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Abstract— The problem of efficiently assigning tasks to
machines in heterogeneous computing environments with
uncertainty in the availability of the compute resources is a
challenging one. Previous research has looked at designing
heuristics to maximize the total reward earned by completing
tasks in an environment where compute nodes may randomly
fail. The rewards associated with the tasks are earned if
they are successfully executed before their deadlines. The
goal of the resource allocation policies is to maximize
the cumulative reward earned. We use heuristics from the
literature and improved versions of some of the heuristics
to perform the resource allocation decisions. We conduct
extensive experiments to compare the performance of these
heuristics in a variety of simulation environments. The goal
of the study is to be able to recommend a heuristic to
use based on the system environment. Our experiments
show that different heuristics perform the best in different
environments.

Keywords: mapping, resource allocation, fault-tolerant, hetero-
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1. Introduction

Distributed computing is currently used to solve a host
of problems where different tasks are mapped to separate
machines for execution. These environments may be het-
erogeneous, which means different tasks may have varied
execution times on the different machines. This makes it
difficult to assign tasks to machines to optimize for a given
performance metric. The process of allocating tasks to ma-
chines for execution is commonly referred to in the literature
as “resource allocation” or “mapping.” The mapping and
scheduling problem has been known to be NP-Complete [1],
and therefore one must use heuristics to get a solution to this
problem. It is common for failures to randomly occur in the
compute resources of these large-scale distributed systems.
As a result, it becomes even more difficult to make resource
allocation decisions while being aware of such failures. In
this study, the goal of our resource allocation procedures
is to maximize the total reward earned while executing the
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tasks in an environment where the machines may randomly
fail.

Fault-tolerance in distributed computing environments has
been extensively studied. Check-pointing tasks to avoid
restarting them from the beginning, in case they fail, is a
common method used to alleviate the damage caused by
the failure of resources [2], [3], [4], [5]. Replicating tasks is
another method used to improve the reliability of the system
(61, [41, [71, [8].

Shestak et al. [9] addressed the problem of making re-
source allocation decisions while being aware of the mean
fail rates of the compute resources. To model a harsh envi-
ronment the machines were made to have high probabilities
of failure. They assumed that a bag of tasks is available and
ready for execution. Each of those tasks has a reward and a
deadline associated with it. The reward of a task is earned
if the task is successfully completed by its deadline. If a
machine fails while executing the task, the task is returned
to the batch and may be re-mapped to another machine for
execution. The goal of the resource allocation heuristics is to
maximize the total reward that can be earned by executing
the tasks before their respective deadlines expire.

The contributions of this paper are: (a) an enhancement
in the prediction mechanism for some of the heuristics from
the literature [9], and (b) a study of the performance of
different heuristics on various environments that differ in
their types of heterogeneities, rates for task executions and
machine failures, and task re-mapping policies. We compare
the relative performance of the heuristics in each of these
simulated environments, and recommend the heuristic that
one should choose to obtain the highest reward for each
environment.

2. Problem Statement

The environment we model in this study and the goal of
our resource allocation procedures are based on the work
of Shestak et al. [9]. Each task has an associated reward
that is earned if its computation is successfully completed
by its deadline. The compute resources are assumed to have
high probabilities of failure. When a machine failure occurs
while executing a task, the task is returned to the batch and
is eligible to be mapped to another machine. The task may
fail multiple times, and it can be continually remapped to



constant mach A | machB | mach C
task class 1 4 4 4
task class 2 4 4 4
task class 3 4 4 4

column-varying | mach A | machB | mach C
task class 1 5 2 4
task class 2 5 2 4
task class 3 5 2 4
inconsistent mach A | machB | mach C
task class 1 6 5 7
task class 2 9 3 4
task class 3 2 10 1
task-mach- mach A | machB | mach C

consistent

task class 1 1 2 7
task class 2 3 4 9
task class 3 5 6 10

Fig. 1: Sample Estimated Time to Compute (ETC) matrices
modelling different types of heterogeneity in an environment
with three task classes and three machines

machines as long as its deadline has not expired. The goal
of the resource allocation policies will be to map tasks to
machines to maximize the total reward earned from all the
tasks. In this study, we say that a heuristic is “robust” [10]
if it can earn reward in an environment with uncertainties in
task execution times and machine failure times. The higher
the reward a heuristic earns, the more robust it is to such
uncertainties.

We work with a bag of tasks that was available at the
start of the simulation. Whether or not failed tasks are
allowed to come back for mapping events may be a policy
decision. Therefore, we consider both cases (allowing and
not allowing failed tasks to re-map), and simulate both
environments for experimentation purposes. We also model
various types of heterogeneity of the computing environ-
ment, and gauge the performance of the various resource
allocation procedures.

3. Environment Modeling

3.1 Modeling the Task Execution Times

An Estimated Time to Compute (ETC) matrix is used
to model the execution time characteristics of the various
tasks in the heterogeneous system. We use task classes
to group together tasks that have similar execution time
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characteristics. Each entry ¢;; in the ETC matrix gives the
mean execution time of tasks of class ¢ on machine j of
our heterogeneous suite. The actual execution time of the
tasks are modeled using exponential distributions with the
means obtained from the entries of the ETC matrix. We use
exponential distributions to model task completion times,
based on the tests conducted at Ricoh InfoPrint [11]. For
simulation purposes, we create and use synthetic workloads,
but in real-world environments one could build such a matrix
based on historical data.

We model and gauge the performance of various resource
allocation policies under different types of ETC matrices.
The different ETC matrices are used to model various types
of heterogeneity of computing systems. We model four types
of ETC matrices. Sample 3 x 3 ETC matrices for each of
these types are shown in Figure 1. We model homogeneous
workloads and homogeneous compute resources by having a
fixed value for all the entries in the ETC matrix. We call this
type of ETC matrix constant. We model another environment
wherein the workload can be considered homogeneous, but
the compute resources can be considered to have different
computational capabilities. We model such an environment
by having unique values for each of the columns of the
ETC matrix, and refer to this matrix as column-varying.
A completely heterogeneous environment is modeled by
having random values for each cell in the ETC matrix. In an
environment, modeled by such a matrix, it is possible (and
likely) for a machine to be better than another machine for
a particular task class and worse for another. Such a matrix
is referred to as inconsistent. If we independently sort the
elements within each of the rows of such an inconsistent
ETC, and then independently sort the entries in each of
the columns, we obtain what we call a task-mach-consistent
matrix. In such an environment, if a machine executes a task
faster than another machine, then it will do so for all tasks.
Similarly, if a task executes faster than another task on a
single machine, then it will do so on all machines. This type
of matrix is well suited for some of the heuristics discussed
later.

3.2 Modeling the Machine Failures

It has been shown in the literature that exponential dis-
tributions can be used to stochastically model hardware
failures [12], [13]. In our environment, each machine has
an exponential distribution associated with it to model the
probability of failure, and for each machine j, we have a
failure rate represented by A;.

Shestak et al. [9] have shown how a distribution of
processor availability can be obtained using the average
execution time of tasks on a machine j (referred to as t}“’),
and the failure rate of the machine A;. This probability
mass function consists of as many pulses as there are
machines in the environment. The distribution gives the
relative probability of each machine to become available
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for a mapping event. Machines become available for a
mapping event under two scenarios: if they have successfully
completed a task, or if they have encountered a failure.
The distribution sorts the machines in an ascending order
of their “quality.” A machine has better “quality” if it has
a lower value for )\jtzw. Therefore, a machine that has a
lower failure rate and/or a lower value for mean execution
time, will be considered better. The Cumulative Distribution
Function (CDF) of this probability distribution will be used
to guide resource allocation decisions by some heuristics.

4. Resource Allocation Policies
4.1 Overview

In our environment, a mapping decision (deciding which
machine to map a task to) is made whenever a machine
becomes available for executing a task. Machines become
available in two cases: when they successfully complete a
task that was assigned to them, or when they have encoun-
tered a failure. We make an assumption that failed machines
get instantly repaired and are available for executing tasks
immediately. We use heuristics from the literature [9] as
well as modifications to these heuristics to make mapping
decisions.

4.2 Heuristics from the Literature
4.2.1 Reward Heuristics:

There are two heuristics that directly try to optimize the
reward [9]. They are the Reward heuristic and Expected
Reward heuristic. In Reward, whenever a mapping event
occurs, the task that has the highest value for reward is
assigned to the machine that just became available. In
Expected Reward, when a machine becomes available for a
mapping event, the task with the highest value for expected
reward is assigned to it.

For a task i, P;(t) is the probability (computed at time
t) of successfully completing task ¢ through multiple assign-
ments before its deadline expires. The expected reward for a
task 7 is given by the product r; P;(t), where r; is the reward
that this task can earn if completed successfully. For any
machine j, we represent by p; the probability of machine
j being available for an assignment. Also, the term V;(t)
is the estimated number of reassignments that task i may
undergo starting at time ¢ up to its deadline. The derivations
of these terms are shown in [9]. P;(¢) is calculated using
the equation shown below.

Vi(t)

M
Pi(t) =1~ (Y pj(1 —e ") (M
j=1
The term (1 — e~*i%i) gives the probability of task

¢ failing on machine j. This factor is weighed with the
probability of machine j being available for an assignment
(p;), and therefore the weighted sum, Zj\il Dj (1- e~ Nitij ),

gives the probability of failure when task ¢ is mapped to a
machine. Therefore, Equation 1 represents the probability
that task ¢ will successfully complete before its deadline,
even through multiple assignments.

4.2.2 Matching Heuristics:

There are two heuristics in [9] that use the concepts of
the Derman-Lieberman-Ross (DLR) Theorem [14] to guide
mapping decisions. We call them the Matching heuristic and
Expected Matching heuristic. A brief overview of the DLR
theorem is given below, followed by the Matching heuristics
that are implemented using the DLR concept.

The DLR theorem [14] provides an algorithm for op-
timally assigning a set of available workers to incoming
jobs. Each incoming job is assumed to have a reward value
associated with it. Each worker is assumed to have a prob-
ability (that represents the quality and skill of the worker),
with which the reward earned for a job is scaled. It is also
assumed that one has the distribution from which the reward
values for all the incoming tasks are sampled from. Using
the distribution of the reward values of the incoming tasks,
and the notion of the skill of the workers (determined by
their probabilities), the DLR method describes an algorithm
that maps high reward tasks to better skilled workers and
low reward tasks to lesser skilled workers. The distribution
that dictates the reward values of the incoming jobs is vital
to making these decisions.

The Matching heuristics [9] try to implement the DLR
concept within the resource allocation problem. In our en-
vironment, machines become available for mapping events,
and a task needs to be assigned to them. This is analogous
to jobs coming in and looking for a worker that can be
assigned to them. The distribution described in Section 3.2
is used to describe the quality and the likelihood of the
incoming machine, analogous to the distribution that governs
the likelihood of various reward values for the incoming job.
The only other factor that needs to be accounted for is the
ranking of the tasks, analogous to the ranking of the workers.
It is in this aspect that the Matching and the Expected
Matching heuristics differ. In Matching, the tasks are sorted
based on their reward values. In Expected Matching the
tasks are sorted based on their value of expected reward. As
before, expected reward of a task ¢ is given by the product

4.3 Modifications to Heuristics

We modify Equation 1 to incorporate the knowledge of
the machine that just became available for a mapping event.
Let us call the machine that just became available to be
machine J. The probability that this machine will become
available p; will be 1, and by a similar logic p; = 0,Vj #
J. Therefore, the summation term for this mapping event
will reduce to (1 — e~ *7%7). We know that this counts as
an assignment for task ¢, and therefore we extract the term



(1 — e=?%7) out, and reduce the count of the number of
reassignments of task ¢ (denoted by V;(t)) by one. This gives
us our new equation for P;(t).

Pi(t) =1— (1 —e M)x
Vi(t)—1

M
3 pi(1— e Nit) @)
j=1

We create the Latest Expected Reward and the Latest
Expected Macthing heuristics that are similar to the Expected
Reward and Expected Matching heuristics, but with the
difference that they use Equation 2 for their expression of
P;(t) instead of Equation 1. This is to denote the fact that
they use the latest information to compute P;(¢).

For experimentation purposes, we also model an environ-
ment where tasks are not allowed to come back when the ma-
chine they were assigned to failed. In such an environment,
the value of P;(¢t) is simply calculated using the equation
given below.

Pi(t) = e Mt 3)

S. Simulation Setup

In this study, the workload that we are modeling consists
of independent tasks, i.e., no communication is required
between the individual tasks, and there are no precedence
constraints. Each task is sequential (i.e., not decomposable
into parallel parts). It is also assumed that each machine can
handle only one task at a time (no multitasking).

We modeled different ETC matrices, as described in Sec-
tion 3.1. The entries of the ETC matrix represent the mean
execution time values of the different task classes on the
different machines. We modeled two types of environments;
the narrow and the broad environments. For the narrow
environment, the entries of the ETC matrix were uniformly
picked at random from the range [0.5, 4.0], whereas for the
broad environment they were uniformly picked at random
from the range [0.5, 9.5].

The values of the mean times to failure for the machines
were also randomly picked from a range depending on
the environment that was being modeled. For the narrow
environment, the range was [0.6, 1.0], whereas, for the
broad environment, the range was [0.6, 2.375]. Therefore,
the broad environment has wider ranges for the possible
values of the execution times of the tasks and the times
between failure for the machines in comparison to the
narrow environment.

Similar to the environment studied by Shestak et al. [9],
we model an environment with 200 tasks, six machines, and
five task classes. Each task is randomly assigned to one of
the five task classes. The ETC matrix has task classes along
its rows, and machines along its columns, and therefore
the size of the ETC matrix is 5 x 6. For each task, the
reward value was assigned by randomly picking an integer
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in the range [1, 100]. All the tasks in a task class have a
common deadline. The deadline for a task class was set to
six times the longest execution time of this task class across
the machines.

There were three main parameters that we varied to alter
the environment being modeled. The first was whether or
not we allow failed tasks to return back to the batch for
further remapping. The second was whether we use the
narrow or broad environment. The final parameter was the
type of ETC matrix used. We modeled four types of ETC
matrices: constant, column-varying, inconsistent, and task-
mach-consistent. We ran tests with all combinations of these
various parameters.

6. Experimental Results and Analysis

The goal of this study is to compare and evaluate the
performance of the heuristics under a variety of scenarios
to be able to choose which heuristic to use for different
environments. Therefore, it serves to only compare the
relative performance of the heuristics with each other under
the various scenarios, as opposed to comparing the absolute
performance of a heuristic across the scenarios. It would also
be inaccurate to make such a comparison, because the dif-
ferent scenarios have different execution time characteristics
and different handling methods for dropped tasks. These can
result in different values for the total reward earned by the
same heuristic under these varied environments.

For each simulation case, 100 trials were performed and
the results were averaged and 95% confidence intervals were
calculated. For each trial, new values were used for the
following: the entries of the ETC matrix, reward values of
the tasks, and fail rates of the machines.

We observed that the Expected Reward heuristic did not
perform better than the Latest Expected Reward heuristic
for any of the test cases. The Latest Expected Reward
heuristic is able to use the most recent information to
its advantage while calculating the probability of a task
successfully completing. The significant benefit earned by
using Equation 2 as opposed to Equation 1 comes from the
fact that we are able to factor out the current machine from
the summation, thus avoiding distorting the probability of
failure for this first mapping event.

From our experiments, we also observed that the Latest
Expected Matching heuristic performed better than both the
Matching and the Expected Matching heuristics. Therefore,
in Figure 2 we only show the results for the Reward, Latest
Expected Reward, and Latest Expected Matching heuristics.
Each of these three heuristics perform better than the other
two heuristics for at least some of the environments.

Figure 2 shows the results for the Reward, Latest Expected
Reward, and Latest Expected Matching heuristics for the
various types of environments that we modeled. Figures
2(a) and 2(b) show results from the case where re-mapping
of failed tasks is allowed. Figures 2(c) and 2(d) shows
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Fig. 2: Results showing the total reward earned by the Reward, Latest Expected Reward, and the Latest Expected Matching
heuristics in (a) the narrow environment with re-mapping allowed, (b) the broad environment with re-mapping allowed, (c)
the narrow environment with no remapping, and (d) the broad environment with no remapping. The results are averaged
over 100 trials and the error bars show 95% confidence intervals.

results with the case where each task can be mapped to a
machine only once. Figures 2(a) and 2(c) have results from
the narrow environment. This determines the ranges of the
mean execution times of the tasks and the mean fail times of
the machines. Figures 2(b) and 2(d) show results for the case
with the broad environment. For each of these charts, along
the independent axis are the results of the three heuristics
for the various types of ETC matrices that we modeled,
i.e., constant, column-varying, inconsistent, and task-mach-
consistent. It is worth noting that our goal will be to compare
the relative performance of the three heuristics for any given
scenario (i.e., comparing the bars within the set of three) as
opposed to comparing the results across scenarios.

The Reward heuristic performs the best among the three

heuristics when we have a completely homogeneous environ-
ment (i.e., modeled by the constant ETC matrix) irrespective
of whether or not tasks are allowed to come back, and
whether we use the narrow or the broad environment. Note
that in the case when tasks are not allowed to come back
(Figures 2(c) and 2(d)) and when the constant or the column-
varying ETC matrices are used, the Latest Expected Reward
and the Reward heuristic have equal results. On average, the
total reward earned by the Reward heuristic was at least a
45% improvement over that earned by the Latest Expected
Matching heuristic when the constant ETC matrix was used.
This can be attributed to the fact that the Reward heuristic
directly optimizes for reward, and in an environment where
all tasks perform similarly across all machines, the benefits



obtained by performing a matching of tasks and machines
is reduced.

In cases where the environment is heterogeneous (i.e.,
models of the ETC matrix other than constant), the Reward
heuristic beats the Latest Expect Matching heuristic when
failed tasks are allowed to come back for mapping events
(Figures 2(a) and 2(b)). This trend is reversed when failed
tasks are not allowed to come back (Figures 2(c) and 2(d)).
The Latest Expected Matching always does better than the
Reward heuristic (except the case with the constant ETC)
when failed tasks are not allowed to come back for re-
mapping. Also, in general the relative performance of the
Latest Expected Matching heuristic is better in such envi-
ronments. Unlike the other heuristics, the Latest Expected
Matching heuristic, tries to match “better” tasks (those
that have a higher value for expected reward) to “better”
machines (those that execute faster, and fail less often).
This is particularly helpful when re-mapping is not allowed,
because in this case, each task only gets one chance to
be mapped to a machine. The Latest Expected Matching
heuristic performs the best in this case because it holds on to
the better tasks until a good machine comes in for a mapping
event. The Reward (or the Latest Expected Reward) heuristic
simply assign the task with the highest reward (or expected
reward) to the next available machine.

The Latest Expected Matching heuristic performs better
than the Latest Expected Reward heuristic when the envi-
ronment uses the column-varying ETC matrix or the task-
mach-consistent ETC matrix and when failed tasks are not
allowed to re-map. This is because in such environments it
becomes easier for the Latest Expected Matching heuristic to
be able to designate some machines as being better than the
others. This helps the heuristic rank the machines in terms
of their “quality” and as a result provides better mapping
decisions. Moreover, when we use the broad environment as
opposed to the narrow environment, the relative performance
benefit of this heuristic increases. This is because there is
more variance in the performance of the machines and the
Latest Expected Matching heuristic is able to use that to its
advantage as it makes its decisions by ranking machines in
terms of their goodness. The more the difference between
the performance of the “good” and “bad” quality machines,
the more the benefit of using the Latest Expected Matching
heuristic.

When we use an inconsistent ETC matrix it becomes
hard for the Latest Expected Matching heuristic to rank
the machines. This is because in a highly inconsistent
heterogeneous environment, a machine may perform better
than another machine for one task, but may perform worse
for another task. This makes it harder for the Latest Expected
Matching algorithm to be able to rank the machines in a
global manner in terms of their “quality.” Therefore, we see
that the Latest Expected Reward heuristic always performs
better when we model the environment with an inconsistent
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matrix. It performs much better than the Reward heuristic in
all inconsistent ETC matrix cases, because it calculates the
expected reward (viz. the probability of earning some reward
amount) by looking at the execution time values of the tasks.
The Reward heuristic fails to look at the heterogeneity of the
system while making its mapping decisions, and therefore
performs poorly.

In summary, the Latest Expected Matching heuristic per-
forms the best when the environment being modeled is
similar to the environment of the DLR theorem [14] (on
which this heuristic is based), i.e., re-mapping of tasks is
not allowed, and the machines can be ranked clearly in
terms of their performance (modeled by column-varying and
task-mach-consistent types of ETC matrices). The Reward
heuristic performs the best when the environment is com-
pletely homogeneous (modeled by the constant type of ETC
matrix), because the execution times are the same for all
tasks and machines. The Latest Expected Reward heuristic
performs the best compared to the other heuristics in a highly
heterogeneous environment (modeled by the inconsistent
type of ETC matrix) because it optimizes for not just the
reward value but also the likelihood of earning that reward.

7. Related Work

The scheduling problem has been widely studied in het-
erogeneous computing environments (eg., [15], [16], [17]).
It is important to make the resource allocations be fault
tolerant, especially in distributed and grid computing en-
vironments. Various techniques have been used to cope
with the ill-effects of failures of compute resources. Check-
pointing and rollback-recovery are common techniques used
to avoid having to restart failed tasks from the beginning
(e.g., [2], [3], [4], [5]) (as mentioned in Section 1). Another
method used to improve the reliability of the system, in
terms of increasing the chances of completing tasks, is to
run replicas of the tasks on multiple compute resources (e.g.,
(6], [4], [7], [8D.

Shestak et al. [9] addressed the problem of maximizing
the reward earned by the tasks in an environment where
the compute nodes may randomly fail. Their work used the
concepts of a theorem introduced by Derman et al. [14].
There have been other works on scheduling that look at
maximizing reward earned by the tasks [18], but they do
not model environments where the machines tend to fail.
Our study builds on the work done in [9] to perform a
comparative study of the performance of the heuristics under
a variety of system environments.

8. Conclusions and Future Work

The goal of this study was to be able to model and
characterize various system environments and gauge the
relative performance of fault-tolerant heuristics in these
environments. This study extends the work of Shestak et
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al. [9] by addressing a similar problem, but performing
extensive tests on a wide-range of environments. We also
modified and improved the prediction mechanism of the
Expected Reward and the Expected Matching heuristics by
using the latest information we have about the system. We
simulated a variety of environments by changing different
attributes associated with the environment. Our results show
that the Reward, Latest Expected Reward, and the Latest
Expected Matching heuristics have different strengths and
weaknesses, therefore performing better or worse depending
on the environment.

One direction for future work is introducing a delay
before a failed machine returns for a mapping event. This
will help us to more closely model a realistic environment.
Also, we may try to modify the Latest Expected Matching
heuristic to make it more heterogeneity-aware. It would also
be interesting to modify the workload to have tasks whose
reward values degrade with time, instead of having a fixed
reward value until a hard deadline.
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GPU Acceleration of Genetic Algorithms for Subset
Selection for Partial Fault Tolerance
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Abstract - As reconfigurable logic devices see increasing use
in aerospace and terrestrial applications, fault tolerant
techniques are being developed to counter rising susceptibility
due to decreasing feature sizes. Applying fault-tolerance to an
entire circuit induces unacceptable area and time penalties,
thus some techniques trade area for fault tolerance. Area-
Constrained Partial Fault Tolerance (ACPFT) is a
methodology that explicitly accepts a device’s resources as an
input and attempts to find a maximally fault-tolerant subset,
but determining an optimal partition is still an open problem.
While ACPFT originally used heuristics for subset selection, a
modification called ACPFT-GA has been developed that uses
genetic evolution to provide significantly better fault coverage
in many applications. However, its running time is
substantially longer than standard ACPFT and may be
prohibitive. This paper presents a GPU-accelerated version of
ACPFT-GA that has executed over 27 times faster than CPU
versions, allowing ACPFT-GA to better scale to larger
circuits.

Keywords: Genetic algorithms, partial
reconfigurable logic, GPU programming

fault tolerance,

1 Introduction

Two options for a system’s processing device are general
purpose processors (GPU) and application specific integrated
circuits (ASIC). The GPU offers great flexibility but low
relative computational power. An ASIC can be designed to
provide the greatest processing capability, however this
requires a lengthy and very expensive design process, and it is
extremely costly for small production runs. A reconfigurable
logic device such as a field-programmable gate array (FPGA)
offers an attractive third alternative. They provide high levels
of computational power like ASICs, yet their ability to be
reprogrammed gives flexibility like GPUs. They are off-the-
shelf devices and therefore do not have the lead times of
ASICs. These features make them common choices in the low
production runs of aerospace applications, and they are
increasingly used in terrestrial systems. However, they may
contain millions of bits to store configurations, and this makes
them more susceptible to faults caused by electromagnetic
radiation than GPUs and ASICs. Aerospace systems are
currently concerned with errors due to single event upsets
(SEUs), and as transistor feature sizes continue to shrink,
terrestrial systems are also becoming wary[1, 2].

Many applications using reconfigurable logic are not safety
critical. A failure can be tolerated by ignoring the error and
continuing, such as in video playback. In other cases, the
operation can be reattempted, such as retransmitting dropped
packets in network communication. However, a reduction of
faults would clearly improve the user experience. Since
systems implemented with reconfigurable logic invariably
leave a portion of the device unused, these extra device
resources can be leveraged to provide some level of partial-
fault tolerance and reduce the fault rate. The problem of
applying partial fault-tolerance can then be formulated as
follows. The logic cells contained with the original circuit
must be partitioned into a protected subset and non-protected
subset such that the fault-coverage is maximized given a set
amount of additional logic resources. With current logic
devices having hundreds of thousands of logic cells, this
presents a gigantic solutions space.

A method of partial fault tolerance called Area-Constrained
Partial Fault Tolerance (ACPFT) has been developed that
accepts a circuit’s available area as an input and finds a
maximally fault-tolerance version of the circuit. This initial
implementation utilizes difference heuristics to determine a
partition, and it generally executes very quickly. A second
version called ACPFT — Genetic Algorithm (ACPFT-GA) uses
genetic evolution to explore the solution space. It was found to
produce significantly more fault-tolerant circuits in expected
application spaces, but the running times of ACPFT-GA can
be two orders of magnitude larger than ACPFT’s. To provide
the fault coverage of ACPFT-GA with a more acceptable
execution time, the research presented here accelerates
ACPFT-GA using NVIDIA CUDA, which is a popular
programming extension for running scientific computations
directly on massively-parallel graphics processors. This results
in an average speed-up of around 17 to 18 times over standard
ACPFT-GA with some cases showing speedups of over 27
times.

This paper is organized as follows. Section 2 reviews the
key concepts of ACPFT-GA, other efforts to accelerate genetic
algorithms with CUDA, and the key considerations when
developing with CUDA. Section 3 describes the
implementation of ACPFT-GA, the tool chain, and the
particulars of casting it as a CUDA-based algorithm. Section 4
presents the experimental results, and Section 5 concludes the

paper.
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2 Background

2.1 Partial Fault Tolerance

Since this paper focuses on the acceleration of ACPFT-GA
and not the introduction of ACPFT-GA itself, readers are
referred to [3] and [4] for the justifications of partial fault
tolerance in reconfigurable logic. These summarize the
advances in partial fault tolerance along with alternatives to
ACPFT such as the BYU-LANL partial TMR tool [5], partial
error masking [6], selective TMR [7], and Automatic Insertion
of Partial TMR [8]

Triple modular redundancy (TMR) remains the standard
fault-tolerance method for FPGAs [9]. It can be applied to
circuits regardless of the function and of the logic cells used,
and it often adds a minimal delay compared to other methods.
TMR almost completely protects a circuit against a single
fault, although voting logic may still be susceptible. However,
it more than triples the circuit's size with a corresponding
increase in power use. [10]. These advantages make TMR the
most common basis for partial fault-tolerance.

Area-Constrained Partial Fault Tolerance is a technique that
uses partial TMR to reduce the circuit area susceptible to faults
even if the majority voters are not considered ideal, meaning
that they can suffer faults also [3]. Ideal voters is an
assumption often used for simplification in other methods
because when a large subset of the circuit is being protected,
the cross-sectional area of the majority voters is significantly
smaller than the tripled area, perhaps by several orders of
magnitude, and the rate of faults in the voters is considered to
be negligible. This assumption is invalid in a fine-grained
approach where the protected area and majority voters have
comparable areas. ACPFT was originally designed to use
several heuristics and metrics to determine a maximally fault-
tolerant partition of a circuit’s logic cells.

ACPFT maps well to genetic algorithms since it is similar to
the familiar knapsack problem. In knapsack, there is a set of
items, each with a weight and a value, and a knapsack that can
hold a fixed weight. The optimization problem is to select a
subset of items that can be carried in the knapsack with the
maximum total value. The additional area of the FPGA relates
to the knapsack, and the logic cells with their areas and
sensitivities to faults relate to items with weight and value.
However, the fault-tolerance problem is more complicated
since the additional area required by each logic cell is not a
constant value. It is a function of the other cells being
protected. Previous research demonstrates that even simple
genetic algorithms can create more fault-tolerant partitions
than heuristic methods under common conditions, namely that
the amount of additional resources available for fault tolerance
is less than the size of the unprotected circuit [4].

2.2 Fundamentals of CUDA

CUDA is an extension to several common programming
languages, prominently C and C++, which requires an
NVIDIA-based graphics processor for execution. NVIDIA
GPUs are widely deployed and thus represent a very common
computing platform. For easy scalability, NVIDIA cards are
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designed around a generalized processing unit called a
streaming multiprocessor (SM). This allows the performance
of CUDA applications to scale based on the number and
hardware implementation of the SMs contained on a given
card. Details of NVIDIA GPUs can be found at [11].

Since the underlying hardware architecture of a GPU is
drastically different than a CPU, algorithms must be crafted
using several critical concepts in order to make efficient use of
the GPUs computational power [12]. Since GPU-based cards
have either a small cache system or none at all, they rely on
massive thread parallelism to hide memory access latency by
executing a different group of threads when one group block
on a memory operation. Therefore, an algorithm must be able
to extract sufficient parallelism from a problem to occupy the
GPU’s thread slots and mask this latency. Second, main
memory accesses are efficient only when reading from
contiguous memory locations. Data structures and memory
accesses should be structured to use this coalesced pattern.
Third, a GPU offers several different types of physical
memory, such as the large global RAM, small local shared
memory, constant memory, per-thread registers, and so on.
Careful design should use the most appropriate memory type.
Finally, an NVIDIA GPU executes threads in groups called
warps. For each clock cycle, all of the threads in a warp or
half-warp must either execute the same instruction or do
nothing. When threads within a warp execute different code,
called divergence, more and more threads will remain idle per
clock cycle, and the processing power of the GPU is under-
utilized.

With well-crafted algorithms designed with the above
considerations, GPUs can potentially execute algorithms
significantly faster than CPUs. GPUs can also solve problems
using an estimated one tenth to one twentieth of the power
required by traditional supercomputing systems [13], thereby
reducing costs.

2.3 CUDA as a Platform for Evolutionary
Algorithms

CUDA is already established as a popular platform for
evolutionary computing. Examples can be found for simple
genetic evolution [14] and differential evolution [15]. Ant
colony optimization has also been explored [16-18] as well as
particle swarm optimization [19-21].

In many evolutionary techniques, the execution time to
evaluate the fitness function is a significant fraction of the
algorithm’s overall time, as is the case with ACPFT. Thus,
even though there have been many implementations of
evolutionary algorithms using CUDA, and the common
operations are becoming well-understood, it is still crucial to
explore efficient implementations of new, unique fitness
functions and common evolutionary operators that support
them.



12

3 Implementation

3.1 Genetic Algorithm Structure

The solution to the partial fault tolerance partitioning
problem is coded as an ordered array of bytes in which each
byte corresponds to a specific logic cell in the circuit. The
byte’s value is ‘0’ if it is in the non-protected partition and ‘1’
if it is in the protected partition. One byte is used per gene in
the chromosome instead of one bit since other values are used
temporarily during the constraint satisfaction check described
later.

The algorithm randomly selects some chromosomes for
mutation, choosing those with higher fitness functions
proportionally more often. Each gene is examined for random
mutation. Mutation results in the binary value being flipped.
For crossover, chromosomes are selected in pairs. One gene is
randomly selected as the location for single point crossover.
Two new chromosomes are created from each pair selected.
Mutation is not performed on chromosomes created by
crossover.

The fitness function is simply the number of 1’s in the
chromosome, representing the number of logic cells that are in
the protected subset. Previous research has shown that this
correlates very highly with the actual amount of fault coverage
provided. However, the complexity in ACPFT-GA is that the
chromosome must represent a circuit that can fit within the
available logic resources. Therefore, the chromosome is
processed such that it represents a circuit with ACPFT
correctly applied. In this format, a gene is ‘0’ if it is
unprotected, ‘1” if it is a protected and tripled cell, and 2’ if
the cell is tripled and connected to a majority voter. With this
format, the amount of logic resources can be calculated and
compared to those available. If the resulting circuit violates the
constraints, the chromosome’s fitness is set to a value lower
than any possible valid chromosome. It is not culled since
further evolution may result in a valid chromosome again.

3.2 Tool Chain

Each circuit is represented in a net list in the common EDIF
format. ACPFT was written in Perl to accommodate reading
and processing this input file and altering it for the partially
protected output file. When using heuristics, the partitioning is
processed with the Perl script. If the genetic evolution is
selected, the ACPFT Perl script parses the EDIF net list
outputs a condensed version of the net list in a text file. A C++
program then imports this formatted net list, performs the
genetic evolution with or without using a GPU, and outputs the
best chromosome. The ACPFT in turn uses this chromosome
to partition the circuit and creates the proper modifications of
the EDIF net list that can then be implemented on an FPGA.
The script also generates a user constraint file to prevent the
FPGA tools from removing the redundant logic cells.
Currently, the ACPFT tools are run manually, but they are
designed such that they could be easily inserted into the
standard FPGA design flow and automated.
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3.3 CUDA Implementation

The chromosomes are stored in a 2-dimenional array of
characters in which each row corresponds to a complete
solution. The array contains enough rows to hold all the
members of the current generation and those created by
mutation and crossover for the next. Once this entire array has
been scanned to determine which chromosomes should be
carried into the next generation in order of decreasing fitness
function, the appropriate chromosomes are copied into a
second identical array, and this second array is then the source
of members for the next loop.

The GPU’s constant memory was used to store many
invariants of the net list, such as logic cell type, numbers of
destination cells, and lists of destinations cells. It was also used
to hold many kernel parameters that are fixed for a given
evolution. None of these values are required to be in constant
memory for the algorithm to function, so they could be moved
to global memory if the circuit is too large for constant
memory.

The pseudo code below shows the basic steps that are
performed per generation by ACPFT-GA.

1. Generate array of pseudo-random values

2. Randomly select chromosomes for mutation and
crossover

Create new chromosomes by mutation

Create new chromosomes by crossover

Calculate fitness function and validate constraints
Reorder the array of chromosomes.

o AW

CUDA has a random number library called cuRAND that
has a CPU-only version. It is used in the CPU implementation
so that both the CPU and GPU versions use the same pseudo-
random sequences and generate identical output. Also, the
cuRAND number generator is effective when generating large
batches of values, so it is called once at the beginning of the
loop to create all random values for that iteration.

In step 2, some random values are used to select
chromosomes for steps 3 and 4. The fitness values of the
chromosomes are summed, and each chromosome is assigned
a range of values equal to its fitness. Each random number is
scaled to the sum of fitness values, and then it is compared to
the chromosomes’ ranges to determine which is selected. In
the GPU version, this operation is performed on the GPU. The
kernel is written so that each block is 256 threads, each one
converting one floating point random number to an integer
corresponding to a chromosome. The number of blocks
required is the ceiling of the number of chromosomes needed
in the next two steps divided by 256. With the values tested,
there were far too few blocks to fully occupy the card, but it is
more efficient than transferring data to the CPU for
computation.

In step 3, the algorithm selects a chromosome based on the
indices from step 2, and it checks each gene for a mutation
using random values still remaining from step 1. On the GPU
implementation, one block is launched for each chromosome
being mutated. The block size is set to 256, with each thread
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checking every 256" gene for mutation. This allows the SM of
a revision 2.0 GPU to hold 6 blocks, and the number of
blocks/chromosomes needed to fully utilize the card is only a
few dozen to a couple hundred.

The crossover step is similar to the mutation step, using
indices from step 2 and the remaining random values from step
1. A pair of chromosomes is handled by one block, and each
block uses 256 threads, again with each thread processing
every 256™ gene. Twice the number of chromosomes is needed
to occupy the GPU than in step 3, but this number was easily
reached.

Step 5 is by far the most complex. At this point, a
chromosome contains only 1’s and 0’s representing the
protected and non-protected subsets of logic cells. In ACPFT,
each protected cell must be tripled, requiring three of that type
of logic cell. For each tripled cell, all of the cells that use its
output and are still classified as non-protected must be tripled
and then combined with a majority voter. This step is
performed first and is designed for as many coalesced accesses
as possible, although some are unavoidable when examining a
cell’s destinations.

Once cells have been promoted to tripled and voted, each
cell with a voter is examined to see if all destination are tripled
or voted. If so, the logic cell can be converted to a tripled cell,
increasing the size of the protected subset and actually freeing
some resources used for voters. This step also has coalesced
and non-coalesced accesses.

After this step, the fitness function is calculated with a
reduction from the CUDA thrust library. The sum consists of
the sensitivities for all cells that are in the protected subset,
ignoring cells that are single or tripled. Next, the constraint
condition is checked. Each logic cell adds a count to the logic
cells used based on its state. Single cells add one to the like
type, tripled cells add three to the like type, and voted cells add
three to the like type and one to the type used for voters. These
counts are contained in shared memory and require atomic
addition instructions to avoid races.

Once all of the logic cells are accounted for, one thread
compares the needed resources to the available resources. If
the constraints aren’t met, the fitness value is adjusted to 1.0,
so that the invalid chromosome still has a small chance of
being selected in the next generation. Further mutation and
crossover may again result in a valid cell.

The CUDA thrust library is used in step 6. The fitness
values are sorted and the new chromosome order is determined
using these optimized sorting functions. Another thrust
function calculates the prefix sum used for the chromosomes
ranges. Finally, a kernel uses the new order to copy the best
chromosomes from the current chromosome array into the
second array, and the pointers to these arrays are swapped in
preparation for the next generation.

4 Testing and Results

ACPFT-GA was tested using the alu4, apex2, and pdc
circuits from the ACM/SIGDA "Big 20" benchmarks. These
circuits were chosen since they show a range of circuit sizes
with 597, 1056, and 1328 logic cells respectively. They have
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also been used in previous research, and data exists for
comparisons.

As with previous ACPFT experiments, the performance
given different amounts of available resources is accomplished
by creating an array of theoretical FPGAs of varying sizes.
The number of logic cells in each circuit is used as a “perfect-
fit” FPGA. Larger devices are emulated by increasing the
number of each resource by a constant multiplier and rounding
down. This method created up to 23 theoretical FPGAs, from
10% to 230% in increments of 10%. Between 210% and
230% depending on the test circuit, there were sufficient
resource for full TMR, and partial fault-tolerance would no
longer be necessary.

The genetic algorithm parameters were selected to match
those used in [4]. The test used a set of 4096 chromosomes.
For each circuit, the mutation factor was the reciprocal of the
number of logic cells. In each generation, the top 256
chromosomes were carried over into the next generation. 1920
were selected using elitism for mutation, and each gene was
checked for a mutation. The remaining 1920 chromosomes
were generated by crossover. Mutations were not applied to
chromosomes created through crossover. Like the previous
work, each initial chromosome was initialized to a string of
"0"s, representing a fully unprotected circuit. Three more
experiments were performed using the output of a heuristic
method from previous research to initialize the chromosomes.
The fanout method was chosen since it yielded very good
results and had a low execution time. For the second
experimental setup, all additional resources were supplied to
the fanout method, and then the result was refined with the
genetic algorithm. In the third and fourth setups, the fanout
method was supplied 10% fewer and 20% fewer resources
than available respectively. In these cases, there were still
some unallocated logic cells when the genetic algorithm was
applied.

The test computer used a Core i7 processor at 2.8 GHz, 6
GB of RAM, a GTX 480 graphics card, and CUDA SDK 4.0.
ACPFT-GA was run ten times on each simulated FPGA using
just a CPU and then using the GPU. Each test was allowed to
run for 1000 generations. The times required for mutation,
crossing, and calculating the fitness functions and constraint
conditions were logged for all runs.

The mutation time, crossover time, fitness function and
constraint checking time, and total execution time are shown in
the following tables. Times are shown for the CPU-only
version, the GPU accelerated version, and the speedup of the
GPU version relative to the CPU version. The data for alu4,
apex2, and pdc are shown in Table 1, Table 2, and Table 3
respectively for the tests that begin with no initialization, i.e.
all available resources are unused and selected only by the
genetic algorithm. The data for tests in which 20% of the
resources are left unused, and the chromosomes are initialized
with the output of ACPFT using fanout are shown in Table 4,
Table 5, and Table 6 for alu4, apex2, and pdc respectively.
The data for the other two tests are not shown due to space
limitations, but the results are very comparable to the 20%
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used tests. These tables show results from 10% additional
resources to 230% additional resources.

The data shows several patterns. First, the amount of time
required for mutation and crossover remains fairly fixed for
each circuit over the range of additional resources. This is
expected, since the work performed for the mutation and
crossover steps depends on the number of genes and the
number of chromosomes. From circuit to circuit, the
differences in mutation times and crossover times for both
versions were smaller than the difference in circuit sizes. This
indicates that these steps are communication bound, as is
expected.

The fitness and constraints checking execution time shows
much more variation. The pattern of this variation is shown in
Figure 1 for the pdc circuit with no initialization accelerated
with the GPU, and it is representative of graphs of other tests.
This graph demonstrates that the amount of time required for
the fitness function is very dependent on the amount of
additional resources made available. This pattern is logical. To
evaluate the fitness function, each cell that is within the
protected subset must be examined to triple and vote its output
cells, followed by examing voters to see if they can be
removed. As the amount of available resources increases, the
number of cells within the protected partition increases, and
thus the execution time required also increases.

The data shows that the mutation and crossover speedups are
comparable between circuits. The tables also demonstrate that
the crossover time consumes a few percent of the total time,
the mutation time is usually within 10% to 20% of the
execution time (with lower percentages as more resources are
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made available), and the fitness function consumes the
majority of the processing time. Therefore, the total speedup
depends largely on the speedup of the fitness function. The
speedups between circuit is also very similar. All three circuits
were implemented with the same time of logical device and
had about the same average fanout. Therefore, the amount of
work per logic cell in the protected subset was roughly the
same for all three circuits.
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Figure 1 Per Generation Execution Time for the pdc Circuit
using a GTX 480 and 20% Unused Additional Resources

Table 1 Performance of alu4 with no initialization

Mutation Crossover Fitness and Total
Constraints
Min. time w/CPU 15,874.2 ms 5,874.8 ms 55,103.7 ms 77,068.7 ms
Max. time w/CPU 17,267.5 ms 7,044.1 ms 89,340.1 ms | 113,767.3 ms
Ave. time w/CPU 16,641.1 ms 6,478.9 ms 76,733.0 ms 99,968.7 ms
Min. time w/GPU 856.4 ms 123.7 ms 3,011.3 ms 5,081.7 ms
Max. time w/GPU 1,134.8 ms 185.1 ms 7,093.1 ms 19,412.1 ms
Ave. time w/GPU 1,068.7 ms 153.9 ms 5,504.3 ms 12,742.3 ms
Min. Speedup 14.0 32.1 12.4 13.4
Max. Speedup 20.0 54.1 17.3 17.5
Ave. Speedup 15.6 42.5 14.3 15.1
Table 2 Performance of apex2with no initialization
Mutation Crossover Fitness and Total
Constraints
Min. time w/CPU 25,186.7 ms 7,7740ms | 108,212.6 ms | 144,558.5 ms
Max. time w/CPU 26,760.9 ms 8,917.8 ms | 158,688.5ms | 194,473.5 ms
Ave. time w/CPU 27,102.6 ms 8,420.2ms | 142,759.2ms | 179,140.1 ms
Min. time w/GPU 1,158.2 ms 154.6 ms 4,481.6 ms 8,743.7 ms
Max. time w/GPU 1,340.5 ms 232.3 ms 11,750.8 ms 47,051.5 ms
Ave. time w/GPU 1,243.5 ms 194.2 ms 8,850.8 ms 29,703.4 ms
Min. Speedup 19.5 36.8 12.9 14.0
Max. Speedup 22.4 56.4 23.3 24.2
Ave. Speedup 21.8 43.8 17.1 18.2
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Table 3 Performance of pdc with no initialization

Mutation Crossover Fitness and Total
Constraints
Min. time w/CPU 31,728.3 ms 8,887.0ms | 131,546.4ms | 172,293.0 ms
Max. time w/CPU 32,522.6 ms 9,804.8 ms | 194,660.3 ms | 236,821.8 ms
Ave. time w/CPU 32,185.7 ms 9,396.8 ms | 174,245.2ms | 215,949.1 ms
Min. time w/GPU 1,243.5 ms 177.4 ms 4,865.0 ms 10,802.9 ms
Max. time w/GPU 1,398.7 ms 245.9 ms 16,053.1 ms 70,709.3 ms
Ave. time w/GPU 1,340.3 ms 206.6 ms 12,231.8 ms 42,948.1 ms
Min. Speedup 23.0 38.5 12.0 13.3
Max. Speedup 25.7 53.9 27.0 27.1
Ave. Speedup 24.0 45.9 15.1 16.4

Table 4 Performance of alu4 initialized with fanout heuristic and 20% area free

Mutation Crossover Fitness and Total
Constraints
Min. time w/CPU 16,219.7 ms 6,019.2 ms 60,460.7 ms 82,970.3 ms
Max. time w/CPU 20,661.1 ms 9,091.9 ms 93,772.2ms | 123,792.7 ms
Ave. time w/CPU 19,772.6 ms 8,386.4 ms 84,7085 ms | 113,263.4 ms
Min. time w/GPU 1,039.0 ms 132.1 ms 3,554.2 ms 6,502.0 ms
Max. time w/GPU 1,052.8 ms 154.2 ms 6,799.4 ms 11,178.7 ms
Ave. time w/GPU 1,044.1 ms 139.3 ms 5,438.7 ms 8,500.5 ms
Min. Speedup 15.5 434 13.6 15.2
Max. Speedup 19.7 66.0 19.2 20.3
Ave. Speedup 18.9 60.2 16.0 17.3

Table 5 Performance of apex2 initialized with fanout heuristic and 20% area free

Mutation Crossover Fitness and Total
Constraints
Min. time w/CPU 25,970.9 ms 8,020.1 ms | 120,902.6 ms | 156,958.0 ms
Max. time w/CPU 28,001.2 ms 9,104.0 ms | 146,805.2ms | 182,581.4 ms
Ave. time w/CPU 26,439.2 ms 8,570.1ms | 137,966.6 ms | 173,902.9 ms
Min. time w/GPU 1,109.1 ms 111.0 ms 5,639.5 ms 13,036.7 ms
Max. time w/GPU 1,298.5 ms 158.0 ms 11,483.9 ms 22,720.0 ms
Ave. time w/GPU 1,164.5 ms 135.2 ms 8,901.9 ms 15,913.5 ms
Min. Speedup 20.5 55.9 125 14.0
Max. Speedup 23.9 78.6 21.6 22.9
Ave. Speedup 22.7 63.9 16.1 17.6

Table 6 Performance of pdc initialized with fanout heuristic and 20% area free

Mutation Crossover Fitness and Total
Constraints
Min. time w/CPU 31,476.9 ms 8,633.9ms | 145,464.6 ms | 187,116.4 ms
Max. time w/CPU 32,764.1 ms 9,961.1 ms | 186,007.6 ms | 228,721.8 ms
Ave. time w/CPU 32,211.5 ms 9,339.5ms | 172,327.6 ms | 214,013.6 ms
Min. time w/GPU 1,277.9 ms 145.2 ms 8,104.6 ms 14,250.6 ms
Max. time w/GPU 1,325.3 ms 197.7 ms 15,348.0 ms 29,715.3 ms
Ave. time w/GPU 1,296.7 ms 173.9 ms 12,094.0 ms 22,916.1 ms
Min. Speedup 23.9 43.7 12.1 13.6
Max. Speedup 25.5 65.8 17.9 19.6
Ave. Speedup 24.8 54.2 14.7 16.1
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5 Conclusions

This research presents a significant acceleration of the
partial fault tolerance method area-constrained partial fault
tolerance using genetic evolution by employing NVIDIA
CUDA to execute the algorithm on massively parallel
graphical processing units. This speed up allows this method
to be much more efficiently applied to larger circuits, and it
will benefit from additional acceleration as the processing
power of graphics processors tracks that of reconfigurable
logic devices.
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Abstract— As the mean time between failures has decreased,
applications should be able to handle failures avoiding
performance degradation if possible. This work is focused on
a decentralized, scalable, transparent and flexible fault
tolerant architecture named RADIC an acronym for
Redundant Array of Distributed and Independent Controllers.
As MPI is a de facto standard used for communication in
parallel computers, RADIC have been included into it.
RADIC's default behavior is to restart failed processes on
already used nodes, overloading them. Moreover it also could
be configured to keep the initial process per node ratio,
maintaining the original performance in case of failures. In
this paper we propose a transparent and automatic
management of spare nodes in order to avoid performance
degradation and to minimize the mean time to recovery —
MTTR when using them. Our work provides transparent fault
tolerance for applications that are written using the MPI
standard. Initial evaluations show how the application
performance is restored as it used to be before a failure,
minimizing the MTTR by managing faults automatically.

Keywords — RADIC, MPI, Fault Tolerance, Decentralized, Spare
Nodes, Uncoordinated Checkpoint.

1 Introduction

Considering the many long-running parallel applications
that are executed on High Performance Computer — HPC-
clusters and the increase in the failure rate [1] on these
computers, it becomes imperative to make these applications
resilient to faults.

Hardware failures may cause unscheduled stops to
applications. If there are not any fault tolerant mechanisms to
prevent it, these applications will have to be re-executed from
the beginning. If a fault tolerant mechanism is used, failures
could be treated. In such environment an automatic and
application transparent fault tolerance mechanism is desirable.
It could also reduce the complexity of applications
development. Failure treatment and management are crucial to
maintain the performance of HPC applications that are
executed over several days.

One of the most commonly used approaches to deal with
failures in HPC parallel applications is the rollback-recovery
approach based on checkpoint and restart protocols. Rollback-

* This research has been supported by the MICINN Spain under contract
TIN2007-64974, the MINECO (MICINN) Spain under contract TIN2011-
24384, the European ITEA2 project H4H, No 09011 and the Avanza
Competitividad 1+D+I program under contract TS1-020400-2010-120.
This paper is addressed to the PDPTA’12 Conference

recovery protocols periodically save processes states in order
to rollback in case of faults.

Checkpoints could be performed using a coordinated or
uncoordinated ~ checkpointing  protocol.  Coordinated
checkpointing protocols create a consistent set of checkpoints
by stopping all the processes in the parallel application in a
consistent state and then taking a snapshot of the entire
application. This approach minimizes the overhead of fault
free execution, but in case of faults, all processes (even those
that have not failed) must rollback to the previous consistent
saved state. All the computation time used to progress the
parallel application execution before the fault and after the last
snapshot is loosed.

In uncoordinated checkpointing protocols, each process is
checkpointed individually, and it could happen in different
moments of the execution. Thus, there is not a global
consistent state. The advantage of this method is that in case of
faults only the affected processes must rollback. In order to
avoid the domino effect [2], this approach should be combined
with an event logging protocol.

When a parallel application is executed, we usually seek
for executions with an optimal amount of resources to
maximize the speedup or efficiency. When a failure occurs
and the application loses some resources all the initial tuning
effort is loosed.

In this paper we present new RADIC [3] enhancements to
avoid performance degradation when failures occur. The
objective is achieved wusing automatic spare nodes
management to maintain the initial amount of resources when
node failures occur. We also try to minimize the MTTR after a
failure is detected by managing faults without human
intervention. For that reason, every fault tolerant tasks and
decisions are made automatically. The RADIC architecture
has been integrated into the Open MPI library to allow
execution of real scientific parallel applications and to be
application-transparent.

Our approach considers the consequences that node
failures bring to parallel applications. A physical failure
affects computing components. If these components are not
replaced properly there is a loss in computational capacity.

M N2 N3
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Figure 1. RADIC components
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Running a parallel application with fewer resources than the
optimal, causes this degradation.

This work is presented and divided as follow: section 2
describes the RADIC architecture, its components and how it
operates to protect an application against failures. In section 3
we introduce the related work on fault tolerant systems. The
section 4 presents the integration of RADIC into the Open
MPI library to provide user-transparent fault tolerance. Next,
section 5 illustrates the initial results obtained with the
described implementation. Finally, section 6 presents the
conclusions and future lines.

2 RADIC Architecture

RADIC [3] is a fault tolerant architecture for message
passing systems based on rollback-recovery techniques. These
techniques rely on uncoordinated checkpoint protocol
combined with a receiver based pessimistic event log [4]. The
approach that was chosen does not need any coordinated or
centralized action or element to carry out their fault tolerance
tasks and mechanisms, so application scalability depends on
the application itself.

The RADIC architecture acts as a fault tolerant layer
between the MPI standard and the parallel machine (fault
probable). This fault tolerant layer provides a fault-resilient
environment for parallel application even when the application
runs over a fault-probable parallel machine.

Our work is focused on providing an application-
transparent fault tolerant middleware within a message passing
library, specifically, Open MPI [5].

Critical data such as checkpoints and event logs are stored
in a different node than the one in whichthe process is
running. Processes that were residing in a failed node will be
restarted in another node from their latest checkpoint, and will
consume the event log in order to reach the before fault state.
RADIC policies provide a transparent, decentralized, scalable
and flexible fault tolerance solution.

2.1 RADIC components

RADIC provides fault tolerance based on two main
components: protectors and observers. In the Figure 1 we
illustrated computing nodes (Ny), application process (Px), the
protectors (Ty), and the observers (Ox) where the sub-index x
represents the process number and y represents the node
number. Protectors and observers work together with the aim
of building a distributed fault tolerant controller. Both
components are described below:

e Observers: are responsible of process monitoring and
fault masking. Each application process has one
observer attached to it. The observers performs event
logging of received messages in a pessimistic manner,
they also take periodic checkpoints of the process to
which it is attached. Checkpoints and logging data are
sent and stored in their protectors located in another
node (Figure 1). During recovery, the observers are in
charge of processing with the event log, replaying
them in order to reach the same state before fault.

e  Protectors: on each node there is a protector running,
their main function is to detect node failures via a
heartbeat/watchdog protocol. Protectors also store
checkpoints and event logs sent by observers. When a
failure occurs, the protector has to restart the failed
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processes that it protects; they also have to reestablish
the heartbeat/watchdog protocol since it gets broken
due to node failures.

2.2 RADIC Operation

Fast failure detection is one of RADIC priorities, since it is
one of the variables that affect the MTTR. RADIC first
detection mechanism is a heartbeat/watchdog protocol that
allows protectors to learn about neighbor’s protectors faults.

As every communication goes through the observers, they
have absolutely control of messages exchange between peers.
Observers can also detect and mask faults. Each protector
maintain a data structure called radictable, where each entry
(an entry per process exists in the application) of the structure
is composed of a process id, the URI of the process, URI of its
protector, and a unique clock of received and sent messages.
When a process fails and get restarted, the observers consult
the radictable in order to find about the node where the
process has been recovered by asking the process’s protector.
The protectors updated the radictable on demand when they
identify any processes failures.

In the Figure 2a it is possible to see a fault free execution
using RADIC without spare nodes support.

When a failure occurs (Figure 2b), the parallel application
execution will continue with one less node. The node failure is
detected by the heartbeat/watchdog mechanism. After the
failure, the heartbeat/watchdog mechanism is reconstructed,
and T4 indicates T2 as the new protector of P4 (Figure 2c). O4
needs to take a checkpoint of P4, because its latest checkpoint
gets lost when T3 fails. T2 restarts and re-executes P3(Figure
2d), and also will indicate that the new protector of P3 is T1.
Then O3 will take a checkpoint of P3 and send the data to T1.
Finally, O3 we erase old message logs.

The protectors have two operating modes: active or
passive. Active is when they form part of the detection scheme
and there are some application processes running on its node
(all nodes of Figure 2). Protectors may be in a passive state
when they are running in a spare node, this is a