA (Compute Unified Device Architecture
GPU design. The GeForce 8800 contains 16 multiprocessors,
each containing 8 semi-independent cores for a total of 128
processing units. Each of the 128 processors can run as
many as 96 threads concurrently, for a maximum of 12,288
threads executing in parallel. The computing model is SIMD
(Single Instruction Multiple Data), and the memory model
is NUMA (Non-Uniform Memory Access) with a semi-
shared address space. This stands in contrast to a modern
CPU, which is typically either SISD (Single Instruction
Single Data) or MIMD, in the case of a multi-processor
or multi-core machine. Additionally, from the perspective of
the programmer, all memory is explicitly shared (in multi-
threading environments) or explicitly separate (in multi-
processing environments) on a desktop machine.

3.1 GPU instruction throughput versus mem-
ory access

The GPU architecture is much more optimized for per-
forming calculations than for memory accesses. Therefore,
considering the multiple types of memory that the GPU
architecture typically includes, it is important to keep this in
mind when accessing these types of memory, particularly the
slower, off-chip ones such as the GPU’s global and the host’s
main memory. The most costly memory access is by far the
host-to-device (CPU to GPU) data transfer, and reducing
that transfer can have a tremendous impact on the overall
performance of any algorithm that is implemented in part or
fully on a GPU.

As an example of our research, we present the case of a
typical Full Search Method of template matching, which is
otherwise known as a “brute force" method. A naïve GPU
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implementation of this algorithm is relatively easy, as the
underlying architecture (such as CUDA) will handle most
of the scheduling, thread allocation, memory management,
etc. for you. In this case, a naïve, straightforward GPU
implementation should run in O(mn/p + log m) time, where
p is the number of processors, assuming that 1� n. We
present the results of the implementation of this naïve GPU
algorithm using several different types of GPU memory
(discussed below) versus the serial implementation in Table
1.

Table 1: Run time for Full Search Method template matching
for a 512x512 image and a 64x64 template. Times are in ms.

Run Time Copy Time

CPU 23290 N/A
GPU 3042 217.7
GPU Shared Memory 200.68 217.7
GPU Texture Memory 107.38 2.361

Table 2: Average results over 1000 trials of basic CUDA
memory operations. The first column refers to the amount
of data used for this experiment, in bytes. “malloc” and
“malloc 2D” refer to allocating an array and a byte aligned
2 dimensional array on the GPU, respectively. “copy” and
“copy 2D” refer to copying data from the CPU’s global
memory to the GPU’s global memory. All times are in ms.

size malloc copy malloc 2D copy 2D

4 ∗ 103 0.067567 0.005253 0.116700 0.014929
4 ∗ 105 0.118616 0.291486 0.122187 0.296680
4 ∗ 106 0.141160 2.576290 0.180513 2.713126
4 ∗ 107 0.241793 23.344471 0.629537 24.801236

Given the considerable differences in architecture between
the GPU and CPU, one can see that the ratio of overall
run-times of the CPU to naïve GPU implementation (which
we define as “speedup", S) is only 23290/3042 = 7.66.
Given the number of processing cores p in our GPU is
128, this is clearly not an optimal solution, as it yields
an efficiency of .060 (we define ‘’efficiency" as E = S/p
). The majority of this is due to communication overhead
(data transfer), as global memory on the GPU is uncached.
Experimentation confirms that the instruction throughput is
only .034, indicating that 96.6%≈97% of the total run time
was due to host-device data transfer.

In addition to the host-device memory read/write, there
are several other types of memory that a GPU may have
and access, either on-chip or as part of the graphics card,
including (in order of typical size) global memory, L2 cache
memory, texture memory, shared (local) memory, and the
processor registers. The type of memory that a programmer
uses for a particular operation depends upon the size and
nature of the data structures to be used, whether or not these
data structures can be broken up (and if so how), and whether

they are read/write data or simply read-only. In Table 2 we
present the results of our experimentation with host-device
data transfer times for different sizes of data to illustrate the
importance of proper data partitioning.

4. Parallel Algorithm Design Procedure
for GPUs

As discussed earlier, Valiant’s multi-core parallel algo-
rithm model falls short when one attempts to apply it to
many-core GPUs. In designing our Parallel GPU Model, we
opted to refer back to Valiant’s original BSP model as a
basis, and build out our model from there.

4.1 General model
GPU Superstep:

maxpi=1wi +maxpi=1(hi ∗ g) + l (3)

where p = number of processors (cores) on the GPU
wi = cost of local computation in process i
hi = number of messages sent and received and/or vari-

ables accessed by process i
l = cost of synchronization
g = message speed (bandwidth)
Algorithm total cost:

CGPU =
S∑

i=1

superstepi

=W +H ∗ g + S ∗ l

=
S∑

s=1

w ∗ s+ (
S∑

s=1

hs)g + S ∗ l

(4)

where S = number of supersteps
W = total cost of local computations in all processes
H = total number of messages sent and received and/or

variables accessed by all processes

CPU Superstep:

The CPU component of this general model is very similar
to the GPU component above, with the exception that the
variables apply to the CPU (i.e. p applies to the number of
CPU cores, processes are executed on the CPU cores, etc.)

Total

Ctotal =
n∑

i=1

CGPUi
+

n∑
i=1

CCPUi
+ (

m∑
i=1

Ti)b (5)

where C = cost
n = number of algorithms or parts of algorithms executed
m = number of data transfers between CPU and GPU

(usually an even number)
T = one-way data transfer
b = CPU to GPU data transfer bandwidth

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 595



In the simplest, single algorithm situation, this can be
represented as:

Ctotal = CGPU + CCPU + 2 ∗ T ∗ b (6)

Reducing the number of Ts along with the size of T(the
amount of data transferred) are two coarse-grained methods
of reducing an algorithm’s overall run time and thereby
increasing performance.

4.2 Fine-grained model for parallel GPU algo-
rithm design

If the algorithm designer is experienced in parallel algo-
rithm design principles, they can typically skip to Step 3
below, otherwise they should continue with the following
steps.

Step 1: Once a serial implementation of a given algorithm
has been either acquired or originally designed, the first
consideration is what types of instructions (operations) are to
be performed on the given data set or sets of the algorithm.
This will help in determining data dependency (as discussed
below), as well as to help determine what operations must
be performed on which processor.

Step 2: The goal is to reduce the total data transfer
time as much as possible, meaning reducing the amount
of data that is transferred back and forth between the host
and device. Furthermore, this round trip may be performed
multiple times for one algorithm depending on the structure
of the algorithm and/or the size of the data sets. The
various types of GPU memory are of varying sizes, but
are all generally very small compared to modern host main
memory. Therefore, in some parallel applications a data
set may have to be broken up and sent to the GPU for
computation through several round-trips. Consequently, as
discussed briefly in Section 3.1, sending large amounts of
data to and from the GPU unnecessarily may lead to a longer
run time than the original serial algorithm (especially if it is
optimized and/or implemented on a multi-core CPU).

With this type of trade-off of data and operations between
the CPU and GPU, the most important aspect in determining
what should be transferred to the GPU is data dependency.
This essentially refers to identifying what operations require
the data that is the result of previous operations. If an
operation must wait for the resulting data from a previous
operation, then these operations must be performed serially.
They can still be performed serially on the GPU, but that
would defeat the purpose of using the GPU and would
require unnecessary data transfers. Furthermore, in most
cases the CPU would be able to complete these serial
operations faster than a GPU would, even without taking
into consideration the costly host-device transfer time.

At this point, more experienced parallel GPU algorithm
designers can proceed to Step 4 where we discuss opti-
mizations specific to the GPU architecture. Otherwise it is

recommended to take the following step of designing and
implementing a naïve parallel algorithm before continuing
to the optimization step.

Step 3: Implementing a naïve parallel GPU algorithm is
a relatively straight-forward task. Most GPU architectures,
such as CUDA, include a thread scheduler which will
automatically distribute computations to threads and handle
other high level functions of the GPU for you. What this
results in is a simple port of a serial algorithm to a GPU
with little or no consideration for the various aspects of a
GPU’s architecture that can be leveraged to create an optimal
parallel algorithm. While a naïve parallel implementation
can be accomplished rather quickly and easily resulting
in a notable speedup of the algorithm’s performance, this
speedup will not be as great as it could be when the
GPU architecture optimizations are performed, as discussed
below.

Once the data dependencies within the algorithm have
been identified, the designer is then able to break the up
algorithm into the various parts that have to be done in serial
and the parts that can be done in parallel. From that point,
the designer can implement the serial parts on the CPU using
typical CPU code (i.e. C/C++, Java, etc.) and implement the
parallel parts using GPU code (i.e., C for CUDA, Brook+,
etc.). With architectures such as CUDA, you can implement
the CPU and GPU code in the same program, with the GPU
code written simply as individual kernels that are called
from within the CPU code, which simplifies the writing of
the code a great deal. Also, recently many CPU and GPU
manufacturers have adopted a language known as OpenCL,
which allows algorithms to be implemented in a single
language that can run on both the CPU and GPU, eliminating
the need for separate languages for each architecture [9].

As far as GPU memory manipulation goes, with a naïve
implementation it is usually easy to simply load the data set
(or as much as possible at one time) into the GPU’s global
memory. The GPU will handle transferring the data from the
host’s RAM into the GPU’s memory whenever a kernel is
invoked. The designer just specifies, in the case of CUDA
for example, which memory type is being used for which
kernel when the kernel is defined in the code. The global
memory, while being the largest type of memory and read-
write capable, is also the slowest memory. Therefore it is
one of the first areas to avoid, if possible, when performing
algorithm optimizations, as is described in the next step.

To achieve optimal or near-optimal performance, we must
take into consideration the unique architecture of the GPU
and exploit this architecture to its fullest. It may take even the
most experienced GPU algorithm designer several attempts
to achieve optimal results, as often time optimality is best
determined through experimentation. But careful analysis of
the algorithm along with the GPU architecture can help
to greatly reduce the need for experimentation to achieve
optimality.

596 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



One basic yet effective step toward optimality is to elim-
inate unnecessary computations. As discussed above, naïve
brute force parallel algorithms simply perform the same
computation on an entire data set in one step (or several steps
depending upon the size of the data set and the number of
available threads). Our implementation of a naïve template
matching algorithm searched the entire image for a match
to the template, which required the transfer of the entire
image data from the host’s main memory to the GPU’s global
memory, a very costly operation. However, by redesigning
our algorithm to first perform a “pruning step", we were able
to reduce the overall runtime by as much as 99%, depending
upon the amount of noise in the original image [12]. This
is an example of placing “smart" bounds on the dataset to
greatly reduce the amount of data that has to be transferred
from the host to the device.

The next step in creating optimal parallel algorithms for
the GPU is to determine what type and size of data structures
your algorithm will use. These considerations are closely
associated with what types of memory the algorithm will
utilize, both within and outside of the GPU. As discussed
in Section 3.1, the GPU architecture is unique in its design
and varies considerably from that of a CPU. Indeed, it’s
fair to say that a GPU is analogous to being “a computer
within a computer". Thus the various types of memory that
a GPU contains and has access to certainly complicates
considerations when designing parallel GPU algorithms.
Following, we will discuss the various types of CPU/GPU
accessible memory and their advantages/disadvantages.

4.2.1 GPU memory considerations
We denote a system’s RAM as M, and note that it has the

following attributes: it is read/write capable, is the largest
sized memory overall (typically in the order of GB by
current standards), its transfer speed (host to device) is the
slowest by far, and it is not directly accessible by kernel
threads. Global memory, which we denote with G has the
following attributes: it is read/write capable, is the largest
GPU (on card) memory, its transfer speed is the slowest for
a given GPU and graphics card, and it is accessible by all
threads. The L2 cache, denoted by L, is an example of a
high capacity, high speed component that may or may not
be available on a particular GPU, depending upon the model
that one is using, such as in the case of the Fermi architecture
(see [10]). The texture memory, which we denote as x,
has the following attributes: it is read only, is smaller than
global memory, but larger than shared memory, it is much
faster than global memory but not as fast as shared memory,
and is accessible by all kernel threads. The next type of
memory is the shared local memory/L1 cache (in the cases
where shared local memory also includes an L1 cache [10]).
Shared local memory has the following attributes: it is
read/write capable; is much smaller than texture memory but
larger than the registers; and is somewhat faster than texture

Fig. 1: The host(CPU)-device(GPU) memory hierarchy
available to programmers (note that registers are excluded
as they are not directly addressable by GPU programmers).
We can see how the GPU must go through the host to load
data from the RAM into the GPU’s global, texture, or shared
memories, the latter of which can communicate through SMs
(Streaming Multiprocessors).

memory, but is accessible only by threads on a Streaming
Multiprocessor (SM). Finally, we denote the register usage
byr, where registers have the following attributes: they are
read/write capable, they are the smallest and fastest of all
memory types, and they are typically one register per core.
We illustrate the various types of memory available to the
GPU programmer with their relative sizes in Figure 1.

With this in mind, however, we will omit the following
terms from the final PGM for the following reasons: the
RAM transfer time (i.e. host-to-device) is accounted for by
the term Tb in Equation (1). Further, we consider the fact that
the registers are simply used by the cores as “scratch pads"
to temporarily hold the data to be used by the processors
and thus are not able to be directly manipulated by the
programmer. Therefore, with the exception of bank conflict
concerns, the register use should not be of consequence to
the designer, and can then be eliminated from consideration.

Naturally, we wish to use the fastest type of memory
available in all occasions. However, due to limitations im-
posed by the size and nature (i.e. read only or read/write) of
the data structures that we use for a given algorithm, along
with the sizes of the various types of memory as discussed
above, a designer may choose different types of memory
for various data structures. For example, with our template
matching algorithm, we chose to use the texture memory
to load our initial query image into, due to the fact that the
texture memory is large, fast, and the image does not require
write capabilities [12].

Obviously, with the goal being to take as much advantage
of the fastest types of memory as possible, a designer’s
data structures may need to be altered to adhere to the size
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limitations of certain forms of memory. As an example, if
image data can be streamed into the shared memory blocks
at a faster rate than transferring the entire image into global
or even texture memory, (without disrupting the computation
being performed in those blocks) then using the faster shared
local memory is preferable.

Once the algorithm designer has an understanding of
the various types of memory that the GPU provides, they
can proceed to design the data structures that their parallel
algorithm utilizes accordingly. This includes deciding how to
break up the data itself, so that the size and the nature of the
data structures allow them to be grouped into logical blocks
that can be mapped into thread blocks of one, two, or three
dimensions, where the threads can maximize their intercom-
munication through variable sharing within the SM’s shared
local memory. With our GPU template matching algorithm
(discussed in Section 5), we demonstrate the advantages of
not only breaking up of the data into logical blocks, (or
"strips" in this case) but also the smart use of the GPU’s
texture memory instead of the GPU global memory, with
the former being much faster.

It is important at this point to reinforce that the naïve par-
allel implementation will typically be subject to the under-
lying system’s automatic (typically non-optimal) scheduling
system, which will typically distribute threads on a first-
come-first-serve basis, which is generally not optimal.

Another important technique toward achieving optimality
with a given parallel GPU algorithm is identifying and reduc-
ing (or even eliminating) algorithm execution bottlenecks.
As we have discussed above, the execution bottlenecks
primarily are memory transfers, in particular the host to
device transfer. This issue is being addressed with the new
generation of CUDA architecture (Fermi [10]), but for the
present the average algorithm designer and implementer
dealing with commodity GPUs needs to consider the massive
host-device bottleneck.

Above we discussed several ways to reduce the amount
of data transfer between the host and device, as well as
ways to design your data structures to fully take advantage
of common GPU architectures. Following we shall formally
define our Parallel GPU Model based upon the above con-
siderations.

Previously, we defined a GPU operation in the following
manner:

CGPU =
S∑

i=1

superstepi

=W +H ∗ g + S ∗ l

=
S∑

s=1

ws + (
S∑

s=1

hs)g + S ∗ l

(7)

where S = number of supersteps, W = total cost of local
computations in all processes, H = total number of messages

sent and received and/or variables accessed by all processes,
ws = cost of local computation in process s, hs = number
of messages sent and received and/or variables accessed by
process s, l = cost of synchronization, and g = message speed
(bandwidth)

Generally parallel algorithms work toward computing a
result from a large number of simpler calculations performed
in parallel on the various processors/cores in the system. This
requires a reduction step, which as discussed above typically
runs in O(log m) time. We represent this step as R and add
it to Equation (7), which gives us:

S∑
s=1

ws + (
S∑

s=1

hs)g + S ∗ l +R (8)

The PGM is essentially an extension/adaptation of existing
parallel algorithm models, including the PRAM, BSP, and
Parallel Phase Model. However, our model is focused on the
GPU architecture, which requires the redefinition of certain
terms from the original BSP/Parallel Phase Model. In our
model, we equate a BSP/Parallel Phase Model superstep with
the execution of a GPU “kernel", which is essentially a GPU
function or method which handles the importing of the data
set, the computations to be performed on said data set, and
the exporting of the resulting data to the CPU (i. e. RAM).
Therefore we shall now denote a kernel/superstep as k, with
the total number of kernels executed as K. This gives us an
updated version of Equation (8) as:

K∑
k=1

wk + (
K∑

k=1

hk)g + S ∗ l +R (9)

4.2.2 Message/variable passing
The term (

∑K
k=1 hk)g, which describes the total number

of messages and/or variables transmitted multiplied by the
bandwidth of the transfer medium, is perhaps the most
important of the terms and deserves more consideration. As
we expand this term to include the various types of memory
that a GPU can read from and write to, we get

(
K∑

k=1

hk)g =(
A∑

a=1

ha)G+ (
B∑

b=1

hb)L

+ (
C∑

c=1

hc)x+ (
D∑

d=1

hd)y

(10)

where a = an individual global memory read/write
A = the total global memory reads/writes
b = an individual L2 cache memory read/write
B = the total L2 cache reads/writes
c = an individual texture memory read/write
C = the total texture memory reads/writes
d = an individual shared memory read/write
D = the total shared memory reads/writes
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When we substitute this more accurate representation of
memory reads/writes into Equation (2), we get:

K∑
k=1

wk + (
A∑

a=1

ha)G+ (
B∑

b=1

hb)L

+ (
C∑

c=1

hc)x+ (
D∑

d=1

hd)y) + S ∗ l +R

(11)

It should be noted that with memory transfers we do not
take into consideration the size of a word for the particular
system, so we are utilizing the uniform cost criterion, as
is commonly done with parallel algorithm design and analy-
sis [11]. Also, based upon the ratios of run times between the
global, texture, and shared local memories, we can calculate
coefficients to represent the approximate cost of using each
type of memory and add these coefficients to Equation (5).
Normalized with respect to global memory we get ratios
of 0.035 and 0.066 for the texture and shared memories,
respectively. Note that these two values are roughly in a
ratio of 1 to 2 in relation to each other. Applying this to
Equation (5) then gives us the following:

K∑
k=1

wk + (
A∑

a=1

ha)G+ (
B∑

b=1

hb)L+ 0.035(
C∑

c=1

hc)x

+ 0.066(
D∑

d=1

hd)y + S ∗ l +R

(12)

Which can be generalized to:

K∑
k=1

wk + (

A∑
a=1

ha)G+ (

B∑
b=1

hb)L+
1

32
(

C∑
c=1

hc)x

+
1

16
(

D∑
d=1

hd)y + S ∗ l +R

(13)

Thus, with the above equation we can see the relative
costs of using various types of memory addressable by the
GPU programmer. This model is intended to be applicable
to most, if not all GPU architectures: indeed, if a particular
architectural feature is not available with the model of GPU
being employed (i.e. L2 cache memory), then that term is
simply zeroed out or removed from the above equation.

Step 5:The last step of this Parallel GPU Model design
procedure is more advanced and involves a more intimate
knowledge of the specifics of the architecture of the particu-
lar GPU the algorithm is designed for. It should be noted that
this step is not necessary to achieve near-optimality, as that
can typically be achieved by adhering to the above steps.
However, for the designer desiring as much optimality as
possible, they should identify and understand several phys-
ical aspects of the particular device. These physical aspects
include the following: the number of processors/cores that

the GPU has; the number of SMs the GPU has; the number
of processors/cores per SM; the amount of global, texture,
and shared local memory the GPU has; the type and speed
of the connection between the host and the device (i.e. PCI,
PCIe, etc.); the availability and size of the L1 and the L2
caches (as with Fermi GPUs); whether or not the particular
GPU architecture supports IEEE 754-2008 (which includes
full double precision support); the nature of the GPU’s warp
scheduler (i. e. whether or not it is a single or dual warp
scheduler); whether or not the device has Error Correcting
Code (ECC) memory support; whether the device is 32 or
64 bit-based; and what programming languages the device
supports, such as C/C++ for CUDA, OpenCL, etc. (and to
what degree).

By knowing hardware-specific details, such as the number
of processors/cores in the particular GPU, we can augment
our abbreviated PGM with the above substitution, which
yields the following version of the PGM:

K∑
k=1

mn

p
+ (

K∑
k=1

hk)g + S ∗ l +R (14)

where mn/p = wk

m = number of computations to perform
n = number of data elements
p = number of processors/cores

5. Applications of the PGM
We first applied our GPM to the field of template matching

in [12]. Here we developed a GPU-accelerated template
matching algorithm from the ground up based upon the
PGM. Template matching essentially involves searching an
image I attempting to find the match for a template x among
all possible candidates yi in a sort of “sliding window"
fashion. The searches are independent of each other and
therefore are highly subject to parallel processing on the
GPU. Furthermore, we employed a pruning step to eliminate
unnecessary data transfer to the GPU, as discussed in Step
3 of Section 4 above.

In our second application of the PGM, we chose to apply
it to a shape matching algorithm that we had developed
[13] previously. In this case, a 3D shape is given a unique
“signature" which is calculated by computing the distances
between each vertex of the shape and every other vertex,
as long as that vertex is “visible" to the original vertex.
The result is a large number of calculations which are
then formulated into a histogram, which then forms the
shape’s unique signature. Obviously, these calculations are
completely independent of each other and therefore this al-
gorithm is also a very good candidate for parallel processing
on the GPU.
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6. Results and discussion
The experimental design for our template matching al-

gorithm consisted of averaging the results of running our
algorithm over a number of trials with a variety of images of
different sizes and resolutions, which yielded the following
performance results: when comparing the performance of
our template matching algorithm to the Full Search Method
discussed earlier on small images (512x512) at zero to
low noise levels, our algorithm has better performance than
the Full Search Method. When comparing our algorithm’s
performance to that of a standard brute-force Full Search
Method implemented serially on the CPU on medium to
large images one can see the tremendous performance in-
crease of our algorithm. With an image size of 1024x1024
and a template size of 256x256, our algorithm experiences
a 8700x performance increase over the Full Search Method.
Further, when we implemented the Full Search Method in a
naïve parallel manner on the GPU, our optimized algorithm
performed 39x faster.

Similarly we observed a considerable speedup in run-time
in our shape matching algorithm when applying the PGM to
it. Serially, this algorithm has a run-time of:

O(n2 λ(n)log(n/ε)/ε4+n2 log(np) log(n log p)

However, with the application of the PGM, we observe
the following: if the number of data items equals n and the
number of processors equals p, then the total computation
time for the above shape matching algorithm is:

n/p+ logn (15)

where log n is the reduction step. This is assuming that at
each timestep a processor p is calculating the distance from
a query point to another point. The reduction step results in
the shortest distance from the query point to the signature
point. Therefore, this algorithm could perform in near-linear
time, depending upon the number processors in the parallel
system.

In comparison with other parallel design models, we
observe the following: the PRAM model, while being a fun-
damental and an “all-encompassing" parallel design model,
is rather inadequate when applied to modern GPGPU design,
due to its generality. Valiant’s BSP model is a MIMD model
consisting of node/memory pairs interconnected through a
network. This is not very analogous to modern GPU archi-
tectures. The parallel phase model attempts to make up for
this shortcoming by accounting for all overhead costs, but is
still based on a model which does not account for the various
types of memory that the GPU possesses, nor their individual
advantages and disadvantages. Valiant’s more recent multi-
core model is much more akin to the many-core GPU
architecture, however it still falls short when one considers
the various types of GPU memory, including their attributes

and design concerns. We believe that our model is well-
suited to the GPU architecture by accounting for all possible
types of memory and their associated costs that a GPU can
access, both with current commodity GPUs and new, more
advanced architectures. Furthermore, we provide a thorough
analysis of the various considerations that one must keep in
mind when designing algorithms for any GPU architecture,
and we believe that our model provides an opportunity to
do so that other models don’t.

7. Conclusion and future work
Overall, we believe that our parallel GPU method is very

effective in allowing parallel GPU algorithm designers, rang-
ing from the novice to the expert, to design and implement
optimal (or nearly optimal) algorithms that take advantage of
the GPU architecture. We noted that while previous models
have been adequate for general parallel architectures (which
can vary considerably), they fall short when addressing the
unique architecture of GPUs. Indeed, the degree of perfor-
mance that can be achieved with the application of other
parallel models, such as the BSP and phase parallel model,
is not optimal for the GPU architecture, and we showed
how the PGM can achieve a greater degree of optimality.
Therefore, depending upon the degree of optimality desired,
our model seems superior to other existing parallel models
when applied to the GPU architecture.

Future work with our model will include applying it
to simulations involving radiation therapy, such as Volume
Modulated Arc Therapy (VMAT) and Intensity Modulated
Radiation Therapy (IMRT). In such simulations, various
computations need to be made in real-time or near real-time
and the use of GPUs would certainly be a great advantage.
Also, more practical experience with a Fermi GPU would
allow for the implementation of various algorithms to quan-
titatively measure the speedup that a particular architecture
allows over other parallel and serial architectures. Finally,
the development of software which employs an “automated"
version of this model would make it accessible to even
more researchers by aiding them in making more informed
with their algorithm designs, thereby producing even more
optimal results.
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A GPU Support for Large Scale Quantum Chemistry Applications
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Abstract— GPU/GPGPU computing has been used widely
in scientific simulation to improve the performance on hybrid
architectures. The quantum chemistry field has benefited
greatly from using GPUs, including tasks such as visual-
ization of molecular orbitals and computation of electronic
structures. To gain significant success in using GPUs, a
large amount of code rewriting and restructuring is re-
quired, which is done primarily by those who understand
the algorithm in great detail. In this paper, two widely
used quantum chemistry packages are investigated to identify
the hot spots that can benefit most from GPUs, as well
as be the least intrusive to the existing code base. The
paper uses an experimental approach to integrate GPU
capability without restructuring the application. Experimen-
tal results show that the bottleneck is in CPU–GPU data
transmission. Additionally, a GPU-based DFTFOCK method
is implemented in GAMESS/NWChem and a GPU-based
eigensolver is integrated with NWChem successfully. Further
performance tuning is ongoing.

Keywords: GPU Computing, Eigensolver, Quantum Chemistry,
GAMESS, NWChem

1. Introduction
Graphics processing unit (GPU) computing or general-

purpose computing on graphics processing units (GPGPU)
is the use of a GPU to do general purpose scientific and
engineering computing. The model for GPU computing is
to use a central processing unit (CPU) and GPU together
in a heterogeneous co-processing computing model. While
one part of the application runs on the CPU, another
computationally intensive part can be accelerated by the
GPU. GPUs are an excellent accelerator for data-parallel
applications. From the user’s perspective, the application
just runs faster because it is using the high performance of
the GPU to boost performance. Large gains in performance
have been achieved through GPUs in recent years and GPUs
have become ubiquitous in handhelds, laptops, desktops,
and supercomputer clusters. The power of GPUs has been
incorporated into simulations or experiments and shows a
large benefit. However, a large amount of code rewriting and
restructuring is often required. GPU computing has recently
begun to be adopted in the quantum chemistry domain [7]
from visualization of molecular orbitals to computation of
electronic structures.

The General Atomic and Molecular Electronic Struc-
ture System (GAMESS) is a widely used computational
chemistry package [3], [8] for ab initio molecular quantum
chemistry. Using GAMESS, a variety of molecular prop-
erties, ranging from simple dipole moments to frequency

dependent hyperpolarizabilities may be computed. GAMESS
is capable of a very broad range of electronic structure
theory calculations and is therefore very widely used, with an
estimated user base of 150, 000 in more than 100 countries.

NWChem [12] is a high-performance computational
chemistry software package that focuses on providing new
and essential scientific capabilities to its users in the areas
of the kinetics and dynamics of chemical transformations.
Initially, the problems of interest focused on environmental
issues, but recently NWChem has been applied to the
examination of metal clusters, biological systems, nanostruc-
tures, and materials. Both GAMESS and NWChem offer a
multitude of highly correlated methods, density functional
theory (DFT) with many exchange correlation function-
als. Additionally, NWChem provides plane-wave DFT with
exact exchange and Car-Parrinello simulations, molecular
dynamics with the AMBER and CHARMM force fields, and
combinations of these methods.

GPU and CPU hybrid platform have become widely used
during the past few years. Well designed algorithms can fully
take advantage of the performance of GPUs. Since quantum
chemistry applications such as GAMESS and NWChem
have always been at the forefront of improving time to
solution for platforms from desktops to supercomputers, it
is natural for these codes to use the computing power of
GPUs.

In this paper, after briefly introducing the GPU computing
model, two GPU eigensolver packages are compared. Next,
details of the integration work are given, followed by the
experimental results, related work and conclusions.

2. GPU computing model
The success of GPGPUs in the past few years has been

due in part to the ease of programming of the associated
CUDA parallel programming model. In this programming
model, the application developers modify their application
to take the compute-intensive kernels and map them to the
GPU. The rest of the application remains on the CPU. Map-
ping a function to the GPU involves extensively rewriting
the function, usually in C or C++, to expose the parallelism
in the function and adding keywords to move data to and
from the GPU. The developer is tasked with launching 10s
to 1000s of threads simultaneously. The GPU hardware
manages the threads and does thread scheduling.

Figure 1 shows the GPU computing model in which the
GPU is a compute device which serves as a co-processor for
the host CPU. The GPU architecture consists of a scalable
number of streaming multiprocessor (SM)s, a multi threaded
instruction fetch and issue unit, and a read-only constant
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cache. A SM consists of Scalar Processor (SP) cores, special
function units for transcendentals, a multi threaded instruc-
tion unit, and on-chip shared memory. The SM creates,
manages, and executes concurrent threads in hardware with
zero scheduling overhead. To manage hundreds of threads
running several different programs, it employs a new ar-
chitecture single-instruction, multiple-thread (SIMT). The
SIMT unit creates, manages, schedules, and executes threads
in groups of 32 parallel threads called warps.

Fig. 1: GPU computing model

a) Threads: For GPU acceleration, a program must be
decomposed into a large number of concurrently schedulable
units so that groups of threads can execute the same code
parallel to each other or suffer poor performance. In GPUs
these groups, known as warps, consist of 32 threads. If
threads within a warp diverge on a branch, the full warp
is serially executed on each branch path, with threads con-
verging into a single execution path only after the divergent
branch is finished. CUDA also requires the organization of
warps into larger units called blocks. Threads are assigned in
units of blocks and can only communicate directly with other
threads in the same block. Communication across blocks
requires termination of the GPU kernel and data transfer
into CPU memory where the required data manipulation can
be performed. These issues limit the applicability of GPUs
primarily to data parallel applications.

b) Memory hierarchy: Each thread has a private local
memory. Each thread block has a shared memory visible
to all threads of the block and with the same lifetime
as the block. All threads have access to the same global
GPU memory. The memory model gives the developer the
freedom to choose global or local memory, which may affect
the performance.

3. GPU eigenvalue computing packages
There are some eigensolver packages with GPU support

which are publicly available. The GPU-accelerated linear
algebra libraries (CULA) and Matrix Algebra on GPU
and Multicore Architectures (MAGMA) packages utilize
the NVIDIA CUDA parallel computing architecture to dra-
matically improve the computational speed of sophisticated
mathematics.

CULA1 is a high-performance linear algebra library that
executes in a unified CPU/GPU hybrid environment. CULA
provides easy interfaces through which an application can
be integrated without extensive GPU programming expe-
rience. CULA can provide significant speedups over ex-
isting packages and supports both dense and sparse linear
algebra. CULA features a wide variety of linear algebra
functions, including but not limited to, least squares solvers
(constrained and unconstrained), system solvers (general
and symmetric positive definite), eigensolvers (general and
symmetric), singular value decompositions, and many useful
factorizations (QR, Hessenberg, etc.). All such routines are
presented in four standard data types in the Linear Algebra
PACKage (LAPACK) computations: single precision real
(S), double precision real (D), single precision complex (C),
and double precision complex (Z).

The MAGMA project2 aims to develop a dense
linear algebra library similar to LAPACK but for
heterogeneous/hybrid architectures, starting with current
“Multicore+GPU” systems. MAGMA provides linear alge-
bra algorithms, designs and frameworks for hybrid many
core and GPU systems that can enable applications to fully
exploit the power that each of the hybrid components offer.
This package also aims to solve a nonsymmetric linear
system of equations by increasing speed for the price of
relaxed accuracy.

a) Comparison between the two packages: CULA sup-
ports both dense and sparse linear algebra while MAGMA
mainly supports dense linear algebra. CULA supports both
single and double precision mathematics, and MAGMA
supports only single precision. The eigensolver routine in
CULA is a commercial code, while MAGMA is free. Both
packages have multi-GPU support.

Based on requirement in NWChem,where single precision
is sufficient. We have chosen MAGMA for our first stage of
integration.

4. Integration of GPU support
The DFT algorithms in GAMESS and NWChem are inte-

grated with GPU support, while the GPU-based eigensolver,
MAGMA, is linked to NWChem. The experimental work
examined these two well-known packages and identified the
hot spots for GPU integration.

4.1 DFT integration
a) GAMESS DFT with GPU: In GAMESS, the typical
DFT approach solves the Kohn-Sham equation [6] in which
the total energy of the molecular system is a function of
the positions of the atoms and one-particle densities. The
approach in DFT is to assume an initial charge density
and obtain successively better approximations of the density
and energy. When the total energy is minimized with re-
spect to the variational parameters, the resulting one-particle

1CULA tools http://www.culatools.com
2MAGMA http://icl.cs.utk.edu/magma/index.html

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 603



equations are exactly the same as the Hartree-Fock method
except for the handling of the exchange terms and the
way the electron exchange correlation is incorporated. DFT
methods can yield results similar to those obtained with ab
initio methods such as MP2, but at a substantially reduced
computational effort.

The major hot spot in a GAMESS DFT energy and
gradient calculation is in a routine called ’GRDDFT’ which
calculates the correlation correction to Self-Consistent Field
(SCF) with an arbitrary set of density functionals. The
calculation of ’GRDDFT’ takes 94% of the total DFT
calculation time. The routine consists of four parts:

1) Memory allocation
2) Geometry and symmetry setting (DFTSET).
3) Calculating the exchange correlation energy (DMATD).
4) Calculating the exchange correlation energy gradient

(DFTGRAD).
The calculation of the energy exchange correlation matrix
takes almost 99% of the total GRDDFT execution time. The
function DMATD calculates the exchange correlation energy
by looping over radial grids which in turn loop over the an-
gular grids surrounding atoms. The looping over radial grids
and angular grids takes almost 99% of the total DMATD
execution time. Inside the loop over grid points, DFTFOCK
(which adds the DFT exchange/correlation contribution to
the Fock matrix) takes the largest amount (72%)of the
execution time. Thus DFTFOCK is chosen as the routine
to be executed on the GPU. Other reasons are that the data
dependency of DFTFOCK as compared to other subroutines
is minimal and the amount of parallelism inside the function
is high.

Figure 2 shows the integration of the CPU Fortran
code with the GPU Fortran code in GAMESS. Inside the
GAMESS Fortran code, the application code that has a high
degree of parallelism and that takes most of the CPU time is
identified. Then the identified code is transfered into CUDA
Fortran. In the above case, the DFTFOCK subroutine is
identified as a hot spot and converted into CUDA Fortran.
Then the changed code is compiled using the CUDA Fortran
compiler (PGFortran). The compiled code is linked with
GAMESS and the CUDA libraries.

b) NWChem DFT with GPU: NWChem contains a paral-
lel implementation of the Hohenberg-Kohn-Sham formalism
[4] of DFT which differs significantly from other ab initio
methods in the treatment of the exchange-correlation term
used in building the Fock matrix. The computationally
intensive components of a DFT calculation include the fitting
of the charge density, construction of the Coulomb potential,
construction of the exchange correlation potential, and the
subsequent diagonalization of the resulting equations. The
GPU accleration of DFT in NWChem concentrates getting
exchange-correlation contribution to the gradient and adding
the Bonacic-Fantucci repulsive term [6].

Figure 2 shows the integration of the CPU Fortran code
with GPU Fortran code in NWChem. As with the GAMESS

Fig. 2: GAMESS/NWChem DFT-GPU Programming

Fig. 3: Function calls inside the NWChem eigensolver
implementation without and with GPU implementation

integration, the application code that has a high degree of
parallelism and that takes most of the CPU time is identified.
Then the identified code is changed into CUDA Fortran. The
NWChem GPU kernel is similar to GAMESS GPU kernel
(Figure 2) as in both cases the GPU kernel uses the CUDA
runtime API and CUDA libraries. During integration of the
GPU kernel in DFT for both NWChem and GAMESS, the
GPU kernel implementation requires only minimum code
rewriting as using the existing code is one of objectives of
this GPU acceleration implementation.

4.2 Integration of NWChem DFT eigensolver
with MAGMA

Figure 3a shows the order of function calls inside the
NWChem the DFT eigensolver DFT implementation with-
out GPU implementation. Figure 3b shows the changed
order of function calls inside the NWChem DFT eigen-
solver implementation with GPU implementation. Figure 4
shows the integration of the CPU Fortran code with GPU
Fortran code (MAGMA eigenvalue package) in NWChem.
The calculation of eigenvalues and eigenvectors is a time
consuming part in the Fock matrix updating procedure.
The MAGMA library of C functions offers two LAPACK-
style interfaces, referred to as the GPU interface and the
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Fig. 4: NWChem-GPU MAGMA Interface

CPU interface. The GPU interface takes input and produces
results in the GPU’s memory, whereas the CPU interface
produces results in the CPU’s memory. The GPU and CPU
interfaces, although similar, are not derivatives of each other,
but instead have different communication patterns. The GPU
function returns or sets the logical flag indicating whether
the GPU interface is to be used for calculations involving the
specified MAGMA matrix. NWChem normally calculates
the eigenvalue by using the EISPACK available with the
GA tool.

Global Array eigenvalue calculation
The Global Array diagnolization subroutine calls a se-

quence of subroutines from the eigensystem subroutine pack-
age (EISPACK) [10] to find the eigenvalues and eigenvectors
(optional) of a real symmetric matrix. In NWChem for serial
execution, the eigensolver ’rs’ from EISPACK is used. (The
eigensolver in ScaLAPACK [1] is called only for parallel
execution.)

In order to demonstrate the GPU version eigensolver can
benefit NWChem, the EISPACK eigenvector calculation in
NWChem will be replaced by the MAGMA GPU solvers.
Since NWChem invokes the ’rs’ solver through the Global
Array interface, the Global Array diagonalization subrou-
tine EISPACK calls are replaced by MAGMA calls. The
MAGMA eigensolver routine is Magma_dsyev which is
very similar to the analogous LAPACK routine. The major
difference between the ’rs’ subroutine and Magma_dsyevd
is that ’rs’ uses the whole real symmetric matrix whereas
Magma_dsyev uses the lower or upper triangular matrix. By
switching from the ’rs’ routine to the Magma_dsyevd, the
matrix needs to be converted to a new format.

5. Experiments
All the tests are conducted at the US Department of

Energy Ames Laboratory GPU computing cluster - Exalted,
which consists of 26 nodes, each having six 2.66 GHz Intel
Xeon processors, 8 nodes have 4 NVIDIA Tesla C2070
GPUs and 18 nodes have 2 NVIDIA Tesla C2070 GPUs.
The nodes are connected via Mellanox QDR InfiniBand and
each node has 24GB of RAM. Despite having two GPUs per

node available, we focused on using only a single GPU per
node. The speedup here is defined as the ratio of the existing
sequential algorithm execution to the parallel execution time.

5.1 GPU implementation of DFT in GAMESS
This experiment on the DFT method in GAMESS focuses

on performance improvement of the algorithm in terms
of speed up. As explained in Section 4.1, the DFTFOCK
routine is separated from the existing application and is
tested with various problem sizes (Fock matrix sizes) to find
the actual performance gain in terms of speed up. Various
scenarios with different optimization techniques are tested
and results are explained below.

Scenario 1: The GPU CUDA memory model comprises
various memory spaces, which differ enormously in latency
times, availability of caches, etc. Particularly important
features are global and shared memories, the former being
an off-chip memory and thus featuring high-access latency;
the latter being on-chip memory and thus having reduced
latency. This scenario tests the global and shared memory
usage inside the GPU. The experiment results with problems
of various matrix size are shown in Table 3. Results are after
optimization for the number of threads and blocks based on
the problem size. In order to find the break point where
DFTFOCK can start to take advantage of the GPU, the
matrix size is continually increased. The GPU implemen-
tation shows better timings for problems with matrix size of
10,000 or more (Table3). For the problem size of 20,000,
there is not much difference in performance between CPU
implementation and CPU-GPU implementation using global
memory, but the CPU-GPU implementation using shared
memory increases the speed up from the CPU implemen-
tation (Table 3, columns 1&3) 2 times and the CPU-GPU
shared memory implementation also increases the speed up
from the global memory implementation (columns 2&3)
by about 2 times. The experimental results prove that the
GPU implementation should involve less kernel calls and
memory allocations for better performance. Shared memory
is exploiting the availability of on-chip shared memory
by enabling kernels to load all needed field components,
including the components corresponding to adjacent blocks
and provides huge performance gains in terms of GPU and
CPU execution time. Such gains are due both to the high
efficiency of shared-memory access, and due to the limited
number of separate memory transaction issued for each
thread i.e., reducing the effective number of memory read
operations for each thread. GPU speed up can be increased
more if memory usage is optimized. Hence it is necessary
to carefully design and implement kernel codes in order to
minimize the number of global-memory reads, by making
use of the other available kinds of memory.

Scenario 2: In this scenario, we used various Fock matrix
sizes to explain the factors affecting CPU-GPU implementa-
tion. An experiment (CASE A) is built with 50 outer loops
and 12525 inner loop iterations. This computation takes
about 20 microseconds in the CPU implementation. The
total execution time for the CPU-GPU implementation is 70
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Table 1: Comparison of CPU, global memory GPU and shared memory GPU times in seconds (s)
Size of Matrix Total CPU execution

time(s)
CPU+GPU execution
time(Global)(s)

CPU+GPU execution time
(Shared (s)

50 20∗10−6 70 ∗10−3 70∗10−3

500 100∗10−6 74 ∗10−3 74∗10−3

1000 2.145237∗10−3 4.213462 2.561576
5000 1.80 27.8 17.4
10000 211.2 277.0 173.6
20000 1732.1 1687.1 973.2

milliseconds. As expected, the GPU time is much greater
than the CPU execution time. The breakdown of execution
time for the CPU-GPU implementation (Table 2) shows that
memory allocation time in the CPU-GPU code far exceeds
the total CPU execution time. So experiments (B,C,D,E)
are built with a problem size of 500 outer loops and
125250 inner loop iterations and execute with various GPU-
CPU implementation/optimization techniques. The results
are shown in Table 2. For all cases (B,C,D,E), each GPU
block has 512 threads and the warp size is 32.
CASE B : Implementation of inner loop (DFTFOCK) in
the GPU kernel, allocating the memory outside the kernel
call. In this case, a small kernel size and large number of
threads and memory allocation calls are needed in the GPU.
CASE C : Implementation of inner loop (DFTFOCK) in the
GPU and allocating the memory inside the CUDA kernel.
CASE D : Implementation of outer loop (DFTFOCK) in
the GPU kernel, allocation of memory outside the outer
loop with a single kernel. In this case, the kernel size is
increased but the number of threads inside the problem is
decreased.
CASE E : Implementation of outer loop (DFTFOCK) in the
GPU kernel, allocation of memory outside the outer loop
and splitting the GPU kernel into two parts. In this case,
the kernel size needed for implementation is increased and
the number of threads inside the problem is decreased.
From Table 2, CASE A shows that the kernel call in a loop

is the bottleneck as each kernel initialization takes a lot of
time. Cases B, C, D and E also demonstrate that allocation
takes more time than kernel execution, and therefore GPU
implementation should involve less kernel calls and memory
allocations.Kernel execution time is in micro seconds range
where as total execution time is in milliseconds range. The
best execution time is from the results of CASE D (i.e.,
the implementation involves less GPU memory allocations
and less number of kernel calls irrespective of kernel size).
Test case D has increased kernel size (i.e., more functions)
compared to the kernels in other test cases, irrespective of
which it almost takes same time as the other test cases.
Thus, for GPUs, global inter-thread synchronization from
kernel calls is very costly, because it involves a kernel
termination and a new kernel call overhead from the host.
The application specific software optimization is critical to
fully utilize compute/bandwidth resources for both CPUs and
GPU.

5.2 DFT acceleration using GPU in NWChem
The experiment on the DFT-FOCK method in GAMESS

focuses on performance improvement of the algorithm in
terms of speed. As explained in Section 4.1, the DFT GPU
implemention is also done in the NWChem package. The
problem size is determined by the number of atoms used
in the input to the DFT NWChem package. The number of
GPU threads inside each block is 512 and the warp size is
32. Table 3 shows the speedup in DFT using the GPU for
various problem sizes. With the increase in problem size, the
speedup increases. Due to data transfer latency, the benefit of
using the GPU appears only if the problem size is increased
to more than 2000 atoms. The size of the kernel is also very
important in determing the speedup in the GPU.

Figure5, shows the running time for different numbers
of threads for a problem size of 10000 atoms. Figure5
explains performance of GPU in terms of number of threads
per block. The decrease in time with an increase in GPU
occupancy (threads) shows that more performance gain is
possible. A more occupancy indicates that the application
fully exploits available processing units. Unfortunately, the
amount of shared memory and registers used by each thread
block limits the occupancy value. The size of thread blocks
and/or shared-memory and registers usage must be designed
with care in order to maximize the occupancy. The speedup
increases with the increase in problem size but is greatly
limited by data transfer between the CPU and GPU. The
limitation in speedup highlights the importance of software
optimizations (memory and GPU occupancy), and an appli-
cation driven design methodology. s

5.3 MAGMA with eigensolver
The MAGMA package is integrated with NWChem pack-

age and the eigensolver of EISPACK available with the
GA tool is replaced with MAGMA eigensolver. We tested
the integration for various input molecules like Ozone, Cr2.
Since the input molecules available for testing have relatively
small matrix size, we separated the Global Array eigensolver
from the NWChem calculation and ran the tests separately
from the NWChem execution. This allowed us to experiment
with larger matrix sizes in the MAGMA-based eigensolver.
Specifically, the test case uses the Global Array tools (which
NWChem also calls to calculate the eigenvalues) where the
existing EISPACK sequential eigenvalue solver is replaced
with the GPU eigenvalue solver from the MAGMA package.
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Table 2: Time comparisons for various DFTFOCK CUDA implementations
Experiment Total execution time(Milli

s)
Memory allocation
time(Milli s)

Total Kernel execution
time(Micro s)

A 70 70 87
B 3.8 *103 73 270
C 76 73 270
D 74 73 87
E 75 73 110

Table 3: Comparison between CPU and GPU implementation times of DFT in NWChem
Size of Matrix Total CPU execution time(s) CPU+GPU execution time (Shared)(s) Speed up

10 0.000 4.3954 Nil
100 1.326*10−3 7.8526 Nil
1000 15.1234 17.2368 Nil
2000 38.3678 27.8459 1.3
5000 228.398 80.2697 3

10000 876.679 158.9643 5

Fig. 5: Timings in DFT calculations using various number
of threads in NWChem

Table 4 shows the speedup with various matrix sizes. If the
matrix size is less than 2000 there is no speed up. So a
GPU implementation for the eigenvalues can be effective if
the size of the matrix is around 2000. The speedup increases
with increase in matrix size.

Figure 6 shows execution time for various matrix sizes on
CPU and GPU respectively. The speedup starts to show when
the matrix size reaches 2000. To summarize, it is advisable
to keep data on the GPU memory, coalesce global memory
accesses to reduce latency of data transfer, take advantage
of shared memory, and to use hybrid code with double-
precision applications.

6. Related work
Several other quantum chemistry applications have been

implemented on GPU to exploit the greater level of paral-
lelism. The strategy and optimization techniques for back

Fig. 6: Speedup in eigenvalues calculation using MAGMA

porting an optimized GPU kernel to a multi-core CPU plat-
form for the application TeraChem - a quantum chemistry
code that was developed from the ground up to run on
NVIDIA GPUs - is discussed in [13]. For this study, one
of TeraChem’s largest and most complex GPU kernels is
considered. This kernel is used to calculate the electron
repulsion integrals involving d-functions. It also investigates
which CPU-specific optimizations can be applied to improve
performance of the backported kernel. The exploitation of
Quantum Monte Carlo algorithms with multiple forms of
parallelism and its package simulation code portability to
the NVIDIA CUDA GPU platform are discussed in [2]. The
restructuring of the CPU algorithms to express additional
parallelism, minimize GPU-CPU communication, and effi-
ciently utilize the GPU memory hierarchy is important in
porting the CPU code to GPU [2]. The restricted Hartree-
Fock method is implemented on a multi-GPU system (a con-
ventional cluster outfitted with GPUs) and its effectiveness is
demonstrated [9]. According to [11], GPUs can significantly
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Table 4: Speedup in eigenvalues calculation using MAGMA
Size of Matrix Total CPU execution time(s) GPU execution time(s) SpeedUp

10 0.00001 0.001300 Nil
100 0.00399 0.399 Nil

1000 2.4650 2.4550 Nil
2000 22.91551 19.17751 1.2
3000 80.09583 50.1824 2
4000 400.1783 95.3697 4.19
5000 2100.7624 143.2457 15

outpace commodity CPUs in the central bottleneck of most
quantum chemistry problems. It also explains the method to
separate memory bound operations by modifying the algo-
rithm and the memory scheme. It also demonstrates speedups
are readily achievable for chemical systems of practical
interest, and the inherent high level of parallelism results in
complete elimination of inter-block communication. Due to
the relative number of single and double precision cores, the
best performance for GPU accelerated code is achieved when
performing operations at single precision. It also discusses
various issues that come with GPU implementations like
memory transfer, accuracy, and thread consistency [5].

7. Conclusion and future work
In this work, a GPU integration for two widely used

quantum chemistry packages, GAMESS and NWChem, is
successfully performed. The exploration of two applications
gives insights into GPU needs, and the experiments results
demonstrate that there is a trade-off between performance
gains and the ease of integration. This work focuses mainly
on the experimental exploration of two large code bases: it
pinpoints the most time consuming part in the DFT algo-
rithm and links the GPU based eigensolver for NWChem.
The intention was to integrate the GPU support without
much source code changes. To accomplish this goal, the
standalone units are identified, such as the eigensolver in
the DFT algorithm. However, in order to fully exploit the
available GPU, several software strategies have to be care-
fully designed and implemented. Currently, the performance
bottleneck is in the data transfer between CPU and GPU.
Performance tuning and further investigation of adapting
GPU to more complex algorithms used in computational
chemistry is ongoing.
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Abstract - Power consumption has become a chief 

impediment in the advancement of digital computing.  To 

improve performance amid power limitations, accelerators 

are being applied to everyday systems.  In particular, due to 

the mix of popularity and raw computational power, 

graphics processing units (GPUs) have extended the 

applicability of digital computing in a multitude of sectors 

from ubiquitous smartphones to environmentally responsible 

supercomputing.  Operating within the mobile power 

constraint, the usefulness of a high performance graphics 

processor system in a tactical environment is explored in this 

study.   A line-of-sight optimization algorithm serves as a 

compute-intensive application with characteristics relating 

to a tactical scenario.  Power-efficient hardware options and 

achievable parallel computing capabilities are analyzed for 

assisting tactical operations. 

 
Keywords: GPGPU, line-of-sight, mobile HPC 

 

 

1 Introduction 
 

Computing power continues to increase as new 

generations of processors are released to consumers.  

Following Moore’s Law, where the number of transistors 

double every 18 months, computing elements within 

processing units have grown exponentially since the birth of 

digital computing.  By common logic, higher transistor count 

translates into higher performance potential. The TOP500 

maintains statistical lists of supercomputers around the 

world.  High performance systems are ranked according to 

the performance outcome of the Linpack benchmark, which 

tests the ability to solve a dense system of linear equations.  

In a nutshell, the benchmark algorithm evaluates the compute 

speed of double-precision arithmetic on a given system [1].  

The TOP500 table is released biannually and includes 

technical details such as processor type, number of 

processors, theoretical peak performance, and maximum 

Linpack performance.  Since 2008, detail on power has been 

included as part of the statistical fields, a hint of the 

important role power will play in future systems as 

computing field advances to reach exascale performance.   

 

The U.S. Army Research Laboratory (ARL) Department 

of Defense Supercomputing Resource Center (DSRC) 

supports and maintains high performance computing (HPC) 

resources.  The ARL DSRC provides state-of-the-art 

computational solutions for the DoD research and 

development community.  Among the systems available at 

ARL is Harold system, which consists of 10,752 cores with 

the processing capability of 120 trillion floating-point 

operations per second (TFLOPS).  A predecessor,  JVN 

system, decommissioned in 2009, had 2048 cores with the 

theoretical peak of 14.7 TFLOPS.  Shifting the focus to 

single-precision, the peak processing power for the Harold 

system is 240 TFLOPS and 29.5 TFLOPS for the JVN 

system.  Given that a single graphics card, Radeon HD 6990, 

is rated at 5.1 TFLOPS for peak single-precision arithmetic, 

this means a single video card is equivalent to roughly 1/6 of 

the JVN’s theoretical compute power.  In other words, 

networking six AMD Radeon HD 6990 PCI-E boards can 

provide a combined peak performance exceeding that of the 

available 32-bit floating-point power in JVN, albeit single-

precision.  A graph showing peak performance values for 

GPUs and their relationship to ARL’s previous-generation 

supercomputers is presented in Figure 1.  The peak 

comparison figure reflects the current state of raw compute 

abilities offered by common GPU cards and systems, which 

rival decommissioned yet once TOP500 ranked systems.  

Moreover, an equivalently powerful system using 

accelerators built today requires less space, power, and cost 

to operate.  This is the motivation behind leveraging GPU 

accelerators to enhance power-constrained tactical 

computing. 

 

 
Figure 1. Single-precision comparison of GPU devices 

with previous-generation supercomputers at ARL 
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Originally designed to drive displays, GPU cards have 

become quite powerful in executing single-precision 

calculations to account for the parallel nature of drawing 

graphics on a screen.  Since 2007, general purpose 

computing on graphics processors has introduced CUDA and 

OpenCL languages to support general C-based algorithms to 

access the underlying parallel hardware.  This effectively and 

seamlessly boosted performance in systems, which most 

likely had graphics processors installed.  In this respect, the 

GPU approach is an affordable and readily available 

consumer product with some programming effort since its 

characteristics are similar to C language.  The result of 

continuing advancement of consumer-grade GPUs has made 

HPC available to the masses. 

 

2 Influenced by Power 
 

Examples of power influencing design can be observed 

at multiple levels of computing hierarchy, starting from 

supercomputing centers to transistor designs.  Topics relating 

to power issues in computing market are summarized in this 

section where multitudes of options for reducing power 

consumption are briefly visited. 

 

The cost to power and cool a system is usually one of 

the limiting factors and is a challenge for hosting large scale 

HPC systems.  The average electrical power consumption for 

petaflop systems in the TOP500 in November 2010 was 3.3 

MW, which translates to $2.89 million per year, assuming 

$0.10/KWh.  As the supercomputing community strives to 

achieve exascale computing, efficiently managing energy 

and power will be one of the major challenges.  The 

emphasis on power is evident on the ubiquitous HPC 

DARPA project soliciting for a prototype of a petaflop-class 

rack system drawing 57 KW by year 2014 [2]. 

 

The shift toward multiple cores in semiconductor giant 

Intel and AMD is another example of how power and heat 

have affected central processor architecture design.  In order 

to avoid producing more heat per square centimeter than the 

surface of the sun, while continuing to improve performance, 

multicore was introduced as a solution.  Yet, the clock 

frequency did not advance during this period, but rather 

relied solely on the resource parallelism for performance 

gain.  Additional attention to power is manifested via Intel 

Sandy Bridge's implementation of on-die power meters that 

can measure power use on the chip and can dynamically 

distribute power [3].  Intel’s 3D transistor gate is another 

technique for power reduction.  Novel vertical fins of the 

semiconductor substrate mean more energy efficiency 

resulting from lower voltage operation and lower leakage [4].  

Moving forward, the largest transistor allocation inside an 

Intel Nehalem die relates to cache.  Distributed L1 and L2 

cache inside each core and the shared L3 cache clearly 

dominate the transistor usage.  This implies that the majority 

power is dissipated in the cache circuitry of the CPU.  

Coupled with the energy required to transfer data from main 

memory, data movement seems to impact power 

consumption at a multiple memory hierarchy. 

 

Similarly, features to optimize power consumption are 

evident in graphics architecture.  For example, advanced 

power management techniques available in Nvidia include 

multiple levels of clock gating, dynamic voltage scaling, and 

adaptive clocking.  Clock gating shuts off clocks during idle 

conditions, voltage scaling drops voltage levels during idle 

states, and adaptive clocking automatically adjusts core and 

memory frequency to save power.  Scientists and engineers 

at ARL have collaborated with researchers at University of 

Texas El Paso in looking at selected use of double-precision 

functions for Nvidia compute resources to reduce energy 

consumption.  In order to analyze accurate measurement of 

power usage, probing equipments are installed to capture 

voltage and current signals.  Power efficient computing is 

addressed from a software perspective in [5]. 

 

Field-programmable gate arrays (FPGAs) are an option 

for application-tailored, low-power processing.  Altera’s 

Stratix V FPGAs are a low-power option that supports 

floating-point implementations with a variable-precision 

DSP architecture.  A white paper by Altera’s describes that 

the single-precision multiplier density in Stratix V has 

increased to 4096, which calculates to floating-point 

processing rates in excess of 1 teraflops [6].  In terms of the 

metric flops per watt, this equates to 10 GFLOPS/W.  Yet, 

the programming model and development processes are not 

as friendly to those familiar with working in C.  

 

In the fourth quarter of 2010, sales of ARM-based 

smartphones exceeded the sales of personal computers [7].  

ARM has historically emphasized the metric of power 

efficiency due to having evolved in a low-power, battery-

operated environment.  ARM processors have gained 

dominance in the segment of the mobile market.  

Additionally, ARM is looking to enter the server market as 

the efforts are underway by companies like Calxeda to 

implement large-scale ARM powered servers.  Current 

Calxeda products offer server nodes operating at 5 W using 

Cortex-A9 cores [8].  For hosting and servicing web 

applications, ARM processor's low power consumption 

offers promising alternative to the traditional server 

platforms. 

 

3 Hardware for Tactical Computing 
 

Workstation footprint system is a manageable-sized PC 

augmented with high-end graphics processors.  This concept 

of HPC in a box to aid on-field computations was 

investigated from two angles.  First, the upper limit as to how 

much computing power can be packed into a workstation 
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form factor was explored.  Secondly, development software 

and algorithms were analyzed for feasibility and possibilities.  

Initial attempts at the asymmetric workstation system 

involved switching heat sinks and fans with custom fitted 

water blocks for GPU cards to populate the system with 

seven Radeon HD 4870X2 cards.  Since Radeon HD 4870X2 

cards contain dual graphics engines, it is equivalent to having 

14 GPU devices inside a single workstation.  Additionally, 

liquid cooling allowed for overclocking the reference clocks 

to achieve extra performance.  The target goal was to reach 

20 TFLOPS mark for single-precision operations.  In regards 

to software development environment, both CUDA and 

OpenCL frameworks, which extend the power of the GPUs 

beyond graphics, were evaluated for parallel computing.  

CUDA is proprietary and thus specifically supports Nvidia 

GPU architectures.  CUDA was made public in 2007 and 

was originally based on Open64 C compiler until the recent 

switch to low level virtual machine (LLVM) for CUDA 

release 4.1.  Nvidia’s earlier start has served to acquire initial 

momentum within the GPGPU community extending to 

Matlab, Python, and Fortran, to name a few.  OpenCL, on the 

other hand, is vendor agnostic that can target x86 processors, 

AMD GPUs, and Nvidia GPUs.  In both frameworks, a 

language is provided for writing kernels representing core 

functions and application programming interfaces (APIs) that 

are used to manage the platforms.  Ongoing translation 

research continues for compiling OpenCL programs to run 

on FPGAs and ARM processors.  

 

More recently acquired test bed systems at ARL include 

a Nvidia GeForce 580 system and an AMD Radeon HD 6970 

GPU system.  The configuration for the 4U workstation 

platforms are dual-socket Hex-core Xeon system, 24 GB 

DDR3 memory, double-width PCIe slots for holding four 

GPU cards, a solid-state drive, and 1400 W power supply.  

The goal is for this system to target compute-intensive 

calculations inside a mobile platform.  Typically, an average 

alternator in a vehicle is rated at 100 A at 12 V, which 

computes to 1200 W.  Thus, the power requirement of the 

four GPUs workstation seems to be within an achievable 

range for an automobile operation. 

 

ARM powered devices are explored for integrating with 

the GPU workstation platforms for a tactical computing 

scenario.  One of the purposes for mobile ARM products 

would be to serve as an end user interface to display 

supercomputing calculated results.  For instance, iPhone can 

request ray-tracing calculations to a nearby GPU-enhanced 

workstation to achieve near real-time computation.  To learn 

the development process and the compute capabilities of an 

ARM processor, PandaBoard ES was procured for evaluation 

and its possible role in mobile HPC.  PandaBoard ES has the 

OMAP 4460 processor that is designed by Texas 

Instruments, which is a combination of the ARM architecture 

series Cortex-A9 and an Imagination Technologies 

POWERVR graphics core.  Once a Linux operating system 

is loaded on a PandaBoard, Army applications written in C 

can be benchmarked.  Currently, OpenCL support for ARM 

is still in its initial stage and a STDCL support is under 

development.  Linux distributions, Angstrom and Ubuntu, 

were successfully tested on a PandaBoard.  A noticeable 

slow behavior was observed in the GUI mode of Ubuntu.  

Currently in process of examination is the open source 

Android operating system that has quickly gained popularity 

in smartphones and tablets. Although, still relatively 

immature, Android has a potential to be Microsoft Windows 

for the next decade.   

 

4 Army-centric Application 
 

An algorithm for ballistic field calculation based on 

first-hit ray-tracing method was developed using OpenCL.  

The ray-tracing method allows for the calculation of line-of-

sight ballistic threat locations within a specified area.  A 

three-dimensional representation of a small part of town was 

selected for testing the ballistic hit probability field 

calculations.  The input for the algorithm is a triangle data 

format describing a three-dimensional surface and layout.  

For user interaction and displaying of results, functionalities 

were leveraged and added to the World Wind program.  

World Wind was developed by NASA and is an open-source 

interactive world viewer.  Figure 2 shows the World Wind 

interface window with loaded elevation map and the ballistic 

hit probability field, denoted by red shaded overlay on the 

surface.  In the figure, the end user can insert entities, which 

are color coded to designate red as a shooter, green as an 

observation point, and blue as a watcher.  A shooter was 

placed on top of a roof and an observation point was set near 

the front wall of the building to represent a door of interest.  

Executing the ballistic threat minimization algorithm 

generates the optimal locations for a watcher that minimize 

threat level while maintaining line-of-sight to the observation 

point.   

 

 
Figure 2. Interface to ballistic threat minimization 

 

The example case consisting of two shooters and two 

observation points was benchmarked on a single Nvidia GPU 

machine and an AMD multi-GPU workstation.  The Nvidia 
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system contained Tesla C2050 graphics card and the multi-

GPU workstation had four Radeon HD 6970 cards.  The code 

was written to support multi-GPU execution, but to avoid 

serialization between GPUs; an older version of AMD 

graphics driver was required for CentOS Linux operating 

system.  Timing results for ballistic threat calculation and 

placement optimization are presented in Figure 3.  Written in 

OpenCL, the algorithm is portable to x86 processors as well.  

The calculation on a dual-core Xeon 5160 completed in 25 

minutes. 

 

 
Figure 3. Timing measurements for ballistic threat 

minimization 

 

5 Conclusion 
 

Armed with mass-marketed processors, Army 

applications are targeted for enhancement with 

heterogeneous computing solutions.  With the assistance of 

GPUs, computationally powerful systems can be placed 

closer to field operations in a small form factor and can 

handle processing requirements onboard.  Furthermore, 

ARM-based devices with portability and low-power 

characteristics are naturally appropriate interface in tactical 

operations.  A GPU workstation will be responsible for 

complex and time-consuming computations of algorithms 

while an ARM product will provide an intuitive interface and 

abstraction.  Future work for ARM development boards 

would be to assess and analyze ARM systems in a networked 

configuration, running cloud computing software. 

 

This research investigated the applicability of 

asymmetric core computing in a battlefield environment.  

Across computing disciplines, power related issues play a 

dominant role in architecture, design, and systems.  This 

work hopes to complement and facilitate the transition of 

heterogeneous computing to battlefield operating systems. 
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Abstract - In the field of integrated circuit physical design 

automation, the problem of obstacle-avoiding rectilinear 

Steiner minimal tree (OARSMT) construction is a fundamental 

problem and has attracted a lot of research attention. In this 

paper, a parallel algorithm for constructing OARSMTs is 

proposed. The algorithm is based on maze routing and double 

front-wave expansion. Experimental results show that our 

algorithm not only generates very short wires, but also 

performs efficiently on shared-memory multi-core computer 

systems. Compared with the sequential execution of our 

parallel program that has been implemented, the program can 

achieve 23% speed-up on average while running on a multi-

core workstation. 

Keywords: VLSI Physical Design Automation, Routing, 

Parallel Programming, Multi-Core, Algorithm 
1

 

 

1 Introduction 

As the semiconductor process technology advances, 

transistor feature sizes have been shrinking. As a result, an 

integrated circuit can accommodate many transistors and 

building blocks. To implement an integrated circuit containing 

complex functions, a number of building blocks are usually 

required. Since each building block performs a specific set of 

functions (e.g., inverter, NAND, NOR, shift register, memory, 

and ALU), we can combine many building blocks and make 

proper connections between their terminals in order to build a 

larger circuit. Routing algorithms, which are capable of 

making connections between building blocks, play a crucial 

role, especially when the design is large or complex. 

In the field of integrated circuit physical design 

automation [5, 6], many routing algorithms require the 

function of constructing rectilinear Steiner minimal trees 

(RSMTs). That is because most integrated circuit layouts use 

rectilinear wires. Also, by minimizing the total wire length of 

an integrated circuit, the signal propagation delay, the power 

consumption, and the die size can all be reduced. Since an 

integrated circuit layout can contain building blocks and pre-

routed nets, it is desirable to consider regions that cannot be 

                                                           
1   This research was supported in part by the National Science 

Council of Taiwan under grants NSC-98-2221-E-155-053 and NSC-

99-2221-E-155-088. 

passed through by a net (or wire) as obstacles. Consequently, 

developing efficient algorithms for solving the obstacle-

avoiding rectilinear Steiner minimal tree (OARSMT) 

problem is important and has thus received a lot of research 

attention [1-4, 7-10]. 

Although many algorithms have been proposed in order 

to solve the OARSMT problem, most of these algorithms are 

sequential, rather than parallel. As inexpensive multi-core 

processors and computer systems have become widely 

available, developing parallel algorithms allows us to exploit 

the computational power from these shared-memory multi-

core systems. 

This article presents a parallel algorithm for constructing 

OARSMTs. The algorithm is based on Watanabe’s Steiner 

tree construction algorithm [12], but there are differences 

between these two approaches. First, our algorithm is suitable 

for use on a shared-memory multi-core computer system, 

whereas Watanabe’s algorithm is suitable for use on a 

computer system containing a two-dimensional array 

processor. Specifically, an array processor can have as many 

as tens of thousands of processing elements, while a shared-

memory multi-core computer may have less than ten 

processor cores. Second, our algorithm adopts two 

parallelized procedures, namely PARALLEL-CONNECT() and 

PARALLEL-CLEANUP(), and these two procedures can 

efficiently reduce the program execution time. The parallel 

algorithm proposed in this article has been implemented in 

C++ with the use of OpenMP [13]. Experimental results show 

that the implemented parallel program performs efficiently on 

a shared-memory multi-core workstation. 

The remainder of this article is organized as follows. In 

Section 2, we formulate the OARSMT problem. Our parallel 

algorithm for constructing OARSMTs is presented in Section 

3. Experimental results are given in Section 4. Finally, 

conclusions are drawn in Section 5. 

2 Problem Formulation 

In the xy plane, let T = {t1, t2, … , tm} be a set of m 

terminals which are to be connected by a net (or wire), and let 

O = {o1, o2, … , on} be a set of n rectilinear obstacles. A 

terminal can exist on the boundary or on a corner of an 

obstacle, but cannot exist within an obstacle. In Fig. 1(a), for 

example, t2 is a valid terminal since it is on the boundary of an 

obstacle, whereas t3 is an invalid terminal since it is located 
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within the obstacle. Invalid terminals cannot appear in an 

instance of the OARSMT problem. For the figures in this 

article, obstacles are denoted by light-gray regions. 

With regard to physical positions of line segments of a 

wire, a line segment can overlap with the boundary of an 

obstacle as shown in Fig. 1 (b), but cannot pass through the 

interior of an obstacle as shown in Fig. 1 (c). Since a wire is 

composed of rectilinear line segments, the total wire length of 

a routing result is computed as the sum of the lengths of all 

line segments. Fig. 1 (d) illustrates a valid routing result and 

its total wire length is 8. The OARSMT problem is defined 

below. 

Definition 1 (The OARSMT Problem): 

Given a set T of terminals and a set O of rectilinear 

obstacles in the xy plane, we are requested to construct a net 

(or wire) which consists of rectilinear line segments and 

connects all the terminals in T, while possibly through some 

Steiner points. In addition, line segments of the net cannot 

pass through the interior of each obstacle in O, and the total 

wire length of the routing result must be minimal. 

3 The Algorithm 

Our approach for constructing an OARSMT is based on 

Watanabe’s algorithm [12], which mainly consists of two 

repetitive phases (known as double front-wave expansion). 

The first phase is called the first front-wave propagation; a set 

of start points PS is selected, and then we propagate from 

these points in order to find another terminal tt   T, which is 

the closest to PS. During the propagation process, in addition, 

the propagation wave cannot pass through the interior of each 

obstacle. Also, the shortest distance between a point in PS and 

each visited grid point must be recorded; the numbers 

representing these distances are called distance numbers. 

The second phase of Watanabe’s algorithm is named the 

second front-wave propagation; another propagation wave 

starts from the terminal tt to reach either a point or points in 

PS. An overlapping region between the first and the second 

phases can thus be found. Moreover, Steiner points can also 

be determined. Therefore, an OARSMT can be obtained after 

connecting all the Steiner points and terminals. 

Our parallel algorithm for constructing an OARSMT 

from given sets of T and O is described in Fig. 2. First, a start 

terminal (ts) must be selected from T. Although an arbitrary 

terminal can be selected from T as the start terminal, our 

implementation of the algorithm selects the terminal which 

has the least value in terms of the sum of x and y coordinates. 

The set V is used for storing all the terminals that have been 

visited during double front-wave expansion. Since the 

algorithm starts by propagating from the start terminal ts, it is 

assigned to V in line 2. The set S, which can be implemented 

as a task queue, is used for storing grid points from which the 

next iteration of double front-wave expansion will start; these 

grid points may include terminals and/or Steiner points. 

The while loop in line 4 checks whether all the terminals 

have been visited or not. Lines 5–13 will be executed if at 

least one terminal in T has not been visited. The first front-

wave propagation phase is implemented in the procedure 

PROPAGATE_1ST(); the procedure returns a terminal (ti) which 

is the terminal found in the phase and is the closest terminal to 

grid points in S. Note that distance numbers increase as the 

propagation proceeds during this phase. 

The second front-wave propagation phase is implemented 

in the procedure PROPAGATE_2ND(). The procedure returns p, 

which is either a newly found Steiner point or NULL. Note 

that distance numbers decrease as the propagation proceeds 

during this phase. In line 7, a region R, which is the 

intersection of regions between the first and the second 

propagation phases, can be obtained. In line 8, the terminal 

that has just been discovered during the first front-wave 

propagation phase is inserted into V. 

In lines 9–10, if Steiner point p exists and it is not an 

element in T, the wire connections between p and terminals in 

a region which was formed previously will be made. We have 

found that the connection process can be parallelized; it has 

been implemented in the procedure PARALLEL-CONNECT(). 

The procedure can efficiently speed up the connection process 

and will be described in detail in subsection 3.1. 

Algorithm  PARALLEL-OARSMT-CONSTRUCTION( T, O ) 

Input: T  /* all the terminals which are to be connected */  

O  /* all the rectilinear obstacles */ 

Output: An OARSMT which connects all the terminals in T using 

only horizontal and/or vertical line segments while these line 

segments cannot pass through the interior of each obstacle. 

1. ts ← select a start terminal from set T 

2. V ← ts 

3. S ← ts 

4. while ( | V | < | T | ) { 

5.       ti ← PROPAGATE_1ST( S ) 

6.       p ← PROPAGATE_2ND( ti ) 

7.       R ← the intersection region between the first and the second 

front-wave propagation phases. 

8.       Insert ti into V. 

9.       if ( p ≠ NULL AND p T ) 

10.            PARALLEL-CONNECT() 

11.   PARALLEL-CLEANUP() 

12.   S ←   

13.   S ← all the grid points from which the first front-wave 

propagation in the next iteration will start. 

14. } 

15. FINAL-CONNECT() 

16. return the completed OARSMT 

Figure 2.  The proposed parallel algorithm for OARSMT construction. 
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Figure 1.  Valid and invalid OARSMT examples and routing results. 
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Since distance numbers are recorded during double front-

wave expansion, parts of these numbers must be cleared in 

preparation for the next double-wave expansion iteration. 

Because the process of clearing distance numbers does not 

have any data dependency, the process can be parallelized; the 

parallelized process has been implemented in the procedure 

PARALLEL-CLEANUP() and will be described in detail in 

subsection 3.2. 

In lines 12–14 of our parallel algorithm, the set S is reset 

and then its content is updated in preparation for the next 

iteration of double-wave expansion. After all iterations of 

double-wave expansion have been completed, there can still 

exist terminals that remain unconnected. The procedure 

FINAL-CONNECT() will complete the routing for these 

unconnected terminals. 

Fig. 3 illustrates an example of constructing an OARSMT 

by using our algorithm. As shown in Fig. 3(a), an instance of 

the OARSMT problem, which is to be solved, contains four 

terminals and three obstacles. If t1 is the start terminal, the 

first front-wave propagation phase will generate distance 

numbers, as shown in Fig. 3(b), after t2 is reached. The second 

front-wave propagation phase, which starts from t2 and then 

reaches t1, will generate the result as illustrated in Fig. 3(c). 

Note that the second propagation phase will only visit grid 

points that have been visited previously in the first 

propagation phase. Therefore, the overlapping region (region 

A) between the first and the second front-wave propagation 

phases can be obtained, as shown in Fig. 3(d). After the first 

iteration of the while loop finishes, set S contains all the grid 

points which are on the boundary of region A; these points 

include terminals t1 and t2. During the second iteration of the 

while loop, terminal t4 will be visited and then region B will 

be generated. A Steiner point, which is at the intersection 

between regions A and B, can be obtained; the point is named 

p1 in Fig. 3(e). The procedure PARALLEL-CONNECT() can then 

be invoked to connect p1 and t1 as well as to connect p1 and t2, 

as illustrated in Fig. 3(f). After that, the third iteration of the 

while loop will visit t3, and region C in Fig. 3(g) will be 

formed. Next, Steiner point p2 will be obtained, and it can 

then be connected to p1 and t4. Finally, the unconnected 

terminals (i.e., t3 only in this example) can be connected after 

invoking the procedure FINAL-CONNECT(). The final routing 

result is shown in Fig. 3(h). 

3.1 Parallel-Connect 

In Watanabe’s PAR-1 algorithm [12], a parameter named 

expansion distance (denoted by Dex) is used to control the 

quality of routing during front-wave propagation phases. 

When Dex=1, the PAR-1 algorithm is equivalent to Lee’s 

algorithm [14], and a wire whose length is the shortest 

between two given points can be obtained. On the other hand, 

when Dex= , a wire which has the minimum number of 

bends can be generated, although the wire length may not be 

the shortest. 

The procedure PARALLEL-CONNECT() is used to connect 

a Steiner point with other points, including terminals and/or 

other Steiner points, within a region. The technique of front-

wave propagation is also used in the procedure. However, the 

procedure is parallelized and parameter Dex is set to infinity. 

Therefore, connections will be made within the region and 

have the minimum number of bends. As a result, final routing 

results generated by our algorithm can have minimal total 

wire lengths and minimal number of bends. 

An example for illustrating detailed steps of PARALLEL-

CONNECT() is shown in Fig. 4. In this example, we assume 

that Steiner point p1 has been found, and we need to connect 

p1 to t1 as well as connect p1 to t2, as shown in Fig. 4(a). Also, 

connections must be made within region A. After the front-

wave propagation phase, which starts from p1, with Dex set to 

  is finished, distance numbers for visited grid points are 

shown in Fig. 4(b). In the backtracking phase, terminal t1 must 

be connected to p1 and terminal t2 must also be connected to 
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Figure 3. An example of constructing an OARSMT by using our 

algorithm. 
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p1. Since t1 and t2 must be located on different corners of 

region A and p1 must be on the boundary of region A, the two 

connection processes are independent and can thus be 

parallelized. Therefore, the connection between t1 and p1 can 

be made by one thread while the connection between t2 and p1 

can be made by another thread. Because there are two 

possible routes for the connection between t1 and p1, one of 

the two possible connection results, shown in Fig. 4(c) and 

Fig. 4(d), will be generated. 

After all the terminals have been visited during iterations 

of double front-wave expansion, there may still exist terminals 

that have not been connected. These terminals will be 

connected via procedure FINAL-CONNECT(). 

3.2 Parallel-CleanUp 

After each iteration of the first and the second front-wave 

propagation phases, an intersection region R can be obtained, 

as mentioned previously. However, distance numbers for grid 

points which are not located in the intersection region must be 

reset to zero before the next iteration of double front-wave 

expansion starts. The process of resetting distance numbers of 

grid points is named the clean-up process and can be 

parallelized. Fig. 5(a) illustrates an example where region A 

has been generated. After the execution of the clean-up 

process, distance numbers for grid points outside region A 

will be reset, as shown in Fig. 5(b). 

Another occasion that requires the invocation of the 

clean-up process is when wire connections within a region 

have been made, and the region must be removed in 

preparation for the next iteration of double front-wave 

expansion. For example, in Fig. 5 (c), region A has been 

generated, followed by the generation of region B. Also, 

Steiner point p1 has been obtained. After terminals t1 and t2 

have been connected to p1, therefore, distance numbers for 

grid points after performing double front-wave expansion as 

well as distance numbers for grid points inside region A must 

be reset. However, distance numbers for grid points inside 

regions which have not been removed must be kept intact. 

The result after executing the clean-up process is illustrated in 

Fig. 5(d). 

Since the two occasions for performing the clean-up 

process can be merged, we implemented the clean-up process 

in procedure PARALLEL-CLEANUP(). The procedure can be 

parallelized because there is no data dependency while 

resetting distance numbers for individual grid points. 

4 Experimental Results 

The algorithm presented in Fig. 2 has been implemented 

in C++ with the use of OpenMP [13]. Experiments were 

carried out on a Linux workstation containing two Quad-Core 

Xeon E5520 2.26GHz processors and 32GB of RAM. Table I 

shows statistics information for each of 21 benchmark 

testcases; the information includes the number of terminals 

(denoted by #Pin) and the number of obstacles (denoted by 

#Obs). Among these benchmark testcases, five were industrial 

testcases (ind1 to ind5) from Synopsys, eleven testcases (rc01 

to rc11) were used in [7, 8], and five randomly-generated 

testcases (rt01 to rt05) were used in [1, 8]. Table I also shows 

the execution times of our program for solving these 

benchmark testcases. On average, 23% speed-up can be 

achieved while executing the parallel program using 4 threads 

for solving these benchmark testcases. 

Table II presents comparisons of total wire lengths for 

routing results generated by different OARSMT algorithms; 

the testcases listed in the table are the same as the ones listed 

in Table I. Additionally, Table III shows comparisons of total 

wire lengths for routing results generated by different 
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Figure 4. An example for illustrating detailed steps of PARALLEL-

CONNECT(). 
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Figure 5.  Examples for illustrating functionalities of procedure PARALLEL-

CLEANUP(). 
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OARSMT algorithms when all the obstacles in each of the 

benchmark testcases have been removed. As can be seen in 

both tables, our approach is very competitive in terms of 

minimizing total wire lengths.  

5 Conclusion 

We proposed a parallel algorithm which is capable of 

constructing obstacle-avoiding rectilinear Steiner minimal 

trees (OARSMTs) in the gridded xy plane. The algorithm is 

based on maze routing and double front-wave expansion.  

Although our approach does not use refinement techniques, 

experimental results have shown that it is very competitive in 

terms of minimizing total wire lengths. Moreover, 23% 

speed-up can be achieved on average while executing the 

parallel program using 4 threads on a multi-core computer 

system. [11] 
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TABLE III.  Comparisons of Total Wire lengths for Different OARSMT Algorithms When Testcases Do Not Contain Obstacles 

Testcase #Pin #Obs Long [2] Li [4] Chu [11] Ajwani [7] Our Program 

ind1 10 0 614 619 604 604 619 

ind2 10 0 9100 9100 9100 9100 9100 

ind3 10 0 590 590 587 587 590 

ind4 25 0 1092 1092 1102 1102 1092 

ind5 33 0 1314 1304 1307 1307 1304 

rc01 10 0 25290 25290 25290 25290 25290 

rc02 30 0 40100 40630 39920 39920 40400 

rc03 50 0 52560 52440 53400 53050 52280 

rc04 70 0 55850 55720 57020 55380 55310 

rc05 100 0 72820 71820 73370 72170 71860 

rc06 100 0 77886 78068 80057 77633 77492 

rc07 200 0 106591 107236 109232 106581 107078 

rc08 200 0 109625 109059 112787 108928 108866 

rc09 200 0 109105 108101 112460 108106 107897 

rc10 500 0 164940 164450 170270 164130 165190 

rc11 1000 0 233743 235284 245325 233647 234021 

rt1 10 0 1817 1817 1817 1817 1817 

rt2 50 0 44930 46109 45291 44416 46028 

rt3 100 0 7677 7777 7811 7749 7719 

rt4 100 0 7792 7826 7826 7792 7775 

rt5 200 0 43335 43586 44809 43026 43383 

Normalized - - 1.00142 1.00241 1.02942 0.99762 1 
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Abstract—This paper describes Bacon, a data-parallel pro-
gramming system targeting OpenCL-compatible graphics pro-
cessors. This system is built upon the existing OpenCL standard
in order to make it easier for programmers to write high
performance kernels for GPU accelerated applications. The
OpenCL C syntax is extended into a new language, Bacon C,
intended to make development significantly more convenient and
enabling pre-optimizations based on just-in-time specialization as
this code is compiled via OpenCL at runtime.

Benchmarks are provided for matrix multiplication comparing
two Bacon implementations to similar OpenCL implementations.
Speedups are demonstrated both for naive implementations and
when comparing a Bacon implementation of generalized block
decomposed matrix multiplication to a hand-vectorized OpenCL
kernel. This latter result demonstrates the benefit of the total
loop unrolling enabled by just-in-time specialization.

I. INTRODUCTION

The use of Graphics Processing Units (GPUs) for general
purpose parallel computing has become increasingly feasible
over the last few years. In response to the platform specific
programming solutions from NVIDIA and Microsoft, Apple
developed the OpenCL standard as an open and cross plat-
form programming interface to this hardware. This standard
has since been implemented by a number of major vendors
including AMD, NVIDIA, Intel, and IBM.

The OpenCL standard[1] consists of two major pieces.
First, it defines a programming language called OpenCL C for
writing compute kernels to run on parallel hardware. Second,
it defines runtime APIs for C and C++ that allow these kernels
to be compiled, loaded, and executed from programs running
on a host machine.

OpenCL C uses the syntax of C99 and provides a set of
built in data types and functions that expose the numeric
computation capabilities common to modern GPU devices.
The specification explicitly disallows the use of various C99
functionality that is not supported by GPU hardware, including
function pointers, recursion, and any sort of dynamic memory
allocation or array sizing.

Rather than providing a stand-alone program to compile
OpenCL C kernels, the OpenCL C and C++ APIs give devel-
opers the pieces necessary to build a compiler into their host
program. This allows OpenCL programs to be portable across
different hardware archetectures by delaying compilation until
runtime when the target GPU device is known. Unfortunately,
it also requires each developer to write quite a bit of code

to load the kernel source code and perform various other
bookkeeping activities.

This paper introduces Bacon, a parallel programming sys-
tem built on top of OpenCL. Bacon provides two main
benefits to developers over the direct use of OpenCL. First,
it provides a better user experience through syntax extensions
and automatic generation of interface code. Second, it uses an
optimization technique called just-in-time specialization which
can speed up kernel execution significantly.

Just-in-time specialization operates by delaying compilation
of a Bacon kernel until after it is called with a concrete set
of argument values. When a Bacon kernel is written, some
integer arguments can be marked as specialization variables.
When a kernel is first called with a given set of values for those
arguments a specialized version of that kernel is generated
with the values of those arguments held constant. Just in time
specialization enables several optimizations and capabilities
that could not be provided otherwise.

These improvements are evaluated using matrix multipli-
cation as a well-known test case. Both simpler code and
improved performance are demonstrated.

II. RELATED WORK

A. Partial Evaluation

Specialization, also known as partial evaluation, has been
shown to be a very effective optimization by projects such
as Tempo[2], which does general partial evaluation of C code
at compile time. Just in time specialization was popularized
by its use in typing dynamic languages, as shown in the Self
language[3]. Just in time specialization on values has been
used in Prolog systems by Bolz[4].

B. OpenCL Libraries and Front-Ends

Bacon is not the first attempt to provide an improved pro-
grammer experience for OpenCL. Rick Webber has developed
an improved C++ API called clUtil[5]. Bindings for other
languages, like the JOCL[6] binding for Java, provide APIs
at a variety of levels of abstraction.

Another very interesting approach allows the programmer
to describe the computation to be executed on the GPU in the
same language as the rest of the program. An OpenCL kernel
is then generated automatically. This has the potential benefit
of increased expressive power and programmer familiarity
at the cost of increased complexity and necessarily leaky
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kernel
Array2D<float> // (1) return values
mat_mul(Array2D<float> aa, Array2D<float> bb)
{
SETUP: // (2) in-kernel setup section

global Array2D<float> cc[aa.rows, bb.cols]; // (3) parameterized types

BODY:
@range [cc.rows, cc.cols]; // (4) parallel range declaration

float sum = 0.0;
assert(aa.cols == bb.rows, // (5) error checking and handling

"Matrices must have compatible dimensions.");
for (int kk = 0; kk < aa.cols; ++kk) {

sum += aa[$row, kk] * bb[kk, $col]; // (6) multi-dimensional arrays
}
cc[$row, $col] = sum; // (7) special index variables
return cc; // (8) return variable declared and selected in-kernel

}

Listing 1: Naive Matrix Multiplication in Bacon C

abstraction when the host language contains features that can’t
be cleanly transformed into GPU code. Examples of this
approach include CLyther[7] for Python and ScalaCL[8] for
the functional language Scala.

III. THE BACON C LANGUAGE

Bacon C is based on OpenCL C with extensions for im-
proved usability and to enable the automatic generation of C++
wrapper code. Sample Bacon C kernels that perform matrix
multiplication and demonstrate nine of the new features of the
language are shown in Listing 1 and Listing 2.

Bacon preserves the OpenCL single program multiple data
(SPMD) computation model. A kernel is executed in parallel
over a 1D, 2D, or 3D range. Each executing instance of the
kernel can query its position in that range to determine which
part of the work it is responsible for performing. For example,
the kernel in Listing 1 will be executed in parallel once for
each element in the output matrix.

Each kernel is separated into SETUP and BODY sections.
The SETUP section ((2) in the Listing 1) is for code that will
run serially on the host processor while the BODY section
contains the code to be executed in parallel. In practice, the
SETUP section is primarily used to declare output arrays that
can be returned to the host application and to compute the
sizes of these arrays.

Unlike OpenCL C kernels, Bacon C kernels can return
values ((1) in Listing 1). Any variable of a simple type
can be returned, as can any array passed as an argument or
declared in the SETUP section. The return statement occurs
in the kernel BODY ((8) in Listing 1) and can selected
conditionally (e.g. by an if statement), but the behavior if
different parallel instances of the kernel try to return different
values is undefined.

Each BODY includes an @range declaration ((4) in List-
ing 1) that specifies the range it will be executed over in
parallel. Within the BODY, the current position in that range
is held in special Bacon-specific variables named $col,
$row, and $dep for the first, second, and third dimension
respectively ((7) in Listing 1). The range is formatted like
an array declaration, so a BODY with @range[4] will be
executed 4 times in parallel with $col having the values 0,
1, 2, and 3. Since this is only a 1D range, the values of $row
and $dep will both be zero.

Bacon provides parameterized types ((3) in Listing 1) for
1D, 2D, and 3D arrays using C++-style angle bracket syntax.
Both declarations and element access use a comma separated
list of numbers in square brackets ((6) in Listing 1). The
dimensions of these arrays can be accessed using struct-
style dot notation. For example, a three by three by three
array of integers called “cube” could be allocated with int
cube[3,3,3]; and the width of that array could be
accessed with cube.cols.

Additional error handling is provided through the assert
((5) in Listing 1) and fail keywords which will stop kernel
execution and raise exceptions in the host process if triggered.
A fail is triggered if execution in any thread reaches that
statement, while an assert is only triggered if its associated
condition is false.

Each Bacon kernel has a set of specialization variables.
These fall into two categories. First, the dimensions of any ar-
rays passed as arguments to a kernel are always specialization
variables. Second, additional specialization variables can be
specified explicitly by declaring arguments using the const
qualifier (like the blksz argument in Listing 2). Whenever a
kernel is called with a new set of values for its specialization
variables a specialized version of that kernel is generated and
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Sequence Traditional (e.g. FORTRAN Kernel) OpenCL Kernel Bacon Kernel
1. Developer writes host application (C++) and

kernel (e.g. FORTRAN).
Developer writes host application (C++) and
kernel (OpenCL C).

Developer writes host application (C++) and
kernel (Bacon C).

2. — Developer writes wrapper code (C++) to
load and run kernel.

Bacon compiler generates wrapper code
(C++) to load and run kernel.

3. Host application and kernel are compiled. Host application and wrapper code are com-
piled.

Host application and wrapper code are com-
piled.

4. Host application is run. Host application is run. Host application is run.
5. — — Input data is read.
6. — — Bacon library generates specialized OpenCL

kernel.
7. — Target GPU is identified. Target GPU is identified.
8. — Kernel is compiled for target GPU. Kernel is compiled for target GPU.
9. Input data is read. Input data is read. —

10. Kernel is executed on input data. Kernel is executed on input data. Kernel is executed on input data.

TABLE I: Lifecycle of Bacon and OpenCL Kernels

executed. Specialized kernels are cached for future calls with
the same set of specialization values.

This specialization, in addition to providing performance
benefits, allows variable sized arrays in thread-private memory
as long as the array size depends only on const variables and
array dimensions. Since OpenCL does not allow any form of
in-kernel dynamic memory allocation, this makes it possible
for users to write kernels that would have been difficult to write
using OpenCL directly. The blocked matrix multiply kernel in
Listing 2 gives an example of this feature.

IV. KERNEL LIFECYCLE

The basic technique of separating out high performance
“kernels” from an application and implementing them in a
separate language has been used in software development for
decades. This even occurs for purely sequential programming.
For example, an application written primarily in C++ may have
high performance routines written in hand optimized assembly
code or FORTRAN. Traditionally, the host application and
kernel code are compiled into separate modules and then
linked together before execution. This basic sequence is shown
in the first column of Table I.

Compiling everything before execution, or ahead-of-time
(AOT) compilation, has one major downside: the target hard-
ware is set when the application or module is compiled. Just-
in-time (JIT) compilation avoids this problem by delaying
compilation until the program is run on a specific machine,
allowing the target hardware to be detected dynamically at
runtime. OpenCL uses JIT techniques to allow the portability
of kernels across the variety of compute-capable GPUs and
other parallel acceleration hardware that provide support for
the standard. The JIT OpenCL kernel lifecycle is shown in the
second column of Table I.

Bacon takes delayed compilation one step further, waiting
to compile a kernel until it is actually called and the charac-
teristics of the arguments can be examined. This allows just-
in-time specialization to be performed, as shown in the third
column of the table.

V. IMPLEMENTATION

The Bacon system consists of two pieces: the Bacon com-
piler and the Bacon runtime library. The compiler runs at
application compile time and parses the Bacon C source,
generating a C++ wrapper and a serialized abstract syntax tree
(AST). The Bacon runtime library is called from the generated
wrapper as the host application is running to load the AST,
generate specialized OpenCL C code when a kernel is called,
and run that code on the GPU using the OpenCL runtime.

The system is built using Perl and C++. The Bacon com-
piler parses the source code using Parse::Yapp[9], a yacc-
compatible parser generator for Perl. This constructs the
abstract syntax tree as a Perl data structure. The C++ wrapper
is then generated by traversing this tree.

The generated C++ wrapper provides a C++ function with
the kernel’s type signature that can be called from the user’s
application. When this functions is called, the Bacon runtime
library loads the AST and traverses it to generate the spe-
cialized OpenCL code. Optimizations are performed at code
generation time directly from the AST without the use of a
traditional low level intermediate representation.

The two optimizations that are performed by the Bacon
runtime library are constant propagation and loop unrolling.
Constant propagation calculates the values of all the variables
that have been marked as const by the programmer. If the
value of any of these variables cannot be computed from the
specialized arguments to the kernel, the Bacon runtime library
will throw an exception. This information is used to construct
a symbol table, and references to these variables are replaced
with their constant integer values in the generated OpenCL
code.

Loop unrolling is performed on any loops for which the
iteration count and range can be determined after constant
propagation. Short loops are fully unrolled. In this case, no
loop is passed to the compiler at all. An example of this is
shown at (10) in Listing 2. Longer loops are unrolled by some
factor that evenly divides the iteration count.

This specialized and optimized OpenCL C code is then
passed to the OpenCL compiler provided with the vendor SDK
which will perform further optimizations on the generated
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kernel
Array2D<float>
blocked_mat_mul(Array2D<float> aa, Array2D<float> bb, const uint blksz)
{
SETUP:
global Array2D<float> cc[aa.rows, bb.cols];

BODY:
@range [cc.rows / blksz, cc.cols / blksz];

// (9) private variable-sized array
private Array2D<float> sum[blksz, blksz];
int ii, jj, kk, gg;

for (ii = 0; ii < blksz; ++ii) {
for (jj = 0; jj < blksz; ++jj) {

sum[ii, jj] = 0.0;
}

}

int base_ii = $row * blksz;
int base_jj = $col * blksz;
int base_kk;

for (gg = 0; gg < aa.cols / blksz; ++gg) {
base_kk = gg * blksz;

// (10) These loops are shown unrolled to the right.
for (ii = 0; ii < blksz; ++ii) {

for (jj = 0; jj < blksz; ++jj) {
for (kk = 0; kk < blksz; ++kk) {

sum[ii, jj] += aa[base_ii + ii, base_kk + kk] *
bb[base_kk + kk, base_jj + jj];

}
}

}
}

for (ii = 0; ii < blksz; ++ii) {
for (jj = 0; jj < blksz; ++jj) {

cc[base_ii + ii, base_jj + jj] = sum[ii, jj];
}

}

return cc;
}

\\ Unrolling results for blksize = 2

sum[0, 0] += aa[base_ii, base_kk]
* bb[base_kk, base_jj];

sum[0, 0] += aa[base_ii, base_kk + 1]
* bb[base_kk + 1, base_jj];

sum[0, 1] += aa[base_ii, base_kk]
* bb[base_kk, base_jj + 1];

sum[0, 1] += aa[base_ii, base_kk + 1]
* bb[base_kk + 1, base_jj + 1];

sum[1, 0] += aa[base_ii + 1, base_kk]
* bb[base_kk, base_jj];

sum[1, 0] += aa[base_ii + 1, base_kk + 1]
* bb[base_kk + 1, base_jj];

sum[1, 1] += aa[base_ii + 1, base_kk]
* bb[base_kk, base_jj + 1];

sum[1, 1] += aa[base_ii + 1, base_kk + 1]
* bb[base_kk + 1, base_jj + 1];

Listing 2: Blocked Matrix Multiplication in Bacon C

code, including more aggressive constant propagation and
possibly static register-load scheduling enabled by the Bacon
pre-optimizations.

The implementation of Bacon is available publicly under an
open source license. The current version can be downloaded
from the public git repository1.

VI. EASE OF USE

We believe that Bacon provides an improvement in ease
of use compared to OpenCL by itself. A number of syntactic
improvements are described in Section III. More significantly,
the automatic generation of wrapper code performed by the

1http://code.ferrus.net/compilers/bacon.git

Bacon compiler significantly reduces the number of lines of
code that the developer is required to write.

As a concrete example of the reduction in lines of code
required by Bacon, we consider naive matrix multiplication
kernels like the one shown in Listing 1. Our OpenCL C
version of this kernel is the same length: 17 lines of non-
whitespace code. Unfortunately, even ignoring the application-
specific code required to construct the input matrices, it takes
174 lines of non-whitespace C++ code to compile and call
this 17 line OpenCL kernel. In contrast, the Bacon version
only requires three lines to load, specialize, and call; all the
bookkeeping is done either by the automatically generated
wrapper code or by the Bacon runtime library.
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Fig. 1: Speedup on 4k matrix multiplication with unrolled loops over naive OpenCL implementation.

Test Time (s) Speedup

OpenCL - Naive 11.9 1.0
OpenCL - Hand Vectorized 2.54 4.7
Bacon - Naive (Best) 3.45 3.5
Bacon - Blocked (Best) 1.97 6.1

TABLE II: Summary of 4k Matrix Multiplication Performance

VII. PERFORMANCE

In order to evaluate the performance of the Bacon system,
we compare the run time of matrix multiplication kernels
written in both Bacon C and OpenCL C. These results are
summarized in Table II, which shows that Bacon is able to
provide measurable performance improvements over similar
programs written directly in OpenCL C.

Testing was performed on an AMD Radeon HD 5830 GPU.
This is a mid-range GPU intended for high definition computer
gaming. At the time of this writing, the card is a full hardware
generation out of date, but it still has a theoretical parallel
compute capacity of 1.7 teraflops, which is more than an order
of magnitude greater than a high end CPU like the Intel Core
i7 3930 at 154 gigaflops2.

Four implementations of matrix multiplication were tested:

Bacon - Naive
A textbook implementation of parallel matrix multi-
plication. Shown in Listing 1.

OpenCL - Naive
An OpenCL implementation equivalent to the naive
Bacon code.

Bacon - Blocked
Shown in Listing 2. This generalizes a 2D unrolling
of the computation into square blocks.

2FLOPS ratings from manufacturer specifications

OpenCL - Hand Vectorized
Hand unrolled to compute 4x4 blocks at once. Ex-
plicitly uses OpenCL’s native vector types. Based on
a sample from the AMD OpenCL SDK.

The execution time of these four kernels was tested on
randomly generated 4096x4096 matrices. Each test was per-
formed five times and the average result was taken. The times
were very consistent; most tests had a coefficient of variation
under one percent. The speedups over the naive OpenCL
implementation are shown in Figure 1.

A. Discussion
These measurements show that value specialization provides

significant speedups over a non-specialized OpenCL kernel.
This result can be explained by the fact that providing constant
values and unrolled loops at compile time allows the OpenCL
C compiler to do extensive constant propagation-based opti-
mizations.

Unlike constant propagation, which provides a clear and
consistent performance benefit, loop unrolling is more com-
plicated. Unrolling loops too much drastically decreases per-
formance, most likely due to the exhaustion of registers on
the GPU device. Still, when properly tuned, loop unrolling
provides significant speedups allowing the blocked Bacon
kernel to beat the hand vectorized OpenCL kernel by nearly
30 percent.

Somewhat surprisingly, Bacon’s loop unrolling is able to
beat the vectorized OpenCL code without the explicit use of
native vector types. From this we conclude that either vec-
torization is being done automatically by the AMD OpenCL
compiler or the use of vector types doesn’t have a significant
performance benefit for this matrix multiplication algorithm.

VIII. FUTURE WORK

The Bacon system could benefit from a number of ex-
tensions to improve its performance, generality, and utility
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to developers. One obvious area of improvement would be
to automatically determine the best factor for loop unrolling
rather than expecting it to be tuned manually. The unrolling
analysis could also be extended to the implicit parallel “loops”
created by the range of the computation; optimally, it should
be possible to generate kernels like the blocked matrix mul-
tiplication shown from the naive matrix multiplication kernel.
Another simple improvement would be to perform strip mining
(Wolfe [10], section 9.8) and generate explicit vector code for
loops, but this may be unnecessary if the OpenCL compilers
are doing it themselves.

Just in time specialization as a method to improve per-
formance on parallel computations seems very promising in
general, but there are some limitations imposed by the use
of OpenCL as a compiler target. An implementation of this
technique targeting a parallel processor at a lower level would
allow for more flexibility and much faster specialization times.

IX. CONCLUSION

We have shown that Bacon allows a high performance GPU
compute kernel to be written in a naive style and executed with
nearly the performance of a hand-vectorized OpenCL kernel
due to the performance benefits of just in time specialization.
Further, we have shown that by re-writing that kernel with
a generalized block strategy and selecting appropriate loop
unrolling settings, the performance of a hand-unrolled OpenCL
kernel can be exceeded.

We are distributing this tool in the hope that it will be
practically useful for developing kernels targeting OpenCL
compatible GPU devices.
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Abstract - MapReduce is an efficient distributed computing 

model on large data sets. The data processing is fully 

distributed on huge amount of nodes, and a MapReduce 

cluster is of highly scalable. However, single-node 

performance is gradually to be a bottleneck in compute-

intensive jobs, which makes it difficult to extend the 

MapReduce model to wider application fields such as large-

scale image processing and image mining. As an attempt, this 

paper presents an approach of GPU-accelerated MapReduce, 

which is implemented by Hadoop and OpenCL. Being a 

distinctive feature, it aims at general and inexpensive 

hardware platform, and it is seamlessly integrated with 

Apache Hadoop, the most widely used MapReduce framework. 

As a heterogeneous multi-machine and many-core 

architecture, it targets at both data- and compute-intensive 

applications. An almost 2 times performance improvement has 

been validated, without any special optimization. 

Keywords: MapReduce; GPU acceleration; Hadoop; 

OpenCL 

 

1 Introduction 

  MapReduce is a distributed computing model oriented at 

huge datasets. Proposed by Google, it has been successfully 

applied to Google`s large-scale data processing [1]. For its 

excellent price/performance characteristic on low-cost clusters, 

nowadays, various MapReduce implementations are being 

utilized by more than 150 IT companies, making the data 

processing much faster, easier and more efficient [2]. 

MapReduce model simplify the complex parallel computing 

problem into two simple steps. First is called Map. The master 

node divides the input into smaller sub-problems, and 

distributes them to mapper nodes. Next step is Reduce. 

Reducer nodes collect answers to all sub-problems and 

combine them in some way to form the final output. All works 

across nodes are in highly parallel. 

Among various MapReduce applications, compute-intensive 

tasks is an important class of applications, which is 

characterized by the fact that execution of the map function is 

significantly longer than the data accessing time, by an order 

of magnitude at least. In the case that the cluster scale is 

limited, some nodes have to process a large number of 

key/value data. This situation may be more serious during the 

Reduce stage of some programs, which is always the 

bottleneck of the whole system. 

In order to handle this issue, conventional solutions have been 

presented: 

 Scale-out [3, 4]: Adding more Mapper or Reducer 
nodes, artificially or automatically. Sometimes it 
works. However, the cluster scale`s expanding will 
pose some challenges, such as side-effects in 
scheduling and node faults, especially when the 
cluster scale is larger than 1000 nodes. 

 Parameters optimization [5]: By adjusting the 
proportion of Mappers and Reducers, the file block 
size, data compression, etc., the cluster can get more 
perfect performance. Performance optimization is very 
useful in same cases; however, the ability of 
optimization is limited. This process is often time-
consuming, and it needs skills. Moreover, one such 
optimization works on only one or one kind of jobs. 
That means it has to be re-turned when the program is 
changed. 

Recent efforts therefore mainly focus on improving the 

availability, reliability and scalability for super large cluster, 

and cluster performance testing, etc. Researches are relatively 

less in the aspect of farther increasing the parallel computing 

capacity of single-nodes. However, the computing capacity 

within a node is a critical factor for performance improvement 

besides communication efficiency [6]. 

Analyzed the program of compute-intensive tasks, we can find 

some characteristics. It often contains many nesting loops in 

these programs, which often consume major running time. 

Nevertheless, sometimes the data dependency is quite low 

between loops, which determine that it is feasible to assign 

one loop to one thread, and execute these threads in parallel.  

Heterogeneous computing architecture, a state-of-the-art 

tendency of high performance computing pattern [7, 8], has 

been emerged in recent years. Up to the end of 2011, three of 

the 5 most powerful supercomputers in the world take 

advantage of GPU acceleration. Comparing with multicore 
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CPUs, concurrent threads in GPUs are far more than CPUs. 

Hundreds of lightweight threads can be easily launched in 

concurrent [9]. And this number, with the development of 

chip technologies, will continually increase without the 

limitation of Moore`s law. GPUs are much good at parallel 

numerical calculation and steaming processing. GPU 

computation is of huge potential in compute-intensive tasks 

although it has not been completely released yet. Therefore, 

utilizing computing power of GPUs to enhance the single-

node performance is our basic motivation. 

Original MapReduce model targets at multi-machine. Hence, 

some implementation frameworks port on large cluster via 

distributed file system, e.g., the Google-MapReduce 

framework upon Google File System (GFS) and Apache 

Hadoop framework upon Hadoop File System (HDFS). In 

addition, some implementations extend it to multicore CPUs 

and shared-memory multiprocessors architecture, such as the 

Phoenix framework [10] proposed by Stanford University. 

Although these are all excellent implementation, they didn`t 

take huge potential of GPUs acceleration into consideration. 

Related research didn`t bog down here. Some achievements 

have been proposed yet, such as: 

 B.He et al. [10] presented an SMS-based MapReduce 
framework: Mars. It is implemented by NVIDIA 
CUDA and Phoenix [11]. 

 K.H.Tsoi and W. Luk [6] presented a MapReduce 
framework with mixed hardware accelerator: Alex, a 
heterogeneous cluster with FPGAs and GPUs. 

Nevertheless, one limitation is that they all need dedicated 

hardware or bind with software platform, which makes it 

difficult to port on general and inexpensive platforms. 

This paper presents our early work of an approach of 

MapReduce with GPU acceleration on general platform, 

which is implemented by Hadoop framework [12] with Open 

Computing Language [13]. We attempt to extend the 

parallelism of MapReduce model, from multi-machine alone 

to multi-machine with many-core, so as to enlarge the 

application domains of Hadoop framework, e.g. large-scale 

image processing. Its performance has been validated by our 

experiments. 

The rest of this paper is organized as follows. Section 2 

provides an over-view of MapReduce and GPGPU 

computation. In section 3, we take mathematics method to 

evaluate the ideal acceleration performance, and then the 

architecture and implementation are presented with the 

experiment. Our experimental results are presented in section 

4. Finally, we conclude this paper and outline our future work. 

2 Preliminaries 

2.1 MapReduce model and Apache Hadoop 

 The original MapReduce model is proposed by Google 

for the purpose of supporting its critical services such as web 

search, log analysis, data mining, etc. in petabyte-level 

datasets. Apache Hadoop-MapReduce project is an open-

source implementation. Hadoop is not only the most popular 

and widely used MapReduce framework by masses of 

enterprises, but also a distributed store and compute platform. 

It is designed as orienting at inexpensive commodity hardware, 

but it is of excellent fault-tolerance mechanism so as to 

successfully support super large clusters and petabyte-level 

data processing. 

Being a programming model, MapReduce allows 

programmers to write functional-style code that is 

automatically parallelized and scheduled in a distributed 

system. Although its implementation is quite complex, a 

MapReduce program is rather easy to understand in logical. 

As is shown in Figure 1, a big input dataset is split into small 

chunks, and then stored in the distributed file system (e.g. 

HDFS).  Each Map task can process a local input split. The 

intermediate outputs are transferred to Reduce nodes, then 

reduce tasks combine them in some way to form the final 

output. 

 

Figure 1.  A Basic Process of a MapReduce task (Diagram courtesy of 

Apache Hadoop.) 

Utilizing the distributed file system, data-locality optimization 

[14] maximizes the amount of data throughput, which makes 

the processing of data-intensive applications much faster. 

However, although the sub-tasks` running are in parallel, the 

default program running within each node is still in serial, that 

is inefficient comparing with multi-thread programs.  

Therefore, improving the program parallelism of single-node 

is critical if we need farther performance improvement, 

especially when we are facing compute-intensive applications 

such as text processing, data compression, digital graphics 

processing, etc. In CPUs programing, multi-thread 
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programing is of difficulties and its performance improvement 

is rather limited because of CPUs` architecture. 

Nevertheless, the situation is quite different in GPUs. 

2.2 GPGPU and OpenCL 

 The Graphic Processing Unit (GPU) is a many-core 

processor that can concurrently execute hundreds of threads. 

Originally, it was a dedicated processor for graphics 

processing acceleration. But recently, being an extension of 

stream processor, the General Purpose Graphics Processing 

Unit (GPGPU) turns the massive floating-point computational 

power of a modern graphics accelerators` shader pipeline into 

general-purpose computing power [15]. 

 

Figure 2.  Fermi GPU architecture; 8 cores each streaming processors, and 

16 processors each chip (Diagram courtesy of NVIDIA.) 

For the ease of development, some GPGPU programing 

framework have been developed, such as NVIDIA CUDA, 

AMD CTM, and Brook+ developed by Stanford University, 

etc. They are all bind with appointed hardware or programing 

language. 

Different from these, the Open Computing Language 

(OpenCL) aims at the general-purpose multicore computing. 

Initially sponsored by Apple Inc., OpenCL is the state-of-the-

art open standard for cross-platform, parallel programming of 

modern processors found in PCs, servers and embedded 

devices. OpenCL gives any application access to the GPGPU 

for graphical or non-graphical computing. 

An OpenCL program usually consists of two parts: 

1) OpenCL Kernel: Kernel is the program that runs on 

multicore devices (e.g. GPUs). It is written by the OpenCL 

language, which is similar to C language. 

2) Platform-control program: For the purpose of control the 

OpenCL runtime environment, a suit of API is necessary. It 

has several language bindings that can be chose by 

programmers, such as C, C++, Java, etc. 

3 GPU acceleration and Algorithm 

 The substance of GPU acceleration is multi-threaded 

execution on multi-core hardware. There is usable scope that 

GPU acceleration is not applicable to all programs, although 

most MapReduce jobs are of natural fitness with GPU 

acceleration. We can use mathematics method to evaluate the 

acceleration performance and then validate it by experiments. 

3.1 Acceleration theory 

 A MapReduce program is always both data- and 

compute-intensive. Commonly, there are many loop 

operations in it, especially in the reduce function. Owing to 

the large scale of input dataset and the complexity of data 

processing, the time consuming caused by loops is much 

longer than the other operations. In practice, supposed that if 

there is a low data dependency between each loops, codes 

inner the loop can be executed as an independent thread, and 

each thread processes different input data. 

This is the Single Instruction, Multiple Data (SIMD) [16], 

which is the basis of GPU acceleration. The stream processors 

(SMs) in GPUs are far more than CPUs, so we can assign 

each small task on one thread, 100x decreasing the total 

executing time. 

The Relative Speedup (Sp) [17] can well measure the 

acceleration performance. Relative speedup refers to how 

much faster a parallel improvement is. 

In logical, a program can be divided into two parts. The first 

is all codes executed in sequential, which is denoted by S here; 

the second part is k m-dimensional loops that are denoted by 

L. 

So, the running time of the whole program is ls TTT  . 

Suppose that the average executing time for each program 

statement is t, and there are n statements in each loop. Then 

the time consuming of the loop operation is: 

 
m

s tnkTT )(   (1) 

Using GPU acceleration, we suppose the quantity of 

concurrent threads is N, then the executing time is: 

 
m

m

sa
N

tnk
TT

)( 
  (2) 

When Tl is long enough, Ts is negligible. Thus, the related Sp 

for an m-dimension loop is:  
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We can see that the relationship between speedup and the 

quantity of nesting-level of loops is positive correlation. 

 

Figure 3.  The relationship between Sp and N; (m = 3) 

Parallel acceleration can be used to reduce the running time of 

programs with many parallel-able loops. Hence the GPU 

acceleration should be applied to heavy and repeated tasks. 

However, logical transaction functions of GPU are limited, i.e. 

GPUs can not substitute CPUs. Within our heterogeneous 

MapReduce node, CPU is in charge of program control, task 

distributing and I/O accessing, when GPU is responsible for 

intensive computing. CPUs and GPUs cooperate to 

accomplish a data- and compute-intensive application. We 

call it a heterogeneous computation cluster. 

This method would help us evaluate the ideal performance 

improvement, which can be used to make initial decision 

about whether we would take advantage of GPU acceleration. 

However, the program should satisfy prerequisites of utilizing 

parallel acceleration. 

3.2 Prerequisites of parallel acceleration 

 Analyzed from characteristics of SIMD and our 

experiments, prerequisites of utilizing GPU acceleration can 

be concluded as follows: 

 The program contains many and/or high-dimensional 
loops: The amount of cycle number of loops should be 
far more than the number of CPU cores and close or 
greater than the number of concurrent threads in GPU. 
If the cycle number is too small, the loss outweighs 
the gain because the parallel environment context also 
needs time to initialize. But too big cycle number is 
not recommended either, e.g., the disparity between 
concurrent threads number and cycle number is larger 
than one order of magnitude. For this case, it should 
be considered about multi-GPUs or even larger cluster. 

 There is no complex condition branches inner loop 
code: Flow-control-heavy tasks are not fit for GPUs. 

The performance loss caused by frequently cut-off 
between GPUs and CPUs can not be ignored either. 

 The data dependency should be low enough: Ideal 
condition is that there is no synchronization or data 
dependency across iterations. In this case, we can gain 
fully data parallel. If this constrain can not be 
perfectly satisfied, there must be a tradeoff between 
the program complexity and performance 
improvement. 

 Task type: Numerical calculation, text or graph 
processing are recommended. 

First three are necessary conditions, when the last is an 

additional condition. If all can be well satisfied, then the GPU 

can play its most powerful effect. 

3.3 The Algorithm of Performance Test 

 We have performed 3 kinds of experiments, including 

Matrix Multiply, String Match and KMeans [10], which are 

compute-intensive or data-intensive. Here we describe a 

typical test case which is both data-intensive and compute-

intensive. 

First, the algorithm description is given here: 

LineFilter: The input data is a very big text file (1GB, 

10GB… 1TB), each line of which is consisted by 512 random 

digit from 0 to 9. For each group of five digits, it needs to 

calculate the medium value, and then substitute it to the first 

digit of the group. Keep doing this until the end of this file. 

Then statistics that how many the two adjacent numbers` 

difference is greater than 5. The results should be stored in 

an output file. 

 

Figure 4.  A Sample of DataTestMap 

And here is the pseudo code: 

Algorithm LineFilterMap: 

LineFilterMap(key lineOffset, value line)  

line = data_formate(line) 

   do until  the end of this line 

   { 

      for each line[j]…line[j+4] belong 

to this line 
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      result = (line[j] + line[j+1] + 

line[j+2] + line[j+3] + 

line[j+4]) / 5 

      line[j] = result 

} 

write(key, line) 

Algorithm LineFilterReduce: 

lineFilterReduce (key lineOffset, value 

line)  

do untile  the end of this line 

   {    

for each line[j] 

if( abs(line[j]-line(j+1))>=5) 

num++  

} 

write(lineOffset, num) 

This test is analog to the smoothing operation in digital image 

processing, which is a typical data- and compute-intensive 

task. 

In the lineFilterMap function, there is a 1-dimensional loop, 

which will be executed 512 times in linear on one compute-

core. However, it can be founded that the sub-dataset is not 

intersectional between each loop. That is data independence. 

This fine characteristic permits that it can be executed in 

parallel. 

3.4 Implementation details 

 

Figure 5.  The Data Flow of the Architecture 

When performing the GPU-accelerated program design, one 

of the most important questions is deciding which part of the 

program should be assigned to GPUs. Hence, we provide our 

recommended program design principal according to our 

experiments.  

Responsibilities of CPUs are concluded as follows: 

 Program control: Main frame of a MapReduce 
program. 

 Tasks distributing: Launching the compute-intensive 
part to the GPU, including initializing OpenCL 
context, kernels establishing, data interchange 
between host memory and device memory, and 
OpenCL objects collection. 

 Data accessing: I/O operations, including data 
accessing from local disk or distributed file system. 

In our implementation, we suggest that a map or reduce task 

should be executed by several CPU threads, and each single 

CPU thread will spark lots of GPU threads. The 

programmable units of the multi-core CPU follow a Multiple 

Instruction, Multiple Data (MIMD) programming model. 

These few heavyweight but multifunctional CPU threads can 

execute much more complex tasks. 

Comparatively, the functions of Kernels are much simpler. 

GPU focuses on intensive computing and efficiency. 

Considering the performance, there should be not any I/O 

operations in Kernels. For the same reason, the frequency of 

data transfer between host memory and device memory should 

be designed as low as possible [18]. 

The real process of LineFilter program is demonstrated as 

follows: 

When the context of Hadoop-MapReduce runtime is 

initialized in the whole cluster, each data node (or 

TaskTracker) has got its task and data. In each Map program, 

there are two CPU sub-threads in Map function: First is to 

initialize the OpenCL platform context; another is to format 

input data into the form that can be processed by GPUs. When 

these two sub-threads have been done, the OpenCL kernel 

program begins to run on GPU. All these GPU computation 

results will be pushed into a high-bandwidth device buffer 

cache in parallel. Then, the results will be written to local disk. 

Part of the Map Kernel: 
int iGID = get_global_id(0); 

if (iGID >= numElements)  { 

return; 

} else { 

result[iGID] = ( a[iGID] + b[iGID] + 

c[iGID] + d[iGID] + e[iGID] )/ 5; 

} 

Next step is processing the massive intermediate outputs. 

Facing more than 2000000000 lines data, it is really a big job. 

However, with 3 Reduce nodes and 1000 threads per node 

running in our experiment environment, this scale is reduced 

to be less than 67000. The structure of Reduce function 

(lineFilterReduce) is similar to the Map function. It also 
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include OpenCL acceleration, however, if the Reduce node is 

coincidentally also the Map node, the time of OpenCL context 

initializing has been designed to be saved, since the kernel 

function of Reduce is integrated into the kernel file, and that is 

also initialized when the Map function is started. 

4 Experiments 

 For getting an intuitionistic comparing between the 

native MapReduce and our improving, experiments have 

performed. 

4.1 Experiment environment 

 The experiment environment is deployed on a 7 nodes 

cluster of DELL commodity PCs. The cluster statistics are: 

 7 nodes and 3 nodes per a rack 

 1 dual core Xeons @ 2.0Ghz per a node 

 2G RAM per a node 

 1 ATI Radeon HD 5450 GPU per a node 

 1 SATA disk per a node 

 1 Gigabit Ethernet on each node 

 8 Gigabit Ethernet uplinks from each rack to the core 
switch 

 Ubuntu11.10 Enterprise Linux Server 

 Oracle Java JDK 1.7.0_01-b08 

 Hadoop 0.20.203 

 OpenCL 1.1 

Performance and compatibility are the main considerations. 

For the purpose of reaching a native performance, the Hadoop 

framework in this test is deployed on bare nodes without 

virtualization or hypervisor. The distributed file system is also 

the native HDFS. 

Since the Java language is the best practice in Hadoop 

programing, for achieving a better seamless-integration, we 

select an Java language binding (JOCL) of OpenCL to 

integrate these two frameworks together. JOCL use Java 

Native Interface (JNI) to call the kernel program that drives 

the GPUs. Mixed programming guarantees their well-

integrated meanwhile the performance loss will be the least. 

4.2 Results 

 Under the different orders of magnitude, we have 

completed 5 groups of experiments. The MapReduce program 

with GPU acceleration is denoted by MRCL. Each group 

includes the performance comparison: the native MapReduce 

program, denoted by MR. Each group has been run for 5 times. 

The average value is recorded. Final result of experiment 1 is 

listed as follows: 

TABLE I.  RESULTS OF EXPERIMENT 1 ON DIFFERENT INPUT SCALE 

Input 

Scale 

Performance 

 MR Elapsed time MRCL Elapsed time Sp 

1GB 3m:26s:159ms 2m:8s:373ms 1.606 

10 GB 16m:51s:073ms 9m:12s:507ms 1.797 

100 

GB 
53m:03s:112ms 28m:17s:331ms 1.875 

1 TB 223m:39s:581ms 115m:59s:026ms 1.942 

 

As is shown in this table, the speedup is all greater than 1.6 

and it is gradually close to 2 with the input scale`s increasing. 

However, the program in this test only contains a 1-

dimentional loop. If there are more high-dimensional loops, 

we can expect an even larger speedup. 

Furthermore, in all test cases of experiment 1, the map 

function gets only one line of data each time. It is the simplest 

manner, but it is not the best practice. Because it will lead to 

“GPU hunger” and the overhead caused by frequent data 

transmission by PCI-E is considerable. A better choice is to 

submit more data per time, e.g. 5 lines each batch. But this 

number is not the more the better. Hence, we perform the 

second experiment to quest the optimized number of batch 

submission to GPU. 

We override the RecordReader class of Hadoop framework. 

Then we perform the experiment 2 under 1 GB input scale. In 

figure 6, we can find that the best case appears when 3 lines 

(3×512 bytes) of data are submitted to GPU per one batch. 

 

Figure 6.  The comparison of elspsed time in different batch 

We therefore perform the experiment 1 again (denoted by 

experiment 3) using the new RecordReader class. Figure 7 

shows the peak speedup of experiment 3 is 1.959. 
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Figure 7.  Performance Speedup of the Experiment 3 over the Experiment 1 

counterpart. 

It has to be noted that, to obtain an original contrast, there is 

not any special optimization in MRCL program. The structure 

of MRCL program is almost the same with the MR program 

except the part of GPU acceleration. That means there is still 

considerable improvement space. 

5 Conclusions  

 Big data processing requires both high-capacity 

distributed storage and higher cluster computing performance. 

In this paper, we proposed an approach to take advantage of 

GPUs for reaching a higher single-node performance. An 

outstanding feature is that it is platform independence and can 

be seamless-integrated with existing framework. Utilizing 

Hadoop and OpenCL, a low-cost computing cluster can 

achieves more powerful computing capacity. With an almost 2 

times performance improvement, we can expect it will be 

applied in both data- and compute-intensive applications.  

Current work is still the technology demonstration, which has 

validated the feasibility of this technology roadmap. Future 

work will be focused on framework integration for the ease of 

development and farther performance improvement. 
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Abstract— In this article, we propose a distributed top-down
clustering algorithm for large-scale systems subject to topo-
logical changes. The objective of this clustering is to divide
large systems into smaller subsystems on which distributed
algorithms can be executed efficiently. The main parameter
of distributed algorithms complexity is the size of the system,
which leads us to focus on bounded-size clusters. Top-down
approach allows us to build a cluster naming from which we
derive an efficient inter-cluster routing scheme. Clusters are
built by a token moving from node to node according to a
random walk scheme. When the cluster reaches a maximal size
defined by a parameter K, it is divided (when possible) and
tokens are created in both of the new clusters. The new clusters
are then built and divided in the same fashion. A spanning
tree is built during the construction. These spanning trees,
together with the edges along which clusters have been divided,
constitute a spanning tree of the system, which allows routing
thanks to a consistent routing scheme. In a dynamic system,
the clustering may be divided into two disjoint structures. This
is also the case when multiple initiators begin the clustering
process. When two structures meet, one is "adopted" by the
other. This adoption mechanism allows the clustering to adopt
transparently to topological changes

Keywords: Distributed algorithms, hierarchical clustering, bounded-
size clusters, dynamic graphs, random walks

1. Introduction
Large-scale distributed systems raise new challenges to dis-

tributed computing. In this paper, we focus on dividing a large-
scale distributed system into smaller subsystems that can be
managed separately and coordinated. We are willing to compute
size-oriented clusterings: given a target size K which is a
parameter of the algorithm, clusters should all have size roughly
K. More precisely, we would like that all clusters are connected
and have a size between K and 2K (allowing for a process
considering only one cluster to detect when it is too large and
to fix it).

However, such a clustering cannot be achieved on some
topologies. Consider for instance a star graph on M > 2K
nodes. The central node is in a cluster C. Then, either all nodes
are in C, which breaks the requirement, or some clusters are
of size 1, which is also contradictory to the specification. This
is why we introduce the notion of divisible cluster: a cluster is
divisible if can be divided into two connected clusters of size
greater than K. The clustering we are computing is such that
all clusters are of size greater than K, and none is divisible. It
can be seen as a distributed approximation of a clustering with
all clusters of size K.

Since the algorithm is based on the size of clusters, each
cluster must be “aware” of its size. Thus, nodes should be
recruited one by one, and to model this, we use a recruitment
token. The token must follow a traversal scheme to ensure that
all nodes can be recruited. Since no assumption is made on
the topology of the system and the topology is unknown and
possibly dynamic, we use a random walk traversal scheme [14].
Properties of random walks allow to design a traversal scheme
using only local information and to ensure local load balancing;
such a scheme is not designed for one particular topology and
needs no adaptation to fit other ones [6], [9]. In the course of
its walk, the token builds a spanning tree of the cluster which
it uses to divide the cluster when required. This tree is also the
basis for routing messages in the cluster, and between clusters.

Each cluster is then represented by its recruitment token, that
stores all information relevant to it (in particular, this spanning
tree and inter-cluster routing information).

Thus, the walk recruits unclustered nodes and maintains
an adaptive spanning tree of them, until it reaches size 2K.
At this point, the token holder checks whether the tree is
divisible, and if it is the case, divides the cluster. Since the
spanning tree is adaptive, if the cluster is divisible, the tree
is eventually divisible too. The division process is carried out
by the propagation of a wave on the spanning tree. Each node
changes its cluster id accordingly, and the roots of the two
subtrees create new tokens, while the former one is discarded.
The edge along which the division was performed is recalled
by nodes of both clusters, and will be used for inter-cluster
routing. We call these edges inter-cluster routing edges (ICRE
in the following).

This algorithm is top-down. This choice allows us to design
a naming scheme for clusters to efficiently route messages
between clusters. Each cluster has a name in (0|1)∗. During
a division, the resulting clusters take the name of the divided
cluster, and add a 0 or a 1 at the end. Thus, two clusters the
names of which differ only by their last bit are siblings, and
know a link to each other. They may be further divided, but
one of the descendants of each of them will keep track of this
link, thus allowing inter-cluster routing. Other descendants will
recall which sub-cluster holds this link.

Clusters are named in the course of the divisions: initially,
an initiator node starts building cluster 1. When a cluster with
id x is divided, it leads to two new clusters, one named x0, and
the other x1. x is then used as a name for the union of clusters
x1 and x0; A cluster x is called elementary if x0 = ∅ and
x1 = ∅. A non elementary cluster is called a virtual cluster.
All clusters belonging to the same (virtual) cluster 1 form a
structure. In a structure, the level of a cluster is the length of
its id.
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This naming scheme, together with the inter-cluster routing
edges computed during the divisions, provide the basis for
inter-cluster routing. The set of all cluster tree edges and inter-
cluster routing edges form a spanning tree of the structure.

In the event of a topological change, if this change does
not affect a cluster tree or an inter-cluster routing edge, the
algorithm goes on unaffected. If the change discards a cluster
tree edge or a inter-cluster routing edge (for instance, if a
clustered node disappears), we have no structure spanning
tree any longer, and we cannot guarantee that the structure
is connected. Then, the structure is divided into two: a wave
is broadcast along its tree allowing a consistent renaming of
clusters.

In such a situation, or when there are several initiators,
several structure grow in parallel. To ensure communication
between their clusters, they have to be merged. This is realized
by making one of them “adopt” the other. To avoid mutual
adoption, a total order between structures is introduced (based
on the ids of the nodes in their first division edge). When a
walk in the weaker structure reaches a node in the stronger
one, it broadcasts an adoption wave on its structure to make
it a substructure of the stronger structure. More precisely, if
the walk hits a node in cluster x, cluster x is renamed x0,
and all clusters in the adopted structure add x as a prefix to
their cluster name, so that the adopted structure becomes the
x1 substructure of the structure.

All communications that occur inside a structure during an
absorption process are carried out transparently.

1.1 Routing in a binary hierarchy of named
clusters

For the sake of simplicity, we do not distinguish between a
cluster and its id.

We consider a binary hierarchy of clusters such that:
• all nodes have a binary cluster id (clusters x0 and x1 are

called siblings; their reunion, with id x, is called their
parent);

• nodes with a given cluster id prefix form a connected
subgraph;

• each elementary cluster (ie cluster with no sub-cluster) has
a spanning tree (local tree in the following);

• given a non-elementary cluster x, there exist a node i in
x0 and a node j in x1 such that i and j are neighbors,
and all nodes in x0 are aware of (i(x0y), j) with x0y a
cluster to which i belongs, and all nodes in x1 are aware
of (j(x1z), i) with x1z a cluster to which j belongs; we
call (i, j) and inter-cluster routing edge.

The algorithm proposed in the next section, once all nodes
are clustered in the same structure, provides such a binary
hierarchy of clusters. For a more detailed explanation of the
routing scheme below, see [7].

The set of edges of the local trees and of inter-cluster routing
edges forms a spanning tree of the system, we call the global
tree. It contains at most n− 1 edges, since the local tree of a
cluster of size k has k − 1 edges, and each cluster shares one
ICRE with its sibling; affecting the ICRE to the sibling that
has not been affected the upper level ICRE, each elementary

cluster has k edges except for one (the highest level ICRE is
affected to only one of the highest level siblings). Hence there
are n− 1 edges in this subgraph.

We show in the following that routing can be achieved
through the global tree, which proves that it is connected, and
thus a tree.

Consider two different clusters x and y. Let z their longest
common prefix (at worst, z = 1). Then, x = zt and y = zu.
By definition of z, u and t begin with different bits. Assume
for instance that t = 0t′ and u = 1u′. Then, to route a message
from x to y, we will first route it to z1. All this routing, except
for its last step, will take place in z0. Once the message is in
z1, either it is in y and the process is finished; or it is not,
and then the same process will be used, but inside z1. This
guarantees the progression of the process, and that the message
is eventually delivered to the intended cluster.

To route the message to z1, the node looks at its ICREs.
Consider (i(z0v), j) the ICRE to z1. If z0v = x, then i is in
x, and the local tree allows to compute a path to it. If z0v 6= x,
then the message has to be routed to z0v. The longest common
prefix between x and z0v is longer than z, which allows to run
this algorithm recursively.

No edge is used twice in this routing process; thus this
routing process is a compact version of the routing tables that
can be deduced from the global tree.

1.2 Related work
The algorithms of [4], [8], [12], [13] produce clusters with

radius one. Each cluster has a node called a clusterhead, and
all other nodes in that cluster are neighbors of the clusterhead.
Clusters can be built using a hierarchical method: the clustering
algorithm is iterated on the overlay network obtained by
considering clusters as nodes, until a single cluster is obtained
[11], [15], [17]. These solutions are bottom-up processes while
we propose a top-down approach [16]. The algorithms in [5],
[9] are based on random walks. In [9], the clusters are built
around bounded-size connected dominating sets. In [5], the
algorithm recursively breaks the network into two clusters as
long as every cluster satisfies a lower bound.

The solution given in [3] builds k-hop clusters (clusters of
radius k) and in [10], a self-stabilizing – a self-stabilizing
system is a system that eventually recovers a normal behaviour
after a transient fault – a O(n)-time algorithm is given for
computing a minimal k-dominating set; this set can then be
used as the set of clusterheads for a k-clustering.

1.3 Outline
Section 2 presents the algorithm. First, we present the

mechanisms involved in the management of static networks
with a unique initiator. Then, we present the reactions of the
algorithm to topological changes. Last, we present the way to
deal with multiple initiators building multiple structures, and
how the algorithm merges them.

Section 3 gives a sketch of the proof of this algorithm,
following the same progression.

In section 4 are provided some results on the complexity of
this algorithm.
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We conclude this paper by giving some conclusions and
perspectives.

2. Algorithm
We consider a distributed system as an undirected connected

graph G = (V,E), where V is a set of nodes with |V | = n and
E is the set of bidirectional communication links with |E| = m.
A communication link (i, j) exists if and only if i and j are
neighbors. Every node i maintains a set of its neighbors ids
denoted by Ni.
Pi is the id of the cluster the node i belongs to. Initially

each node i sets Pi = 0 to indicate that it has not yet joined a
cluster. These node are then qualified of unclustered node.
Parent is an array describing the spanning tree of a cluster:

Parenti[j] is the parent of j as known locally by node i;
note that Parenti[i] is the current parent of node i, since
a node changes its parent only when receiving the token,
and then updates its Parent array. Initially, each node i sets
Parenti[j] = ⊥ for all j in V .

ICREi is an array on node i containing all inter-cluster
routing edges relevant to the cluster: consider (a(x), b) as the
k-th entry of ICREi. x is a prefix of a’s cluster id. The route to
the cluster with id consisting in the first k−1 bits of the name
of the current cluster, and the k-th bit different goes through
edge (a, b); to reach this edge, one must first route the message
to x.

In the following, ICRE[0] is used as a structure identifier
to break symmetries (since it is known by all nodes in the
structure). Before the first division, since this ICRE is not
yet defined, we set ICRE[0] to the id of the initiator of the
structure. The ordering is the following: a structure that not
yet been divided is always smaller than one that has been; for
structure that have been divided, (i, j) < (i′, j′) iff min{i, j} <
min{i′, j′}.

Each time a division occurs, an ICRE is created, and the set
of all ICRE creates a spanning tree of the clusters. The union
of ICREs and cluster tree edges is thus a spanning tree of the
whole structure, in which messages are routed.

All algorithms below are described on node i. The emitter
of the message is triggering the algorithm is e.

2.1 Initialization
Nodes wake up either spontaneously, or upon reception of

a message. If they wake up spontaneously, they are initiators
and execute the following code.

Algorithm 1 On waking up (initiator)
1: Parenti[i]← i
2: ICREi ← {i}
3: Pi ← 1
4: Send Token(Pi, Parenti, ICREi) to k ∈ Ni chosen at

random
5: Parenti[i]← k

An initiator creates its cluster, with id 1, and sends a token
message to one of its neighbors according to the random walk

scheme. Then, it updates its local copy of the spanning tree
Parent, taking into account that the node they sent the token to
will be its parent as soon as it receives the token (see algorithm
2).

2.2 On reception of Token messages inside a
structure
a) Algorithm 2: On reception of a Token message (unclus-
tered node, or node in the same cluster): When an unclus-
tered node receives a token, or a node receives a token from
its own cluster, it joins the cluster, updates the spanning tree,
checks its consistency with local topology (see 2.4), checks if
the cluster should be divided with function isDivisible, and,
in this case, initiates the division process, and sends the token
to a random neighbor.

Function isDivisible(Parent) returns either a node id
corresponding to the root of one the subtree of tree Parent
which is divisible or -1 if tree Parent is not divisible into
two subtrees of size ≥ K. The division process is detailed in
section 2.3, in particular message Child0 and function Sub0
are defined.

Algorithm 2 On reception of Token [Pt, Parentt, ICREt]
message with Pi = 0 or i ∈ Parentt

1: if Pi = 0 then
2: {Join the cluster.}
3: Pi ← Pt

4: ICREi ← ICREt

5: end if
6: {Update cluster tree.}
7: Parenti ← Parentt
8: if Parenti[e] 6= ⊥ then
9: {Parenti[e] = ⊥ means that the token has been

bounced by e which then does not belong to the cluster,
see algorithm 3}

10: Parenti[e]← i
11: end if
12: Parenti[i]← i
13: {The next instruction is a call to Algorithm 7 checking if

a topological change has outdated the spanning tree}
14: LocalCheck()
15: {Check whether the cluster is divisble, and initiates the

division if necessary}
16: d← isDivisible(Parenti)
17: if d 6= −1 then
18: Pi ← Pi.0
19: for all k 6= i such that Parenti[k] = i do
20: Send Child0[Parenti, d] to k
21: end for
22: (Parenti, ICREi)← Sub0(Parenti, ICREi, d, Pi)
23: end if
24: {The walk resumes, and the node stores the next node it

will visit}
25: Send Token[Pi, Parenti, ICREi] to k chosen at random

in Ni.
26: Parenti[i]← k
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b) Algorithm 3: On reception of a Token from a different
cluster in the same structure: When receiving a token from
another cluster in the same structure (two nodes i and j are
in the same structure if ICREi[0] = ICREj [0]), the node
ignores it and sends it back if the cluster is already of size
greater than K. If the cluster is smaller than K (following a
topological change), it should be deleted. The treatment of the
message Endcluster is given by Algorithm 8.

Algorithm 3 On reception of Token [Pt, Parentt, ICREt]
message with i /∈ Parentt and ICREi[0] = ICREt[0]

1: if |Parentt| < K then
2: Send EndCluster[e] to e
3: else
4: Send Token[Pt, Parentt, ICREt] to e
5: end if

2.3 Division
The division of a cluster along edge (k, j) is carried out

through a wave on the tree: all nodes above j receive Child0
messages and switch to cluster P.0; all nodes in the subtree
rooted in j receive Child1 messages and switch to cluster P.1.
j receives a Child0 message and propagates Child1 messages
to its descendants; then, it creates its new cluster token.

During a division, the list of ICRE has to be updated.
Consider a cluster with id x, with an ICRE (a, b). Then, a
is only in one of the sub-clusters, for instance x0. Then, x0
keeps the ICRE (a, b), and x1 updates its ICRE list by listing
(a(x0), b), meaning that to reach the ICRE (a, b) from x1, one
must first send the message to x0.

Functions Sub0 and Sub1 compute the subtrees of the tree
given as an argument obtained by removing the edge between
node j (third argument) and its father. Sub0 computes the top
subtree and Sub1 the bottom. The ICRE list is updated as
explained above.

Top subtree

Algorithm 4 On reception of Child0[Parentt, j] message
1: if i 6= j then
2: Pi ← Pi.0
3: for all k such that Parentt[k] = i do
4: Send Child0[Parentt, j] to k
5: end for
6: (ICREi)← Sub0(Parentt, ICREi, j, Pi)
7: else
8: Pi ← Pi.1
9: for all k such that Parentt[k] = i do

10: Send Child1[Parentt, j] to k
11: end for
12: (Parenti, ICREi)← Sub1(Parentt, ICREi, j, Pi)
13: Send Token[Pi, Parenti, ICREi] to k ∈ Ni chosen at

random
14: end if

Bottom subtree

Algorithm 5 On reception of Child1[Parentt, j] message
1: Pi ← Pi.1
2: (ICREi)← Sub1(Parentt, ICREi, j, Pi)
3: for all k such that Parentt[k] = i do
4: Send Child1[Parentt, j] to k
5: end for

2.4 Topological changes
c) Algorithm 6: Topological change detection: The parent
of a node i in the tree is Parenti[i]. When a node detects that
its parent is no longer a topological neighbor, it initiates the
destruction of the cluster subtree rooted in it, since the cluster
may not be connected anymore. The token is necessarily on
the other side of the tree.

Algorithm 6 On failure of the link (i, Parenti[i])

1: DestroyCluster()

The LocalCheck procedure (cf. algorithm 7) checks the
consistency of the tree with local topological information. If
a node listed as a child of the current node in the tree is not
one of its neighbors, the subtree rooted in the node that is no
longer a neighbor is deleted from the tree. This may lead to
the loss of some ICRE. In this case, EndGate messages are
propagated to make the structure consistent. If the cluster is
smaller than K, either it grows and reaches size K, or it is
eventually deleted (Algorithm 3).

Algorithm 7 LocalCheck()

1: for all (j 6= i such that (Parenti[j] = i) ∧ (j /∈ Ni)) do
2: Parenti ← Sub0(Parenti, ICREi, j, Pi)
3: end for
4: for all (j such that (((l(Pi), j) ∈ ICREi))∧ l /∈ Parenti)

do
5: {(l(Pi), j) is listed as an inter-cluster routing edge with

l in the cluster, but l is not in the cluster}
6: {Update local structure.}
7: for all k 6= i such that Parenti[k] = i ∨ (i(Pi), k) ∈

ICREi do
8: Send EndGate[(l, j), i] to k
9: end for

10: (Pi, ICREi)← Prune((l(Pi), j), i)
11: end for

d) Algorithm 8: On receiving an EndCluster[Node] mes-
sage: EndCluster messages are used to propagate the dele-
tion of a cluster. If the message comes from its father, a nodes
leaves its cluster. If the message comes through an ICRE, then
the node updates its ICREs.

Algorithm 8 On reception of EndCluster[Node] message
1: if Parenti[i] = e then
2: DestroyCluster()
3: else if ∃j/ICREi[j] = (i,Node) then
4: UpdateGate(j, i)
5: end if
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To propagate the destruction of its cluster (that can be
initiated only by the token holder, ie the tree root), a node
sends EndCluster messages to its children in the tree and to
nodes to which it is linked by an ICRE (so that they can update
their ICRE list). Then it leaves the cluster and falls asleep. It
will wake up when it receives a message, or spontaneously.

Algorithm 9 DestroyCluster()
1: for all k such that Parenti[k] = i ∨ (i(Pi), k) ∈ ICREi

do
2: {Propagate the changes in cluster.}
3: Send EndCluster[i] to k
4: end for
5: Pi ← 0
6: Fall asleep

UpdateGate (cf. algorithm 10) updates the ICRE list to take
into account the loss of edge ICREi[j]. To do so, EndGate
messages are propagated on the structure tree, and a call to
Prune suppresses all unreachable edges in the ICRE list.

Algorithm 10 UpdateGate(j,n)
1: for all k 6= e s.t. Parenti[k] = i∨Parenti[i] = k∨(i, k) ∈

ICREi do
2: {for all neighbors in the structure tree}
3: Send EndGate[ICREi[j], n] to k
4: end for
5: (Pi, ICREi)← Prune(ICREi[j], n)

e) Algorithm 11: On receiving an EndGate[ICRE, n] mes-
sage: When receiving an EndGate message, if the missing
edge appears in the node ICRE list, the node updates its list to
take into account the loss of this edge.

Algorithm 11 On reception of EndGate[ICRE, n] message
1: if (∃j/ICREi[j] = ICRE) then
2: UpdateGate(j,n)
3: end if

2.5 Merge process
f) Algorithm 12: Initiation of a Merge process: When a
node in a structure receives a token from a structure with a
lesser id, the latter is absorbed in the node structure. A wave
is propagated on the absorbed structure to add the name of the
absorbing cluster as a prefix of all clusters name, and a wave
is propagated on the absorbing cluster to add 0 as postfix to
its name. The link along which the token was sent is added as
an ICRE.

To trigger a Merge process, both structures must have been
divided (Pt ,Pi 6= 1). Else, if the cluster t is smaller than K or
his structure has not yet been divided, it should be deleted; to
avoid mutual deletion, we use the id of the node that initiated
the cluster to break symmetry.

Algorithm 12 On reception of Token[Pt, Parentt, ICREt]
message with Pi 6= 0 and ICREt[0] 6= ICREi[0]

1: if Pi, Pt 6= 1 and |Parentt| > K then
2: if (ICREt[0] < ICREi[0]) then
3: {Absorption process.}
4: ICREtmp← ICREt

5: append((i(Pt.Pi), e), ICREtmp)
6: append(ICREi[0], ICREtmp)
7: for all k 6= e s.t. Parenti[k] = i ∨ Parenti[i] =

k ∨ (i(Pi), k) ∈ ICREi do
8: Send Absorb[ICREtmp, Pt] to k
9: end for

10: (Pi, ICREi)← IRCEUpdate(Pt, ICREtmp)
11: Pt ← Pt.0
12: append((e(Pt.0), i), ICREt)
13: Send Changes[Parentt, (e(Pt.0), i)] to e
14: end if
15: Send Token[Pt, Parentt, ICREt] to e
16: else if |Parentt| < K or (Pt = 1 and (Pi 6= 1 or

ICREi[0] < ICREt[0])) then
17: {Token structure is not large enough to be absorbed}
18: Send EndCluster[e] to e
19: else
20: {Token structure large enough to be involved in merge

processes}
21: Send Token[Pt, Parentt, ICREt] to e
22: end if

g) Algorithm 13: Propagation of a merge (absorbing clus-
ter): Changes messages are propagated in the absorbing
cluster to make all nodes update their cluster name and take
into account the new ICRE.

Algorithm 13 On reception of Changes[Parent, ICRE]
message

1: Pi ← Pi.0
2: append(ICRE, ICREi)
3: for all k such that Parent[k] = i do
4: {Propagate the changes in cluster.}
5: Send Changes[Parent, ICRE] to k
6: end for

h) Algorithm 14: Propagation of a merge (absorbed
cluster): Absorb messages are propagated in the absorbed
structure so that all nodes in it prepend the identifier of
the absorbing cluster to their cluster name. The procedure
Prefix(P, ICRE1, ICRE2) returns a prefix of P of length i
such as ICRE2[i] = ICRE1[|ICRE1|−1]. It is used to break
symmetry between two absorptions from the same structure.
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Algorithm 14 On reception of Absorb[ICRE,P1] message
1: if (∃y : ICREi[y] = ICRE[|ICRE|−1])∧((ICRE[0] <

ICREi[0]) ∨ ((ICRE[0] = ICREi[0]) ∧ (P1 <
Prefix(Pi, ICRE, ICREi)))) then

2: {Absorption.}
3: if (y 6= 0) then
4: {Cancel previous absorption.}
5: if (∃k ∈ Ni such that(i(Pi), k) = ICREi[y − 1])

then
6: Send EndGate[(k, i), k] to k
7: end if
8: (Pi, ICREi)← Prune(ICREi[y − 1], i)
9: end if

10: for all k 6= e such that Parenti[k] = i ∨ Parenti[i] =
k ∨ (i(Pi), k) ∈ ICREi do

11: Send Absorb[ICRE,P1] to k
12: end for
13: (Pi, ICREi)← IRCEUpdate(P1, ICRE)
14: end if

Procedure Prune(Edge, j) deletes in ICREi all ICREs
rooted in the node k such that ICREi[k] = Edge. When
an entry is deleted, the corresponding bit in identifier Pi is
deleted. The new identifier Pi and the new structure ICREi

are returned. j is added in ICREi if it is empty. j is the
identifier of the node who has detected the missing edge.

For example, in cluster 110110, node 209 detects a missing
link with node 40. This link is the edge for the fourth level
(a, edge between 11011 and 11010). With its Token (or a local
copy), node 209 knows a subtree rooted by edge (209, 40). It
can delete all unreachable levels. For instance, if

Parent110110:

1 4 5 6 11 16 209
4 209 4 5 209 11 209

ICRE110110:
(1(110110),12) (14(1101),3) (2(110111),30) (209(110110),40) (6(110110),7)

after the application of Prune, we obtain for cluster 1110:
Parent1110:

1 4 5 6 11 16 209
4 209 4 5 209 11 209

ICRE1110:
(1(1110),12) (2(1111),30) (6(1110),7)

Procedure ICREUpdate(P1, ICRE1) returns the new iden-
tifier and the new structure of an absorbed cluster after an
absorption.

• All edges (n1(x), n2) in ICREi are replaced by
(n1(P1.x), n2);

• Pi ← P1.Pi;
• For all j < |ICRE1| − 2 such as ICRE1[j] =

(n1(P1), n2) do ICRE1[j]← (n1(P1.0), n2);
• ICREi ← ICRE1 ∪ ICREi;

3. Sketch of proof
We give below a sketch of the proof of this algorithm.

3.1 Static network with unique initiator
A detailed proof of this algorithm in a static network with

a unique initiator can be found in [7]. Below are given the
lemmas that structure this proof. The following lemmas hold
if no topological change occur.

Lemma 1: There is exactly one token in each elementary
cluster.

Lemma 2: Once a node is in a cluster, it remains in it
(possibly in its sub-clusters).

Lemma 3: Child messages circulate only between nodes
that are part of the cluster being divided. A Token message
either comes from a node in the Token’s cluster or is bounced
back to it.

Lemma 4: Clusters are connected.
Lemma 5: Given a Token message t, Parentt contains a

spanning tree of the elementary cluster t rooted in the last node
that held the token.

Lemma 6: If a division process is initiated, based on a
broadcast on a tree, the cluster is eventually divided into two
sub-clusters.

Lemma 7: Clusters are eventually steady.
Lemma 8: Eventually, all clusters are of size greater than K

(provided that there are more than K nodes), and no cluster is
divisible.

3.2 Topological changes
Lemma 9: The set of all edges (i, j) such that there is a

token with Parentt[i] = j or Parentt[j] = i or (i, j) ∈
ICREt is a spanning tree of the visited nodes.

In the sequel, we call structure the set of nodes that have
been visited by a token or its descendants.

We now consider the various topological changes that may
occur at any point during the execution of the algorithm.

Lemma 10: The apparition of a link has no effect on the
algorithm, nor on the specification.

Lemma 11: The disappearance of a link that is not part of
the tree described in lemma 9 has no effect on the algorithm,
nor on the specification.

Lemma 12: The apparition of a node leads to a configuration
corresponding to a possible execution of the algorithm.

Indeed, the same execution of the algorithm is possible on
the graph with the extra node.

Lemma 13: After a link in a local tree has disappeared,
nodes in the tree below this link are unclustered by algorithms
6, 8 and 9. Eventually, the Parent variable of the Token
message (or of the Token messages of children clusters) are
corrected to be consistent with the current topology of the
system. If the cluster does not reach a size over K, it is
eventually deleted.

A node disappearing has the same effect as all its adjacent
links disappearing (in particular, those that are part of the tree).

Lemma 14: If a cluster is deleted, its sibling takes the name
of its father.
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Lemma 15: After a topological change breaking the global
tree into two, clusters are renamed consistently with the new
global trees.

Lemma 16: After a topological change, the configuration
eventually corresponds to a configuration resulting from the
algorithm executed on a static network (possibly with multiple
initiators).

3.3 Multiple initiators
Lemma 17: If several structures exist, eventually, a token

from a weaker structure hits a stronger one (“weaker” meaning
that the id of the top ICRE is smaller). The weaker structure
then triggers its absorption into the other.

Lemma 18: A wave on the global tree of the absorbed
structure and a wave on the local tree of the absorbing structure
leads to a renaming consistent with a unique structure.

Lemma 17 does not exclude that several absorption are
triggered simultaneously.

Lemma 19: In the case of several absorptions triggered
simultaneously, only one is carried out.

4. Complexity
All elementary clusters have a size greater than K. Thus,

there are less than n/K elementary clusters. Thus, the binary
tree of clusters has n/K leaves: since it is a binary tree, its
height is between log2(n/K) + 1 and n/K. The building of
clusters of disjoint subtrees is parallel. So the time complexity
of this algorithm is the height of the clusters tree times the
complexity of the building of a divisible cluster starting from
a newly divided cluster.

A cluster resulting from a division has at least size K. Now,
assume all connected subgraphs of size M in G are divisible.
Then, if the cluster reaches size M , it is divisible, and will be
divided as soon as its cluster tree is divisible itself. To reach
size M (if M−K unclustered nodes exist in its neighborhood),
it takes less than the time for a random walk to cover M nodes,
the expectation of which is between O(M logM) and O(M3).

If the tree is balanced, which should be the case for instance
in random graphs, then the height of the tree is less than
log2(n/K) = O(log2(n)). In this case, the complexity of the
algorithm is O(log2(n)).

The reactions to topological changes, as well as the merging
of different structures, imply waves on the local and global
trees. If the global tree is balanced, the extra cost is less
than O(log2(n)). These processes are transparent to a message
routed in a sub-structure that is not affected by a topological
change.

5. Conclusion
The top-down approach used in this algorithm allows to

design a lightweight routing scheme based on the naming
scheme. It also lets us devise an approximation of bounded-
size clusters.

However, the management of multiple initiators requires then
some extra procedure, that can be carried out transparently and
efficiently thanks to spanning trees built in the course of the
algorithm.

The main step to self-stabilization is to guarantee the exis-
tence and the unicity of the token of each cluster, thanks to
a process like the one in [6], adapted to the case of random
walks in clusters.
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Abstract - Anti-counterfeiting technology/methods have 

entered a new era with the implementation of critical designs 

and confidential information transfer protocols. 

Manufacturing, assembly, and testing are now moving 

globally outside the company’s facility to be done at contract 

manufacturers making the security of the critical design and 

information a top priority. According to the Anti-

Counterfeiting Bureau, USA, counterfeiting and piracy costs 

the economy a loss of more than $250 billion in revenue and 

750,000 jobs every year.  To counter such threats, 

methodologies have been developed that require a unique 

signature key for every fabricated chip. Physically Unclonable 

Functions (PUFs) can be used for such signature generation. 

This paper presents a design for cryptographic applications 

that can be implemented on an FPGA taking advantage of its 

unique architecture. The first part of the research involves 

techniques for the generation of uniquely distinguishable 

responses from Ring Oscillator PUFs (ROPUFs) and the 

latter part involves error correction techniques using Artificial 

Neural Networks. The proposed design is implemented on 

several identical Xilinx Spartan FPGAs and the Hamming 

distances for the responses are computed and analyzed. The 

uniqueness of the responses is found to be 49.0625%. The 

results of the proposed Error Correcting Code also prove to 

be computationally better than the conventional BCH codes. 

Keywords: FPGA, PUF, Security, Error Correcting Code, 

Neural Network, Bidirectional Associative Memory.  

 

 

1 Introduction 

  The complexity in developing security mechanisms and 

routing protocols for embedded systems continues to 

increase; on the other hand, cost and size constraints have 

been lowered. In this scenario, trustworthy authentication of a 

device is of extreme importance for secure protocols. The 

continuous increase in density and capability of FPGAs are 

motivating designers to implement valuable designs using 

FPGAs. With FPGAs being used in more and more 

applications that implement valuable designs, significant 

security features are required. Traditional methods of storing 

the identity of an object using non-volatile memory are 

insecure [1]. Hence, a concept of generating a unique digital 

signature has a wide range of applications in embedded 

systems security and IC piracy. Physically Unclonable 

Functions (PUFs) can be used as novel chip identifiers. PUF 

is a function which produces secret output response based on 

the underlying properties of a physical device while adhering 

to various properties based on the deployment and the level of 

security intended from the device. 

 PUFs exploit manufacturing process variations in a die 

to generate non-volatile chip unique signatures exploiting 

manufacturing process variations of FPGAs. They derive 

confidential information from uncontrollable random 

components rather than storing them in the memory. Lack of 

control over sub-micron process variation makes a PUF 

unclonable. This enables chip authentication and 

cryptographic key generation. These process variations are 

mainly due to the inability to precisely control the diffusion 

of dopants and due to the inability to robustly fabricate 

geometric features [1]. These variations result in key 

electrical parameters of circuit devices and interconnects that 

increase the uncertainty in the outcome of the design process. 

PUFs exploit these uncertainties to generate a device specific 

key. 

 The quality factor of a PUF, which includes uniqueness, 

reliability and attack resiliency, is negatively affected by 

factors like voltage fluctuations and environmental 

temperature [1]. These factors degrade the stability of the 

PUF signatures. Hence, an error correction method is 

necessary to stabilize the circuit. Conventionally, BCH (Bose-

Chaudhuri-Hocquenghem) have been used for the error 

correction process. In this work, Artificial Neural Networks 

(ANNs) have been used. ANNs are a relatively new signal 

processing technology. They have a remarkable ability to 

learn and derive information from complicated and imprecise 

data that can be used to extract patterns. This characteristic 

property of ANN gives an advantage over the conventional 

error correcting codes such as BCH codes [2, 3]. 

 Section II discusses the basic operation of the proposed 

ROPUFs. Section III discusses the concepts of supervised 

learning in neural networks and the application of these 

algorithms to correct the flipped bits in the PUF responses. 

Section IV concludes the paper. 
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2 Physically Unclonable Functions 

 There have been various implementations of PUFs and 

several sources of variation in silicon PUF. Silicon PUFs can 

be broadly classified as Memory-based PUFs [4], Delay-

based PUFs (RO PUFs) [5, 6] and Glitch Count-based PUFs 

[7]. The RO PUFs have certain advantages over the other 

PUFs when implemented on an FPGA platform. Firstly, the 

implementations of ring oscillators are simplified and can be 

optimized while routing. Secondly, it has been experimentally 

observed that under a wide range of temperature fluctuations, 

RO PUFs are more stable and reliable [2]. Considering the 

above advantages, RO PUFs have been chosen for the key 

generation process followed by an error correction technique. 

 Ring Oscillator PUFs (ROPUFs) are based on variations 

in frequencies of identical oscillators to produce a secret PUF 

response. Figure 1 shows the basic principle of RO PUFs. 

Traditionally, RO PUFs exploit the fact that uncontrollable 

wire delays and voltage transfer characteristics due to 

fabrication process variations of FPGA devices cause random 

but static variations in the frequency of identically laid out 

oscillators. The response vector, in such PUFs, is generated 

by a pair-wise comparison of the ring oscillator frequencies. 

These comparisons are represented as the challenge-response 

pairs, where the chosen ring oscillator pair is the challenge 

and the output of the comparator is the response. For an RO 

PUF with N K-stage identical ring oscillators, there are N*(N-

1)/2 challenge-response comparisons [8]. The oscillators are 

designed to have identical layouts to ensure that the frequency 

variations between them are strictly due to process variations. 

 In this research, we propose a design to implement the 

RO PUFs on FPGAs using LUTs and multiplexers that are 

the basic components of FPGA architectures. Figure 2 shows 

an oscillator of the proposed RO PUF design. Multiple 

instances are instantiated to generate a multi-bit PUF 

signature. Two LUTs (LUT X and LUT Y) in a Xilinx 

Spartan 2 XC2S100 FPGA are used in shift register mode. 

The shift register contents are initialized to complementary 

values. As indicated in the figure, the LUTs are initialized to 

(0x5555)16 and (0xAAAA)16 respectively. The outputs of the 

LUTs drive the select input pins of a chain of multiplexers as 

shown in Figure 2. It is to be noted that both the multiplexers 

have their I0 data input tied to logic „0‟. The I1 data line for 

the bottom multiplexer is tied to logic „1‟. On the other hand, 

the I1 data line of the top multiplexer is driven by the output 

of the multiplexer below. The output of the last multiplexer is 

connected to a D-flip flip which increases the width of the 

pulse and produces an appropriate output response. The flip 

flop is initialized to logic „0‟.  

 Due to the complementary initialization values, the shift 

register implemented in LUT X produces a sequence 

complementary to LUT Y. Initially, the output of LUT X is 

logic „0‟ and the output of LUT Y is logic „1‟, i.e., signal L1 

is logic „0‟ and signal L2 is logic „1‟. Thus, the signals N1 

and N2 are both at logic „0‟. At the triggered clock edge, the 

output of LUT X changes from logic „0‟ to logic „1‟ and the 

output of LUT Y changes from logic „1‟ to logic „0‟. 

Although LUT X and the multiplexer it drives (MX) are 

identical to LUT Y and its corresponding multiplexer (MY), 

the two circuits experience different delays due to random 

process variations. There are two cases worth highlighting. 

They are: 

 Case 1: LUT X and the multiplexer it drives are faster 

than LUT Y and its corresponding multiplexer. In this case, 

when LUT X transitions from logic „1‟ to logic „0‟, the 

slower LUT Y changes from  logic „0‟ to logic „1‟, i.e., L1 

transitions from logic „1‟ to logic „0‟ before L2 transitions 

from logic „0‟ to logic „1‟. When the signal L1 transitions 

from logic „1‟ to logic „0‟ the signal N2 is held at logic „0‟. 

Thus, the signal N2 is held constant throughout the process. 

 Case 2: LUT Y and the multiplexer it drives are faster 

than LUT X and its corresponding multiplexer. In this case, 

LUT Y transitions from logic „0‟ to logic „1‟when the slower 

LUT X changes from logic „1‟ to logic „0‟, i.e., L2 transitions 

from logic „0‟ to logic „1‟ before L1 transitions from logic „1‟ 

to logic „0‟. Due to the difference in the delay periods, when 

L2 has transitioned to logic „1‟ but L1 is still at logic „1‟, the 

select lines of both the multiplexers are held at logic „1‟ due 

Figure 2. Oscillator Circuit based on the Proposed PUF 

Circuit. 

 

Figure 1. Basic Principle of ROPUFs. 
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TABLE I.  SIGNAL TRANSITIONS OF THE PUF. 

 L1 L2 N1 N2 Output 

Initially 1 0 1 0 0 

Case 1 (LUT X 

faster than LUT Y) 
10 0 0 0 0 

Case 2 (LUT Y 

faster than LUT X) 
1 01 1 1(glitch) 1 

 

to which a short positive pulse (glitch) appears in the signal 

N2. The presence or absence of a glitch on signal N2 and the 

width of the pulse are due to process variations that impact 

the relative delays of LUT X and LUT Y. The signal N2 is 

connected to the SET input line of a D-flip flop as shown in 

Figure 2. When the glitch appears on the signal N2, the flip 

flop output and the PUF signature bit becomes logic „1‟. In all 

other cases, the PUF signature bit remains at logic „0‟. Table 

1 summarizes the operation of the PUF. 

 Responses of 128-bit length are evaluated using 5 Xilinx 

Spartan XC2S100 FPGAs at 50MHz. The implementations 

on each FPGA have eight instances. The Hamming distances 

for 40 implementations on 5 Spartan 2 FPGAs, i.e., (40*39)/2 

= 780 data points are calculated and plotted. 

 The Hamming distances for intra-chip and inter-chip 

responses are also analysed. Figure 3 and Figure 4 show the 

distribution of Hamming distances for the inter-chip and 

intra-chip 128-bit responses signifying the uniqueness of the 

PUFs. The figures clearly show the clustering of the 

distribution around the ranges [61:65] and [56:60]. From the 

graphs, it has been observed that the uniqueness in the 

responses is higher in case of inter-chip response bits when 

compared to the intra-chip response bits. The percentage 

uniqueness of the PUF responses is calculated to be 

49.0625% which is higher than the uniqueness of the 

responses of a conventional ring oscillator [2] (43.40%) and 

the chain implementation (48.51%) discussed in [9]. 

 The main advantages of this design are its smaller size 

and ease of implementation using synthesis, and place and 

route tools. For example, this design does not need any 

external routing and the use of hard macros which make them 

easier to implement. 

 The stability and reliability of the PUFs are degraded by 

the slight dependency of the response bits on environmental 

temperatures and voltage fluctuations. Due to this 

dependency, a bit generated from a pair of ring oscillators 

might flip when the operating temperatures change 

considerably. Thus, the outputs obtained for the same 

challenge on the same CLB slice may differ slightly. To 

stabilize the circuit, Artificial Neural Networks (ANNs) are 

used for its error correction process. The remarkable ability of 

ANNs to learn and derive information from complicated and 

imprecise data is used to extract patterns. This gives an 

advantage over the conventional error correcting codes such 

as BCH codes [10].  

3 Error Correction Process 

 The BCH codes are a generalization of Hamming codes 

for multiple error correction. Binary BCH codes were first 

discovered by A. Hocquenghem, R.C. Bose and D.K. Ray-

Chaudhuri. A major disadvantage in case of BCH codes are 

its complex computations. The computation needed to 

generate the error correcting syndromes increase drastically 

with the increase in the number of error bits. 

 We propose an error correction process using Artificial 

Neural Networks (ANNs). Our analysis has proved that the 

learning ability of ANNs has an immense effect on the results 

produced when compared to the conventional BCH codes. 

Supervised learning algorithms are effective in dealing with 

unexpected and changing conditions unlike previously used 

codes.  Bidirectional Associative Memories are used to train 

the network. 

 Adaptive Bidirectional Associative Memory (BAM) is a 

type of recurrent neural network. BAM was proposed by Bart 

Kosko (1988) [11] as an extension to the Hopfield Network 

by incorporating an additional layer to perform recurrent 

auto-associations as well as hetro-associations on the 

memories. In BAM, bi-directionality, forward and backward 
Figure 4. Distribution of Hamming Distances for Intra-Chip 

Response Bits. 

 

Figure 3. Distribution of Hamming Distances for Inter-Chip 

Response Bits. 
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information flow, is implemented in neural networks to 

produce two way associative searches for a set of challenge-

response associations. The network evolves to a two pattern 

stable state when the BAM neurons are trained. Hetro-

associations are encoded in a BAM by summing correlation 

matrices. The generalized BAM architecture is shown in 

Figure 5. The neurons in one layer are fully interconnected to 

the neurons in the second layer as shown in this figure. There 

are no interconnections among neurons in the same layer. 

Layer 1 and 2 operate alternatively. The neuron‟s output 

signals are transferred towards the right by using the weight 

matrix W, and then transferred towards the left by using the 

transpose of the weight matrix W
T
. 

 In BAM, the correlation matrix for each pattern pair is 

the matrix product of the transpose of the input vector X
T
 and 

the output vector Y. PUF responses are used to train the 

neural networks. Every weight matrix is bi-directionally 

stable for bivalent and continuous neurons. The associative 

weight matrix has been calculated as the sum of all 

correlation matrices. The mathematical representation is 

shown in (1). 

                               ∑   
 

 

   

                                      

where M is the number of pattern pairs stored in the BAM, X 

is the input vector and Y is the output vector. 

 The error correction process has two phases: 

Initialization Phase and Regeneration Phase. In the 

initialization phase, multiple outputs are generated from the 

PUF circuit and an error correcting syndrome is computed by 

training the neural network. In the regeneration phase, the 

noisy/corrupt signal is sent to the trained neural network for 

the errors to be rectified. Figure 6 shows the two phases of an 

error correction process. 

3.1 Training Algorithm 

3.1.1 Initialization Phase 

 To test and analyze the error correcting code, PUF 

responses are converted into the bipolar binary format. The 

values are stored in matrix form. The training phase of the 

neural network generates the weight matrix (error correction 

syndrome). This is the initialization phase of the error 

correction process. 

3.1.2 Regeneration Phase 

 In the regeneration phase, a noisy/corrupt signal is sent 

to the trained neural network for the errors to be rectified. The 

testing part of this phase has two tasks. Firstly, to ensure no 

false negatives, the BAM is tested to retrieve any vector from 

the input matrix. To verify that the network is capable of 

correctly retrieving any vector from the input matrix, a vector 

from the input matrix is applied to the neural network. The 

vector is retrieved using (2). 

                                                      

 The trained vectors are successfully retrieved 

eliminating false negatives. Secondly, the network should be 

able to retrieve exact values at the output layer even when a 

noisy/corrupt input signal is given at the input layer. A noisy 

test vector is given as an input to the trained network and the 

error correction process is initialized. The output is calculated 

using (2). The output values are back-propagated and the 

input is updated using (3) and the process is repeated 

iteratively till the input and the output vectors attain 

equilibrium. Equilibrium is attained when the input and the 

output vectors remain unchanged with further iterations. 

                                                        

 Trained networks have successfully corrected faulty test 

vectors. In this work, 64 bit, 128 bit and 256 bit vectors are 

used to test the networks. In the error correcting codes, BAM 

architecture is used to learn continuous mapping and to 

rapidly extract bivalent associations from several noisy 

samples. From the results obtained, it has been observed that 

learning tends to improve with the increase in the sample size. 

Figure 5. Generalized BAM Architecture. 

 

Figure 6. Different Phases of Error Correction Process. 
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MATLAB is used for testing and analyzing the error 

correction method.  

 The major advantages of this method over BCH codes 

are its simple computations which take less time and the 

ability for group processing. The error correcting syndromes 

are calculated for a set of PUF outputs rather than one single 

output vector. All the vectors used to train the network can 

use the same error correcting syndrome to correct the noisy 

bits.  

 The proposed error correcting code using bidirectional 

associative memories has two other advantages. The 

technique generates a secure syndrome that does not pose any 

threats to the PUF response bits used to generate the 

syndrome. The second major advantage is the robust nature of 

the algorithm. The failure rates of the error correction code 

can be driven below 1ppm. 

4 Summary and Conclusions 

 This Silicon PUFs, Delay Based PUFs in specific, are 

novel chip identifiers based on the slight variations due to the 

manufacturing processes of identically designed devices. On 

the other hand, supervised learning algorithms are used to 

train a network according to given specifications.  Our 

research combines the concepts of ROPUFs, designed using a 

Xilinx FPGA, with artificial neural networks to generate a 

unique key for cryptographic applications. 

 The proposed PUF circuit is implemented on 5 Xilinx 

Spartan 2 XC2S100 FPGAs and an Agilent 16801A logic 

analyzer is used to obtain the PUF responses. The intra chip 

and inter chip responses are analyzed and plotted using 

Hamming codes. From the graphs, it is concluded that the 

uniqueness in the responses is higher in case of inter-chip 

responses than the intra-chip responses. The uniqueness of the 

responses is found to be 49.0625% which is higher when 

compared to conventional circuit which signifies higher 

uniqueness of the responses. 

 The stability of the PUFs needs to be improvised 

considering the characteristics of the PUFs drastically affect 

the performance of the security system. The latter part of the 

research involves the implementation of an error correction 

technique using Artificial Neural Networks. The networks are 

tested using the PUF responses. The networks have 

successfully corrected the error bits. The failure rates of the 

proposed method are below 1ppm. Future work includes 

characterizing the stability of PUF response bits across a wide 

range of environmental changes and improving the learning 

rate of the error correcting code to decrease the failure rate. 
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A GPGPU Implementation of Approximate String Matching
with Regular Expression Operators

and Comparison with Its FPGA Implementation
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Abstract— In this paper, we propose an efficient GPGPU
implementation of an algorithm for approximate string
matching with regular expression operators, originally im-
plemented on an FPGA, and compare the GPGPU, FPGA
and CPU implementations by experiments. Approximate
string matching with regular expression operators is used in
various applications, such as full text database search and
DNA sequence analysis. To efficiently handle a long text in
the matching, a hardware algorithm for FPGA implemen-
tation has been proposed. However, due to the limitation of
FPGAs’ capacity, it cannot handle long patterns. In contrast,
our proposed GPGPU implementation is able to handle
long patterns efficiently, utilizing the scalability of GPGPU
programming. Experimental results showed that the GPU
implementation is more than 18 times as fast as the CPU
one when the pattern length is greater than 3200, while the
FPGA one could not handle such a long pattern.

Keywords: approximate string matching, regular expression,
GPGPU, FPGA, CUDA

1. Introduction
Approximate string matching [1] is the problem to find

substrings in a given string (text) which are similar to another
given string, called a pattern. The degree of similarity
between two strings, called edit distance, is obtained by
deriving the edit distance matrix. Approximate string match-
ing is one of the major problems in information science,
and used in keyword search in databases, DNA sequence
analysis in bioinformatics, and network intrusion detection,
etc. Since the problem size is exponentially increasing, some
efficient algorithms using special hardware [2] or a graphics
processing unit (GPU) [3] have been proposed.

Although approximate string matching is more flexible
than exact string matching, both kinds of matching deal
with only simple patterns which consist of only alphabet
characters. Such simple descriptions lead unacceptably long
patterns in some applications in which the target substrings
vary under certain rules (e.g., network intrusion detection).
Thus, matching that can deal with more efficiently described
patterns is being required. One of the methods for efficiently
describing patterns is regular expression. In this paper, we
call a variant of approximate string matching in which

patterns can include some regular expression operators,
approximate regular expression matching. A systolic hard-
ware algorithm for approximate regular expression matching
has already been proposed and implemented on an FPGA
in [4]. However, in this algorithm, the acceptable pattern
length is limited by the amount of hardware resources (i.e.,
the FPGA’s capacity), and thus only short patterns can be
handled.

Recently, parallel processing methods using GPUs are
attracting attention. GPUs are originally application specific
processors for graphics processing. However, since GPUs
have highly parallel architectures to render pixel images in
real-time, general-purpose computation on GPUs (GPGPU)
[5] has been actively being studied to utilize GPUs’ high
performance. As a development environment for GPGPU,
compute unified device architecture (CUDA) is provided by
NVIDIA Corporation to facilitate the utilization of GPUs
for general-purpose computing. GPGPU is based on homo-
geneous multithreading, and threads more than hardware
resources (e.g., ALUs) are automatically scheduled and
allocated to the resources. Thus, GPGPU programming is
scalable in terms of the number of threads.

Utilizing the high parallelism of GPUs, a GPGPU imple-
mentation of approximate string matching has been proposed
in [3]. This method enhances the degree of data parallelism
by handling multiple texts in parallel. Thus, it cannot fully
utilize a GPU’s parallelism when performing matching with
a single text and a long pattern.

In this paper, we propose an efficient GPGPU implemen-
tation of approximate regular expression matching for long
patterns. Our method is based on the FPGA implementation
[4]. Comparing to the FPGA implementation, the main
advantages of the GPGPU implementation are:

1) our method can handle much longer patterns, and
2) it requires no special hardware, like FPGAs.

The main differences of our proposed method from [3] are:
1) it can handle some regular expression operators, and
2) it is suitable to high-speed matching with a single text.

The method proposed in [3] divides the edit distance matrix
into parallelogram regions. In the method, when only a single
text is given, up to 32 elements in a region are calculated
in parallel, and the regions are sequentially handled. Our
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method divides the matrix into parallelogram regions in the
same way. In our method, however, up to 32 elements in
a region are calculated in parallel, and up to 16 regions
are calculated in parallel, considering the data dependencies
among regions. (The degrees of parallelism depend on the
GPU.) This makes our method more efficient for matching
with a single text than [3].

In addition, we evaluate the GPGPU implementation
comparing to the FPGA implementation by experiments.
The experimental results showed that the FPGA and GPU
implementations were 8.3 and 2.9 times as fast as a CPU
implementation when the pattern length is 320, respectively.
Furthermore, the GPU implementation was more than 18
times as fast as the CPU one when the pattern length is
greater than 3200, while the FPGA one could not handle
such a long pattern.

The rest of this paper is organized as follows. In Sec-
tion 2, the definitions of approximate string matching and
approximate regular expression matching are described, and
GPGPU is explained. Section 3 shortly describes the existing
FPGA implementation of approximate regular expression
matching [4]. Section 4 presents our GPGPU implementation
of approximate regular expression matching. In Section 5,
we compare the GPGPU, FPGA and CPU implementations
by experiments. Finally, conclusions are given in Section 6.

2. Preliminaries
2.1 Approximate String Matching

Here, we define the approximate string matching prob-
lem and explain an algorithm for the problem. Given two
strings P (pattern) and T (text), and a non-zero integer k
(threshold), the approximate string matching problem is to
find a substring of T whose edit distance [6] from P is
less than or equal to k. Now, let us consider transforming a
string S1 to another string S2 by iteratively applying single-
character deletions, insertions and substitutions. When the
costs of deletions, insertions and substitutions are given, the
edit distance between S1 and S2 is the minimum total cost
required to transform S1 to S2. Thus, the calculation of
edit distance is essential to the approximate string matching
problem.

Next, we explain how to calculate the edit distance. The
edit distance between S1 and S2 is calculated as D(m,n)
defined in the following by using dynamic programming
(DP), where m = |S1| and n = |S2|.

D(i, j) = min{ D(i − 1, j) + del,
D(i, j − 1) + ins,
D(i − 1, j − 1) + s(i, j) },

(1)

where

s(i, j) =
{

sub(S1[i], S2[j]) 1 ≤ i ≤ m, 1 ≤ j ≤ n
∞ otherwise,

S1[i] and S2[j] are the i-th character of S1 and the j-th
character of S2, respectively, D(0, 0) = 0, and D(i, j) = ∞
if i < 0 or j < 0. ins and del in the formula are constants
and denote the insertion and deletion costs, respectively.
sub(a, b) is the substitution cost of two characters a and b.
sub is represented as an α×α two-dimensional array, where
α is the number of alphabet characters. For discussion, let
D be an (m + 1)× (n + 1) two-dimensional array such that
D[i, j] = D(i, j). D is called the edit distance matrix.

2.2 Approximate Regular Expression Matching
Here, we explain how to introduce regular expression op-

erators and other operators into approximate string matching.
Hereinafter, “a string P matches a string S” means that the
edit distance between P and S is zero. The definitions of
the main target operators are as follows.

1) Single-character don’t care (SCDC) (?)
The pattern “?” matches any single character.

2) Variable-length don’t care (VLDC) (?∗)
The pattern “?∗” matches any string, including the
zero-length string “ε”, where ε is the empty character.

3) Negation (p̄)
A pattern “p̄” matches any single character other than
p.

4) Empty character matching (p@)
A pattern “p@” matches p and the empty character ε.

5) Character-by-character matching (CC matching)
([p1p2 · · · pl])
A pattern P = “[p1p2 · · · pl]” matches only the string
“p1p2 · · · pl”. If P and S have different lengths, the
edit distance between P and S is ∞. Otherwise, the
edit distance between P and S is the same as that
between “p1p2 · · · pl” and S.

6) Exact matching (〈[p1p2 · · · pl]〉)
A pattern P = “〈[p1p2 · · · pl]〉” matches only the string
“p1p2 · · · pl”. If S is not “p1p2 · · · pl”, the edit distance
between P and S is ∞.

7) Kleene operator (p∗)
A pattern “p∗” matches any strings that do not include
any character other than p.

The other target operators are shown in [4].
Due to space limitations, we here explain only the DP

formulation of exact matching. Assume P = 〈[p1p2 · · · pl]〉.
Let ins(i) be the insertion cost of a character between pi

and pi+1. Also, let sub(p, t) be the substitution cost from
a pattern character p to a text character t. Exact matching
is realized by setting the deletion, insertion and substitution
costs as defined in Expressions (2), (3) and (4), respectively.
Note that although insertions right after pi (1 ≤ i < l) are
not allowed, insertion right after pl is allowed if some pattern
characters follow the exact match (e.g., “〈[abc]〉e” matches
“abcde”). Thus, the constant insertion cost ins(= k) in the
original DP formulation is replaced by the function ins(i).

del = ∞ (2)
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Table 1: Definitions of del, ins, and sub for each operator
operator del ins sub

w/o operator
p del ins sub(p, t)

1. SCDC
? del ins 0

2. VLDC
?∗ 0 0 0

3. Negation
p̄ del ins sub(p̄, t)

4. Empty character
p@ 0 ins sub(p, t)

5. CC matching
[p1p2 · · · pl]
1 ≤ i < l ∞ ∞ sub(p, t)

i = l ∞ ins sub(p, t)
6. Exact matching
〈[p1p2 · · · pl]〉

1 ≤ i < l, p = t ∞ ∞ 0
1 ≤ i < l, p 6= t ∞ ∞ ∞

i = l, p = t ∞ ins 0
i = l, p 6= t ∞ ins ∞

7. Kleene operator
p∗ 0 min{ins, sub(p, t)} sub(p, t)

ins(i) =
{

∞ 1 ≤ i < l
k i = l

(3)

sub(p, t) =
{

0 p = t
∞ p 6= t

(4)

The other operators can be realized by similarly replacing
the deletion cost del, insertion cost ins and substitution cost
sub. The definitions of del, ins and sub for each operation
are shown in Table 1.

2.3 GPU
A graphics processing unit (GPU) is an application spe-

cific processor for graphics processing and one of the main
components of PCs. Utilizing GPUs for general-purpose
computing is called GPGPU (general-purpose computation
on GPUs) [5]. In recent years, GPUs without video outputs
were developed for general-purpose computing by some
semiconductor companies (e.g., Tesla C2070 by NVIDIA
Corporation and FireStream 9350 by Advanced Micro De-
vices, Inc.).

2.3.1 GPU Architecture
Fig.1 illustrates an architecture of NVIDIA’s GPUs, called

Fermi. It is composed of two LSIs, a GPU itself and
a memory chip, called device memory. A GPU has up
to 16 streaming multi-processors (SMs), each of which
corresponds to a core in a multicore CPU. An SM has 32
streaming processors (SPs), each of which corresponds to an
arithmetic logic unit in a CPU core. An SP has only limited
functions such as arithmetic operations, and SPs execute
instructions decoded by an SM in a SIMD fashion. That
is, all the SPs in an SM simultaneously execute the same
instruction. In addition, an SM has a memory shared by all
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Figure 1: Architecture of NVIDIA Tesla series GPU

the SPs in the SM and some memories to cache data from
and to the device memory.

GPUs have a hierarchical memory architecture. The mem-
ory architecture of the Fermi GPUs is as follows:

1) Global memory
Global memory is a high-capacity memory realized by
the device memory. It is accessible from any SPs in
the GPU. The size of the memory is up to several
giga-bytes. On the other hand, its latency is high
and it requires 400 to 600 clock cycles to access.
Accesses from SPs to the memory are cached in the
SM to which the SP belongs. It is the only memory
readable/writable from both the GPU and CPU.

2) Shared memory
Each SM has a 64KB on-chip memory, and 16KB or
48KB of the memory is used as its shared memory.
The rest of the on-chip memory is used as the L1 cache
of global memory. All the SPs in an SM are quickly
accessible to the memory.

3) Register
Each SP has its own registers. Registers are the mem-
ory most quickly accessible from SPs. Registers in an
SP is not accessible from the other SPs. Each SM has
8K to 32K registers, depending on the GPU.

4) Constant and texture memories
Constant and texture memories are read-only memo-
ries realized by the device memory. They are accessi-
ble from any SPs in the GPU. Accesses from an SP
to the memories are cached in the SM to which the
SP belongs. They are writable from the CPU. In ad-
dition, texture memory has some additional functions,
such as address space normalization to [0,1] and data
interpolation between adjacent data points. Since the
proposed method does not use those memories, we
omit the detailed explanation of them.

2.3.2 CUDA

CUDA is a programming environment for developing and
executing general-purpose applications on NVIDA’s GPUs.
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It makes multi-thread applications run on GPUs efficiently.
An extended C/C++ is used as the programming language
in CUDA.

In CUDA, concepts to manage threads, called grid and
thread block, are introduced. A group of threads is called a
thread block. The maximum number of threads in a thread
block is 512. A group of thread block is called a grid.
Each thread block in a grid is managed by adding a two-
dimensional ID. The maximum number in each dimension
of a thread block ID is 65,535.

Each thread executes a code, called a kernel. Each thread
has a unique ID, by which threads handle different data,
executing the same code. Threads in the same thread block
shares data in the high-speed shared memory. On the other
hand, a thread cannot access to shared memories in different
thread blocks. Thus, codes need to be written so that there
are as few data dependencies between thread blocks as
possible. In addition, although threads in different thread
blocks cannot be synchronized during a kernel execution,
threads in the same thread block can be synchronized using
a command and keep data consistency.

3. FPGA Implementation of Approxi-
mate String Matching with Regular Ex-
pression Operators

In this section, a hardware algorithm for approximate
regular expression matching proposed in [4] is explained.
Our proposed method is based on the same idea and adjusted
to GPUs.

3.1 Architecture

The architecture for the hardware algorithm is shown in
Fig. 2. Let m = |P | and n = |T |. Then, it is a one-
dimensional array of m+1 units, called cells, each of which
compares a pattern character and a text character. That is,
each cell calculates the elements in a row of the edit distance
matrix D, shown in Fig. 3. Note that each dimension of
D is expanded by one element in order to calculate the
edit distances between the pattern and substrings of the text
(please refer to [4] for more detail). The m+1 cells calculate
the elements on a diagonal line in parallel and the calculation
proceeds from the top-left corner to the bottom-right corner
as shown in Fig. 3. Thus, its calculation time is O(m + n).
The resultant edit distances are output from the right-most
cell and input to a comparator. The comparator compares
the user-defined threshold k and an edit distance. If the edit
distance is less than or equal to k, the comparator outputs
a match signal. Since each cell handles one character in a
pattern, the length of patterns is limited to the number of
cells.
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Figure 2: Architecture of Hardware Engine
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3.2 Basic Structure and Behavior of Cell
Fig. 4 shows the structure of a cell. Cp and Ct are registers

and store one character in the pattern and one character in
the text, respectively. DM is a memory to store the table
of substitution costs. DM is a two-dimensional array of
substitution cost from alphabet α1 to α2, called a distance
matrix. That is, DM[α1, α2] stores the value of sub(α1, α2).
The distance matrix DM is set before starting matching. (In
our experiment, the substitution costs of any two characters
are set to 1 and DM is omitted.) D1 and D2 are registers
to temporarily store elements of D. D1 stores the newest
element the cell calculated, and D2 stores the second newest
element.

Next, we explain the behavior of the cell. A cell i handles
one character of the pattern, pi, and calculates D[i, ∗]. When
the cell i calculates D[i, j] at a clock cycle Tk, D[i, j − 1],
D[i−1, j] and D[i−1, j−1] are necessary. D[i, j−1] was
calculated at the cell i at the clock cycle Tk−1 and currently
stored in D1. D[i−1, j] was also calculated at the cell i−1
at the clock cycle Tk−1 and currently stored in D1 of the
cell i− 1. D[i− 1, j − 1] was calculated at the cell i− 1 at
the clock cycle Tk−2 and currently stored in D2 of the cell
i − 1. Thus, all the elements necessary to calculate D[i, j]
are stored in the cells i and i − 1.

4. GPGPU Implementation of Approxi-
mate Regular Expression Matching

In this paper, we propose an efficient GPGPU implemen-
tation method of the hardware algorithm for approximate
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regular expression matching [4]. Although GPUs are pro-
cessors specific to graphics processing, some studies have
been conducted to utilize their highly parallel architecture
for string matching (e.g., [3]).

In [4], the hardware algorithm is implemented on an
FPGA. However, since the length of patterns is limited to
the number of cells and the number of cells is limited by the
capacity of the FPGA, long patterns cannot be handled by the
FPGA implementation. For example, the one implemented
in the experiments in [4] can handle no more than 250
pattern characters. In contrast, since in a GPU an SM can
handle multiple thread blocks in a time-division manner
(i.e., an SP handles multiple threads), a GPU can handle
patterns whose length is greater than the number of SPs by
allocating the function of each cell to a thread. This fact
makes approximate regular expression matching applicable
to the applications with long patterns (e.g., analysis of DNA
sequences).

In the following, we first show the overview of our method
for approximate string matching (without regular expression)
on GPUs. Then, we explain the effective memory access
method for our matching method. Finally, we introduce
regular expression operators to the method.

4.1 Division of Edit Distance Matrix D

In this paper, we propose an efficient approximate regular
expression matching method that can handle long patterns
utilizing a GPU. In our method, we divide the edit distance
matrix D into multiple parts and effectively dispatch them
to SMs.

First, we divide the edit distance matrix into the par-
allelogram regions so that the length of each side of the
regions is 32, as shown in Fig. 5. This is because each SM
handles 32 threads as one executable unit, called a warp.
Then, we dispatch the calculations in parallelogram regions
to SMs in a GPU. Since SPs in different SMs cannot be
synchronized, the parallelogram regions are calculated in the
order shown in Fig. 5 to maintain data dependencies. The
parallelogram regions with the same number are calculated
by multiple SMs in parallel. The calculations of the paral-
lelogram regions with each number are started by calling a
kernel and thus synchronized. The elements on a line parallel
to the right and left sides of a parallelogram are calculated

1 2

3

3

4

4

5 6

calculated in parallel
32 elements

Text

32 elem
ents

P
attern

edit distance matrix

Figure 5: Parallel Calculation on GPU
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Figure 6: Calculation in Parallelogram Region

in parallel by the SPs in a SM. This division realizes an
effective use of SMs and SPs in a GPU for the calculation
of the edit distance matrix with a long pattern.

Fig. 6 shows the calculation in each parallelogram region.
The elements in a region have the same data dependencies
as that of Fig. 3. Thus, we allocate the function of a cell to
a thread to calculate the elements on a line parallel to the
right and left sides of the parallelogram region in parallel.

In summary, in our proposed method, the edit distance
matrix is divided into parallelogram regions, and the regions
are calculated in the order shown in Fig. 5 in parallel. In each
region, the elements on a line parallel to the right and left
sides of the parallelogram region are allocated to SPs and
calculated in parallel.

4.2 Calculation of Edit Distance on Shared
Memory

Here, we describe how to calculate the edit distance using
shared memories. The calculation of the edit distance is
easily implemented by placing whole the edit distance matrix
D to the global memory. However, the cost to access to
the global memory is very high and the latency is 400 to
600 clock cycles. Therefore, we utilize shared memories to
calculate the matrix.

To calculate the value of elements in a parallelogram
region, the calculation results of other regions are necessary.
Since different regions are handled by different SMs, it
is necessary for SMs to access the global memory to
communicate each other. On the other hand, since SMs do
not need to communicate each other when calculating inner
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elements of regions, shared memories can be used to quickly
calculate the elements. To calculate the elements on the i-th
line parallel to the right and left sides of the parallelogram
region, only the elements on the (i−1)-th and (i−2)-th lines
need to be stored in the shared memory of the corresponding
SM.

The data dependencies among parallelogram regions are
shown in Fig. 7. The calculation in the parallelogram region
enclosed by a heavy line requires only the shaded elements.
Thus, in our method, only those elements are stored in the
global memory. In other words, only the elements on the last
two lines parallel to the right and left sides of a parallelogram
region and those in the bottom row in the region are stored
in the global memory.

Fig. 8 shows the pseudo code of the kernel. In the code,
r_D is a register to temporarily store an element of the edit
distance matrix, D[i, j]. r_left, r_top, and r_diag are registers
to temporarily store the elements D[i−1, j], D[i, j−1], and
D[i − 1, j − 1], respectively. The register r_left is used to
send the value of D[i − 1, j] for the calculation of D[i +
1, j] without using shared memories. The registers r_top and
r_diag are used to shorten the then and else statements in the
if-then-else statement. This is because a GPU executes both
of then and else statements to execute threads in a SIMD
fashion. Without r_top and r_diag, both of the then and
else statements need to include similar codes (corresponding
to the 18th line, which becomes more complicated when
regular expression operators are introduced), and it degrades
the performance. idx is the ID number of the thread in the
grid, tid is the ID number of the thread block, and b_id is
the ID number of the thread block. text, top, and down are
arrays located in the shared memory to store text characters,
the elements on the region, and the elements in the bottom
row in the region, respectively.

In the 1st to 7th lines of the code, the data needed by the
thread block are read from the global memory to the shared
memory. Note that the data are read in parallel by using all
the thread in the thread block. In the 8th to 24th lines, the
elements in a row are calculated. Note that different threads
in a thread block handle different rows, and the elements
in the rows are calculated in parallel. In the 9th line, a text
character is read to the register t. DM in the 10th line is a

01. text[tid] = T[tid+(a-1)*SIZE];
02. text[SIZE+tid] = T[tid+(a)*SIZE];
03. top1[tid+1] = D[(b_id)*(SIZE+n+1)+tid+(a+1)*SIZE];
04. s1[tid] = D[(idx+1)*(SIZE+n+1)+a*SIZE];
05. s2[tid] = D[(idx+1)*(SIZE+n+1)+a*SIZE-1];
06. r_E = D[(idx+1)*(SIZE+n+1)+a*SIZE];
07. p = P[idx];
08. for(i=0; i<SIZE; i++){
09. t = text[tid];
10. sub = DM[p*128+t];
11. if(tid==0){
12. r_top = top[i+1];
13. r_diag = top[i];
14. }else{
15. r_top = s1[tid-1];
16. r_diag = s2[tid-1];
17. }
18. r_D=min(r_top+del, r_left+ins, r_diag+sub);
19. s1[tid] = r_D;
20. s2[tid] = r_top;
21. r_left = r_D;
22. down[i] = r_D;
23. __syncthreads();
24. }
25. D[(idx+1)*(SIZE+n+1)+SIZE+a*SIZE] = r_D;
26. D[(idx)*(SIZE+n+1)+SIZE-1+a*SIZE] = r_top;
27. D[(b_id*SIZE)*(SIZE+n+1)+tid+(a*SIZE)] = down[tid];

Figure 8: Pseudo Code of Kernel

two-dimensional array to store the substitution costs. In this
line, the substitution cost of the pattern character and text
character is obtained. In the 11th to 17th lines, D[i − 1, j]
and D[i − 1, j − 1] are read from the shared memory to
registers. In the 18th line, D[i, j] is calculated. In the 19th
to 22nd lines, D[i, j] and D[i, j − 1] in the shared memory
are updated. Note that only the newest and second newest
lines of elements are stored in the shared memory. In the
23rd line, all the threads in the thread block are synchronized
(because each SP handles multiple threads). In the 25th to
27th lines, the date necessary to calculate the next regions
are sent from the shared memory to the global memory.

4.3 Introduction of Regular Expression Oper-
ators

As shown in Section 2, our target regular expression
operators can be realized by replacing del, ins and sub in
the DP formula of the edit distance calculation. To input
patterns with the regular expression operators to the kernel,
we introduce an array of characters OP (|OP| = |P |) for rep-
resenting operators to the corresponding pattern characters,
and an array of integers e (|e| = |P |) for representing the
first and last characters of the target substring of an operator,
as input data to the kernel. In the kernel, OP and e are copied
from the global memory to the shared memory like as pattern
P.

5. Comparison of GPGPU and FPGA
Implementations

To compare FPGA, GPGPU and CPU implementations,
we conducted some experiments. For those implementations,
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we used a PC equipped with an Intel Core i7 950 CPU
(3.06GHz), 24GB main memory, CentOS, an NVIDIA Tesla
C2070 (1.15GHz) GPU with 4GB device memory, and an
FPGA board with a Xilinx Virtex-4 FPGA. The GPU and
the FPGA board are connected to the PC with PCIe 2.0
x16 and conventional PCI buses, respectively. The FPGA
implementation is written in Verilog HDL and mapped using
Xilinx ISE 13.1.

In our GPGPU implementation, one thread block consists
of 32 threads. Thus, each thread block uses 1060bytes of
the shared memory. Each thread uses 42 registers. Since in
the Tesla C2070 each SM has a 48KB shared memory, each
SM can handle up to 45 thread blocks (45 × 1060 < 48K).
Therefore, our GPGPU implementation can handle long
patterns whose length is less than or equal to 20,160 =
14 × 45 × 32 = (the number of SMs) × (the maximum
number of thread blocks per SM) × (the number of threads
in one thread block). In contrast, since only 250 cells can be
implemented on the target FPGA, the FPGA implementation
can handle only patterns whose length does not exceed 250.
The maximum clock frequency was 140MHz.

Table 2 shows the execution times of the GPGPU and CPU
implementations when |T | = 3, 200, 000 and |P | = 320, and
that of the FPGA implementation when |T | = 3, 200, 000
and |P | = 250. Note that the execution times include data
transfer time from the main memory. As a result, the FPGA
and GPGPU implementations were 8.3 and 2.9 times as fast
as the CPU implementation, respectively.

Table 3 and Fig. 9 show the results in the cases of long
patterns. We found that 1) the execution time of the CPU
implementation is proportional to the pattern length, 2) that
of the GPGPU implementation is stepwise in terms of the
pattern length (there is a gap between |P | = 3200 and
|P | = 4800). In addition, the GPGPU implementation when
|P | ≥ 3200 was more than 18 times as fast as the CPU
implementation.

These results indicate that the FPGA implementation is
the fastest and suitable to the cases of short patterns, and
the GPGPU implementation is scalable and suitable to the
cases of long patterns, such as analysis of DNA sequences.

Table 2: Execution Time when |T | = 3, 200, 000
Method |P | Time

CPU 320 23.60 [s]
GPGPU 320 8.23 [s]
FPGA 250 2.89 [s]

Table 3: Execution Time when |T | = 320, 000 [ms]
|P | 320 640 1280 3200 4800 6400

CPU 2399 4803 9612 24020 36030 47960
GPU 1079 1102 1131 1212 1922 2031
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Figure 9: Execution Time of CPU and GPU Implementations

6. Conclusions
In this paper, we proposed an efficient GPU-based method

for approximate regular expression matching with long pat-
terns. Experimental results showed that 1) our proposed
method and an FPGA-based method [4] are 2.9 and 8.3
times as fast as a CPU implementation, respectively, when
the length of patterns is 320; 2) our method is more than 18
times as fast as the CPU implementation when the length of
patterns is more than 3200. Our future work includes further
improvement of memory access efficiency in our GPU-based
method.
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Abstract - Seam carving has been widely used for content-

aware resizing of images and videos with little to no 

perceptible distortion. Unfortunately, for high-resolution 

videos and large images it becomes computationally 

unfeasible to do the resizing in real-time using small-scale 

CPU systems. In this paper, we exploit the highly parallel 

computational capabilities of CUDA-enabled Graphics 

Processing Units (GPUs) for accelerating the content-aware 

resizing of videos and images. The performance results show 

that our implementation of the seam carving algorithm 

achieves up to 100x and 14x speed-ups on the 

computationally-intensive part of the algorithm compared to 

the faster single-threaded and the faster multithreaded CPU 

implementations, respectively, on the systems tested. The 

overall resizing operation is over 6x and 2x faster than the 

best single-threaded and multithreaded CPU implementations, 

respectively, which demonstrates the potential to resize videos 

and large images in real-time. 

Keywords: Seam carving, GPU, CUDA, parallelization, 

heterogeneous system  

 

1 Introduction 

  One of the most popular uses of diverse mobile devices 

today is for browsing images and playing videos. However, 

different devices have different resolution capabilities, so it is 

necessary to resize images and videos efficiently and 

effectively to fit them into diverse displays (such as cell 

phones, PDAs, desktop displays, etc), preferably without 

distortion. 

 Cropping [1-5] has been one of the most popular 

approaches to resize images. However, cropping may lose an 

unacceptable amount of visual information when important 

structures lie at all edges of an image. In addition, it can only 

remove information, but it cannot add information to expand 

the image. Scaling methods, with or without interpolation, 

tend to produce distorted images, especially when an image is 

scaled in one direction.  

 Avidan and Shamir [6] recently provided a new approach 

to image and video resizing, called seam carving. Seam 

carving functions by establishing a number of seams (paths of 

least importance) in a digital media and automatically removes 

or inserts seams to resize the media. This content-aware 

resizing method has been shown to effectively resize images 

and videos with little to no perceptible distortion. Seam 

carving is a computationally-intensive operation. For high-

resolution images and videos, it could be difficult to perform 

the resizing in real-time by using the CPUs in a desktop-scale 

computer. 

 The advent of commodity massively parallel 

architectures, such as modern GPUs, is a compelling option 

for inexpensively removing the computationally-intensive 

operations from the CPU. In this paper, we exploit the data-

parallel execution model of GPUs for the implementation of 

content-aware image and video resizing. This paper makes the 

following contributions: 

1) We evaluate GPU-based seam carving algorithm on 

two CUDA-enabled NVIDIA GPUs. 

2) We compare single- and multi-threaded CPU 

versions of the algorithm with the GPU versions. 

3) We demonstrate that GPUs facilitate low-cost real-

time resizing of images and videos. 

2 Seam Carving 

 Seam carving [6] transforms the size of images and 

videos by carving-out pixels that form a path of low-energy. 

These low-energy connected paths, called seams, go from top 

to bottom or left to right for vertical or horizontal resizing, 

respectively. The seams are added to or removed from an 

image
1
 in order to increase or reduce its size with minimal 

observable distortion. Figure 1 shows the steps of horizontally 

resizing an example image. Since the majority of execution 

time is spent on the energy function and seam map 

computations (see section 5), in this paper, we focus on 

accelerating these two computationally-intensive parts.  

 
                   (a)                                (b)                              (c)                    (d) 

Figure 12: Seam Carving Steps. (a) The original image. (b) The energy of 

the image using gradient magnitude. (c) The low energy seams with the 

energy function. (d) Resized image after the seams are removed. 

2.1 Energy function 

  Seam Carving can utilize a variety of energy functions to 

generate seams [6]. The magnitude of the gradient approach 

uses equation (1) to compute the energy of each pixel relative 

                                                           
1 For most of the paper, we only discuss images.  However, a video is a set of 

images or frames displayed at the video rate of 30 frames per seconds. Seam 
carving is equally applicable to both images and videos. 
2 Image taken from Wikimedia Commons.  
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to its surrounding pixels by quantifying the amount of change 

in color from one pixel to the next. 
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  The energy function computation exhibits vast data 

parallelism. However, attention must be given to memory 

access patterns, which may have a huge implication on 

performance. The need for accessing neighboring pixels to 

compute the energy function strongly influences the way we 

access memory on the GPU. 

2.2 Seam map 

  After finding the energy of each pixel, the result is used to 

locate the lowest-energy paths or seams. We focus on the 

implementation of the seams required for horizontal resizing, 

i.e. the vertical seams. The first row of the seam map is 

directly obtained from the first row of the energy function. 

Starting from the second row of the image, we use a dynamic 

programming approach (2) to compute the seam map value at 

every pixel. 
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  In equation (2), S is the seam map table, E is the energy 

function table, and i and j are the rows and columns indices of 

the tables. This dynamic programming approach produces the 

optimal seam/s [6]. The values in the final row of the seam 

map table correspond to the cumulative energy of the seams. 

The most important point to note about equation (2) is that the 

computation for each element is entirely dependent on the 

result of the three elements directly above it, as shown in 

Figure 2. Therefore, unlike the energy function, the data in the 

seam map computation is not 100% separable. This makes 

parallelizing the seam computation much more difficult than 

the energy function. 

3 Hardware resources 

 All of the implementations presented in this paper were 

executed on two different heterogeneous computer systems. 

The First system is a Mac Pro running the Mac OS X 10.6 

operating system powered by two 2.8GHz quad-core Intel 

Xeon E5462s CPUs. The Mac pro has an NVIDIA 8800GT 

GPU (G80 architecture) with 112 cores and 512MB of 

GDDR3 memory.  

 The second system is a newer machine running the 

Ubuntu Linux 10.04 operating system, powered by a single 

3.4 GHz quad-core Intel Core i7 2600k CPU. The GPU on the 

Linux machine is the NVIDIA GTX580 Featuring the Fermi 

architecture with 16 SMs (32 cores per SM) for a total of 512 

SPs. The GTX580 has 1.5GB of GDDR5 memory, 768KB L2 

cache, and 64KB configurable L1 cache/shared memory per 

SM. The Intel Core i7 supports simultaneous multithreading 

(SMT) while the Intel Xeon does not support SMT [8, 9]. 

 The parallelization tool for the CPU implementation is 

POSIX threads (pthread). Both of the CPU implementations 

were optimized and compiled with gcc -O2 optimization level. 

Finally, the heterogeneous implementations were compiled 

with the NVIDIA nvcc compiler, which uses gcc and the -O2 

flag to compile the CPU code 

4 Implementation 

4.1 CPU implementation  

4.1.1 Energy function 

 The single threaded CPU implementation of the energy 

function utilizes a set of nested for-loops to compute each of 

the partial derivatives (Algorithm 1, lines 1-7), and utilizes the 

result to compute the magnitude of the gradient (Algorithm 1, 

lines 8-9). The one-half is factor out of the derivatives and 

applied after the sum in order to save one multiplication 

operation per pixel. Instead of directly storing a 2D image in a 

2D array, we store the 2D image in a 1D array and map the 1D 

to a 2D array. This minimizes the allocation time, and the data 

is stored in a more suitable manner to take advantage of spatial 

locality. Note that the derivative of each pixel is computed 

once, the purpose of the nester loops is to ease the 

computation, but each derivative has O(n) time complexity.   

 Given that there are no data dependencies in the 

computation of the energy function, we are able to divide the 

computation into as many threads as the operating system 

supports. However, the performance is dictated by the 

hardware and the CPUs’ ability to execute threads 

simultaneously. We divide the input image into tiles consisting 

of consecutive rows. The height of each tile is computed based 

on the number of threads and the height of the image. Figure 3 

illustrates the decomposition of the input image for an 

execution configuration of eight threads. The Algorithm for 

the multithreaded version is very similar to Algorithm1 with 

the exception that each thread only loops through its 

corresponding portion of the image. 

     
 Figure 2. Seam map example.    Figure 3: Division of work for the CPU. 

 

 

 

 

 

 

 

 

Alg. 1 Single threaded Energy function  

1: Set all elements of Ix and Iy to 0 

2: for i ← 0 to height ‒ 1 

3:  for j ← 1 to width ‒ 2 

4:   Ix(i, j) ← I(i,  j+1) ‒ I(i,  j-1) 

5: for i ← 1 to height ‒ 2 

6:  for j ← 0 to width ‒ 1 

7:   Iy(i, j) ← I(i+1,  j) ‒ I(i-1,  j) 

8: for all pixel in the image  

9:  energy = 0.5   (|Ix| + |Iy|) 

 

Alg. 2 multithreaded Seam map  

1: for i ← 1 to height ‒ 1 

2:    for j ← t_start to t_end 

3:    if (j-1 < t_start) 

4:      wait for S(i, j-1) to be unlock  

5:     if (j+1 > t_end) 

6:      wait for S(i, j+1) to be unlock 

7:     S(i, j) ← Min(S(i-1, j-1),           

     S(i-1, j), S(i-1, j+1))+energy(i, j)  

8:     Unlock S(i, j)   //initially locked  
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4.1.2 Seam map 

 Unlike the energy function, the seam map computation 

uses a dynamic programming approach that is not 

parallelization-friendly (see section 2.2). Therefore, we have 

to perform a row-by-row computation of the seam map, 

which serializes the execution of rows. We achieve 

parallelism by dividing each row into fixed-width tiles and 

computing these tiles in parallel. We synchronize all threads 

after the execution of each row. This method does not yield 

any significant benefit over the single-threaded version; in 

fact, with more than two threads, the program spends more 

time synchronizing than performing the computations.  

 In an attempt to optimize the seam map 

implementation, we used locks to create local barriers in 

place of global barriers. Instead of stalling threads until every 

thread finishes its part, each thread is only concerned with the 

execution of its neighboring threads. We therefore use an 

array of locks to allow each thread to manage the availability 

of the seam map results of its boundary element on every 

row. This approach is illustrated in Algorithm 2 where t_start 

and t_end are computed by dividing the width of the image 

by the number of threads and assigning each thread their 

respective areas.  

4.2 Energy function on the GPU 

4.2.1 Naive implementation 

 The first GPU method presented in this paper is the 

naive-non-aligned implementation. In this implementation, 

the image was partitioned into 16x16 tiles containing 256 

pixels as illustrated in Figure 4a. In addition to loading the 

corresponding data into shared memory, the kernel also needs 

to load the pixels immediately adjacent to the tile. These 

outer pixels are known as the tile apron, shown in white in 

Figure 4b. Each tile utilizes one 2D block of 324 threads 

(18x18), thus assigning one thread per pixel load.  

 All CUDA threads in the Naive kernel execute 

Algorithm 3. First, each thread calculates the necessary pixel 

indices to copy a pixel from the global to the shared memory 

(lines 1-4). Line 6 caches the pixels in shared memory and 

line 8 ensure that all data transfer completes before 

performing the computation. Finally, we use 256 out of 324 

threads to compute the gradient and store result (lines 10-12). 

 At first, we used a three-byte data structure to store the 

RGB components of each pixel. A three-byte data structure 

causes unaligned memory accesses, which reduces 

performance.  We solved this problem by aligning pixels to 

word length (4 bytes). This implementation waste 25% of the 

total memory. However, if the memory size is sufficient, this 

is an excellent tradeoff. In addition, there are times when we 

are interested in preserving the alpha component of all pixels; 

this implementation guarantees that all pixels retain the 

original alpha value. Another optimization technique is to 

allocate memory on the device using the cudaMallocPitch 

function [7]. Using the two-dimensional allocation and copy 

functions (cudaMemcpy2D), we guarantee that each row of 

the image starts on a 64- or 128-bytes boundary in global 

memory depending on the device architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

                  
(a)                                                         (b) 

Figure 4: (a) Division of work between threads in the naive GPU 

implementations; the white area represents idle threads. (b) Partition of 

block; the tile apron is shown in white and the writable pixels in blue. 

 
                                (a)      

Figure 5: Partition of the image. (a) Vertical tiles. (b) Horizontal tiles. 

White represents the apron pixels and blue/dark the workable pixels 

4.2.2 Split-aligned implementation 

 To achieve nearly full coalesced memory access, we 

decided to separate the energy function calculation into two 

separate kernels, a horizontal and a vertical gradient kernel, 

and combine the results of the two. This allows us to 

reorganize the thread grid to suit the kind of memory accesses 

expected for each direction of the derivatives. Both the apron 

pixels and workable pixels in the vertical direction are always 

aligned to 16 pixels as shown in Figure 5a, allowing coalesced 

accesses of 64 bytes. 

 For the horizontal calculation, it is not possible with this 

approach to avoid uncoalesced memory accesses because the 

apron pixels lie outside the alignment boundary. However, by 

increasing the tile width to 128 pixels (Figure 5b), some of the 

wasted bandwidth due to uncoalesced memory accesses is 

hidden. This improves the memory efficiency allowing only 

two uncoalesced loads per every eight coalesced loads, and 

thus increasing bandwidth usage. Algorithm 4 and 5 show the 

implementation of the split-aligned method to compute the 

energy function.  

(b) 

Alg. 3 Naive implementation of the energy function in CUDA  

1: col ← block_x   tile_width + x ‒ 1      // x : thread_x 

2: row ← block_y   tile_height + y ‒1    // y : thread_y 

3: k ← row * image_width + col 

4: i ← y   bw + x                                   // bw : block_width 

5: Ix ← 0,   Iy ← 0 

6: if (k is an index within the image)   SMEM (i) ← image(k)   

7: else  SMEM (i) ← 0 

8:  Synchronize_threads 

9:  if (x >  0 and x ≤ tile_width and  y >  0 and y ≤ tile_height)  

10:  Ix ← SMEM(i + 1) ‒ SMEM (i ‒ 1) 

11:   Iy ← SMEM (i + bw) ‒ SMEM (i ‒ bw)  

12:  ENERGY (k) ← 0.5   (|Ix| + |Iy|) 
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4.2.3 Locality-aware implementation 

 The split-aligned method has the potential to reduce the 

number of uncoalesced memory accesses by a significant 

amount, but it does not make the best use of locality. 

Therefore, when porting the implementation to the newer 

heterogeneous system, we decided to revise the split-aligned 

method in order to take advantage of locality and the new 

capabilities provided by the Fermi architecture. The GTX580 

offers approximately 4.5X more SPs than the 8800GT. It also 

supports memory accesses of up to 128-bytes on a single 

coalesce load.    

 Apart from the two outermost pixels that surround the 

entire image, all pixels are utilized four times in the energy 

function computation; twice for each of derivatives. Even 

when these pixels are cached in shared memory, which saves 

one global load per derivative, the split-aligned method 

requires that each pixel be loaded twice. Therefore, we 

decided to go back to implementing the energy computation 

using a single kernel to compute both partial derivatives.  

 The locality-aware method breaks the image into 2D 

blocks of 512 threads. Each tile contains 64 columns and 8 

rows. With a 64x8-block configuration, two warps are 

assigned per row. All 32 threads in a warp are able to cache 

their corresponding pixel on a single coalesce load of 128-

bytes for 16 fully coalesce loads. Loading the top and bottom 

aprons also results in fully coalesce loads. The uncoalesce  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loads are introduced by the left and right aprons of the tile. 

Increasing the number of rows in a tile improves locality, but 

increases the number of uncoalesce loads. Increasing the block 

width minimizes the number of uncoalesce loads, but reduces 

locality. After careful analysis and performance tests, we 

found that 8 rows and 64 columns generate the best 

performance. Algorithm 6 gives an in-depth description of the 

locality-aware implementation of the energy function. 

4.3 Seam map on the GPU 

 The GPU implementation of the seam map computation 

is very similar to the multithreaded CPU implementation, 

which is described in Section 4.1.2. Each row of the image is 

broken into horizontal tiles, whose width is carefully selected 

in order to maximize the occupancy of the GPU. Given that, 

blocks are not scheduled deterministically and that there is no 

synchronization among threads on different blocks, we must 

resort to calling the kernel once per row and synchronize in 

between calls. For this implementation, wider images should 

perform much better than narrow images. Similar to the 

multithreaded CPU implementation, a significant amount of 

the data is not separable. This limits the amount of parallel 

execution per kernel launch.  

4.4 Page-Locked Memory  

 The CUDA runtime environment has functionalities to 

allocate and use page-locked memory in place of regular 

pageable host memory [7]. We included this feature in our 

heterogeneous implementation to optimize the memory 

transfer. In the performance evaluation, we demonstrate that 

page-locked memory does not affect the performance or 

results of individual kernels, but it improves the execution 

time of the memory transfer between the host and device.  

Alg. 5 Split-aligned implementation of energy in CUDA  

1: col ← block_x   block_width + thread_x 

2: row ← block_y   block_height + thread_y  

3:  k ← row   image_pitch + col  

4:  x ← thread_x + 1,   y ← thread_y,  Ix ← 0 

5: i ← y   HORIZ _WIDTH + x  

6: if  (k is an index within the image)    SMEM (i) ← image(k) 

7: if  (thread_x == 0 and row < image_ height)  

8:  pbase  ← col * image_pitch 

9:  SMEM (y * HORIZ _WIDTH) ← image(pbase + block_width  * block_x ‒ 1 ) 

10:  SMEM (y * 2 * HORIZ_WIDTH ‒ 1) ← image(pbase + (block_width+1) * block_x) 

11: Synchronize_threads 

12: if  (col < image_width)  

13:  k ← row   energy_pitch + col 

14:      Ix ← SMEM (y * HORIZ_WIDTH + x + 1) ‒ SMEM (y * HORIZ_WIDTH + x  ‒  1)  

15:      ENERGY(k)← 0.5   (|Ix| + ENERGY(k))   

 

Alg. 4 Vertical implementation of the gradient in CUDA  

1: col ← block_x   bw + x   // x/y : thread_x/y,  bw : block_width 

2: row ← block_y   tile_height + y ‒1   

3: k ← row * image_pitch + col 

4: i ← y   bw + x,   Ix ← 0,   Iy ← 0        

5: if  (k is an index within the image )   SMEM (i) ← image(k)  

6: else  SMEM (i) ← 0 

7:  Synchronize_threads 

8:  if ( y < tile_height ) 

9:  row ← row + 1,  i ← i + bw 

10:  k ← row * energy_pitch + col 

11:  if  (row < image_height) 

12:    Iy ← SMEM (i + bw) ‒ SMEM (i ‒ bw)  

13:   ENERGY (k)  ← |Iy| 

 

Alg. 6 Locality-aware implementation of the energy in CUDA  

1: col ← block_x   block_width + thread_x        // We ensure col 

2: row ← block_y   block_height + thread_y     // and row are within  

3:  k ← row   image_pitch + col         // the image width  

4:  j ← thread_x + 1,  i ← thread_y + 1      // and height 

5: SMEM (i, j) ← image(k)   

6: if  (thread_x == 0 and col ≠ 0)   SMEM (i, 0) ← image(k ‒ 1) 

7: if  (thread_x == block_width‒1 and col ≠ image_width‒1)  

8:  SMEM (i, block_width + 1) ← image(k +1) 

9: if thread_y == 0 and row ≠ 0  

10:  SMEM (0, j) ← image(k ‒ image_pitch) 

11: if thread_y == block_height‒1 and row ≠ image_height‒1  

12:  SMEM (block_height + 1, j) ← image(k + image_pitch) 

13: Synchronize_threads 

14: Ix ← 0,   Iy ← 0,   k ← row   energy_pitch + col  

15: if pixel are not on the edge of the image 

16:  Ix ← SMEM (i,  j + 1) ‒ SMEM (i,  j ‒1) 

17:  Iy ← SMEM (i + 1,  j) ‒ SMEM (i ‒ 1,  j) 

18: else if pixel is in the first or last rows 

19:  Ix ← SMEM(i,  j + 1) ‒ SMEM (i,  j ‒ 1) 

20: else if pixel is on the first or last columns  

21:  Iy ← SMEM (i + 1,  j) ‒ SMEM (i ‒ 1, j) 

22: ENERGY(k)← 0.5   (|Ix| + |Iy|) 
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5 Performance evaluation 

 The overall time that it takes to remove a single seam of 

an image depends highly on the size of the image. The 

energy function takes the largest fraction of the total 

execution time, followed by the seam computation. Hence, in 

this paper, we focus on improving the energy function and 

the seam map computations. However, we also compare and 

discuss the total execution times.  

5.1 CPU evaluation and results 

5.1.1 Energy function 

 Figure 6 illustrates the performance gained by 

multithreading the energy function computation and 

executing the implementation on the Intel Core i7 (4-cores 

each with SMT) and Xeon CPUs (8-cores, no SMT). The 

execution of the energy function single-threaded 

implementation takes 31.5 ms to complete on the Intel Xeon 

CPU. This is the base system in Figure 6. Results show that 

the newer Intel Core i7 CPU outperforms the Intel Xeon 

processor for all of the thread configurations. The best CPU 

performance for the energy function computation of a 

1200x900 image is with the Intel Core i7 and 16 threads. 

Overall, the energy function computation scales well on 

multi-core CPUs. With eight cores, the Intel Xeon achieves 

7x performance improvement. With four cores and eight 

hardware threads, the Intel Core i7 achieves 7x speedup over 

its single-threaded execution. In addition, the Intel Core i7 

achieves a 10x performance improvement over the Intel 

Xeon single-threaded execution. Finally, as the number of 

threads launched increase beyond the number of hardware 

threads in the system, the performance gain becomes smaller 

due to the thread switching overheads. The only exception is 

the 16-thread execution of the Intel Core i7, which needs 

further research and it is left as future work. 

 

5.1.2 Seam map 

  In section 4.1.2, we discussed the implementation of 

the seam map on the CPU and the dependability among rows 

of pixels. We emphasized how dependability due to the 

dynamic programming approach serialized the execution of 

rows. However, the results exposed another problem that 

significantly affects the parallelization of the seam map 

computation. Figure 7 illustrates the performance results of 

the seam map. The Figure shows that barriers impose a 

substantial overhead, resulting in a zero gain in performance. 

 

 
Figure 6: Improvement of the energy function over the single-threaded 

executing of the Intel Xeon for a 1200x900 image. 

In the multithreaded implementation, the performance is 

worse than that of the single-threaded implementation.  

  As mentioned in section 4.1.2, a more efficient approach 

is to synchronize locally instead of at the global level. This 

implementation performs better because locks inflict less 

overhead. However, we are only able to achieve 26% and 60% 

improvement with 2 threads on the Intel Xeon and Intel Core 

i7, respectively. This speedup is minor in comparison to the 

speedups achieved for the energy function. Beyond two 

threads, we see a large drop in performance even though both 

systems have eight hardware threads. 

 

5.2 GPU performance evaluation  

5.2.1 Naive-non-aligned energy function 

 On the 8800GT, the naive-non-aligned method achieves 

5.7x and 8x performance improvement over the single-

threaded CPU implementation executing on the Intel Xeon 

and Core i7, respectively, as shown in Figure 8. This 

performance improvement is similar to that of the 

multithreaded CPU implementations. However, this 

implementation does not take advantage of the GPU's wide 

memory bus. Its memory access patterns are not coalesced due 

to the data not being aligned. Since the naive-non-aligned 

method only utilizes three bytes per pixel, a warp will only 

load 96 bytes and a half of a warp will load 48 bytes. Such 

memory access pattern is not aligned. The naive-non-aligned 

method was initially designed with the G80 architecture in 

mind. However, with minimum modifications, this 

implementation yields 89.7x and 62x performance 

improvement on the Fermi GTX580, over the single-threaded 

implementation running on Intel Xeon and Intel Core i7, 

respectively (see Figure 9).  

5.2.2 Naive-aligned energy function 

 The changes to transform the naive method from a non-

aligned to an aligned implementation (see Section 4.2.1) 

improve the performance relative to the single-threaded 

version from 8x to 18x and 5.7x to 12.4x on their respective 

systems as shown in Figure 8. Utilizing the CUDA profiler, 

we were able to determine the remaining source of our 

performance problems, uncoalesced accesses. The first naive 

version incurred over 500,000 uncoalesced loads and 300,000 

uncoalesced stores for a 1200x900 image (≈ 1 megapixel); the 

improved aligned version incurred only 100,000 uncoalesced 

loads and 50,000 uncoalesced stores. This is still significantly 

more than one would expect, as an image with  

 
Figure 7: Performance of multi-threaded implementations of Seam map 
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 Figure 8: speedup of the energy function over the single threaded CPU  

this amount of pixels should only need 16,875 loads 

assuming the GPU can bring in 64 bytes per coalesced loads. 

The naive-aligned method was also designed for the 8800GT. 

When executed on the GTX580, this implementation shows a 

performance improvement of 100x and 69x over the 

respective Intel Xeon and Core i7 single-thread CPU 

implementations (see Figure 9). 

5.2.3 Split-aligned energy function 

 The split-aligned method described in Section 4.2.2 

achieves an average of 850 megapixels per second 

throughput, a 24x and a 16.5x improvement over the single-

threaded CPU version on the Intel Xeon and Core i7, 

respectively, as shown in Figure 8. As expected, the CUDA 

profiler reveals that for a 1200x900 image, approximately, 

only 31,000 loads and 15,000 stores were needed (each pixel 

must be loaded from global memory twice; once for each 

directional kernel), reducing the total memory access latency 

by an order of magnitude. On the GTX580, the split-aligned 

achieves 108.6x improvement over the Intel Xeon CPU and 

75x over the Intel Core i7 as shown in Figure 9.  

5.2.4 Merging the split-aligned method 

 The locality-aware method described in section 4.2.3 

achieves the highest performance improvement on both 

GPUs for the energy function computation. By merging the 

computation of the two derivatives in a way that the number 

of coalesce loads remains close, and by further taking 

advantage of locality of accesses, we manage to improve the 

performance of the energy function by 144.5x and 100x over 

the single-threaded CPU version on the Intel Xeon and Core 

i7, respectively, as shown in Figure 9. In addition, when 

executed on the 8800GT, this method shows a performance 

improvement of 30x and 21x over the Xeon and Core i7 

single-threaded version (Figure 8). 

5.2.5 Seam map 

 The seam map GPU implementation exhibits 

approximately 4x performance improvement over the single-

threaded CPU implementation on the Intel Xeon and no 

improvement over the Intel Core i7 single-threaded 

implementation (figure not shown). This performance gain is 

relatively small in comparison to the energy function 

speedup. The performance is heavily impacted by the 

profound dependability among rows in the image. This limits 

the amount of parallel computation by serializing the 

execution of rows. Another significant performance impact is 

the lacking of optimal methods for synchronizing threads  

 
Figure 9: Improvement of the energy function on the GTX580 (Fermi) 

over the single threaded CPU implementations 

among different blocks. Launching the kernel 899 times for a 

1200x900 image imposes a significant overhead. 

Approximately 57% of the seam map execution time is due to 

kernel launch overhead. Minimizing the launch overhead 

could potentially improve the performance by a factor of two.  

5.3 Evaluation of total execution time of the 

resizing operation on the GTX580 

 As previously stated, the energy function and seam map 

computations account for the largest fraction of the execution 

time of seam carving. Therefore, by improving these two 

parts, one would normally achieve a high overall performance 

improvement. However, there is a penalty when performing 

computation on the GPU device. The data must be copy from 

the host memory to the device memory. Once the computation 

is performed, we must copy the results back to the host 

memory; if we care to use the results on the CPU side. Both of 

these operations introduce additional overhead. For extensive 

GPU computation, the overhead is easily hidden. However, 

this is not the case for seam carving given that the 

computations are in the order of micro and milliseconds. 

 In order to use this GPU implementation of the seam 

carving in a real word application, we need to utilize the 

operation described above. Therefore, we need to incorporate 

the total time that it takes to copy the image from the host to 

the device, compute both the energy function and the seam 

map, and copy the result back to the host memory. Figure 10 

illustrates the total time that the entire operation takes on the 

Intel Core i7 and on the GTX580, respectively. This 

heterogeneous system is selected because it performs the best 

for both the CPU and the GPU. Figure 11 shows the 

performance improvement for the entire operation.  

 Figures 10 and 11 illustrate that the GPU methods 

perform better than the CPU methods, especially when the 

size of the image increases. Overall, Figure 11 shows that the 

total execution time of the best resizing implementation on the 

GTX580 is about 6x faster than the best single-threaded CPU 

implementation and over 2x faster than the best multithreaded 

CPU implementation. The best execution time on entire 

operation is achieved with the locality-aware method using 

page-locked memory. The reason is that the CUDA run-time 

environment can optimize the host to device and device to 

host memory copy if the CPU memory is allocated as non-

pageable memory (see [7]). We therefore modified our fastest 

implementation, locality-aware, to take advantage of page-

locked memory, which yields the best overall performance as 

shown in Figures 10 and 11. 
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Figure 10: Total time to copy to and from the device, compute the energy 

function and seam map on the GTX580 and Core i7  

 
Figure 11: Total time to copy to and from the device, compute the energy 

function and seam map on the GTX580 and Core i7 

6 Related work 

 Resizing images and videos have been studied 

extensively in the literature. One of the most popular 

approaches is to perform cropping [1-5], which involves 

finding the best rectangular sub-window in the image. 

However, cropping may lose an unacceptable amount of 

visual information when important structures lie at all edges 

of an image. Scaling methods, with or without interpolation, 

tend to produce distorted images, especially when an image 

is scaled in one direction.  

 Avidan and Shamir [6] recently provided a new 

approach to image and video resizing, called seam carving. 

Seam carving is an algorithm for content-aware resizing of 

images and videos with little to no perceptible distortion. 

Seam carving is a computationally-intensive method, which 

makes it difficult to perform on large images or videos in 

real-time.  

 To the best of our knowledge, this paper is the first to 

implement a real-time content-aware resizing method on 

GPUs. Our implementation works very well on computing 

the energy function (over 100x and 144x is possible), but the 

other computationally-intensive part, seam map, is 

implemented using dynamic programming which limits the 

amount of data parallelism that can be exploited (only 4x 

speedup over the Intel Xeon and no improvement over the 

i7). A recent work [10] implemented a faster way to compute 

the seam map by finding the optimal matches within a 

weighted bipartite graph composed of the pixels in adjacent 

rows or columns. In future work, we will adapt this method, 

which we believe will improve our results greatly for the 

seam map computation. 

7 Conclusion and future work 

 Seam carving is a powerful method for resizing images 

and videos. This content-aware resizing method has been 

shown to effectively resize images and videos with little to no 

perceptible distortion. However, the seam carving algorithm is 

computationally-intensive and for high-resolution images and 

videos, it may become impossible to perform the resizing in 

real-time by using the CPUs in a desktop-scale computer.  

 In this paper, we exploit the highly parallel 

computational capabilities of CUDA-capable GPUs in a 

heterogeneous computer system for accelerating the resizing 

of videos and images through seam carving. Out of the four 

different GPU methods that we implemented, our results show 

that the best is the locality-aware method using page-locked 

memory, which achieved a performance improvement of 100x 

over the best single-threaded execution time and 14x over the 

best CPU multithreaded version of the energy function 

executing on the Intel Core i7. Overall, our results show that 

the GPU-based implementation has a significant impact on the 

performance of seam carving and has the potential to resize 

videos and large images in real-time.  

 In the future, we are planning to vectorize the CPU 

implementation to take advantage of the SIMD instructions on 

the Intel CPUs.  Another important part of our future work is 

to find a better approach to parallelize the seam map 

computation.  
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Abstract - In this paper, we propose a novel Quantum-dot 

Cellular Automata (QCA) based Programmable Switch Matrix 

which can be used as a routing element for future nano Field 

Programmable Gate Arrays (FPGAs). QCA technology is an 

emerging technology based on encoding binary information in 

charge configuration within quantum dot cells. In FPGAs, the 

Programmable Switch Matrix (PSM) is the interconnection 

circuit which switches the signals at the intersection of the 

horizontal and vertical routing channels. The main goal 

behind the design of QCA based PSM is to design a routing 

element for transistor-less nano FPGAs. The proposed QCA 

based Programmable Switch Matrix (QPSM) has an 

advantage over the area and the number of cells compared to 

earlier designs. The proposed QPSM is implemented and 

simulated using the QCA Designer tool. 

Keywords: Quantum-dot Cellular Automata, Field 

Programmable Gate Arrays, Programmable Switch Matrix. 

 

1 Introduction 

  Moore‟s law states that the number of transistors on a 

unit area doubles every 24 months [1]. Over the decades, the 

exponential scaling of the feature size and increase in the 

processing speed has been provided by CMOS technology for 

implementing the VLSI systems [2]. The CMOS technology 

due to the reduction of the feature size is facing consequences 

like power dissipation, diminishing returns in switching 

performance, diffusion barriers, gate depletion, stray 

capacitances and electro-migration [3, 4]. Various 

technologies have been investigated in the past to find a 

potential replacement for the CMOS technology in the future. 

Some of these technologies are Single Electron Transistors 

(SETs), Resonant Tunneling Diodes (RTDs), Carbon Nano 

Tubes (CNTs), and Quantum-dot Cellular Automata (QCA) 

[5, 6]. Proposed by Lent and others in 1993, QCA technology 

uses arrays of coupled quantum dots to implement the boolean 

logic functions. Each QCA cell comprises of four electron 

wells and two free electrons. The electrons can tunnel 

between the dots through electron tunneling [7]. Due to 

Coulombic repulsion, the electrons repel each other and align 

themselves in the opposite corners of the cell. The electron 

configuration on  the diagonals lead to two different state 

polarizations which are labeled as logic „0‟ and logic „1‟, as 

shown in Figure 1. The cell with polarization -1 represents the 

binary state 0 and the cell with polarization +1 represents 

binary state 1. The major advantages of QCA are the small 

circuit size, higher clock frequency, and lower power 

consumption. 

 

Figure 1. Logic States of QCA 

   By arranging the QCA cells in different ways, QCA 
devices such as QCA wires, QCA inverters and Majority 
voters can be designed (Figure 2). The QCA Majority voter 
(MV) has logic function MV (A, B, C) = AB + BC + AC. 
The QCA based AND gate and the OR gate can be designed 
by setting one of the inputs of MV to 0 (P=-1) and 1 (P=+1), 
respectively. 

 

Figure 2. Basic QCA Devices a) Binary QCA Wire b) QCA Inverter c) 
Majority Voter Gate  d) AND Gate  e) OR Gate 

   In QCA, individual wires and gates are clocked. The 
clocking amplifies the signal and provides the direction of 
flow to the signal. The clock wires are run underneath the 
layer consisting of the QCA cells. The clock in QCA is 
divided into four phases with each phase incurring a 90

o
 

phase delay. The four clocking zones are named Switch, 
Hold, Release and Relax [8] as shown in Figure 3. 

 

Figure 3. QCA Clock Phases 

  The clocking scheme allows the arrays of cells to 

perform the computations based on the position of inter dot 
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potential barriers and the result is given as the input to the 

successor array. If the potential barrier is held high, the cell 

gets polarized and if the potential barrier is lowered, the cell 

becomes unpolarized. The cell switches to polarized state in 

the switch phase, remains polarized in hold phase, becomes 

unpolarized in release phase and finally stays unpolarized in 

the relax phase until it gets polarized in the next switch state. 

In this manner, the information is transferred through QCA 

cells by maintaining the ground state polarizations. 

   The QCA based routing elements of an FPGA have 

been proposed in the past. Niemer and others have proposed 

the design for FPGA logic block and interconnects in QCA 

[9]. The work in [9] explains that there is no possibility to 

create equivalent pass transistors using the QCA devices. 

Thereby they have defined unclocked zones where the cells 

can remain unpolarized. This is possible by unclocking the 

cells by fixing their barrier potential to a certain value or by 

keeping the cells in release phase of the clock. Niemer 

designed routing elements of various sizes using the 

unclocking concept. Based on a similar idea, Andrej and 

others have proposed a basic universal crossing element in 

QCA [10] which can be used as a switch matrix in FPGAs. In 

this paper, we propose a novel QCA based Programmable 

Switch Matrix of an FPGA by keeping the cells in a 

particular region in the release phase of the clock. Initially, a 

(1x1) QCA Programmable Switch Matrix (QPSM) is 

designed based on which switch matrices of any size can be 

designed. Size of the switch matrix is defined by the number 

of inputs and outputs of the switch matrix. The concept of 

coplanar crossover of QCA wiresis also used. The designs 

are simulated using the QCA Designer tool [11].  

   The rest of the paper is organized as follows: Section II 

details the design of the different QCA Programmable Switch 

Matrices. The simulation results are illustrated in Section III. 

Section IV includes the conclusion. 

2 Design of a QCA Programmable 

Switch Matrix (QPSM) 

 The Field Programmable Gate Arrays consists of arrays 

of logic blocks (cells) placed in an infrastructure of 

interconnections. The FPGAs can be programmed at the logic 

cells, at interconnections between the cells, and at inputs and 

outputs [12]. The major elements of an FPGA are the 

Configurable Logic Blocks (CLBs), Programmable Switch 

Matrices (PSMs) and Input and Output blocks (IOBs). The 

CLB is a basic programmable block implementing digital 

logic in an FPGA. The CLBs can be configured to perform 

basic logic functions using the Look up Tables (LUTs). The 

CLBs are interconnected through Programmable Switch 

Matrices to form the units which can perform complex 

functions. The I/O blocks provide programmable I/O 

connections between the FPGA and the peripherals of the 

system. It is anticipated that future nano FPGAs will find 

applications in fields such as telecommunication, medicine, 

aerospace and industrial control.  

 In FPGA, the Programmable Switch Matrix is used to 

switch signals at the intersection of horizontal and vertical 

routing channels. The switch matrix establishes a 

communication between different elements of an FPGA. The 

PSM is used to make the required connections between 

various logic blocks and input output blocks. Today, many 

commercially available FPGAs use island-style architecture in 

which logic blocks are organized in an array separated by 

horizontal and vertical routing channels (Figure 4). The CLBs 

are connected to the horizontal and vertical lines using a 

connection block (C block) and the signals are switched at the 

intersection of channels by a switch matrix (PSM block) [13] 

as shown in Figure 4. 

 

Figure 4. Island style architecture of an FPGA 

   In the PSM, the crossway consists of six pass transistors 

that lets the signal flow in either of the four possible 

directions. In earlier research described in [9,10], QCA based 

interconnects and routing elements were designed by 

proposing unclocking select cells or setting the cells in the 

release phase of the clock. However, the circuits were not 

simulated. Based on the concept of keeping cells of a certain 

region in the release phase, we propose a novel design of a 

QCA Programmable Switch Matrix (QPSM). Using QPSM, 

the signals can be transferred from one wire to another wire 

of an FPGA in all the possible directions. As the QCA 

Designer tool does not support unclocking, we have designed 

the switch matrices by selectively setting the group of cells in 

the release phase of the clock. 

   The (1x1) QCA Programmable Switch Matrix (1-

QPSM) is used to switch signals between single horizontal 

and vertical channels. The PSMs designed in this work have 

the vertical channel as QCA inverted wire and the horizontal 

channel as normal QCA wire. When a normal QCA wire 

crosses an inverted QCA wire, there is no interaction 

between them. This is possible as the energy between the 

standard cell and the rotated QCA cell cancels out making 

the kink energy zero. This crossover of wires is called the 

coplanar crossover [14]. The two wires are connected by 
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tapping a normal cell at half way of the rotated cells of QCA 

inverted wire and connecting it to the normal QCA wire. This 

is designated as a QCA Connector in this paper.  For the 

signals to flow on the respective individual wires, the 

connector cells are kept in the release phase of the clock so 

that they do not affect the cells of either of the wires. For the 

signals to flow from one wire to the other, correct clocking 

must be provided to the QCA Connector. In Figure 5, the 

QCA Connector cells are kept in  the release phase so that 

the inputs In1 and In2 appear at the outputs Out1 and Out2, 

respectively. Based on the (1x1) QPSM,  (n x n) QPSMs can 

be designed where „n‟ is the size of the switch matrix. 

 

Figure 5. A (1x1) QCA Programmable Switch Matrix (1- QPSM) 

 In Figure 6, the design of a (4x4) QCA Programmable 

Switch Matrix (4- QPSM) is shown. The input signals In1-In4 

can be routed in vertically up, down and horizontal directions. 

By providing the respective clock to the QCA Connectors 

(dotted purple box), the signals travel from the horizontal 

channels to vertical channels. The signals are then transferred 

in up and down direction by clocking the appropriate cells in 

the vertical channel. The other QCA Connectors are kept in 

the release phase of the clock so that they do not affect the 

signals flowing on the horizontal channel. Therefore, the 

signals are transferred from one wire to the other by providing 

the clock in the direction the signal has to flow and keeping 

the rest of the cells in the release phase of the clock. 

 

Figure 6. A (4x4) QCA Programmable Switch Matrix (4- QPSM) 

 In FPGA, the Connection Block connects the horizontal 

and vertical channels to the CLBs. We have designed the 

QCA Connection Blocks (QCB) to provide these connections. 

A four input QCB (4-QCB) is shown in Figure 7. The inputs 

In1-In4 on the horizontal channels can be routed in three 

directions (straight, up and down). Select QCA Connectors 

are clocked to allow the signals to flow in the desired 

direction, the rest of the Connectors are kept in the release 

phase. For example, if the signals are supposed to connect to 

the CLB at the top and not to the CLB at the bottom, the QCA 

connectors above the horizontal channels are clocked and the 

QCA connectors below the horizontal channels are kept in the 

release phase. Similarly, the QCB which connects the vertical 

channels to the CLB can be designed. 

 

Figure 7. A (4x4) QCA Connection Block (4- QCB) 

 A layout of an island style FPGA with the proposed 

QPSMs is shown in Figure 8. In the figure, PSM1-PSM4 

represents the 4-QPSMs and C1-C5 represents the 4-QCBs. 

The inputs are shown by blue arrows and the outputs are 

shown by orange arrows. 

 

Figure 8. QCA layout showing the QCA Programmable Switch Matrices 

(QPSM) and QCA Connection Blocks (QCB) 
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 To verify the functionality of the proposed QPSM, signals 
are transferred in multiple directions in the layout. Table I 
shows the flow of the signal through each Connection block. 

TABLE  I.  FLOW OF THE SIGNALS IN THE QCA  LAYOUT 

 

3 Results 

 The proposed QPSMs are simulated using the QCA 

Designer tool for functional verification. In Table II, the 

number of QCA cells and the area occupied by different sizes 

of QPSMs are listed. It is found that, for  a QPSM of size „n‟, 

the number of QCA cells required are given by 4n (3n+1) 

cells and the area occupied is given by [n (n+1) -1] / 100 

(µm
2
). The simulation result of a 4- QPSM is shown in Figure 

9. For the inputs In1-In4, the QPSM gives the correct outputs 

Out1-Out4 (indicated by the arrows). Similarly, the input 

signals can be switched in other directions and the expected 

outputs obtained. 

TABLE  II. NUMBER OF CELLS AND AREA OF EACH SWITCH 

MATRIX 

 
 

 

Figure 9. Simulation result of  4-QPSM 

4 Conclusion 

 In this paper, design of a QCA based Programmable 

Switch Matrix is proposed for nano Field programmable Gate 

Arrays. The proposed PSMs can be used as potential routing 

elements in the „beyond CMOS era‟.  
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Abstract— Clusters using multiple GPUs have been already
widespread to build a high performance computer econom-
ically. However, since the number of plugged GPUs into
a CPU is limited, such clusters are consisting of multiple
host PCs each of which has a few GPUs. This conventional
multi-GPU cluster requires programmers to learn parallel
programming skills for controlling communication between
nodes as well as GPU programming.

In order to show the illusion that a large number of
GPUs to a single host, a multi-GPU system with ExpEther
is proposed. The multi-GPU system allows interconnecting
a single host PC and multiple GPUs by ExpEther which
extends PCIe interface to Ethernet.

Execution of the application program with two to six
GPUs achieved 1.99, 2.96, 3.92, 4.83 and 5.14 times speedup
at most, as those with a single GPU. Also, the influence of
the bandwidth of the network used in the multi-GPU system
is evaluated quantatively.

Keywords: Graphics processing unit, cluster, Parallel Computing,
Scalability

1. Introduction
The GPGPU (General Purpose Computing on Graphic

Processing Units) has become a major way for high per-
formance computing. Recent GPUs have multiple SIMD
(Single Instruction Multiple Datastreams) units each of
which provides more than hundreds processors, and support
thousands of concurrent threads. GPUs are much superior to
general purpose multi-core CPUs from the viewpoint of both
performance per cost and performance per power. Also, their
growth of performance per year is also much higher than that
of CPUs.

Although the programming of GPUs was difficult for
common programmers, it has been rapidly improved. For in-
stance, NVIDIA and AMD support c-like GPU programming
languages, Compute Unified Device Architecture (CUDA)

[1] and ATI Stream SDK [2], respectively. Open Comput-
ing Language (OpenCL) [3] has been widely spread as a
programming environment for various accelerators including
GPUs. Such programming environment lowers the barrier for
introducing of GPU in the many fields.

In order to obtain the performance beyond a single GPU,
clusters with GPUs are popularly used in the field of high
performance computing. Japanese Tsubame 2.0 [4] system,
a supercomputer using GPUs is in the Top500 of would su-
percomputers ranking. Generally, these multi-GPU systems
are consisting of a large number of network connected PCs
each of which provides a few GPUs plugged into each slot.
This structure comes from that the the GPU needs support
of CPU to control data transfer and kernel execution.

This conventional multi-GPU system cause two problems.
The first is an increase of the latency of the communication
between nodes. The communication between GPUs must be
done via its connected CPU, and it often stretches the latency
and limits the bandwidth. When the latency of the communi-
cation is large compared with the computation time of GPUs,
the time for communication can bottleneck the system, espe-
cially when the number of nodes becomes large. The second
is the programming complexity of parallel processing. In
order to use such a cluster efficiently, programmers are
required to describe hierarchical parallel programming: that
is, the coarse grained parallel programming which controls
the communication between GPUs in MPIs or other message
passing library and the fine grained parallel programming
for intra-GPUs in GPU specialized programming language
such as CUDA and OpenCL. Although some tools have been
developed to reduce the multi-GPU systems programming
difficulty[5][6], they require some performance overhead.

We address these problems by using ExpEther, the
Ethernet-based virtualization technology. ExpEther extends
PCI Express(PCIe), the standard interface used for con-
necting hosts and GPU devices to Ethernet. It provides a
transport function for PCIe packets by encapsulating them
within an Ethernet frame and tunneling between the con-
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nected modules.
The proposed multi-GPU system with ExpEther, which

is called GPU-BOX, has only a single host PC connected
with a large number of GPUs by the Ethernet consisting of
conventional switches and cables. GPU-BOX provides PCIe
ports and power supply for GPUs together with the function
of ExpEther. This system releases programmers from the
requirement to learn communication programming between
nodes, and enables users to select the number of GPUs
independent of a host PC’s capacity. Moreover, the latency
for communication between GPUs is not so stretched, since
the data is communicated between GPUs without using
CPUs.

The rest of this papers is organized as follows. We
introduce some related work about multi-GPU systems in
Section 2. The key technology, ExpEther is explained in
Section 3, and then a multi-GPU system by using GPU-
BOX is proposed in Section 4. In Section 5, our experimental
results are shown. Finally, we conclude this study with future
work in Section 6.

2. Related Works

There are some equipments to increase the number of
GPUs which a single host PC provide. PCI Express Switches
provided by some vendors such as IDT[7] increase PCIe
slots of the host PCs. They enable host PCs to connect GPUs
over the number of slots provided with host PCs. Also, PCI-
SIG announced the availability of the PCI Express External
cabling 1.0 specification[8]. It focuses on the implementation
of cabled PCIe. Based on the specification, there are external
expansion units of PCIe, for instance CONTEC provides
some of bus expansion units for PCI Express[9]. However,
compared with the system connected by network, extending
with these equipments has less flexibility and extensibility.

Some tools for reduction of the complexity of parallel
programming are also developed. Vegeta[5] and Hybrid
OpenCL[6] virtualize the communication between nodes. By
using them, programmers can use multi GPUs without de-
scribing communication program in message passing library,
but they require some performance overhead. FLAT[10] also
has the same policy, though the target program is described
in CUDA instead of OpenCL which is the target of Vegeta
and Hybrid.

Our proposed multi-GPU system has only a single host
and is connected by Ethernet. It doesn’t require to describe
communication program between nodes since a single host
is used. The flexibility and extensibility are not degraded
compared with conventional systems.

Application Application

OS

PCI Driver

EFI PCI BIOS

OS

NDIS BIOS
S/W

H/W TLP

DLP

PHY

Ether I/F Logic

MAC

PHY

PCI-Express Architecture Eternet Architecture

PEB

Fig. 1: Overview of PEB

3. ExpEther
ExpEther[11], a key technology of multi-GPU system, is

the Ethernet based Virtualization technology developed by
NEC[12]. It extends PCIe which is high performance I/O
network but limited to small area around the cabinet to much
wider area by using Ethernet. Various types of I/O devices
on distant location can be connected as if they were inside
the cabinet.

In this section, we describe the function of ExpEther,
PCI Express-to-Ethernet bridge (PEB) and and Ether-
Forwarding-Engine (EFE).

3.1 PEB
As Fig. 1 shows, PEB is the function of ExpEther to

bridge the TLP layer in PCIe and the MAC layer in Ethernet.
PEB encapsulates a PCIe packet, Transaction Layer Packet
(TLP) into Ethernet frame, and decapsulates it for extending
PCIe to Ethernet. Moreover, the target Ethernet is virtualized
so that the connected devices can be treated as if they were
plugged into host PCs without Ethernet. PEB is implemented
with a conventional operating system, device driver, PCIe
interface, Ethernet Switch and others. That is, the ExpEther
technology can be easily introduced into the systems only
with PCIe interfaces.

3.2 EFE
EFE is the delay-based protocol which supports repeat

and congestion control instead of TPC, the loss-based pro-
tocol. The congestion control system in EFE consists of the
following steps.

1) It sends a certain number of probe packets, when
communication starts.

2) It decides the initial transmission bandwidth based on
the acknowledging packets for the probe packets.
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3) After this, it adjusts the transmission bandwidth for
RTT.

EFE employs Go-back-N as a flow-control method. Com-
pared with Selective-Repeat, Go-back-N has the advantage
of hardware cost which does not need the reorder buffer.
Also, although a number of retransmitted packets are re-
quired in the environments of low round-trip propagation
delay which ExpEther targets, packet retransmission would
not frequently happen.

3.3 System Example using ExpEther
Fig. 2 shows an example of the basic system with Ex-

pEther. On the system of ExpEther, servers and PCIe end-
points are managed and grouped by VLAN ID, which each
server or endpoint has in the register of ExpEther bridges.
The VLAN ID group consists of a single server and multiple
PCIe endpoints. The system manager allocates servers and
endpoints the VLAN ID, and can flexibly constitute the
groups. On the data transfer, the Ethernet frame has the
VLAN ID tag which is referenced to distinguish the group
to which the frame belongs.

Though ExpEther doesn’t support direct CPUs connec-
tion, it can be done by using Remote Direct Memory Access
(RDMA). By using the RDMA, CPUs can communicate
each other by accessing memory of another CPU directly. It
provides low latency and high throughput communications,
and suppresses the CPU workload.

4. Design and Implementation
In this section, we propose a multi-GPU system with

ExpEther, and show an implementation using GPU-BOX.

4.1 System Design
Fig. 3 shows an overview of the multi-GPU system with

ExpEther. It allows to interconnect a single host PC and
multiple GPU devices with a common Ethernet through the

CPU Memory

Chip Set

ExpEther

GPU

ExpEther

GPU

ExpEther

GPU

ExpEther

GPU

ExpEther

Ethernet

Fig. 3: Multi-GPU System with GPU-BOX

PEB. The network consists of the common Ethernet equip-
ments such as switches and cables. Programmers can treat
the multi-GPU system as if all of GPU devices were directly
ported into a single host PC, since the PEB encapsulates
communication for the control via the network. On the multi-
GPU system with only a single host, programmers can make
the use of computing power of multiple GPUs without learn-
ing programming skill of communication between nodes
such as MPI.

The following is a list of the benefits and advantages that
the multi-GPU system with ExpEther provides.

• Performance: Stretching the latency of communication
between GPUs is suppressed by using ExpEther.

• Programmability: Even programmers who can’t de-
scribe communication between GPUs can use the sys-
tem with multiple GPUs.

• Portability: The existing GPU program can run with
only a small change about the number of devices in
GPU programming language for instance CUDA.

• Flexibility: When the number of GPUs is changed,
the application on multiple GPUs can run with only
program modification of device size and extending
network with Ethernet switches.

• Compatibility: GPUs are accessible to a conventional
operating system, device driver, PCIe interface, and
Ethernet switch. Thus, they can be used without special
modification.

• Future Prospect: The proposed multi-GPU system can
receive the benefit of Ethernet technology improvement
which will constantly continue in future.
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4.2 GPU-BOX
Here, multi-GPUs with ExpEther is implemented in GPU-

BOX which provides PCIe ports and power supply together
with the function of ExpEther for extending PCIe interface
of GPUs to Ethernet network.

The target GPU-BOX in this paper has slots for eight
GPUs. That is, it provides the environment of eight GPUs
in term of PCIe slots, Ethernet interface, power supply and
space. The power supply of the GPU-BOX is up to 3000W.
The Ethernet interfaces are two SFP+ interfaces per a GPU,
thus 20 Gbps bandwidth is available in total. Each PCIe
in GPU-BOX is extended to Ethernet by ExpEther NIC
implemented on FPGAs.

5. Evaluation
In this section, we evaluate the performance of the multi-

GPU system with GPU-BOX by executing programs in
CUDA.

5.1 Experimental Environment
Table 1 shows the multi-GPU environment used in the

evaluation. The evaluated environment uses six GPUs, each
of which is NVIDIA Tesla C2050, while the number of slots
in the target GPU-BOX is eight.

5.2 Application
For performance evaluation, we implemented two appli-

cation programs, the simulation of particles motion and the
calculation of Advection term.

One has no communication between devices, while the
other needs a considerable amount of communication.

These application programs are mainly consisting of fol-
lowing three parts;

Table 1: Evaluation Environment
CPU Intel Core i7 (2.67 GHz)
GPU NVIDIA Tesla C2050 x6

Host Memory 16 GB
OS Scientific Linux 6.0

Host Compiler gcc4.4
CUDA Toolkit 4.0

Network 10Gb Ethernet x2
Switch Fulcrum Microsystems Monaco

Table 2: Problem Size of Particle Motion
Number Particles Steps

1 1x1024x1024 100
2 1x1024x1024 1000
3 10x1024x1024 1000
4 10x1024x1024 2000
5 10x1024x1024 4000

• computing in GPUs,
• data transfer between host and GPU, and
• data exchange between GPUs.

The calculation of particle has only two parts, computing and
data transfer between host and GPU, while the calculation
of Advection term includes all of them.

5.2.1 Simulation of Particle Motion by the Runge-Kutta
Method

This application simulates particle motion when initial
particle distribution and velocity field are given and there is
no interference between particles. It divides time into several
steps, and on each step, each particle position is updated
with the velocity field by the Runge-Kutta method. For the
motion of each particle is independent from another, it is
possible to perform every particle motion computation in
parallel, and there is no communication between GPUs in
multi-GPU environment.

Here, five combinations of parameters are executed for
evaluation. Table 2 shows the combinations of problem size
and steps.

5.2.2 Calculation of Advection term by Cubic Lagrange
Interpolation

Calculation for Advection term of Cartesian grid method
is a kind of fluid dynamics computation. It simulates the
movement of ink when initial concentration, distribution, and
velocity field are given. On this calculation, it separates the
entire surface into grid and updates each value of the grid
using values of the surrounding grids in a certain time step.
On each step, updating of the grid value is independent from
other computations. However, in case of computing with
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Table 3: Problem Size of Advection Term
Number X Y Steps

1 256 256 1024
2 1024 1024 10280
3 4096 2048 10280
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Fig. 5: Execution Time of Calculation of Particle Motion

multiple GPUs, we have to exchange data around memory-
boundary between GPUs. Problem size of Cartesian grid
method on this evaluation is shown in Table 3.

5.3 Performance versus the number of GPUs

5.3.1 Simulation of Particle Motion

Fig. 5 shows relationship between execution time and the
number of GPUs when the particle motion simulation is
executed. It is found that the execution time decreases as
increasing the number of GPUs. However the execution of
the case with six GPUs in the GPU-BOX spent larger time
than one with five GPUs. That is caused by the EFE protocol
tuning which is not adequate for the system with more than
five GPUs.

Fig. 5 shows the performance speedup of the different
number of GPUs over a single device. Respectively, the
multi-GPU system provided speedup of 1.99, 2.96, 3.92,
4.83 and 5.14 times at most for execution on two to six
devices. While performance speedup is directly proportional
to the number of devices roughly in case of large problem
size, there are cases to get no performance improvement by
increasing the number of GPUs. It is mainly caused by the
overhead of data transfer between the host processor.
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5.3.2 Calculation of Advection term

Fig. 7 shows relationship between execution time and the
number of GPUs when the Advection term is calculated. In
the problem 1, the cases with five and six devices can’t be
evaluated, since the problem size is so small that there is
no data allocated to fifth and sixth device in this application
program.

Fig. 8 shows the performance enhancement of the different
number of GPUs over a single one. Respectively, the multi-
GPU system achieved speedup of 1.45, 1.85, 1.86, 1.40
and 1.41 times in problem 3 for execution with two to
six devices. On the other hand, we can see performance
degradation on calculating small size problems; problem
1 and 2. The performance degradation is caused by the
frequently executed data exchange part for the calculation of
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Table 4: Data Transfer Bandwidth in CUDA
Ethernet 1 Gbps 20 Gbps
Host to Device 0.320 Gbps 7.66 Gbps
Device to Host 0.445 Gbps 9.86 Gbps
Device to Device 0.355 Gbps 7.92 Gbps

Advection term. The data exchange speed mainly depends
on the bandwidth of the network, while the exchanged data
amount in this application is proportional to the number of
GPUs. Although it is difficult to enhance performance in
such small problems, their execution time is not so large
and the effect of applying multi-GPU system is originally
limited. Improving the performance of Ethernet will stretch
the target which can be accelerated to smaller size problems.

5.4 Influence of the Network Performance
In this subsection, we evaluate the influence of the

network equipment in the GPU-BOX. Table 4 shows the
bandwidth of data transfer from the host to the GPU, from
the GPU to the host, and between GPUs in CUDA by using
Ethernet 1 Gbps and 20 Gbps.

5.4.1 Influence to Application performance

Fig. 9 shows performance of Advection term calculation
the case when 20 Gbps and 1 Gbps Ethernet are used with
a single and two GPUs. When a single GPU is used for
calculation, the difference of the execution time with 1 Gbps
and 20 Gbps Ethernet is small. However, 1 Gbps Ethernet
increases the execution time on calculating with two GPUs,
while 20 Gbps Ethernet can decrease it.

Fig. 10 shows the speedup with two GPUs normalized to
that with a single GPU. As the problem size becomes larger,
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the difference of achieved speedup becomes large between
two Ethernets, although the multi-GPU system provides
more performance in both. As a result, the speedup of the
multi-GPU system is 0.86 with 1 Gbps network, and 1.45
with 20 Gbps network. These results indicate that the multi-
GPU system with GPU-BOX obtains benefits of developing
Ethernet technology, and GPU-BOX enables user to select
network construction according to the application.

6. Conclusion
In this study, we proposed and evaluated multi-GPU

system with ExpEther. It allows to interconnect a single host
PC and multiple GPU devices with ExpEther which extends
PCIe interface to Ethernet.
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For evaluating the multi-GPU system, two application
programs are used. First, we evaluated performance on the
different number of devices. For the program without inter-
GPU communication, a system with six GPUs achieved 5.14
times performance as that with a GPU.

On executing the application including data exchange
between GPUs, the largest performance improvement was
1.86 times with four GPUs. Then, we evaluated performance
using the different networks. From the results, it appears that
the bandwidth of network used in GPU-BOX greatly affects
the performance of the multi-GPU system.

The following is a list of future work:
• The performance of multi-GPU system with ExpEther

must be compared with conventional multi-GPU clus-
ters,

• The performance must be evaluated with the other
applications and more number of GPU.

• A larger system which uses multiple switches must be
evaluated.
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Abstract - In this paper, we present an efficient 

implementation of parallel algorithms to remove noise in 

digital images using different Graphics Processing Units 

(GPUs). The algorithm, based on the concept of peer group, 

uses a fuzzy metric for finding wrong pixels and the Arithmetic 

Mean Filter (AMF) to correct it. There are many factors to 

study in order to get an optimal implementation of an 

algorithm on a GPU. Our algorithm has been implemented 

with two different approaches to access the data: Shared and 

Texture memory. Also, the number of threads and its 

arrangement have been studied. The test has been conducted 

on two different cards: Tesla-Fermi and GeForce. 

Keywords: Parallel Algorithm, GPU, Tesla, Noise removal 

in images. 

 

1 Introduction 

   

 Many filters have been introduced in other papers in 

order to reduce the noise in images. Some works are based on 

the concept of peer group, the fuzzy metric, Arithmetic Mean 

Filter (AMF) and Vector Median Filter for the detection and 

elimination of noise [1], [2]. These types of filters have 

recently shown good quality results but the execution takes 

too much time. In this paper, we use the advantages of 

parallelism offered on the GPU to speed up the process of 

removing noise in a digital image using CUDA [3].  

 There are not many jobs reporting accelerated 

algorithms on GPU to remove noise in an image, therefore 

some works of image processing using the GPU are presented 

in [4], [5], [6], [7], [8], [9]. Some irregular data structures 

such as graphs that involve dynamical memory management 

are accelerated using Graphical Processing Units (GPUs) and 

CUDA [10]. 

 The applications running on the GPU should take 

advantage of the parallel hardware to achieve good 

performance. The hardware optimizations are considered 

depending on the application. The application is executed in 

on different hardware to compare its performance, therefore is 

necessary to perform the appropriate optimizations in order to 

take advantage of the available hardware and performance 

improvement. 

 The GPU has several types of memory, the way to 

access them and the computational cost is different for each 

case. In this paper, we perform an analysis to access the data 

in GPU memory using two optimizations (Shared memory and 

Texture memory) in order to find the best type of memory 

with the best performance.   

 The Shared memory is expected to be a low-latency 

memory near each processor core, for this reason we take the 

advantage to performance optimization applying the 

implementation of this type of memory. 

 We present the performance obtained by running the 

algorithm in the architecture Tesla M2050 (compute 

capability 2.0), and we compared the results with the 

performance in the architectures GeForce GT 120 and 

GeForce 9800 GX2, both with compute capability 1.1. In 

order to observe the behavior in each architecture for different 

amount of processed data, we have used an image taken from 

the Kodak database [11], which we have re-sized and added 

impulsive noise [3].  

 We need to analyze the algorithm to know which parts 

are more appropriate to be parallelized to achieve high 

efficiency. 

 The main contributions of this paper are: to identify the 

parallelism in the algorithm to eliminate noise in an image and 

the use of the best optimization depending on the GPU 

architecture and the amount of data to be processed.  

 This paper is organized as follows: In Section 2, we 

review the method of peer group and fuzzy metric to eliminate 

impulsive noise. The relevant features of the CUDA GPU 

architecture are described in Section 3. In section 4 we 

expand on details our serial and parallel implementations of 

the method. We present performance results in Section 5 and, 

we offer some conclusions and further work in Section 6.  
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a)         b)          c) 

Figure 1. a) Original Image, b) Noisy Image and c) Filtered 

image 

 

2 Method Peer Group and Fuzzy 

Metric (PGFM) 

 The method to remove noise in digital image uses the 

concept of peer group and fuzzy metric. It consists of two 

steps. In the first step (detection), erroneous pixels are 

detected and corrected in the second step (filtering). In the 

detection step, the pixels are labeled as corrupted and 

uncorrupted. Each pixel is analyzed in windows (W) of size 

nxn (n =3, 5, 7 …), until complete all the pixels of the image. 

The corrupted pixels are corrected through Arithmetic Mean 

Filter (AMF) in the second step (filtering step). 

 The concept of Peer group [2] and the fuzzy metric [3] 

are used for classification of the pixels.  The peer group of the 

central pixel (xi) is defined as the set of its neighbour pixels 

(xj) which present similar features according to an appropriate 

distance or similarity measure. Fuzzy metric is an example of 

metric between two pixels. 

The pattern of the fuzzy metric used in this work is: 

)1(,
3

1 )}(),(max{

)}(),(min{
),( 

 




l kljxlix

kljxlix

jxixM  

where the value of k is greater than zero and (xi (1), xi (2),     xi 

(3)) is the color vector for the pixel xi in space color RGB. 

The pattern of the peer group with this fuzzy metric is: 

 

where 0 ≤ d ≤ 1 is the threshold distance. 

 Implementing a similar process to work [12], we have 

obtained the optimum values of k, m y d. The values are:       

m  = 3, k = 1024, d = 0.94. 

Arithmetic Mean Filter is defined as: 

)3(
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
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jiWjx jx
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where xj corresponds to a pixel within the window (W). The 

AMF is obtained for each RGB color.  

Figure 1 shows the original image (512x768) as well as, 

noisy image and filtered image after running the method 

PGFM. 

 

3 NVIDIA GPU Architecture and 

Features 

 In recent years, the GPUs have become very popular as 

compute accelerators for non-graphics applications, especially 

in the field of high-performance computing.  

 NVIDIA introduced CUDA, a technology which enables 

these units to be used to develop programs for other 

calculation purposes, which introduces a few extensions to 

C++ language.  

 GPU architecture details are described in [1], but here is 

a brief summary of the memories and other characteristics of 

GPU used. This summary will help to explain the parallel 

implementation to remove noise in an image. 

 Physically, the GPU, called a device in CUDA 

terminology, contains a set of multiprocessors. These execute 

programs following the SIMD (Single Instruction, Multiple 

Data) model, where by each of the multiprocessor’s processor 

clock cycles executes the same instruction applied to different 

data, taking into account each application if this instruction is 

performed by a different thread. 

 A device has a physical memory that can be used in 

different ways. The main use is as global shared memory 

among the GPU multiprocessors. However, this memory also 

permits its several areas to be used in other modes, as local 

memory, as Texture and as a constant reading area, shared 

between all the threads. 

Internally, each multiprocessor has four kinds of memories: a 

set of registers, a read/write cache memory, a constant read-

only cache memory, and a read-only cache memory called 

Texture cache. These memories explain in detail in [9]. 

 The large variety of memories and their different 

features complicate the task of achieving optimum 

performance in programs using CUDA.  

 The design problems of a CUDA program are: 

 Deciding the number of threads and their 

organization in blocks. 

 Deciding at each moment the best location (among 

the different available memories) for the input and 

output data, and how to access to them, performing 

the necessary copies at the appropriate time. 

 The main features of the GPU hardware that we have 

used in this work are shown in table 1. The compute 

capability of GeForce GT 120 and GeForce 9800 GX2 is 1.1 

and of Tesla M2050 is 2.0 (Fermi architecture). 

 Bandwidth is one of the most important gating factors 

for performance. We have maximized the use of the available 

memory bandwidth for each category of memory. Figure 2 

shows the bandwidth and the size of the memory device for 

each one of the architectures. 

 The number of threads used per block is therefore 

restricted by the limited memory resources of a processor 

core. In NVIDIA Tesla architecture, a thread block contains 

1024 threads. 
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Table 1: Hardware features of GPUs 

Model Mp Global 

Memory 

Shared 

Memory 

CUDA 

cores 

GeForce 

GT 120 

4 512 MB 16 KB 32 

GeForce 

9800 GX2 

16 512 MB 16 KB 128 

Tesla 

M2050 

14 3 GB 48 KB 448 

 

  

 

 

 

 

 

Figure 2. Bandwidth and memory size of the device for three 

GPU architectures. 

 The blocks are organized into a one-dimensional or two-

dimensional grid of thread blocks. In our case, we handle 2D 

blocks. The total number of threads is equal to the number of 

threads per block multiplied by the number of blocks. Each 

block within the grid can be identified as a one or two-

dimensional. 

 The number of thread blocks in a grid is typically 

dictated by the size of the data being processed rather than by 

the number of processors in the system. This number can 

greatly exceed the number of block threads. 

 The performed work by a processor in each GPU 

depends on the blocks launched by the kernel, considering the 

size of the image. We have handled 2D structures, so the total 

number of threads per block should be as close as possible to 

the maximum number of threads per block in each one of used 

the architectures. The GeForce maximum amount of threads 

per block is 512, so that the threads building blocks of 16x16 

for a total of 256 threads, thus there will be two blocks 

running simultaneously on each processor. In the Tesla, the 

maximum number of threads per block is 1024, so we can 

make blocks of 32x32 for a total of 1024 or 16x16 for a total 

of 512 threads in each block. 

4 Algorithm to remove noise in digital 

images 

 In this section, we describe the sequential CPU 

implementation and parallel GPU implementation of the 

proposed method in section 2.  

 

4.1 The Sequential CPU Implementation 

Algorithm 1 shows the sequential implementation on the 

CPU to remove noise in an image. This Algorithm is a 

modification of [2]. It is divided into two phases: detection 

and filtering. 

 

Algorithm 1: Detection and Filtering using the Peer Group 

Filter (PGF). Sequential Implementation. 

 

Input: pixels of the image, m, k, d, n=3. 

Output: Filtered Image. 

//Detection 

for each pixel xi of the image do  

Building W of size n x n centered in xi  

          if (M (xi,xj) ≥ d) then 

               xj ϵ P(xi,d); 

          end if 

          if (#
*
P (xi,d) ≥ (m+1)) then 

        xi is declared as uncorrupted pixel; 

          else 

xi is declared as corrupted pixel; 

          end if 

end for 

//Filtering 

for each corrupted pixel xi do 

     Building W centered in xi; 

  Calculate the AMF of uncorrupted pixels of the W ; 

 Replace xi with the output of the AMF; 

end for 

 
*
 (#) = cardinality 

 

 

4.2 Implementation on GPU 

 In order to speed up the processing of the algorithm 1 

described in the previous subsection, we have made a parallel 

implementation on the GPU. The algorithm has been 

modified to work in parallel. We have done the detection step 

on the GPU through a kernel (detection kernel). Another 

kernel (filtering kernel) was defined to run filtering step.  

 In order to obtain a good performance in applications, 

one of the factors to be considered is the number of threads 

and blocks in each launched kernel. This factor depends on 

the maximum number of threads supported by the graphics 

card and the size of data to consider. 

 In this work, we calculate the number of blocks that are 

released into the kernel depending on the size of the data. 

After memory space is allocated for the GPU to store the 
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image, data are transferred from RAM-Host to RAM-GPU. 

Once the data are in graphics card then the detection kernel 

and filtering kernel are launched. After launching the 

detection and filtering kernel, the threads are synchronized. 

Once the filtering kernel has finished, the data is transferred 

from RAM-GPU to RAM-Host. These steps are described in 

pseudo-code in Algorithm 2. 

 We used 2D linear memory allocation in the memory 

device to store data. To speed up image transfer between host 

and device memory we use page-locked. Device memory can 

be allocated as either linear memory or as CUDA arrays. We 

have used for this application linear memory. 

 The amount of threads to launch is the same number of 

pixels as the image has. Each thread corresponds to one pixel 

of the image and it builds its window of size nxn. The thread 

classifies as corrupt or not corrupt the central pixel of the 

window, ie marks the pixel that is analyzed while the 

neighbours are analyzed simultaneously by other threads. We 

reserve one byte for each pixel which we will call it padding 

(p) in order to assign the state of the pixel (corrupt or not 

corrupt), one pixel is composed of 4 bytes (RGBp). All the 

pixels after detection kernel are labeled as corrupt or not 

corrupt. For the filtering kernel, we launched the same 

amount of threads as in the first step. Some threads will not 

work because they do not correspond to pixels labeled as 

corrupted. Considering that the computational cost of the 

memory transfers between RAM-Host and RAM-GPU is 

high, we prefer to launch the same amount of threads that are 

released in the detection kernel. 

  

Algorithm 2: Pseudocode for the parallel GPU 

implementation. 

 

Allocate device memory for the pixels; 

Data transfer from Host memory to Device memory; 

do in parallel on the device using T threads: 

          call Detection_kernel 

          Synchronization of threads; 

do in parallel on the device using T threads: 

          call Filtering_kernel 

          Synchronization of threads; 

Data transfer from Device memory to Host memory; 

Free device memory; 

 

 The detection kernel is described in Algorithm 3. In this 

algorithm the called fuzzy_metric_function (a_pix, b_pix), is 

the function to calculate the fuzzy metric between central and 

neighbour pixels of the window. a_pix is the central pixel and 

b_pix is a neighbour pixel. 

 The filtering kernel is described in Algorithm 4. In this 

algorithm the called mean_function (b_pixOK), is the 

function to calculate the AMF, described in equation 3. 

b_pixOK is an array of the uncorrupted pixels. 

 When using Shared memory, the processes that are 

performed in each kernel, are described in algorithms 3 and 4 

with the following changes : 

 Sentence 4 of algorithm 3 and sentence 5 of algorithm 

4, is replaced by: 
a_pix load from device memory to Shared memory RGB 

value  of xi from row and col; 

 Synchronizes with all the other threads of the block; 

 

 Sentence 7 of Algorithms 3 and 4, is replaced by : 
b_pix load from device memory to Shared memory RGB 

value of neighbour in (i,j) from row and col; 

 Synchronizes with all the other threads of the block; 

 

 

Algorithm 3: The Detection_kernel 

 

Input: pixels of the image, m, k, d, n=3. 

Output: pixels labeled as corrupted or uncorrupted. 

For each thread that is associated with a pixel xi: 

1: col  global thread ID in col; 

2: row  global thread ID in row; 

3: byte padding (p) is initialized to zeros; 

4: a_pix load RGB value of  xi from row and col;  

5: for i-1 to 1 do 

6:      for  j -1 to 1 do 

7:           b_pix  load RGB value of neighbour in (i,j) 

                         from row and col. 

8:           dist load the distance obtained after of  

                     call fuzzy_metric_function (a_pix, b_pix) 

9:           if dist ≥ d then 

10:                //pixel (b_pix) ϵ P(a_pix,d) 

11:                cardinality  cardinality+1; 

12:           end if 

13:      end for 

14: end for 

15: if cardinality < (m+1) then 

16:      //pixel is declared as corrupted; 

17:      c_pix  load in four byte (p) a value of 1; 

end if 

 

Fuzzy metric and peer group are calculated reading the data 

of Shared memory. 

 A texture can be any region of linear memory or a 

CUDA array, the GPU is especially well-suited to address 

problems that can be expressed as data-parallel computations. 

When we use Texture memory, we declare a texture to access 

the data. The texture is used in both detection and filtering 

kernel. 

 Sentence 4 of algorithm 3 and sentence 5 of algorithm 

4, is replaced by: 

a_pix load from Texture memory RGB value of xi 

from row and col ; 

 Sentence 7 of Algorithms 3 and 4, is replaced by: 

b_pix load from Texture memory RGB value of xi 

from row and col. 
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Algorithm 4: The Filtering_kernel 

 

Input: pixels of the image labeled as corrupted, n=3. 

Output: Filtered Image. 

For each thread that is associated with a corrupted pixel xi: 

1: col  global thread ID in col; 

2: row  global thread ID in row; 

3: a_pix  load RGB value of xi from row and col;               

4: if (a_pix in byte p) ==1 then 

5:      for i -1 to 1 do 

6:           for  j -1 to 1 do 

7:                b_pix  load RGB value of neighbour in  

                              (i,j) from row and col. 

8:                if (b_pix in byte p) == 0 then 

9:                     b_pixOK  load b_pix 

10:                end if 

11:           end for 

12:      end for 

13:      mean  load the media obtained after of 

14:                     call mean_function (b_pixOK) 

15:      a_pix  load the mean value; 

16: end if 

 

 

5 Performance Evaluation 

5.1 Experimental Study 

 In the experiments, we used one image obtained from 

[10] which we have re-sized and added 10% of impulsive 

noise with imnoise instruction of MATLAB. Table 2 

summarizes the sizes of the images that we used. 

Table 3 shows the blocks configuration, threads and 

occupation of the cores in each one of the GPUs used. The 

number of blocks per core is obtained by dividing the total 

number of blocks by the CUDA cores available (table 1). For 

the Tesla architecture the number of blocks created for the 

first image size and 32x32 threads per block is 96 blocks and 

CUDA cores are 448, ie, 352 cores are inactive. For the 

second image size, 64 cores are inactive. From the 3rd. image 

size, all cores have to work. The algorithm 2 was 

implemented for each size image in order to eliminate the 

noise in the image. We use three architectures (GeForce GT 

120, GeForce 9800 GX2 and Tesla M2050) with different 

characteristics. 

Table 2. Size image used in the experiments. 

Case Image Size 

1 256x384 

2 512x768 

3 1536x1024 

4 3072x2048 

5 6144x4096 

 

Table 3. Configuring blocks and 

grids.

 
Image 
size 

Max. 
Threads 

per 
block 

Threads 
per 

block 

Number of 
blocks 

Number 
of  

blocks 
per core 

 
GeForce 
GT 120 

1 

 
 

512  
 
 
 
 
 
 
 

16x16 

16x24=384 12 

2 32x48=768 24 

3 64x96=1536 48 

4 128x192=3092 96 

5 256x384=6144 192 

 
GeForce 

9800 
GX2 

1 

 
 

512 

16x24=384 3 

2 32x48=768 6 

3 64x96=1536 12 

4 128x192=3092 24 

5 256x384=6144 48 

 
 
 
 

Tesla 
M2050 

1 

 
 

1024 

16x24=384 1 

2 32x48=768 1 

3 64x96=1536 3 

4 128x192=3092 6 

5 256x384=6144 13 

1 

 
 

1024 

 
 

32x32 

8x12=96 1 

2 16x24=384 1 

3 32x48=1536 3 

4 64x96=6144 13 

5 128x192=24576 54 
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 Figure 3. Performance Mpix/sec when using block size 8x8, 

16x16 and 32x32 with diffrent image size on GeForce GT 

120. 

5.2 Results and Analysis 

 In this section we evaluate the GPU performance when 

running the noise elimination algorithm. 

 The first experiment was to study the performance on the 

GPU with two possible combinations of block size (8x8 and 

16x16) in GeForce GT 120 and (8x8, 16x16 and 32x32) in 

M2050.  

 The results of the GeForce GT 120 architecture are 

shown in figure 3. We can see that the best block size is 8x8 

with Texture memory and 16x16 for the other two accesses. 

Shared memory with 16x16 blocks is best than texture 

memory with 16x16 blocks and global memory with 8x8 

blocks. The reason is that the processor is inactive, waiting for 
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more data, in other words, the relationship between the 

processor clock speed and the bandwidth are not appropriate. 

The results are the same in GeForce 9800. 

 The results of Tesla architecture using the two forms of 

access (directly to Global memory or through Texture 

memory) are shown in figure 4. We can see that when using 

the Global memory the best block size setting is 16x16 and 

the worse is 8x8. It obtains more Mpix/sec when accessing 

data through the texture memory. For the largest size that we 

have tested (larger than 512x768) and 32x32 threads per 

block, we can see that the results of using Global memory or 

Texture memory have very good behavior.   

 In the rest of the paper, the results are shown with 16x16 

block size except for texture memory  in the GeForce GT 120 

and GeForce 9800 GX2, in this case is used 8x8 block size. 

 Figure 5 compares the performance of Mpix/sec 

obtained in the three architectures of GPU used and the three 

types of access to data in global memory. 

 The performance of the GeForce GT 120 is better when 

Texture memory is used compared to the other two forms. We 

also note that in the image with size 6144x4096 the 

performance with Shared memory decreases, due to the 

overhead associated with the transfers. All the threads gets 

data from Global memory to Shared memory. 

 The performance obtained using the parallelized 

algorithm on GeForce9800 GX2 with the Texture memory is 

the best option to access the data followed by Shared memory. 

In image sizes 6144x4096 with Global memory and Texture 

memory the performance decreases, due to the overhead 

generated by the transfers. In this case the processor clock 

speed with the bandwidth is tightly coupled; this is reflected 

in the difference between global memory and Texture.  

 Texture memory is also the access that provides better 

performance when using M2050 architecture. The use of 

Shared memory access and the Global memory access 

provides very similar results. We can see that in Tesla 

M2050, regardless of the type of access, the performance of 

the image size 512x768 is lower than other image sizes. This 

is because there are insufficient data to allow cores to work. 

 We also see that the Tesla-Fermi architecture 

outperforms compared with the other two GPU architectures 

at all image sizes. If there is more bandwidth, the accesses are 

faster. For the three architectures the performance is better 

with Texture memory for any image size.  

 With these results, we can say that using the Texture 

memory is the best option for all ways of access to data. 

Shared memory architectures should be used in 

architectures with similar features to the GeForce 9800 GX2.  

 Figure 6 shows that the processing time on GPU 

depends on the percentage of noise in the image. As we can 

see, when the image has more noise, processing time is 

greater. The increase is in the filtering step; in the detection 

step the processing time is independent of the percentage of 

noise. A quality study of this parallel algorithm has been 

analyzed in work [9]. In that paper, we showed that the quality 

achieved by implementing the algorithm is competitive 

compared with other algorithms. 
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Figure 7. GPU vs CPU speedup for different image sizes. 

 Finally, we report in Figure 7, the speedup of the 

sequential version of the algorithm running on the CPU and 

GPU-parallel version using Texture memory and Tesla 

architecture. As noted, in the worst case the GPU version 

(parallel) is 106 times faster than sequential, which is an 

excellent result, showing that using the GPU is the best for 

noise correction. 

6 Conclusions 

 In this paper, we present efficient implementations of 

parallel algorithm to remove noise in digital images using 

different Graphics Processing Units. The algorithm uses the 

concept of peer group, the fuzzy and Arithmetic Mean Filter 

(AMF) to detect and remove noise. When accessing to the 

pixels of the global memory, we have considered two ways to 

optimize the access to them; one is through Shared memory 

and the other through Texture memory. We have presented an 

analysis of the performance of these two models of graphics 

cards (GeForce vs Tesla-Fermi) with different forms of access 

and different image sizes. We have performed an analysis of 

optimal block size for these two architectures. Tesla 

architecture supports a bigger number of threads per block, 

being 256 threads per block the best size. The results show 

that using the Texture memory is the best. Global memory is 

not an option for reading the data from the GPU memory for 

this application and with GPU architectures used. In the 

Fermi-Tesla architecture we process 165-215 Mpix/sec higher 

than the GeForce, running the algorithm to eliminate noise in 

an image with the largest tested size. In a future work we will 

see, if this behavior is similar to other kinds of architecture 

with similar hardware characteristics to this application. 
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generator application
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Abstract— The potential of GPU computing used in general
purpose parallel programming has been amply shown. These
massively parallel many-core multiprocessors are available
to any users in every PCs, notebook, game console or
workstation. In this work, we present the parallel version
of a mesh-generating algorithm and its execution time
reduction by using off-the-shelf GPU technology. We use
commodities GPUs as a useful CPU co-processor to improve
this kind of applications, characterized by a high level of
data parallelism. Compared to the sequential algorithm, our
techniques achieve 6X overall performance for GPU-CPU
implementation; furthermore we achieve 50X speedup when
implementing core operations of the algorithm. Results show
that GPU provides a helpful platform for high performance
computing to improve the execution time of these applica-
tions.

Keywords: Parallel algorithms, Multicore processors, Graphics
processing units.

1. Introduction
In the past few years, Graphics Processing Units Com-

puting (GPUs) has demonstrated to provide an increased
performance computing architecture for applications which
can be written to take advantage of many core GPUs. The
idea to use the GPU for general purpose computations starts
about 2003. However, it was reserved only for specialist
developers in graphic rendering. It was possible since 2007,
when NVIDIA released the software technology called Com-
pute Unified Device Architecture (CUDA) simultaneously
with its TESLA Architecture [1] [2]. Since then, GPUs have
increased in capability and programmability and have gained
wide popularity among research community [3]. Owens et
al. widely explain why GPUs increased faster than CPUs.
Furthermore, this technology is available, inexpensive and
can be found in off-the-shelf graphics cards for PCs. CUDA
is designed for extended standard C/C++ code with GPUs
parallel features and it provides a unified computing platform
to take advantage of the GPUs power and to leverage general
purpose parallel applications [4].

In this paper, we present as we used cutting-edge com-
puting resources, such as GPUs multicores and CUDA,
to accelerate the execution time of a finite element mesh
generator algorithm, achieving a significant parallel speedup.

Mesh generation is a key step in many scientific com-
putations and computer graphics. It had its origin in the
50’s with structural analysis problems. Finite element is a
numerical method used to solve partial differential equations
approximately; whose first step is mesh generation.

We use GPUs as a floating point parallel CPU coprocessor
to improve the mesh generation algorithm Distmesh, created
by P. Persson and G. Strang. Distmesh authors wrote an
efficient Matlab algorithm to provide a simple code to
produce high quality meshes. We wrote a parallel version
for this algorithm to introduce an interesting general
purpose application for GPU computing.

Organization: The paper is structured as follows. In
section 2 we present a general view of Persson-Strang mesh
generator algorithm and an overview of architectural features
of GPUs. In section 3 we present our sequential version
of Distmesh algorithm and highlight its features. Section 4
describes the design and implementation of our GPU version
of mesh generator algorithm. Section 5 gives experimental
results. In section 6 we briefly introduce related works and
section 7 gives conclusions.

2. Background
In this section we present important background concepts,

relevant to this paper. First, we present a briefly description
of Persson-Strang Algorithm. Then, we outline some impor-
tant issues for using GPU.

2.1 Persson-Strang Algorithm
Per-Olof Persson and Gilbert Strang developed a simple

and public mesh generator code for Matlab, called Distmesh
[5]. They offer an iterative technique based on a physical
analogy between a simple mesh and a trust structure, com-
bining a signed distance function and forces movement at
each node. The results obtained are high quality meshes.

Many problems are defined on irregularly shaped domains,
so unstructured meshes, far better than structured meshes,
can be flexibly tailored to the physics of these problems. The
problem that arises is the complex, and nearly inaccessible,
meshing software code. We have chosen Persson and Strang
algorithm because of its simplicity and accuracy. We present
below a brief description of the algorithm.
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Initial nodes position may be chosen by equally spaced
distribution, and this works well for simple geometries. The
user can define a function h to set mesh resolution. This
function h(x,y), in 2D, is used to refine complex geometry
mesh and thus achieve geometrical adaptivity; it needs to be
resolved by small elements. The meshpoints define the truss
structure and a Delaunay triangulation algorithm determines
the topology. Delaunay method set triangles in 2D, or
tetrahedra in 3D, to fill the convex hull of the input domain
mesh points [6]. In response to the mechanical analogy,
triangle edges correspond to bars (or springs) and mesh
points correspond to truss joints. The numerical method
assumes that a displacement force is exerted on the bars.
In every iteration, the new location of the points is obtained
by calculating a force of static equilibrium. Delaunay tri-
angulation is needed whenever the points are separated far;
thus adjust the topology. For a very detailed explanation on
the Persson method, the interested reader should consult [7].

2.2 GPU and CUDA overview
GPU is a massively multi-threaded multiprocessor archi-

tecture and its data level concurrency stand out. The threads
are organized in two-level hierarchy. The lower level is a
block, which contains a large number of threads. The higher
level is a grid, which consists of a group of blocks. The
maximum dimension of blocks and grids is determined by
the GPU architecture. Parallel threads share memory and
synchronize using barriers [8], [9].

The key to effectively using GPU is to understand its
memory hierarchy, which consists of three levels of memory.
Programmers can explicitly manage data stored in them. De-
vice memory is the global GPU memory which is accessible
from all the threads. Shared memory is an on-chip memory.
It’s a low latency memory shared by all the threads within
a block. Texture and constant memory are used to store
explicitly declared read only data.[10].

NVIDIA’s CUDA enables to divide the parallel program
execution in tasks that can run across thousands of con-
current threads, over hundreds of processor cores. This
programming model is known as a Single-Program Multiple-
Data (SPMD) and it allows to program GPUs for general
purpose. Tesla GPU, the NVIDIA device used for our expe-
riences, manage efficiently a huge sum of threads employing
a Single-Instruction Multiple-Thread (SIMT) parallel pro-
gramming architecture. The task performed by every thread
is managed writing special functions, called kernels. The
kernel task is mapped over a set of threads, representing
the work to be done at a simple point in the domain. We
wrote the kernels using C and CUDA, an extended version
of C; in this way, we mapped the kernels on the GPU
manycore processors. For a more detailed description of
CUDA, GPU architecture and Tesla architecture, you can
refer to [10][11][12].

3. General features of sequential version
We first implemented a C++ sequential code of Distmesh

algorithm. We took into account some important items in
the original version of the mesh generator algorithm, as we
describe below.

• A distance function d determines the domain geometry
by means of a signed distance, which is negative inside
the region. It was an essential decision, as authors
remark. This function is calculated at a meshpoint set
and also for calculating nodes distance to the closest
boundary point.

• This implementation uses a linear function for repulsive
forces, but it does not allow attractive forces.

f(l, l0) =

{
k(l − l0) if l < l0

0 if l ≥ l0

• The resultant force FTot is the sum of all force vectors
meeting at a mesh node. Each bar exerts a force f(l, l0)
depending on its actual length l and its relax length l0.

• The relax length l0 is constant for uniform meshes and
it’s required f = 0 for l = l0. Distmesh authors choose
l0 slightly larger than the length desired -20% is a good
rate- This calculation depends on the total sum of bars
length.

• The time step for Euler method is ∆t parameter. The
parameter geps is used to calculate the tolerance in
geometry evaluations, and it’s used to decide whether
a point is outside.

• All points going outside the domain during the update,
pn to pn+1, are projected back to the boundary. The
numerical gradient of d gives the direction of the point
movement.

The following are the key steps of our sequential code. In
general terms, these steps correspond to those of Distmesh.
Although, we modify the original data structures for better
performance of the sequential algorithm. We will refer to
this later.

Data Input: As a first step, we create a uniform distribu-
tion of mesh points within the input desired geometry. These
points are the mesh-nodes. The resulting mesh points are
regularly placed at a distance h0 from their closest neighbors.

Triangulation: An important step in this algorithm is
Delaunay triangulation. At every iteration, we compare the
actual points positions with that of the previous triangu-
lation. When the maximum displacement is greater than a
predefined tolerance, a Delaunay retriangulation determines
the new meshpoints set replacing the old ones, in order to
guarantee Delaunay properties.

Update: The bars lengths are used to calculate the bar
forces components. The resultant node force is the sum of
the force vectors, from all bars meeting at a node. This result
contributes to update node positions.

Projection: The update process may place some points
outside the geometry. Once these points are found, they are
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projected back to the boundary, in response to a normal
force. We use the numerical gradient of the distance function
to calculate their move direction to the closest boundary
point.

Our first CPU sequential code was a translation of Matlab
Distmesh algorithm. Distmesh is an efficient algorithm for
Matlab, it’s completely vectorized to avoid loops. The au-
thors use a sparse matrix to compute mesh-nodes movement.
The sparse matrix dimension is determined by total points
(n) and bars (m) of the mesh. Distmesh code uses a Delau-
nay Matlab function in order to determine truss topology.
We selected the Delaunay C-code written by Geoff Leach
for triangulation step, an open-source program. The author
improved the divide and conquer Guibas-Stolfi algorithm
and he got a factor of 4-5 speedup. This is a O(nlog(n))
algorithm [13].

The update step move the points to the new position, using
the scalar force calculated for each bar. This is the main
action taken by the algorithm and this is carried out using
a large matrix of movements. Every matrix element (Mi,j)
stores the movement of the ith point which is one end of the
kth bar. The total move for ni node is Pi =

∑j=n−1
j=0 (Mi,j).

However, only a few bars converge at each mesh point.
This serial version is an easily implemented way to

guarantee a correct execution and to facilitate the writing
of a correct parallel version.

4. Our GPU-based Algorithm
As argued, Distmesh algorithm is highly suitable for

GPUs architectures. Most of the operations, performed by
the sequential mesh algorithm, were easily mapped on
GPUs multiprocessors. The parallelism in Distmesh code
is exploited by dividing the vector operations among the
threads. Distmesh loop iterations are distributed to kernel
blocks, so each data is fetched by a thread and every thread
executes the same kernel.

Figure 1 presents a high-level overview of our parallel
GPU-version of Distmesh algorithm. It outlines where the
GPU acts as a parallel CPU co-processor in a collaborative
way. The initial phase is executed on the CPU. CPU gener-
ates the first triangulation and copies points and bars from
host (RAM) to device (GPU global memory). CPU launches
the GPU kernels function to start the GPU mesh generation
process. When GPU concludes, only final positions of points
are copied from device to host. Data transference between
host and device is performed at initial and final steps of
the algorithm. During core operations, data remain at device
memory. During kernels execution, bars length and data
movements array remain resident in GPU device memory.
We implemented our parallel mesh generator in this way,
to exploit GPU threads concurrency. In next section, we
describe the different steps we designed to run our parallel
algorithm of Distmesh on a GPU.

Points Displacement Compute

DoDelaunay?

Delaunay
Triangulation

Launch CUDA
Kernels

More Iterations?

YES

NO
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NO

Terminate Process
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GPU
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Projection
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Fig. 1: Mesh Generator Algorithm in CPU-GPU.

4.1 GPU kernels
As a first step in writing the parallel CUDA program, we

had to identify those code blocks we could separate from
sequential program as a CUDA kernel. Here we explain
each kernel written to exploit both data parallelism of the
algorithm itself and the GPU architecture. Once written,
data on the GPU is persistent unless it is deallocated or
overwritten, remaining available for subsequent kernels.

Every node location remains fixed during its total force
computing, that’s why this task may be parallelized. Fig-
ure 2 shows data structures, kernels and the relationship
between them. Data structures were selected to avoid the
branch instructions in kernels code. This was possible by
increasing the compute over the array elements, in order
to minimize the use of if-then-else control instruction. The
general description of each kernel is expressed bellow.

Bar length: We mapped a thread per bar, making every
thread compute its corresponding bar length. Threads read
every data stored in Bars array and store their results in
Length Bar array. This was a suitable condition for thread
computing. Subsequently, we had to do a sum over all
elements of the lengths array, and so calculate relax length
l0. This was not a suitable condition for thread computing,
we will refer to this later.

Scalar Forces: This kernel launch a thread per length bar.
Data are supplied by length array, at global device memory.
Every thread applies the same operation to every data, to
calculate the resultant scalar force applied to each bar. Then
stores the results in a new data structure, Move. Move array
dimension is in correspondence with the number of bars.

Points Movements: This kernel reads data movement -
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Fig. 2: Data Structures created by the kernels in GPU.

which was calculated with Scalar Forces kernel- in every
bar. Each bar contributes to the total movement of all the
meshpoints, affecting their extreme points. The final position
of each point is obtained by summing all these movements,
as shown in Figure 2.

Boundary Projection: Some points go outside the ge-
ometry after updating process. This kernel is in charge of
projecting the points moved out from the domain, by relo-
cating them to the nearest point in the border. This relocation
is performed by calculating the numerical gradient.

The next step in writing a CUDA program, was to manage
data transfer between RAM memory and the GPU global
memory.

4.2 GPU kernels optimization
As we explained before, the data transfer from host to

device is made only twice, before launching the kernels
and when GPU process ends. We don’t have the bottleneck
memory transfer problem during GPU computation [14]. As
shown in Figure 3, the data transfer time is 5.7% of GPU
time, for the entire process. This graphic was obtained with
CUDA Profiler tool. The kernels outlined above are limited
by the rate at which the GPU can issue instructions; they are
compute bound. To improve the performance, we optimized
memory access using shared memory. CUDA uses share

Fig. 3: Kernels and data transference.

memory to help reducing overfetch [15]. To avoid multiple
simultaneous accesses to memory, we could efficiently load
data arrays from global to share device memory, thus ensur-
ing coalesced readings [16]. CUDA Atomic Add functions
are the core arithmetic operations to sum array elements and
to calculate forces and points movement. These functions en-
sures that the readings will be done without any interference
from other threads. Synchronization is guaranteed by CUDA
if multiple threads, in different blocks, access to the same
variable to perform read-modify-write operations [10][11].

Bars length kernel optimization: In a first version,
relax length l0 was performed by one thread. The other
threads remain idle in the meantime. The run time was
improved copying lengths bar structure to a new array in
share memory and using atomic functions to sum lengths
bar. Figure 3 shows its little kernel runtime compared to
the total kernels execution time. This kernel uses a CUDA
Atomic-Add function on share memory to sum bar lengths.

Points movements kernel optimization: We modified
this kernel to avoid using a huge data array. It was possible
performing atomic operations. This kernel reads movements
stored in move array, as shown in Figure 2, launching a
thread per row. Each row represents the scalar force at a bar
and it contains x and y component of points movement, then
each thread modify the position of two points. This action
was optimized by using the CUDA ATOMIC_FLOAT_ADD
function, obtaining a significant improvement in perfor-
mance.

We present the experimental results in next section.

5. Experimental Results
In this section we evaluate the computational performance

of our GPU parallel version of Distmesh on a platform
consisting of a Intel Xeon dual-core processor with 4GB of
main memory running at 3.2 GHz, connected to a NVIDIA
Tesla C2070 with CUDA driver and runtime version 4.0.
This GPU is comprised of 14 streaming multiprocessors
(SMs) of 32 streaming processors (SPs) for a total of 448
SPs CUDA cores and its CUDA capability is 2.0.

Table 1 shows CPU and GPU execution time. These
measurements of time consider the complete execution of
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Table 1: GPU Version: Execution Time (sg.)
Node CPU GPU GPU Speedup

Points T ime V ersion1 V ersion2 Complete

1452 0.035 0.130 0.037 0.95
2267 0.290 0.320 0.112 2.59
5809 0.687 0.580 0.183 3.75
9062 1.689 1.820 0.425 3.97

16114 3.388 2.510 0.666 5.09
20109 7.786 4.860 1.239 6.28

the algorithm, including both the executed phase by the
CPU and the GPU, including memory transfer overhead. The
maximum speedup achieved is: 6.28. GPU execution time
was measured performing atomic add operations in Version
1, and performing atomic add operations at shared memory
in Version2. We obtain a significant improvement in the
second case. The execution time evolution, for a complete
run, is presented in Figure 4.

To ensure consistent results when computing our se-
quential(CPU) and parallel(CPU+GPU) algorithms, we com-
pared the number of iterations done and how many of
those invoked to Delaunay. In Table 2, we present the
relationship between Delaunay and Persson iteration, with
the aim of showing consistency between CPU and GPU
implementation. Rate values are close enough in both cases,
allowing ensure satisfactory results, in accordance with
original Distmesh results in Matlab. Moreover, we achieve a
substantial improvement by measuring only core operations
in the GPU version of mesh generator. The speedup reached
53X. We call core operations to GPU kernels outlined in
section 4.

6. Related works
In this section we give a brief overview on mesh genera-

tor algorithms on GPU. Démian Nave et al. present their
approach to parallelizing the Delaunay mesh generation,
which can be parallelized in a natural way. This is a similar

Table 2: GPU-CPU execution: Delaunay and Persson itera-
tions.

Node CPU GPU Speedup

Points Delaunay Persson Delaunay Persson Kernels

1261 25 265 23 253 4.77
2827 39 365 30 313 6.81
5025 45 381 35 381 4.94
7851 49 487 38 487 5.09
11313 65 658 44 616 12.08
15395 150 1056 134 983 12.10
20109 231 2083 212 2405 17.35
31409 728 7764 719 6980 53.38

situation to our work. They emphasize the importance of
mesh generation algorithm and of Delaunay method in
particular [17]. In 2008, Rong et al. present their approach to
GPU computing. They enhance Delaunay triangulation using
GPUs as a parallel co-processor in charge of the triangulation
on a given set points in 2D. The best results are obtained
for a large number of points, when they achieve a 53% im-
provement compared to Triangle Delaunay algorithm [18].
An interesting GPU mesh generator algorithm is presented in
[19]. The authors propose a two-phase iterative GPU based
method, that transforms any 2D planar triangulations and
3D triangular surface meshes into their respective Delaunay
form. They used this algorithm to simulate sten deformation,
where the geometry of triangulation changes dynamically
and requires restore Delaunay conditions to interactive real
time levels. This situation is similar to points retriangulation
needed in our work, where we use Delaunay triangulation
too. We are working on Delaunay parallelization to improve
our work, and we are interested in the previous papers.

7. Conclusions
We wish to highlight the GPUs technology suitability to

improve performance of mesh generators algorithms. We
showed how the efficient Matlab Distmesh algorithm can
be parallelized by processing its mesh nodes concurrently
and taking advantage of its data structures. Our results
gives us an idea of the computing power offered by GPUs
and the virtual machine defined by CUDA, which exhibit
scalability to programmers. We initially ran our application
in a NVIDIA G80 series card; despite being old devices,
we obtained good results. Then, we could run the CUDA
program in a TESLA card making minimal changes to the
kernels code. This architecture enabled us to use Atomic
functions in floating point.

We presented in this paper a developmental stage of our
work and it shows our initial experiences, which resulted
in a significant decrease of algorithm execution time. The
Persson method generates high-quality meshes, which were
perfectly reproduced for domains in 2D with our parallel
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algorithm. This approach requires improving the manage-
ment of large amount of data when dealing with complex
geometries and non-uniform meshes. Anyway, we intended
to provide a contribution to this topic development, in the
search of high performance in GPUs computing.
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Abstract - JPEG2000 has become one of the most rewarding 
image coding standards. It provides a practical set of features 
which weren’t necessarily available in the previous standards. 
The features were realized as a result of two new techniques, 
namely the Discrete Wavelet Transform (DWT), and 
Embedded Block Coding with Optimized Truncation 
(EBCOT). The complexity of EBCOT Tier-1 makes its 
implementations very difficult and time consuming. 

    In this paper, we focus on accelerating JPEG2000 
encoder by using general-purpose processing on Graphical 
Processing Unit (GPU). We use CUDA platform to implement 
DWT and EBCOT Tier-1 as the most important sections of 
JPEG2000. Resulting implementation of proposed 
architecture performs very well compared to other available 
implementations. 

Keywords: JPEG2000, GPU Computing, CUDA 

 

1 Introduction 
  JPEG2000 has become one of the most rewarding image 
coding standards. It provides a practical set of features which 
weren’t necessarily available in the previous standards. 
JPEG2000 [1][2] offers numerous advantages over JPEG. 
These advantages include: ROI (Region Of Interest) coding, 
quality vs. resolution compression, lossless and lossy 
compression, progressive image compression/transmission by 
resolution/quality, random code-stream access and error 
resilience. Such characteristics add to the functionality of a 
system that is employing JPEG2000 as an image compression 
technique. The features and performance of JPEG2000 make 
this standard superior to JPEG. The features were realized as 
a result of two new techniques, namely the Embedded Block 
Coding with Optimized Truncation (EBCOT) [3]-[6] and 
Discrete Wavelet Transform (DWT) [7]. The complexity of 
EBCOT Tier-1 makes its implementations very difficult and 
time consuming. 

 During the process of encoding, an image is partitioned 
into data matrices called Tile-components. Each Tile-1 
component is then coded separately. The process of coding is 
made up of different sections. These sections are depicted in 
Figure 1 and each is described below. 

1.1 Component Transform 

 This section is optional in JPEG2000 and is used to 
improve compression efficiency  [3]. The transform converts 
the RGB data into another color representation, with a 
luminance (or intensity) channel and two color difference 
channels. 

 

Component
Transform

QuantizationDiscrete Wavelet
Transform

EBCOT
 Tier-1

EBCOT
 Tier-2

 

Figure 1. JPEG2000 encoder block diagram 

  

1.2 Discrete Wavelet Transform (DWT) 

     DWT [7] is a domain transform that transforms an image 
Tile-component from special domain to frequency domain 
and provides a special decorrelation. This transform can be 
executed for as many levels as necessary. The spatial 
decorrelation provided by the DWT improves as the number 
of transform levels increases. The output of each level of 
DWT is categorized into four sub-bands. DWT can be 
performed either by the traditional convolution based filter or 
by the lifting scheme based filter which has lower 
computational complexity compared to the former filter. 
 

1.3 Quantization 

     Quantization  [4] is the process by which the sub-band 
samples generated by the DWT are mapped onto quantization 
indices for coding. 
 
1.4 EBCOT Tier-1 

    This section receives the quantized wavelet coefficients 
and encodes them into bit-streams. These coefficients are 
sliced into code-blocks before they are fed into the EBCOT 
Tier-1  [4]. EBCOT Tier-1 is composed of two parts: Bit-
Modeler and MQ-Coder [5] [6]. Bit-Modeler is a bit-plane (a 
matrix that contains all the bits of the same order of all the 
coefficients of a code block) coder. A Bit-Modeler exploits 
the symmetries and redundancies within and across the bit-
planes and generates corresponding contexts for each bit. 
After the context is generated, the MQ-Coder will code the 
bits (decisions) based on their associated contexts. 
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Figure 2. Entire coding process of EBCOT Tier 1 block coder 

 

Table 1 Run time percentage for different modules in 
JPEG2000 encoder 

Operation Lossy Lossless 
Component Transform 10.1 3.64 
DWT 25.14 10.41 
Quantization 6.4 N.A. 
EBCOT Tier-1 44.86 67.35 
EBCOT Tier-2 13.5 18.6 

 

1.5 EBCOT Tier-2 

    EBCOT Tier-2 [2] is for rate allocation. The rate 
allocation is responsible for acquiring the highest quality for 
the output while maintaining a predetermined resolution, or 
acquiring the highest resolution while maintaining a 
predetermined image quality. 

    The execution time of different modules in the 
JPEG2000 algorithm is presented in Table I. It is noted from 
this table that DWT and EBCOT Tier-1 algorithms, as the 
main modules in JPEG2000 standard, occupies %70 of the 
execution time of the whole procedure. In this paper, we 
focus on accelerating JPEG2000 encoder by using general-
purpose processing on Graphical Processing Unit (GPU) [9]. 
We used CUDA [10] platform to implement DWT and 
EBCOT Tier-1 as the most important sections of JPEG2000. 
Resulting implementation of proposed architecture performs 
very well compared to other available implementations. 

    This paper is organized as follows: in the next section a 
deep analysis of the EBCOT Tier-1 will be presented. In 
section  III DWT transform will be described. In the next 
section GPU computing using CUDA will be explained. Our 
proposed implementation is introduced in sections  V-VI. 
Experimental results are presented in section VII  followed by 
the conclusion. 
 
2 EBCOT Algorithm 

    EBCOT [3] is a two-tiered coder, where the first tier is a 
block coder and the second tier is for rate-distortion 
optimization and bitstream formation. Although Tier 2 is part 
of EBCOT algorithm, the practical implementation detail is 
not defined in the standard and not restricted in the design of 
an encoder.  

Tier 1 of EBCOT is actually a context-based adaptive 
arithmetic encoder. Code-blocks are independently coded by 
this block coder into sub-bitstreams. According to the 
functionality, the block coder can be further partitioned into 
two steps, Context Formation (CF) and Arithmetic Encoder 
(AE), as shown in Figure 2. The transformed coefficients of a 
code-block are coded bit-plane by bit-plane from most 
significant bit-plane (MSB) to less significant bit-plane (LSB) 
instead of coefficient by coefficient. CF scans all bits within a 
bit-plane of a code-block in a specific order, and generates 
corresponding contexts for each bit by checking the status of 
the neighborhood bits. AE then encodes each bit according to 
the adaptively estimated probabilities from its contexts. The 
outputs of the arithmetic encoder are the sub-bitstreams of 
each compressed code-block data. Also, the rate and 
distortion information are calculated for each pass for 
subsequent tier 2 processing. 

    Before CF, the quantized (in lossy mode) or non-
quantized (in lossless mode) wavelet coefficients are 
converted from two’s complement representation to sign-
magnitude format. The scanning order in a code-block is from 
the most significant bit-plane of the magnitude part to the 
least significant bit-plane. A sample is called “significant” 
after the first “1” bit is met while encoding the magnitude part 
from the MSB to the LSB, and it is called ”insignificant” 
before the first “1” bit appears. The sign bit, is coded 
immediately after the first “significant” bit is coded. Within a 
bit-plane, every four rows form a “stripe,” and the scanning 
order is stripe by stripe from top to bottom. In every stripe, 
data are scanned bit by bit from top to bottom, and column by 
column from left to right. To improve embedding, fractional 
bit-plane coding method is used. Embedded coding, which is 
useful for scalability and for efficient rate control, is actually 
one of the main features of JPEG 2000. Under this fractional 
coding method, one bitplane is further decomposed into three 
passes according to coefficients’ significant situations. While 
scanning from the top bitplane, all-zero bit-planes are 
skipped. When the first nonzero bit-plane is found, only pass 
3 coding is used to encode all bits in this bit-plane since no 
bits will be coded in pass 1 and pass 2 according to the coding 
rule. The subsequent bit-planes are scanned three times each 
following the scanning order described above. The first 
scanning is for pass 1, and is followed by pass 2 and pass 3 
scanning. Each bit in a bit-plane is encoded in one of the three 
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passes. Pass 1 is named “Significant Propagation Pass.” 
During pass 1 scanning, those samples that are currently 
insignificant, but have at least one immediate significant 
neighbor are coded first. Clearly, these samples are most 
likely to become significant. Pass 2 is called ”Magnitude-
Refinement Pass.” Samples that have become significant in 
previous bit-planes are coded in this pass. The last pass, pass 
3, is “Clean-Up Pass.” Samples not coded in the first two 
passes are coded in this pass. The two bits that are coded in 
pass 2 in this bit-plane have become significant in the 
previous bit-plane. Those bits coded in pass 1 are near those 
two pass 2 positions due to the significance propagation 
characteristic. 

    Once a bit is checked and decided to be coded in one 
pass, its context is generated according to the status of its 
neighbors using four coding primitives, Zero Coding (ZC), 
Run-Length Coding (RLC), Sign Coding (SC), and 
Magnitude Refinement (MR) primitives. There are total 19 
contexts defined in JPEG 2000 [3]. The context of a bit 
should be generated and sent to arithmetic encoder along with 
the bit to be coded. Among the four coding primitives, ZC 
and SC primitives are used in the first and the third pass, MR 
primitive is used in the second pass only, and RLC primitive 
is used in the third pass. ZC and MR primitives check the 
eight immediate neighbors’ significant states to decide the 
context, and the RLC primitive is applied when the four bits 
in a column do not have any significant neighbors. The SC 
primitive has to check the four immediate neighbors’ sign and 
significant states. 

    After the context is generated, the arithmetic encoder will 
code the bits (decisions) based on their associated contexts, 
called MQ-Coder. Generally, a BAC encodes a code-stream 
consisting of a sequence of symbols. Each symbol (logic '0' or 
logic '1') is classified into one of these categories: the More 
Probable Symbols (MPS), and the Less Probable Symbols 
(LPS), based on the probability of their occurrence. In BAC 
an interval is considered as a probability model. This interval 
is divided into two subintervals, each one, corresponding to 
the probability of each symbol. When a symbol occurs, the 
subinterval associated with that symbol becomes the new 
interval. The recursive splitting of the current interval 
continues until all symbols are received. When the last 
symbol is received the characteristics of the last subdivided 
interval represents the encoded data. 

    As indicated above, BAC algorithm requires many 
multiplication operations in order to encode each symbol, and 
multiplication is time consuming. In addition, since a 
compressed data will only be generated when the last symbol 
of an input stream has been received by the encoder, serious 
loss of data occurs when the last symbol of a stream is not 
received. Finally after each subdivision of the probability 
model, the precision required for presenting the new interval 
increases. This leads to an increase of the required storage 
space for the interval values. 

    The MQ-Coder is an adaptive BAC implementation used 
in the JPEG2000 standard. MQ-Coder has eliminated 
multiplications by choosing special extremes for the intervals 

that are used in the probability model. In addition, the MQ-
Coder periodically sends out the last byte of the stream which 
represents the encoded data, therefore addressing the 
problems associated with the increasing precision and 
compressed data being generated only after receiving the last 
symbol. 
 
3 Discrete Wavelet Transform (DWT) 

    Discrete Wavelet Transform (DWT) [7] is a broadly used 
digital signal processing technique with application in diverse 
areas. DWT allows us to study a digital signal in different 
resolutions as sets of coarse and fine values. Wavelet 
transforms are used in domains of digital speech recognition, 
multi-resolution video processing or data compression. In the 
context of JPEG2000 standard, DWT is the key prerequisite 
of the compression process. Most of advanced features of 
JPEG2000 rely on DWT as well as the superior low-bitrate 
performance does. 

    JPEG2000 standard species use of LeGall (CDF) 5/3 
DWT filter-banks [8] for lossless compression process and 
Daubechies-Feauveau (CDF) 9/7 DWT filter-banks [8] for 
lossy processing. Wavelet transforms can be implemented by 
convolution or by lifting scheme. 

    The advantage of lifting scheme over convolution is in 
reduced memory and computational complexity. Lifting 
scheme allows for in-place data manipulation and reduces 
memory dependencies. 

    Lifting scheme analysis [7] proceeds as follows. An input 
signal is split into even and odd subsequences denoted as  and   
respectively. These values are further modified using 
alternating prediction (denoted as p) and update (denoted as 
u) steps. In the prediction step, the algorithm takes an odd 
sample in a turn and substracts a linear combination of its 
(even) neighbors from it; a prediction error is formed: 
 

1 0 0 0
1( )i i i id d p s s     (1) 

     
    In the update step, a linear combination of already 

modified adjacent odd samples is added to each even sample 
and updated even sequence is formed: 

 
1 0 1 1

1( )i i i is s u d d    (2) 

    
    The output of the last update stage,  , is actually a low-

pass output of DWT  filter and similarly output of the last 
prediction stage, is a high-pass output of the filter. So the 
result of the wavelet transformation is a signal divided into 
low-pass and high-pass subbands. 

    2D signals (e.g., images) are usually transformed in both 
dimensions. 1D DWT transform is first applied to all rows 
then to all columns resulting in four subbands LL, HL, LH, 
and HH. The LL subband is an approximation of the original 
signal and can be further transformed recursively. 

 

684 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



4 GPU computing based on 

 CUDA platform 
    CUDA [10] is software and hardware platform designed 

for general purpose computing on GPUs. GPUs have a 
parallel architecture capable of running thousands of threads 
in parallel. In CUDA computing model, such threads are 
grouped into so called thread blocks. Threads within a block 
can cooperate among themselves by sharing data through a 
shared memory. As opposite to a large global memory, shared 
memory is relatively small and very fast. The advantage of 
global memory is that it is accessible to all threads, whereas 
shared memory is visible only to threads of the block. 
Common work flow is to copy data from RAM to global 
memory of GPU. Once data is ready in global memory, a 
GPU program can be executed. Each thread block initially 
fetches a small portion of data from the global memory into 
the shared memory. Data is then processed by threads in the 
block and the result is moved back to the global memory. 

    The global memory access pattern is perhaps the most 
important performance consideration in programming for the 
CUDA architecture. In a nutshell, when 16 adjacent threads 
access adjacent locations in global memory then memory 
loads and stores are coalesced in one transaction. 

 

5 GPU-Accelerated implementation 

 of DWT 
    The key part of our GPU-accelerated DWT is the design 

how to split the work between thread blocks in order to 
provide maximum utilization of the GPU. Since we need to 
compute the transform in both dimensions, it is natural to 
choose a 2D partitioning of source image data. Also size and 
shape of thread blocks needs to be determined. Because the 
lifting scheme algorithm alternately works with even and odd 
samples, an efficient approach is to have one even and one 
odd data sample per each thread in a block, i.e., to have twice 
as much data samples as threads in each block. Resulting 
partition of image data. Each thread block has its dimensions 
Bx×By where Bx = Dx, By = Dy/2 , and Bx,By and Dx,Dy 
denote number of threads and samples in horizontal and 
vertical direction respectively. Thus that thread blocks are of 
rectangular shape while data blocks are of squared shape. 

    Each thread has its exact position within the block, which 
is determined by indices Tx, Ty where 0≤Tx≤Bx-1 and 
0≤Ty≤By-1. We can see that threads overlap only the upper 
half of the block, i.e., MAX(Ty) = Dy/2-1, which means that 
threads are directly mapped only to samples in the upper half 
of block data and we will have to change this mapping to be 
able to process both halves. 

    The first step of computation is to fetch image data from 
global memory into fast shared memory. It is crucial here to 
comply with coalesced global memory access. Considering 
the proposed data partitioning, each thread loads 
corresponding data sample into the upper half first, and then 
into the lower half of data block. The horizontal block size 

should be multiple of 16, so that coalesced access is not 
broken by thread block misalignment. 
DWT coefficients are then computed according to lifting 
scheme relations 1 and 2. To calculate first dimension of the 
transform, DWT filters are applied to every row separately. 
Afterwards, each row contains a sequence of interleaved 
coefficients of low-pass and high-pass subbands. Each 
particular prediction and actualization step is calculated 
respectively as follows: 
 

x y x y x y x ys[T ][2T +1]=s[T ][2T +1]+p.(s[T ][2T ]+s[T ][2T +2])  (3) 

 

x y x y x y ys[T ][2T = s[T ][2T ] + u.(s[T ][2T ] + s[2T +1])] -1  (4) 

 
    Where Tx and Ty determine the thread position in 

horizontal and vertical direction respectively and s[x][y] is the 
shared memory 2D array. Note that we propose transposed 
thread mapping for efficient data processing as follows. 
Threads are directly mapped into the upper half of block only, 
so that we have to change the thread mapping to be able to 
process whole block. In (3) and (4), we have swapped 3 
thread indices Tx, Ty so that the threads cover the left half of 
the data block instead of the upper half which was covered 
originally. (3) then predicts all odd samples and (4) updates 
all even samples in the block. To calculate the second 
dimension of the transform, we just apply same filters to the 
columns. 

    The result of the application of lifting filters to rows and 
columns is composed of coefficients of four DWT subbands. 
Coefficients of LL and HL subbands are alternately located 
on even rows and LH and HH coefficients on odd rows of the 
shared memory s.  

    The final step of the CUDA-based transform is to move 
result from shared memory back to global. Particular 
subbands, however, needs to be stored separately in global 
memory. Because there are twice as much data samples as 
threads in the block, we store even lines first. Even lines 
contain all LL and HL samples and because those are 
interleaved, we use first half of threads to store all LL samples 
and second half to store HL samples. The access to the global 
memory is hereby coalesced. 

    Note that proposed implementation of DWT is optimized 
for maximum performance and its limitation is that it does not 
take into account sample values exchange between blocks 
borders. The proposed algorithm does not introduce any 
visual artifacts provided both forward and reverse 
transformations work with the same data blocks dimensions. 
 

6 GPU-Accelerated implementation 

of EBCOT Tier-1 
    Architecturally, the parallel algorithm for the bit plane 

coder is optimized to match the existing graphics hardware. A 
number of code blocks are processed independently and each 
code block samples should be processed in parallel using the 
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state prediction method. Hence, each work group is in charge 
of handling one code block, and multiple processing elements 
(PE) of the work group can process the samples in parallel. In 
particular, the usage of memory resources has to be carefully 
optimized, control flow operations must be minimized as they 
result in costly processor stalls, and the workload must be 
distributed so as to maximize hardware resources occupancy 
and hide memory latency when stalls are unavoidable. 

    In GPGPUs any flow control instruction (i.e. if, switch...) 
can significantly affect the instruction throughput by causing 
threads of the same parallel thread block to diverge; that is, to 
follow different execution paths. GPGPUs provide great 
arithmetic capability at low hardware cost, but to achieve this 
goal, the cores in each multiprocessor often share only one 
instruction decoder and one small branch control unit. 
Therefore a single instruction is executed over N threads in 
parallel, where N is specific to the hardware chip and often 
has value of 32 or 64. As a result, control instructions and 
branch divergences on GPGPUs tend to be very expensive. 

    Unfortunately, the context formation process in 
JPEG2000 requires many control operations. For example, 
when the BPC scans a 3×3 window of neighboring samples (8 
neighbors of a given sample), the algorithm may take 256 
different execution paths. Additionally, the BPC needs to 
select one out of 19 contexts based on that information. If the 
bitplane coder (BPC) is implemented with a standard 
switch/case construct its performance would be bound to be 
very low. Fortunately, the context decision rules are 
predefined so look-up-tables (LUT) for context formation can 
be constructed to avoid the branching control flow. A LUT 
should have 256 entries, where the indices for the entries are 
formed from the 8 neighbor state bits and the value is selected 
based on the context rule. However it is inefficient to 
concatenate the state bits to form a LUT index every time. 
Therefore the state bits are stored in a 16-bit state flag instead, 
as shown in Figure 3. Each sample has one corresponding 
state flag that stores the state information itself and the state 
bits of its neighbors. This organization allows the BPC to 
easily retrieve an LUT index by applying a bit mask. 

 

 

Figure 3. 16-bit state flag of a sample. The index of ZC or SC 
LUT can be extracted from the flag by applying a binary 

mask 

    It is very critical to optimize memory usage for the BPC 
where the context formation process executes massive 
numbers of memory and arithmetic operations. Particularly on 
GPGPUs, an efficient memory utilization can not only 
significantly reduce the latency but it also can increase the 
resource occupancy of computational resource to speedup the 
computing time. 

    The first optimization considered is to efficiently allocate 
different sets of data into the most suitable of memory blocks 
based on the application’s demand to reduce latency and 
conflict. When the BPC processes one sample, it not only 
refers to the sample but also to its 8 neighbors. Consequently, 
there is a high degree of memory conflicts in the BPC, 
particularly in parallel BPC where multiple threads 
concurrently access different samples. However, both the 
memory conflict rate and memory latency can be dramatically 
reduced with very fast, multi-way shared memory that resides 
locally on chip. The shared memory on modern graphics cards 
has from 16 to 32 banks which can be accessed independently 
with a latency of only one clock cycle. It is also very 
important to optimize allocation of the context output buffer 
since it is the intermediate buffer for context formation and 
arithmetic coder. Storing this buffer in the global memory 
would be very inefficient since the BPC would write to global 
memory and then the arithmetic coder would have to read 
back from global memory immediately after BPC write. 
Therefore this output buffer should be also stored in on-chip 
shared memory. Additionally, since the BPC refers to the 
LUTs and the state flags very frequently, these data structures 
should also be placed in the shared memory as well. The 
LUTs are read-only and small enough to reside in fast the 
constant cache memory. The code blocks are initially stored 
in the off-chip global memory then each multiprocessor will 
copy its respective code block into its shared memory. The 
LUTs are stored in constant memory and fetched to 
multiprocessors’ constant cache at runtime. 

    After the data sets are efficiently allocated into selected 
memory regions, the utilization of memory, especially shared 
memory, should be minimized to increase the multiprocessor 
occupancy of the GPGPUs.  

    The multiprocessor occupancy is defined as the ratio of 
the number of resident warps to the maximum number of 
warps supported on a multiprocessor of a GPU. Typically the 
higher occupancy the better multiprocessor can hide the warps 
latency and increase ALU utilization which will yields better 
speedup. Each multiprocessor on a GPU has a set of registers 
and a small amount of on-chip shared memory. These 
resources are shared among the active thread warps. 
Therefore the lower shared resources are utilized by a 
particular warp, the higher number of warps can reside in a 
multiprocessor. The compiler can attempt to minimize register 
usage but the utilization of shared memory must be optimized 
by the programmer. Additionally, the number of threads per 
work group should be large enough, at least 4× of the warp 
size, to achieve the best performance. 

    However, it is not simple to reduce shared memory 
utilization in the parallel EBCOT Tier-1 coder since it 
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depends on the code block size which is one of the key 
parameters that determine JPEG2000 compression efficiency. 
The code block size is often varied from 8×8 to 64×64 
samples, but using the largest allowed configuration is 
preferred because the larger code block size the better 
compression efficiency. On the other hand, a code block size 
requires a large shared memory buffer which may reduce the 
multiprocessor occupancy and hence reduce the performance 
speedup. In a naive implementation, at least 24 Kbytes of 
shared memory are needed to store a 64 × 64 code block and 
the two respective state flag, while a 8 × 8 code block requires 
only a small 256-byte buffer.  The results show that by 
changing code block size from 64 × 64 to 8 × 8, the 
compression efficiency drops about 25% on image Bike. But 
by decreasing code block size the multiprocessor occupancy 
can be significantly improved from 17% to 50%. There is an 
unusual result with the 8×8 code block where the occupancy 
no longer increases. 

    It clearly shows that the large code block significantly 
decreases the multiprocessor occupancy which results in 
significant speedup drop. To overcome this problem, previous 
studies had to compromise compression efficiency to use a 
GPU-affordable code block size such as 8 × 8 but this is an 
impractical size. This study therefore manages to design a 
special strategy that can handle large code blocks with low 
utilization of shared memory. 

 

7 Experimental results 
    This section presents the result of our proposed 

implementation. The parallel JPEG2000 coder is implemented 
using CUDA on the Nvidia SDK 3.2 running on an Nvidia 
GTX480 graphic card. The reference CPU platform uses an 
Intel Core i7, with 12GB RAM running at 2.8GHz. 

    There are several popular versions of JPEG2000 
compression software running on CPUs, including JasPer 
[11], and OpenJPEG [12]. JasPer is chosen to compare 
against the GPU implementation since it is an open source 
program, with fully accessible source code, and very good 
performance. The image test set includes the most popular 
JPEG2000 test images (bike, woman, cafe, and lena). 

    Table II compares runtime for JasPer and the GPU 
implementation JPEG2000 coder. The GPU-based JPEG2000 
encoder implementations are more than 17× faster than the 
JasPer implementation. 

 

Table 2. Runtime comparison of our method with JasPer 

Image Time (ms) Speedup 
Our GPU JasPer 

lena 15.23 238.74 15.7 
cafe 267.36 5214 19.5 
bike 284 4398.28 15.49

 
 

8 Conclusion 
    In this paper, the design and development of a novel 

PEG2000 encoder are presented. The parallel algorithm can 
process data at the sample-level. In particular, this paper is the 
first to presents a fully parallel solution for the arithmetic 
coder and DWT in JPEG2000. The implementation of the 
JPEG2000 coder leverages widely available and massively 
parallel GPGPU hardware and provides a 17× performance 
speedup compared to the JasPer software implementation. It is 
believed that even greater speedup is possible with full 64-bit 
hardware support. Additionally, the proposed parallel 
algorithms are potentially applicable to a wide range of image 
Processing and data compression applications. 

    For future work, the emphasis will be on further 
improved implementations of the arithmetic coder. In 
addition, the Tier-2 routines can be parallelized in order to 
have a complete JPEG2000 encoding flow running on a GPU 
platform. Another research direction is that of implementing 
the proposed parallel solutions on different parallel hardware 
platforms to compare the different architectures on the 
performance and optimization strategies. 
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Abstract—Sudoku is a popular puzzle utilizing 81
squares in a 9x9 grid consisting of nine 3x3 boxes. The
digits 1-9 can each appear only once in a given row,
column, or box. This paper describes the implementation
of Particle Swarm Optimization (PSO) to solve sudoku
puzzles using GPU processing. This PSO uses our open-
source PSO framework that takes advantage of CUDA-
enabled GPUs. Although each row contains nine digits,
permutations of nine digits can be represented as eight
”picks”. To find a solution each of the nine rows was
treated as a permutation. This reduced the problem
dimensionality from 81 to 72. With suitable parameters
the algorithm was able to solve multiple sudoku puzzles.
This paper describes the implementation of the algorithm
, the fitness function used, and the effects of variation on
PSO parameters. The original PSO framework and the
Sudoku code described in this paper are available online.

I. INTRODUCTION

An open source framework for implementing Multi-
swarm Particle Swarm Optimization on GPUs using
CUDA was developed and discussed in [1] . The framework
was previously demonstrated on a problem to optimize
the parameters of a PID controller. This was a relatively
well behaved problem in a three dimensional space. It was
shown that by utilizing GPU processing, the problem could
be solved many times faster than was possible using the
CPU.

In the previous paper it was claimed that the framework
could easily be extended to other problems and higher
dimensional spaces. In this paper we utilize the framework
to find solutions to Sudoku puzzles. These represent a
class of problems in a very high dimensional space .
Furthermore, the space has large number of local minima
that occur at large distances from the global minimum.

We believe that the solution of Sudoku puzzles repre-
sents a very significant optimization problem. In this paper
we show that 1) the open source Multi-Swarm Particle
Swarm Optimization Framework that we have previously
developed is in deed general enough to extend to this
problem, 2) that the dimensionality of the problem can
be reduced using permutations, 3) that the use of GPUs

is crucial for reducing run times from multiple days to
hours, 4) that PSO can indeed solve Sudoku puzzles, and
5) that the choice of PSO parameters has a huge impact
on the time to find a solution.

II. SUDOKU

Sudoku is a logic puzzle that has been extremely popular
in the US since about 2005 and is based around using
rules and logic to determine where numbers belong. This
section describes basics of the sudoku puzzle as well as its
origination.

A. Origin
Sudoku is often thought to be of Japanese origin, but

this is not actually true. [2] Modern Sudoku first appeared
in American papers in the 1980s, but did not become
popular in the US until 2005. Although the puzzle we know
today only dates back around 30 years, similar puzzles
originated in the late 19th century in France, where puzzles
with very similar solutions to sudoku originated. [3]

B. Rules
The rules to a sudoku are to fill a nine by nine grid with

nine three by three sub-boxes such that only one instance
of each of the digits one through nine is contained in each
column, row or box. This means in any given column or
row there should no repeated numbers and no numbers
other than one through nine.

C. Related Work
This was not the first time that Sudoku had collided with

biologically inspired algorithms. Sudoku puzzles have been
solved by both GA and GPSO in the past. This, however,
is the first time using a more generic PSO and adjusting
the fitness function accordingly.

Sudoku puzzles were solved by Mantere and Koljonen
2007 [2]. In the same year, Sudoku puzzles were also
solved by Moraglio et al. [4], where they introduced
combinatorial-based PSO algorithms (GPSO), these spaces
were similar to the pick space used in this paper. Sudoku
puzzles were confirmed to be solvable using GPSO by Jilg
and Carter 2009 [5].
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III. PARTICLE SWARM OPTIMIZATION

PSO was originally developed by Eberhart and Kennedy
[6] in 1995. It is heavily biologically inspired and it mimics
behaviors that can be seen often in various types of flocking
or swarming animals. It is not a complex algorithm and
performs very well in continuous spaces that do not have
analytical solutions. PSO is an iterative algorithm in that
it moves each particle, calculates fitness of its location and
then repeats the process.

A. Inspiration
Particle Swarm Optimization was inspired by animals

in nature. Many different types of animals travel in groups,
and often they benefit from the knowledge of each other. In
a school of fish, each individual can benefit from the others
knowledge regarding food and predators. Flocks of birds
can cover larger areas by spreading out, and informing
the flock of any food found. PSO mimics this in that each
particle has knowledge about the fitness (or happiness) of
itself and of other particles in the swarm, and tends to
move toward regions of better fitness.

B. Algorithm
As mentioned previously, particle swarm optimization

is based on having many particles, or candidate solutions,
moving around an error/solution space. This implemen-
tation considers the best particle the one with the lowest
fitness value; however it would work just as well looking
for particles with larger fitness values.

Each of the particles tries to move to a solution that is
better than its current one. To do this, a particle moves in
the direction of the best location of the swarm and the best
location it has found so far. The particle does a random
weighting of each so it will be heading towards both to
some degree. The following is the equation that describes
the movement towards the particle’s best location as well
as the swarm’s best particle’s location.

mov = rand()pweight(pbestp) + rand()sweight(sbestp) (1)

Where mov is a vector in parameter space representing
a movement, pweight and sweight are scalars chosen by
the programmer, pbest is a position in parameter space
representing the location where a particle has been the
happiest, sbest is a position in parameter space represent-
ing the location of the happiest particle in the swarm, and
p is the current particle location. rand() is a randomly
selected floating point number between 0 and 1.

Since mov is a vector in parameter space it generalizes
to any number of dimensions depending on the parameter
space. In the case of no momentum this vector is calculated
and then added to the location each iteration.

The algorithm often performs better when each parti-
cle’s velocity has some momentum associated with it. [7]
In the framework used, the velocity was implemented with
momentum, such that the new movement was composed

of 90% of its old movement plus the new movement
calculated above. This helps prevent particles from getting
stuck in any single location, such as local minima. A
velocity of the particle is calculated and saved each
iteration using the following equation.

velnew = .9velprevious +mov (2)

Where velnew is a vector representing the velocity or
the amount that the particle will move this iteration,
velprevious is the velocity from the previous iteration, and
mov is a vector calculated above in equation 1. Once the
velocity is calculated it is added to the particles location
every iteration.

C. Related Work
Our PSO framework was not the first one to reach the

GPU scene; however it was the first with the goal of making
the PSO framework more accessible. Zhou and Tan 2010
[8] implemented a PSO algorithm using GPUs. Rather
than using multiple swarms it used a triggered mutation
system on top of a standard particle swarm optimization.
They were able to achieve a speedup of 25x with this
system.

An asynchronous implementation of PSO was created
by Mussi et al. 2011 [9]. This allowed each particle to run
iterations at its own rate (which was very fast). However
this was limited by the fact that only one particle was
allowed per block, and the maximum number of blocks
that can run in parallel limits the swarm size.

Vanneschi et al. 2010 [10] tested a multi-swarm system
where the best particles from one swarm were passed to the
next swarm to replace the worst particles, this was done
in a ring setup of several swarms. They exchanged this
information every 10 steps. This was implemented again
by Solomon et al. 2011 [11].

IV. PARALLEL PARTICLE SWARM OPTIMIZATION
FRAMEWORK

The Parallel Particle Swarm Optimization Framework
was an implementation of the Particle Swarm Optimiza-
tion algorithm that would use CUDA and be flexible
to a number of different problems. The framework was
designed so that a programmer with knowledge of C, but
minimal knowledge of CUDA could modify the program to
solve a large range of problems. In this case the framework
was modified to solve Sudoku puzzles.

A. Multi-Swarm
Since each swarm is at some point in time entirely held

in CUDA shared memory, the size of each swarm is limited.
The following equation defines how many particles can
be in a single swarm based on the dimensionality of the
problem. [1]

Max#ofPart =
16, 384

8 + 12 ∗DIM
(3)
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Since in our problem each particle will be moving within
a 72 dimensional space, 72 can be substituted, giving the
actual maximum number of particles.

Max#ofPart = 18 (4)

Because of this limitation the framework allows for
multiple swarms to be run in parallel. To allow the swarms
to cooperate in some way, particles are swapped every 1000
steps. Each time a swap occurs there is a 1% chance that
any 2 particles will be swapped.

B. Modifications to Code
The only programming required by the framework are

generally modifying PSO parameters, such as weights, as
well as rewriting the fitness function. The first problem
tested was tuning of PID Controller parameters. While this
problem was good for its computational intensity, it had a
very small memory footprint. When using this framework
to implement a sudoku solver a bit more memory was
required.

The added dimensionality of this problem will still be
held within the particles individual location; however the
information specifying constraints to the puzzle is common
to all particles. To make this quickly accessible to all
threads it was stored in constant memory on the GPU.
This memory is cached for all threads to make it easily
accessible. Both the ”pick” space and the solution space
constraints were stored in this constant memory, which
will be described in section IV-G.

C. Sudoku Fitness Development
For the PSO framework being used a fitness function

had to be developed. This fitness function needed to be a
function that could determine if one solution was better
than another and by how much. It could specify how good
a solution is by filling in a floating point value inside the
particle structure when the fitness calculation function was
called. A better solution is interpreted to be one that has
a lower fitness value than another.

D. Pick Space
It was mentioned previously that a 72-dimensional space

was being used to solve the Sudokus. This Sudoku solver
is using a row based solution system, where each row is
viewed as a permutation. Each row can contain the digits
one through nine in any order, but each digit can only
occur once.

This can also be interpreted as a sequence of selections
from an ordered set of the numbers one through nine. It
would start with an ordered set and a empty row as shown
in figure IV-D.

Available: [1 2 3 4 5 6 7 8 9]
Row: [ ]

Fig. 1. No Pick Complete

Next there are a set of ”picks” that select the order
in which the numbers will appear in the row. If the first
”pick” is assumed to be 5, the 5 would be moved from the
available set to the row, this is shown in figure IV-D.

Available: [1 2 3 4 6 7 8 9]
Row: [5]

Fig. 2. One Pick Complete

If the next pick is also 5 then the 6 is now moved from
the available set to the row set, finally shown in figure
IV-D.

Available: [1 2 3 4 7 8 9]
Row: [5 6]

Fig. 3. Two Picks Complete

This process continues until the row set is filled and
the available set is empty. This will only take 8 picks as
once the last pick is reached, there is only one number
available.

It can be observed that in this ”pick” space the size of
each dimension decreases with each pick, starting with 9
and decreasing down to the known pick with a size of 1.
In this implementation if a pick was outside the space then
the nearest number would be chosen, one if it is too low
and the max of the dimension if it is too high. When these
picks are extended to be 8 dimensions for each of the 9
rows the problem has a 72-dimensional search space.

This ”pick” space turned out to be a good intuitive
space for searching Sudokus because a movement in any
dimension by one unit will create a swap of two numbers.
The goal of the fitness function is to make it so puzzles
similar to the solution will be only a series of swaps away
from the actual solution.

E. Fitness Function Basis
The first implementation was the most intuitive imple-

mentation of the fitness function that could be found. The
first system was very generic in that location in the puzzle
did not affect fitness at all. It would first generate the
candidate solution based on the location of the particle,
then it would overwrite any constraint in the puzzle. Once
this was done it would have an array representing an
attempted solution to the puzzle as shown below in figure
IV-E. The red numbers show constraints that have taken
the place of whatever value was chosen based on particle
location.

To calculate the fitness each of the duplicates were
counted Since any number should occur only once in each
row, column or box, any duplicate can be perceived as a
problem in the puzzle and therefore the more duplicates
the less fit a solution is. So every column, row, and box
is scanned for duplicates and the fitness is set to the sum
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Fig. 4. Attempted Solution

of every duplicate. The missing numbers could have been
analyzed as well; however these are actually equal to the
number of duplicates, as for every duplicate that exists
there is one number that was overwritten and is missing.

This fitness function performed relatively well overall,
it minimized to puzzles that had very few duplicates. The
problem that arose was that sometimes a puzzle with few
duplicates could be far from the solution. The solution
space seemed to be littered with local minima for most
problems.

F. Modified Fitness Function
To increase the effectiveness of the fitness function,

several aspects of the sudoku construction were observed.
The first thing that lead to modifying the fitness function
was that there were a large number of candidate solutions
that had the same fitness value. There needed to be some
way to determine if one of the solutions was better than
another when they had drastically different structures.

The first modification was to make boxes to the left
count more than boxes to the right. The reasoning for
weighting more importance on left sided boxes is that the
”pick” space chooses from the left to the right. Weighting
the left side of the puzzle more heavily encourages the
algorithm to fix the first dimensions of the picks in each
row before moving onto the smaller dimensions on the
right.

The second modification was to add a component to
the fitness for having an incorrect constraint. Although
the constraint boxes are overwritten to find the solution,
having a wrong constraint can make it more difficult to get
the correct permutation of the row. This fitness addition
carried the same left-weightedness as stated in the first
modification.

The final modification was to attempt to keep particles
within the search space. Although being outside the search
space does not cause any problems with the algorithm, it
is known the actual solution will reside at a location within

the range of the pick space. Because of this the fitness was
increased for each dimension that was outside the bounds
for that given pick.

G. Pick Space Constraints
Although the constraints push the problem in the cor-

rect direction through the fitness, there is some knowledge
about the pick space locations of the true solution that
can be known immediately. Figure IV-G shows only the
constraints of a given puzzle that was solved, where
the highlighted values are ones that have known pick
constraints.

Fig. 5. Known Pick Space Values

This figure shows a number of boxes as highlighted, but
most of them can be covered by a few simple rules. When
a constraint of the puzzle is in the first column, the pick
space equivalent can be determined. When a constraint of
the puzzle is a 1 or a 9, then the pick is either 1 or the
max of the dimension accordingly. When both of the last
two columns are constraints of the puzzle, then the pick
equivalent is 2 if the first is bigger than the right and 1 if
not.

V. RESULTS

At first the PSO based Sudoku solver did not work at all.
Most PSO parameters showed it unable to even come up
with good attempts at solving the puzzle. However through
trial and error a set of parameters giving good perfor-
mance were found. Since the space was so complicated a
low swarm best weight was used (0.05), a high local best
weight was used (1.0), with a fairly normal momentum of
.9.

These were the first parameters that were able to solve
the Sudoku successfully. The region around these param-
eters was analyzed and as described later in this section
these were very close to the most optimum parameters for
finding solutions
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Once a solution had been found, most of the tests were
run with a max number of iterations set to 1.65 Million.
These tests took a half hour each on the CUDA-based
PSO framework used. These same tests when run using
the computers CPU, rather than GPU took slightly over
24 hours, making the speedup approximately 48. It is
noteworthy that the runs described in this paper utilized
the GPU processors of a GTX 260 for approximately a
week of total run time. These same runs would have taken
approximately a year to run on a conventional computer.

A. Solved puzzles

The first puzzle solved was the puzzle shown in IV-G.
It also solved the following puzzle in figure V-A.

Fig. 6. Another Sudoku Puzzle

B. Effect of parameters

It was difficult at first to find any PSO parameters that
would solve the Sudoku puzzles given. Because of this the
effect of the PSO parameters was studied. A series of tests,
each with a maximum of 1.65 Million iterations, were run
on various changes in the PSO parameters. Four random
seed values were chosen, for each seed a specific set of
starting particles exists. Each of the four seeds were used
on every set of parameters tested.

The results showed that having the momentum at 0.9
was very much a perfect spot for solving sudoku. Changing
the momentum in either direction seriously interfered with
the ability to find a solution. Figure V-B shows the average
ending fitness compared to the momentum.
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Fig. 7. Effects of Momentum Coefficient

The local best weight and the swarm best weight were
varied from 0.85 to 1.15 and from 0.05 to 0.15 respectively.
Through a series of previous runs it was determined that
these were the areas that the algorithm could be successful.
These parameters proved to be much less sensitive than
the momentum. The low fitness range of the results suggest
that given enough time it is possible that any of these sets
of parameters could solve the puzzle. Figure V-B below
shows the final fitness vs the local best weight and the
swarm best weight.

0.85
0.9

0.95
1

1.05
1.1

0.05

0.1

0.15
0

5

10

15

20

25

30

35

Swarm Best Weight

Affect of PSO Parameters on Final Fitness

Local Best Weight

F
in

a
l 
F

it
n
e
s
s

Fig. 8. Effects of PSO Weights

There is an upward trend as both of the weights
increase. This could suggest that the algorithm is simply
taking more time and it will eventually find a solution, or
it could suggest that if the weights increase too much it
will be unsuccessful in finding a solution. In other isolated
tests larger weights did not perform well and often would
not converge or would converge in very high local minima
not near the solution.

C. Random Addition
Even a small amount of testing showed that this was

very clearly a very bumpy search space, full of local
minima. This was shown in the last section by the heavy
weighting upon particles local best and light weighting on
swarm best locations. Despite this weighting some tests
revealed it was possible for the algorithm to come very
close to finding a solution without actually finding it.
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The solution to this problem was a random addition.
This had no biological basis, and the random numbers had
such a small coefficient that it had virtually no affect on
the running of the algorithm. However despite its small
nature it did help in scenarios where the entire swarms
were stuck at a single local minima. The random addition
to all particles location would give them some momentum,
allowing more searching of the space.

VI. CONCLUSIONS

This implementation successfully solved multiple Su-
doku puzzles and has yet to be attempted on a puzzle that
it did not eventually solve. The speedup of the CUDA-
based PSO framework that was used was instrumental
in the success of this project, as even to run 1.6 Million
iterations on the GPU still took on the order of 30 Minutes
to complete.

Due to the bumpy nature of the parameter space a much
smaller swarm best location weight than usual must be
used to solve the Sudoku puzzles using PSO. This problem
also proved to be extremely sensitive in variation in the
momentum coefficient.
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Abstract—In this research, a Genetic Algorithms framework
for Running On Parallel environments, which is named GAROP,
is proposed. The GAROP provides the library for a parallel
processing, so that users should only describe codes for genetic
algorithms (GA) programs, utilizing the library implemented
for the part requiring a parallel processing. In the GAROP
framework, GA research provides only program codes which
are concerned with GA algorithm and GAROP library supports
other codes which are concerned with parallel processing. The
advantage of using GAROP is to increase the user’s productivity
by making it possible to develop the program, which can execute
a parallel processing. In this paper, the broad description of the
GAROP is provided, and the development of the GAROP, corre-
sponding multi-core CPU and GPU environments, is described.
The libraries are implemented with GA which finds quasi-
optimum solutions using meta heuristics, and its productivity
and its parallelism are evaluated. As a result, only adding four
descriptions to the program, the acceleration of the processing
speed is confirmed in both of the environments; 5.26 times speed-
up on multi-core CPU, and 3.0 times speed-up on GPU.

I. I NTRODUCTION

Several types of genetic algorithms (GA) are applied to
solve optimization problems and some of them are large-scale
optimization problems. One of the problems confronted, when
using the GA, is that the excessive amount of computing time
is required. It may be difficult for some problems to be solved
within a realistic time. To solve this problem, the amount
of computation itself should be reduced, or the processing
should be accelerated. GA attains to a global search, using
multipoint searches by many candidate solutions. It requires
much iteration to find a solution, and results in high calculation
cost. As GA searches solutions maintaining many candidate
solutions, it implicitly has parallelism. As the architectures
of calculators, on the other hand, hardware having various
architectures has been prevailed, such as PC clusters, multi-
core processor, and GPU. Therefore, to obtain environments
of parallel calculations is not as hard as ever. Although an
environment is easily obtainable, the programming skills are
required to bring out its performance efficiently, such as the
programming for heterogeneous processors, the architectural
optimization for hierarchical memories, and the programming
which overlaps connection and calculation to achieve the
scalability. In addition, these parallel architectures have the
different configurations. Thus, even using the same algorithms,
it is necessary to prepare different implementation codes suit-
able for different parallel architectures. This complicated and

disturbing programming lacks productivity. In this research,
the Genetic Algorithms framework for Running On Parallel
environments, which is named GAROP, is proposed. The
purpose of the GAROP is to increase the user’s productivity
by reducing the processing time without the specific knowl-
edge regarding parallel architecture and parallel processing.
Implementing the master-slave model, the GAROP enables to
execute any logical models. In this paper, the libraries for the
GAROP are implemented using C language. Target parallel
processing architectures are multi-core CPU and GPU. As one
of the GA technique, Simple GA is implemented using the
libraries, and it is evaluated in terms of an amount of codes
and execution time.

II. BACKGROUND

A. Genetic Algorithms

GA is a multipoint search algorithm with many candidate
solutions and generate-and-test algorithm. GA is powerful
algorithm in all kinds of research field, because GA makes it
possible to search globally, and it does not require continuity
and differentiability of target problems [1]–[5]. Under GA, a
combination of variables, which is to be a candidate solution,
is termed an individual. GA searches suboptimal solutions
with a group of individuals. Figure 1 shows a general flow
of GA. The first group of individuals is generated randomly.
Generated individuals are evaluated on their objective function.
Then, iteration searches are started. Parent individuals are se-
lected from the group of individuals. Individuals are generated
from selected parents as candidate children by genetic calcu-
lations, such as crossover and mutation. Generated individuals
as candidate children are evaluated on their objective function.
Selecting from these individuals, a group of individuals for
next generation is created. Presently, various types of GA
algorithms have been proposed, and these algorithms are ap-
plied to real-world problems. However, an excessive amount of
computation is required to find suboptimal solutions in large-
scale problems. Thus, it may be difficult for some problems
to be solved within a realistic time, so that the amount of
computation should be reduced, or the processing should be
accelerated.

B. Parallel Genetic Algorithms

Since GA processes a search by iterative execution of an
excessive amount of samplings on multiple candidate solu-
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Fig. 1. A flowchart of GA.

tions, it can be accommodated to parallelism. Thus, many
methods of parallelization have been proposed for GA [6]–
[12]. In this section, basic parallelizing methods of GA are
described. There are two principal types of parallel GA. One is
parallel processing in a population. This method has the same
characteristic as serial GA. The other is to split a population
into multiple subpopulations. Today, the latter method is
frequently used, because it has the higher parallelism than
the former method. There are GA methods performing very
efficient parallelism, which combine the both methods. On
changing the method of parallel GA, it is important to consider
that it may happen to change the amount of calculations and
the accuracy of solutions. That brings to the point that Parallel
GA has the following two meanings.

• Parallel algorithm for increasing search performance
• Parallel implementation for reducing execution time
For example, Pospichal [13] has proposed the distributed

population GA based on GPU, and achieved a high efficiency.
Although this method has achieved high efficiency, GA other
than the distributed population GA cannot be implemented,
since GA and parallel implementation are inseparable Also,
it is difficult to implement this method into architecture other
than GPU. The most basic parallel models are introduced as
the following.

1) The Master-Slave Model:Under GA, there is a tendency
that the time consumed on evaluation calculations assumes a
large share of total execution time, and the tendency strength-
ens as the complexity of the problem is increased. Then, the
master-slave model accommodates this tendency based on the
general idea of parallelization. Under the master-slave model,
all the operations except evaluations are executed by a master
processor. A master processor sends individuals, which are
to be evaluated, to slave processors. Slave processors execute
evaluating calculations on these individuals, and return the
results to the master processor. Figure 2 shows the flow of
the master-slave model. It is considered that this model is
inferior to coarse-grained model, because this model requires
relatively much communication, and a CPU is requisite as
a master processor. The purpose of this model is to reduce
the execution time, so it cannot increase the searching perfor-
mance compared to a serial algorithm.

2) The Island Model:This model splits up a population into
multiple sub populations and executes searching within each
sub population. Then, it transports some individuals in a sub
population to the other sub population. This operation is called

individual

Master
processor

Evaluation

Slave
processors

Evaluation Evaluation

Genetic Operations

Fig. 2. A master-slave model.

Fig. 3. An island model.

the migration. Figure 3 shows the flow of the island model.
Since this model makes communications between nodes only
at the migrations, this model utilizes computational resources
effectively. This model reduces its execution time and changes
the performance of the search compare to a serial algorithm.

C. Problems

As previously mentioned, parallel GA has two objectives;
those are to improve searching performance and to reduce
execution time. Some of parallel GA models are depend on
specialize particular parallel environment and these cannot be
performed on other parallel environments. These types of GA
models can use the calculation resources fully and high effec-
tiveness. However, most of parallel calculation resources have
difference architecture. Thus, when GA is tried to apply to
other parallel architecture, GA researchers have to implement
their algorithms for new architecture. To know configurations
of various architectures and to implement suitable GA are the
heavy burden on GA researchers. With these defects, even
research have good parallel environments, it may take time to
implement their algorithm.

III. SYSTEMATIZATION OF PARALLEL MODEL

As previously mentioned in chapter II, the expression of
“parallel GA” has two models; one is a parallel algorithm to
increase searching performance, and the other is a parallel im-
plementation to reduce the execution time. These two models
have to be distinguished clearly. In this research, these two
models are defined as the followings:
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Fig. 4. Two island models as the logical model

• The logical model: parallel algorithm to increase search-
ing performance

• The implementation model: a parallel implementation to
reduce the execution time

Figure 4(a) shows GA adopted an island model as a logical
model and a serial model as an implementation model. Figure
4(b) shows GA adopted and island model as a logical model
and also as an implementation model. In Figure 4, the number
means the orders of processing. The logical model is a model
to execute parallel searching, but it is capable to execute serial
processing. Additionally, the logical model may be confined
by a limitation imposed by the implementation model. For
example, if the island model is adopted as the implementation
model, the Simple GA cannot be adopted as the logical model.
Once the implementation model is provided, only users have
to do is to consider and implement the logical model. Thus,
users are able to develop any algorithms without the limitation
of architectures.

IV. GAROP

The GA framework for Running On Parallel environments
(GAROP) is a framework in which any GA can be executed in
various parallel environments. The purpose of the GAROP is
that users can execute parallel processing, with the master-
slave model as the implementation model, without having
special techniques for parallel programming. The users of
the GAROP are presumed as the developers of GA. Once
the implementation for parallel processing is provided, users
could receive the benefit of parallel processing, keeping the
same level of productivities as sequential programs. Under the
GAROP, users construct any logical models and implement
some parts other than the evaluation part. Users designate the
template suited to each parallel environment, and combine
the template and the codes for evaluation of the problem,
so that the evaluation part is implemented. The use of this
template leads to hide the special communications and the
implementation of scheduling for evaluation tasks. Thus, users
can execute GA under parallel environments without having
knowledge of communication and schedulers appropriate for
parallel environments.

EvaluationEvaluation

EvaluationEvaluation

EvaluationEvaluation

Parallel
Environment

implemented by user provided by garop

Throw Queue

Get Queue

Individual
Pool

Genetic
Operations

User

Throw

Get

individual

Fig. 5. Overview of the GAROP.

Evaluation

Parallel

Environment

(a) Serial model.

Evaluation

Parallel

Environment

(b) Island model.

Fig. 6. GA Examples with GAROP.

A. Requirements

To achieve the purpose as precious described, the GAROP
is expected to meet the following requirements:

• Productivity of users
In order to achieve the same level of productivity as the
sequential programs, the framework should be provided
as the form of libraries which call up a function group.

• Versatility of parallel environments
Users should be able to use various parallel environments
by using common descriptions.

• Independent implementation model
In order to correspond to any GA, the implementation
model which is implemented independently of algorithms
is required.
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TABLE I
FUNCTIONS PROVIDED BYGAROP.

Name Action

Initialize prepareparallel environments and the Individual Pool.

Throw throw an individual to the Individual Pool.

Get get an individual from the Individual Pool.

Finalize free memories used by the Individual Pool and

disconnectparallel environments.

B. Design of the GAROP

Figure 5 shows the overview of the GAROP. GAROP
introduces the concept of the Individual Pool as an interface
to link users to parallel environments. The Individual Pool is
an archive and stores individuals which should be evaluated in
parallel automatically. Under this design, any GA models can
be executed in parallel without change searching performance.
In Figure 6, the concepts of serial model and island model are
demonstrated. In the same way, other parallel models can be
performed using the GAROP.

1) The Individual Pool:The Individual Pool consists of two
queues as shown in Figure 5. One of these queues is the “throw
queue”, which stores thrown individuals, and the other queue
is the “get queue”, which stores evaluated individuals. As soon
as individuals are stored in the throw queue, they are sent to
calculation resources and evaluated. Evaluated individuals are
stored in the get queue. Users throw individual which should
be evaluated to the Individual Pool one by one. Users can
get the evaluated individual from the get queue, whenever
they need. The Individual Pool is a useful concept which
makes it possible to execute evaluating calculations and other
processing simultaneously.

2) Programming Interface:The GAROP provides 4 func-
tions as shown in Table I. This won’t be changed even
though the environment of the parallel computation is changed.
However, the types of four functions and arguments vary
depending on the environment.

3) The Template of evaluation:It is impossible to provide
implementations of every single evaluation, because the eval-
uation depends on the problem to be solved. In the GAROP,
users implement the evaluation part. This means that the
implementation of the evaluating calculation exists on the
memory of the master machine. However, the evaluation is
executed by slave processors. Therefore, the evaluation part
must be handed over from the master machine to the slave
processor. It is realistic to hand over using a form of a
function, which is easy to describe. In order to figure out how
much memory region is needed, the types and the number
of arguments and the type of return value should be known,
when the function is handed over. The GAROP provides the
template of an evaluate function as the following. Users can
solve any problems by limiting the arguments and the return
value of the function.

void evaluate(unsigned char* indata,
unsigned char* retdata);

• indata: individual data
• retdata: evaluated individual data

This way of description is suitable for the C language. The
important thing is to allocate an individual to the argument and
to allocate another individual to the return value. In order for
a description of an individual to be free, it employs unsigned
char as a pointer. The template of the evaluating function
varies depending on each of the parallel environment and the
language used.

C. How to run algorithms with the GAROP

The libraries to substantiate the GAROP are provided in
the form of source codes. Multiple libraries are prepared for
each of the execution environments, such as compilers and
languages. The user’s flow is shown as the following.

• Obtaining the library (source codes) corresponding to the
executing environment

• Implementing evaluate function using the templates
• Implementing GA with API of the library
• Compiling source codes
• Placing executable file into calculation resources
• Executing

List 4 is an example of evaluate function using a template. List
1 is an implementation of the serial model with the GAROP.
List 2 is an implementation of the island model with the
GAROP. Like this way, not only the master-slave model but
also the island model can be implemented. Using the GAROP,
other models such as cellular model can be implemented in
the same way. Under the GAROP, the parallel environment is
set up by users. For example, if users use PC cluster with MPI,
users prepare cluster by themselves and give a description of
machine file etc.

V. I MPLEMENTATIONS OFL IBRARIES FOR THEGAROP

The libraries are implemented to get individuals from In-
dividual Pool and to evaluate in parallel. The environments
implemented in this paper are the multi-core CPU by pthread
of the C language and the GPU by CUDA. The multi-core
CPU is a shared memory environment, and the GPU is a dis-
tributed memory environment. Policies of these environments
are as the following.

A. Multi-core CPU

The characteristics of multi-core CPU are having not many
cores and having a shared memory environment. Considering
these two characteristics, the library is implemented with a
constitution shown as Figure 7. A thread is regarded as a
calculation resource and assigned as a slave processor. Each
thread monitors the throw queues. When the throw queue has
one or more data, each thread gets an individual and executes
evaluating calculations. Arguments of an initialize function are
number of threads, size of an individual, and pointer of an
evaluate function.
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List 1. Serial model with the GAROP.
1 population = InitPopulation();
2 Initialize (); // initialization of framework
3 FOR j = 0 to generation limit DO
4 FOR i = 0 to population num DO
5 // throw individuals to GA Pool
6 Throw ( population[i] );
7 ENDFOR
8 FOR
9 // get individuals from GA Pool

10 Get ( population[i] );
11 ENDFOR
12 selection( population );
13 crossover( population );
14 mutation( population );
15 ENDFOR
16 Finalize (); // finalization of framework

List 2. Island model with the GAROP.
1 population1 = InitPopulation();
2 population2 = InitPopulation();
3 Initialize (); // initialization of framework
4 FOR j = 0 to generation limit DO
5 FOR i = 0 to population num DO
6 // throw individuals to GA Pool
7 Throw ( population1[i] );
8 Throw ( population2[i] );
9 ENDFOR

10 FOR
11 // get individuals from GA Pool
12 Get ( population1[i] );
13 Get ( population2[i] );
14 ENDFOR
15 selection( population1 );
16 selection( population2 );
17 crossover( population1 );
18 crossover( population2 );
19 mutation( population1 );
20 mutation( population2 );
21 IF j % 10 == 0 THEN
22 migration()
23 ENDIF
24 ENDFOR
25 Finalize (); // finalization of framework

Throw Queue

Get Queue

Slave

Threadsindividual

Individual Pool

CPU

Fig. 7. An implementation of the GAROP for multi-core CPU.

B. GPU

The GPU has many cores and has a distributed memory en-
vironment. As the GPU has a distributed memory environment,
the library is implemented with a constitution shown as Figure
8. In CPU, there are main thread which run GA and sub thread
which communicate data to GPU. Arguments of initialize
function are number of blocks and thread, size of an individual,
and number of individuals that are processed at a kernel
function call. Individuals sent to GPU are stored in the constant
memory. Each CUDA thread acquires individual information
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Fig. 8. An implementation of the GAROP for GPU.

TABLE II
PARAMETERS OF THESIMPLE GA

populationsize 64

choromosomelength 64

sizeof an individual 68 bytes

max generations 100

optimizationproblem onemax

from constant memory, and writes evaluated individual data to
global memory.

VI. EVALUATION

The following is the evaluation of a Simple GA [14]
implemented using the GAROP, in terms of productivity and
parallelism. Table II shows a parameter of the Simple GA.
List 3 shows a description of an individual in this evaluation.
In this experiment, onemax problem is iterated 100,000 times
to mimic a large-scale problem. List 4 shows a function on
the evaluation. In this GA, the evaluating calculation takes up
more than 99 % of total execution time. The maximum number
of parallelism is 64, since the population size is 64. Thus,
number of individuals to be calculated at a kernel function
call is 64 in the GPU library.

A. Environments

The architectures to be evaluated in this experiment are
multi-core CPU and GPU. Table III shows the specifications of

List 3. an implementation of an individual
1 typedef struct __individual {
2 char * chromosome;
3 int fitness;
4 } Individual;

List 4. an evaluate function used in this experiment
1 void evaluate( unsigned char * indata,
2 unsigned char * retdata ) {
3 int i, j;
4 int sum = 0;
5 Individual * individual = (Individual * )indata;
6 for( j = 0; j < 100000; j++ )
7 for( i = 0; i < CHROMOSOME_LENGTH; i++ )
8 sum += individual->chromosome[i];
9 individual->fitness = sum;

10 retdata = indata;
11 }
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TABLE III
SPECIFICATIONS OF A MASTER MACHINE

OS Debian4.1.2

memory 6 GB

CPU Intel Xeon W3530 2.80 Ghz

# of physical cores 4

# of logical cores 8

TABLE IV
SPECIFICATIONS OFTESLA C2050

total amount of global memory 2.68 GB

numberof multiprocessors 14

numberof cores 448

total amount of constant memory 65536bytes

total amount of shared memory per block 49152bytes

warp size 32

clock rate 1.15 GHz

the machine used in this evaluation. This machine is mounted
Tesla C2050 as shown in Table IV.

B. Results

Figure 9 shows results of multi-core CPU, and Figure 10
shows results of GPU, respectively. List 5 shows the source
codes which described by users on multi-core CPU. List 6
shows the source codes which described by users on GPU.
List 5 and List 6 show that these descriptions are common
among different architectures. It is verified that descriptions
for parallel processing can be completely hidden, even though
these descriptions are essentially required on parallel process-
ing. Figure 9(a) shows that the execution time reduces when
the number of threads is 1 to 7. Figure 9(b) shows that the
number of threads that had the least processing time is 7, and
it is improved 5.26 times compared to the situation when a
thread is processed. When the number of thread is 8 or more,
execution time takes longer. Figure 10 shows that the number
of threads that had the least processing time is 64, and it is
improved 50.01 times compared to the situation when a thread
is processed. When the numbers of thread are 2, 3, 4, 6, 8,
16, 32 and 64, the execution time is extremely reduced.

VII. D ISCUSSION

The C language and CUDA are the similar languages,
but methods of implementation in parallel are substantially
different. C is used for multi-core architecture and CUDA is
used for GPU architecture. Usually, users need the parallel
programming knowledge of C and CUDA for these architec-
tures. However, using the GAROP framework and its library,
users need not to prepare the codes for parallel processing.
Both of the codes which GA users prepare can be used as the
common descriptions. Therefore, the productivity of coding is
increased using the GAROP. Reviewing the result of multi-
core CPUs, when the number of threads is 8, the execution
time is the shortest. Among the 8 threads, 7 of them are the
threads for the slave processors and the rest is the main thread
for GA operations. The calculation server for this experiment
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(a) The number of threads (1 to 8).
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Fig. 9. Speedup and execution time on multi-core CPU depending on
number of threads.
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Fig. 10. Speedup and execution time on GPU depending on number of
threads.

has 8 logical cores. Therefore, when 7 threads are used for the
slave processors, all of the logical cores are occupied. When 8
or more threads are used, the number of threads is more than
the number of logical cores, so that it prevents the speed up.
When the number of threads is more than the number of cores,
it may happen that CPU has to switch executing threads one
after another, and this operation of switching threads produces
the waiting time. In the experiment in GPU, the execution time
is the shortest with 64 threads. Tesla C2050, which is the GPU
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List 5. Simple GA with a library for pthread in C.
1 Individual population[POPULATION_SIZE];
2 // create population
3 InitPopulation( population );
4 // initialization of framework
5 Initialize ( sizeof(Individual), THREAD_NUM, evaluate );
6 for( i = 1; i <= MAX_GENERATION; i++ ) {
7 // throw individuals to GA Pool
8 for( j = 0; j < POPULATION_SIZE; j++ )
9 Throw( (unsigned char * )&population[j],

10 sizeof(Individual) );
11 // get individuals from GA Pool
12 for( j = 0; j < POPULATION_SIZE; j++ )
13 Get( (Individual * )&population[j],
14 sizeof(Individual) );
15 population = selection( population );
16 crossover( population );
17 mutation( population ); }
18 // finalization of framework
19 Finalize ();

List 6. Simple GA with a library for GPU in CUDA.
1 Individual population[POPULATION_SIZE];
2 // create population
3 InitPopulation( population );
4 // initialization of framework
5 Initialize ( sizeof(Individual), BLOCK_NUM,
6 THREAD_NUM,POPULATION_SIZE );
7 for( i = 1; i <= MAX_GENERATION; i++ ) {
8 // throw individuals to GA Pool
9 for( j = 0; j < POPULATION_SIZE; j++ )

10 Throw( (unsigned char * )&population[j],
11 sizeof(Individual) );
12 // get individuals from GA Pool
13 for( j = 0; j < POPULATION_SIZE; j++ )
14 Get( (Individual * )&population[j],
15 sizeof(Individual) );
16 population = selection( population );
17 crossover( population );
18 mutation( population ); }
19 // finalization of framework
20 Finalize ();

usedin this experiment, has 448 cores. Thus, it can use 64
cores for 64 threads. From the Figure 10, it is observed that
the stagnation of speed up is existed from 17 to 31 threads and
from 33 to 63 threads. The reason of this stagnation is that
the population size 64 is not the multiple of these numbers.
Because of this reason, the fraction of the individuals is existed
and the fraction itself should be calculated, too. This takes time
and leads to the stagnation.

VIII. C ONCLUSIONS

In this paper, the GAROP which is a parallel environment
framework for evolutionary computation is proposed. The
GAROP is the framework where the logical model and the
implementation model are distinguished, and the users prepare
their algorithms as the logical model and the implementation
model is prepared by systems. Thus, users can implement
any type of logical model on parallel environment using the
GAROP. In the GAROP, user’s evolutionary algorithms are
performed in parallel as master-slave model. Users implement
their GA operations in the master and the evaluation part is
implemented in the slave using the provided template. With the
provided libraries and the implemented codes, the application,
which is worked on several types of parallel environment,

is compiled. In this paper, the concept and the flow of the
GAROP are described and the libraries for two types of paral-
lel environments are implemented; those are multi-core CPUs
and GPUs. Using the GAROP and the libraries, Simple GA
is implemented and the productivity of users and parallelism
are evaluated. From the results, GA applications which can be
worked on parallel environments are implemented using four
types of functions which are provided by the GAROP. At the
same time, execution time is also reduced.

In the future work, further discussion should be held for not
only Simple GA but also for other evolutionary computation
algorithms. In this paper, the libraries for multi-core CPUs
and GPUs are implemented. Other types of libraries for other
parallel environments will be prepared. At the same time, the
productivity discussions of the GAROP should be performed
with researches who are working on evolutionary computation
fields.
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Rapid Feature Selection Based on Random Forests for
High-Dimensional Data
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Abstract— One of the important issues of machine learning
is obtaining essential information from high-dimensional
data for discrimination. Dimensionality reduction is a means
to reduce the burden of dimensionality due to large-scale
data. Feature selection determines significant variables and
contributes to dimensionality reduction. In recent years,
the random forests method has been the focus of research
because it can perform appropriate variable selection even
with high-dimensional data holding high correlations be-
tween dimensionality. There exist many feature selection
methods based on random forests. These methods can appro-
priately extract the minimum subset of important variables.
However, these methods need more computation time than
the original random forests method. An advantage of the
random forests method is its speed. Therefore, this paper
aims to propose a rapid feature selection method for high-
dimensional data. Rather than searching the minimum subset
of important variables, our method aims to select meaningful
variables quickly under the assumption that the number of
variables to be selected is determined beforehand. Two main
points are introduced to enable faster calculations. One
is reduction in the calculation time of weak learners. The
other is adopting two types of feature selection: “filter” and
“wrapper.” In addition, although most present methods use
only “mean decrease accuracy,” we calculate the magnitude
of features by combining “mean decrease accuracy” and
“Gini importance.” As a result, our method can reduce
computation time in cases where generated trees have many
nodes. More specifically, our method can reduce the number
of important variables to0.8% on an average without
losing the information for classification. In conclusion, our
proposed method based on random forests is found to be
effective for achieving rapid feature selection.

Keywords: feature selection; variable selection; random forests;
Gini importance;

1. Introduction
In recent years, feature selection for dimensionality re-

duction is becoming increasingly important in machine
learning. Feature or variable selection enables improving
accuracy by excluding redundant variables and facilitates the
interpretation of complex data structures as well as reduces
calculation time for predictors. Therefore, variable selection
for high-dimensional data plays an important role in many

areas including text processing of internet documents, gene
expression array analysis and combinatorial chemistry. In
this paper, we propose a rapid feature selection method for
high-dimensional data.

There are three types of variable selection: “filter,” “wrap-
per,” and “embedded” [1], [2]. “Filter” selects subsets of
variables in a preprocessing step, independent of the chosen
predictor. “Wrapper” utilizes the learning machine of interest
as a black box to score subsets of variables according to their
predictive power. “Embedded” performs variable selection
during the training process and is usually specific to given
learning machines. The random forests (RF) method [3]
based on the wrapper method has been widely recognized
as a practical method of variable selection. In recent years,
the RF method has also been applied to feature selection for
hyperspectral imagery and gene selection of microarray data
[4], [5]. Furthermore, the demand for variable selection has
been increasing.

The RF method has two types of variable importance mea-
sures. One involves the evaluation of “out-of-bag (OOB)
errors” introduced to estimate prediction errors. Several
feature selection methods using this measure have been
proposed [6], [7], [8].

The other measure is derived from the Gini index and
is called “Gini importance.” This measure is biased toward
predictor variables with many categories [9]. However, it is
particularly effective with data that have a high dimension-
ality and small sample size [10]. There also exists a feature
selection method using “Gini importance” [11].

These feature selection methods, which are extended RF
methods, can appropriately extract the minimum subset
of important variables. Because the RF method itself is
stochastic, the subsets obtained by these methods are only
a candidate of the optimal solution; moreover, if sufficient
computation time is provided, these methods are attractive.

In this paper, we assume that the number of important
variables to be selected is decided beforehand and propose
a fast method to select meaningful variables with a high ac-
curacy. As a result of investigating the ranking of important
variables derived from various datasets by using the original
RF method, we obtain the following empirical rule: the
rankings drawn from two types of variable importance mea-
sures slightly differ, whereas the members of the top ranked
variables are almost the same. Based on this empirical rule,
we improve the original RF method and successfully reduce
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computationtime, especially in cases where generated trees
have many nodes. In addition, in our method, the number of
important variables is reduced to0.8% on an average without
losing the information for discrimination. In conclusion, our
proposed method based on RF is effective to achieve rapid
variable selection. The reason why our method is successful
is not solved mathematically; the results obtained by our
method are very interesting.

In the following section, we review RF and “Gini impor-
tance”; we explain our proposed method in section2.

1.1 Random forests algorithm
The RF method creates multiple trees using classification

and regression trees (CART) [12]. When constructing a tree,
the RF method searches for only a random subset of input
variables at each splitting node and the tree grows fully
without pruning. The RF method is recognized as a specific
instance of bagging.

Random selection of variables at each node decreases the
correlation among trees in a forest, thus forest error rate
decreases. The random subspace selection method has been
demonstrated to perform better than bagging when there
are many redundant variables contributing to discrimination
among classes [13], [14], [15].

The computational load of the RF method is compar-
atively light. The computation time is on the order of
ntree

√
mtry n log n, wherentree is the number of trees,

mtry is the number of variables used in each split, andn
is the number of training samples [3], [4].

In addition, when a separate test set is not available,
an OOB method can be used. For each newly generated
training set, one-third of the samples are randomly excluded;
these are calledOOB samples. The remaining (in-the-
bag) samples are used for building the tree. For accuracy
estimation, votes for each sample are counted every time a
sample is included amongOOB samples. A majority vote
determines the final label. TheOOB error estimates are
unbiased in many tests [3]. The number ofmtry is defined
by a user, and it is insensitive to the algorithm.

The RF algorithm (for both classification and regression)
is as follows:

1) Drawntree bootstrap samples from the original data.
2) For each bootstrap sample, randomly samplemtry

predictors (variables) at each node, grow an unpruned
classification or regression tree, and choose the best
split among these variables (rather than choosing the
best split among all variables).

3) Predict new data by aggregating the predictions of
ntree trees (i.e., majority vote is used for classifica-
tion, average is used for regression).

Based on training data, an error rate estimate can be
obtained as follows:

1) At each bootstrap iteration, predict test data not in
the bootstrap sample (what Breiman calls “out-of-bag”

or OOB data) using a tree grown with the bootstrap
sample.

2) Aggregate theOOB predictions. Calculate their error
rate, and call itOOB error rate estimate.

The RF method performs efficiently for large datasets and
can handle thousands of input variables. The RF algorithm
has been demonstrated to have excellent performance in
comparison to other machine learning algorithms [3], [16],
[17].

1.2 Gini importance
The RF method has extremely useful byproducts, for

instance, variable importance measures [3], [18]. There are
two different algorithms for calculating variable importance.

The first algorithm is based on the Gini criterion used to
create a classification tree, CART [12]. In this paper, we call
the measure “Gini importance.” At each node, decreases in
Gini impurity are recorded for all variables used to form the
split. Gini impurity ∆GI(t) is defined as follows:

∆GI(t) = PtGI(t)− PLGI(tL)− PRGI(tR).

Here, GI(t) is called the Gini index and is defined as
follows:

GI(t) = 1−
∑
k

p(k | t)2,

wherep(k | t) is the rate at which classk is discriminated
correctly at nodet, GI(tL) is a Gini index on the left side
of the node,GI(tR) is a Gini index on the right side of the
node,Pt is the number of samples before the split,PL is
the number of samples on the left side after the split, and
PR is the number of samples on the right side after the split.
The Gini criterion is used to select the split with the highest
impurity at each node. The average of all decreases in Gini
impurity yields the “Gini importance” measure.

The second algorithm is based onOOB observations. In
this paper, we call the measure “mean decrease accuracy.”
Although the structure of a decision tree provides informa-
tion concerning important variables, such an interpretation is
difficult for hundreds of trees in an ensemble. One additional
feature of RF is the ability to evaluate the importance of each
input variable by theOOB estimates. To evaluate the im-
portance of each variable, the values of each variable in the
OOB samples are allowed to permute. The perturbedOOB
samples will run down each tree again. Then, the difference
between the accuracies of the original and perturbedOOB
samples over all trees in RF are averaged.

Variable importance of “mean decrease accuracy” is de-
fined as follows: LetXj(j = 1, · · · ,M) be the permuted
variables, whereM is the number of all variables.Xj and
the remaining nonpermuted predictor variables together form
a perturbedOOB sample. WhenXj is used to predict
the response for theOOB sample, the prediction accuracy
(i.e., the number of samples classified correctly) decreases
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substantially, if the original variableXj is associated with
the response. For each treef of the forest, consider the
associatedOOBf sample (data not included in the bootstrap
samples used to constructf ). The error of a single treef in
thisOOBf sample is denoted byerrOOBf . Now, randomly
permute the values ofXj in OOBf to get a permuted sample
denoted byOOBfj and computeerrOOBfj , the error of
predictorf in the perturbed sample. Variable importance of
Xj is then equal to

V I(Xj) =
1

ntree

∑
f

(errOOBf − errOOBfj ),

where the summation is over all treesf of RF andntree
denotes the number of trees of RF.

2. Rapid Feature Selection Based on
Random Forests

We investigate the ranking of important variables derived
from various datasets by using the original RF method and
obtain an empirical rule: the rankings of important variables
obtained from “Gini importance” and “mean decrease accu-
racy” differ slightly, whereas the members of the top ranked
variables are almost the same. Thus, if we can determine
these members of the top ranked variables obtained from
“Gini importance,” we can rank variable importance by
“mean decrease accuracy.”

To realize this idea, we combine “Gini importance” and
“mean decrease accuracy” as “filter” and “wrapper.” We
propose an improved method of RF and call it “rapid
feature selection” method (RFS). After reducing meaningless
variables by “filter,” rapid feature selection evaluates variable
importance by “wrapper.”

“Gini importance” can be acquired from the generation
process of weak learners, thus it is convenient to use the
“Gini importance” measure as a “filter.” However, sometimes
we cannot obtain high accuracy by only using such a “filter.”
On the other hand, “mean decrease accuracy” is high; “mean
decrease accuracy” is computationally heavy because it has
to call on the learning algorithm to evaluate each subset.

The rapid feature selection algorithm is as follows:

1) ExcludeOOB data and drawntree bootstrap samples
from training data.

2) For each bootstrap sample, randomly samplemtry
variables, grow a tree up to the first node, and record
all Gini impurities generated in the calculation process.

3) Choose the topv variables that are candidates for the
best split, give a score that reflects the top rankedv
variables forntree trees, and aggregate all scores.

4) To select the tops important variables, choose the top
se variables at this point (se is larger thans).

5) Rankse variables by “mean decrease accuracy” of the
original RF method and select the topv variables.

Table 1: Information about each dataset
Dataset Samples Variables Class Accuracy
Internet

Advertisements
3,279 1,558 2 0.963

Gisette 6,000 5,000 2 0.964

Fig. 1: Simulation: Relationship betweenv andPs. Number
of variables:1, 558.

In the case that some variables are correlated, CART can
choose the best split. However, CART needs the calculation
of Gini impurity up to 2n−1 − 1 times in the worst case,
wheren is the number of samples in each bootstrap sample.
Thus, reducing the calculation time of CART is a significant
issue in this method.

To reduce the calculation time of CART, some RF applica-
tions have an option to stop calculation at the first node. This
option is effective in reducing computation time; however,
the appropriate evaluation of important variables cannot be
obtained. Necessary information will be insufficient when
v = 1 owing to the nature of the data; therefore, we set a
parameterv.

Under the assumption that CART can accurately rank
variables and all variables are independent, we simulated
the behavior of these parameters. In the simulation, we used
the number of variables from Table 1.

LetPs be a probability that the tops variables are included
in the topse variables. The relationship amongPs and the
other parameters are shown in Figures 1,2,3,4 and 5. The
parameters that are not a target of the investigation are set
as follows:se = 35, s = 20, v = 5 andntree = 100 for the
case of1, 558 variables (Figures 1,3,4 and 5), andse = 70,
s = 55 and ntree = 100 for the case of5, 000 variables
(Figure 2).

From Figures 1 and 2, we can find that the optimalv
changes owing to the number of variables. Because CART
cannot necessarily rank variables correctly and all variables
are not independent in real data, in practice, the optimalv
differs from the result of the simulation. Without changing
the parameter setting, we conducted a experiment using real
data to investigate aboutv. Internet advertisement dataset in
Table 1 was chosen as a real data with1, 558 variables. This
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Fig. 2: Simulation: Relationship betweenv andPs. Number
of variables:5, 000.

Fig. 3: Simulation: Relationship amongv, se andPs. Num-
ber of variables:1, 558.

experiment was conducted using rapid feature selection.
Figure 6 shows that the accuracy of this real data is

insensitive to the value ofv. It is difficult to predict the
optimalv. However, under the condition thatv is 5 or more,
we found that the behavior ofPs is stabilized ifse changes.
Figure 3 supports this empirical rule. Thus, we conducted
experiments by provisionally settingv = 5, as described in
the following chapter. Prediction ofv is one of the future
work.

Figure 4 expresses the relationship betweenntree and
Ps, and Figure 5 the relationship betweense andPs. These
Figures show a following relationship: The more the value
of ntree or se becomes large, the more the value ofPs

approaches1. Under the assumption thats is determined
beforehand, we consider that all parameters should be set to
satisfy the following condition:

mtry × s

M
× Ps(s, se)× ntree ≥ s.

It is expected that the maximization ofPs and minimization
of se andntree are realized simultaneously. When1.5s =
se,mtry × ntree/M = 2.5, Ps is about0.5 is considered
as one index.

Fig. 4: Simulation: Relationship betweenntree and Ps.
Number of variables:1, 558.

Fig. 5: Simulation: Relationship betweense andPs. Number
of variables:1, 558.

3. Experiment
First, we conducted experiments to verify the performance

of rapid feature selection compared with another well-known
method. For comparison, we chose principal component
analysis (PCA). PCA provides factor loading amount and
accumulated contribution rate for variable selection. By
using these values, we selected meaningful variables.

Next, to determine whether “mean decrease accuracy”
used as “wrapper” in our method works effectively, we
compared the performance of rapid feature selection and a
method that employs only “filter” in rapid feature selection.
In this paper, we refer to this method as “first split” (FS).
First split does not use the evaluation from mean decrease
accuracy. The first split algorithm is simple and its steps1)
to 3) are the same as those of the rapid feature selection
algorithm, except that there is no need to excludeOOB
data.

Because “mean decrease accuracy” consumes computa-
tion time, an alternative method is desired. To this end, we
introduce weighted sampling. Gender et al. suggested select-
ing randommtry inputs according to a distribution derived
from the preliminary ranking given by a pilot estimator [19].
Based on their concept, we propose another method for rapid
variable selection. In this paper, we call this method “first
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Fig. 6: Experiment: Relationship betweenv andaccuracy.
Dataset: Internet Advertisements.

split Gibbs” (FSG). After performing the first split algorithm,
first split Gibbs normalizes the score derived from step3)
of the first split algorithm. Then, let the normalized values
be Gi(i = 1, · · · ,M) and calculate the Gibbs distribution
by substitutingGi as a potential. The probability function
of the Gibbs distribution is defined as follows:

Pi =
exp(−βGi)∑M
i=1 exp(−βGi)

(β > 0).

To samplemtry variables according to the Gibbs distri-
bution, first split Gibbs repeats the first split algorithm
once again. Weighted samplings are performed by adjusting
the parameterβ. The original RF method samplesmtry
variables according to the uniform distribution. Substituting
β = 0 for the probability function of the Gibbs distribution,
the resulting distribution equals the uniform distribution.
When we substitute large values forβ, the probability that
the variables with largeGi are chosen increases.

Using high-dimensional data from UCI Machine Learning
Repository, we investigate computation time and quality
of variable selection, that is, whether important variables
are properly selected. After performing PCA and the three
methods, the accuracy of each is compared using only the
variables selected. The score at step3) of the rapid feature
selection algorithm is obtained by giving the1/r points to
the rth variable (r = 1, · · · , v).

As datasets for the experiment, we use an internet adver-
tisements dataset and the Gisette dataset. Readers can refer
to the details of these datasets at (http://archive.ics.uci.edu/
ml/data-sets/Internet+Advertisements, http://archive.ics.uci.
edu/ml/datasets/Gisette).

The experiment using internet advertisements results in
trees with several nodes. On the other hand, the experiment
using the Gisette dataset results in trees with many nodes.
For each dataset, Table 1 shows the number of samples and
variables and the accuracy calculated using all variables.

The computation environment is as follows: CPU Phenom
X4 9950, OS Windows7 Professional64bit, RAM 8GB.

Table 2: Comparison of computation time. (sec.)
Dataset FS FSG RFS RF PCA
Internet

Advertisements
8.39 16.21 9.22 272.46 38.50

Gisette 63.00 58.49 76.38 801.61 833.60

Fig. 7: Comparison of accuracy calculated using selected
variables only. Method: RFS, PCA, FS and FSG. Dataset:
Internet Advertisements.

4. Results and discussion
Table 2 shows the computation time of each method.

The parameters used in this experiment are set as follows:
mtry = ⌊

√
M+0.5⌋, ntree = 200, v = 5, se = 20, s = 15.

First split Gibbs and rapid feature selection need two-stage
estimations. At each stage,ntree = 100 is set.

Computation time depends on the property of a dataset,
thus the ranking of first split, first split Gibbs, and rapid
feature selection varied slightly. However, the computation
time of the rapid feature selection method was always lower
than the original RF. From this result, rapid feature selection
was found to be a much faster method than the original RF
method.

The results of the accuracy calculated using selected
variables only are plotted in Figures 7, 8 and 9. We can
compare rapid feature selection, PCA, first split and first split
Gibbs from these figures. In this experiment, the accuracy in
Table 1 is used as the evaluation criterion regarding whether
the information for classification is maintained. The result
showed that rapid feature selection can maintain accuracy
even if the number of dimensions becomes high.

The parameters used in this experiment are set as follows:
mtry = ⌊

√
M + 0.5⌋, ntree = 200, v = 5, β = 100

,s = 10 − 20, se = 25 − 35 for the internet advertisements
dataset andmtry = ⌊

√
M + 0.5⌋, ntree = 200, v = 5,

β = 100 ,s = 45− 55, se = 60− 70 for the Gisette dataset.
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Fig. 8: Comparison of accuracy calculated using selected
variables only. Method: RFS and PCA. Dataset: Gisette.

Fig. 9: Comparison of accuracy calculated using selected
variables only. Method: RFS, FS and FSG. Dataset: Gisette.

Rapid feature selection needs two-stage estimations. At each
stage,ntree = 100 is set.

From the results, we found that rapid feature selection
can select important variables more accurately than first split
and first split Gibbs. In addition, we found that trees with
many nodes do not affect the results. Even if we reduced the
number of variables to0.6% for the internet advertisements
dataset and0.92% for the Gisette dataset, the accuracy did
not fall below the evaluation criterion. These results indicate
that rapid feature selection maintains the information for
discrimination after variable selection.

The ranking of variables selected by each method are illus-
trated in Table 3. The results of the internet advertisements

dataset are used for this experiment. The parameters used in
this experiment are set as follows:mtry = ⌊

√
M + 0.5⌋,

ntree = 200, v = 5, β = 100, se = 34, s = 19.
In the table, the values under the three methods represent

the ID number of the variables. In this case, the ID number is
up to1, 558. Both rapid feature selection and first split select
almost the same variables because rapid feature selection
is based on first split. Here, about11% of the variables
are replaced, and the accuracy increased as a result of this
change. Because “mean decrease accuracy” is introduced in
step5) of the rapid feature selection algorithm, the accuracy
of rapid feature selection is higher than that of first split.
Therefore, the effectiveness of the “wrapper” method was
verified through this experiment.

First split Gibbs is also based on first split and about
37% of variables are replaced by weighted samplings. In this
case, the estimation by samplingmtry variables according
to the Gibbs distribution was successful and accuracy was
improved.

However, owing to the nature of the data, first split itself
can correctly select important variables. In contrast, first
split Gibbs reduces accuracy rate in such a situation. This
phenomenon can be observed in Figure 9. Adjusting the
value ofβ is difficult, thus first split Gibbs has a problem
of time to adjust the value ofβ. However, first split Gibbs
is a promising method as an alternative method of “mean
decrease accuracy,” if adjustment ofβ can be performed
well.

Our study showed that rapid feature selection performs
faster than the original RF method and can correctly select
important variables even if trees with many nodes are gen-
erated. Rapid feature selection cannot search the minimum
subset of significant variables for discrimination. However,
under the conditions that the number of variables to be
selected is predefined, rapid feature selection is useful to
rapidly search essential variables.

5. Conclusion
In this paper, we proposed the rapid feature selection

method based on an empirical rule: the rankings of impor-
tant variables obtained from “Gini importance” and “mean
decrease accuracy” differ slightly, whereas the members of
the top ranked variables in RF are almost the same. If
this empirical rule is solved mathematically, the reason our
method is successful becomes clear.

The rapid feature selection method involves a two-step
estimation. As the first step, candidates for important vari-
ables are chosen by a type of “filter.” At this stage, variable
importance is evaluated on the basis of “Gini importance.” In
the second stage, we select important variables by “wrapper.”
“Mean decrease accuracy” is adopted as the measure of
variable importance. We calculate “mean decrease accuracy”
using only variables chosen in the first stage. This is the rea-
son rapid feature selection can maintain speed and accuracy.
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Table 3: Illustration of variables selected by each method
Ranking FS FSG RFS PCA

1 3 3 352 2
2 1,425 1,154 1,400 1
3 1 2 1,484 3
4 2 352 3 1,244
5 969 1 1,425 1,484
6 1,154 1,400 1 1,456
7 1,423 1,484 2 1,436
8 1,199 969 1,154 352
9 1,556 1,119 1,423 1,400
10 1,255 347 1,199 1,279
11 1,119 458 1,556 549
12 1,345 896 1,255 918
13 1,400 994 1,119 360
14 1,484 1,048 1,345 541
15 1,214 1,109 1,555 557
16 1,555 1,199 1,048 337
17 352 1,225 1,109 915
18 1,048 1,230 1,144 173
19 1,109 1,424 820 1,363

Accuracy 0.973 0.982 0.979 0.973

The experimental results for computation time demon-
strated that rapid feature selection is significantly faster
than the original RF method. Although computation time
depends on the nature of the data and the number of variables
expected to be selected, it is certain that rapid feature
selection selects important variables much faster than the
original RF method when dealing with high-dimensional
data.

Rapid feature selection was also found to be able to
select important variables and maintain the information for
classification. In the experiment, although the number of
variables was reduced to about0.8% and only 200 weak
learners were used, rapid feature selection preserved a high
degree of accuracy. These results show that our proposed
method performance is sufficient for rapid variable selection.

By using rapid feature selection for various types of high-
dimensional data, a means to improve the score generated
at step 3) of the rapid feature selection algorithm may
be found. Computation time may be further reduced by
the combination of improved first split Gibbs and rapid
feature selection. Moreover, it is necessary to not only
collect empirical rules but also mathematical proof for the
development of rapid feature selection.
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Abstract— In this paper, we compare with the inverse
iteration algorithms on PowerXCellTM 8i processor, which
has been known as a heterogeneous environment. When
some of all the eigenvalues are close together or there are
clusters of eigenvalues, reorthogonalization must be adopted
to all the eigenvectors associated with such eigenvalues.
Reorthogonalization algorithms need a lot of computational
cost. The Classical Gram-Schmidt (CGS) algorithm, the
modified Gram-Schmidt (MGS) algorithm, and the House-
holder orthogonalization algorithm in terms of the compact
WY representation have been known as reorthogonalization
algorithms. These algorithms can be computed using BLAS
level-1 and level-2. Since synergistic processor elements in
PowerXCellTM 8i processor archive the high performance of
BLAS level-2 and level-3, the orthogonalization algorithms
except the MGS algorithm can be computed high-speed on
parallel computers.

Keywords: inverse iteration, eigenvalue decomposition, Classi-
cal Gram-Schmidt, Householder transformation, modified Gram-
Schmidt, PowerXCellTM 8i processor

1. Introduction
The eigenvalue decomposition of a symmetric matrix is

one of the most important operations in linear algebra. It is
used in molecular orbital of chemical, vibrational analysis,
image processing, data searches, etc..

Owing to recent improvements in the performance of
computers equipped with multicore processors, we have
had more opportunities to perform calculations on parallel
computers. As a result, there has been an increase in the
demand for an eigenvalue decomposition algorithm that can
be effectively parallelized.

Any n×n symmetric matrix is transformed into a symmet-
ric tridiagonal matrix by using a sequence of Householder
transformations [4], [9]. This preconditioning process helps
to shorten computational time drastically. Hence, eigenvalue
decomposition algorithms of symmetric tridiagonal matrices
are important. Several eigenvalue decomposition algorithms
of a symmetric tridiagonal matrix have been proposed [3],
[7], [10], [12], [13], [17]. They are classified into two types.
The first type of algorithm computes simultaneously all
the eigenvalues and the eigenvectors. Algorithms of this

type include the QR algorithm [10] and the divide-and-
conquer algorithm [3], [13]. The second type of algorithm
computes all or some eigenvalues and all or some eigen-
vectors. Algorithms for computing eigenvalues include the
root-free QR algorithm [12] and the bisection algorithm [10].
Algorithms for computing eigenvectors include the MR3

algorithm [7] and the inverse iteration algorithm with the
modified Gram-Schmidt (MGS) algorithm [10], [17]. LA-
PACK (Linear Algebra PACKage) [16], which is a software
library for numerical linear algebra, has codes that integrate
all the above-mentioned algorithms. These algorithms can
be parallelized, except the root-free QR algorithm.

The inverse iteration algorithm is an algorithm for com-
puting eigenvectors independently associated with mutu-
ally distinct eigenvalues. However, when some eigenval-
ues are very close to each other, the eigenvectors, which
are computed using the inverse iteration algorithm, must
be reorthogonalized. As reorthogonalization algorithms, the
Classical Gram-Schmidt (CGS) algorithm [10], the MGS
algorithm, the Householder orthogonalization algorithm [15]
are known. Reorthogonalization algorithms need a lot of
computational cost. The CGS algorithm is suitable algorithm
for parallel computing. The orthogonality of eigenvectors
computed by the CGS algorithm depends on the square
of the condition number of the eigenvectors, which are
generated using the inverse iteration, in the same cluster
of the eigenvalues [20]. The MGS algorithm is sequential
and inefficient for parallel computing. The orthogonality
of eigenvectors computed by the MGS algorithm depends
on the condition number. The Householder orthogonaliza-
tion algorithm can orthogonalize eigenvectors by using the
Householder transformation [19]. The orthogonality in the
Householder orthogonalization algorithm does not depend
on the condition number. The Householder algorithm is
sequential and inefficient for parallel computing. Ishigami et.
al. have developed parallel algorithms for the Householder
orthogonalization algorithm in terms of the compact WY
representation [15], which is named as the cWY algorithm
in this paper.

In ExaFLOP computing, since it is critical issue to min-
imize electricity, heterogeneous environments are suitable.
Consequently, it is important to validate the inverse iteration
algorithms with the CGS algorithm, the MGS algorithm, and
the cWY in heterogeneous environments. As a heteroge-
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neousenvironment, cell processor has PowerPC Processor
Element (PPE) and eight cores of Synergistic Processor
Elements (SPEs). PPE and SPEs can share the same memory.
Since SPEs are consisted as multicore, SPEs archive the high
performance of BLAS level-2 and level-3 [1]. Basic Linear
Algebra Subprograms (BLAS) is an application program-
ming interface standard for publishing libraries to perform
basic linear algebra operations such as vector and matrix
multiplications. BLAS level-1 can compute vector operations
such as inner products, dot products and vector norms. BLAS
level-2 and level-3 contain matrix-vector and matrix-matrix
operations, respectively. The CGS algorithm and the MGS
algorithm can be computed using BLAS level-2 and level-
1, respectively. The cWY needs BLAS level-1 and level-
2. Note that, the Householder orthogonalization algorithm
is almost computed using BLAS level-2. Therefore, these
orthogonalization algorithms should be performed in SPEs.
By using PPE, an implementation of an inverse iteration is
easy. In this paper, we compare with the CGS algorithm,
the MGS algorithm, and the cWY on PowerXCellTM 8i
processor.

In Section 2, we give a brief review on eigenvalue
decomposition. In Section 3, we explain an inverse iteration
algorithm and describe its orthogonalization algorithms. In
Section 4, we confirm each performance in the inverse
iteration algorithms with orthogonalization algorithms on
PowerXCellTM 8i processor.

2. Eigenvalue decomposition
Let A be n× n matrix such that

Avj = λjvj (j = 1, 2, ..., n) (1)

where λj (λj : λj ∈ C) and vj (vj : vj(6= 0) ∈ Cn)
are an eigenvalue and an eigenvector ofA, respectively. If
eigenvectorsvj of A are linear independent, then

AV = V D, (2)

D = diag
[
λ1 λ2 · · · λn

]
, (3)

V =
[
v1 v2 · · · vn

]
. (4)

Since V is nonsingular, the inverse matrixV −1 exists
and V −1V is equal to an identity matrixI. Hence,A is
decomposed as

A = V DV −1 (5)

Eq.(5) is called eigenvalue decomposition ofA.
Let A be real symmetric, thenλj ∈ R and vj ∈ R.

Moreover, eigenvectorsvj are orthogonal to each other, if
λ1 6= λ2 6= · · · 6= λn. Note here thatV becomes orthogonal
matrix by the normalizationvj → vj/‖vj‖. Then A is
decomposed as

A = V DV > (6)

whereV > denotes the transposed matrix ofV .

In a famous algorithm, a real symmetric matrixA is
similarly transformed into a symmetric tridiagonal matrix
T by using the Householder transformations. Namely,

Q>
AAQA = T, (7)

with suitable orthogonal matrixQA. After the tridiagonal-
ization,T is decomposed as

T = QTDQ>
T (8)

by some orthogonal matrixQT . Consequently, by combining
Eq.(7) with Eq.(8), the eigenvalue decomposition ofA is
given as

A = (QAQT )D(QAQT )
>. (9)

3. Inverse iteration algorithm
In this section, we introduce the inverse iteration algo-

rithm. When some of all the eigenvalues are close together
or there are clusters of eigenvalues, reorthogonalization must
be needed to all the eigenvectors associated with such
eigenvalues, since the eigenvectors needs to be orthogonal to
each other. Therefore, reorthogonalization algorithms should
be adopted.

In Section 3.1, we explain a concept of the inverse
iteration algorithm. In Section 3.2, 3.3, and 3.4, the CGS
algorithm, the MGS algorithm and the cWY are described,
respectively. In Section 3.5, these orthogonalization algo-
rithm are compared. In Section 3.6, we descrive a relation-
ship between BLAS and the orthogonalization algorithms.

3.1 Concept

When λ̃j is an approximate value ofλj and a starting
vector v(0)

j are given, the inverse iteration algorithm can
compute an eigenvector ofT . To this end, the following
equation is solved iteratively:(

T − λ̃jI
)
v
(k)
j = v

(k−1)
j (10)

If the eigenvalues ofT are mutually well-separated, the
solution of v(k)

j in Eq.(10) generically converges to the
eigenvector associated withλj as k goes to∞ The above
iteration algorithm is the inverse iteration algorithm. When
m eigenvectors are computed, the computational cost of this
algorithm is of ordermn. The computational cost is less than
that of other algorithms.In the implementation, the vector
v
(k)
j must be normalized to avoid overflow.

3.2 Classical Gram-Schmidt algorithm

The CGS algorithm has been proposed as the first re-
orthogonalization algorithm. In the CGS algorithm, a basis
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1: x1 = v1.
2: for j = 2 to m do
3: Generatevj in an algorithm.
4: Eq.(11) and Eq.(12) : Orthogonalizevj to xj by usingx1, · · · ,

xj−1.
5: end for

Fig. 1: Classical Gram-Schmidt algorithm.

1: for j = 1 to n do
2: Generatev(0)

j from random numbers.
3: k = 0
4: repeat
5: k ← k + 1.
6: Normalizev(k−1)

j .

7: Eq.(10) : Computev(k)
j by usingv(k−1)

j .

8: if |λ̃j − λ̃j−1| ≤ 10−3‖T‖, then
9: for i = j1 to j − 1 do

10: v
(k)
j ← v

(k)
j − [x1,x2, · · · ,xj−1]


x>
1

x>
2
...

x>
j−1

v
(k)
j

11: end for
12: else
13: j1 = j
14: end if
15: until some condition is met.
16: Normalizev(k)

j to xj .
17: end for

Fig. 2: Inverse iteration algorithm with the CGS algorithm.
j1 means the indexj of the first eigenvalue of a cluster.

vectorxj , which is an orthogonal vector invj , is computed
as follows:

x′
j = vj −

j−1∑
i=1

〈vj ,xi〉xi, (11)

xj =
x′
j

‖x′
j‖

(12)

In Eq.(11),〈vj ,xi〉xi means an orthographic projection on
the direction toxi of vj . Through vj is subtracted the
orthographic projection,vj can be picked out of elements
x1,x2, · · · ,xj−1. Thus,xj is orthogonalized.

Figure 1 shows the orthogonalization algorithm using the
CGS algorithm. Since Eq.(11) and Eq.(12) are computed
using an inner product, BLAS level-1 has to be adopted.
Therefore, to adopt BLAS level-2, Eq.(11) and Eq.(12)
should be transformed into the following vector product.

x′
j = vj − [x1,x2, · · · ,xj−1]


x>
1

x>
2
...

x>
j−1

vj . (13)

Figure 2 is a code, which is based on DSTEIN in
LAPACK and modified the orthogonalization process from
the MGS algorithm to the CGS algorithm. Specifically, line
10 in Figure 2 is changed to Eq.(13).

1: for j = 1 to n do
2: Generatev(0)

j from random numbers.
3: k = 0
4: repeat
5: k ← k + 1.
6: Normalizev(k−1)

j .

7: Eq.(10) : Computev(k)
j by usingv(k−1)

j .

8: if |λ̃j − λ̃j−1| ≤ 10−3‖T‖, then
9: for i = j1 to j − 1 do

10: v
(k)
j ← v

(k)
j − 〈v(k)

j ,xi〉xi

11: end for
12: else
13: j1 = j
14: end if
15: until some condition is met.
16: Normalizev(k)

j to xj .
17: end for

Fig. 3: Inverse iteration algorithm with the MGS algorithm.

3.3 Modified Gram-Schmidt algorithm
If the MGS algorithm is adopted to reorthogonalize eigen-

vectors, the computational cost is of orderm2n. There-
fore, the computational cost, for which eigenvectors of a
matrix T are computed, increases significantly. In general,
to implement the inverse iteration algorithm on computers,
the MGS algorithm with the Peters-Wilkinson method [17]
is adopted as the standard orthogonalization process. The
MGS algorithm with the Peters-Wilkinson method is also
available on DSTEIN, which is implemented in the LAPACK
code [16] of the inverse iteration algorithm for computing
eigenvectors of a real symmetric tridiagonal matrix. In
the Peters-Wilkinson method, when the distance between
the close eigenvalues is less than10−3‖T‖, these close
eigenvalues are regarded as members of the same cluster
of eigenvalues, and all of the eigenvectors associated with
these eigenvalues are orthogonalized.

Figure 3 shows the inverse iteration algorithm based
on the MGS algorithm with the Peters-Wilkinson method.
This loop includes the iteration based on Eq.(10) and the
orthogonalization of the eigenvectors. This orthogonalization
process becomes a bottleneck of the inverse iteration with
respect to the computational time. The MGS algorithm is
mainly based on BLAS level-1 such as the inner product
operation and the AXPY operation [1].

3.4 Householder orthogonalization algorithm
The Householder orthogonalization algorithm is one of the

alternative orthogonalization algorithms. When some vectors
vj , wj ∈ Rn satisfy ‖vj‖2 = ‖wj‖2, there exists the
symmetric matrixHj satisfying HjH

>
j = H>

j Hj = I,
Hjvj = wj defined by

Hj = I − sjyjy
>
j , (14)

whereyj = vj −wj andsj = 2/‖yj‖22. The transformation
by Hj is called the Householder transformation. Figure 4
shows the Householder orthogonalization algorithm. The
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1: for j = 1 to m do
2: Generatevj in an algorithm.

3: v′
j =

(
I − sj−1yj−1y

>
j−1

)
· · ·

(
I − s2y2y>

2

) (
I − s1y1y>

1

)
vj .

4: Computeyj andsj by usingv′
j .

5: xj =
(
I − s1y1y>

1

) (
I − s2y2y>

2

)
· · ·

(
I − sjyjy

>
j

)
ej .

6: end for

Fig. 4: Householder orthogonalization algorithm.

vector yj is the vector, in which the elements from1 to
j − 1 are the same as the elements ofv′

j and the elements
from j+1 to n are zero.v′

j andwj are defined as follows:

v′
j =

[
v′j{1} · · · v′j{j−1} v′j{j} · · · v′j{n}

]>
= Hj−1Hj−2 · · ·H2H1vj , (15)

wj =
[
v′j{1} · · · v′j{j−1} cj 0

]>
, (16)

where,

cj = −sgn
(
v′j{j}

)√√√√ n∑
i=j

v′j{i}
2. (17)

Hj , yj andsj arecomputed usingvj as follows:

Hj = I − sjyjy
>
j (18)

yj = v′
j −wj (19)

‖yj‖22 = (v′j{j} − cj)
2 +

n∑
i=j+1

v′j{i}
2 (20)

=
n∑

i=j

v′j{i}
2 − 2v′j{j}cj + c2j (21)

= 2
(
c2j − v′j{j}cj

)
. (22)

sj =
2

‖yj‖22
=

1

c2j − v′j{j}cj
. (23)

The vector ej in Figure 4 is thej-th vector of ann-
dimensional identity matrix.

The orthogonality of the vectorsxj generated by the
Householder orthogonalization algorithm does not depend
on the condition number of a matrixT . Therefore, the
Householder orthogonalization algorithm is more stable than
the MGS algorithm. On the other hand, being similar to the
MGS algorithm, it is sequential algorithm that is mainly
based on BLAS level-1. Its computational cost is higher
than that of the MGS algorithm. Thus the Householder
orthogonalization algorithm is an ineffective algorithm in
parallel computing.

By combination with the compact WY representation
[18], the Householder orthogonalization algorithm becomes
capable of computation with BLAS level-2 [20]. Hence, in
this paper, the cWY is adopted to an inverse iteration. Let
Y1 = y1 ∈ Rn×j and S1 = s1 ∈ R1×1. Matrices Yj

1: for j = 1 to m do
2: Generatevj in an algorithm

3: v′
j =

(
I − Yj−1S

>
j−1Y

>
j−1

)
vj .

4: Computeyj andsj by usingv′
j .

5: Eq.(24) and Eq.(25) : UpdateYj andSj by usingsj , yj , Sj−1 and
Yj−1.

6: qj =
(
I − YjSjY

>
j

)
ej .

7: end for

Fig. 5: Householder orthogonalization algorithm in terms of
the compact WY representation.

1: for j = 1 to n do
2: Generatev(0)

j from random numbers.
3: k = 0
4: repeat
5: k ← k + 1.
6: Normalizev(k−1)

j .

7: Solve linear equations :
(
T − λ̃jI

)
v
(k)
j = v

(k−1)
j .

8: if |λ̃j − λ̃j−1| ≤ 10−3‖T‖, then
9: jc ← j − j1.

10: if jc = 1 andk = 1， then
11: ComputeY1 = y1 andS1 = s1 by usingvj1 .
12: end if
13: v′

jc+1 =
(
I − YjcS

>
jc
Y >
jc

)
v
(k)
j .

14: Computeyjc+1 andsjc+1 by usingv′
jc+1.

15: Eq.(24) and Eq.(25) : UpdateYjc+1 and Sjc+1 by using
sjc+1, yjc+1, Sjc andYjc .

16: v
(k)
j ←

(
I − Yjc+1Sjc+1Y

>
jc+1

)
ejc+1.

17: else
18: j1 ← j.
19: end if
20: until some condition is met.
21: Normalizev(k)

j to vj .
22: end for

Fig. 6: Inverse iteration algorithm with the cWY algorithm.

and upper triangular matricesSj is defined recursively as
follows:

Yj =
[
Yj−1 yj

]
, (24)

Sj =

[
Sj−1 −sjSj−1Y

>
j−1yj

0 sj

]
. (25)

In this case, the following equation holds

H1H2 · · ·Hj = I − YjSjY
>
j . (26)

As shown by Eq.(26), the product of the Householder
matricesH1H2 · · ·Hj can be rewriten in a simple block
matrix form. HereI − YjSjY

>
j is called the compact WY

representation of the product of the Householder matrices.
Figure 5 shows the orthogonalization algorithm.

Figure 6 is a code, which is based on DSTEIN in
LAPACK and changed the orthogonalization process from
the MGS algorithm to the cWY algorithm. In other words,
the MGS algorithm (from line 4 to 15 in Figure 3) is rewriten
the cWY algorithm.In Figure 6, the indexjc denotes thejc-th
eigenvalue of the cluster in computing thejc-th eigenvector.
This index jc needs to compute and updateSj and Yj .
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Table 1: Comparison of the orthogonalization algorithms [5]
[20].

algorithms Computation Synchronization Orthogonality

CGS almost2m2n O(m) O(εκ(A)2)
MGS almost2m2n O(m2) O(εκ(A))
House almost4m2n O(m2) O(ε)
cWY almost4m2n O(m) O(ε)

Therefore,a variablejc should be confirmed on line 9 in
Figure 6.

The cWY algorithm has a stable orthogonality arising
from the Householder transformations, and its mathematical
calculation is mainly performed by BLAS level-2 such as
the product of a matrix and a vector and a rank-1 update
operation.

3.5 Comparison of the orthogonalization algo-
rithms

The cWY algorithm has a stable orthogonality arising
from the Householder transformations, and its mathematical
calculation is mainly performed by BLAS level-2 such
as the product of a matrix and a vector and a rank-1
update operation. As a result, this orthogonalization has
more stable and sophisticated orthogonality, and it is more
effective for parallel computing than the MGS algorithm.
Table 1 displays the differences in performance of the
four orthogonalization methods, considered in the above
sections. In this table, “House” denotes the Householder
orthogonalization algorithm.Computationdenotes the order
of the computational cost.Synchronizationdenotes the order
of the number of synchronizations.Orthogonality denotes
the norm‖V >V − I‖, whereV = [v1, · · · ,vn]. ε denotes
the machine epsilon andκ denotes the condition number of
a matrix. These are the results obtained from [5] and [20].

On the other hand, the computational cost in the CGS
algorithm is twice less than that in the cWY algorithm.
Therefore, when high orthogonality is not needed, the CGS
algorithm is also the suitable selection for the orthogonal-
ization.

3.6 Adoption of BLAS
The line from 1 to 7 on each algorithm is the code in

the inverse iteration algorithm without an orthogonalization
algorithm. This computational costmn is relatively smaller
than that in the inverse iteration algorithm with an orthogo-
nalization algorithm shown in Table 1. Therefore, we adopt
SPEs to orthogonalization algorithms.

In the CGS algorithm, the line 10 on Figure 2 can be
computed using BLAS level-2. In the MGS algorithm, BLAS
level-1 is adopted in the line 10 on Figure 3. In the cWY
algorithm, the line 13 and 16 on Figure 6 can be performed
with BLAS level-2, and the line 11 and 14 can be performed
with BLAS level-1.

4. Experiments
In this section, we describe some numerical experiments

performed using the CGS algorithm, the MGS algorithm,
and the cWY algorithm on PowerXCellTM 8i processor.

In the experiments, we use GigaAccel 180, which is
a PCI Express board with PowerXCellTM 8i processor.
PowerXCellTM 8i processor is one of Cell Broadband
EngineTM . The theoretical performances of a single and
double precision floating-point arithmetic operation on an
SPE in PowerXCellTM 8i processor are180GFLOPS and
90GFLOPS in2.8GHz, respectively. We implement those
algorithms by using Cell SDK 3.1 [2], which is developed
by the IBM corporate [14]. Cell SDK 3.1 includes the
parallelized BLAS for Cell Broadband EngineTM . The MGS
algorithm is implemented in Cell SDK 3.1.

As experimental matrices, we use three types. Type 1 is
a random matrix, of which elements are set to the random
number on the interval from0 to 1. Type 2 is shown as
follows: 

1 1
1 1 1

.. .
. . .

. ..
1 1 1

1 1

 . (27)

Type 3 is the glued-Wilkinson matrixW †
g , which is real

symmetric and has dimensions on the order of thousands.
The glued-Wilkinson matrix has been used to evaluate
the performance of the inverse iteration algorithms as the
benchmark problems of eigenvalue decomposition [6], [8].
W †

g consists of the block matrixW †
21 ∈ R21×21 and the

scalar parameterδ ∈ R1×1 and is defined as follow:

W †
g =



W †
21 δ
δ W †

21 δ

δ
. . .

. . .

. . .
. . . δ
δ W †

21


, (28)

whereW †
21 is defined by

W †
21 =



10 1
1 9 1

1
. ..

. . .
. .. 0

. ..
. . .

. .. 1
1 10


, (29)

and δ satisfies0 < δ < 1 and is also the semi-diagonal
element ofW †

g . SinceW †
g is real symmetric tridiagonal and

its semi-diagonal elements are nonzero, all the eigenvalues of
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Fig. 7: Relationship between dimension size and performance in the orthogonalization algorithms.

W †
g are distinct and real, and they are divided into 21 clusters

of close eigenvalues. Whenδ is small, the distance between
the minimum and maximum eigenvalues in any cluster is
small. In our experiments, we setδ = 10−4.

Figure 7 and Table 2 show the experimental results of the
orthogonalization algorithms. Time in Table 2 is the compu-
tational time.‖AV − V D‖F and ‖V >V − I‖F mean the
frobenius norm of synchronization and orthogonalization,
respectively.

In type 1, each eigenvalue is usually separated. On the
other hand, eigenvalues in type 2 and 3 become cluster.
Therefore,‖AV − V D‖F and ‖V >V − I‖F are smaller
than that in type 2 and 3.

In 2100 dimension size of type 1 in Table 2, the compu-
tational time in the MGS algorithm, which is implemented
by the IBM corporate, is smaller than that in the other
orthogonalization algorithms. However, the increasing rate
of the computational time in the MGS algorithm is higher as
shown in Figure 7(a). The MGS algorithm is computed using
BLAS level-1. On the other hand, the CGS algorithm and
the cWY algorithm are almost computed using BLAS level-
2. Therefore, in the computational time, the CGS algorithm
and the cWY algorithm are better.

In Figure 7(b) and Table 2,‖AV − V D‖F in the CGS
algorithm is nearly equal to that in the MGS algorithm.
‖AV −V D‖F of the cWY algorithm is the smallest, except
the case of6300 dimension size in type 3. The exception is
likely to be caused by the order ofvj . In the experiments,vj

is listed in descending order of eigenvalues, which are related
to eigenvectors. Therefore, by using the cWY algorithm with
suitable order ofvj , accuracy of eigenvector computation
can become more properly.

In type 1 and 2 of Figure 7(c),‖V >V − I‖F in the CGS
algorithm is nearly equal to that in the MGS algorithm. The
CGS algorithm and the MGS algorithm are focused on the
orthogonality of eigenvectors. On the other hand, in the cWY
algorithm, accuracy of eigenvalue decomposition is given
importance. Therefore, the orthogonality of eigenvectors is
something lower than that in the CGS algorithm and the
MGS algorithm.

In type 3 of Figure 7(c),‖V >V − I‖F in the CGS
algorithm is worse than that in the other orthogonalization
algorithm. Inδ = 10−4, eigenvalues in type 3 are extremely
close together. Therefore, the CGS algorithm is aborted that
vj is picked out.

In summarization, the computational time in the cWY al-
gorithm is adequate speedy. Furthermore,‖AV −V D‖F and
‖V >V − I‖F in the cWY algorithm is sufficient accuracy.
Hence, the cWY algorithm is suitable, except case that the
high-orthogonality of eigenvectors is given importance.

5. Conclusions
In this paper, we validated the parallel performance of

the inverse iteration algorithms with the CGS algorithm, the
MGS algorithm, and the cWY algorithm on PowerXCellTM

8i processor. PowerXCellTM 8i processor is one of het-
erogeneous environments. In ExaFLOP computing, since
it is critical issue to minimize electricity, heterogeneous
environments are suitable. SPEs in PowerXCellTM 8i pro-
cessor archive the high performance of BLAS level-2 and
level-3. The inverse iteration algorithms are algorithms for
computing eigenvectors and need a lot of computational cost.
Therefore, the algorithms should be computed with SPEs.
The experimental results show that the computational time
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of the CGS algorithm and the cWY algorithm are shorter
and‖AV −V D‖F and‖V >V −I‖F of the cWY algorithm
are sufficiently small.

In a future work, the inverse iteration algorithms should
be compared on General-purpose computing on graphics
processing units (GPGPU).
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algorithm time[sec.] ‖AV − V D‖F ‖V >V − I‖F
type1 (dimension size is 2100.)
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MGS 7.32 9.15× 10−15 2.50× 10−14

cWY 13.51 0.70× 10−15 2.61× 10−14

(dimensionsize is 4200.)
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MGS 64.51 1.25× 10−14 3.32× 10−14

cWY 94.27 0.067× 10−14 3.36× 10−14
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MGS 478.53 1.53× 10−14 3.49× 10−14
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MGS 5887.12 1.81× 10−14 3.47× 10−14

cWY 1408.27 1.01× 10−14 21.48× 10−14

type2 (dimension size is 2100.)
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(dimensionsize is 4200.)

CGS 247.92 1.79× 10−13 1.84× 10−13

MGS 2392.14 1.77× 10−13 1.97× 10−13

cWY 456.93 0.052× 10−13 4.96× 10−13

(dimensionsize is 6300.)

CGS 754.69 2.64× 10−13 2.83× 10−13

MGS 7864.63 2.63× 10−13 3.04× 10−13

cWY 1394.79 0.061× 10−13 7.45× 10−13

(dimensionsize is 8400.)

CGS 1718.53 3.51× 10−13 4.33× 10−13

MGS 16770.71 3.48× 10−13 4.53× 10−13

cWY 3186.58 0.078× 10−13 10.18× 10−13

type3 (dimension size is 2100.)

CGS 20.13 1.11× 10−12 1.00× 10−13

MGS 28.15 1.11× 10−12 1.07× 10−13

cWY 35.64 0.18× 10−13 1.06× 10−13

(dimensionsize is 4200.)

CGS 89.47 1.75× 10−12 7.72× 10−12

MGS 202.16 1.75× 10−12 1.53× 10−12

cWY 158.18 0.25× 10−12 0.95× 10−12

(dimensionsize is 6300.)

CGS 210.98 2.37× 10−11 77.29× 10−10

MGS 678.24 2.51× 10−11 2.00× 10−10

cWY 371.78 26.89× 10−11 2.17× 10−10

(dimensionsize is 8400.)

CGS 391.50 7.93× 10−12 757.15× 10−11

MGS 1422.99 7.94× 10−12 3.13× 10−11

cWY 678.31 3.13× 10−12 3.13× 10−11
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Abstract— Unified Modeling Language (UML) has already
been used in the analysis, design, and implementation of
many systems. Open Source Software (OSS) is often used
in software development. However, it is often the case that
OSS does not contain adequate documents, so the gener-
ation of software documents is important. Documents with
diagrams are especially important to understand software,
so it is important to generate documents with diagrams.
In order to process large-scale diagrams, or many source
codes automatically, formal and declarative representation
is needed. In this paper, we propose automatic generation
of documentation based on an attribute graph grammar.
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document

1. Introduction
In the software development environment, it is desirable

to have features that support programming. Many effective
tools have been developed to provide a framework for devel-
oping reliable programs. In software development, software
documents are very important to develop or modify systems.
Graphical representations such as flowchart or Unified Mod-
eling Language (UML) are often used in software design and
development because of their expressiveness.

UML for modeling in software development has been pro-
posed recently. In 2005, ISO/TEC 19501 became the stan-
dard. UML has already been used in the analysis, design, and
implementation of many systems. It makes use of various
types of diagrams, such as class and sequence diagrams, for
designing processes in system development, from upstream
to downstream processes. In order to automate the process-
ing of these graphical representations using computers, a
syntax for program diagrams must first be defined. Then,
in order to analyze the syntax of two-dimensional objects
such as program diagrams, the relationships between each
of the elements must also be described. Graph grammars
are one possible effective means for implementing these
methods. Graph grammars provide a formal method that
enables rigorous definition of mechanisms for generating
and analyzing graphs. The authors of the current paper have
proposed a graph grammar for package diagrams of UML
[1].

Open Source Software (OSS) is often used in software
development. However, it is often the case that OSS does
not contain adequate documents. Software documents are
needed in order to use or modify OSS, however, there are so
many examples of source code with no documents, therefore,
we need to generate documents from source code. Moreover,
documents with diagrams are especially important to under-
stand software, so it is important to generate documents with
diagrams. This is why we started our research so that we can
obtain documents with diagrams automatically.

Thus far, much research has targeted UML or software
documents. Research has also been done on UML [2] and
graph grammars and graph transformations with respect to
UML [3], [4], [5]. However, no research focuses on syn-
tax formalization for visual representation. As for software
document generation, some research has been done [6], [7],
[8]. This research targets documentation generation through
program source code or diagrams. The formal method is not
treated in this framework.

In order to process large-scale diagrams, or large amounts
of source code automatically, formal and declarative rep-
resentation is needed. In this paper, we propose automatic
generation of documentation based on an attribute graph
grammar.

2. Preliminary
2.1 Graph Grammars
Definition 1. ([9],[10]) Let Σ be an alphabet of node labels
and Γ be an alphabet of edge labels. Agraph over Σ
and Γ is a tupleH = (V,E, λ), where V is the finite
set of nodes,E ⊆ {(v, γ, w) | v, w ∈ V, v ̸= w, γ ∈
Γ} is the set of edges, andλ : V → Σ is the node

labeling function.E(v, w)
def
= {γ ∈ Γ | (v, γ, w) ∈ E}.

The label tuple of two nodesv, w ∈ V is lab(v, w)
def
=

(λ(v), E(v, w), E(w, v), λ(w)). 2

Definition 2. ([9]) A graph with (neighborhood controlled)
embeddingoverΣ andΓ is a pair(H,C) with H ∈ GRΣ,Γ

andC ⊆ Σ× Γ× Γ× VH× {in, out}. C is theconnection
relation of (H,C), and each element(σ, β, γ, x, d) of C
(with σ ∈ Σ, β, γ ∈ Γ, x ∈ VH , and d ∈ {in, out}) is a
connection instructionof (H,C). A connection instruction
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(σ, β, γ, x, d) will always be written as(σ, β/γ, x, d). Two
graphs with embedding(H,CH) and (K,CK) are isomor-
phic if there is an isomorphismf from H to K such that
CK = {(σ, β/γ, f(x), d) | (σ, β/γ, x, d) ∈ CH}. The set
of all graphs with embedding overΣ andΓ is denoted as
GREΣ,Γ. 2

Figure 1 shows an example of a graph. In Figure 1
H = (VH , EH , λH) is a graph withVH = {n1, n2},
EH = {(n1, α, n2)}, λH(n1) = a andλH(n2) = X. Here,
n1 andn2 indicate node ID. Furthermorea, andX indicate
node labels, nodes with a lowercase node label and with
a uppercase node label are terminal node and nonterminal
node, respectively,

a α
X

H

n1
n2

Fig. 1: An example of a graph

Definition 3. ([9]) An edNCE graph grammaris a six-tuple
GG = (Σ,∆,Γ,Ω, P, S), whereΣ is the alphabet of node
labels,∆ ⊆ Σ is the alphabet of terminal node labels,Γ is
the alphabet of edge labels,Ω ⊆ Γ is the alphabet of final
edge labels,P is the finite set ofproductions, andS ∈ Σ−∆
is the initial nonterminal. A production is of the formX →
(D,C) whereX is a nonterminal node label,D is a graph
overΣ andΓ, andC ⊆ Σ× Γ× Γ× VD × {in, out} is the
connection relation, which is a set of connection instructions.
A pair (D,C) is a graph with embedding overΣ andΓ. 2

Definition 4. (cf. [9], [10]) LetG = (Σ,∆,Γ,Ω, P, S) be an
edNCE graph grammar. LetHi−1 = (VHi−1

, EHi−1
, λHi−1

)
and Hi = (VHi , EHi , λHi) be graphs inGREΣ,Γ. In
addition, letvi ∈ VHi−1 , andp′i : X → (D′

i, C
′
i) ∈ P be a

production copy ofG such thatD′
i andHi−1 are disjoint.

si = (p′i, vi, D
′
i, b

′
i) is a derivation specificationof G if

p′i ∈ copy(P ), λHi−1(vi) = X, D′
i
∼= D, b′i : VD′

i
→ VDi .

We write Hi−1 →vi,p′
i

Hi, or just Hi−1 →
si

Hi, if

λHi−1(vi) = X andHi = Hi−1[vi/(D
′
i, C

′
i)]. Hi−1 →

si
Hi

is called aderivation step, and a sequence of such derivation
steps is called aderivation. 2

An example of a production is shown in Figure 2. In
the figure, a box is a nonterminal node and a filled circle
is a terminal node.X, Y , and b are node labels andv0,
v1, and v2 are node IDs. Nodes with the same node label
can appear in a graph, while nodes with same node ID will
never appear in a graph. The production of Figure 2 indicates
that after the removal of a nonterminal node with labelX,
embed the graph consisting of terminal node with labelb
and the nonterminal node with labelY . Each production has

connection instructions. The connection instruction of this
production is(a, α/β, v1, in), but this connection instruction
is not described in the notation of Figure 2.

In Figure 3, the production of Figure 2 and its connection
instruction are drawn simultaneously. The large box in
Figure 3 indicates the left-hand side, and two nodes with
label b and Y are on the right side of the production of
Figure 2. Node labels and edge labels that are described
outside of the large box indicate connection instruction such
that (a, α/β, v1, in).

X

v0

Y
b γ

v1
v2

 

Fig. 2: An example of a production

X

Y
bβ γα

a

v0

v1
v2

Fig. 3: An example of a production with the connection
relation

An example of application of the production is shown in
Figure 4. In Figure 4,H = (VH , EH , λH) is a graph with
VH = {n1, n2}, EH = {(n1, α, n2)}, λH(n1) = a, and
λH(n2) = X. The production copyp′ of p is as follows:p′ :
X → (D′, C ′) whereX = λH(n2), D′ = (VD′ , ED′ , λD′)
such thatVD′ = {n3, n4}, ED′ = {(n3, γ, n4)}, λD′(n3) =
b, λD′(n4) = Y , andC ′ = {(a, α/β, n3, in)}.

a a b
Y

α β γ
X

H H'

n1 n2
n1 n3 n4

n2, p'

Fig. 4: An example of applying a production rule

We say thatH is the host graphandH ′ is the resulting
graph,X is themother nodein Figure 4, the graph consisting
of terminal node with labelb and the nonterminal node with
label Y in Figure 2 is thedaughter graph. At first, we
remove the nodeX and edges that connect with nodeX
from host graphH. Next, we embed the daughter graph,
including nodeb and nodeY . Then we establish edges
between the nodes of daughter graph and the nodes that were
connected to the nodeX using the connection instructions
on the productionp′. Therefore, the edge labelα is rewritten
to β by the productionp′.
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Definition 5. ([11], [12]) An Attribute edNCE Graph
Grammar is a three-tupleAGG = ⟨GG,Att, F ⟩, where

1. GG = (Σ,∆,Γ,Ω, P, S) is called anunderlying graph
grammar of AGG. Each productionp in P is denoted by
X → (D,C).

2. Each node symbolY ∈ Σ of GG has two disjoint
finite setsInh(Y ) andSyn(Y ) of inheritedandsynthesized
attributes, respectively. The set of all attributes of symbol
X is defined asAtt(X) = Inh(X) ∪ Syn(X). Att =∪

X∈Σ Att(X) is called theset of attributesof AGG. We
assume thatInh(S) = ∅. An attributea of X is denoted
by a(X), and the set of possible values ofa is denoted by
V (a).

3. Associated with each productionp = X0 → (D,C) ∈
P is a setFp of semantic rules, which define all the attributes
in Syn(X0)

∪
X∈Lab(D) Inh(X). A semantic rule defining

an attributea0(Xi0) has the forma0(Xi0) := f(a1(Xi1), · ·
·, am(Xim)). Heref is a mapping fromV (a1(Xi1))×· · ·×
V (am(Xim)) into V (a0(Xi0)). In this situation, we say that
a0(Xi0) depends onaj(Xij ) for j, 0 ≤ j ≤ m in p. The set
F =

∪
p∈P Fp is called theset of semantic rulesof G. 2

Attribute values are calculated by evaluating attributes
according to semantic rules on the derivation tree.

2.2 UML

Unified Modeling Language (UML) is a notation for mod-
eling object-oriented system development using diagrams.
UML can be divided into structural diagrams and behavioral
diagrams. Structural diagrams are used to describe the struc-
ture of what is being modeled and include class, object, and
package diagrams. Behavioral diagrams are used to describe
the behavior of what is being modeled and include use-case,
activity, and state-machine diagrams.

Structural diagrams include class diagrams, which de-
scribe the static relationships between classes, and package
diagrams, which group classes and describe relationships
between packages and package nesting relationships.

Figure 5 shows an example of a package diagram. The
box with a rectangle at the upper left indicates a package.
The box with three compartments is a class. Each of the
three parts indicates its class name, its attribute, and its
methods from top to the bottom. A plus with a circle is
used to represent which components the package contains.
Package 1 contains Package 2 and Package 4, and Package
4 contains Class 1 and Class 2.

3. Graph Grammar for UML Package
Diagrams

In this section, we describe our Graph Grammar for
Package Diagrams (GGPD), for UML package diagrams.

+

Package1

+

+

Package2 Package4

Class1 Class2Package3

Fig. 5: An example of a package diagram

3.1 Grammar Overview
Definition 6. 　The Graph Grammar for Package Diagrams
(GGPD), for UML package diagrams, is a six-tupleGGPD
= (ΣPD, ∆PD, ΓPD, ΩPD, PPD, SPD). Here,ΣPD = {
S, A, T, L, R, M, rop, sp, lep, rip, mip, lec, mic, ric } is a
finite set of node labels,∆PD = { rop, sp, lep, rip, mip, lec,
mic, ric } is a finite set of terminal node labels,ΓPD = {
∗ }, ΩPD = { ∗ }, PPD = { P1, ..., P17 } is a finite set of
production rules, andSPD = { S} is the initial non-terminal.
2

The GGPD generates package hierarchy diagrams. Ter-
minal nodes generated by GGPD have the following node
labels: rop (root of package), sp (single package), lep (left
side package), rip (right side package), mip (package located
between lep and rip), lec (left side class), ric (right side
class), and mic (class located between lec and ric).

GGPD is a context-free grammar and there are 17 produc-
tion rules. An example of GGPD production rule is shown
in Figure 6.

T

lep

L

0

1

2

Fig. 6: An Example of a production rule of GGPD
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In the figure, the production rule can be applied to a
node labeledL, which is a non-terminal node, to generate
a terminal node with the label lep, representing a package,
and a non-terminal node labeledT .

A node with a capitalized label indicates a nonterminal
node, and a node with an uncapitalized label indicates
a terminal node. Our grammar generates directed graphs.
However, we drew the graphs without arrows as we assumed
the direction of each edge was from the top down.

We omit descriptions of all of the production rules because
of space limitations.

3.2 Example of Derivation
Figure 7 shows an example of a GGPD derivation. In this

example,G0 is a graph with the node labeledS. The node
ID is 1 (lower right of the node).

Then the production ruleP1 is applied to a non-terminal
node labeledS with node ID 1, which is the initial non-
terminal node. That is, remove a mother node with labelS
and node ID 1, then embed a daughter graph in theP1. In
this case, the daughter graph is the node with labelA. This
produces the non-terminal node labeledA with node ID 2,
to which theP3 production rule is applied. That is, graph
G1, which consists of node with node ID 2, is obtained.

After application of the productionP3, the terminal node
labeledrop and a non-terminal node labeledT are generated.
We apply productions to obtain a graph that corresponds to
UML package diagrams. In this case, we can obtain graph
G9.

We can obtain a derivation tree from a derivation sequence
of production. Figure 8 shows the derivation tree correspond-
ing to Figure 7. In Figure 8, the labels show the names of
the production rules.

4. Document Generation
In this section, we explain some attributes and semantic

rules for document generation. In this paper, we target
a documentation that has diagrams and explanations that
correspond to diagrams. We generate documents by attribute
evaluation that can be executed automatically on derivation
trees.

We can obtain derivation trees after generating diagrams
based on our grammar. Figure 8 shows an example of a
derivation tree. In the Figure, for example, Production 3 (P3)
is applied to a node that was generated by Production 1 (P1).
Derivation trees describe a process of applying productions.

Every node generated by productions of GGPD has some
attributes. An attribute has two types of values called inher-
ited attributes and synthesized attributes. Attribute values are
obtained by calculating semantic rules on derivation trees.
Values of inherited attributes are calculated by top-down on
derivation trees, and bottom-up calculation generates values
of synthesized attributes.

Figure 9 shows an example of production rules and their
corresponding semantic rules. The upper part of Figure
9 indicates a production rule and the lower part shows
semantic rules. This production rule rewrites a nonterminal
node with node label R to a graph consisting of terminal
node rip and nonterminal node T.

In the semantic rules part, we then find three semantic
rules that process the values of local and global attributes.
The global attribute preserves the entire explanation of the
diagrams. The local attribute retains local information such
as parent and child relations. These attributes are categorized
as synthesized attributes.

In Figure 9, local(1) stores node name of the node with
ID 1 (in this case, package diagram’s name); the value of
local(1) is assigned to local(0).

Figure 10 shows an example of a derivation tree with
document generation semantic rules corresponding to Figure
7.

In order to obtain documentation, attribute evaluation is
processed following a bottom up orderP4 → P9 → P10 →
P14 → P6 → P13 → P6 → P3 → P1.

First,P4 located at the lower left on the derivation tree is
processed. In this case, we assume that the package name is
“package 9,” which is substituted for the local attribute of
the node with ID 9. Local(9) is substituted for local(8). Null
is substituted for global(9)

Next, P9 is processed. Here, package name is substituted
for local(7), and local(5) has the value of local(7). The
global(5) stores a partial explanation of diagrams. In this
case, global(5) holds information that node with ID 7 in
Figure 7 has packages. The global(5) has the following
sentence: “package 7 has package 9”.

Global value is similarly obtained from the above pro-
cedure. The global(1) explains the entire diagram; in this
example, global(1) is explained in Figure 11.

Since semantic rules are declarative defined, we can obtain
an explanation corresponding to diagrams if once we define
the semantic rules.

5. Conclusion
In this paper, we have defined attributes and semantic

rules for a graph grammar for UML package diagrams. We
can generate documents corresponding to diagrams automat-
ically according to a declarative definition.

A future issue for study is the synchronization between
diagram and documentation and the implementation of sys-
tems that can generate documents with animation. We would
also like to construct a graph grammar for other diagrams
in UML.
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Abstract - In the production of electronic circuit boards in 
industry, electronic components are placed onto the circuit 
board by component placement machines.  The actions of 
multifunction placement machines are roughly divided into 
pick-up phase and placing phase.  In the past, these two 
phases were typically optimized independently of each other 
to be combined, which do not necessarily lead to the overall 
optimization. Therefore, in this paper, the action of 
multifunction component placement machines is modeled in a 
different way than that in the conventional approach, and a 
method for comprehensive optimization of pick-up phase and 
placing phase is proposed. The proposed method, which takes 
into account nozzle allocation, can also be applied to the 
load balancing of component placement machine production 
lines. 

Keywords: component placement machine, line-balancing 

 
1 Introduction  

Electronic circuit boards are produced through several 
processes (printing, placing, heat treatment, etc.), among 
which the process of placing the components onto the circuit 
boards is the most significant and often becomes the 
bottleneck.  In this process, components are automatically 
placed onto the circuit boards by machines called component 
placement machines.  Since the circuit board production 
efficiency is dependent on the performance of the component 
placement machines, a variety of research has been published 
on motion optimization and operation of each of the several 
types of component placement machines already developed.  
However, a relatively new type of component placement 
machines called multifunction component placement 
machines have a large degree of freedom of motion, and only 
a few researches are reported on optimization algorithms for 
this type of machines.  In the present paper we consider 
multifunction component placement machines and call 
hereafter “component placement machines” in abbreviation.  
 
1.1 Component placement machines  

At circuit board production sites in industry, 
production is usually carried out through production lines 
composed of multiple component placement machines 

connected in series.  More specifically, it is determined in 
advance which components will be assigned to each 
component placement machine (machine allocation). When 
the placing of components allocated to one component 
placement machine is complete, the circuit board is carried to 
the next component placement machine by a conveyor.  To 
place all of the components on a circuit board, it is necessary 
for the circuit board to pass through all component placement 
machines in the line.   

A simplified schematic of a component placement 
machine is shown in Figure 1.  The component placement 
machine has a head which has multiple nozzles for picking 
up and placing components.   

 
Figure1   Component placement machine 

The component placement machine places components 
on a circuit board by repeating the following actions:  

 
(1) The head moves to a position above the 

component feeder and the nozzles pick up the 
required components from the appropriate feed 
slots;  

(2) The head moves to the camera which checks 
whether the components have been picked up 
correctly;  

(3) When it has been confirmed that the components 
have been picked up correctly, the head moves 
above the circuit board and travels around the 
board, placing the components in their respective 
places;  

(4) When all of the picked-up components have been 
placed, the head returns to the initial position 
above the component feeder.  
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The abovementioned sequence of actions is called a 
turn. Generally, multiple turns are carried out before all 
components allocated to one component placement machine 
have been placed.   

The time required for placing components in a turn is 
approximately proportional to the travel distance of the head.  
The head travel distance is shorter if picking-up and placing 
positions are closer together.  In order to optimize the picking 
up and placing actions, it is important to assign components 
to turns so that the total sum of travel distance of the head is 
the minimum.   
 
1.2 Mounting method of component placement 

machines  

There are two typical methods of mounting for 
component placement machines; alternating mounting and 
separate mounting.  

In the alternating mounting method, two heads 
positioned opposite each other alternately place components 
onto a central circuit board, and while one head is performing 
a component placing action, the other head performs a 
component picking-up action.  Since placing usually requires 
more time than picking up, the motion time of the 
component placement machine is determined only by the 
component placing action.  

In the separate mounting method, on the contrary, only 
one head places the components onto one circuit board;  there 
are two conveyors, which carry two boards independently on 
each other.  Unlike the alternating mounting method, the 
component placement machine’s motion time in the separate 
mounting method is determined by both the component 
placing action and the pick-up action.  

Most component placement machines are equipped 
with two conveyors, and it is possible to carry out separate 
mounting using two conveyors as well as alternating 
mounting using only one conveyor; recently, however, the 
most common placing method used at circuit board 
production sites has been shifting from alternating mounting 
to separate mounting.  Figure 2 shows a simplified 
schematic of each mounting method.  

 

 
(a)                               (b) 

Figure 2   Separate mounting (a) and alternate mounting (b) 
 

The component placement machine shown in Figure 1 
is just one side of the component placement machine shown 
in Figure 2 (i.e., lower half of Figure 2).  In the following, 

“one machine” refers to one side of a machine that uses the 
separate mounting method (upper or lower half).  
 
1.3 Problems concerning motion optimization of 

component placement machines  

In both the pick-up action and the placing action, the 
travel distance of the head may vary greatly depending on 
which components are allocated to which nozzle (nozzle 
allocation), because the size of the head is not negligible 
compared to the size of the circuit board and the component 
feeder.  Figure 3 shows how the travel distance of the head 
when placing components varies by nozzle allocation.  
 

 
(a) 

 

 
(b) 

 
Figure3   Difference of travel distance by nozzle allocation 

 
Also, to increase the speed of the pick-up action, recent 

component placement machines are capable of picking up 
multiple components at the same time (gang pick), if the 
interval of nozzle positions and that of slot positions of the 
concerning components are the same.  For example, with the 
arrangement of the component feeder shown in Figure 4, it is 
possible for the two components supplied from slots 5 and 7 
to be picked up simultaneously by nozzles B and D, 
respectively.  Gang pick reduces the number of component 
picking-ups and accelerates the picking-up action.  
 

 
Figure4   Gang pick 

 
Thus, considering the problem of nozzle allocation is 

very important.   
In the former research, however, nozzle allocation was 

not often given sufficient consideration. Yamamoto et al. 
[3] proposed a method for optimizing the placing action 
taking the nozzle allocation into account and achieved a 
reduction in head travel distance of approximately 20% 
compared to conventional methods.  This research, however, 
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considered the placing action only and neglected the pick-
up action.  When the placing time is longer than the pick-up 
time in the alternating mounting method, this approach is 
adequate.  On the contrary, in the separate mounting method, 
both placing time and pick-up time are reflected in the 
circuit board production time, and so the assumption of the 
above approach does not hold.  At actual circuit board 
production sites in industry, when motion optimization of 
component placement machines under the separate 
mounting method is performed, nozzle allocation is 
determined from the point of view of optimization of the 
picking-up action first and optimization of the placing 
action is carried out next.  The method proposed by 
Yamamoto et al. can cope with the alternating mounting 
method, but it cannot sufficiently optimize component 
placement machines under the separate mounting method.  

In this paper, we propose first a model for 
simultaneous optimization of picking-up action and placing 
action by considering nozzle allocation in one component 
placement machine under the separate mounting method.  

At actual sites where component placement machines 
are in operation, multiple machines are connected to form a 
production line.  Machine allocation, turn allocation, nozzle 
allocation, component pick-up action, and component placing 
action should really be optimized in a comprehensive way 
that also takes into account line balancing.  As for line 
balancing, a method for allocating components by finding 
placing paths in component placement machines has been 
proposed, but this method does not consider nozzle allocation 
or component pick-up action [2].  

The model proposed in this paper is basically intended 
for motion optimization of one machine, but line balancing 
can be carried out at the same time by using a simple 
extension. 
 
2 Formulation of the problem  

In this paper, we consider the following two problems.  
 
2.1 Problem of motion optimization of one machine  

This is the problem of finding turn allocation, nozzle 
allocation, pick-up order, and placing order for given 
components, with the aim of carrying out motion 
optimization of one component placement machine on a 
production line, where components are already allocated to 
machines.  In this paper, the arrangement of the slots in the 
component feeder is given, and it is assumed that one type of 
component is supplied from exactly one feed slot and the 
same type of component is not placed in multiple slots.  Also, 
in real component placement machines, the type of 
component that can be picked up and placed may be limited 
according to the type of nozzle, but, here, it is assumed that 
all types of components can be picked up and placed by any 
nozzle.  

The motion time spent on each circuit board by the 
component placement machine is approximately proportional 
to the travel distance of the head, and so the head travel 

distance is used to evaluate the solution.  However, to take 
into account the number of component pick-ups, the time 
spent for picking up is converted to head travel distance and 
added to the evaluation value.  Furthermore, because the 
head is driven by motors operating independently in the x- 
and y-directions, the head travel distance is defined as the 
Chebyshev distance.  
 
2.2 Problem of motion optimization of multiple 

machines and line balancing  

This is the problem of load balancing between 
machines on a production line composed of multiple 
machines.  This is an extension of the problem of motion 
optimization of a single machine.  In this problem, it is 
necessary to find the machine allocation of components as 
well as turn allocation, nozzle allocation, pick-up order, and 
placing order for each machine.  

The amount of time spent per circuit board in the 
production line is the motion time of the machine that causes 
bottlenecking, so the solution is evaluated by using the head 
travel distance of the bottleneck machine.  In the same way 
as the problem of motion optimization of one machine, the 
time spent picking up is converted to distance and added to 
the evaluation value.  
 
3 The algorithm  

In our proposed algorithm, component turn allocation 
is sought in combination with nozzle allocation using a local 
search technique.  Also, these allocations are evaluated by 
finding the pick-up and placing paths for each allocation and 
calculating the respective head travel distance and the 
number of pick-ups.  

A flowchart of the proposed algorithm is shown in 
Figure 5.  

 
Figure5   Flowchart of the proposed algorithm 
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3.1 Method of expression of nozzle allocation  

3.1.1 Expression of nozzle allocation for a single 
machine  

Individual numbers are assigned to the components, 
and nozzle allocation is expressed together with component 
turn allocation by arranging the assigned component numbers, 
as shown in Figure 6.  Component turn allocation is obtained 
by dividing up the arranged components based on the number 
of nozzles in the head, starting from the leftmost component.  
Also, the sequence of component numbers within a turn 
indicates the nozzle picking them up.  Figure 6 shows an 
example of nozzle allocation in a component placement 
machine with four nozzles.  The character “e” is inserted 
instead of a component number when the nozzle does not 
pick up a component.  

 

 
Figure6   Nozzle allocation in a placement machine 

3.1.2 Expression of nozzle allocation for multiple 
machines and line balancing  

As in the expression of turn allocation and nozzle 
allocation in the problem of motion optimization of a single 
machine, individual numbers are assigned to the components, 
where nozzle allocation is expressed together with 
component machine allocation, and turn allocation is 
performed by arranging the assigned component numbers.  
Machine allocation consists of several turns.  Also, the 
sequence of component numbers within a turn indicate the 
nozzle picking them up.  Figure 7 shows an example of 
nozzle allocation in  component placement machines with 
four nozzles.  
 

 
Figure7   Nozzle allocation in component placement 

machines 
 
3.2 Determination of component picking-up and 

placing order  

To evaluate a solution corresponding to a certain 
nozzle allocation, the component pick-up order and the 
component placing order are determined as described below, 
and the respective head travel distances and number of pick-
ups are calculated.  

 

3.2.1 Determination of the order of component 
picking-up order  

When the nozzle allocation is given, the position of the 
head above the component feeder is settled.  It is possible to 
pick up components in the shortest head travel distance by 
picking them up in order from the left or right of the head 
position.  Also, the head position during pick-up may overlap 
for several components and, in this case, the components can 
be picked up at the same time with one up-down motion 
(gang pick mentioned before).  
 

3.2.2 Determination of component placing order  
When the nozzle allocation is given, the center of the 

head above the circuit board when placing each component, 
as shown in Figure 8, is settled.  Here, the shortest path when 
traveling around the head centers can be regarded as a type of 
traveling salesman problem (TSP).  Therefore, the placing 
order is determined using the nearest neighbor (NN) method, 
which is often used as the initial solution to the TSP.  The 
NN method is a typical greedy method, and it generates a 
solution by repeating the operation of moving from the 
current point to the nearest point until all points have been 
visited. 
 

 
Figure8   Location of the center of the head 

 
3.3 Improvement of component placing order  

After component nozzle allocation has been improved, 
improvement of the placing path of each turn is carried out.  
A local search technique based on the first admissible move 
strategy using a 2-opt neighborhood is used to improve the 
placing path.  A 2-opt neighborhood is a set of solutions 
generated by swapping two branches on a path, and it is often 
used to solve problems such as the TSP.  
 
4 Computational experiment  

A computational experiment was carried out to 
evaluate the effectiveness of the proposed method.  The 
experiment environment consisted of an Intel Pentium CPU 
B940 2.00 GHz with 4.00 GB of memory, and the language 
used was C.  

The number of slots in the component feeder was set at 
30 and the distance between slots at 10 mm.  The positional 
relationship of the circuit board and the component feeder 
and camera is set as shown in Figure 9.  Also, the number of 
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nozzles was 16, and these nozzles were arranged on the head 
as shown in Figure 10.  These settings were determined with 
reference to real component placement machines.  

The experiment was done for 27 types of circuit boards 
randomly generated.  

 

 
Figure9   Location of the circuit board and the component 

feeder and camera 
 

ܽ = ܾ = 10mm 
Figure10   Location of the nozzles on the head 

 
4.1 Comparison with the conventional methods in the 

case of a single machine  

An experiment comparing the proposed algorithm and 
conventional methods was carried out with regard to 
optimization of the pick-up and placing actions of one 
machine.  

As for conventional methods, we tried two types of 
methods; pick-up first and placing first.  In the former (pick-
up first) method, picking-up action, turn allocation and 
nozzle allocation are determined before placing, which is 
determined by NN and 2-opt methods.  This method reflects 
the actual process of optimization in the production of 
electronic circuit boards in industry.  In the latter (placing 
first) method, the order of placing, turn allocaton and nozzle 
allocation are fully optimized before picking-up.  Although 
this latter method is rather imaginary and not used in real 
industry, we conceived it in order to explore the superiority 
of picking-up first and placing first. 

Figure 11 shows the relationship between the 
computation time and the evaluation value for the proposed 
algorithm and the conventional method (both 2 types) with 
regard to Data 14.  It can be seen that the proposed algorithm 
converges to a better solution than those by the conventional 
methods.  

 
Figure11   Relationship between the computation time and 

the evaluation value (Data 14) 
 

Table 1 gives the evaluation values obtained after a 
sufficient length of time using the algorithm of the 
conventional methods and the evaluation values obtained 
after an equivalent length of time using the proposed 
algorithm.  The algorithm of the proposed method gives 
better solutions for all data than those by the algorithms of 
the conventional method.   

As for the conventional method with pick-up first, 
Table 1 shows that the gap increases as the circuit board size 
increases.  This is presumed to be because the cost of the 
placing action increases in proportion to the circuit board size, 
and so the proposed method, in which searching progresses 
while taking account of placing, becomes more advantageous.  
Table 1 shows also that the gap decreases as the number of 
component types increases.  This is presumed to be because 
the greater the number of component types, the greater the 
cost of the pick-up action, and so improvement progresses 
easily, even in the conventional method.  

As for the conventional method with placing first, 
Table 1 shows that the gap decreases as the circuit board size 
increases.  This is presumed to be because the cost of the 
picking up action becomes more significant than the placing 
action as the circuit board size increases.   

Table 2 gives the evaluation values obtained by the 
proposed method and the modified version of the proposed 
method where SA (simulated annealing) is used instead of 
local search with sufficient length of time.  Parameters of SA 
have been adequately by preparatory test.  Table 2 shows that 
local search gives relatively good solution in short time of 
computation, although the evaluated value itself is rather 
inferior to SA.  In addition, the gap between SA and local 
search grows as the number of components increases;  3.71% 
for 64 components, 5.96% for 256 components, 13.98% for 
512 components, and so on.  This is presumed to be because 
when the number of components increases, the search space 
grows wide and LS tends to fall into a local optimal solution. 
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Table1  Comparison of conventional procedure and our algorithm                Table2   Comparison of LS and SA 

             
 
4.2 Line balancing  

An example of line balancing using the proposed 
algorithm is given.  Figure 12 shows the relationship between 
the head travel distance and the computation time when 
placing is done by 1, 2, 4, and 8 component placement 
machines using Data 14.  Under the computation time within 
2 seconds, multiple searches were performed while gradually 
increasing the computation time.  By using the algorithm of 
the proposed method, it can be seen that the evaluation value 
improves in all of the cases using different numbers of 
machines.  Also, the rate of improvement from the respective 
initial solution is 27.8% for 1 machine, 27.7% for 2 machines, 
25.0% for 4 machines, and 26.5% for 8 machines. 

 

 
Figure12   Line-balancing of 1, 2, 4, and 8 component 

placement machines (Data 14) 
 

 
5 Conclusions  

We have discussed in this paper the motion 
optimization of multifunction component placement 
machines and proposed a model for comprehensive 
optimization of machine allocation, turn allocation, nozzle 
allocation, placing order, and pick-up order.  Also, it has 
been confirmed by computer experiment that performing 
motion optimization using this model gives a sufficiently 
good solution compared to that of a conventional method.  

Future work includes new algorithm of obtaining good 
solution as SA in a short time of computation even if the 
number of components increases.   Also, it is desired to 
formulate the problem as an integer programming problem 
and obtain an exact optimal solution by IP solver and 
compare with the proposed method.   Finally, it is hoped to 
create a model that can also handle cases in which some 
constraints for nozzle allocation is imposed, cases that also 
take the arrangement of components in the component feeder 
into account, and cases in which several types of circuit 
boards are produced.   
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Data
No.

chip
num

variety
of chips

board
size

（mm）
eval

 time
（ms）

eval
 time
（ms）

eval
time
（ms）

1 64 10 100 3279 3621 3860 3633 2912 3486 11.19 24.56

2 64 10 200 4496 3590 4403 3552 3615 3445 19.60 17.90
3 64 10 300 5739 3585 5038 3571 4789 3482 16.55 4.94
4 64 20 100 3305 3551 4144 3593 3042 3450 7.96 26.59
5 64 20 200 4436 3553 4538 3663 3803 3428 14.27 16.20
6 64 20 300 5368 3538 5289 3584 4594 3454 14.42 13.14
7 64 30 100 3218 3545 4022 3731 3089 3409 4.01 23.20
8 64 30 200 4341 3550 4773 3594 3849 3426 11.33 19.36
9 64 30 300 5428 3578 5352 3596 4857 3416 10.52 9.25

10 256 10 100 13250 15162 15343 15382 11149 13765 15.86 27.33
11 256 10 200 17711 15108 18227 15269 14387 13771 18.77 21.07
12 256 10 300 22936 14906 20221 15191 17507 13750 23.67 13.42
13 256 20 100 12976 15057 16006 15227 11321 13739 12.75 29.27
14 256 20 200 17290 15150 18754 15348 14620 13703 15.44 22.04
15 256 20 300 23071 15077 21562 15198 18597 13783 19.39 13.75
16 256 30 100 12821 14990 16651 15430 11667 13399 9.00 29.93
17 256 30 200 18326 15040 19356 15327 14798 13515 19.25 23.55
18 256 30 300 22594 15250 20998 15172 18050 13414 20.11 14.04

19 512 10 100 25547 33652 31170 34465 22592 28267 11.57 27.52
20 512 10 200 35156 33541 36402 34650 29271 28339 16.74 19.59
21 512 10 300 46162 33597 41730 34815 35168 28471 23.82 15.72
22 512 20 100 25928 33615 32683 34447 23648 28417 8.79 27.64
23 512 20 200 35660 33793 38029 34775 30260 28362 15.14 20.43
24 512 20 300 46414 34120 43257 34792 37356 28401 19.52 13.64
25 512 30 100 26390 34966 33271 34690 24313 27824 7.87 26.92
26 512 30 200 35682 34083 38552 34977 30995 27958 13.14 19.60
27 512 30 300 46360 33938 43797 34731 37784 27672 18.50 13.73

eval gap
B-proposed

（％）

Data details pick-up first (A) placement first (B) proposed
eval gap

A-proposed
（％）

Data
No.

eval
time
（s）

eval
time
（s）

1 2912 3.49 2789 695.05 4.22

2 3615 3.45 3583 633.20 0.89
3 4789 3.48 4646 626.12 2.99
4 3042 3.45 2935 623.42 3.52
5 3803 3.43 3686 681.97 3.08
6 4594 3.45 4348 613.21 5.35
7 3089 3.41 2893 623.50 6.35
8 3849 3.43 3790 757.92 1.53
9 4857 3.42 4590 627.47 5.50

10 11149 13.77 10678 2920.29 4.22

11 14387 13.77 13085 2870.90 9.05
12 17507 13.75 16065 2855.21 8.24
13 11321 13.74 10650 2942.82 5.93
14 14620 13.70 13659 2892.42 6.57
15 18597 13.78 17375 2937.27 6.57
16 11667 13.40 11070 3018.16 5.12
17 14798 13.52 14551 3102.37 1.67
18 18050 13.41 16918 2891.23 6.27
19 22592 28.27 19440 6400.85 13.95

20 29271 28.34 24483 6408.74 16.36
21 35168 28.47 30143 6286.78 14.29
22 23648 28.42 20648 6363.88 12.69
23 30260 28.36 25890 6383.37 14.44
24 37356 28.40 31791 6386.61 14.90
25 24313 27.82 21273 6323.90 12.50
26 30995 27.96 26685 6473.63 13.91
27 37784 27.67 32959 6417.25 12.77

LS SA eval gap
LS-SA
（％）
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Smart Home Delay Tolerant Network for an Earthquake Disaster
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Abstract— In a previous paper, we proposed a rescue
support system for victims buried in an earthquake disaster
by constructing an ad-hoc network using home-server smart
homes. However, this system has the following two problems:
i) it cannot ensure sufficient density of home servers for
a WLAN communication range, ii) the system does not
consider areas in which home servers cannot be used such
as in parks and factories, for example. In this research,
we propose a new method using a delay tolerant network
(DTN) technique. In this method, rescuers with mobile
devices relay information between disconnected networks by
walking around during rescue activities. For a performance
evaluation, we performed simulation experiments using a
map of Abeno-ku, Osaka. From our results, we show that
the proposed method increases the information acquisition
rate, and the network can be maintained. In addition,
we quantitatively show the penetration of the smart home
needed for our system.

Keywords: ad-hoc network, delay tolerant network(DTN), smart
home, emergency rescue, earthquake

1. Introduction
In Japan, earthquake disasters are frequent. Problems dur-

ing an earthquake disaster include communication blackouts
and damaged infrastructures which cause traffic jams due
to building collapse. Because of these problems, security
companies and public institutions such as the fire depart-
ment, often experience delays in their rescue activities. In the
Great Han-Shin Awaji Earthquake, the survival rate within
24 hours was about 75 %, but only 15 % in 72 hours
[1]. Making quick rescue activities is essential because the
survival rate decreases with the passage of time.

In [2], we proposed a smart home network built with
ad-hoc networks using home servers for smart homes, and
a rescue support system for buried victims by making a
rescue request map using this network in an earthquake
disaster. The smart home manages various systems in the
same way as home servers realizing a comfortable home
environment through sensing. In the smart home network,
home servers contain a wireless LAN (WLAN) and battery
functions. Thus, this network will work even in the case
of infrastructure blackouts and outages in the area because
each home server forms an ad-hoc WLAN network. To use
this network, a home server detects the presence of buried
victims by information of their presence in collapsed homes
and buildings, and sends neighboring home servers this

information. Each home server makes a rescue request map
based on this information. The rescue request map displays
information of victims on the map. In addition, rescuers get
this map from near home servers from rescuers with mobile
devices. Therefore, we can identify the position of victims
and rescue them quickly.

The smart home networking system (we previously de-
vised), however, has a few problems. First, we have to
ensure sufficient density of home servers for the WLAN
communication range, and introducing this service into rural
area is difficult. Therefore, this system is useful only in
urban residential areas, and then only with a low penetration.
Second, we consider places such as parks, factories, schools,
and wide load trucks, not available to home servers. Thus,
we proposed to set repeaters to aid communication between
home servers in [2], but such repeaters are highly expensive.

In this research, we propose mobile device rescuers that
can bring relay information to communicate between dis-
connected home servers. Mobile devices are introduced as
a data exchange method in a delay tolerant network (DTN).
The DTN communication system can transfer data with a
long delay, but with some confidence even in environments
of interruption and disconnection for communication during
an earthquake disaster. The ’carry and forward’ technique
commonly used with DTN can exchange information be-
tween nodes. In a smart home network, this technique can
relay information among disconnected home server groups
because rescuers with mobile devices walk around and ob-
tain information during a rescue activity. In this way, we can
solve the problem of communication between disconnected
home servers without the repeaters.

2. Delay Tolerant Network
In Epidemic Routing for Partially-Connected Ad Hoc

Networks [3], techniques have been developed to allow
message delivery in cases where a connected path from a
source to a destination is not available in mobile ad-hoc
networks. The authors show that Epidemic Routing achieves
eventual delivery of 100 % of messages with reasonable
aggregate resource consumption through an implementation
in the Monarch simulator. Epidemic routing is generally used
with DTN routing such as [4].

Delay Tolerant Networks (DTNs) [5] [6] are designed to
overcome limitations in connectivity due to conditions such
as mobility, poor infrastructure, and short-range radios. In
fact, there are experimental projects such as the TIER [7] and
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the KioskNet [8] due to internet connection in sparsely pop-
ulated areas without communicational infrastructures. How-
ever, missed contact opportunities among nodes decrease
throughput and increase delay in the network. By using
capacity Enhancement with Throwboxes in DTNs [9], the
authors of this article have proposed the use of Throwboxes
to enhance network capacity in mobile DTNs. Furthermore,
this capacity increased the transmission opportunities as well
as throughput between nodes. The authors performed an
extensive evaluation of their algorithms by varying both the
underlying routing and the mobility models.

One type of research about the DTN routing technique
is Data Routing for DTN Environments According to Data
Size and Deadline [10]. In this research, the authors propose
a technique to enable asynchronous communication between
two points that cannot be used for infrastructures by the
transport of data using a mobile device with which the user
can move around. This proposed method uses the carry
and forward techniques. In [10] the authors assume that
each node introduces a small battery-powered server called
an Infobox. Thus, they also assume that the Infobox and
the mobile device are narrow-area wireless communication
functions (WiFi, Bluetooth etc.), with enough storage, com-
puting power, and memory to run the DTN. The novelty of
this study [10], is not only improvement in the data arrival
rate and shortening of the communication delay, but also
consideration of the data size and the transmission deadline.
Because the time a user has to communicate between nodes
is limited in a real environment, users are not able to
exchange all the data in time. Therefore mobile devices
change the priority of the data to be sent by importance of
data. This proposed method [10] can send and receive the
higher value data and improve performance. In this proposed
method, the authors performed simulation experiments in
the Manhattan area. They show that the data arrival rate
that considers the importance of data is higher than in other
methods.

3. Smart Home Network with Delay Tol-
erant

In this section we give an overview of the smart home
network and rescue support system, and propose a new
method to improve connection in the smart home network.
For more information about the smart home network and
rescue support system, see [2].

3.1 Overview of Smart Home Network
In the smart home network, the home server operates a

smart home system in the case of normal (non-emergency
situations), and constructs ad-hoc networks by wireless
functions between neighboring home servers in the case of a
disaster. The smart home system shown Figure 1 represents
a system that realizes a secure home environment in terms

Fig. 1: Example of services by the smart home.

Fig. 2: Construction of Ad-hoc networks.

of monitoring, consumer electronics operations by sensing,
and security.

The smart home network uses Earthquake Early Warning
(EEW) that exists in 2 types [11]. One type is for advanced
users and another is for the general public. We use both
EEWs in the smart home network, and we call the EEW for
advanced users the first EEW, and the second type for the
general public, the second EEW.

We describe the behavior the smart home network in
an earthquake disaster. Receiving the first EEW, each
home server checks connections between neighboring home
servers. Receiving the second EEW, each home server sends
and shares information (such as home rescue etc.) using
infrastructures such as the Internet. When a blackout oc-
curs after an earthquake, each home server connects and
communicates with neighboring home servers to maintain
the system, as shown in Figure 2. Thus, each home server
needs a battery to run the system while electricity supply
stops.

3.2 Overview of the Rescue Support System
It is very important for rescuers to rescue buried victims in

an earthquake. However, such rescue operations to identify
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Table 1: The amount of data needed to create a rescue
request map.

information amounts [bit]

rescue request information 1
home information 4
information of various sensors 7
complete rescue information 1
coordinate information 51

the location of buried victims are often difficult. In fact,
the way rescuers now often find victims is by hearing the
rescuers when they call for help. In this research, home
servers create a rescue request map to quickly identify the
location of buried victims.

The type of information needed to create a rescue request
map is as follows:

• Rescue request information - a direct rescue request
• Home information - the number of people in a home
• Information of various sensors - the sensing signals of

several sensors in the smart home system
• Information of disconnected home servers - home

servers disconnected from the network by some abnor-
mal reason emergencies, for example

• Complete rescue information - information to be sent
by mobile devices after the rescuer rescues the victim

• Coordinate information - positional information of the
home server

Deciding the amount of data for each piece of information
needed to create a rescue request map is necessary. In Table
1 we show the amount of data needed to create a res-
cue request map. Rescue request information and complete
rescue information need 1 bit (switching ON/OFF); home
information needs 4 bits because the number of people in
home is usually less than 15. The information about various
sensors requires up to 7 bits, which can be used for up to 7
sensors. Coordinate information requires 51 bits because of
GPS information. The longitude is 25 bits, and the latitude
is 26 bits in the coordinate information. From Table 1, we
assume the information required to create a rescue request
map that needs at the minimum 8 Bytes.

We describe next how a home server creates a rescue
request map. Home servers send information to create a
rescue request map to each other, and share this information.
Based on this information, each home server creates a rescue
request map, and checks connections between neighboring
home servers. If a home server updates information or
receives new information, the home server sends it to a
neighboring home server. The home server doesn’t send
duplicated information. The rescuer with mobile devices can
get a rescue request map from the home servers, as shown
in Figure 3.

Fig. 3: Getting a rescue request map.

Fig. 4: Example of the mobile device relay.

3.3 Mobile Device Relay
To achieve the smart home network, we should consider

two major problems. First, because the communication range
of WLAN is small, the home server cannot connect to
neighboring home servers. Second, cities have large areas
such as mentioned before in which the home server cannot
be used. Not putting a home server in these areas, causes
several small home server groups. These problems cause a
reduction in the connection rate if the smart home network
is introduced. Therefore, we propose the mobile device
relay to communicate between disconnected home servers
in the smart home network, as shown Figure 4. Mobile
devices have a data exchange method used in DTN, called
a ’carry and forward’ technique, so mobile devices can save
information to create a rescue request MAP and pass it to
other home servers. If a rescuer with mobile devices gets
information to create a rescue request map from one home
server group and moves to another home server group, the
mobile devices can communicate with the home server group
and share information between home server groups.

We propose an algorithm for sending and receiving infor-
mation of a rescue request map for the proposed method as
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follows:
Step1) When the rescuer with a mobile device moves with

in the communication range of a home server, the
mobile device sends rescue request map informa-
tion to the home server.

Step2) If information the home server receives is new, the
home server obtains this information.

Step3) If the home server has information the mobile
devices do not have, the home server sends this
information to the mobile device.

3.4 Assumptions necessary for Achieving the
Proposed Method

To achieve the proposed method, it is necessary to con-
sider several assumptions, described below.

3.4.1 Home Server
The home server has several functions in the smart home

network as follows:
• Each home server has WLAN (IEEE 802.11) commu-

nications.
• Each home server can save all information to create a

rescue request map.
• Each home server sends the differences in information

to create a rescue request map.
• Each home server broadcasts between home servers,

and broadcasts to mobile devices.

3.4.2 Mobile device
The mobile device of a rescuer has several functions as

follows:
• Each mobile device has WLAN (IEEE 802.11) com-

munications.
• Each mobile device gets information to create a rescue

request map once.
• Each mobile device broadcasts to home servers (No

transportable mobile devices).
The carry and forward technique needs to set a trans-

mission deadline to avoid network congestion and waste of
bandwidth. Nonetheless, rescuers with mobile devices do not
discard information to create a rescue request map during
the rescue activity. In addition, the size of information to
create a rescue request map is small because it is less than
the multiplication value of 8 Bytes by the number of home
servers sharing information. Therefore, we do not need to
worry about the transmission deadline for information to
create a rescue request map, but only need to update new
information sent to the home server.

In our proposed method, the mobile device can communi-
cate with home servers, but cannot communicate with other
mobile devices, called message passing communication.
Using passing communication, mobile devices must always
have an active communication function, which wastes the

Table 2: Parameters in simulations.
items parameters

simulation area Osaka Abeno-ku
simulation range 1 km2

communication protocol WLAN (IEEE 802.11)
communication range 15 m and 30 m
the number of households 8000
simulation time 15 minutes - 2 hours
measurement range (arrival rate) 300 m

battery. Therefore, we assume that the mobile device only
communicates with home servers.

3.4.3 Battery

When a large earthquake occurs, electricity supply is
stopped because of damage to infrastructure functioning.
Because the home server needs to supply it’s own power, the
home server has a large battery, or private power generation
such as solar power. In addition, the home server is required
to work for a minimum of three days. The sensor in the
smart home and in the mobile device also needs to have
enough battery to last for three days. We think, however, that
battery capacity will increase through future technological
development. Thus, we assume home servers, sensors, and
mobile devices will have enough power supply to achieve
the proposed method.

3.4.4 Movement of Rescuer

We assume rescuers move anywhere in areas in our
simulation. Rescuers move freely in areas when mobile
devices do not get the position of the victim. In our research,
we assume that the free action of the rescuer follows a self-
avoiding random walk [12] [13]. However, we propose that
rescuers move a random distance up to one-tenth of the map
in the same direction; otherwise, the random walk would be
stuck in one place. When the mobile device gets the position
of the victim, a rescuer can move there. If rescuers finish the
rescue by finding the victims, then the rescuers can move
freely again.

3.4.5 Communication Range of Home Server and Mobile
Device

In our research, we assume that the communication range
of the home servers and mobile devices is the same. We also
assume that the communication range is equal in a circle.
We assume that the communication range for WLAN is up
to 30 m because we measured this range in [2].

4. Performance Evaluation
To show the effectiveness of the proposed method, we

performed simulation experiments on an actual map. The
simulator is implemented in Java.
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Fig. 5: Map of simulation area in Abeno-ku.

4.1 Setting of Simulations
Table 2 shows the parameters in our simulations. We

assume the simulation model is the residential area of
Abeno-ku, Osaka, and the simulation area is within the range
of 1 km square. The map of the simulation area is from the
Geographical Survey Institute (GSI) [14]. The location of the
home servers and the communication range are with respect
to pixels1. The number of households in the simulation area
is obtained from the number of households divided by the
area of Abeno-ku. The penetration rate is obtained from the
number of home server installations divided by the number
of households in the simulation area.

Figure 5 shows the actual map of the simulations. The
map is divided in monochrome by residential areas and not
residential areas (home servers can be installed in the white
spaces, but not in the black). The black areas represent places
such as parks and factories as mentioned previously.

We simulate the information acquisition rate each of
home servers and mobile devices in a simulation area. The
information acquisition rate shows the rate of the infor-
mation which the home server can get from others. We
also simulate the arrival rate of a home server information
in this area. This rate is the information acquisition rate
measured the certain range with a focus on a home server,
and this is because home servers should communicate in
a narrow range to avoid large amount of information. We
assume the certain range (the measurement range) is 300 m
from preliminary experiments, as shown Table 2. Note that
both the communication range and the measurement range
are radiuses of a circle. If a mobile device communicates
between disconnected home servers, both of the rates are
added. In the simulation, the information acquisition rate for
one home server (a single rate) is obtained from the number
of other home server information divided by the number of
households. The arrival rate for a single rate is obtained from
the number of other home server information divided by the
number of home servers in the measurement range. Then,
we obtain the information acquisition rate and the arrival
rate by taking average of a single rate in all home servers.

1Range of 1 pixel is 1.2 m (speed of people).

Fig. 6: Characteristics of the information acquisition rate for
the home servers.

We do the simulation a hundred times, and then take the
average.

4.2 Results of Simulations
We describe the simulation results about the information

acquisition rate for home servers and mobile devices. More-
over, we also describe the result about the arrival rate of the
home server information.

Figure 6 shows the information acquisition rate for home
servers in the smart home network. The horizontal axis
represents the penetration rate, and the vertical axis the
information acquisition rate. The result of no mobile devices
measures only the home server, which is the connection rate
(the connection rate is obtained from the maximum number
of home servers connected to each other divided by the
number of households). The result of 5 mobile devices is
due to the proposed method. In the proposed method, the
number of rescuers is 5 and simulation time is 1 hour. From
Figure 6, we can see that the information acquisition rate (the
connection rate) without the mobile device for both 15 m and
30 m was less than 60 % even if the penetration rate was 100
%. Because the area in which home servers cannot be put
is too large, several small home server groups are needed
for this area. However, the information acquisition rate of
the proposed method (with 5 mobile devices) is significantly
improved compared to without the mobile device. Moreover,
this system needs about a 50 % penetration rate to get over
a 90 % connection rate in a communication range of 30 m
for each 1 hour.

Figure 7 and Figure 8 shows the information acquisition
rate of the mobile device relay for both home servers and
mobile devices in the smart home network. The horizontal
axis represents the simulation time, and the vertical axis the
information acquisition rate. We simulate the penetration rate
of the home server as 50 % and the communication range
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Fig. 7: Characteristics of the information acquisition rate for
home servers by the simulation time.

Fig. 8: Characteristics of the information acquisition rate for
mobile devices by the simulation time.

as 30 m, and simulation time is 2 hour. From both Figure
7 and Figure 8, the more the simulation time increases, the
more information acquisition rates increase. Especially, the
result of both 7 and 9 mobile devices is over a 95 % within 1
hour, we consider this value is enough to maintain the smart
home network.

Figure 9 shows the arrival rate for the home server infor-
mation in the certain range with a focus on a home server
as 300 m. The horizontal axis represents the simulation
time, and the vertical axis the arrival rate. We simulate the
penetration rate of the home server as 50 %, and simulation
time is 1 hour. From Figure 9, the more the simulation
time increases, the more arrival rates approach 100 % in
a communication range of 30 m within 1 hour. Moreover,
the larger the number of mobile devices, the earlier arrival
rates approach 100 %.

The connection rate, therefore, is improved by our pro-

Fig. 9: Characteristics of the arrival rate for the home server
information.

posed method especially with in the communication range of
30 m. In this range we showed a performance good enough
to provide the system with connection rate of at least 90 %.
We simulated the communication rate equally in a circle.
However, we need to consider that the communication range
isn’t equal in a circle because of the difference in height of
the terrain and the placement of obstacles in reality.

5. Conclusion
It is very important for victims to be rescued within 72

hours because this is generally how long victims can survive
without help. To do this, rescuers must identify the location
of buried victims. We proposed a rescue support system that
creates a rescue request map. In our research, we proposed
a method for a mobile device relay to communicate between
disconnected home servers in the smart home network during
an earthquake disaster. We showed that our proposed method
is effective by performing an evaluation of the information
acquisition rate.

We are currently implementing a communication environ-
ment to achieve a smart home network and a rescue support
system.
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Abstract—We are doing researching and development of an
intelligent lighting system to provide desired brightness to a
desire place. To realize individual lighting environments, this
system needs the influence level of each lighting and each
illuminance sensor. Also, by measuring the influence level that
dynamically, this system can cope with dynamic illuminance
sensor relocations (user relocations). If this system don’t consider
illuminance sensor relocations, this system can turn off lightings
of little influence. Therefore, this system leads to energy saving.
However, It is impossible to be successful at both illuminance
sensor relocations and turning off lightings (improvement of
energy efficiency). To solve this problem, this paper proposes
a new lighting control algorithm which estimates illuminance
sensor positions based on distances from turned-on lightings. It
will enable the lighting system to learn the change in user or
desk positions, and turn off those lightings which affect users
very slightly. we conducted an experiment to simulate a real
office. As a result, we indicate that the algorithm can realize the
illuminance level desired by users while further saving energy
consumption.
　

I. INTRODUCTION

With the development of information technology and hard-
ware, many electronic appliances such as televisions, air con-
ditioners and fans, now incorporate an intelligent system which
controls the operation of the appliance to suit environmental
conditions, reducing the need of human operation.

Against such backdrop, intelligent controls are being in-
troduced also for lighting systems from the aspect of saving
energy consumption. One example of such systems is the
“ Energy-Saving Lighting Control System Linked to Access
Control”by Mitsubishi Electric Corporation[1]. This system
has infrared sensors built into lighting fixtures to detect user
position coordinates and controls the luminous radiation of
variable-light lighting fixtures. In this way, it can bring the

light from the lighting system only to areas where a user is
present and prevent excess light to save energy consumption.
This system, however, uses an approach that controls each
lighting fixture and does not consider providing a given
brightness (illuminance) at a given point.

On the other hand, it has been reported that, to realize
a better office environment, providing an illuminance opti-
mized for each worker’s task is effective for raising worker
productivity[2]. One lighting solution which can realize in-
dividualized illuminance levels in an office environment is a
task-ambient lighting system[3]; but in Japanese offices, task-
ambient lightings are rarely adopted. This is because typical
office buildings are equipped with ceiling lighting fixtures
which provide a uniform illuminance, and most companies are
unwilling to pay extra costs for adding task-ambient lightings.
Considering these, there is a need of a lighting control system
which provides light optimized for each office worker using
only ceiling lighting fixtures.

Against this backdrop, the authors have proposed an intelli-
gent lighting system which can provide brightness as required
by users at any given points specified by users, depending only
on ceiling lighting fixtures[4], [5]. The intelligent lighting sys-
tem is composed of lighting fixtures, a lighting control devices,
illuminance sensors (one person holds one illuminance sensor),
and an electrical power meter. With this intelligent lighting
system, each user specifies a target illuminance level for an
individualized illuminance sensor placed on the desktop, then
the system will follow a lighting pattern which realizes the
target illuminance level while minimizing energy consumption
using an optimization method. One should also note that this
intelligent lighting system does not consider turning off part
of lightings in the office to cope with dynamic changes in
environmental conditions such as user relocations and change
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in desk positions.
The intelligent lighting system has proven successful in

our laboratory experiments[6]. Toward the commercializa-
tion of our intelligent lighting systems, currently verification
experiments are underway in several offices in Tokyo and
Fukuoka[7]. In the experiment, it was found that users hardly
changed desk positions in these offices. Under such circum-
stances, we introduced a lighting control algorithm which turns
off lights in places requiring no brightness to further improve
the energy efficiency.

On the other hand, there are many“ non-territorial” of-
fices where users can move or change desk positions rather
frequently. In view of this, this paper proposes a new lighting
control algorithm which estimates illuminance sensor positions
even after they are relocated. It will enable the system to cope
with user relocations and desk position changes, while turning
off those lightings which hardly affect users.

In this study, an operational experiment simulating a real
office environment was conducted to verify the effectiveness
of the proposed system.

II. INTELLIGENT LIGHTING SYSTEM

A. Construction of Intelligent Lighting System

An intelligent lighting system realizes an illuminance level
desired by the user while minimizing energy consumption by
changing the luminous intensity of lightings. The intelligent
lighting system, as indicated in Fig.1, is composed of lights
equipped with microprocessors, portable illuminance sensors,
and electrical power meter, with each element connected via
a network.

Fig. 1. Configuration of intelligent lighting system

B. Adaptive Neighborhood Algorithm using Regression Coef-
ficient(ANA/RC)

The control algorithm is a critical element for the control
of an intelligent lighting system. The speed of convergence

to the target illuminance as well as its accuracy depends
largely on the lighting control algorithm. As the best algorithm
presently available for lighting control, we have proposed
an Adaptive Neighborhood Algorithm using Regression Co-
efficient (ANA/RC)[8], which was developed by adapting
the Stochastic Hill Climbing method (SHC) specifically for
lighting control purposes.

In ANA/RC, the design variable is the luminous intensity
of each lighting: the algorithm aims to minimize the power
consumption while keeping the illuminance at the target level
or above. It further enables the control system to learn the ef-
fect of each lighting on each illuminance sensor by regression
analysis and, by changing the luminous intensity in response,
enables a quick transition to the optimum intensity.

The following is the flow of control by ANA/RC:

1) Each lighting lights up by initial luminance.
2) Each illuminance sensor transmits illuminance infor-

mation (current illuminance, target illuminance) to the
network. The electrical power meter transmits power
consumption information to the network.

3) Each lighting acquires the information from step 2),
and conducts evaluation of objective function for current
luminance.

4) Neighborhood is determined, which is the range of
change in luminance based on factor of influence and
illuminance information.

5) The next luminance within the neighborhood is ran-
domly generated, and the lighting lights up by that
luminance.

6) Each illuminance sensor transmits illuminance informa-
tion to the network. The electrical power meter transmits
power consumption information to the network.

7) Each light acquires the information from step 6), and
conducts evaluation of objective function for next lumi-
nance.

8) The system performs regression analysis based on the
luminous intensity data from each light and illuminance
data from each illuminance sensor to determine the
regression coefficient (influence level).

9) If the objective function value is improved, the next
luminance is accepted. If this is not the case, the lighting
returns to the original luminance.

10) If any of the lightings has been at the minimum lighting
luminous intensity for a certain time with only a small
influence level, the system turns it off (applicable only
when there is no illuminance sensor relocation) .

11) Steps 2) through 10) constitutes one luminous intensity
value search operation, which is repeated.

A search operation process (requiring about 2 seconds)
consists of steps 2) through 10) above: by iterating this
process, the system continues to learn how the lighting affects
the illuminance sensor measurement until it realizes the target
illuminance with minimum power consumption. Furthermore,
by using the influence level found in step 8) as a basis for the
evaluation and generation of the next illuminance value, the
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system can quickly optimize illuminance.
Next, we will see the objective function used in this

algorithm. The purpose of the intelligent lighting system is
to achieve each user’s desired illuminance, and to minimize
energy consumption. Thus, it can be understood as an op-
timization problem in which each light optimizes its own
luminance. Following from this, the luminance of each light is
considered a design variable, under the constraint of the user’s
target illuminance, in resolving the problem of optimization to
minimize energy consumption. For this reason, the objective
function is set as in Eq. (1).

f = P + w

n∑
i=1

gi (1)

gi =
{ (Iti − Ici)2 I∗ ≤ |Iti − Ici|

0 otherwise
(2)

P : Power consumption, w: Weight
Ic: Current illuminance, It: Target illuminance
n: Number of users
I∗: Threshold on illuminance difference

The objective function was derived from amount of elec-
tric power P and illuminance constraint gj . Also, changing
weighting factor w enables changes in the order of priority for
electrical energy and illuminance constraint. The illuminance
constraint is decided so that a difference between current
illuminance and target illuminance within a threshold, as
indicated by Eq. (2). The threshold value is set as a 50 lx.

Since this intelligent lighting system uses an autonomous
distributed-control algorithm, particular cases of installation
may use either distributed control or centralized control.

III. VERIFICATION EXPERIMENTS IN REAL
OFFICE ENVIRONMENTS

From around 2009 onward, we have conducted experiments
to verify the effectiveness of the intelligent lighting system in
several offices in Tokyo and Fukuoka.

In an intelligent lighting system, to cope with user reloca-
tions and change in desk positions, even those lightings which
hardly affect users need to be kept on at a minimum luminous
intensity level. However, in the offices where our experiments
were conducted, workers’ desk positions were basically fixed
and user relocations were rare. Hence, to further improve
the system’s energy efficiency, we have introduced a control
mechanism which turns off lightings at points requiring no
light <item (10) listed in 2.1> in these offices.

In this system, for each illuminance sensor, the IDs of
several lightings around it are registered on a database, which
are chosen based on the levels of influence of lightings to
the sensor. By using the data, each lighting can be controlled
optimally and turned off when appropriate. However, this
method cannot cope with illuminance sensor relocations.

Meanwhile, not a few offices now use a non-territorial office
design, in which workers have no fixed personal desks. In

non-territorial offices, users may choose any desk position
and user relocations are easy. If the control method which
may turn off some lights is introduced in this type of office
with a dramatically changing environment <item (10) listed
in 2.1>, then the system will not be able to optimize lightings
once a user relocation occurs, because it will be impossible to
calculate the level of influence by a turned-off lighting onto
the relevant illuminance sensor.

One solution to this problem may be to require users to
notify the system of every user relocation: then the system
turns on all lightings that have been turned off and calculate
the influence levels of each lighting to relevant illuminance
sensors and update the database. But in a real office, turning
on all lights that have been off every time a worker relocates
may disturb other workers in the office. In addition, users take
time to notify the system that they relocate.

Hence, we propose a new lighting control algorithm for the
system to automatically detect a user relocation and turn on
only those lights which have a high level of influence over the
relocated user.

IV. LIGHTING CONTROL ALGORITHM BASED ON
ESTIMATED ILLUMINANCE SENSOR POSITIONS

A. Basic Idea of the Proposed Method

This study proposes a new lighting control algorithm which
can cope with illuminance sensor relocations when some
lightings have been turned off. In the study, regression analysis
is performed based on the luminous intensity data from
lightings which are on and the illuminance sensor data after
the relocation, then the new sensor position is estimated based
on their influence levels. After that, the lighting closest to the
estimated sensor position is identified. If that lighting is off,
the system can calculate the influence level by turning it on.
This will enable the system to cope with user relocations while
minimizing discomforts on other office workers. Moreover, the
relocated user does not need to take the trouble of notifying
the system of the relocation.

To realize this, the following control steps are added to the
intelligent lighting system control algorithm:

1) The system detects an illuminance sensor relocation.
2) Regression coefficients for turned-on lightings and the

relocated illuminance sensor are calculated.
3) Based on the regression coefficients obtained from step

2), the distances from turned-on lightings to the relo-
cated sensor are calculated.

4) Based on the calculated distances, the position coordi-
nates of the relocated illuminance sensor are estimated.

5) Based on the position coordinates of lightings and the
estimated position coordinates of the relocated illumi-
nance sensor, the system finds the lighting closest to the
sensor and turns it on if it is off.

Illuminance sensor relocations are detected based on the
amount of changes in the illuminance level. When a change
in illuminance occurs which cannot be explained from changes
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in the luminous intensities of adjacent lightings alone, the
system assumes it to be a sensor relocation. Unlike our
former intelligent lighting systems, position coordinates of
each lighting need to be known because relocated sensor
positions are estimated from its distances to lightings. Also,
for each illuminance sensor, at least three of those lightings
which have high level of influence onto the sensor should be
on at any point of time. This is to enable the system to estimate
the position of a relocated sensor based on the distances from
those lightings which are on. Once the position coordinates of
the relocated illuminance sensor are estimated, the number of
lightings to be turned on is determined more than three.

Using the method described above, the system can turn off
those lightings which hardly affect users while coping with
user relocations and desk position changes.

B. Estimating Distances Based on Regression Coefficients

To estimate distances from turned-on lightings to a relocated
illuminance sensor, regression analysis is used. Regression
analysis is a method to derive a regression equation to ex-
plain the causality relation between change in the explanatory
variable L and change in the observed value I , which is shown
in this case by Eq. (3):

I =
n∑

i=1

ri × Li + β (3)

I: Illuminance, r: Regression coefficient
L: Luminous intensity, β: Constant
n: Number of lightings

In an intelligent lighting system, regression analysis is
performed using explanatory variable L which is the luminous
intensity of a lighting, and an observed value I which is the
illuminance measured by an illuminance sensor, to calculate
the regression coefficient r. The regression coefficient r, which
explains the regression equation, is the level of influence
by the lighting to the illuminance sensor. Based on this
regression coefficient r, the distance between the lighting and
the illuminance sensor is estimated.

The relation between luminous intensity L and illuminance
I is expressed by Eq. (4) [9], where illuminance I is in
inverse relation with the square of the distance d from the
light source. Also, the relation between the distance d from
the light source and the regression coefficient r expressed by
Eq. (3) is expressed by Eq. (5).

I =
L

p2
(4)

⇔ d2 =
L

I
=

1
r

⇔ d =
1√
r

(5)

r: Regression coefficient, I: Illuminance
L: Luminous intensity
d: Distance from the light source

Eq. (5) shown above indicates that the regression coefficient
r in the intelligent lighting system indicates an estimation of
distance d from the light source (distance between the lighting
and the illuminance sensor).

Thus, an experiment was conducted to verify the distances
between lightings and illuminance sensors and their relation
with regression coefficients. In the experiment, 15 neutral
white fluorescent lamps (Panasonic FHP45EN) and 4 illumi-
nance sensors were installed as shown by Fig.2, and between
each lighting and each illuminance sensor, the distance and
the regression coefficient were calculated.

Fig. 2. Experimental environment to obtain regression coefficients

Fig.3 shows the distances between lightings and illuminance
sensors and respective regression coefficients.
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Fig. 3. Relation between the regression coefficient and distance

Fig.3 compares the regression coefficients obtained from
the experiment were with the Eq. (5). The result indicates
that when the distance between the lighting and illuminance
sensor is shorter, the disparity is smaller; when the distance is
larger, the disparity is greater. This is because Eq. (4) does not
take account of the lighting fixture’s radiation characteristics.
Fig.4 shows the luminous intensity distribution curve curve
for the fluorescent lamp (Panasonic FHP45EN) used in the
experiment.
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Perpendicular to bulb axis

Parallel to bulb axis

Fig. 4. Luminous intensity distribution curve(FHP45EN)

Luminous intensity distribution curve is a polar plot repre-
senting the luminous intensity as a function of angle about a
light source. From Fig.4, one can see that the illuminance
on the illuminated plane decrements more when the angle
between the lighting fixture and the illuminated plane is larger.
In the experimental results shown by Fig.3, the angle is larger
when the distance between the lighting and the sensor is
larger. Hence, the greater the distance is, the more largely the
resulting regression coefficient falls below Eq. (5). Therefore,
it is necessary to derive a model taking into account the
lighting fixture’s radiation characteristics.

In the proposed method, a mathematical model was derived,
which estimates the distance based on the regression coeffi-
cient obtained through the experiment as shown by Fig.3 using
the least square method. The derived mathematical model is
shown by Eq. (6).

d = 1.8044 × r−3.221 (6)

r: Regression coefficient
d: Distance between the lighting and the illuminance sensor

Under this environment, the radiation characteristics of the
lighting fixture is taken into account by using Eq. (6), to
reduce the error in estimating the distance using the regression
coefficient.

C. Estimating an Illuminance Sensor Position

Based on the method described in the section above, we
can estimate the distance between a turned-on lighting and a
relocated illuminance sensor. Based on the estimated distance,
the position of the relocated illuminance sensor is estimated
using Eq. (7) below.

di =
√

(X − xi)2 + (Y − yi)2 + (Z − zi)2 (7)

di: Distance between the turned-on lighting and the illuminance
sensor
X, Y, Z: Position coordinates of the relocated illuminance sensor
xi, yi, zi: Position coordinates of the turned-on lighting
i: Number of turned-on lightings

Now because the unknown values are the position coordi-
nates (X, Y, Z) of the relocated illuminance sensor, a unique
solution will be found by writing three or more equations.
However, for a lighting that is turned off, it is impossible
to estimate the distance because there is no way to calculate
a regression coefficient concerning any illuminance sensor.
Considering this, the system is designed to keep at least three
lightings of relatively high influence levels always turned on
per illuminance sensor to enable the estimation of position
coordinates of relocated illuminance sensors.

Using the method described above, the position of a re-
located illuminance sensor is estimated and three or more
lights in its vicinity are turned on. This enables the system
to calculate the regression coefficient for a lighting near the
relocated illuminance sensor which had been turned off.

V. OPERATIONAL EXPERIMENT

A. Overview of the Operational Experiment

To verify the effectiveness of the proposed method, an
operational experiment was conducted for 30 minutes chang-
ing luminous intensity of the lighting in 2-second steps (900
steps). For the experiment, 15 lighting fixtures were installed
as shown by Fig.5 to simulate a workplace with 3 users (using
3 illuminance sensors). For illuminance sensors A, B and C,
the desired illuminance level was set at 300, 400 and 500
lx respectively. The lighting fixtures used were neutral white
fluorescent lamps (Panasonic FHP45EN) which had a variable
lighting luminous intensity range between a minimum of 30
% and a maximum of 100 %.

In the experiment, when the illuminance value is within the
range between +6％ and -8％ of the desired level, the desired
illuminance level is deemed to be achieved.

The operational experiment was conducted using the follow-
ing two patterns to compare the system’s performance with a
conventional intelligent lighting system as well as to verify
the energy saving effect of the new method.

• An operational experiment using our conventional light-
ing control algorithm (conventional method)

• An operational experiment using a control algorithm
incorporating the proposed method (proposed method)

In the operational experiment, after 250 steps, the illumi-
nance sensor A (at illuminance setting point A) is relocated to
the new position shown by Fig.5. When an illuminance sensor
relocation is detected using the proposed method, the relocated
sensor position is estimated using illuminance and luminous
intensity data over 60 steps.
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Fig. 5. Experimental environment

B. EXPERIMENT RESULTS AND DISCUSSIONS
We checked whether the system realized the desired illu-

minance level at each illuminance setting point in each of the
conventional method and the proposed method. Fig.6 shows
the historical illuminance levels from the conventional method
and Fig.7 shows those from the proposed method.
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Fig. 6. History of the illuminance data（conventional method）
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Fig. 7. History of the illuminance data（proposed method）

Fig.6 and Fig.7 show that in both methods the system
realized desired illuminance level at each illuminance setting

point. It is shown also that both methods successfully coped
with the relocation of illuminance sensor A.

Next, to verify the energy saving effect, the status of each
lightings before the sensor relocation at the point of 200th step
is shown in Fig.8.
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Fig. 8. Status of lightings (at the point of 200th step)

From Fig.8-(a) showing the status of lightings in the conven-
tional method, we can see that lightings near each illuminance
setting point are turned on at a high luminous intensity level
while those distant from an illuminance setting point are turned
on at a low luminous intensity level. To cope with sensor
relocations, however, all lightings need to be kept on at least
at a low luminous intensity level. Meanwhile, from Fig.8-(b)
showing the status of lightings in the proposed method, we
can see that the lightings near each illuminance setting point
are turned on at a high luminous intensity level while those
distant from an illuminance setting point are turned off.

Then illuminance sensor A is relocated at the point of 250th
step. In the proposed method, after detecting the relocation, the
system calculates influence levels concerning turned-on light-
ings to estimate the new position. Fig.9 shows the estimated
and actual position coordinates of relocated illuminance sensor
A.
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A(new position)

A :(X:1.20 m, Y:5.40 m, Z:1.90 m

A’  :(X:1.59 m, Y:5.54 m, Z:1.89 m

Fig. 9. Status of lightings at the point of 310th step (proposed method)
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Fig.9 shows that the proposed method is able to estimate the
position of illuminance sensor A after relocation. This means
that by turning on the four lightings (lightings in circles shown
in Fig.9 closest to the estimated sensor position, the regression
coefficients for the lightings presumed to be most influential
can be calculated.

Finally, Fig.10 shows the status of lightings after sensor
relocation (at the point of 500th step).
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Fig. 10. Status of each lightings (at the point of 500th step)

Fig.10-(a) shows that in the conventional method, the energy
consumption levels of some lightings were lowered after
detecting a sensor relocation. But anyway, even lightings of
little influence were not turned off but kept on. On the other
hand, in the proposed method shown by Fig.10-(b), those
lightings expected to have a high influence level are turned on
and regression coefficients are calculated. Then based on the
calculated regression coefficients, lightings of little influence
are turned off to realize a greater energy saving effect than in
the conventional method.

From the results of the experiment, it has been demonstrated
that the proposed method can also realize the illuminance
levels as desired by users while saving energy consumption.

C. Comparison of Power Consumption Results

This section compares the power consumption by the
lightings between the conventional method and the proposed
method. Fig.11 shows the historical records of power con-
sumption by the lightings controlled by the conventional
method and the proposed method.

From Fig.11, we can see that the proposed method con-
sumes about 30 % less power than the conventional method.
As a result, it has been demonstrated that the proposed method
realizes a performance equivalent to the conventional method
while further reducing energy consumption.

VI. CONCLUSION
Ever since 2009, we have been conducting verification

experiments for our intelligent lighting systems at several
offices in Fukuoka and Tokyo. Since most of these offices
employ a fixed desk system, we introduced an algorithm which
turns off lightings of smaller influence levels assuming no
user relocations. However, in offices where users often move,
once some lightings are turned off, it becomes impossible
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Fig. 11. Historical power consumption by two methods

to measure the levels of influence of those lightings on
illuminance sensors.

To solve this problem, we have proposed in this study a new
lighting control algorithm which can cope with illuminance
sensor relocations by estimating sensor positions using data
from turned-on lightings. To verify the effectiveness of the
proposed method, an operational experiment was conducted
using 15 lighting fixtures and assuming 3 users simulating
a real office environment. The experiment demonstrated that
the proposed system realizes a performance equivalent to the
conventional intelligent lighting system while reducing power
consumption.
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Abstract— We are going to investigate and design a health-
care navigation system that consists of sensor devices for
human’s vital sign, a mobile terminal for transferring the
vital data to the cloud, and a cloud computing environment
for intelligential processing of the vital data. In this paper,
we present a tool for the mobile terminal, i.e. a smartphone,
which displays user’s biological stress levels. Although the
tool is a part of our healthcare navigation system, it does
not require the computation resource of the cloud because
the stress levels, LF/HF, are enough computable on the
processor of the current smartphone in real time. LF/HF
is an index of sympathetic nervous activity calculated with
the heart rate data obtained from heartbeat sensors. The
LF/HF values are displayed in a form of bar graph at user’s
current location on the Google map of the smartphone. The
location information is easily obtained from the GPS of the
smartphone. Using the tool, the user can see his/her current
stress levels as bar graph on the Google map in real-time.
Namely, the tool provides users with their spatiotemporal
biological stress levels in real time.

Keywords: RR interval, WHS-1, smartphone, googlemap, LF/HF

1. Introduction
Over the past 20 years, the CPU performance, the HDD

capacity, and the internet bandwidth have improved 1,000
times, 20,000 times, and 15,000 time, respectively. As a
result, cloud computing is available among the world. With
the rapid expansion of the computation resource, the idea
of life computing is aborning. Unlike existing scientific
computing, life computing supports our human life. The
demand is exceeding the demand of scientific and engi-
neering calculations. We are just going to investigate and
design a healthcare navigation system. We believe that this
healthcare system will be a major field of life computing.
Healthcare computing consists of sensor devices for human’s
vital sign, a mobile terminal for transferring the vital data
to the cloud, and a cloud computing environment for intelli-
gential processing of the vital data. Then this system sends
appropriate and useful recommendation about healthcare to
the user. In this healthcare navigation system, a mobile
terminal gets the vital data from sensor devices to transfer

them with applying appropriate pre-processes to the cloud.
It is sometimes possible to directly provide the user with
information about his/her health condition at the mobile
terminal without using computation resource of the cloud.
In this paper, we develop a tool for a mobile terminal, i.e.
a smartphone, which displays LF/HF that is a method to
measure stress levels in real time as a part of our healthcare
navigation system. The LF/HF values are displayed in a
form of bar graph at user’s current location on the Google
map of the smartphone. Frequency analysis is applied to
time series data for heart rate variability. Its power spectral
includes LF that is low frequency and HF that is high
frequency. The ratio of LF to HF is used for an index of
stress levels (sympathetic nervous activity). Extreme stress
causes various physical harms. It is helpful for us to reduce
stress for spending healthy life. The tool does not require
any computation resource of the cloud because LF/HF are
enough computable on the current smartphone in real time.
The location information is easily obtained from the GPS of
the smartphone.

Instant Heart Rate produced by Azumio[1] and Period
tracker[2] produced by GP Apps are examples of existing
healthcare services. The former can measure heart rate by
using camera equipped with most smartphones. The appli-
cation measures pulse waves by pressing the camera with a
finger. When user inputs the start date of menstruation, the
latter can predict the next menstruation and next ovulation
date. In these services, user consciously provides his/her
vital data for these services. These services influence user’s
daily life owing to the device size. A healthcare system
needs to measure at all times for predicting user’s condition
accurately. However, the size of the heart rate sensor which
is used in this paper is 40.8*37.0*8.9 cubic millimeter and
weight is only 13 grams including a battery cell. This sensor
can be put on user’s body directly at all times. User only
has to put on the heart rate sensor to send vital data. This
sensor does not influence user’s daily life. The tool which
we present here notifies user of his/her stress levels without
sending user’s vital data to the cloud.

In the case that just time and LF/HF are displayed, it is
difficult to predict what situations cause stress. Not only time
and LF/HF but also other information is required to solve
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Fig. 1: Heart rate data

Fig. 2: Time series data of heart rate variability

Fig. 3: Frequency analysis

this problem. One of the factors that give stress is location
information. Getting stressed or relaxed may depends on the
surrounding. The action at the notable time can be predicted
from the location information. In this tool, the association of
the location information and LF/HF can be predicted in what
situations cause stress. It helps to reduce stress for spending
healthy life.

The rest of the paper organized as follows. In section 2,
LF/HF which is an index of sympathetic nervous activity
is described. In section 3, we explain the requirement
specification and the implementation of the tool. In section
4, we show some examples of the execution of the tool.

2. Heart rate data
This section explains the heart rate sensor used to take

the heart beat and the calculation method for LF/HF as the
index of the stress used in this paper.

2.1 Calculation of LF/HF
As shown in Fig.1, various shapes of waves such as P, Q,

R, S, and T waves are included in each heart rate. The RR
interval is an interval of R waves that is the biggest peak
wave in each heart rate. It is known that the RR interval
is synonymous with the heart rate, and always changes
constantly.

Fig. 4: heartbeat sensor

As for the evaluation of the autonomic nervous function,
the index of the frequency domain obtained by the spectral
analysis is used [3][4][5]. Figure 2 shows time series data
of heart rate variability. The horizontal axis and the vertical
axis are time and RR interval, respectively. Figure 3 shows
frequency analysis of time series data of heart rate variability.
Its power spectral includes LF which is low frequency and
HF which is high frequency. LF is related to the change of
blood pressure and influenced by both parasympathetic and
sympathetic nervous system. HF is related to breathing varia-
tion and influenced by parasympathetic nervous system. The
sympathetic nervous system promotes the shrinking of the
blood vessel, the increase of the heart rate, and the reaction
of the muscular tension etc., so that it reacts to the change
in the situation quickly, and the stress like uneasiness, fear,
and anger, etc. has been received. Parasympathetic nervous
system promotes responses which include the decrease of the
heart rate, decreased blood pressure, and muscle relaxation,
etc. Sleeping and getting relaxed, parasympathetic nervous
system works.

The index of the sympathetic nervous system is calculated
with the ratio of LF to HF. HF decreases while LF appears
when a stress is received. When parasympathetic nervous
system becomes active, HF increase. Therefore, getting
stress and relaxed make LF/HF large and small, respectively.

LF/HF is calculated with time series data of heart rate
variability. The time series data of heart rate variability is
applied to linear interpolation or spline interpolation to get
equal interval samples. Power spectrum of sampling data
is calculated using Fourier transform or an autoregressive
model. LF and HF are set to area of 0.05Hz - 0.15Hz and
0.15Hz - 0.40Hz, respectively.

2.2 Heart rate sensor
Figure 4 shows WHS-1 manufactured by union tool cor-

poration [6] that is the heart rate sensor we use. This sensor
detects and calculates the RR interval. It is possible to use
it without interfering in user’s daily life by putting directly
on the skin with an electrode pad because the size is so
small (40.8*37.0*8.9mm), and the weight is very light (only
13 grams) including a battery cell. WHS-1 also includes an
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accelerationsensor and a temperature sensor as well as the
heart rate sensor so that it detects the change of user’s body
movement and measures his/her body surface temperature.

WHS-1 supports two types of data transmissions. One
method is sending data to a PC using wireless communica-
tion. The other method is sending data to a PC using a flash
memory. In the case of wireless communication, it can also
output the heart rate waveform instead of the RR interval.

In the case of outputting RR interval, heart rate signal,
which are measured by an electrode attached to the sensor,
is sampled at 1,000Hz. Then RR interval is calculated by
predicting the interval between R waves which are found in
the heart rate waveform. A flash memory with16MB saves
almost one week RR intervals data.

3. Displaying LF/HF in real time
In our future healthcare navigation system, vital data is

transferred to the cloud via a smartphone. A smartphone can
effectively utilize the information from the sensor device. In
this paper, LF/HF is calculated with the vital data, and GPS
equipped with the smartphone is used. We develop a tool
that displays LF/HF values on the map at the user’s location
in real time. In this section, we explain the requirement
specification and the implementation issues of the tool.

3.1 Requirement specification
The stress might be received in unconsciousness to cause

deconditioning as a result while we learn the condition of
our daily life by knowing the changing of LF/HF values.
However, this is just an understanding when to have caused
the stress and the relaxation. Since it is difficult to know
which situation has caused the stress, not only time but also
other information are necessary. By using time and other
information, we can predict the factors which bring down
the stress. As such extra information, location information
is easily given with GPS, for example. The LF/HF value and
the location information help us predict our condition at that
time. Then the relation between our stress and our daily life
is clarified. In the proposed tool, the LF/HF value should be
displayed on the map at user’s current location.

Figure 5 shows the correlation of each function. LF/HF
value is calculated and displayed by numerical characters
every 10 seconds. Moreover, the value is shown with a bar
graph at user’s present location on the Google map of a
smartphone every 60 seconds. When user swipes on the
screen, the map works with the swipe. When user touches
on the screen, a zoom item is displayed and the map can
be zoomed in or out. When the menu button is pushed,
the MyLocation item, the Reset item, and the On/Off item
are displayed. When the MyLocation item is selected, the
present location is displayed at the center of the screen.
When the Reset item is selected, the LF/HF bar graph
displayed on the screen is deleted. When the On/Off item is
selected, the bar graph is displayed or hidden on the screen.

The specification to achieve the above-mentioned functions
is as follows.

1) The LF/HF value is displayed in digits every 10
seconds.

2) The LF/HF bar graph is put at the present location on
the Google map every 60 seconds.

3) User’s movement information on speed, distance, alti-
tude, and traveling direction, etc. are displayed.

4) Swipe of the map
5) Zoom of the map
6) In the case of the expanded map, it switches from the

bar graph to the label.
7) The present location is obtained.
8) The LF/HF value is display or hidden.
9) The displayed LF/HF value can be deleted.

10) The mobile terminal and the sensor are communicated
with Bluetooth.

In function 1), the LF/HF value that presents stress level
is displayed and updated every 10 seconds so that user can
confirm the LF/HF every 10 seconds.

In function 2), user can confirm the change of his/her
stress level by looking at the displayed LF/HF bar graph
every 60 seconds. The more heart rate data, the more
accurate LF/HF is calculated. When the LF/HF value is
displayed as numerical characters, it is difficult to confirm
the change of the LF/HF value viscerally. To solve this
problem, a form of bar graph is adopted. A series of bars
along user’s move makes the user confirm the change of the
LF/HF value viscerally. User can understand what situation
causes a stress by confirming the change of the LF/HF value
which is drawn at user’s current location on the Google map
at that time.

It is known that exercise influences LF/HF. So the relation
between exercise and LF/HF is effectively predictable by
giving the information of user’s exercise. In function 3),
exercise information such as speed, distance, elevation and
direction are displayed.

In function 4), when user swipes the screen, the Google
map moves accordingly. The user can see the LF/HF value
of any location by using swipe.

In function 5), the Google map can be zoomed in or
out. When the wide range is displayed, the change of the
LF/HF value can be roughly confirmed. On the other hand,
when a small range is displayed, the relation between the
place and the LF/HF value can be observed in detail. When
two or more bar charts are displayed by the large scale, the
LF/HF value is not confirmed easily. Then, in function 6), it
switches to the label from the bar chart to the integer portion
of the LF/HF value.

In function 7), user’s current location is put at the center
of the screen using the GPS of the smartphone so that he/she
confirms his/her location any time.

In function 8), user can display or delete the LF/HF bar
graph/numeric characters. When he/she wants to see just the
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Fig. 5: correlation of each functions

Google map, the display of the LF/HF value may make the
screen hard to see.

Function 9) is used for deleting the record of the LF/HF
value data. When a lot of the LF/HF value data is recorded,
various functions might not be able to be operated smoothly.
Function 9) is used to prevent such cases.

The tool we present in this paper is executed on a mobile
terminal emulator on a PC, and does not use the Bluetooth
communication. Since this is a hardware restriction, we will
easily support the Bluetooth communication very soon using
a real mobile terminal.

3.2 Implementation
When our tool is invoked, user’s current location is

displayed by using GPS on the Google map. Then, it starts
reading the heart rate data from WHS-1. The LF/HF value
is displayed and updated by digit in the upper part of the
screen every 10 seconds. In addition, the current location
is displayed at the center of the screen, and user’s moving
information of speed, distance, altitude, and direction are
displayed, too. The LF/HF bar graph is put on the Google
map to be updated with an interval of 60 seconds. The
acquisition of the current location, the calculation of LF/HF,
and the explanation of GUI are presented as follows.

3.2.1 Acquisition of user’s current location

The GPS of the smartphone is used to acquire user’s
(namely smartpone’s) current location. The application
makes use of Google Map API [7]. Google Map API
provides Maps API and Maps Javascript API that are widely
used for smartphones. In this paper, we adopt Maps API be-
cause Maps API Key is necessary to control the Google Map.

When the location information is required, an API called
Location-based Service that enhances GPS functions is used
in smartphones. The GPS acquires the location information
by way of LocationManager. The getSystemService method
obtains LocationManager, and begins to acquire the location
information of latitude, longitude, altitude, direction, and
speed, etc. The update notification for the location informa-
tion is set by the requestLocationUpdate method, and sent to
the LocationListener interface. Function 7) is implemented
with these APIs.

For the requirement specification regarding to the location
information (Function 3)), an object of the Ctiteria class is
sent to the Provider as a parameter. The distanceBetween
method calculates the distance from the starting point to the
current point.

3.2.2 LF/HF calculation implementation

In this subsection, we explain the implementation issues
for calculating LF/HF. X and Y are provided for time and
the RR interval, respectively. Then, a spline interpolation
is applied to the sampling data with an equal interval. The
power spectrum is calculated from the sampling data with the
equal interval by a Fourier transform. The areas of LF and
HF are 0.05Hz - 0.15Hz and 0.15Hz - 0.40Hz, respectively.

Heart rate data is sent from WHS-1 every 3 heart beats.
Then the received data is stored in a circular buffer, which
is implemented with an array and modulo operations for
the array index. Using the circular buffer, the data which
become unnecessary is overwritten with new data to avoid
consumption of memory. As is easily expected, the more
heart rate data, the more accurate LF/HF is calculated. We
investigate the tradeoff between the circular buffer size and
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theLF/HF accuracy to decide the buffer size for 60 seconds
data. The initial LF/HF is calculated with the data of first 60
seconds. After the first calculation, LF/HF is calculated every
10 seconds using the last 60 seconds data, which occupies
the circular buffer. Each new 10 seconds data is overwritten
to the oldest 10 seconds data.

In this way, LF/HF is obtained every 10 seconds, so
function 1 is satisfied. In addition, LF/HF is also obtained
every 60 seconds, so Function 2) is satisfied.

3.2.3 GUI

In the screen of the smartphone, the information of
LF/HF, speed, distance, elevation and direction is displayed
on the upper part. Since the information is updated every
10 seconds, Function 3) is satisfied. The Google map is
displayed below the information area. The MyOverlay class
is used to draw a bar graph of LF/HF at the current location
on the Google map, and Function 2) is satisfied.

The Google map moves at the same time as user swipes.
When user swipes, the touching point moves with user’s
finger. User can move the Google map to confirm the LF/HF
value anywhere. Namely, Function 4) is achieved.

The SetBuiltInZoomControls method is used for the ex-
pansion and reduction of the Google map to satisfy Func-
tions 5) and 6). The LF/HF value is expressed as digit label
or bar graph depending on the scale of the Google map. The
digit label is the current LF/HF value while the length of the
bar graph is the LF/HF value at that point. In the case LF/HF
is expressed as bar graph on the small scale of the Google
map, the LF/HF value is not confirmed easily. Moreover,
in the digit label on the large scale map, the change of the
LF/HF values is not confirmed easily. The onZoomListener
method is needed to solve this problem.

The onCreateOptionsMenue method is used for setting
menu buttons equipped with smartphones. When the menu
button is pushed, menu items which include MyLocation,
Reset and On/Off are displayed. When user select an item,
the Item.getItemId method judges which item is selected.
The selected item is processed by the onOptionsItemSelected
method. When the Mylocation item is selected, the current
location is obtained to be displayed in the center of the
screen. When the Reset item is selected, the record of
the LF/HF values is deleted. When the On/Off item is
selected, the LF/HF value is displayed or hidden. In this
way, Functions 7)-9) are satisfied.

4. Example of behavior
In this section, we explain the performance of our tool that

is an Android application. The tool is developed with Java
SE Development Kit, Android SDK, and Eclipse. Java SE
Development Kit is used for developing Java applications.
Android SDK is for the development of Android applications
by Java. Eclipce is an integrated development environment.
The heart rate data is obtained from WHS-1.

Fig. 6: The screen of the tool at 60 seconds after the
invocation

(a)initial state (b)result

Fig. 7: swipe

In this paper, we use heart rate data which is preliminarily
obtained from heart rate sensor and display the LF/HF
bar graph at arbitrary location. We believe it is enough to
investigate whether Function 1)-9) are achieved.

Invoking the tool, the screen after 60 seconds is shown
in Fig. 6. Each LF/HF is calculated and updated every 60
seconds. Since the LF/HF bar graph is put at current location,
user can predict the correlation between stress and location
information. The LF/HF value shown in Fig. 6 is calculated
with the data of the initial 0-60 seconds. In the upper part
of the screen, LF/HF, altitude, speed, direction, and moving
distance are displayed and updated every 10 seconds.

Figure 7 shows the change of the screen by swipe. Figure
7(a) is the initial state. When the screen is swiped from right
to left, the screen moves left according to the swipe. Figure
7(b) shows the result of the swipe. Using swipe, user can
confirm his/her LF/HF vale at any location.

In Fig. 8, when user touches the screen, the zoom item
is displayed. Figure 8(a) is the initial state. When the plus
icon in the zoom item is selected, the Google map is zoomed
in. Figure 8(b) is the zoomed screen by the plus icon. On
the other hand, when the minus icon in the zoom item is
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(a)initial state (b)result

Fig. 8: zoom button

(a)initial state (b)result

Fig. 9: MyLocation item

selected, the Google map is zoomed out. The LF/HF values
are shown as bar graphs on figure 8(a) while the LF/HF
values are shown as the digit label as on figure 8(b). The
toggle for the bar graph and the digit label is the zoom
scale of the Google map. The LF/HF bar graph changes
to the LF/HF digit label when the zoom scale exceeds the
pre-defined value. The length of the bar graph presents the
LF/HF value at that point. On the small Google map, two or
more bar graphs represent the change of the LF/HF values
viscerally. User can understand where his/her stress arises.
On the other hand, the digit label presents the integer part
of the LF/HF value at that time. On the large Google map,
user’s past and present locations are displayed in detail. The
user understands the relation between the LF/HF value and
his/her moving path. Therefore, the switch of the bar graph
and the digit label is useful to understand what situation
causes his/her stress.

Figure 9 shows the screen applied by the MyLocation
item. When the menu button of the smartphone is pushed,
the menu item is displayed at the bottom of the screen as
shown in Fig.9(a). In the menu item, the MyLocation item,
the On/Off item, and the Reset item are included. When the

(a)initial state (b)result

Fig. 10: On/Off button

(a)initial state (b)reesult

Fig. 11: Reset button

MyLocation item is selected, the current location is acquired
to be displayed at the center of the screen. In Fig.9(a), the
current location is not displayed. When the MyLocation item
is chosen, the current location is displayed at the center of
the screen as shown in Fig.9(b). User can confirm his/her
current location at any time.

Figure 10 shows the screens where the On/Off item is
used. When the On/Off item in the menu item is selected, the
LF/HF bar graphs are displayed or hidden. Fig.10(a) shows
the screen with the LF/HF bar graphs. Using the On/Off
item, the LF/HF bar graphs are hidden as shown in Fig.10(b),
and user can take a detail look at the Google map without the
LF/HF bar graphs. When the LF/HF bar graphs are hidden,
the LF/HF value is calculated every 10 seconds. Using the
On/Off item, the LF/HF bar graphs appear again.

Figure 11 shows the screens where the Reset item used.
When the Reset item is selected, the LF/HF bar graphs as
shown in Fig.11(a) are deleted. Then, the LF/HF bar graphs
begin to be displayed. When a lot of LF/HF bar graphs are
displayed, various functions might not be able to be operated
smoothly. This item is used to avoid this problem.
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5. Conclusions
In our ongoing healthcare navigation system, vital data

from sensor devices are sent to a portable terminal such as
smartphone to process the data including error correction.
The processed vital data are sent to a cloud for intelligent
processes. In this paper, we showed that it is possible to
show some of user’s conditions to the user without cloud
resource, but with just a smartphone.

In this paper, we presented a tool for a mobile terminal
that displays the LF/HF value in real time as an index of
user’s stress level. The LF/HF value is calculated by using
heart rate data obtained from a heart rate sensor WHS-1, and
displayed at user’s current location in the Google map. Some
physical conditions cause various slumps by an excessive
stress. User can understand what situation causes his/her
stress by using the location information and the LF/HF
values. When the source of stress is detectable, user can
easily improve his/her daily life. It leads to the environment
improvement to find the reason of stress brought on by
location such as noise.

In this tool, the LF/HF value is immediately calculated
every 10 seconds. To confirm the change, the LF/HF bar
graph is drawn on the Google map. The information of
speed, distance, elevation and direction is displayed to
predict the relation between the exercise and the LF/HF
value effectively. The Google map can be zoomed in/out,
and swiped freely. The LF/HF value is shown in a form of
bar graph to understand the relation between user’s location
and LF/HF value in the small scale Google map, and the
LF/HF value is shown in the digit label in the large scale.
The user can confirm his/her current location at any time.
When user wants to look at the Google map, the LF/HF
value can be hidden. To operate various functions smoothly,
the LF/HF value record can be deleted. In this paper, we
develop a prototype to show the actual execution.

For our future work, it is necessary to include other infor-
mation such as user’s acceleration and some environment
information such as weather. The information helps user
predict his/her situation more precisely. Another method to
calculate the stress level with electro-oculogram is needed
to improve the accuracy of the stress level.
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Abstract— In this paper, we propose two methods to train
students’ spatial reasoning capacity using AR (Augmented
Reality). The first method supports students for rotating spa-
tial objects more easily with two AR markers. One marker is
used for questions, on which several blocks and a landmark
(with a shape of a chick) are displayed. The other marker is
used for answers, on which blocks are moved freely. The
layout of the blocks toward the chick is selected on the
marker. The second method includes limitation of rotation
on the marker using some Arduino based hardware. The
second method supports students for rotating spatial objects
partially. To validate the effect of the trained and resultant
spatial reasoning capacity, we perform an experiment using
the first method. The analysis results explain the spatial
object recognition accuracy increases using the AR learning.
To validate the effect of rotation angles, we perform other
experiments using the second method. The analysis result
shows the rotation angle of sixty degrees is the best for the
training of spatial reasoning capacity.

Keywords:Augmented Reality, Spatial reasoning capacity, Mental
rotation, Arduino

1. Introduction
The spatial reasoning capacity is an ability to recog-

nize objects in three-dimensional space. Objects’ locations
and conditions, which are shapes, angles and sizes, are
recognized quickly and accurately by this capacity. Even
non-existent objects are always imaged using the spatial
reasoning capacity, too. Visual images can be controlled by
cognitive operations in the same way for real objects.

Compulsory education includes the learning of spatial ob-
jects in some ages although the learning of the spatial objects
has been decreased according to lighter curriculum promoted
by the Ministry of Education in Japan. In the second grade of
elementary school, children learn spatial objects for the first
time as compulsory education [1]. First, children learn the
basic objects, which are cubes and rectangular solids. These
objects are shown in learning materials such as textbooks
with a plane surface. Consequently, if they do not have
spatial reasoning capacity so much, it is difficult to learn
abecedarian arithmetic. In such case, they cannot understand
spatial objects in junior high school. Moreover, selected
specific general planes and equations for lines are given in

mathematics of high school regardless of their intelligibility
of spatial objects.

Children in old days mainly used to play with three-
dimensional objects, such as building blocks, cat’s cradle,
puzzle links and plamodels. On the other hand, children in
nowadays mainly plays in a plane, i.e. video games, rather
than in the three-dimensional world. Spatial reasoning capac-
ity is improved by strong awareness in the three-dimension
space, for example, playing with three-dimensional objects.
Opportunities of spatial reasoning learning have decreased
in terms of play and education in general. Hence, special
education for spatial reasoning capacity is needed in child-
hood.

In this paper, we propose some methods to train students’
spatial reasoning capacity with using AR. In the AR envi-
ronment, virtual objects are displayed even in floating and
can be moved freely. Students with low spatial reasoning
capacity can effectively learn by rotating an AR marker. To
validate the effects of the trained and resultant spatial rea-
soning capacity, we perform some experiments and analyze
them to model the learning phases.

The rest of the paper is organized as follows. In section 2,
we propose two methods to train students’ spatial reasoning
capacity using AR. In section 3, the effect of the trained
and resultant spatial reasoning capacity is validated. In
section 4, the effect of rotation angle to the improved spatial
reasoning capacity is validated to be represented by a model
expression.

2. Rotating blocks using AR
In this section, two methods to train spatial reasoning

capacity are proposed. These methods support easy spatial
object rotation for improving spatial reasoning capacity. We
first explain the construction of an AR supporting environ-
ment. Then, we propose the first method to train spatial
reasoning capacity and the second method with physical
limitation of rotation.

2.1 Construction of an AR supporting environ-
ment

In this paper, we adopt AR to provide free spatial objects
movement with displaying the corresponding virtual objects
for students. In the AR space, the acquisition of virtual object
location is generally performed by the following two ways.
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Fig. 1: Construction of the AR environment

One is by using GPS (Global Positioning System). The other
way uses an AR marker on which an asymmetry figure is
printed. AR markers are freely movable, and virtual objects
on the AR markers are redisplayed according to their move-
ment. Since we are interested in training spatial reasoning
capacity, we use the marker based AR that provides the free
movement of virtual objects for students.

The marker based AR supporting environment for spatial
reasoning capacity is constructed as shown in Fig.1. First, a
frame image of video stream from a Web camera is captured
to be displayed. Next, an AR marker is recognized in the
captured image. Then, the position and the angles of the
marker are computed. Finally, a pre-defined virtual object
is displayed at the position with the angles. The AR marker
receives events from user via keyboard to change the position
and the angles of the virtual object.

2.2 Rotating virtual objects in the marker
based AR supporting environment

In this subsection, we present a method to train students’
spatial reasoning capacity with rotating virtual blocks in the
above AR environment. This method requires two AR mark-
ers: for questions and for answers. On the question marker,
several blocks, a landmark (with a shape of a chick) and box
frames are displayed. Figure 2 shows an example where two
blocks and a landmark are displayed as a question. Up to
23 blocks can be placed in the box frame. The number of
blocks is selected using the keyboard. The layout of blocks
is changeable in random. The landmark can be placed on
the four directions. The box frame is always displayed. The
possible number of questions is28 ∗ 4 = 1, 024.

On the answer marker, numbers of 1 to 4 are written. First,
only the box frame is visible on the answer marker. A block
is placed on the answer marker according to the keyboard
input. The keyboard input is chosen from key 1 to 4. When
a key is pressed, a block is placed on the same number
of the answer marker. Figure 3 shows examples of the key
entries. When key 1 is pressed once, a block is displayed on

Fig. 2: A question marker

(a) (b) (c) (d)

Fig. 3: Block placement ((a):One Click, (b):Two Clicks,
(c):Three Clicks, (d):Four Clicks)

(a) Correct (b) Incorrect

Fig. 4: Answer markers

the bottom as shown in Fig.3(a). When the key is pressed
twice, the block moves up as shown in Fig.3(b). When the
key is pressed three times, two blocks are displayed on the
bottom and the top as shown in Fig.3(c). When the key is
pressed four times, the two blocks disappears and the key
entries are canceled as shown in Fig.3(d).

Figure 4 shows two examples of answers. The layout of
the blocks toward the landmark is selected on the answer
marker. The correct and the incorrect layouts of blocks are
Fig.4(a) and (b), respectively. When the correct layout is
given, the color of the displayed blocks is changed.

These blocks move synchronously with the marker. This
method is applied to varous rotations of blocks. When a
given question is hard to be solved, the marker can be rotated
physically with the displayed blocks so that the question
becomes easier.

2.3 Improved version of the AR environment
The method described in subsection 2.2 does not take the

rotation angle of the AR marker in account, and blocks
can be observed from any direction. In this subsection,
we improve the first method so that it provides analysis
functions for the relationship between the angle and the
learning efficiency of students.

The improvement to the AR environment is given by
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(a) Top view (b) Side view

Fig. 5: Views of AR markers installed with the moter

restricting the rotation of the AR marker supported by some
hardware module. The hardware module consists of a fixed
board (a plastic cardboard), a servo motor RB-001 and an
Arduino Uno [3] based substrate. Arduino Uno is used as
an A/D converter, which controls the servo motor, and is
connected to the host PC via USB interface. Figure 5 shows
an answer marker and a question marker installed with the
motor. Figure 5(a) and 5(b) show the top and the side view,
respectively.

We show the procedure to control the question marker.
Step-1) Power down the motor
Step-2) Compute the angle of the question marker
Step-3) When the angle of the marker does not reach to

a given threshold, go back to Step-2)
Step-4) Start serial communication
Step-5) Power up the motor
Step-6) Push back the marker
Step-7) Power down the motor and go back to Step-2)

In Step-1), the question marker can be rotated freely since
the motor is off. In Step-2), to compute the angle of the
marker, we get the marker coordinate (Xm, Ym, Zm) and
the camera coordinate (Xc, Yc, Zc). The two coordinates are
expressed as

Xc

Yc

Zc

1

 =


r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz
0 0 0 1




Xm

Ym

Zm

1

 , (1)

where tx, ty and tz are translation elements.[r1, r4, r7]>,
[r2, r5, r8]

> and [r3, r6, r9]> mean directional vectors of x-
, y- and z-axis, respectively. Eulerian angles are computed
with the directional vectors to be used for the marker angle.
In Step-3), the marker angle is compared with a given
threshold, which restricts the rotation of markers. When the
marker angle reaches to the threshold, serial communication
between the host PC and Arduino via USB is started in
Step-4). At this point, Arduino is notified of the marker
angle violation. So it turns on the motor in Step-5), and
controls the motor so that the marker angle does not exceed
the threshold in Step-6). When the marker angle becomes
less than the threshold, Arduino turns off the motor and wait
for the next marker angle violation in Step-7).

Fig. 6: A view of the angle limitation for a question marker

Figure 6 shows a view of the angle limitation for a
question marker. The location of the landmark is set to the
right direction of the marker unlike in subsection 2.2. The
angle limitation is defined asθ (0 5 θ 5 90).

3. An experiment to validate the effect of
the AR learning

To validate the effect of the trained and resultant spatial
reasoning capacity, we perform an experiment using the
method described in subsection 2.2. The method is imple-
mented with ARToolKit [4] to provide an AR space. Objects
in the AR space are displayed by using OpenGL [5].

According to Piaget’s stage of cognitive development [6],
four cognitive stages, which are a sensorimotor stage, a
pre-operational stage, a concrete operational stage and a
formal operational stage, are observed. The sensorimotor
stage is the period of zero to two years old, where a hidden
object can be recognized and the permanence of an object is
acquired. The pre-operational stage is the period of two to
seven years old, where limited intelligence is developed to
symbolize objects so that make-believe games are played. On
the other hand, thinking is done without logic. The concrete
operational stage is the period of seven to twelve years old,
where considerable intelligence is developed through logical
and systematic manipulation of objects. Finally, complete
intelligence, which is as competent as adults, is established
in the formal operational stage at the age of twelve. The
spatial reasoning capacity is developed by training. Since
objects, which are generated in the method in section 2.2,
are examined and logicized, children in concrete operational
stage should be targeted. Therefore, in this experiment, we
chose fifth grade pupils of an elementary school. The pupils
are in the age of ten to eleven. In the fifth grade, there are
37 boys and 36 girls.

We start the experiment with the hypothesis that the
method using AR does not affect the spatial reasoning
capacity. The hypothesis is rejected later in this section.

The conditions of the AR learning are classified into three
groups. The first group uses the method in Fig.2, namely
“with frame”. The second group uses the question marker
“without frame”. The effect of box frames shown in Fig.2 is
validated by comparing these two groups. Finally, the group
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Fig. 7: An example of tests

Fig. 8: A view of the AR learning

of “without learning” does not contain the AR learning phase
to validate the effect of AR learning.

The experimental procedure is shown as follows.

Step-I) Paper test 1 (5 min.)
Step-II) AR learning (15 min.)
Step-III) Paper test 2 (5 min.)

In Step-I), the preliminary spatial reasoning capacity is
measured using test 1. Figure 7 shows an example of paper
tests. The right-and-left objects are compared and the pupils
determine if these objects are same or different. There are
80 questions in each paper test. The paper test 1 is to be
completed within 5 minutes. Note that it is not necessary to
answer all the 80 questions. In Step-II), the AR learning
is performed in 15 minutes. The pupils of the “without
learning” group wait 15 minutes without the AR learning.
In Step-III), the spatial reasoning capacity is measured using
paper test 2 in common with paper test 1. The effect of the
AR learning is expected to be validated by this paper test
when it is confirmed that Step-I) affects Step-III). These two
paper tests are distributed at random.

In this experiment, laptop computers, AR markers and
Web cameras are used for the AR learning. The AR markers
are freely movable. Figure 8 shows a view of the AR
learning.

We analyze the results of the experiment. The spatial rea-
soning capacity is to recognize the overview of objects in the
three-dimensional space quickly and accurately. The spatial
object recognition speed is measured with the response rate
(the rate of the response time in all questions). In addition,
the spatial object recognition accuracy is measured with the
accuracy rate. Figure 9 and 10 show the average response
rate and the average accuracy rate, respectively. ANOVA
(ANalysis Of VAriance) is used to uncover the attributions
and interaction effects. Table 1 shows the result of the two-

Fig. 9: The response rate

Fig. 10: The accuracy rate

Table 1: Two-way ANOVA
A response rate An accuracy rate

Condition F (2, 70) 0.54 0.76
p 0.59 0.47

before and after F (1, 70) 189.37 14.82
p < .001**** < .001****

Interaction F (2, 70) 0.17 8.09
p 0.84 < .001****

Significantlevel p < .001****

way ANOVA. Here,F shows the proportion of within-group
variance to between-group variance.p shows significance
probability. * shows significance level.t is calculated with
X−µ√
U/n

, wheren is the number of samples,X is the sample

average,U is the sample unbiased estimate of variance, and
µ is the population mean. One attribution is the conditions
for learning (learning with frame, learning without frame,
and no learning). Another attribution is “before and after”
(Step-I) and Step-III)).

In the result of the response rate, “before and after”
learning differs significantly (F(1, 70) = 189.37, p <
.001****). Therefore, the spatial object recognition speed
has the possibility to be improved by the tests. In the result
of the accuracy rate, “before and after” learning differs
significantly (F(1, 70) = 14.82, p < .001****). Interac-
tion between “before and after” learning and the learning
conditions also differ significantly (F(2, 70) = 8.09, p <
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Table 2: The result of a post-hoc test for “before and after”
learning

An accuracy rate F (1, 70) p

with frame 8.14 < .01**
without frame 22.08 < .001****

without learning 0.78 0.38

Significantlevel p < .01**, p < .001****

Table 3: The result of a post-hoc test for learning conditions
An accuracy rate F (2, 140) p

before 4.13 < .05*
after 0.32 0.73

Significantlevel p < .05*

Table 4: The result of a post-hoc test in “before” learning
An accuracy rate t p

without learning - without frame 2.76 < .01**
without learning - with frame 2.12 < .05*

with frame - without frame 0.64 0.53

Significantlevel p < .05*, p < .01**

.001****). Therefore, the interaction should be evaluated.
The results of the simple main effect test are shown in Tab.2
and Tab.3. Significant difference is found in “before and
after” learning within the “with frame” (F (1, 70) = 8.135,
p < .01**) and the “without frame” (F (1, 70) = 22.083,
p < .001****). So the AR learning affects the accuracy rate
among “with frame” and “without frame”.

The learning of “before” differs significantly (F(2, 140) =
4.13, p < .05*) in the learning conditions. The result of mul-
tiple comparisons in the learning conditions of the accuracy
rate is shown in Tab.4. The relationship between “without
learning” and “without frame” shows significant difference
(t = 2.76, p < .01**), and the relationship between “without
learning” and “with frame” shows significant difference,
too (t = 2.12, p < .05*). Therefore, it turns out that the
group of “without learning” contains more examinees with
high spatial reasoning capacity. Namely, the hypothesis is
rejected. Thus, the effectiveness of the attribute “with frame”
and “without frame” is validated.

As the result of the ANOVA, it is confirmed that the
response rate is improved. However, the response rate is im-
proved with any conditions and does not differ significantly.
It means that the improvement is not affected so much by
the AR learning but the habituation to the tests. Therefore,
the spatial object recognition speed is not affected by the
AR learning. The accuracy rate is improved by “before and
after” AR learning. In the case of the accuracy rate, both
of “with frame” and “without frame” are improved while
the effect of the box frame is not observed. Thus, the AR
learning affects the spatial object recognition accuracy.

Fig. 11: The response rate in the improved version

4. Experiments for AR marker learning
with angle rotation

To study the relationship between rotation angle and the
learning efficiency of examinees, we perform other experi-
ments as described in subsection 4.1. In this section, we first
investigate the difference between the cases of fixed angle
and variable angles for the AR marker by experiment. Then,
we explain the experimental results to show the effect of the
learning with rotating the AR marker.

4.1 Learning with limited angles
In this subsection, we perform an experiment to inves-

tigate the difference between the cases of fixed angle and
variable angles. For the experiment, we have 42 examinees
who are female students of our university. We start the
experiment with the hypothesis that rotation angle does not
affect the spatial reasoning capacity using the method of
section 2.3. The hypothesis is rejected later in this section.

The experimental procedure is the same as in section 3.
Therefore, just different parts are shown as follows. In step
II), the method of section 2.3 is used. The conditions of the
AR learning are separated into three groups to investigate
the angle rotation effect. The three groups are as follows.

• “all” (zero, twenty, forty, sixty and eighty degrees)
• “0-degree”
• “80-degree”

The first group “all” has limitations of rotation angles (θ in
Fig.6) from zero (cannot rotate) to eighty degrees by twenty
degrees. The second group “0-degree” is fixedθ zero degree.
Finally, the group “80-degree” is fixed θ eighty degrees.

We analyze the results of the experiment. Figure 11 and
12 show the average response rate and the average accuracy
rate, respectively. Table 5 shows the result of the two-
way ANOVA. One attribution is the conditions for learning
(learning all, learning with 0-degree, and learning with 80-
degree). Another attribution is “before and after” (Step-I)
and Step-III)).

As the result of the response rate, “before and after” learn-
ing differs significantly (F(1, 39) = 12.60, p < .001****).
Interaction between “before and after” learning and the
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Fig. 12: The accuracy rate in the improved version

Table 5: Two-way ANOVA
A response rate An accuracy rate

Condition F (2, 39) 3.86 2.57
p < .05* 0.09

before and after F (1, 39) 12.60 50.85
p < .001**** < .001****

Interaction F (2, 39) 4.12 2.74
p < .05* 0.08

Significantlevel p < .05*, p < .001****

Table 6: The result of a post-hoc test in “before and after”
learning

A response rate F (1, 39) p

all 6.89 < .05*
0-degree 13.91 < .001****
80-degree 0.04 0.84

Significantlevel p < .05*, p < .001****

learning conditions also differ significantly (F (2, 39) =
4.12, p < .05*). Therefore, the interaction should be evalu-
ated. The results of the simple main effect test are shown in
Tab.6 and Tab.7. Significant difference is found in “before
and after” learning within “all” (F(1, 39) = 6.89, p < .05*)
and “0-degree” (F(1, 39) = 13.91, p < .001****). So the
rotation angle seems to affect the response rate in “all” and
“0-degree”.

The learning of “after” differs significantly (F(2, 78) =
5.61, p < .01**) in the learning conditions. The result
of multiple comparisons in the learning conditions of the
response rate is shown in Tab.8. The relationship between
“all” and “ 80-degree” shows significant difference (t= 3.16,
p < .01**), and the relationship between “0-degree” and
the “80-degree” shows significant difference, too (t = 2.55,
p < .05*). Therefore, it turns out that the group of “all” gets
considerable learning effects rather than “0-degree”. Namely,
the hypothesis is rejected from the fact that the learning flow
affects the spatial reasoning capacity. Thus, the effect of the
attribute “all” and “0-degree” is validated.

In the result of the accuracy rate, “before and after” learn-
ing differs significantly (F(1, 39) = 50.85, p < .001****).

Table 7: The result of a post-hoc test for learning conditions
A response rate F (2, 78) p

before 2.14 0.12
after 5.61 < .01**

Significantlevel p < .01**

Table 8: The result of a post-hoc test in “after” learning
A response rate t p

All - 80-degree 3.16 < .01**
All - 0-degree 0.61 0.54

0-degree - 80-degree 2.55 < .05*

Significantlevel p < .05*, p < .01**

Therefore, the spatial object recognition accuracy has the
possibility to be improved regardless of any rotation angle.

As the result of the ANOVA, the response rate is improved
by the “before and after” AR learning. In this case, both
of “all” and “0-degree” are improved from the view point
of the rotation angle effect. Since this method is to have
examinees to image object rotation with ninety degrees, “80-
degree” is too much support for such object rotation in mind.
Thus, the rotation angle affects the spatial object recognition
speed. Furthermore, the accuracy rate is improved with any
conditions and does not differ significantly. It means that
the improvement is not affected so much by the rotation
angle but the AR learning itself. Therefore, the spatial object
recognition accuracy is not affected by the rotation angle.

4.2 Learning with various angles
In this subsection, we perform another experiment to study

the effect of the AR learning with rotating the AR marker.
The examinees are 16 female students of our university. The
experimental procedure is shown as follows.

Step-i) Paper test 1 (5 min.)
Step-ii) Paper test 2 (5 min.)
Step-iii) Rotate the AR marker byθ in a random manner
Step-iv) AR learning (3 min.)
Step-v) Paper test 3 (5 min.)
Step-vi) Terminate, if all angles are selected
Step-vii) Go to step-iii)

In Step-i), the preliminary spatial reasoning capacity is
measured using test 1. The test is the same as in section
3. In Step-ii), the spatial reasoning capacity after the test
1 is measured using test 2. In Step-iii), the AR marker is
rotated by zero, twenty, forty, sixty and eighty degrees in
a random order only once. In Step iv), the AR learning is
performed using the method of section 2.3 for 3 minutes.
In Step-v), the spatial reasoning capacity after the learning
is measured using test 3. In Step-vi), when all the five
angles are examined, the procedure is terminated. Otherwise
it returns to Step-iii). The total time for the procedure is
5 + 5 + (3 + 5) ∗ 5 = 50 minutes.
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Fig. 13: The relationship between the rotation angle and the
accuracy rate

Table 9: Multiple comparisons of angles
Degree t p

0 - 80 3.25 < .005***
20 - 80 2.98 < .005***
40 - 80 0.93 0.36
60 - 80 2.05 < .05*

Significantlevel p < .05*, p < .005***

We analyze the results of the experiment to investigate
which rotation angle is the most effective. To investigate
the relationship between the rotation angle and the accuracy
rate, a regression analysis is performed. Figure 13 illustrates
the average accuracy rate and a regression model [7]. This
model is expressed as follows.

y = −0.12 ∗ 10−5x3 +0.13 ∗ 10−3x2 − 0.22 ∗ 10−2x+0.86

The effect of learning does not change from zero to twenty
degrees. The accuracy rate increases for twenty to sixty
degrees. Then the accuracy rate shows a gradual decline for
eighty degrees. As pointed out in section 4.1, “80-degree”
is too much support for such object rotation in mind.

In this experiment, “80-degree” improves the accuracy rate
rather than “0-degree”. However, “0-degree” improves the
accuracy rate rather than “80-degree”in section 4.1. This
result contradicts the result in section 4.1. Therefore, we
examine a one-way ANOVA test. One attribution is the
rotation angle. In the results of the one-way ANOVA, the
relationship among five rotation angles shows significant
difference (F(4, 56) = 8.99, p < .001****). Therefore,
a post-hoc test should be examined. The relationship be-
tween “80-degree” and other angles in the results of the
multiple comparison is shown in Tab.9. There are significant
difference between “80-degree” and “0/20-degree”. In the
experiment in section 4.1, other angles have no effect with
“80-degree”. However in this experiment, the list of the
learning is randomly generated, and the other angles are
confirmed to be affected. Since the learning of “0-degree”
does not support the rotation, the learning itself is difficult.
Hence, we conclude that the learning of “0-degree” is an
unsuitable angle.

As the result of the analysis, it turns out that the AR
learning with sixty degrees as the limitation of angle is the
most effective method.

5. Conclusions
In this paper, we proposed new methods to train students’

spatial reasoning capacity using AR. In the AR environment,
virtual objects are displayed even in floating and can be
moved freely. Students with low spatial reasoning capacity
can effectively learn by rotating an AR marker. In the first
method, if the rotation of a virtual object in mind is hard,
the AR marker can be rotated by arbitrary angle physically.
The second method has physical limitation of the rotation.

To validate the effect of the trained and resultant spatial
reasoning capacity, we perform an experiment using the
proposed method. As the result of the ANOVA, the accuracy
rate is improved by “before and after” AR learning. In the
case of the accuracy rate, both of “with frame” and “without
frame” are improved while the effect of the box frame is not
observed. Thus, the AR learning affects the spatial object
recognition accuracy.

To study the relationship between rotation angle and the
learning efficiency of examinees, we performed two exper-
iments. First, we performed an experiment to investigate
the difference among the cases of fixed angle and variable
angles. As the result of the ANOVA, the response rate is
improved by the “before and after” AR learning. In this
case, both of “all” and “0-degree” are improved from the
view point of the rotation angle effect. Second, we performed
an experiment to study the effect of the AR learning with
rotating the AR marker. The effect of the AR learning
does not change from zero to twenty degrees. The accuracy
rate increases for forty to sixty degrees. Then the accuracy
rate shows a gradual decline for eighty degrees. From the
result of the analysis, it turns out that the AR learning with
sixty degrees as the limitation of angle is the most effective
method.

In our future work, we plan to develop an AR tool to train
spatial reasoning capacity for understanding 3D objects from
opened-up cubes.
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Abstract    Queuing network techniques are effective for evaluating 
the performance of computer systems. We discuss a queuing 
network technique for computer systems with multiple memory 
resource requirements. When a job arrives from outside the 
network, it occupies one of the memory resources and executes 
CPU and I/O processing in the network occupying the memory. 
When the job completes the CPU and I/O processing, it releases the 
memory and leaves the network. However, because the memory 
resource is considered to be a secondary resource for the CPU and 
I/O equipment, and because the queuing network model of 
computer systems with memory resources is an open one, we 
cannot calculate its exact solutions.  

We propose here an approximation technique for calculating 
the performance measures of computer systems with multiple 
memory resource requirements using the queuing network 
technique. This technique involves dividing a network into two 
parts; one is a “processing part” in which a job executes CPU 
and I/O processing, and the other is a “memory part” that 
indicates how the memory resources are used by jobs. By dividing 
the network into two parts, we can prevent the number of network 
states from increasing and can approximately calculate the 
performance measures of the network. We evaluated the proposed 
approximation technique using numerical experiments.  

Keywords   performance of computer systems, central server 
model, memory resource, memory resource requirements 

 

1. Introduction  
Queuing network techniques are effective for evaluating the 
performance of computer systems. In computer systems, two 
or more jobs are generally executed at the same time, which 
causes delays due to conflicts in accessing hardware or 
software resources such as the CPU, I/O equipment, or data 
files. We can evaluate how this delay affects the computer 
system performance by using a queuing network technique. 
Some queuing networks have an explicit exact solution, 
which is called a product form solution [1]. With this 
solution, we can easily calculate the performance measures 
of computer systems, for example the busy ratio of hardware 

and the job response time. However, when the exclusion 
controls are active or when a memory resource exists, the 
queuing network does not have a product form solution. To 
calculate an exact solution of a queuing network that does 
not have a product form solution, we have to construct a 
Markov chain that describes the stochastic characteristics of 
the queuing network and numerically solve its equilibrium 
equations. The number of unknown quantities in the 
equilibrium equations is the same as the number of states of 
the queuing network. Since the number of states of the 
queuing network drastically increases when the number of 
jobs or the amount of hardware in the network increases, the 
number of unknown quantities in the equilibrium equations 
also drastically increases. Therefore, we cannot numerically 
calculate the exact solution of the queuing network. 
Moreover, when the queuing network is an open model 
where jobs arrive from or depart for the outside of the 
network, the number of states of the network can become 
infinite (the number of jobs can be infinite.), and we cannot 
actually calculate an exact solution. 

We discuss the queuing network technique for computer 
systems with memory resources. When a job arrives from 
outside the network, it occupies a portion of the memory 
resources and executes CPU and I/O processing in the 
network with the memory. When the job completes CPU and 
I/O processing, it releases the memory and leaves the 
network. Therefore, memory can be considered as a 
secondary resource for the CPU and I/O equipment. When a 
queuing network includes a secondary resource, it does not 
have product form solutions. Moreover, since the queuing 
network technique of computer systems with memory 
resources is an open model, we cannot calculate its exact 
solutions. 

We propose an approximation technique for calculating 
the performance measures of computer systems with 
multiple memory resource requirements. We previously 
reported the results for a single job type case [6]. In this 
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paper, we extend the results of [6] and discuss them for the 
case when there are multiple memory resource requirements 
and multiple job types (each of which is called a job class). 
Similarly to the single job class in [6], we divide the network 
into two parts in order to prevent the number of states of the 
Markov chain from increasing. One part is called the 
“processing part,” in which jobs execute CPU and I/O 
processing, and the other is the “memory part,” which 
indicates how the memory resources are used by the jobs. As 
with the behavior of CPU and I/O processing, the memory 
usage behavior also differs for each job class, such as how 
much memory is allocated to the job. When there is a single 
job class, both the processing and memory parts have a 
product form solution, but when there are multiple job 
classes, only the processing part has a product form solution. 
Therefore, it is not sufficient to divide the queuing network 
into two parts; an approximation is also needed to analyze 
the memory part. 

Dividing the model into primary and secondary resources 
is a two-layer queuing network techniques [3][4]. Our 
proposed technique is also a two-layer technique for 
computer systems with memory resources. 

 
 

2. Model Description 
 

The processing part is equivalent to the ordinary central 
server model with multiple job classes. In this model, K job 
classes exist, and each of them is numbered k =1, 2, … , K  
by affixing a k. The processing part consists of a single 
CPU node and multiple I/O nodes. We denote M as the 
number of I/O nodes. The I/O nodes are numbered m =1, 2, 
… , M by affixing m, and the CPU node is numbered m =0 
by also affixing m. The service rate of job class k at the 
CPU node is μ0

k, and the service rate of job class k at an I/O 
node m is μm

k. The service time at each node is a mutually 
independent random variable subject to common 
exponential distributions. Jobs are scheduled on a first come 
first served (FCFS) principle at all nodes. At the end of 
CPU processing, a job probabilistically selects a I/O node 
and moves to it, or completes CPU and I/O processing and 
departs from the network. The selection probability of I/O 
node m of job class k is pm

k (k =1, 2, ... , K; m =1, 2, ... , M), 
and the completion probability of job class k is p0

k (k =1, 

2, ... , K ). Therefore, 
=

=
M

m

k
mp

0

1
 

(k =1, 2, ... , K ). 

    Memory resources are added to this ordinary central 
server model (Figure 1). We denote Sk as the number of 
memory resources for job class k. A job from job class k 
arrives from the outside at random at an arrival rate λk. The  

Fig. 1 Central server model with multiple memory  
resource  requirements 

 
 
job requests and acquires a memory resource before 
entering the processing part. If all the memory resources for 
job class k are occupied when the job of job class k arrives, 
the job joins the memory-waiting queue and waits for one 
of the memory resources to be released by another job. 
When the job completes CPU and I/O processing, it releases 
the memory resource and leaves the network. Because the 
job has to occupy a memory resource upon entering the 
processing part, the number of jobs occupying a memory 
resource is always equal to the number of jobs in the 
processing part. Therefore, at most Sk jobs of job class k can 
enter the processing part. That is, the maximum job 
multiplicity of job class k in the processing part is Sk. The 
number of jobs of job class k in the processing part is 
denoted by nk (= 0, 1, 2, ... , Sk). By replacing “CPU → 

outside transition” with “CPU →  CPU transition,” the 
processing part is modified to a closed central server model 
in which the number of jobs is constant (Figure 2). In this 

closed model, when “CPU → CPU transition” occurs, the 
job terminates and a new job starts. Therefore, the mean job 
response time is the mean time between two successive 

“CPU → CPU transitions.” This means job response time 
can be considered as a job lifetime. 
 
 
3. Approximation Model 
 
To obtain the exact solution of the central server model with 
memory resource requirements, we have to describe the 
entire model with a single Markov chain for each job class. 
However, this causes the number of states of the Markov 
chain to drastically increase when the number of nodes and 
the number of jobs in the network increase. By dividing the 
central server model into two parts (processing part and 
memory part), and describing each part with two Markov 
chains, we can prevent the number of states of the model 
from increasing (Figure 2). We set the following notations. 
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Fig. 2 Concept of approximation 

 
 
We set the following notations. 
 
τkm : total mean service time at node-m  in a job lifetime of 

job class k (Sk, k=1, 2, ... , K; m =0, 1, ... , M ) 
n* = (n1, n2, ... , nK)  

: vector of number of jobs (nk =0, 1, 2, ... , Sk) 
nkm : number of jobs in job class k at node-m  

(m =0, 1, ... , M ) 
n = (n10, n11, ... , n1M, n20, n21, ... , n2M, ... , nK0, nK1, ... , nKM) 

: state vector of the processing part 

F (n) = {n | 0,
0

≥=
=

km

M

m
kkm nnn  (m =0, 1, ... , M )}  

(nk =0, 1, 2, ... , Sk, k =1, 2, ... , K ) 
: set of all feasible states of the processing part when the 

number of jobs of job class k is nk 
Ps (n) : steady-state probability of state n 
 
The processing part is equivalent to the ordinary central 
server model with multiple job classes, and therefore, the 
Markov chain describing the processing part has a product 
form solution. Then the steady-state probability Ps(n) is 
represented by the following formula [1][2]. 

Ps (n) = 
),,,,( 21

1 0

Mnnn K

K

k

M

m

n
km

km

ϕ

τ∏∏
= =  

where  ∏∏
∈ = =

=
)( 1 0

21 ),,,,(
nFn

K

k

M

m

n
kmK

kmMnnn τϕ   is the 

normalizing constant of steady-state probabilities when the 
number of jobs of job class k in the processing part is nk (k 
=1, 2, ... , K ). From these steady-state probabilities, we can 
calculate the mean job response time Tn

k of job class k in the 
processing part, when the number of jobs is nk (k =1, 2, ... , 
K ), as follows.  

),,,1,,(

),,,,,(

1

1

Mnnn

Mnnnn
T

Kk

Kkkk
n





−
⋅=

ϕ
ϕ

 
 

 
Fig. 3 State Transition diagram (two job classes) 

 
 
The memory part can be considered as an M/M/Sk queuing 
model with Sk servers (k =1, 2, ... , K ). In an ordinary 
M/M/Sk queuing model, the service rate at a server is 
constant, regardless of the number of guests in the service. 
In the memory part, however, the service rate changes 
depending on the number of occupied memory resources. 
The mean job response time Tn

k of job class k (k =1, 2, ... , 
K ) in the processing part, when the number of jobs in the 
processing part is n*= (n1, n2, ... , nK), is equal to the mean 
time of occupied memory. Since the service rate from the  
                                                                 1 
processing part νn

k is denoted as νn
k = ――, νn

k depends on  
                                                                Tn

k 
the number of occupied memory resources nk. The state 
transition of the M/M/Sk queuing model (k =1, 2) is shown 
in Figure 3, where the memory service rates change 
depending on the number of occupied memory resources. 
This is a two-dimensional birth-death process. The 
equilibrium equations with the steady-state probability 
QS(n*)=QS(n1, n2), when the number of memory resources is 
S=(S1, S2) and the number of occupied memory resources is 
n*=(n1, n2), are as follows (similar to the case with higher  
dimensions).  
 

(λ1+λ2) 
⋅ QS (0, 0) = ν10

1・QS (1, 0) +ν01
2 ⋅ QS (0, 1) 

(λ1+λ2+n1
1

01nν ) ⋅ QS (n1, 0) = λ1 )0,1( 1 −⋅ nQS
 + 

(n1+1)
 

1
101+nν ⋅ QS (n1+1, 0) + 2

11nν ⋅ QS (n1, 1) 

(n1=1, 2, ... , 11 −S ) 
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(λ1+λ2+ S1
1

01Sν ) ⋅ QS (n1, 0) = λ1 +−⋅ )0,1( 1nQS
 

S1
1

01Sν ⋅ QS (n1+1, 0) + 2
11nν ⋅ QS (n1, 1) 

(n1= S1, S1+1, ...) 
(λ1+λ2+n2

2
0 2nν ) ⋅ QS (0, n2) = λ2 +−⋅ )1,0( 2nQS

 

1
1 2nν ⋅ QS (1, n2) + (n2+1) 2

10 2 +nν ⋅ QS (0, n2+1) 

(n2 =1, 2, ... , 12 −S ) 

(λ1+λ2+S2
2
0 2nν ) ⋅ QS (0, n2) = λ2 +−⋅ )1,0( 2nQS

 

1
1 1nν ⋅ QS (1, n2) +S2

2
0 2Sν ⋅ QS (0, n2+1) 

(n2 =S2, S2+1, ... ) 

(λ1+λ2+n1
1

21nnν +n2
2

21nnν )・QS (n1, n2) = 

λ1・ +− )0,1( 1nQS
λ2 ⋅ +− )1,0( 2nQS

 

(n1+1)
 

1
1 21 nn +ν ⋅ QS (n1+1, n2) + 

(n2+1)
 

2
121 +nnν ⋅ QS (n1, n2+1) 

(n1 =1, 2, ... , 11 −S ;  n2 =1, 2, ... , 12 −S ) 

(λ1+λ2+S1
1

21nSν +n2 2

21Snν ) ⋅ QS (n1, n2) = 

λ1 +−⋅ )0,1( 1nQS
λ2 +−⋅ )1,0( 2nQS

  

S1
1

21nSν ⋅ QS (n1+1, n2) + (n2+1) 2
121 +nnν ⋅ QS (n1, n2+1) 

(n1 =S1, S1+1, ... ;  n =1, 2, …, 12 −S ) 

(λ1+λ2+n1
1

21nnν +S2
2

21Snν ) ⋅ QS (n1, n2) = 

λ1 +−⋅ ),1( 21 nnQS
λ2 +−⋅ )1,( 21 nnQS

 

(n1+1)
 

1
1 21 nn +ν ⋅ QS (n1+1, n2) +S2 2

21Snν ⋅ QS (n1, n2+1) 

(n1 =1, 2, ... , 11 −S ;  n2＝S2, S2+1, ... ) 

(λ1+λ2+S1
1

21nSν +S2
2

21Snν ) ⋅ QS (n1, n2) = 

λ1 +−⋅ ),1( 21 nnQS
λ2 +−⋅ )1,( 21 nnQS

 

S1
1

21nSν ⋅ QS (n1+1, n2) +S2
2

21Snν ⋅ QS (n1, n2+1) 

(n1 =S1, S1+1, ... ;  n2 =S2, S2+1, ... ) 
 
The transition diagram of the two-dimensional birth-death 
process is shown in Figure 3. However, the steady-state 
equation does not have a product form solution. Therefore, 
some approximation is required to solve it.  

When a single job class and a single memory resource 
exist in the model, it can be described with a one-
dimensional birth-death process. Its transition diagram is 
shown in Figure 4, and the steady-state equation is as 
follows: 

 
Fig. 4 State Transition diagram (single job class) 

 

λ1 ⋅ QS (0)＝ν1
1 ⋅ QS (1) 

(λ1+ n1 1

1nν ) ⋅ QS (n1) =λ1 +−⋅ )1( 1nQS
 

(n1+1) 1
11+nν ⋅ QS (n1+1) (n1 =1, 2, …, 11 −S ) 

(λ1+S1
1

1Sν ) ⋅ QS (n1) =λ1 +−⋅ )1( 1nQS
) +S1

1

1Sν ⋅ QS (n1+1) 

              (n1 =S1, S1+1, ... ) 
 

Solutions for the steady-state equation are in the following 
product form. 

∏
=









⋅=

1

1
1

1

1
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
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



⋅



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


⋅= ∏ ν

λ
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(n1＝S1, S1+1, ... )

  
In this formula,  for the state transition of i =1, 2, ... , 11 −S , 

multiply by factor 
1

1

ii ν
λ
⋅

 while for the state transition of  i = 

S1, S1+1, ... , multiply by factor 
1

1

1

1SS ν
λ
⋅

. For two-dimension 

case, we consider routes from lattice point (0, 0) to (n1, n2) 
shown in Figure 3, and for the state transition to the right  

direction along a route, multiply by factor
1

1

ii ν
λ
⋅

 (i =1, 2, ... , 

11 −S ) or 
1

1

1

1SS ν
λ
⋅

(i =S1, S1+1, ... ), while for the state  

transition  in the upward direction, multiply by factor
2

2

jj ν
λ
⋅

 

( j =1, 2, ... , 12 −S ) or 
2

2

2

2SS ν
λ
⋅

( j =S2,  S2+1, ... ). Thus, the  

coefficient of QS(n1, n2) related to QS(0, 0) is represented as 
the multiplication based on the route from (0, 0) to (n1, n2). 
Since there are multiple routes from (0, 0) to (n1, n2), the  

 
Fig. 5 Calculating State Probability along routes to (2, 1) 
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coefficient of QS(n1, n2) related to QS(0, 0) is approximately 
represented as the average of the multiplication based on all 
routes. For example, since there are three routes from  
QS(0, 0) to QS(2, 1) then, 
 

QS(2, 1) ＝ QS(0, 0)×


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




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
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+
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1
1
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1
2
01
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2 ν
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ν
λ

ν
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Here (i)(ii)(iii) are the terms that were calculated on the 
basis of the corresponding routes of the broken lines in 
Figure 5. Similarly to the case above, we can approximately 
calculate the state probability of a queuing network with 
multiple memory resource requirements when K >2. 
 
 
4. Numerical Experiments 

 
We evaluated the proposed approximation technique 
through numerical experiments. We used the following 
parameters. 

 
1. Number of memory resources: (S1, S2)=(2, 2), (3,3), (4, 4) 
2. Arrival rate: λ1=0.0 -- 21.0, λ2 =1.0, 4.0 
3. Number of I/O nodes: M =2 
4. Total service time at each node 
τ10=1.0, τ11=τ12=0.5 
τ20=1.0, τ21=τ22=1.0 
where τkm is the total service time of job class k at node m. 

 
Figures 6 and 7 show the mean job response times of job 
classes 1 and 2 as T1, T2 respectively, when λ2 is fixed at 1.0 
and 4.0, and λ1 changes from 0.0 to 21.0. In these graphs, Tk 

(S1, S2) is the mean job response time of job class k when 
the numbers of memory resources of job classes 1and 2 are 
S1, S2 respectively. Similarly to the case of a single job class, 
the mean job response time for both job classes increases 
monotonically in a convex curve. As the arrival rate λ1 

increases and λ2 is fixed (the load of only job class 1 
increases), the mean response time of both job classes 1 and 
2 increases. We can see that the mean response time of job 
class 2 is increasing higher than that of job class 1, and the 
reason for this is presumed to be that job class 2 has a 
longer I/O time than job class 1. 
 

Fig. 6 Mean Job Response Time (λ2＝1.0) 
 

Fig. 7 Mean Job Response Time (λ2＝4.0) 
 
 
5. Conclusion 
 
We proposed an approximation technique for evaluating the 
performance of computer systems with multiple memory 
resource requirements using a queuing network and 
analyzed its performance measures through numerical 
experiments. The concept of the approximation is based on 
separately analyzing the processing part and the memory 
part of the queuing network model. 
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The numerical experiments clarified the characteristics 
of the mean job response time. 
In the future we plan to examine the accuracy of the 
proposed approximation technique by comparing it with 
exact solutions or simulation results. 
 
 

REFERENCES 

[1] F. Baskett, K. M. Chandy, R. R. Muntz and F. G.  
Palacious, “Open, Closed, and Mixed Networks of  
Queues with Different Classes of Customers,'' J. ACM, 
Vol.22, No.2, pp.248--260, April 1975. 

[2] H. Kobayashi, “Modeling and Analysis,'' Addison-
Wesley Publishing Company, Inc. 1978. 

[3] T. Kurasugi and I. Kino, “Approximation Method for 
Two-layer Queueing Models,'' Performance Evaluation 
36--37, pp.55--70, 1999. 

 [4] J. A. Rolia and K. C. Sevcik, “The Method of Layers,'' 
IEEE Trans. on Software Engineering,  Vol.21, No.8,  
pp.689--700, Aug. 1995. 

[5] T. Kinoshita and Y. Takahashi, “A Queuing Network 
Modeling and Performance Evaluation Method for 
Computer Systems with Resource Requirement,'' IEICE 
D-I, Vol. J 82-D-I, No.6, pp.701--710, Jun. 1999. 

[6] T. Kinoshita and X. Gao, “Queuing Network Approxi-
mation Technique for Evaluating Performance of  
Computer Systems with Memory Resources,”  
PDPTA2010, pp.640, July 2010 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 763
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Abstract— The satisfiability problem (SAT) is widely ap-
plicable and one of the most basic NP-complete problems.
This problem has been required to be solved as fast as
possible because of its significance, but it takes exponential
time in the worst case to solve. Therefore, we aim to save
the computation time by parallel computing on a GPU.
We propose parallelization of BCP (Boolean Constraint
Propagation) procedure, one of the most effective techniques
for SAT, on a GPU. For a 2.93GHz Intel Core i3 CPU and
an NVIDIA GeForce GTX480, our experiment shows that
the GPU accelerates our SAT solver based on our BCP-
embedded divide and conquer algorithm 6.7 times faster
than the CPU counterpart

Keywords: Satisfiability problem, Boolean constraint propaga-
tion, GPGPU, CUDA

1. Introduction
The satisfiability problem (SAT for short) [1] is a problem

of determining if a given boolean expression (usually in the
conjunctive normal form) can be true by assigning some
boolean values into the boolean variables in the expression.
Formally, SAT is defined as follows:

• Let V = {V1, V2, · · · , Vn} be a set of n boolean
variables.

• Let C = {C1, C2, · · · , Cm} be a set of m clauses
where

– Cj = (Lj1 ∨ Lj2 ∨ · · · ∨ Ljkj
)

– Li ∈ {Vp,¬Vp}
• Question: Is there assignment to the variables in V such

that C1 ∧ C2 ∧ · · · ∧ Cm = true ?
where ¬ is a logical not operator, ∨ is a logical or operator, ∧
is a logical and operator. Li is called a literal which is either
affirmation or negation of a boolean variable. SAT problem
such that clauses are of exactly three literals is called 3SAT.
Any SAT instance can be transformed to a 3SAT instance
with the same solution. Therefore, without loss of generality,
for simplicity, our SAT solver accepts 3SAT instance only.

SAT is widely applicable and one of the most basic
NP-complete problems. This problem has been required to
be solved as fast as possible because of its significance,
but it takes exponential time in the worst case to solve.
Recent SAT algorithms can solve problem instances with
several million variables in a few hours. SAT algorithms
can be categorized into complete-type and incomplete-type.

Complete-type algorithms can identify whether any given
problem instance is satisfiable or unsatisfiable. In contrast,
incomplete-type algorithms can not identify unsatisfiability
but satisfiability. Many of common complete-type algorithms
can be categorized into so-called DPLL algorithm [2], [3].
DPLL algorithm performs BCP(Boolean Constraint Propa-
gation) procedure, which is a dominant part of the algorithm.
BCP procedure occupies 80% to 90% of the whole execu-
tion. On the other hand, Davis et al. proposed a method [4]
to accelerate BCP procedure by parallel processing with an
FPGA. Davis et al. parallelized only BCP procedure for their
method to be applicable to various DPLL algorithms. With
Xilinx Virtex 5 LX110T and 3.6GHz Intel Pentium 4, Davis
et al. experimentally showed that zChaff [5], [6], [7] with
FPGA accelerated BCP procedure runs 5 to 16 times faster
than the zChaff with the CPU only.

This paper proposes parallelization of BCP procedure on
a GPU, rather than an FPGA. Similar to Davis et al.’s
method, the proposed method can be used with various
DPLL algorithms. However, we adopt divide-and-conquer
algorithm [14] (3SAT-DC for short) with BCP procedure as
our SAT solver used in the experiments in this paper. 3SAT-
DC is complete-type. For a 2.93GHz Intel Core i3 CPU
and an NVIDIA GeForce GTX480, our experiment showed
that the GPU accelerates our SAT solver based on our BCP-
embedded divide and conquer algorithm 6.7 times faster than
the corresponding CPU implementation.

The remainder of this paper is organized as follows.
Section 2 briefly reviews DPLL algorithm, BCP procedure,
and SAT-DC. Section 3 presents the proposed algorithm.
Experiments to show the performance of the proposed algo-
rithm are reported in Section 4. Section 5 briefly surveys the
related works. Section 6 gives some concluding remarks and
future works. Due to the limited space, this paper include
no description on CUDA. Readers unfamiliar with CUDA
GPU architecture are recommended the literature [8], [9],
[10], [11], [12], [13].

2. Preliminaries
2.1 DPLL Algorithm

Basically, DPLL algorithm finds an optimal solution by
checking all the patterns of boolean value assignment to
the variables in a given boolean expression while discard-
ing hopeless sets of patterns without checking them. One
of the methods to identify a hopeless set of patterns is
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BCP procedure. Listing 1 shows a pseudo code of DPLL
algorithm with BCP procedure. DPLL algorithm performs
BCP procedure every decision phase which heuristically
determines the value of a variable. Other features of DPLL
algorithm are not used in the proposed method, and therefore
not described in this paper. See the literatures [2], [3] for
more detail of DPLL algorithm.

2.2 BCP Procedure
BCP procedure consists of "implication" process and

"conflict" process. The "implication" process finds a literal
whose value is consequently determined by other literals in
the same clause, and then repeat this process until no such a
literal is found. The "conflict" process finds a clause with all
literals false. Listing 2 shows a C code of BCP procedure. In
the following C codes, literals and clauses are respectively
stored in arrays named "atom" and "clause". The number of
literals and clauses are hold in variables named "numatom"
and "numclause". Value of a literal is true, false, or unknown,
which are represented as 1, -1, and 0 respectively. BCP
procedure repeatedly calls function BCPEngine (line 7 in
Listing 2) until no more implication occurs or conflict is
detected. Listing 3 shows a C code of function BCPEngine.
After "implication" process, BCPEngine scans all clauses to
detect implication or conflict in O(m). If every literal in a
clause is false, then BCPEngine finishes after updating flag
variable "conf" to indicate that conflict occurs (line 5 to 8
in Listing 3). Otherwise, BCPEngine performs "implication"
process. If exactly one literal is unknown (line 11 to 13 in
Listing 3) and any other literal is false, then BCPEngine
detects implication and assigns the value which makes the
unknown literal true into the corresponding element of array
"atom" (line 20 to 22 in Listing 3). Then, BCPEngine pushes
the index value of the modified element of array "atom" to
array "implicated" and increments the stack pointer "sp" (line
23 in Listing 3). Finally, BCPEngine updates flag variable
"imp" to indicate the detection of implication (line 24 in
Listing 3).

2.3 3SAT-DC
Listing 4 shows a pseudo code of 3SAT-DC where the

parameter "f" of function "3SAT-DC" is a given logical
expression and notation "f(x=propositional constant)" rep-
resents the logical expression such that "f" is simplified by
substituting the constant to propositional variable "x" . 3SAT-
DC is a recursive procedure for a clause with the minimum
unknown literals at that time. The time complexity of 3SAT-
DC is O(m1.84n) [14].

3. The Proposed Algorithm
3.1 An Overview

BCP procedure is inherently sequential because it consists
of iterations of O(m) time. Therefore, we parallelize only

each iteration on a GPU and performs the other part on a
CPU. To do so, we partition m clauses. Listing 5 shows a
pseudo code of the proposed CPU code for DPLL algorithm
with parallelized BCP procedure. After partitioning given
clauses, DPLL algorithm with parallelized BCP procedure
searches a solution while transferring data on the current
status of search to memory on a CPU or a GPU every
decision. The difference between serial DPLL algorithm in
Section 2.1 and the parallel version is addition of clause
partitioning in line 2 of Listing 5.

3.2 Clause Partitioning
We partition clauses into groups in order to parallelize

BCP procedure. Each group is processed by a thread block.
Hence, we partition clauses into groups the same number
of clauses for load balance. The maximum number of
active thread blocks is eight times the number numMP of
multiprocessors. Hence, we set the number numsubclause
of clauses in a group at (numclause + numMP * 8 - 1) /
(numMP * 8). Due to this, the number of groups is at most
the maximum number of active thread blocks.

3.3 Parallelized BCP Procedure
This section describes how to parallelize the serial BCP

procedure in Section 2.2.

3.3.1 Calling from a CPU

Listing 6 shows a CUDA C code of the proposed par-
allelized BCP procedure called from line 5 in Listing 5.
The differences between the serial BCP in Listing 2 and the
parallel version are:

• Status data are packed into the same array as many as
possible.

• Data transfers between a CPU and a GPU are inserted
before and after do-while statement and kernel function
call.

The reason why status data are packed into the same array
is to reduce the number of cudaMemcpy execution. The
overhead of cudaMemcpy invocation is heavy. Therefore,
memory transfer time can be reduced by reduce the nuber
of the invocations. In the proposed CUDA C code, flag
variables "conf" and "imp" are packed into array "flag". Also,
stack pointer "sp" and array "implicated" are packed into
array "sp_implicated". Due to these packings, the whole ex-
ecution time is reduced to about 90%. The proposed CUDA
C code transfers array "atom" and "sp_implicated" before
and after executing parallelized BCP procedure (line 7 to 10
and 18 to 21 in Listing 6). However, if no conflict occurs,
the latter transfer is not performed to avoid excess transfer.
After executing kernel function BCPEngine, variable "flag"
is transfered (line 15 in Listing 6).
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Listing 1: A pseudo code, focusing on BCP procedure, of DPLL algorithm
1 p r e p r o c e s s t o d e t e c t t r i v i a l u n s a t i s f i a b i l i t y
2 whi le ( 1 ) {
3 D e c i s i o n
4 whi le (BCP ( ) == c o n f l i c t ) { i f ( no more b a c k t r a c k ) re turn FALSE ; b a c k t r a c k }
5 }

Listing 2: Serial BCP procedure
1 i n t BCP( i n t numclause , i n t (* c l a u s e ) [ 3 ] , i n t * atom )
2 {
3 i n t con f = 0 , imp ;
4 do {
5 imp = 0 ; BCPEngine ( numclause , c l a u s e , atom , &conf , &imp ) ;
6 } whi le ( ! con f && imp ) ;
7 re turn con f ;
8 }

Listing 3: Serial BCP Engine
1 void BCPEngine ( i n t numclause , i n t (* c l a u s e ) [ 3 ] , i n t * atom , i n t * conf , i n t *imp )
2 {
3 * con f = 0 ; * imp = 0 ;
4 f o r ( i n t i = 0 ; i < m; i ++) {
5 i f ( c l a u s e [ i ] [ 0 ] * atom [ abs ( c l a u s e [ i ] [ 0 ] ) ] >= 0) goto F ;
6 i f ( c l a u s e [ i ] [ 1 ] * atom [ abs ( c l a u s e [ i ] [ 1 ] ) ] >= 0) goto F ;
7 i f ( c l a u s e [ i ] [ 2 ] * atom [ abs ( c l a u s e [ i ] [ 2 ] ) ] >= 0) goto F ;
8 * con f = 1 ; re turn ;
9 F :

10 i n t numUnknown = 0 ; i n t idxUnknown ;
11 i f ( atom [ abs ( c l a u s e [ i ] [ 0 ] ) ] == 0) { numUnknown++; idxUnknown = 0 ; }
12 i f ( atom [ abs ( c l a u s e [ i ] [ 1 ] ) ] == 0) { numUnknown++; idxUnknown = 1 ; }
13 i f ( atom [ abs ( c l a u s e [ i ] [ 2 ] ) ] == 0) { numUnknown++; idxUnknown = 2 ; }
14 i f ( numUnknown == 1) {
15 / / There i s e x a c t l y one l i t e r a l o f unknown v a l u e i n c l a u s e [ i ]
16 i f ( c l a u s e [ i ] [ 0 ] * atom [ abs ( c l a u s e [ i ] [ 0 ] ) ] > 0 ) c o n t in u e ;
17 i f ( c l a u s e [ i ] [ 1 ] * atom [ abs ( c l a u s e [ i ] [ 1 ] ) ] > 0 ) c o n t in u e ;
18 i f ( c l a u s e [ i ] [ 2 ] * atom [ abs ( c l a u s e [ i ] [ 2 ] ) ] > 0 ) c o n t in u e ;
19 / / Any o t h e r l i t e r a l i s f a l s e
20 i n t l i tUnknown = c l a u s e [ i ] [ idxUnknown ] ;
21 i n t v a l = ( l i tUnknown > 0) ? TRUE : FALSE ;
22 atom [ abs ( l i tUnknown ) ] = v a l ;
23 i m p l i c a t e d [ sp ++] = abs ( l i tUnknown ) ;
24 (* imp ) + + ;
25 }}}

Listing 4: A pseudo code of 3SAT-DC
1 3SAT−DC( f )
2 {
3 i f ( f == FALSE) re turn FALSE ;
4 min_c = a c l a u s e wi th minimum number o f l i t e r a l s ;
5 i f ( min_c == an empty c l a u s e ) re turn TRUE;
6 i f ( min_c == ( x ) ) re turn 3SAT−DC( f ( x = t r u e ) ) ;
7 e l s e i f ( min_c == ( x or y ) )
8 re turn 3SAT−DC( f ( x = t r u e ) ) | | 3SAT−DC( f ( x = f a l s e , y = t r u e ) ) ;
9 e l s e / * min_c==( x or y or z ) * /

10 re turn 3SAT−DC( f ( x = t r u e ) ) | | 3SAT−DC( f ( x = f a l s e , y = t r u e ) )
11 | | 3SAT−DC( f ( x = f a l s e , y = f a l s e , z = t r u e ) ) ;
12 }
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Listing 5: A pseudo code of the proposed CPU code for DPLL algorithm with parallelized BCP procedure
1 p r e p r o c e s s t o d e t e c t t r i v i a l u n s a t i s f i a b i l i t y
2 p a r t i t i o n c l a u s e s i n t o g ro up s
3 whi le ( 1 ) {
4 D e c i s i o n
5 whi le (BCP ( ) == c o n f l i c t ) {
6 i f ( no more b a c k t r a c k ) re turn FALSE
7 b a c k t r a c k
8 }
9 }

Listing 6: A CUDA C code of the proposed parallelized BCP procedure
1 # d e f i n e BLKSZ 64
2 i n t BCP_GPU( i n t numatom , i n t *atom , i n t s , i n t * s p _ i m p l i c a t e d , i n t * d _ s u b s e t ,
3 i n t * d _ o r d e r e d C l a u s e , i n t * d_atom , i n t * d _ f l a g , i n t * d _ s p _ i m p l i c a t e d )
4 {
5 i n t f l a g [ 2 ] ; / / f l a g [ 0 ] : conf , f l a g [ 1 ] : imp
6 cudaMemset (& d _ f l a g [ 0 ] , 0 , s i z e o f ( i n t ) ) ; / / c o n f = 0;
7 cudaMemcpy ( d_atom , atom , s i z e o f ( i n t ) * ( numatom + 1 ) ,
8 cudaMemcpyHostToDevice ) ;
9 cudaMemcpy ( d _ s p _ i m p l i c a t e d , s p _ i m p l i c a t e d , s i z e o f ( i n t ) * ( numatom + 1) ,

10 cudaMemcpyHostToDevice ) ;
11 do {
12 cudaMemset (& d _ f l a g [ 1 ] , 0 , s i z e o f ( i n t ) ) ; / / imp = 0;
13 BCPEngine <<< s , BLKSZ >>>( d _ s u b s e t , d _ o r d e r e d C l a u s e ,
14 d_atom , d _ f l a g , d _ s p _ i m p l i c a t e d ) ;
15 cudaMemcpy ( f l a g , d _ f l a g , s i z e o f ( i n t ) * 2 , cudaMemcpyDeviceToHost ) ;
16 } whi le ( ! f l a g [ 0 ] && f l a g [ 1 ] ) ; / / c o n f == 0 && imp != 0
17 i f ( ! f l a g [ 0 ] ) { / / no c o n f l i c t
18 cudaMemcpy ( atom , d_atom , s i z e o f ( i n t ) * ( numatom + 1 ) ,
19 cudaMemcpyDeviceToHost ) ;
20 cudaMemcpy ( s p _ i m p l i c a t e d , d _ s p _ i m p l i c a t e d , s i z e o f ( i n t ) * ( numatom +1 ) ,
21 cudaMemcpyDeviceToHost ) ;
22 }
23 re turn f l a g [ 0 ] ; / / r e t u r n c o n f ;
24 }

3.4 Kernel Function BCPEngine

Listing 7 shows the CUDA C code of the proposed kernel
function BCPEngine. The number of thread blocks is the
number s of groups. The number of threads in a thread block
is predefined constant BLKSZ. The arguments subset and
orderedClause represent partitioned groups together. Each
element of orderedClause holds a clause. Clauses in the
same group are consecutively stored in array orderedClause.
The head index of elements of each group is stored array
"subset". The type of orderedClause is int[4] rather than
int[3]. Since every clause of 3SAT instance has exactly three
literals, int[3] is sufficient to hold each clause. However, the
proposed kernel stores each clause into int[4] with padding
in order to enable coalesce access.

The kernel function BCPEngine works as follows. As
preparation, the number "size" of clauses in the group
assigned to each thread block is calculated (line 4 in Listing
7). Also, pointer "orderedClause" is moved so as to point
at the head clause of the assigned group (line 5 in Listing

7). Hence, in the lines below line 5, each thread block
can access the assigned group via orderedClause[0..size-
1]. The processing for each clause is almost same as the
serial BCPEngine in Listing 3, but there are four different
points. First, flag "conflict" is checked before each clause
is processed and if conflict is detected then each thread is
finished (line 8 in Listing 3). Second, each clause is loaded
into variable "c" of type int4 to realize coalesced access (line
10 in Listing 3). Third, detection of simultaneous implication
by multiple threads is processed by CUDA atomic functions
(line 27 to 30 in Listing 7). If multiple threads detect
implications for the same variable and attempt to assign the
variable different values, then conflict should be detected as
shown in line 31 in Listing 7. However, even if line 31 is
deleted, no problem occurs because it will be detected as
conflict at the next invocation of BCPEngine. Preliminary
experiments show that the code without line 31 is faster
by a few percent. Therefore, we deleted line 31. Fourth,
implication flag variable on global memory is not updated
immediately. Instead, each thread updates myImplication
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flag variable on a register at each iteration and finally updates
implication flag variable once (line 34 in Listing 7).

3.4.1 Cache Configuration
The proposed kernel function in Listing 7 never use

shared memory. Instead, it relies on cache memory of
Fermi architecture. Fermi GPUs can configure size of
shared memory and L1 cache memory either 16KB/48KB or
48KB/16KB. Our current implementation never use shared
memory. Therefore, we set the size of L1 cache memory at
48KB.

4. Experiments
This section compares the performance of the proposed

CUDA program with a CPU program that performs the same
computation. We measured the execution time (average of 10
trials for each test) of not only BCP procedure but also whole
execution of 3SAT-DC with BCP procedure. We embedded
invocations of BCP procedure just before recursive calls in
line 6, 8, 10, and 11 in Listing 4, which correspond to
Decisions. Furthermore, we set up the maximum number
BCPMAX of invocations of BCP procedure. If our SAT
solver executed BCP procedure BCPMAX times, we stopped
our SAT solver and measured the execution time at that
time. If our SAT solver found a solution or exhausted the
search space before BCP procedure was executed BCPMAX
times, the execution time at that time is measured. We fixed
the number of threads in a thread block at 64 because
preliminary experiments showed the number is better.

For each test, a single core of 2.93 GHz Intel Core i3
and NVIDIA GeForce GTX480 was used. The OS used is
Windows7 Professional SP1 with NVIDIA graphics driver
Version 285.62. For compilation, Microsoft Visual Studio
2008 Professional Edition with optimization option /O2 and
CUDA 3.2 SDK were used.

4.1 Performance and Problem Size
In this section, we compare the performance of GPU with

that of CPU for various problem sizes. The used problem
instances were generated by Motoki’s 3SAT instance gen-
erator G3 (n,m) [15], [16] (G3 for short). G3 generates a
boolean expression that has exactly one solution with high
probability. In general, to solve 3SAT instance with many (a
few) solutions is easy (hard).

Figure 1, 2, and 3 show a performance comparison
between CPU and GPU with problem instances generated
by G3. As for Figure 1 and 2, x-axis is the number of
variables and y-axis is the execution time in second. Figure
1 shows performance for relatively small instances with
BCPMAX 50000. Figure 2 shows performance for relatively
large instances with BCPMAX 10000. Figure 3 shows the
speedup ratios in case of Figure 1 and 2. As for Figure
3, x-axis is the number of variables and y-axis is speedup
ratio. Our GPU solver runs faster with an increase of the

problem size (i.e., the number of variables). Although GPU
is slower than CPU for small problems, it is reversed for
2500 variables. The best GPU performance is about 4.5
times than CPU for 50000 variables. For more than 50000
variables, the performance of GPU tends to decrease with
an increase of the problem size.

4.2 Performance and the Number of BCP Pro-
cedure Done

In this section, we fix problem size and compare the
performance of GPU with that of CPU for various values of
BCPMAX. We randomly selected 10 instances from SAT11
Competition [17] with category RANDOM, 50000 variables,
and 210000 clauses.

Figure 4 shows the result. The x-axis shows the name
of instance file name and the y-axis is speedup ratio. The
speedup ratio is improved with an increase of BCPMAX.
Even if BCPMAX is 1000, GPU is 1.5 times faster than
CPU in average. The best performance (6.7 times speedup)
of GPU is obtained when BCPMAX is 10000. For BCP-
MAX larger than 10000, the performance improvement is
negligible.

5. Related Works
As far as we know, there exist five existing research on

SAT algorithm parallelized on a CUDA GPU, as shown
below.

In [18], Meyer et al. proposed a complete-type method to
parallelize 3SAT-DC like us. However, they did not use BCP
procedure. Instead, they proposed a problem partitioning
method to parallelize divide-and-conquer itself and their own
heuristic for Decision phase.

In [19], McDonald et al. proposed an incomplete-type
method to parallelize WalkSAT algorithm with clause learn-
ing. Their parallelization method is to run many threads such
that each thread executes serial WalkSAT algorithm with
pseudo random sequence different any other thread.

In [20], Gulati et al. proposed a complete-type method
named MESP (MiniSAT enhanced with SurveyPropagation).
They experimentally showed speedup ratio of 2.35 in average
with 2.67GHz Intel i7 CPU and NVIDIA GeForce 280GTX
GPU.

In [21], Wang et al. proposed an incomplete-type method
of a celler genetic algorithm with random walk local search.

In [22], Deleau et al. proposed an incomplete-type method
such that SAT instance is represented by a 0-1 matrix and
0-1 matrix multiplication is used to search a solution for a
given SAT instance.

6. Conclusion and Future Work
This paper has proposed a method to parallelize BCP

procedure for SAT algorithm and has implemented a CUDA
GPU program based on the proposed method. Experimental
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Listing 7: A CUDA C code of the proposed parallelized BCP procedure
1 _ _ g l o b a l _ _ void BCPEngine ( i n t * s u b s e t , i n t (* o r d e r e d C l a u s e ) [ 4 ] ,
2 i n t *atom , i n t * f l a g , i n t * s p _ i m p l i c a t e d )
3 {
4 i n t s i z e = s u b s e t [ blockIdx . x + 1 ] − s u b s e t [ blockIdx . x ] ;
5 o r d e r e d C l a u s e += s u b s e t [ blockIdx . x ] ;
6 i n t m y I m p l i c a t i o n = 0 ;
7 f o r ( i n t i = threadIdx . x ; i < s i z e ; i += blockDim . x ) {
8 i f ( f l a g [ 0 ] ) r e t u r n ; / / Ano ther t h r e a d d e t e c t e d c o n f l i c t
9 i n t c [ 4 ] ;

10 * ( ( i n t 4 * ) c ) = * ( ( i n t 4 * ) o r d e r e d C l a u s e [ i ] ) ;
11 i f ( c [ 0 ] * atom [ abs ( c [ 0 ] ) ] >= 0) go to F ;
12 i f ( c [ 1 ] * atom [ abs ( c [ 1 ] ) ] >= 0) go to F ;
13 i f ( c [ 2 ] * atom [ abs ( c [ 2 ] ) ] >= 0) go to F ;
14 f l a g [ 0 ] = 1 ; / / c o n f = 1;
15 r e t u r n ;
16 F :
17 i n t numUnknown = 0 ; i n t idxUnknown ;
18 i f ( atom [ abs ( c [ 0 ] ) ] = =UNKNOWN) {numUnknown++; idxUnknown =0;}
19 i f ( atom [ abs ( c [ 1 ] ) ] = =UNKNOWN) {numUnknown++; idxUnknown =1;}
20 i f ( atom [ abs ( c [ 2 ] ) ] = =UNKNOWN) {numUnknown++; idxUnknown =2;}
21 i f ( numUnknown == 1) { / / e x a c t l y one l i t e r a l o f unknown v a l u e i n o r d e r e d C l a u s e [ i ]
22 i f ( c [ 0 ] * atom [ abs ( c [ 0 ] ) ] > 0 ) c o n t i n u e ;
23 i f ( c [ 1 ] * atom [ abs ( c [ 1 ] ) ] > 0 ) c o n t i n u e ;
24 i f ( c [ 2 ] * atom [ abs ( c [ 2 ] ) ] > 0 ) c o n t i n u e ;
25 i n t l i tUnknown = c [ idxUnknown ] ;
26 i n t v a l = ( l i tUnknown > 0) ? TRUE : FALSE ;
27 i n t o l d = atomicCAS(&atom [ abs ( l i tUnknown ) ] , UNKNOWN, v a l ) ;
28 i f ( o l d == UNKNOWN) { m y I m p l i c a t i o n ++;
29 s p _ i m p l i c a t e d [ atomicAdd(& s p _ i m p l i c a t e d [ 0 ] , 1 ) ]
30 = abs ( l i tUnknown ) ; }
31 / / e l s e i f ( o l d != v a l ) { f l a g [ 0 ] = 1; r e t u r n ; }
32 }
33 }
34 i f ( m y I m p l i c a t i o n ) f l a g [ 1 ] = 1 ; / / imp = 1;
35 }
36 }

Fig. 1: A performance comparison between CPU and GPU
(small instance)

results show that the proposed GPU SAT solver runs max-
imum 6.7 times faster than the corresponding CPU solver.
One of future works is to realize more speedup by improving
clause partitioning method and so on.

Fig. 2: A performance comparison between CPU and GPU
(large instance)
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Abstract— Several biologically inspired 

applications have been motivated by Spiking Neural 

Networks (SNNs) such as the Hodgkin-Huxley (HH) and 

Izhikevich models, owing to their high biological 

accuracy. The inherent massively parallel nature of the 

SNN simulations makes them a good fit for 

heterogeneous computing resources such as the General 

Purpose Graphical Processing Unit (GPGPU) clusters. 

In this research, we explore multi-level parallelism 

offered by heterogeneous computing resources for large-

scale SNN simulations. These simulations were 

performed using a two-level character recognition 

network based on the aforementioned SNN models on 

NCSA’s Forge GPGPU cluster. Our multi-node GPGPU 

implementation distributes the computations to either 

CPU or GPGPU based on task classification and utilizes 

all the available multi-level parallelism offered to ensure 

maximum heterogeneous resource utilization. Our multi-

node GPGPU implementation scales up to 200 million 

neurons for the two-level network and achieves a speed-

up of 355x over an equivalent MPI-only implementation.  

Keywords – GPGPU cluster, Neural Networks, 

Performance, Scalability, Multi-level Parallelism  

1 Introduction 

Spiking Neural Networks (SNNs) are very popular 

in the neuroscience community for modeling the 

mammalian brain to understand its functional and 

operational principles. The ability of spiking neurons to 

reproduce most of the neuronal properties with high 

accuracy makes them amenable for brain related studies 

[1]. Biologically inspired SNNs are now popular in other 

fields such as pattern recognition [2], artificial 

intelligence [3], and smart control of power grids [4].  

Among several SNN models, the Izhikevich model [5] 

and the Hodgkin-Huxley (HH) model [6] are considered 

to be highly biologically accurate [1]. The Izhikevich 

model is the most recent and computation efficient 

model, whereas the HH model is the oldest and highly 

computation intensive model.  

With the advent of General Purpose Graphical 

Processing Units (GPGPUs) in the field of high 

performance computing, the current trend is to extract 

concurrency from heterogeneous computing resources 

such as GPGPU clusters. The current state-of-the-art 

heterogeneous systems are composed of several 

thousands of compute nodes, where each node is 

equipped with multiple CPU cores in conjunction with 

one or more GPGPU accelerators. Since GPGPUs have 

been established in the literature as viable architecture 

choice for SNN simulations [7, 8], GPGPU clusters are 

lucrative options for large-scale SNN simulations and 

related studies. Although these heterogeneous systems 

can provide substantial performance for massively 

parallel simulations, much of their computing resources 

are often under-utilized due to poor tuning strategies. To 

achieve optimal utilization of the heterogeneous 

resources, it is imperative to perform efficient load-

balancing between the CPU cores and GPGPU devices, 

which requires exposing all available parallelism in the 

application and effective memory and bandwidth 

utilization.  

With the above as motivation, in this research, we 

investigate multi-level parallelism for large-scale 

massively parallel SNN simulations. These simulations 

were performed using a two-level character recognition 

network based on [2]. The two-level network capable of 

recognizing 48 alpha-numeric characters was developed 

using the Izhikevich and HH models. The two-level 

network was mapped on the National Center for Super-

Computing Applications (NCSA) 32-node Forge GPGPU 

cluster and scaled to over 200 million neurons. The focal 

contributions of this work are: 

1) Exploration of multi-level parallelism for 

spiking neural networks in the form of 

GPGPU+MPI+OpenMP implementations. 

2) Demonstration of optimal load-balancing 

between the CPU cores and GPGPUs. 

3) Scaling of the two-level network beyond the 

single-node capability. 

4) Scalability and performance analysis on the 

Forge cluster. 

Our heterogeneous parallel implementations were 

able to achieve significant application speed-ups, as high 

as 355x for the computation intensive HH model and 4x 

for the computation efficient Izhikevich model over 

equivalent MPI-only implementations on the Forge 

cluster. The performance of the two SNN models was 

found to depend on the computation-to-communication 

requirements of the SNN models. 

The rest of the paper is organized as follows. Section 2 

provides a brief background on the two SNN models, the 

two-level network, and an overview of the GPGPU 

architecture.  Section 3 discusses related work. Section 4 

details the experimental set-up and network mapping. 

Section 5 presents the results and analysis, and the paper 

is concluded in Section 6 with conclusions and 

suggestions for future work. 
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2 Background 

2.1 Spiking neural networks 

Over the last 50 years, several models [9] have been 

proposed that capture the spiking mechanism within a 

neuron. In this paper, we examine two of the most 

biologically accurate spiking neuron models for 

implementation on the GPGPU cluster. In what follows, 

we give a brief chronological overview of these two 

popular SNN models, namely the Hodgkin-Huxley and 

Izhikevich models. 

The Hodgkin–Huxley (HH) model is considered to 

be the most accurate and the most important model in the 

neuroscience community till date. As mentioned in [1], 

the model involves 4 equations and 10 parameters 

describing various neuron current activation and 

deactivation. The model takes 120 flops per 0.1 ms time-

step and hence 1200 flops/1 ms for the update. In our 

research, we have used 0.01 ms time-step for the neuron 

update. 

In [5], Izhikevich developed a simple and very 

computation efficient spiking neuron model that has 

similar accuracy as the HH model. Izhikevich 

successfully reduced the complex HH model equations to 

a 2-D system of ordinary equations. Izhikevich’s model 

requires only 13 flops per neuron update and still 

sufficiently reproduces a majority of neuronal properties. 

The equations are found in [5]. In our research, we have 

used a 1 ms time-step (13 flops/1 ms update) for neuronal 

dynamics update for the Izhikevich model. 

The time-steps used in our research for the models 

discussed are in the valid range of time-steps that are 

deemed sufficient for reproducing biologically relevant 

neuron dynamics [1]. 

Table I provides the Flops/Byte ratio for the two 

models, which is pertinent to the performance analysis of 

the two models. The Flops/Byte ratio is an algorithm 

specific value and is defined as the ratio of the number of 

floating-point operations required for a complete neuron 

update (level-1 and level-2) to the overall bytes requested 

(all model parameters, firing vector and block firing 

vector) for all of the neuron updates [8]. 

Table I. Flops/Byte ratio for the two models 

Model Flops/neuron 

required for the 

complete neuron 

update 

Flops/Byte ratio 

HH 246 9.84 

Izhikevich 13 0.9997 

2.2 The two-level network 

The two-level character recognition network used in 

this research is based on [2] and the network used to test 

the models is shown in Figure 1. The task of the network 

is to detect images from a training data set of 48 images. 

The level-1 neurons act as an input collection layer and 

the level-2 neurons act as output collection layer. Each 

neuron in level-1 corresponds to a pixel in the input 

image; hence the number of neurons in the input level is 

equal to the total number of pixels in the test image. The 

number of neurons in the output layer, level-2, is equal to 

the number of images in the database. When an input 

image is presented to level-1, each neuron evaluates its 

membrane potential based on the pixel level presented 

and the neuron model chosen. This process is referred to 

as the evaluation of neuron dynamics. If the pixel is “on,” 

a constant current is supplied to the neuron for membrane 

potential evaluation. The input current equation for a 

level-2 neuron is: 

 

Ij = Σw(i,j)f(i)                                    (1) 

 

In (1), Ij is the net input current to the neuron j in 

level-2, w(i,j) is the weight of the synapse connecting 

neuron i in level-1 and the neuron j in level-2. A neuron 

in any level is said to have “fired” if its membrane 

potential crosses the threshold value for the selected 

neuron model. The research presented in this paper 

accelerates the recognition phase of the network by 

implementing all of the level-1 neurons on the GPGPU 

devices, while the level-2 neurons (input current 

accumulation and dynamics) are implemented on the host 

processors as will be discussed later in Section 4. 

 
Figure 1. Two-level character recognition network 

2.3 The GPGPU architecture 

The Compute Unified Device Architecture (CUDA) 

programming framework views the GPGPU architecture 

as an array of streaming multi-processors (SMPs). Each 

multi-processor contains a set of scalar processors 

(referred to as CUDA cores), a double-precision (DP) 

unit, shared memory for thread cooperation, and texture 

addressing and texture fetch units. While a single thread 

is executed on a CUDA core, a group of threads called a 

thread block, is executed on the SMPs. Threads in a 

thread block can synchronize with each other using 

shared memory. The Fermi architecture has brought a lot 

of innovation versus previous Nvidia architectures: 512 

CUDA cores organized as 16 SMPs with 32 cores each 

sharing a L2 cache. The SMPs have two sets of 16 

CUDA cores, 4 special function units for transcendental 

functions, 16 load/store units, a hefty register file, and a 

configurable 64 KB L1 cache/shared memory. The 

GPGPU device has the capability of supporting 6 GB of 

GDDR5 DRAM memory. The Fermi-based Tesla M2070 
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used in this research can theoretically offer 1.03 tera-

flops of single-precision floating-point performance and 

515 giga-flops of double-precision floating-point 

performance. More information on the GPGPU 

architecture and CUDA framework can be found in [10] 

and [11], respectively. 

3 Related work 

Several research activities have been motivated by 

the idea of modeling the neocortex. In [12], the authors 

have studied the mammalian brain neocortex in detail and 

were successful in simulating a rat-size cortex in 42% of 

real-time and a cat-size cortex in 23% of real-time on a 

442 node Dell Xeon cluster. Their neuron model is in the 

integrate-and-fire (I&F) category, which according to 

Izhikevich, is insufficient for accurately reproducing 

neuronal properties [1]. In [13], the authors successfully 

used Izhikevich’s model to simulate a cat-size cortical 

model with 10
9
 neurons and 10

13
 synapses using a 

BlueGene/P machine with 147,456 processors and 144 

TB of main memory. The authors claim that their 

simulation scale is roughly 1–2 orders of magnitude 

smaller than the human cortex and 2–3 orders of 

magnitude slower than real-time. 

Alternative computing architectures such as 

GPGPUs are now being investigated for biologically 

realistic simulations. In [7], the authors implemented 

Izhikevich's random network on Nvidia's GTX-280 with 

1 GB memory and achieved a speed-up of 26x over an 

equivalent software implementation for a 100K neuron 

network simulation. Their work discusses mapping 

strategies on the GPGPU to efficiently utilize the 

memory bandwidth and parallelism. 

In [14], the authors investigated GPGPU cluster 

based implementations of the HH and Izhikevich models 

using a two-level network based on [2]. They reported 

GPGPU speed-ups of 24.6x and 177x for the Izhikevich 

and HH models, respectively over a 2.4 GHz dual-core 

AMD opteron processor. Their 16 GPGPU-based MPI 

implementation on a 32-node Tesla S1070 NCSA cluster 

was successful in scaling the network up to 150 million 

neurons and achieved 17910 ms runtime for the HH 

model. 

Although our two-level network and experiments are 

similar to [14], our work is different in the following 

ways. In [14], the authors perform the level-1 neuron 

dynamics, level-2 current accumulation, and level-2 

neuron dynamics calculations on the GPGPU device. In 

[14], the authors also claim that the image detection 

operation (checking if any of the level-2 neurons fired) is 

inherently serial, therefore it can be performed on the 

CPU host. As will be highlighted in Section 4, the 

implementation in [14] is not efficient since the level-2 

dynamics calculation is fairly small (only 48 neurons in 

level-2), performing this operation on the GPGPU device 

is not warranted and renders the CPU resources under-

utilized. Additionally, the evaluation of level-2 neuron 

currents on the GPGPU device requires the transfer of 

the large weight matrix to the GPGPU device memory, 

which is wasteful of the host-device bandwidth and 

device memory as explained in [15]. Our GPGPU-based 

MPI implementation achieves optimal load-balancing 

between the CPU cores and GPGPU devices by 

implementing the level-1 neuron dynamics on the 

GPGPU devices and level-2 neuron calculations (current 

accumulation and dynamics) on the host processors as 

will be discussed in Section 4. In addition, our work 

exploits parallelism across multiple levels of the 

heterogeneous architecture in the form of a complete 

GPGPU+MPI+OpenMP based implementation. 

4 Experimental setup and network 

mapping 

4.1 Experimental setup 

NCSA's Forge GPGPU cluster was used in this 

research for the large-scale SNN simulations. The 153 

tera-flop cluster is composed of 36 Dell PowerEdge 

C6145 servers; each server is connected to six Fermi-

based Tesla M2070 GPGPUs via three PCI-e Gen2 X16 

slots. Each server is equipped with two 2.4 GHz AMD 

Opteron Magny-Cours 6136 processors, eight cores each. 

The network interconnect is comprised of InfiniBand 

QDR. Our implementations were developed using CUDA 

4.0 and OpenMPI 1.4.3 on Red Hat Enterprise Linux 6. 

4.2 SNN network mapping 

In this sub-section, we first provide the details of 

network mapping for the single-GPGPU implementation 

that is subsequently extended to a GPGPU-based MPI 

implementation. 

As discussed in section 2.2, level-1 is the most 

computation intensive layer of the network since the 

number of neurons is equal to the number of pixels in the 

input image; therefore these operations are performed on 

the GPGPU device. Each GPGPU thread evaluates the 

dynamics of a single level-1 neuron. Therefore, the 

number of GPGPU threads created is equal to the number 

of level-1 neurons. The GPGPU device then provides the 

host processor with the level-1 neuron firing information, 

the global firing vector, which is used by the host 

processor to obtain the level-2 neuron currents and 

dynamics. The level-2 computations (current 

accumulation and dynamics) are implemented on the host 

processor since the level-2 neuron computations 

constitute less than 5% of the total computation overhead 

and, implementing the level-2 dynamics on the GPGPU 

would require the transfer of the weight matrix to the 

GPGPU device memory. Hence any computational 

improvement obtained by implementing level-2 neuron 

dynamics will be insufficient to amortize the 

communication overhead involved in transferring the 

large weight matrix to the GPGPU device. The single-

GPGPU implementation was optimized with memory 

level, instruction level, and execution configuration level 

optimizations as mentioned in [15].  
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The host-device bandwidth was further optimized 

using a block firing vector concept introduced in [8]. The 

block firing vector is implemented in the device shared 

memory to avoid transferring the global firing vector in 

each algorithmic time-step. The block firing vector is 

similar to the global firing vector but instead acts as a 

collection of flags for thread blocks. Since the threads are 

collected in thread blocks of size: blocksize, the block 

firing vector is blocksize magnitude smaller than the 

global firing vector, and hence can be transferred from 

the device to host in each time-step with minimal 

overhead. If at any time-step the block firing vector 

contains information of a firing event, only then will the 

entire global firing vector be transferred from the device 

to host and then read by the host. Figure 2 illustrates the 

block firing vector concept. 

 
Figure 2. The concept of block firing vector 

The single-GPGPU implementation is then extended 

to a GPGPU-based MPI implementation. The MPI ranks 

were assigned in node-packing fashion, meaning the 

ranks are packed into nodes. The nodes were configured 

with a maximum of six MPI processes per node. This 

configuration allows for 1:1 CPU core-to-GPGPU ratio 

at each node and potentially reduces long distance inter-

node communication. The GPGPU devices were allotted 

to the CPU cores using modulo rule where an MPI 

process with rank n is coupled with the GPGPU device 

number, n modulo 6 [16]. Future work will investigate 

the impact of other CPU core-to-GPGPU ratios on 

application performance. 

The GPGPU-based MPI orchestration is as follows. 

The MPI rank 0 acts as the master process that scatters 

the level-1 neuron inputs to all other processes. The 

level-1 neuron parameters are initialized to the SNN 

model specific constant values at each MPI process, and 

hence require no MPI communication. Each CPU-

GPGPU pair works as an independent unit where the 

GPGPU device evaluates the partial level-1 neuron 

dynamics and the host processor evaluates the partial 

level-2 currents using the firing vector obtained from its 

designated GPGPU device. The partial level-2 currents 

from each MPI process are then accumulated at MPI rank 

0 where the complete level-2 neuron dynamics are 

evaluated and the image detection decision is made. The 

level-2 neuron computations on the hosts were 

accelerated using OpenMP. Figure 3 elucidates the 

orchestration of the GPGPU-based MPI implementation 

discussed in this sub-section. 

 
Figure 3. GPGPU-based MPI orchestration 

5 Results and analysis 

In this section, we present the results for the 

GPGPU-based MPI implementation of the two-level 

network developed using the HH and Izhikevich SNN 

models. We discuss the application runtime values, show 

the overall runtime breakdown in terms of GPGPU time, 

CPU time, and communication time for a 32 CPU Core-

GPGPU device pair cluster configuration, and compare 

the GPGPU-based MPI implementation with an 

equivalent MPI-only implementation. A single CPU 

Core-GPGPU device pair shall henceforth be referred to 

as a host-device pair. For the two SNN models, the 

cluster configuration was varied from 2 up to 32 host-

device pairs. We first present the results for the 

computation intensive HH model followed by the results 

for the Izhikevich model.  

5.1 Hodgkin-Huxley model 

The statistical-average runtime values for different 

cluster configurations versus the network size using the 

HH model are given in Table II. These runtimes 

correspond to those measured by the master process, MPI 

rank 0, which distributes the tasks and makes the final 

image detection decision. The implementation 

successfully scaled the two-level network to 200 million 

neurons using a configuration of 32 host-device pairs 

with a statistical-average runtime of 2416 milliseconds.  

The dashes in the table indicate that the problem will not 

fit in the GPGPU device memory resulting in a 

configuration failure for that particular neural network 

size.  

Table II. HH model: Statistical-average runtime values (in ms) 
Cluster 

Configuration 
Network Size (in millions) 

9.73 51.8 92.16 207.36 

2 1256 - - - 

4 742 3516 - - 

8 486 1928 3396 - 

16 412 1168 1990 - 

32 356 784 1195 2416 
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As seen in Table II, the scalability of the 

implementation improves with the increase in network 

size. We define the runtime improvement ratio as the 

ratio of runtimes of two successive cluster configurations 

for a given network size. For a network size of 9.73 

million neurons, the runtime improvement ratio is 1.7 for 

2 vs. 4 host-device pairs, 1.5 for 4 vs. 8 host-device pairs, 

1.2 for 8 vs. 16 host-device pairs, and 1.15 for 16 vs. 32 

host-device pairs. However, for a large neural network 

size, 51.8 million neurons, the improvement ratios are 

better with values 1.8, 1.65, and 1.5 for 4 vs. 8, 8 vs. 16, 

and 16 vs. 32 host-device pairs, respectively. The above 

scaling behavior is expected since the amount of 

computations per GPGPU device decreases with the 

host-device pair scaling. Consequently, for smaller 

network sizes, the GPGPU computations are not 

sufficient to amortize the necessary CPU computations 

and MPI communications.   

Figure 4 further supports the scalability explanation 

given above. The figure provides the overall runtime 

broken into: GPGPU time (kernel time and host-device 

transfer time), CPU time (level-2 currents and dynamics), 

and MPI communication time for a 32 host-device pair 

configuration versus the network size. For a small 

network configuration of 13 million neurons, CPU time 

dominates the GPGPU time owing to a relatively small 

number of computations per GPGPU device. As the 

network size increases, the number of computations per 

GPGPU device increases significantly, thereby making 

the GPGPU time dominant with respect to the overall 

runtime.  

Figure 5 provides the speed-up of the GPGPU-based 

MPI implementation over an equivalent MPI-only 

implementation. The 32 host-device pair configuration 

was able to achieve a speed-up of 281.8x over the 

equivalent MPI-only implementation for the largest SNN 

network size. Table III provides the speed-up values for 

many of the intermediate network sizes tested. As shown 

in Figure 5 and Table III, the speed-up over the 

equivalent-MPI implementation increases with the 

increase in network size for all of the cluster 

configurations. The increase in speed-up is due to the 

amortization of CPU and MPI communication times by 

the GPGPU computations due to the increased number of 

GPGPU computations required by the increasing 

network size. The speed-up values are particularly large 

for the HH model due to its high Flops/Byte ratio 

requirements (see Table I). This supports the claim that 

applications with high Flops/Byte ratios are highly suited 

for GPGPU-based implementations [8].  

Further inspection of Figure 5 and Table III reveals 

that for a fixed network size, the speed-up of the 

GPGPU-based MPI implementation over the equivalent 

MPI-only implementation falls as the number of 

processors increases. As explained previously, a 

significant number of computations are required to fully 

utilize the compute capabilities of the GPGPU device; 

hence large cluster configurations observe lower speed-

ups for smaller network sizes.  

 
Figure 4. HH model: Overall runtime breakdown  

for 32 host-device pair configuration 

 
Figure 5. HH model: GPGPU-based MPI vs. MPI-only implementation 

Table III. HH model: GPGPU-based MPI vs. MPI-only implementation 

Cluster 

Configuration 
Network Size (in millions) 

1.44 9.73 25.4 92.2 

2 187x 340x - - 

4 146x 288x 374x - 

8 75x 220x 264x 355x 

16 44x 162x 233x 306x 

32 20x 90x 120x 253x 

5.2 Izhikevich model 

 The statistical-average runtime values for different 

cluster configurations versus the network size using the 

Izhikevich model are given in Table IV. 

Table IV. Izhikevich model: Statistical-average runtime values (in ms)  

Cluster 

Configuration 
Neural Network Size (in millions) 

9.73 51.8 921.16 207.36 

2 180 - - - 

4 142 928 - - 

8 118 952 725 - 

16 96 363 453 938 

32 96 491 253 498 
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Unlike the high Flops/Byte ratio HH model, strong 

scaling is not observed for the low Flops/Byte ratio 

Izhikevich model as seen in Table IV. In addition to the 

lower number of computations in the Izhikevich model 

(see Table I); the fall in the number of computations per 

GPGPU device further impedes the scaling performance. 

Figure 6 provides the overall runtime breakdown for the 

32 host-device pair configuration in terms of CPU time, 

GPGPU time, and communication time.  

As seen in Figure 6, the CPU time continues to 

dominate the kernel time as the network size increases, 

leading to sub-optimal performance for the Izhikevich 

model. The continued domination of the CPU time is due 

to the increased level-2 current computations as the 

network size increases. Although computations per 

GPGPU device also increase with the increase in network 

size, the increase is marginal due to nominal number of 

computations in the Izhikevich model.  

Figure 7 and Table V present the performance 

comparison of the GPGPU-based MPI implementation 

and MPI-only implementation. The 32 host-device pair 

configuration attained a speed-up of 2.87x versus the 32-

processor MPI-only implementation. As seen in Table V, 

the increase in speed-up with the increase in network size 

is marginal for all cluster configurations examined. The 

explanation for the fall in the speed-up with the increase 

in cluster configuration for fixed network size is the same 

as was given for the HH model.  

 
Figure 6. Izhikevich model: Overall runtime breakdown  

for 32 host-device pair configuration 

The Izhikevich model is an interesting case for 

GPGPU-based MPI implementation. Although the 

application itself is massively-parallel, it involves only a 

nominal amount of computations. Therefore, the GPGPU 

computations do not amortize the increased CPU 

computation and MPI communication overhead as the 

SNN network size increases. As mentioned in this sub-

section, the level-2 current evaluation for the Izhikevich 

model increases significantly with the SNN network size. 

One possible improvement is to implement the level-2 

current evaluation on the GPGPU device for larger 

network sizes. The task would not only require 

meticulous handling of the GPGPU device memory for 

the inherent reduction operation involved, but also 

accommodation of the large weight matrix (48 * Network 

Size) in the GPGPU device memory. The Izhikevich 

model explored in this research serves well to highlight 

the importance of an optimal application-to-accelerator 

cluster match. It is claimed that applications should not 

only expose sufficient parallelism, but should also yield 

enough computations to fully utilize the compute 

capabilities of heterogeneous clusters. Nonetheless, our 

GPGPU-based MPI implementations produced 

performance advantages versus the equivalent MPI-only 

implementations as shown in this section. 

 
Figure 7. Izhikevich model: GPGPU-based MPI vs.  

MPI-only implementation 

Table V. Izhikevich model: GPGPU-based MPI vs. MPI-only 
implementation 

Cluster 

Configuration 
Neural Network Size (in millions) 

5.76 13 25.4 156 

2 3.9x 4.0x 4.0x - 

4 2.8x 3.0x 3.2x - 

8 2.3x 2.0x 2.4x - 

16 1.5x 2.5x 1.6x 2.7x 

32 1.2x 1.1x 2.4x 2.5x 

6 Conclusions and future work 

In this research, we explored the multi-level 

parallelism offered by heterogeneous GPGPU clusters for 

large-scale SNN simulations in the form of a complete 

GPU+MPI+OpenMP implementation. A GPGPU-based 

MPI orchestration was presented that allows for optimal 

heterogeneous resource utilization for large-scale SNN 

simulations. The two-level network based on the HH and 

Izhikevich SNN models successfully scaled to 200 

million neurons using a 32 host-device pair cluster 

configuration. In addition to providing significant speed-

ups, as high as 355x over an equivalent MPI-only 

implementation, the GPGPU-based MPI implementation 

for the HH model scaled well with the SNN network 

size. Although, our GPGPU-based MPI implementation 

for the Izhikevich model performed slightly better than 

the MPI-only implementation, sub-optimal scaling was 

observed with increasing SNN network size. The results 

for the Izhikevich model implementation highlighted the 
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importance of an optimal application-to-accelerator 

cluster match for maximum application performance. It is 

claimed that applications should not only expose 

sufficient parallelism, but should also yield enough 

computations to fully utilize the compute capabilities of 

the heterogeneous cluster resources. 

As future work, we plan to explore other cluster 

configurations with different CPU Core-to-GPGPU 

device ratios per node and investigate the performance of 

such configurations for large-scale SNN simulations. The 

future work also includes the development of 

performance prediction models for heterogeneous 

clusters that optimally matches the applications with 

appropriate heterogeneous cluster configurations. As 

encouraged by the large-scale simulation efforts 

presented in this research, we also plan to explore 

GPGPU cluster based smart control of power grids that 

employs biologically inspired SNNs as massively 

parallel computation engines.  
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Abstract— One of the main consequences of current HPC
systems heterogeneity is that different levels of parallelism
should be considered in all phases of parallel application
development. Therefore, support tools and, in particular,
performance analysis and tuning tools, must also be adapted
to manage heterogeneity. A significant step forward in this
adaptation consists of developing specific strategies to au-
tomatically improve the performance of the parallel regions
of the application being executed in each computing ele-
ment. We propose a methodology to systematically develop
performance optimization strategies for specific application
patterns taking into consideration hardware characteristics.
These performance optimizations are intended to be applied
by means of the management code provided by most high
level libraries. This study describes the methodology devel-
oped and shows how it can be used to expose performance
factors that can be dynamically tuned on an OpenMP
application.

Keywords: OpenMP, performance analysis, dynamic tuning

1. Introduction
Performance on multicore systems does not depend only

on the processor frequency, but mainly on the number of
cores, so, intuitively more cores means higher performance.
However, cores have shared hardware resources and per-
formance also depends on how concurrency and contention
are managed, making it more difficult to meet performance
goals.

Nowadays hardware architectures have such heterogene-
ity that programming frameworks/languages have to take
into consideration many possible configurations, going from
multicore processors based on a shared memory hierarchy,
to manycore proposals based on cores interconnected with
mesh on-chip network (Tilera[1]) and dedicated hardware ac-
celerators (GPUs). Nowadays, processor architecture designs
tend towards an increasingly higher number of cores in the
same processor. The way parallel programming frameworks
(defined in a comprehensive way, i.e., including libraries,
languages and so on) are going to manage those cores
involves a high complexity.

There is a widerange of programming frameworks for
multi/many core architectures depending on the implemented

programming model. In addition, other models like MPI,
have implementations that take advantage of the shared
memory hierarchy for communicating processes in the same
node. However, shared memory architecture of most mul-
ticore systems is usually managed by frameworks imple-
menting the shared memory programming model, such as
OpenMP [2], Cilk [3], and so on. Consequently, developing
parallel applications is becoming more and more difficult
because of heterogeneous architectures and corresponding
heterogeneous programming frameworks. Logically, this
complexity is also reflected in the performance analysis and
tuning process of these applications.

Therefore, due to the growing heterogeneity of multicore
systems and the configurability of the parallel programming
frameworks, a way for improving the applications’ perfor-
mance is to dynamically adjust the applications’ require-
ments to the characteristics of each hardware architecture
using the code provided by the parallel programming frame-
work.

OpenMP is one of the most widely spread APIs for multi-
platform shared-memory parallel programming in C/C++
and Fortran. The management of parallelism is made through
a library that can be adapted for deploying performance
strategies. To adjust the runtime execution, it is possible
to use dynamic instrumentation tools, such as Pin[4] or
Dyninst[5].

We propose a methodology, that considering an applica-
tion, an architecture, and a runtime manager, would deter-
mine the implication of performance factors, such as loop
management, data imbalance, thread imbalance, and so on;
and that will help to provide dynamic strategies that can be
applied to those factors.

Dynamic tuning is a complex undertaking, particularly
since many performance factors and mitigation strategies
are not independent. This paper is focused in discussing
a methodology for developing these strategies, the defining
elements that have been considered, and its objectives. In
addition, a complete example of its use is included for a
particular application.

To achieve these objective, this works has been structured
as follows. Related work is presented in Section 2. Section 3
describes the methodology. This is followed by the method-
ology applied to a case of study in Section 4 and in Section
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5 is described the dynamic tuning tool developed for the
performance factor exposed on the case of study. Finally,
conclusions are detailed in Section 6.

2. Related work
Dynamic instrumentation is used in performance analysis

environments to tune applications at runtime. As an example,
MATE[6] performs automatic dynamic tuning by inserting
code into the application through the Dyninst library. This
framework uses externally provided strategies for taking
tuning decision, but it is specific for distributed memory
systems and there is no implementation for multicore.

Wicaksono et al.[7] demonstrates the functionality of
a collector-based dynamic optimization framework called
DARWIN that uses collected performance data as feedback
to affect the behavior of the program through the OpenMP
runtime. It is able to take different actions, such as modifying
the number of threads, adjusting core frequency, or accessing
a specialized malloc library transforming the source code,
or modifying instructions in the binary. This framework
has been evaluated in a ccNUMA platform, therefore, the
main performance problems are related to scalability due
to data locality between nodes and false sharing detection.
However, this global approach does not consider hybrid
systems (MPI+OpenMP) where the OpenMP problems are
local to the node. Our methodology is oriented to nodes, by
considering that, nowadays, most scientific applications use
hybrid programming models and improving a local execution
will benefit the overall performance.

Other works such as Stephen Olivier et al.[8] and A.Duran
et al.[9], are focused on performance issues related to task
managing. The first discusses task managing work-stealing
algorithm, where it is necessary to define the appropriate
number of tasks to be stolen from a remote queue, as well
as the performance results achieved on several architectures.
While the second proposes a cut-off strategy for limiting the
space required to deploy tasks. Various strategies are evalu-
ated to reduce the number of created tasks, and consequently
the creation overhead is reduced.

In addition, the utilization of different compilers could
be determinant for tasks based applications performance, as
shown in an evaluation for different compilers supporting
task parallelization is shown in Stephen Olivier and Jan
Prins[10].

Up to date, most scientific applications in OpenMP are
data parallel. Consequently, we consider that dynamic per-
formance tuning has to take into consideration both, per-
formance related to task and data parallelism, and we have
developed our methodology in accordance to this consider-
ation.

3. Methodology
The objective of the proposed methodology is to define

models and tuning strategies associated to performance fac-

Fig. 1: Methodology for generating dynamic tuning strate-
gies in multicore systems

tors in multicore systems. A performance factor is a latent
performance problem that can arise in a specific context. The
performance factors depend on the application patterns, the
high level library, and hardware characteristics.

The methodology has to provide, for each performance
factor: what should be measured, the performance model,
and the strategies for automatically tuning the application.
Fig. 1 shows that the context of the methodology is defined
on the first two stages. The first is a characterization of the
application, the manager library, and the hardware. Then,
this characterization has to provide insight on related per-
formance factors that are affecting the application’s perfor-
mance. This is done generating hypotheses of performance
factors.

Afterwards, the next stages are developed for an evalua-
tion on a specific context, trying to achieve the most general
solution for a performance factor. Therefore, to find a valid
performance model strategy for a performance factor, the
methodology has to iterate in order to evaluate different
context configurations to validate the proposed strategy.

The general context is presented in the next subsections
and summarized in Fig. 2.

3.1 System characterization
As mentioned before, it is necessary to take into consid-

eration the application pattern, and the manager library and
hardware specific characteristics.

Latent performance factors may arise when context
changes. To observe context implications, it is necessary to
analyze static and dynamic information at different levels.

Static information has to be provided from context specifi-
cation, such as applications configuration (data input param-
eters, pattern, parallel library), and systems libraries (paral-
lelization paradigm, scheduling parameters), and architecture
specification (number of cores, memory hierarchy, and so
on).
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Dynamic information can be analyzed through micro
benchmarking. This information provide context’s behavior
and some of its low level characteristic, such as system’s
GFlops on computation bound performance analysis, eval-
uation of performance for different affinity configurations,
and so on.

3.1.1 Application
Scientific programs can be classified by its pattern design

(Master/Worker, Pipeline, SPMD), but at thread level those
patterns could not present specific performance factors.
Moreover, there are more appropriated characteristics in
threaded applications such as iterativity, recursivity, com-
putation bound, memory bound, and so on. These properties
can better represent the characteristics and related perfor-
mance factors of a threaded application.

Performance factors at application level are usually
coarse-grained, and performance strategies can hardly be
generalized. Thus, the detection of these patterns may allow
the use of dedicated strategies. For example, some iterative
patterns generate thread imbalance by working with umbal-
anced data. It is possible, to estimate data input patterns,
on the first iterations of an application, in order to try to
balance the rest of the execution. However, this is a coarse
grained strategy heavily linked to the pattern and hardly
generalizable.

As an experimental testbed, we use scientific kernels
present in different OpenMP benchmarks as NAS Parallel
Benchmark[11] and BOTS[12] (Barcelona OpenMP Tasks
Suite) that are representative of some communication and
computing patterns observed in scientific multicore applica-
tions.

3.1.2 Manager library
One of the most widely used programming model im-

plementation is OpenMP, as a superset of threads library.
In its last specification it allows data and task parallelism.
Thus, the performance factors can be splitted into the specific
context of the data parallelism common performance factors
related to loop directives, affinity definition, synchronization
elements and parallel constructs; and in the case of task
parallelism the performance factors are related to schedul-
ing policies (centralized or decentralized), task granularity,
number of tasks, and creation overheads.

Some of those performance factors can be measured with
specific benchmarks such as the EPCC[13] micro benchmark
suite, that allows for studying of OpenMP performance
comparisons between different OpenMP implementations.

3.1.3 Hardware
It is important to have an initial knowledge of our

hardware system configuration. The hardware performance
factors are mainly related to computing capabilities and
memory architecture.

Fig. 2: Context characteristics development template

To analyze the hardware characteristics it is possible to
evaluate the dynamic behavior by using benchmark tools.
The computing capabilities can be measured with a compute-
bound application that can provide metrics such as GFlops.
Also, measuring memory issues through benchmarking can
provide an insight of the memory architecture. Some bench-
mark application use threads, therefore, it can be significant
to evaluate the system for different numbers of threads and
different affinity configurations.

3.2 Analysis of performance factors
The analysis of an application has to provide the inherent

problems that can arise at execution time. In order to
find the dynamic application problems it must be evaluated
for different contexts. A problem can arise, or its impact
can affect performance, depending on the architecture, the
runtime manager, and the application configuration. When a
performance factor is detected it has to be isolated, as much
as possible, to identify its sources.

A first step is to identify where the latent performance
factor is located, generally associated to parallelized code.
The performance issues in OpenMP applications are present
on parallel sections, loop regions, and task regions. Each of
which are managed by specialized functions of the dynamic
library.

The analysis of performance factors, defined into a con-
text, provides a knowledge base. Presumably, the strategies
applied for an application could be applied for other similar
applications in the same context.
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The following performance factors have been classified to
be considered by a dynamic tuning tool, in order to feasibly
apply dynamic tuning strategies.

1) Thread imbalance; can arise at application level due
to data dependencies, synchronization points, and also
because of different latencies on core memory access.
It is possible to dynamically adjust the number of
computing elements and vary the affinity definition,
or the scheduling policy, in order to minimize the
imbalance.

2) Memory occupancy; threads accessing memory can
cause memory contention for the increase of replace-
ments at shared cache level, generating performance
degradation. A bad definition at application level can
origin this performance factor. The performance degra-
dation can be decreased dynamically by adjusting the
number of racing threads.

3) Data imbalance; differences in the amount of data
assigned to each thread can cause imbalance. This
performance factor is implicit to the application. How-
ever, adequate dynamic strategies can be applied for
data partitioning and allocation, or data reordering, that
have demonstrated to improve performance in some
cases.

4) Affinity in memory hierarchy; when an application
is executed on an architecture, a mismatch between
the application configuration and computing elements
sharing memory resources can originate performance
degradation. Trying to take advantage of collabo-
rating threads and memory re-utilization sometimes
can cause a false-sharing condition. Analyzing the
behavior of the application and assigning collaborative
threads to the appropriate hierarchy levels will promote
collaborative computation.

5) Task management; there are an extense variety of
performance factors in the task parallel model. Tasks,
as executing units, are also affected by the same
performance factors that in the data parallel model.
Furthermore, due to its highly dynamic nature, they
also present specific performance factors such as those
originated at application level due to creation pattern
or task dependencies; as well as at library level due
to task creation overhead, task scheduling policies,
the amount of tasks created, and memory utilization
per task. Some strategies can be applied, such as
adapting dynamically the granularity of the task level
parallelism, and adjusting the scheduler behavior to be
aware of the application and hardware requirements.

3.3 Modeling performance and defining tuning
strategies

A performance model identifies what is observed, and
why is the problem originated. To define a performance
model it is necessary to know the details of the performance

factor, such as measurable causes (e.g. configuration values,
thresholds, memory occupancy) and probable causes (e.g.
data imbalance, false sharing). Generating a complex per-
formance model is sometimes counterproductive because the
dynamic analysis and data collection generates overhead.

It is also necessary to propose and evaluate the feasi-
bility of applying previously defined strategies to tune the
application, such as modifying the number of threads, the
scheduling of loops, the distribution of tasks, and so on.

3.4 Evaluating the impact
The applied strategy has to be evaluated. Initially it can

be implemented with manual instrumentation. The expected
performance gain has to consider that the monitoring, the
dynamic analysis, and the tuning strategies are generating
overhead. Furthermore, it is necessary to provide certainty
that the strategy can be dynamically instrumented.

The methodology has to iterate the performance factor
evaluation, until the strategy coverage is considered appro-
priate. Understanding that, the performance factor could
be relevant and the strategy could improve performance
for other applications, another hardware system, or another
manager library.

4. Tuning the number of threads: Case
Study

This section shows the application of the methodology on
the Scalar Pentadiagonal solver (SP) application of the NAS
Parallel Benchmark suite on two different architectures.

This case of study presents an existing performance factor
in SP application. By following the methodology stages,
the performance factor is detected in the analysis stage, a
strategy is proposed to effectively tune the application, and
finally, the impact of the strategy is evaluated.

4.1 System characterization
The system characterization provides an insight on the

specific context and has been determined following the
template in Fig. 2.

• Application: SP benchmark of NPB-3.3.1 (OpenMP
version), running class B and C configurations. Problem
size for Class B is 102 elements and for Class C is
162 elements per matrix dimension. Both classes are
configured with 400 iterations. For this application only
data parallelism is used.

• Manager library: GNU libgomp 4.5.2, which imple-
ments the OpenMP 3.1 specification.

• Hardware; the following hardware platforms are avail-
able to evaluate the application.

– SysA; SMP system with 2x AMD Opteron 6128 @
2GHz processors with 8 cores; total amount of 16
cores and 32GB of main memory. Shared cache
L1 of 64KB per core pair, Cache L2 of 512KB
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(a) SP Class B execution times

(b) SP Class C execution times

Fig. 3: NAS SP Class C and Class D in SysA(16 cores) and
SysB(8 cores)

shared by core pairs and shared 5MB of Cache L3
by groups of 4 cores.

– SysB; SMP system with 2x Intel Xeon E5430 @
2,6GHz processors with 4 cores; total amount of 8
cores and 16GB of main memory. Dedicated Cache
L1 of 32KB and Cache L2 shared by core pairs.
Enabled hardware counters.

4.2 Analysis of performance factors
The NAS benchmarks have been characterized by execut-

ing them in different hardware platforms. There is a set of
configurations to be evaluated, by using different data input
types (NAS Classes) and by evaluating the benchmarks for
different numbers of threads.

Result on Fig. 3(a) and Fig. 3(b) show a performance issue
related with the ideal number of threads to be configured to
achieve the best performance. This is because a performance
factor is limiting the scalability.

Fig. 3 shows the results for different configurations in both
systems. The evaluation of different data sizes and iterations
represented by classes B and C into the hardware platforms
SysA with 16 cores, and SysB with 8 cores. In all cases it can
be seen that using half of the possible threads is achieving
the best scalability.

To analyze the origin of the performance degradation,
which appears when configuring more than half of the possi-
ble threads, it is necessary to compare critical configurations
in detail. This analysis, described below is performed on
SysB Class C.

(a) System B (4 threads) - 1 SP iteration

(b) System B (5 threads) - 1 SP iteration

Fig. 4: Paraver trace detail for one’s SP application iteration
on SysB

Table 1: SysB ClassC execution time (sec.) and cumulative
percentage (relative to total time Tref ) of use for the
weightiest parallel regions (x,y and z_solve, and rhs).

Number of threads

P.Reg 1 2 3 4 5 6 7 8
x_sol 175 87 60 46 85 88 103 120
y_sol 199 100 70 53 87 90 99 106
z_sol 224 112 79 60 94 96 105 113
rhs 537 327 331 277 328 342 330 315
Tref 1331 797 683 559 725 732 765 777
% 85.2 82.8 79.3 78.3 81.8 81.9 83.2 84.4

Paraver [14] trace visualizer is used for a deeper analysis
to compare the execution of 4 threads (559 seconds) and
5 threads (725 seconds) in the architecture SysB. Fig. 4
shows a thread imbalance because a repetitive pattern is
observable for 10 iterations in the 4 thread configuration,
an undetermined behavior appears for the 5 thread config-
uration. The dark blocks represent execution and the light
blocks represent synchronization, scheduling, and idle states.
Thread imbalance performance factor is shown for each
iteration in the 5 threads configuration case. The thread
imbalance can be measured in detail to find its cause.

The profile shows that the summarized imbalance for 4
threads total execution represents the 1%, and it is increased
to 14% for 5 threads. ompP [15] provides the cumulative
time spent in every OpenMP parallel region (P.Reg). By
analyzing in detail the call graph, to refine the granularity
analysis Table. 1 presents the overall percentage for the 4
main parallel regions. The performance degradation between
the 4 thread execution in comparison with the 8 thread
execution, of x_solve(160%), y_solve(100%), z_solve(88%)
and the rhs(13%), is quite significant.

Thread imbalance is located mainly in four parallel re-
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Table 2: x_solve parallel region on SysB ClassC for one
iteration execution. Where Tit_n is the time for n-iteration
and Tref is the measured time for 400 iterations.

P.Reg Number of threads

x_solve 1 2 3 4 5 6 7 8
%CL2 1 1 1 1 7 11 14 16
Tit_1 0.45 0.25 0.16 0.13 0.22 0.22 0.27 0.3
Tit_400 180 100 64 52 88 88 108 120
Tref 175 87 60 46 85 88 103 120

gions and, as it is shown in Fig. 4(a) when comparing
the same class in different architectures, it is dependant on
the system architecture. Therefore, an analysis of parallel
regions have to consider hardware implications.

To analyze in detail the origin of the hardware perfor-
mance factor, a representative function has been instru-
mented with PAPI [16] to obtain information from hard-
ware counters (L2 cache misses percentage %CL2) for 1
iteration. The results on Table. 2 for the function x_solve
show that the percentage of accesses to main memory
increases significantly when the last level cache is shared
between cores. This indicates that the threads are racing
for memory in the highest level of cache, and consequently
generating a significant overhead. Consequently, the amount
of data generated for the classes B and C are exposing
a performance factor related to memory occupancy, taking
into consideration the core associativity from the hardware
architecture.

The performance factor in the x_solve parallel region is
originated by memory occupancy, when threads are sharing
L2 cache modules the cache overhead degrades performance.

To conclude the analysis stage and to set an specific
context for impact evaluation, the performance factors found
in the analysis stage are, thread imbalance (summarized
imbalance of 14% in 5 thread configuration), due to different
memory access latencies, and a heavier performance factor
due to memory bottleneck. As shown in the memory occu-
pancy located at L2 cache in SysB for the x_solve function,
which achieves 46 seconds in a 4 threads configuration
compared with the 120 seconds for 8 threads configuration.

4.3 Modeling performance and defining tuning
strategies

The performance factors exposed in the previous stage
have been statically measured through the function execu-
tion time, and memory hardware counters. However, it is
known that these metrics can be dynamically obtained by
instrumenting the application using timers and the PAPI API.

The number of threads can be dynamically tuned by in-
strumenting the application and inserting in the appropriated
point the omp_set_num_threads(VALUE) OpenMP function,
that allows explicitly to define the number of threads to be
created in the subsequent parallel regions.

Taking advantage of this previous knowledge, an initial
coarse grained strategy is presented,

The SP application is iterative and those iterations are
balanced because they execute in the same time. Then, it is
possible to execute the N initial iterations with different con-
figurations to acquire a prior knowledge of the performance.
Next, the best configuration parameter is selected to tune
the application for the remaining iterations. The SP NAS
benchmarks are configured for 400 iterations in classes B a
C. The number of iterations for N, used to acquire the best
configuration, must be as small as possible.

The performance model proposed is based on selecting
the number of threads configuration with the minimum time
obtained in the characterization phase.

The strategy has been implemented and executed on
SysB, the initial number of threads is configured to the
maximum number of available cores, the measurement point
is located at the beginning of the iteration. Finally, when
the characterization phase is finished, the number of threads
variable is tuned to the best selected configuration to achieve
the minimum time for the remaining iterations.

4.4 Evaluating the impact
The evaluation of the strategy on SysB is as follows, the

average execution time for the instrumented application is
562 seconds, which represents only an overhead of 0.5%
compared to the 559 seconds of the original execution with
4 threads.

For this case of study the strategy has been implemented
in the application source code. The overhead generated by
instrumentation is less than 2 seconds.

Furthermore, the analysis of performance factors have
shown that at basic blocks level there are other performance
factors based on memory occupancy located at cache level
2 in SysB (evaluated for x_solve function), and also, a
natural thread imbalance due to different core associativity
of executing threads that achieve different memory access
latencies in cores. Therefore, it is necessary to continue
with the evaluation phase to define a strategy that achieves
a higher impact on the application’s performance.

5. Applying the dynamic tuning strategy
With the aim of demonstrating that dynamic tuning on

OpenMP is feasible and to analyze the tuning overheads,
we have implemented the strategy described in Section 4.

The strategy is implemented as a wrapper to libgomp
library. The strategy has been applied by adding the control
logic to the entry and exit points of the parallel regions,
because parallelism on SP is defined by parallel regions and
parallel loops with static scheduling. At low level compi-
lation, those transformations have the same entry and exit
point. Therefore, the tuning strategy has been implemented
by hijacking libgomp function calls and replacing them with
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the monitoring, analysis and tuning functions schematized
below.

GOMP_parallel_start(params){
if (characterization_Phase){

config_Params = generate_Config();
Start_Timer();
real_GOMP_parallel_start( config_Params )

}else{
real_GOMP_parallel_start( tuned_Params )

}endif }

GOMP_parallel_end (){
real_GOMP_parallel_end()
if (characterization_Phase){

Stop_Timer();
}else{

if(last_charact_phase( iter_Counter ))
tuned_Params = time_Analysis();

iter_Counter++; }

The SP benchmark has been evaluated in different stati-
cally characterized architectures. The implemented solution
is obtaining the best possible configuration by monitoring
only the 5% of total number of iterations. The performance
achieved in comparison with the original execution is pre-
sented in the table 3.

Table 3: Execution time (sec.) for the dynamic tuning
strategy and execution without tuning for classes B and
C. The tuning strategy uses 5% of total iterations for the
characterization stage.

Class Tune SysB. SysA. Class Tune SysB. SysA.
B Dyn. 128 86 C Dyn. 586 485
B - 125 119 C - 777 604
Speedup 0.97 1.38 Speedup 1.32 1.24

The strategy has been applied at iteration level. However,
it is important to take into account the granularity of the
tuning strategy to evaluate this strategy with real applications
because it is possible to apply the strategy acting at parallel
region level, achieving even greater performance improve-
ments.

6. Conclusions
In this work, we have shown that, due to the growing

heterogeneity of multicore systems, a way for improving
the applications’ performance is to dynamically adjust the
applications’ requirements to the characteristics of each
hardware architecture using the code provided by the parallel
programming framework.

A methodology has been proposed, with the aim of
detecting performance factors, which can arise as perfor-
mance problems depending on the context. The methodology
must allow to detect performance factors on applications,
moreover, for each detected performance factor it helps to
define a performance model, the monitoring parameters,
and tuning strategies that will allow to develop a dynamic
strategy.

The methodology has been applied for a case of study
based on the benchmark SP from the NAS PB suite. A
performance factor has been presented, which is based on
memory occupancy. Monitoring elements have been shown,
which are reporting effectively the existence of the perfor-
mance problem. Following the methodology, a strategy to
dynamically tune the application has been implemented and
evaluated, achieving a good performance in comparison with
by default configuration.

The future work includes evaluating the strategy with a
real application, and developing applied strategies for the
rest of performance factors mentioned into the methodology.

Acknowledgment
This research has been supported by the MICINN-Spain

under contracts TIN2007-64974 and TIN2011-28689

References
[1] D. Wentzlaff, et al., On-chip interconnection architecture of the tile

processor, Micro, IEEE 27 (5) (2007) 15 –31.
[2] L. Dagum, R. Menon, Openmp: an industry standard api for shared-

memory programming, Computational Science Engineering, IEEE
5 (1) (1998) 46 –55.

[3] R. Blumofe, et al., Cilk: an efficient multithreaded runtime system,
SIGPLAN Not. 30 (1995) 207–216.

[4] C.-K. Luk, et al., Pin: building customized program analysis tools
with dynamic instrumentation, SIGPLAN Not. 40 (2005) 190–200.

[5] G. Lee, et al., Dynamic binary instrumentation and data aggregation
on large scale systems, International Journal of Parallel Programming
35 (2007) 207–232.

[6] A. Morajko, et al., Mate: Dynamic performance tuning environment,
in: Euro-Par 2004 Parallel Processing, Vol. 3149 of LLNCS, Springer
Berlin / Heidelberg, 2004, pp. 98–107.

[7] B. Wicaksono, et al., A dynamic optimization framework for openmp,
in: OpenMP in the Petascale Era, Vol. 6665 of LLNCS, Springer
Berlin / Heidelberg, 2011, pp. 54–68.

[8] S. Olivier, et al., Uts: An unbalanced tree search benchmark, in:
Languages and Compilers for Parallel Computing, Vol. 4382 of
LLNCS, Springer Berlin / Heidelberg, 2007, pp. 235–250.

[9] A. Duran, J. Corbalan, E. Ayguade, An adaptive cut-off for task
parallelism, in: High Performance Computing, Networking, Storage
and Analysis, 2008. SC 2008. International Conference for, 2008, pp.
1 –11.

[10] S. Olivier, J. Prins, Evaluating openmp 3.0 run time systems on
unbalanced task graphs, in: Evolving OpenMP in an Age of Extreme
Parallelism, Vol. 5568 of LLNCS, Springer Berlin / Heidelberg, 2009,
pp. 63–78.

[11] D. Bailey, et al., The nas parallel benchmarks summary and pre-
liminary results, in: Supercomputing, 1991. Supercomputing ’91.
Proceedings of the 1991 ACM/IEEE Conference on, 1991, pp. 158
–165.

[12] A. Duran, et al., Barcelona openmp tasks suite: A set of benchmarks
targeting the exploitation of task parallelism in openmp, in: Parallel
Processing, 2009. ICPP ’09. International Conference on, 2009, pp.
124 –131.

[13] J. M. Bull, D. O’Neill, A microbenchmark suite for openmp 2.0,
SIGARCH Comput. Archit. News 29 (2001) 41–48.

[14] V. Pillet, et al., Paraver: A tool to visualize and analyze parallel code,
Tech. rep., In WoTUG-18 (1995).

[15] K. Fürlinger, M. Gerndt, ompp: A profiling tool for openmp, in:
OpenMP Shared Memory Parallel Programming, Vol. 4315 of LL-
NCS, Springer Berlin / Heidelberg, 2008, pp. 15–23.

[16] S. Browne, et al., A portable programming interface for performance
evaluation on modern processors, International Journal of High Per-
formance Computing Applications 14 (3) (Fall 2000) 189–204.

786 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



Efficient Runtime Algorithm Selection of Collective Communication

with Topology-Based Performance Models

Takeshi Nanri1,2 and Motoyoshi Kurokawa3

1Research Institute for Information Technology, Kyushu University, Fukuoka, Japan
2CREST, JST, Japan

3Advanced Center for Computing and Communication, RIKEN, Saitama, Japan

Abstract— In communication libraries for recent supercom-

puters, decisions of appropriate implementations are becom-

ing difficult by increasing size and complexity of them. Espe-

cially, because of the wide variety of the rank allocation and

the improvability of the collisions, traditional static method

cannot choose the appropriate technology for the given situ-

ation. As a dynamic technique for choosing implementation

technologies, this paper introduces a method that selects a

suitable algorithm of collective communications at runtime.

At the first invocation of a collective communication, this

method predicts the performance of each algorithm from the

information about the rank allocation, the network topology

and the routing policy. Then it discards the algorithms

that are predicted much slower than others. After that, it

examines each algorithm at each invocation of the collective

communication to find the fastest one empirically. Results of

some preliminary experiments showed the efficiency of the

proposed method.

Keywords: Collective Communication, Performance Model, Run-

time Optimization

1. Introduction
In high-performance computing, communication libraries

are playing an important role. To fulfill the strict requirement

on performance with limited resources, they change the

implementation technologies of some functions according to

the situation. For example, most of the libraries prepare at

least two protocols, Eager or Rendezvous, for transferring

messages, and chooses one of them with a consideration

of the tradeoff between the performance and the memory

usage. Similar techniques are used for choosing algorithms

for collective communications or deciding sizes of segments

in pipelined communications. Previously, these choices of

implementations have been done statically, in which they

are selected according to the thresholds provided before

execution. In most cases, benchmarks on some possible

combinations of parameters, such as the number of ranks and

the size of messages, are used to decide these thresholds [8],

[9].

However, as the sizes and the complexities of computer

systems for high-performance computing are increased sig-

nificantly, such static strategy has become insufficient to

enable efficient usage of the systems. One of the reasons is

simply because the parameters to be considered has become

large in number and wide in range. In addition to that, es-

pecially for communication libraries, usage of cost-efficient

topologies of interconnect networks, such as Fat Tree, Mesh

or Torus, has increased the difficulty on appropriate choice.

On these topologies, there are some additional issues that

affect the performance significantly, such as the collisions

among independent messages, and the distance between the

sender and the receiver. This means, even when the number

of ranks and the size of the message are the same, best

implementation technology can be different according to the

situations only known at runtime, such as relative locations

of ranks. Therefore, demands for the techniques to choose

suitable implementations at runtime are increasing [1], [10].

In this paper, as one of them, a method is proposed for

choosing the appropriate algorithm of collective commu-

nications at runtime. Collective communications, such as

broadcasts, reductions and all-to-all exchanges, are popularly

used in parallel programs of computational sciences to

achieve productivity and performance portability. There have

been many algorithms introduced for each of these collective

communications. The method proposed in this paper is a

combination of two approaches, performance prediction and

performance measurement. At first, it gathers the information

about the allocations of ranks, and applies them to the

performance models of the available algorithms along with

the information about the topology and the routing policy

of the system to predict the time for completing the com-

munication with them. By comparing the results, algorithms

that are predicted to be significantly slower than others are

discarded from the candidates. Then, each of the remained

algorithms is examined one at each call of the collective

communication to gather the empirical performance data.

After all algorithms are examined, the fastest algorithm is

chosen to be used for the rest of the calls. In this paper, this

method is applied for Alltoall communication on a system

with Fat Tree topology. The effect of the method is examined

with some experiments.

2. Alltoall communication
As previously mentioned, collective communications are

patterns of communications among a group of ranks to
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copy, reduce or exchange data. This paper applies our

method of runtime algorithm selection method to one of

those communications called Alltoall, which is frequently

used in Fast Fourier Transform or in matrix transposing.

This communication involves every rank interchanging data

among all the ranks at the end of the operation. Since each

rank needs to send different data for each receiver, this is one

of the most network-intensive collective communications

used in parallel programs.

There have been many algorithms of Alltoall introduced

to achieve better performance. For example, Simple Spread

algorithm basically posts all receives and all sends, starts the

communications, and waits for all communications to finish.

Each rank proceeds with the communication sequentially and

the order of the communications for node i is as follows: i
→ i+1, i → i+2, ..., i → (i+p−1)modp. This parallel al-

gorithm is achieved using the non-blocking communication,

such as MPI_Isend and MPI_Irecv in MPI(Message Passing

Interfase). This means that the rank returns immediately

after a function call. Thus, consecutive communications can

overlap. However, it may cause severe collisions on a rank

at which many messages have arrived at the same time.

To avoid such collisions, there are some algorithms that

divide the entire communications in phases. For each phase,

the targets of communications are carefully chosen so that

each rank sends data to different rank. Ring algorithm, for

example, uses the phase number as the distance of the

target, while the Pairwise algorithm uses exclusive-or on the

rank number and the phase number to decide the ranks to

exchange data. These algorithms can be further classified

by the method how they synchronize the phases. In one

implementation, barrier synchronization is called before each

phase, while there is another implementation that calls a

barrier only once at the beginning of the algorithm. Another

approach uses a light barrier in which senders wait for

acknowledgement messages from receivers before sending

data, like rendezvous protocol.

On the other hand, Bruck algorithm packs data for dif-

ferent receivers in one message to reduce the number of

phases. At first, it rotates the data blocks on the rank i by a

distance of i blocks both at the beginning and at the end of

the algorithm rank. Then it sends messages in log(p) steps.

In each step k, each rank sends to (myrank + 2k) and

receives from (myrank−2k), where myrank represents the

id of the rank. Since it requires redundant message transfer,

this algorithm is mainly used for small message sizes.

These algorithms are only a part of the introduced ones

for Alltoall communication. The relative speed of each

algorithm depends not only on the traditional parameters

such as the size of the message and the number of ranks,

but also other factors such as the topology of the system and

the location of ranks. The relative speed among algorithms

changes according to not only traditional parameters such as

the size of the message and the number of ranks, but also the

topology of the system and the location of ranks. Therefore,

static strategy cannot find the appropriate algorithm for given

situation.

3. Effect of the Rank Allocation on the

Performance of Collective Communica-

tion Algorithms
This section examines the effect of the rank allocation

on the relative performance of the algorithms of collective

communications by an experiment.

As the environment of the experiment, RICC (RIKEN

Integrated Cluster of Clusters) at RIKEN is used. Each

compute node of RICC consists of two processors of Intel

Xeon X5570 2.93GHz and 12GB of memory. Each processor

has four cores, and the processes are mapped to the cores

one by one.

Compute nodes are connected by InfiniBand with Fat-Tree

topology. It has two spine switches, and both are connected

to all leaf switches. Figure 1 shows the topology, and the

routing policy of the interconnect network of RICC. Each

leaf switch is connected to each spine switch with two links,

which means, there are four links in total from leaf to spine.

The total number of compute nodes is 1024. 20 nodes are

connected to each of the 51 leaf switches, and four nodes are

connected to one. Each compute node has a unique number.

As shown in the figure, contiguous numbers are attached

to the nodes in a leaf switch; compute nodes on the 0th

leaf switch have numbers from 0 to 19, those on the 1st

leaf switch have 20 to 39, and so on. On the other hand,

four links to spine switches are numbered from 0 to 3. At

the transfer of a message to the node in other leaf switch,

the node number of the target is divided by four, and the

remainder is used as the number of the link to be used for

sending the message upwards from leaf to spine, as well as

downwards from spine to leaf.

On such topology, the balance of the usage ratio of the

links depends on the rank allocation. Therefore, in this

experiment, 128 ranks are allocated in five patterns as shown

below to see the effect of the unbalanced usage on the

performance of the collective communication algorithms.

Pattern 0:

In each of 32 leaf switches, four ranks are allocated

on the compute nodes with the node number of

the multiple of four from the one with the smaller

... ... ...
...

node0 node1 node19 node20 node21 node39 node1020 node1021 node1023

Upper Switch 1Upper Switch 0

Leaf Switch0 Leaf Switch 1 Leaf Switch 51

link0 link1 link2 link3 link0 link1 link2 link3 link0 link1 link2 link3

Figure 1: Topology and Routing Policy of the Network of

RICC
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number. That means in the 0th switch, four ranks

are allocated on node 0, 4, 8 and 12, while in the

1st switch, another four ranks are allocated on node

20, 24, 28 and 32, and so on. With this pattern, at

each leaf switch, four ranks share one link from,

and to the spine switch.

Pattern 1:

In each of 32 leaf switches, four ranks are allocated

on the compute nodes with the node number of

the even number from the one with the smaller

number. That means in the 0th switch, four ranks

are allocated on node 0, 2, 4 and 8, while in the

1st switch, another four ranks are allocated on node

20, 22, 24 and 28, and so on. With this pattern, at

each leaf switch, each two ranks share one link

from, and to the spine switch. With this pattern, at

each leaf switch, each two of four ranks share one

link from, and to the spine switch.

Pattern 2:

In each of 32 leaf switches, four ranks are allocated

on the compute nodes sequentially from the one

with the smaller node number. That means in the

0th switch, four ranks are allocated on node 0, 1, 2

and 3, while in the 1st switch, another four ranks

are allocated on node 20, 21, 22 and 23, and so

on. With this pattern, each rank exclusively use

one link from, and to the spine switch.

Pattern 3:

In each of 16 leaf switches, eight ranks are al-

located on the compute nodes sequentially from

the one with the smaller node number. With this

pattern, at each leaf switch, each two of eight ranks

share one link from, and to the spine switch.

Pattern 4:

In each of eight leaf switches, 16 ranks are al-

located on the compute nodes sequentially from

the one with the smaller node number. With this

pattern, at each leaf switch, each four of 16 ranks

share one link from, and to the spine switch.

Figure 2 and 2 show the elapsed time of each algorithm

with the message size of 16KB and 1MB, respectively.

Horizontal axis is the pattern number.

In the figure 2, the performance of the algorithm Bruck

varies with the pattern. With pattern 0 and 4, the time with

Bruck is more than two times longer than the time with

the fastest algorithm. On the other hand, with pattern 2,

the time with Bruck is almost the same with the fastest

one. This is because of the difference of the message size

transferred. When the number of ranks is P, Bruck repeats

communication with message size 16KB * P/2 for log2 P
times, while other repeat 16KB message transfers for P-1

times. Therefore, change of the available bandwidth with the

pattern has affected severer on Bruck than others. In addition

to that, the reason for the difference of the performance

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  1  2  3  4

T
im

e
(s

e
c
)

Pattern

Simple
Pair

Ring
PairLB

RingLB
PairOB

RingOB
PairMB

RingMB
Bruck

Figure 2: Elapsed time of each algorithm with each pat-

tern(16KB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4

T
im

e
(s

e
c
)

Pattern

Simple
Pair

Ring
PairLB

RingLB
PairOB

RingOB
PairMB

RingMB
Bruck

Figure 3: Elapsed time of each algorithm with each pat-

tern(1MB)

between pattens 0 and 4, or patterns 1 and 3 is because

the number of communications across leaf switches differs.

In the figure 3, on the other hand, other algorithms also show

the similar variation of performance with Bruck.

These results denote that the performance of algorithm

changes significantly according to the relative locations of

ranks. In addition to that, the effect of the rank allocation to

the performance differs for each algorithm. Therefore, choice

of the algorithm should be done with the consideration of

the relative positions of ranks in the network topology.

4. Runtime Algorithm Selection of Col-

lective Communication in Consideration

of the Rank Allocation

4.1 Overview of the Method

The method proposed in this paper selects the algorithm

according to the rank allocation as follows:
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1) Before the execution of the program:

Gather the information about the topology and the

routing policy of the interconnect network of the

system. Prepare performance models of each algorithm

based on the information.

2) At the beggining of the execution:

Acquire the information about the rank allocation.

3) At each call of a function of collective communication:

If it is the first call of the function with the specified

parameters, apply the rank allocation information to

the performance models to estimate the time with each

algorithm. Then, discard algorithms with the predicted

time longer than the threshold from the candidate.

This threshold is a relative value from the time of the

algorithm that is predicted to be the fastest. The ratio

of the time used in the experiments of this paper is

2.0.

For each call, until all of the candidate algorithms are

examined, use one algorithm for one call to complete

the communication, and record the measured time.

If sufficient number of measurements are done for each

algorithm, choose the fastest one as the best algorithm,

and use the best algorithm for the remaining calls.

In this method, the process for predicting performance

of algorithms must be designed and implemented in con-

sideration of the topology and the routing policy of the

system. This paper introduces an example of the process

of performance prediction for Alltoall communications on

the Fat-Tree topology of RICC.

On the other hand, as the empirical technique for choosing

the best one from the remaining algorithms, STAR-MPI [1]

by Faraj, et al. is used. This method consists of two phases,

Learning and Probing. In the Learning phase, one of the

candidate algorithms is used for each call of the collective

communication to measure the execution time with it. After

repeated calls, when sufficient measurements are done on

each algorithm, this phase is finished, and the fastest one

is chosen to be used for the following the Probing phase.

In this phase, the execution time of the chosen algorithm

is measured for each call. If the time changed significantly

from the previous measurement, it uses the second one.

4.2 Performance Prediction of Alltoall Algo-

rithms on a Fat-Tree Topology

This section describes the performance prediction method

for Alltoall algorithms on a Fat-Tree topology. In this

method, the average bandwidth is estimated according to

the topology and the allocations of ranks.

First of all, the estimation of the average bandwidth is

done by considering the effect of collisions occur when

each rank communicates with all the other ranks. A collision

occurs when more than one communications share the same

link with the same direction at the same time, The method

proposed in this paper assumes that, when a collision occurs,

the bandwidth of the link is shared evenly by each of

the communications that caused it. Therefore, the average

bandwidth of a link is estimated by dividing the base

bandwidth of the link without collision, by the expected

number of communications that use the link in the same

direction.

In calculating this expected number on the link that con-

nects leaf switches and spine switches, the way of calculation

depends on the direction of communications. As for the

upward direction, a link from a leaf switch to one of the spine

switches is shared by communications that have the same

value of the remainder after the division of the node number

of the target by four. On the other hand, communications

to the compute nodes in a leaf switch that share the same

remainder of dividing the node number of the target by four

share the same link from a spine switch in the downward

direction. In this paper, the effects of the collisions in these

two directions are assumed to be almost the same. Therefore,

only the downward directions are considered to calculate the

average bandwidth.

As the parameters for estimating the average bandwidth,

Nnode denotes the number of nodes, Pn is the number of

ranks in a node, NLS is the number of leaf switches, LSi

is the i-th leaf switch, ULij is the j-th link from LSi to

the spine switches, Ni is the number of nodes in LSi, and

NULij is the number of nodes in LSi with the remainder

of dividing the node number by four is j. In addition to that,

the base bandwidth of the communications in a node, in a

leaf switch and across leaf switches is assumed to be the

same value B.

The average bandwidth is estimated for each of the types

of communications. For the communications between two

ranks in a node, they assumed to be no collision, and the

average bandwidth remains as B. On the other hand, for

communications between two nodes in a leaf switch, one

link from a node to the leaf switch is assumed to be shared

by all ranks in the node. Therefore, the average bandwidth

is calculated to be B/Pn.

For communications across leaf switches, as described

above, the expected number of communications that share

the same link is used to calculate the average bandwidth.

For the link ULij , the expected number of ranks in LSi that

shares the link at the same time is calculated as follows:

RCVij = 1 + (NULij ∗ Pn − 1) ∗ (Nnode − Ni) ∗

Pn/(Nnode ∗ Pn − 1)
The weighted average of these estimations of available

bandwidth by using the ratio of the occurrence of each

type of communication as the weight, is calculated in the

following fomula.

BRij =
Pn−1+Ni−1+(Nnode−Ni)∗Pn/RCVij

Nnode∗Pn−1 ∗ B
BRij is calculated for each i, j with 0 ≤ i < NLS,

0 ≤ j < 4, and the minimum value Bmin is used as the

average bandwidth of the system. This value is applied to the

performance models of algorithms to predict the execution
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time of collective communication with them. Table 1 shows

the models of the algorithms of Alltoall used in this paper.

Table 1: Performance models of Alltoall

Algorithm Model

Simple Spread (P − 1) ∗ L + (P − 1) ∗ M/Bmin

Ring (P − 1) ∗ (L + M/Bmin)
Ring with One
Barrier

(P − 1) ∗ (L + M/Bmin) + (L ∗ log2P )

Ring with MPI
Barrier

(P−1)∗(L+M/Bmin)+(L∗(P−1)∗log2P )

Pair with Light
Barier

(P − 1) ∗ (L + M/Bmin) + L ∗ (P − 1)

Pair (P − 1) ∗ (L + M/Bmin)
Pair with One
Barrier

(P − 1) ∗ (L + M/Bmin) + (L ∗ log2P )

Ring with MPI
Barrier

(P−1)∗(L+M/Bmin)+(L∗(P−1)∗log2P )

Ring with
Light Barier

(P − 1) ∗ (L + M/Bmin) + L ∗ (P − 1)

Bruck L ∗ log2P + P ∗ M ∗ log2P/(2 ∗ Bmin)2

These models use Hockney model as the basic model for

point to point communication. In this model, time for each

point to point communication is estimated as L + M/B
where M is the size of the message, and L and B are the

latency and the bandwidth of the network respectively. This

is one of the simplest algorithms. There have been some

other models, such as LogP [2], LogGP [3] and PLogP

(Parameterized Log-P) [4] that are proposed to achieve

better correctness of the estimation. For example, PLogP

represents the change of the bandwidth for different message

sizes. Applying these models to the model of algorithms is

remained as the future works.

In the implementation of Alltoall in this paper, L and B
of the system are measured before executing the program.

A benchmark program that repeats point-to-point commu-

nications is used for this measurement. In addition to that,

the information about the topology, such as the number of

links between leaf switch and spine switch, and the policy

of routing are also collected before execution to construct

the formula for calculating Bmin.

On the other hand, the information of rank allocation is

achieved at the beginning of the program. This information

is applied to the formula to estimate the performance of

each algorithm. From the results of this estimation, the

algorithms that are predicted to be sufficiently slower than

others are discarded from the candidates for the following

Learning phase. The experiments in this paper used the

threshold of time for discarding algorithms as the time two

times longer than the fastest one. This threshold will be

examined carefully with consideration of the accuracy of

the prediction, in a future work.

5. Experiments

5.1 Overview

To examine the effect of the proposed method, experi-

ments are done on a program called Alltoall Benchmark in

the sample codes of STAR-MPI. This program is written in

C with MPI, and repeats Alltoall communications for 200

times. The environment of the experiment is RICC. In the

experiment, 10 jobs are submitted for each pair of a message

size and a number of ranks.

On RICC, jobs are managed by a scheduler that is called

Meta Job Scheduler. This scheduler prepares only one job

pool, instead of job queues. The users specify the resource

requirements at the submission of a job, such as the number

of ranks, the size of memory and the estimated execution

time. Then the scheduler uses these pieces of information to

map the ranks of the job to the scheduling table of compute

nodes. Nodes start execution of ranks according to the table.

Since there is no job queue or node block, the scheduler can

map ranks of jobs to the nodes without considering their

locations. Therefore, with this policy, the number of idle

nodes can be reduced, which can cause the throughput to be

increased significantly.

This flexibleness on allocating ranks causes unstableness

of the performance of communications. With this situation,

existing static methods for choosing algorithms of collective

communications cannot find the appropriate one. On the

other hand, runtime selection techniques, such as the one

proposed in this paper or STAR-MPI, are able to find suitable

algorithms for given situations.

5.2 Results

Figure 4, 5 and 6 show the average times of alltoall

communications with 16KB of message size on 1 rank

times 32 nodes, 4 ranks times 32 nodes and 8 ranks

times 32 nodes, respectively. Horizontal axis is the job

number. Each curve of the figures shows the average time

with the method proposed in this paper (DYN GROUP),

the method of runtime algorithm selection that measures

all available algorithms (DYNþ£Őąþ£ŐąNOGROUP), and

with the algorithms, Bruck (Bruck), Pairwise (Pair), Pair-

wise with Light-Barrier (PairLB), Pairwise with MPI-Barrier

(PairMB), Pairwise with One-Barrier (PairOB), Ring (Ring),

Ring with Light-Barrier (RingLB), Ring with MPI-Barrier

(RingMB) and Ring with One-Barrier (RingOB).

As shown in the figures, performances of both DYN

GROUP and DYN NOGROUP are close to the fastest

algorith in most of the cases. These results indicates that both

runtime selection methods could find the fastest algorithm.

The overhead of each method is shown as the gap from the

time of the fastest one. The major part of the overhead is

the time for examining slow algorithms.

Figure 7 and 8 show the ratio of the time of DYN GROUP

over DYN NOGROUP, for different number of ranks. In all
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the cases, DYN GROUP was faster than, or as fast as DYN

NOGROUP. This is the effect of reducing the number of

candidate algorithms at runtime. The reason of the significant

effect on smaller message sizes is because most of the

available algorithms are for middle or large sizes.

Figure 7: Ratio of the Time with and without Discarding

Slow Algorithms (4 ranks × 32 nodes)

Figure 8: Ratio of the Time with and without Discarding

Slow Algorithms (8 ranks × 32 nodes)

5.3 Accuracy of the performance prediction

This section examines the accuracy of the performance

prediction introduced in this paper. As an example, Table 2

compares the predicted time with the average of the mea-

sured time of each algorithm in the case with 1 rank × 32

nodes.

The predicted time is less than a half of the measured

time. Therefore, the prediction is not accurate enough. In

the experiment, the proposed method has discarded two

algorithms, Pair_mpi_barrier and Ring_mpi_barrier because

they are predicted to be more than two times slower than the

fastest one, Simple. However, the measured times shows that

Bruck was also more than two times slower than Simple.

Therefore, the performance is expected to be gained if

the prediction becomes more accurate. For example, us-
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Table 2: Measured and Predicted Time of the Algorithms
Algorithm Measured

Time (ms)
Predicted
Time (ms)

Remained or
Discarded

Simple 1.352 0.606 remain
Pair 1.974 0.606 remain
Ring 1.865 0.606 remain
Pair_light_barrier 2.650 0.776 remain
Ring_light_barrier 2.310 0.776 remain
Pair_one_barrier 1.912 0.661 remain
Ring_one_barrier 1.989 0.661 remain
Pair_mpi_barrier 6.432 2.366 discard
Ring_mpi_barrier 6.551 2.366 discard
Bruck 3.053 1.150 remain

ing more detailed performance models, such as LogGP or

Parametrized LogP, may solve this problem.

6. Related Works

Several algorithms for improving the performance of col-

lective communications have been proposed for decades [5],

[6]. More recently, some researchers have focused their

efforts on taking advantage of existing algorithms in order

to find techniques for selecting the most efficient algorithm

for any given system/workload configuration. For exam-

ple, Abdul Hamid, et al. have proposed an analysis of

algorithm selection for optimizing collective communication

with MPICH for Ethernet and Myrinet networks [8]. Instead

of using the same thresholds for any MPICH installation

on any parallel computer, they have investigated a way to

find the optimum change-over points for different systems.

Still their approach is a static optimization that could not

be applicable on unstable situations by all means. Thus,

Faraj, et al. have proposed STAR-MPI [1]. Their solution

for tackling the best-performing algorithm selection problem

uses dynamic profiling empirical data coupled with a static

algorithm grouping method based on the performance results

of different network platform systems. In addition, the au-

thors also mentioned that the number of candidate algorithms

can cause severe overhead, and performance models of those

algorithms can be a clue to reduce their number. Nishtala,

et al. have implemented a method of runtime algorithm

selection on GASNet [10]. This method reduces the number

of candidate algorithms by using performance models of

them. However, since this method does not consider the

effect of rank allocations, the estimation of the performance

is not precise enough. In addition to that, this method

measures the execution times of all candidate algorithms at

the first call of the collective communication, overhead of

the method is significant.

We have proposed an idea about combining both perfor-

mance prediction and runtime measurement for choosing

algorithms at runtime [11]. In this method, latencies and

bandwidths are measured at the beginning of the program.

Because the available number of measurement is limited to

achieve low overhead, this method cannot consider the effect

of rank allocation sufficiently.

7. Conclusions
A method for choosing an appropriate algorithm of a

collective communication at runtime was proposed. This

method used information about the network topology, the

routing policy and the rank allocation to reduce the number

of candidate algorithms examined at runtime. As an example

of this method, Alltoall communication function was imple-

mented for Fat-Tree topology of RICC. Experiments showed

that the proposed method could find an appropriate algorithm

with low overhead.

As the future works, functions for other collective com-

munications and other topologies will be constructed.
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Abstract - Clusters of workstations are widely used to carry 
out big data applications. Applications running on these 
architectures may not produce the anticipated speedup 
because of imperfect load distribution. Developing intelligent 
application support tools that help improving performance by 
adjusting performance parameters is of great importance for 
the big data applications. A new architecture is presented in 
this paper to tune the performance of big data parallel 
applications with minimal effort from the application 
programmer and designer. This architecture is based on using 
intelligent agents to automatically and adaptively decide on 
load distribution with a focuses on image processing 
applications. This architecture is comprised of several 
features that are well-suited to heterogeneous environments, 
including: a flexible image partitioning scheme that assigns 
tasks in proportion to workstation’s computational 
capabilities, an overlapping task assignment scheme that 
allows load balancing operations to be carried out with 
minimal communications overhead. 

Keywords: Big Data; Intelligent Agents; Performance 
Tuning; Parallel Computing. 

 

1 Introduction 
  Many of today’s applications are resource intensive with 
steadily increasing computational demands due to processing 
unprecedented amounts of data. As applications and data 
modality become more complex, new generations of 
hardware and software architectures are needed to serve the 
increasing demands of these applications. Achieving high-
performance usually involves efforts on both hardware 
configurations and software architectures. The following 
sections introduce modern high performance computing 
architectures and the different classifications of intelligent 
agents as the core of next generation software.  

Many hardware architectures have been developed through 
the last two decades to support high performance computing 
ranging from vector and superscalar processors to 
supercomputers and parallel computers. Supercomputers of 
commodity components are recognized today as one of the 
most efficient computer architectures that can provide an 
economical alternative for organization with big data 
processing needs [1].  Generally, clusters of workstations 
follow the distributed memory MIMD architecture, and 
usually achieve the required parallelism using direct message 
passing, or using software emulators to coherently share 
distributed memories [2]. This architecture has many 
advantages such as, no bus contention and no cache 
coherence. Commonly, processors exchange data by passing 

messages, which may result in some drawbacks such as 
increased latency and interruptions caused to the receiving 
processor to handle the received messages. Recognizing the 
concept of locality in designing parallel algorithms is 
recommended to minimize the number of messages traversing 
the interconnection network [2].  
 
Performance instrumentation, prediction, analysis, and tuning 
play important roles in the design, development, and 
evaluation of big data applications. In parallel environments, 
the performance parameters space is much larger than that of 
the sequential case; consequently, dealing with performance 
in parallel environments tends to be more complex. The 
alternative of simulating various performance parameters is 
time consuming and for many large applications it may be 
impossible to accomplish in a reasonable amount of time. 
Numerous scattered efforts have concentrated on developing 
specific tools to help users instrument, analyze, predict, and 
tune the performance of their parallel and distributed 
applications using broad range of approaches. Most of these 
tools are run-time, using performance data gathered by 
instrumenting the application [5, 6, 7]. Unfortunately, for 
many reasons very few of these tools are actually being used 
[8]. A definition of the features needed to exist in performance 
analysis tools is provided by Reed et al. [9]. They emphasize 
that optimizing the behavior of complex parallel applications 
requires performance analysis tools to evolve, and replace 
postmortem analysis with real-time, adaptive optimization, 
and supporting high modality visualization. These new tools 
combined with big data application forms new paradigms of 
software architectures and we believe intelligent agents can be 
in the core of such tools.  

Most of the performance problems in parallel applications are 
caused by imperfect load distributions. Developing intelligent 
agents to continuously monitor the load distribution and 
autonomously attempt to redistribute the load in a more 
balanced fashion should improve the overall application 
performance. Load-balancing techniques are distinguished by 
the timing of the load-balancing operations. Dynamic load 
balancing (run time) offers the most flexible and challenging 
load-balancing type because they provide for flexible 
scheduling policies that consider varying computing climates.  
 
The problem of dynamically balancing load is typically 
divided into the following five phases: load evaluation, 
profitability determination, work transfer calculation, task 
selection, and task migration. Before load balancing is 
performed, it is necessary to establish that a load imbalance 
exists. A good load evaluation not only makes a good 
determination of the system load, but also does so with 
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minimal overhead measurement techniques. The load 
evaluation should also maintain some type of estimates 
associated with individual tasks to determine which tasks 
should be transferred to which workstation to balance the 
computation in the best possible way. Once it has been 
determined that a load imbalance exists, the cost of the 
imbalance should be contrasted with the cost of rebalancing. 
If the cost of the imbalance exceeds the cost of performing 
load balancing, then we should perform some load balancing. 
This comparison of the cost of imbalance vs. the cost of load 
balancing is the profitability determination. 
 
The third phase involves the consideration of the 
measurements taken in the first two phases, to determine the 
work transfers necessary to balance the load. These 
considerations are used to generate a work transfer set. This 
set is the set of tasks that, once migrated, will rebalance the 
processing load. Next, in the task selection phase, we must 
select a set of tasks for exchange or transfer that will fulfill the 
work transfer set computed in the previous phase. When 
considering tasks for exchange or transfer, communication 
locality and task size should be considered. Thus, we should 
consider the cost of moving a task over a link, and the size of 
the transfer, since larger tasks will take longer time to migrate 
than smaller tasks. The final step in load balancing is to 
actually perform the exchange or transfer of tasks from one 
workstation to another. This step must be done carefully and 
correctly to ensure continued communication integrity and 
algorithm/program correctness. Additionally, if cost is not 
considered in this final phase, an excessive number of tasks 
can be transferred or exchanged, and the migration of these 
tasks will negatively influence system performance. 
 
Due to the vast and varied number of parallel algorithms and 
the class of problems to which they are applied, there is no 
single dynamic load-balancing methodology that produces 
optimal results for all unbalanced workloads. Therefore, 
dynamic load-balancing strategies must not only be tailored 
to individual parallel run-time environments, but also tailored 
to the class of problems on which they operate. For these 
reasons, our solution is focused on big data applications, 
particularly those that process images.  
 
A dynamic load-balancing approach for heterogeneous 
computing environments, DynamicPVM, was presented by 
Overinder [1]. DynamicPVM can offer speedups of 1.17 in 
light to medium load situations. While this approach can work 
in heterogeneous environments, tasks can only be migrated 
between similar architectures, which prevents it from 
becoming a true heterogeneous load-balancing approach. 
Furthermore, DynamicPVM utilizes frequent checkpoints in 
load-balancing operations causing computations to stall on all 
workstations during balancing operations. 
 
Zaki and Parthasarathy presented several customized 
approaches to dynamic load-balancing [2]. The classes of 
applications that Zaki and Parthasarathy proposed customized 
approaches for include: matrix operations and TRFD from the 

Perfect Benchmark suite. Their work clearly demonstrates the 
effective use of differing strategies for different applications. 
However, all of the strategies they presented were developed 
for a homogeneous mix of workstations, rendering their 
results inappropriate for heterogeneous environments. 
Furthermore, each of their strategies relied upon 
synchronization points to perform load-balancing operations. 
These synchronization points can be a source of performance 
degradation on faster workstations that must wait on slower 
workstations to reach the synchronization point, making them 
even less suited to heterogeneous environments where 
performance capabilities offered by individual workstations 
can vary significantly. 
 
Bozyigit presented a dynamic load-balancing scheme for 
heterogeneous networks of workstations that utilizes the 
previous execution histories of tasks to partition the current 
workload in such a manner as to minimize the need for 
rebalancing operations during computations [3]. While this 
method is suited to heterogeneous networks of workstations, 
rapidly varying load situations during computations remain 
unbalanced, resulting in sluggish load-balancing operations.   
 
A comprehensive approach to dynamic load-balancing was 
presented by Watts [4]. This approach incorporates several 
features including: a diffusion algorithm that allows for 
balancing decisions to make trade-offs between work transfer 
and overall run time, and flexible task selection mechanisms 
that allows task movement to be governed by task size and 
communication costs. This approach has two serious 
drawbacks. First, the relative capabilities of each workstation 
are not considered when making load balancing decisions, 
making this approach poorly suited to heterogeneous 
environments. Second, this approach fails to balance the 
individual components that comprise the system load, which 
yields a low overall efficiency. 
 
Most dynamic load-balancing strategies for rectifying load 
imbalances involve the migration of tasks from heavily-loaded 
workstations to lighter-loaded workstations. Hamdi and Lee 
presented a unique method for load balancing image-
processing applications: instead of redistributing the tasks, 
they proposed the redistribution of the data [5]. This method 
would seem to incur large communication; however this 
approach is well suited to big data parallel applications such 
as image processing. Hamdi and Lee’s approach is successful 
in rebalancing light and medium load imbalances, but offers 
poor performance when a large load imbalance exists between 
workstations.  Furthermore, their approach partitions tasks 
into equal-size pieces for computation. This approach is not 
well suited to heterogeneous environments where the 
capabilities offered by individual workstations may vary 
significantly. 
 
Hui presented a dynamic load-balancing system called 
DELAY [6]. DELAY incorporates a useful feature for 
dynamically load-balancing tasks executed on loosely-coupled 
architectures such as NOWs: the delay between load 
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measurement and reporting is considered when making load-
balancing decisions. DELAY’s scheduler prevents new tasks 
from being scheduled on a given workstation once the number 
of active jobs executing on it reaches a given threshold. 
DELAY requires the user to provide information regarding 
the relative capabilities of each workstation, making this 
approach poorly-suited not only to large networks of 
workstations, but also rapidly changing load scenarios.  
 
Most of the investigated approaches are either limited to 
homogeneous environments, or are specifically tailored to a 
class of applications not congruous to image processing. 
Furthermore, these load-balancing approaches are designed 
not only to deal with unbalanced workloads resulting from 
non-uniform algorithms, but also load scenarios that change 
gradually and infrequently [5]. Practically, heterogeneous 
clusters of workstations can have load situations that vary 
frequently and dramatically. 

2 Intelligent Agents 
Software agents have evolved from multi-agent systems 

(MAS), which in turn form one of three broad areas, which 
fall under distributed artificial intelligence (DAI). The other 
two DAI areas are distributed problem solving (DPS) and 
parallel artificial intelligence (PAI). Hewitt [10] proposed the 
concept of the self-contained, interactive and concurrently 
executing object, which he termed “actor”. He defined an 
actor as “a computational agent that has a mail address and a 
behavior. Actors communicate by message passing and carry 
out their actions concurrently”. Several definitions have been 
proposed to define an intelligent agent, although some of them 
are very specific to certain types of agents. Nwana [11] 
defines an agent as referring to a component of 
software/hardware that is capable of acting exactingly in order 
to accomplish tasks on behalf of its user. Despite the variety 
of definitions, there is general agreement that a good agent 
should possess most of the following features: intelligence, 
autonomy, taskability, awareness, activeability, flexibility, 
trustworthiness, adaptability, collaboration, and learning [12].  
Nwana [11] has listed several dimensions to classify agents 
according to the features they exhibit, such as mobility, 
architecture, primary attributes, and role. Mobility is defined 
as the agents’ ability to move around the network, so an agent 
can be classified as either mobile or static. According to 
architecture, agents are classified into three well known 
different classes of architectures, namely, the deliberative, 
reactive, and hybrid architectures. A minimal list of three 
primary attributes is developed. This list includes autonomy, 
learning, and cooperation. An agent may exhibit one or more 
of these primary attributes. Finally, the role that should be 
played by the agent is the last dimension for classifying 
agents. Examples of agents’ classes in this dimension include, 
but not limited to, control agents and information agents that 
manage huge amounts of information such as the Internet 
search engines.  
 

There are several more attributes to classify agents, but they 
are considered secondary to those mentioned. Out of the 
above classification, seven types of agents are identified: 1) 
collaborative agents, 2) interface agents, 3) mobile agents, 4) 
information/Internet agents, 5) reactive agents, 6) hybrid 
agents, and 7) smart agents [11]. Also, some applications 
combine agents of two or more of the above-mentioned 
categories. These agents are referred to as heterogeneous 
agent systems. The next section introduces an agent-based 
approach for parallel computing. 

3 Agents-based Architecture 
Although the primary motivation for using parallel 

computing platforms to carry out big data applications is their 
speedup potential, this potential is often difficult to realize in 
practice. Since many algorithms and development techniques 
can be used to build these applications, many system and 
performance parameters are involved. This causes difficulties 
in achieving the anticipated speedup without careful analysis 
and tuning of performance parameters. One objective of this 
research is to develop a new paradigm for adaptive 
performance tuning of big data parallel applications that is 
based on intelligent agents (performance agents).  

 
The performance agent monitors the application behavior 
during run time, and adapts and tunes performance 
parameters’ values (PPVs). The goal is for this performance 
agent to interact (collect, analyze, and decide) with the 
application as if it is an expert human user, so that 
performance is always improved, or at least not degraded. A 
general model for this approach is depicted in figure 1. The 
performance agent regularly receives the PPVs of each logical 
process (LP), and then it starts analyzing these values. 
Usually, the performance agent adapts and tunes these PPVs 
and finally sends the new values back to the corresponding 
logical processes. If the performance agent decided that no 
changes could improve the performance at this time, the 
application would continue using the same PPVs. 
Unfortunately, this may be difficult to achieve because many 
performance parameters are correlated, and this operation is 
expected to be time consuming. Thus, the agent uses heuristic 
techniques to find PPVs that lead to better performance. 
  
This research recommends that a performance agent should 
exhibit intelligence, autonomy, adaptability, collaboration, 
and reusability. Also, it should act on behalf of the human 
user to make performance-enhancing adjustments to PPVs, 
thus showing intelligence. Although the agent can make 
independent decisions (autonomy), it can accommodate 
adjustments made by the user, thus showing adaptability. 
Moreover, a parallel application can have more than one 
agent. Each of these agents should perform a single job, such 
as a performance agent or a visualization agent. However, 
agents are not supposed to either overlap or compete. They 
can cooperate and exhibit collaboration. This performance 
agent needs to be generic such that it can be used with 
different parallel and distributed applications with different 
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topologies and underlying architectures, thus displaying 
reusability. Briefly, this paradigm is based on employing a 
performance agent that exhibits the above-mentioned 
features, to continuously improve the parallel applications 
performance. 

LP1 LPn
LP2 LPn-1

Performance Agent

AnalyzeDecide Collect

Application

Figure 1. General Model 

The architecture presented in this paper extends the approach 
presented by Hamdi by providing developing agents that are 
capable of balancing the load of processing a stream of 
images through the use of a flexible image partitioning 
scheme. Agents provide an adaptive load-balancing scheme 
by managing overlapping regions of computation. This 
architecture consists of one manager process agent, and a set 
of worker process agents. The manager process is responsible 
for queuing of the incoming image stream, image 
partitioning, transmitting data to workers, receiving 
completed computations from workers, and saving the 
processed images to disk. The manager process agent is 
responsible for balancing the load. The manager process flow 
diagram is depicted in Figure 2. 

 
Figure 2: Manager Process Flow Diagram 

 

Each worker process receives image data from the manager to 
process, processes image data, communicates local load 
information to the manager, and transmits processed image 
data back to the manager process. The worker process flow 
diagram is depicted in Figure 3. 
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Figure 3: Worker Process Flow Diagram 

 
This dynamic load-balancing architecture is designed for 
heterogeneous clusters of workstations, and first consideration 
was given to the load measurement scheme.  In a 
heterogeneous environment, a load measurement scheme that 
eliminates the comparison challenges due to performance 
peculiarities of varying CPU and hardware architectures is 
desired.  
 

3.1 Load Management 

Hamdi proposed the use of the number of pixels processed 
at a worker to be a good load measurement [5]. This technique 
is adopted in our architecture for several reasons. First, count 
of pixels processed is a scalar value that presents no 
comparison challenges due to differing architectures. Second, 
a faster worker will be indicated by a large number of pixels 
processed when compared to other workers in the cluster. 
Additionally, the number of pixels processed is a load 
measurement that can be made by each worker with minimal 
impact on worker performance. Thus, we not only have a 
means of load measurement that presents no comparison 
challenges, but also whose measurement imposes little load on 
a worker. 
 

3.2 Collection of Load Information 

The manager process sends load interrupts to all worker 
processes. The frequency at which this occurs is to be 
determined experimentally. Upon receipt of a load interrupt, a 
worker transmits a vector containing the number of pixels it 
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has processed since the last load interrupt it received, and two 
additional scalar values that will be discussed later, to the 
manager. A worker resets its local pixels processed counter 
after it has transmitted its load measurement so that load 
measurements remain current, and do not reflect an execution 
history that is not commensurate with the current worker load 
situation. 

3.3 Task Partitioning 

Since the manager process in this architecture must collect 
load information from each worker process, the partitioning 
scheme should use this load information to assign tasks to 
workers in proportion to their historical contribution to the 
overall system throughput.  

Assuming that we have n workers, let i  denote the load for 
worker i, where 0<=i<n-1. Recall that information is a scalar, 
the number of pixels processed. We compute the system 
throughput, or cumulative workload, in pixels processed per 
system time quantum (CW) using the following summation: 
load  

 CW = 




1n

0i

i  

The manager determines the percentage of columns in the 
image assigned to worker i,(Ai) by solving the proportion: 

 Ai =  
CW

i  

Thus, each worker receives an image partition sized in 
proportion to its contribution of the current system throughput 
in pixels processed. In this way, image data is distributed in 
proportion to each worker’s capabilities. 

 
The manager process uses column wise block striping to 
partition incoming images. Each worker is assigned a 
partition based upon Ai. Next, we define a task vector that 
contains several scalar variables that the manager will 
transmit to each worker to describe the details of its next 
work assignment. The manager determines the leftmost and 
rightmost columns that worker i will be responsible for 
processing, designated LBi and RBi respectively. To offer 
reduced-cost load rebalancing operations, this architecture 
will transmit some columns in the image to two neighboring 
workers. By doing this, we eliminate data transmission 
requirements in remapping operations. With the existence of 
this “overlap” of image data, some load imbalances can be 
corrected with a reassignment of LBi and RBi on adjacent 
workers. The manager determines the amount of overlap that 
is transmitted to a given worker by first calculating the 
difference between the most and least-loaded workers in the 
cluster. We compute the degree of the largest imbalance (Li) 
as: 

LI = max{Li} – min{Li} 
                     0<i<n        0< i<n 
 
Next, the manager calculates the ratio of the imbalance (RI) 
to the current system throughput using:  RI = LI/CW. The 

value of RI is used by the manager to help predict how much 
of an imbalance may need to be corrected during the next 
computation. The manager then calculates the number of 
columns to transmit as overlap (CO) to the workers using: CO 
= RI x width of image. Now that the manager has determined 
the number of columns that constitute the overlap transmitted 
to the workers, the manager must then determine how much 
of the overlap to distribute to each worker. The manager has 
already partitioned the non-overlapping data using Ai. Thus, 
the manager assumes that a lightly-loaded worker is more 
likely to assume responsibility for calculating more data in 
the overlap region to correct a future load imbalance.  The 
manager uses Ai and CO to determine the number of overlap 
columns Oi to send to worker i using: Oi = Ai x CO. The 
manager not only needs to calculate this data for later use 
during load-balancing operations, but also communicates this 
data to each worker. So, two new variables are added to the 
task vector previously introduced: LDi and RDi. LDi and RDi 
represent the leftmost and rightmost columns that worker i 
has sufficient data to process. The manager calculates the 
values of LDi and RDi for each worker using: 

LDi = LBi – 
2

O i   if 0<i<n-1 

RDi = RBi + 
2

Oi
   if 0<i<n-1 

LDi = LBi  and  RDi = RBi + Oi if i = 0 
LDi = LBi – Oi and  RDi = RBi       if i = n-1 

 

After calculating each of these values for a given worker i, the 
manager process sends a task vector to each worker 
containing these calculated values. To maximize the possible 
benefit of utilizing the overlap in scenarios where a load 
imbalance exists, each worker will begin processing the 
columns farthest from the overlap region, with computations 
proceeding towards the local overlap region. 
 

3.4 Load Evaluation and Balancing 

As stated previously, the manager process periodically 
interrupts each worker involved in a computation to obtain 
load information. This load information is used to determine if 
a load imbalance exists, if it is profitable to correct the 
imbalance, and what steps should be taken to rebalance the 
load. After collecting li from each worker, the manager 
recomputes CW. The manager then computes the current ratio 
of throughput (Zi) for each worker using: Zi = li/CW. The 
manager then compares the values of Zi to Ai for each worker 
i. By doing this, the manager can determine if the assignment 
ratio(Ai) is either too large or too small for a given worker’s 
contribution to the computational workload based on Zi. To 
make the determination that a load imbalance is large enough 
to warrant rebalancing, the manager sets a threshold (T), 
below which no rebalancing take place. Rebalancing decisions 
are based upon the following inequality: if (|Ai–Zi| >T)   
perform rebalancing at worker i. Rebalancing is performed to 
satisfy the following inequality: |Ai–Zi| < T/2. The right-hand 
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side of the inequality is divided by two so that the manager 
can make gradual changes to the distribution of work. The 
manager performs rebalancing by adjusting the values LBi and 
RBi for workers involved in the load imbalance. Specifically, 
faster workers are directed to take responsibility for one-half 
of their remaining overlaps adjacent to a slower worker, and 
slower workers are directed to forfeit responsibility for one-
half of their remaining columns contained in the overlap with 
a faster adjacent worker. The manager accomplishes this by 
determining the new values of LBi and RBi using: 

 RBi-1 = RBi-1 + 













 

2

1-i1-i RDRB  

 LBi+1 = LBi+1 - 













  

2

1i1i LDLB  

 LBi  = RBi-1               RBi   = LBi+1 

 
Each worker maintains a local task vector that contains two 
additional entries: LPi and RPi. LPi and RPi are the leftmost 
and rightmost columns that worker i has already processed. 
These additional variables are used by the worker to manage 
the processing of the columns in the partition it receives from 
the manager, and to ensure that a worker does not attempt to 
compute columns outside its assigned partition. Additionally, 
these are the two additional values contained in the vector 
returned to the manager after the receipt of a load interrupt. 
 

4 Conclusion 
 This agent-based paradigm has many strengths 
indicating support of system heterogeneity, minimal 
dependence on the application, reusability, and ease of use 
and development. The application programmer needs only to 
decide on the application performance parameters and 
metrics, insert instrumentation code in the application, and 
define the relations between the different performance 
parameters. The last task may not be an easy job in complex 
big data applications, so it is recommended that some 
heuristic techniques be used, which would be based on the 
application. 
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Abstract— Improving the performance of MPI applications
on Multicore cluster is a huge challenge and even more,
when we execute applications with high data synchronicity
as is presented in SPMD paradigm. The different communi-
cations links of these clusters have to be managed properly if
we wish to enhance performance metrics such as: efficiency,
speedup and application scalability. In this sense, this work
presents an approach that allows us to give an efficient
solution for improving the strong and weak scalability under
a defined efficiency for SPMD applications on Multicore
clusters. This solution is focused on managing the communi-
cation heterogeneities using an analytical model, a mapping
and a scheduling technique. The objectives are based on
finding the maximum strong scalability point and determin-
ing how the problem size has to be increased in order to
maintain an execution time constant while the number of
core are expanded. The results obtained have demonstrated
that using our method we can achieve improvements around
18% in the strong scalability. Also using our method, we
have determined the ideal problem size, when we increase
the number of core (weak scalability) and results show an
small error of around (+/-) 4% in efficiency.

Keywords: Strong and Weak Scalability, Performance, Efficiency

1. Introduction and Motivation
The efficiency and scalability are two key concepts when

we are evaluating the performance in parallel applications.
However, both performance metrics are seriously affected
when we use heterogeneous execution environments such as
Multicore clusters. These clusters are defined as heteroge-
neous because they integrate a hierarchical communication
architecture, which can affect the performance. Therefore,
if we consider the current use of multicore cluster and the
communication heterogeneity in parallel computing, then,
we have to design suitable strategies which allow parallel
applications to be tuned with the aim of improving the
application performance.

Also, the current integration of multicore nodes in high
performance computing (HPC) has brought the inclusion of
more parallelisms within nodes, enabling greater computing

* This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974 and the support of Julish Supercomputing Center.

*Contact Autor: R. Muresano, rmuresano@caos.uab.es
†This paper is addressed to the PDPTA conference.

capacity within the node [1]. However, these capacity can
be affected when we execute parallel applications due to
parallel processes have to exchange information with others
processes which can be located in the same node or in
other node. These communications can be performed using
the diverse communication paths, which are included in
the hierarchical communication architecture. For this reason,
communications have to be managed properly because they
can present different speed and bandwidth, which may cause
degradation and imbalance problems [2][3]. These problems
can seriously affect when we use a pure MPI (message-
passing interface) application with high data synchronicity.

Under this focus, one of the parallel paradigm, which
is very affected by the communication heterogeneities is
the Single Program Multiple Data (SPMD). This paradigm
executes the same program in all MPI processes but uses
different set of tiles to compute and communicate [4]. These
tiles need to exchange information with neighboring tiles
during a set of iterations. For this reason, when applications
are designed under this paradigm, and these are mapped
into multicore clusters, the programmer must consider the
communication heterogeneity and how these can affect the
performance.

Despite of these communication issues, we have to take
into consideration that the multicore environments bring a
huge computational capacity. For this reason, this work is
focused on improving the performance of parallel application
using a combination of different performance metrics such
as efficiency, speedup and scalability (strong and weak).

Hence, the main objective of this work is based on how to
design a method to manage the communication heterogeneity
of multicore cluster in order to increase the SPMD applica-
tion scalability under a defined efficiency. This method will
allow us to determine the ideal number of cores that are
needed in order to obtain a linear scalability using a constant
problem size (strong scalability) while the efficiency is
maintained over a defined threshold, and also, this method
will permits us to determine how to maintain an isoefficiency
system, where we can increase the number of processing
elements (cores) and problem size while the execution time
remains approximately constant (weak scalability).

On multicore clusters the tiles are computed in a similar
time due to the homogeneity inside the core but the com-
munication time of tiles can be performed using different
communication paths and their communication times can be
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totally different. In some cases, the differences between each
link for a defined packet size can include up one and a half
order of magnitude in latency. These variances are translated
into inefficiency, which decreases performance metrics of
SPMD applications.

As a first approach to manage the inefficiency, we have
created a method, which manages the communication laten-
cies using characteristics of application (e.g communication
and computation ratio). This method is organize in four
phases characterization, tile distribution model, mapping and
scheduling and the main objective of this method is to find
the maximum speedup while the efficiency is maintained
over a defined threshold [5]. Taking advantage of this
method, we have adapted it with the aim of controlling the
hierarchical communication architecture with the objective
of finding the maximum scalability point for both strong
and weak scalability under a defined efficiency.

In this sense, we have introcuded the concept of supertile
(ST). An ST is a unit which integrates a set of tiles where
these tiles are divided in two types internal and edge. The
main idea of these STs is to create a structure, which is as-
signed one per core. These STs manage the communication
heterogeneity and also eliminate communication wasting
time of parallel execution. This method takes advantage of
the communication time assigning more computation tiles
and hiding the communication effects. The division of STs
among internal and edge allow us to apply an overlapping
technique, where is overlapped the internal computation time
while the edge communication is performed. The ST size
is calculated considering the slowest communication path,
allowing us to manage the communication between all links
in the hierarchical communication architecture.

Then, this method is divided in two direction: the first
one is to obtain the problem size and determine the ideal
number of core which allow us to find the maximum strong
scalability point under a defined efficiency threshold and the
second direction is based on increasing the problem size
according to the ST size allowing us to obtain a linear weak
scalability. Both uses of the ST and the advantages obtained
will be demonstrated in the experimental evaluation.

Finally, this paper is structured as follow: the related
works are described in section 2. Section 3 presents of
the hierarchical communication architecture and the perfor-
mance effects over SPMD applications. Section 4 exposes
the method for improving the application scalability and
section 5 illustrates the performance evaluation. Section 6
draw the main conclusions and future works.

2. Related Works
Improving the performance of applications on multicore

clusters has been widely studied. One method was developed
by Liedbrock [6] which defines a manner to calculate a
performance model of hybrid applications. This method was
based on studying the scalability and fidelity of application

on a specific multicore cluster. Another method for placed
efficiently MPI process was designed by Mercier et al [7]
where they studied how to establish an adequate placement
policy for improving the performance. Another method was
developed by Vikram [8]. This method seeks to improve
the performance on multicore using mapping and scheduling
strategies, using the management of communication links.
On the other hand, our method attempts to enhance the
performance of SPMD application on multicore through the
combination of scalability and efficiency. The goal is to
obtain the maximum speedup under a defined efficiency.

However, developing strategies for improving perfor-
mance on heterogeneous communications environments is a
challenge as was demonstrated by Oliver [9]. In this sense,
there are works that are focused on proposing solution for
managing the internal communication of the multicore node
[10][11]. In this sense, our methodology takes advantage of
the mapping scheduling and overlapping techniques in order
to to create a novel method which improves the efficiency,
speedup and scalability of the SPMD applications.

3. Heterogeneus Communication links
and their performance effects

One important problem of executing SPMD application
on Multicore is related to tiles have to exchange their infor-
mation each iteration with the aim of calculating values for
next iteration and this communication can create imbalaces
issues that affect the performance. Also, the different com-
munication patterns can vary according to the objective of
the SPMD applications. In some cases, the communications
can be executed in two, four, six, etc. bidirectional commu-
nications. These communications pattern are established at
the beginning of the SPMD application and are kept until
the application finishes.

Also, SPMD applications used to apply our method have
to be designed under the characteristics of static, local and
regular, where static, defines the communication pattern and
this cannot vary during the execution, local communication,
that determines the neighboring communication and it is
maintained in all the execution, regular, because commu-
nications are repeated for several iterations and finally n-
dimensional grid applications (however this characteristic
has been evaluated using applications until 3 dimension).
There are different kind of benchmarks and applications of
diverse fields that accomplish all these characteristics. One
example of benchmark can be detailed the NAS parallel
benchmark in the CG, BT, MG, SP [12], all these benchmark
have been designed for 2D and in some case for 3D grid
problem size. Also, there are examples of real applications
especially simulation problem such as fluid dynamics, heat
transfer, etc.

A real example of this phenomena can be detailed in figure
1, where is execute a (LL-2D-STD-MPI) application of the
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Fig. 1: Functions decomposition of LL-2D-STD-MPI.

mplabs suite over a juropa cluster 1 and results show the
impact of communications over the total execution. In this
case, for 64 core the impact of communication is around
of 12,42% of total execution. However, when we increase
the number of core to 256 for the same problem size the
communication is around 52,59%. This example illustrates
a clear impact of the communications on the application,
where more than a half of application is communicating and
hence the scalability and efficiency get worse.

Under this scenario, we can propose a method that allows
us to manage the communication using the Supertile (ST)
definition, where a ST is a structure composed by internal
and edge tiles with the aim of allowing us to compute the
edge tiles and then to overlap the edge communication with
the internal computation. The problem of finding the optimal
ST size is formulated as an analytical problem, in which
the ratio between computation and communication of the
tile has to be founded with the objective of determining
the ideal size that maintain a close relationship between
internal computation and edge communication. The ST size
is calculated with two objectives: the first is to find the
maximum strong scalability point under a define efficiency
and second is to increase the problem size according to the
ST size in order to maintain the execution time constant,
when we increase the number of cores(weak scalability).

4. Method for improving the application
scalability

This methodology is focused on managing the different
communication latencies which are presented on multicore
clusters due to the hierarchical communication architecture.
The main idea is to develop a method that allows us to hide
the communication effects that affect seriously the SPMD
application. This method is integrated by four phases: char-
acterization, tile distribution model, mapping and scheduling
and all these phases allow us to obtain an efficient and a
faster parallel execution [5].

1Cluster located in Julich Supercomputing center and it has 2248 com-
puting nodes with 8 cores each node (17984 cores

As a first approach this method was designed to find
the maximum speedup while the efficiency is maintained
over a defined threshold, however, this method calculates
the supertile size, which an import key for the scalability
analysis. In this sense, our method has been updated with
the aim of using the ideal number of cores and ST size that
permit us to accomplish the objectives stated before.

4.1 Characterization phase
This phase is focused on performing an application and

environment analysis with the aim of obtaining the appli-
cation parameters which are used to calculate the analytical
model. The main idea is to find a nearest relationship be-
tween the machine and the SPMD application. The parame-
ters are classified in three groups: the application parameters,
parallel environment and the defined efficiency.

The parameters determined allow us to establish the
communication and computational ratio time of a tile in-
side of the hierarchical communication architecture. This
relationship will be defined as λ(p)(w), where p determine
the link where the communication of one tile to another
neighboring tile has been performed and w describes the
direction of the communication processes (e.g. Up, right,
left or down in a four communications pattern). This ratio
is calculated with equation Eq. 1, where Commt(p)(w)
determines the time of communicating a tile for a specific
p link and the Cpt is the value of computing one tile on
a core. This characterization process has to be done in a
controlled and monitored manner.

λ(p)(w) = CommT (p)(w)/Cpt (1)

4.2 Tile distribution Model
The analytical model for predicting the strong and weak

scalability begins by considering the problem size and the
number of cores that execute the application. For this reason,
equation 2 represents an easy manner to calculate the ideal
number of cores, where is divided the problem size (defined
by Mn) by the ideal supertile size (Kn) 2, where n is the
application dimension(e.g 1,2,3, etc). In this case, we are
working on the strong scalability, where we define a problem
size fix and we increase the number of core [13][14].

Ncores =Mn/Kn (2)

Beside of the strong scalability, the equation 2 allows us
to determine the behaviour of the weak scalability, where
the number of cores and the problem size are expanded
[15][16]. This equation is used to calculate the problem
size Mn through the multiplication of the Ncores by the
supertile size Kn. However, to calculate both scalabilty
we have to know the value of K, which depends on the
overlapping strategy. In this sense, the equation 3 represents

2The supertile consist in a structure designed to allows us to overlap and
hide the communication effects
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the execution of an SPMD application using the overlapping
strategy, where is first calculated the edge tile computation
time EdgeComp(i) and then we add the maximum value
between internal tile computation IntComp(i) and edge
tile communication EdgeComm(i). This process will be
repeated for a set of iteration iter. A first approach of this
model can be found in [17]. However, the previos model
was defined only for a specific number of dimension, and
in this case we have defined for a n dimesnsional SPMD
application and for studying strong and weak scalability.

Texe(i) =
∑f

i=1EdgComp(i) +Max

(
IntComp(i)
EdgeComm(i)

)
(3)

EdgComp(i) = (Kn − (K − 2)n (4)

IntComp(i) = (K − 2)n (5)

EdgeComm(i) = K(n− 1) ∗Max(CommT(p)(w) (6)

From the foregoing, the next step is to find the value of K
considering the overlapping strategy between intenal compu-
tation and edge communication. The equation 7 shows how
both values(internal computation and edge communication)
can be equalized with the aim of finding the value of K.
However, the edge communications are in function of the
CommT . For this reason, we need to equalize the equation
in function of Cpt. This is achieved using the equation 1.
Having both internal computation and edge communication
in function of Cpt, the next step is to find the value of
K, replacing all the values in equation 7. Depending on
the dimension of the SPMD application, we can obtain for
example an cuadratic equation, cubic equation, etc.

K(n−1) ∗max(λ(p)(w) ∗ Cpt) = ((K − 2)n/effic) ∗ Cpt
(7)

4.3 Mapping phase
The main purpose of this phase is to apply a distribution

of ST in the execution core. The ST assignations are made
applying a core affinity which allows us to allocate the
set of tiles according to the policy of minimizing the
communications latencies (cite). This core affinity permits
us to identify where the processes have to be allocated and
how the ST have to be assigned to each core. However,
the ST assignations should maintain the initial considered
allocation used in the characterization phase.

This phase is divided in three key points. The first
point performs a logical processes distribution of the MPI
processes. The second function is to apply the core affinity,
and the last one is the division and distribution of the STs.
The mapping has to divide the tiles in order to create the ST
considering the value of K obtained by the analytical model.
It’s important to understand that an incorrect distribution of
the tiles can generate different application behaviors.

4.4 Scheduling phase
The main function is to assign a execution priority assign-

ment to each tile with the aim of applying the overlapping
strategy. This process establishes the highest priorities for
tiles which have communications through slower paths and
slower priority to internal tiles. This phase peforms an
overlapping strategy, which is the main key of our method.

5. Performance Evaluation
In order to evaluate the maximum strong scalability under

a defined efficiency and how the problem size and the
number of cores (weak scalability) have to be increased
with the aim of maintaining an execution time constant,
we have used different multicore clusters composed by 16-
17664 cores. However, this article has been validated using
a large scale system which is setup with 2208 nodes with 2
intel Xeon X5570 nehalem-EP quad core processor (17664
cores), 24 GB of ram memory by node, 8 MB of l2 cache
and infiniband interconnection network. This clustes is called
JUROPA and it is located in the julich supercomputing
center. Also, this methodology has been validated with
different set of benchmarks and applications, but in this
case we have used two examples of application of fluid
dynamics integrated in the MPlab suite (LL-2D-STD-MPI
and ZSC-2D-STD-MPI). Both versions are two dimensional
problems and they accomplish the characteristics defined of
local, regular and static.

The first application LL-2D-STD-MPI is integrated by
3 main modules: prestream, stream and poststream. The
prestream and poststream are computation functions, where
there are not any communication, while the stream function
integrates the communication exchanging process between
neighboring tiles. An example of this decomposition is
illustrated in figure 2, where we can observe the impact
of each function and the effect over the execution time.
This example shows the relationship for a defined problem
size of 2000x2000 using 1000 iterations (size that will be
used for both applications). As can be detailed, the functions
prestream and poststream maintain the same proportion of
the execution time, while the stream begin to increase, when
the number of core increases and the communication starts
to introduce a strong impact over the execution (this was
illustrated in figured 1). The communication in this case is
around 53% of the total execution time for a 256 cores.

Another example is illustrated in figure 3, where is an-
alyzed the ZSC-2D-STD-MPI application which integrates
two exchanging functions called collision and stream. Both
functions increase the inefficiency, while the number of cores
is increased due to the communications. In this case, the
impact of communication is increased while the number
of cores is expanded (Fig. 3), where half of the time, the
application is communicating when execute with 256 cores.

This scenario allows us to apply our method with the
aim of improving the performance for both strong and weak
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Fig. 2: LL-2D-STD-MPI application behavior.

Table 1: Tile distribution model and Supertile Calculation
Application Problem Size Effic ST size N Cores

LL-2D-STD-MPI 7200 90% 318 513
ZSC-2D-STD-MPI 7015 95% 155 2048

scalability. The first step is to characterize the application
and the environment with the objective of finding the com-
munication and computation ratio. In this sense, the tables
included in figure 4 shows the ratio obtained using all the
communication links in the juropa cluster and for both
applications. Also, figures 2 and 3 illustrates the latency
values, which can vary according to the communication
level and also, they allow us to determine the slowest
communication path.

The next step is to determine the ideal value of the ST,
which will be used to both strong and weak scalability
analysis. In this sense, we have defined the problem size
and the desired efficiency, which we wish to apply our
method. Using both problem size and efficiency together
to the characterization values, we can calculate the ideal
supertile which maintains the maximum strong scalability
under a defined efficiency. These values can be detailed in
table 1 and are calculated using the equations 2 and 7.

The first validation is related to the objective of deter-
mining the ideal number of cores that are needed in order
to obtain a linear scalability using a constant problem size
(strong scalability), while the efficiency is maintained over
a defined threshold. This number of cores has been shown

Fig. 3: ZSC-2D-STD-MPI application behavior.

[(LL-2D-STD-MPI)]

[(ZSC-2D-STD-MPI)]

Fig. 4: Communication and computation characterization

in table 1. Using these values, we have analyzed the scala-
bility and efficiency of both applications. These have been
performed evaluating the speedup and efficiency parameters
using and not using our method with the aim of evaluating
the improvements obtained using our method. Also, we
calculated the theoretical behavior of applications according
to the overlapping strategy between internal computation and
the edge communication defined in our method.

In this sense, the figure 5 shows the behavior of speedup
and efficiency of LL-2D-STD-MPI application, where the
theoretical values calculated using our model have a similar
growth until the ideal number of cores calculated for a
defined problem size. Likewise, the application using the
methodology has a close behavior than the theoretical with
a small error rate around +/- 5% until the ideal number of
cores and ST calculated in table 1. From that point, the
error begins to increase motivated to the communication
congestions. In this case, the edge communication times
are greater than the internal computation and therefore, the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 805



efficiency is seriously affected. Also, as can be illustrated
in figure 5, the application without using our methodology
begins to decrease considerably from 256 cores because the
communication are not managed and they generated delays
between each iteration that affect the scalability.

When we analyses both performance metrics with the
objective of determining the maximum strong scalability
under a defined efficiency, we can see in the table inside the
figure 5, that speedup grows in both version. However, the
efficiency has been defined in a threshold of 90% and this
condition is nearly accomplished in the 512 cores for the
application using our method. The efficiency and speedup
improvements between the version using our method and
not using our method are around 18%. This value is found
when we divide the (speedup or efficiency) obtained using
our method between the (speedup or efficiency) achieved
without applying our method.

In similar manner, the figure 6 illustrates the behavior
of ZSC-2D-STD-MPI application. the version using our
method is above the threshold of efficiency until the number
of cores ideal calculated with the model (Table 1). Otherwise
is presented in the version that not use our method where
efficiency is bellow the threshold from 64 cores. In this
example, the error rate between the theoretical value and
the value obtained using the version with our method is
around 3,5 %. Also, the efficiency and speedup of the version
without applying our method starts to decrease considerably
from 1024 cores, while the version using our method begins
to decrease from 4096 cores. In addition, can be detailed
in figure 6 that speedup increases until 4096 core for both
cases but the efficiency constraints defines the ideal number
of cores that has to be used in order to find the maximum

Fig. 5: LL-2D-STD-MPI strong scalability analysis.

Fig. 6: ZSC-2D-STD-MPI strong scalability analysis.

strong scalability under a defined efficiency.
As demonstrated in this first validation, the maximum

strong scalability under a defined efficiency is found near to
the value calculated with our method. Our method calculates
the ST and from this ST size estimates the ideal number of
cores need to achieve the combination of both metrics.

On the other hand, the next validation is focused on
demonstrating how to maintain an isoefficiency system,
where we can increase the number of processing elements
(cores) and problem size while the execution time is main-
tained approximately constant (weak scalability). In this
sense, we start of the ST definition and we increase the
problem size using as a reference the supertile size and the
number of cores. In a similar manner, we have considered the
initial value for the LL-2D-STD-MPI application (table 1).
In this case, the ideal value of the supertile is 318 squared.
Therefore, if we wish to obtain a constant execution time
when we increase the number of cores and the problem size,
we have to create the same amount of ST that execution
cores in order to assign one ST per core and also, each ST
has maintain the same size calculated through the model with
the aim of maintaining the overlapping strategy and thus, we
can maintain the performance of the system.

Then, the figure 7 shows an example of increasing the
problem size and the number of cores proportionally to the
ST size and the results illustrate how the execution time is
approximately maintained with a small error for the worst
case of 5%. This clearly is demonstrated with the values
of table inside figure 7 where the problem size is increased
and the execution time is approximately constant and the
application efficiency is maintained around the threshold
value. In this case the efficiency ranges between (+/-) 4% of
the efficiency threshold defined, these values depend on the
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Fig. 7: LL-2D-STD-MPI weak scalability analysis.

number of cores and the problem size used.
This last analysis allows us to validate that our method

can maintain an execution time constant while the ST is
maintained. This phenomenon is motivated that the ST is
created under the consideration of the overlapping strategy
and the main objective of this strategy is to hide the effects
of communications and therefore increases the performance
of the application. This method is possible to be applied due
to the deterministic behavior of the SPMD applications.

6. Conclusion and Future works
This work has described an efficient method to improve

the strong and weak scalability under a defined efficiency
of SPMD applications executed on multicore clusters. In
this sense, we have used a methodology which defines four
execution phases (characterization, tile distribution model,
mapping and scheduling) and allows us to determine the
ideal number of cores and the supertile size need to maintain
a relationship between efficiency and speedup. The examples
described in the performance evaluation have demonstrated
that using the supertile size and the number of core obtained
through the analytical model, we can obtain the maximum
strong scalability point with a small error which can vary
between (+/-4%) depending of the SPMD application tested
and the multicore system used.

Moreover, the weak scalability analysis has demonstrated
that if we increase the problem size according to the relation-
ship of the supertile size, we can maintain the efficiency and
speedup conditions. In this sense, the weak scalability allows
us to determine the ideal problem size for a specific number
of cores, that is, our method seeks that the application can

be adapted as best possible to the parallel environment with
the aim of obtaining a linear scalability. Hence, maintaining
the condition of the overlapping between the edge commu-
nication and internal computation of the ST, we can obtain
an execution with a small error, as was evidenced in the
experimentation. The future work is focused on applying our
method in hybrid parallel execution (Multicore and GPU),
where another communication level is included.
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Performance Comparison Between Cg-based and CUDA-based
Matrix Multiplications
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Abstract— In this paper, we compare the performances of
Cg-based and CUDA-based GPU programming APIs. In
particular, their performances on squared matrix multipli-
cations are considered. We also discuss other aspects of
these widely-used GPU programming APIs. This work can
help gain insight on various applications that involve matrix
multiplication that are better suited for a specific GPU
programming API.

Keywords: GPU Computing, Cg Programming, CUDA Program-
ming, Matrix Multiplication

1. Introduction
While microprocessors based on a single CPU drove rapid

performance increases and cost savings in computing appli-
cations for many decades, programmable graphics process-
ing units (GPUs), driven by the insatiable market demand
for real time and high-definition 3D graphics, have been
the primary high performance parallel computing tool in
recent years; GPUs have become extremely powerful parallel
computing units with multi-threaded many-core processors
that can process not only graphical operations, but also other
general-purpose operations.

Utilization of such GPUs has been considered in many
research areas. For instance, there have been many attempts
to apply GPU-based processing in visualization. Some of
these studies involved the development of fast and accurate
rendering algorithms using volumetric datasets (e.g., [16],
[15]). GPU-based processing has also been applied to com-
puter vision (e.g., [6]). Scientific simulation is another area
where GPU processing is often considered (e.g., [14], [12]).
Many of these research efforts and applications benefit from
exploiting data parallelism on GPUs.

In this paper, we compare the performance of two widely-
used GPU programming models–Cg (C for graphics) [8]
and CUDA (Compute Unified Device Architecture) [9]– for
squared matrix multiplication. (Other GPU programming
models include OpenGL Shading Language (GLSL) and
High Level Shading Language (HLSL) for DirectX.) This
work can help gain insight on various applications involving
matrix multiplications that are better suited for a specific

†Corresponding Author, Email: lukew@bgsu.edu

GPU programming API. We are unaware of any prior reports
on Cg and CUDA performance comparison.

Next, some background information on Cg and CUDA is
discussed.

Since 2002, the arrival of the fourth and current gener-
ation of GPUs, GPUs supported programmable vertex and
fragment shaders. GPU shaders denote the GPU’s streaming
processing units that perform predefined graphical opera-
tions, as well as user-defined operations (including non-
graphical operations), in parallel without directly exposing
their parallel processing operations to the programmer. When
utilizing GPUs for general-purpose applications, tasks that
are typically processed on a CPU can be mapped to a GPU
and processed along the GPU pipeline. A GPU pipeline is
the sequence of graphical processing stages that operate in
parallel and in a fixed order on a GPU. A typical GPU
pipeline is shown in Figure 1 (i.e., the five GPU stages
are inside the red box). Here, we note that in applications
employing programmable GPUs, fragment shaders are typi-

Application (CPU)

Rasterization

Primitive assembly

GPU

Raster operation

(Programmable vertex shaders)
Vertex transformation

(Programmable fragment shaders)
Fragment texturing and coloring

Fig. 1: GPU Pipeline (adapted from [3], [8]) considered for
Cg API
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cally relied upon more heavily than vertex shaders. One main
reason is that there are more fragment shaders than vertex
shaders on a typical programmable GPU. In addition, the
memory access on fragment shaders is more straightforward
than it is on vertex shaders. (For example, the outputs of the
vertex shader must pass through all the other pipeline stages
before accessing the memory [11]; thus, direct memory
access is not straightforward on the vertex shaders.)

Cg is one widely-used GPU programming API that en-
ables programming of the type of GPU discussed above. It
is a modified version of the C programming language that
includes some new data types that create a more suitable
programming environment when utilizing GPUs through
the GPU pipeline. Here, we note that some of the later
programmable GPUs (e.g., Nvidia GeForce 8 Series and
later) have an additional programmable logic unit known
as the geometry shader. Geometry shaders are used after
the vertex transformation stage and before the primitive
assembly stage in the GPU pipeline. This enables generation
and elimination of geometry primitives on the fly on the
GPUs. However, since the Nvidia GeForce 8 Series GPUs,
the concept of shaders has evolved into multi-threaded,
unified GPU processors.

While many computing applications have used Cg in GPU
computing, this trend changed when CUDA [9] was released
in 2007. CUDA provides a new general-purpose parallel
programming interface for the GeForce 8 Series (G80) and
its successor GPUs. In particular, CUDA-based programs
no longer run through the GPU pipeline (i.e., there is no
need to perform general-purpose computations within the
graphics pipeline); thus, programmers do not need to learn
the graphics pipeline to utilize GPUs in their applications.

Figure 2 (a) shows a CUDA-enabled GPU architecture.
As shown in the figure, it is organized into an array
of highly threaded streaming multiprocessors (represented
by the green cells). CUDA-based programs utilize these
multiprocessors to exploit data parallelism for extremely
high parallel computing performance. In particular, these
multiprocessors available on GPU can create and exe-
cute thousands of threads simultaneously. For example, the
GeForce 200 series GPU can support up to 1024 threads
per processor, which sums up to about 30,000 threads in
total. We note that CUDA-enabled GPUs also provide a very
high memory bandwidth (e.g., G80 supports 86.4 GB/s of
memory bandwidth). One key advantage of CUDA over Cg
is its ability to use GPU’s shared memory for much faster
data access. (Modern GPUs have a large amount of global
memory and a relatively small amount of shared memory.
The global memory is slow whereas the shared memory is
fast.) In Figure 2 (b), the latest CUDA compute architecture,
the FERMI [10], is shown. FERMI architecture provides
not only an increased number of multiprocessors, but also
improved performance for double precision computations,
true cache hierarchy, more shared memory, faster context

(a)

(b)

Fig. 2: CUDA Architectures: (a) CUDA-enabled GPU Ar-
chitecture (G80 GPUs, borrowed from [5]) and (b) Latest
CUDA Compute Architecture (FERMI, borrowed from [10])

switching, and faster atomic operations.

2. Related Work
Next, some prior work in matrix multiplication is briefly

discussed.
The complexity of the standard matrix multiplication

using three nested loops is O(n3). Strassen [1] first reported
that the standard matrix multiplication was not the optimal
solution. The report presented another way to perform ma-
trix multiplication (i.e., the Strassen’s algorithm [1]) that
recursively partitioned the matrices into smaller blocks and
then performed multiplications. This recursive algorithm’s
complexity is O(n2.81). Another fast matrix multiplication
algorithm is the block matrix multiplication algorithm [13]
which utilizes memory coherency in matrix multiplication.

There have also been GPU-based matrix multiplication
studies. Some of these were based on Cg (e.g., [4], [2]) and
some recent studies were based on CUDA (e.g., [17], [7]).
However, to our knowledge, there has not been any report
that presented a performance comparison of Cg-based and
CUDA-based matrix multiplication.
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Fig. 3: Illustration of Two 4× 4 Cg-based Matrix Multiplication

3. GPU-based Matrix Multiplication
In this section, the Cg-based and CUDA-based squared

matrix multiplications used in this paper are described.
Our Cg-based matrix multiplication utilizes the fragment

shaders by using textures on GPUs. (A texture on the GPU
can be considered similar to an array on the CPU [11].)
Specifically, each matrix on the CPU is mapped to a GPU
texture. Then, using a simple querying of texture elements,
the Cg program iteratively performs the matrix multiplica-
tion. In particular, each iteration takes one set of matrix
elements from each of the two input matrices, computes
the product of the values, and stores the result. Figure 3
illustrates this iterative process of matrix multiplication for
two 4 × 4 matrices. In the figure, the elements of both
input matrices (i.e., A and B) are denoted as AXY and
BXY , where X and Y denote the column and row in-
dices, respectively. In the Cg program, the multiplication
operations are performed in the order of blue, orange, green,
and red element multiplications in each iteration. The GPU’s
fragment shaders perform the multiplications in parallel. The
Cg-based code is shown in Figure 4.

The CUDA-based matrix multiplication we consider here
is based on the CUDA-based matrix multiplication in [5].
Similar to Cg-based matrix multiplication, input matrices are
mapped to the GPU’s memory. Then, each thread (among
thousands GPU threads) computes one element in the prod-

void _cg_mat_mul( in float2 coords: WPOS,
uniform samplerRECT texA,
uniform samplerRECT texB,
uniform float mSize,
out float matC : COLOR0 )

{
float matA, matB;
float2 ACoords, BCoords;

for(float i=0; i<mSize; i++)
{

ACoords = float2(i+0.5, coords.y);
matA = texRECT(texA, ACoords);

BCoords = float2(coords.x, i+0.5);
matB = texRECT(texB, BCoords);

matC = matC + matA*matB;
}

}

Fig. 4: Cg-based Matrix Multiplication Code

uct matrix. For very large matrices, the tiling is employed.
Tiling divides the matrices into smaller sub-matrices and
performs the matrix multiplication. In addition, for faster
memory referencing, the GPU’s shared memory is also used.

4. Experimental Results
We compared the processing times of the Cg-based and

CUDA-based squared matrix multiplications using six dif-
ferent matrix sizes (i.e., 2562, 5122, 10242, 20482, 40962,
and 81922) on two different PCs (running Linux) that have
different GPUs. Trimmed average timings were used for
matrix multiplication processing time measurements.

The first (Type 1) PC has a 2.8 GHz Intel Core i7 CPU
with 12 GB of RAM and dual 1.8 GB Nvidia GeForce GTX
285 GPUs. The GTX 285 GPU has 240 CUDA processors
and supports a memory bandwidth of 159 GB per second.
The second (Type 2) PC has a 3.4 GHz Intel Core i7 CPU
with 16 GB of RAM and one 1.5 GB Nvidia GeForce GTX
480 GPU. The GTX 480 GPU has 480 CUDA processors
and supports a memory bandwidth of 177.4 GB per second.
We note that only GTX 480 GPU is a FERMI GPU.

Table 1 shows the processing times of CPU-based, Cg-
based, and CUDA-based squared matrix multiplications on
Type 1 PC (with dual GeForce GTX 285 GPUs). Here, the
block matrix multiplication algorithm [13] was used for the
CPU-based matrix multiplication. As shown in the table, the
Cg-based and CUDA-based matrix multiplications executed
much faster than the CPU-based version. In addition, the
CUDA-based version was faster than the Cg-based version.

In Table 2, the GPU-based matrix multiplications on Type
2 PC (with a Geforce GTX 480 GPU). As shown in the table,
the CUDA-based version executed faster than the Cg-based
version.

Figure 5 summarizes our performance comparisons. In
Figure 5 (a), the speedups of the Cg-based and CUDA-
based matrix multiplications over the CPU-based matrix
multiplication is shown. As shown in the table, while the Cg-
based version was about 10 times faster for the 2562 case and
about 340 times faster for the 81922 case, the performance
of CUDA-based version was better (e.g., 100 times faster for
the 2562 case and about 500 times faster for the 81922 case).
In Figure 5 (b), the performance comparisons of Cg and
CUDA (i.e., Cg processing times over CUDA programming
times) on two different GPUs are shown. As shown in
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Table 1: Processing Times (in seconds) on Type 1 PC (dual
GTX 285 GPUs): CPU-based, Cg-based, and CUDA-based
Squared Matrix Multiplications

Matrix Size CPU Cg CUDA
2562 0.03 0.003 0.0003
5122 0.31 0.015 0.002
10242 3.19 0.094 0.015
20482 25.56 0.668 0.129
40962 205.5 5.182 1.032
81922 4146.4 12.103 8.276

Table 2: Processing Times (in seconds) on Type 2 PC (GTX
480 GPU): Cg-based and CUDA-based Squared Matrix
Multiplications

Matrix Size Cg CUDA
2562 0.004 0.0002
5122 0.013 0.001
10242 0.065 0.009
20482 0.448 0.073
40962 3.397 0.582
81922 9.334 4.852

the table, the CUDA-based version executed faster than the
Cg-based version on both GPUs. Specifically, the CUDA-
based version was about 10.0, 7.5, 6.3, 5.2, 5.0, and 1.5
times faster using the GTX 285 GPUs and about 20.0, 13.0,
7.2, 6.1, 5.8, and 1.9 times faster on the GTX 480 GPU,
for 2562, 5122, 10242, 20482, 40962, and 81922 matrix
multiplications, respectively. Use of the shared memory in
CUDA-based version was one of the key factors for this
better performance.

5. Conclusion and Discussion
In this paper, we considered two of the most widely-used

GPU computing APIs (i.e., Cg and CUDA) and compared
their performances for squared matrix multiplication. To
our knowledge, this work is the first report to compare
the Cg and CUDA performance. A simple Cg-based matrix
multiplication code is also presented.

For the matrix multiplications, while both Cg and CUDA
outperformed the CPU-based processing, CUDA-based was
1.5–20.0 times faster than Cg-based version. The relative
CUDA performance was better for smaller matrix sizes than
for the large matrix sizes. For example, the CUDA-based
version was 10–20 times faster for 2562 matrices while it
was only 1.5–1.9 times faster for 81922 matrices. Here, we
note again that the CUDA-based version utilized the GPU’s
shared memory. CUDA-based version without using the
shared memory was about 3.5–6.6 times slower than CUDA-
based version with the shared memory. For large matrix sizes

(a)

(b)

Fig. 5: Performance Comparisons: (a) Speedups of GPU-
based versions (vs. CPU-based version) and (b) Cg
and CUDA Performance Comparisons (Cg processing
time/CUDA processing time) on Type 1 PC (dual GTX 285
GPUs) and on Type 2 PC (GTX 480 GPU)

(e.g., 40962 and 81922), the CUDA-based version without
using shared memory was even slower than the Cg-based
version. Shared memory usage is not supported in Cg-based
programs.

For the programmers who are familiar with the GPU
pipeline, the Cg API is easy to understand. For matrix
multiplication, Cg-based code was shorter than that of the
CUDA-based code. Here, we note that using Cg-based
matrix multiplication for very large matrices, tiling is also
needed since there is a limit on the GPU texture size on
GPUs. For programmers who are not familiar with the GPU
pipeline, it is difficult to write Cg programs. Programmers
with some parallel processing experience find it easier to
write high performance programs using the CUDA API than
the Cg API.

We have also found that debugging is much easier using
the CUDA-based API. There is no debugging tool sup-
port provided for the Cg API. The programmers have to
transfer values through the GPU pipeline to the CPU, then
display and check the values manually using Cg API. For
the CUDA-based API, the programs can be executed in
device emulation mode. In this mode, threads are executed
sequentially on the CPU and other debugging tools (e.g.,
break points) are also supported.

These different aspects of Cg and CUDA APIs reported
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in this paper can assist scientists in choosing which GPU
programming API to use for their high performance appli-
cations.
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Abstract - Multi-core platforms become ubiquitous nowadays. 

Even laptops contain multi-core processors now. There are 

multiple cores in a chip or socket or die. A computing node 

contains multiple chips. Multi-core platforms are rapidly 

increasing and the number of cores on these platforms is 

increasing rapidly too. How to enjoy the benefits of parallel 

computing on the multi-core platforms plays a key role in 

High Performance Computing. With the increasing complexity 

of modern multi-core processors, the problem of distributing a 

software application across different cores to maximize the 

utilization of the computing power becomes more and more 

difficult. Different programming patterns great influence the 

program performance. We implement different parallel 

programming paradigms on Himeno Benchmark via hybrid 

MPI/OpenMP in this paper. Moreover, we will evaluate the 

performance of those on NCHC GPU Cluster and NCHC 

ALPS. We establish a Roofline Model for NVIDIA GT200, too. 

We hope the results can give some useful information to the 

user of HPC. 

Keywords: Performance Evaluation, Parallel Programming, 

MPI, OpenMP 

 

1 Introduction 

  Multi-core platforms become ubiquitous nowadays. 

Even laptops contain multi-core processors now. There are 

multiple cores in a chip or socket or die. A computing node 

contains multiple chips. For example, Intel X5472 consists of 

dual die quad-core CPUs manufactured on a 45 nm process. 

Multi-core platforms are rapidly increasing and the number of 

cores on these platforms. Moreover, many users of High 

Performance Computing, HPC, adopt the multi-core 

platforms. How to enjoy the benefits of parallel computing on 

the multi-core platforms plays a key role in HPC. 

 With the increasing complexity of modern multi-core 

processors, the problem of distributing a software application 

across different cores to maximize the utilization of the 

computing power becomes more and more difficult. Different 

programming patterns big influence the program performance. 

Two common programming patterns of parallel program are 

Message Passing Interface [1], MPI, and OpenMP [2]. MPI 

had widely used to parallel program on traditional parallel 

platforms and PC Cluster since 1994. Scientists have obtained 

a great help on MPI programming pattern in the last few 

decades. Even it enters multi-core platforms ear. Naturally it 

is in the wake of overheads, such as message passing inside a 

node and duplicate memory location. 

 OpenMP programming pattern is implemented for high 

efficient computing on Symmetrical multiprocessor system, 

especially on a multi-core platform. It adopts a fork-and-join 

execution model, that is, it is thread level parallelism. The 

behavior of compute is in system bus level and threads are 

able to share a memory space, but it is limited by scale. The 

version 2.5 of standard was released in 2005. Most of the 

compilers (Fortran or C or C++) support the functions of 

“directive”, runtime libraries, and environment variables. 

Moreover, the version 3.0 of standard, which contains “task” 

parallelism implementations, was released in May 2008. 

 We intuitively think the hybrid MPI/OpenMP 

computing that MPI mainly handles inter message passing, 

while OpenMP focus on intra computing. But it inherits 

diverse hardware characteristics, such as the number of multi 

cores in a die, the number of die in a node, the bandwidth of 

memory and system bus, how many cores shared resources, 

and so on. In general, there are two hybrid programming 

paradigms on multi-core platforms. One is like this model, 

while the other model is that one adopts a “Parallel Region” 

directive of OpenMP and master thread to handle the message 

passing. 

 We adopt Himeno Benchmark [3], which performs 

computations of 19-points stencil, to evaluate the 

performance on different programming patterns of parallel 

program on NCHC (National Center for High-Performance 

Computing) platforms, “GPU Cluster”, which contains 16 of 

Intel X5472, and NCHC ALPS hereafter. [4] depicts that the 

“Stencil” computation, such as Himeno Benchmark, is limited 

by the bandwidth of memory based on Roofline Model. It is 

conceivably improved the performance of parallel programs 

based on Thread Level Parallelization only. 

 Firstly, we evaluate the performance of Himeno 

Benchmark on 8 cores in a node on GPU Cluster on different 

compilers. We implement the hybrid MPI/OpenMP 

programming patterns on Himeno Benchmark and come out 

these results on hybrid mode and pure MPI mode on different 

mapping patterns of 8 nodes (64 Cores) of GPU Cluster. We 

will present the results of Himeno Benchmark and High 

Performance Linpack, HPL[5], for CPU binding on NCHC 

ALPS. We also illustrate the Roofline model on NVIDIA 

GT200. We hope the results can give some useful information 

to the user of HPC. 
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2 Test beds and software 

 We adopt two test beds, NCHC GPU cluster built in 

2010 and upgraded in 2011 and NCHC ALPS built in 2011. 

We implement MPI/OpenMP hybrid for Himeno Benchmark 

and evaluate the performance on both platforms. HPL is 

employed for CPU binding on NCHC ALPS. 

2.1 NCHC GPU Cluster 

 GPU Cluster contains 16 of Intel X5472, which consists 

of dual die quad-core CPUs manufactured on a 45 nm process. 

The motherboard adopts Tempest i5400XT (S5396) and Intel 

5400 Chipset as shown in Figure 1. Figure 2 shows the logic 

picture, system bus and bandwidth of memory. 

 

 
Figure 1. Motherboard of GPU Cluster 

 

 
Figure 2. Intel 5400 Chipset 

 

 A computing node contains 32 GB RAM and a DDR 

Infiniband connected together. We adopt OpenSuSE 11.0 as 

Operation System, OS, different compilers, its version and its 

compiler option as Intel 11.0 (ifort -openmp –O3 -

fast), PGI 9.0 (pgfortran –mp –O3 -fast), and 

GNU 4.3.2 (gfortran –fopenmp –O3), and MPI 

middleware as OpenMPI 1.2.8. 

2.2 NCHC ALPS 

 The hardware of computing nodes on NCHC ALPS 

consists of 600 of Acer AR585 as shown in Figure 3. They 

are connected together with Qlogic InfiniBand in 4x QDR 

(40Gb) and the bandwidth throughput of this system achieves 

51.8 Tbps. In logic point of view, the system comprises 8 

computing clusters, which consists of 4 of AMD Opteron 

6174 inside 12 cores running at 2.2 GHz, that is, 48 cores a 

node sharing 128 GB RAM in 4-memory-controller non-

uniform memory access architecture, and 1 large memory 

cluster that includes 4 of AMD 6136, which comprises 8 core 

running at 2.2 GHz, that is, 32 cores a node sharing 256GB 

RAM. There are 25,600 computing cores of AMD Opteron 

6100 in this system and the maximal Linpack achieves at 177 

TFlops and at 42th place in Top500 list in June 2011 [6]. 

 

 
Figure 3. The architecture of Acer AR585 

 

 This system adopts the Novell SuSe Linux Enterprise 11 

SP 1 for its operation system. The parallel file system is 

Lustre. Platform LSF is for job scheduler and queuing system. 

Message passing interface libraries are installed such as 

Platform MPI, OpenMPI, mvapich, and so on. The debug tool 

is Allinea DDT, Distribut Debugging Tool. There are four 

compilers in this system: Intel, PGI, Open64, and GNU. Intel 

MKL and AMD ACML, AMD Core Math Library, inherit 

this system for math libraries. 

 

2.3 Himeno Benchmark 

 To solve the pressure commonly adopts Poisson 

equation solver in computational fluid dynamic, such as 

incompressible Navier-Stokes equations solver. The Poisson 

equation is shown as Figure 4 and the kernel computing of 

Himeno Benchmark. Use central finite difference and Jacobi 

iteration. To calculate the value of a point requires reading 18 

points of neighbors, named it as “19-Points Stencil”. It 

performs 34 of floating-point operations and uses 14 of three-

dimensional matrices per iteration. The computational 

intensity achieves 0.6 Flop/Byte on a problem size of 

1024×512×512 in single precision compute (required around 

14GB) sequentially. 
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Poisson Equation:      

   

   
 
   

   
 
   

   
  

   

    
  

   

    
  

   

    
   

                         

   
 
                         

   

 
                         

   

  
                                           

     

  
                                           

     

  
                                           

     
        

Figure 4. Himeno Benchmark 

 

2.4 The High Performance Linpack, HPL 

 The High Performance Linpack[5], HPL, employs the 

LU decomposition to solve a dense N×N system of linear 

equation in a floating point workload of 2/3 N
3
+2N

2
. HPL 

utilizes LU factorization with row partial pivoting to solve a 

dense linear system while using a two-dimensional block-

cyclic data distribution for load balance and scalability. 

  

3 Methodology  
 

 We implement two hybrid models, which both models 

will be described in detail in next Section, for Himeno 

benchmark in Fortran 90 and evaluate the performance on 

NCHC GPU Cluster first. The results are performed for GPU 

version on NCHC GPU Cluster, too. Moreover, we establish 

a Roofline model for GT200. 

 Since NCHC ALPS inherits the non-uniform memory 

access, NUMA, and consists of 48 cores and 8 of NUMA 

servers as shown in Figure 5, we expect the limit of system 

bus and memory bandwidth. In order to get the best 

performance, we adopt the CPU binding for memory use 

efficiently. First we find the rank pattern via HPL and 

evaluate the performance. Next, we compare the performance 

of CPU binding with those for other models via Himeno 

benchmark. The performances of Himeno benchmark via 

different compilers are shown, too. 

 

 
Figure 5. Distance of NUMA server 

4 Results 

 We follow 95% confidence to evaluate the results and 

employ the ganglia and “top” command to monitor the status 

of the system for dedicated usage. 

4.1 NCHC GPU Cluster 
 

 We show that the performance of this program at 3.35 

GFlops, 2.85 GFlops, and 2.57 GFlops on 8 cores a node via 

Intel, PGI, and GNU, respectively. It is expectable. Intel 

compiler gets more benefit of intrinsic computation involving 

Streaming SIMD Extensions than the others. The 

performance score of Intel compiler slightly surmounts the 

peak performance of 3.20 GFlops. Commercial PGI compiler 

shows the performance based on standard computational 

pattern. The score is lower than the peak performance. The 

public GNU compiler obtains the worst performance in three 

compilers. 

 We implement two hybrid MPI/OpenMP parallel 

programming patterns: First Model (Hybrid Model 1) is that 

MPI handles inter message passing between nodes, while 

OpenMP handles intra computation between 8 cores a node. 

Its advantage is that the data and program flow are clear. That 

is, the program is able to be divided into some sub-program 

blocks, which many sub-program blocks perform heavy 

operation, while few sub-program blocks perform message 

passing between nodes. The downside is that all threads are 

idle on message passing. Amdahl’s law points that it big 

decreases the parallel performance! 

 The other model (Hybrid Model 2) is that one use a 

parallel region involves all operations and message passing, 

which master thread performs message passing between 

nodes. The race conditions become more and more. The 

program structure and data flow becomes complicated, too. 

That is, a programmer requires more human time to better 

performance. It is opportunity to get parallel efficiency in 

hidden overhead of message passing carefully. The first 

model shows 15.0 GFlops on 8 nodes with Intel compiler and 

OpenMPI 1.2.8, while the second model shows 22.50 GFlops. 

It is expectable that the last model presents better 

performance than those on the first model. We very surprise 

that different programming patterns can improve 7.5 Gflops! 

 Though MPI 2 has new features of communicator 

management and OpenMP 3.0 increases the task parallelism, 

we don’t unfortunately perform our overlap version between 

computation and massage passing 

(MPI_THREAD_MULTIPLE) on our test beds. We adopt 

MPI 1.2 standard and OpenMP 2.5 to implement our hybrid 

MPI/OpenMP parallel programming pattern as end-users. The 

second model of hybrid MPI/OpenMP parallel programming 

patterns with Intel compiler and OpenMPI 1.2.8 are evaluated 

on GPU Cluster. Therefore, MPI can perform diverse MPI 

task mapping, for example a node has 1×1×8, 1×8×1, 8×1×1, 

1×2×2, and so on. That is, the data decomposition is 1-

dimension in z- or y- or x-direction or 2-dimension in y- and 

z-direction. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 815



 Like MPI mapping, hybrid MPI/OpenMP parallel 

programming pattern contains large amount of combination 

of MPI and thread. We evaluate all mapping on combinations 

of MPI Processes and threads to get interest results. First of 

all, we define “1×2×4×8” as x-, y-, and z-directions of MPI 

Processes and the number of threads a MPI Process, that is, x-, 

y-, and z-directions use 1, 2, 4 MPI Process, respectively, and 

a MPI Process uses 8 threads. The special case “4×4×4×1” 

means pure MPI programming paradigm, because of a thread 

used a MPI process. Table 1 shows the partial (better) results 

in GFlops on 8 nodes (64 cores in total) on different 

programming paradigms. To our surprise, the pure MPI 

programming paradigm (4×4×4×1) outperforms! 

 This is because that the Intel compiler abundantly enjoys 

the benefit of the hardware, such as SSE intrinsic. Hybrid 

programming paradigm doesn’t have enough room for thread 

level parallel. Our experience via PGI compiler, pure MPI 

obtains 19.18 GFlops vs. Hybrid model achieves 20.99 

GFlops. Our opinion is confirmed. The other reason is 

hardware limitation, such as, obstruction of memory 

bandwidth. We adopt the Phillips’s results presented in 

Cluster 2009 conference to establish a Roofline Model for 

GT200 as shown in Fig. 5. The performance of CUDA 

version of Himeno Benchmark achieves at 767 GFlops! 

 

 
Figure 5. Roofline model on GT200 

 

4.2 NCHC ALPS 
 

 For our clear description, we define the notations, Intel, 

Op64, GNU, and PGI, in Table 1. The compiler option is 

“Ofast” for Op64 and GNU, while it is “fast” for Intel and 

PGI. 

 

Table 1. Notations 

Notation Compiler MPI 

Intel Intel 12.0 openMPI 1.4.3 

Op64 Open64 4.2.5 openMPI 1.4.4 

GNU gcc 4.6.2  openMPI 1.4.4 

PGI PGI 11.10 openMPI 1.4.4 

 

 We adopt N=1000 for HPL using two cores to obtain the 

best CPU bind mapping 0-3. We adopt the mapping for CPU 

bind model hereafter and use GNU compiler with AMD 

acml5.1.0 single thread. Table 2 shows the maximal Linpack 

in GFLOPS for different N=80000 vs. N=100000 with/out 

CPU bind on 48 core a node. CPU bind model outperforms. 

 

Table 2. Maximal Linpack in GFLOPS for different N 

with/out CPU bind 

N CPU bind Not CPU bind 

80000 286.7 278.0 

100000 287.9 274.7 

 

 Table 3 depicts the performance of Himeno benchmark 

in GFLOPS for different compilers for 1024 × 512 × 512 

problem size in 3 × 4 × 4 partition pattern with/out CPU bind 

on 48 cores a node. As we expected, CPU bind model 

outperforms. It is very interesting for CPU bind that PGI 

outperforms on NCHC ALPS, instead of Intel! It is different 

from those performed on NCHC GPU Cluster. When we do 

not use bind processor, Intel outperforms like those on NCHC 

GPU Cluster. It is because that PGI shows slightly better than 

Intel for memory affinity on NCHC ALPS. 

  

Table 3. Performance of Himeno benchmark in GFLOPS for 

different compilers for 1024×512×512 problem size in 3×4×4 

partition pattern with/out CPU bind 

Compiler CPU bind Not CPU bind 

PGI 36.69 17.02 

Intel 35.93 20.12 

Op64 31.77 16.22 

GNU 20.44 12.12 

  

 Table 4 depicts the performance of Himeno benchmark 

in GFLOPS for different partition patterns for 1024×512×512 

problem size with/out CPU bind on 48 cores a node. As we 

expected, CPU bind model outperforms, again. It is very 

interesting for CPU bind that the three-dimensional partition 

pattern, 4 × 4 × 3, cannot enjoy the benefits of parallel 

computing, while the two-dimensional partition pattern, 8×6×

1, outperforms. It is different from those on NCHC GPU 

cluster again. 

 

Table 4. Performance of Himeno benchmark in GFLOPS for 

different partition patterns for 1024×512×512 problem size in 

with/out CPU bind 

partition patterns CPU bind Not CPU bind 

48×1×1 26.08 9.25 

1×48×1 29.25 14.20 

1×1×48 27.82 11.53 

8×6×1 40.85 26.12 

6×8×1 40.24 26.15 

6×1×8 36.67 19.54 

3×4×4 36.69 17.02 

4×3×4 34.79 27.57 

4×4×3 40.09 22.30 

 

 Table 5 shows the performance of Himeno benchmark 

in GFLOPS for different processor binds for 1024×512×512 

problem size in 8×6×1 partition pattern on 48 cores a node. 
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Rank model, which we define the processor mapping by 

myself, outperforms. The model that binds each MPI process 

to a core show comparable results to those on Rank model. 

The other model, which it binds each MPI process to a 

processor socket, performs worse results. Every core 

performs around 60% of workload based on “top”. 

  

Table 5. Performance of Himeno benchmark in GFLOPS for 

different processor binds for 1024×512×512 problem size in 8

×6×1 partition pattern on 48 core a node 

partition patterns GFLOPS 

Rank model 40.85 

Bind each MPI process to a core 40.07 

Bind each MPI process to a processor 

socket 
14.75 

Not bind processes 26.12 

 

  

5 Conclusion 

 We implement two hybrid MPI/OpenMP models for 

Himeno Benchmark and evaluate the performance on NCHC 

GPU Cluster and NCHC ALPS. Intel compiler outperforms 

on NCHC GPU Cluster, while PGI compiler outperforms on 

NCHC ALPS for CPU bind! It is because that Intel compiler 

gets more benefit of intrinsic computation involving 

Streaming SIMD Extensions on Intel platform than PGI and 

GNU. Moreover, it does not have enough room for thread 

level parallel via hybrid MPI/OpenMP. Consequently, The 

pure MPI parallel programming paradigm on 4×4×4 partition 

pattern outperforms on NCHC GPU Cluster! 

 Himeno Benchmark and High performance linpack can 

enjoy the benefits of parallel computing for CPU binding on 

NCHC ALPS from our various evaluations. The two-

dimensional partition pattern, 8×6×1, with PGI compiler 

outperforms for Himeno Benchmark on NCHC ALPS. Our 

defined rank model outperforms for Himeno Benchmark and 

High performance linpack on NCHC ALPS. We establish a 

Roofline Model for GT200, too.  
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Abstract— In this paper we critically take a look at what
the 3rd generation Intel Core processor brings to high
performance computing. We compare four generations of
Intel CPU based systems and present a performance review
of these four platforms. We compare four families of Intel
CPU based systems utilizing a single socket platform across
a number of HPC benchmarks and micro-benchmark focused
on different performance criteria, compare the results and
discuss the implications for HPC.

Keywords: 3rd generation Intel Core i7-3770K processor; bench-
marking; multicore; performance evaluation.

1. Introduction
The 3rd generation Intel Core processor family (code-

name: Ivy Bridge) is tick product in the Intel‘s “tick-tock“
design methodology. This new CPU does not only represent
typical shrink to new 22 nm manufacture process but also
improve performance of the integrated graphic module as
well improving power-management capabilities.

The new graphic unit is completely redefined and provides
new level of experience and performance for video and
graphics applications. In this paper we will not focus on
graphics aspect of performance as we targeted the HPC
applications where floating-point performance is the main
criteria.

The 3rd generation Intel Core processor family is based
on the same micro-architecture philosophy as its predecessor.
This is the second generation of CPU products with AVX
support and second CPU with integrated graphics processor
unit (GPU) in a monolithic chip.

The first members of the 3rd generation Intel Core pro-
cessor family have been designated for mobile and desk-
top products and the server version of Ivy Bridge will
be introduced afterwards. Power consumption as well as
performance per watt characteristic was first design choices
for Ivy Bridge. The first priority was to reduce power. After
power savings, Intel design team focused more effort on
improving the graphics unit.

Although the first members of the 3rd generation Intel
Core processor family are focused on the desktop and
mobile markets some of the technology implemented is also
expected to be very applicable for the HPC segment.

This study compares 4 configurations of systems: one
based on the Intel Core 3rd generation processor second on
Intel Core 2nd generation processor family the third system
is based on Intel Core i7-970 Processor and the fourth one
Intel Core i7-870 Processor based system.

The present study uses High Performance Comput-
ing Challenge benchmarks, NAS Parallel Benchmarks and
micro-benchmark to measure performance at the subsystem
level.

To the best of our knowledge, this is first paper to conduct:
• Analytical and extensive performance evaluation and

characterization of a system based on the Intel Core
3rd generation processor, using HPCC and NPB suite.

• Complete comparison of Intel Core 3rd generation
processor based system with a system based on Intel
Core 2nd generation processor family and another sys-
tems based on Intel Core i7-970 Processor (codename:
Gulftown) and one Intel Core i7-870 Processor (code-
name: Lynnfield).

• Performance evaluation of Turbo Mode implemented in
the Intel Core 3rd generation processor.

To answer the research questions, we have organized the
paper in the following way. Section 2 presents architecture
and system configuration for all platforms and deeply de-
scribes the microarchitecture of Intel Core 3rd generation
processor. In section 3 we discuss system performance and
analyze results from running benchmarks. Section 4 contains
a summary and conclusions of the study.

2. Architecture and Configuration of the
Systems

In our study the 3rd generation Intel Core i7-3770K pro-
cessor is running on new Intel DX79SI desktop board based
on Intel X79 chipset with 8GB of system memory (4x2GB
DDR3-1600MHz) with Optimal memory configuration. The
2nd generation Intel Core i7-2600 processor based system
utilizes the Intel desktop board DP67BA with 8GB system
memory (4x2GB DDR3-1333MHz) populating all available
DIMM slots. The six cores based system utilizing Intel Core
i7-970 processor is based on Intel desktop board DX58SO
with 6GB system memory. This platform has 3 memory
channels and we utilized all 3 channels with 2GB (1 DIMM
2GB per channel, DDR3-1066MHz). The quad core system
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based on Intel Core i7-870 processor uses Intel desktop
board DP55WB with 8GB (4x2GB 2 DIMMs per channel
DDR3-1333MHz).

All platforms have deployed enterprise Intel SSD X25-
E hard disk drive. Operating system installed is in all the
platforms the same: RedHat Enterprise Linux 6 kernel ver.
2.6.32-71.el6.x86_64. In all platforms the new version of
the Intel software tool kit has also been installed. The Intel
Composer XE 2011 includes Intel Compiler 12.0.0.084 as
well as the Intel Math Kernel Library (MKL) 10.3. The new
compiler and libraries offer advanced vectorization support,
including support for Intel AVX and include Intel Parallel
Building Blocks (PBB), OpenMP, High-Performance Par-
allel Optimizer (HPO), Interprocedural Optimization (IPO)
and Profile-Guided Optimization (PGO). All performance
tools and libraries provide optimized parallel functions and
data processing routines for high-performance applications
and in addition contain several enhancements, including
improved Intel AVX support.

2.1 CPU characteristic
The 3rd generation Intel Core processor family has been

manufactured on 22nm Hi-k metal gate silicon technology
and has 1.48 billion transistors for quad-core version. This
is the increase from 995 million transistors implemented
on Sandy Bridge. Die size of new Ivy Bridge is 23%
smaller than quad core version of Sandy Bridge. The 3rd
generation Intel Core i7-3770K processor die size has an
area of 170mm2 and the 2nd generation Intel Core i7-2600
processor has a die size roughly 220mm2. Majority of this
new 500 millions of transistors are taken by new graphics
unit as CPU‘s part of the chip is almost unchanged from
that implemented in Sandy Bride.

Nevertheless same modification has been made on to the
cache and memory interface such as memory hashing and
reuse of cache line.

The Ivy Bridge has also new next-page prefetcher able to
fetch cache lines ahead of use it on.

The new floating-point data type has been also intro-
duced. This half precision (16-bit) floating-point data type
provides 2x more compact data representation than the single
precision floating-point (32-bit) format, but sacrifices data
range and accuracy. This type of data is widely used in
graphics and imaging applications and reduces dataset size
and memory bandwidth consumption.

Next modification made on the core level is new divider.
Ivy Bridge introduces a partly pipelined implementation of
the divide unit, which is reducing the latency and increasing
the throughput of the divide and square root instructions.

Some forms of register-to-register MOV instructions are
executed in Ivy Bridge microarchitecture do not consume
resources of execution unit. Using these MOV instructions
remove instruction latency and frees up the execution unit

Table 1: Processors characteristic.
Processor 3rd gen. 2nd gen. Intel Core Intel Core

type Intel Core Intel Core i7-970 i7-870
i7-3770K i7-2600

Technology
(nm) 22 32 32 45
Code Ivy Sandy Gulftown Lynnfield
name Bridge Bridge

Cores per
socket 4 4 6 4

Turbo Mode Yes Yes Yes Yes
Intel HT Yes Yes Yes Yes

Core
Freq. (MHz) 3500 3400 3200 2930

Max Turbo
Freq. (MHz) 3900 3800 3460 3600

L1 cache size 32 KB Inst 32 KB Data per core
L2 cache size 256 KB per core
L3 cache size 8MB 8MB 12 MB 8 MB

Integrated
memory

controller Yes Yes Yes Yes
Memory
channels 2 2 3 2

Memory type DDR3 DDR3 DDR3 DDR3
supported 1333/ 1066/ 800/ 1066/

(MHz) 1600 1333 1066 1333
Core

performance
(GFLOPS) 28 27.2 12.8 11.7

Memory
Bandwidth

(GB/s) 25.6 21 25.6 21
CPU Peak

Performance
(GFLOPS) 112 108.8 76.8 46.8

Core Turbo
performance

(GFLOPS) 31.2 30.4 13.8 14.4
Peak Turbo

CPU
performance

(GFLOPS) 121.6 112 80 51.2
TDP (W) 77 95 130 95

for other operations running on the machine, improving
application performance.

For reduction of power Ivy Bridge development team
implements DRAM and I/O power gating mechanism. This
allows turning off the DRAM interface when it is not in use.

Ivy Bridge has a number of other system enhancements
such as support for up to three monitors, dynamic (no reboot
required) overclocking control and DDR3LV memory sup-
port. The DDR3LV DRAM uses a 1.35V memory module
voltage of versus 1.5V for regular DDR3 DRAM this cuts
power by 20%.

In this study four generations of the CPUs have been
evaluated: the 3rd generation Intel Core i7-3770K processor
versus its predecessors the 2nd generation Intel Core i7-
2600, six core Intel Core i7-970 and quad Intel Core i7-
870. The architecture summary of all processors has been
summarized in Table 1.
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All CPUs are based on the same microarchitecture foun-
dation but the 3rd and 2nd generations Intel Core processor
family have brought enhancements not only in to the instruc-
tion set like AVX but also modification in microarchitecture
of the core.

3. System Performance
The main focus of this section is to present a comparison

of 4 platforms based on CPUs described above. The two
first platforms are utilizing AVX enabled CPUs. The last
two platforms are utilizing Intel Core CPUs first Intel Core
i7-970 processor and second one Intel Core i7-870 processor.
These platforms are only limited to the SSE 4.2 instruction
set but exploit more cores and different micro architecture
implementation.

In this study for evaluation of CPU performance we use
a matrix to matrix multiplication micro-benchmark, HPC
Challenge Benchmark (HPCC) and NAS Parallel Bench-
marks (NPB). Theoretical performance of all tested platform
has been summarized in Table 1.

Single core theoretical performance for all platforms is
in the range from: 11.7 GFLOPS to 28 GFLOPS. The
139% performance improvement accomplished by Intel 3rd
generation Intel Core i7-3770K processor with AVX enabled
is mainly achieved due to AVX. For Intel Turbo Boost
Technology single core performance we have theoretical
performance of 31.2 GFLOPS for Intel 3rd generation Intel
Core i7-3770K and 13.8 GFLOPS for Intel Core i7-970, 14.4
GFLOPS for Intel Core i7-870 and 30.4 GFLOPS for Intel
2nd generation Intel Core i7-2600. The difference is 126%
between Intel Core i7-970 and Intel 3rd generation Intel Core
i7-3770K. The difference in obtained results with Intel Turbo
Boost Technology is determined by the different scheme and
characteristic of turbo mode implementation. The 3rd and
2nd generations of Intel Core CPUs because of turbo mode
allows increased frequency about 4 steps (4 x 100 MHz) for
a single core and for Intel Core i7-970 it is 2 steps but (2 x
133MHz) and Intel Core i7-870 can do 5 steps 133MHz each
so it increases clock up to 3600MHz. Calculated theoretical
performance of all cores, will give 108.8 GFLOPS and 112
GFLOPS for Intel 2nd generation Intel Core i7-2600 and
Intel 3rd generation Intel Core i7-3770K respectively. For
Intel Core i7-870 we have 46.8 GFLOPS and 76.8 GFLOPS
for Intel Core i7-970. Consequently theoretical performance
with Intel Turbo Boost Technology will give 121.6 GFLOPS
for Intel 3rd generation Intel Core i7-3770K, 112 GFLOPS
for Intel 2nd generation Intel Core i7-2600 51.2 GFLOPS
and 80 GFLOPS for Intel Core i7-870 and Intel Core i7-970.

Theoretical performance does not completely reproduce
the real life scenario. To evaluate how all the new technology
enhancements are appropriate for HPC workload we have
selected a couple of benchmarks. For the single core perfor-
mance evaluation we started with a micro-benchmark matrix
to matrix multiplication [1]. The size of the matrix used

Table 2: Matrix to matrix multiplication micro-benchmark.
Processor 3rd gen. 2nd gen. Intel Core Intel Core

type Intel Core Intel Core i7-970 i7-870
i7-3770K i7-2600

Single core
(GFLOPS) 18 16.3 9.0 9.8
Single core

MKL
(GFLOPS) 30.1 27.2 12.4 13.3

All cores
OpenMP

(GFLOPS) 63.1 57.9 36.7 31.7
All cores

MKL
(GFLOPS) 98.7 89.4 66.5 46.3

in our study is 2048 x 2048. Table 2 summarizes achieved
results for matrix to matrix multiplication micro-benchmark.

For the single core 3rd generation Intel Core i7-3770K
processors with turbo mode enabled results are 18 GFLOPS
and 16.3 GFLOPS for Intel Core i7-2600 and 9 GFLOPS
and 9.8 GFLOPS for Intel Core i7-970 and Intel Core i7-
870 respectively. The 3rd generation Intel Core i7-3770K
single core performs is 10% better then single core Intel
Core i7-2600 and 83% better versus Intel Core i7-870 and
100% better then Intel Core i7-970. When we compiled the
same code with MKL the single core 2nd generation Intel
Core i7-2600 achieves 11% weaker performance versus the
3rd generation Intel Core i7-3770K and 142%, 126% lower
results for Intel Core i7-970, Intel Core i7-870. When we test
all cores with OpenMP API we achieved results as follow
63.1 GFLOPS and 57.9 GFLOPS for the 3rd generation
Intel Core i7-3770K and 2nd generation Intel Core i7-2600
and 36.7 GFLOPS and 31.7 GFLOPS for Intel Core i7-970
and Intel Core i7-870. Testing all cores with MKL does
98.7 GFLOPS and 89.4 GFLOPS for the 3rd generation
Intel Core i7-3770K and 2nd generation Intel Core i7-2600
respectively and 66.5 GFLOPS and 46.3 GFLOPS for Intel
Core i7-970, Intel Core i7-870. Achieved results represent
88%, 89%, 83% and 90% of theoretical peak performance,
respectively for the 3rd generation Intel Core i7-3770K, 2nd
generation Intel Core i7-2600, Intel Core i7-970 and Intel
Core i7-870. This matrix to matrix multiplication micro-
benchmark shows very significant results even without any
hands-on optimizations.

The next benchmark suite we have tested is HPC Chal-
lenge benchmark. This is a set of tests that examines the
performance of HPC architectures in a more challenging way
than small matrix to matrix multiplication micro-benchmark.
The HPC Challenge benchmark test suite stresses not only
the processors, but also the memory system and intercon-
nects. It is a better indicator of how HPC system will perform
across a spectrum of real-world applications, unfortunately
some of the test are ineffective in our testing scenario as HPC
Challenge benchmark is optimized for complete installation
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of supercomputer and clusters and not perfectly scaling down
to single socket platform. However a few of the tests which
are a good indicator for full system implementation are
also suitable to estimate the single platform performance.
The HPC Challenge benchmark consists of basically 7 tests:
HPL, DGEMM, STREAM, PTRANS, FFT, Random Order
Ring Bandwidth and Random Ordered Ring Latency [2]. In
this section we will evaluate single platform based on the
3rd generation Intel Core i7-3770K, the 2nd generation Intel
Core i7-2600 versus Intel Core i7-870 and Intel Core i7-970
across all the benchmark listed above.

The HPL benchmark is the portable version of LINPACK.
This is a floating-point benchmark which solves a dense
system of linear equations in parallel. The metric produced
is Giga-FLOPS (GFLOPS) or billions of floating point
operations per second. LINPACK performs operations called
LU Factorization. These are highly parallel and store most
of their working data set on the processors cache. It makes
relatively few references to memory for the amount of
computation it performs [3]. For floating-point performance
of the platform we have selected LINPACK as it is most
popular HPC benchmark. LINPACK is benchmark used
to determine the performance of world’s fastest computers
published at the website http://ww.top500.org/. The fig. 1
shows HPL results for all tested systems.

Fig. 1: LINPACK benchmark results.

Single system performance on LINPACK for Intel Core
i7-870 is 42.35 GFLOPS, Intel Core i7-970 processor is
67.53 GFLOPS for 2nd generation Intel Core i7-2600 is 93.9
GFLOPS and for the 3rd generation Intel Core i7-3770K this
is 103.7 TFLOPS. The achieved performance is 82%, 84%,
83% and 92% of the theoretical performance for Intel Core
i7-870, Intel Core i7-970, 2nd generation Intel Core i7-2600
and 3rd generation Intel Core i7-3770K, processor. Intel
Core i7-970 has 50% more cores than quad cores then other
CPUs processor but AVX version of 3rd and 2nd generation
of Intel Core processor have 38% and 54% better LINPACK
result. Difference is 120% compeering Intel 2nd generation

Intel Core i7-2600 processor to quad cores Intel Core i7-870
and 145% better results versus the 3rd generation Intel Core
i7-3770K

The second aspect of platform performance we have
evaluated is bandwidth. The benchmark we have used to
measure the bandwidth is the STREAM benchmark. It
estimates both memory reads and memory writes. This gives
us an indication of how effective the memory subsystem is.
It measures the performance of four long vector operations.
These operations are representative of long vector operations
and the array sizes are defined in that way so that each array
is larger than the cache of the processors that are going to
be tested The STREAM benchmark gives only results of
memory system efficiency ignoring the cache efficiencies
of the tested platforms. The 3rd generation Intel Core i7-
3770K processor based platform has achieved 19.1 GB/s
for STREAM using the fastest memory module of DDR3-
1600 MHz. The results we have achieved for STREAM are
very similar to Intel Core i7-970 18.9 GB/s only 1% differ-
ence. The Intel 2nd generation Intel Core i7-2600 processor
achieved 17.8 GB/s so 7% weaker than the 3rd generation
Intel Core i7-3770K processor. Difference between Intel
Core i7-870 and Intel Core i7-970 are more noticeable 16.9
GB/s and 18.9 GB/s respectively. The achieved performance
is 75% of theoretical memory bandwidth for 3rd generation
Intel Core i7-3770K processor and 84% for Intel 2nd gen-
eration Intel Core i7-2600 processor based platforms, 80%
Intel Core i7-870 and 73% for Intel Core i7-970. We achieve
73% of theoretical bandwidth result when using 3 channels
and 6GB of DDR3-1066MHz on the Intel Core i7-970 based
platform, this configuration offers only 1GB memory per
core. For other platforms we have dual channel configuration
with 8GB memory of DDR3-1333MHz or 1600 MHz and
2GB memory per core ratio.

DGEMM measures the floating point rate of execution
of double precision real matrix-matrix multiplication. Fig. 2
shows performance of embarrassingly-parallel DGEMM for
the four systems.

Fig. 2: DGEMM benchmark results.
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The 3rd generation Intel Core i7-3770K processor based
platform has the highest result 27.35 GFLOPS. The 2nd
generation Intel Core i7-2600 processor based platform
achieves 25.5 GFLOPS, Intel Core i7-970 processor based
platform 11.95 GFLOPS and Intel Core i7-870 processor
based platform 11.09 GFLOPS. The achieved performance
by 3rd generation Intel Core i7-3770K processor based
platform achieved 7%, 128%, and 146% better results than
2nd generation Intel Core i7-2600 processor, Intel Core
i7-970 and Intel Core i7-870 processor based platforms
respectively.

For FFT benchmark on all four systems we used Intel
Compiler 12.0.0.084 as well as the Intel Math Kernel Library
10.3. The benchmark performs as mixture of flops, memory,
and network bandwidth. The system based on 3rd generation
Intel Core i7-3770K processor and 2nd generation Intel Core
i7-2600 processor based platform have the same microarchi-
tecture foundation but slightly different clock and memory
subsystem DDR3-1333MHz versus DDR3-1600MHz. Thee
difference is 15% but 91% better results versus Intel Core
i7-970 and 76% Intel Core i7-870.

The PTRANS benchmark performance depends on the
network and on memory bandwidth. The system based on
3rd generation Intel Core i7-3770K has more advance mem-
ory implementation and over performs 2nd generations Intel
Core i7-2600 processor based system by 11%. Intel Core i7-
870 achieved 19% and Intel Core i7-970 45% inferior results
versus 3rd generation Intel Core i7-3770K processor based
platforms.

The Random Access benchmark uses SANDIA_OPT2
algorithm as Giga Updates per second (GUP/s). All systems
have similar memory bandwidth as it is no interconnecting
element associated to this platform so results on all platforms
are almost the same.

The random-ordered ring bandwidth (RORB) benchmark
measures conflict in the network and reports bandwidth
achieved per core in a ring communication model. The
ROR bandwidth measures the accumulated bandwidth of
the communication network of parallel computing systems.
The algorithm uses an average, short and long messages
transferred with different bandwidth values. Because 3rd
generation Intel Core i7-3770K processor based platform
has no interconnect element difference in the topology of
communication network does not exist consequently the
results are very comparable with results achieved by 2nd
generations Intel Core i7-2600 processor based system and
difference is very marginal. Intel Core i7-870 has achieved
67% lower results versus Intel Core i7-3770K processor
based platform and Intel Core i7-970 even 172% below
result of Intel Core i7-3770K processor based platform.

The random-ordered ring latency (RORL) measures the
latency of the communication network of parallel and, or
distributed HPC systems. Several message sizes, commu-
nication patterns and methods are used. The algorithm

uses an average to take into account that short and long
messages are transferred with different bandwidth values in
real applications and this has consequences in latency as
well [4]. As we have only single systems the relevance of
this benchmark is minimal.

The last benchmark suite we have evaluated is the Numer-
ical Aerodynamic Simulation (NAS) Parallel Benchmarks
code. This benchmark has been developed by NASA Ames
Research Center for the performance evaluation of super-
computers. The benchmark is based on code specifically
developed in NASA computational fluid dynamics (CFD)
applications department and represents real life applications
codes used by NASA for simulating aerospace vehicle.

NAS Parallel Benchmarks consists of two major compo-
nents five parallel kernel benchmarks and three simulated
application CFD benchmarks. The simulated application
benchmarks combine several computations defined by the
problem size and memory requirements. New revisions of
NPB have added three more benchmarks and new versions
of problem size for small memory systems. In our study we
have focused on the eight tests from the first implementation
of NPB as the new added tests, Unstructured Adaptive,
Data Cube operator and Data Traffic are not relevant for
our testing scenario where we tested only one preproduction
platform with single socket. Each benchmark runs two prob-
lem sizes Class A and Class B. Same benchmarks also run
Class S of the problem size but NASA does not recommend
using this problem size for benchmarking purposes [5].

Achieved problem size (Class A) results for 3rd generation
Intel Core i7-3770K processor based platform show 8%-
13% better results versus 2nd generation Intel Core i7-2600
processor based platform and 43%-113% better than Intel
Core i7-870 and 56%-97% better then Intel Core i7-970
based systems. Fig. 3 shows the difference between the 3rd
generation Intel Core i7-3770K processor based platform and
the platform based on 2nd generation Intel Core i7-2600
processor and additionally compares the Intel Core i7-870
and Intel Core i7-970 based platforms.

Generally platform based on 3rd generation Intel Core i7-
3770K processor performs very well and outperforms those
based on Intel Core i7-870 and Intel Core i7-970.

For NPB Class B benchmarks we also observe impressive
performance benefit of 3rd generation Intel Core i7-3770K
processor based platform versus three other configurations.
Fig. 4 shows the results from the 3rd generation Intel Core
i7-3770K processor based platform versus platform based
on 2nd generation Intel Core i7-2600, Intel Core i7-870 and
Intel Core i7-970 based platforms for NPB Class B problem
size.

For the Class B benchmarks we see that 3rd generation
Intel Core i7-3700K processor based platform performs 2%-
21% better then 2nd generation Intel Core i7-2600 processor
and 43%-142% better than Intel Core i7-870 and 38%-91%
superior versus Intel Core i7-970 based platform.
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Fig. 3: NPB Class A relative benchmark results.

Fig. 4: NPB Class B relative benchmark results.

For IS benchmark 3rd generation Intel Core i7-3770K
processor based platform has achieved better result then
2nd generation Intel Core i7-2600 but the difference is
marginal only 2%. The Conjugate Gradient (CG) benchmark
ran on Intel Core i7-870 got 5% better results than 2nd
generation Intel Core i7-2600 processor based platform and
even 2% better than 3rd generation Intel Core i7-3770K
processor based platform. Overall 3rd generation Intel Core
i7-3770K processor based platform confirms its performance
superiority.

4. Conclusions
This paper examined the performance characteristics of

the Intel 3rd generation Intel Core i7-3770K processor based
platform versus its forerunners. In our evaluation study we
have selected products which represent the highest CPU
configuration in a particular segment and represent the same
price point. Of course new generation products typically run
on faster clocks and have more capability but our selection

was based on the criteria of which product is going to
replace its predecessor in a given price segment. So we
have compared the same segment platforms from year: 2009,
2010, 2011 and 2012.

The achieved results clearly show that new 3rd generation
22 nm based CPU performs extremely well versus processors
based on the Intel Core microarchitecture and results clearly
illustrate that AVX instruction set provides major boost in the
performance characteristic. The performance improvement
we have been able to observe behaves as we have been
expecting taking in to account theoretical performance of all
CPUs. Intel AVX delivers significant performance improve-
ments to compute-intensive codes and for the same test we
have observed 146% difference between then 3rd generation
Intel Core i7-3770K processor and its quad core predecessor.
For well vectorized code like DGEMM or HPL where AVX
can bring benefits the difference is more than 100%, if the
code is more memory oriented the difference is smaller 5%-
60%. Also six cores Intel Core i7-970 is not able to vie
with new 3rd generation Intel Core i7-3770K processor and
results show 18%-120% better results.

Performance advantages of 3rd generation Intel Core i7-
3770K processor are not only limited to AVX instruction
set extension but also the microarchitecture changes and
new platform extensions like DDR3-1600MHz brought real
performance improvement.

Intel Turbo Boost Technology was always active and
delivers additional frequency improvement and consequently
improvement in performance for all platforms.

In summary, we can state that 3rd generation Intel Core
i7-3770K processor even utilizing a system configuration not
optimized for HPC brings lot of performance improvement
for compute intensive applications and will deliver a com-
pelling platform for many of the new HPC installations.
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Abstract— Most researchers with little high performance
computing (HPC) experience have difficulties productively
using the supercomputing resources. To address this issue,
we investigated usage behaviors of the world’s fastest aca-
demic Kraken supercomputer, and built a knowledge-based
recommendation system to improve user productivity. Six
clustering techniques, along with three cluster validation
measures, were implemented to investigate the underlying
patterns of usage behaviors. Besides manually defining a
category for very large job submissions, six behavior cat-
egories were identified, which cleanly separated the data
intensive jobs and computational intensive jobs. Then, job
statistics of each behavior category were used to develop a
knowledge-based recommendation system that can provide
users with instructions about choosing appropriate software
packages, setting job parameter values, and estimating job
queuing time and runtime. Experiments were conducted to
evaluate the performance of the proposed recommendation
system, which included 127 job submissions by users from
different research fields. Great feedback indicated the use-
fulness of the provided information. The average runtime
estimation accuracy of 64.2%, with 28.9% job termination
rate, was achieved in the experiments, which almost doubled
the average accuracy in the Kraken dataset.

Keywords: Performance Prediction, Usage Pattern Analysis, Rec-
ommendation System, User Support, Machine Learning

1. Introduction
High Performance Computing (HPC) is becoming increas-

ingly important by addressing various applications related
to science, engineering, service, commerce, security and
defense [15]. To improve productivity, more laboratory re-
searchers are starting to use supercomputers to solve large
problems in their research fields. However, most researchers
without a computer science background or help from HPC
consultants have difficulties productively using the super-
computing resources. Programming for a large HPC system
requires more experience than for a desktop computer. First,
a user needs to know the system-specific information, such
as what software packages are supported by the HPC system
and how many compute cores are appropriate for a specific

Fig. 1: Average accuracy of the requested walltime for each
job category in Table 1.

job on the system. Furthermore, to submit a job to an HPC
system, a user is usually requested to estimate the runtime
of a job for system scheduling. In general, the job runtime
estimate is very inaccurate. According to the historical usage
data of the world’s fastest academic Kraken supercomputer,
the average accuracy of the estimated runtime is less than
38% for each job category, and around 32.5% for the entire
dataset, which is shown in Figure 1. An inaccurate estimate
always causes negative effects. An underestimation increases
the risk that a job is forcefully terminated by an HPC system
before its completion. On the other hand, an overestimation
of the job runtime usually results in a longer queuing time.
In both cases, the productivity of an HPC user is damaged.

In this work, we investigated the usage behavior patterns
of the Kraken supercomputer, which is the world’s fastest
petascale academic supercomputer and the 11th on the latest
Top500 list. We also developed a knowledge-based recom-
mendation system to optimize user service and resource
allocation with the purpose of improving user productivity
at the application level. Historical usage logs of the Kraken
supercomputer were used to analyze the underlying usage
patterns, which were collected from January 2, 2011 to July
21, 2011. We implemented six unsupervised machine learn-
ing algorithms to identify usage behaviors, and applied three
validation measures to compare the clustering algorithms and
determine the appropriate number of behavior categories.
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Table 1: Manual classification of jobs in the Kraken super-
computer, which is determined by the number of compute
nodes requested by a user.

Categories Compute Cores Walltimemax
Min Max Percentage (hours)

Small 1 512 0-0.45 24.0
Medium 513 58,192 0.45-7.26 24.0
Large 8,193 49,536 7.26-43.88 24.0
Capability 49,537 98,352 43.88-87.12 48.0
Dedicated 98,353 112,896 87.12-100 48.0
HPSS N/A N/A N/A 24.0

The correct jobs were grouped into seven categories, each of
which represented a usage behavior of an HPC system. The
clustering results can be used by an HPC center to better
understand its user community and provide customized
services to different groups of users with different types of
job submissions. Moreover, considering the fact that HPC
systems with different architectures perform differently on
the same type of jobs, performance comparisons across
different HPC systems provide the potential to identify
which architecture is superior to execute which type of
jobs. Then, based on the statistics in each behavior category,
a knowledge-based recommendation system was developed
to provide users with instructions about choosing software
packages, setting job parameter values, and predicting job
performance. The proposed system enables research com-
munities to share usage experience of a supercomputer, and
researchers may improve their productivity by looking at
similar jobs successfully executed by other users in the same
research area on the same HPC system.

The rest of the paper is organized as follows. Section 2 re-
views existing work. Section 3 describes the historical usage
data of the Kraken supercomputer, and discusses data pre-
processing and feature extraction methods. The unsupervised
machine learning algorithms and cluster validation measures
are introduced in Section 4 for usage behavior analysis. The
proposed recommendation system is also described in this
section. Then, Section 5 presents the experimental results on
Kraken. Finally, Section 6 concludes the paper.

2. Related Work
Although workload modeling was widely researched [19],

only a few studies were reported to address the task of usage
behavior analysis. A naive approach to solve this problem
is to manually classify a job, based on the number of the
requested compute nodes of the job, which is adopted by
most HPC centers for job scheduling, such as the Kraken
supercomputer [11] as shown in Table 1. Another statistical
approach was introduced in [7] to characterize job behaviors
and identify the most active users. Wolter [18] experientially
classified supercomputer users into three groups. Song [14]
proposed a mixed user group model to classify HPC users

and analyze workload traces for job scheduling. However,
the number of the usage categories was predefined, and the
author did not explicitly validate the classification results.

Another related work is to predict the runtime of a job
using historical data. The most widely used methods, such
as in [10], [16], were directly based on the instances in the
historical usage data, which estimated job runtime using the
average runtime of a set of jobs with the highest similarity.
However, a petascale supercomputer usually has millions of
job submissions. It becomes inefficient or even infeasible
for instance-based approaches to save all instances. Some
model-based algorithms were also proposed for runtime pre-
diction, including methods using artificial neural networks
[8] and template-based approaches with greedy and genetic
algorithms [13]. However, artificial neural network, as a
black box model, failed to explicitly unveil the underlying
structures of usage behaviors. In template-based approaches,
the templates had to be defined manually, which are almost
infeasible for a dataset with millions of samples.

3. Usage Data Processing
In this work, we looked at the historical usage data of

the Kraken supercomputer [11], which is managed by the
National Institute for Computational Sciences (NICS) at the
Oak Ridge National Laboratory. Kraken provides a petascale
computing environment fully integrated with the Extreme
Science and Engineering Discovery Environment with access
to the Cray XT5 system. The Kraken supercomputer consists
of 18,816 compute sockets, 147 terabytes of memory, and
3.3 petabytes of storage. Access to computing resources is
managed by the Portable Batch System, and job scheduling
is handled by the Moab. The Lustre file system is used to
support I/O operations.

Usage behavior patterns were analyzed mainly based on
the historical data of jobs that were submitted to the Kraken
supercomputer. Some instances of usage log entries are
listed in Table 2. We also collected account information to
determine to which research field each user belongs, and
conducted surveys to gather specific information, such as
whether a user was an HPC expert. Because most users are
not HPC experts or with help from HPC consultants, it is
unavoidable that their programs contain runtime errors and
exit before completion. On the other hand, due to the lack
of experience to run a job on a supercomputer, it is also
very common that users underestimate job runtime, and a
job is forcefully terminated by the HPC system. If a job
neither completes correctly nor provides meaningful results,
it is considered as an incorrect job. On the contrary, a job
is defined correct, if it belongs to the set:

Jc = {j | (j.mem_used 6= 0) ∧ (j.walltime > 30)

∧ (j.walltime < j.walltime_req)}
(1)

where “.” represents attribute relationship, and the unit of the
attribute walltime is second. Intuitively, a job is incorrect if
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Table 2: A typical log file that records the usage activities of the Kraken supercomputer. This exemplary log file contains
five instances. Each row represents a job submission, and each column denotes an attribute of a job.

job_id user_name account nproc mem_used submit_time start_time
0000001.nid00016 user1 U1-INDEX001 12 7588 2011-01-27 08:10:13 2011-01-27 09:26:03
0000002.nid00016 user2 U2-INDEX001 1 142664 2011-03-28 14:15:50 2011-03-28 14:16:14
0000003.nid00016 user1 U2-INDEX001 1032 16276 2011-04-16 01:28:41 2011-04-16 11:51:30
0000004.nid00016 admin SUPPORT 288 11836 2011-05-31 09:43:51 2011-06-04 21:00:20
0000005.nid00016 user1 U1-INDEX002 98304 71812 2011-07-05 17:01:08 2011-07-07 11:11:13

end_time walltime_req walltime cpu_hours queue type software research_area
2011-01-27 09:36:14 00:30:00 00:10:11 3.22 small batch —– Physics
2011-03-28 14:35:01 05:30:00 00:18:47 0.0658 hpss batch wrf Earth Sciences
2011-04-17 11:51:56 24:00:00 24:00:27 24775.74 medium batch mpcugles Physics
2011-06-05 21:00:57 23:59:59 24:00:37 6914.96 small interactive —– Benchmark
2011-07-08 13:11:34 32:00:00 26:00:21 2556477.44 capability batch gadget Earth Sciences

1) it doesn’t consume any memory, which indicates that the
job fails to start executing, possibly due to some compiling
problems, including the situation that the job is compiled on
another HPC system with a different architecture; or 2) the
job quits right after its execution, which is possibly caused
by runtime errors, such as segmentation faults; or 3) the job
is terminated by the HPC system, because it consumes the
requested walltime. The second literal in (1) also contributes
to remove the “Hello World” jobs and simple testing jobs,
in which case a user is a learner or does not care about job
runtime. Because incorrect jobs are always misleading, it is
necessary to remove them to improve the performance of job
classification and runtime estimation. On the other hand, it
should be noted that the definition of a correct job does not
remove all incorrect jobs, such as a job with runtime errors
at the end of its execution. The rest of the incorrect jobs are
considered as noise, or instances with errors.

A feature is a distinctive characteristic of an object, such
as a job, which is often represented as a function of the
object’s attributes. In this work, four features are selected or
extracted from job attribute space, which are defined as:

Nn(j) = log( j.nproc /Cn )

Mu(j) = log( j.mem_used )
Tq(j) = log( j.start_time− j.submit_time )
Tr(j) = log( j.end_time− j.start_time )

(2)

where Nn, Mu, Tq and Tr are the features encoding the
information of number of allocated nodes, memory used, job
queue time and job runtime, respectively; and Cn represents
the number of cores on each node, which is 12 on the Kraken
supercomputer. Because job attributes cover a large range of
values, logarithmic scale is used to represent each feature to
reduce a wide range to a manageable and comparable size.

4. Usage Pattern Modeling
We remove the jobs submitted by system administrators

that typically perform system management tasks, such as
system updating or reservation removing. Moreover, jobs in
the HPSS queue and interactive jobs are also intentionally
removed. HPSS jobs often start executing right after being
submitted, without any compute nodes involved. Interactive
jobs provide a user interactive access to compute resources,
which are commonly used for debugging. At last, we man-
ually classify the jobs requiring over 50,000 cores into the
group of massive jobs. According to our survey, all users
with very large job submissions are HPC experts or work
with HPC consultants. Formally, the job dataset used in this
work is defined as:
J ={ j | (j ∈ Jc) ∧ ( j.nproc < 50000 )

∧ ( j.queue 6= hpss ) ∧ ( j.type 6= interactive ) }
(3)

4.1 Cluster Analysis and Validation
To investigate the underlying structures of usage patterns,

cluster analysis is applied on job set J . Cluster analysis is
an unsupervised learning technique, which groups objects
with similar attributes into respective categories. In cluster
analysis, we do not know either which job belongs to which
category or the number of categories. Six clustering methods,
in three categories, are applied to analyze usage behaviors:

• Partitioning clustering, including k-means [1] and Par-
titioning Around Medoids (PAM) [17];

• Hierarchical clustering, including DIvisive ANAlysis
clustering (DIANA) [5] and Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) [9];

• Artificial Neural Network (ANN) based clustering, in-
cluding Self-Organizing Feature Map (SOFM) [6] and
Self-Organizing Tree Algorithm (SOTA) [4].

Cluster validation evaluates the performance of a cluster-
ing result by comparing it with other ones that are generated
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by other clustering methods, or by the same method but with
different parameters, such as different number of clusters.
In this work, three internal validation measures, along with
domain knowledge, are used to choose the best clustering
methods and determine the number of clusters that is most
appropriate for the dataset:

• Connectivity [2] measures cluster connectedness, with
a value in the range [0,∞]. A lower value indicates a
better performance.

• Dunn index [3] is the ratio of the smallest distance
between objects in different clusters to the largest intra-
cluster distance. The value of Dunn index lies in [0,∞],
and a greater value indicates a better performance.

• Silhouette width [12] measures the degree of confidence
in the clustering assignment of an object. Its value
lies in [−1, 1] with a greater value indicating a better
clustering performance.

4.2 Information Recommendation
It is clear that jobs have a wide range of system demands

and might perform differently on the same HPC system.
For example, computation-intensive and data-intensive jobs
might have significantly different runtime, even if they
request the same number of compute nodes. The proposed
knowledge-based recommendation system is based on the
plausible assumption that job submissions in the same
research field tend to perform more similarly, since jobs
submitted by researchers in the same field are more possible
to address similar problems with similar algorithms using
similar software and packages. Moreover, jobs in the same
clustered categories also tend to behave more similarly due
to the similarity of their attributes. In consideration of both
assumptions, we predict the parameters of a target job based
on the information of the jobs that are in the same category
and same research field as the target job.

In the first step, customized information is provided to
a user by the recommendation system, including the dis-
tribution of the jobs, the statistical information of several
job features, and a list of the most frequently used software
and packages in the given research field. Jobs in a research
field conforms to the multinomial distribution given job
categories. A bar graph is used to intuitively represent
this distribution. Then, the statistical summaries of several
features are graphical displayed using box plots. Each box
plot represents the distribution of a feature, its central value,
and variability. The displayed features include Nn and Mu,
i.e., the number of requested compute nodes and consumed
memory. At last, a list of software and packages is provided,
which is obtained by ranking the most frequently used
software and packages used by previous users in the same
research field. In this step, a user is required to determine the
number of requested cores and memory, under the guidance
of the recommendation system.

In the second step, after the number of requested cores and
memory are decided, the features Nn and Mu are computed
according to (2). Then, the queuing time and runtime of the
target job are predicted based on the job distributions and
the job statistics in each behavior category. More precisely,
our goal is to predict the feature vector zj = {Tq, Tr}. Let
yj = {Mu, Nn} be the feature vector that is determined
in the first step by a user in field rj . Then, the distance
between yj and the center of the behavior category k can
be computed using Euclidean distance: djk = ‖yj−E[yjk]‖,
where E[yjk] is the feature vector expectation of the jobs in
the behavior category k and the research field rj . Then, the
target feature vector zj can be computed by:

zj =
1

Zj(yj ,θj)

K∑
k=1

θjk
djk + σ

E[zjk] (4)

where θjk is the probability that job j belongs to category k;
σ is a small positive number to avoid a zero denominator;
and Zj(yj ,θj) is a normalizing factor. The feature vector
zj is computed using a mixture of corresponding cluster
means. The mixture coefficient considers both the clustering
result of the target job, which is represented by the distance
to each cluster center, and the prior knowledge θj that is
the distribution of the jobs in the target job’s research field.
Both elements are important for job classification. While the
distance of a job to a cluster center determines the proba-
bility that the job belongs to the cluster, the job distribution
in a research field, as a prior, prefers the cluster containing
a larger number of jobs that are previously observed. After
the feature vector zj is calculated, the queuing time can
be computed by: ˆj.queuing = 10Tq . In most cases, users
care more about job runtime, which is a required parameter
by most supercomputers to submit a job. According to our
experiments, the job runtime can be better estimated by:

ˆj.runtime = 10(1+α)Tr+β (5)

where α, β ∈ [0, 1]. A good job runtime estimation can be
computed with {α, β} = {0.05, 0}, and a safer estimation
can be obtained with {α, β} = {0.05, 0.3}, which can be
applied to request system walltime. The coefficient (1 + α)
of Tr considers the fact that, for a larger job with more
compute resources and longer runtime, users often tries
to make the job safer (i.e., with a higher probability to
successfully complete the job), by intentionally requesting a
longer system walltime. If a large job is forcefully terminated
by the system before its completion, it often costs much more
than a small job.

5. Experimental Results
We used the historical usage data that were collected from

January 2 to July 21, 2011, after Kraken was upgraded to
the Cray XT5 system. During the time of data collection,
321,290 jobs in 24 different research fields were submitted to
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(a) Connectivity measure (b) Dunn index measure (c) Silhouette width measure

Fig. 2: Internal cluster validation of the clustering methods with different number of clusters.

Kraken by 843 researchers from 367 accounts. The Kraken
dataset was first preprocessed to get job set J . In this step,
112265 jobs were removed from the original Kraken dataset,
including 102206 incorrect jobs (termination-rate = 31.8%).
Then, feature vectors were computed for the rest of the jobs
according to (2), and related information, including research
field and software name, was documented.

5.1 Cluster Analysis and Validation
Before clustering the Kraken dataset, a cluster was man-

ually defined as the massive job category that contains jobs
requiring more than 50,000 compute cores, which contains
168 job submissions in the entire preprocessed dataset.

Six clustering approaches were applied to cluster usage
behaviors, and three internal validation measures were em-
ployed to compare the clustering performance and to find the
appropriate number of clusters. The performance evaluation
results are depicted in Figure 2a, 2b and 2c, respectively.
A most important conclusion is that the UPGMA algorithm
performs consistently better than other clustering methods
when using less than nine clusters, which is indicated by all
internal validation measures. We can also observe that other
clustering techniques, if the number of clusters is greater
than three, have similar performance but are generally worse
than the UPGMA algorithm. Thus, the UPGMA algorithm,
an agglomerative hierarchical clustering algorithm, was se-
lected to cluster usage behaviors.

The validation measures were also applied to determine
the appropriate number of clusters. For all clustering algo-
rithms, the connectivity measure in Figure 2a indicates that,
with the increase of the number of clusters, the clustering
performance tends to decrease. Similarly, both the Dunn
index in Figure 2b and the silhouette width in Figure 2c
indicate that clustering performance cannot be improved
by simply increasing the number of clusters. We can also
observe that, for the k-means, PAM and UPGMA algorithms,
two is the best choice for the number of clusters, which is
supported by the connectivity measure and the Dunn index
measure, and partially by the silhouette width measure. On

Table 3: Algorithmic mean of each job feature in different
categories in the Kraken dataset.

Feature c1 c2 c3 c4 c5 c6 c7
E(Tq) 4.24 2.62 2.87 1.89 4.65 3.74 4.27
E(Tr) 4.19 3.63 3.22 2.38 4.15 2.64 3.22
E(Mu) 4.05 4.03 5.11 4.09 4.17 4.12 5.07
E(Nn) 0.19 0.26 1.01 0.98 1.51 1.51 3.90

the other hand, in order to increase the resolution of the job
clustering results, we prefer a larger number of clusters. For
the chosen UPGMA algorithm, the clustering performance
almost consistently declines with the increase of the number
of clusters. But the performance of the algorithm does not
change greatly with the number of clusters lying between
three and six. To balance clustering performance and clus-
tering resolution, six clusters were selected, in which case,
we increased the clustering resolution by sacrificing some
clustering performance. The resulted dendrogram with six
clusters is depicted in Figure 4.

The algorithmic means of job features in each category
are listed in Table 3. Several interesting phenomena should
be noted. First, the behavior category c3 can be considered
as the set of data-intensive jobs. Jobs in this category use
significant memory but relatively less number of compute
nodes. Second, the jobs in the manually defined category c7
are greatly different from the jobs in other categories, which
are both computational and memory-intensive. However,
jobs in this category do not have the longest queuing time,
because the massive jobs have a high priority on the Kraken
supercomputer, and researchers running such jobs usually
reserve the compute resources in advance. These massive
jobs do not have the longest job runtime either. Besides
the fact that the massive jobs use considerable amount of
resources that can speed up job execution, this phenomenon
can be partially explained by the fact that most users running
such jobs have rich HPC knowledge. In most cases, the
massive jobs are optimized. Third, if we only consider the
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Fig. 3: Customized information of the jobs in the research field of Astronomical Sciences, which is generated in the first-
round recommendation. The bar graph (left) represents the distribution of the previously submitted jobs on Kraken. The box
plot (center) summaries the statistics of the number of compute nodes requested by the jobs in each category in log scale.
The box plot (right) represents the statistical summary of the consumed memory of the jobs in each category in log scale.

Fig. 4: Dendrogram generated by the UPGMA algorithm
with six categories on the Kraken dataset.

requested compute nodes and the consumed memory to
classify jobs, we can combine the category pair: c1 and c2,
c3 and c4, c5 and c6 in to larger clusters, due to the similarity
of the features in each category pair. This phenomenon is
well supported by the dendrogram. If the UPGMA algorithm
is set to stop with three clusters, the dendrogram will be cut
at the height of 2000, as shown in Figure 4. Fourth, jobs in
the categories c1 and c2 have the longest runtime. Besides
the fact that these jobs use less compute resources, another
possible explanation is that users executing such jobs usually
have less HPC experience and their jobs are not well-tuned.

5.2 Information Recommendation
To demonstrate how the proposed recommendation system

instructs a user to select appropriate job parameters and
predict job performance, a real case is used as an example,
in which case, a researcher planned to solve a problem
in the field of Astronomical Sciences. In the first-round
recommendation, the system first provided a list of packages
that were most frequently used on Kraken to solve problems
in Astronomical Sciences, such as GADGET, YT, SSES, and
CHIMERA. After comparing the packages, the researcher

decided to use Gadget, which is a cosmological smoothed
particle hydrodynamics (SPH) simulator. The proposed sys-
tem also provided the researcher with customized infor-
mation about the job statistics in Astronomical Sciences,
as shown in Figure 3. Some important phenomena were
observed by the researcher. First, more large jobs in c4,
c5, c6 and c7 were executed in this field. Second, almost
all massive jobs in c7 used considerable resources with
similar number of compute nodes but widespread memory.
Third, only a few jobs were data-intensive which generally
consumed a very small number of compute nodes but
significant amount of memory. Fourth, the non-massive non-
data-intensive jobs, in c1, c2, c4, c5 and c6, consumed
similar amount of memory, as shown by the right box plot.
The medians of the number of requested compute nodes of
jobs in c4, c5 and c6 were very close, as indicated by the
center box plot in Figure 3. Based on these observations, the
researcher decided to request 12 GB memory (M̂u ≈ 4.1)
and 12 compute nodes (N̂n ≈ 1.1) for the job.

In the second-round recommendation, the values of Tq
and Tr were computed according to (4), given M̂u and
N̂n. The architecture of the recommendation system and the
estimating process were transparent to users. All feedback
the researcher received from the system was the estimated
queuing time, runtime, and a safe runtime, which can be used
to request system walltime on the Kraken supercomputer.
In this case, the estimated queuing time was 7079 seconds
(zTq = 3.85); the estimated runtime was 5624 seconds
(zTr = 3.57); and the estimated safe runtime was 11221 sec-
onds. After successfully compiling the program on Kraken,
the researcher used the estimated runtime as the requested
system walltime to execute the job. After waiting in the
queue of type small for 11175 seconds on Kraken, the job
started executing, and the actual runtime was 5049 seconds,
which was smaller than but quite close to the job estimated
runtime provided by the proposed recommendation system.
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In order to quantitatively measure the accuracy of the run-
time estimation, we applied the Walltime Request Accuracy
(WRA) for a correct job j in Jc, which is defined as:

WRA(j) =
j.walltime

j.walltime_req
× 100% (6)

In the evaluation, 127 jobs submitted by seventeen re-
searchers from different research fields were used to test the
proposed system. The researchers were not HPC experts or
worked with HPC consultants, and the jobs were moderately
optimized. According to their feedback, all researchers con-
sidered that the information provided by the recommendation
system was helpful, especially the job statistics in a research
field. For job runtime estimation, when the researchers
were asked to use the estimated runtime provided by the
recommendation system as the requested walltime, 28.9%
jobs were terminated in force by the Kraken supercomputer,
due to running out of requested walltime. For the correct
jobs, an average WRA of 64.2% was achieved. Comparing
to the average WRA of 32.5% with the termination rate of
31.8% in the Kraken dataset, the estimation performance was
greatly improved. If the users were asked to use the safe
runtime estimate to request system walltime, only 12.2%
jobs exceeded their requested walltime. But the average
WRA decreased to 33.3%. In this case, although the resulted
average WRA was similar to the average WRA in the
Kraken dataset, the termination rate was greatly decreased.
In order to quantitatively measure the error of the estimated
queuing time, the mean absolute percentage error (MAPE)
was applied, which is defined as:

MAPE =
1

T

T∑
t=1

∣∣∣∣∣ ˆj.queuing − j.queuing
j.queuing

∣∣∣∣∣ (7)

where T is the number of testing instances, and ˆj.queuing
and j.queuing are the estimated and actual queuing time,
respectively. The resulted MAPEs were 67.2% and 105.8%
using the estimated runtime and the safe runtime to request
system walltime, respectively. This result indicated that the
queuing time is harder to estimate, which is heavily depen-
dent on the job queue status. Fortunately, the researchers,
like most HPC users, did not much care about the queuing
performance according to their feedback.

6. Conclusion
Usage behaviors of the Kraken supercomputer were sys-

tematically investigated and a knowledge-based recommen-
dation system was developed to improve job performance
and user productivity at the application level. Besides man-
ually defining a category for massive job submissions, six
behavior categories were identified with the UPGMA algo-
rithm, which presented the most promising performance on
the Kraken dataset. Then, a knowledge-based recommenda-
tion system was developed based on the identified behavior

categories and job statistics. The proposed recommendation
system is able to: 1) provide customized information to help
a user determine the software packages, and the number of
compute nodes and amount of memory to request for a job,
2) predict job queuing time and runtime, and estimate a safe
job runtime to request system walltime. Great feedback from
users demonstrated the usefulness of the recommendation
system. The average runtime estimation accuracy of 64.2%,
along with the job termination-rate of 28.9%, was achieved,
which almost doubled the previous average accuracy in the
Kraken dataset.
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Abstract - In recent years, graphics processing units have 

made parallel processing affordable with the price of personal 

desktop computers. This report investigates the computational 

aspects of calculating simple moving average and exponential 

moving average operations, two of the most popular financial 

indicators. In this report, we also investigate the usage of 

GPU to run artificial neural network as a mean of predicting 

stock market pricing. Feedforward and Backpropagation 

artificial neural network was used for this study. Financial 

data including  major stock indices, volumes, pricing, and 

moving average of stocks were used as input. The future stock 

prices can be predicted as the output. The speedup factor by 

adopting GPU and CPU together over traditional CPU alone 

implementation was not significant. The computation of 

compute moving averages on GPU was also discussed. 

Keywords: artificial neural network, stock prediction, GPU 

computing, parallel processing, high performance computing. 

 

1 Introduction 

  Graphic processing unit (GPU) has transformed a 

regular PC into a personal supercomputer. For example, in 

[5], the GeForce GTX 580 can perform single precision 

operation that reaches more than 1500 GFlops. These 

computing powers significantly speed up the computational 

intensive applications with a price of a PC. Many tools have 

been developed to make the GPU computing much easier than 

ever before. Personal supercomputing is now a reality to us. 

 Artificial neural networks are used for pattern 

recognition, clustering, and optimization.  Neural networks 

can also be used to solve problems which are not easily solved 

by traditional calculation methods, particularly if there is no 

strong underlying theory to explain the data.  Neural networks 

have been developed as generalizations of mathematical 

methods of neural biology, based on the assumption that the 

information processing occurs at many simple elements called 

neurons. Signals are passed between neurons over connection 

links. Each connection link has an associated weight which 

multiplies the signal transmitted. Each neuron applies an 

activation function to its net input to determine its output 

signal.   

 There are researchers using neural network in financial 

and economic computations. For example, in [3], Li and Liu 

used LM BP algorithm to predict the Shanghai stock market. 

In [9], Wang developed a HLP method that gets stock high 

low points with different frequencies and amplitudes. The 

extracted data is then fed into a neural network to forecast the 

stock direction and price. In [8] Tirados and Jenq used neural 

networks to predict GDP with ten leading economic indicators 

as the input. In [4] Lin and Feng combined neural network 

and pattern matching techniques to analyze and forecast oil 

stock prices. In [10], Zhou and Zhang used financial 

indicators such as moving averages, volumes, relative strength 

index, etc. on neural network to predict future stock prices. 

 In the past, CPU clusters have been used to achieve high 

performance computation. GPU computing uses GPU as a co-

processor to accelerate CPUs for general purpose scientific 

and engineering computing. It shifts computation intensive 

program segments into GPU while keeping the rest of the 

program segments, which are serial in nature, on the CPU. 

This kind of hybrid computing improves the performance of 

many computer applications.   

 The GPU computation can be used on financial 

computations as well. Researchers in the financial world find 

the benefits of using GPU in financial computation. In [6], 

Peng, et. al., compute option pricing on GPU with backward 

stochastic differential equation. in [1], Lee, et. al., did 

financial derivative modeling using GPUs. In [7] Solomon et. 

al., used trinomial lattice strategy to implement the pricing of 

European option and American lookback option pricing using 

GPU. In [2], Lee, et. al., investigated random number 

generation and the Monte-Carlo simulation to predict future 

stock prices. They also discussed the out of core case when 

graphics DRAM is not big enough to hold all the application 

data. 

  The rest of the paper is organized as the following. 

Section 2 discusses methodologies and implementation of an 

artificial neural network. Parallel implementation of simple 

moving average and exponential moving average will be 

discussed as well. Section 3 discusses and analyzes the 

experimental results. Section 4 gives conclusion remarks. 
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2 Methodologies and implementations 

 Three-layer neural network was chosen to implement our 

prediction system. The inputs are major industrial stock 

indices and stock indicators. The goal is to forecast future 

stock prices. Feedforward and backpropagation neural 

network was used. Backpropagation is a gradient descent 

neural network method used to minimize the total squared 

error of the output calculated by the network.  The network is 

developed to achieve a balance between the ability to respond 

to the input patterns that are used for training and the ability 

to give good responses to input that is similar, but not 

identical, to that used in training.  Like with multiple 

regression, backpropagation was used to develop a correlation 

between the input of stock market data in order to determine 

the future stock price. 

 

 The training of a network by backpropagation involves 

three stages:  the feedforward of the input training pattern, the 

calculation and backpropagation of the associated error, and 

the adjustment of the weights.  After training, application of 

the network involves the computations of the feedforward 

phase only. 

 

 To prevent the larger data from dominating the outcome, 

the raw data will be processed before being fed into the neural 

network.  The raw data has been modified. In the following 

discussion, B represents the raw form of the original data, and 

C is the normalized version of B.   

 

 

   

 

  

 This transformation map our data to between -1 and 1. 

The activation function selected is the bipolar sigmoid 

function, which has a range of    (-1, 1), and is defined as 

 

 

 

 

   

   

 

2.1 Feedforward Backpropagation Neural 

Network 

 

 The traditional Neural Network algorithm can be 

simplified as below 

while (cycle < maxCycle  && averageError > toleranceEerr) 

{ 

 for (int i= 0; i < totalRecords;  i++) 

 { 

  forwardPropagation(); 

  backwardPropagation(); 

  accumulateError(); 

  updateWeights(learningRate); 

 } 

 compute averageError; 

} 

 

 To simplify the discussion, let's denote the connection 

weights between the input layer and hidden layer to be w. 

Also let's denote the connection weights between the hidden 

layer and output layer as v. Note that both w and v are vectors. 

To parallelize the code in order to fit into GPU computing, 

some modifications will be made. Instead of performing 

backpropagate operation for each pattern to update weights, 

we will compute the dw (the update of weight w), dv(update 

of weights v) and then do the update of the weights at the end 

of each cycle. It means that we move the 

updateWeights(learningRate) function out of the traditional 

algorithm above. Instead of performing these operations for 

each record for each cycle, we reduce them to once per cycle.  

Therefore the total weights to be updated would be the 

summation of dw and dv, which are calculated by an 

individual pattern during the process. Note that the dws are 

the weights to be added to the w, the weights between input 

layer and hidden layer. And dvs are the weights to be added to 

v, the weights between hidden layer and output layer. Here we 

assume there is one output neuron although more output 

neurons are possible. The updateWeights function  can be 

done by binary reduction which can be performed in logN 

steps using N threads. Although the backwardPropagation  

and updateWeights functions may be parallelized, the gain of 

speedup may be limited. This setup allows us to assign one 

pattern to each thread in order to speed up the process.  

 Because the binary reduction operation may slow down 

the whole system performance, it is interesting to find out if 

assigning more than one pattern to a thread for processing will 

improve the performance. Once again, it depends on how 

many clock cycles will be used to synchronize the threads. If 

more threads are to be synchronized, then we would expect 

more time for the reduction operation. An interesting aspect is 

to find out how to organize operations so that we can get the 

best possible performance. 

2.2 Moving Average  

  Moving averages can be used as financial indicators. 

There are various types of moving averages, of which two of 

the most popular are simple moving average and exponential 

moving average. 

 

2.2.1 Simple Moving Average 

  Assume the daily closing price for day t is . The n-day 

simple moving average can be defined as  , 

where  is the closing price at day i. So simple moving 

average can be computed by taking the average closing price 

of a stock, over the last N periods. Popular simple moving 
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averages are 5, 10, 20, 40, and 200. Let's assume that the last 

five periods for a stock are 1,3,5,7, and 9. Then, the 5 day 

simple moving average can be computed as (1+3+5+7+9)/5 = 

5. While simple moving average giving all past n-day closing 

prices are weighted equally, the n-day exponential moving 

average assigns more weight to the most recent price, which 

will be discussed in the next subsection.  

 

  Simple moving average on a parallel computer can be 

done by using Prefix Sum operation. It also known as Scan 

operation. A Prefix Sum can be defined as the following. 

Given a set of N values ,…,  and an associative 

operation @, the Prefix Sums operation will compute the N 

quantities ( , , ,..., ). 

By using the Prefix Sum operation, the N-day Simple moving 

average of day "i" can be calculate as  

 

 SMA[i] = (prefixSum[i] – prefixSum[i-N])/N 

 

 

  where SMA[i]  is the N day moving average at day i. 

Table 1 gives an example that uses Prefix Sum to compute 3-

day moving averages. Assume the missing period (period -1, 

and -2 in our example) values are 0. 

 

   
Period 1 2 3 4 5 6 7 

Value 1 3 5 7 9 10 12 

prefixSum 1 4 9 16 25 35 47 

Total of 

subsequence 
1 4 9 

15(= 

16-1) 

21(= 

25-4) 

26(= 

35-9) 

31(= 

47-16) 

Simple 

Moving 

Average 

1 2.5 3 5 7 8.67 10.33 

 

Table 1 Example of calculation of SMA using prefixsum 

 

2.2.2 Exponential Moving Average 

   Exponential moving average can be defined as 

, where  

is the closing price at day t. The  is weighting factor and can 

be defined as , where n is the number of time 

periods involved in the computation. For example, for 10-day 

period , , while 20-day 

, . One can rewrite the 

above  definition using past n-day closing prices and  as 

follows. Note that weights are decayed exponentially and the 

most recent prices carry more weights in the computation. 

 

 
 

  Even though EMA can be easily computed by using the 

method as mentioned in the previous paragraph, however it 

has serial nature in the computation. In order to deliver a  

parallel algorithm, let's define  where  is the 

multiplier that we define from the previous discussion. The 

formula to compute exponential moving average then becomes 

the following 

 

 
 

  We will partition the whole data array into segments with 

lengths of powers of 2. Assume the leftmost data is the most 

recent data(the lowest index) and rightmost one (the highest 

index) is the oldest timing data. By using  memory to 

store the comupted information, we can therefore compute 

exponential moving average of  period in  time. 

Here,  is the number of records. Actually one can reduce the 

total memory to  as we will discuss shortly. 

 

  The computation of EMA involves two phases. In the first 

phase, we will generate the required data through iterations. In 

the first iteration, two pieces of data that are adjacent to each 

other will be processed to create a combined length-2 

information. In the second iteration, combined length-4 

segment information can be generated from the combined 

length-2 information.  To simplify, let's assume p is power of 

two. In  iterations, one can create  which is 

a total of pieces of data information for each segment of 

length P. This information will be used in the second phase of 

our EMA computation. Table 2 gives an illustration of the first 

phase EMA computation. Note that .  

 

 

Table 2 Phase one of EMA Computation: data store scheme 

 

  For a segment of P periods of data on a N data array, 

where P < N, our job is to find the EMA for all the data on the 

data array with N data. Our approach is to partition any 

segment from index a to index b, where (b-a+1) is the period 

P, into at most two segments. It is possible that there is only 

one segment if the segment starts with index of power of 2 and 

ends with a power of 2 minus 1. In that case, we can compute 

the EMA value. It is just the value in the array of index  

. For example, if a is 56, b is 63, and P is 8, 

then index 60 holds the EMA value. Refer to Table 2 above to 

see how the combined values are stored. Note that  this is the 
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best case since there is only one segment. For other P-1 cases, 

out of every segment of length P, there are two segments. Let's 

assume these two segments are  and . First of all, we have 

to find out the cutline index. The first segment  starts with 

index a and ends with an index which is to the power of 2 

minus 1. Let's call this index cutindex. It can be computed as 

ppb /  . Consider a segment from index 53 to 60: the 

resulting cutline index is 56. Note 5688/60  . The second 

segment  starts with an index 56, which is to the power of 2, 

and ends with b, which is 60 in this case. Note that segment  

and  can be formed by elements with lengths of  power of 

two. For example, if segment is of length 11, then it can be 

formed as a sum of segments of lengths 1, 2, and 8. Note here 

that the lengths of the segments from left to right are in 

increasing order.  can be processed similarly, however the 

size of the component segments are decreasing. Distinguishing  

the order of increasing and descreasing of these components is 

important. For example, if  is a segment of length 14, then 

the component sub-segments will have lengths of 8, 4, and 2. 

This is the order to retrieve the information. Note also that 

these component segments never carry the same length as 

other component segments in its combination. We can use a 

loop to mark the partioned segments if they are not zero and 

then add them up to get the resultant EMA. Note that during 

the loop computation, different power of  need to be applied 

to the retrieved value so the power of  shall be correctly 

applied to faithfully reflect the weights assigned to these 

segments. For the above example, a segment from 53 to 60 is 

considered. After computing the value of , the resultant 

computing value from  needs to be multiplied by 3 before  

we add the resultant value from the computation of . It is 

cubed because the segment 53 to 55 has length of 3. The 

multiplication by the power of  applies to the process of 

computing the values of  and  with the same reason. 

Details are omitted. 

 

3 Conclusions 

  The experiments were conducted on a Intel i7 with Nvidia 

GeForce 550M. The parallelized moving average and neural 

network version was constructed using CUDA C. Due to the 

small size of records and the nature of the neural network, the 

speedup wasn't observed. The main reason is due to the 

requirement of synchronization of these threads. It is apparent 

that the expensive cost of synchronization makes the CPU 

implement more appealing. We expect that when the number 

of neurons and number of data increases, we shall get better 

results. We trust Nvidia will come up with a better solution to 

deal with the synchronization of threads.  

 

  For moving average computation, GPU computing does 

not provide advantages over CPU computing when there is a 

small amount of data. If the amount of data by simulation is 

increased, some improvement can be achieved. We understand 

that different machines with different models of CPU and 

GPU can create different results. 

4 Conclusions 

  The parallel versions of moving average computation 

used in the financial industry and back propagation neural 

network computation were developed to run on Nvidia GPU 

using CUDA C. The GPU version of moving average does not 

give significant speedup over traditional CPU version using 

prefix sum operation. For neural network training process, 

GPU computation does not provide significant performance 

over traditional CPU implementation due to the requirement 

of thread synchronization. Even if we tried to minimize the 

number of synchronization by using device kernel calls, then 

speed up over the traditional CPU approach wouldn't be 

significant. Actually, in some situations when the number of 

records are small,  the CPU implementation is superior. The 

implementation of real time predicting system over a huge 

data set in the financial industry is an interesting and 

challenging problem for future investigation. 
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Abstract - This paper presents a comparison of 
parallelization frameworks for efficient execution of 
computational finance workloads. We use a Value-at-Risk 
(VaR) workload to evaluate OpenCL and OpenMP 
parallelization frameworks on multi-core CPUs as opposed to 
GPUs. In addition, we study the impact of SMT on 
performance using GCC (4.4) and IBM XLC (11.01) 
compilers for both single-precision and double-precision 
codes. We use an 8-core, 4-way SMT IBM Power7 with Linux 
(RHEL 6.0, 2.6.32 kernel) to evaluate OpenCL and OpenMP. 
Using the IBM XLC compiler, 2-way SMT is able to provide 
over 30% average improvement as compared to 1 SMT thread 
per core, whereas, 4-way SMT is able to provide over 50% 
average improvement as compared to 1 SMT thread per core.  

Keywords: HPC, Supercomputing, OpenMP, Finance, 
Multicore, OpenCL 

 

1 Introduction 
  The global financial crisis of 2008 has pointed to the lack of 
efficacy of financial models and systems to run those models 
efficiently. Smarter systems can help bridge that gap by 
providing programming frameworks that are easy to learn, use 
and deploy. Also these frameworks must support languages 
that are functionally portable and provide the maximum 
degree of performance portability. As systems are confronted 
with the diminishing returns of clock-speed improvements, 
they must turn to uncovering task and data parallelism in 
workloads to maintain performance growth. This is needed to 
efficiently use the increasing multitude of cores that are being 
provided on modern CPUs today.  Unfortunately, parallel 
programming is hard and significant research in academia and 
industry is attempting to bridge the gap between 
programmability, portability and performance [12].  
 

OpenMP [2] has emerged as the de-facto standard for 
programming SMP (Shared-Memory) machines using user-
provided compiler directives. The standard has also been 
extended recently to support accelerators and thread affinity 
[2]. OpenCL [1] (Open Compute Language) is vying to 
become the de-facto standard for programming accelerators. 
Originally designed for targeting graphics chips and 
accelerators, it is also emerging as a programming framework 
for parallelizing workloads on multi-core CPUs. In this paper, 

we investigate how OpenCL may be used for programming 
multi-core CPUs as opposed to GPUs (Graphics Processing 
Units). We compare the productivity and performance of 
OpenCL with OpenMP for multi-core CPUs. We also 
investigate how SMT (Simultaneous Multithreading) i.e. 
sharing of a CPU’s physical resources by use of multiple 
hardware contexts can improve performance. This paper 
investigates the use of SMT for computational finance 
workloads that tend to be compute bound. In this paper, we 
use the term SMT “degree” to indicate the number of SMT 
threads per core.  

 
Computational finance workloads are diverse in their 

computational characteristics. They tend to be sensitive to 
square root, exponential, logarithmic and reciprocal functions. 
They are run in single precision (SP) or double precision (DP) 
modes. A common practice is to replicate sequential 
implementations of these workloads across a large CPU 
cluster. In this paper we investigate how parallelism may 
benefit computational finance workloads. We built a VaR 
(Value-at-Risk) workload based on [3] and interaction with 
users at various conferences [13, 14, 18]. The VaR workload 
is rich with elementary math and transcendental math 
functions. It also displays significant amount of task and data 
parallelism.  

 
We begin by exploring the characteristics of computational 

finance system stacks for computational finance in Section 2. 
Section 3 describes the parallelization frameworks that we 
evaluate in this paper. Section 4 presents the system 
architectures on which the aforementioned parallelization 
frameworks will be run. Section 5 describes the workload and 
avenues for parallelization in this workload. Section 6 
describes implementation issues and Section 7 provides 
performance results with detailed analysis. Section 8 details 
the impact of performance evaluation. Section 9 discusses 
related work. Section 10 concludes the paper with future 
work.  

2 Computational Finance Systems 
 We participated in several conferences over the past few 
years and learnt that customers in the HPC finance community 
use Linux for their computational needs [13, 14, 18]. The use 
of x86 CPUs (which support 2-way SMT) is highly 
widespread in this community. We decided not to take this 
practice for granted and investigate higher degrees of SMT 
cardinality or “degree”. Users usually run models on R, 
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Matlab [15] or Mathematica [16]. They then convert this to 
C/C++ when the logic and mathematics become stable. The 
conversion to C/C++ allows programmers to check for 
numerical stability and convergence. There is a tendency to 
run these single threaded C/C++ programs by brute-force 
replication across large number of cores. The C/C++ code 
tends to be sensitive to sqrt(), log(), inv() and exp() 
performance.  
 

We decided to explore parallelization so that users could 
get speedups on their codes, execute models in a reduced 
amount of time and be able to trigger changes to their 
business process because of this newly attained efficiency. 
We decided to investigate OpenCL [1] and OpenMP [2]. 
OpenMP has been widespread in the HPC community where 
automatic thread parallelization is sought by using compiler 
directives. OpenCL has become popular in the HPC 
community as the medium for programming GPUs. In this 
paper, we investigate how OpenCL can be used for 
parallelizing codes across CPUs especially when they are 
enabled for SMT.  

Based on our user investigations and findings, we came up 
with the following requirements for systems that are suited for 
computational finance – 

 
1) Run Linux on HPC building blocks 

 

2) Support throughput computing using large number of 
threads or cores 

 

3) CPU should also be capable of high single threaded 
performance 

 

 

4) CPU, compilers and runtimes are optimized for 
sqrt(), log(), inv() and exp() performance. 
Additionally, they must support elementary math 
functions (e.g. IBM MASS [4] and linear algebra 
libraries (e.g. ESSL [4] and ATLAS)) with high 
performance 

 

5) Provide parallelization that is user-directed and 
performance portable across a given set of platforms 
by investigating OpenCL and OpenMP 

 

 

6) Provide the capability to port codes across new 
generations of hardware 

 

The workload-optimized stack structure for computational 
finance is shown in Figure 1.  
 

 
Figure 1. Initial Selection of Stack Components 

 

3 Parallelization Frameworks  
OpenCL (Open Compute Language) [1] is an open standard 

and is backed by a consortium of companies that has 
developed a framework for standardizing a high-performance 
computational language which is portable across a variety of 
platforms. Compute-intensive codes are packaged into a so-
called OpenCL “kernel” that can be task- and data-
parallelized. The OpenCL model is inspired from GPU 
programming (CUDA/OpenGL) and draws from the strengths 
of other parallel programming frameworks. The most 
fundamental action of an OpenCL kernel is to a “work item” 
and “work-items” are grouped into “workgroups”. 
“Workgroups” are scheduled to hardware resources e.g. cores. 
The IBM OpenCL compiler is available on IBM 
developerWorks for POWER and x86 and this paper uses 
v0.3 [7]. The host CPU schedules kernels on the attached 
accelerator or CPU cores and must also ship data required by 
the kernels.  
 

OpenMP [2] is a standard for parallel programming for 
shared memory machines and is backed by a consortium of 
companies. The user supplies OpenMP compiler directives to 
parallelize loops across resources. Operations like reduction 
are directly supported in the pragma. The standard is now 
being extended to support accelerators, thread affinity and 
embedded systems. IBM supports OpenMP pragmas in 
addition to its own pragmas for user-directed parallelization. 
We use OpenMP shipped with 2.6 Linux kernels for IBM 
Power7 for this paper. The OpenMP compiler generates 
pThread calls and pThreads are scheduled by the Operating 
System. We do not use any of the new OpenMP extensions 
for accelerators or thread affinity.  

4   System Architecture 
 

The system architecture used in this paper is a compute 
blade. This is essentially a multi-core system which is capable 
of large N-way SMT threads. We use the Power7 CPU [8] 
which has 8 cores and is capable of 4-way SMT for a total of 
32 SMT threads. The CPU runs Linux (RHEL 6.0 with a 
2.6.32 kernel). Both OpenCL and OpenMP may be 
parallelized across multiple CPUs. SMT threads are exposed 

 

                    NWay SMT-capable CPUs 

Linux 

Workloads 

Power7 

OpenCL OpenMP 
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by the Operating System as additional “logical” CPUs. 
OpenCL kernels and OpenMP threads are scheduled across 
multiple SMT threads. We use GCC 4.4 and IBM XLC 11.01 
for C/C++ code compilation. IBM XLCL v0.3 is used for 
OpenCL kernel compilation. We use the MASS [4] library 
(Mathematical Acceleration Subsystem) for optimized 
elementary and transcendental math functions with our C/C++ 
code. This is used as a high-performance alternative to the 
standard math library. In the next section, we describe the 
computational finance workload used to evaluate our system 
architecture.  
 

5   Risk Analysis Workload 
 

This section describes the risk analysis workload and its 
computational composition. We also highlight workload 
components where parallelism may be uncovered. The risk 
analysis workload uses the “value-at-risk” financial 
framework which will be described next.  The workload has 
been built with user input and is based on the mathematics 
described in [3].  
 

5.1  VaR – Value-at-Risk 
Value-at-Risk is the potential loss in value of a risky asset 

over a defined period of time for a given confidence interval. 
VaR is widely used in commercial and investment banks to 
capture the potential loss in a traded portfolio from adverse 
market movements for a given period, e.g. If the VaR of an 
asset is $ 100 million at one-week, 95% confidence interval, it 
means that there is a 5% chance that  the value of the asset 
will drop more than $100 million over any given period of 
one week. There are several popular computational methods 
used to calculate VaR – (i) historical simulation, (ii) variance-
covariance, (iii) Monte-carlo and (iv) Delta-gamma. This 
paper uses the Monte-Carlo method and will be described 
next.  
 

5.2  Monte-Carlo VaR 
A Monte-Carlo method is used to approximate the 

probability of outcomes by performing so-called “random 
walks”. “Random walks” simulate multiple trials of a random 
variable. In the case of VaR, portfolio returns over a given 
period of days is computed and then sorted. The largest loss 
corresponding to the VaR period is reported as shown in 
Figure 2. There are number of ways of computing portfolio 
returns over a given period but we use the Black-Scholes 
model to price financial instruments. In this model, the price 
of a financial instrument consists of log(), inv(), sqrt() and 
exp() functions in its closed-form representation.  

 
Figure 2. Value-At-Risk Distribution 

 

5.3 Monte-Carlo VaR Parallelization  

  
The Monte-Carlo VaR implementation pseudo code is 

below. As a first step, we provide the co-variance matrix 
which captures the portfolio details, the number of portfolios, 
number of Monte-Carlo simulations and the confidence 
interval. A number of parallelization strategies are possible. 
We could equally divide the portfolios across multiple cores 
and each of the portfolio groups could be computed 
concurrently. Alternatively, a single portfolio could be 
computed at a time and the simulations could be parallelized 
across multiple cores. We use the latter strategy. The values 
needed for random walks are computed using random number 
generation which can be computationally intensive. Each 
simulation prices a financial instrument using a closed form 
representation composed of log(), inv(), sqrt() and exp() 
functions. These returns (in currency units) are sorted and the 
partial distribution is sent to the root CPU for aggregation and 
merge-sorting. After all CPUs complete their computation, the 
root CPU forms a distribution similar to Figure 4. The VaR 
calculation picks the loss corresponding to the confidence 
interval from the sorted distribution, which is aggregated from 
all participating CPUs.  
 
1. Supply covariance matrix, number of portfolios, number 

of simulations and confidence interval 

2. For portfolio = 1…N  

3. do 

1. Compute random numbers 1..M 

2. For simulations = 1 … M  

3. do  

Compute portfolio return by pricing 
financial instruments in the Black-Scholes 
Model 

                End Loop 
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        4. Sort and form partial distribution of returns vs 
frequency 
        5. Send partial distribution to root CPU 
        6. Root CPU Merge-Sorts partial distributions 
        7. Root CPU forms aggregate distribution 
        8. Root CPU extracts VaR value from aggregate 
distribution 
End Loop 
 

6  Implementation Issues 
 

This section describes the implementation issues for 
OpenCL and OpenMP code. We used the Armadillo [17] 
library for implementing the VaR code, since it gave us 
function wrappers for BLAS and LAPACK libraries. In 
addition, it gave us matrix template classes. We used the 
cholesky decomposition and convolution operations as the 
principal linear algebra functions. Our elementary math 
functions included the erlang function, log(), inv(), sqrt(), 
rnd() and exp().  
 

6.1 OpenCL 
We encoded the entire Monte-Carlo simulation into an 

OpenCL kernel. We support both single precision and double 
precision calculations inside the kernel as a compile-time 
option. We did not pre-calculate random numbers but supply 
them to the kernel during execution. The IBM OpenCL 
runtime v0.3 reported upto 32 workgroups for the Power7 
blade with 32 SMT threads across 8 cores with 4-way SMT. It 
also reported a global workgroup size of 1024. We inferred 
that a single workgroup is being scheduled to each SMT 
thread and used a local workgroup size of 32. The OpenCL 
program evaluates a single portfolio at a time and the 
simulations for a particular portfolio are mapped across the 
local workgroup size of 32 work-items in a given workgroup. 
 

6.2 OpenMP 
For the OpenMP implementation, we compute a single 

portfolio at a time and parallelize the simulations across 
multiple SMT threads of the 8-way Power7 system. A single 
OpenMP pragma was needed to parallelize the simulations. 
  

7  Performance Evaluation 
We now describe the performance evaluation of the risk 

analysis workload for OpenCL and OpenMP 
implementations. We measure speedup and execution time 
against the number of SMT threads available on the system. 
We have an 8-way Power7 blade which is capable of 
supporting 32 SMT threads. The Risk Analysis Workload 
(VaR) is evaluated with a portfolio size of 10,000 and with 
112,640 simlulations. We measured each data-point three 
times and used the average in the plots below to eliminate any 
OS-jitter effects. We configured the Linux OS scheduler to 
schedule user-level threads on SMT hardware contexts in an 

even fashion so load is evenly balanced, e.g 11 threads across 
8 cores means that 1 SMT thread is scheduled on each core, 
while 3 cores have an additional SMT thread running.  Each 
user-level software thread is mapped to a single SMT thread. 
 

7.1  Single Precision Floating Point (SP) 
Figure 3 shows the execution-time performance of OpenMP  

(with standard math library, also called OpenMP-std-math), 
OpenCL and OpenMP-with-MASS implementations using the 
GCC compiler with –O3. MASS is the IBM Mathematical 
Acceleration Subsystem [4] library which is optimized for 
transcendental and elementary math operations. The OpenCL 
compiler (v0.3, XLCL) was used to compile the OpenCL 
kernel and then GCC was used to link and bind all object 
modules. The performance of the code with the standard math 
library performs worse than the OpenCL and OpenMP-with-
MASS implementations.  
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Figure 3. Execution Time vs SMT Threads (GCC, SP) 
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Figure 4. Speedup vs SMT Threads (GCC, SP) 

 
The OpenMP-with-MASS implementation tracks the OpenCL 
compiler performance until 11 SMT threads and then starts 
diverging. The OS scheduler schedules 8 SMT threads across 
8 cores and 3 threads across 3 cores, so 3 cores have 2 SMT 
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threads running. We ran the “perf stat” profiler and found that 
IPC decreases and cache misses of the GCC-generated code 
increases beyond 11 SMT threads. We attribute this to 
resource conflicts due to OpenMP thread data sharing using 
the highly-optimized MASS library. Enhanced MASS 
optimizations leads to reduced number of pipeline stalls and 
cache misses. Thus, they do not benefit from SMT. Note that 
OpenMP with the standard math library does not display this 
behavior as it does not provide efficient optimizations. 
OpenCL code compilation follows a two-step process and the 
IBM Power OpenCL compiler is able to do a better job of 
compacting thread and data state to avoid resource conflicts. 
4-way SMT on Power7 for this workload is able to provide a 
50% reduction in elapsed time at 32 SMT threads (four per 
core) over 8 SMT threads (1 per core) for the OpenCL and 
OpenMP-std-math codes.  
 

The speedup curves in Figure 4 show OpenMP-with-std-
math and OpenCL codes providing near-linear speedups but 
the OpenMP-with-MASS codes flattening after 11 SMT 
threads. This is easily attributed to enhanced optimization 
with MASS leading to higher floating point pipeline 
utilization that does not benefit by SMT. Additionally, the 
single thread performance of OpenMP-with-MASS is higher 
than OpenMP-with-std-math and slightly higher than 
OpenCL.  
 

We used the IBM XLC compiler to compile our codes and 
found that the OpenMP-with-MASS implementation does 
much better than the corresponding GCC-generated code of 
Figure 3. In fact, the OpenMP-with-MASS implementation 
equals or betters the OpenCL implementation using the IBM 
XLC compiler. The execution times are shown in Figure 5 
and the speedups are shown in Figure 6. The speedup curves 
of OpenCL are close to linear than OpenMP-with-MASS 
because the OpenMP implementation does better at execution 
time of 1 SMT thread but not at higher thread counts, as the 
enhanced optimization leads to optimal resource utilization of 
the floating-point pipeline and cache.  
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Figure 5. Execution Time vs SMT Threads (XLC, SP) 
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Figure 6. Speedup vs SMT Threads (XLC, SP) 

7.2  Double Precision (DP) 
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Figure 7. Execution Time vs SMT Threads (GCC, DP) 
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Figure 8. Speedup vs SMT Threads (GCC, DP) 
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Most codes in computational finance are run with double 
precision floating point and we discuss the results with GCC- 
and XLC-generated code. Figure 7 and Figure 8 show GCC-
generated code performance for OpenCL, OpenMP-std-math 
and OpenMP-with-MASS. The OpenMP-with-MASS code 
shows similar behavior as seen for the single precision case 
where the execution time elongates slightly at 12 SMT threads 
due to resource conflicts. In Figure 8, OpenCL and OpenMP-
with-std-math show close to linear performance but OpenMP-
with-MASS flattens after 8-10 SMT threads. This is attributed 
to the higher performance of OpenMP-with-MASS at 1 SMT 
thread. Additionally, the use of MASS leads to efficient code 
that utilizes floating point and cache resources efficiently, 
leading to poor speedups when physical cores are shared with 
SMT. 
 

Figures 9 and 10 show the performance of XLC-generated 
code. Both OpenMP-std-math and OpenMP-with-MASS 
performance exceeds the performance of the OpenCL code 
using the IBM XL compiler. This is attributed to better 
scheduling of code and resources in double precision mode by 
the XLC compiler leading to better utilization of the floating-
point pipeline. If Figure 9 is compared with Figure 5, where 
Figure 5 is XLC-generated code in single precision mode, 
OpenMP-with-std-math in double precision does better than 
corresponding single precision code. In comparison, XLC-
generated OpenCL code in double precision does worse than 
single precision code. We attribute the better performance of 
OpenMP-with-std-math code in double precision to better 
utilization of the floating point pipeline and instruction 
scheduling by the XLC compiler. In the case of OpenCL and 
OpenMP-with-MASS, both see reduced performance for DP 
code as the CPU can usually sustain more SP operation 
throughput than DP operation throughput. For DP code, 
OpenMP-with-MASS does much better than OpenCL as the 
XL compiler for C/C++ is able to do a better job of 
instruction scheduling and floating-point utilization than the 
XL compiler for OpenCL.  
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Figure 9. Execution Time vs SMT Threads (XLC, DP) 
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Figure 10. Speedup vs SMT Threads (XLC, DP) 

 
The speedup curves of Figure 10 show OpenCL code showing 
close to linear performance while the OpenMP code flattening 
around the 16 SMT thread region. This region involves two 
SMT threads sharing a physical core. The sublinear 
performance in this region is easily attributed to resource and 
cache conflicts.  

7.3  Impact of SMT 
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Figure 11. Impact of SMT Degree (XLC) 
 
Figure 11 shows the impact of SMT degree for the VaR 
workload using the XLC compiler. 2-way SMT gives an 
average of 33.4% improvement across OpenCL and OpenMP 
while 4-way SMT gives an improvement of 53% across 
OpenCL and OpenMP. For the 2-way improvement 
calculation, 16 SMT threads on the 8-core system (2 
threads/core) are compared to 8 SMT threads (1 thread/core). 
For the 4-way improvement calculation, 32 SMT threads on 
the 8-core system (4 threads per core) are compared to 8 SMT 
threads (1 thread/core). All comparisons are based on 
execution times of the VaR (Value-at-Risk) workload for 
different SMT thread counts using the XLC compiler.   
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8  Post-Evaluation Analysis 
For the homogeneous multi-core architecture, the learning 
curve for OpenCL can be steep. For OpenMP, we simply had 
to use a single-line OpenMP pragma to parallelize the entire 
program, although, we could only match OpenCL 
performance using the right choice of IBM compiler 
toolchains and libraries. With OpenCL, we can run the 
OpenCL kernel unchanged from a CPU to an accelerator like 
a GPU. OpenCL allows portable interface with accelerators 
but OpenMP provides ease of use with high-level OpenMP 
directives. We were able to match OpenMP and OpenCL 
performance using the right set of compiler tool chains and 
libraries. The stack of Figure 1 should be updated to reflect 
the use of IBM XL C/C++ compilers and MASS libraries. For 
programming homogeneous multicores, OpenMP with XLC 
and MASS seems to emerge as a formidable framework. It 
provides better productivity and can match OpenCL 
performance.  
 

OpenCL provides a portable way to program multicores and 
accelerators. For example, one may prototype programs on a 
multicore and then launch these on CPU-GPU clusters. 
OpenCL is a low-level mechanism to exact parallelism and 
performance. OpenMP relies on the compiler and so the right 
compiler tool chain and libraries is needed to match OpenCL 
performance. OpenACC [5] is a newly emerging standard that 
stipulates compiler directives for use with accelerators and 
provides best of both worlds – OpenMP and OpenCL.   The 
results of this paper reveal that 4-way SMT provided by the 
POWER architecture can lead to additional benefits by 
reducing execution time. In other words, if application code 
optimizations and compiler action are sub-optimal, SMT 
degree can be used to get better processor pipeline utilization 
and enhanced execution time. SMT is beneficial for the VaR 
workload because SMT threads are able to share instructions 
and data. 

9  Related Work 
[9, 10] focus on random number generation and their 
implementation complexity on the IBM Cell BE accelerator 
for value-at-risk calculations. They do not focus on 
understanding scaling issues and implications of programming 
models and frameworks. Similarly, [11] focuses on market 
risk calculations on GPUs (Graphics Processing Units). They 
also do not focus on scaling or use of parallelization 
frameworks. This paper uses CPUs for market risk 
calculations and investigates the use of SMT to increase 
processor utilization, while analyzing scaling.  

10  Conclusion and Future Work 
We evaluate OpenCL and OpenMP for both single precision 
and double precision VaR codes. We find that although 
OpenCL has a steeper learning curve, it provides good 
performance without use of additional libraries. OpenMP is 
based on user-directed parallelism but requires the right 
compiler toolchain (XLC) and library combination (MASS) to 
match OpenCL performance. The use of OpenCL and 

OpenMP parallelization frameworks can lead to better 
utilization of POWER cores using SMT. We find that SMT 
degree does help execution. We are currently evaluating a 
library that will allow OpenCL kernels to be dispatched onto 
attached blades from a large SMP system. This will allow 
computation to be scheduled close to data than moving data to 
the computation. We are also addressing how OpenCL 
kernels can be accelerated by explicit use of data parallelism. 
OpenCL allows portability of kernels across CPUs and 
accelerators. The new OpenMP directives [2] are also 
attempting to make OpenMP easy to program accelerators. 
OpenACC [5] is also headed in the direction of using 
compiler directives to program accelerators. As the race to 
find “Utopia” for parallelization frameworks continues, the 
systems community must constantly evaluate workloads 
against new system architectures. This will help determine 
which workload classes benefit from new and emerging 
parallelization frameworks.   
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Abstract – This paper presets results of computational finance 
experiments using map-reduce in Scala. We observe 
superlinear speedup, super-efficiency, and evidence for a high 
degree of compute and I/O overlap in the median runtimes 
using “naïve,” memory-bound, fine-grain, and course-grain 
parallel algorithms on three different hardware platforms.  
  
Keywords - Computational finance, map-reduce, Scala, actors, 
parallel programming, bond pricing, securities pricing 

1 Introduction 
Computational finance is a multidisciplinary field at the 
crossroads of mathematical finance and computer 
science. [29] The emphasis is on development and 
utilization of numerically intensive methods for pricing, 
risk analysis, forecasting, automated trading, and other 
applications. Map-reduce [3] is a framework generally 
to speed-up data analysis using distributed computing. 
While map-reduce has been applied to different problem 
domains, many of a data-intensive nature, almost no 
attention has been given to opportunities for 
computational finance as a mixture of floating point and 
data-intensive operations. 

Scala [23] is a modern, high-level Java Virtual 
Machine (JVM) language that blends object-oriented 
and functional programming styles with actors, a shared-
nothing model of concurrent computation inspired by 
physics theories. [13] Proponents have argued that Scala 
language features are suited to solving large-scale 
computing tasks on inexpensive, commodity multicore 
and multiprocessor platforms [11] in an expressive 
manner that avoids the concurrency hazards and run-
time inefficiencies of shared, mutable state programs. 
Indeed, the function-oriented style of Scala would seem 
to lend itself precisely to coding mathematical 
expressions which characterize quantitative operations. 

We endeavored to put Scala’s scalability claims to the 
test on a large quantitative problem, namely, finding the 
fair value of bond portfolios. We chose bonds because 
fixed income pricing theory is fairly transparent. [6, 14, 
29] Furthermore, the price of a bond informs or is 
closely related to a number of different financial 

instruments, including annuities, bond derivatives, and 
interest rate swaps, the most heavily traded financial 
derivative in the world. [14] Thus, we posit that the 
practical performance implications of bond portfolio 
analysis extend to scientific and technical computing. 

In this paper, we study several parallel algorithms in 
relation to two serial algorithms to price bond portfolios 
using map-reduce in Scala. For three different multicore 
platforms, the data generally show superlinear speedup 
and super-efficiency [9] in the median runtime that is in 
line with the maximum performance expectations 
published by the original equipment manufacturer 
(OEM) [15]. The data show that the parallel “naïve” 
algorithm, which assigns one portfolio per map function 
object, has median performance little different from, if 
not better than, memory-bound, fine-grain, and coarse-
grain parallel algorithms. In other words, the Scala actor 
model, which underlies map-reduce, appears to exploit 
hardware threads (i.e., “hyper-threads”) very efficiently. 
To our knowledge these findings have not be reported 
elsewhere. 

 The Scala source code we used in this study and 
detailed experimental results are available online [1,7]. 

2 Related work 
The literature shows enduring interest in speeding up 
computational finance algorithms [2,22,26], most 
notably using specialized hardware and ad hoc low-level 
programming techniques [19,22], which do not, in our 
experience and opinion as programmers, promote 
software reusability or programmer productivity. The 
literature furthermore indicates map-reduce is a widely 
accepted approach to speeding up computation for 
various problem classes, although many of these efforts 
appear to be of a data-intensive nature. [3,8,16,27]  Few, 
to our knowledge, have investigated computational 
finance applications. Zhang, et al [32] investigates map-
reduce for option pricing using the backward stochastic 
differential equation (BSDE) method. However, the 
focus there is on the computational aspect of solving 
BSDE; we consider the end-to-end process, namely, 
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compute and I/O phases that characterize more practical 
settings. Woo and Xu [31] use map-reduce to perform 
market basket analysis with Amazon’s EC2 service. This 
effort is geared toward data analysis, not computational 
finance; and cloud computing rather than parallel 
processing (i.e., speedup and efficiency) which is our 
primary focus. There is at least one cloud map-reduce 
framework for JVM languages [10], although this 
framework has have not been specifically designed for 
Scala. We instead use a pure-Scala map-reduce API 
from Haller and Sommers (H-S) [12].  Scala also has a 
library which is not actor-based in which it is also 
possible to employ map and reduce parallel functions 
directly on parallel-enabled collections (e.g., lists, 
arrays, etc.). [25] We do not investigate parallel 
collections here. 

3 Methods 
In this section we develop the methods of the paper. We 
discuss of bond pricing theory, portfolio valuation, the 
serial processing of portfolios in Scala, and the parallel 
processing of portfolios using map-reduce in Scala. 

3.1 Bond pricing theory 
A bond is a fixed income security. [6, 14, 29] For our 
purposes in this paper, we are considering only simple 
bonds, bi, defined by the 5-tuple: 

],,,,[ MTnCibi =  (1) 

i is an integer type which plays no part in bond pricing 
except to uniquely identify the bond in an inventory 
which we describe below; C is the coupon payment 
amount; n is payment frequency per annum; T is the 
time to maturity in years; and M is the face value due at 
maturity. The sum of the net present value of these cash 
flows, C and M, is the price of the bond. Thus, the fair 
value, P(bi,,r), of a bond, bi, is functionally defined 
follows: 
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The parameter, r, is the time-dependent yield or yield 
curve, the general discussion of which is beyond the 
scope of this paper. For simplicity sake without loss of 
generality, we use the United States Treasury on-the-run 
bond yield curve and interpolate between the tenors (i.e., 
bond maturity dates) using polynomial curve fitting. 

It is worth noting that Equation 2 informs a number of 
different quantitative finance calculations which is one 
of the reasons we have chosen to model bonds. The first 

term of the right hand side of Equation 2 is an annuity 
embedded in the bond’s price. The bond price also is 
used to calculate the conversion factor for bond futures 
and the fair value of bond forwards and bond options. 
Swap contracts, the most heavily traded financial 
derivative in the world [14], involve discounted cash 
flows similar to Equation 2. Indeed, the bond price itself 
may also be used in swap valuation. The point is that 
Equation 2 underlies and plays a part in a number of 
other quantitative finance problems and for this reason 
bond pricing is important as a kind benchmark 
computation. 

A portfolio is a collection instruments, in our case, 
bonds. The fair value, P(φj), of a portfolio, φj, with a 
basket of Q bonds is functionally defined as follows: 
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In other words, the portfolio’s value is the sum over 
the value of all its constituent bonds. 

3.2 Bond generation algorithm 
We generate simple bonds that model a wide range of 
computational scenarios. The goals are to 1) produce a 
sufficient number of bonds to mimic realistic fixed 
income portfolios and 2) avoid biases in commercial-
grade bonds that depend on prevailing market 
conditions. Specifically, we have the collections, n

r
={1, 

4, 12, 52, 365), T
r

={1, 2, 3, 4, 5, 7, 10, 30}, and  

δ
r

={0.005, 0.01, 0.02, 0.03, 0.04, 0.05}. We derive the 
parameters for a bond object from the bond generator 
equations below: 

M=1000 (4a) 
n = n

r
[•] (4b) 

T =T
r

[•] (4c) 

C = M / T × δ[•] (4d) 
where • is an integer uniform random deviate in the 
range of [0, s); and s is the size of the respective 
collection. We invoke Equations 4a - 4d a total of 5,000 
times to produce the bond inventory, V, which we store 
in an indexed document-oriented database that we 
describe later. 

We generate a portfolio by first selecting its size, that 
this, the number of bonds, Q, as per the equation below. 

ησ ×+= vQ  (5) 

η is a Gaussian deviate with mean of zero and one 
standard deviation. σ and v are configurable parameters 
set to 60 and 20, respectively. Finally, we construct a 
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basket of size, Q, bonds for a portfolio, φj , per the 
equation below.  

•=i  (6) 
where • is an integer uniform random deviate in the 
range of [1,|V|] and |V| is the size of the bond inventory. 
The universe, U, of bond portfolios are also stored in a 
persistent repository. 

3.3 IO design 
We store the inputs, the bond and portfolio objects, bi 
and φj in MongoDB, a document-oriented database. [20] 
We also store the outputs, the portfolio prices, in the 
database. A portfolio document, φj, does not contain the 
bond, bi, directly but a reference to the bond, namely, 
the bond’s primary key, i. In other words, the database is 
in third object normal form [17,19]. This means that to 
evaluate Equation 3 end-to-end, 2+Q accesses are 
required: one to fetch φj, Q to retrieve each bi, and 
finally one to update the portfolio with the price.  

3.4 Pricing algorithms 
All the pricing algorithms, serial and parallel, work with 
the database in the same way. They retrieve from the 
database the same subset, U’⊆U, of random portfolios 
and then retrieve the bonds that have been randomly 
assigned to a portfolio. The algorithms evaluate 
Equation 2 and Equation 3, and then update the database 
with the result of Equation 3. 

3.5 Serial algorithms 
There are two serial algorithms. Both algorithms price 
portfolios serially using a triple-nested foldLeft 
function, the inner foldLeft for Equation 2, the 
middle foldLeft for Equationn 3, and the outer 
foldLeft passes over all portfolios in U’. One serial 
algorithm fetches a bond from the database only when 
the bond is needed by the pricing function literal. The 
other serial algorithm, the “memory-bound” algorithm, 
works the same way except it pre-fetches into memory 
all the bonds that are needed by the portfolios.  
3.6 Parallel naïve algorithm 
The naïve parallel algorithm is so-called because it 
“naively” assigns one portfolio to a mapping function 
whose inner foldLeft evaluates Equation 2 and 
whose outer foldLeft evaluates Equation 3. The H-S 
function, mapreduceBasic method, relates portfolios in 
U’ to two functions: a mapping function and a reducing 
function. The prototype for our mapping function is 
below. 

def mapping(portfId: Int, 
                  r: List[Double]): 
  List[(Int,Result)] 

The parameter, portfId, is the portfolio id and the 
parameter, r, is the time-dependent yield curve. The 
return result is a list with one element, a two-tuple that 
has the portfolio id and the pricing result. The prototype 
for the reducing function is below 
def reducing(portfId: Int, 
                vals: List[Result]): 
  List[Result] 

Note that this function is trivial: it just needs to return 
the only element in the parameter, vals, list. 
3.7 Parallel memory-bound algorithm 
The parallel memory-bound algorithm is nearly identical 
to the naïve algorithm. The difference is that the bonds 
are first pre-loaded into memory from the database, just 
like the serial memory-bound algorithm except the 
transfer of bonds to memory is done in parallel with 
actors and task-level parallelism. However, the parallel 
memory-bound algorithm uses task-level parallelism 
using actors to load the bonds in parallel. The parallel 
memory-bound reducing function which H-S 
mapreduceBasic requires is the same as the naïve 
reducing function. The parallel memory-bound mapping 
function prototype is below. 
def mapping(portfId: Int, 
              bonds: List[SimpleBond]): 
  List[(Int, Result)]                 

3.8 Parallel coarse-grain algorithm 
The parallel coarse-grain algorithm uses the same 
mapping and reducing functions as the naïve algorithm. 
The difference is the coarse-grain algorithm uses the H-
S coarseMapReduce method which takes two extra 
parameters: the maximum number of mappers and the 
maximum number of reducers. We set the number of 
mappers and the number of reducers both to the number 
of processors which we get from the Java class, 
Runtime. The getRuntime().availableProcessors() 
method of this class returns the number of hyper-
threads, not the number of cores or execution units. [4] 
As far as we know, it is not possible to get the number 
of actual hardware execution units except from the OEM 
data sheets.  

3.9 Parallel fine-grain algorithm 
The parallel fine-grain algorithm is similar to the naïve 
algorithm. The difference in this case is its map function 
uses a single (non-nested) foldLeft to evaluate 
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Equation 2. The reduce function evaluates Equation 3. 
Thus, the prototype for the map function we pass to the 
H-S mapreduceBasic method is below. 
def mapping(portfId: Int, 
             bondId: Int): 
  List[(Int,Result)] 

The bondId parameter is the bond id which the 
mapping function uses to retrieve the bond object. 
However, since bond id cannot be known in advance, it 
corresponding portfolio was pre-loaded prior to 
invoking the mapping function. This pre-load time is 
taken into account in the runtime measurement. The 
portfId parameter is only used to link the bond price 
result with its portfolio which allows the reducer to 
reduce the bond prices properly. 

The reducing function sums all the bond prices by 
their portfolio id. The reducing function prototype is the 
same as the naïve algorithm. 

4 Experimental design 
In this section we describe the experimental design, 
including the hardware environment, trials, and speedup 
calculations. 
4.1 Environment 
The environment consisted of three hardware platforms 
of different Intel multicore processors. The table below 
gives the system configurations and year of introduction 
in each case. 
Table 1. Platforms 

CPU Clock Cores Threads RAM Year 
W3540 2.93  4 8 4 GB 2009 
i5-650 3.20  2 4 4 GB 2010 
T3300 2.50  2 2 3 GB 2008 

The clock is in giga-hertz and the year is the year the 
processor was introduced by Intel. The W3540 and i5 
systems run Microsoft Windows 7 Professional, Service 
Pack 1. The T3800 runs Microsoft Windows XP, 
Service Pack 3. The code is compiled by Eclipse 3.7 [5] 
using the Scala IDE plugin [28] version 2.0.0 with the 
64-bit JVM on the W3540 and i5 and the 32-bit JVM on 
the T8300.  
4.2 Trials 
To obtain statistically conservative results [8], we use 
the median result of 11 to 22 trials in which we observe 
the runtime performance for an ensemble of workloads 
of U’ portfolios randomly selected portfolios from a 
total of U=100,000 portfolios. Any given workload in 
the ensemble contains u=2x portfolios where 
x={0,1,2,3…10} for each trial. Since the mean number 
of bonds in each portfolio is 60 with a standard 

deviation of 20. The largest workload analyzes u=1024 
portfolios with an average of about 60,000 bonds total. 

We measured the serial algorithm time, T1, for 
processing an ensemble using each of the platforms 
listed in Table 1 above. We also measured the map-
reduce parallel algorithm time, TN, for naive, coarse-
grain, and fine-grain map-reduce algorithms. In the case 
of the memory-bound algorithms, we have given the 
compute and the I/O runtimes separately. The memory-
bound compute measurement is the median runtime to 
value the portfolios. The memory-bound I/O 
measurement is the median runtime to load the bonds 
into memory. 

To get a better understanding of how IO might be 
impacting the process, we furthermore separated out 
compute and IO phases by first loading all the bonds 
into memory before processing them in both serial and 
map-reduce cases. 
4.3 Speed-up calculations 
Given T1 and TN , we have the speed-up, R. 

NTTR /1=  (7) 

N is going to be the number of cores or execution 
units, not the number of hyper-threads. 

With R we have, e, the efficiency. 
NRe /=  (8) 

5 Results 
We run trials from u=1..1,024 bond portfolios. 
5.1 Parallel naïve results 
The results for the naïve ( ), memory-bound compute 
(+), and memory-bound I/O-only ( ) measurements for 
the W3540 are summarized in the graph below. 
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Figure 1. W3540 results 
Note that speedup, R, above the dashed line is 
superlinear and super-efficient performance. The 
corresponding numerical data for the W3540 for 
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u=1,024 bond portfolios for the naive algorithm is in the 
table below. 
Table 1. W3540 with u=1,024 bond portfolios 

 TN R e 
Naive 8.58 5.64 141% 

Memory-bound compute 7.13 5.60 140% 
Memory-bound I/O 2.50 2.37 59% 

The naive algorithm results for the i5 are summarized 
in the graph below.  
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Figure 2. i5 results 
The corresponding numerical data for the i5 for u=1,024 
bond portfolios for the naive algorithm is in the table 
below. 
Table 2. i5 with u=1,024 bond portfolios 

 TN R e 
Naive 16.87 2.90 145% 

Memory-bound compute 13.42 2.88 144% 
Memory-bound I/O 3.54 1.79 89% 

The naive algorithm results for the T8300 are 
summarized in the graph below. 
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Figure 3. T8300 results 
The corresponding numerical data for the T8300 for 
u=1,024 bond portfolios for the naïve algorithm is in the 
table below. 

Table 3. T8300 with u=1,024 bond portfolios 
 TN R e 

Naive 73.77 1.63 81% 
Memory-bound compute 67.34 2.16 108% 

Memory-bound I/O 8.07 1.51 75% 

5.2 Parallel fine-grain results 
The composite fine-grain results for the W3540 (×), i5-
650 ( ) , and 8300 ( ) are summarized in the graph 
below. 
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Figure 4. Fine-grain results 
The corresponding numerical data for the W3540, i5-
650, and T8300 for 1,024 bond portfolios for the naive 
algorithm is in the table below. 
Table 4. Fine-grain with u=1,024 bond portfolios 

 TN R e 
W3540 9.65 5.02 125% 
i5-650 17.93 2.73 137% 
T8300 78.52 1.53 76% 

5.3 Parallel coarse-grain results 
The coarse-grain results for the W3540, i5, and T9300 
are summarized in the graph below. 
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Figure 5. Coarse-grain results 
The corresponding numerical data for the W3540, i5-
650, and T9300 for 1,024 bond portfolios for the naive 
algorithm is in the table below. 
Table 5. 

 TN R e 
W3540 9.16 5.29 132% 
i5-650 19.55 2.50 125% 
T8300 79.20 1.51 76% 

 

6 Discussion 
The naïve algorithm appears to be the best performing 
overall end-to-end, achieving super-linearity and super-
efficiency for levels of u, depending on the processor 
type. For instance, the more modern processors, the 
W3540 and i5, realize super-linearity and super-
efficiency for u as small as 64. 

Most interestingly, I/O is broadly sub-linear which, by 
itself, is not surprising. However, I/O does not appear to 
be a processing bottleneck since the difference between 
compute and memory-bound compute plus memory-
bound I/O over the range of u appears to be 
insignificant. 

7 Conclusion 
This investigation of map-reduce for computational 
finance lead us to consider other avenues for future 
work. First, we would like to explore changes to H-S to 
support multiprocessor parallelism. Second, there are 
open questions on how to “shard” or parallelize the data. 
Finally, we had briefly mentioned Scala’s parallel 
collections. A very worthwhile study might examine 
parallel collections and compare the coding style and 
performance to H-S map-reduce. 
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Abstract 

Multicore processors have come to stay, fulfill Moore’s law and 

might very well revolutionize the computer industry. However, we 

are now in a transitional period before the new programming 

models, numerical algorithms and general computer architecture 

have been developed and the software has been rewritten. This 

paper focuses on the effects multicore based systems have on 

industrial computational fluid dynamics (CFD) simulations. The 

most significant finding was that five of the models ran faster when 

only one process was executed on each multicore node instead of 

two. In these cases the execution time was increased by between 

6.5% and 64% with a median increase of 10% when utilizing both 

cores. 

 

Keywords: multicore, cluster, non-uniform inter-process 

communication 

1 Introduction 

Getting the most out of any computer system, and especially a 

new architecture, has always been a challenging task. When new 

hardware technologies are introduced and put to use it is not 

obvious that the application performance will increase – even if 

the technology is immensely superior. The existing applications 

have been optimized to run on the current systems and they might 

not at all be suitable for the next-generation high-performance 

computers. The latest major addition is the introduction of 

multicore systems. 

As suggested by James Peery et. al. [1], at Sandia national 

laboratory, the execution time might increase if more cores are 

utilized. Using Sandia key algorithms they showed that when 

using sixteen cores the performance was barely on par with two 

cores. According to Arun Rodrigues this is  an issue to which the 

industry has no known solution and that often is ignored [1]. The 

addition of a second core could theoretically double the computing 

capacity of a computer node [2], however in many cases the 

bottleneck moved to another component. As pointed out by [3] [4] 

[5] the most notable is the processor versus memory size and bus 

ratio, both when it comes to latency as well as bandwidth. 

Traditionally high performance computer designs have tried to 

balance three factors [6]: Compute power, memory and I/O-

capacity. According to Vaughan et. al. [7] the new generation of 

COTS distributed parallel computers (clusters) [8] [9] has added 

inter-node communication capacity as a crucial factor. For 

Multicore processors Vaughan’s addition should be split into two, 

namely intra-node and inter-node communication capacity due to 

the non-uniform inter-process communication architecture.  

In this paper we present a, first study on the effects multicore 

based systems have on industrial computational fluid dynamics 

(CFD) simulations. Do multicore processors facilitate a decrease in 

execution time within the CFD area or will the already long 

execution times increase? During our investigation we found that 

for five of our nine models there were configurations in which the 

execution times increased by 6.5% to 63% when utilizing two 

cores in each processor instead of one. Six configurations paged to 

the hard drive due to lack of memory and were excluded.  

2 Multicore Architecture and Issues 

Typical modern computer architecture is based on a 

microprocessor, system memory, busses and various other 

components. Very much like the schematic overview in figure 1. 

All information that goes from the main memory to the processor 

has to pass through the system bus (Front Side Bus/FSB), the 

memory controller and the memory bus.  

 

Figure 1: Architectural overview of a modern computer 

In this section we go through the four mos t important systems 

in a computer; processor, memory, I/O-capacity and inter-process 

capacity. The three first are proposed by [6] with the addition of 

inter-node communication suggested by [7], although we find 

inter-process capacity to be a better description. Over the last 30 

years the execution speed of a microprocessor has increased from 

5 MHz to approximately 4 GHz. During this time many new 

techniques that improves the processors were introduced, such as 

pipelining and speculative execution as well as advanced 

instruction level parallelism. The old recipe of creating a faster 

processor by raising the clock frequency relied on the possibility to 
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manufacture smaller components inside the processors. Advances 

in this field are no longer possible due to the laws of physics. 

The solution to higher speeds taken by almost all manufacturers 

is multiple processor cores on the same chip. 

2.1.Memory Challenge 

So far the memory architecture shown in figure 1 has not 

changed notably between the single and multicore processors. One 

of the major challenges of the multicore systems will be to design 

a system that can keep up with the tremendous computing power 

in a single multicore chip. This puts enormous pressure on, among 

other things, the FSB and the memory subsystem. At the moment 

the memory subsystem, on its own, is not fast enough to keep up 

with a single core processor; as a result it utilizes a two to four 

level memory hierarchy of increasingly faster memories closer to 

the processor. When extra cores are added some memory problems 

might be fixed by adding additional memory levels [3]. 

By comparing the historical capacity of processors using the 

SPEC-benchmark [10] with the FSB and memory bus [10] [11] we 

find that the difference has increased quite drastically over the 

years. Consider an application that was written for a system in 

1993 and perfectly optimized for that “balance”, would on a 

modern computer wait for memory approximately 50% of the 

time. It is a crude comparison and it is based on using one core in 

the modern multi core chip. 

The problem of sustaining a high memory throughput to several 

processors is not a new problem for multiprocessor systems  [12]. 

However, there is a difference between using multiple processors 

and multiple cores. 

2.2.Inter Process Communication Challenge 

All but the simplest parallel and distributed applications 

implement some level of inter-process communication. One 

problem that arises with the introduction of multicore clusters is 

that they have a non-uniform inter-process communication 

architecture. There are at least two different levels of 

communication costs involved when passing messages in a 

multicore cluster, either over the loopback interface or over the 

network. 

Consider an application with four processes that implements 

message passing. If designed in 2003 it would be written to work 

well on Pentium 4 processors and gigabit Ethernet. 

When executing a 16 process job on 4 computers each equipped 

with 2 dual core processors. The inter-process communication will 

be even more non-uniform with the additional two different levels 

of intra-node communications. Especially when compared to the 

16 single core computers that the application was designed to be 

executed over. In that case the link capacity would still be 1/16
th

 of 

gigabit Ethernet, since it scales linearly. 

2.3. I/O Utilization 

The fourth important subsystem in regards to system balance is 

the I/O-subsystem. However the CFD applications that we focus in 

this investigation are very light on the I/O side. They only read the 

input files in the beginning of the execution and write the output at 

the end. Therefore we do not have any focus on the I/O utilization. 

 

3 Computing Platform and Benchmark 

Applications 

 

The aim of this experiment is to investigate the effect multicore 

processors have on applications in the Computational Fluid 

Dynamics (CFD) domain. Or more precisely, to determine if the 

efficiency of a simulation increases when two simulation processes 

are executed on each dual core node compared to one process per 

node.  

3.1. High Performance Computing Platform 

The Intel Core 2 is a common processor in many high 

performance environments. The cluster used in this investigation 

consists of 180 identical computers based on the Core 2 E6550 

processor. The E6550 is manufactured using 65nm technology and 

has 291 million transistors . 

The Intel Core 2 processor has two processor cores, each core 

has 2*32KB of private L1 cache (data and instructions), at the next 

level the cores share a 4MB L2 cache. Having a shared L2 cache 

has its benefits as well as drawbacks. While it allow cache sharing 

between cores and allowing the entire cache to be used by one of 

the cores as well as decreasing the cache impact of moving 

processes between cores it make the cores compete for the cache 

resources the hit latency is longer than for separate caches [12]. 

The memory controller and front side bus (FSB) of the Core 2 

system are located off-chip, i.e. the architecture mimics that in 

figure 1. The transfer rate of the FSB has a maximum capacity of 

10.6 gigabyte/s while the memory sustains 5.33 gigabyte/s per 

channel. The upper limit for fetching data from memory is limited 

to 10.6 gigabyte/s. However, for this to be achieved there has to be 

no other transfers affecting the busses. If the data is saved on the 

circuits in the same memory bank, the maximum theoretical 

transfer speed is 5.33 gigabyte/s. 

The STREAM benchmark [13] [14] was used to measure the 

sustainable bandwidth of the memory system for reference 

purposes. During several executions with different sized matrixes 

of a size between 48 and 1800 megabyte, the sustained bandwidth 

never exceeded 4080 megabyte/s. When the matrix size was 

increased to span both memory channels the total sustained 

bandwidth was even decreased to 3900 megabyte/s. 

The cluster is connected by a hierarchy of gigabit switches. 

During the experiments the computers were connected by a single 

gigabit Ethernet switch. A more detailed description of the 

hardware can be found in table 1.  

Table 1: Cluster computer and network equipment 

specifications. 

Processor Intel Core 2, E6550 

Clock Frequency 2.33GHz 

# of cores 2 

Hyper threading  No 

Technology  65nm 

Transistors  291 Millions 

L1 Cache  

 

32 KB code and 32KB data 

L2 Cache 4MB cache shared between cores, non- 
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 inclusive with L1 cache 

Front side bus Q35 

Frequency 1333MT/s 

Bandwidth 10.6 gigabyte/s 

Memory DDR2 

Size 2GB 

Specification PC2-5300 

# of channels 2, dual channel 

Frequency 667Mhz 

Bandwidth 2 * 5.33 gigabyte/s 

Measured 

Bandwidth 

4.08 gigabyte/s (STREAM [13]) 

3.2.Applications and Models Used 

Three applications were used in this investigation. Two 

commercial CFD applications; CFX [15] and Fluent [16] and the 

open source package Openfoam [17]. Nine CFD models, three per 

application, were used in the experiments. Since the behavior of 

these applications are dependent of the type of flow simulated so 

are the solution times. Three representative “real world” models 

were selected from two multinational high-tech companies for 

each of the two commercial applications. The CFX models ith 

Openfoam one real world and two research models from scientists 

were used together with Openfoam. Table 2 gives an overview of 

the models which have bearing on the aerospace domain. 

Table 2: Sizes and names of the nine models used in the 

evaluation. The Number of elements gives a first order 

approximation of the size of the model. 

Name CFX Fluent Openfoam 

M1 817 460 817 460 702 000 

M2 1 811 036 743 223 1 980 900 

M3 2 935 295 5 529 223 5 379 520 
 

 

 

The sizes of the models as well as the run-time differ between 

models. As an example the Fluent M1 require approximately 4 

hours to execute all the way through over eight nodes while Fluent 

model 2 require somewhere around 12 hours to complete and the 

M3 models need several days.  

Those knowledgeable in the area of computational fluid 

dynamics know that there are two basic ways to determine when a 

simulation should end, either by specifying the number of 

calculations (iterations) to run or by specifying some convergence 

criteria (transient) [18].  

When dealing with real world industrial applications and 

models one problem is that they are not well defined small units 

that execute in a minute. Real world CFD calculations are huge 

problems that often require tens of gigabytes of memory and take 

weeks to execute on a single computer. If all models in this 

investigation were to be executed all the way though it would 

require several years of runtime. In [19], Yang, et. al. however 

showed that a partly executed simulation fairly well matches a full 

execution of the code. Their empirical performance prediction 

results are constrained to cases where the problem and input sizes 

do not vary. 

To be able to perform this investigation we decided to limit the 

execution time of the experiments. It was decided that we would 

use the iteration method (mentioned above) to limit the execution 

time. Each model was executed, in parallel, over eight computer 

nodes, with one process per node. After 1000 seconds of 

execution, the executing iteration was extracted from the 

application log file. This iteration was then used as the stop criteria 

for all experiments with that particular model, ensuring the exact 

same number of iterations and execution behavior in all 

comparable runs for that model-application combination. In this 

way only the changes in the number of processes and hardware 

could be responsible for the changes in run-time.  

4 Experiment Setup 

To determine the usefulness of multicore processors within the 

engineering simulation domain, the nine (9) fluid simulations in 

table 2 and their corresponding applications were executed in two 

different setups, Single and Dual.  

Although utilizing the same hardware the difference between 

the two setups was that in the single setup each process is executed 

on one dual core node, as if it were a single core system, although 

the second core will execute various other system tasks. The dual 

setup on the other hand refers to when two processes are placed on 

each dual core computer node. 

This means that when executing a eight processes job the Single 

setup will use eight dual core nodes and place one process on each 

node, effectively only utilizing one of the cores for simulation 

purposes. The dual setup, however, would employ four computers 

and utilize both cores in all machines: using a total of eight cores. 

The models (table 2) were pre-partitioned into [2 4 6 8 16 32] 

partitions to be run in parallel by the same number of processes. 

This partitioning was done using the applications ’ default 

mechanisms. 

For the simulations where the amount of memory needed for the 

execution was greater than the available system memory (figure 3 

and table 6), thus forcing the systems to page to disk, was removed 

from the study. The reason behind this was that their execution 

times increase by several orders of magnitude. This threshold was 

reached earlier with the Dual setup since the node memory is 

shared between two processes. When adding more computer nodes 

and processes the amount of global memory effectively increases 

which in turn allow the applications to run entirely in memory. 

During the execution of the applications the run time was 

measured and the processor, memory and network loads were 

monitored. To calculate the runtime a timestamp were made before 

and after the execution of the pre-partitioned simulations. The 

timestamps were taken with the gettimeofday() system call which 

has a relatively high resolution (ms). Although compared with a 

runtime between 253 and 6388 seconds the error is negligible. 

The processor, memory and network loads were calculated as 

averages over 180 second intervals. These measurements were all 

made through the /proc kernel interface. One measurement set 

consumed ~8 ms of processor time, according to measurements 

done by strace [20].  

5 Results 

In order to investigate the effect multicore processors have on 

our three applications and the nine models  that were executed in a 
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Single and Dual core setups, see section 4. Figure 3 a-i) contain 

graphs depicting the results from the experiments. The black lines 

show the execution time of the Single setup, i.e. where one process 

is placed on each node, and the dashed line represents the Dual 

setup where two processes are placed on each dual core node. 

At a first glance the results look as one would expect them too , 

the Single setup for the same number of processes out performs the 

Dual setup, see figure 4. This was expected since the Single setup 

use two times the number of computers and effectively has twice 

the amount of memory, twice the level 2 cache (not applicable to 

all multicore processors) and an extra core to use for running 

operating system and other tasks, etc. 

 

Figure 4: The number of percent by which the Single setup 

outperforms the Dual setup for the same number of processes. 

This was the case for all models, apart from Fluent model 2, 

when divided into 32 processes as can be seen in figure 3 b). The 

dual setup outperformed the single with 22 seconds out of 341, so 

by ~6.5%. Fluent model 1 is not much larger and shows the same 

behavior, although the s ingle setup still outperforms the dual with 

3.5%, at 32 processes.  

In table 4 the speedups (scalability) of the different applications 

and models are listed. To compare both single and dual setups with 

each other the speedup of the dual setup uses the same baseline as 

the single. Thus all values for each model are normalized after the 

single setup with the least amount of processes. 

The speedup obtained when adding processes to the 

computation does not follow the theoretically best possible of Ts/P 

(time to execute simulation/number of processes) but for software 

in the CFD area scalability in this range is considered 

comparatively well [18] [21]. 

In table 3 we can see that when going from two Single to two 

Dual processes, i.e. from two cores on different computers to two 

on the same, Openfoam does not perform as good as the other two 

applications. Openfoam M2 models also shows a strange plateau, 

at 4 to 6 nodes as well as 8 to 16, where there is little to none 

scalability. Although for eight nodes it shows a decent scalability. 

Fluent M3 shows a similar, but not at all as bad, pattern between 

eight and sixteen nodes.  

Quoting the execution times and speedups based on the amount 

of processes the problem is divided into is a straightforward 

approach. However, when dealing with computer clusters and 

multicore processors the speedups and execution times depending 

on the amount of computers is of interest. 

Table 3: The execution time (T) of the different setups 

normalized to the equivalent lowest number single setup 

execution, TN. The norm was given the value 100. 

 

Model 

 

Setup 

Processes 

2 4 6 8 16 32 

 

Fluent M1 

Single 100 53 39 32 17 13 

Dual 110 58 42 34 19 13 

 

Fluent M2 

Single 100 57 48 34 22 18 

Dual 116 62 50 35 24 17 

 

Fluent  M3 

Single - 100 72 63 57 24 

Dual - - 86 73 68 28 

 
CFX M1 

Single 100 54 39 34 22 17 

Dual 130 69 49 41 32 24 

 
CFX M2 

Single 100 56 40 34 21 15 

Dual - 85 57 44 27 24 

 
CFX M3 

Single 100 55 41 35 23 18 

Dual - 80 60 44 29 24 

 

OFoam M1 

Single 100 47 31 24 - - 

Dual 150 72 46 34 18 - 

 

OFoam M2 

Single 100 52 53 26 - - 

Dual 163 85 88 44 43 - 

 

OFoam M3 

Single - 100 93 59 - - 

Dual - 269 147 59 41 - 

5.1.Dual core Processor Efficiency 

Turning to the less obvious result, for some models/setups the 

problem is actually solved faster when only one process instead of 

two is executed on each dual core computer node. This occurred at 

the higher number of computers and the speedup was between 

6.5% and 64%, see table 4 for details. For the lower number of 

computer nodes the Dual setup always outperform the Single – 

given that there is enough resources to execute at all. E.g. the 

Fluent M2 model required more than 4 gigabyte of ram and would 

there for not execute on 2 machines or less. Then as more nodes 

are added the time gap between the Single and Dual setups close 

and for 5 of the 9 models the curves actually switch place, leaving 

the Single setup to outperform the Dual for the higher number of 

nodes. 

 

Figure 5: The number of percent by which the dual setup 

outperformed the single setup for the same number of 

computers [2,4,8,16]. 
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 Figure 3: Run times of the 9 models when executed in 

[2 4 6 8 16 32] parallel processes. The black line 

(single) show the run time when one process is 

executed on each dual core computer. The dashed 

line (dual) show the runtime when two processes are 

executed on each dual core computer, i.e. one process 

per processor core. 
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The Single node executions that outperformed their Dual 

counterparts are listed in table 4 together with the speedup 

gained. Using Fluent model 3 as an example, the application 

actually solves the problem faster if you divide it into 8 parts and 

run it on 8 dual core processors compared to dividing it into 16 

parts and running one process on each core on 8 dual core nodes. 

Hence, if there are 8 dual core nodes it will take 8% longer time 

to execute the problem if you utilize both cores instead of just 

one. The same applies to all CFX models when executed on 16 

computers as well as for Openfoam model M2 when executed on 

8 computer nodes. For the Openfoam model M2 the speedup 

gained, when executing one process per computer instead of two 

was as high as 63%. 

Table 4: The following models execute faster when executed 

with one process on each dual core computer than when 

executed with two processes on each computer.  

Model # of computers Speedup for single 

Fluent M3 8 8% 

CFX M1 16 10% 

CFX M2 16 11% 

CFX M3 16 6,5% 

OF M2 8 64% 

 

Based on the results presented one can draw the conclusion 

that the generally most time efficient solution is to execute the 

CFD simulations according to the Single scheme. E.g. executing 

only one process on each computer; leaving the second core 

virtually unused. For the lower amount of processes the Single 

setup require two times the computers that the Dual setup. This 

effectively doubles the hardware investments, but using two 

times the processes also doubles the software license costs. This 

issue was investigated in [22] [23] where the conclusion was that 

the cost of adding hardware is preferred to the cost of the added 

software licenses. 

For Fluent and CFX the advantage seems to decrease as the 

number of processes increase but then raise again at 16+ 

processes, this statement is true for all but Fluent M2. As 

Openfoam goes the difference is even larger, here the Single 

setup outperformed the Dual for all number of processes  with 

between 29% and 40% (on average 32%), although this does not 

include the Openfoam M3 Single 2 and Dual 4 simulations since 

they did not fit completely into memory. 

6 Analysis and Discussion 

The most notable results from the investigation are those 

presented in figure 5 and table 4 – In these cases the application 

and model combinations execute faster with one core inactive on 

each compute node, i.e. when one process (P) is executed on 

each one of the dual core computer nodes (N) compared to when 

two processes are executed on the same number of nodes. 

The main issue is to determine if this behavior is dominated 

by hardware bottlenecks  or the software scalability. If an 

underlying mathematical or programming intricacy causes 

behavior, the application should behave the same as long as the 

number of processes are constant. If all resource demands are 

satisfied the Dual(P) and Single(P) runs would execute in the 

same amount of time. Since this is not the case to try to identify 

the resource(s) that Dual(P) uses more of than Single (P). We 

now continue with a more detailed analysis looking the three 

candidate resources suggested in section 2 above. 

6.1. Network Usage 

The investigated applications at hand communicate on a 

process to process basis. All processes can communicate with all 

other processes as well as carry out collective MPI operations, 

such as broadcasts and scatter-collect operations. A process in a 

Single setup that sends a message to another process will always 

send it thru the switch (1). Where Switch represents the amount 

of traffic traversing the switch, N is the number of nodes, P is 

the number of processes and M is the average number of 

Megabytes transmitted by each process to each other process. 

    

SwitchSingle = (N
2
-P)

 
* M 

      (eq. 1) 

A process in a Dual setup, however, will carry out a portion 

of its communication over the loopback interface but the larger 

part still goes through the switch. 

    

SwitchDual = (N
2
-2P) * M 

      (eq. 2) 

When comparing Eq. 1 and 2 it is obvious that the switch is 

subject to a higher utilization in the Single setup then in the 

Dual. However, in the Dual setup both processes on a computer 

node share the same network connection as well as the internal 

busses. The average load on each computer node is calculated as 

(switch/N)*(P/N). Nevertheless, consumed bandwidth is quite 

low. The Fluent M2 in 16 process Single configuration had the 

highest measured computer node communication 7.77 

megabyte/s. It is one out of ten configurations that had a node 

communication of more than 5 megabyte/s i.e. 40 megabit/s. All 

CFX and Openfoam models had a per node communication less 

than 2.5 Megabyte/s.  

Based on these numbers it is highly unlikely that the single 

process per machine performs faster than two processes per 

machine depends on the network resources. The increase in 

network utilization might impact the execution time in a 

negative way but not at all on the scale observed.  

6.2. Memory Footprint 

The investigated applications use a technique called bulk 

synchronous parallel [24], as do the majority of the industrial 

simulation codes in the CFD and FEM areas. This means that 

these applications at the global level hold a large matrix in 

memory of #E number of elements, where each element has a 

size of Esize in memory. The total memory size of the matrix is 

then #E * Esize. Considering the inherent memory footprint M of 

the application, one could naively expect the memory usage per 

process to scale according to eq. 3 below, where P is the total 

number of processes. 

 

M + (#E * Esize/P) 

      (eq. 3) 

However, all three applications use some optimization 

schemes to obtain higher performance. To avoid using the 

network too much some boundary data is stored with several 

processes. Instead of communicating, which in best case results 

in the introduction of network latencies and in the worst case 

bandwidth depletion, some elements are calculated and stored 

locally by several processes. The memory demands can thus 

more correctly be described by eq. 4, where Δ represents the 

amount of redundant information stored for optimization 

reasons. 

 

M + (#E * Esize/P+Δ) 
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      (eq. 4) 

As can be seen in figure 9 the amount of memory does not 

decrease linearly with the number of processes. For many of the 

cases the per computer memory usage actually increases with the 

number of nodes. Evidently RAM-memory shortage cannot 

explain why the applications execute faster when only one 

process is placed on each dual core computer instead of two.  

6.3.Memory Bandwidth 

Despite that each process is identical in both execution and 

memory demands regardless of it being executed by itself on a 

compute node or together with an additional process, there is an 

important difference in technical context. Even if the memory 

allocated for two processes still easily can be fitted into the main 

memory (see above), the number of memory accesses will be 

(more than) doubled.  

At the same time there is a major difference between the 

single and dual setup due to the shared L2 cache of the Intel 

Core2duo architecture. In the Single setup each process has a 4 

megabyte L2 cache while in the Dual setup it has to be shared 

between the two processes, and the processes works on two 

different datasets. Thus, while the number of memory accesses 

increases by a factor of two or more (inter process 

communication among other things will create some extra load), 

the available L2 cache will in practice decrease by a factor of 

two. It is consequently reasonable to suspect that this change 

will give raise to additional delays not present in the single 

execution setup. When the STREAM benchmark was used to 

measure the sustained bandwidth it never exceeded 4080 

megabyte/s, see section 3.1 for more details. 

7 Conclusion 

In this paper we investigated the impact multicore processor 

based clusters has on the execution of industrial simulations, 

namely computational fluent dynamics (CFD). Almost all new 

cluster installations are equipped with multicore processors, but 

according to our results it is far from trivial to determine if this is 

in fact a blessing or a curse. 

The most significant finding was that five of the models, ran 

faster when only one process (P) were executed on each 

multicore node (N). When two processes were executed on each 

node the execution time was increased by between 6.5 and 64% 

with a median increase of 10% in these cases. In general the 

trend is that at a low number of nodes two processes per 

computer, i.e. one process per core, outperforms once process 

per node, but as the number of nodes and processes increase the 

gap closes and eventually the single placement strategy wins. 

We evaluated four different possibilities, application 

scalability as well as processor, memory and inter process 

communication capacity as suggested by [6] as well as [7]. 

Application scalability was ruled out early since there were no 

scalability issues with the number of processes that were 

executed with one per computer node instead of two. The inter 

process communication capacity were also ruled out as a major 

contributor. Turning to the memory and memory bandwidth 

utilization it is obvious that the shared FSB and L2 cache of the 

Intel Core2duo architecture affects the performance. In the 

Single setup each process has a 4 megabyte L2 cache which in 

the Dual setup is shared and they work on two different datasets. 

Ultimately we draw the conclusion that it is not obvious that 

utilizing more than one core of a dual core processor is 

beneficial. Furthermore we know that there are several cases 

where it is a great deal better to only use one core, especially 

when factoring in the per process license costs. The reason 

behind this (technical) behavior is still unknown although it is 

likely that it is linked to the memory hierarchy, and it  is highly 

unlikely that it depends on the inter-process communication or 

the processor utilization. 
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Abstract— We consider two factors that can dominate per-
formances of fine grain parallel programming on multicore
machines:

• Cache coherency protocols, which preserve cache co-
herency and by this, add large overhead.

• The number of real kernel threads that are used to
execute the possibly large number of program threads
explicitly generated by the parallel constructs of the
program.

As for the first factor we designed a cache aware scheduling
scheme which, based on memory profile, schedules threads
such that cache misses are minimized. As for the second
factor, we implemented a lazy thread system, which replaces
threads with loop iterations and function calls- minimiz-
ing the number of real threads spawned throughout the
execution. These two techniques may be conflicting each
other since by reducing the number of real threads that
are generated we reduce the freedom degree of the cache
aware scheduler to minimize cache misses. We consider
ParC a programming language that is similar to OpenMP
but supports a more generalized scoping rules than OpenMP,
and designed a lazy thread system for it, enhanced with
cache aware scheduling. Our results prove that cache aware
scheduling can be effective even with very aggressive lazy
thread optimizations. The implementation of the scheduling
system is optimized for the MESI cache coherency protocol.

Keywords: Multicore, Cache, Lazy threads

1. Introduction
We consider parallel programming over a multicore ma-

chine wherein shared memory is simulated by maintaining
a cache coherency protocol, such as MESI [14]. For parallel
programming, we consider two parallel constructs that can
be freely nested: parfor(i = 0; i < N ; i + +){body}- A
parallel version of C for-statement generating a separate
thread for each iteration i. parblock{body1} : . . . :
{bodyk }- A parallel version of C block-statement generating
a separate thread for each bodyi The threads generated by the
execution of such programs should be executed in parallel by
different cores of the machine so that parallelism is obtained.
Accessing variables by such a code might imply use of
shared memory since the same variable can be accessed by
different threads executed on different cores.

One factor that can easily reduce the speedups of parallel
programs executed on a multicore machine is the overhead

involved with simulating the shared memory. Typically,
shared memory over a set of cores is simulated via a
cache coherency protocol, e.g., MESI [14]. MESI is a
distributed protocol that ensures values of shared variables
in the different cores’ caches and in the main memory are
consistent. In particular, MESI ensures that all the different
copies of a shared variable stored in the different caches and
the main memory have the same value when accessed. This
is done by invalidating copies at remote caches every time a
core updates a shared variable in its cache and updating the
memory. Consequently, a cache miss (accessing an invalid
copy of a shared variable) results in a bus transaction needed
to fetch a value from the main memory. A cache line is
always in one of the following states: Invalid, Shared (other
caches contain a copy), Exclusive (only this core contains
a copy), and Modified (local copy differs from the copy in
the main memory). Consequently read/write operations on
shared variables can lead to a bus-transaction that may slow
down the computation significantly (we measured a factor of
40 times slower for accesses that are not cache-hit). Thus it is
important to reduce the number of shared memory references
that are cache misses and incur bus transactions to the main
memory. Note that accessing two shared variables separately
by two threads that are executed in different cores typically
results in cache misses and bus transactions

In this respect it is natural to consider the possibility
of scheduling the threads that are generated during the
execution of a parallel program, such that the overhead of ac-
cessing shared variables is minimized. Consider for example
the following parfor executed on a multicore machine with
p = 2 cores:

parfor(int i=0;i<=n;i++)
if(i < n/2)

for(int j=0;j<i;j++) A[j]+=f(j);
else for(int j=0;j<i;j++) B[j]+=g(j);

Let Ti be the thread generated by the i’th iteration of the
above parfor and consider two possible schedules (where
Ti || Tj indicates that Ti executed by the first core and Tj

by the second core:

T0||T1;
T2||T3;
T4||T5;
. . . . . .
Tn−1||Tn;

and

T0||Tn/2;
T1||Tn/2+1;
T2||Tn/2+2;
. . . . . .
Tn/2−1||Tn;

Clearly, the leftmost scheduling will result in many cache
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misses and MESI bus transactions as the first half of threads
are executed in parallel repeatedly updating the shared array
A[] and similarly for the second half of the threads all
accessing B[]. The rightmost scheduling is significantly
better since when two threads are executed in parallel then
most of their shared memory references point to different
arrays. In this work, we consider ways to compute this
cache aware scheduling and execute it for a parallel
program. We propose a specific technique that is based on
memory profile analysis combined with simulation of the
MESI protocol.

Our cache aware scheduling is part of the thread system
that executes the parfor iterations and the parblock bod-
ies of the parallel program since it affects the scheduling
decisions made by the underlying thread system. Thus,
cache aware scheduling should be evaluated in the context
of the underlying thread system and not as a separate
optimization. For example, scheduling strategies in thread
systems are used to balance the execution time of the threads
between the different cores. Thus, cache aware scheduling
may potentially affect the ability of the underlying thread
system to obtain good load balancing between the core.
In this work we consider another aspect of thread systems
called ”Lazy Threading”, which can potentially conflict with
the ability to effectively execute cache aware scheduling.
Basically, lazy threading maximizes the number of program
threads (parfor iterations and parblock bodies) that are
executed sequentially as loop iterations (for parfor iterations)
or as local function calls (for parblock bodies), as opposed
to kernel threads. This is an important feature of thread
systems proposed by Goldstein et al. [10] implying that
the possibly large set of program threads can be statically
packed into a smaller set of threads which are actually
executed by the underlying thread system. A common simple
case of lazy threading is known as ”chucking” where the
n iterations of a parfor(i = 0; i < n; i + +){. . .} are
executed in parallel using p real threads each executing a
chunk of n

p iterations sequentially. For example, the thread
system of OpenMP automatically chunks all the iterations
of every parfor ignoring possible dependencies that might
exists between the different iterations of this parfor (though
OpenMP allows the user to specify the number of threads
a given parfor should use). In this way the large overhead
involved with thread creation, termination and preemption is
reduced. However, lazy threading can potentially reduce the
effectiveness of cache aware scheduling since it eliminates
most of the program threads reducing the number of possible
scheduling available for the cache aware scheduling. Figure
1 illustrates this problem showing a program that spawns
eight threads T3 . . . T10 via two parfor statements to be
executed on a multicore with p = 2 cores. Applying lazy
threading to the program of figure 1 will result in clustering
the threads T3 . . . T6 and T7 . . . T10 as two real threads,
which, as depicted in figure 1, will prevent efficient cache

aware scheduling. As depicted in figure 1 right bottom side,
the scheduler can potentially schedule T3 . . . T10 such that
no cache misses occurs if it avoides lazy threading. Thus,
in this work we would like to see if the reduced set of
threads that remains after lazy threading and even a highly
aggressive form of lazy threading still allow efficient cache
aware scheduling.
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T5

T6

T7

T8

T9

T10

miss

miss

miss

miss

core
1

core
2

parblock {

} : {

}

/* cacheline = 8 */
long A[4][8];
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no−miss
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chunking chunking

    for(int j=0;j<8;i++)A[i][j]=...;

    parfor(int i=0;i<4;i++)

    parfor(int i=0;i<4;i++)

    for(int j=0;j<8;i++)A[i][j]=...;

scheduling after scheduling without

T7T3 T4 T5 T6 T8 T9 T10

Fig. 1: Lazy threads prevent cache aware scheduling

We have implemented the cache aware scheduling and
the aggressive lazy threading for ParC [3]- a parallel pro-
gramming variant of C/C++ which is similar to OpenMP
commonly used for programming multicore machines. Thus,
the technique proposed here is general and can be used for
OpenMP and other thread-systems running parallel programs
over multicore machines.

The contributions of this work are as follows:
1) Developing a cache aware scheduling scheme for

MESI protocol, which to the best of our knowledge,
has not been proposed elsewhere.

2) Creating an aggressive lazy threading scheme that
maximizes the number of program threads that are exe-
cuted sequentially as function calls and loop iterations.
Previously suggested schemes for lazy threading did
not handle parfor constructs and while-loops whose
termination depends on shared variables modified by
other threads.

3) Showing that the combination of lazy threads and
cache aware scheduling is beneficial.

2. Thread systems and lazy execution of
threads

In order to execute a parallel program by a multicore
machine it is necessary to use a thread system that can exe-
cute the multiple program threads generated by the parallel
program on the small fixed number of available cores (typ-
ically 4-8). Basically such a thread system consists of two
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queues of threads: ready-queue containing thread’s control
blocks that can be executed and a suspend-queue containing
control blocks of threads that are suspended waiting for some
event to occur. Threads are pulled from the ready-queue,
executed for a while, stopped, and then their execution state
is stored in the ready-queue again. Threads that spawn new
threads due to nesting of parallel constructs are placed in the
suspend-queue until all its descendants threads terminate.
This general notion of ready-queues is basically valid for
any thread system. We use the term scheduler to describe
the module that is responsible for selecting the next set of
threads from the ready queue and assigns the thread to an
available core. Clearly, for a given state of the ready-queue
there can be many possible scheduling strategies: Round-
robin- selecting the oldest thread in the ready queue and
assigning it to the next available core. Random- selecting
k threads at random where k is the current number of
free cores. Random selection can improve load balancing
between the cores as described in [2]. Multiple-queues-
maintaining p (number of cores) ready/suspend-queues one
for each core and exporting newly spawned threads between
the different queues. In this case the scheduling strategy
includes rules for selecting the next thread for each core
from its ready-queue. It also includes rules for exporting
newly spawned threads between the different cores. For
example, we may decide to partition new threads spawned
by a parfor evenly between the cores’ ready-queues or send
them to a core whose ready-queue contains the least number
of threads out of all cores. There are several alternatives
to switching between a running thread and a suspended
thread waiting inside the ready-queue. One option is to use
time interrupts and switch threads after some fixed time
quantum, another alternative is that the compiler will insert
explicit instructions in the code of the threads causing it to
explicitly switch to another thread. Thus, a thread system
(TS) is a software module that consists of: ready-queue,
suspend-queue, scheduler, context_switch_mechanism and a
source of new threads which is the execution of the parallel
program. A multiple queue thread system is a fixed set of
TSi and rules for exporting new threads to the different
STis.

In this work we, use a three level TS model containing
the following levels: Kernel threads generated using Pthreads
[12] with one thread per core, User threads- generated by
Pth [8] forming a lighter thread levels driven by explicit Pth
context-switch instructions. A User-Level TS is generated
once per each Kernel Thread. Program threads- that are
even lighter threads that run to completion in lazy thread
mode that is explained next. A single thread at each user
level TS will execute the lazy TS. Lazy execution of threads
and Parallel loops load balancing are known concepts and
basically imply that a maximal number of parfor iterations
will be executed sequentially without generating any thread.

Feitelson and Rudolph addressed the issue of how a

multiprocessor should divide its processing resources among
competing jobs. [9]. Since then many researches were
done in the field of clustering threads into gangs and
scheduling them to run over multiprocessors. Recent work
of Nikolopoulos and Polychronopoulos [13] addressed the
issue of of data locality. Calandrino and Anderson [6] [5]
attempted to prevent a case in which two threads that use
different areas of the memory and use the cache inten-
sively run concurrently. Thibault, Namyst and Wacrenier
[15] [16] address the problem of poor scheduling APIs.
Chu, Ravindran and Mahlke [7] proposed a profile-guided
method for partitioning memory accesses across distributed
data caches. "Lazy threads" were proposed in [10] but in a
limitted form using fork operations only. OpenMP suggests
several keywords that allow the programmer to predefine
the scheduling scheme [4]. several works done in the field
such as [1] suggest to preserve spatial locality, by assigning
contiguous chunks of iterations to the same thread whenever
possible.

3. Proposed lazy thread mechanism
The simplest form of lazy threads it to partition the n

iterations of a parfor(i = 0; i < n; i++)Si to p chunks of
n/p iterations that are executed sequentially:

parfor(k = 0; k < n; k+ = n/p)
for(i = k; i < k + n/p; i++) Si;

We use a function selector(f, t, Si){ for(i = f ; i <
t; i + +) Si; } to execute a chunk of parfor iterations i =
f . . . t − 1. There are two cases in which a chunk cannot
be executed sequentially using loop iterations. In the first,
one of the parfor threads (say i) of a chunk (from f to t)
executes a context switch instruction. Note that the ParC
compiler should insert a context switch instruction only
inside those while-loops whose condition may depend on
the value of shared variables. In this case, it might happen
that such a while-loop (of ParC thread i) depends on a
"releasing" assignment that will be executed by one of the
remaining iterations (threads) of this chunk i + 1 . . . t − 1.
Thus, in case of a context switch, the selector function might
be forced to send the remaining t − i − 1 iterations to be
executed concurrently on a new user thread, in order to allow
the execution of the aforementioned “releasing” assignment.
The second case occurs when the i’th iteration spawns a new
parallel construct. Here, a new selector function should be
called by the current selector. The problem in this case is that
a local descendant of this new parallel construct might be
dependent on one of the remaining i+1 . . . t−1 siblings of
the spawning thread i. However, the remaining i+1 . . . t−1
siblings will not be executed until the new call returns.

In order to reduce the number of user threads that are
used during the execution, we must take care not to create
a new kernel thread whenever a spawn occurs. A spawn
request in thread i can be executed in one of two ways:
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either by sending the remaining i+1 . . . t− 1 threads to be
executed by another user thread, or by first executing the new
spawn locally (sequentially). Then, when all its descendants
terminate, local execution of the remaining i + 1 . . . t − 1
threads can be carried out sequentially. In our scheme,
we propose to delay the decision about how the spawn
should be executed, first we try to perform the remaining
threads sequentially, without spawning new threads, until
we discover that a descendant of the current thread i has
performed a context switch. If all the spawned descendants
of i have terminated without executing a context switch, then
the execution of the remaining threads i + 1 . . . t − 1 can
continue as if the spawn in i did not occurred. Otherwise,
a new thread will execute the remaining threads must be
created. This is because of possible dependency (through
shared variables in a while-loop) of this thread on one of the
remaining threads that can only be resolved by executing a
context switch.

The usefulness of this scheme for lazy threads is demon-
strated in the following example. Consider the execution of
the following program using the proposed scheme. There is a
spawn in the first thread i == 0. Thus, the range 1 . . . n

p −1
is stored in the remaining stack. The chunks of the inner
parfor contain a while-loop while(x), causing a context
switch to occur. Thus, the remaining iterations 1 . . . n

p − 1
will be executed concurrently by another thread. As a result,
thread i == 1 will set x = 0 and free the threads of the inner
parfor that are waiting in while(x). Thread i == 0 will
execute y = 0, allowing the termination of all the while(y)
in threads i = 2 . . . n. This is close to the optimal scheduling,
as most of the while-loops’ flags will be reset as soon as
thread i == 1 executes x = 0.

int x=1,y=1;
parfor(int i=0;i<n;i++) {
if(i == 0){
parfor(int j=0;j<n;j++){ while(x);}
y = 0;

}
else if(i== 1) x = 0;
else while(y);

}

4. The cache aware scheduling algorithm
In here we outline the main stages and detailes involved

with the cache aware scheduling. The cache aware schedul-
ing is executed using the following steps: Program execution
step- the program is compiled using the ParC compiler that
generate C++ program with suitable function calls to spawn
threads. The compiler implements the aggressive lazy thread
technique described earlier. The resulting code is linked
with the thread system and is executed in parallel on every
core. Figure 2 illustrates a snapshot in the execution of

a program where the lazy threading generated four user-
threads T1, T2, T3, T4 such that T1, T3 reside in core-0’s
ready queue and T2, T4 reside in core-1’s ready-queue. Note
that this implies that any profile information collected is
relevant only to the specific scheduling that occurs during
the program’s execution.

Fig. 2: Executing a program

Cache profile step- where each memory reference is
instrumented such that upon execution, a logfile containing
cache access statistics is generated. For every cache line Lj

and user thread Ti, we record the number of times Ti updated
a variable in Lj .(as depicted in figure 3). This number is
called Ti,j . In order to capture potential cost for threads
that run from different cores, we assume that each thread is
executed from a different core. The cache simulation used
here does not include cache associativity. Time intervals of
cache references are used to determine when two threads
have a possible cache conflict. Threads that originate from
the same parallel constract, e.g. , chunks originating from the
same parfor, are also considered conflicting. The potential
conflict cost generated from two conflicting threads Ti1 and
Ti2 is the sum of all minimums between(Ti1,j and Ti2,j)
where j represent conflicting cache lines for threads Ti1 and
Ti2.

Fig. 3: Cache statistics obtained for the execution of figure
2.

MESI profile step- where each memory reference is instru-
mented such that upon execution, a logfile recording MESI’s
bus transactions will be generated. The simulation refers
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to different threads as different cores. During execution
the MESI operation in each thread is fully simulated and
bus transactions resulting by accessing shared variables are
recorded. The information is collected such that for every
two threads < Ti, Tj > we record the number of bus-
transactions resulting from a consecutive accesses of Ti

and Tj to the same cache line. For example assume that
Ti updates a shared variable x residing in cache line L8

invalidating L8 in the remote core where Tj is executed.
Next Tj attempts to read y which is also mapped to L8. Thus,
Tj will cause a MESI bus-transaction which will increment
the counter of bus-transactions between Ti and Tj . These
type of threads will be defined as conflicting threads. The
cache simulation used here does include cache associativity.

Fig. 4: MESI statistics obtained for the execution of figure
2.

Unified profile step- where the Cache profile information
and the MESI profile information are unified. This is done
by first summing the common cache accesses between every
two conflicting threads < Ti, Tj > based on the information
in figure 3. Next we factor in conflicting threads information
collected during the MESI profile, for every two conflicting
threads < Ti, Tj > we add the half of the MESI statistics
as depicted in figure 5. Note that both profiles are needed

Fig. 5: Unifying MESI profile and the cache profile for
the execution example of figure 2. edge(Tin, Tim) =
0.5 ∗MESI(Tin, Tim) +

∑cache lines
j=1 minimum cache−

profile(Tin,j , Tim,j)

since:

• The MESI profile is more accurate than the cache
profile since it counts real bus-transactions skipping
cache references that do not lead to bus transactions.
For example, consecutive updates to a variable that is
in state Exclusive should not be counted.

• The MESI profile can be misleading as well since it can
only count bus transactions that occur between threads
that run concurrently. However, since the actual cache
aware schedule that will occur during the final run of
the program might be different than the original one
used for collecting the MESI profile, we might ignore
cache misses between threads that were not executed is
parallel in the original schedule.

• The reason for dividing the MESI profile values by two
when factoring it with the weights of the cache profile is
due to the fact that the Cache profile represents a set of
possibly bad events that can occur under any schedule
while the MESI profile is relevant only for a specific
schedule.

The unified profile also includes the number of memory
references executed by each thread (associated with every
node) Graph partition step- where we use a graph partition
package [11] to partition the nodes of the unified profile
graph into p clusters of threads such that:

• The total weight of edges connecting threads between
different clusters is minimized.

• The total weight of nodes in each cluster is about the
same.

In the cache aware schedule all the threads that were
allocated to the same cluster will be schedule to the same
core. The graph partition thus obtains good load balancing
while minimizing the number of bus transactions that are
likely to occur between threads that are executed on different
cores. Figure 6 depicts the resulting graph partition of the
unified profile graph.

Fig. 6: Graph partition of the unified profile graph of figure
5.

Final execution step- where the resulting graph partition
is recoreded into a configuration file that is used by a future
run of the program with possibly a different input. The
program must be recompiled with a suitable flag to avoid the
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overhead of the instrumented code used to collect the profile
information. Figure 7 depicts the resulting scheduling that
will occur when the program will be executed with specific
directions for the scheduler reflecting the graph partition
obtained by the profile gathering stage. It follows that the
resulting cache aware schedule reduces the expected number
of bus-transactions from 90 + 110 + 22.5 to 22.5 + 25.
Obviously, this is only an estimation and does not reflect
real numbers of bus transactions that will occur in an actual
execution.

Fig. 7: New execution guided by the graph partition of figure
6.

A final aspect related to the proposed technique is how
threads are labeled during the profile gathering stage and
in during actual execution of the program that is using the
resulting cache aware scheduling. Technically the labels of
threads should allow us to:

• Uniquely identify threads resulting from the different
parfors and parblocks of the program.

• Match between the set of threads generated during the
profile-state and the set of threads generated by a “final-
run”. Note that since the final-run will use a different
input than the one used for the profile run then the set of
threads that it generated can be different than the one
for which the cache aware scheduling was computed
with,

We thus use thread-labels that are based on the static nesting
structure of the program which is the same for both runs as
follows:

• Each parfor/parblock in the source code is assigned a
unique label, e.g., PF1,PB2, and so forth.

• Upon execution when a thread is generated its label is
concatenated to the label of the thread that spawned it,
e.g., for a three level nested parfor the innermost thread
labels will be of the form PF5.PF10.PF17.

• Iterations numbers are also dynamically concatenated
to the labels according to the range of iterations of the
selector() functions, e.g., PF110 : 20.PF577 : 198.

• Sequential executions of a parallel construct, such as
parfor will result in a rising sequential iteration number.

If a configuration file with a cache aware scheduling is

available, the scheduler at the current run will use the labels
to match threads to cores and implement the scheduling
in the order specified in configuration file. Threads whose
labels do not match the labels in the configuration file are
scheduled in the core that scheduled one of their ancestors
according to their label.

5. Experiments
We describe and analyze the results of running 7 known

benchmarks to compare OpenMP with ParC. The bench-
marks were downloaded for OpenMP and implemented for
ParC. We were extra careful to ensure that the ParC code
will be true to the original OpenMP source code, meaning,
no changes were made to the structure of the code in order to
give synthetic advantage to ParC. We used 8 kernel threads
for both OpenMP and ParC assuming two hardware threads
per core. The experiments in this section were conducted
on Core. i7 64 bit machine with Core. i7 920 processor, 48
Giga bytes of memory and four cores. In the following ex-
periment, we measure the performance improvement gained
from using the cache aware scheduling (lazy scheduling was
turned off by using eparfor). Not optimized, the code bellow
will spawn multiple threads, which most probably access the
same cache line in the same time from different cores. After
running the profiler, the threads will be grouped in such a
way that threads which share a cache line will be executed
from the same core.

The following experiments are public benchmarks used
to compare OpenMP vs ParC performance. ParC showed
a consistent advantage of X 1.2 shorter execution time
on various matrices sizes. For example the following table
contains the results for matrix multiplication:

Matrixes sizes 2000 2500 3000
OpenMP 24 49.5 90
ParC 20 41.5 75
Improvement Ratio 1.2 1.19 1.2

Table 1: OpenMP VS ParC Matrix multiplication compari-
son.

Other benchmarks include: NASA’s NPB2.3, Molecular
Dynamics (MD), a Clustering Algorithm, Game Of Life
(GOL), Hopfield Neural Network (HNN), and Discrete
Cosine Transform (DCT), Table 2 shows the improvement
obtained due to the use of our cache aware scheduling
summery of all of the above benchmarks:
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Abstract— The process of weather forecasting produced
by numerical weather prediction (NWP) models is complex
and not always accurate. Moreover, it is generally defined
by its very nature as a process that has to deal with
uncertainties. In previous works, a new weather prediction
scheme, Genetic Ensemble (G-Ensemble), was presented,
which uses evolutionary computing methods. Particularly, it
uses Genetic Algorithms (GA) in order to find the most timely
’optimal’ values of model closure parameters that appear
in physical parametrization schemes, which are coupled
with NWP models. The presented scheme showed significant
improvement of weather prediction quality and, moreover,
the waiting time for an enhanced weather prediction result
was reduced by executing a parallel G-Ensemble scheme
over HPC platforms. In this work, however, we test the
same scheme with different GA configurations regarding
its Crossover type and ratio, and by variating its initial
population size in order to get better predictions. The main
concern behind this work is to provide a more detailed
study on how the GA used in G-Ensemble scheme could be
tuned depending on the available computational resources
in operational scenarios. Finally, experimental results are
discussed of a weather prediction case using historical data
of a well known weather catastrophe: Hurricane Katrina
that occurred in 2005 in the Gulf of Mexico. Obtained results
provide significant enhancement in weather prediction.

Keywords: numerical weather prediction; HPC; genetic algo-
rithm; ensemble prediction; parameter estimation.

1. Introduction
It is generally agreed that weather has a widespread

impact on people’s personal and social lives, including
their jobs, their recreation, their safety, and their property.
When the weather is bad, many activities become more
difficult to perform. Commercial transportation slows down
on the roads, on the waterways, and in the air. Businesses
of all kinds are interrupted by bad weather. Power plants
and energy traders rely on knowledge of the weather to

This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974.
∗Corresponding author.
†This paper is addressed to the PDPTA conference.

operate their equipment and to deliver power to consumers,
government and business. Furthermore, accurate predicted
weather variables are critically needed for other environ-
mental modeling systems. For instance, wind direction and
velocity variables are needed as precise as possible to predict
the expansion direction and velocity of a fire propagation
disaster predicted by wildfire models.

Weather forecasting that predicts future weather state evo-
lution is realized mainly by Numerical Weather Prediction
(NWP) models that are commonly solved by means of
computing facilities. That is, a numerical weather prediction
is the process of guessing the future state of the atmosphere
based on current weather conditions. Mathematical models
are used to do the job, which treat the atmosphere as a
fluid. As such, the idea of numerical weather prediction is
to sample the state of the fluid at a given time and use the
equations of fluid dynamics to estimate the state of the fluid
at some time in the future.

On the other hand, from a computational point of view,
NWP models are considered as soft-real time large scale
applications. The importance of having a certain degree
of accuracy in the prediction in a certain time is a real
challenge. Many factors may determine the accuracy of the
predicted weather variables: the available computing power
for model execution, the model itself, and the input data.
Thus, ongoing research concentrates on methods to enhance
the process of prediction and get results of this process faster.

However, and as most simulation software works with
well-founded and widely accepted models, the need for
input parameter optimization to improve model output is
a well-known and often-tackled problem. Particularly, in
environments where correct and timely input parameters
cannot be provided, efficient computational parameter esti-
mation and optimization strategies are required to minimize
the deviation between the predicted scenario and the real
phenomenon behaviour.

With the continuously increasing availability of comput-
ing power, evolutionary and parallel optimization methods,
especially Genetic Algorithms (GA), have become more
popular and practicable to solve the parameter problem of
environmental models.

In [1], a study discussing the sensitivity of forecast skill to
a set of NWP model closure parameters (input parameters)
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is provided. Furthermore, G-Ensemble prediction scheme is
presented, which uses a GA to estimate ’optimal’ values
for these parameters for a certain forecast, in order to
enhance forecast skill. The proposed scheme showed signif-
icant enhancement in prediction quality. In this work, more
prediction results are presented and discussed regarding
different configurations and scenarios of the used GA in the
G-Ensemble prediction scheme. The aim of the presented
work is to show how better predictions could be achieved
by tuning the implemented GA in the G-Ensemble approach.

The rest of the paper is organized as follows: Section
2 gives an overview of NWP models, a NWP general
scheme, and a brief description of the Weather Research
and Forecasting Model (WRF), which constitutes the most
commonly used model for weather and meteorological pre-
dictions. Section 3 discusses the predictability sources of
error in NWP models and also describes the most widely
used methods for NWP enhancement in practice. In section
4, G-Ensemble) is described briefly. Section 5 discusses
experimental results obtained with a test case, where we
compare our proposal with other enhancement methods.
Finally, conclusions and future work are described in section
6.

2. Numerical Weather Prediction Mod-
els

Weather stems from the constant evolution of the at-
mosphere governed by physical laws. Using high-speed
computers to solve a complex set of mathematical equations
that represents the governing laws, NWP is a technique for
simulating the atmospheric evolution in order to delineate
the resultant weather changes. The variables involved in the
equations include wind, temperature, pressure and moisture
content. In principle, given the initial and boundary condi-
tions, the atmospheric variables can be numerically solved
as functions of time and form the basis of weather forecast.
That is, NWP is described generally as ”an initial-boundary
value problem”: given an estimate of the present state of the
atmosphere (initial conditions), and appropriate surface and
lateral boundary conditions, the model simulates (forecasts)
the atmospheric evolution. The more accurate the estimate of
the initial conditions, the better the quality of the forecasts.

Certain areas where atmospherical future conditions are to
be predicted are represented by three-dimensional uniform-
gridded-rectangles referred as domains or grids. The input
data, which describe an estimation of the actual state of the
atmosphere, are called initial conditions. Those initial condi-
tions are assigned to all points of the grid. The horizontal dis-
tance between grid points is referred as the spatial resolution
of both the initial conditions and prediction results. Regional
models (also known as limited-area models, or LAMs) allow
for the use of finer grid spacing (higher resolution) than
global models because the available computational resources

are focused on a specific area instead of being spread over
the globe. This allows regional models to resolve explicitly
smaller-scale meteorological phenomena that can not be
represented on the coarser grid of a global model. Hence,
a NWP model will predict the new values of the initial
conditions over future time scale.

The first step of a NWP process is to extract initial
conditions that are usually obtained from a global forecast-
ing. These initial conditions are assigned to the domain
grid points and, by means of the NWP model applied
over a time line, at each pre-defined time period, a new
3-dimensional domain is produced having new (predicted)
values of meteorological variables at all grid points.

The Weather Research and Forecasting model (WRF) [2]
is a widely-used numerical weather prediction system, which
is considered as a next-generation mesoscale numerical
weather prediction model designed to serve both operational
forecasting and atmospheric research needs.

WRF is composed of a variety of programs to facilitate
the prediction process. It includes modules for global terrain
data extraction, modules for real observation injection while
model integration, and modules for output post-processing.
It should be mentioned that although we have applied our
methodology to WRF, the proposed strategy is a model-
independent design, which could also be used with other
existing NWP models such as the PSU/NCAR Mesoscale
Model [3] known as (MM5).

3. Related Work
NWP models as well as the atmosphere itself can be

viewed as nonlinear dynamical systems in which the evolu-
tion depends sensitively on the initial conditions. Moreover,
weather prediction is, by its very nature, a process that
has to deal with uncertainties. The initial conditions of a
NWP model can be estimated only within a certain accuracy.
During a forecast, some of these initial errors can amplify
and result in significant forecast errors. Besides initial-
condition error, weather and climate prediction models are
also sensitive to errors associated with the model itself.
In particular, the uncertainty due to the parameterizations
of sub-grid-scale physical processes is known to play a
crucial role in prediction quality (e.g., [4]). Prediction errors
caused by the uncertainty in physical parameterizations is
commonly referred to as model errors. Weather predictability
errors are normally subject to two kinds of errors: initial
condition errors and model errors.

As it has been stated before, in the case of initial condi-
tions, input data is extracted from global forecasts. Normally,
global forecasts are conducted using domains of lower grid
resolutions (the distance between grid points is large). This
is due to the computational power needed if the whole globe
is to be predicted using finer grid spacing. As a result,
interpolations are needed to extract initial conditions from
lower resolution domains to assign them to local domains of
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higher resolution. Unfortunately, this process is not perfect
and the assigned values do not reflect the actual real state
of the atmosphere. This problem is generally referred as the
uncertainty of weather initial state.

On the other hand, physical parametrization is the repre-
sentation of sub-grid scale physical processes, that is, some
meteorological processes are too small-scale to be explicitly
included in NWP models. Hence, parametrization enables
the representation of these processes by relating them to
variables on the scales (the points of the gridded domain)
that the model resolves. For example, an important meteoro-
logical process is the surface flux of energy transmitted by
the terrain which helps in enhancing the prediction of other
important variables like near-surface temperature, sea surface
temperature and even near-surface wind velocity variables.
This process normally occurs in scales smaller than 1
kilometer, while NWP models predicts normally on domains
of grid-scales higher than 1 kilometer. Parametrization is
needed in such cases to represent this process on a certain
domain scale.

By figuring out the main sources of error in predictability
of NWP models, and over the past 20 years or so, stochastic
or ”ensemble” forecasting [5] became as a practical and
successful way of addressing the predictability problem as-
sociated with the uncertainty in initial conditions. Moreover,
several weather prediction centers have addressed this prob-
lem by developing operational ensemble prediction systems
(EPS) (e.g., [6]). The main idea behind an EPS comes from
the fact that the initial state of a certain variable should be
seen as a probability distribution and not as a unique value,
and thus, the ultimate goal of ensemble forecasting is to
predict quantitatively the probability density of the state of
the atmosphere at a future time. This is done by running
multiple forecasts, each of which is initiated with small
perturbations in the estimated initial conditions. Then, an
ensemble forecast is usually evaluated in terms of an average
of the individual forecasts (ensemble members) concerning
one forecast variable, as well as the degree of agreement
between various forecasts within the ensemble system, as
represented by their overall spread [7].

However, and although it has been realized that there
is a stochastic nature of physical parameterizations in en-
semble prediction (predictability is sensitive to variations
in physical parameters), it has not been straightforward to
develop theoretically sound, and also practical, formulations
for how to insert parameterization uncertainty into ensemble
development [8], [9].

4. G-Ensemble
In this section, Genetic Ensemble (G-Ensemble) approach

[1] for prediction enhancement is briefly described, as well
as the set of the model closure parameters targeted for better
estimation. The main objective of the presented scheme is
to enhance prediction quality by improving the estimation

of a set of NWP model closure parameters. The study
is focussed on finding ’optimal’ values of Landuse and
Soil closure parameter (the land surface parameters and the
impact they have are described in [10]). The optimization
of these parameters will serve as a prove of concept of
our method, which could be applied to other parameters.
These parameters are found in land surface physical schemes
(LSM) (e.g., [11], [12]) that are coupled to most NWP mod-
els. The proposed scheme consists of two phases: Calibration
Phase and Prediction Phase (depicted in Fig.(1)).

Considering that ti is the instant time from which the
meteorological variables are going to be predicted, i.e.
prediction is done within the period (ti-ti+n), Calibration
Phase starts at a time prior to prediction time and ends at
time 00:00 (ti) of prediction period, i.e. calibration is done
within the period (t0-ti). The process of closure parameter
estimation in Calibration Phase proceeds as follows:

1) at the beginning of Calibration Phase (time t0 in Fig.
(1): a sample of the targeted parameter values from
ensemble proposal distribution is generated (perturba-
tions in closure parameter values);

2) the generated parameter values are inserted to the
ensemble prediction model;

3) an ensemble of forecasts (the prediction model is
different for each ensemble member regarding the
targeted parameter values) is conducted to predict
meteorological variables at time ti, where real obser-
vations are available;

4) evaluation of a fitness function for each ensemble
member is done at time ti;

5) genetic algorithm functions (selection, crossover and
mutation) are used to generate a new ensemble dis-
tribution from the set of combinations of closure
parameters which score better predicting at time ti;

6) the process is repeated iteratively until a predefined
number of iterations, or an acceptable error value is
achieved.

The used fitness function depends on the number of me-
teorological variables to be better predicted.That is, if the
G-Ensemble is used to enhance prediction for one single me-
teorological variable, the root mean square error (RMSE)
as shown as shown in equation (1), is used to be the fitness
function for the GA. We refer to this approach as Single-
Variable G-Ensemble. Referring to equation (1), xobs is an
observed value of a variable x and xpre is the predicted one
for the same variable.

RMSE =

√∑n
i=1(xobs,i − xpre,i)2

n
(1)

In contrast, as it is necessary to enhance prediction for a set
of meteorological variables, the normalized root mean square
error (NRMSE), is implemented as the fitness function to
be minimized during Calibration Phase (equation (2)).
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Fig. 1: Two-phase prediction scheme; NWP is the a numerical weather prediction model. ti is time 00:00 of prediction process, t0 is a
time instant previous to Prediction Phase (initial time of Calibration Phase), ti+n is the future time to be predicted. ”OV ” is an observed
meteorological variable at time ti, ”PV ” is the predicted variable at the same time using a NWP model.

NRMSE =

√∑n
i=1(xobs,i−xpre,i)2

n

xobs(max) − xobs(min)
(2)

This approach is called Multi-Variable G-Ensemble. In
NRMSE equation, xobs is an observed value of a variable
x and xpre is the predicted value for the same variable. The
Normalized RMSE (NRMSE) is the value of RMSE
divided by the range of the observed values of a certain
variable. NRMSE indicates the error percentage of the
predicted value of a certain variable, compared to the range
of its observed values. In order to consider more than one
variable at a time, we evaluate NRMSE for all variables,
and then, we consider the addition of all of them as the
Multi-Variable fitness function.

Despite the fact that the objective in the presented ap-
proach is to minimize the RMSE or NRMSE in Calibra-
tion Phase, as the fitness function used for the evaluation of
ensemble members, other fitness functions can be applied in
the presented scheme. The GA could be oriented to minimize
any other targeted fitness functions.

At the last iteration in the Calibration Phase, the values
of closure parameters, which produced the least value of
RMSE or NRMSE, i.e. the ensemble member with the
best forecast skill score at time ti, is selected to be used
in Prediction Phase. This ensemble member is called: Best
Genetic Ensemble Member (BeGEM ). Our hypothesis is
that, for short-range weather forecasts, if the forecast skill
is improved in the Calibration Phase by a set of a calibrated
closure parameters then the same closure parameter values
will also improve forecast skill during Prediction Phase.

By now, in Prediction Phase, a deterministic forecast is
used in our experiments. In other words, the BeGEM ,
which is the ensemble member having the calibrated closure

parameter values is the single forecast to be conducted in
Prediction Phase. However, the produced BeGEM could
be integrated in any type of EPS considering perturbations
in initial conditions during Prediction Phase.

G-Ensemble scheme was extended in [13] to evaluate
ensemble members according to a window of observations
rather than ’one-point’ observation. Time windowing to the
optimization procedure was introduced and the performance
(prediction quality) of G-Ensemble was enhanced as the
used GA was better guided when more observation intervals
were considered in the evaluation of ensemble members.
Moreover, Parallel Multi-Level G-Ensemble was presented
in [14], where a multi-chromosome GA was implemented
in G-Ensemble scheme to optimize various sets of input
parameters and the whole scheme was paralleled using
Master/Worker paradigm and was tested on a HPC platform.

The obtained results showed significant improvements in
prediction quality and less execution times over classical
prediction scenarios. It should be mentioned, however, that
the implemented GA in G-Ensemble scheme was tested
in [1], [13], [14] using the same type of GA Crossover
and fixed Crossover and Mutation probability ratios. In the
next section, more experiments are conducted and discussed
regarding different execution scenarios, were different GA
configurations are introduced to G-Ensemble, in order to
evaluate the gained prediction quality in accordance to each
different configuration.

5. Experimental Evaluation
To test our approach, we used historical data of hurricane

Katrina [15], which occurred on August 28, 2005 in the Gulf
of Mexico and unfortunately caused the death of more than
1,800 persons along with a total property damage that was
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estimated at $81 billion (2005 USD). The objective of the
experiments is to predict the evolution of a meteorological
variable from time: 12:00 h. of the day 28/08/2005 to time
00:00 h. of 30/8/2005 (a period of 36 hours in which the
major effects of the hurricane were produced). The model
is configured to predict the evolution of meteorological
variables every three hours; and the spatial resolution of the
domain was 12km. The used NWP model in our experiments
was WRF and all Physics schemes were the same for all
experiments.

To get the evolution of meteorological variables at 12:00
h. of 28/08/2005, we used initial conditions of the atmo-
spheric state in the zone three hours before, i.e. model started
prediction from time 09:00 of 28/08/2005. For our approach
(G-Ensemble), the Calibration Phase started from time 00:00
of 28/08/2005 to time 09:00 of the same day.

The predicted variable in the following experiments is the
Latent Heat Flux (LHF W/m2) using the Single-Variable G-
Ensemble approach. However, it must be pointed out that
any other meteorological variable could have been used
and similar conclusions would be obtained. Examples of
such variables can be find in [1], [13], [14], where both
approaches of the G-Ensemble (Single-Variable G-Ensemble
and Multi-Variable G-Ensemble) are tested to enhance pre-
diction for a set of meteorological variables. The presented
results explore the sensitivity of G-Ensemble forecast skill to
some variations in its GA operations. In particular, we study
the sensitivity to the GA Crossover type (one-point and two-
points), to the probability to the initial GA population size
(initial ensemble members size) and, finally, to the number
of GA generation iterations in the Calibration phase.

The goal behind these tests is to provide a more completed
insight of the scenarios and possibilities of how to configure
an operational G-Ensemble according to the time allowed for
prediction process and to the number of computing resources
available. In the subsequent experiments, prediction errors
RMSE produced during Prediction Phase of two ways of
prediction are compared:

1) Single Variable G-Ensemble approach, with different
initial ensemble sizes, Crossover type and ratio, and
different number of iterations in Calibration Phase.

2) The EPS approach, which is used to refer to the
average error of an ensemble forecast conducted by
the initial ensemble members used in the first iteration
of Calibration Phase (an ensemble forecast such that
the prediction model is different for each ensemble
member regarding the targeted parameter values, these
variables are not calibrated).

Firstly, Fig. (2) shows an experimental result for a clas-
sical EPS prediction of 40 ensemble members (each of
which has a different combination of the targeted closure
parameters) to predict (every 3 hours) the evolution of Latent
Heat Flux LHF. The evolution of the values of LHF variable
was notably under-estimated in this case. Thus, it could

be easily concluded that there is a significant margin of
enhancement in prediction which could be achieved.
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Fig. 2: Classical EPS prediction results compared to observed
values.

In Fig.(3(a)), prediction error is shown by using the G-
Ensemble approach with different initial ensemble sizes to
predict LHF variable compared to the classical EPS of the
same ensemble sizes. The prediction error of the G-Ensemble
approach is also depicted alone for the sake of clarity in Fig.(
3(b)).
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Fig. 3: RMSE of LHF pediction. (a): Single-Variable G-Ensemble
prediction error Vs. Classical EPS prediction error. Results are of
classical EPS(x) and the BeGEM(x), where x refers to the initial
ensemble size. (b): A snapshot of (a) to demonstrate RMSE of the
different BeGEM(x).

The Genetic Algorithm was configured to iterate 20
times over an initial population size of 40 individuals. Its
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three main operators were configured as follows: Selection:
(elitism: best one of two), Crossover: (probability=0.7, type:
two points Crossover), and Mutation: (probability= 0.2). As
shown in Fig.(3), in all cases with different initial ensemble
sizes, G-Ensemble provides less error values in prediction
compared to EPS predictions with the same initial ensemble
members. A significant improvement in prediction quality is
always gained.

Additionally, it can be observed that increasing the size of
an EPS does not produce better results. Actually this happens
because EPS results represent an average of the predictions
of all ensemble members and, knowing that these members
are variated regarding their closure parameters in a random
way, using more members does not assure less average
error. In contrast, increasing initial ensemble size, which will
be calibrated iteratively by the G-Ensemble provides better
prediction results as observed in the same figure. That is,
by increasing the initial ensemble size in G-Ensemble, the
probability for finding better solutions through GA iterations,
also increases.

On the other hand, Fig.(4) shows the GA convergence in
the Calibration phase of G-Ensemble approach. As such, the
error of the best ensemble member through GA iterations
is depicted in the figure, using different initial ensemble
sizes. As it could be observed, the BeGEM produced after 10
iterations when G-Ensemble was conducted using an initial
ensemble size of 80 members, was equal or slightly better
than the same BeGEM, produced after 20 iterations when G-
Ensemble was conducted by 20 initial ensemble members.
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Fig. 4: Calibration phase: BeGEM performance through the Cali-
bration phase iterations for different initial ensemble sizes.

Then, according to the availability of computing re-
sources, their number and the interval of availability, a
certain scenario of the combinations between initial en-
semble size and number of iterations, could be selected.
Execution times and G-Ensemble scalability on HPC systems
for different combinations regarding the number of iterations
during Calibration Phase could be found in [14].

We also tested the G-Ensemble approach to predict the
same meteorological variable (LHF) by changing the type

of the GA Crossover during Calibration phase (Fig. 5(a)),
and by changing the GA Crossover probability (Fig. 5(b)).
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Fig. 5: BeGEM RMSE in prediction of LHF produced in (a):
using 1-point and 2-point GA Crossover in the Calibration phase,
and (b): using 2-point GA Crossover but with different Crossover
probability ratios.

The obtained results show that when G-Ensemble used
2-points Crossover in its GA during Calibration phase, pre-
diction results were slightly better, and the same happened
when Crossover probability was higher.

That is, when configuring the GA implemented in the G-
Ensemble scheme on a relatively small size of initial en-
semble members, better prediction quality could be obtained
by 2-points Crossover and higher Crossover probability.
Actually, this is due to the size of the initial ensemble
size (initial population size): by using 2-point Crossover
and a higher probability of Crossover operations, more
variations in ensemble members could be obtained during
each iteration of the Calibration Phase. This enhances the
ability of the GA to look for better solutions over small
initial populations, which is normally the case of NWP
executions, where ensemble sizes are normally up to 50
ensemble members.

The results obtained in our experiments confirm our
hypophysis that, on one hand, better estimation of model
closure parameter values enhances weather prediction qual-
ity and, on the other hand, the proposed Calibration Phase
leads to better estimation of closure parameter values by
tuning the used GA. Additionally, different scenarios could
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be applied in an operational G-Ensemble according to the
available computing resources by variating initial ensemble
sizes and the number of GA generation iterations.

We can conclude that G-Ensemble is a better choice
compared to classical EPS. As shown here, G-Ensemble
outperforms EPS in terms of parameter estimation but it
has been also shown in [1], [13], [14] that the proposed G-
Ensemble approach is cost effective computationally com-
pared to the classical EPS over a parallel computing en-
vironment. In those works many execution scenarios were
tested over a HPC environment, and the prediction quality
was significantly enhanced, whereas, execution times were
reduced in comparison with executions of classical EPS in
Prediction Phase.

6. Conclusions and future work
This work describes our ongoing research focused on

enhancing short-range weather forecasting by estimating
’optimal’ NWP model closure parameter values, using an
evolutionary computing method.

In [1], it was shown how forecast skill is sensitive to
model closure parameter values. Moreover, G-Ensemble pre-
diction scheme was presented, which aggregated a Calibra-
tion Phase to the prediction process, where these parameter
values were optimized to improve forecast skill. The G-
Ensemble prediction scheme showed a significant improve-
ment in prediction quality. Parallel Multi-Level G-Ensemble
was presented in [14], where a multi-chromosome GA was
implemented in G-Ensemble scheme to optimize various sets
of input parameters. Additionally, the whole scheme was
paralleled using Master/Worker paradigm and was tested
executing it over a HPC platforms. The obtained results
showed significant improvements in prediction quality and
less execution times over classical prediction scenarios.

In this paper, a complementary work is introduced by
conducting and discussing more experiments regarding dif-
ferent G-Ensemble execution scenarios, where different GA
configurations are introduced to G-Ensemble in order to
evaluate the gained prediction quality in accordance to each
configuration. As a result, it could be concluded that in
scenarios of limited number of the available computing
resources, where only small ensemble sizes could be applica-
ble, G-Ensemble scheme provides better weather predictions
by using 2-point Crossover in its GA, and also by using
higher Crossover probability ratio. On the other hand, in
scenarios where more computing resources are available,
and thus, larger ensemble sizes could be used, our results
showed that classical EPS does not enhance prediction

results by increasing initial ensemble sizes, whereas G-
Ensemble does. That is, forecast skill in weather predictions
could be enhanced almost linearly by G-Ensemble scheme
as the initial ensemble size increases.

These results encourage us to continue our research efforts
by testing our scheme over larger sets of model closure
parameters. And we are also planning to design methods that
handle real observations during prediction process deciding
their injection intervals at run-time in order to get more
reliable meteorological predictions.
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Abstract - This paper addresses the problem of the nD-
hypercubes interconnection networks rearrangeability that 
is the capability of such networks to route optimally 
arbitrary permutations under queueless communication 
constraints. The k-partitioning is an unifying paradigm of 
such routing. For a permutation which is not constituted of 
two sub-permutations on two disjoint (n-1)D-hypercubes of 
the nD-hypercube, it consists in decomposing it in an 
upstream permutation routable in k steps and two 
independent downstream permutations routable in n-k steps 
on two disjoint (n-1)D-hypercubes. To do so it is essential 
to know the minimum value of k for which such 
decomposition is possible, that is the permutation is k-
partitionable. This paper characterizes the permutations 
which can not be 1-partitioned that is which are non-1-
partitionable. The characterization alleviates enough the 
construction of such permutations for low dimensional 
hypercubes. The paper lists, if they exist, all the classes of 
such permutations on nD-hypercubes for n ≤ 3, and some 
classes for n = 4. 

Keywords: interconnection network; hypercube; 
permutation; routing; maximum matching of bipartite 
graph; graph partitioning 

 

1 Introduction 
 In the research for interconnection networks (IN), 
hypercubes constitute a very attractive alternative because 
of their incremental construction which confers them 
interesting mathematical properties which allow them to 
match with most of the IN performance criteria.  

 Several commercial parallel machines [1] have been 
built over the years and several theoretical and practical 
research works [2] have also been done on different aspects 
of their use as IN. Among the theoretical research, one of 
the most challenging is their rearrangeability that is, their 
capability to route any permutation in a number of steps 
that does not exceed the dimension, say n, of the 
hypercube. In [3], we proposed the k-partitioning paradigm 
to solve this still-open problem for high dimensional 
hypercubes. The paradigm consists in decomposing the 
permutation in an upstream permutation routable in k steps 
and two independent downstream permutations routable in 
n-k steps on two disjoint hypercubes. With this purpose, we 
gave a characterization of non-1-partitionable permutations 

which allowed proving, at our knowledge for the first time, 
formally the rearrangeability of hypercubes of dimension n 
for n ≤ 3.  

 This paper gives a new interpretation of this 
characterization which alleviates enough the construction 
and the identification of permutations which are not 1-
partitionable qualified in the sequel of non-1-partitionable. 
Indeed, the paper proves more easily that for n ≤ 2 there is 
no non-1-partitionable permutation. For n = 3 it lists all the 
classes of non-1-partitionable permutations. For n = 4 it 
exhibits all the non-1-partitionability models then lists 
some classes of non-1-partitionable permutations. 

 The remainder of the paper is organised in four 
sections. Section 2 recalls, from [3], the problem 
formulation and some basic definitions relative to 
hypercubes, permutations and routing. Section 3 surveys 
the state of the art on the optimal queueless routing of 
arbitrary permutations. Section 4 presents the mathematical 
foundations of the k-partitioning paradigm. Section 5, 
firstly establishes the new characterization of non-1-
partitionable permutations. Then it analyzes, through this 
new light on the problem, the non-1-partitionability on 
hypercubes of dimension n = 4. Section 6 concludes the 
paper. 

2 Problem Formulation 

2.1 Definitions 

2.1.1  n-dimensional hypercube 
 A n-dimensional hypercube, nD-hypercube, is a graph 
H(n) = (V, E) where V, the set of the nodes, is the set of 2n 
nodes u = (un-1un-2 …u0) with ui ∈ {0, 1} and E, the set of 
the edges, is the set of the pairs {u, v} of the nodes such 
that there is one and only one dimension i for which ui ≠ vi.  

 It comes from this definition that while a 0D-
hypercube is reduced to one node, a 1D-hypercube is 
obtained in interconnecting two 0D-hypercubes, a 2D-
hypercube two 1D, a 3D-hypercube two 2D-hypercubes. 
More generally a nD-hypercube is obtained in 
interconnecting two (n-1)D-hypercubes. As the 
interconnection of the (n-1)D-hypercube can be done in 
anyone of the n dimensions of the resulting hypercube, any 
nD-hypercube H(n) can be viewed as anyone of the n 
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2 

couples (H(n)
0, i, H

(n)
1, i) of (n-1)D-hypercubes where H(n)

x, i 
is obtained by restricting H(n) to its nodes u such that ui = x. 
Fig. 1 illustrates a 4D-hypercube viewed as the couple 
(H(4)

0, 3, H
(4)

1, 3). 

 

Figure 1.  A 4D-hypercube interconnecting two 3D-
hypercubes in the dimension 3 

2.1.2  Permutation 
 A permutation on a nD-hypercube H(n) is a one-to-one 
correspondence π, denoted (π(u); u = 0, 1, ..., 2n-1), which 
associates to each node u of H(n) one and only one node of 
H(n), π(u) =  (πn-1(u)πn-2(u) … π0(u)). 

2.2 Queueless Routing of permutations  

 Let π be a permutation on a nD-hypercube network 
with bidirectional links and a set of 2n messages of the 
same size each one located at one node u and destined for 
the node π(u). Routing π under queueless communication 
constraints consists in conveying all the messages to their 
respective destination through a sequence of global and 
synchronous exchanges of messages between neighbour 
nodes such that no more than one message is located at 
each node after each exchange step.  

 Because the messages have the same size, the 
complexity of such a routing is of the order of the required 
number of exchange steps. Therefore an optimal routing is 
the one with the minimal exchange steps. For an arbitrary 
permutation it is well known, from e-cube routing [4], that 
at least n exchange steps are required. 

3 Related Works 
 Optimal routing of permutations on nD-hypercubes is, 
since a quarter of century, one of the most challenging open 
problems in the theory of IN. It has so been extensively 
well studied and several communication models and 
routing paradigms have been used to that purpose.  

 In [5] Szimansky considers the offline routing in 
circuit-switched and packet switched commutation under 
all-port MIMD communication model. Under the circuit-
switched hypothesis he proves that, for n ≤ 3, any 
hypercube is rearrangeable. He also conjectured that 
routing can be made on the shortest paths, conjecture for 
which a counterexample has been given in [6] by Lubiw. 
Under packet-switched hypothesis he shows that routing 

can be made in 2n-1 steps. Under the single port MIMD 
communication model, Zhang in [7] proposes a routing in 
O(n) steps on a spanning tree of the hypercube. In [8, 9] 
Hwang et al considered online oblivious routing under 
buffered all port MIMD communication models. They 
prove that n steps routing is possible for n ≤ 7 and later for 
n ≤ 12 if local information are used. The better routings 
under the models viewed above are due to Vöckling [10]. 
He proves that deterministic offline routing in buffered all 
port MIMD model can be done in n+O(√nlogn) steps while 
online oblivious randomized one can be done in 
n+O(n/logn) steps.  

 For the more restrictive models, that is single-port, 
queueless, and MIMD communication model, the personal 
communication of Coperman to Ramras, according to 
Ramaras, and the works of Ramras [11] constitute certainly 
the leading ones. Indeed while Coperman gives the 
computational proof that arbitrary permutations can be 
routed in 3D-hypercube in 3 steps, Ramras proves that if a 
permutation can be routed in r steps in rD-hypercube, then 
for n ≥ r arbitrary permutations on nD-hypercubes can be 
routed in 2n-r steps. Recently, Laing and Krumme in [12] 
have introduced an approach which simplifies the problem 
enough to permit a human verification of the possibility of 
routing in 3 steps arbitrary permutations on 3D-hypercube 
and computer verification for the 4 steps routing in 4D-
hypercube. We also have addressed the problem with a 
paradigm similar to Laing and Krumme one that we call k-
partitioning. However instead of looking explicitly for a 
partition into 2k permutations, we look for a partition into 
two permutations on two disjoint (n-1)D-hypercubes 
routable in n-k steps. We proved in [3] that for n ≤ 3, 
arbitrary permutations which are in the worst, 2-
partitionable, case can be routed in n steps.  

4 Mathematical Foundations 
   Formally, the k-partitioning process comes down to 
the computation of a perfect matching in bipartite graphs. 
So in this section we first recall some basic notions and 
results on bipartite graphs. 

4.1  Bipartite graphs  

 A bipartite graph is a triplet G = (V1, V2, E) where V1 
and V2 are disjoint sets of nodes and E, the set of the edges, 
is the set of the pairs {u, v} of the nodes such that u ∈ V1, v 
∈ V2 and are connected. 

  The bipartite graph associated to a nD-hypercube is 
the one where V1 and V2 are two disjoint copies of the nD-
hypercube nodes and E is the set of the pairs {u, v} such 
that {u, v} is an edge of the hypercube or u = v. 

4.2 Adjacency matrix 

 The adjacency matrix of a graph is the matrix M 
whose rows and columns are indexed by the graph nodes 
and the components M[u, v] are such that M[u, v] = 1 if {u, 
v} ∈ E and M[u, v] = 0 otherwise.  
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 For a nD-hypercube, this matrix is anyone of the n 
(2x2)-blocks matrices whose extra-diagonal blocks, which 
express the interconnection of its two (n-1)D-hypercubes, 
are identity matrices and diagonal blocks are the adjacency 
matrices of its two (n-1)D-hypercubes. Table 1 illustrates 

the four adjacency matrices of the 4D-hypercubes. In 
dimension i the indexes of the rows and the columns of the 
matrix are the boldfaced numbers of the column and the 
row numbered i in boldfaced italic font. 

 
      Table 1. Adjacency matrices of 4D-hypercubes
 

3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 0 1 2 3 8 9 10 11 4 5 6 7 12 13 14 15    

1 0 1 4 5 8 9 12 13 2 3 6 7 10 11 14 15 

3 2 1 0 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 

0 0 0 0 1 1 1  1    1        

1 1 1 2 1 1  1  1    1       

2 2 4 4 1  1 1   1    1      

3 3 5 6  1 1 1    1    1     

4 8 8 8 1    1 1 1      1    

5 9 9 10  1   1 1  1      1   

6 10 12 12   1  1  1 1       1  

7 11 13 14    1  1 1 1        1 

8 4 2 1 1        1 1 1  1    

9 5 3 3  1       1 1  1  1   

10 6 6 5   1      1  1 1   1  

11 7 7 7    1      1 1 1    1 

12 12 10 9     1    1    1 1 1  

13 13 11 11      1    1   1 1  1 

14 14 14 13       1    1  1  1 1 

15 15 15 15        1    1  1 1 1 

 

4.3 Matching of a bipartite graph 

 A matching of a bipartite graph G is a one-to-one 
correspondence Γ which associates to each node u of a 
subset of V1 a node Γ(u) of V2 such that the set of all the 
pairs {u, Γ (u)} constitute a set of two-by-two non adjacent 
edges of E.  

 A matching is maximal if it admits no other edge 
without violating the non-adjacency rule of its components. 

 A matching is maximum (resp. perfect) if its 
cardinality is maximum (resp. =V1=V2). 

 The computation of a maximum matching is one of 
the main problems in the study of bipartite graphs. The 
main results about this computation come from the theorem 
of Berge [13] whose implementations led to several 
algorithms. 

4.4 k-partitionable permutations 

 Given a permutation π on a nD-hypercube H(n), 1et r 
be its optimal routing steps and, for x = 0 and 0 ≤ i ≤ n-1, 
let: 

- Sx,i (resp. Dx,i) be the set of the nodes u of H(n) such that 
πi(u) (resp. ui) = x; in fact Dx,i is the set of the nodes of 
H(n)

x,i, 
- Gx,i,k be the bipartite graph (Sx,i, Dx,i, E

k), k = 0, 1, 2, …, 
r-1 where {u, v} ∈ Ek if and only if there is a path of length 
less than or equal k, from u∈Sx,i, to v∈Dx,i, and a path of 
length less than or equal r - k from v to π(u), 
- Mx,i,k be the adjacency matrix of Gx,i,k, 
- Γx,i,k be a maximum matching of Gx,i,k. 

 π is said to be k-partitionable, for k < n,  in dimension 
i if there is a permutation Γ = (Γ0,i,k, Γ1,i,k) on H(n) such that 
α (resp. β) which associates π(u) to Γ(u) such that Γi(u) = 0 
(resp. 1) is a permutation on the (n-1)D-hypercube H(n)

0, i 
(resp. H(n)

1, i). α and β are then qualified of downstream 
permutations relatively to Γ which is qualified of upstream 
permutation. 

 π is said to be k-partitionable if there is a dimension 
for which it is k-partitionable. Otherwise it is non-k-
partitionable.  

 Some remarkable k-partitionable permutations are the 
ones such that Sx,i = Dx,i, which are the only to be 0-
partitionable, and the ones such that Sx,i ∩ Dx,i = ∅ which 
are 1-partitionable. As a consequence, in the sequel we will 
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consider only permutations on nD-hypercubes with n ≥ 1 
and which are such that  

Sx,i ∩ Dy,i ≠ ∅ for y = 0, 1. 

5 Characterization Of Non-1-
partitionable Permutations 

 The k-partionability is the guaranty for a permutation 
to be optimally routed, first in k steps and then in n-k steps 
as two distinct permutations on two disjoint (n-1)D-
hypercubes. In this intention, it is essential to identify the 
classes of non-1-partitionable permutations. In [3] we 
proved the following characterization. 

Proposition 1. A permutation is non-1-partitionable in 
dimension i of a hypercube if and only if one of the 
adjacency matrices Mx,i,1 contains a null column. 

 Let v be a node of the hypercube which corresponds 
to such a column in the dimension i. Then by construction 
of of the bipartite graph Gx,i,1, no of its neighbour nodes, u 
can belong to Sx,i. In other words, u can be a source node of 
no message destined for a node of Dx,i. Indeed, otherwise, 
for any such u, by definition, Mx,i,1[u, v] should be equal to 
1. Therefore any neighbour node u of v is a source node for 
a node of H(n)

x,i and necessarily, πi(u) = x. Reciprocally if v 
is a node of the sub-hypercube H(n)

x,i such that πi(u) = x for 
any of its neighbour node u, then the column associated to 
v in Mx,i,1 is null and necessarily, from the proposition 1, 
the permutation which induced Mx,i,1 is non-1-partitionable 
in dimension i. It follows: 

Proposition 2. A necessary and sufficient condition for a 
permutation π to be non-1-partitionable in dimension i, is 
that there is at least a node v of H(n)

x,i such that for any node 
u, neighbour of v,  

πi(u) = x. 

 In the sequel, a node v of H(n)
x,i whose neighbours u, 

including itself, are such that πi(u) = x will be called a x-
node.  

 It is obvious that for n ≤ 2, there is no non-1-
partitionable permutation on nD-hypercubes. Indeed if such 
a permutation, say π, did exist then according to the node 
labelling induced by Proposition 2, there would be at least 
two distinct nodes, say u and v such that  

π(u) = π(v) 

which contradicts the definition of a permutation. 

 Now let's examine how the characterization from the 
proposition 2 comes in various forms for n ≥ 3.  

 Firstly we will consider the case of the permutations 
on the 3D-hypercubes and then the one of certain classes of 
the permutations on the 4D-hypercubes. 

5.1 Non-1-partitionable permutations on 3D-
 hypercubes 

 Let π be a non-1-partitionable permutation on H(3). 
Then for any dimension i, there is at least a 1-node, say v, 
of H(3)

0,i such that for any node u neighbour of v, 

πi(u) = πi(v) = 1. 

As H(3) is constituted of 8 nodes then necessarily, for any 
other node w,  

πi(w) = 0. 

In particular 

πi(v) = πi(v⊕2j) = 0 for j = 0, 1, 2 

where ⊕ stands for the bitwise XOR and v for the opposite 
of v obtained by complementing each bit vi. In other words, 
v behaves similarly to v and therefore is a 0-node. They are 
the only nodes which behave such that. Furthermore for 
any node u of H(3),  

πi(u) = πi(u). 

Fig. 2 illustrates such a situation for i = 0 with node 0 as 1-
node. 

 

Figure 2.  Labelling of the 3D-hypercube nodes according to 
node 0 as 1-node in dimension 0 

 Thus, if π is non-1-partitionable on H(3), then for any 
node u and for any dimension i,  

πi(u) = πi(u). 

From where  

∑i=0,2πi(u)*2 i = ∑i=0,2πi(u)*2 i 

that is  

π(u) = π(u). 

 Now let's examine how to choose the x-nodes for each 
dimension. This is an essential question because any 
labelling π of the 3D-hypercube such that π(u) = π(u) is not 
a permutation. Indeed, for instance, if the same node is 
chosen in two different dimensions, then because the 
neighbour of a node is invariant whatever the dimension, 

1:1 

7:0 

5:0 

6:0 

4:1 

2:1 

0:1 

3:0 
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we obtain 4 nodes whose 2 of the destination addresses bits 
of the same weight are the same. Consequently whatever 
the choice for the remaining dimensions the resulting 
destinations can not lead to a permutation. At least two 
nodes will have the same destination. Fig. 3 illustrates this 
case with node 0 as 1-node for both dimensions 0 and 1. 

 

Figure 3.  Labelling of the 3D-hypercube nodes according 
to node 0 as 1-node in both dimensions 0 and 1 

 So, without loss of generality, we can consider node 0 
as the 1-node for the dimension 0. Then, considering the 
dimension 1, the only choices of 1-nodes are nodes 1, 4 and 
5 for which the only choices of 1-nodes for the dimension 2 
are respectively 2 and 3, 1 and 2, and 2 and 3; from where 
the decision tree of Fig. 4 where the numbers of the level 
dim i stands for the 1-nodes for the dimension i of the 
hypercube and πk for the non-1-partitionable permutations 
classes resulting from each branch. 

 

 

 

 

 

 

 

Figure 4.  A decision tree for the choice of the 1-nodes in 
the 3D-hypercube 

It can be easily verified that the resulting classes of non-1-
partitionable permutations are isomorphic to the following: 

π
1 = (3, 7, 5, 6, 1, 2, 0, 4), 
π

2 = (7, 5, 1, 4, 3, 6, 2, 0), 
π

3 = (7, 1, 5, 4, 3, 2, 6, 0). 

 Inversely, we can verify that if a permutation is of the 
class of π1, π2 or π3 then it contains a 1-node for any 
dimension and then is non-1-partitionable. From where the 
following proposition: 

Proposition 3. A permutation on a 3D-hypercube is non-1-
partitionable if and only if it is isomorphic to one of the 
permutations π1, π2, π3. 

5.2 Non-1-partitionable permutations on 
 4D-hypercubes 

 Again, let π be a non-1-partitionable permutation on 
H(4). Then for any dimension i, there is a x-node. On the 
contrary of H(3), it may exist more than one x-node. Indeed, 
the labelling of a x-node and its neighbours leaves several 
alternatives for labelling the remainder nodes. For this 
reason we have first to determine the maximum number of 
x-nodes admissible in H(4)

x,i for a given dimension i. Then, 
in the case of several x-nodes, we have to study the 
compatibility of all the x-nodes for all the dimensions in 
the sense that they lead to a permutation and finally to 
determine the corresponding permutations. 

 H(4)
x,i admits at most two x-nodes. Indeed the closer 

the x-nodes are the greater their compatibility is. But the 
closest three x-nodes are constituted of a sequence of nodes 
whose binary addresses differ on only one bit which leads 
to at least 11 destination nodes for 8 available ones. Thus 
there are two non-1-partitionability models in any 
dimension: the 1-x-node model and the 2-x-nodes model. 
In this study we restrict ourselves to the second model. As 
H(4)

x,i is a 3D-hypercube, three situations may happen 
according to the distance between the x-nodes: the x-nodes 
are distant of 1, 2 or 3. Without loss of generality, we can 
consider the case of the 1-nodes in H(4)

0,0.  

 Let node 0 be one of the 1-nodes. 

 Case 1. The 1-nodes are distant of 1. Let node 2 be 
the second 1-node. By definition of a 1-node, nodes 0, 2 
and all their neighbours, the half of H(4) nodes have to be 
labelled with 1. Consequently, the other nodes have to be 
labelled with 0. Fig. 5 illustrates this case.  

 

Figure 5. The labelling of H(4) nodes according to the 1-
nodes 0 and 2 

There is a data flow equilibrium that is a half of the nodes 
labelled with 1 and the other half with 0. Regarding the 
queuless constraint, therefore the labelling is consistent. 
We can observe that the opposites of the 1-nodes in H(4), 
that is respectively nodes 15 and 13 are 0-nodes. Moreover 
each x-node in H(4) is a x-node in H(4)

x,k where k = 1 is the 
dimension in which the binary addresses of the x-nodes 
differ. From the study of 3D-hypercube it comes that in 
each of the 3D-hypercubes H(4)

x,k, 

πi(u) = πi(u). 
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 Case 2. The 1-nodes are distant of 2. Let node 10 be 
the second 1-node. The resulting labelling is illustrated in 
Fig. 6. 

 

Figure 6. The labelling of H(4) nodes according to the 1-
nodes 0 and 10 

As previously, the labelling is consistent. We can observe 
that the nodes 7 and 13 are 0-nodes. Moreover each x-node 
in H(4) is a x-node in H(4)

x, k where k=1, 3 is the dimension 
in which the binary addresses of the x-nodes differ. Again, 
from the above 3D-hypercubes study, in each of the 3D-
hypercubes H(4)

x,k, 

πi(u) = πi(u). 

 Case 3. The 1-nodes are distant of 3. Node 0 being 
one the 1-node in H(4)

0,0, the only choice for the second 1-
node is node 14. The resulting labelling is illustrated in Fig. 
7. 

 

Figure 7. The labelling of H(4) nodes according to the 1-
nodes 0 and 14 

The labelling is not consistent. There are 10 nodes labelled 
with 1 against 6 with labelled with 0. This contradicts the 
fact that π is a permutation on H(4). 

 This analysis can be summarized by the following 
proposition. 

Proposition 4.  If a permutation on H(4) admits two x-nodes 
in H(4)

x,i then : 
a) it also admits two x-nodes in H(4)

x,i, 
b) both x (resp. x)-nodes are distant of 1 or 2 in H(4)

x,i 
 (resp. H(4)

x,i), 

c) each x-node remains a x-node in a different H(4)
y,k 

 where k is a dimension in which the binary addresses of 
 the x-nodes differ. 

 In the sequel, we will denote k(i) any dimension k such 
that each of the two x-nodes for the dimension i remains a 
x-node in a different 3D-hypercube H(4)

y,k.  

 Now we have to study how these two consistent 
models of non-1-partitionability self combine then how 
they mingle in the different dimensions of the 4D-
hypercubes to lead to a permutation. In this aim, it should 
be firstly noticed that, similarly to the 3D-hypercubes case 
and for the same reason, an admissible x-node can not be a 
x-node in two different dimensions.  

 First case, suppose that for each dimension the two x-
nodes are distant of 1. Then necessarily k((i) ≠ k(j) for any i 
≠ j. It can indeed be proved that if, on contrary k((i) = k(j) 
then in the two remainder dimensions, say r and s, k((r) = 
k(s). To that purpose, without loss of generality, it suffices 
to consider that i = 0, j = 1 and that in the dimension 0 the 
two 1-nodes are the nodes 0 and 2. The decision tree of the 
remainder 1-nodes choice is illustrated in Fig. 8 where the 
triplet (u, v):k of the level dim i stands for the two 1-nodes, 
u and v for the dimension i of the hypercube and k the 
dimension in which their binary addresses differ. 

 

Figure 8. A decision tree of the choice of two 1-nodes 
distant of 1 in each dimension of the 4D-hypercube 

It can be easily verified that no branch of this tree lead to a 
permutation.  

 Second case, suppose that for each dimension the two 
x-nodes are distant of 2. Without loss of generality, let 
nodes 0 and 10 be the 1-nodes for the dimension 0. Then, 
in the decision tree of the remainder 1-nodes choice, the 
only consistent 1-nodes for the dimension 1 are on one side 
(1,4) which lead to 10 as x-node for a different dimension 
and on the other side (4, 8) which in turn lead to (1, 2) 
which lead to 15, the corresponding 0-node of 0 according 
to Proposition 4, as x-node for a different dimension. In 
other words, there is no permutation on 4D-hypercube such 
that there are two x-nodes distant of 2 in each dimension. 

dim 1:  

(0,2):1 

(1,3):1 (4,6):1 

(8,9):0 (4,5):0 (1,5):0 (8,12):0 dim 2:  

(4,5):0 (6,7):0 (3,7):0 (1,5):0 dim 3:  

14:1 

12:0 

7:0 

10:1 2:1 

8:1 0:1 

6:0 

4:1 

11:1 3:1 

9:0 1:1 

15:0 

13:0 5:0 

14:1 

12:1 

7:0 

10:1 2:1 

8:1 0:1 

6:1 

4:1 

11:0 3:0 

9:0 1:1 

15:1 

13:0 5:0 

dim 0:  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 881



 Third and last case, suppose that there are two x-nodes 
distant of 1 for a dimension and two other distant of 2 for a 
different dimension. Again without loss of generality let 0 
and 2 be the 1-nodes for the dimension 0. It can be easily 
verified that for dimension 1 whatever the x-nodes distant 
of 2, they lead to a x-node considered for the dimension 0 
that is on one side the node 15 as the corresponding 0-node 
of the 1-node 0 according to Proposition 4 and on the other 
side the node 2. In other words the x-nodes distant of 1 and 
the ones distant of 2 can not mingle. 

 We can conclude this discussion by the fact that the 
only configurations which could lead to a permutation with 
two x-nodes in each dimension are the ones with two x-
nodes distant of 1 and such that k(i) ≠ k(j)  for i ≠ j for each 
dimension.  

 So, let's consider the decision tree of the x-nodes based 
on these choice criteria. It can then be easily verified that 
this decision tree leads to permutations which are 
isomorphic to the following: 

π
4 = (3, 11, 13, 15, 1, 10, 9, 8, 7, 6, 5, 14, 0, 2, 4, 12) 
π

5 = (7, 15, 9, 13, 3, 14, 11, 10, 5, 4, 1, 12, 2, 6, 0, 8). 

 The above analysis can then be summarized in the 
following proposition. 

Proposition 6. If a permutation on H(4) admits two x-nodes 
in each dimension, these x-nodes are distant of 1 and the 
permutation is isomorphic to π4 or π5. 

6 Conclusion And Perspectives 
 This paper has addressed the problem of the 
characterization of the non-1-partitionable permutations on 
nD-hypercubes with n ≤ 4 which is at the heart of the 
problem of the rearrangeability of the hypercube 
interconnection networks that is the capability of such 
networks to realize any permutation without conflict. Non-
1-partitionable permutations are the residual permutations 
which can not be optimally routed under the queueless 
constraint by the k-partitioning paradigm. So the 
understanding of their structure is an essential step towards 
the understanding of how to route them optimally. 

 We gave a new characterization of the non-1-
partitionable permutations which allowed inferring 
straightforwardly the impossibility of the existence of non-
1-partitionable permutations on nD-hypercubes with n ≤ 2. 
It also led to easier construction of instances of such 
permutations on 3D-hypercubes and, to our knowledge for 
the first time, allows building some classes, the ones with 
two x-nodes, of non-1-partitionable permutations on 4D-
hypercubes without computer simulation. 

 Our future work will consist in completing this study. 
It will extend the considered non-1-partitionability models 
to the 1-x-node ones. Then, beyond the study of how these 
models self-combine to produce permutations, it will 
concern the study of how these models mingle consistently 
with the 2-x-nodes non-1-partitionability models. 
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Abstract - In this paper, a performance analysis of a matrix 

diagonalization algorithm with Jacobi method on a multicore 

architecture is presented. For this, a block-based sequential 

algorithm was implemented using the CBLAS library, which 

improves classic sequential algorithms, and then an algorithm 

for the parallel resolution of the problem with the shared 

memory programming tool OpenMP is studied. Next, the 

experimental work is shown and an improvement in response 

time is observed as more threads/cores are used. Finally, a 

performance analysis (Speedup and efficiency) as the 

dimensions of the input matrix and the number of threads/ 

cores used increase is presented.  

Keywords: multicore architecture, parallel programming, matrix 

diagonalization, Jacobi, OpenMP. 

 

1   Introduction 

The demand for computational power by a large number of 

scientific applications has increased so much that the use of 

parallel platforms for their resolution has become essential. 

Even though single-core cluster architectures have become 

usual due to their cost/performance ratio versus large shared-

memory multiprocessor systems, nowadays machines with 

more than one processor are quite common. 

Multicore architectures appear as a response to the 

limitations for increasing speed in single-core processors due 

to thermal and energy issues. A multicore processor integrates 

2 or more cores in a single chip, which means that 

applications have to be adapted to be able to exploit the 

parallelism at a thread level provided by this architecture [1]. 

Similarly, several multicore machines can be connected 

through a network, which opens the possibility of having 

clusters with a large number of processors. 

The Jacobi method to diagonalize symmetric matrixes has 

applications in fields such as biometrics, artificial vision, 

digital signal processing, and so on [2][3][4]. As the volume 

of input data increases, the computation time required 

increases significantly. The combination of linear algebra 

libraries optimized for the underlying architecture, together 

with the power provided by a multicore, and a suitable 

parallel programming tool for such architecture, will allow 

reducing execution time.  

Two of the main performance analysis aspects in a parallel 

system are the Speedup factor (Sp) [5][6] and the Efficiency 

(E) that relates the Speedup with the number of processors (P) 

used [7]. 

Scalability is a third, very significant factor in parallel 

applications: problems usually “scale”, i.e., the volume of 

work to be done increases, and the architectures used can also 

“scale” by increasing the number of processors used. The 

effect of scaling workload and/or processors on the 

performance of parallel algorithms, considering Sp and E, is 

of interest. A system is said to be scalable if it can maintain a 

constant efficiency with increasing work and processors 

[5][8].    

The purpose of this work is to implement a parallel 

algorithm to diagonalize matrixes with Jacobi method, using 

the shared-memory programming tool OpenMP [9] and the 

Linear Algebra CBLAS library [10] in order to exploit the 

computation power of a multicore machine.  

Lastly, experimental tests are presented and an analysis of 

the performance obtained as the size of the matrix and the 

number of cores scale, is carried out.  

This paper is organized as follows: Section 2 includes a 

description of Jacobi method for real symmetric matrixes; 

Section 3 presents various implementations of the classic 

sequential algorithm, two implementations of the block-based 

algorithm (one using the CBLAS library), and proposes the 

parallelization of the block-based algorithm using OpenMP; 

Section 4 includes a comparative analysis of the execution 

times for the various sequential implementations with 

matrixes of different sizes, concluding that the block-based 

algorithm that uses CBLAS performs better, and it presents 

experimental evidence and an analysis of the performance 

(speedup, efficiency) obtained with the parallel algorithm as 

the input matrix size and the number of threads/cores used are 

increased.  

2   Description of Jacobi Diagonalization 

Method 

The problem of diagonalizing a symmetric square matrix S 

consists in finding an orthogonal matrix X that causes S to be 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 883



reduced to the diagonal form. Jacobi method allows finding a 

matrix X such that: X
T
*S*X = D. 

The elements in the diagonal of matrix D are called 

eigenvalues of S, and the columns of matrix X are the 

eigenvectors of S.   

2.1. Specific Case: Diagonalization of a 2x2 

Symmetric Matrix 

If S is a 2x2 symmetric matrix (Fig. 1.a), it can be 

diagonalized by means of the orthogonal matrix X that is 

shown in Fig. 1.b. This matrix is known as rotation matrix.  

 
Fig. 1. a) 2x2 symmetric matrix S. b) Orthogonal matrix X  

Since the purpose of the method is obtaining D, the values 

of cosine α and sine α must be such that the elements outside 

the diagonal of D are cancelled out. These values are 

calculated as shown in Fig. 2.  

 

Fig. 2. Calculation of the values sinα and cosα 

2.2 General Case: Diagonalization of an nxn 

Symmetric Matrix 

The general method [11] keeps a matrix X initialized as the 

identity matrix, where the eigenvectors of S will remain, and 

in each stage performs a series of rotations that update S and 

X until the maximum element in the upper triangle of S is 

lower than a selected threshold. 

In each stage, for each element Sp,q in the upper triangle, a 

rotation that cancels out such element is performed. The 

rotation matrix J (Fig. 3) will have the values cosine α, sine α, 

-sine α and cosine α at positions Jp,p, Jp,q, Jq,p, and Jq,q, 

respectively; it will also have a value of 1 on its diagonal, and 

0 on all remaining elements.   

The steps to follow for each rotation are:  

1. Calculate the elements Sp,p and Sq,q as follows 

Sp,p = S’p,p * cos
2
α – 2*S’p,q*sinα*cosα + S’q,q * sin

2
α 

Sq,q = S’p,p * sin
2
α + 2 *S’p,q *sinα*cosα + S’q,q *cos

2
α 

Notice that S’p,p , S’p,q and S’q,q are the values in S before 

this step.  This notation will be used from here on.  
2. Cancel out Sp,q and Sq,p. 

3. Replace the value in matrix S with the result obtained 

with the operation J
T
*S*J (omitting the positions updated 

in previous steps).  

4. Replace the value in matrix X with the result obtained 

with the operation X*J. 

 

Fig. 3. Rotation matrix J for the general diagonalization 

case. 

Thus, matrixes Ji
T
 and Ji will be multiplied by S until 

reaching the diagonal form. Matrix X is the result of the 

product of the Ji matrixes, and X
T
 is the result of multiplying 

the Ji
T
 matrixes (Fig. 4).  

 

Fig. 4. Multiplication of S and the rotation matrixes to 

obtain the diagonal matrix. 

3   Implementations of the Algorithm for 

Jacobi Diagonalization Method 

3.1. Classic Sequential Algorithm: 

The algorithm to solve the diagonalization problem does 

not need to have matrix J stored. The updates carried out in S 

and X during steps 3 and 4 of the method described in Section 

2.2 are replaced by the following operations: 

Si,p = Sp,i = S’i,p*cosα – S’i,q* sinα        for i=1..n, i ≠ p, i ≠ q  

Si,q = Sq,i = S’i,q*cosα + S’i,p* sinα         for i=1..n, i ≠ p, i ≠ q  

Xi,p = X’i,p *cosα – X’i,q*sin α    for i=1..n 

Xi,q = X’i,q *cosα + X’i,p*sin α    for i=1..n 

 

That is, during step 3, rows p and q and columns p and q in 

matrix S are updated; while during step 4, columns p and q in 

matrix X are updated.  

Two optimizations can be carried out in relation to the 

storage of matrixes S and X in memory:  
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- Since S is a symmetric matrix, it is possible to store only 

n*(n+1)/2 elements, n being the row and columns 

dimension of S, which allows avoiding unnecessary 
operations due to symmetry.  

- Since access to X is always through its columns, if the 

elements are stored in memory in column-major order, a 

better performance will be obtained. This is because 

every time the memory is accessed to look for an element 

in X, a block of elements that will be used in the short 

term is moved to cache memory.  This is known as 

optimization by spatial locality.  

 

3.2 Block-Based Sequential Algorithm: 

The development of new architectures requires the 

implementation of new techniques so that algorithms adapt to 

the underlying platform and thus obtain a better performance. 

The classic sequential algorithm described in Section 3.1 can 

be adapted to use linear algebra optimized libraries.  

In order to use the matrix operations available in the Level 

3 CBLAS library, a sequential algorithm was implemented 

for the diagonalization of matrixes using the block-based 

Jacobi method, which will be the basis for the parallel 

algorithm; for this reason, the matrix S is stored in full.  

This algorithm considers that the dimension of matrix S is 

n = N*r (Fig. 5), where N is the number of blocks in each 

dimension, and r is the dimension of each block. This 

algorithm is similar to the classic one. Each element SP,Q, with 

P,Q=0..N-1, will denote a block. Within the block, the 

elements will be referenced with indexes (p,q), where p,q = 

0..r-1. [12] 

 
 

Fig. 5. Matrix S, whose dimension is n=N*r. 

The method keeps a matrix X initialized as the identity 

matrix, organized by blocks the same as S, where the 

eigenvectors of S will remain. Each stage of the algorithm 

performs a series of rotations that update S and X, until the 

maximum element in the upper triangle of S is lower than a 

threshold previously selected. 

The operations in any given stage consist in cancelling out 

each block SP,Q in the upper block triangle in S. The steps to 

follow for each rotation are:  

1. Calculate Jacobi with the classic method over the 2x2-

block matrix formed by SP,P, SP,Q , SQ,P and SQ,Q. The 

eigenvectors will be in a 2x2-block matrix called auxX.   

2. Calculate the transposition of auxX, transpX. 

3. Apply rotations to matrix S 

a. SI,P= S’I,P*auxX0,0 + S’I,Q* auxX1,0  for I=0..N, I ≠P≠Q 

b. SI,Q= S’I,P*auxX0,1 +S’I,Q* auxX1,1   for I=0..N, I ≠P≠Q 

c. SP,I = transp0,0*S’P,I + transp0,1*S’Q,I  for I=0..N, I≠P≠Q 

d. SQ,I = transp1,0*S’P,I + transp1,1*S’Q,I  for I=0..N, I≠P≠Q 

4. Apply rotations to matrix X 

a. XI,P = X’I,P*auxX0,0 + X’I,Q*auxX1,0     for I=0..N  

b. XI,Q = X’I,P*auxX0,1 + X’I,Q*auxX1,1     for I=0..N 

 

 

3.2.1 Implementation with CBLAS.  

 

In the block-based algorithm, the updates to matrixes S and 

X (steps 3.a, 3.b, 3.c, 3.d, 4.a, and 4.b) involve a sequence of 

algebraic operations over rxr-sized blocks or matrixes, and 

copies of blocks to keep auxiliary data that are not carried out 

in the classic algorithm. The use of the existing linear algebra 

libraries allows performing matrix operations (Level 3 

CBLAS), achieving the best performance for a given 

architecture. [10] 

The function cblas_dgemm was used to reduce block 

multiplication and addition processing time, and cblas_dcopy 

was used to optimize block copying.  

 3.3. Block-Based Parallel Algorithm with 

CBLAS: 

From Section 3.2, it can be observed that a rotation carried 

out to cancel out an element SP,Q  will update rows and 

columns with index P and Q in S, and columns P and Q in X. 

Also, if we have two coordinate pairs (P,Q) and (P’,Q’), with 

P≠Q≠P’≠Q’, JP,Q * JP’,Q’ = JP’,Q’ * JP,Q. Based on these two 

premises, it is concluded that two or more positions can be 

canceled out in parallel, provided that their indexes are 

disjoint [13][14]. 

The parallelization strategy consists in carrying out the 

rotations simultaneously in each algorithm stage. The number 

of parallel tasks to be run in each stage is N/2, since their 

coordinates must be different, and their indexes will be 

calculated following the Chess Tournament strategy [15]. If 

there are more tasks than threads, they will be equally 

distributed.  

A task whose coordinate is (P,Q) consists in calculating the 

eigenvectors and eigenvalues of the 2x2-block submatrix 

formed by SP,P, SP,Q , SQ,P, SQ,Q with the classic sequential 

algorithm, independently. Then, matrixes S and X are updated 

as follows:  

- Rotations in S: since there may be several threads in this 

update stage, they must wait before starting (barrier 

synchronization); then, each of their columns will be 

updated (since each thread has coordinates whose indexes 

are disjoint). Then, after a second barrier synchronization 

stage, the rows in S are updated. The first synchronization 

prevents a clash between delayed threads currently 

updating rows in S and other threads that are about to 

  (
       
   

       

) 
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update the columns corresponding to the next tasks. The 

second synchronization prevents conflicts in case one 

thread is modifying its columns and another thread is 

updating its rows.  

- Rotations in X: these rotations modify only the columns 

and, since all tasks have different coordinates, they can be 

done in parallel.  

After carrying out these rotations, the threads can move on 

to complete their following task, and so forth until the current 

stage is finished. Next, the maximum of the upper triangle of 

matrix S is calculated in parallel, and then one of the threads 

calculates the set of indexes for the parallel tasks in the next 

stage (following the Chess Tournament strategy). This last 

step must be done sequentially because of data dependencies.   

For the following step, each thread independently verifies 

the termination condition, from the maximum value of S 

obtained before, and, based on the result obtained, the 

algorithm is ended or a new stage is started.  

3.3.1 Implementation with OpenMP. 

OpenMP [9] is an API for the C, C++ and Fortran 

languages that allows writing and running parallel programs 

using shared memory and offers the possibility of creating a 

set of threads that work concurrently to exploit the advantages 

of multicore architectures. 

The implementation of the parallel algorithm to solve 

Jacobi method with OpenMP loads the input matrix S and 

sequentially initializes matrix X.  

Next, a set of threads is created, as many as cores are 

available in the multicore architecture, and they initialize in 

parallel the structure with the indexes of the tasks to be run in 

the first stage.  

In each stage of the algorithm, each thread will take a 

consecutive set of parallel task indexes and will follow the 

steps described in Section 3.3. When all the tasks in a stage 

have been executed, the threads calculate in parallel the 

maximum of the upper triangle in S by applying a reduction 

operation. Then, one of them updates the set of parallel task 

indexes for the next stage, following the Chess Tournament 

strategy.  

4   Results 

Tests were carried out in a machine with two Intel Quad 

Core Xeon E5405, 2.0Ghz processors. Each core has a 32-Kb 

L1 cache for data and a 32-Kb cache for instructions. Each 

pair of cores shares a 6-Mb L2 cache. Available memory is 

10Gb RAM. 

All times were measured with the function omp_get_wtime 

from the omp.h library. The tests that are compared in 

Sections 4.1, 4.2 and 4.3 were carried out over matrixes with 

identical data and identical precision (0.0001), since 

convergence times depend on the input data and the precision 

selected. The same is valid for Section 4.4, which assesses the 

scalability of the parallel algorithm.  

4.1. Classic Sequential Algorithm 

Four versions with different methods for storing matrix S 

and matrix X were implemented: 

- Version 1: it stores the entire S by rows and X by rows 

- Version 2: it stores the entire S by rows and X by columns. 

Optimization by spatial locality in X. 

- Version 3: it stores only the upper triangle for S, and it 

stores X by rows. Storage optimization for S and lower 

number of operations by symmetry.  

- Version 4: it stores only the upper triangle for S, and it 

stores X by columns.  

Table 1 shows the execution times for each of the versions 

of the classic algorithm, and matrixes with 

n=100,200,300,400,500,600,700,800,900,1000. Versions 2 

and 3 improve times compared to version 1, the optimization 

implemented for version 3 being the one with the greatest 

impact. For this reason, when both optimizations are 

incorporated in version 4, execution times are reduced even 

more.   

Table 1. Sequential algorithm times with classic Jacobi for 

various optimizations. 

Dimension / Version Version 1 Version 2 Version 3 Version 4 

100 0.21 0.2 0.18 0.18 

200 2.1 1.92 1.78 1.62 

300 7.56 6.77 6.17 5.54 

400 20.51 18.58 17.37 14.97 

500 40.8 36.72 34.7 29.57 

600 72.4 64.44 60.7 52.4 

700 120.7 104.34 98.56 84.2 

800 187.3 159.41 151.9 127.4 

900 307.03 258.07 250.8 205 

1000 387.52 323.5 318.5 256.42 

 

4.2 Block-Based Sequential Algorithm  

For the tests with block-based sequential algorithms, the 

same matrixes from Section 4.1 were used, but their data were 

organized in consecutive blocks whose possible size will 

depend on the size of the matrix.  

4.2.1 Block-Based Sequential Algorithm (without CBLAS)  

The block-based algorithm that does not use CBLAS did 

not improve the times obtained by the classic algorithm 

version 4. As the tests included in Table 2 show, the best 
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response time is obtained with the maximum possible block 

size. In those cases, the block-based algorithm behaves very 

similar to the classic algorithm, since it carries out only one 

stage to obtain the eigenvalues and eigenvectors of the 2x2-

block matrix formed by S0,0, S0,1, S1,0 and S1,1 applying the 

classic algorithm, obtaining in this way the eigenvalues and 

eigenvectors of the entire matrix.  

The reason for which the block-based algorithm without 

CBLAS did not improve response times is due to the extra 

time used to multiply and copy blocks, and as block size 

decreases, a larger number of these operations is required.  

4.2.2 Block-Based Sequential Algorithm with CBlas 

The block-based sequential algorithm that uses the CBLAS 

library improved the response times of the sequential 

algorithms assessed in the previous sections. In most of the 

cases, the best time was obtained with a block size of 10, as 

shown in Table 3. 

To analyze the cause of this improvement, the number of 

stages carried out by the block-based algorithm in its two 

versions and the average time needed to perform a rotation 

were calculated. These tests were done for the matrix of size 

1000 with block size 10 and 500. 

Both algorithms performed an only stage for block size 

500, and 10 stages when using the block size 10. This proves 

that, when block size is reduced, the algorithm will need more 

iterations to converge. However, the average time needed for 

each rotation is different. Taking into account that in each 

stage, N*(N+1)/2 rotations are done, it is observed that:   

- In the case of the block-based algorithm without CBLAS, 

the average rotation time for the matrix with block-size 10 

is 0.011183. The number of rotations in each stage is 5050. 

Therefore, each stage will take approximately 56.4 

seconds, which explains the time measured during the test. 

On the other hand, the average rotation time for the matrix 

with block-size 500 is 386.74. This time is similar to the 

final time obtained, and also to the time obtained with the 

classic algorithm (version 1). This is because there is only 

one stage and a single rotation. 

- In the case of the block-based algorithm with CBLAS, 

when using block-size 10, the average rotation time is 

0.00229; since there are 5050 rotations in each stage, each 

will take approximately 11.56 seconds, which explains the 

time measured during the test. When using block- size 500, 

the iteration time was 370.81.  

 

The improvement achieved with the block-based algorithm 

that uses CBlas is due to the use of the functions 

cblas_dgemm and cblas_dcopy when calculating rotations. 

 

The size of the block that optimizes times must be such that 

calculating the classic Jacobi for a 2x2-block matrix is not so 

expensive, since times that are similar to those of version 1 of 

the classic algorithm will be obtained. The exact ratio must be 

found, since very small blocks will reduce the average 

rotation time but will increase the number of rotations.  For 

example: for the block-based algorithm with CBLAS, the 

average rotation time for the test with the matrix of size 1000 

and block-size 5 is 0.001209. The algorithm carried out 10 

stages and 20100 rotations in each stage. Each stage in 

average lasted 24.3 seconds, which ended up in an increase in 

time.  

 

 

Table 2. Times obtained with the block-based sequential algorithm without CBLAS. 

Dimension / 
 Block Size 100 200 300 400 500 600 700 800 900 1000 

5 0.5 4.29 15.92 37.54 72.87 129.72 198.97 337.1 468.61 578.75 

10 0.52 4.05 14.46 33.27 65.12 108.82 172.14 282.6 401.9 549.71 

25 0.57 4.78 14.66 36.09 67.01 121.98 189.6 278.54 428.09 530.05 

50 0.21 4.94 18.7 41.81 82.4 135.84 224.11 324.8 446.6 650.55 

75   18.8        

100  2.03  47.9  172.2  405.77  795.07 

125     97.84     818.09 

150   7.19   172.18   632.6  

175       319.66    

200    19.94    485.77   

225         702.07  

250     39.9     1004 

300      69.65     

350       111.99    

400        194.47   

450         270.99  

500          387.25 
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Table 3. Times obtained with the block-based sequential algorithm with CBLAS. 

Dimension / 
 Block Size 100 200 300 400 500 600 700 800 900 1000 

5 0.22 1.83 5.68 14.58 30.86 48.12 75.2 111.45 175.6 241.5 

10 0.26 1.47 4.25 8.83 15.75 25.38 41.9 60.6 83.83 112.9 

25 0.44 2.68 6.86 14.17 24.5 36.35 51.77 70.77 94.12 119.7 

50 0.2 3.82 12.35 25.19 43.46 65.83 97.2 131.54 169.9 226.18 

75   14.76        

100  1.95  38.37  118.44  247.5  427.22 

125     78.36     508.5 

150   6.87   153.86   446.86  

175       258.65    

200    19.34    390.27   

225         581.52  

250     38.48     811.84 

300      67.05     

350       108.62    

400        189.45   

450         259.3  

500          371.03 

 

Table 4. Times obtained with the block-based sequential algorithm that uses CBLAS for matrixes whose n is power of 2. 

 Matrix Dimension 

Block Size 256 512 1024 2048 4096 8192 

2 25.76 220.76 2070.03 17403.73   

4 4.86 38.54 364.5 3011.32   

8 2.59 17.28 136.36 1100.64 8685.8  

16 3 17.78 106.14 686.25 5097.1 39495.26 

32 4.98 27.9 156.73 862.54 5493.24 37061.84 

64 7.01 47.02 259.42 1254.09  30345.76 

128 4.05 69.09 462.23 2448.01  53193.4 

256  40.16 687.7 4590.44   

512   1483.56 26982.67   

1024    12963.09   

 

 

4.4 Block-Based Parallel Algorithm with CBLAS 

Since the scalability analysis was carried out with 2, 4, and 

8 threads/cores, matrixes whose size is power of 2 were used, 

so that the tasks were proportionally distributed among the 

threads.     

Table 4 shows the execution times of the block-based 

sequential algorithm that uses CBLAS for those matrixes, 

varying the size of the blocks within the possible values. The 

test that optimized the execution time for each matrix size is 

highlighted. Table 5 shows the speedup (Sp= Sequential Time 

/ Parallel Time) and the efficiency obtained (E= Sp / Number 

of processors) in the parallel tests.  

These results show that, if matrix size is kept the same and 

the number of processors is increased, the speedup obtained is 

better, that is, the problem is solved in less time. This 

improvement, however, does not keep a constant efficiency. 

The decrease in efficiency is due to the overhead of thread 

creation, synchronization (barriers), and the sequential portion 

of the problem (the structure with indexes of parallel tasks 

must be updated in each stage following a Chess Tournament 

strategy in a sequential manner).  

 When scaling the problem and keeping the same number 

of processors, as shown in Table 5 and Fig. 6, both speedup 

and efficiency improve in general, since the overhead 

mentioned above is less significant in the total processing 

time. 

Table 5. Speedup and Efficiency values as matrix size and 

threads/cores are increased. 

  Speedup Efficiency 

Dimension  
(r) / Parallel 

Tasks 2 4 8 2 4 8 

256(8) – 16 1.65 2.91 5.08 0.82 0.73 0.63 

512(8) – 32 1.62 2.80 4.91 0.81 0.70 0.61 

1024(16) – 32 1.88 3.27 6.30 0.94 0.82 0.79 

2048(16) – 64  2.00 3.68 6.65 1.00 0.92 0.83 

4096(16) – 128 1.98 3.82 7.07 0.99 0.96 0.88 

8192(64) – 64 1.92 3.72 7.07 0.96 0.93 0.88 
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Fig. 6. a) Speedup as matrix size and the number of threads/cores are increased b) Efficiency as matrix size and the number of 

threads/cores are increased. 

 

The behavior described is typical of a scalable parallel 

system, where efficiency can be maintained at a constant 

value by simultaneously increasing the number of 

cores/processors and the size of the problem.  

5   Conclusions and Future Work 

Various sequential algorithms for the resolution of the 

matrix diagonalization problem were presented and one 

parallel implementation that exploits the power offered by 

multicore architectures was introduced.  

The resulting execution times were analyzed for each 

implementation, and it was observed that the best 

performance corresponds to the algorithms that use libraries 

optimized for linear algebra (CBLAS Level 3). It was also 

observed that performance improves when the algorithm is 

parallelized on a multicore architecture.  

In recent years, GPUs (Graphic Processing Unit) [16] have 

gained significance due to the high performance achieved in 

general-purpose applications. One of the future lines of work 

is based on the migration of Jacobi diagonalization algorithm 

to be run on GPU, and then systematically study the 

performance achieved as the size of the problem and the 

number of threads are increased. Also, an energy 

consumption analysis for the execution of this parallel 

algorithm on various multicore architectures is proposed [17]. 
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Abstract— For byte memory addressing, we propose using a 

Memory Area Network for the purpose of multiple processor 

access to unlimited byte addressed solid state memory on a local, 

or perhaps a wide area network. We categorize various shared 

memory computing architectures. We then introduce iPCI to 

provide the networking and IO virtualization method for shared 

memory computing. A novel PCI-e switch on a chip with multiple 

Terabit per second throughput is described. Applications of this 

shared memory computing approach are explored.   

  

Keywords- Virtual Shared Memory; IO Virtualization; Memory 

Area Network; Terabit Switching; Memory Allocation  

I. INTRODUCTION TO SHARED MEMORY COMPUTING AND 

MEMORY AREA NETWORKS 

 High Performance Computing (HPC) has undergone 
significant changes, from initial focus of the 1980s of 
supercomputing based either on ultrafast or massively parallel 
computing, to network/grid computing of the 1990s based on 
broadband Internet, to data-centric computing of the 2000s 
based on data mining methodologies. In recent years, a new 
paradigm of cloud computing has dominated both computer 
science research and the information technology industry.  

 The key technological foundation of cloud computing 
is virtualization of physical resources in the cloud, including 
servers, desktop computers, data storage, computer memory, 
computer IO [1], data networks, and application software. A 
focus of our research is on memory virtualization in the cloud 
[2], in short cloud memory, which we believe to be significant 
for scientific computing in a paradigm called shared memory 
computing or memory area networks (MeMAN).  

 Virtual memory has been a foundation of computer 
engineering from the early days when operating systems were 
developed around the management of computer memory. 
Hypervisors, essentially cloud based operating systems, can 
allow byte address memory space anywhere in the cloud to be 
allocated to physical machines (PM), virtual machines (VM), 
or application software compiled and executed anywhere in the 
cloud.  

 The intellectual framework of cloud memory is the 
deconstruction of the physical computer and associated 
operating system, so that the cloud now comprises a wide area 
memory network shared and addressed globally for purposes 
such as data mining. Data-structures then become global, byte-
addressed by any program or user in the cloud. This paradigm 
is sometimes referred to as shared memory computing (SMC). 
SMC is an HPC method, a competitor to methods of massively 
parallel computing (MPC) based on message passing among 
processors.   

 SMC has its limitation due to latency and throughput 
impairments in the cloud. Network protocols, such as the 
Internet Protocol (IP) are unreliable and slow, and therefore fail 
to meet the nanosecond requirements of computer memory 
read and write. Cloud memory faces a similar problem that was 
encountered by data storage, such as NFS, SAN (storage area 
network), and iSCSI (internet SCSI), only the response time is 
orders of magnitude faster (tens of nanoseconds instead of tens 
of microseconds for SAN).  

 Therefore significant research is needed to first 
classify types of cloud memory and second to invent high 
performance cloud memory, a focus of our research.  

II. CLASSIFICATON AND USE OF SHARED MEMORY 

COMPUTING 

Classification of Memory Sharing 

Various classification of memory sharing is proposed here 
from the simplest to the most general and powerful. Using 

Greek nomenclatures, processors are represented as , memory 

as , storage as , and bridges/switches as .  

One-to-Many Access 

In the simplest form, we have one processor that is directly 
attached to a multiplicity of memory banks, achieving a scaling 
of memory capacity for a single powerful processor as shown 
below. In storage technology, this is analogous to direct 
attached storage (DAS). 
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Many-to-One Sharing 

Multiple processors share a large memory for the purpose 
of effective allocation of memory on demand as shown 
following. This is analogous to the concept of network attached 
storage (NAS) such as used for network file servers (NFS) 
accessing a shared data store. However, access to the memory 
can only be one file or block at a time by servers.  

 

Many-to-Many Sharing 

In this more general scheme, multiple processors can access 
multiple memory banks simultaneously as shown in the left 
figure in the following. This is analogous to the concept of 
storage area network (SAN), in which multiple storage servers 
can serve data retrieval requests on the Internet, while these 
servers can access simultaneously multiple storage banks 
through a dedicated switching fabric of a SAN as shown in 
right figure in the following. Performance is high because of 
dedicated hardware based protocol processing, such as the use 
of the Fiber Channel (FC) protocol.  

 

Exclusive versus Shared Memory Allocation 

 In the above discussions, it is assumed that PM or VM uses 
memory location exclusively. This is the traditional role of an 
operating system allocating memory to devices. At the software 
or program level, a compiler can allocate memory (e.g. the 
malloc procedure call in C) that can be shared by different 
procedures or objects in programs. The allocation of memory 
in this case is facilitated by a compiler prior to further 
allocation by the operating system. Memory locking 
mechanisms such as semaphores may be required to ensure 
memory consistency in conflicting memory access. Examples 

of research on shared memory computing are shown in 
references [6-14] 

Protocol Adaptation 

Virtual memory allocation in the cloud requires IO 
virtualization, also in the cloud. This is analogous to virtual 
storage allocation by the iSCSI protocol, whereby the physical 
SCSI bus for disk drives is extended by the Internet (hence the 
term Internet SCSI). In the case of cloud or networked virtual 
memory, the prevailing memory access IO mechanism 
nowadays is the PCIe (Peripheral Computer Interface) bus. In 
our previous patented research efforts, we invented various 
techniques to extend the PCIe bus, for example via wireless 
networking, via Ethernet switching, via optical networks, and 
most extensively via the Internet. The choice of protocol for 
which PCIe adapts to depends on the geographic extent of the 
cloud, as well as the latency and throughput requirements for 
cloud memory.  

Memory Switching 

 Many-to-many cloud memory requires a memory 
switch amongst processors and memories. The memory switch 
allows highly parallel access of memory banks by processors. 
Since memory banks and processors can be extensively 
connected by PCIe bridges, our research focuses on building 
large PCIe bridges. In previous patented research, we have 
invented a Terabit switch on a chip with no queuing delay [3, 4, 
5]. We are extending the research into memory switching 
applications. The memory area network (MeMAN) [2] 
architecture is shown in the following figure.    

          

III. VIRTUALIZATION OF PCI-E AS A FORM OF SMC 

PCI Express (PCI-e) has the ability to be virtualized using 
the PCI Express relay over an Ethernet channel that uses MAC 
addresses and Ethernet switches. PCI Express supports the 
following transaction types: memory, I/O, and data 
configurations. The virtualization can be implemented by using 
a native PCI Express host bus adapter on a computer and a 
scalable network (preferably 1-10 Gbps or higher). In terms of 
shared memory computing (SMC), the PCI Express 
architecture is ideal due to the large density of computers and 
storage. 

The PCI Express can be broken down into three separate 
layers: transaction layer, data link layer, and physical layer. 
The transaction layer deals with application data. In PCI-e 
virtualization, the transaction layer can be virtualized through 
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packet based protocols known as TLPs (Transaction Layer 
Packets) [23]. A header can be added to the TLP which creates 
the exchange of protocol specific configuration and 
synchronization information between the host bus adapter 
(HBA) and the remote bus adapter (RBA). The resulting PCI-e 
transaction layer packet is then encapsulated within an Ethernet 
frame [22]. 

The data link layer’s primary function is to handle the 
communication protocols of acknowledge (ACK) and negative 
acknowledge (NAK) supplied from the transaction layer [23]. 
The data link layer can be translated into an Ethernet 
implementation of the protocol data units known as DLLPs 
(Data Link Layer Packets). When data transactions are being 
processed over an Ethernet switched network, the transaction 
layer packets are verified for data integrity by the data link 
layer logic of the receiving end. The proprietary receiving port 
responds with a either an ACK or NAK, which is then passed 
to the PCI-e protocol logic. After, a MAC address is then 
generated that corresponds to the source. The MAC address is 
parsed with the protocol data to the MAC core. Data integrity is 
ensured for DLLPs by using a cyclical redundancy check 
(CRC). A CRC is included with each packet sent across the 
link [22]. The following are the two plausible cases: 

Case 1: ACK is received. The native MAC core transmits a 
Link ACK packet that informs the receiving port of the next 
packet what to look for. The MAC core at the other end of the 
link, receives a Link ACK packet and passes it to the PCI-e 
DLLP handler. The PCI-e DLL handler that received the Link 
ACK packet translates the packet into a PCI-e ACK packet and 
passes it back to the original sending port. The port then 
processes the ACK and removes the associated TLPs from its 
replay buffer due to a successful transmission [22]. 

Case 2: NAK is received. The native MAC core transmits a 
Link NAK packet stating that the last packet of the receiving 
packet was received successfully. The remote MAC core then 
receives a Link NAK packet which is passed to the PCI-e 
DLLP handler. The PCI-e DLLP handler receives the Link 
NAK packet and translates it into a PCI-e NAK packet, passing 
it to the original sending port. The port processes the NAK and 
resends the outstanding TLP(s) in the replay buffer [22]. 

The physical layer processes the packets that arrive from 
the data link layer. The physical layer converts the packets into 
a serial bit stream. The physical layer connects to the 
motherboard of the computer. The link created is referred to as 
a PCI Express Link. The PCI Express Link communicates with 
the root bus of the native host computer. A PCI Express Link 
must consist of lanes in parallel (i.e. x1, x4, x8, x16, etc.). The 
physical layer can be divided into two sub-blocks: a logical and 
an electrical sub-block. The logical sub-block has a Receive 
section that identifies and prepares any received data before it 
is passed to the data link layer. The electrical sub-block has a 
Transmit section that prepares outgoing data from the data link 
layer for the electrical sub-block [24]. 

IV. A TERABIT PCI-E SWITCH FOR SMC FABRIC 

In this paper, we also present a large number of 
input/output ports on the PCIe switch ASIC for SMC 
applications. The switch is designed as a 128x128 Clos-

network crossbar switch which can provide a throughout of 
1.024Tb/s for PCIe 2.0 system [24]. Instead of switching at 
Transaction Layer, PCIe signals are transmitted as is through 
the crossbar fabric. Without regeneration and buffering of PCIe 
packets, much of the processing and delay is removed. We also 
propose a new output contention resolution algorithm utilizing 
an out-of-band protocol to control the crossbar switch before 
sending PCIe packets. The proposed switch becomes a 
switching physical medium for PCIe packets. 

In the proposed switching system, electrical PCIe signals 
are transmitted as is through a three-stage Clos-network 
crossbar switch called Physical Plane (PP). As a result, without 
regeneration and buffering of PCIe signal and data, much of the 
processing and delay is removed within the switch fabric. This 
requires a shift of accessing, routing and other functions to the 
endpoints. We employ contention resolution in both space and 
time to route data through the Physical Plane. The endpoint 
interface translates the destination PCIe address into routing 
address. The routing address is sent prior to sending PCIe 
packets.  

The block diagram of the proposed PCIe Switch Board 
(SB) is shown is Figure 1. PCIe endpoint named Host Bus 
Adapter (HBA) that generates PCIe signals are connected to 
the proposed switch ASIC via PCB traces. Each port has 2 
pairs of traces for which one pair is responding for transmitting 
and the other is for receiving. As an illustration in Figure 1, 2 
pairs of wires carrying Low-Voltage Differential Signaling 
(LVDS) for PCIe 2.0 [25] are switched in a Physical Plane 
(PP). The HBA, Control Plane and Physical Plane are 
connected through an interface named CC/PP Interface which 
provides different connections among these components. 

128 HBAs are numbered sequentially in binary 
representation, i.e. the inputs are numbered in the figure as 
0000000 to 1111111, respectively. This number is referred to 
as an Input Segment Address (ISA). 

A three-stage Clos-network is built in the PP with a total 
number of 24 16x16 sub-crossbar switches named Switch 
Plane (SP). Each stage has 8 Switch Planes numbered as 000 to 
111. The structure of Physical Plane and 16x16 Switch Plane is 
shown in Figure 2. HBA transmitter side (TX+/-) is connected 
to receiver side (RX+/-) through the three-stage Clos-network 
switch. It can provide alternative end-to-end connections by 
routing in different Stage 2 SPs. In each 16x16 SP, X-Y based 
crossbar switch is structured. The connection between two 
ports is established using a CMOS Transmission Gate (TG) 
with low on-channel resistance. The connection status of TG is 
controlled by the Control Lines. 

The step-by-step and out-of-band control architecture 
allows the initiating endpoint to choose alternative paths in the 
second stage switch planes to avoid blocking. Previous work 
[26-27] has been done to analyze the throughput of the 
proposed switching system. 

To verify the proposed switching concept and evaluate 
performance, we designed the layout of the 16x16 crossbar 
switch using TSMC 0.25µm CMOS process. With a total 
number of 256 NMOS transistors used as crosspoints, the 
layout size is 0.54mm x 0.74mm. Post-layout simulation is 
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preformed to verify the signal integrity of transmitting PCIe 
signals. 

For the three-stage switch fabric, an approximate area of 
5.4mm x 2.4mm is needed. Counting the size of Control Plane, 
it is not difficult to fabricate the proposed switching system on 
a single chip with today’s ASIC packaging technology.  
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Figure 1.  The block diagram of the proposed switching system 
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Figure 2.  The structure of Physical Plane 

V. CONCLUSION AND APPLICATONS 

Our research addresses the need for a byte addressed 
memory area network (MeMAN).  This cloud memory 
architecture promises to remove the barrier that is currently 
limiting virtualized computing CPUs from scaling and having 
proximity beyond the memory bus architecture.  This research 
addresses the various cloud memory architectures and explores 
the hypotheses involved, the scale or scope for each 

architecture, as well as the associated limitations (delay, 
throughput, and maximum size). 

Applications for MeMAN are diverse.  Our current research 
focuses on a primary application of cloud memory whereby the 
memory associated with a user’s personal virtual data storage is 
extended to a personal private device [15].  The academic 
community, such as the large educational network of King 
AbdulAziz University, is one subject of research of how a new 
concept of personal cloud memory interacts with the larger 
public and private clouds.  

Virtual desktops (VDT) are virtual machines for which 
personal data, personal applications, and hardware and 
software resources (CPU, OS, memory, and data storage) are 
provided and shared in the cloud. The concept is analogous to 
virtual servers which are essentially files that can be 
instantiated on physical servers as needed. Virtual server 
migration is facilitated by hypervisors that are network based 
operating systems on top of computer OS and hardware.  VDT, 
similar to desktop and notebook computers, carries the personal 
data, software, and computing resources within the network, 
accessed through thin clients connecting the VDT users to the 
cloud.  

While the replacement of desktop (DT) with VDT in the 
cloud has numerous advantages, such as data, hardware, and 
apps sharing; backup and reliability assurance; as well as 
reduced operational cost, VDT is often constrained by security 
issues as well as network and bandwidth bottlenecks. The 
combination of a personal cloud and a public cloud provides 
the benefits of personal computing and cloud computing, 
namely a social context while maintaining privacy and security 
through local and encrypted data storage [18].  

As an example, students can carry their personal data and 
virtual machines loaded with their personal applications on a 
thumb drive[15], plug the thumb drive into thin clients that 
may perform local computation, and when needed, access the 
public cloud for social computing and data synchronization.   
Our research involves defining the level of privacy, security, 
and applications needed by students for the application of 
personal cloud memory. Given the user requirements, cloud 
memory architectures are being evaluated for implementing a 
personal memory cloud.  

The research is aimed at social networking as well, aiming 
first to look at how a personal memory cloud enhances the 
educational and social experience in a large university such as 
KAU, as well as the cost reduction possible without massive 
investment by students on computers and data storage, made 
worse with the lack of data backup, software administration 
[16], and disaster recovery. While this research is practical in 
nature, the research impact can be significant for providing a 
broader cloud memory experience at KAU. 
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Abstract— In Forward Error Correction (FEC) technique,  

redundant encoded packets are transmitted to and decoded by 

receiver(s) so that up to a certain number of lost packets can 

be recovered by using those redundant packets. The way the 

encoded packets are generated is to, first, divide a stream of 

data packets into blocks of k packets, and to generate n 

encoded repair packets for each block using the original 

packets. The receiver can recover the k original packets as 

long as it receives at least k distinct packets in each block. 

Hence, the encoding/decoding in such protocols are 

performed on block-by-block basis.  

In [20], a new technique, named as Temporally Enhanced 

Erasure Codes (TEEC), was introduced as an enhancement to 

the existing erasure coding technique. In TEEC the scopes of 

encoding/decoding are expanded beyond block boundaries, 

and they may overlap with scopes of neighboring blocks. In 

this paper, we apply the TEEC technique in designing a real-

time communication protocol whose objective is to increase 

the packet recovery rate while reducing packet recovery 

delays as much as possible at the receiver side. 

 In terms of average packet loss rates and end-to-end delays 

for packet delivery, it is shown that a protocol employing 

TEEC outperforms block-by-block based protocols. 

 
Keywords — reliable protocol, error recovery, FEC, erasure codes, 

protocol, real-time 

 

1  Introduction 
 

   A wide range of applications in the future Internet will 

require both reliable and timely transmission of data packets 

between a sender and receiver(s). These include network 

whiteboards and video/audio conferencing systems, etc. 

Providing both reliability and timeliness in packet transmission 

is a difficult problem and several approaches have been 

proposed and used. 

   Two different mechanisms exist for error control in network 

applications, Automatic Repeat reQuest (ARQ) and Forward 

Error Correction (FEC). ARQ technique is based on timeout 

and retransmission of packets, and has been adopted in TCP 

protocol. 

  However, ARQ technique has its limitations especially if 

there exist timing constraints on packet delivery times as in 

real-time multimedia applications, or if it is used for 

multicasting packets to many receivers. FEC can be  used in 

those environments in which ARQ cannot be used effectively 

[12,10,7,6]. The sender sends additional packets along with 

the original data packets so that, in cases of packet losses, they 

can be used to recover the original data packets that were lost 

during transmission. One advantage of this approach is that no 

further interaction between the sender and receiver is needed 

as long as the lost packets can be recovered from the received 

packets. In FEC, the sender performs encoding and the 

receiver performs decoding to reconstruct the lost data packets 

[10,7,18]. One of the well-known codes in FEC is erasure 

codes [10]. In erasure codes, the encoded packets are 

generated by, first, dividing a stream of data packets into 

blocks of k packets, and generating n-k (>0) encoded repair 

packets for each block using the original packets. The sender 

sends n packets for each block, and the receiver can recover 

the k original data packets as long as it receives at least k 

distinct original or repair packets. Hence, the encoding and 

decoding in such protocols are performed on block-by-block 

basis. FEC technique has been used in many applications due 

to the advantages mentioned above. For example, the 

applications and performances of FEC were studied for 

multicast applications, and it was shown that FEC can be a 

viable solution approach for reliable multicast transmissions [6, 

7, 12, 15]. 

  A new technique named as Temporally Enhanced Forward 

Error Correction (TEFEC) was proposed as an enhancement 

to the existing block-based FEC codes such as erasure and 

Tornado codes, and it was applied to design a reliable 

communication protocol [20]. In this paper, we apply the 

TEEC technique in designing a real-time communication 

protocol whose objective is to increase the packet recovery 

rate while reducing packet recovery delays as much as possible 

at the receiver side. 

  The basic idea of TEFEC is that the scopes of encoding and 

decoding may be expanded beyond block boundaries, and they 

may overlap with scopes of neighboring blocks. The encoding 

scope factor is defined to be the number of blocks from which 

the encoded packets will be generated. For example, Figure 1 

shows how the encoding is performed in TEFEC with the 

encoding scope factor 2.  

 

 

Figure 1   TEFEC with encoding scope factor of 2 
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  In this paper, the detailed algorithm of TEEC is presented 

with their performances compared to those of the block-based 

erasure codes. TEEC was developed and implemented by 

extending erasure codes [10, 20]. To show their applicability, 

a real-time protocol is developed and simulated by using 

TEEC technique. It is shown that, in most of the cases, the 

error correcting capability could be enhanced much while not 

reducing the average recovery delays at the receiver. The 

expense we have to pay for this is slightly increased decoding 

overhead at the receiver.  TEEC can be utilized in many 

applications to enhance the error correcting capability without 

increasing the bandwidth used for encoded packets and 

without affecting the real-time aspects of the applications. If 

the network path has long delays, or if it is expensive to send 

back NAK packets due to power problems as in mobile 

communication devices, TEEC can also be used to enhance the 

performances. For multicast applications, FEC was shown to 

be a viable solution approach [6,7,12,15]. TEEC can be 

effectively utilized in such applications as a better solution 

approach due to the enhanced error-correcting capabilities. 

  The paper is organized as follows. Section 2 summarizes the 

erasure codes [10,4]. In Section 3 the encoding and decoding 

algorithms are presented for TEEC, and the detailed real-time 

protocol is presented in Section 4 which utilizes TEEC. In 

Section 5 the simulation settings and results are presented for 

the reliable protocol with TEEC and traditional protocols with 

block-based FEC techniques. Finally, in Section 6 the 

conclusion of the paper follows. 

 

2  Erasure Codes 
 

   A brief introduction to the erasure code is given in this 

section with its principles and computational complexities. A 

more detailed description of the codes can be found in 

numerous literatures [1,4,9,10]. The erasure code presented 

and used in this paper is called linear block codes whose 

principles and implementation techniques are nicely presented 

in [10].  

    In erasure codes the original data packets to be sent by the 

sender are divided into independent blocks whose size (in 

terms of the number of packets) is denoted by k. Using k data 

packets, n (>k) encoded packets are generated and transmitted 

instead of k data packets. Thus, the sender transmits total n 

packets for each block. One important property of erasure 

codes is that the receiver can decode and recover all k data 

packets as long as it successfully receives k distinct packets. In 

other words, up to n-k packet losses can be recovered without 

requiring retransmission of packets. This type of code is called 

(n,k) code.  

    If the packet size becomes large, then it may become 

difficult to apply encoding/decoding to entire packets. 

However, as is shown in [10] large packets can be split into 

multiple data items, like bytes, and the encoding/decoding 

process can be efficiently applied by taking one data item per 

packet. Under this assumption, a block is redefined to be a 

collection of data items from different packets instead as a 

collection of data packets. Hence, from a collection of k data 

packets,  blocks will be created each of which contains k data 

items where  is a packet size in terms of data items.  

 

2.1  Linear Block Code 

 
    Let x= x0 x1 … xk-1 be the source data consisting of k data 

items. Then an (n,k) linear code can be obtained by 

 

   y =  Gx 

where G is an nk generator matrix satisfying some properties 

that will be explained later, and y is an n1 matrix containing n 

data items which will be sent by the sender. This explains how 

the encoding is performed.  

    Let y be denoted as y0 y1 … yn-1, and suppose that the 

receiver gets any subset of k data items in y, and let i0 i1 … ik-1 

denote the indices corresponding to the data items successfully 

arrived at the receiver. Then, a kk matrix can be obtained 

from G by selecting the rows of G whose row indices match i0 

i1 … ik-1. This new matrix is denoted as G’ and it is known that 

any k rows of G are linearly independent, which is a necessary 

property for obtaining original data items in x from y(i0) y(i1) 

… y(ik-1) by solving 

          (G’)
-1

 y = x 

where y(ih) denotes a data item in y whose index is equal to ih. 

Hence, the decoding process involves finding an invert matrix 

of G’ and multiplying it to y. For the purpose of later usages, 

let x
m
 and y

m
 denote vectors of original and encoded data items 

for a block m where m 0. 

    By applying simple algebraic operations we can transform G 

so that upper k rows are equal to kk identity matrix. This 

means that the first k data items in y are equal to k original data 

items in x, and this type of code is called a systematic code 

[10]. If a systematic code is used to encode blocks, the 

decoding process may be simplified in case the number of lost 

packets small. In this paper, it is assumed that the systematic 

code is used and applied. 

 

 

Figure 2. Matrix representation of encoding and decoding 

using systematic code. 

    However, there exist some limitations of erasure (or linear 

block) code. One of them is the precision overhead that incurs 

during matrix multiplications. That is, consider the matrix 

multiplication y = Gx. If the number of bits used for 

representing one data item in x is  bits, then representing y’s 

data items may require more data bits since they have to be 

found by multiplying the matrix rows to x. This may result in 
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significant overhead [10], and may invalidate the usage of 

erasure code despite of its nice loss-recovery capabilities. 

This problem can be avoided if the encoding and decoding is 

performed in a finite field instead of real number field. The 

algebraic operations are performed in an extension field, 

GF(p
r
), where GF stands for Galois Field. The addition and 

multiplication operations in GF(p
r
) can be efficiently 

performed using XOR operations.  

  The matrix known as Vandermonde matrix can be used as a 

generator matrix for encoding and decoding in GF(p
r
). The 

coefficients of the matrix is of the form: 

where the xi’s are elements of GF(p
r
). If all xi’s are different, 

the matrix is invertible. Another useful property is that, if no xi 

is equal to 0, then the matrix can be transformed into a simpler 

form which has an identity submatrix in the first k upper rows 

in the matrix. This enables us to build a systematic code. 

 

2.2  Complexity of Encoding/Decoding 

 
  When n-k repair packets are generated by the sender, the 

complexity of encoding process is O((n-k)k) where   

denotes the number of data items in a packet. The total cost of 

decoding a block is O(kl
2
+kl) where l denotes the number of 

lost packets in the block. Note that l  min(k, n-k) should hold. 

These results are presented in more detail in [10]. 

 

3  Temporally Enhanced Erasure Codes 

 
   The erasure code techniques explained in the previous 

section usually perform encoding and decoding using blocks as 

their basic units. The blocks are mutually independent in a 

sense that encoding and decoding of one block don’t affect 

those for other blocks. The common approach is to divide the 

entire data packet stream into packet blocks and apply 

encoding and decoding algorithms to each block.  

    A new approach, Temporally Enhanced Erasure Codes 

(TEEC), has been developed to reduce the amount of 

bandwidths required for additional repair packets, and to 

reduce the end-to-end delays for packet deliveries. In other 

words TEEC tries to enhance the repair capacity when the 

same amount of bandwidth is used for repair packets as in 

traditional erasure codes while not increasing the recovery 

delays at the receiver. In this section the conditions and 

processes for encoding/decoding blocks in TEEC are 

explained under the assumption that the sender sends n 

encoded (k original + n-k repair) packets for each block and 

the receiver tries to recover lost packets if it is feasible. 

 

3.1  Encoding in TEEC 

 
    The key idea of TEEC is that the repair packets for a block 

m are calculated from data items that belong to (v-1) previous 

blocks, m-(v-1), m-(v-2), …, m-1, as well as from those in the 

block m. v (1) is called an encoding scope factor. This is 

represented by the following equation. 

 y
m
 = Gnvk [x

m-(v-1) 
, x

m-(v-2) 
, …, x

m
]

T
                    (1)  

where Gnvk  is a generator matrix of size nvk, and [x
m-(v-1) 

, 

x
m-(v-2) 

, …, x
m
]

T
 is a vk1 matrix that consist of vk data items 

in v blocks including block m. The generator matrix Gnvk is 

obtained from the original generator matrix G
0
 which can be 

found from a Vandermonde matrix in a Galois Field, GF(p
r
), 

as in [10]. Let the size of G
0
 be equal to n0 vk where n0  n. 

Note that the upper vk rows of G
0
 is equal to an identity matrix. 

Then, the algorithm is given in the following: 

 

Algorithm 1 

Insert an identity matrix of size k  k as a submatrix into upper 

right corner of Gnvk, and fill zeros into the remaining part of 

the k upper rows. 

Let r1, r2, …, rn-k denote n-k row vectors
1
 chosen from G

0
 

whose row indices are greater than or equal to vk. Also, let 

ri(x) and rj(y) denote the x-th and y-th elements in the vectors ri 

and rj, respectively, where 1x<yvk. In addition, let l be 

defined as (vk-y)/k.  Then, the n-k row vectors chosen above 

can be inserted as the row vectors in Gnvk with new row 

indices, k, k+1, …, n, if the following relationship is satisfied: 

 i,j,t,x,y  :  1  i,j  n-k,  0  t  l,  1  x < y  vk ::   

ri(x)rj(y+tk) - ri(y)rj(x+tk)   0    (i=j  l=0)      

 

   The second step in Algorithm 1 guarantees that, if any two 

elements (in x-th and y-th columns) are chosen in an i-th row in 

Gnvk where ik, and if we choose any two other elements 

whose column indices are tk apart from x and y, respectively, 

then a 22 matrix obtained from these four elements has a rank 

of 2. If i=j and l=0, then this condition is not enforced. 

   To find out maximum number of rows in G
0
 satisfying the 

above condition, we developed a heuristic algorithm which 

incrementally builds the set of rows (from G
0
) that satisfy the 

above condition. The Galois Field GF(2
8
) was used to generate 

the original generator matrices. It was shown in [20] that, for 

large encoding scope factors (v) and block sizes, no repair 

rows may be found. But, for encoding scope factors up to 5 or 

6 and for reasonably large block sizes around 10, the valid 

repair rows could still be found while the more valid rows can 

be obtained for smaller encoding scope factors and block sizes. 

 

3.2  Decoding in TEEC 

 
    The decoding process is more complicated than the 

encoding process. One important characteristic of the decoding 

process is that a variable number of consecutive blocks are 

grouped together and decoding is performed for the lost 

packets in them. Once the decoding is successfully finished, 

then all the lost packets are recovered. The minimum number 

of consecutive blocks that need to be grouped together for 

decoding is v as is seen from the equation (1). For example, 

the lost packets in the block m may be recovered immediately 

after the packets for m arrive when all the data packets for the 

                                                           
1
 The chosen rows don’t need to be consecutively located in G

0
. 

1 j

iij xg
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previous v-1 blocks are available, or after the packets of future 

blocks arrive at the receiver.  A decoding scope factor, w (v), 

is defined as the maximum number of blocks which can be  

grouped together for decoding. The decoding can be 

performed using less number of blocks than w if certain 

conditions are satisfied, which will be derived in this section. 

    Suppose that the packets for blocks, z, z+1, z+2,…, z+c, are 

available at the receiver where 0  c  w-1, and the receiver 

wants to perform decoding for those blocks. The following 

assumptions are made regarding the decoding process: 

The total number of packets used as input to the decoding 

process is equal to (c+1)k. 

    Only the repair packets that belong to the blocks z+v-1, z+v, 

…, z+c, are used in decoding. This is because the repair 

packets that belong to the blocks, z, z+1, …, z+v-2, were 

encoded using the original data packets that belong to the 

blocks prior to z. 

   If the total number of received packets is greater than (c+1)k, 

then it is assumed that (c+1)k packets are chosen among them
2
 

and the rest of the packets are discarded. Following notations 

are defined once the (c+1)k packets are selected: 

j denotes the number of received original packets (among k 

packets sent by the sender) for block j. 

j denotes the number of received repair packets (among n-k 

repair packets initially sent) for block j. 

Then the following equation should hold:  

  

 

As a second step of the decoding process, the matrix of size 

(c+1)k(c+1)k is obtained by Algorithm 2 and is denoted as 

G'(c+1)k,(c+1)k.  

 

Algorithm 2 

Assign indices to (c+1)k packets in the range of 1 to (c+1)k. 

Repeat the following steps 2 through 4 for each packet whose 

index is p where 1  p  (c+1)k. 

Let j denote a block index in [0,c] and i denote a row index in 

[1,n] for the p-th packet. That is, the p-th packet belongs to the 

block z+j, and the packet was encoded by using the i-th row 

vector in Gnvk. 

From Gnvk extract a row corresponding to the index i. Let this 

row vector be denoted as ri. 

(i) if the p-th packet is a data packet, 

 If 0  j  v-1, then discard the first (v-j-1)k number of 0  

elements from ri and append 0s to the end of ri to make it of 

size (c+1)k 

 Otherwise, add (j-v+1)k number of  0s to ri and append 0s 

to the end of ri to make it of size (c+1)k. 

          (ii) if the p-th packet is a repair packet, 

 add (j-v+1)k number of 0s to ri and append 0s to the end of 

ri to make it of size (c+1)k. 

                                                           
2
 How these packets should be chosen will be explained later 

after the main theorem is presented regarding the decodability 

conditions. 

4.   Place the vector obtained in step 3 as a p-th row in     

          G'(c+1)k,(c+1)k. 

 

If the obtained matrix, G'(c+1)k,(c+1)k, is invertible, then the 

following equation can be utilized to recover the lost packets 

in the blocks z, z+1, z+2, …, z+c. 

            y=G'(b+v)k,(b+v)k  [x
z
,x

z+1
, x

z+2
,…,x

z+c
]

T
     

where some items in the vectors x
z
, x

z+1
,…,x

z+c
 may not be 

known and should be recovered by the decoding algorithm. 

The above equation can be rewritten as follows: 

           (G'(b+v)k,(b+v)k )
-1

y= [x
z
,x

z+1
, x

z+2
,…,x

z+c
]

T
     

The lost packets in the right hand side may be found by 

multiplying the inverse matrix to the vector y which contains 

the arrived packets. 

 

Theorem 1  

The matrix, G'(c+1)k,(c+1)k, obtained by Algorithm 2 has an 

inverse matrix only if the following conditions are satisfied: 

 

Proof: The proof may be found in [20]. 

 

   The meaning of this theorem is that the three conditions 

should hold when the obtained matrix, G'(c+1)k,(c+1)k, is 

invertible. That is, those three conditions are necessary 

conditions for decodability, and it is possible that G'(c+1)k,(c+1)k 

is not invertible even if the three conditions hold. However, it 

has been shown from the simulations that the probability of 

such occurrences is very low when the encoding is performed 

using Gnvk obtained by Algorithm 2. This means that the three 

conditions in Theorem 1 are tight and may be used to detect 

the invertibility of G'(c+1)k,(c+1)k  in most of the cases.  

   In [20], the detailed explanation of these conditions are 

given along with how they may be checked in real 

implementation. 

 

4  Real-Time Protocol Using TEEC 

 
  In this section, a real-time protocol is presented which 

utilizes TEEC encoding/decoding algorithms to recover lost 

packets during transmission. No retransmission of lost packets 

are performed. This assumption makes sense especially in real-

time applications which has certain timing constraints. It is 

also assumed that the real-time data packets are generated 

periodically at the sender and sent to the receiver. The original 
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data packet stream is divided into blocks that contain k packets, 

and the sender also sends n-k redundant (encoded) repair 

packets along with the k data packets in each block. These n 

packets are sent to the receiver in a block period.  

  Suppose that the packets for blocks, z, z+1, …, z+c, have 

arrived at the receiver where 0  c  w-1, and let z+i denote an 

index of the first block that has at least one lost data packet 

where 0  i  v-1. Again, note that the decoding scope factor, 

w, denotes a maximum number of consecutive blocks that can 

be grouped together for decoding. The following algorithm is 

run whenever the transmission of the packets for each block is 

completed at the receiver
3
. Let z+c denote the block index 

whose packet transmission is completed now. 

  Three variables, SBI, EBI, and FLBI, are defined and used, 

which represent the start block index, the end block index of a 

decoding scope, and the first loss block index within a 

decoding scope, respectively. Given c+1 blocks described 

above, SBI and EBI are initialized to z and z+c. FLBI denotes 

the index of the first block that has at least one lost data packet 

between SBI and EBI. This variable is set to z+i.  

 

Algorithm 3 

 
Input: SBI, EBI, and the packets for the blocks in [SBI,EBI] 

Output: Recovered packets 

 

1. Find out FLBI value in [SBI,EBI]. 

2. If no FLBI is found, then the following variables are reset, 

and exit: 

 SBI = SBI+1 

 EBI = EBI+1 

3. Check condition (3) of Theorem 1 for the last block: find 

If the above term is positive, then discard that number of 

repair packets in the block, EBI, since they violate the 

condition (3) of Theorem 1. 

4. If EBI-SBI+1w holds, and (1)  (2) of Theorem 1 holds,  

 Obtain a decoding matrix for the blocks. If the 

decoding matrix has an inverse matrix, then the lost 

packets in the blocks are recovered. Recovery of the 

lost packets are noted. Then, the following variables 

are reset for the next invocation of the algorithm, and 

the current invocation is exited: 

 SBI = EBI-v+2 

 EBI = EBI+1 

 If the decoding matrix is not invertible, then the 

receiver gives up recovering lost packets in the block, 

FLBI.  

 if FLBI+1EBI, the algorithm is repeated for the 

blocks FLBI+1, FLBI+2, …, EBI by performing 

the following steps: 

 SBI = FLBI+1 

                                                           
3
 This time can be detected by observing the packets belonging 

to the future block arrives at the receiver, or by a timeout.  

 Goto step 1. 

 If FLBI=EBI, then set SBI=EBI+1, EBI=EBI+1, 

and exit. 

5. If EBI-SBI+1<w holds, and the condition (1)  (2) of  

Theorem 1 doesn’t hold,  

 if there is a possibility that (1)  (2) of Theorem 1 

will hold after receiving future block packets, 

 In this case, set EBI=EBI+1, and exit from the 

algorithm. 

 if there is no possibility that (1)  (2) of Theorem 1 

holds even after receiving future block packets, 

 if FLBI+1EBI, then set SBI=FLBI+1 and goto 

step 1. 

 If FLBI=EBI, then set SBI=EBI+1 and 

EBI=EBI+1, and exit. 

6. If EBI-SBI+1=w holds, and (1)  (2) of Theorem 1 

doesn’t hold, then, the following steps are performed: 

 if FLBI+1EBI, then set SBI=FLBI+1 and goto 

step 1. 

 If FLBI=EBI, then set SBI=EBI+1 and 

EBI=EBI+1, and exit. 

 

  As can be seen from the above procedure, the receiver may 

utilize v-1 previous blocks that are already recovered when 

decoding the following blocks. This is the ideal case in which 

the benefits of TEEC can be fully exploited. If, for some 

reason, the group of blocks can’t be decoded, then decoding of 

the first block that has some lost packets will be given up, and 

the receiver will proceed the decoding process starting from 

the next block.  

  In the step 5 above, it is needed to decide whether it is 

worthwhile to wait for future block packets or not. That can be 

decided by examining the following formula. 

 

This formula is obtained from the condition (1) and (2) of 

Theorem 1. If EBI  is greater than 0, then it means that the 

blocks can’t be decoded even if the future block packets arrive 

successfully. If it is equal to 0, then it means that it is 

worthwhile to wait for more future block packets since there 

exists a possibility. 

 

5  Simulation 

 
  The simulation program was written to test the performance 

of the reliable protocol utilizing TEEC, and the results are 

compared with those utilizing the traditional erasure codes. 

The sender continuously sends the real-time data packets with 

a period, P. Three parameter values are used by the sender for 

encoding, n, k, and v (for TEEC). Also, for decoding, the 

receiver has a parameter, w. With a set of given parameters, 

three different cases were simulated: 
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1. Traditional erasure codes with block size n (k original plus 

n-k redundant packets). 

2. TEEC with parameters, n, k, v, w. 

3. Traditional erasure codes with block size vn (vk originals 

plus v(n-k) redundant packets). 

 

In all three cases, it is assumed that the packets are sent with 

the same inter-packet departure times. Especially, the time 

period during which n packets are sent by the sender is 

denoted as P.   

  By comparing the performances of the first and second 

schemes, we can identify how much we can benefit by using 

the TEEC based protocol instead of using traditional block-

based FEC schemes. 

  Note that the third method uses a large value for block size 

with the same bandwidth fraction used for sending repair 

packets as in the first and second methods, and is considered 

here to see what the advantage is by using TEEC compared to 

just increasing the block size with the same bandwidth fraction 

used for repair packets.  

  The loss models we assumed in this simulation are the 

independent loss model and the burst loss model which is 

obtained by a two state Markov chain. The independent loss 

model has one parameter, p, denting the probability that a 

packet will be lost during transmission. The Markov chain has 

two parameters, p1, p2, for the transition probability from 

normal to normal state and the transition probability from loss 

state to loss sate, respectively. 

  The metrics obtained and compared in this simulation are as 

follows: 

 Average packet loss rate. 

 Average packet recovery delay, i.e., the amount of 

time taken for the receiver to wait until the lost packet 

is reconstructed. The delays are measured in units of 

P, i.e., multiples of P.  

 

  The simulation was run for 20000 blocks for each set of 

parameter values.  Figures 3 through 6 were obtained with 

parameters of n=8, k=5, v=5, and w=15, for independent 

packet loss model and burst packet loss model. Figure 3 shows 

that the average packet loss rates for TEEC is lower than those 

for cases 2 and 3 while Figure 4 shows that the average packet 

recovery delays for TEEC is much lower than those for case 3 

and slightly higher than those for case 2. These two figures 

show the effectiveness of TEEC compared to traditional 

erasure codes. For burst packet loss model, Figures 5 and 6 

show the results with p1 set to 0.9. Figure 5 shows that, for 

most of the values of p2, TEEC has the lowest average packet 

loss rates and Figure 6 shows that the average packet recovery 

delays lie between those of case 1 and case 2 up to p2=0.65. It 

increases after that point and becomes largest for larger p2 

values. Larger p2 value means longer burst length. Similar 

results were obtained for different sets of parameter values and 

models as in this case. 

 

6  Conclusions 

 

    A real-time communication protocol utilizing TEEC have 

been developed in this paper, and its effectiveness was shown 

through the simulations. The simulation results of the protocol 

show that TEEC enhances the performances of the protocol in 

terms of end-to-end delays and average packet loss rates. Even 

though the experiments were conducted on unicast 

communication models, more benefits from TEEC can be 

obtained in multicast applications since many receivers may 

take advantages of TEEC.  

 

7  Acknowledgement 

 
This work was supported in part by US Army Research 

Office (ARO) grant W911NF-12-1-0060, and in part by Seoul 

R&BD Program (No. JP110034). The ICT at Seoul National 

University provided research facilities for this study. 

 

8  References 
 

[1] R. E. Blahut, “Theory and Practice of Error Control 

Codes”, Addison Wesley, MA, 1984 

[2] S. McCanne, V. Jacobson, and M. Vetterli,  “Receiver-

driven Layered Multicast”, ACM SIGCOMM’96, August 

1996, Stanford, CA, pp.1-14. 

[3]   A. McAuley, “Reliable Broadband Communication Using 

a Burst Erasure Correcting Code”, Proc. SIGCOMM’90. 

[4]  S. Lin, D. J. Costello, “Error Control Coding: 

Fundamentals and Applications”, Prentice Hall, 1983. 

[5]   S. Lin, D. J. Costello, M. Miller, “Automatic-repeat-

request error-control schemes”, IEEE Comm. Magazine, v.22, 

n.12, pp.5-17, Dec. 1984. 

[6]  J. Nonnenmacher, E.W. Biersack, “Reliable Multicast: 

Where to use Forward Error Correction”, Proc. 5
th

 Workshop 

on Protocols for High Speed Networks, pp.134-148, Sophia 

Antipolis, France, Oct. 1996. 

[7] J. Nonnenmacher, E.W. Biersack, D. Towsley, “Parity-

Based Loss Recovery for Reliable Multicast Transmission”, 

IEEE/ACM Transactions on Networking, 6(4):349-361, 

August 1998. 

[8]  R. G. Kermode, “Scoped Hybrid Automatic Repeat 

reQuest with Forward Error Correction”, Proc. SIGCOMM’98. 

[9]  V. Pless, “Introduction to Error-Correcting Codes”, 2
nd

 

edition, Wiley, 1989. 

[10] L. Rizzo, “Effective Erasure Codes for Reliable Computer 

Communication Protocols”, ACM Computer Communication 

Review, Vol.27, n.2, Apr. 1997, pp. 24-36. 

[11] L. Rizzo, Sources for an erasure code based on 

Vandermonde matrices. Available at  

http://www.iet.unipi.it/~luigi/vdm.tgz 

[12] L. Rizzo, L. Vicisano, “A Reliable Multicast data 

Distribution Protocol based on software FEC techniques”, 

DEIT Technical Report LR-970116. 

[13] Y. Wang, S. Lin, “A modified selective-repeat type-II 

hybrid ARQ system and its performance analysis”, IEEE 

Transactions on Communication, v.COM-31, n.5, pp.593-608, 

May 1983. 

900 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |

http://www.iet.unipi.it/~luigi/vdm.tgz


[14] J. Lin, S. Paul, “RMTP: A Reliable Multicast Transport 

Protocol”, IEEE INFOCOM’96, March 1996, pp.1414-1424. 

[15] D. Rubenstein, J. Kurose, D. Towsley, “Real-Time 

Reliable Multicast Using Proactive Forward Error Correction”, 

Technical Report 98-19, Dept. of Computer Science, Univ. of 

Mass., Amherst, March 1998. 

[16] K. Perumalla, A. Ogielski, R. Fujimoto, “MetaTeD: A 

Meta Language for Modeling Telecommunication Networks”, 

GIT-CC-96-32, Technical Report, College of Computing, 

Georgia Institute of Technology, 1997. 

[17] Seonho Choi,“Temporally Enhanced Erasure Codes for 

Reliable Communication Protocols”, available upon request to 

seonho@cs.bowiestate.edu. Dept. of Computer Science, Bowie 

State University, Bowie, MD 20715. 

[18] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. 

Spielman, and V. Stemann. Practical loss-resilient codes. In 

Proceedings of the Twenty-Ninth Annual ACM Symposium on 

Theory of Computing, pages 150--159, 1997. 

[19] Schacham, N., and McKenny, P., “Packet Recovery in 

High-Speed Networks using Coding”, In Proceedings of IEEE 

INFOCOMM’90. 

[20] Seonho Choi, “Temporally Enhanced Erasure Codes for 

Reliable Communication Protocols”, Computer Networks 

Journal, Vol. 38, p.713-730, 2002. 

 

 

Appendix 

 

 

 

Figure 3.  Average packet loss rate for n=8, k=5, v=5, w=15, 

and independent packet loss model. 

 

Figure 4.  Average packet recovery delay for n=8, k=5, v=5, 

w=15, and independent packet loss model. 

 

Figure 5.  Average packet loss rate for n=8, k=5, v=5, w=15, 

and burst loss model with p1=0.9. 

 

Figure 6.  Average packet recovery delay for n=8, k=5, v=5, 

w=15, and burst loss model with p1=0.9. 
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Abstract— In order to introduce more efficient high 
performance computing (HPC) applications we need to 
construct a performance model for the complex 
heterogeneous systems.  
Most of the HPC applications, as in the molecular 
dynamics simulation implement the FFT parallel 
algorithm that consumes a major portion of the 
application execution time.  
This work constructs a model that can be used to decide 
the execution plan scalability and highlight major factors 
that impact directly the algorithm performance. 
The parallel FFT algorithm is used as a case study for our 
modelling procedure.  
This paper aims to explore the most impacting parameters 
of the parallel FFT algorithms execution where other 
platform and hardware-dependent factors are not 
included. 
 
Keywords:  FFT, Performance, model, parallel, 
decomposition 
 

1 Introduction 
High Performance Computing (HPC) allows scientists and 
engineers to solve complex science and engineering 
problems using parallel algorithms on a large number of 
computing processors and high bandwidth network. 

As the scalability is a very important measurement of 
the applications performance, predicting the algorithm 
scalability is required in the pre-deploying phase.  

The peta-scale computers are the new generation of the 
HPC platforms as in blue waters project. It delivers 1 peta 
folps performance [1], the lack of scalability of the 
parallel algorithms forms a step challenging issue in the 
new Peta-scale computers. 

The scalability issues may prevent the applications 
from achieving the desired performance hence rise up the 
importance of the prediction model.  

The performance prediction model should address the 
major factors that affect the performance, however in 
order to implement a generic model it should not be very 
detailed to a specific hardware or a specific platform. 

The Fast Fourier Transform (FFT) is an enhanced method 
for calculating the Discrete Fourier Transform (DFT). As 
it is more efficient, often reducing the computation steps 
by hundreds. The 3D FFT can be expressed as [2] 

 (1) 

FFT has been one of the most popular and widely used 
numerical methods in many areas of scientific computing, 
including digital speech and signal processing, solving 
partial differential equations, molecular dynamics many-
body simulations and Monte Carlo simulations. 

Given its importance, there have been a large number of 
libraries that provide different implementations of FFT 
aimed at achieving high-performance in various 
environments. 

The outline of this paper is organized as follows. 
Section 2 shows the most relevant work related to our 
work. Section 3 describes the different decomposition 
algorithms .The experiments test-bed and the analytical 
model described in section 4 and 5 respectively , section 6 
illustrate the experiments results and finally paper 
conclusion is section 7. 

2 Related Work 
The steps required to calculate 3DFFT with 2D 

decomposition add extra computation and communication 
step while they extend the algorithm scalability [3]. 

Previous work introduced an analysis of the 3DFFT 
decompositions methodologies and the performance 
measurements of each decomposition method [3], the 
experimental results shown in Table 1 shows a speedup of 
the 2D decomposition [4], the 2D decomposition 
theoretical analysis proves a better scalability performance 
up to the product of the widest two dimensions of the data 
mesh however it is proven in this work that other factors 
have a major impact on the algorithm scalability. 
The major FFT parallel algorithm cost introduced as a 
summation of the communication and computation tasks 
Tfft(N; P;Chunks) = Tcomp(N; P) + Tcomm(Chunks; P)   
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Where Tcomp(N; P) is the Computation Time, 
Tcomm(Chunks; P) is the Communication Time [5] . In 
this paper the analysis model cost equation introduced 
with more details. 

Many intensive studies addressed the FFT algorithm 
communication cost highlighting BlueGene/L torus and 
mesh network topologies [6], in our work both 
computation  and communication factors considered along 
with the different decomposition  algorithms and the grid 
size, the model addressed only the major network 
parameters aiming to be independent of the network 
topologies.   

A comparison between different FFT libraries and the 
performance measurements through each decomposition 
method of the libraries predicts the theoretical scalability 
enhancements of the 2D decomposition [4], The FFTW [7] 
is a popular implementation of the 3DFFT; however the 
FFTW does not support the 2D decomposition however 
some modifications added to enable the 2D decomposition 
more details in section IV . 

Message Passing Interface (MPI) is a language-
independent communications protocol used to program 
parallel computers especially with the distributed system. 
MPI communication protocols include both point-to-point 
and collective communication [8]. 

There are various models to evaluate the MPI 
communication performance from the hardware 
perspective as LogP [9] , LogGP [10] and pLogP [11] 
where parameters as in Table 2  [12] . 

 TACC ranger network parameters measured [12] for 
the blocking and the non-blocking communication 
(discussed in the analytical model section) as shown in  
Table 3. 

Table 1:2563 1D & 2D decomposition results 

Library Time1 Cores2 Cores/Node Decomposition Nodes 

2DECOMP&FFT 0.0045 8192 16 2D 512 

2DECOMP&FFT 0.0057 512 1 2D 512 

P3DFFT 0.006 4096 16 2D 256 

P3DFFT 0.0063 512 1 2D 512 

FFTW 0.0124 256+ 1 1D 256 

P3DFFT 0.013 256 1 1D 256 

2DECOMP&FFT 0.014 256 1 1D 256 

P3DFFT 0.0233 256 16 1D 16 

2DECOMP&FFT 0.0244 256 16 1D 16 

FFTW 0.0341 256 16 1D 16 

1 Libraries sorted by time. 
2 Total number of cores 
+ Maximum number of total cores (1D decomposition). 

Table 2: LogGP Parameters 

Parameter Description 
m Message size 
L Network latency 
o Overhead per message transmission 
g Gap between successive message transmissions 
G The reciprocal of network bandwidth 
P Number of processors 

 
Table 3: Network latency values 

Parameter Blocking Non-Blocking 

L 1.95 μs 1.75 μs 

o 0.65 μs 0.85 μs 

g 0.65 μs 0.85 μs 

 

3 3D FFT decompositions 
FFT Decomposition is the process of distributing the 

3D FFT data mesh and determine the steps of 
communication and computation across the number of 
processors grid. 

 The decomposition way beside the hardware 
architecture and specifications are the key factors of any 
FFT algorithm execution plan. 

 
In 1D decomposition shown in Figure 1 which is also 

called slab decomposition, the 3D data grid is divided into 
a number of slabs across one dimension  

At the first step, the 1DFFT first calculated with respect 
to two dimensions let’s say the x and y direction, and 
along the third direction z  then in the second step a global 
transpose with all to all communication takes place then 
the at the last step the 2DFFT is calculated across the last 
dimension z 

In the 1D decomposition, the global transpose (all-to-
all communication) takes place only once, however the 
drawback of this algorithm is the scalability where the 
number of slabs is limited to the maximum number of 
processors in one dimension. 

 

 
Figure 1 : 3DFFT calculation steps for the 2D decomposition 

 
2D decomposition of the data, which sometimes called 

the pencil decomposition, is when the data is divided 
across two dimensions of the 3D data grid. In the first step, 
the 1DFFT is calculated for each pencil followed by a 
global transpose in the second step. At the third step, the 
1DFFT is calculated along the second dimension then 
again in the forth step the global transpose takes place. At 
the last step, a final calculation of the 1DFFT along the 
last dimension is performed. 

The 2D decomposition algorithm is shown in Figure 2 
[6]. Two global all-to-all transpose takes place, however 
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the maximum scalability is up two the product of the 
widest two dimensions of the 3D data grid. 

 

 
Figure 2: 3DFFT calculation steps for the 2D decomposition 

4 Test-bed 
 
Our target platform is the Texas Advanced Computing 

Centre – Ranger constellation –TACC Ranger. The TACC 
system consists of 62,976 nodes interconnected through 
InfiniBand technology providing a theoretical 1GB/sec 
point-to-point bandwidth, TACC provide a peak 
performance of 9.2 GFLOPS/core or 128 GFLOPS/node 
[13]. . 

As shown in Figure 3, every four cores are attached to 
one socket. Such structure must be considered when 
measuring the communication performance specially 
when testing with little number of cores (e.g. 2, 4, 8, and 
16) to avoid measuring the intra socket communication 
instead of the network communication.   

 

 
Figure 3: TACC Ranger Architecture 

 
Our experiments code was developed using C++, MPI 

routines version 1.2.7, PGI 7.1 compiler. 
The Fastest Fourier Transform in the West (FFTW) [7] 

library is selected for computing multiple dimensions of 
the DFT, FFTW is a MIT developed C subroutine library 
for computing multiple dimensions of the DFT, FFTW 
supports only the 1D decomposition however some 
changes are added to our experimental code to enable the 
2D decomposition testing. 

In the 1D decomposition, the fftw_mpi_local_size 
function used to determine the local size for each 
processor, fftw_plan_dft function is used to initialize the 
plan with the local variables and the input and output data 
and fftw_execute function is used to perform the FFT 
calculation. 

In the 1D decomposition, the local size of the 
processors that are out of boundaries (greater than the 
largest axis) is equal to zero. In our implementation of the 
2D decomposition we overwrite the local size variables to 
scale it to the number of the product of the widest two 
dimensions. 

In the transposing task, the fftw_mpi_plan_transpose 
function used to transpose the global 3D grid over the 
contributors processors, in the 2D decomposition the 
transposing action is modified to divide the contributing 
processors to a set of sub groups that share the required 
transposing axis as shown in Figure 2. Similar related work 
in [11] implement the same idea. 

Performance Application Programming Interface (PAPI) 
[14] framework supports several events API, PAPI 3.6.0 
is used to measure the number of the floating points 
instructions needed to calculate the FFT for each 
processor, however PAPI does not support MPI 
intercommunication profiling. 
Integrated Profiling Monitoring IPM [15] is a portable 
profiling infrastructure for parallel codes. It provides 
performance profile from several aspects of the 
computation communication, and IO of the parallel 
programs, IPM used to measure the communication time 
acquired, the message size transferred, and the number of 
messages for the transposing tasks.  

5  The analytical model  
This paper aims to explore the most impacting 

parameters of the parallel FFT algorithms execution to 
build a high level model for its timing behaviour. The 
model takes into consideration the major hardware system 
parameters. However it is not hardware-specific as the 
more generic parameters we achieve, the more platforms 
we can use. 

For simplicity we can divide the FFT algorithm into 
two non overlapping stages. 

First: the computation part where each processor 
computes the DFT for the local portion of the data grid, 
the number of steps per core based on the algorithm order 
time (N2, N log N, etc) and data mesh size. 

As shown in equation (2) the FFTW algorithm uses 
O(N log N) [7], the computation time per core depends on 
several parameters. 

The  ࡯ࡲࡲ  parameter is the floating point factor that 
reflects the number of flops required for calculating each 
point. 

 equals 5 in case of complex number transform as  ࡯ࡲࡲ
in our experiments and 2.5 in case of real number 
transform [7], (࢙ࢉ࢕࢘࢖ࡺ)ࢌ  is the maximum number of 
processors scalability considering the FFT algorithm 
decomposition method where (࢙ࢉ࢕࢘࢖ࡺ)ࢌ in 1D 
decomposition equals the widest dimension of the data 
grid. In the 2D dimension, it is equal to the product of the 
widest two dimensions of the data grid as shown in 
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equation (3). Peak Performance is the peak floating-
point operations performance per core, the value of the 
peak performance equal to 9.2 GFLOPS/core or 128 
GFLOPS/node [13]. Peak Percentage is the average peak 
performance percentage measured in our experiments and 
is found to be around 950 mflops that equivalent to 10% 
of the theoretical peak performance as shown in Figure 4, 
the mflops is the rate of flops × 106  per second where 
flipns stands for the number of floating points measured, 
Ndata is the number of the data grid points. 

. 
ࢋ࢓࢏࢚ ࢔࢕࢏࢚ࢇ࢚࢛࢖࢓࢕ࢉ =

 
ቀ×ܥܨܨ

ܽݐܽ݀ܰ
ቁ(ݏܿ݋ݎ݌ܰ)݂ log2

ܽݐܽ݀ܰ
(ݏܿ݋ݎ݌ܰ)݂

݁݃ܽݐ݊݁ܿݎ݁݌݇ܽ݁ܲ× ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݇ܽ݁ܲ
     (2) 

 
(࢙ࢉ࢕࢘࢖ࡺ)ࢌ =

൜ ,ࢄࡺ)࢞ࢇࡹ ,ࢅࡺ ,(ࢆࡺ ܦ1
࢏ࡺ ࢐ࡺ ∗ , ࢏ࡺ ࡰࡺ࡭  ࡶࡺ  ≠ ,ࢄࡺ)࢔࢏ࡹ ,ࢅࡺ ,(ࢆࡺ ܦ2

�   (3) 

 
Second: The communication part that represents the 

time consumed in the transposing tasks of the algorithm.  
Again, the transposing time can be divided into two 

parts, first the data transmission time, as we have first to 
figure out the data grid size that will be transposed by 
each core by dividing the total data size ࢇ࢚ࢇࢊࡺ  on the 
number of processors (࢙ࢉ࢕࢘࢖ࡺ)ࢌ  that depends directly 
on the decomposition way multiplied by the number of 
bytes in each data grid point FFM, divided on the network 
bandwidth BW. The second part is the overall transpose 
Message latency࢚ࢇ࢒ࡳࡿࡹ  that equal to the summation of 
the three overhead parameters multiplied by the number of 
messages (࢙ࢉ࢕࢘࢖ࡺ)ࢌ as in the transposing task, an all-to-
all communication takes place. 

The overhead parameters derived from three parameters l, 
o, and g. l refers to network latency, o overhead per 
message transmission and g gap between the successive 
message transmissions. The three parameters have been 
measured in previous work [12] as in Table 2 and  
Table 3, the tables address the latency values for the MPI 
blocking and non-blocking communication. 

The blocking MPI means that the program execution 
will be suspended till the message buffer is safe to use, 
however in the non-blocking MPI communication, the call 
returns immediately after the call is initiated. The FFTW 
is found to use the non blocking MPI_SENDRECV 
routine in the transposing communications.  

It is worthy to mention that the communication 
performance has many other parameters that are more 
hardware-specific; it is out of the scope of this model as 
the model is designed to be algorithm-oriented. 

 

ࢋ࢓࢏࢚ ࢔࢕࢏࢚ࢇࢉ࢏࢔࢛࢓࢓࢕ࢉ = ࢚ࢇ࢒ࡳࡿࡹ + 
ቀࡹࡲࡲ∗ࢇ࢚ࢇࢊࡺ

(࢙ࢉ࢕࢘࢖ࡺ)ࢌ ቁ

ࢃ࡮
         (4) 

࢚ࢇ࢒ࡳࡿࡹ = ࡸ)  + ࢕ + (ࢍ ∗ (࢙ࢉ࢕࢘࢖ࡺ)ࢌ  − ૚                   (5) 

The number of points handled by each core can be 
calculated as ܰௗ௔௧௔/ ݂(ܰݏܿ݋ݎ݌) multiplied by the number 
of bytes ܯܨܨ. 

6 Model Verification 
This section discusses and compares the model and the 

algorithm performance and scalability. 
In the following Figures, the performance results 

measured in seconds over 2 to 4096 cores, multiple runs 
executed to calculate the average execution time for 643 
and 2563 input grids, respectively. 

As discussed in the previous Section, the model and the 
actual computation time are measured by calculating the 
number of flops of the FFT calculations for each core 
divided by the peak performance multiplied by %10 as the 
peak percentage. 

The MPI_Sendrecv mpi routine used in point-to-point 
communication by the FFTW algorithm, the 
MPI_Allreduce used to gather the results of the average 
number of flops through the running instances, the 
communication analysis include only the MPI_Sendrecv 
communication in the transposing tasks excluding any 
other communication overhead used in gathering or 
synchronizing the data.  

The IPM used to profile the messages between the 
cores, as simple histogram method used to calculate the 
average message time between cores. 

In our platform, TACC Ranger; some parameters 
should be addressed to submit a job, one of them is the 
wayness [13] as it determines the number of cores to be 
used through the whole node (16 cores), for example if the 
program will run on 32 core and 8 wayness method used, 
this means that the program will need 4 nodes and then 
only 8 cores will be used in each node. 

As shown in Figure 3 each group of 4 cores are 
communicated with the other groups through one socket, 
In the small number of processors (Nprocs < 16), the      
1-way job scheduling wayness used to avoid measuring 
the inter-group communication instead of the InfiniBand 
socket communication. 

6.1 1-D Decomposition  
The model successfully predicts the overall trend 

changes in the FFT execution performance and scalability, 
Figure 5 and  Figure 6 show that the time consumed by the 
computation part is dominant when the number of cores is 
less than 64, the communication and computation parts 
start to be very close when the number of cores are equal 
to the widest dimension over 2, the results confirms that 
algorithm scalability extent is equal to the widest 
dimension in the input 3D grid, when the number of cores 
is larger than the widest dimension the algorithm divides 
the data grid on a number of cores equals to the widest 
dimension and the rest of the cores is not involved in the 
execution plan. 

6.2 2-D Decomposition  
The model successfully predicts the overall 

performance behaviour and scalability, as shown in Figure 
7 and Figure 8, the 2-D decomposition success to scale to 
the product of the widest two dimensions of the data grid 
as discussed in the previous Section, however the 
performance drops dramatically when the number of all-
to-all messages increased to be more than 128×128 and 
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the size of the message became very small (less than 32 
bytes) where the message latency time is the dominant. 
The message sizes transmitted for each scenario are 
shown in  Figure 9 that shows the relationship between the 
message size of each scenario  and the decomposition 
algorithm as well as the data grid size, message size is 
measured in bytes, the message size of the all-to-all 
communication step can be derived from the 
communication analytical equation as ே೏ೌ೟ೌ∗ிிெ

௙(ே௣௥௢௖௦)మ   where 
the total amount of data required to be transposed on each 
processor is divided over the total number of the 
processors engaged in the all-to-all communication. 

As shown in equation (5) the number of messages 
directly impact the time consumed by the messages 
latency, as shown in Figure 9 the dramatic increase of the 
messages number along the increase of the number of 
processors.  

As shown in previous work [12] and in Figure 12  the 
relation between the message size and the G parameter - 
that introduced in Table 2 - has a Monotonic decrease 
relationship where the bandwidth affected badly by the 
message size. 

To achieve the desired scalability and performance, the 
message size and the network latency factors should be 
considered. 

In Figure 10 and Figure 11 the model accuracy for the gap 
between the predicted time and the measured time is 
shown for both 1-D and 2-D decompositions with 643 and 
2563 data grids inputs, the gap fluctuations may refer to 
change in the peak performance due to hardware 
considerations however the overall performance 
behaviour still predictable.  

.  

 
Figure 4: Average Number of mflops 

 

Figure 5: 1D decomposition 2563 data grid size 

 

 
 

Figure 6: 1D decomposition 643 data grid size 
 

 
Figure 7: 2D decomposition 643 data grid size 

 
 

Figure 8:2D decomposition 2563 data grid size 
 

 
Figure 9 : Message size and number of messages 
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Figure 10: Gap between the Model and the Measured for 643 

 
Figure 11: Gap between the Model and the Measured for 2563 

 
Figure 12: G for Various Message Sizes 

7 Conclusions and future work 
The paper present a predictive model of scalability and 

performance of the parallel FFT algorithm, The model 
successfully predicts the overall scalability performance 
behavior, although there is a gap between the predicted 
and measured performance for the very large and the very 
small message size. 

 The model scope includes the execution of 3DFFT grid, 
1D and 2D decomposition methods. A future work can be 
done against the 3D decomposition (volumetric 
decomposition). 

The model can be enhanced to include the computation 
and communication overlapping probability. 

The network parameters, as the bandwidth and the 
message latencies parameters should be known for the 
target platform; it can be done through 1- System 
documentation 2- profiling tools.  
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Abstract –Map/Reduce algorithm has received highlights 

as cloud computing services with Hadoop frameworks 

were provided. Thus, there have been many approaches to 

convert many sequential algorithms to the corresponding 

Map/Reduce algorithms. The paper presents Map/Reduce 

algorithm of the legacy Apriori algorithm that has been 

popular to collect the item sets frequently occurred in 

order to compose Association Rule in Data Mining. 

Theoretically, it shows that the proposed algorithm 

provides high performance computing depending on the 

number of Map and Reduce nodes. 

Keywords: Map/Reduce, apriori algorithm, Data Mining, 

Association Rule, Hadoop, Cloud Computing 

1 Introduction 

People started looking at and implementing Map/Reduce 

algorithm for most of applications, especially for computing 

Big Data that are greater than peta-bytes as cloud 

computing services are provided, for example, by Amazon 

AWS. 

Big Data has been generated in the areas of business 

application such as smart phone and social networking 

applications. Especially these days, the better computing 

power is more necessary in the area of Data Mining, which 

analyzes tera- or peta-bytes of data. Thus, the paper 

presents Apriori-Map/Reduce Algorithm that implements 

and executes Apriori algorithm on Map/Reduce framework. 

In this paper, section 2 is related work. Section 3 

describes the legacy apriori algorithm. Section 4 introduces 

Map/Reduce and Hadoop and presents the proposed 

Apriori-Map/Reduce algorithm. Section 5 is conclusion. 

 

2 Related Work 

Association Rule or Affinity Analysis is the fundamental 

data mining analysis to find the co-occurrence relationships 

like purchase behavior of customers. The analysis is legacy 

in sequential computation so that many data mining books 

never resist illustrating it.  

Aster Data has SQL MapReduce framework as a 

product [9]. Aster provides nPath SQL to process big data 

stored in the DB. Market Basket Analysis is executed on 

the framework but it is based on its SQL API with 

MapReduce Database. 

Woo et al [11-13] presents Market Basket Analysis 

algorithms with Map/Reduce, which proposes the algorithm 

with (key, value) pair and execute the code on Map/Reduce 

platform. However, it does not use the apriori property but 

instead adopts joining function to produce paired items, 

which possibly computes unnecessary data. 

 

3 Apriori Algorithm 

Apriori algorithm shown in Figure 3.1 has been used to 

generate the frequent item sets in the amount of data 

transactions in order to produce an association rule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The association rule has been used efficiently to 

manage stock items and products etc analyzing the 

customer’s behavior. It is based on Apriority Property 

where all subsets of a frequent item set must also be 

frequent.  

For example, minimum support is 2 and there are size 

2 item sets generated: <[coffee, cracker], 3> and <[coke, 

Map transaction t in data source to all Map nodes; 

//(1)  

C1 = {size 1 frequent items};  

// (2) min_support = num / total items; for example: 33% 

L1 = {size 1 frequent items  min_support}; 

for (k = 1; Lk !=∅; k++) do begin 

 // (3) sort to remove duplicated items 

 Ck+1 = Lk join_sort Lk;      

 

 for each transaction t in data source with  Ck+1 do 

 // (4)  

increment the count of all candidates in Ck+1 that 

are contained in t 

 // (5) find Lk+1 with Ck+1 and min_support 

 Lk+1 = {size k+1 frequent items  

min_support}; 

end 

end 

return ∪k Lk; 

Figure 3.1. Apriori Algorithm 
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cracker], 1> as <[item pairs], frequency>. And, when 

there are size 3 item sets produced as <[coffee, cracker, 

milk]> and <[coke, cracker, milk]>, as Apriority Property, 

<[coke, cracker, milk]> is eliminated before counting the 

frequencies of the item sets in the transaction data, which 

reduce unnecessary computing time. 

The time complexity of the algorithm is O(k x (k
2
 + t x 

n)) when k: size of frequent items, t: transaction data, n: 

number of item elements in each transaction t. It is 

simplified to O(k
3
 + k x t x n) and then O(k x t x n) where t 

>> k, n>>k. 

 

4 Apriori-Map/Reduce Algorithm 

4.1 Map/Reduce in Hadoop 

Map/Reduce is an algorithm used in Artificial Intelligence 

as functional programming. It has been received the 

highlight since re-introduced by Google to solve the 

problems to analyze Big Data, defined as more than peta-

bytes of data in distributed computing environment. It is 

composed of two functions to specify, “Map” and 

“Reduce”. They are both defined to process data structured 

in (key, value) pairs.  

Inspired by Google's MapReduce and GFS (Google 

File Systems) [1], Map/Reduce platform is implemented as 

Apache Hadoop project that develops open-source software 

for reliable, scalable, and distributed computing. Hadoop 

can compose hundreds of nodes that process and compute 

Big Data. Hadoop has been used by a global community of 

contributors such as Yahoo, Facebook, Cloudera, and 

Twitters etc. Hadoop provides many subprojects including 

Hadoop Common, HDFS, MapReduce, Avro, Chukwa, 

HBase, Hive, Mahout, Pig, and ZooKeeper etc [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map and reduce functions run on distributed 

nodes in parallel. Each map and reduce operation can be 

processed independently on each node and all the 

operations can be performed in parallel. Map/Reduce can 

handle Big Data sets as data are distributed on HDFS 

(Hadoop Distributed File Systems) and operations move 

close to data for better performance [5]. 

Hadoop is restricted or partial parallel programming 

platform because it needs to collect data of (key, value) 

pairs as input and parallely computes and generates the list 

of (key, value) as output. In map function, the master node 

divides the input into smaller sub-problems, and distributes 

those to worker nodes.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 illustrates Map/Reduce control flow where, 

as m is map node id, each valuemn is simply 1 and gets 

accumulated for the occurrence of items together, which is 

clearly illustrated in Market Basket Analysis Algorithm of 

Woo et al [11-13]. Map function takes inputs (k1, v1) and 

generates <k2, v2> where < > represents list or set. 

Combiner function that resides on map node takes inputs 

(k2, <v2>) and generates <k2, v2>. Reduce function takes 

inputs (k2, <v2>) and generates <k3, v3>.  

� 

� Map1() Map2() Mapm() 

Reduce1 () Reducel() 

Data Aggregation/Combine 

(key1, value11) 
(key2, value12) 
� 

(keyn, value1n) 

(key1, value21) 
(key2, value22) 
� 

(keyn, value2n) 

(key1, valuem1) 
(key2, valuem2) 
� 

(keyn, valuemn) 

(key1, <value11, value21, �, valuem1>) 

(key2, <value12, value22, �, valuem2>) 

(key1, final value1) 
(key2, final value2) 

(keyn, final valuen) 

Figure 4.1. Map/Reduce Flows 

Input Data 

(keyn, <value1n, value2n, �, valuemn>) 

Reduce2() 

Map transaction t in data source to all Map nodes; 

//(1) In each Map node m 

Cm1 = {size 1 frequent items at the node m}; 

// (2) In Reduce, compute C1 and L1 with all Cm1 ; 

C1 = {size 1 frequent items};  

// (3) min_support = num / total items; for example: 33% 

L1 = {size 1 frequent items  min_support}; 

for (k = 1; Lk !=∅; k++) do begin 

 // (4) In each Map node m 

 // Lmk: Lk  mapped to each node m;  

 // sort to remove duplicated items 

 Cm(k+1) = Lk join_sort Lmk;      

  

 // (5) In Reduce, use Apriori Property 

 compute Ck+1 with all sorted Cm(k+1) ; 

 if (k>=3) prune(Ck+1 ); 

 

 for each transaction t in data source with  Ck+1 do 

 // (6) In each Map node m 

increment the count of all candidates in Lm(k+1) 

that are contained in t 

end 

// (7) In Reduce,  find Lk+1 with Lm(k+1) and  

// min_support 

Lk+1 = {size k+1 frequent items  min_support}; 

end 

return ∪k Lk; 

Figure 4.2. Apriori-Map/Reduce Algorithm 
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Map/Reduce approach, especially for big data set, 

gives us the opportunity to develop new systems and evolve 

IT in parallel computing environment. The approach started 

a few years ago but many IT companies in the world 

already have adapted to Map/Reduce approach. 

4.2 Apriori-Map/Reduce Algorithm 

Figure 4.2 is the proposed Apriori-Map/Reduce Algorithm 

that runs on parallel Map/Reduce framework such as 

Apache Hadoop. prune(Ck+1) function is to remove the non-

frequent item set Ck+1 by eliminating non-frequent item sets 

Ck as non-frequent item sets cannot be a subset of frequent 

item sets. 

The algorithm starts with (1) that calculates frequent 

item set for each map node as the time complexity O(t/m x 

n) when t: number of transactions, n: number of items in the 

transactions, m: num of map nodes. Then, (2) are to collect 

the frequent item set and (3) is to remove items that does 

not meet the minimum support in reduce nodes as O(t/r x n) 

when r: number of reduce nodes. The time complexity of 

(1-3) can be simplified initially to O((t/m + t/r) x n) and 

then O(t x n / x) when m = r = p.  

(4) is to calculate frequent item set with an additional 

item by joining, sorting, and eliminating the duplicated 

items in each map node where join_sort is O(k x k / m) 

when k: size of frequent items and prune is O((k-1) x k / r) 

that is simplified to O(k
2
/r). Similarly, (5) is to collect the 

frequent item set at the reduce nodes. (6) is to count item 

frequencies that do not meet the minimum support at the 

map nodes as O(t/m x n). (7) is to remove items that does 

not meet the minimum support in reduce nodes as O(t/r x n) 

that is initially simplified to O((t/m + t/r) x n)  and then O(t 

x n / p) when m = r = p. 

4.2.1 Time Complexity 

The overall time complexity of Apriori-Map/Reduce 

Algorithm is calculated as O(k x (k2 + t x n)/p) where k: 

size of frequent items, t: number of transactions, n: number 

of items in the transactions, p: number of map and reduce 

nodes assuming the node sizes are the same. And, it 

becomes O((k3 + k x t x n)/p) and then O(k x t x n/p) where 

t >> k, n >> k. It theoretically shows that the time 

complexity is p times less than the sequential apriori 

algorithm. 

4.2.2 Example of the Algorithm 

Figure 4.3 is the example transaction data at a store to 

explain how the proposed algorithm works. 

 

 

 

 

 

 

 

 

 

Suppose that minimum support is 2/6 that represents 

two items out of 6 transactions as 33%.  

 

(a) The first step 

Assuming there are three Map nodes, two transaction data 

are distributed to three map nodes, that is, map node 1 has 

transaction data 1 and 2. Node 2 has transaction data 3 and 

4. Node 3 has transaction data 5 and 6. Therefore, we can 

generate size 1 frequent items Cm1 with an item pair set 

<item, frequency> at the map node m. 

 

C11 = {<cracker, 1>, <beer, 1>, <chicken, 1>, <pizza, 1>}  

C21 = {<coke, 2>, <cracker, 2>, <beer, 1>}  

C31 = {<beer, 1>, <chicken, 2>, <coke, 2>} 

 

From all Cm1, reduce nodes collect and compute C1 

that is size 1 frequent item pairs and L1 that is size 1 

frequent item pairs that meet minimum support. Thus, 

[pizza, 1] of C1 is eliminated in L1. 

 

C1 = {[cracker, 3], [beer, 3], [chicken, 3], [pizza, 1], 

[coke, 4]};  

L1 = {[cracker, 3], [beer, 3], [chicken, 3], [coke, 4]} 

 

(b) The second step 

In the loop, L1 is mapped to each map node m for Lm1. 

 

L11 = {cracker, beer}  

L21 = {chicken}  

L31 = {coke} 

 

Then, size 2 frequent item pair sets can be generated 

by joining and sorting L1 to each item sets of the map node 

m as Cm2 = L1 join_sort Lm1 where the duplicated item sets 

are eliminated: 

 

C12 = {<beer, cracker>, <chicken, cracker>, <beer, 

chicken>, <coke, cracker>, <beer, coke>}  

C22 = {<chicken, cracker>, <beer, chicken>, <chicken, 

coke>} 

C32 = {<coke, cracker>, <beer, coke>, <chicken, coke>} 

 

From all Cm2, reduce nodes collect C2 that is size 2 

frequent item pairs. 

 

C2 = {<beer, cracker>, <chicken, cracker >, <beer, 

chicken>, <coke, cracker>, <beer, coke>, <chicken, 

coke>};  

 

C2 is mapped to each map node as Cm2 as follows: 

 

C12 = {<beer, cracker>, <chicken, cracker >}  

C22 = {<beer, chicken>, <coke, cracker>} 

C32 = {<beer, coke>, <chicken, coke>} 

 

Transaction 1: cracker, beer 
Transaction 2: chicken, pizza,  
Transaction 3: coke, cracker, beer 
Transaction 4: coke, cracker 
Transaction 5: beer, chicken, coke 
Transaction 6: chicken, coke 

Figure 4.3 Transaction data at a store 
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Now, we can generate size 2 frequent items with an 

item pair set [item, frequency] at the node m that contains 

all transaction data as presented in Figure 4.2. 

 

C12 = {[<beer, cracker>, 2], [<chicken, cracker>, 0]}  

C22 = {[<beer, chicken>, 1], [<coke, cracker >, 2]} 

C32 = {[<beer, coke>, 2], [<chicken, coke>, 2]} 

 

From all Cm2, the reduce nodes collect and compute C2 

that is size 2 frequent item pairs and L2 that is size 2 

frequent item pairs that meet minimum support. Thus, 

[<chicken, cracker >, 0] and [<beer, chicken >, 1] are 

eliminated from C2 for L2: 

 

C2 = {[<beer, cracker>, 2], [<chicken, cracker >, 0], 

[<beer, chicken >, 1], [<coke, cracker>, 2], [<beer, 

coke>, 2], [<chicken, coke>, 2]};  

L2 = {[<beer, cracker>, 2], [<coke, cracker>, 2], [<beer, 

coke>, 2], [<chicken, coke>, 2]}; 

 

(c) The third step 

In the loop, L2 is mapped to each map node m. 

 

L12 = {<beer, cracker>, <coke, cracker>} 

L22 = {<beer, coke>} 

L32 = {<chicken, coke>} 

 

Then, size 3 frequent item pair sets can be generated 

by joining and sorting L2 to each item sets of the map node 

m as Cm3 = L2 join_sort Lm2 where the duplicated item sets 

are eliminated: 

 

C13 = {<beer, coke, cracker>, <beer, chicken, coke>, 

<chicken, coke, cracker>}  

C23 = {<beer, coke, cracker>, <beer, chicken, coke>} 

C33 = {<beer, chicken, coke>, <chicken, coke, cracker>} 

 

As the item size k is or greater than 3, prune(Cmk) 

deletes non frequent item sets that violates apriori property 

that all subsets of a frequent item set must also be frequent: 

 

C13 = {<beer, coke, cracker>} 

C23 = {<beer, coke, cracker>} 

C33 = {} 

 

C13, C23, C33 eliminate <beer, chicken, coke> and C13, 

C33 removes <chicken, coke, cracker> as <beer, chicken> 

and <chicken, cracker> respectively are not a member of 

L2, that is, non-frequent items. 

From all Cm3, reduce nodes collect C3 that is size 3 

frequent item pairs and L3 that is size 3 frequent item pairs 

that meet minimum support: 

 

C3 = {<beer, coke, cracker>} 

L3 = {} 

 

Since L3 does not have any element, the algorithm 

ends. Therefore, we have frequent item sets L1 and L2 with 

size 1 and 2 respectively: 

 

L1 = {[cracker, 3], [beer, 3], [chicken, 3], [coke, 4]} 

L2 = {[<beer, cracker>, 2], [<coke, cracker>, 2], [<beer, 

coke>, 2], [<chicken, coke>, 2]}; 

 

The item sets L1 and L2 can be used to produce 

association rule of the transaction. 

 

5 Conclusion 

The paper proposes Apriori-Map/Reduce Algorithm and 

illustrates its time complexity, which theoretically shows 

that the algorithm gains much higher performance than the 

sequential algorithm as the map and reduce nodes get 

added. The item sets produced by the algorithm can be 

adopted to compute and produce Association Rule for 

market analysis. 

The future work is to build the code following the 

algorithm on Hadoop frame and generate experimental data 

by executing the code with the sample transaction data, 

which practically proves that the proposed algorithm works. 

Besides, the algorithm should be extended to produce 

association rule. 
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Abstract - Hybrid programming (through messages and 

shared memory) has gained importance since the 

appearance of multicore cluster architectures, fruit of the 

technological advance of processors and the physical 

limitations imposed by traditional architectures. This new 

programming paradigm allows exploiting the new 

memory hierarchy offered by the architecture. 

The purpose of this work is to carry out a comparative 

analysis between two hybrid algorithms that use two 

different parallel programming libraries for shared 

memory (PThreads and OpenMP). Both algorithms use 

MPI as message passing mechanism. For the 

experiments, the classic matrix multiplication problem is 

used, which is the basis for numerous applications. 

The test architecture used for the experimental analysis is 

a multicore cluster. The performance obtained and 

programming tools are compared. 

 

Keywords: parallel architectures, hybrid programming, 

cluster, multicore, message passing, shared memory. 

 

1 Introduction 

Parallel architectures have evolved to offer better 

response times for applications. As part of this evolution, 

clusters, then multi-cores, and currently multi-core 

cluster architectures, can be mentioned. The latter are 

basically a collection of multi-core processors 

interconnected through a network. 

Multicore clusters allow combining the most distinctive 

features of clusters (use of message passing in shared 

memory) and multicores (use of shared memory). Also, 

they introduce modifications in memory hierarchy and 

further increase computer system capacity and power. 

Taking into account the popularity of this architecture, it 

is important to study new parallel algorithms 

programming techniques that efficiently exploit its 

power, considering the hybrid systems in which shared 

memory and distributed memory are combined [1]. 

When it comes to implementing a parallel algorithm, it is 

very important to consider the memory hierarchy 

available, since this will directly affect algorithm 

performance. Figure 1 below shows the evolution. 

 
Figure (1) Memory hierarchy 

 

Memory hierarchy performance is primarily determined 

by two hardware parameters: memory latency (time 

elapsed from the moment a piece of data is required and 

the moment it becomes available) and memory 

bandwidth (the speed with which data are sent from the 

memory to the processor). In the case of traditional 

clusters (both homogeneous and heterogeneous), there 

are memory levels in each processor (processor register 

and cache levels L1 and L2), but a new level is also 

included: network-distributed memory.  

When considering a multi-core architecture, there are, in 

addition to register and L1 levels corresponding to each 
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core, two memory levels: cache memory shared by pairs 

of cores (L2) and memory shared among the cores of the 

multi-core processor [2]. Currently, the new architectures 

include one additional memory level, L3 cache. 

In particular, multi-core clusters introduce one additional 

level to the traditional memory hierarchy. In addition to 

the cache memory shared between pairs of cores and the 

memory shared among all cores within the same physical 

processor, there is the distributed memory that is 

accessed through the network. This can also be seen in 

Figure 1. 

This paper is organized as follows: Section 2 presents the 

objectives, then, Section 3 analyzes the parallel 

programming libraries used for the experiments. In 

Section 4, the existing mapping techniques used in this 

paper are discussed, while Section 5 presents the study 

case selected for testing and the solutions implemented. 

Finally, Section 6 discusses the results achieved, and 

Section 7 details the conclusions and future work. 

2 Objective 

The purpose of this paper is to carry out a comparative 

analysis of two hybrid solutions [3][4][5] that use the two 

shared memory libraries most commonly used nowadays 

in parallel computing: Pthreads and OpenMP. 

Even though there is a large number of parallel 

applications in various areas, one of the most traditional 

and widely studied in parallel computation, and used in 

this paper, is matrix multiplication. It allows analyzing 

application scalability in two ways: by increasing the size 

of the problem and increasing the number of execution 

cores. 

3 Parallel Programming Libraries 

3.1. Pthreads 

Over time, hardware manufacturers have implemented 

their own versions for thread management and 

administration. These versions are very different from 

each other, which makes it difficult for programmers to 

develop multithread applications that are portable. For 

this reason, in 1995 the IEEE established the POSIX 

(Portable Operating System Interface) standard. Its last 

version is IEEE Std 1003.1, 2004 Edition [6]. 

Pthreads is a library that implements the POSIX standard 

defined by IEEE, and is composed by a set of types and 

calls to procedures in programming language C that 

includes a header file and a thread library that is part, for 

example, of the libc library, among others. It is used for 

programming parallel applications that use shared 

memory. 

The subroutines that form the API in Pthreads can be 

classified in four large groups: thread management, 

mutex (routines that handle synchronization and mutual 

exclusion), condition variables, and synchronization. 

3.2. OpenMP 

OpenMP is a programming interface (API) defined by a 

set of hardware and software manufacturer including the 

following: Sun Microsystems, IBM, Intel, AMD, among 

others [7]. 

It provides a portable and scalable interface for the 

developers of parallel applications that use shared 

memory. 

This API supports C/C++ and Fortran in multiple 

architectures, including LINUX and Windows NT. It 

provides several builders and directives to specify 

parallel regions, shared work, synchronization, and 

environment variables. 

It is formed by the following three components: 

1. Compilation directives 

2. Running time routine library 

3. Environment variables 

3.3. OpenMPI 

MPI is a message passing interface that defines both the 

syntax and the semantics of the set of routines that can be 

used in the implementation of programs that use message 

passing. It was created to solve the issues that appeared 

after each hardware manufacturer defined its own 

communication interface, which in general were 

incompatible with all others. The purpose of MPI is to 

solve this problem by defining a standard [8]. 

MPI is a library that can be used to develop programs 

that use message passing (distributed memory) and uses 

the programming languages C or Fortran.  

One of the implementations of this standard is OpenMPI, 

which is used in this paper, because it provides manual 

mapping mechanisms to assign processes to cores for 

their execution. This is discussed in Section 4. 

3.4. Pthreads vs. OpenMP 

It should be noted that OpenMP generates a pool of n 

threads (n is defined by the programmer) that is going to 

be re-used as needed in a very efficient manner. Thus, 

there is no need to create and remove threads when 

entering/leaving each parallel section. This is extensively 

exploited when the algorithm has several parallel 

sections.  

In the case of Pthreads, threads would have to be created 

and destroyed for each of these sections, or a pool of 

threads would have to be created and kept from the 

algorithm. Also, if the algorithm required 

synchronization among threads, or more complex 
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parallelizations, such as shared variables reduction 

operations, combination of critical and non-critical 

sections, etc., OpenMP would in theory yield better 

results than Pthreads, since the library itself provides 

specialized and optimized mechanisms to do so, whereas 

Pthreads would require a manual implementation using 

semaphores or condition variables.  

For this reason, one of the advantages of Pthreads over 

OpenMP is that the programmer has greater control over 

thread creation, destruction and behavior, since thread 

management is at a lower level than in OpenMP. 

4 Thread and Process Manual Mapping 

The traditional operating systems map threads and 

processes to processors and cores using various 

scheduling techniques.  

However, there are mechanisms that allow application 

programmers to manually map these threads and 

processes. In the case of threads, the code of the 

application has to be modified, whereas in the case of 

process mapping, it can be done while it is running by 

using directly the binary. 

Based on the architecture used in this paper, that is, 

multicore cluster, both mapping alternatives were used 

and combined to obtain a better global system 

performance. This can be done because the algorithms 

being studied use a hybrid model, combining shared 

memory and message passing. 

4.1. Process Mapping 

Open MPI is an open code project that implements the 

MPI standard and offers the added functionality of 

providing directives for explicitly mapping processes to 

processing cores. To do so, it requires two files called 

rankfile and hostfile.  

The hostfile file defines the number of cores available in 

the system and the name of the machine in the network. 

The format of this file is the following: 

hostNameX slots = number of cores 

hostNameY slots = number of cores 

 

The rankfile file defines an input for each process, as 

shown below: 

rank N = hostNameX slot = number of CPU  

rank M = hostNameY slot = number of CPU:number 

of core 

 

Figure 2 shows a diagram explaining the parameters 

number of CPU and number of core. 

 
Figure (2) Manual mapping 

These two files must be passed as parameter upon 

execution. 

The advantage of this alternative is that the source code 

is untouched, there is no need to modify it to add this 

functionality, and as a consequence, the mapping process 

does not consume execution time. The disadvantage is 

that mapping is static and cannot be dynamically 

modified because it is passed as parameter upon 

execution. 

4.2. Thread Mapping 

In shared memory systems there is no specific function to 

assign a thread to a given processing core. Instead of this, 

there is a function that allows defining the affinity for 

each task. 

Affinity allows specifying which, of all existing cores in 

a system, can be assigned a certain process or thread. To 

be able to assign these processes or threads to any given 

specific core, the core in question must be set as the only 

schedulable processor/core for such assignment. 

Unix-based operating systems offer a system call that 

allows explicitly defining affinity. This should be used in 

shared memory environments, since it can manage the 

cores and processors in the machine on which the 

operating system is being run. The heading of this 

function is as follows: 

sched_setaffinity(pid_t pid, unsigned long cpusetsize, 

cpu_set_t *mask) 

Where: 

 pid: is the process identifier for which affinity 

is defined. If its value is 0, it represents the process 

being run. It should be noted that the threads 

belonging to a same process share the same PID; 

however, the affinity belongs to each separate thread 

and is stored in the thread context. 

 cpusetsize: this is the length (in bytes) of the 

data noted by the mask parameter. 
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 mask: this represents the affinity mask.  It is a 

bit mask where each bit represents a (logical) 

processor in the system. Bits are sorted from the less 

significant one, corresponding to the first logical 

processor, to the most significant one, corresponding 

to the last logical processor in the system. 

 If bit = 0, the processor is non-schedulable 

 If bit = 1, the processor is schedulable 

By default, when a thread/process is created, it is 

schedulable for all existing cores in the system. To map a 

process or thread to a specific processor, such processor 

must be set as the only schedulable processor. 

One of the advantages of this scheduling technique is the 

possibility of dynamically modifying (during the 

execution) the schedule of any given thread/process. This 

is possible because the system call can be included in the 

application code.  

5 Study Case 

Given two matrixes A and B having dimensions m*p and 

p*n elements respectively, the multiplication of both 

matrixes consists in obtaining matrix C of dimension m*n 

elements (C = A*B), where each element is calculated 

with equation (1):                

jk

p

k

kiji BAC ,

1

,, 


  (1) 

The implemented solutions can be classified in two 

classes: traditional matrix multiplication (I), and block-

based matrix multiplication (II) (matrix C is calculated in 

blocks). In both cases, the implemented solutions are 

hybrid, combining shared memory with message passing, 

and use the master/worker interaction pattern. These 

were both developed using C language – in the case of 

message passing, the OpenMPI library [8] was used, 

while Pthreads [6] was used in one case of shared 

memory and OpenMP [7] was used in the other. 

The testing architecture used should be noted, since it 

affects the implementation of the algorithms. The 

hardware used to carry out the tests was a Blade with 16 

servers (blades). Each blade has 2 quad core Intel Xeon 

e5405 2.0 GHz processors; 2 Gb of RAM memory 

(shared between both processors); 2 X 6Mb L2 cache 

shared between each pair of cores by processor. The 

operating system used is Fedora 12, 64 bits [9][10]. 

5.1. Traditional Matrix Multiplication 

There is one process per blade and each blade has 8 

execution units – 7 threads are used for processing 

activities, added to the processing activities from the 

process itself that acts as a worker (one thread per core). 

A master/worker structure is used, with one of the 

processes acting as master, dividing the rows equally 

among all processes. Once this is done, it generates the 

corresponding processing threads (acting as worker). The 

other worker processes act in a similar way and send 

their results to the master process.  

The algorithm can be summarized as follows: 

Master process: 

It divides the matrix into blocks of n 

rows/number of blades used for processing 

It communicates the corresponding rows from 

matrix A and all of matrix B to worker 

processes. 

It generates the threads and processes its own 

block 

It receives results from worker processes. 

Worker processes 

They receive the corresponding rows from 

matrix A and all of matrix B. 

They generate the threads to process the data. 

They communicate the results to the master 

process. 

Figure 3 shows an explanatory illustration. The numbers 

placed on matrix C indicate the number of the thread 

processed by each cell. 

 

Figure (3) Classic matrix multiplication 

5.2. Block Matrix Multiplication 

Matrix C is calculated in blocks. To do so, each process 

receives the rows from matrix A and the columns from B 

required for calculating the block of matrix C that was 

assigned to it. The number of blocks into which matrix C 

is divided is divisible by the number of processes. The 

algorithm uses a master/worker-type interaction, where 

the master works both as coordinator and as worker. It 

divides matrix C into blocks to be processed and then 

generates processing phases. The same as in the 

traditional solution, each process is assigned to a blade 

and each thread to a core within the corresponding blade. 

Figure 4 shows an explanatory illustration. The numbers 

placed on matrix C indicate the number of the thread 

processed by each cell. 
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Figure (4) Block Matrix multiplication 

Since all processors have the same computation power 

and all blocks to be processed are the same size, they will 

all be processed at (approximately) the same speed. 

Thus, for each processing phase, the master distributes 

the rows from matrix A and the columns from matrix B 

based on the block corresponding to each worker, 

including a block for itself. The master then processes its 

block and receives all the other results to move on to the 

next processing phase. The number of processing phases 

is calculated as follows: if b is the number of blocks that 

have to be processed and w is the number of workers 

(including the master, who also operates as a worker), the 

number of phases is b/w. 

It should be noted that each process must store the rows 

from matrix A to be processed, the columns from matrix 

B, and the block from matrix C that it generates as a 

result. 

In each phase, once the master distributes the blocks to 

the workers, it generates the corresponding threads to 

process its own block, dividing it into rows for each 

thread to process a subset of rows. The other worker 

processes act in a similar way, receiving data and 

sending their results to the master process. 

The algorithm can be summarized as follows: 

Master process: 

It divides matrix C into blocks. 

For each phase:  

It communicates the corresponding rows from 

matrix A and the corresponding columns from 

matrix B to worker processes, based on the block 

assigned to each of them. 

It generates the threads and processes its own 

block. 

  It receives results from worker processes. 

Worker processes 

For each phase:  

  They receive the data to be processed 

They generate the threads and process the data. 

  They communicate the results to the master 

process. 

6 Results obtained 

The following tables show the execution times 

(expressed in seconds), the difference in time between 

both implementations, and the percent difference, (based 

on Pthreads) obtained for solution (I) explained in the 

previous section for 16 (Table 1) and 32 (Table 2) cores, 

and the results obtained by solution (II) for 16 (Table 3) 

and 32 (Table 4) cores. 

Also, two charts are shown comparing solution execution 

times for traditional multiplication (Figure 5) and block 

multiplication (Figure 6). 

 

Size Pthreads OpenMP Difference Percentage 

1024 0.32 0.32 0.0073 2.29 

2048 2.28 2.34 0.0527 2.30 

4096 17.19 17.51 0.3115 1.81 

8192 133.18 139.59 6.41 4.81 

9600 216.73 213.11 -3.61 -1.66 

Table (1) 

 

Size Pthreads OpenMP Difference Percentage 

1024 0.22 0.23 0.015 7.14 

2048 1.40 1.42 0.014 1.06 

4096 9.56 9.76 0.198 2.07 

8192 69.91 74.15 4.23 6.06 

9600 113.48 113.51 0.027 0.02 

Table (2) 

Size Pthreads OpenMP Difference Percentage 

1024 0.16 0.17 0.0072 4.39 

2048 1.59 1.60 0.0047 0.29 

4096 11.97 11.87 -0.0981 -0.81 

8192 101.41 104.37 2.9637 2.92 

Table (3) 

Size Pthreads OpenMP Difference Percentage 

1024 0.17 0.17 0.0037 2.16 

2048 1.15 1.12 -0.0286 -2.47 

4096 7.37 7.37 0.0069 0.093 

8192 55.47 58.13 2.6632 4.800 

Table (4) 
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Figure (5) 

 
Figure (6) 

7 Conclusions and future work 

As it can be observed, the difference in the times 

obtained by both implementations is not significant – it is 

never greater than 10%, – but in most of the cases for this 

problem, Pthreads yields slightly better results than 

OpenMP. 

According to a report published by Intel, OpenMP has an 

initial overhead in its primitives as in the case of 

#pragma omp parallel for. This overhead will be 

significant or not depending on how much it represents, 

percentage-wise, in relation to the total execution time of 

the algorithm. It should be noted, however, that this 

overhead is initial and is not related to the operations 

executed later on [11]. 

In algorithms that efficiently exploit optimized 

operations of OpenMP, the difference between running 

the same algorithm with Pthreads or with OpenMP will 

in principle be more significant in favor of the latter [12]. 

However, from a programming effort standpoint, 

OpenMP markedly simplifies algorithm implementation 

thanks to the directives it provides. It allows parallelizing 

a sequential solution in only a few steps, given its high 

abstraction level. In fact, a solution that has been 

parallelized with OpenMP allows running the algorithm 

as if it were the original sequential solution just by 

disabling the library. The abstraction level provided by 

OpenMP greatly facilitates the learning and use of the 

library. Also, the programming directives themselves 

document the parallelization of the application. 

As future line of work, we will work in adapting the 

algorithms to be run on a heterogeneous architecture, 

both from the point of view of processor speed and 

memory hierarchy. Thus, the algorithms will have to 

respond to new challenges such as load balancing and 

dynamic work distribution, among others. 
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Abstract - The paper is devoted to the issues concerning with 

modeling and simulating of hierarchical database 

multiprocessor systems. The requirements for a model of 

parallel database systems are defined. A new computational 

model of the hierarchical database multiprocessor 

architecture is described. This model is called DMM 

(Database Multiprocessor Model) and designed for OLTP 

workload. It allows us to simulate and analyze an arbitrary 

multiprocessors configuration for database application. The 

practical experience of exploiting the DMM model is 

discussed. 

Keywords: parallel query processing, database 

multiprocessor model.  

1 Introduction 
 Modern multiprocessor systems mostly have a 

hierarchical topology. So, the modern computing clusters 

have three-level multiprocessor architecture. The multicore 

processor forms the first level of hierarchy. Each computing 

node of the cluster is a multiprocessor with shared memory. It 

is the second level of hierarchy. The third level of hierarchy is 

presented by computing cluster consisting of homogeneous 

computing nodes interconnected by high-speed network. 

Another source of multiprocessor hierarchies is presented by 

Grid-technologies. Grid-system can consist of several clusters 

interconnected by LAN. Grid-systems can be divided into 

three classes in accordance with communication network size: 

intragrid, extragrid and intergrid. Intragrid system 

incorporates the set of clusters interconnected by LAN inside 

one organization. Extragrid system is built on interconnection 

of several intragrid systems. Intergrid system can integrates 

dozens of extragrid systems in united computational meta-

system by the Internet. The general structure of the 

multiprocessor hierarchy is shown in Fig. 1.  

In the nearest future, big organizations will exploit databases 

which contain many petabytes of information [2]. The 

hierarchical multiprocessor multicore systems with hundred 

thousand processors will be needed to manage such huge 

volumes of data. Therefore the issues of mathematical 

modeling, simulating and analyzing of the new hierarchical 

database multiprocessors architectures are important. The first 

papers devoted to parallel database modeling are the 

following [1, 3, 4, 5, 6, 7, 8]. All the models proposed in these 

papers took into account the peculiarity of database 

 

  

Fig. 1. Structure of multiprocessor hierarchy 

applications. However, all these models ignored 

communication overhead, which is very important for parallel 

database systems. The first work taking into account the 

communication overhead was the paper [10]. In this paper, the 

model of Gamma database machine [9] for multiprocessor 

system InteliPSC/2 Hipercube consisting of 32 processor 

nodes was described. The modeling language DeNet [12] was 

used for description of the model. The model had a network 

structure. The nodes were presented by abstract modules 

generating discrete events. The arcs represented the data 

flows. The certain message type could be associated with each 

arc. 

The further development in modeling of parallel database 

systems is related with appearance of the hierarchical systems. 

In paper [14], the model of two-level architecture was 

described. This model included the transaction, system and 

queue submodels. In accordance with classification described 

in work [13], this architecture can be classified as CE 

(Clustered Everything). In such a case, the system consists of 

N shared everything clusters interconnected by the global 

communication network in shared nothing manner. 

The database is simulated as a collection of relations, each of 

which is uniformly partitioned between disks. For every 

attribute, the set of attribute values is simulated by means of 

specifying the probability distribution function and the number 

of unique attribute values. It is supposed that distribution 

function can be uniform or normal. In addition, it is expected 

that the attribute distribution function is the same for all the 

disks and every unique value is presented on every disk. There 

are two types of transactions in the transaction model: 1) 

update transactions, 2) query transactions. 

Update transactions are simulated as a sequence of the 

read/write page operations. Query transactions correspond to 
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relational operators. They are simulated as a sequence of read 

operations, because the intermediate result is saved in the 

main memory or in the temporary file and doesn’t change the 

database. Each transaction is represented by the set of 

processes that run on different nodes and use data interchange. 

The proposed model doesn’t support the data replication. It 

doesn’t also support Zipf’s distribution and 80/20 rule. 

Moreover, this model does not admit a generalization on the 

arbitrary number of hierarchy levels. 

The remainder of the paper has the following outline. In 

Section 2, the new computational model for hierarchical 

database multiprocessor architecture is described. This model 

is called DMM (Database Multiprocessor Model). In 

Section 3, the results of simulating database applications in 

various multiprocessor configurations are proposed. The last 

section gives summary of the basic results obtained and 

conclusions, as well as discusses directions of future research. 

2 Database Multiprocessor modules 
 The DMM model includes the following sub-models: 

hardware model, software model, cost model and transaction 

model. 

2.1 Hardware model 
 The set of multiprocessor system modules is divided into 

three non-overlapping subsets: 

, , ,       M = P D N  P D   P N   D N . 

There, P is the set of processor modules, D is the set of disk 

modules and N is the set of hub modules. The DMM model 

does not provide a representation of memory modules, since in 

OLTP workload, the disk access time is much more then 

memory access time. 

The DM-graph is connected acyclic graph ( , )W M E , where 

the set of edges E  meets the following restrictions: 

,  P D N ; (1) 

 

 

init( ) fin( )
( , )

init( ) fin( )

A P A M
P M E A A M

A P A M

      
           

             

P M E N

;(2) 

 

 

init( ) fin( )
( , )

init( ) fin( )

A D A M
D M E A A M

A D A M

      
           

             

D M E N

;(3) 

   
 

 
   

init( ) init( )
, , ,

init( ) init( )

A M A M
M E A A E A A E E M

A M A M

      
            
            

M D P

.(4) 

Condition (1) means that simulating hardware model must 

include at least one hub and at least one processor or disk. 

Conditions (2) and (3) mean that processor and disk modules 

are able to connect only with hub modules. Condition (4) 

means that disk and processor modules may not have any 

descendants, and thus are always the leaf nodes of DM-tree. 

DM-tree is the DM-graph with dedicated node N N  called 

root hub. 
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Fig. 2. DM-tree example 

2.2 Software model 
The smallest unit of measuring data in the DMM is defined as 

a “packet”. We will assume that all packets have the same 

size. The header of packet includes sender address, the 

recipient address and some other information. Transfer of a 

packet corresponds to transfer of one or several tuples in the 

real databases system. 

The DMM model does not provide a representation of memory 

modules, since in OLTP workload, the disk access time is 

much more then memory access time. Any processor module 

can exchange data with any disk module. Disk modules and 

hub modules have queue buffers, which are used for packet 

transfer. The DMM model assumes the asynchronous transfer 

mode. It means that the processor module may start a new 

exchange without waiting the completion of previous one. 

However, we suppose that processor module may have not 

more than sr uncompleted read operations and not more than 

sw uncompleted write operations. 

In the DMM model, data processing is divided into discrete 

time intervals called ticks. The tick can be defined as a 

predetermined sequence of steps, which will be described 

below. 

Let MM. We will use the following denotations: F(M) – 

parent module of node M, T(M) – subtree, which has M as a 

root. 

Processor module PP may activate read/write operations. 

Let's define their semantic as follows. 

Read Operation. Let processor module P has to read packet E 

from disk module DD. If P has already activated sr 

uncompleted read operations then P has to be suspended. 

Otherwise, the packet E has to be put in the queue buffer of 

disk D. At that case, packet E has (E)=P as a recipient 

address and β(E)=D as a sender address. This algorithm is 

shown in Fig. 3. 
if r(P) < s

r
 then 

 Put packet E with address P in the  

  queue buffer D 

 r(P)++; 

else 

 wait; 

end if 

Fig. 3. Processor module read algorithm 

… 
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if w(P) < s
w
 then 

 Put packet E in the queue buffer of  

  parent hub module; 

 w(P)++;
 

else 

 wait; 

end if 

Fig. 4. Processor module write algorithm 

There, r(Р) is the number of uncompleted read operations for 

processor module P, sr is the maximum number of 

uncompleted read operations. 

Write operation. Let processor module P has to write packet E 

to the disk module DD. The algorithm is shown in Fig. 4. 

There, w(P) is the number of uncompleted write operations for 

processor module P, sw is the maximum number of 

uncompleted write operations. 

Hub module NN permanently transfers packets through 

interconnect. It performs an algorithm, which is shown in 

Fig. 5. 
Remove packet E from queue of N; 

if (E)  T(N) then 

 Put E in queue F(N); 

else 

 Find maximum subtree U of  

  T(N): (E)U; 

 if T((E))==U then 

  if (E)P then  

   r((E))-- ; 
  else 

   Put E in queue (E); 
  end if 

 else  

  Put E in queue R(U); 

 end if 

end if 

Fig. 5. Hub module algorithm 

 

Remove packet E from queue of module D; 

if (E)D then 

 w(β(E))-- ; 

else 

 Put E in the parent queue; 

end if 

Fig. 6. Disk module algorithm 

There, E is a packet, α(E) is the recipient address of packet E, 

T(N) is a subtree, which has N as a root, F(N) is the parent 

module for N, P is a set of all processor modules, r(Р) is the 

number of uncompleted read operations for processor module 

P, R(U) is the root of a subtree U. 

Disk module DD permanently executes read/write 

operations. It performs an algorithm, which is shown in Fig. 6. 

There, β(E) is a sender address, w(β(E)) is the number of 

uncompleted write operations of sender. 

In the DMM model, data processing is divided into discrete 

time intervals called ticks. The tick can be defined as a 

predetermined sequence of the following steps: 

1) each hub module handles all packets, which are waiting 

for transfer; 

2) each active processor module performs one read or 

write operation; 

3) each disk module handles one packet from its queue. 

It is obvious that in this case, the queue of any hub module 

may contain not more then |P|+|D| packets, and the queue of 

any disk module may contain not more then srsw|P| packets. 

2.3 Cost model 
Each module MM has a cost coefficient 

 , 1M Mh h    . The time needed for a processor to 

process one packet for OLTP applications is roughly 10
5
-10

6
 

times smaller, than the time it takes to transfer data to or from 

a hard disk, or from the network. Therefore, for all processor 

modules: 1,Ph P  P . 

Hub module N can send more than one packet in each tick. 

Therefore the following interference function is associated 

with each hub module NN: ( )
N

N i

N i N

N

m
f m 



 
  
 

. 

There, N

im  – is the number of packets transferred by N in the 

i-th tick; 0 1N  – scale coefficient, 1N   is threshold 

coefficient (the maximum number of the packets sending at 

the same time which doesn’t slow hub module’s work). 

Therefore, the time it takes for hub module N to process i-th 

tick can be calculated by the formula: 

( ),N N

i N N it h f m N  N . 

The total time spent by the system to process a mix of 

transactions over k ticks can be calculated by the formula: 

 
1

max( ) max( )
k

N

i D
N N

i

t t h
 



 
N D

. 

2.4 Transaction Model 
Serial transaction is the transaction which runs on one 

processor module. Serial transaction Z is simulated by setting 

of two process groups   and  : { , },Z       . 

Group   includes read processes. Group   includes write 

processes. These processes are an abstract representation of 

read/write operations performed during transaction processing. 

Each read and write process has to make the certain number of 

disk accesses. After making all the accesses the process is 

removed from   or   respectively. Transaction { , }Z    

is considered as finished when    . 

In the DMM model each transaction { , }Z    is divided into 

the finite sequence of steps: 1, , sZ Z . There, s is the 

number of transaction steps. In accordance with this each 

process x     of transaction Z is divided into s steps: 

1, , sx x . Each step ix  ( 1, ,i s ) is described by the set of 

three numbers ( , , )i i in p d . There, id  is the disk number the 

process x exchanges data with, in  is number of disk accesses, 

ip  is probability of access by process x to disk 
idD  on each 

tick of the simulator running during i-th step. 
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Consider the following example. Let transaction { , }Z    

represent MHJ JOIN of two relations. Let’s assume that build 

relation R occupies 10 blocks and might be fully placed in 

main memory, probe relation S occupies 10 000 blocks. Let 

the result be 1000 blocks. Assume that input relations are 

placed on disk 
5D ; result is also being saved on 

5D . In this 

case transaction Z is divided into two steps: on the first step 

the hash table for build relation is being constructed (read 

process a); on the second step the scanning of probe relation 

(read process b) and saving the output relation to the disk 

(write process c) are occurring. Thus, the set of read processes 

is { , }a b  , the set of write processes is { }c  . Each 

process is divided into two serial steps. 

For read process a the decomposition is 
1 2{ , }a a a , where 

1 (10,1,5)a  , 
2 (0,1,5)a  .  The process a makes ten 

accesses to disk 
5D  with probability of 1 on the first step. 

This step simulates the constructing of hash table in main 

memory. On the second step process a doesn’t make any 

accesses to the disk. 

For read process b the decomposition is 
1 2{ , }b b b , where 

1 (0,1,5)b  , 
2 (10000,1,5)b  . On the first step process b 

doesn’t make any accesses to the disk. On the second step 

process b makes 10 000 accesses to disk 5D  with probability 

of 1. This step simulates the scanning of probe relation. 

For write process c the decomposition is 
1 2{ , }c c c , where 

1 (0,1,5)c  , 2 (1000,0.1,5)c  . On the first step process c 

doesn’t make any accesses to the disk. On the second step 

process c makes 1000 accesses to disk 
5D . Herewith on each 

tick of simulator the probability of disk access is 0.1. The last 

number is obtained as result of dividing the number of blocks 

of build relation on the number of blocks of probe relation. 

We suppose here that values of join attribute are uniformly 

distributed. For simulation of nonuniform distribution (e.g. the 

80/20 rule) it is necessary to use more steps. 

Parallel transaction is the transaction that requires two or 

more processor modules for processing. Parallel transaction Z 

that is being processed on l processor modules is simulated as 

l serial transactions 
1, , lZ Z , each of which is processed on 

the separate processor module. So we can consider that only 

serial transactions are being processed in the system. 

The algorithm that simulates the processing of one transaction 

on the processor module is described below.  Let transaction 

{ , }Z    consist of s steps 1, , sZ Z . Let X be the set of all 

read and write processes that compose transaction Z:  

X    . Let 1{ , , }rX x x . Each process 
jx  

( 1, ,j r ) is divided into s steps: 1 , ,j j

sx x .  Suppose that 

the i-th step of transaction Z is started. Assume that the 

process 
jx  obtained the control. Let i-th step of process 

jx  be 

( , , )j j j j

i i i ix n p d .  It’s supposed that process 
jx  is able to 

obtain the control in the i-th step only if 0j

in  . Then the 

following sequence of actions runs on the current tick. 

1) The value of j

in  decrements by one.  

2) Process jx  initiates exchange operation with disk j

id . 

3) If 
1

0
r

j

i

j

n


  and i<s, then increment i (current 

transaction step number) by one.  

State 0j

in   corresponds to the ending of i-th step of process 

jx . State 
1

0
r

j

i

j

n


  corresponds to the ending of i-th step of 

transaction Z. Thus, only when all the processes of transaction 

Z finished the processing of i-th step, the transaction transfers 

to step i+1. 

DMM model allows the processing of serial transaction mix 

 1,...,iZ i k  on one processor in the time-sharing mode. In 

this case each transaction   ( 1,..., )iZ i k  appears as its own 

pair of read and write processes group: { , }i i iZ   . All the 

quantity of processes that simulate transaction mix processing 

on the processor PP
 
is defined by the following formula: 

1

( )
k

i i

P

i

 


  . 

The read and write processes that describe the transaction are 

dynamically appended to the set 
P  when the new transaction 

runs on the processor P. If some process is finished, it is being 

deleted from the set 
P . 

Let’s consider the processing of transaction mix P  on 

processor P in the DMM model. Processor P must initialize 

one disk access operation on each tick. In accordance with this 

processor must choose the process x  and perform the 

read or write operation with disk that associated with x during 

the current step. We will call such process active. All the 

processes in the set  are organized in the list. Let the pointer 

to the current list element be (its initial position might be 

random). In the Fig. 7 the algorithm for defining the active 

process is shown. 

//Loop on processors: 

for (P = P.begin(); P != P.end(); P++){    

   prob = 0; // Summary probability 

   //Loop on processes: 

   for(x= P.Ф.begin(); x!= P.Ф.end(); x++){ 

      if (n(x,i(x)) == 0) continue; 

      prob += p(x,i(x)); 

      if (g(prob)) return x; 

   }; 

}; 

Fig. 7. Active process x choosing procedure 

There, P is the set of all processor modules of DM-tree, s(x) 

is the number of process x steps, n(x,i) is the number of disk 

accesses that process x still has to make during i-th step, p(x,i) 

is the probability of process’s x disk access during i-th step, g 

is the actuation function and defined by the following 

description. For each step i of process x  the probability 

of access by process x to disk associated with this process on 

i-th step is known. The actuation function ( )x

ig p G  is 
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described by the function of discrete random variable G, 

which defined by the following distribution law: 
G 1 0 

P 
x

ip  1 x

ip  

Let’s review the transactions creation in DMM model using 

MHJ (Main memory Hash Join) algorithm as the example. 

This algorithm is intensively used in modern DBMS for query 

processing in cases when one of the relations is completely 

placed in main memory. MHJ algorithm is divided into 

“build” and “probe” phases. The hash table for the relation R 

is being constructed on the “build” phase. Herewith each 

processor node makes the following operations: 

1. Sequential scanning of tuples of the own fragment of 

relation R. For each input tuple the distribution function ψ 

is calculated. This function calculates the number of the 

cluster node where this tuple has to be processed. The tuple 

is transferred to this node. 

2. The hash table is built in the main memory of the node 

using hash function h(t) for tuples that received during step 

1. 

The processing of the relation S and joining with the tuples 

from relation R are made on the “probe” phase. Herewith each 

processor node makes the following operations: 

1. Sequential scanning of tuples of the own fragment of 

relation S. For each input tuple the distribution function ψ 

is calculated. The tuple is transferred to the cluster node 

where this tuple has to be processed. 

2. The tuple from step 1 is received and joined with tuples 

from step 2 of build phase. The output tuple is created. 

Exchange operator redistributes the tuples among the 

processor nodes on each algorithm phase. The parallel query 

plan for MHJ operation is shown in Fig. 8. Scan operator 

scans the relation. Exchange operator is inserted as the left son 

and right son of MHJ operator and redistributes the tuples 

from scan operator among the processor nodes during the 

query processing. 

Suppose that we need to create the model of the parallel 

transaction which is the natural join of R and S relations on 

their common attribute A. We suppose that the values of 

attribute A are uniformly distributed among fragments of 

relations R and S. For both relations we used the skew 

coefficient  . According to this coefficient the tuples are 

divided into two classes: “own” and “alien”.   coefficient 

determines the percentage of “own” tuples in the fragment. 

The “own” tuples should be processed on the same cluster 

node where they are being stored. The “alien” tuples should be 

transferred to another cluster node on the basis of uniform 

distribution. For example, if 0.5   the relation is formed in 

such a way that each parallel agent passes to the other agents 

about 50% of the tuples of its fragment during the join 

processing. Herewith all the other agents receive about the 

same number of tuples. 

We suppose that relation R is divided into equal-sized 

fragments ( 0,..., 1)iR i N  . Each of these fragments is 

placed on the node which number coincides with the fragment 

number. Herewith any fragment 
kR  is able to be placed in 

main memory of the node. Similarly S is divided into equal-

sized fragments ( 0,..., 1)iS i N  . Each of these fragments 

is placed on the node which number coincides with the 

fragment number. 

Parallel transaction is represented as the set of one-type serial 

transactions. Each of these transactions is processed on the 

distinct cluster nodes. Let the cluster node #0 process 

transaction { }Z p . Transaction Z and all the processes 

occurring in it are divided into two steps. The first step 

simulates the build phase, the second step simulates the probe 

phase. The set of read processes of transaction Z is 
0 1 0 1{ ,..., , ,..., }N Na a b b   .  

Processes 
0 1,..., Na a 

 conform to build phase. Process 
0a  

simulates the reading of “own” tuples of relation R from own 

disk 
0D . It consists of two steps: 

0 0 0

1 2{ , }a a a , where 

0

1

| |
( , ,0)

R
a

N


 , 0

2 (0,0,0)a  . Processes 

( 1,..., 1)ja j N   simulate the reading of “own” tuples of 

relation R from alien disks. Each such process consists of two 

steps: 1 2{ , }j j ja a a , where 1 2

(1 ) | | (1 )
( , , )

( 1)

j R
a j

NN N

  



, 

2 (0,0, )ja j . 

Processes 0 1,..., Nb b   conform to probe phase. Process 
0b  

simulates the reading of “own” tuples of relation S from own 

disk 
0D . It consists of two steps: 

0 0 0

1 2{ , }b b b , where 

0

1 (0,0,0)b  , 0

2

| |
( , ,0)

S
b

N


 . Processes 

( 1,..., 1)jb j N   simulate the reading of “own” tuples of 

relation S from alien disks. Each such process consists of two 

steps: 
1 2{ , }j j jb b b , where 1 {0,0,0}jb  , 

2 2

(1 ) | | (1 )
( , , )

( 1)

j S
b j

NN N

  



. 

 

Fig. 8. MHJ query parallel plan 

The transactions that are being processed on other cluster 

nodes are formed analogically. 

3 DMM model usage 
The Database Multiprocessor Simulator is developed on the 

basis of DMM. It allows to simulate and investigate various 

multiprocessor configuration for OLTP workload. The source 

Exchange 

Rj 

Sj 

Exchange 

MHJ 

Scan 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 923



__________________________________________ 

* Supported by the Russian Foundation for Basic Research under Grant 12-07-00443-а and by the Federal Program 07.514.11.4036. 

 

 

 

code of the simulator is available on the Internet at 

http://kps.susu.ru/science/dms/sources/DMS-sources.zip. The 

simulation experiments for transaction processing on existing 

cluster configurations were performed with the simulator. 

Then these transactions were performed on the real cluster 

systems. They demonstrate that the simulator demonstrates the 

results that are identical to the result of real parallel DBMS 

processing on the cluster with the simulated architecture. It 

confirms the adequacy of DMM. In this section we are 

exemplifying the usage of simulator to evaluate the 

effectiveness of purchasing and upgrading decision of 

database oriented multiprocessor systems. 

 
Fig. 9. The dependence of the query processing time from the 

number and type of nodes 

In our experiments we processed natural join for relations R 

and S by the MHJ. The number of tuples of R and S, 

respectively, were 6 000 000 and 600 000 000 tuples. 

The diagrams of dependence of query processing time from 

the number and type of nodes were obtained with emulator. 

They are shown in Fig. 9. The four types of nodes with 

characteristics and price given in Table 1 were simulated. The 

price consists of the price of infrastructure (UPS, cooling 

system, InfiniBand QDR communication network, cases, 

power supply units, racks, etc.). 

Table 1. Prices of computing nodes 

Node 

type 
Main characteristics 

Price (€) 

year 

2009 

year 

2011 

year 2013 

(forecast) 

1 One single core CPU and one SAS disk 7,100 6,650 – 

2 One double core CPU and two SAS disks 7,775 7,450 7,375 

3 Two double core CPU and four SAS disks 8,725 8,125 7,750 

4 Two quad-core CPU and eight SAS disks  10,425 9,875 8,650 

Table 2. Performance of computing clusters  

Number Configuration 
Transaction processing time  

(in arbitrary units) 

1 37 type 1 nodes 496032 

2 33 type 2 nodes 265325 

3 30 type 3 nodes 146713 

4 25 type 4 nodes 78520 

Let’s exemplify the usage of DMS simulator for solving the 

problems of long-term planning of development of 

computational capacities in data processing centers. 

Example 1. Suppose that the organization has €250,000 for 

purchasing a computer cluster for database applications. We 

have to select the most productive hardware architecture, 

varying the configuration and number of nodes in the system. 

The cost of this architecture should not exceed that sum of 

money. Based on dependencies that shown in Fig. 9 we 

constructed Table 2. It contains different variants of cluster 

configurations, which cost about €250,000. The transaction 

processing time in arbitrary units is shown for each 

configuration. On the Table 2 we can determine that at a given 

price, the best performance will provide the configuration 4, 

that consists of 25 type 4 nodes. 

Example 2. Let the organization have purchased the 

computing cluster for database application in 2009. This 

cluster consists of 20 type 3 nodes. Assume that by 2011 the 

size of database application has increased by 1.5 times and it 

became necessary to expand the system. We have to determine 

how many type 3 nodes should be purchased to increase the 

system performance by 1.5 times. The current system 

processes the transactions for 222700 arbitrary units of time, 

according to Fig. 9. Respectively, the system with 1.5 times 

higher performance should process equal mix of transactions 

for 148467 arbitrary units of time. Using Fig. 9 we can 

determine that the system that consists of 31 type 3 nodes will 

provide the specified performance. Thus, it is necessary to 

purchase 11 additional type 3 nodes for €89,375. 

Example 3. Let the organization have purchased the 

computing cluster for database application in 2009. This 

cluster consists of 26 type 2 nodes. Assume that by 2011 the 

size of database application has increased by 1.5 times and we 

know that we know that the same growth dynamics of 

database size will continue in the next two years. We have to 

make the first step of system upgrade in such a way that total 

cost of the two steps of extension (in 2011 and 2013) was 

minimal. 

Table 3. Performance requirements 
Step Year Time (in arbitrary units) 

1 2009 346722 

2 2011 231148 

3 2013 154099 

Table 4. Variants of configuration 
Node 

types 

Number of nodes 

Year 2009 Year 2011 Year 2013 

2 26 39 57 

4 – 10 15 

The requirements for the performance of computing cluster in 

2009, 2011 and 2013 are shown in Table 3. These 

requirements are based on dependencies in Fig. 9. The 

variants of allowable configurations that will provide the 

required performance are shown in Table 4. 

We consider two variants of the first upgrade step (year 2011): 

A.1) expansion of the current system by adding the 

necessary number of type 2 nodes; 

B.1) replacement of the current cluster to the new with 

type 4 nodes. 

Using Table 4 we can see that in case of variant A.1 we have 

to purchase 13 type 2 nodes. Using Table 1 we calculate that 

the cost of variant A.1 is €96,850. Analogically we get that the 
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variant B.1 is the purchasing of 10 type 4 nodes, which cost 

€98,750. 

In line with what variant we choose, we may get two variants 

on the second step of upgrade in 2013: 

A.2) expansion of the system by adding the necessary 

number of type 2 nodes; 

B.2) expansion of the system by adding the necessary 

number of type 4 nodes. 

Using the similar calculations we get that variant A.2 is to 

purchase 18 type 2 nodes, which cost  €13,2750, and variant 

B.2 is to purchase 5 type 4 nodes, which cost €43,250. 

Table 5. Upgrade cost 

Upgrade variant 
Step 

In total (€) 
1 2 

A 96,850 132,750 229,600 

B 98,750 43,250 142,000 

The total cost of two types of upgrade is shown in Table 5. 

We can see that variant A is more profitable on the first step, 

but after step 2 it is more expensive than variant B for 

€87,600. 

4 Conclusion 
In this paper, we introduced the new computational model of 

the hierarchical database multiprocessor architecture. This 

model is called DMM (Database Multiprocessor Model) and 

designed for OLTP workload. It allows us to simulate and 

analyze an arbitrary multiprocessors configuration for 

database application.  

The Database Multiprocessor Simulator is developed on the 

basis of DMM. It allows to simulate and investigate various 

multiprocessor configuration for OLTP workload. The 

experiments for search for optimal hardware architectures of 

parallel database systems were performed with the simulator. 

The main directions of future work are the following. First, it 

is interesting to use DMM for simulating parallel database 

systems’ processing on the petascale multiprocessor systems 

based on NVIDIA Tesla and Intel Many Integrated Core 

(MIC) accelerators [11]. Second, we plan to apply DMM 

model for simulating the parallel database systems processing 

in grid. Third, we suppose to extend the DMM model for 

OLAP applications. 
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Abstract - Ever-increasing growth of high performance 

computing applications requires employment of novel methods 

in all aspects of computing systems. The response time of file 

storage and retrieval operations is one of the most important 

factors of storage systems and improving that will result 

higher computational power. Consequently, breathtaking 

efforts have been done and various file systems with different 

architectures have been proposed. Most of them are not aware 

of clusters’ execution state and do not consider variety of I/O 

operations’ response time on machines with different storage 

media, network traffic, and processing load. In this paper, we 

have proposed a mechanism to store and retrieve files with 

respect to the execution state of storage nodes and network 

topology of the cluster. Finally, the proposed architecture has 

been implemented and evaluated using Hadoop distributed file 

system. 

Keywords: File System, Response Time, Adaptive Storage 

and Retrieval, HPC 

1 Introduction 

  Exponential growth of the volume of stored data has made 

conventional methods of storage and retrieval inefficient 

which require new ways with higher performance to deal with 

[1]. Performed estimations show that the size of electronic 

data was about 1.8 zeta bytes in 2011 that illustrates the need 

to store tremendous amounts of data [2]. Furthermore, 

improving the performance of these operations in various 

aspects such as scalability and reliability must be considered 

[3]. In this way, three different approaches including 

improving the performance of each computational element, 

revising the algorithms, and making use of a series of ordinary 

computing elements could be followed [4]. 

 In the field of HPC computing, improving overall 

performance is mainly focused on reducing response time and 

increasing processing power of the system [4]. In order to fit 

in with the requirements of these environments and avoid 

becoming the bottleneck, file system designers have used 

several techniques to reduce the response time [5] [6]. 

Numerous file systems, such as HDFS and PVFS, have been 

proposed to cope with these issues and used novel algorithms 

and load balancing techniques to improve the overall system 

performance with the aid of distributed computing [7] [8]. 

 Heterogeneous storage clusters are made of various 

computational elements with different performance levels. 

This diversity leads to different response times of 

computational nodes to a single request. Moreover, the 

response time of each node depends on other parameters such 

as processor load, network traffic, and remaining storage 

space changing during time and will affect the performance of 

the node [9]. Network topology and the distance between data 

consumer and data provider is another important parameter 

that can affect the performance of I/O operations. In many 

HPC clusters, applications and their respective data are placed 

as closest as possible and data access is performed using a 

high-bandwidth and low-latency communication network. 

However, communication cost between two adjacent nodes is 

far less than two nodes which are located in different parts of 

the communication network, i.e. two different racks [7]. 

 In these clusters, data replication is performed in order to 

improve reliability and response time [7]. If the number and 

the place of replicas are determined with respect to the 

execution state of computational nodes, the response time and 

scalability of the cluster will be improved. In addition, the 

load will be distributed among the nodes and data will not 

aggregate in particular parts of the cluster. In this manner, an 

adaptive mechanism that replicates and distributes replicas in 

the cluster according to the execution state of cluster’s nodes 

has been proposed in this paper.  

2 Related works 

 Various usages of file systems are possible in computing 

systems. For example, resources could be represented, 

accessed, and managed by files in distributed computing 

systems [10]. Moreover, files could be used to store, retrieve, 

name, structure, protect, and manage user and system data. 

Our proposed mechanism considers file systems as the 

module which is responsible for the mentioned responsibilities 

in the second definition.  

 Remarkable efforts have been done in the field of file 

systems which can be categorized in three classes including 

centralized, decentralized, and distributed file systems. 

Traditional file systems like FAT belong to the first class and 

are inefficient for high performance applications [11]. 

Extremely low scalability and the limitations of storage media 

like disks’ seek time lead to the appearance of the other two 

classes. Decentralized file systems were mainly proposed to 

increase the number of master nodes in file systems and avoid 

consequences of having a single point of failure. NFS is one 

of the centralized file systems that a decentralized version of it 

has been proposed to increase its scalability [12]. 

 Computation requirements of today’s applications need a 

level of scalability which is far from what decentralized 

approaches can reach. As a result, numerous file systems with 

distributed architectures have been presented including HDFS 

and GFS which are used to maintain organizational data at 
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Yahoo and Google respectively. These two are also good 

examples of the successful experiences in increasing 

scalability [7] [13]. 

 PVFS was introduced for parallel storage and retrieval of 

files in Linux clusters and parallel execution of applications 

which were previously performed using parallel machines. 

This file system was designed to support different file system 

interfaces like POSIX, facilitate installation and use of the file 

system, and provide features to store and retrieve files in a 

parallel and concurrent manner by several processes.  

Moreover, scalability and robustness were among other goals 

in the design process of this file system [8]. PVFS has been 

developed as a base for research and development in the field 

of parallel file systems in Linux [1] [5] [14]. Furthermore, a 

branch of PVFS called OrangeFS has been developed to 

consider issues like metadata operations, blocks replication, 

and access control in more depth [15]. 

 In 2003, Google presented GFS which had been used before 

that time by Google’s applications and designed according to 

their storage requirements. In addition to different aspects of 

performance which were addressed in other distributed file 

systems, GFS has paid special attention to efficient execution 

of its applications [13]. GFS do not support POSIX standard, 

has larger basic storage blocks comparing to traditional file 

systems, and is mainly focused on the optimization of append 

operations because of the nature of its applications [13] [16]. 

Moreover, using commodity and cheap hardware in the 

implementation process of GFS made hardware failure such 

as network devices and storage media a probable event rather 

than unexpected. In order to prevent the consequences of 

these failures, several innovative methods have been 

considered in the design of GFS. 

 Ceph is another distributed file system which is proposed to 

provide a scalable, reliable, and high performance storage 

cluster [17]. It separates the management of data and metadata 

and supports more than 250,000 metadata operations in every 

second by using a pseudo-random distribution function, called 

CRUSH, instead of allocation tables [18]. Moreover, it 

distributes the replication, fault detection, and recovery 

operations among storage nodes, where data and metadata are 

stored. Ceph is composed of three major parts including 

client, storage cluster, and metadata cluster. It also provides a 

near-POSIX file system interface which is a remarkable 

feature for a distributed file system. 

 Another project called HDFS is currently in progress in 

Yahoo that is similar to GFS in various aspects and is 

published as an open-source file system [7]. HDFS performs 

as a reliable and high performance storage cluster and used 

several concepts proposed in GFS. More detailed information 

about this file system is available in section 3, where 

implementation platform of our proposed mechanism has been 

introduced. 

 Common file systems in this area have not effectively 

considered execution state of the cluster and computational 

nodes. In addition, heterogeneity of storage media is another 

parameter that affects response time and has not properly 

addressed in these file systems. Our proposed mechanism, 

discussed in more detail in section 4, has considered these 

parameters and introduced a method to improve the response 

time of storage and retrieval operations. 

3 Implementation platform 

 In order to implement and evaluate our proposed 

mechanism, we have used Hadoop Distributed File System as 

our implementation platform. HDFS is designed to reliably 

store large data sets and stream these data to user applications 

at high bandwidth. Distributing stored data and computations 

among several processing and storage nodes in HDFS leads to 

a scalable and economic cluster that can grow to any size on 

demand [7]. This file system has being used by Yahoo to 

manage 25 petabytes of application data and has been 

successful in this way [2]. We have stated our motivations to 

use it as our implementation platform in section 3.2 and after 

a brief introduction to HDFS. 

3.1 Overview 

 Every HDFS cluster at least consists of a NameNode and 

one or more DataNodes. The cluster can grow to any size by 

adding more DataNodes to it [19]. Moreover, other nodes 

such as BackupNode and CheckpointNode can join the cluster 

to improve its reliability [7]. User applications, usually 

executed on DataNodes, are other pieces of the architecture 

and interact with HDFS using a programming library. This 

file system does not support POSIX standard and its interfaces 

are provided via HDFS client which is a code library [2]. 

 In this architecture, NameNode maintains and manages 

namespace. Moreover, it manages DataNodes and replicas of 

each data block. The namespace is a hierarchical structure of 

directories and files which are represented by inodes. Each 

file is divided into large data blocks which could be replicated 

independently and stored on various DataNodes. Besides 

maintaining the file system namespace, NameNode stores 

required information to perform the mapping between data 

blocks and DataNodes [7].  

 DataNodes are responsible for maintaining the replicas of 

data blocks in their local storage media and store two files for 

each replica. One of the files is used to store the data and the 

other maintains block’s metadata. Each DataNode performs a 

handshake with the NameNode at the startup. During this 

operation, namespace identifier and software version of the 

NameNode are compared with respective values of the 

DataNode. Consequently, the consistency of the file system 

will be preserved [7]. DataNodes send block reports to the 

NameNode after joining the cluster and periodically to inform 

it about their hosted replicas. Moreover, the NameNode 

receives another kind of control messages from DataNodes 

that indicates their presence in the cluster and accessibility to 

their hosted replicas [2]. 

3.2 Motivations in using HDFS 

 Availability of user manuals and books besides its open 

source implementation made it feasible to use HDFS as the 

implementation platform [2]. In addition, it is widely used in 

extraordinary computing environments and has the potential 

to be applied on high performance computing clusters. 
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Performing the replication under the supervision of the 

NameNode provides required information for adaptive 

distribution of replicas over the cluster and makes it a good 

choice to run the proposed mechanism in this node. Moreover, 

the execution state of computational nodes can be send along 

with control messages which are periodically sent by 

DataNodes to the NameNode. 

 The mechanism used by HDFS to provide user applications 

with the block replicas list can be changed to consider the 

execution state of DataNodes and perform adaptively. HDFS 

has also provided an interface to consider the network 

distance between data providers and consumers in order to 

sort hosts in the replica lists [7]. Furthermore, this file system 

is designed to use commodity hardware that makes evaluation 

feasible. HDFS is implemented using JAVA programming 

language that facilitates source code modification and makes 

it possible to run it on a wide variety of operating systems [2]. 

Considering these facts, we have chosen HDFS as our 

implementation platform in order to evaluate our proposed 

mechanism. 

4 Proposed mechanism 

 The goal of our proposed mechanism is to consider the 

execution state of DataNodes and the topology of 

communication network in storing and retrieving data blocks. 

Adapting file system operations to the execution state of the 

cluster will improve the overall performance and distribute the 

I/O load across the storage cluster. Moreover, selecting least 

loaded nodes to host replicas can improve the response time 

of I/O operations. 

 The execution state of DataNodes including remaining 

storage space, available network bandwidth, and I/O speed of 

storage media and where it is placed in the communication 

network are considered with regard to selecting an appropriate 

node. Besides adapting I/O operations to execution state of 

nodes, our proposed mechanism introduces a method to 

automatically detect the network topology that will help data 

blocks distribution in the storage cluster. 

4.1 Architecture 

 Adapting reading and writing data blocks to execution state 

of DataNodes and the network topology is performed by three 

modules. One of these modules concerned about the network 

topology and is responsible for maintaining the Network Tree 

which is used by the other modules. Construction of the 

Network Tree is performed according to relative distance 

between computational nodes and communication switches. 

For instance, direct connection of two nodes to a switch 

means both of them belong to a same rack. In the same way, 

relative distance between different racks is estimated using the 

communication delay between their computational nodes. 

Section 4.3 contains detailed information about this module. 

 Adaptive generation of the list of DataNodes hosting 

replicas of a data block is performed by another module which 

is described in more detail in section 4.2. This module 

estimates transfer time of the replica according to the last 

known load of the DataNodes and the network distance 

between each DataNode and the client. 

 The other module of the proposed mechanism selects 

destination DataNodes to host replicas of each data block. In 

order to select more appropriate nodes, a priority value is 

assigned to each DataNode and is continually being updated 

based on its workload. Using these priority values and the 

network distance between DataNodes and the client, this 

module will choose the best node to host the replicas. More 

information about this module has been stated in section 4.4. 

4.2 Adaptive Generation of Replica-Hosts List 

 Once the NameNode receives a request from a client for 

reading a data block, it provides the client with a list of 

DataNodes hosting replicas of the requested data block. HDFS 

only considers the network distance between the client and 

replica hosts in construction of this list and ignores the 

execution state of DataNodes [7]. Our proposed mechanism 

estimates the time that Ci will spend for reading Bk from Dj 

and orders the replica-hosts list by these estimated values. As 

a result, the overhead of read operations will distribute across 

DataNodes that will improve the overall response time of the 

cluster. Moreover, some required computations of this 

mechanism are performed by DataNodes that avoids addition 

of a considerable overhead to the NameNode. 

           (        )  

    (  )               (  )          (     ) (1) 

 Equation 1 is used to estimate the time required for reading 

a data block called Bk from Dj by the client that is running on 

Ci in seconds. The value of size(Bk) is stored on the 

NameNode and can be fetched by one memory access. 

Furthermore, required computations for ReadLatency(Dj), the 

amount of time in seconds to read one megabyte of data from 
Dj, is performed by the respective DataNode and the result is 

sent to the NameNode via heartbeat messages. Equation 2 

shows how this value is calculated. The network distance 

between Ci and Dj is estimated based on the network topology 

using NetDist(Ci, Dj). Section 4.3 contains detailed 

information about this function and the way it detects the 

network topology. 

           (  )  

 
 

         (  )
   

 

(       (  ))         (  )
 (2) 

 In order to estimate ReadLatency(Dj) in Eq. 2, we need to 

be aware of the execution state of Dj including the transfer 

speed and the utilization of its NIC besides the I/O speed of its 

storage media. The momentary I/O speed of the storage media 

can be estimated based on the current data streams of the 

DataNode. In order to rate the maximum I/O speed of the 

storage media, a shell script will be executed at each startup of 

the DataNode. Using this information, Eq. 3 estimates 

ReadSpeed(Dj) in megabytes by calculating a weighted-

average of the capacity of all local storages in Dj. Similarly, 

network transfer speed is evaluated by multiplication of 

network utilization and total transfer speed of the NIC in 

MB/s. In this manner, the total transfer speed of each network 
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interface is determined by parsing the respective output of 

ethtool in Linux. Finally, the addition of inverse of these 

values represents the time required for reading one megabyte 

of data from Dj by any other node in the cluster. 

         (  )  

 
∑          (  ) (          (  )          (  )) 
 
   

∑          (  )
 
   

       (3) 

4.3 Dynamic network topology detection 

 In order to estimate the network distance between 

DataNodes, an n-ary tree called Network Tree is used. The 

interior nodes of this tree represent communication switches, 

while its leaves contain DataNodes of each rack. The 

branching factor of this tree is the maximum number of ports 

of all communication switches and is denoted by BF. As a 

result, the height of this tree can be calculated by h=⌈logBF n⌉ 
for some positive n that reflects the number of racks in the 

cluster. Moreover, every leaf of the Network Tree is assigned 

with a unique identifier called RackID which is used for 

indexing all the DataNodes belonging to a same rack [20]. 

 Once a DataNode joins the cluster, it is considered to be a 

member of a new rack and is added to the Network Tree as the 

immediate successor of the root. After that, the Network Tree 

and the indexed list of DataNodes will be sent to the newly 

joined DataNode to find its place in the network. Fig. 1 

contains the pseudo-code of the search algorithm a DataNode 

follows to find its place in the network along with the 

structure of the Network Tree. The result of the performed 

search in the newly joined DataNode will be sent to the 

NameNode in order to update the Network Tree. 

 

Figure 1: The structure of Network Tree and pseudo-code of its 

search algorithm 

 By identifying the nearest common predecessor of two 

DataNodes in the Network Tree and counting the number of 

interior nodes in their communication path, the NameNode 

can estimate the communication latency between every two 

DataNodes in the cluster. The NameNode assumes a constant 

communication delay for each switch in the communication 

path in order to estimate the total communication latency. The 

running time of this algorithm is O(log
BF

n). Considering the 

large values of BF, its overhead could not be remarkable. As 

an example, assuming n=350 and BF=16, the height of the 

Network Tree would be 3 that supports our point.  

4.4 Adaptive selection of replication hosts 

 Once a new data block is created or an existing one is going 

to be replicated, the NameNode should select some 

DataNodes to host the newly created replicas. This selection 

can be performed based on various considerations such as 

reducing replication time, improving data distribution, 

reducing the distance between data provider and consumer, 

and hosting replicas in the nearest racks. Our proposed 

mechanism assumes that reader processes are uniformly 

distributed across the cluster, so it tries to select the more 

appropriate DataNodes from the nearest racks to the data 

source. In addition, it obeys the replication rules of HDFS and 

stores a data block in a rack that contains at most one of its 

replicas. At the final step of selection, qualified DataNodes 

are ordered by their remaining storage space and available 

network bandwidth using Eq. 4. After that, the most proper 

nodes will be chosen to host the recently created replicas. 

        (  )     (  
         (  )

              
   

       (  )

        
)             (4) 

 The selection priority of every DataNode is determined by 

comparing its free storage space and available network 

bandwidth with the total storage space and maximum network 

bandwidth of the cluster. FreeSpace(Dj), AvailBW(Dj), 

maxStorageSize and maxNetBW are calculated using the 

information which is being periodically received from 

DataNodes. Moreover, the effect of free storage media and 

available network bandwidth on NodeRate(Dj) can be adjusted 

using α and β constants. Here, we have used α=1 and β=1 for 

the sake of simplicity. 

 The respective statistics and information of all DataNodes 

of each rack is stored in a max-heap according to their 

selection priority value [20]. These max-heaps are referenced 

by the leaves of the Network Tree and are accessible in this 

way. As a result, selection of the most proper DataNode of a 

rack can be performed in O(1). Fig. 2 shows the pseudo-code 

of the algorithm for selecting the DataNodes to host the 

recently created replicas of the data block hosted by Di. 

 Once a new data block is created in a DataNode, the first 

replica is stored in the same node. The other two DataNodes 

to store replicas are selected using the algorithm shown in Fig. 

2 and a pipeline will be organized by HDFS to transfer 

replicas to the selected hosts. By default, this algorithm stores 

the replicas in the nearest racks to the data source. However, 

other policies to select replication hosts could be used in order 

INPUT: NC = current DataNode 
INPUT: p = the root of NetworkTree 
OUTPUT: Rid = null 
while (Rid == null) do 

last_RTT= 0 
for each nodei in childs(p) 

ND = select one of the descendent DataNodes of nodei in a 

random manner 
new_RTT = eval_RTT(NC, ND) 
if (new_RTT < last_RTT) { 
if (childs(nodei) == null) Rid = nodei 
p = switchi 
break 
}  
last_RTT = new_RTT 

  

 

     

 

 
S1 

S2 S3 S4 

R1 R2 R3 R4 R5 R6 
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to improve reliability of the cluster. For example, storing a 

replica in another part of the cluster can keep the data block 

accessible on the event of communication switch failures. 

 

Figure 2: The structure of leafs of Network Tree and the psuedo-code 

of host selection algorithm 

 Replication of an existing data block is performed in a 

similar way. In order to find the proper DataNode to host the 

new replica, every DataNode that hosts one of the replicas of 

the data block selects a host using an algorithm similar to the 

one shown in Fig. 2 with Qn=1. Next, the proper host for the 

new replica will be chosen from the selected hosts in the 

previous step and replication will be performed by the nearest 

DataNode to it. HDFS performs the replication whenever one 

of the replicas of a data block becomes corrupted, so the 

execution rate of this mechanism cannot be remarkable. 

Moreover, this mechanism can be used to adapt the number of 

replicas with a dynamic replication factor in storage clusters. 

5 Evaluation 

 We have measured the performance of the proposed 

mechanism using three distinct criterions. The first two 

evaluations were performed using HDFS benchmarks in order 

to demonstrate the improvements in I/O performance of 

DataNodes and response time of the NameNode. The third 

one was performed to verify the low computational cost, 

network traffic and execution time of the algorithm proposed 

for Network Tree construction. According to the evaluation 

results, the proposed mechanism can improve the response 

time of file storage and retrieval operations in heterogeneous 

clusters with long-term I/O operations. 

5.1 I/O performance 

 In order to evaluate the I/O throughput of HDFS in presence 

and absence of our proposed mechanism, we have used 

TestDFSIO benchmark, one of the benchmark packages of 

hadoop-test-1.0.1. In this manner, a cluster of one master node 

and three slave nodes is used. Hardware configuration and OS 

specification of these systems is shown in Table 1. 

Table 1: Hardware and OS specification of cluster nodes 

 OS CPU RAM Disk (RPM) 

Master Mac 10.6.8 
Intel Core 

2 Due 2.8 
4 GB 5400 

Slave Ubuntu 10.04 

Intel 

Pentium IV 

3 GHz 

2 GB 5400 

 TestDFSIO is a MapReduce job and proceeds in two 

distinct phases. First, it creates some map and reduce tasks to 

write a number of files which is specified as an input 

parameter. After that, some other tasks are created to estimate 

the read performance of the cluster by reading specified 

number of files. In each phase, the benchmark prints some 

statistical information about the I/O operation performance of 

the cluster. In order to examine the effect of our proposed 

mechanism on HDFS I/O performance, TestDFSIO is 

executed in the presence and absence of the mechanism using 

various input parameters and the results are shown in Table 2. 

 Considering the presented evaluation results, our proposed 

mechanism is more beneficial for storage clusters with long-

term I/O operations. As a result, increasing the size of files 

will magnify the effect of adaptive selection algorithms on the 

performance of storage clusters. 

Table 2: Evaluated I/O throughput using TestDFSIO 

Number of files 10 100 10 100 

File size (MB) 100 100 1000 1000 

Read 

(MB/s) 

HDFS 7.006 7.421 8.983 9.603 

HDFS + AM 7.043 7.492 9.217 10.039 

Write 

(MB/s) 

HDFS 4.893 5.161 6.037 6.958 

HDFS + ASM 4.923 5.202 7.686 7.278 

5.2 Cluster scalability 

 Execution overhead of the proposed mechanism can 

degrade the number of metadata operations that the 

NameNode is capable of performing in every second. Once 

the NameNode reaches its resource limits as a result of an 

extraordinary number of metadata operations, presence of the 

proposed mechanism can increase response time of metadata 

operations and decrease overall performance of the cluster. 

For investigating this issue, one of the benchmark packages of 

hadoop-test-1.0.1 called NNBench is used. This benchmark 

performs in four distinct phases including create_write, 

open_read, rename, and delete. Moreover, NNBench supports 

a wide variety of input parameters including sizeOfBlocks and 

numberOfFiles. Fig. 3 shows the execution results of 

NNBench in the presence and absence of our proposed 

mechanism. 

 As it can be seen in Fig. 3, execution overhead of the 

proposed mechanism can have a slight impact on the 

NameNode performance only when the NameNode is 

overwhelmed with user requests. Indeed, this performance 

degradation is a direct outcome of centralize nature of the 

INPUT: Di = source DataNode 
INPUT: Qn = replication factor 
OUTPUT: Dd = a list of DataNodes to host replicas 
p = Di 

while (size(Dd) < Qn – 1) do 
visit(p) // Mark p as visited 
p = parent(p) 
for each Node in descendants(p) 

if (Node is VISITED) continue 
if (Node is LEAF) { 
Dd = Dd ∪ Node 
if (size(Dd) == Qn) remove_worst(Dd) 
} 
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NameNode in Hadoop clusters and can be avoided on the first 

sight by downscaling the cluster or improving hardware 

specification of the NameNode. However, using the proposed 

mechanism looks economical and effective with regards to 

how much it improves the system performance by spending a 

slight amount of processing power and memory space. 

 

Figure 3: NameNode TPS evaluation using NNBench 

5.3 Construction cost of Network-Tree 

 Construction of Network Tree is performed using ICMP 

network messages and the Ping utility. To evaluate the 

performance of our proposed method, we have examined the 

total network traffic and construction time of this method. 

Total network traffic of each run is monitored using 

Wireshark [21]. Searching the Network Tree is a one-time 

operation and every DataNode have to perform it just after 

joining the cluster. D-Link switches with a total bandwidth of 

100 Mbps have been used to from the communication network 

and connect computational nodes running a Linux 

distribution. The height of the Network Tree is two that 

demonstrates a two level network topology including the core 

switch and rack switches which are directly connected to the 

core switch. Fig. 4 shows our experimental results, in which 

total network traffic and the execution time are in KB and 

seconds respectively. 

 The execution time of this algorithm, which is used for 

searching the Network Tree, directly depends on the 

branching factor and the height of the tree. Height of the tree 

does not vary much and even in extra-large clusters, it can 

hardly ever reach a value more than 3. For instance, using 16-

port switches in building a communication tree with the height 

of 3 will lead to a cluster of size 16
3
. The largest operational 

Hadoop cluster at Yahoo contains 3500 DataNodes which is 

far less than 4096. Moreover, the branching factor does not 

exceed 16 most of the times. In most of the clusters, network 

switches with more than 16 ports are used as rack switches 

that have no effect on the branching factor of the Network 

Tree. Considering how this method can facilitate joining of 

new DataNodes to the cluster, it can be inferred that its 

execution time and network traffic are reasonable. 

 

Figure 4: Evaluation results of the tree construction algorithm 

6 Further works 

 Besides the proposed mechanism, distributed file systems 

can adapt with the execution state of the cluster in some more 

ways. Using dynamic replication factors and popularity 

domains for files are two of these ways that can benefit the 

storage cluster in both reliability and response time.   

 Considering the concept of files’ popularity which is widely 

used in P2P file sharing systems, the replication policy can be 

improved. Thus, each file will be replicated in every 

neighborhood that contains more reader or writer nodes. In 

this way, a popularity domain will be assigned to each file 

containing the DataNodes that will probably read or write 

from/to it in the future. This mechanism can be used along 

with the task distribution mechanism of Hadoop which 

executes every task near to its required data.  The cooperation 

of these two can lead to better distribution of load in Hadoop 

clusters. As a result, the behavior of file system users will 

affect the replication of data blocks and the file system will 

adapt with users’ activity. 

 Besides being used for determining proper replication factor 

of each file, the concept of popularity domains is beneficial 

for improving reliability of the NameNode in Hadoop clusters. 

As each popularity domain normally contains the list of 

DataNodes sharing the respective file, the global namespace 

can be divided into many popularity domains and distributed 

across several NameNodes. Consequently, reliability of the 

central mechanism which is currently in use in Hadoop 

clusters to maintain file system metadata will be improved by 

increasing the number of metadata servers. This mechanism 

follows the same idea as namespaces in Plan 9 and uses 

popularity domains in exchange of per-process namespaces. 

Reducing the computational overhead of the NameNode will 

directly improve the response time of storage and retrieval 
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operations of files. Indeed, this mechanism can improve both 

reliability and response time of distributed file systems. 

7 Conclusion 

 Our proposed mechanism considers the execution state of 

the storage cluster in performing data blocks replication. 

Various aspects of the cluster such as network topology and 

different state variables of computational nodes like network 

traffic and remaining storage space are considered to find the 

proper host for storing replicas. As the first step in the 

replication process, the NameNode specifies the required 

number of replicas for each data block. Next, the replication 

roadmap is designed based on the performed calculations and 

the selected host will store the newly created replica. The host 

selection algorithm will choose the proper nodes to store the 

new replica by looking at their execution state, available 

resources, and distance to the source of data. As a result, the 

load of storage and retrieval operations will be uniformly 

distributed across the cluster. 

 A similar method is used in order to find proper replica 

hosts to provide read operations with requested data blocks. In 

this manner, our proposed mechanism estimates the cost of 

reading a data block from every host and uses the results to 

generate an ordered list of hosts. Some execution variables of 

storage nodes including available network bandwidth, disk 

read speed, and current data streams are considered in 

evaluating the cost of reading every data block. The network 

distance between the replica host and reader node is also 

considered in this selection algorithm. 

 HDFS has been used as our implementation platform. 

Several facts like easy to use interfaces and open source 

implementation of HDFS lead to this decision. Performed 

evaluations show that our proposed mechanism improves the 

response time of file storage and retrieval operations in 

heterogeneous clusters running long-term I/O operations. 

Furthermore, its computational overhead will not have a 

remarkable effect on cluster scalability. 
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Abstract— The SQL injection attack causes very
serious problem to web applications that involve
database including personal data. To detect the SQL
injection attack, the parsing and the blacklist built
based on the known attacks have been widely used.
Those approaches, however, have some problems in
terms of the size of list or calculation costs as the
number of attacks increases. For these problems, the
authors have previously proposed a simple automatic
algorithm to detect SQL injection attack. This algo-
rithm requires to calculate the ratio of suspicious
characters contained in an input sequence. This rate
is compared with a known real-valued threshold. This
paper proposes the learning algorithm to choose
the real-valued threshold from training data sets.
Furthermore, some criteria will be considered and
their performances will also be examined.

Keywords: SQL Injection Attack, Automatic Detection,
Web Application, Learning Algorithm, Pattern Recogni-
tion

1. Introduction
The SQL injection attack was firstly reported in

1999 [2]. It consists of insertion or “injection” of a
SQL query via the input data from the client to the
application [3]. It causes very serious problem to web
applications that involve database including personal
data. To detect the SQL injection attack, the parsing
and the blacklist built based on the existed attack
have been widely used. However, the conventional
methods based on blacklist built approaches have
confronted at least two problems. The first is the huge
cost of updating large blacklist built, the second is the
calculation cost for automatic attack detection with
large blacklist built.

For these two problems, the authors have already
proposed the online algorithm for automatic detection
of SQL injection attack [4]. This algorithm requires
to calculate the contained rate of suspicious char-
acters with input sequence. This rate is compared
with a known real-valued threshold. In the authors’
previous research [4], this threshold was empirically

determined as a known constant. However, in general,
this threshold is an unknown value and should be
learned from a given training set of data. This paper
proposes a learning algorithm to choose a real-valued
threshold. Furthermore, some criteria will considered
and their performances will also be examined.

The rest of this paper is organized as the follow-
ings. Section 2 gives some definitions and automatic
detection algorithm of SQL injection attack which
was previously proposed where its threshold value
is defined as a known constant. Section 3 proposes
the learning algorithm of the threshold value with
some formulations. Section 4 shows some leaning
examples with artificial data. Section 5 gives their
discussions. Finally, Section 6 concludes this paper.

2. The Automatic Detection Algorithm
of SQL Injection Attack [4]
2.1 Preliminary

Suppose that l is an input sequence through web
application to the SQL database. Note that each input
l has a label either attack or normal. The purpose of
automatic SQL injection attack detection is to esti-
mate the label of l correctly. Our proposed algorithm
requires some known finite characters si, sii, siii, · · · .
These are suspicious characters contained in SQL
injection attack inputs such as space, semicolon,
single-quotation, left and right round brackets, and so
on. Furthermore, let Sk, k = 1, 2, · · · ,m be power
sets of known characters si, sii, siii, · · · where they
are defined as sets of characters except for the empty
set. If si and sii are defined as space and semicolon,
then three power sets of known characters can be
S1 = {si} , S2 = {sii} , and S3 = {si, sii}.

2.2 The Automatic Detection Algorithm
With the above definitions, the automatic detection

algorithm was proposed [4]. Furthermore, the theo-
retical performance was analyzed in terms of statisti-
cal prediction problem [1]. The following is the brief
description of the automatic detection algorithm.

1) Setting up known values
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a) Choose a set of characters Sk.
b) Set a threshold as a real value α ∈ [0, 1].

2) Calculating the content rate of suspicious char-
acters xk,l which is defined as,

xk,l =
#Sk

| l |
, (1)

where #Sk denotes the size of Sk.
3) Automatic detection

Determine each input’s label (normal or attack
input) by the following function d (xk,l, α):

d (xk,l, α) =
{

0 if xk,l ≤ α;
1 if xk,l > α.

(2)

Eq. (2) means that if detection result is normal, then
its value is zero, otherwise the result is attack and its
value is one.

Example 2.1 (Automatic Detection of Attack Input):
Let l = “DROP sampletable;- -” be an attack input
where its length | l | = 19. Suppose that a character
set S13 contains space, semicolon, and left round
brackets. Furthermore, the threshold value α is set
to 0.10.

Since the input l contains one space and one
semicolon among characters in S13, a numerator in
Eq. (1) becomes #S13 = 2. Therefore, according to
Eq. (1),

x13, l =
2
19

= 0.1052 · · ·

With the above x13, l, the detection result by Eq. (2)
becomes the following:

d (x13, l, α) = d (0.1052, 0.10)

= 1 .

Thus l is detected as an attack input.

2.3 Performance Evaluation with Artificial
Data

For evaluation of the above algorithm, the artificial
data was composed [4]. Those data cover the typical
types of SQL injection attack input as well as normal
input among common web forms. The number of
types of attack inputs was 624, on the other hand, that
of normal inputs was 234. Those data were converted
to the fields of single and multibytes characters, wiki,
emoticon etc. These types were assumed to be input
as IDs, passwords, names, and addresses etc. [4].

If the real operating situation is considered, the
label of each input (either normal or attack) is

unknown. Therefore, the mixture data of both labels
were used for simulations in evaluations [4]. Let
0 ≤ PN ≤ 1 be the correct detection rate for normal
input and let 0 ≤ PA ≤ 1 be the correct detection
rate for attack input. Furthermore, if the ratio of the
number of the normal input against attack input is
0 ≤ β ≤ 1, the total detecting rate 0 ≤ µ ≤ 1 can be
calculated by the following:

µ (Sk, α, β) = βPN + (1 − β) PA . (3)

For evaluation, the value of α was empirically
chosen as a constant. On the other hand, various
values of β were taken with its interval 0 ≤ β ≤ 1.
For the remained Sk, the following objective function
was assumed to chose the optimal character set of S∗.

S∗ = arg max
Sk

[µ (Sk, α, β)] . (4)

With the above Eq. (4), the sensitive analysis was
considered for discussions [4].

3. The Proposed Threshold Learning
Algorithm
3.1 Formulation and Criterion

In general, the threshold value is unknown and
should be learned from real observed data. If S∗

has been already determined and the candidates of
αj , j = 1, 2, · · · , N have been obtained, then the
following can be defined as similar form of Eq. (4).

α∗ = arg max
αj

[µ (Sk, αj , β)] . (5)

Since the label of input l is unknown at the real
operation, the value of β, which is the weight of
normal input against attack input is also unknown.
Therefore, Eq. (4) and (5) can be achieved with
several criteria. One of them is that assuming the
probability distribution of p(β) to take the expecta-
tion of µ (Sk, αj , β) with respect to β. For numerical
approximation, suppose βm ,m = 1, 2, · · · ,M is
sampled on the interval 0 ≤ β ≤ 1. Then, such
criterion can be formulated as the following:

{α∗∗, S∗∗}

= arg max
αj

max
Sk

[
M∑

m=1

p (βm) µ (Sk, αj , βm)

]
.

(6)

Note that α∗∗, S∗∗ maximize the expected total de-
tecting rate µ (Sk, αj) in Eq. (6).

For the other criteria, both the expected total
detecting rate and the absolute value of slope of
regression line can be considered which is more
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restrictive. This criterion also takes into account the
stability of µ (Sk, αj) with respect to β.

{α∗∗∗, S∗∗∗}

= arg max
αj

max
Sk

[
M∑

m=1

p (βm) µ (Sk, αj , βm)

−

∣∣∣∣∣∣∣
1

M
∑M

m=1 (βm)2 −
(∑M

m=1 βm

)2

∣∣∣∣∣∣∣
×

∣∣∣∣∣M
M∑

m=1

βm µ (Sk, αj , βm)

−

(
M∑

m=1

βm

)(
M∑

m=1

µ (Sk, αj , βm)

)∣∣∣∣∣
]

.

(7)

Note that α∗∗∗, S∗∗∗ maximize the sum of the ex-
pected total detecting rate and the slope of regression
line. In Eq. (7), the second, third, and fourth terms
on the right hand side express the absolute value of
slope of the regression line µ (Sk, αj) where β is its
domain.

3.2 The Proposed Algorithm
With training data set that contain pairs of input

sequence l and its label, the following learning al-
gorithm of threshold value α∗∗ or α∗∗∗ would be
proposed.

1) With various candidate pairs of Sk and αj ,
execute automatic detection algorithm with Eq.
(1) and (2).

2) Calculate the total detecting rate µ (Sk, αj , β)
with PN , PA, and 0 ≤ β ≤ 1.

3) Taking βm for numerical approximation to
choose the optimal set of S∗∗ and α∗∗ by
Eq. (6)(or S∗∗∗ and α∗∗∗ by Eq. (7)).

4. Evaluations of the Proposed Algo-
rithm
4.1 Conditions

For evaluations, the artificial data mentioned in
subsection 2.3 was used. The number of types of
attack inputs is 624, those of normal inputs is 234
where the data cover the single and multibytes char-
acters, wiki, emocticon etc. Note that the data was
assumed IDs, passwords, names, and addresses etc.

For known finite characters, the five characters
were chosen as Table 1. These characters are same
as our previous simulations [4].

With the above five characters, the following
twenty six power sets can be defined as,

Table 1: Known Characters
Name Character

si Space
sii Semicolon (;)
siii Single Quotation (’)
siv Right Parenthesis ())
sv Left Parenthesis(()

S1 = {si, sii} , S2 = {si, siii} , S3 = {si, siv} ,
S4 = {si, sv} , S5 = {sii, siii} , S6 = {sii, siv} ,
S7 = {sii, sv} , S8 = {siii, siv} , S9 = {siii, sv} ,
S10 = {siv, sv} ,
S11 = {si, sii, siii} , S12 = {si, sii, siv} ,
S13 = {si, sii, sv} , S14 = {si, siii, siv} ,
S15 = {si, siii, sv} , S16 = {si, siv, sv} ,
S17 = {sii, siii, siv} , S18 = {sii, siii, sv} ,
S19 = {sii, siv, sv} , S20 = {siii, siv, sv} ,
S21 = {si, sii, siii, siv} , S22 = {si, sii, siii, sv} ,
S23 = {si, sii, siv, sv} , S24 = {si, siii, siv, sv} ,
S25 = {sii, siii, siv, sv} , S26 = {si, sii, siii, siv, sv}.

4.2 Simulations
1) Simulation 1

Choose five pairs of {α∗∗, S∗∗} in descending
order according to the criteria in Eq. (6).

2) Simulation 2
Choose five pairs of {α∗∗∗, S∗∗∗} in descend-
ing order according to the criteria in Eq. (7).

4.3 Results
Table 2 and 3 were obtained for Simulation 1 and

2, respectively.

Table 2: Result of Simulation 1
Rank S∗∗, α∗∗ Value in Eq. (6)

1st S22, α = 0.08 0.9170
2nd S12, α = 0.08 0.9154
3rd S22, α = 0.09 0.9147
4th S21, α = 0.08 0.9142
5th S14, α = 0.02 0.9135

Table 3: Result of Simulation 2
Rank S∗∗∗, α∗∗∗ Value in Eq. (7)

1st S12, α = 0.09 0.9032
2nd S12, α = 0.08 0.8994
3rd S22, α = 0.11 0.8930
4th S23, α = 0.10 0.8903
5th S21, α = 0.11 0.8879
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5. Discussions
From Table 2 in Simulation 1, we can see that the

pair S22 and α = 0.08 maximizes the expected total
detecting rate µ (Sk, αj) in Eq. (6). In our previous
research [4], the pair S12, α = 0.08 was empirically
chosen. According to Table 2, relatively superior pair
was discovered with the criterion in Eq. (6). Figure
1 shows the plot of the top three pairs of S∗∗ and
α∗∗ where the vertical axis is the value of µ and
the horizontal axis is 0 ≤ β ≤ 1. According to Eq.
(6), the superior µ of the pair S22 and α = 0.08
can be observed comparing to the empirically chosen
pair S12 and α = 0.08 in Figure 1. In Figure 1, the
pair S12 and α = 0.08 gives the most flattest line
among three lines, however, the other two pairs give
the relatively superior values according to Eq. (6).

From Table 3 in Simulation 2, S12 and α = 0.09
are obtained as the optimal pair according to Eq. (7).
The second is the pair of S12 and α = 0.08. Figure
2 shows the same sort of plot as previous Figure
1. Since Eq. (7) emphasizes the absolute value of
the slope, more flatter line can be chosen. In this
criterion, S12, which contains three characters, was
superior to the others, whereas S22 was superior to
them in the criteria Eq. (6).

Figure 3 shows the effect of various values of
α in S12. From Figure 3, the more the value of α
increases, the more larger the value of slope of the
line becomes. Since Eq. (7) gives the penalty of the
larger value of the slope, α = 0.09 is more likely to
be chosen.

Figure 4 shows the effect of various values of
α in S21. Figure 4 also shows that the more the
value of α increases, the more the value of slope
of the line becomes larger. But the increasing degree
of the slope in S21 is relatively larger than that of
S12. This result can be interpreted as the effect of
the character of Right Parenthesis which is the only
contained character in S21.

Figure 5 shows the effect of various sets among
S12, S21, and S24 where those thresholds are the
constant α = 0.08. From Figure 5, the detecting
performances of S12 and S21 are similar, however,
that of S24 is the relatively poor. It can be observed
that S24 is the only set which does not contain
Semicolon.

6. Conclusions
This paper proposed the learning algorithm to

choose the real-valued threshold for automatic de-
tection of SQL injection attack. Furthermore, some

Figure 1: Learning Results based on Eq. (6)

Figure 2: Learning Results based on Eq. (7)

Figure 3: Detecting Performance of S12 with various
thresholds
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Figure 4: Detecting Performance of S21 with various
thresholds

Figure 5: Detecting Performance of S12, S21, and S24

with a constant thresholds (α = 0.08)

learning criteria were considered and their perfor-
mances were also examined with artificial data. As a
result, the certain effectiveness was observed with the
proposed algorithm and thus seeking the unknown
threshold value can be possible with training sets of
data.

For future research, predictive performance should
be examined with unknown data sets. Furthermore,
the detecting performance with the real SQL injection
data should also be considered.
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Abstract - Service-Oriented Architecture (SOA) has become a 

common technology for provisioning infrastructure services 

on-demand. Service-Oriented Architecture (SOA) allows 

managing, maintaining and accessing heterogeneous and 

geographically sparse resources in a unified way. This paper 

introduces GEMBus (GEANT Multi-domain Bus), a service-

oriented middleware platform that allows flexible services 

composition, and their on-demand provisioning and 

deployment to create new specialized task-oriented services 

and applications. GEMBus is built upon state-of-the-art 

Enterprise Service Bus (ESB) technologies and extend them 

with new functionalities that allow dynamic component 

services deployment, composition and management. 

The GEMBus architecture incorporates different ESB 

instances at different management domains, orchestrated by 

the GEMBus core, constituted by the elements which provide 

the functionality required to maintain the federation 

infrastructure: service registry, message infrastructure, 

security service, accounting service, and composition services. 

The current paper also discusses the general case for 

integration of Service-Oriented Architecture (SOA) principles 

and technologies with the provision and deployment 

mechanisms to support on-demand infrastructure services 

provisioning. 

This architecture has been validated with a series of use-cases 

in the GÉANT environment and is about to be applied to 

similar infrastructures in a wide range of application fields 

within the academic and research community. 

Keywords: GEMBus, SOA, federation, middleware, ESB, 

USDL, semantics 

 

1 Introduction 

  This paper presents the framework and general 

architecture of GEMBus (GÉANT Multi-domain Bus), the 

federated multi-domain service-oriented infrastructure being 

developed in GN3 [1] project. GEMBus is based on a 

Composable Service Architecture (CSA) [2], a general 

framework for composite services, and on the industry-

adopted Enterprise Service Bus (ESB) [3], extended to 

support dynamically reconfigurable virtualized services. The 

architecture addresses multi-domain issues and distributed 

heterogeneous services composition and orchestration. The 

possible users for GEMBus could be the network and service 

operators who wish to install the GEMBus platform and its 

core services in their administrative domain, and the users 

who wish to develop new services and integrate them with the 

GEMBus platform, enhancing their usability. Both types of 

users can benefit from the Composable Service Architecture. 

 Service-Oriented Architecture (SOA) [4] allows 

managing, maintaining and accessing heterogeneous and 

geographically sparse resources in a unified way by providing 

standardized interfaces and common working environments to 

their users. The heterogeneous nature of these resources spans 

not only across different providers or administrative domains, 

but also across different application domains, aiming, for 

example, at the integration of bandwidth reservation 

mechanisms with storage allocation procedures into what 

users should perceive as a single service. 

 The bus paradigm provides the additional advantage of 

freeing service developers from dealing with common aspects 

such as authentication, authorization, accounting, service 

discovery and message management. This enables them to 

concentrate on the direct implementation of business 

processes. Most current ESB frameworks are oriented to 
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single-enterprise deployment that relies on a central top 

authority. GEMBus aims to bring the advantages of these ESB 

frameworks into an open collaborative environment, taking a 

step further into federated infrastructures and supporting the 

definition of a multi-domain ESB infrastructure, a “bus of 

buses”.  

 This paper is structured in the following way. In section 

2, we describe GEMBus architecture, placing particular 

emphasis on GEMBus core components. In section 3, we state 

the successfully integrated services within the GEMBus 

infrastructure and in the last section finally, we present our 

conclusions. 

2 GEMBus architecture  

 In Figure 1 below, is illustrated the general GEMBus 

architecture, where different ESB instances at different 

management domains are federated. Services deployed in one 

of the instances can seamlessly access those services made 

available by the others. 

 The GEMBus Core is comprised of those elements that 

provide the main functionality required to maintain the 

federated GEMBus infrastructure. The GEMBus Core 

includes specific functional components and services: 

GEMBus Registry, GEMBus Messaging Infrastructure 

(GMI), GEMBus Security Service, Composition Service and 

GEMBus Accounting Service. 

 

 

 
Figure 1: General GEMBus architecture, showing core 

elements 

 

2.1 GEMBus Registry 

 In a highly dynamic and multi-domain infrastructure a 

mechanism to keep track of dynamic deployments is 

absolutely vital. The GEMBus registry is expected to provide 

essential functionality to serve as a global information service 

to keep information about both component infrastructure 

services and the composed services infrastructure, including 

also their lifecycle metadata. 

 Federated Registry should be able to handle all the 

service description formats that are available because of the 

variety of services. This includes, but is not limited to, Web 

Services Description Language (WSDL) [5], Web 

Application Description Language (WADL) [6] and OSGi 

[7], [8] bundles. 

 More specifically, the GEMBus Registry (Federated 

Service Registry) talks to the local registries to retrieve the list 

of services from the local domains and to announce them 

globally (for all participating domains). This registry has the 

capability to request additional information about the services. 

The GEMBus registry is responsible for the mapping among 

the initial description of requests and the requested services. 

2.2 GEMBus Messaging Infrastructure (GMI) 

 Existing ESB frameworks and implementations 

incorporate a centralized model for message handling, where 

a domain central message processor (that also provides inter-

domain message routing when required) processes all intra-

domain messages. Message processors in this case act as a 

collapsed messaging backbone. This means that to send or 

receive messages, all services need to connect to one of the 

adapters supporting specific service related/defined message-

level protocols. These adaptors are typically connected to an 

assigned port. 

 The GMI extends this functionality in the multi-domain 

environment considered by GEMBus. The Registry will store 

and provide the GMI components with service information on 

location, configuration and properties. These components will 

make use of the Registry either by using the local, internal 

ESB registries for local component services, or by directly 

querying the common GEMBus Registry service. These 

components will make direct use as well of the GEMBus 

Accounting Service facility to track message exchange in a 

way that is transparent to service developers and operators. 

2.3 GEMBus Security Services  

The GEMBus uses the Security Token Services (STS) 

defined in WS-Security [9] and WS-Trust [10] as a security 

mechanism to convey security information between services 

that can also be easily extended to the federated security 

required by the GEMBus composable services. The STS 

makes it possible to issue and validate security tokens, also 

support services (identity) federation and federated identity 

delegation. 

In the GEMBus STS, different elements support token 

issues and validation, as shown in Figure 2. The Ticket 

Translation Service (TTS) is responsible for generating valid 

tokens in the system according to the received credentials, 

renewing and converting security tokens. Token validation is 

performed by the Authorization Service (AS), which can also 

retrieve additional attributes or policy rules from other sources 

to perform the validation. 
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Figure 2: Authentication and authorization processes in 

GEMBus security services 

 

2.4 Composition Service 

In the GEMBus aim follow existing procedures and 

standard mechanisms, extending them to support multi-domain 

operation, Business Process Execution Language (BPEL) and 

available ESB-based execution engines are being used for 

service orchestration. They are connected with a specific 

description and control tool (first prototype implemented as an 

Eclipse plug-in) based on Business Process Modelling 

Notation (BPMN). 

In addition to the orchestration service, a workflow 

management system will be provided by integrating the 

Taverna [11] environment, a cross-platform set of tools 

enabling users to compose not only web services, but also 

local Java services (Beanshell scripts), local Java APIs, R 

scripts and import data from Excel or in CVS format. 

 

2.5 GEMBus Accounting Service 

The GEMBus multi-domain nature requires specific 

mechanisms for producing and processing meaningful 

accounting information. The Accounting Service Architecture 

for GEMBus consists of a Common Accounting Repository, 

where all collected data from each ESB instance is stored and 

an Accounting Module (AM) instance is deployed at every 

participating ESB. 

Services integrated in GEMBus use the message-oriented 

middleware infrastructure offered by the GMI to 

communicate. The function of AM is to catch and record 

every message exchanged (interaction between services) 

through the GMI, as those messages are precisely the source 

of information to evaluate GEMBus services behavior and 

performance. To capture those messages interactions 

exchanged through the GMI, message interceptors need to be 

implemented (in most of the cases, SOAP messages). 

 

 
Figure: 3. Accounting Service Architecture 

 

The accounting information will be saved using RDF 

ontology. RDF is an emerging language and there are several 

reasons for selecting RDF ontology as a data model, such as is 

based on open source, languages and standards. Also it can be 

extended and grown incrementally without impacting the 

existing data store. Finally, its conceptual closeness to the 

relational data model is an advantage. It is possible to 

represent RDF in a relational database and vice versa, the use 

of set-based semantics and queries and, via its SPARQL query 

language, easy mechanisms to drive faceted search and other 

browsing and viewing tools. 

 

 

3 Using GEMBus for service integration 

 This section presents a use-case of service integration 

used during the definition of the GEMBus architecture to 

validate it and provide a demonstrator of its functionalities. 

 Use-case is related to the integration of existing GÉANT 

services: AutoBAHN [12] (for bandwidth on-demand 

provisioning) and PerfSONAR [13] (for distributed and 

autonomous network monitoring). Both services have 

followed integration patterns associated to the creation of 

specific adaptors to existing service interfaces, taking into 

account the requirements imposed by service architectures 

and their interactions with their supporting infrastructures. 

 The third case is intended to show GEMBus 

composition mechanisms and how they can be applied to 

realize an Autonomous Computing scenario. Providing 

Autonomic Computing (AC) capabilities within the GEMBus 

framework can benefit the behavior of the services and 

applications connected to the bus. Applications deployed on 

GEMBus can consume the AC services provided by the 

framework to gain self-management capabilities. 

3.1 AutoBAHN/perfSONAR Integration as a 

Service  

 AutoBAHN service will enable the dynamic integration 

of bandwidth allocation mechanisms at different domains with 

other network services (such as monitoring services, other link 
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management services, and network topology and status 

information) and application services requiring such 

capabilities. 

Two adaptors have been developed, providing a single entry 

point to the AutoBAHN infrastructure: 

• The Reservation Client Adaptor, handling the user 

request for path reservation/cancellation/modification.  

• The Reservation Service Adaptor, responsible for 

deploying the reservation service inside the GEMBus 

platform and publishing it as a service available for others to 

see and call it. 

 

Figure 4: AutoBAHN and PerfSONAR integration within GEMBus 

 PerfSONAR service is based on a per-service integration 

pattern that takes advantage of the perfSONAR module 

software architecture. The per-service integration pattern 

assumes that each service is integrated as implementation of a 

separate adaptor. This solution provides several advantages 

such as easy management of services. Since the ESB 

framework manages the lifecycle of the adaptors the process 

related to deployment as well as stopping and restarting each 

of the services will be easy to perform. Having each of the 

services in separate adaptors also provides easy access 

restriction, keeping statistics of the service usage or logging 

all service events. This pattern offers an easy way for clients 

to access the services too. The usage of ESB binding elements 

makes it possible to put out many types of ready-to-use 

endpoints (such as SOAP or REST protocols) for clients, as 

well as easy reconfiguring. 

 The current version of the integration architecture 

prototype provides four adapters. The Network Measurement 

Working Group (NMWG) Adaptor is an interceptor that 

sends requests and receives responses to/from MA 

(Measurement Archive) and MP (Measurement Point) in the 

NMWG schema. This component is used by other GEMBus 

perfSONAR adapters to exchange messages between ESB and 

the current running services. The three other adaptors are the 

CLMP (Command Line Measurement Point), which is used 

for executing command line tools such Ping, traceroute, One-

Way Active Measurement Protocol (OWAMP) and 

Bandwidth Test Controller (BWCTL), RRDMA (Round 

Robin Database Measurement Archive), which provides the 

capability to read measurement data stored in RRD files and 

SQLMA (SQL Measurement Archive). 

4 Conclusions 

 GEMBus attempts to bring the advantages of SOA into 

the highly heterogeneous, open multi-domain environment 

that currently characterizes scientific e-infrastructures. 

GEMBus commitment to openness and the support of high 

heterogeneity allows making it useful also for environments in 

which a full SOA deployment is challenging by proposing and 

enabling some core services that can create a basis for further 

migration to more consistent service oriented environment. 

 The GEMBus architecture has been validated with a 

series of use-cases in the GÉANT environment and is about to 

be applied to similar infrastructures in a wide range of 

application fields within the academic and research 

community. The results achieved so far are encouraging and 

the integration of composable services in an integrated and 

federated infrastructure can provide a high quality of services 

to the academic and research community. 
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Abstract - We have proposed two algorithms for 

simultaneously optimizing performance, energy, and 

temperature while scheduling a set of tasks on a multi-core 

system (PET-Scheduling). The proposed algorithms differ in 

the way they use task allocation and voltage selection 

decisions to obtain multiple schedules (trade-off solutions) 

with a wide range of values along each objective. PET-PPF 

combines a power and performance-aware allocation 

scheme with probabilistic voltage selection to obtain these 

trade-off solutions. PET-DCP, on the other hand, first 

adjusts the task execution times using probabilistic voltage 

selection before leveraging a performance-optimal scheduler 

to generate the final schedule. Our results on several 

application task graphs demonstrate that both of the 

proposed algorithms can obtain the trade-off curves 

comprising of multiple solutions to the PET-Scheduling 

problem. PET-DCP, however, is able to achieve identical 

energy and thermal improvements as that of PET-PPF but at 

the same time degrades the performance by as much as 1.5 

times less than that of the PET-PPF. 

Keywords: dynamic thermal management, frequency 

allocation, multi-core systems, task scheduling, DVFS. 

1 Introduction 

  The rapidly scaling multi-core architecture has already 

spanned to 100 cores on a single chip [20]. However, this 

quick performance gain has resulted into the complex 

problems of energy and thermal management. Amplified 

chip temperatures not only require extra efforts for cooling 

in the form of expensive thermal packaging or larger fan size 

but can also lead to problems which can affect lifespan, 

reliability and performance of these modern systems. For 

example, a higher temperature can degrade the lifespan of a 

system to half of its value with a nearly 10
o
C increase in the 

operating temperature [2].  It has also been found that in 

addition to the higher temperatures, large magnitude of 

thermal gradients can also adversely affect the performance 

of the interconnects and thus can limit the performance of a 

system [3]. Therefore, scheduling schemes that can help to 

control or maintain the temperature below a given threshold 

are an essential requirement for the extensive use of these 

systems.  A lot of research in the last few years has focused 

on temperature management, temperature-aware scheduling 

and performance issues related to these schemes [5], [9], 

[10]. Most of the research contributions target to satisfy an 

energy budget or a thermal constraint while minimizing the 

consequential performance degradation [1], [11]. While 

these schemes can serve to meet the imposed system-based 

constraints, they are unable to explore the best possible 

trade-off between performance and energy or performance 

and temperature. In addition, some important issues cannot 

be addressed by constraint-satisfying approaches. For 

example, for a certain margin of trade-off in performance, 

what are various improvements possible in energy and 

thermal profile? For different possible energy budgets and 

thermal constraints, what is the maximum value of 

performance that can be achieved? Given a set of schedules 

with varying values of performance, energy, and 

temperature, how to select the best trade-off solution? These 

questions demand a holistic approach for integrating 

performance (P), energy (E), and temperature (T) (PET 

quantities) into the scheduling process. For this, we address 

the problem of simultaneously optimizing performance, 

energy, and temperature while scheduling tasks on a multi-

core system (PET-Scheduling). Such joint optimization of 

performance, energy, and temperature is not only complex 

and challenging but is also a rather unexplored problem.  

 PET-Scheduling problem is an aggregate of task 

allocation, task scheduling, and voltage selection problems 

with the goal of minimizing the performance, energy and 

temperature. We have developed novel algorithms namely 

PET-PPF and PET-DCP that can judiciously trade-off 

performance with energy and temperature.  PET-PPF 

generates a set of probability distributions for selecting a 

voltage level for each task. Each distribution corresponds to 

a different value of expected voltage level and thus enables 

PET-PPF to obtain several trade-off solutions. PET-DCP, 

uses the same voltage selection scheme as PET-PPF, 

however, a significant difference is that PET-DCP performs 

the voltage selections before the task allocation phase. In 

contrast to PET-PPF, PET-DCP first updates the execution 

times of the tasks based on the corresponding voltage level 

selected for each task and then uses a performance-optimal 

scheduler (DCP [19]) to generate the complete schedule. 

The key strength of our proposed methods is that they do not 

aim to provide a single solution to the problem. Rather 

several trade-off solutions are determined for the PET-

Scheduling problem. This approach to the PET-Scheduling 

problem is correct as in the presence of multiple conflicting 

objectives one solution can dominate the other along 
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different objectives. And for such cases, where all quantities 

are equally important, one quantity cannot be directly 

preferred over the other.  

 The rest of the paper is organized as follows: Section II 

covers the related work on energy and thermal-aware 

scheduling. Section III presents the details of the problem 

under consideration. Section IV explains the proposed 

algorithms for the solution of the problem and Section V 

highlights the evaluation setup. Section VI explains the 

results of the simulation while Section VII concludes the 

paper.  

2 Related Work 

 Most of the research efforts in the energy and thermal-

aware scheduling, target to satisfy a given thermal or energy 

constraint at the cost of some loss in performance. Primarily, 

dynamic voltage and frequency scaling (DVFS) is used to 

adjust the voltage levels of the cores to reduce the power 

consumption and thus the energy and temperature. The 

methods in [6], [9], [10], [15] aim to meet the thermal 

constraints for different kinds of workloads and systems 

under consideration. A solution for maximizing performance 

under the imposed power and thermal constraints, by solving 

the frequency assignment problem for multi-core systems is 

presented in [9]. Another frequency planning method 

leveraging combinatorial optimization framework to 

maximize performance of multi-core systems with thermal 

limits is developed in [10]. An Event based scheduling 

method that can improve the peak temperature along with 

the total number of DTMs without excessive computation 

overhead is presented in [15]. The scheme proposed in [6] 

uses a non-DVFS approach to calculate the optimal core 

states for the given thermal constraints. For tasks 

represented as DAGs (Directed Acyclic Graphs), several 

iterative techniques in terms of performance degradation and 

computational complexity are compared in [11]. These 

techniques aim to find the most suitable task for the voltage 

adjustment to satisfy the given thermal constraint. There are 

also several methods that handle DTM with an alternate 

perspective, instead of considering temperature as a form of 

constraint, they try to improve thermal profile of the system 

within the allowed performance margins [5], [8], [14]. 

Similarly, there are numerous research efforts which aim to 

meet the given energy budget while sacrificing as little 

performance as possible. A power shifting method in [25] 

that controls the power of the different components of a 

server system is shown to improve the power budget based 

on workload conditions. A method to minimize schedule 

length under an energy constraint by determining the optimal 

power supplies on each processor is outlined in [18].  

 However, there are far lesser number of contributions 

in the pursuit of joint optimization of performance and 

energy or performance and temperature. The scheme 

presented in [4] minimizes the energy consumption and 

performance penalty leveraging Complier-Driven 

techniques. A hybrid hardware-software approach can 

improve performance loss consequential to the application 

of DVFS by leveraging reconfigurable fetch, issue, and 

retirement units etc., without exceeding the thermal limit 

[12].  The impact on the thermal profiles of cores due to the 

power activation at different locations of the chip 

represented as look-up tables have been used in [16] to 

allocate tasks to different cores. The proposed approach 

targets to improve the peak temperature as well as guarantee 

the thermal limit while at the same time decreases the 

rejection ratios under thermally constrained CMPs. A few 

research efforts report improvements in performance and 

energy under an efficient DTM policy [13]; however, these 

improvements are usually the by-products of the thermal 

management.  

 In contrast to the above mentioned research 

contributions we have targeted the simultaneous 

optimization of performance, energy, and temperature for 

allocating tasks on a multi-core system. We have compared 

our solutions to the schedules which only target to achieve 

maximum performance and do not take energy and 

temperature into consideration. This comparison can help to 

quantify the actual performance loss exhibited by various 

solutions in the pursuit of energy and temperature 

minimization. 

3 PET-Scheduling Problem 

 Given a task graph with N tasks, the total number of 

cores (M) and the set of available voltage levels (L), we aim 

to minimize makespan, energy consumption and temperature 

simultaneously while solving the task allocation, task 

scheduling, and voltage selection problem for the given task 

set. Thus the required objectives are: 

  i
Ni

ftMinimize
≤≤1

max  (1) 

  ∑
=

N

i
ii etPMinimize

1

.  (2) 

  
j

i
MjNi

TMinimize
≤≤≤≤ 11
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fti represents the finish time of the ith task. Pi is the power 

dissipated during the execution of the ith task and eti is 

corresponding execution time. Ti 
j
 is the temperature of the 

jth core during the execution of the ith task (details of 

thermal model will be presented in Section V). Our goal is 

not to only produce one solution for solving the above 

mentioned min-min-min problem but to explore the whole 

Pareto front that exists between performance, energy, and 

temperature (PET quantities). These trade-off solutions can 

be used to guide the overall scheduling process to meet the 

required objectives. For workload, we considered tasks with 

precedence relationships represented as directed acyclic 

graphs (DAGs). Several scientific and multimedia 

applications can be conveniently represented as DAGs. A 

DAG consists of weighted nodes and edges, where the 
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weight of the node represents the cost associated with the 

computation of the task and the weight on an edge represents 

the communication cost between the two tasks or nodes.  

Critical path in a DAG is defined as the path of longest 

length in the graph and hence governs the latest finishing 

time of a scheduled DAG [7]. The nodes constituting critical 

path are known as critical path nodes (CPNs) and the cores 

on which these tasks are scheduled are called the critical 

cores. Nodes having successors on critical path are known as 

In-bound nodes (IBNs). All other nodes are called out-

bound nodes (OBNs) [7].  

4 Proposed Solution 

 We will explain the algorithms proposed for solving 

the PET-Scheduling problem by highlighting their task 

allocation and voltage selection phases followed by their 

computational complexities. While doing so, it is assumed 

that there are M cores in the system which can switch across 

K voltage levels and the DAG to be scheduled has N 

tasks/nodes. 

4.1 PET-PPF 

 For DAG scheduling, the decision space for the Pet-

Scheduling problem spans not only the task allocation 

decisions but also include task ordering and voltage 

selection decisions. PET-PPF solves the problem in a 

hierarchical manner. For task allocation, PET-PPF aims to 

minimize the product of total power consumption of the 

cores and their available time for allocating the upcoming 

task. The intuition is to include performance and power 

directly into the allocation decisions as both energy 

consumption and temperature are related to the power 

dissipation. In other words, while allocating ith task we 

select the core with minimum PP
j
i which is defined as: 

  MjPsPP
j

i
j

i
j

i ≤≤∀= −− 1,
11

 (4) 

where, j
i

s
1− represents the finish time of the jth core after 

allocating i-1 tasks to all the cores. j
i

P
1− is the total power 

consumption of the jth core just before allocating ith task. 

Therefore, ith task is allocated to the core such that: 
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In (5), yi,j is set to 1 if ith task is allocated to the jth core. The 

makespan of a scheduled DAG varies significantly with how 

tasks are prioritized during the allocation phase. We 

assigned priorities to the tasks according to their 

classification in the DAG. CPNs are given the highest 

priority followed by IBNs while OBNs are kept at the lowest 

priority. The list of tasks generated by this classification is 

usually termed as CPN Dominant Sequence (CPN-DS) [7]. 

However, while constructing CPN-DS the precedence 

constraints are evaluated to ensure that the parent nodes are 

added to the list prior to the task itself. In voltage selection 

phase, a set of probability distributions is generated. Each 

probability distribution is used to select the voltage level for 

every task in the DAG, thus generating a potentially 

different schedule in the objective domain. In other words, 

to obtain τ trade-off solutions, we generate τ probability 

distributions. For generating this set of distributions, we start 

with a uniform distribution (allowing each voltage level to 

have the equal chance of getting selected for every task). We 

then transform the distribution in each step to first shift the 

peak of distribution towards the maximum voltage level and 

then repeat the procedure starting with uniform distribution 

to shift the peak of distribution towards the lowest available 

voltage level. In other words, we start with a uniform 

probability distribution in first step, as: 

  L∈∀== ii L
K

Lx ,
1

)Pr(  (6) 

In the above equation L represents the set of available 

voltage levels. Now, to adjust the peak of this distribution we 

define a partition index on the set L. Such that in each 

PET-PPF 

  1: K=Total number of voltage levels 

  2:Initialize Pdist � uniform distribution for voltage selection 

  3:// First Shifting the peak towards highest voltage level 

  4:pivot_ point � select a partition point on the set of voltage levels 

  5:for given number of adjustment steps (τ)   

  6:  for all levels from start to pivot_point  

  7:   reduction � Pdist(level)  / reductionPerStep (η) 

  8:    Pdist(level)  � Pdist(level)  -reduction 

  9:   creduction+= reduction 

10:  end for  

11:  for all levels from pivot_point to K 

12:   Pdist(level) = Pdist(level)+ proportional factor*creduction  

13:   // Higher voltage levels get large components of creduction 

14:  end for  

15:  Vlevels =generateVlevels( Pdist) 

16:  for all tasks ϵ DAG (V, E) 

17:   selected_core � find the core with minimum TPproduct 

18:   Allocate task to selected_core at the earliest possible time ST 

19:   udateSystemState(); 

20:  endfor 

21:  updateSolutionSet(currentSchedule); 

22:end for 

23:Initialize Pdist � 1/K   

24:// Shifting the peak towards lowest voltage level 

25:for given number of adjustment steps (τ)   

26:  for all levels from pivot_point to K 

27:   reduction � Pdist(level)  / reductionPerStep (η) 

28:   Pdist(level)  � Pdist(level)  -reduction 

29:   creduction+= reduction 

30:  end for  

31:  for all levels from start to pivot_point  

32:   Pdist(level) = Pdist(level)+ proportional factor*creduction  

33:   // Lower Voltage levels get large components of creduction 

34:  end for  

35:  Vlevels =generateVlevels( Pdist) 

36:  for all tasks ϵ DAG (V, E) 

37:   selected_core � find the core with minimum TPproduct 

38:   Allocate task to selected_core at the earliest possible time ST 

39:   updateSystemState(); 

40:  endfor 

41:  updateSolutionSet(currentSchedule); 

42:endfor 

Figure 1: PET-PPF 
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transformation step the probabilities corresponding to the 

voltage levels with indexes up to the partition index are 

reduced by a certain factor and the collective reduction is 

then distributed to the probabilities of voltage levels present 

in the second partition. If α represents the partition index 

over the set of available voltage levels and η defines the 

fractional reduction in the probability values corresponding 

to the selected voltage levels. Then the new distribution can 

be given by: 
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In the above equation the parameters α and η can be 

adjusted to control the computational complexity of the 

overall approach. We found empirically that with α set to the 

middle of set L and η=2, several unique distributions can be 

obtained when size of L is not very large (|L| < 10). It must 

be noted that (7) represents the adjustments done for 

gradually shifting the probability distribution to favor the 

maximum voltage level and may be repeated τ times, where τ 

can be selected based on the value of η. In addition, the 

increase in the probability of selection for each level is 

proportional to the value of its voltage. The required 

modification is straight forward for the case where we need 

to favor the lowest voltage level.   Figure 1 presents the 

overall procedure used by the PET-PPF.  

4.1.1 Computational Complexity of PET-PPF 

 The total number of adjustments steps can be 

controlled by τ for each direction, therefore, the probability 

distribution adjustment phase is O(τK). In the task allocation 

phase, a single term as in (4) is evaluated for every core per 

each task.  Hence, the complexity of task allocation phase is 

O(M). So, for a DAG with N tasks, the overall complexity of 

PET-PPF is O(τN (M+K)). 

4.2 PET-DCP 

 PET-DCP takes an opposite approach to that of the 

conventional DTM and energy improvement schemes. Most 

of such schemes adjust a performance-optimal schedule to 

satisfy the given thermal and energy requirements. However, 

PET-DCP, starts with the task adjustment phase using the 

given trade-off margin, and then leverages a performance-

optimal scheduler to generate the final schedule. In other 

words, initially a set of probability distributions (similar to 

PET-PPF) for voltage selection phase is generated. Each 

distribution is then used to select the voltage level for every 

task in the DAG. Based on the selected voltage levels, the 

execution time of each task is updated. This updated DAG is 

then used as input to the DCP (Dynamic Critical Path) 

scheduler [21] which generates the final schedule. DCP is a 

performance-optimal scheduler which keeps track of the 

critical path after every task allocation and assigns priorities 

to the remaining tasks accordingly. DCP has been shown to 

generate schedules with near-optimal makespan [7]. As the 

expected voltage level varies across the probability 

distributions generated in the voltage selection phase. 

Therefore, each distribution allows a different level of 

performance trade-off which translates into possibly 

different energy and thermal improvements. It should be 

noted that any change in the execution time of tasks can 

result into a possible modification of the critical path and 

thus the initial schedule as generated by DCP no longer 

remains optimal. Therefore, starting from a performance-

optimal schedule and then iteratively updating it for the 

desired energy and thermal requirements may potentially 

lose more performance in the pursuit of energy and 

temperature improvements. However, the use of 

performance-aware scheduler by PET-DCP as a second step 

ensures maximum performance for the modified task graph. 

Thus, PET-DCP can potentially achieve the performance-

energy and performance-temperature trade-offs without 

excessive performance degradation. Figure 2 briefly outlines 

the PET-DCP approach.  

4.2.1 Computational complexity of PET-DCP  

 The computational complexity of DCP to generate a 

schedule for a DAG of N tasks is O(N
3
). The total number of 

adjustments steps are 2τ, therefore the complexity of 

probability distribution adjustment phase is O(τK). Ignoring 

the time-complexity of drawing N levels from the given 

distribution (O(KN)) and the time to update the DAG 

(O(N)), the overall complexity of PET-DCP will be 

O(τKN
3
).  

5 Experimental Details 

 We assumed a 16-core system with cores arranged in a 

grid layout of 4x4. However, the proposed approach can be 

used for any number of cores and voltage levels. Each core 

was assumed to be able to switch across 5 different voltage 

levels in active mode, thus changing the power consumption 

and frequency of the system. The values of frequencies at 

different voltage levels along with their power consumption 

are outlined in Table 1. It should be noted that the 

frequency-power scaling relationship used in our evaluation 

PET-DCP 

  1:L=loadVoltageLevels 

  2:distributionData=generateProbDist()  

  3:for n=1 to size(distributionData) 

  4: currentprob=distributionData(n); 

  5: vLevels=generateVlevels(currentprob); 

  6: currenttaskgraph =updateTaskGraph(filename,currentprob); 

  7:  newshedule=dcpSchedule(currenttaskgraph); 

  8: makespan=getLatestCompletiontime(newschedule); 

  9:  energyconsumption= 

10: getEnergyConsumption(newschedule,vLevels) 

11:   maxTemp=max(getThermalProfiles(newschedule,vLevels)) 

12: updateSolutionSet(currentSchedule); 

13:endfor 

Figure 2: PET-DCP 
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is not very aggressive in terms of reducing the power with 

the change in frequency/voltage level. Similar scaling 

relationships have been observed by other research efforts 

based on actual multi-core systems [17]. Various other 

parameters related to the system under consideration and the 

proposed algorithms are listed in Table 2. 

5.1 Thermal model 

 To estimate the temperature of the cores with various 

power dissipation levels, we can use a steady state thermal 

model as: 

  Ajthj TPRT +=   (8) 

In the above equation, Tj represents the temperature of the 

jth core due to a power dissipation of Pj watts. Rth is the 

thermal resistance and TA represents the ambient 

temperature. Though the model in (8) has been frequently 

used in various DTM related research efforts, however, it 

does not take into account the power consumption of the 

neighboring cores while calculating the temperature of each 

core. In order to cater for the power dissipation of the 

neighboring cores we can modify (8), similar to [24] as: 

  ∑
∈∀

++=

jneighborm
Amthjthj TPRPRT γ  (9) 

In (9), neighborj represents the set of cores which are 

adjacent to the jth core.  The correlation between the power 

consumption of the neighboring cores and the temperature of 

a particular core can be controlled by γ. Though the model 

in (9) is still simplistic, however, it should be noted that any 

thermal and system model can be used in conjunction with 

the proposed algorithms. Since, the presented algorithms 

provide a mechanism to explore trade-off surfaces that exist 

between performance, energy, and temperature, therefore, 

the values of these quantities can be obtained from any 

complex and detailed models without having an impact on 

the results reported in Section VI. 

5.2 Task model 

 We used task graphs of various applications including 

Fast Fourier Transform [22], Laplace Equation [23], Gauss 

Elimination [22], Fpppp [21] and a Robot Control 

application [21]. Details of these task graphs can be found in 

the provided references. 

6 Results 

 Figures 3-5 compare the trade-off regions obtained by 

the proposed algorithms for various application task graphs. 

While figures 6-8 present the corresponding performance-

TABLE 1 
DVFS PARAMETERS 

f(MHz) 1600 2000 2200 2400 2600 
P(W) 23.61 48.90 72.48 93.12 105.00 

 

TABLE 2 
SYSTEM PARAMETERS 

Parameter No. of Cores Layout Freq. Switching Partition index (α) Adj. factor/step (η) Total adj. steps (τ) Total no. of solutions 

Value 16 Grid 4x4 Independent 3 2 10 27 

 

 

 
 Fig. 3. Pareto front for FFT. Fig. 4. Pareto front for Gauss Elimination. Fig. 5. Pareto front for Robot Control. 

 

  Fig. 6. Trade-off curves for FFT. Fig. 7. Trade-off curves for Gauss Elimination. Fig. 8. Trade-off curves for Robot Control. 
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energy and performance-temperature trade-offs possible by 

leveraging the Pareto-fronts obtained from the proposed 

algorithms. Due to the space considerations, we have only 

presented the selected figures and tables. For comparison, 

we used an efficient temperature-aware allocation scheme 

called Post-Tm [16]. We used each of the available voltage 

level from Table 1 along with the Post-Tm allocation 

scheme to generate a base-line trade-off surface. A direct 

comparison of these Pareto surfaces (Figures 3-8) proves 

that both of the proposed algorithms can obtain trade-off 

solutions with wide range of values and with better spread 

along each objective as compared to the modified Post-Tm 

approach. However, a contrasting difference is that PET-

DCP is able to generate the Pareto fronts or trade-off 

surfaces which are much closer to the performance optimal 

point (shown by arrows in Figures 3-5). Since, the spread of 

solutions generated by the PET-DCP is not inferior to both 

PET-PPF and Post-Tm along energy and temperature axis, 

therefore, the closeness to origin along performance axis 

translates into energy-performance and temperature-

performance trade-offs with lesser performance degradation. 

Figure 9 compares the algorithms in terms of the distribution 

of the solution points (normalized to the minimum value 

obtained) along each objective. We can observe that PET-

DCP was able to achieve a range of values comparable to 

PET-PPF but on the other hand, attains a significantly lower 

mean value for most of the cases.  

 To further analyze the quality of trade-offs, Table 3 

compares the amount of performance degradation for the 

corresponding improvements in energy and temperature for 

each algorithm.  While calculating the performance 

degradation as well as energy and temperature reductions for 

each trade-off solution, the values of PET quantities 

corresponding to the performance-optimal schedule as 

generated by DCP were used as reference.  ∆Pm/∆Em 

represents the ratio of percentage performance degradation 

to the percentage decrease in energy and ∆Pm/∆Tm is the 

ratio of percentage performance degradation to the 

percentage reduction in peak temperature (averaged over all 

solutions generated by each algorithm for a given task 

graph). Negative values for ∆Pm/∆Em and ∆Pm/∆Tm in Table 

3 represent an average decrease in the energy and 

temperature consequential to the corresponding performance 

degradation. From the values in Table 3, it can be observed 

that both the PET-PPF and Post-Tm degrades the 

performance by a larger percentage than the corresponding 

percentage decrease in energy and temperature. For 

example, for Gauss Elimination task graph the values of 

∆Pm/∆Tm for PET-PPF and Post-Tm are -3.04 and -3.99 

which means that for every 1% reduction in peak 

temperature, performance has to be degraded by 3.04% and 

3.99% respectively. However, PET-DCP needs to degrade 

the performance only by 1.43% for every 1% improvement 

in peak temperature for the same application. Similar 

comparison exists for other task graphs. Figure 10 highlights 

this trend pictorially for all the task graphs used in our 

experiments. We also observe that PET-PPF, yields positive 

values for ∆Pm/∆Em for some of the task graphs. This points 

out that, PET-PPF is unable to obtain large number of trade-

off solutions that can improve energy consumption as 

             
(a)                                  (b)                            (c) 

Fig. 9. Comparison of PET-PPF and PET-DCP for various task graphs along (a) Performance, (b) Energy, and (c) Peak temperature.  

TABLE 3 
TRADE-OFF RATIOS 

 
 

 
Fig. 10. Comparison of Trade-off Ratios. 

Values that are negative and closer to zero are better 
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compared to the base-line performance-optimal schedule.   

 Based on the performance of PET-DCP, we can note 

that in general, it may be potentially better to pre-adjust the 

tasks according to the system’s state and the given 

requirements of energy and temperature before targeting the 

maximal performance to obtain better trade-off solutions. It 

may also be noted that once the trade-off solutions are 

available, an operating point or schedule can be selected 

from them according to the imposed constraints and the 

given preferences. 

7 Conclusion 

 We proposed two schemes to explore the trade-off 

regions that may exist while trading loss in performance with 

the improvements in energy and peak temperature. Both 

algorithms were able to generate trade-off curves comprising 

of schedules that result into diverse range of values for 

makespan, energy consumption and peak temperature.  Our 

evaluation results indicate that PET-DCP, which pre-adjusts 

tasks probabilistically for energy and thermal improvements 

before using a performance-optimal scheduler, can produce 

multiple schedules that are very close to the performance-

optimal point. This leads the PET-DCP to achieve trade-off 

ratios better than the other algorithms (PET-PPF and Post-

Tm) by a factor of 2 on average. The work presented in this 

paper is an inaugural effort to jointly optimize performance, 

energy, and temperature while scheduling tasks on a multi-

core system and can be used as a framework to attain 

efficient trade-offs among the PET quantities. 
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Parallelization Strategies for Local Search Algorithms on Graphics
Processing Units

Audrey Delévacq, Pierre Delisle, and Michaël Krajecki
CReSTIC, Université de Reims Champagne-Ardenne, Reims, France

Abstract— The purpose of this paper is to propose effective
parallelization strategies for Local Search algorithms on
Graphics Processing Units (GPU). We consider the distribu-
tion of the 3-opt neighborhood structure embedded in the It-
erated Local Search framework. Three resulting approaches
are evaluated and compared on both speedup and solution
quality on a state-of-the-art Fermi GPU architecture. Solving
instances of the Travelling Salesman Problem ranging from
100 to 3038 cities, we report speedups of up to 8.51
with solution quality similar to the best known sequential
implementations and of up to 45.40 with a variable increase
in tour length. The proposed experimental study highlights
the influence of the pivoting rule, neighborhood size and
parallelization granularity on the obtained level of perfor-
mance.

Keywords: TSP, ILS, Parallel Metaheuristics, 3-opt, GPU

1. Introduction
Iterated Local Search (ILS) is a metaheuristic that suc-

cessively applies a given Local Search (LS) procedure to
an initial solution and incorporates mechanisms to climb
out of local optima. This method finds good solutions to
many optimization problems in a reasonable time which
may still remain too high in practice. However, it offers
an interesting parallelization potential when extended to a
population-based approach where different individuals im-
prove their solution by executing the same algorithm on
several computing units [1].

At present time, the best known implementations of the
ILS framework are dedicated to conventional, CPU-based
sequential and parallel architectures. However, as recent
years have shown the potential to use the GPU as a high
performance computational resource, it becomes important
to deliver GPU-based optimization methods that are efficient
in both solution quality and execution speed. However,
recent research has shown that this goal is often difficult
to achieve.

The purpose of this paper is to propose parallelization
strategies for ILS to efficiently solve the Travelling Sales-
man Problem (TSP) in a GPU computing environment.
The 3-opt exchange procedure used within the algorithm
is decomposed on processing elements along with required
data structures. Pivoting rules based on first-improvement
and best-improvement schemes are also evaluated. Important

algorithmic, technical and programming issues that may be
encountered in this context are finally highlighted.

This paper is organized as follows. First, we presentk-opt
LS algorithms, the ILS metaheuristic and their application
to the TSP. After a fairly complete review of the literature
on parallel LS and ILS, the proposed GPU parallelization
strategies are explained. Finally, a comparative experimental
study is performed to evaluate the performance of the
resulting algorithms.

2. Iterated Local Search for the Travel-
ling Salesman Problem

The Travelling Salesman Problem (TSP) may be defined
as a complete weighted directed graphG = (V,A, d) where
V = {1, 2 , ..., n} is a set of vertices (cities),A = {( i, j)
| (i, j) ∈ V × V } is the set of arcs andd : A → N is
a function assigning a weight or distancedij to every arc
(i, j). The objective is to find a minimum weight Hamilton
cycle in G, which is a tour of minimal length visiting each
city exactly once.

Local Search (LS) generally aims to iteratively improve an
initial solution by local transformations, replacing a current
solution by a better neighbor until no more improving moves
are possible. In that case, a local optimum is reached and
the procedure stops. Most well-known LS algorithms for the
TSP are based onk-opt exchanges which deletek arcs of a
current solution and reconnect partial tours withk other arcs
in all possible ways. Figure 1 describes the specific 3-opt [2]
procedure. Among the other popular ones, we may cite the
2-opt [3] and Lin-Kernighan [4] algorithms.

One of the key elements of LS is the pivoting rule which
dictates the choice of the neighbor solution that will replace
the current one [5]. The most commonly used methods
are best-improvement and first-improvement. In the first
case, all neighbors of the current solution are evaluated
and the one which produces the greatest improvement is
selected. In the second case, the first improving move is
accepted and the others are discarded. Less popular al-
ternatives are random-improvement and least-improvement
which respectively choose a neighbor randomly or with
minimal improvement of the objective function. Anderson
[6] defines a parameterk associated to the number of
improving moves found before choosing the best one. When
k = 1, the algorithm uses a first-improvement strategy and
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the morek increases, the more thorough is the exploration
of the neighborhood. He deduces that first-improvement is
generally the best choice for TSP.

In order to accelerate the execution of LS algorithms for
the TSP, various mechanisms are usually used to reduce
the neighborhood of the current solution. First, candidates
lists, which comprise thecl nearest cities for each city,
may be used when reconnecting partial tours instead of the
whole set of cities. Second, fixed-radius neighbor search
reconnects tours only with arcs for which the sum of weights
is potentially lower than the sum of weights of the arcs to be
deleted. Third,don’t look bitsare associated to each city in
order to drive the search away from arcs which have recently
led to unimproving moves. A complete description of these
methods may be found in Bentley [7] and in Johnson and
McGeoch [8].

A LS procedure becomes trapped in a local optimum when
no improving moves are possible in the neighborhood of the
current solution. A way to partly counter this problem is to
embed it in a guiding construction such as Iterated Local
Search (ILS) [9]. This metaheuristic is divided into four main
steps that are highlighted in Figure 2. The first one is the
generation of an initial solutionS, usually with constructive
heuristics or randomly. The second one is the LS procedure
that is applied toS to bring it to a local optimum. The
third one is a perturbation move which transformsS into
S′ in order to get it out of that local optimum. Finally, an
acceptance criterion is evaluated to choose which solution
betweenS andS′ will be used to resume the search. The
three last steps are then repeated until an end criterion is
reached, for example a maximum time limit or iteration
count.

while S is not a local optimumdo
for each combination ofa, b, c ∈ [0;n] do

Delete arcs (a,a+1), (b,b+1) and (c,c+1)
Produce neighbors ofS by reconnecting partial tours
Evaluate neigbors ofS

ReplaceS by the best neighbor chosen by the pivoting rule
Return best solutionS

Fig. 1: 3-opt LS pseudo-code.

Generate solutionS
Apply LS procedure onS
Evaluate lengthL of solutionS
while end criterion is not reacheddo

TransformS into S′ by a perturbation move
Apply LS procedure onS′

Evaluate lengthL′ of solution S′

if L′ < L then replaceS by S′ // acceptance criterion
Return best solutionS

Fig. 2: ILS pseudo-code.

The ILS metaheuristic is considered as one of the most
powerful approximate methods for the TSP [1]. In fact, the

works of Stützle and Hoos [10] and Lourençoet al. [9] show
its competitiveness in solving various TSP problems varying
from 100 to 5915 cities. However, faced to large and hard
optimization problems, it may need a considerable amount
of computing time and memory space to be effective in the
exploration of the search space. A way to accelerate this
exploration is to use parallel computing.

3. Literature review on parallel LS
Verhoeven and Aarts [11] proposed a classification that

distinguishessingle-walk and multiple-walk parallelization
approaches for LS algorithms. In the first category, one
search process goes through the search space and its steps are
decomposed for parallel execution. In that case, neighbors
of a solution may be evaluated in parallel (single-step) or
several exchanges may be performed on different parts of
that solution (multiple-step). In the second category, many
search processes are distributed over processing elements
and designed either asmultiple independent walksor multi-
ple interacting walks.

Johnson and McGeoch [8] defined three parallelization
strategies fork-opt algorithms. The first one usesgeometric
partitioning to divide the set of cities into subgroups that are
sent to different processors to be improved by a constructive
algorithm and a LS procedure. As this partitioning has
the drawback of isolating subgroups without reconnecting
subtours intelligently, the second strategy favorstour-based
partitioning to divide tours into partial solutions that includes
a part of the edges of the current solution. The third approach
is a simple parallelization of neighborhood construction and
exploration.

Works on parallelization of ILS for the TSP mainly follow
the population-based, multiple-walk approach where many
solutions are built concurrently. Honget al. [12] designed
a parallel ILS which executes a total ofm iterations using
a pool of p solutions. Martin and Otto [13] proposed an
implementation in which several solutions are computed
simultaneously on different processors and the best solution
replaces all solutions at irregular intervals.

Few authors have tackled the problem of parallelizing LS
algorithms for TSP on GPU. Luonget al. [14], [15] proposed
a methodology for implementing large neighborhood algo-
rithms in which the CPU is in charge of LS processes and the
GPU deals with the generation and evaluation of neighbor
solutions. It was experimented on TSP with Tabu Search
using a swap as the local transformation. Maximal speedup
of 19.9 is reported on a 5915 cities problem but solution
quality is not provided. O’Neilet al. [16] implemented
an iterative hill climbing algorithm based on 2-opt local
transformations in which random restarts are associated to
threads. Maximal speedup of 61.9 is reported on a 100
cities problem. Fujimoto and Tsutsui [17] integrated a 2-
opt best-improvement LS into a genetic algorithm executed
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on GPU. Maximal speedup of 24.20 is obtained on prob-
lems of up to 493 cities. Delévacqet al. [18] augmented
an Ant Colony Optimization algorithm with a 3-opt local
search implemented on GPU. Solving TSP problems from
198 to 2103 cities, they reported speedups of up to 8.03
with solution quality similar to the best known sequential
implementation.

These works provide a frame of reference for evaluating
the attainable efficiency of GPU-based LS algorithms for
the TSP. However, most of them overlook important issues
that make it difficult to assess their effectiveness as parallel
optimization methods. First, speedups are mostly provided
with nonexistent or inappropriate evaluation of solution qual-
ity. The proposed implementations are also experimented on
TSPs often limited to a few hundred cities without bypassing
obvious memory limits of actual GPUs. In addition, as
significant implementation details like the pivoting rule and
the mechanisms used to accelerate the computations are not
provided, algorithms can hardly be reproduced or tested on
larger problems. Finally, basic local transformations are most
often implemented even though the most effective methods
for solving the TSP are based on the 3-opt neighborhood
structure and the Lin-Kernighan algorithm [6].

As LS algorithms are key underlying components of
most high-performing metaheuristics, a natural fit is to run
a guiding metaheuristic on CPU while the GPU, acting
as a co-processor, takes charge of running the LS pro-
cedure. However, there is still much conceptual, technical
and comparative work to achieve in order to design such
hybrid parallel combinatorial optimization methods. This
paper aims to partially fill this gap by proposing, evaluating
and comparing various parallelization strategies for the 3-opt
LS on GPU.

4. GPU parallelization strategies for ILS
We propose three parallelization strategies based on the

algorithm described in Figures 1 and 2. They mainly differ
in the pivoting rule used to select an improving neighbor,
the distribution of solutions to processing elements and the
use of GPU shared memory. For the sake of completeness,
we first provide a brief description of the GPU architecture
and computational model.

The conventionnal NVIDIA GPU [19] architecture in-
cludes manyStreaming Multiprocessors(SM), each one of
them being composed ofStreaming Processors(SP). On this
special hardware, theglobal memory is a specific region of
the devicememory that can be accessed in read and write
modes by all SPs of the GPU. It is relatively large in size
but slow in access time. Each SM employs an architecture
model calledSIMT (Single Instruction, Multiple Thread)
which allows the execution of many coordinated threads in
a data-parallel fashion.Constantandtexture memory caches
provide faster access to device memory but are read-only.
The constant memory is very limited in size whereas texture

memory size can be adjusted in order to occupy the available
device memory. All SPs can read and write in theirshared
memory, which is fast in access time but small in size and
local to a SM. It is divided into memory banks of 32-bits
words that can be accessed simultaneously.Registersare the
fastest memories available on the GPU but involve the use
of slow local memory when too many are used.

In the CUDA programming model [19], the GPU works
as a co-processor of a conventional CPU. It is based on the
concept of kernels, which are functions (written in C) exe-
cuted in parallel by a given number of CUDA threads. These
threads are grouped together intoblocksthat are distributed
on the GPU SMs to be executed independently of each other.
However, the number of blocks that a SM can process at
the same time (active blocks) is restricted and depends on
the quantity of registers and shared memory used by the
threads of each block. In a block, the system groups threads
(typically 32) intowarpswhich are executed simultaneously
on successive clock cycles. The number of threads per block
must be a multiple of its size to maximize efficiency. Much
of the global memory latency can then be hidden by the
thread scheduler if there are sufficient independent arithmetic
instructions that can be issued while waiting for the global
memory access to complete. Consequently, the more active
blocks there are per SM, and also active warps, the more the
latency can be hidden. Special care must also be taken to
avoid flow control instructions (if, switch, do, for, while) that
may force threads of a same block to take different paths in
the program and serialize the execution.

The proposed strategies are inspired by the population-
based and multiple independent walks general strategies
described in Section 3. However, only the LS phase is
parallelized on GPU instead of entire walks. In all cases,
memory management issues had to be adressed. Data trans-
fers between the CPU and the GPU as well as global
memory accesses require considerable time but may be often
be reduced by storing the related data structures in shared
memory. However, in the case of ILS applied to TSP, one
central data structure is the distance matrix which is needed
by all solutions of the population while being too large
(O(n2) in size) to fit in shared memory for problems larger
than a few hundred cities. It is then kept in global memory.
On the other hand, as it is not modified during the LS
phase, it is possible to take benefit of the texture cache
to reduce their access times. The first two strategies are
applied on a first-improvement LS implementation and the
last one on a best-improvement scheme over a fixed size
neighborhood. Specific details for each strategy are given in
the next sections.

4.1 First-improvement LS : ILS−FIthread and
ILS − FIblock

The proposed GPU parallelization strategies applied to a
first-improvement LS have been presented by the authors
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in the form of preliminary work [20] and are inspired by
our previous contributions on Ant Colony Optimization [21],
[18]. Their general parallelization model is illustrated in
Figure 3(a). The first one, presented in Figure 3(b), is called
ILS−FIthread and associates each LS to a CUDA thread.
It has the advantage of allowing the execution of a great
number of LSs on each SM and the drawback of limiting
the use of fast GPU memory. The second strategy, called
ILS−FIblock and illustrated in Figure 3(c), associates each
LS to a CUDA block. Thus, parallelism is preserved for
the LS phase, but another level of parallelism is exploited
by sharing the multiple neighbors between many threads
of a block. As only one solution is assigned to a block,
it becomes possible to store the data structures needed to
improve the solution in the shared-memory. Two variants
of the ILS − FIblock strategy are then distinguished :
ILS − FI

global
block andILS − FIsharedblock .

Currently, most efficient LS methods for solving the
TSP are based on the first-improvement pivoting rule and
mechanisms to reduce execution times. They were obviously
designed and optimized for traditional single processor com-
puting systems. While it may be possible to achieve good
efficiency on small multiple processor/core systems with
minimal changes to existing algorithms, the parallelization
process is not as straightforward for a synchronous, mas-
sively parallel architecture like the GPU. On one hand, ex-
isting sequential implementations are based on reducing the
number of computed neighbors in a single LS step whereas
GPU processing is well suited for large data-parallel applica-
tions. On the other hand, speedup mechanims are often based

on conditional statements which induce thread divergence
within warps and then serialization. These observations lead
us to propose a new parallelization strategy based on the
synchronous evaluation of fixed size neighborhoods.

4.2 Best-improvement LS :ILS − RKBIblocks

In a basic best-improvement LS, the whole neighborhood
of a given solution is evaluated. In the case of the 3-opt move
for a n cities TSP, the number of combinations to delete
three edges of the tour is

(

n
3

)

. For each combination, there
are 7 ways to reconnect the subtours [22] which corresponds
to 7 neighbors. Research on TSP show that such a scheme
leads to prohibitive execution times and local optima that
are much further away from the ones obtained with first-
improvement schemes [6]. We then propose therandom-k-
best-improvementpivoting rule which offers a compromise
between first-improvement and best-improvement as well as
a computation model better suited to GPUs. At each step,
arcs to be deleted are randomly selected to generate a total
of k neighbors and the one which produces the greatest
improvement is kept. By assigning different values tok, one
may customize the search behavior and the amount of work
performed by the GPU. This leads to the proposition of a
third parallelization strategy calledILS−RKBIblocks and
illustrated in Figure 4(a).

This strategy splits computations of a single step into two
kernels. The first one, described in Figure 4(b), is dedicated
to neighborhood evaluation which is the most expensive part
of the step. Each solution is associated to several blocks
and its neighbors are splitted into groups to be assigned

Fig. 3: Parallelization models for first-improvement ILS : general (a),ILS − FIthread (b) andILS − FIblock (c).

Fig. 4: Parallelization model for random-k-best-improvement ILS (a), evaluation kernel (b) and replacement kernel (c).
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to each block. Each thread is then associated to several
neighbors. Using the NVIDIA CURAND library, a thread
randomly selects the three arcs to break, evaluates possible
reconnections and stores the best one in its own space in
shared memory. Once all the neighbors have been evaluated,
a reduction is performed in the shared memory to find the
best neighbor of the block which is stored in global memory.

In the second kernel, presented in Figure 4(c), each solu-
tion is associated to a single block which retrieves its best
neighbor among the ones produced by the first kernel and
replaces the current solution. The two kernels are launched
alternately until all solutions are local optima.

5. Experimental results
GPU strategies are experimented on TSP problems rang-

ing in size from 100 to 3038 cities. Speedups are computed
by dividing the sequential CPU time with the parallel time
obtained with the GPU acting as a co-processor. Experiments
were made on a NVIDIA Fermi C2050 GPU containing
14 SMs, 32 SPs per SM and 48 KB of shared memory
per SM. Code was written in the "C for CUDA V4.1"
[19] programming environment. As a premiminary step,
we validated our sequential ILS implementation with a
comparative study with Stützle and Hoos [10] and Lourenço
et al. [9] works.

The parallel ILS parameters are as follows. Initial solu-
tions are built with the nearest neighbor heuristic, improved
with 3-opt LS and perturbed with a double-bridge move. A
population ofnbsol solutions is used, a total number ofittotal
iterations is performed and the ILS procedure is limited to
itlim = ittotal

nbsol
iterations for each solution. All speedups are

computed fornbsol = 2x with x ∈ {0, 3, 6, 9, 11} from 20
trials for problems with less than 1000 cities and from 10
trials for larger instances.

5.1 ILS − FIthread and ILS − FIblock

First-improvement LS algorithms use adon’t look bits
procedure and a fixed-radius neighbor search restricted to
candidate lists of size 40.ittotal is set to 1048576 for
each problem to ensure that the same number of LSs
are performed for all numbers of blocks and threads. In
ILS−FIblock, the number of blocks is set tonbsol and the
number of threads per block is set to the size of candidate
lists. In ILS − FIthread, the number of blocks and threads
are configured to maximize the number of blocks without
exceeding the number of active blocks per SM.

Table 1 shows speedup forILS − FIthread, ILS −
FI

global
block and ILS − FIsharedblock . The reader may note that

increasingnbsol and so, the total number of threads, leads
to increasing speedups for all strategies. Overall, if the
number of threads used is too small, GPU resources are not
well exploited and memory latency is not efficiently hidden.
The reader may also notice that speedups obtained with
ILS−FIthread are always lower than withILS−FIblock.

As this strategy does not execute enough threads in parallel
to efficiently hide memory latency, we obtain a maximal
speedup of 2.02. In fact, speedups are achieved only with
2048 threads. Furthermore, code divergence induced by
computing the neighbors of many solutions/threads on the
same block in SIMD mode involves significant algorithm
serialization.

Table 1: Speedup forILS − FIthread (T), ILS − FI
global
block

(BG) and ILS − FIsharedblock (BS) strategies and solution
quality (frequency of finding the known optimumfreq and
average percentage deviation from the optimum∆avg) for
each problem.

Problem nbsol
Speedup Solution quality

(T) (BG) (BS) freq ∆avg

kroA100

1 0.01 0.08 0.08 1.00 0.000
8 0.06 0.45 0.50 1.00 0.000
64 0.34 2.83 3.13 1.00 0.000
512 0.93 6.40 7.01 1.00 0.000
2048 2.02 7.07 7.83 1.00 0.000

lin318

1 0.01 0.09 0.10 1.00 0.000
8 0.06 0.51 0.57 1.00 0.000
64 0.35 3.23 3.54 1.00 0.000
512 0.84 6.92 7.61 1.00 0.000
2048 1.72 7.77 8.51 1.00 0.000

rat783

1 0.01 0.07 0.08 1.00 0.000
8 0.06 0.43 0.49 1.00 0.000
64 0.34 2.69 2.18 1.00 0.000
512 0.80 5.77 3.13 0.23 0.020
2048 1.49 6.37 3.27 0.00 0.145

fl1577

1 0.01 0.07 0.08 0.33 0.182
8 0.05 0.33 0.40 0.39 0.010
64 0.23 1.73 0.97 0.67 0.003
512 0.54 4.59 1.14 0.10 0.015
2048 0.79 5.20 1.13 0.00 0.074

pcb3038

1 0.01 0.08 - 0.00 0.210
8 0.06 0.46 - 0.00 0.192
64 0.39 2.91 - 0.00 0.306
512 0.76 5.20 - 0.00 0.667
2048 1.27 5.60 - 0.00 1.104

The greater speedups and the maximal value of 7.77
obtained withILS − FI

global
block show that sharing the work

associated to each solution between several threads is more
efficient. For example, whennbsol is set to 2048,ILSthread

uses 2048 threads versus 81920 forILSblock. On the other
hand, speedups increase from 100 to 318 cities and then
slightly decrease. In that case, the larger data structures
and frequent memory accesses needed to solve the biggest
problems imply memory latencies that grow faster than
the benefits of parallelizing available computations. Further
improvements are brought by the use of shared memory,
introduced inILS − FIsharedblock , which provides maximal
speedup of 8.51. However, results for the three biggest
problems show that the limits of this kind of memory are
quicky reached. In fact, as it is limited in size, using too
much of it reduces the number of active blocks per SM.
Associated to the combined effect of the increasing number
of blocks required to perform computations, performance
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gains become less significative. For the 3038 cities problem,
the amount of required shared memory is so high that no
block can be active on any SM.

An analysis of the frequency of finding the known opti-
mum and the average percentage deviation from the opti-
mum is also provided in Table 1. It shows that the optimal
solution is always found by the parallel implementations for
small problems. For medium-sized problems, the morenbsol
increases, the less frequently is the optimal solution found.
As the number of iterations becomes too low to provide a
thorough search, the optimal solution is never found for the
bigger problem. This indicates that when choosing appro-
priate parameters for the parallel algorithms, a compromise
must be achieved between speedup and solution quality.

5.2 ILS −RKBIblocks strategy

An empirical study was performed to determine the pa-
rameters used for theILS−RKBIblocks strategy. The num-
ber of threads per block is set to 64 as it generally maximizes
the number of active blocks per SM. It is also a multiple
of 32 as advised in the CUDA specification [19]. Table 2
provides the chosen number of blocks for each solution to
evaluate its neighbors. The number of iterationsittotal and
the number of evaluated neighborsk are selected so the
sequential execution time is in the same order of magnitude
as the ones of the first-improvement strategies whennbsol
is set to 64. They are then set to1, 120, 000/5, 500 for
kroA100,1, 120, 000/11, 000 for lin318,560, 000/10, 000 for
rat783,2, 240, 000/1, 200 for fl1577 and2, 240, 000/1, 000
for pcb3038.

Table 2: Number of blocks per solution for each problem
andnbsol values.

1 8 64 512 2048
kroA100 120 70 30 5 2
lin318 110 60 30 5 2
rat783 80 100 60 10 5
fl1577 140 90 60 15 15

pcb3038 120 100 90 20 20

Table 3 presents speedup, frequency of finding the opti-
mum and average percentage deviation from the optimum
for the ILS −RKBIblocks strategy. The reader may notice
that significant speedups are obtained with all values of
nbsol and a maximal speedup 45.40 is achieved with 64
solutions on the 318 cities problem. Also, with the exception
of the two smallest problems withnbsol = 1 where the
amount of work is too small, speedups are in the same order
of magnitude with any value ofnbsol for any particular
problem. This shows the scalability of the neighborhood
distribution strategy to different population sizes. However,
the morenbsol increases, greater is the deterioration of
solution quality in most cases.

Table 3: Speedup and solution quality (frequency of finding
the known optimumfreq and average percentage deviation
from the optimum∆avg) for ILSrkbi.

Problem nbsol Speedup
Solution quality
freq ∆avg

kroA100

1 25.06 1.00 0.000
8 37.21 1.00 0.000
64 45.29 1.00 0.000
512 42.12 1.00 0.000
2048 42.32 1.00 0.000

lin318

1 27.55 0.00 0.482
8 38.35 0.00 0.483
64 45.40 0.00 0.633
512 43.21 0.00 0.875
2048 43.58 0.00 0.886

rat783

1 14.76 0.00 1.224
8 16.74 0.00 1.582
64 17.02 0.00 2.740
512 16.24 0.00 3.496
2048 16.74 0.00 3.518

fl1577

1 30.40 0.00 1.034
8 29.47 0.00 1.703
64 29.52 0.00 1.831
512 28.02 0.00 1.776
2048 28.85 0.00 1.741

pcb3038

1 31.23 0.00 4.636
8 31.20 0.00 4.940
64 31.70 0.00 5.162
512 30.31 0.00 5.104
2048 33.59 0.00 4.970

A comparison with Table 1 shows that when speedup is
considered,ILS−RKBIblocks clearly performs better than
ILS − FI in all cases. The increased neighborhood size,
better sharing of neighbors between blocks and reduction of
thread divergence allows the resulting algorithm to make a
better use of GPU ressources. Using fixed size data structures
to store the best neighbors also makes the use of shared
memory relevant even for bigger problems. However, the
gains in speedup also lead to the deterioration of solution
quality. The random choice of neighbors and inhability to use
speedup mechanisms of first-improvement strategies makes
it difficult for ILS − RKBIblocks to keep the same level
of optimization thanILS − FIthread and ILS − FIblock
in the same execution time. This may indicate either that a
compromise must be found between speedup and solution
quality when designing parallel ILS algorithms for GPUs or
that news ways must be thought to restore - if possible -
the delicate balance between all the algorithm components
in this context.

6. Conclusion
The aim of this paper was to design efficient paralleliza-

tion strategies for Iterated Local Search on Graphics Pro-
cessing Units to solve the Travelling Salesman Problem. The
ILS−FIthread andILS−FIblock strategies associated the
local search phase to the execution of streaming processors
and multiprocessors respectively. They provided maximal
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speedups of 2.02 and 8.51 with competitive solution qual-
ity as well as major shortcomings in their use of GPU
computational resources. In an attempt to overcome these
limitations, theILS − RKBIblocks strategy was proposed
to increase neighborhood size and associate multiple blocks
to the evaluation of each solution. Significant speedups
were then achieved, ranging as high as 45.40, at the cost
of a variable deterioration of solution quality. This leads
to the idea that solving the TSP and other combinatorial
optimization problems on GPU is currently a matter of
compromise between speedup and search efficiency.

In future works, we plan to deepen our understanding
of the links between neighborhood size, pivoting rules and
algorithm parameters in order to improve the search process
of our GPU ILS implementation. Also, as this work is part of
a greater project related to the parallelization of metaheuris-
tics on GPU, we seek to use the knowledge built in this
paper to propose a general framework that can be applied to
other metaheuristics. We also plan to propose algorithms to
automatically determine effective thread/block/GPU config-
urations for ILS and other metaheuristics. We believe that the
global acceptance of GPUs as components for optimization
systems requires algorithms and software that are not only
effective, but also usable by a wide range of academicians
and practitioners.
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Abstract - One of the most common models in parallel 

programming is Map reduce. In companies which use Map 

reduce framework, at each time a lot of computers are 

executing Map and Reduce functions. These functions are 

executing many times and we can estimate the effect of any 

small changes in response speed or consumed power in each 

execution of the Map reduce model to be very high. On the 

other hand, power and energy became an important 

challenge in computer systems with high performance, so 

that criteria such as consumed Power are as important as 

performance criteria. Nowadays, because of the generated 

heat and also because of decrease in energy sources, saving 

the consumed power is very important. So, finding the parts 

of the programs which needs more power is of prime 

Importance, because by finding these parts, we can find the 

ways to investigate and improves them in terms of power. In 

this paper, we investigate the available Map Reduce 

framework and programs in this regard from the point of 

consumed power, which are implemented in multi-core 

environment with common memory. 

Keywords: consumed power, map reduce, multicores, parallel 

programs, efficiency 

 

1 Introduction 

According to Moore law [5], numbers of transistors on a chip 

are doubled each two years. As the size of the transistors is 

reduced, more of them can be placed on the chips, so we can 

have more cores on a chip. But the problem which arises is 

the consumed power. One transistor has a low consumed 

power by itself, but here we have a big number of transistors 

which cause high amount of the heat. On the other hand, 

transistors cannot be turned off completely, this means even 

if they are completely turned off, they will have current 

leakage, and some currents will pass through them, even 

when they are turned off. And this will cause gradual loose 

of energy and the power of connection wires will be too 

high. Most power saving mechanisms like doing the task 

slowly, will affect the performance.  For two reasons, 

increasing the speed of the processors by increasing the 

frequency is not possible. These two challenges are memory 

wall and heat wall. Memory wall is related to difference in 

speed between memory and main processor and heat wall 

related to the fact that as the execution speed of the computer 

increases, consumed power which is proportional to cubic 

root of the frequency, also will increase and subsequently 

more heat will be generated [7]. To overcome these problems 

and to increase computation power of the system, parallel 

architecture was recommended among which multi-core 

architecture was designed as the practical way of overcoming 

problems. So, we have a number of cores on a processor and 

in order to be able to use the power of all cores, we should 

use multi-node programming. But the problem which arises 

is that common multi-node programming leaves the whole 

control to the user, and this is a disadvantage. 

By increasing the use of information technology and 

popularity of the issues such as automation and use of digital 

equipment in business  processes, in all cases we face data 

generation,  nowadays we come across with the problem 

named data volume explosion. For example EBay Company 

has announced that, it has more than 6.5 petabyte data. This 

figure is 10 petabyte for Yahoo. The need to analyze the raw 

data for different uses in increasing which in turn demand 

appropriate and effective solutions for data analysis. 

In 2004, Google introduced its programming model for use 

in environment with several processor units which is called 

Map reduce. This model which is inspired from functional 

programming model does all the operations related to 

passing, distributing and gathering data between computers 

and just demands the computing core of the program from 

user. In today world, in which we deal with a high amount of 

the data, this programming model is very useful. If we 

consider each computer in a distributed system as a core in 

multi-core processors, we come with the conclusion that 

models such as Map reduce is a good choice for use in this 

processing unit. 

This model is a simple programming model which is used for 

solving computation problems in big scales and in 

distributing form. Map reduce was developed by Google in 

2003 and is a software framework which provide a safe and 

scalable bed for development of distributing uses and is 

implemented in different languages. 

In fact, it contains a set of library functions which hide the 

details and sophistication from the user. These details 

include: automatic paralleling of the tasks, data load 

balancing, optimization of network and disk transferring, 

management of faults in machines. Moreover, each 

improvement in library will be applied to all the places 
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which this library has been used.In this method, two main 

steps exist: Map and Reduce. 

 

Map step: main node, take the input and divides it into 

smaller sub-problems and then distribute them between 

nodes which are responsible for doing the tasks.  It is 

possible that, this node repeats the task and if so, we would 

have a multi-surface architecture. Finally, these sub-

problems are processed and response is sent to the output. 

 

Reduce step: for generating an output, the responses and 

results which are received by main node, will be merged 

together. To do so, some operations like filtering and 

conversion may be applied on the data. 

These two main operations are done on a regular pair (key, 

value). Map function, take a regular pair of the data and 

convert it to a list of regular pairs. Then, Map reduce 

framework, gather all the pairs with the same keys from all 

lists and produce a group. For each generated key, one group 

is produced. And the reduce function act on all groups. Now, 

map reduce framework, convert one list of (key, value) to a 

list of values. 

As an example, a framework called Mars is designed for 

graphical processors for programs based on Map reduce. 

Also some programs which are designed and developed by 

Google based on the map reduce and focus on web based 

search programs for ordinary CPU are tested and 

implemented GPUs with high computation power and broad 

band widths. 

One of the common examples for solving problems by Map 

reduce, is finding the number of occurrence of a word in a 

document. Here document referee to web page. In this 

problem, input is a file which has a text in each row. Map 

function takes (key, value) pairs. In this case, key is the 

address of the web page, and value is web content .[8] 

Output of the map function will be a list of other regular 

pairs :( number of occurrence, word) same as figure below: 

 

 
Now map reduce framework gathers all the pairs with 

common keys. Then reduce function, merges the value of the 

pairs with common keys and assign a new value for that 

which in this case is sum of the values.  

 

 
And finally, output will be like this: 

 

 
 

Word count pseudo codes are shown in following: 

 

map(String key, String value): 

 // key: document name 

 // value: document contents 

 for each word w in value: 

  EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

 // key: a word 

 // values: a list of counts 

 int result = 0; 

 for each v in values: 

  result += ParseInt(v); 

 Emit(AsString(result)); 

 

Algorithm 1 .word count pseudo-code  

 

Studies show that direct monthly energy costs and expenses 

for data center is about 23% of the total monthly operational 

costs [9]. If we consider costs like power distribution and 

cooling structure which affect the monthly energy costs 

indirectly, it will be about 42% of monthly operational costs. 

Trends show that performance of the processors increase 

each 18 month in terms of number of cores, while 

performance is doubled in each wat in each two years. [10]. 

so, it would not be surprising if a previous study has 

estimated that servers in USA include 3% of the total 

consumed energy in 2011. One reason for the high cost of 

the energy of the servers is that nodes in clusters 

environment are used 20 to 30% and the performance of the 

energy in this range is below 50%. This reveals the fact that 

42% of monthly operational cost contribute to power, which 

decrease in it will increases the energy performance. [11] 

Since map reduce framework can be used in computers in a 

data center and its power can be determinable, investigation 

and analysis of power is necessary in these environments. 

[12, 13] 

 

2. Previous works 
In this part a brief description of the works which have been 

done before, is presented. In [12] Map reduce programming 

model for systems with common memory called Phoenix is 

implemented. Creation of the nodes, dividing the data, 

dynamic work timing and fault tolerance between nodes of 

the processors are done automatically by Phoenix. In this 

paper, codes written by low level APIs such as P-thread were 

compared with those written by Map Reduce. Conclusion 
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was that performance of the Map Reduce programming 

model on systems with common memory is as good as 

simpler parallel codes. Despite, run time overloads, Phoenix 

yield the same performance results for most of the applicable 

programs. Obviously, there still exist programs which give 

better results in P-thread than in Map Reduce model. 

In [8] a framework called Mars is designed for graphical 

processors for Map reduce based programs. Also some 

programs are designed and developed by Google based on 

the map reduce which focus on web based search programs 

for ordinary CPU. Are tested and implemented in this 

framework and for CPUs with higher computation power and 

higher band widths and then are compared with Phoenix 

which is a modern and updated Map Reduce framework on 

multi-core CPUs. Above mentioned framework hides the 

sophistications of GPU programming with map reduce 

interface. And finally, they came with 16 time faster 

execution of 6 common web programs compare to 

executions on a CPU with four cores. 

In [14] is focused on power and energy for clusters which 

use Map Reduce programming model and propose 

techniques to decrease the consumed energy. This technique 

is turning off the nodes and attention goes towards the 

number of nodes to be chosen to be off and have direct 

impact on the consumed energy. Majority of the works 

which have been done in this paper is systematic 

consideration of  different strategies for turning off the nodes 

in Map Reduce model and their impacts on total consumed 

energy and workloads response time. Two methods 

investigated are CS & AIS. In the first method some of the 

nodes with lower loads become off in low load period and 

the second method is turning off all the nodes in low use 

period which is proposed by the authors. These two methods 

are compared to each other and conclusion is that the second 

method which is proposed by them, give better results in 

both saving consumed energy and قresponse time which is 

shown by analytical models and laboratory results. 

It is worth noting that in all the papers mentioned above just 

the performance aspect is taken into account and consumed 

energy and power are not considered at all and in [14] just the 

consumed power of Map Reduce programs in distributed 

environment is investigated.  None of the papers dealt with 

consumed power of Map Reduce base programs in 

environments with common memory 

 

3. Laboratory results 
In this part first a brief explanation will be given about the 

framework in which the test is done and then the 

measurement results in multi-core environment with 

common memory related to Phoenix Map reduce will be 

presented. 

3.1 The Phoenix System 
Phoenix implements Map Reduce for shared-memory 

systems. Its goal is to support efficient execution on multiple 

cores without burdening the programmer with concurrency 

management. Phoenix consists of a simple API that is visible 

to application programmers and an efficient runtime that 

handles parallelization, resource management, and fault 

recovery. [12] 

The current Phoenix implementation provides an application-

programmer interface (API) for C and C++. The API 

includes two sets of functions. The first set is provided by 

Phoenix and is used by the programmer’s application code to 

initialize the system and emit output pairs. The second set 

includes the functions that the programmer defines .Apart 

from the Map and Reduce functions; the user provides 

functions that partition the data before each step and a 

function that implements key comparison. The API is quite 

small compared to other models. The API is type agnostic. 

The function arguments are declared as void pointers 

wherever possible to provide flexibility in their declaration 

and fast use without conversion overhead. 

The API guarantees that within a partition of the intermediate 

output, the pairs will be processed in key order. This makes it 

easier to produce a sorted final output which is often desired. 

There is no guarantee in the processing order of the original 

input during the Map stage.  

 

3.2 Basic Operation and Control Flow  
 

Figure 1 shows the basic data flow for the runtime system. 

The runtime is controlled by the scheduler, which is initiated 

by user code. The scheduler creates and manages the threads 

that run all Map and Reduce tasks. It also manages the 

buffers used for task communication. The programmer 

provides the scheduler with all the required data and function 

pointers through the scheduler args t structure. 

After initialization, the scheduler determines the number of 

cores to use for this computation. For each core, it spawns a 

worker thread that is dynamically assigned some number of 

Map and Reduce tasks. 

To start the Map stage, the scheduler uses the Splitter to 

divide input pairs into equally sized units to be processed by 

the Map tasks. The Splitter is called once per Map task and 

returns a pointer to the data the Map task will process. 

The Map tasks are allocated dynamically to workers and 

each one emits intermediate <key, value> pairs. The Partition 

function splits the intermediate pairs into units for the 

Reduce tasks. The function ensures all values of the same 

key go to the same unit. Within each buffer, values are 

ordered by key to assist with the final sorting. At this point, 

the Map stage is over. The scheduler must wait for all Map 

tasks to complete before initiating the Reduce stage. [12] 

Reduce tasks are also assigned to workers dynamically, 

similar to Map tasks. The one difference is that, while with 

Map tasks we have complete freedom in distributing pairs 

across tasks; with Reduce we must process all values for the 

same key in one task. Hence, the Reduce stage may exhibit 

higher imbalance across workers and dynamic scheduling is 

more important. The output of each Reduce task is already 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 959



sorted by key. As the last step, the final output from all tasks 

is merged into a single buffer, sorted by keys. The merging 

takes place in log2 (P/2) steps, where P is the number of 

workers used. While one can imagine cases where the output 

pairs do not have to be ordered, our current implementation 

always sorts the final output as it is also the case in Google’s 

implementation [8]. 

 
Fig. 1 the basic data flow for the phoenix runtime 

 

For power consumer measurement, we use a power 

measurement device, applications of study with a brief 

description of them include: 

 

Word Count: It counts the frequency of occurrence for each 

word in a set of files. The Map tasks process different 

sections of the input files and return intermediate data that 

consist of a word (key) and a value of 1 to indicate that the 

word was found. The Reduce tasks add up the values for 

each word (key). 

Reverse Index: It traverses a set of HTML files, extracts all 

links, and compiles an index from links to files. Each Map 

task parses a collection of HTML files. For each link it finds, 

it outputs an intermediate pair with the link as the key and 

the file info as the value. The Reduce task combines all files 

referencing the same link into a single linked-list. 

 

Matrix Multiply: Each Map task computes the results for a 

set of rows of the output matrix and returns the (x,y) location 

of each element as the key and the result of the computation 

as the value. The Reduce task is just the Identity function. 

 

String Match: It processes two files: the “encrypt” file 

contains a set of encrypted words and a “keys” file contains a 

list of non-encrypted words. The goal is to encrypt the words 

in the “keys” file to determine which words were originally 

encrypted to generate the “encrypt file”. Each Map task 

parses a portion of the “keys” file and returns a word in the 

“keys” file as the key and a flag to indicate whether it was a 

match as the value. The reduce task is just the identity 

function 

. 

KMeans: It implements the popular kmeans algorithm that 

groups a set of input data points into clusters. Since it is 

iterative, the Phoenix scheduler is called multiple times until 

it converges. In each iteration, the Map task takes in the 

existing mean vectors and a subset of the data points. It finds 

the distance between each point and each mean and assigns 

the point to the closest cluster. For each point, it emits the 

cluster id as the key and the data vector as the value. The 

Reduce task gathers all points with the same cluster-id, and 

finds their centroid (mean vector). It emits the cluster id as 

the key and the mean vector as the value. 

 

PCA: It performs a portion of the Principal Component 

Analysis algorithm in order to find the mean vector and the 

covariance matrix of a set of data points. The data is 

presented in a matrix as a collection of column vectors. The 

algorithm uses two Map Reduce iterations. To find the mean, 

each Map task in the first iteration computes the mean for a 

set of rows and emits the row numbers as the keys, and the 

means as the values. In the second iteration, the Map task is 

assigned to compute a few elements in the required 

covariance matrix, and is provided with the data required to 

calculate the value of those elements. It emits the element 

row and column numbers as the key, and the covariance as 

the value. The Reduce task is the identity in both iterations. 

 

Histogram: It analyzes a given bitmap image to compute the 

frequency of occurrence of a value in the 0-255 range for the 

RGB components of the pixels. The algorithm assigns 

different portions of the image to different Map tasks, which 

parse the image and insert the frequency of component 

occurrences into arrays. The reduce tasks sum up these 

numbers across all the portions. 

 

Linear Regression: It computes the line that best fits a given 

set of coordinates in an input file. The algorithm assigns 

different portions of the file to different map tasks, which 

compute certain summary statistics like the sum of squares. 

The reduce tasks compute these statistics across the entire 

data set in order to finally determine the best fit line.[12] 

 

3.3 Measurement of consumed power of the 

programs 
 

In this part each program with different set of the data (small, 

medium or large) have been executed and the consumed 

power of the different phases including splitters, map, 

reduce, partition, sort and hash is measured, if available, and 

the results are shown in the following graphs. 

 

 

960 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



 

Fig .2  power consumption in small data 

 

 

Fig .3   power consumption with medium data 

 

 
Fig .4    power consumption with large  data 
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Fig.5    power consumption in word count application 

 

 

 
 

Fig .6 power consumption in string  match application 

 

First, data is divided into 3 categories: small, medium and 

large. And consumed power of each category for all 

programs under study is measured and recorded. Tables 2 to 

4 show these measurements. To see the consumed power 

better, two more common and more important programs 

named “word count” and “string match” which cover all 

parts of the work are shown separately. 

It is obvious from the above graphs and tables that most of 

the activities occurred in the map part and consumed power 

in map part of different programs is far from other phases of 

each program. In “word count” program most of the 

consumed energy is allocated to map. In sort part by 

changing the size of the data, by doubling the data, 

consumed energy increases more than two times, 

unexpectedly. So, it is expected that by increasing size of 

input data, consumed energy will paramount.  In map part by 

doubling the size of the data, consumed energy also is 

doubled approximately.  

In all programs, by increase in size of the input data, 

consumed power will be much more evident. In matrix  

multiplication program, by increasing the size of the data, 

calculation increased and the consumed power is fixed and 

by doubling size of the input, consumed power increased by 

less than 2 times. 

In “string match” program, consumed of hash part is 

considerable and includes about ¼ of the total consumed 

energy. By increasing size of the input file, the consumed 

power increase non-linearly.  

In programs which contain sort and hash, the rule of 

consumed power is more evident and by increasing input 

data, input of these tasks becomes more complicated. 

consequently, sub-programs of these operations should be 
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improved and better algorithms should be used in these 

operations. 

In all programs consumed power of reduce part is not 

considerable. But it should be noted that most of the program 

either haven’t reduce part or a little work is done in this part. 

 

4. Conclusion 
Today, consumed energy plays an important role in the 

world we are living in and we look for the cases which 

consume less energy. This role is of the same importance in 

computers and its programs. Moreover, volume of the data 

which should be processed is increasing such that we face 

explosion of the data. 

Map reduce programming framework is used for processing 

these huge data. Different implementations of this 

framework in different environments are proposed. 

One of these implementations is in multi-core environments 

with common memory. Here, measurements are done in this 

environment. 

Based on the measurement following results obtained: 

Most of the activities occurred in Map part and consumed 

power in Map part of different programs is much more than 

that of other phases of each program. In programs which 

include sort and hash parts, role of consumed power is more 

evident and by increasing input data, these tasks become 

more complicated. So, sub-programs of these operations 

should be improved and better algorithms should be used for 

these operations. 

 

5. Future works 
 
Measurement in Mars framework and comparison with 

Phoenix will be done in the future. And we will try to look 

for algorithms which improve the sort and hash functions and 

results of implementation of these algorithms will be 

investigated. 
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Abstract - Encryption algorithms used in privacy preserving 
protocols can be affected on overall performance. In this 
paper we study several encryption algorithms with two 
methods of privacy preserving association rule mining on 
distributed horizontal database (PPARM4, and PPARM3). 
The first method PPARM4 computes association rules that 
hold globally while limiting the information shared about 
each site in order to increase the efficiency. The second 
method PPARM3 is a modification for PPARM4 based on a 
semi-honest model with negligible collision probability. 
Common encryption algorithms for the two methods of 
privacy preserving association rule mining on distributed 
horizontal database selected based on performance metric. So 
a performance comparison among five of the most common 
encryption algorithms: RSA, DES, 3DES, AES and Blowfish 
with the two privacy methods are presented. The comparison 
has been conducted by running several encryption settings 
with the two methods of privacy preserving association rule 
mining on distributed horizontal database. Simulation has 
been conducted using Java. Results show that, PPARM3 gives 
better performance with all encryption algorithms 
implemented. Also PPARM3 with encryption algorithm DES 
gives best result with different database sizes. Based on the 
results we can tune the suitable encryption algorithm from our 
implementations to the required overall performance. 

Keywords: Encryption, distributed data mining, Association 
rule mining, privacy, security. 
 

1 Introduction 
  Data Mining (DM) techniques have been widely used in 
many areas especially for strategic decision-making [1-8]. 
Apart from its usual benefits, it also has a few disadvantages 
associated with it. Experts say that data mining in the wrong 
hands will end up in destruction. The main threat of data 
mining is to privacy and security of data residing in large data 
stores [9-15]. Some of the information considered as private 
and secret can be brought out with advanced data mining 
tools. It is a real concern of people working in the field of 
database technology.  Different research efforts are under 
way to address this problem of preserving security and 

privacy. The privacy term is overloaded, and can, in general, 
assume a wide range of different meanings. For example, in 
the context of the Health Insurance Portability and 
Accountability Act (HIPAA) Privacy Rule, privacy means the 
individual’s ability to control who has the access to personal 
health care information. From the organizations point of 
view, privacy involves the definition of policies stating which 
information is collected, how it is used, and how customers 
are informed and involved in this process. We can 
considering privacy as “The right of an entity to be secure 
from unauthorized disclosure of sensible information that are 
contained in an electronic repository or that can be derived as 
aggregate and complex information from data stored in an 
electronic repository”. There are many methods for privacy 
preserving distributed association rule mining across private 
databases. So these methods try to compute the answer to the 
mining without revealing any additional information about 
user privacy. An application that needs privacy preserving 
distributed association rule mining across private databases, 
like medical research. Sensitive information contained in a 
database can be extracted with the help of non-sensitive 
information. This is called the inference problem. Different 
concepts have been proposed to handle the inference 
problem. The process of modifying the transactional database 
to hide some sensitive information is called sanitization. By 
sanitizing the original transactional database, the sensitive 
information can be hidden. In the sanitization process, 
selective transactions are retrieved and modified before 
handing over the database to a third party. Modification of 
transaction involves removing an item from a transaction or 
adding an element to the transaction. In some cases, 
transactions will be either added to or removed from the 
database as suggested in [16]. The modified database is called 
sanitized database or released database. The efficiency of a 
privacy-preserving algorithm is measured based on: (1) the 
time taken to hide the data, (2) the number of new rules 
introduced because of the hiding process, and (3) the number 
of legitimate rules lost or unable to be extracted from the 
released database. Encryption algorithm used in privacy 
preserving can be affected on overall performance, so in this 
paper we addresses the problem of evaluate several 
encryption algorithms with two protocols of privacy 
preserving association rule mining (PPARM4, and PPARM3) 
on distributed horizontal database. The numbers (4 and 3) in 
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abbreviations (PPARM4, and PPARM3) respectively means 
the number of computation steps to get the results of protocol. 
The first protocol (PPARM4) computes association rules that 
hold globally while limiting the information shared about 
each site in order to increase the efficiency [17]. The second 
protocol (PPARM3) is a modification for the first based on a 
semi-honest model with negligible collision probability [18]. 
Section 2 gives an overview about the problem and the 
related work in the area of privacy preserving association rule 
mining on distributed homogenous databases. In section 3 
some details of the two protocols of the algorithms of 
computing the distributed association rule mining (PPARM4, 
and PPARM3) to preserve the privacy of users. Sections 4 
and 5 describe implementation and results of several 
encryption algorithms with the two methods of privacy 
preserving association rule mining on distributed horizontal 
database.   Finally, some conclusions are put forward in 
Section 6. 

2 Association Rule Mining  
 Association rule mining finds interesting associations 
and/or correlation relationships among large sets of data 
items. Association rules show attributes value conditions that 
occur frequently together in a given dataset. In [19] the 
association rules mining problem can formally be defined as 
follows: Let I = {i1, i2, . . . , in} be a set of items. Let DB be 
a set of transactions, where each transaction T is an itemset 
such that  . Given an itemset  , a transaction T contains A if 
and only if  . An association rule is an implication of the 
form  where   and  . The rule has support S in the transaction 
database DB if S% of transactions in DB contains. The 
association rule holds in the transaction database DB with 
confidence C if C% of transactions in DB that contain A also 
contains B. An itemset X with k items is called a k-itemset. 

2.1 Distributed Association Rule Mining 
Problem 

 The problem of mining association rules is to find all 
rules whose support and confidence are higher than certain 
user specified minimum support and confidence. Clearly, 
computing association rules without disclosing individual 
transactions is straightforward. We can compute the global 
support and confidence of an association rule knowing only 
the local supports of AB and ABC, and the size of each 
database:  
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 Note that this requires no sharing of any individual 
transactions. And Protects individual data privacy, but it does 
require that each site disclose what rules it supports, and how 
much it supports each potential global rule. What if this 
information is sensitive? Clearly, such an approach will  be 
secure under secure muti-party computation (SMC) 
definitions by some modification, a way to convert the above 
simple distributed method to a secure method in SMC model 
is to use secure summation and comparison methods to check 
whether threshold are satisfied for every potential itemset [ 18 
]. For example, for every possible candidate 1-itemset, we can 
use the secure summation and comparison protocol to check 
whether the threshold is satisfied. Fig. (1)  gives an example 
of testing if itemset ABC is globally supported, it shows 
determining if itemset support exceeds 5 percent threshold. 
Each site first computes its local support for ABC, or 
specifically the number of itemsets by which its support 
exceeds the minimum support threshold (which may be 
negative).  

 

Fig. 1. Computing global support securely 

The parties then use the secure summation algorithm (the first 
site adds a random (R) to its local excess support, then passes 
it to the next site to add its excess support, etc. and finally 
when pass to first site subtract the generated random from the 
result). The only change is the final step, the last site 
performs a secure comparison with the first site to see if the 
sum ≥ R. In the example, R -10 is passed to the second site, 
which adds its excess support (5) and passes it to site 3. Site 3 
adds its excess support; the resulting value (22) is tested 
using secure comparison to see if it exceeds the Random 
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value (21). It is, so itemsets ABC is supported globally. Due 
to huge number of potential candidate itemsets, we need to 
have a more efficient method. This can be done by observing 
this lemma, (If a rule has support > k% globally, it must have 
support > k% on at least one of the individual sites). A 
distributed algorithm for this would work as follows, request 
that all rules are sent by each site with support at least k, for 
each rule returned, request that all sites send the count for 
their transactions that support the rule, and the total count of 
all transactions at the site. From this, we can compute the 
global support of each rule, and be certain that all rules with 
support at least k have been found. This has been shown to be 
an effective pruning technique. In order to use the above 
lemma, we need to compute the union of locally large sets. 
Then use the secure summation and comparison only on the 
candidate itemsets contained in the union. Revealing 
candidate itemsets means that the algorithm is no longer fully 
secure: itemsets that are large at one site, but not globally 
large, would not be disclosed by a fully secure algorithm. 
However, by computing the union securely, we prevent 
disclosure of which site, or even how many sites, support a 
particular itemset. This release of innocuous information 
(included in the final result) enables a completely secure 
algorithm that approaches the efficiency of insecure 
distributed association rule mining algorithms. The function 
now being computed reveals more information than the 
original association rule mining function. However, the key is 
that we have provable limits on what is disclosed. 

3. (PPARM4, and PPARM3) Protocols 
Details 
 In secure multi-party computation approaches, given 
two parties with inputs x and y respectively, the goal of 
secure multi-party computation is to compute a function f(x, 
y) such that the two parties learn only f(x, y), and nothing 
else. In [19] there are various approaches to this problem.  In 
[20] an efficient protocol for Yao’s millionaires’ problem 
showed that any multi-party computation can be solved by 
building a combinatorial circuit, and simulating that circuit. 
A variant of Yao’s protocol is presented in [21] where the 
oblivious transfers is used to make secure decision tree 
learning using ID3 with efficient cryptographic protocol and 
their also two solution of our problem under the secure multi 
party computation for association rule mining [22], [23]. In 
[23] an explanation of a much more efficient method for this 
problem is described. To obtain an efficient solution without 
revealing what each site supports, they instead exchange 
locally large itemsets in a way that obscures the source of 
each itemset. They assume a secure commutative encryption 
algorithm with negligible collision probability. Intuitively, 
under commutative encryption, the order of encryption does 
not matter. If a plaintext message is encrypted by two 
different keys in a different order, it will be mapped to the 
same cipher text. Formally, commutatively ensures that 
Ek1(Ek2(x)) = Ek2(Ek1(x)). The main idea is that each site 

encrypts the locally supported itemsets, along with enough 
“fake” itemsets to hide the actual number supported. Each 
site then encrypts the itemsets from other sites. An example 
illustrate the protocol in [19] is given in fig. (2). Using 
commutative encryption, each party encrypts its own 
frequent itemsets (e.g., Site 1 encrypts itemset ABC). The 
encrypted itemsets are then passed to other parties, until all 
parties have encrypted all itemsets. These are passed to a 
common party to eliminate duplicates, and to begin 
decryption. (In fig. (2), the full set of itemsets is shown to the 
left of Site 1, after Site 1 decrypts). Then this set is passed to 
each party, and each party decrypts each itemset. The final 
result is the common itemsets (ABC and ABD in fig. (2)), an 
approach to proof that protocol preserves privacy can be 
found in [20]. This approach to prove that algorithm reveals 
only the union of locally large itemsets and a clearly bounded 
set of innocuous information. 

 

Fig. 2. Steps needed for computing the algorithm in [25] 
 

3.1 PPARM4 protocol  
 Other method for privacy preserving association rule 
mining on distributed homogenous databases (PPARM4) in 
[17], showed that the protocol in [23] employs commutative 
encryption algorithm so it adds large overhead to the mining 
process then another protocol improves this by applying  a 
public-key cryptosystem algorithm on horizontally 
partitioned data among three or more parties. In this protocol, 
the parties can share the union of their data without the need 
for an outside trusted party. Each party works locally finding 
all local frequent itemsets of all sizes. Then use public key 
cryptography to find the union of a frequent local itemset. We 
find that this method reduce the number of steps from 6 to 4 
to calculate the global candidate item sets as shown in fig. (3)  
where K1 is private key and k2 public key . In [17] the results 
showed that this improvement reduces the time of mining 
process compared to method in [23]. For description this 
protocol, let P = {P0, . . . , Pn} be a set of N parties where |N| 
≥ 3. Each party Pi has a database DBi. With assuming that 
parties running the protocol are semi-honest. The goal is to 
share the union of DBi as one shuffled database and hide the 
link between records in DBComp and their owners. This 
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employs a public-key cryptosystem algorithm on horizontally 
partitioned data among three or more parties. In this protocol, 
the parties can share the union of their data without the need 
for an outside trusted party. The information that is hidden is 
what data records where in the possession of which party. 
Protocol is described for one party as the protocol driver as 
shown in table [1]. The first party called Alice. 

 

 

Fig. 3. Steps needed for computing PPARM4 algorithm 

 

Table [1] Description of PPARM4 protocol 

1. Alice generates a public encryption key kPA.  
Alice makes kPA known to all parties (for illustration 
another two parties called Bob and Carol can be used). 
2. Each party (including Alice) encrypts its database DBi 
with Alice’s public key.  
This means the encryption is applied to each row (record or 
transaction) of the database. Parties will need to know the 
common length of rows in the database. We denote the 
result of this encryption as kPA(DBi). Note that, by the 
properties of public cryptosystems, only Alice can decrypt 
these databases. 
3. Alice passes her encrypted transactions kPA(DB1) to 
Bob. Bob cannot learn Alice’s transactions since he does 
not know the decryption  key. 
4. Bob mixes his transactions with Alice’s transactions.  
That is, he produces a random shuffle of kPA(DB1) and 
kPA(DB2) before passing all these shuffled transactions to 
Carol. 
5. Carol adds and shuffles her transactions kPA(DB3) to 
the transactions received from Bob. 
6. The protocol continues in this way, each subsequent 
party receiving a database with the encrypted and shuffled 
transaction of all previous parties in the enumeration of the 
parties. The i-th party mixes randomly his encrypted 
transactions kPA(DBi) with the rest and passes the entries 
shuffled transaction to the (i + 1)-th party. 
7. The last party passes the transactions back to Alice. 
8. Alice decrypts the complete set of transaction with her 
secret decrypt key. 
She can identify her own transactions. However, Alice is 

unable to link      transactions with their owners because 
transactions are shuffled. 
9. Alice publishes the transactions to all parties. 
If the number of parties is N, then N − 1 of the parties need 
to collude to     associate data to their original owners (data 
suppliers). 

 

3.2 PPARM3 protocol 
In [18] fast privacy preserving association rule mining on 
distributed homogenous databases (PPARM3), reduces the 
number of steps from four steps to only three steps for any 
numbers of clients to calculate the global candidate itemsets. 
The details of PPARM3 protocol as in fig. (4) and table 
[2].Table [3] shows a comparison of the three algorithms in 
[17, 18, and 23].  
 

 
Fig. 4. General structure of PPARM3 algorithm 

Table [2] Description of PPARM3 protocol 
Protocol: Finding large itemsets of size k and global 
association rules. 
Require: N >3 sites one site is algorithm initiator and another 
is data mining combiner and other called clients (local data 
mining) sites numbered (1..N − 2) and we assume negligible 
collision probability. 
Step 1: All local data mining (LDM) compute the mining 
results using fast distributed mining of association rules (FDM)
[23] as locally large k-item sets (LLi(k))  and local support for 
each item set in LLi(k) then Encrypt frequent item sets and 
support (LLei(k)) then send it to the data mining combiner. 

Step 2: The combiner merge all received frequent items and 
supports with the data mining combiner frequent items and 
support in encrypted form then send LLe(k) to algorithm 
initiator to compute the global association rules . 
Step3: The algorithm initiator receives the frequent items with 
support encrypted. The initiator  first decrypt it, then merges it 
with his local data mining result to obtain global mining results
L(k), then compute global association rules and distribute it to 
all protocol parties. 
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Table 3. Comparison between algorithms in [17, 18, and 23]. 

Comparison 
factors 

Algorithm  
[23] 

Algorithm  
[17] 

Algorithm  
[18] 

Steps for 
computation 6 steps 4 steps 3 steps 

Rounds to 
compute results 2 rounds 2 rounds 1 round 

Cryptography 
used 

Communica
tive 

Public 
key 

Public 
key 

Mining algorithm Apriori Apriori Apriori-
Tid 

 
 
 
3.3 Encryption Algorithms 
Many encryption algorithms are widely available and used in 
information security. They can be categorized into Symmetric 
(private) and Asymmetric (public) keys encryption. In 
Symmetric keys encryption or secret key encryption, only one 
key is used to encrypt and decrypt data. The key should be 
distributed before transmission between entities. Keys play an 
important role. If weak key is used in algorithm then every 
one may decrypt the data. Strength of Symmetric key 
encryption depends on the size of key used. For the same 
algorithm, encryption using longer key is harder to break than 
the one done using smaller key [24]. There are many 
examples of strong and weak keys of cryptography 
algorithms like RC2, DES, 3DES, RC6, Blowfish, and AES. 
RC2 uses one 64-bit key. DES uses one 64-bits key. Triple 
DES (3DES) uses three 64- bits keys while AES uses various 
(128,192,256) bits keys. Blowfish uses various (32-448); 
default 128bits while RC6 is used various (128,192,256) bits 
keys [25-28]. Asymmetric key encryption or public key 
encryption is used to solve the problem of key distribution. In 
Asymmetric keys, two keys are used; private and public keys. 
Public key is used for encryption and private key is used for 
decryption (E.g. RSA and Digital Signatures). Because users 
tend to use two keys: public key, which is known to the 
public and private key which is known only to the user. There 
is no need for distributing them prior to transmission. 
Asymmetric encryption techniques are slower than 
Symmetric techniques, because they require more 
computational processing power.  

4. Implementation of (PPARM4 and 
PPARM3) Methods 
        We implement PPARM4 and PPARM3 algorithms using 
java. Because the distributed association rules mining need 
the mining run in more than one site, we can use the RMI 
(remote method invocation) to connect the sites with each 

other. Our application is two parts one name server and other 
is client so we have two site works as server. First is the 
protocol initiator and second is the data mining combiner and 
we need client for every participant in the protocol. The 
initiator is responsible of the threshold of the mining 
algorithm so it need to define the support and confidence and 
also generate the public key (k2)and private key (k1) used in 
encryption and decryption in protocol and finally compute the 
final results. The data mining combiner responsible of 
combining the results of clients sites and mix the results to 
make better privacy of user data and every client is 
responsible of making the local data mining and encrypt the 
results of mining and send to data mining combiner. In our 
implementation our test in data that represent based on 0/1 
matrix. And using Public-Key Cryptography, where each user 
places in a public file an encryption procedure. That is, the 
public file is a directory giving the encryption procedure of 
each user. The user keeps secret the details of his 
corresponding decryption procedure. There are several 
examples of commutative encryption; perhaps the most 
famous being RSA (if keys are not shared) and Pohlig-
Hellman encryption. Firstly we use RSA that is useful to 
fulfill our requirements. After that we repeat the same work 
with different encryption algorithms (DES, 3DES, AES and 
Blowfish] to evaluate the best encryption algorithm improving 
the overall performance privacy preserving protocol. 

 

5. Results of implementations and 
discussion  
By running PPARM4 and PPARM3 algorithms 75 times. 
Running testing based on 5 homogenous data bases with 
different size from 2500 bytes to 2500000 bytes by 15 time 
for every data base. The 15 values are much closed to each 
other. The values listed in table [4] and tables [5] are the 
average values of time for PPARM4 and PPARM3 
respectively in case RSA, DES, 3DES, AES and Blowfish 
encryption algorithms. Testing is performed using P4 (2.8 
GHZ) with Java (SDK 1.6). Fig. (5) and fig. (6) shown the 
relation between different database sizes and time consuming 
of protocols (PPARM4 and PPARM3) for each encryption 
algorithm (RSA, DES, 3DES, ASE, and Blowfish) 
respectively. The results show PPARM3 is faster than 
PPARM4 in case all encryption algorithms implemented by 
the same ratio. Fig. (7) and fig. (8) show a comparison 
between time of protocol (PPARM4 and PPARM3) 
respectively and different encryption algorithms (RSA, DES, 
3DES, AES and Blowfish) with variable database size. From 
these results we can say that the best performance of time for 
privacy protocols PPARM4 and PPARM3 is in case using 
encryption algorithm DES. So we can tune the required 
performance of privacy protocol by control in changing the 
encryption algorithm. 
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Table [4] Computation time in ms for PPARM4 with 

different encryption algorithms 
 

Database 
size (B) RSA DES 3DES AES 

Blowfis
h 

2500 0.11058  0.00055  0.00166  0.00083  0.00070  
25000 1.21152 0.00606 0.01817 0.00909 0.00771 
50000 2.35848 0.01179 0.03538 0.01769 0.01501 

250000 11.6384  0.05819  0.17458 0.08729 0.07406  
2500000 109.453  0.54727 1.64180  0.8209 0.69652  
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Fig. 5. Computation time in ms for PPARM4 with 

different encryption algorithms 
 

 
Table [5] Computation time in ms for PPARM3 with 

different encryption algorithms 
Database 
size (B) RSA DES 3DES AES Blowfish 

2500 0.081684 0.00041 0.00123 0.00061 0.00052 
25000 0.404043 0.00202 0.00606  0.00303 0.00257  
50000 0.722407 0.00361  0.01085 0.00542 0.00460 

250000 3.181355 0.01591 0.04772 0.02386 0.02025 

2500000 53.23277 0.26616  0.79849  0.39925 0.33875  
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Fig. 6. Computation time in ms for PPARM3 with 

different encryption algorithms 

RSA, DSE, 3DSE, ASE, and BF with different DBs
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Fig. 7. Computation time in ms for PPARM4 with 

different database sizes 
 

RSA, DSE, 3DSE, ASE, and BF with different DBs
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Fig. 8. Computation time in ms for PPARM3 with 

different database sizes 
 

6. Conclusions 
 In this paper we presented study several encryption 
algorithms (RSA, DES, 3DES, AES and Blowfish) with 
different protocols of privacy preserving association rule 
mining on distributed horizontal database (PPARM4, and 
PPARM3). Testing is performed using P4 (2.8 GHZ) with 
Java (SDK 1.6). The results show PPARM3 is faster than 
PPARM4 in case all encryption algorithms implemented by 
the same ratio. The results prove that, the best performance of 
time for privacy protocols PPARM4 and PPARM3 is in case 
using encryption algorithm DES. So we can tune the required 
performance of privacy protocol by control in changing the 
encryption algorithm.  In future work we can consider finer 
tuning by implement many different setting for encryption 
algorithm using with privacy protocol. For example longer 
key is harder to break than the one done using smaller 
key.3DES uses three 64-bits keys while AES uses various 
(128,192,256) bits keys. Blowfish uses various (32-448); 
default 128bits. 
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Abstract - Dependence on computer networks is now a reality. 

The networks are continuously becoming larger, 

heterogeneous and more complex in size and functionality. 

Any computer network service relies on several component 

interactions. This might involve mutually communicating 

hardware and software. The main task is to guarantee 

network service in the presence of network faults. In this work 

we present a design of a model to identify, predict, evaluate 

and neutralize faults on a computer network. The approach 

incorporates the capability of Dynamic Bayesian Networks to 

diagnose, predict and forecast faults and evaluate the 

magnitude of the network service degradation. The model is 

complex enough to diagnose and yet simple enough to avoid 

time and space complexity on the network. Fault thresholds to 

satisfy probability of error occurrence are established. We 

present model simulated results to demonstrate the 

applicability of proposed model. 

 

Keywords: Network reliability, fault, Dynamic Bayesian 

Network  

 

1 Introduction 

Dependence on computer networks has become a 

necessity to many organizations both profit making and 

nonprofit making including individuals. There is a whole 

explosion of services based on the network platform. The 

computer networks are themselves becoming larger, complex, 

ubiquitous, flexible and dynamic.  Devices may be added,   

undergo repairs, be upgraded, and be removed from the 

network at any given time.  

In order to access the correct service, a user needs 

several components to interact at least according to their 

requirement specification to perform one or more specified 

operational function. This might involve mutually 

communicating applications software, system software, 

protocols and communicating hardware and transmission 

media. The final output from the network is the sum total of 

the interaction of all the necessary components and 

subcomponents and protocols. Each component, each 

interface, each protocol plays an important role in the overall 

outcome. How can we guarantee high degree of network 

service survivability in the presence of network faults, 

malfunctions, malware attacks and software design flaws? 

The user is not interested in whether there has been a removal 

or repair of a device or debugging or upgrade of a protocol but 

is concerned with the availability of a an expected service at a 

given point in time as dictated by requirements and needs. 

Therefore organizations need some solid form of trust from 

the network. The confidence is brought by the application of 

sound reliability models.  

In this work we present a design of a model to identify, 

predict, evaluate and neutralize faults on a computer network. 

In section 2 we present a brief overview of computer network 

faults classes. The Dynamic Bayesian Network approach to 

diagnose, predict and forecast faults and evaluate the 

magnitude of the network service degradation is also 

presented in section 2.  We present model simulation results in 

section 3 and draw our conclusions in the subsequent section 

which is section 4. 

  

2 Methodology 

The body of work includes in depth analysis of the 

literature and work that has been done in the field of fault 

management. The relevant literature review guides the 

designing of computer network hybrid reliability model. Both 

secondary and primary sources of information are used to 

enhance the researchers’ knowledge in the field of study and 

enable them to design a model based on the effort done by 

other researchers to the same end. Probabilistic techniques, 

Dynamic Bayesian Networks, and simulation methods are 

used as the foundation and the building blocks of this work. 

Network faults are identified using the Network Management 

error codes, and the Simple Network Management Protocol 

trap messages. 

The simulation is designed and implemented using 

C++. The data used is collected from management agents via 

Simple Management Protocol messages (SNMP traps) and 

network system log-files. For simulation purposes the random 

occurrence of faults, the minimal standard random number 

generator as recommended in [1] is used. The probability 

outcomes are then compared with the statistics from the 

collected data as experimental control. 
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2.1 Overview of computer network faults 

 A network fault is defined as an abnormal condition or 

defect at the network component, equipment, or sub-system 

level which may lead to an error which may in turn lead to a 

failure [2]. Network faults constitute a class of network events 

that can cause other events but are not themselves caused by 

other events as explained in [2].  

Therefore a network failure is a result of a network 

system state error and the generator of an error is a fault. An 

error can propagate through a network and cause hardware 

and software failure to otherwise faultless hardware and 

software subsystems. A failure is the manifestation of the 

error that is observable by the client. The client might be a 

human being or another network component or system [2]. 

Systems have faults but as long as that fault is not 

activated and it has not triggered an error, we cannot talk of a 

failure. Failure of a computer network is with respect to the 

abnormality in service provision visible to a client.  

Computer network faults can be classified as permanent, 

transient and intermittent [2]. This is the taxonomy of faults 

based on their temporary effects. Taking an assumption that 

the active period of a fault is the interval during which the 

fault has a negative influence on the network, and benign 

period is the interval where the fault is not influential. 

Therefore a formalized classification definition is as follows: 

The permanent fault has an infinite active period. It reflects 

irreversible physical changes to a system or subsystem. 

Transient faults have a finite active time interval followed by 

an infinite benign period. These are generated by temporary 

network conditions like loss of signal in wireless network or 

an active attack by a hacker. Intermittent faults have finite 

active period and finite benign period, in other words these are 

recurring. Intermittent faults are internal in nature like 

network congestion.  

 Classification of faults based on the behavior are 

presented in [3], these can be summarized as crash faults 

(component either completely stops operating or never returns 

to a valid state); omission faults (component completely fails 

to perform its service); timing faults (component does not 

complete its service on time or suffers from synchronization) 

and Byzantine faults (faults of an arbitrary nature).   

Although errors induced by transient and intermittent 

faults manifest very similarly, two main criteria as observed in 

[4] may be used to determine the type of the fault that 

generated the error. Firstly, failures generated by errors 

induced by intermittent faults tend to occur as a cluster at the 

same location, when the fault is activated. Secondly, 

replacement of the culprit component or subsystem removes 

the intermittent fault; by contrast failures generated by errors 

induced by transient faults cannot be eliminated by repair. The 

cause of a transient fault cannot be traced to a defect in a well 

identifiable part of the network. For simulation purposes we 

use some Simple Network Management Protocol 

Management Information Base (NMP MIB) data and network 

system logs to establish an estimate of transient fault rate and 

intermittent fault occurrence patterns. However this is highly 

contextual as each situation is dependent on a myriad of 

network characteristics from hardware brands and type to 

software and parameter configuration.   A permanent fault 

induces a permanent error which in turn induces a permanent 

failure irrespective of the context. On the other hand a 

transient fault induces a transient error which subsequently 

induces a transient failure. Lastly an intermittent fault likewise 

induces an intermittent error which also triggers an 

intermittent failure. 

According to Mouhammd [5], faults can be split into two 

categories, soft and hard faults. Wear or damage constitutes 

hard faults. These may be either hardware or software. The 

soft fault stem from poor engineering principles such as 

incomplete design. We focus on the soft faults in this study 

though there is overlapping. 

Table 1: Fault classes 

 

Faults Classes 

Permanent        Transient     Intermittent  

Hardware clash 

Power outages 

Software clash 

Malware  

Software bugs                                                       

Hackers        

Buffer overflows 

Packet loss 

Congestion 

End-to-end 

delay 

 

The objective of understanding computer network faults 

is to be able to identify them according to their classes and as 

such it facilitates the modeling process.  

Network reliability is the probability that a network will 

perform satisfactorily for at least a given period of time when 

used under stated conditions. It is an important attribute of a 

computer network as a system. Network reliability mostly 

deals with long term, or average behavior of the network. It is 

a property of the network and evaluates characteristics such as 

failure rate and failure density, architectural properties. The 

identification of faults is an important step towards reliability 

modeling of a system. In figure 1 below we show the 

relationship between failures, errors, and faults. A fault may 

develop into an error which may develop into a failure. 

However not all errors can develop into a failure. Some errors 

may only develop into failures only under certain conditions. 

The Millennium Bug, in Year 2000 is an example of a failure 

that was triggered by time.  

 

Figure 1: Fault, error failure relationship 

 

A computer network is a repairable system. This means 

that if a component fails we can either replace the 

subcomponents that failed; this is referred to as repair 

maintenance, or replace the whole component by a new one 
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and this is referred to as preventive maintenance. All this is 

done to recover from a failure that would have been caused by 

a fault. In order to design a reliable system we need to specify 

the faults that the system may be subjected to. Therefore fault 

assumption is important in the whole system reliability 

modeling process. We have identified and classified the faults. 

Now we present methods for dealing with them. 

 

2.2 Bayesian belief network 

 Bayesian networks provide a complete description of a 

given problem domain based on causal relationships. The 

cause-effect relationships enable both forward and backward 

reasoning. Every entry in the full joint probability distribution 

can be calculated from the information in the network. 

Bayesian networks represent full probability models in a 

compact and intuitive way. These networks can address 

problems in diagnosis, prediction, forecasting, information 

retrieval, knowledge representation and many other domains 

[6]. 

As well as being a complete and nonredundant 

representation of the domain, Bayesian networks are more 

compact than the full joint distribution and their time and 

space complexity is lower than that of other models like the 

Markov Chain Models. This property is what makes it feasible 

to handle domains with many variables. Bayesian networks 

are sparse systems [6]. This means that it satisfies the property 

of being locally structured. The premise for locally structured 

systems is that, each subcomponent interacts directly with 

only a bounded number of other components; regardless of the 

total number of components this will imply less complexity 

exponential explosion. 

In the Bayesian Network  framework the independence 

structure in a joint distribution  characterized by a directed 

acyclic graph, with nodes representing random variables 

(which can be discrete or continuous, and may or may not be 

observable), and directed arcs representing causal or 

influential relationship between variables. The conditional 

independence assertions about the variables, represented by 

the lack of arcs, reduce significantly the complexity of 

inference and allow the underlying joint probability 

distribution to be decomposed as a product of local 

conditional probability distributions (CPD) associated with 

each node and its respective parents.  The semantics of 

Bayesian networks can be viewed in two ways that is as 

networks that represent joint probability distribution or as an 

encoding of a collection of conditional independence 

statements. The two views serve to guide the construction of 

the network and the designing of inference procedures. [6].  

 

2.2.1 The rationale behind employing Bayesian 

network for this study 

 

 As aforesaid Bayesian Networks, are space efficient 

data structures for encoding all of the information in the full 

joint probability distribution for the set of random variables 

that characterize a problem space. It uses the fact that in real-

world problem domains, the dependencies between the 

variables are generally local. The Bayesian network allows 

one to compute any value in the full joint probability 

distribution of the set of random variables. It represents all of 

the direct causal relationships between variables which are an 

advantage in the determination of failure causes. It can be 

used to reason forward (top-down) from causes to effects 

(predictive reasoning) or backward bottom-up) from effects to 

causes (diagnostic reasoning). In other words we can infer 

faults sources from errors and vice versa. 

 

2.2.2 Constructing Bayesian network for a network fault 

 Let X represents faults of arbitrary nature. Let the 

Bayesian Network for the set of fault variables 

 X={x1, x2, …xn} represent a joint probability distribution: 

P(x1, x2, …xn). Then we writing the joint probability as a 

conditional probability using the chain rule we have: 

 

     P(x1, x2, …xn) =P(xn|xn-1…x1)P(xn-1…x1)          (1) 

 

Then reducing equation 1 to each conjunctive probability to a 

conditional probability we have: 

 

P(x1, x2, …xn) )          (2) 

The expression is referred to as the chain rule. Therefore 

for every fault variable Xi in the network provided that Fault-

Evidence (Xi)  {Xi-1…X1}, we can express its probability as: 

 

P(Xi|Xi-1…X1)=P(Xi|Fault-Evidence(Xi))            (3) 

 

 

Let Xt, denotes a set of unobserved fault state in time t, 

and et denotes the observed error. The observed error implies 

fault evidence. Therefore to predict the future fault state of X 

we have to extend equation 3 to obtain the following 

expression: 

 

P(Xt+k|e1:t) for some k > 0.              (4) 

 

For example, the expression might mean computing the 

probability of network buffer overflow fault five time units 

from now given all the observations of network buffer 

overflow errors or failures up to now. 

It is not only forward reasoning that is of interest but 

also retrospective reasoning. The diagnostic reasoning in 

helps establish fault sources. This fault hindsight entails 

computing the posterior distribution over a past fault state, 

given all errors or failures to the present point in time. That is, 

from equation 4, we wish to compute P(Xk|e1:t) for some k 

time units such that 0 ≤ k < t. For instance if we want to 

compute the probability that there was network congestion 

five units of time ago given the network congestion based 

errors or failures up to now. In this case k=5 units of time. 
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Figure 2: Proposed Reliability architecture 

 

3 Results and discussion 

 Using the information obtained from a single 

organizations’ network over a period of six months from 

SNMP, and network log files we obtained the fault rates 

shown in table 2. If there is a fault the probability that it might 

be associated with a protocol either poorly configured or 

corrupted is 0.48. 

 

Table 2: Basic component fault rates from data collected 

 

Basic network component Fault rate 

Switch 0.100 

Bridge 0.130 

Server   0.260 

Network adapter 0.004 

Router   0.210 

Protocol  0.480 

Transmission media   0.340 

 

Let IFt-1 represent intermittent fault probability state 

variable in time t-1, and we also assume that: 

P(IFt|IFt-1=true)=0.013,  P(IFt|IFt-1=false)= 0.987 and 

P(IEt|TFt=true)=0.46,  P(IEt|IFt=false)= 0.29. IEt represents the 

intermittent error in the network. We predict for the next nine 

time units (correct to 9 decimal places) and the results are 

shown in table 3 and figure 3. The results demonstrate the 

temporary nature of this type of fault. In some cases only a 

single run will result in the belief that a fault does not exist as 

proved by our simulation model. However due to its 

recurrence nature also we found that it can approach absolute 

values in some probabilistic instances. 

Table 3: Intermittent fault probability over time 

 

Time units 

into the future 

Intermittent fault probability 

changes with time 

1 0.110400000 

2 0.006791759 

3 0.001101247 

4 0.000785880 

5 0.000768500 

6 0.000767543 

7 0.000767490 

8 0.000767487 

9 0.000767487 
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Figure 3: Intermittent fault probability trajectory over time  

Given the initial belief that the probability of a transient 

fault is 0.5, TFt-1 represent transient fault probability state 

variable in a time t-1, and we also assume that  

P(TFt|TFt-1 = true) = 0.85,  P(TFt|TFt-1 = false) = 0.15 and 

P(TEt|TFt = true) = 0.49,  P(TEt|TFt = false) = 0.027. TEt 

represents the transient error in the network. We predict for 

the next ten time units and the results are shown in figure 4. 

These results demonstrate the persistence of this type of fault 

and indicate a probability increase on the significant 

disruption of a particular network service. Figure 4 below 

shows the graphical representation of the results, this type of 

fault needs to be eliminated to restore normal service. 

 

 
Figure 4: Transient fault probability progression over time 

 

 

Table 4 was generated by our model simulation. 

However there is varying degrees of uncertainty when it 

comes to calculating the probability of a fault and classifying 

it as a condition necessary and sufficient for a failure 

occurrence. 

 

Table 4: Forward inference on fault classification 

 

 
 

 

4 Conclusions 

 In this paper we have considered the applicability of 

Bayesian networks for reliability modeling. Faults, errors and 

failures are probabilistic in nature therefore Bayesian 

Networks constitute a sound probabilistic rigorous 

mathematical modeling framework to tackle this domain. 

Network reliability is a research domain that will continue 

attracting research efforts as networks continue to grow in size 

functionality and complexity. Each component of a system 

can be engineered taking care of reliability; however when the 

systems are put together as subsystems to interoperate, 

challenges may immerge. Network configurations and 

reconfigurations, attacks, upgrades all introduce some level of 

network service uncertainty which is worthy researching. We 

have surveyed fault taxonomy in order to understand the 

characteristics and the dynamics of faults. The understanding 

will help architects to design networks that a more resilient to 

faults thereby guaranteeing service. The approach taken is 

based on the assumption that faults exists in any network what 

is important is how to handle them. We define network faults 

as a class of network events that can cause other events but 

are themselves not caused by other events.  

The proposed model is designed to identify, localize, 

categorize the faults and select as well as initiate a recovery 

process. Prediction is achieved in order to preplan for the 

future abnormal behavior of the network. A level of 

redundancy by replicating some critical devices and network 

links to facilitate network restoration after localization and 

isolation of a component affected by a permanent fault is 

proposed.  

In furthering this work it is recommended to research on 

fault parameter estimation and failure distributions and 

localization without depending on alarms from network 

management systems.  
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Abstract - A parallel formulation for the simulation of a 
branch prediction algorithm is presented. This parallel 
formulation identifies independent tasks in the algorithm 
which can be executed concurrently. The parallel 
implementation is based on the multithreading model and 
two parallel programming platforms: POSIX threads and 
Cilk++. Improvement in execution performance by up to 7 
times is observed for a generic 2-bit predictor in a 12-core 
multiprocessor system. 

Keywords: branch predictor simulator, parallel 
formulation, multi-threading, Cilk++. 

 

1 Introduction 
 A branch predictor is an algorithm implemented in 
hardware which is intended to improve the performance of 
instruction execution in the pipeline of modern 
microprocessors. This algorithm predicts whether a branch 
instruction should be taken (T) or not-taken (NT) by the 
microprocessor, based on stored history of execution of 
previous branches [1]. Prediction accuracy is inherent to 
the prediction algorithm and is frequently evaluated and 
quantified by computer simulation, using branch traces as 
input data. These branch traces contain a set of branch 
addresses and outcomes which represent every branch 
instruction seen by a processor when executing a 
computing task.  
 
 Typically, branch traces are collected from the 
execution of well-known benchmark programs, and stored 
in very large files with millions of addresses and outcomes. 
The simulation process executes a software model of the 
prediction algorithm and relates obtained results with 
observed outcomes. The analysis computes a prediction to 
each branch in the trace, compares this prediction with the 
actual outcome observed, and keeps a global tally of the 
number of comparison matches, referred to as hits.  
Behaviour and accuracy analysis of a branch prediction 
algorithm implies the execution of a batch process for a 
number of trace files, each one subject to different 

parameter values. This analysis requires a significant 
computational time.     
 
 In this paper, a parallel formulation of a generic 
branch predictor algorithm is described. This parallel 
formulation exploits the inherent parallelism of the 
algorithm and reduces the execution time of the analysis by 
simulation of a branch predictor using multiprocessor 
systems. The implementation of the parallel formulation 
has three main steps. Firstly, a concurrent classification of 
the branch traces, according to the branch address, is 
performed. Secondly, the execution of the predictor 
algorithm on each class of address proceeds concurrently. 
Thirdly, a final step to tally global hits is computed. Results 
show an improvement in execution performance by up to 7 
times when this implementation is evaluated on a 12-core 
system. 

2 Generic Branch Prediction 
Algorithm 

 Prediction algorithms are basically defined by two 
processes: a prediction function and an update procedure. 
The prediction function makes a prediction (T or NT) for a 
branch instruction based on information stored from 
previous branches.  The update procedure modifies the 
recorded history of branches based on the prediction and 
the actual outcome of the branch. A Branch Prediction 
Buffer (BPB) maintains information of previous branches 
as a table. BPB is indexed by a hash function of the branch 
instruction address. BPB typically contains a set of bits 
indicating whether the branch was recently taken or not [1].  
 
 Fig. 1 describes an algorithm of a generic branch 
predictor simulator, using a BPB table with 2S entries, with 
S > 0. Each entry in BPB table stores history for a branch 
instruction address.  
 
 Input arrays A and O in Fig. 1 contain the branch traces 
for the simulation. Variable hits stores the tally on the 
correct predictions. Every branch instruction in the trace is 
related with one element of the BPB table and evaluated by 
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the prediction function (lines 2-3) making a Boolean 
decision as either taken (T) or not-taken (NT). This value is 
compared with the recorded outcome (line 4), and matches 
are stored in hits (line5). Finally, BPB table is updated (line 
7) at the corresponding entry for the branch instruction 
address. 
 
Input: 
   A ← array of addresses 
   O ← array of outcomes 
Output: 
 hits: correct predictions  
 
1. for i=1 to N do 
2.  entry ← Ai mod 2

S 
3.  p ← prediction(entry,BPB) 
4.  if (p=Oi) then 
5.     hits ← hits + 1 
6.  end if 
7.  update(entry,p,Oi,BPB) 
8. end for 
Figure 1. Pseudocode of a generic branch predictor 
simulator  algorithm.  
 

2.1 Parallel formulation  

 The pattern access to BPB table determines the 
behaviour of the algorithm in Fig.1: each branch instruction 
accesses only the entry in BPB corresponding to its 
address. Therefore, data decomposition can be applied 
sequentially over branch instruction addresses to classify 
outcomes. This classification creates a list of arrays, where 
each item in the list corresponds to outcomes for a specific 
address value in BPB. Thus, each array in the list can be 
processed by an independent predictor task, and all these 
tasks can be executed concurrently, although every 
individual task performs sequentially.  
 
 An example of this data decomposition is shown in 
Fig. 2. Arrays A and O represent the input traces. Array A 
contains a set of 13 hash values of branch instruction 
addresses, for a BPB table with 8 entries (entry values 
between 0 and 7). Array O contains its corresponding set 
of outcomes (T or NT). 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 

A 5 6 2 4 6 1 7 1 5 3 5 3 7 

O T T NT NT  T T T NT NT NT T T NT 

 
  LO 

0 1 2 3 4 5 6 7 

 T NT NT NT T T T 

 NT  T  NT T NT 
     T   

Figure 2. Example of data decomposition of input 
traces. 

 The input data is arranged in a list of arrays, LO. Each 
item in list LO corresponds to an entry value in BTB table, 
and contains an array of outcomes ordered by appearance 
in the trace. For example, for an entry value of 5, LO item 
has three outcomes (T, NT, T) corresponding to the 
outcomes of elements 1, 9 and 11 in the input trace. 

Fig. 3 describes the parallel formulation for the algorithm 
presented in Fig. 1. In this parallel formulation, outcomes  
of the branch traces in array O are classified in a list of 2S 
arrays (LO) according to the value of its corresponding 
address (lines 1-4). Concurrent tasks process LO items. 
Each task k executes sequentially the predictor algorithm 
on the array elements (lines 5-13) and registers correct 
predictions in lhitsk. After all tasks conclude, all lhits are 
accumulated in a global tally (hits). 

Input: 
   A ← array of addresses 
   O ← array of outcomes 
Output: 
 hits: correct predictions  
 
1.  for i=1 to N do 
2.  entry ← Ai mod 2

S 
3.  LOentry.append(Oi) 
4.  end for 
5.  for each k in[0..2S-1] do parallel 
6.  while (LOk.get(Oki)) do 
7.     p ← prediction(k, BPB) 
8.     if (p=Oki) then 
9.   lhitsk = lhitsk + 1 
10.    endif 
11.    update(k,p,Oki,BPB) 
12.  end while 
13. end foreach 
14. for k=0 to 2S-1 do 
15.  hits = hits + lhitsk 
16. end for 
Figure 3. Pseudocode of the parallel formulation for the 
simulator of a generic branch predictor. 

3 Parallel implementation 
 The parallel formulation algorithm in Fig. 3 was 
implemented using a shared memory model for concurrent 
tasks in multiprocessor systems called multithreading [2]. 
Multithreading is a parallel programming model that 
allows concurrent execution of multiple threads in the 
same process. A thread is a sequence of instructions within 
a process that can be scheduled for independent execution 
with other threads. Every program has one main thread. 
This thread can perform all the tasks by itself, or create 
other threads with defined subtasks. These subtasks should 
be designed to encapsulate functionality in order to exploit 
the inherent concurrency in the algorithm. Thread 
synchronization operations influence on the overall 
execution time performance [3]. Two multithreading 
programming platforms were used to compare performance 
of parallel implementations: POSIX threads and Cilk++. 
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3.1 POSIX threads 

 POSIX threads (pthreads) API (Application Program 
Interface) is a standard approved by IEEE for thread 
management. Pthreads is a portable threading library 
designed to provide a consistent programming interface 
across different operating systems platforms. Their main 
functions focus on thread creation, destruction and 
synchronization. The most common functions for thread 
synchronization are the mutual exclusion (mutex) locks  
and barriers. [4] 
 
 The pthreads version for parallel simulation of the 
branch predictor algorithm used in this paper encapsulates 
the classification of the outcomes and the predictor 
procedure. In the classification step, input arrays are 
divided in sub-arrays and each thread classifies a sub-array 
in a local version of LO list. After this classification is 
completed, corresponding arrays from all local LO lists are 
orderly merged in global arrays to create a global LO list. 
Then, the predictor function is executed concurrently, 
where each thread sequentially processes one item of the 
global LO list at a time.  Finally, every thread updates the 
global tally of correct predictions with its own local tally.  
 
 In this implementation, barrier synchronization is 
used at the end of the input classification and at the end of 
merging local LOs. Mutex synchronization is used for 
concurrent update of the tally of correct predictions. 

3.2 Cilk++ 

 Cilk++ is a language extension for programming 
languages C/C++. Three statements make up the main part 
of the extension; cilk_spawn, cilk_sync and cilk_for. 
cilk_spawn and cilk_for are used to create parallel tasks, 
either with complete functions or with loop iterations. The 
cilk_sync statement is a local barrier, and is used to 
synchronize parallel tasks created by cilk_spawn. 
Aditionally, Cilk++ includes a library for mutex locks. 
Locking tends to be used much less frequently than in other 
parallel environments, such as pthreads, because all 
protocols for control synchronization are handled by the 
Cilk++ runtime system. The Cilk++ runtime system is 
based on a work-stealing scheduler using threads. This is a 
dynamic load-balancing scheduler and improves the 
utilization rate of processing units in a system [5]. 
 
The Cilk++ version for parallel simulation of branch 
predictor algorithm used in this paper implements three 
stages: input array classification, merging of local LO and 
prediction with verification. Every stage is implemented 
with a cilk_for statement. cilk_for is a replacement for the 
conventional C++ for statement and executes loop 
iterations in parallel. Cilk++ compiler converts a cilk_for 
loop into a divide-and-conquer recursive function 

encapsulating the loop body. This strategy benefits Cilk++ 
scheduler performance [6]. After the three cilk_for loops, 
the sum of all the partial tally of correct predictions is 
performed sequentially.  

4 Results 
 Both parallel implementations were executed on an 
Intel 12-core (dual 6-core Xeon X5690, 3.47GHz) desktop 
system with Scientific Linux 6.0 (release 2.6.32-131). 
Pthreads version was compiled with gcc 4.4.4 (Red Hat 
4.4.4-13), and Cilk++ version was compiled with cilk++ 
(GCC) 4.2.4 (Cilk Arts build 8503). Branch traces were 
collected from  SPEC 2000 benchmark programs, with 
sizes of 10 million and 30 million of traces. BPB table was 
set at 4096 entries.  We specifically exercised a 2-bit 
branch predictor algorithm [1]. 

 
Figure 4. Speedups of the simulation of the parallel 
branch predictor in a 12-core system with 10 million 
traces. 
 

 
Figure 5. Speedups of the simulation of the parallel 
branch predictor in a 12-core system with 30 million 
traces. 
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 Fig. 4 and Fig. 5 show the execution time speedup for 
pthreads and Cilk++ versions with input traces of 10 
million and 30 million of elements, respectively. 

 On each parallel execution, one thread was created 
for each executing core. The execution time was calculated 
by the average of 50 executions of every version of the 
program (sequential, pthreads parallel and Cilk++ 
parallel). 

5 Discussion 
 The Cilk++ implementation shows better performance 
than the pthread implementation for both sizes of branch 
traces files. Speedup in both implementations exhibits a 
sustained improvement on the first group of 6-cores. 
However, this improvement starts to decline with the 
second group of 6-cores. This behaviour is due to both the 
distribution of the data on cache memory of each processor 
and a slower external buffer that interconnects processors 
and  memory. 
 
 The speedup tendency is very similar for Cilk++ 
implementation with both sizes of input traces. However, 
for pthreads implementation, with 10 million input traces, 
speedup starts to decline when the number of threads 
increases. With 30 million traces this tendency is not 
observed. This behaviour reflects how the cost of creating 
and synchronizing threads influences the execution 
performance. 
   
 The increasing speedup in performance suggests that 
concurrent independent tasks have been effectively 
identified from the sequential algorithm. 

6 Conclusions 
 A parallel formulation for the simulation of a 2-bit 
branch prediction algorithm has been proposed. This 
parallel formulation was implemented, based on the 
multithreading model, using pthreads and Cilk++ 
programming platforms. Execution time performance 
exhibits an improvement with an incremental tendency by 
up to 7 times for a 12-core multiprocessor system. These 
results suggest that the parallel formulation effectively 
identifies inherent parallel tasks in the algorithm.  
 Future work is aimed at using the parallel formulation 
of the simulation of the 2-bit branch predictor with other 
branch predictor algorithms to analyze its performance. 
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Abstract – In recent years, the number of Electronic Control 

Units (ECU) steadily increases which require higher 

communication bandwidth. Switched fabric has become an 

active area of research because of its wide uses in industry. 

In fact, its uses can be a fast and reliable hardware solution 

for existing CAN-Bus problems like limited bandwidths and 

throughput. 

In this paper, we proposed and modeled a switched fabric 

CAN network Architecture based on CAN Controllers and 

switched fabric by the use of timed colored Petri nets 

(CPNTools). 

Keywords: Higher communication bandwidth, CAN Bus, 

Switched fabric, Switched fabric CAN Network, timed 

colored Petri nets, CPNTools. 

 

1 Current bussed Network problem 

and Switched Fabric CAN Network 

benefit 

During last decades, the demand for sophisticated 

embedded systems requires the use of many connected 

equipments. A dedicated network bus [1] is used for 

connecting sensors, actuators in vehicles, robots and 

industries. Many serial buses were developed by car makers 

like MOST, J1850, SAE J1708, Byteflight, LIN... and 

CAN(controller Area Network). Most of them are specific 

to manufactures and not standardized.CAN is one of the 

most popular fieldbuses [2,3,4]. More than 400 million 

nodes were sold worldwide. It is used in those applications 

that require fast and reliable communication [5]. Nowadays, 

more sophisticated buses are concurrent to CAN networks 

like FlexRay [6], recently appeared, and RTethernet. They 

offer higher speed to satisfy the high bandwidth required for 

modern vehicles, suitable for x-by-wire application. In 

contrast the usage of FlexRay [7] is not widely used due to 

its complex specification and high cost. 

Current parallel bus-based [8] solutions present some 

problems. In fact, it’s well known that the physical 

separation of cards is limited to usually less than 3 feet. 

There are also limited bandwidths, high protocol overhead 

and no deterministic performance. 

The limitations of a bussed network [2] are eliminated 

with crossbar switch network. A switched-fabric bus is 

unique in that it allows all CAN Controllers on a bus to 

logically interconnect with all CAN Controllers on the bus. 

The switching fabric is the physical connection within a 

switch between the input and output ports; it can be proved 

that all switches need a crossbar inside their switching 

fabric which allow them to operate at very high speed. 

Crossbar switches are widely used because of their 

simplicity and their high-performances [9] which promise to 

greatly simplify efforts and to add better capability and 

availability. Crossbar switch [8] can support simultaneously 

multiple messages. This greatly increases the aggregate 

bandwidth of the system. Because of the broadcast nature of 

the CAN protocol (ie: messages are not sent to a specific 

destination address, but rather as a broadcast), the chosen 

crossbar switch (as it is shown in Figure 1) is configured by 

closing all its crosspoints to ensure that the CAN message 

will be sent at the same time [3,4] for all outputs nodes as it 

is defined in CAN protocol [5].  

 

 
Fig. 1: NxN crossbar Switched Fabric CAN Network 

supporting broadcast 

 

Each Electronic Control Unit (CAN Controller Node) 

produces a class priority of messages. For example, ECU_0 

produces high level of priority and ECU_n (n in our model 

is equal 3) produce low level of priority. In fact, Produced 

CAN messages will be queued in the input queue of the 

incoming interface (If the input queue is full, the packet is 

dropped.). Therefore, to respect the CAN protocol 

philosophy, CAN messages will be broadcasted for all 

output port through crossbar Switched Fabric [10]. 

Furthermore, to reduce congested output port and to respect 
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the priority policy, each CAN message will be queued in the 

suitable output queue of each outgoing interface according 

to his level priority. (If the output queue is full, the packet is 

dropped). Then, each output port scheduler will select the 

message to be sent among the existing CAN message in 

accordance with his priority.  

In our work, we modeled the switched fabric CAN Network 

using stochastic colored Petri. Our major contribution is to 

raise the lack of the bus solutions by proposing switched 

Fabric CAN. In fact, CAN based Networks using crossbar 

Switched fabric [11] have yet a well period before its 

replacement and it can compete the new sophisticated buses. 

Our paper is organized as follow: 

• The section 2 gives a short overview of Stochastic and 

Colored Petri Net SCPN [12].  

• Based on the proposed architecture and CPNTools 

software, we model, in the last section, the most important 

Switched fabric CAN Network modules. 

In the fourth section we give some conclusions of our work. 

 

2 Short Recall of Coloured Petri Net 

Coloured Petri Nets have been developed by K. Jensen in 

course of his PhD thesis (Jensen, 1980) to expand the 

modeling possibilities of classical Petri Nets. Like other 

forms of Petri Nets a CPN consists of places, tokens, 

transitions and arcs.  

The primary feature unique to CPNs is the inclusion of 

evolved data structures into tokens [13,14]. These data 

structures are called coloursets and resemble data structures 

in high level programming languages; they can range from 

simple data types such as integers to complex structures like 

structs or unions in C/C++. Similar to programming 

languages it is possible to define variables associated with 

these coloursets such as linked list and queue. 

Some examples of colourset and variable definitions are 

shown in Fig.2. Tokens as well as places of a CPN are 

always associated with a colourset and a place may only 

contain tokens of the same colourset as its own. To well 

understand the SCPN models of our Switched CAN 

controller, we give a short recall of CPN concepts. 

 

 
 

Fig. 2: Coloured and variable definitions 

The places in a CPN are depicted as ellipses (Fig.3) with the 

name of the place written into it and the associated colourset 

(Id) below. A token in a CPN is represented by a small circle 

(Fig. 3). Its value (the data stored in the token) is shown in a 

rectangle attached to the circle. A number in the circle 

denotes the number of tokens with the same value. Figure 3 

for example shows a place called Buffer_Node_1 associated 

with the colourset CAN_Messages and holding one token 

with a value of{ {ID=[Dom,Res,Dom,Dom,Res,Dom,Dom, 

Dom,Res,Res,Dom,Dom,Dom,Res,Dom,Res,Dom,Dom,Do

m,Res,Res,Dom,Res,Res,Res,Res,Res,Dom,Res],DATA=[b

yte(4),byte(6),byte(5),byte(1),byte(5),byte(6),byte(6),byte(1

)],TS=0}]. 

Buffer_node_1I/O

[length CAN_msgs1>0]

CAN_msg1::CAN_msgs1

Liberate

CAN_msgs1

CAN_messages

I/O

1

1`[{ID=[Dom,Res,Dom,Dom,Res,Dom,
Dom,Dom,Res,Res,Dom,Dom,Dom,Res
,Dom,Res,Dom,Dom,Dom,Res,Res,Do

m,Res,Res,Res,Res,Res,Dom,Res],DAT
A=[byte(4),byte(6),byte(5),byte(1),by
te(5),byte(6),byte(6),byte(1)],TS=0}]

 

Fig. 3: Graphical representation of a place in CPN 

 

Transitions in a CPN are represented by rectangles (Fig. 4) 

and can access the data stored in tokens by mapping tokens 

to variables. There are two possibilities to access this data: 

-Guard conditions: The transition is enabled only if a 

specific condition – called a guard condition – regarding 

one or more variables is met. Guard conditions are encased 

in brackets and written above the transition (Fig.4). 

-Transfer function: The transition reads and writes 

variables according to a specified function that can range 

from simple addition of values to complex conditional 

commands. 

-Transfer functions consist of the definition of input () 

variables, output () variables and the commands to be 

carried out (action ()) and are attached below the transition 

(Fig.4).The example depicted in Figure 4 shows a transition 

that only fires if the length of variable CAN_msgs is less 

than the value FIFO_length and generates an output 

variable CAN_msg without taking any input variables (Fig. 

4), the variable CAN_msg is filled with the return value of 

the function defined in the action part, new_MSG_0, which 

in this case is defined in the CPNtools area Declarations. 

 

FIFO_FULL

[length CAN_msgs2=FIFO_length]

[length CAN_msgs<FIFO_length]

input ();
output (CAN_msg);
action new_MSG_()

Buffer_2

I/O

1`[]

CAN_messages
I/O

Generate

CAN_msgs2
1

1`[]

 
 

Fig. 4: Transition Generate with guard condition and 

transfer function 

 

Places and transitions in a CPN are linked by arcs. Arcs in a 

CPN can be unidirectional or bidirectional. Unidirectional 

arcs transfer tokens from a place to a transition or vice 

versa. 

Bidirectional arcs transfer the same token from a place to a 

transition and back. Arc inscriptions define the mapping of 

tokens to variables. An inscription can either be a constant 

value or a variable of the colourset that is associated to the 

place the arc is connected to. If all places connected to a 

transition by unidirectional input arcs or by bidirectional 

arcs hold tokens and its (optional) guard condition is met, 

the transition is said to be enabled. In case of more than one 

enabled transition in a CPN the one to fire is chosen 

randomly. Later on, we will add more places to our 

controller models to avoid arbitrary transitions.  

For an analysis of clocked systems it is possible to define 

timed colourset, defined by the keyword timed and transition 

or arc delays marked by the characters @+.  

If a colourset is defined as timed, a timestamp is added to 

the tokens of this colourset. The timestamp cannot be 

accessed by guard conditions or transfer functions. When 

982 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  |



 

using timed colourset the firing of transitions depends on a 

global clock counter. Transitions can only fire if the clock 

value is the same as the largest timestamp of its input 

tokens. When a transition fires with a timed arc, the 

timestamp of its output token is the sum of the current clock 

value and the arc delay, in the example in Figure 5 this 

delay is Time_sched_delay clock cycles. 

 

ts

CAN_msg2::CAN_msgs2

CAN_msg2
CAN_msg1

(server,CAN_msg2)

(server,CAN_msg2)@+Time_sched_Delay

(server,CAN_msg1)

(server,CAN_msg1)@+Time_sched_Delay

CAN_msgs2

Delay_to_Send_msg0

Transmitted_0_2Transmitted_0_1

T2

TS

INT

Busy_server2

ServerxCAN_message

Busy_server1

ServerxCAN_message

Buffer_0_2I/O

CAN_messages

out_0

Out
CAN_message

Out

I/O

T1

Busy_server

ServerxCAN_message

T0
(server,CAN_msg)@+Time_sched_Delay

1

 
 

Fig. 5: Timed arc inscription. 

 

3 SCPN Based Switched Fabric CAN 

Network model 

 
In order to facilitate modeling of Switched CAN 

Controller, a modular approach was taken making use of 

hierarchical CPN models. The model of the Switched 

Controller is built following a hierarchical and modular 

architecture.  

The root of the hierarchical representation of the model is 

shown in the figure 6.  

Apply the Evaluate ML tool the text below 
to run 5 simulations of the CP-net.

CPN'Replications.nreplications 5

Switched Fabric 
     

CAN 3X3

Switched_Fabric

OUT_2OUT_1

CAN_message

OUT_0

1`()

UNIT

1`()

UNIT

1`()

UNIT

CAN_messageCAN_message

IN_1

IN_2

IN_0
Switched_Fabric

1

1

1

 
 

Fig. 6: Root level of the model 

 

The Switched Fabric CAN 3x3 whose activity is modeled 

by the transition Switched_Fabric transmits the CAN 

message via the Switch Fabric. The places IN_i and OUT_i 

(i can be a value between 0:2) play the role of inputs/outputs 

for sub-models. 

Nodes in CAN are identified by their identifier (in this 

model, colourset Id is a list of 29 bits). The coloursets and 

variables used in this model are shown in Figure 7. 

Messages sent through the Switched Fabric CAN are 

represented by tokens of the colourset CAN_message. This 

colourset is a record of the colourset Id that designates the 

message priority and the colourset Data which represent the 

data field to be transmitted and the colourset TS for saving 

the time stamp for the birth of the message. 

 
 

Fig. 7:  Coloursets for CAN Network model 

 

The variables (CAN_msg, CAN_msg1 and CAN_msg2) are 

of type of the colorset CAN_message. This variable models 

the messages which cross the different sub-models of Figure 

8 (Node_i, Broadcast_i, FiFo_i_j and Scheduler_i). 

The Switched CAN network model in Figure 8 is composed 

of three nodes.  Each node is represented by a transition and 

two places. The transition called Node_i (i can be a value 

between0:2) is a hierarchical transition which describes the 

messages generation within the node, how the messages are 

stored in buffer. The place Buffer_Node_i is used to store 

the messages already generated.  

This place is configured with colourset CAN_messages 

which is a list of colourset CAN_message. When a token is 

present on this place (Length CAN_msgs >0) a message is 

ready for sending. This last fires the hierarchical transition 

Broadcast_i. The originated message is duplicated in three 

places, one for each output port of the Switch fabric. 

According to the priority which is associated to the 

messages (defined by their ID), the messages are stored in 

the FIFO queue (there is as many queue as of priorities). In 

this model, three levels of priority are defined: 0: high level 

of priority; 1: medium priority and 2: low priority. 

FiFo_i_j is a substitution transition which presents the 

queue of input_i for the output_j. Finally, the scheduler 

processes the different messages according to its scheduling 

policy. 
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Fig. 8: SCPN Switched CAN Networks model with three nodes having three different priority classes 

 

3.1 Generating CAN Messages (Node_i 

Transition) 

As shown in Figure 9, the load source is modeled by the 

place Next and the transition Generate. Initially the place 

Next contain one token and is connected via two arcs to 

the transition Generate, the arc from Generate to Next is 

timed using the exponential random function. Thuswe can 

have a random message with parameterized inter arrival 

period using the value lambda_i (lambda_0 for node 0: 

Figure 9).  

The place Buffer_node_i is used as messages buffer, sized 

of 4 in our case, to decouple the source message from the 

Switched CAN controller. When the load source increases 

and no room is available in the buffer, an overflow occurs 

and the transition FIFO_FULL fires leading to lose the 

last generated message (due to a congestion or excessive 

load). 

 

 

()

()@+expTime(lambda_0)

()

CAN_msgs

CAN_msgs^ [̂CAN_msg]

CAN_msgs()@+expTime(lambda_0)

FIFO_FULL

[length CAN_msgs=FIFO_length]

Generate

[length CAN_msgs<FIFO_length]

input ();

output (CAN_msg);

action new_MSG_0();

NextI/O

UNIT

Buffer_0

I/O

CAN_messages

I/O 1`[]

I/O

1

1`()@0

1

1`[]

 
Fig. 9: Generation of CAN Message (Node_0) 

 

3.2 Broadcasting of CAN Message 

(Broadcast_i Transition) 

The set of broadcasting message is represented by the 

model described in the figure 10. Transition Liberate 

models a message coming from Buffer_node_i. 

The Buffer_node_i place is a list of CAN_Message. When 

the list length is not null (i.e there is at least a message to 

send), the liberate Transition can be fired if the line is free 

(there is a token in Line_Free place). Otherwise, message 

coming from Node_i has to be delayed 

Transfer_Data_Delay until the previous message will be 

liberated. If the message is liberated, the Server token will 

be moved from the place Line_Free to Line_Busy. Then the 

messages will be duplicated in the right place (queues) 

CAN_msg1CAN_msg1 CAN_msg1

()()@+expTime(lambda_2)()()@+expTime(lambda_1)

CAN_msg2
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according to their priorities. For example, message of 

medium priority (CAN_msg1) will be routed to the places 

m1_0, m1_1 and m1_2. The CAN message m1_i will be 

queued in the queue 1 of the output port i (OUT_i). 

CAN_msg1::CAN_msgs1

server

server

CAN_msg1

CAN_msg1
CAN_msg1

(server,CAN_msg1)

(server,CAN_msg1)@+Transfer_Data_Delay

CAN_msgs1

Diffuse

Liberate[length CAN_msgs1>0]

Line_Free

1`server

Server
Line_Busy

ServerxCAN_message

m1_0

Out

CAN_message

m1_2

Out

CAN_message

m1_1

Out

CAN_message

Buffer_node_1

I/O CAN_messagesI/O

Out OutOut

1 1`server@0

1

1`[]

 
 

Fig. 10: Broadcasting CAN Messages generated by Node1 

3.3  Storing CAN Messages (FiFo_i_j) 

FIFO model is represented in the figure 11. It processes the 

messages in the order of their arrival. The function of the 

transition Arrive is to concatenate incoming message 

(CAN_msgi) to the Buffer_i_j.  Buffer_i_j is a place having 

CAN_messages as colourset: i indicates the level of the 

message as it was explained previously and j indicates the 

output port of the model. Thus Buffer_i_j is the queue of 

Message i of the output port j (OUT_j). When the buffer is 

full (in our model FiFo_length= 4), the transition 

Fifo_i_j_Full is fired and the incoming message will be 

rejected. 
 

 

 

 

ts

#TS CAN_msg2

CAN_msg2

CAN_msgs2

CAN_msg2

CAN_msg2
Delay_to_lost_msg2

Fifo_2_2_Full

Arrive

TS

INT

Reject

CAN_message

Buffer_2_2

I/O
CAN_messages

m2

In

CAN_message

In

I/O

[length CAN_msgs2<FIFO_length]

CAN_msgs2^ [̂CAN_msg2]

CAN_msgs2

[length CAN_msgs2=FIFO_length]

1
1`[]

 
 

 Fig. 11: Storing CAN Messages generated by Node 2 in the queue 2 of output 2 

 

3.4 Scheduling CAN Messages (Scheduler_i) 

The model of the figure 12 describes the behavior of a 

static priority scheduling. The type of messages is 

classified in three groups: 

- High priority messages: These messages are generated by 

Node_0 and are modeled in the place Buffer_i_0 as a list of 

CAN_Message (CAN_msgs) in the Scheduler of the output 

port i (OUT_i). 

- Medium priority message: Those are generated by 

Node_1 and are modeled in the place Buffer_i_1 as a list of 

CAN_Message (CAN_msgs1) in the Scheduler_i. 

- Low priority message; those are generated by Node_2 and 

are modeled in the place Buffer_i_2 as a list of 

CAN_Message (CAN_msgs2) in the Scheduler_i. 
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Fig. 12: Scheduling CAN Messages at the Scheduler of Output 0 

 

A message with lowest priorities can be delayed by the 

other packets due to the non-preemptive characteristics of 

this kind of message scheduling algorithms [15].  

For example, in the case of Scheduler_0, the messages of 

Buffer_0_2 (low priority messages) has to wait until the 

messages of Buffer_0_0 and Buffer_0_1 (high and medium 

priority messages) are fully transmitted. Then, the 

messages of Buffer_0_1 (medium priority messages) has to 

wait until the messages of Buffer_0_0 (high priority 

messages) are fully transmitted. 

 

This scheduling policy is modeled using bidirectional arcs 

between buffers places and the transitions T1 and T2. These 

arcs are inhibitor arcs. The method of usage of inhibitor arc 

is described in more details in [13]. 

When there is at least a message to transmit, the Ti 

transition can be fired if the server is free what it means 

that there is a token in Free_server place. Otherwise, the 

following message (according to the algorithm described 

above) have to be delayed Time_Sched_Delay until the 

previous message is fully transmitted. After the 

transmission of the message, the Server token will be 

moved from the place Busy_sereri to Free_server. The 

interest of the static priority algorithms is that it is easy to 

implement. Other Scheduling algorithms can be studied in 

future works. 

 

4 Conclusion 

In this paper, Switched Fabric CAN architecture is 

presented and modeled by CPNTools. The SCPN model of 

the Switched Fabric Controller is presented with three 

nodes at transmitter side using a switch fabric (3x3). For 

that, three message priority classes were treated with a 

clear representation on ID field (high, medium and low 

priority messages).  

The model focuses on queueing, broadcasting and 

scheduling mechanisms which are the keys factor for the 

proposed architecture. 

The evaluation of throughput, latency and loss probability 

of the proposed architecture and a comparison with Bussed 

CAN controller [2] will be studied in the future works to 

demonstrate that CAN with a crossbar switched fabric has 

yet a well period before its replacement. 
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Abstract—Nowadays has been observed a large increase
in the volume of images generated by medical devices. The
manipulation of medical images has one known as DICOM
standard that allows interoperability between these images in
different devices. The server CyclopsDCMServer was devel-
oped in order to work with Hierarchical Data Format (HDF5)
for manipulation of medical images (DICOM) on a distributed
file system. This work aims to improve the performance of
the server through an approach that uses the functions of
reading and writing parallel. The experimental results indicate
a gain of the proposed approach with respect to the original
environment.

Keywords-HDF5; MPI; PVFS; DICOM; Parallel I/O;

I. INTRODUCTION

Databases alternative to conventional database for data
storage has been a solution more sought by researchers and
companies when it faces to large volumes of data in systems
of high performance computing. Among the alternatives
that are available and active development, currently the
Hierarchical Data Format (HDF) has been highly seeking by
researchers. HDF5 is the fifth version of this format, and was
developed by the group ”HDFGroup” from the University of
Illinois in the United States. Since the release of HDF many
general purpose and scientific began using it as an efficient
alternative and high performance for storing and accessing
large files. As examples, NASA use HDF to store data from
global monitoring, clinical applications for managing large
collections of images of X-rays and oil companies that store
large amounts of data from 3D seismic surveys [1].

CyclopsDCMServer is a work being done by the group
INCoD at Federal University of Santa Catarina in Brazil
[2] and it aims to supply storage of DICOM images [3]
provided by medical devices connected on Rede Catarinense
de Telemedicina (RTCM) [4]. RTCM connects different

health institutions such as hospitals and primary care that
encompasses 286 cities in the state of Santa Catarina. This
network provides service access to more than 10 DICOM
modalities, among them are: electrocardiogram (ECG), mag-
netic resonance imaging (MRI), computed tomography (CT)
and computed radiography (CR) [5]. For this integration
occur between server and DICOM modalities, the RCTM
use Picture Archiving and Communication System (PACS)
[6] which includes hardware and software support for most
medical equipment masking all part of communication,
safety and accessibility. In Santa Catarina, the system is
available almost over the state, and trend in few years cover
the entire state.

A research mode of this server uses HDF5 as the data
format to DICOM images and a distributed file system
PVFS (Parallel Virtual File Systems), in order to focus on
storage performance, DICOM image queries and solve the
problem of scalability generated by storing vast amounts
of files generated by PACS system. This work involves
on a version of this server that includes the parallelization
of the reading and writing DICOM files in HDF5. This
study focuses on presents the architecture and experiments
of reading and writing in parallel , with the goal of achieving
better performance in access to the database and collect
communication delays. This work has as motivated some
parallel writing function tests performed in work [7], which
demonstrated improvements in writing time.

This work is structured in six sessions. The next session
begins with a base of how the CyclopsDCMServer works,
and in section 3 presents the introduction of the approach of
proposed architecture. In Section 4, we describe some related
work. In section 5 depicts the hardware and software used in
this project, the experiments and results. Finally, in Chapter
6, we ended the study with conclusions and future work.
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II. CYCLOPSDCMSERVER

CyclopsDCMServer was developed in order to provide
service integration of DICOM in PACS environment, in
order to provide medical imaging storage and accessibility
for manipulating these images through workstations. The
application is multiplatform and can run on the Linux
machine, Windows and other systems. Currently, in real
system, the application CyclopsDCMServer stores all infor-
mation provided by PACS system in a relational database
called PostgreSQL. The DICOM files generated by available
modalities on PACS system, generate files with different
sizes, ranging from 300 Kbytes to 600Mbytes per image,
and should remain stored on the server for at least 10
years. In measuring the increase in volume of data they
generate problems such as scalability, latency in queries and
maintenance costs.

Based on these problems described above, studies were
carried out by Macedo et al [5] seeking to circumvent issues
of telemedicine environments based in server with relational
database systems. These issues considered are scalability,
distribution of information, ability to use techniques for high
system performance and operating costs. The result of this
research led to a new server architecture based on PVFS and
HDF5. Among the usual procedures of the current approach,
the contribution was storing all the information hierarchi-
cally, such as organize and store data in HDF5 format. The
second step was to use a cluster with distributed file system
in order to seek high-performance disk access. Another
contribution was to create an object called H5WRAP to
handling with HDF5 interface.

A. H5WRAP

Due to lack of a procedure that incorporate a DICOM
image in HDF5, it was necessary to create a library called
H5WRAP, which converts a DICOM file in the format HDF5
data. The library contains an object that is used to create,
find, collect and store information related to DICOM images
in HDF5 files and this information is represented in Figure
1. Among various metadata contained in a DICOM file [8],
for the H5WRAP, were collected only metadata that are
importance to the PACS system used in Santa Catarina.

HDF5 files are organized in a hierarchical structure. It
is observed that were selected three DICOM layers, each
layer represent a group of study, serie and image, where the
hospital attributes and patient studies are contained in the
study layer. Their primary structures are two datasets and
groups [1] . An HDF5 group is a grouping structure that
can contain zero or more instances of groups or datasets,
while an HDF5 dataset is a multidimensional array of data
and also contains metadata that describes the dataset. In the
next section, we explain how the read and write in parallel
was built in H5WRAP

Figure 1. DICOM layers in HDF format

B. PH5WRAP

The PH5WRAP is an architecture oriented to work in
reading and writing parallel only the binary. The reason for
this restriction is due to the fact that the binary image repre-
senting on average 90% of a DICOM file, ignoring the need
to parallelize small disk accesses to metadata, which could
result in a longer process, due to communication necessary
to distributed these layers. This architecture is designed
to work in the same environment previously proposed in
H5WRAP, based in PVFS and HDF5, with the addition of
the Message Passing Interface (MPI).

The parallel access is provided by processes that are
initiated at each node. The parallel access comes from the
HDF5 API, which uses ROMIO interface to access the
file system. ROMIO is a portable implementation of MPI-
IO access which was created to provide high performance
access to distributed file system. Its development is restricted
to support some types of file system and among the most
widely used, we have the PVFS and NFS [9]. In terms of
characteristics of parallel access, the Parallel Virtual File
Systems designed to support multiple access models, such as
collective and independent access, as well as non-contiguous
access patterns and structured. PVFS has three important
structures: the metadata node, data node and client node.
A node can represent all the structures simultaneously. The
metadata nodes are controllers of permission file, directories
and file names. Data nodes store physically data files and
the client makes requests to the file system commands using
POSIX or through APIs .

The Figure 2 illustrates the architecture of PH5WRAP,
which illustrates the communication between the usual
H5WRAP with the parallel application. The implementation
of parallel application will be used by the server as it needs
to perform a read operation or write a binary image DICOM.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'12  | 989



Figure 2. Ph5wrap architecture

Basically, the dicom file is unpacked to the data type and
attributes, wrapping these contents into HDF5 format and
throwing the binary image to parallel application. In this
application, two main procedures are performed, the reading
and writing functions. In case of Figure 3, it illustrates the
division of binary image between the application processes
when the master node receives the buffer from H5wrap. The
division it’s make simple, based on number of parallel nodes,
which more nodes, smaller the buffer to distributed to other
nodes.

The next two sections, it’s describe the functionality of
the both main function.

1) Write function: The write function begins with a
request for some DICOM modality available on the PACS
for storage an image in CyclopsDCMServer. As the object
H5WRAP performs file analysis , it is create indexes in
Clucene index table [10]. Before writing the metadata, it
is checked whether the study groups, series and image
metadata are already available in the HDF5 file, otherwise
it is create the layers. Stored metadata, the server creates a
connection through socket with the master process, sending
the type of operation, the operation path and binary buffer,
awaiting return the status of communication process. The
Master process distributes the binary partition for nodes
according to number of nodes in the system, and they store
their respective buffer in system PVFS.

2) Read function: The process of reading function is
similar to the writing process. Start with a client application
consulting an image. This query is performed on server via
Clucene index table where DICOMS images can be filtered
by modalities study, series and images. The retrieve for an
image is performed after the step above, that returns the

Figure 3. Shows the binary buffer distribution between nodes

object path that will be accessed in HDF5 file. The reading of
metadata is performed by H5WRAP, while the binary image
is performed by the parallel application. To performing the
reading of the binary, H5WRAP create connection with
master process, sending only the type of operation and
location of the binary access. The Master node distributes
to other nodes the location, which each node retrieves a
region of binary. After reading their region, the nodes return
a binary portion to master process. The Master, taken up all
the regions, it sends the binary to H5WRAP. The H5WRAP
ends the DICOM file, returning to the client.
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III. RELATED WORK

The first two works are themes that seek to resolve I/O
performance issue of large amounts of stored data, using
the parallel HDF5 library. The first related work [11], is
very similar to ours where this work focus on the use of
parallel I/O library for scalability problems involving many
fermions dynamics for nuclear structure (MFDn). This study
used a parallel version of HDF5 and performed tests on
the independent and collective models. The results showed
that files with size up to 20 GB, parallel HDF5 became
more productive than sequential. The work [12] focuses in
using parallel-IO for particle-based accelerator simulations
that involved large amounts of data and dimensional arrays.
They used two different API, the first is well-known MPI-
IO and the second is the parallel HDF5 called H5part. He
compared the simulations performance of read and write
file operation between the API H5part, MPI-IO and the
primary (file per process). HDF5 showed good performance
in writing, although MPI-IO showed better results in both
operations.

The works [13] [14] [15] are interesting because they
focused in working with comparisons and performance
improvements of I/O in platforms such as Jaguar and Red
Storm. These are supercomputing platforms, which provide
computer services, such as GTC for spectrum, Parallel
Ocean Program (POP) ocean modeling, physics calculations
program and others. The work proposed by Yu et al has
some interesting comparisons with different types of I/O.
They propose to improve and enhance access in a parallel
application called Jaguar of Oak Ridge National Laboratory
and aimed at several objectives such as, the characterization
of performance parallel-IO on storage unit and scalability of
the entire system. The results showed a better performance
and less scalability in parallel-IO in collective mode and
showed that using technique called FLASH I/O, the per-
formance can improve by 34% with certain adjustments on
collective I/O .

About the file systems, the work [16] conducted three
experiments in an atmospheric model system, distinguishing
the access mode on disk. The experiments deal with applying
a single application with a differential in system architec-
ture that adds Threads on its processes. The written tests
with local disk had the best performance by not requiring
communication between the nodes of the file system. The
environment with threads had a better performance when
used the parallel virtual file system (PVFS), because it
has facilities when use MPI interface. The experiments
were performed using 30 clients in one PVFS environment
with four nodes. As each process accesses the file system
constantly to write the atmospheric results, when you have
more than one process per machine, they compete for access
disk, reducing the execution time. This does not occur with
the application threads, since it runs one process per machine

and performs better memory used.

IV. ENVIRONMENT AND EXPERIMENTAL RESULTS

The environment used for the experiments is a virtualized
with eight virtual machines, both PVFS nodes and nodes
of the parallel application. Another virtual machine is used
to host the server CyclopsDCMServer. For virtualization
platform environment, we used VMware vSphere 5. The
host machine has an Intel Xeon E5310 with 4 cores at
1.6 GHz each and a total of 10Gbytes of memory and 460
Gbytes of disk. Each virtual machine has virtualized 1077
Gbytes of memory and 23:26 Gbyte disk.

To assemble the virtual cluster, it was necessary to set
up an environment with PVFS, MPICH2and HDF5, and
their arguments are meant for installation work with parallel
features. Each of the parallel application process will also
be a PVFS data storage node. We use the same number of
PVFS data nodes as parallel application processes in order
to use the maximum use of the environment. The graphs
bellow shows the number of attempts on y axis and time
spent in seconds on x axis to complete the experiments.

In reading experiments were total conducted 24 experi-
ments, 16 collecting only the read time of binary from two
DICOM images in HDF file, discarding the communication
delay and assembly of the DICOM file. The other eight
experiments represent the total value of reading the images,
plus the assembly of the DICOM file. The first binary
image has 92.16Mbytes while the second has 52.42 Mbytes.
Experiments were performed with the serial server, three
more experiments with 2, 4 and 8 parallel nodes. These
experiments were performed twice, resulting in a total of
eight experiments per image. Each reading experiment was
repeated 25 times on the same image. From these results,
it is collected the average and presented in the comparison
chart of the averages in Figure 4.

It can be observed in the first average graph of image 1 on
the first attempt, a difference up to 6 milliseconds of average
serial reading with 4 parallel nodes. In the second attempt,
the parallel reading with 8 nodes have underperformed with
a difference of approximately 7 milliseconds compared to
the serial reading and near twice worse compared with 4
nodes. The same can be observed in image 2, although
the results are better than eight nodes serial reading, the
difference between the applications with four nodes is almost
twice. Finally, the Figura 6 graph is a noteworthy the impact
of the runtime application when used CyclopsDCMServer
with 8 nodes.

One important factor that causes the loss of performance
of parallel application with 8 nodes in the three graphs is due
to be working with one processor with four cores and using
8 vitual machines, running one process. This process will
disputed to use one core, therefore, others have to wait. This
causes saturation in processor use, rather than working with
a virtual machine requires a high processing power. This
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Figure 4. Reading comparisons graphics

Figure 5. Server runtime

conclusion can be proved also by the fact that when we use
only four nodes, no process have to wait, the performance is
approximately 2 times faster. This underperformance provide
by 8 nodes is also observed in Figures 5.

The next figures illustrate two graphs of average for
written experiments performed with about 1000 DICOM
images each attempts. These images are sent to the server
CyclopsDCMServer, which is responsible to communicate
with parallel application.

In Figure 6 shows the average time of writing an image
in the HDF. For this first graph, we collected the time of
writing only, discarding the time of the system. Among
the two attempts, there is the bottleneck described above

Figure 6. Written comparisons graphics and graph of transfer rate

about the 8 nodes and performance gain of 2 and 4 nodes.
This gain is around 50 milliseconds and 33 respectively
compared with serial mode. The transfer rate is shown in
the second graph. This transfer rate is the measurement of
the binary transmission from the server to the MASTER
of the parallel application. Unlike the total time of the
system, the transfer rate does not take into account other
communications between the MASTER and the server, as
well as communication between the application processes.
Note that the speed of data communication is directly
interconnected to the number of processes in the system.

V. CONCLUSION AND FUTURE WORK

This work was done in order to show new results for
the parallel architecture introduced earlier in [7], in order
to detect failures and performance in reading and writing
parallel of a DICOM image in HDF format. The environment
is virtualized and configured with parallel virtual file system
(PVFS) and HDF5, where more tests were realized to collect
more consistent results.

The results showed a gain in reading and writing parallel,
but the number of nodes exceeds the number of processing
from the host machine, the performance of the architecture
is low. Other problem in this system is the poor time of
runtime system, provided by the communication between
the server and parallel approach to transfer binary buffer.
One solution to overcome the time problem is to move the
H5wrap object to the master process, with goal to remove
the necessity of binary transfer.
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As future work, we intend that run parallel architecture
in a real environment and dedicated to collect results that
do not depend mainly on the processing power. Analyze the
performance of system access in accordance with increasing
the number of nodes. Finally, more tests with different types
of DICOM modalities, mainly work with larger files.
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Abstract— Acceleration of FDTD (Finite-Difference Time-
Domain) is very important in computational electromag-
netic. We propose a hybrid single/double precision floating-
point computation to accelerate FDTD on GPUs. We apply
single-precision when the dynamic range of the electromag-
netic field is low and double-precision when the dynamic
range is high. According to the experimental results, we
achieved over 35 times of speed-up compared to the CPU
implementation and over 1.79 times speed-up compared to
the conventional GPU acceleration.

Keywords: GPGPU, FDTD, high-performance-computing

1. Introduction
Computational electromagnetic shows a rapid develop-

ment recently due to the introduction of processors that have
parallel processing capability such as multicore CPUs and
GPUs (Graphic Processing Units). FDTD (Finite-Difference
Time-Domain) algorithm [1] is one of the most popular
method of computational electromagnetic simulation due
to its simplicity and very high computational efficiency. It
has been widely used in many applications such as coil
modeling [2], resonance characteristics analysis [3], etc.
Many of these applications require double precision floating-
point computation to satisfy the stability condition [4].

There are many works that use GPUs [5] to acceler-
ate FDTD. Such works consider how to parallelize the
FDTD computation so as to use many nodes as possible.
However, using more nodes means more cost and more
power consumption. In this paper, we focus on extracting
more performance from the same hardware by using high-
precision computation only when it is necessary.

We consider the FDTD method used in resonance charac-
teristics analysis of a cylindrical cavity [3] as the example
application. We analyze the characteristics of the application
and apply double-precision floating-point computation when
the dynamic range is large and single-precision floating-point
computation when the dynamic range is small. dynamic
range refers to the ratio between the largest and the smallest
values of electric (or magnetic) field. According to the
experimental results, we achieved over 35 times of speed-
up compared to the CPU implementation. This speed-up is
almost 1.79 times of the conventional GPU acceleration.

(a) FDTD process (b) FDTD computation

Fig. 1: FDTD
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Fig. 2: Dynamic range of the electric field values

2. Hybrid floating-point computation
Figure 1(a) shows the FDTD algorithm [1]. It starts with

an initial data of electric and magnetic fields. The initial
data are processed to obtain the electric field for the first
time step. After that, the boundary conditions are applied.
Then the magnetic field data are obtained and the boundary
conditions are applied. This process continues forn time
steps. Figure 1(b) shows the electric and magnetic field com-
putations. Electric and magnetic fields (inx, y, z directions)
are denoted byE and H respectively. The coordinates of
the 2D fields are denoted by(i, k).

To increase the speed-up, we observe the characteristics
of our application [3]. According to [3], the electromagnetic
field outside the cavity is weaker than that inside. Figure
2 shows the computation grid for FDTD calculation. The
electric field far away from the grid origin has a small
dynamic range. We observed similar characteristics from
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Fig. 3: Partition for single/double precision computation

Fig. 4: Hybrid single/double precision computation

the magnetic field data analysis also. Therefore, we use
double-precision floating-point when the dynamic range is
large and single-precision floating-point when the dynamic
range is small. As shown in Fig.3, the entire boundary and
“area 1” are done in double precision floating-point while
the rest of the computations in “area 2” are done in single
precision floating-point. One problem in this method is the
float-to-double conversion overhead. As shown in Fig.1(b),
calculation of electric field of the coordinate(i, k) requires
the magnetic fields at its left and right coordinates. Similarly,
calculation of magnetic field of coordinate(i, k + 1/2)
requires the electric field at its left and right coordinates.
To compute the electric and magnetic fields on the partition
boundary in Fig.3, we need both double and single preci-
sion values that belong to area 1 and area 2 respectively.
Therefore, we need float-to-double conversion and this is an
additional overhead. Figure 4 shows the flow-chart of the
hybrid single/double precision floating-point computation.

3. Evaluation
For the evaluation, we use Intel core i7 960 CPU and

GeForce GTX 590 GPU. As shown in Fig.5, the pro-
posed method is 1.79 times faster than the conventional
double-precision GPU implementation [5]. Double-precision
floating-point computation requires two CUDA cores while
single-precision requires only one. This is the reason for the
speed-up of the proposed method.

Figure 6 shows the processing time against the amount
of double precision computation. Note that, the “double
precision computation area” refers to the percentage of the

Fig. 5: Processing time comparison

Fig. 6: Accuracy of the hybrid computation

grid area done in double-precision. The processing time
increases with the amount of double precision computation.
However, the processing time of “95% double precision
computation” is larger than that of “100% double precision
computation”. This is due to the float to double conversion
overhead in hybrid single/double precision computation.

4. Conclusion
In this paper, we proposed a hybrid single/double preci-

sion floating-point computation to accelerate FDTD on GPU.
Since the amount of hardware required for double-precision
is two times larger than that of the single-precision, we
can increase the performance of the GPU by doing more
computation in single-precision. However, due to the double-
to-float conversion overhead, at least 85% of single-precision
computation is needed for a considerable speed-up.
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