
SESSION

GENETIC + EVOLUTIONAY ALGORITHMS

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 1

2 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Universal Adaptable GA with Engineering Help Tutorial

James G. Schiiller, Greg L. Vitko, and Christian P. Wagner

Department of Industrial and Systems Engineering, Oakland University, Rochester, MI, United States

Abstract - The Many treatises on genetic algorithms (GA)

analyze particular methods of developing problem specific GA

and few try to develop a comprehensive analysis of

combinations of all methods into a universal framework. Such a

universal framework could be used to develop what could be

called a Universal Adaptable GA. One of the problems of GA is

that no one exactly knows all the details. These can be the ever-

changing parts and cannot be made static at this time until they

are more fully understood. Other areas are well understood,

these should be the static parts in the universal adaptable GA.

The goal of this work is to explain both general and problem

specific areas by an example with a variant of Tetris as case

study to demonstrate how a GA can solve problems. This

example will make GA easier to understand and replicate.

Keywords: Artificial Intelligence in Games, DNA, Genetic

Algorithm, Tetris

1 Introduction

 The development of faster computers in the twenty-first

century has made it possible for computers to explore their

environments and create solutions for many types of problems

without much human intervention. The computer is no longer

seen as a big storage bin, but as a useful supplement to help

people solve complex problems, on condition: we have to give

the computer the right set of instructions. Coming up with these

right set of instructions is a problem. The instructions given

have to be both general and specific enough to satisfy the

minimum requirements for responding to many different types

of problems. Responses do not have to be perfect. The

universal adaptable genetic algorithm (GA) has been proposed

as a suitable method to apply to get the computer to respond to

many different types of problems for us.

 Before continuing on to having the computer respond to

some challenging problems, we have to have a clear

understanding of how a computer GA exactly works, absent

from all the common misunderstandings. After understanding,

we can proceed to deal with more difficult aspects of the GA

and see why developing the universal adaptable GA is a good

idea. It is the high hopes of this research to start to assemble a

universal adaptable GA, for other researchers to adjust and

expand and apply to larger scale problems. How this is done is

by demonstrating an application of GA to a variant of the game

of Tetris.

2 Quality of Solutions

 The computer can be used as a resource to solve real

problems by applying a GA and running it to speed up millions

of years of evolution by simulation within an hour‘s amount of

time. The result is the creation of an ―individual‖ who can

solve problems in a real environment. In order for the computer

to be resourceful for us, we have to first understand the GA.

Knowing what quality of solution it seeks is a good place to

start.

 The GA aspires to converge on the equilibrium solution

to satisfy the minimum requirements of a problem. This is an

adequate compromise when facing new problems. The GA

does not normally seek to converge on perfection, so there has

to be this compromise of a robust solution but not necessarily

the optimum solution. For example, a genetically bred

thoroughbred horse can be seen as a genetic solution for short

distance speed, but even champion thoroughbreds have been

defeated in extreme distance horse races by ―mutt‖ American

mustangs without as specialized short race breeding. The point

is the realistic goal of any artificial general intelligence method

including GA is to find the mutt.

3 Genetic Algorithm

 John Holland discovered the GA in terms of AI for

applying it to computers [1]–[3]. Holland first started looking

around at how the GA even works. We know it takes place

from sex. There is the DNA strand from the father and the

DNA strand from the mother. Somehow two DNA strands

come together and create a child. The first questions he asked

then were ―What‘s the mechanism by which this happens?

What do you do? How do you get these DNA strands to work?

What‘s the mechanism behind it?‖

3.1 Genetic Algorithm Outline

 The overall idea of what is going on with genetic learning

is shown in the steps below. These are the steps in genetics

given to the computer to use genetics to create intelligence.

The steps are as follows:

1) Define what a DNA strand is for our setting AND we have

to define an interpreter that transforms any DNA strand

into an individual that performs in the environment.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 3

2) Randomly create a population of N individuals (e.g.,1,000

individuals).

3) Now we have to determine the fitness of any individual.

4) We create a new population of 1,000 by creating pairs of

parents to produce one offspring 1,000 times. Pick two

parents at random where the fitness of each parent affects

the likelihood that it is selected (the better the fitness, the

more likely it is selected). When the two parents are

selected, the new child is determined by genetic operators:

e.g., crossover, inversion and mutation.

5) Keep the new population of 1,000 and discard the old

(many variations exist – e.g., keep the 5% best, can one

individual be father and mother?).

 The GA has a simple outline, yet the devil is lurking in

the details. Keep in mind this is an oversimplification of how

real DNA works in biology.

3.2 Mapping the Outline

 Step one in the preceding outline asks us to define the

DNA strand. The definition of the DNA strand in the universal

adaptable GA is shown below. The words DNA strand,

chromosome, organism, and individual are interchangeable

words. The length and number of organisms are scaled down

for illustration. Contrast the number of individuals below with

the example number given in the outline. There would

normally be more than 10 initial organisms in the initial

population, as the steps in the GA specified there should be

1,000 individuals. Additionally, the DNA strands below only

have a chromosome length of 10. The size of the organisms

listed is a gross simplification of DNA in GA. Remember the

goal is to avoid all the common misunderstandings. Some

definitions have to be defined and simplifications made on

smaller scales, to see the respective computer model part

matched to the equivalent part in the biological genetics.

organism0 = (0000000000)

organism1 = (0101010101)

organism2 = (1010101010)

organism3 = (1110000111)

organism4 = (0011001100)

organism5 = (1100110011)

organism6 = (1010101010)

organism7 = (0011111100)

organism8 = (0000000000)

organism9 = (0101010101)

Each gene in the organism is equivalent to a pair of zeros in the

first organism0 = (0000000000) <=> (|00|00|00|00|00|), where

the ‗|‘ delimits the beginning and end of a gene. The full four

letter genetic alphabet ACGT can be represented the same way

in a computer using the following binary assignments:

A = 00, C = 01, G = 10, T = 11.

 Everything we perceive can be encoded in ―0‘s‖ and

―1‘s.‖ Computers are only limited by the hardware, thanks to

current software implements of larger integer values.

 This completes the illustration of the DNA strand of an

organism from the outline. There is however two other things

in the outline we need to map for step 1 to be complete. First,

the interpreter must be defined, but we find quickly we don‘t

know what to interpret – there is no problem to respond to –

yet. It will have to wait until later when more information is

gathered on the specific example problem given in a later

section. Second, the environment has to be defined.

 Stated more implicitly in the outline is the environment

(or input) to define, or the part of the environment to pay

attention to. These implicit details are one of the places the

devil lurks. Are the environmental inputs words, sentences,

shapes, etc.? It likewise will have to wait until a specific

problem is given. It‘s the same situation the interpreter had.

This lack of information to define these parts tells us something

important. The Environment (Inputs) and the Interpreter need

to be replaced for every different problem encountered, making

them changeable parts. There are a few other similar problem

specific elements to go on the changeable parts list. Altogether,

they are the 1) Inputs, 2) DNA Instructions, 3) Interpreter, 4)

Goals, and the 5) Outputs. These elements all need to be

implemented differently for each unique problem.

 Reproduction can also be done many different ways. It is

reasonable to use a cumulative distribution function for the

selection of parents, stochastic crossover, and 5% mutation rate

for each bit position in the gene; these are as good as any other

methods to use. These genetic operators are candidates to be

the sixth part on the changeable parts list. They will be static

here for simplicity of keeping the changeable parts list down to

five items.

 The other remaining steps can be mapped. Mapping the

rest of the steps outlined above to something closer to

computer language yields the following algorithm. Notice, this

step would not be necessary if a universal adaptable GA was

available as proposed. For now there is no universal GA, so the

following steps are an idea about how to map the steps given

earlier as a main function for the universal adaptable GA.

These steps are the fixed parts to the Universal Adaptable GA.

 If the individual is to perform in an actual real life

environment, there needs to be another small addition made

after the outline so the individual can perform in the

environment, as shown below.

Algorithm 1 Universal Adaptable GA Main

Input: Environmental inputs, initial chromosomes.

Output: Highest rated individual.

1: repeat for number of GENERATIONS (e.g., 2)

2: repeat for number of ENV INPUTS (e.g., 14 shapes)

3: repeat for number of CHROMOSOMES (e.g., 10)

4: interpret (chromosome, environmental input)

5: rate chromosomes

6: if generation < GENERATIONS

7: reproduce

8. save highest individual

4 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

 Everything is mapped besides the changeable parts.

Actually, these are the hardest parts to get right to make use of

genetics. Before defining these parts, we need a problem to

solve. In order to get something more concrete, an example

problem is given.

4 Example Problem

 What we have chosen for our fist problem to solve is the

fairly well-known problem of dropping dies (or parts) on a

cloth to make seat covers. The problem has many varieties. All

varieties of the problem generally try to fit shapes on a surface,

without overlapping, trying to get the least amount of waste as

possible. You could add as many constraints to the problem as

you like. You have to stop somewhere to get something done.

The point being, the added constraints you impose should be

implementable within a day‘s work. This is the right level of

generalization without having to start over each time with a

fresh implementation whenever presented with a new

constraint, or problem.

4.1 Tetris Variant

 We look at most hard problems as games. Instead of

looking at the problem as cloth cutting, it can be fitted into

something more entertaining, into a variant of the game of

Tetris, with the same inherent problems. See Figure 1 for an

arrangement of how the Tetris shapes should be placed on the

board (or cloth) in a compressed format.

Figure 1: Tetris blocks arranged in compressed format.

 The object of the ―Tetris‖ game is to create an individual

player, which places the different parts, the Tetris blocks called

tetriminos, ―tets‖ for short, on the board, opting to place the

most pieces on the board as possible. It is easier to start with a

smaller scale problem and solve the problem on this smaller

scale before scaling it up to the same problem with larger size.

You should eventually be able to scale it up to an inexhaustible

size, and get a good enough solution using the same universal

GA and adapting it to the larger board size with a little

engineering help. Of course, first you have to understand how

to solve the smaller scale problem before it will take a day‘s

work to expand it to a larger scale problem. For our concerns

the size of the board is a sheet of 6x10 squares. See Figure 2 for

the board representation used.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 The border of four extra squares surrounding all sides of

the inner board is to ease with implementation details, and

seems to be a recurring way to make problems more

implementable, instead of having to do level logic, such as, if

this, else if that, else this, and so on. Exactly four outer board

squares is constant for any sized board, for reasons shown later.

It may have its genetic equivalence in biology as part of the

extra bits material that doesn‘t seem to be used, in the non-

coding regions of DNA, termed the dead code as opposed to

the inner board, termed the active DNA or active code. It has

definitely been useful when placing the proximity numbers on

the smaller contained board, not having to worry about if the

shapes go over the inner board‘s area.

4.2 Changeable Parts

 The variant of the game of Tetris is the specific problem

needed before being able to define the abstract parts into

something concrete. The parts of GA on the changeable parts

list, the 1) Inputs, 2) DNA Instructions, 3) Interpreter, 4)

Goals, and 5) Outputs will now be defined.

5 Mapping Tetris Variant

5.1 Environmental Inputs

 All shapes have four squares. There are a total of seven

different types of tets. All types can be seen looking back to

Figure 1: one of each tet shape in each symmetrical triangular

group split by the diagonal. The actual environmental inputs

will come in as shown in the following sequence.

square, s, z, T, L, J, l, square, s, z, T, L, J, l

 Any amount of shapes which can cover at least 90% of

the board space is reasonable to consider. Anything less is too

Algorithm 2 Universal Adaptable GA Perform

Input: Environmental inputs, chromosome.

Output: Response to problem.

1: repeat for number of ENV_INPUTS (e.g., 14 shapes)

2: interpret_real_life

 (chromosome, real environmental input)

3: rate chromosome

Figure 2: Inner board of 6x10 squares.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 5

trivial. There are 14 shapes, since 14 fills over 90% of the

board. The tets could come down in random order, whatever

the constraints they come down in; here they come down in

fixed order. However elements you are sensing or suppressing

usually have random behaviors.

5.2 DNA Instructions

 The DNA strand (or genetic string) has been defined in a

previous section, but without DNA instructions, DNA cannot

do anything. Recall that DNA instructions are one of the

different changeable parts for each implementation. Each gene

has a different set of DNA instructions. The first DNA

instructions that we define for the first gene are called

proximity numbers. When the chromosome recognizes a shape,

it categorizes it according to its DNA. Specifically, its gene

value can be |00|, |01|, |10|, or |11|. The method each

chromosome uses for proximity number instructions is decided

by the chromosome‘s DNA by use of a case statement 0-3 with

strategy names: TRIVIAL, SIMPLE, COMPLEX, MIXED

(See Figure 3). There are a total of seven different tets.

Strategy names are listed at the bottom. The proximity numbers

keep the tets glued together by directing placement of next tets.

Tet(0, 1) Tet(1, 1) Tet(2, 1) Tet(3, 1)

(000000000)
(000000000)
(000000000)
(000000000)
(0000##000)
(0000##000)
(000000000)

(000000000)
(000000000)
(000000000)
(000001000)
(0000##000)
(0000##000)
(000000000)

(000000000)
(000000000)
(000000000)
(000011000)
(0001##100)
(0001##100)
(000011000)

(000000000)
(000000000)
(000000000)
(000001000)
(0000##100)
(0001##000)
(000010000)

(000000000) (000000000) (000000000) (000000000)
(000000000) (000000000) (000000000) (000000000)

S

TRIVIAL SIMPLE COMPLEX MIXED

Figure 2: Definition of the square tet.

The # symbols represent shapes. The numerical values

surrounding the shapes are proximity numbers.

 The second set of DNA instructions for the second gene

values to choose from is called Search Procedures (SP). One

tricky part of studying DNA is in knowing the difference

between the genes and the instructions carried out by the genes.

For the second gene on the Tetris DNA strand, the |00| decides

which SP the organism uses, meaning which set of instructions

to carry out when searching for an open square to place the

incoming tet. In other words, what set of DNA instructions

does it select? Here there are only four different choices, SP0,

SP1, SP2, and SP3; however, there can be more, but four is

sufficient to gain an understanding. Notice there are 60 squares

on each SP to match the size of the inner board. See Figure 4

for the four SP instructions serving as the second set of DNA

Instructions for the DNA to select 0-3.

SP0

1 6 15 29 37 38 30 16 7 2

5 22 28 42 48 55 49 43 23 8

14 27 36 47 54 59 56 50 31 17

13 26 35 46 53 60 57 51 32 18

12 21 25 41 45 58 52 44 24 9

4 11 20 34 40 39 33 19 10 3

SP1

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

SP2

1 2 4 10 11 21 22 33 34 45

3 5 9 12 20 23 32 35 44 46

6 8 13 19 24 31 36 43 47 54

7 14 18 25 30 37 42 48 53 55

15 17 26 29 38 41 49 52 56 59

16 27 28 39 40 50 51 57 58 60

SP3

11 16 46 37 30 52 9 39 20 4

29 35 2 15 24 56 47 3 33 27

43 59 49 38 31 14 41 26 44 54

17 12 8 23 1 32 10 53 58 18

7 55 51 40 19 60 34 21 13 48

22 28 5 6 45 57 25 50 42 36

Figure 4: Search Procedures

When following the DNA instructions for the second gene, the

chromosome starts by trying to drop pieces on the inner board

beginning at the corners with squares labeled 1, 2, 3, 4, and so on until

60, maybe moving in an inward pattern towards the center or maybe

starting at a corner (1) and moving towards the other side on the

diagonal if the DNA instruction specifies. The search procedures can

be defined with any pattern, even random ones. The creator decides

what to use for DNA instructions. The SPs in the figures are only

examples.

5.3 Genes

 It is important to notice there are only two genes |00|00|

being actively used on the DNA strand. The other three genes

are not being used for anything, although they could be. Some

of the other organisms have some of their extra gene bits set to

1. Still they are not being used for anything at the moment.

They may be activated for a different problem. Five total genes

is a gross simplification of how DNA really works. Recall the

mile high stack of procurement documents needed just to build

the C-5 aircraft. Imagine the amount of information needed in

DNA to build a human, or even a big toe. The DNA is doing

much more than it first appears, and therefore should definitely

be far longer than 10 bits in length.

6 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

5.4 Interpreter

 This is entering into interpreter territory, another one of

the changeable parts to be made abstract. The interpreter is the

key part to the GA. Despite the recent ―solving of the genome‖

[4], with the many correlations found of genetic material to

body characteristics, it appears that even with the DNA

―source‖ code, we still do not comprehend exactly how this

code is interpreted. We emphasize the interpreter, looking for a

general purpose one, but once one is found, then the secret is

figured out. For now all we have is the option to plug our

dreams in there for how the interpreter works. The interpreter

goes from the DNA strand to the full formed individual that

works in the environment. Here, ―interpreter‖ means roughly

the same thing as it does in a language such as java. Something

has to make the programs work. Something has to interpret the

DNA strand to work in the environment. It is the problem of

going from genotype to phenotype [5]. The cell in biology

depends on the context it finds itself in. In Genetic

Programming [6] the interpreter is done for us. Not everything

can be written as nice little programs, and the GA is pulled off

the shelf again to tackle harder problems. In the GA, this

interpreter is difficult to define [1] for each problem. Since no

one knows how it is exactly done in genetics, all ideas are just

wild guesses and dreams. For us, the unknown has to point to

some address in a universal GA, to where different interpreters

can plug in as any genetic code interpreter you want. The

interpreter interprets the given chromosome in the given

environment to make the transformation into an individual that

performs in the environment; in our case, a player that plays the

variant game of Tetris. For an analogy, a book or blueprint is

nothing without someone to read and interpret the book or

interpret the blueprint to build the house. The perfect example

to think about as an interpreter is the mother‘s womb.

Somehow the mother‘s womb forms a baby out of the DNA

instructions.

 In our case there are only two pieces of data to interpret,

the 1) Proximity Numbers, and the 2) SP. The interpreter, as

was shown in the previous algorithms, takes the following

form. Depending on the situation, there may need to be two

interpreter(s) defined.

 interpret (chromosome, environment)

 interpret_real_life (chromosome, real environment)

5.5 Goals

 The goal for this Tetris problem is fairly simple; to have

the greatest number of tets placed on the board. Placing all 14

shapes on the board would be a perfect solution. There would

be a minimum waste of only four squares. Goals are also

related to constraints. The constraints for this problem are:

shapes cannot overlap, and shapes have to be placed within the

inner board area. If any portion besides the proximity numbers

goes outside of the inner board‘s area, it is not a valid

placement, and therefore is not placed. For example, the

following in Figure 5 could not take place.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 The line shape ‗l‘ runs outside of the inner board. Now it

can be seen why the square padding around the outside of the

inner board needs to be size four. This is the minimum amount

needed to contemplate placing the longest shape ‗l‘ on the

borders of the inner board. Anything larger would be wasteful,

and anything shorter would not suffice. This contemplation is

the farthest case where one square is on the board as close to

the edge as possible. The two miniature squares are where

placement starts and ends when contemplating placement. The

9x9 squares show the placement of the whole shape‘s area for

proximity number. The square labeled ‗C‘ is the center of

another furthest possible proximity number to contemplate

shape placement. Starting from the left top corner, using

coordinates (1, 1) as the first miniature square on the corner

extends to the (6, 10) second miniature square, spans the exact

same size as the inner board.

 The ranking computation sweeps over the entire inner

board of chromosomes at the end of generations. For each ‗#‘

sign it adds 1,000 points. These are the places where the

shape‘s area is placed on the board. The proximity numbers

falling within the inner board are added on to this number to

give the total score for the chromosome. The proximity

numbers add when overlapped. For instance, placing 14 shapes

on the 6x10 cloth would sum to 56,000 points (14 shapes x 4

squares per shape) + overlapping proximity numbers, say 15

more points, totaling 56,015 points, a perfect solution.

5.6 Outputs

 The output is the last changeable part on the list. It is

possibly more effective to understand the output by seeing a

demonstration of the algorithm in action.

6 Demonstration

 Even though the outline of the GA is not very

complicated, it is helpful to be able to see everything sketched

out at a detailed enough level to explain. So the demonstration

uses this strategy to show the GA in process.

Figure 5: Invalid Placement of Line Tet.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 7

6.1 Mapping Outline

1) Problem: Place 14 tets on a 6x10 (60 square) board with

the least amount of waste.

2) Tets come in to the cognitive system in the order: square,s,

z, T, L, J, l, square, s, z, T, L, J, l.

3) One by one, shapes are perceived by each chromosome.

4) The chromosome recognizes the first shape as being a

square. The interpreter translates what the |00| on the first

chromosome‘s first gene means for the shape coming

down. It means select the TRIVIAL strategy, or naked

shape, meaning no proximity numbers around it.

5) Then, according to the chromosome‘s DNA value at the

second gene, it selects one of the four search procedures to

start trying to place the incoming tet. The range of places

to try is from 1 to 60. If it cannot place the tet, it tries the

next place in sequential order. Once it reaches 60, there is

nothing more it can do for this shape. There is nowhere

else to try to place the tet. Its board squares are all used up.

6) The above are done for two generations with 10 initial

chromosomes. At the end of each N-1 generation, the

individuals are ranked. Then parents are selected and

offspring are reproduced. For the Nth generation, selection

and reproduction does not occur. The highest ranking

individual from the last generation is saved to perform in

the real environment.

 The first attempt at placing 14 tets on a 6x10 board

resulted in many isolated squares on the inner board. The

isolated squares were greatly fragmented, not a good

characteristic, and a low ranking best individual was produced,

which took one hour to complete. The slow execution time is

offset by being able to visually see and able to visually debug

the GA in a spreadsheet G.U.I. and to allow quick and

automated adjustments. There are a couple of things to try in

order to correct generating these bad results.

Tet(2, 4) Tet(2, 4) Tet(2, 4) Tet(2, 4)

(000000000)
(000000000)
(000000000)
(000010000)
(0001#3000)
(0001##000)
(0001#3000)

(000000000)
(000000000)
(000000000)
(001110000)
(01###1000)
(003#30000)
(000000000)

(000000000)
(000010000)
(0003#1000)
(000##1000)
(0003#1000)
(000010000)
(000000000)

(000000000)
(000000000)
(000000000)
(00003#300)
(0001###10)
(000011100)
(000000000)

(000010000) (000000000) (000000000) (000000000)

Figure 6: Rotation of 'T' Shape with COMPLEX Strategy.

6.2 Corrections

 The first idea is to add rotations. This took no more than a

day‘s worth of programming work. See Figure 6 above for an

example of one shape‘s rotation, the rotation of the ‗T‘ shape

for the COMPLEX strategy.

 Something similar had to be done for the other six shapes

and for all different strategies. Once the work was done, an

unexpected and considerable speed-up in time occurred.

Adding rotations sped up processing time significantly. The

reason is because when trying each number from its SP on the

board, there are more possibilities to try from the added three

directions for open squares to drop the piece. However, the

results were similar to the first attempt and not satisfactory.

Something else needed to be applied to converge on a

reasonable response.

 The second idea was to add more search procedures. Another

gene could be used or the alphabet of the current gene changed.

The latter method was chosen. The problem was the gene only

allowed for four different SPs to choose from, since the

alphabet was binary. The idea was to convert from binary to

trinary (00=0, 01=1, 02=2, 10=3, 11=4, 12=5, 20=6, 21=7, 22 = 8) to

provide more search procedures to choose from without

overwriting previous SP.

 Applying trinary to the first gene on all the organisms

yielded something similar to a modified definition of the DNA

Strand. The trinary modifications can be seen on the DNA

strands. Notice the remaining genes still use the binary

alphabet.

Modified DNA Strands: Offspring DNA Strands:

organism0 = (0000000000) organism0 = (2100000000)

organism1 = (0101010101) organism1 = (0001010101)

organism2 = (0210101010) organism2 = (1011101010)

organism3 = (1010000111) organism3 = (2210000111)

organism4 = (1111001100) organism4 = (1110001100)

organism5 = (1200110011) organism5 = (1000110011)

organism6 = (2010101010) organism6 = (2001101010)

organism7 = (2111111100) organism7 = (2000111100)

organism8 = (1000000000) organism8 = (0200000000)

organism9 = (2201010101) organism9 = (2211010101)

 Increasing the first gene‘s alphabet to nine letters with

trinary allows an extra possibility for each bit position (instead

of only having two, this gives five extra spaces for five more

search procedures) totaling nine search procedures to choose

from, where there used to be only four. The best performing

individual‘s SP after reproduction is shown in Figure 7.

SP4

12 25 33 38 6 24 23 13 32 14

19 36 37 7 20 5 39 40 42 43

35 48 8 50 55 30 4 41 31 22

18 9 52 47 59 21 54 3 46 44

10 27 60 57 53 49 58 29 2 28

26 17 34 16 56 11 51 15 45 1

Figure 7: Best Performing Individual’s SP.

The offspring of the individual resulted in the new DNA

strands. Of these offspring, organism4 performed the best,

where it choose the first newly added fifth SP4 and the

COMPLEX strategy as its proximity number.

8 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

 This combination of two changes resulted in a satisfactory

solution. Only one shape from the environment did not make it

onto the inner board area. This response is adequate for giving

a minimal answer to the problem. The best individual produced

was organism4 = (1110001100) with ranking = 52,023. Output

can be seen below in Figure 8.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 Conclusions

 Some areas of the DNA are well understood, and those

should be the fixed areas in the universal adaptable GA. The

fixed areas have already been figured out for the most part, and

only need to be assembled into a main algorithm. These areas

do not have to be reinvented every time a new problem is

presented. The areas where there are always uncertainties are

where there is always debate. These parts cannot be fixed at

this time until they are more fully understood. Otherwise, the

same basic GA will end up being reinvented over and over

again by a new author for possibly the same problem yet all

implementations would be done differently. These areas need

to be abstracted away, left up to each unique realization. These

ever-changing parts are the only things that need to change for

each new problem encountered. The GA should be easily

modifiable to satisfice many new problems without more than a

day‘s worth of engineering work required for each new

problem.

8 Future Work

 The current implementation for SPs does not scale up to

larger board sizes. For example, if the size of the inner board

was increased to 50x50 squares, all SPs would have to be

2,500 cells. This would be infeasible, even with the number

drag automation a spreadsheet provides. One idea is to change

the DNA instructions; instead of SPs, use a command list, such

as move left, right, up, down, choosing to place the tet as close

to the left of the starting position as possible, which could be

the closest right. This approach would make the individual

more relative than absolute. Similar to how our hands are

connected to our arms connected to our shoulders and neck

relative to our head and so on.

 The highest level goal in AGI is to build an AGI. This

work has that goal in mind. The ultimate far reaching goal of

this work is to disseminate the idea of learning how we can

obtain intelligence from the brain or otherwise by means of

GA. We already know the microbiology and the fundamental

macro primitives of the brain; we only do not know how they

all fit together. We understand why we have failed to learn how

the brain works itself. The solution is to bring an outsider in,

the computer, to crank away at the problem by giving it

primitive functions, then using millions of years of evolution by

speeding it up inside the computer to fit the known

fundamental pieces together and generate new ideas via

mutation.

 If the A.I. went out to a rich environment such as the

Internet, where there is constant change, read some text, and

looked at pictures on a webpage, it should be able to be asked

questions about what it perceived, and give an intelligent

answer. Then we could declare with confidence we have

figured out how to obtain intelligence. The idea is to use GA as

control strategy to figure out how intelligence works, given

sound primitives, such as NETL [8], hierarchy, lookup table,

short term memory with 5+/-2 chunks, large matrix, production

rules, an HTM for the five senses [9], even another GA itself

(whatever you can dream up until we get it right) then letting

GA work on it. All it takes is one person with the right idea.

 Most of this research work was dedicated to solving a

pseudo-Tetris problem with the GA as the learning mechanism

to create the individual for playing the ―game‖ well. In the

background is this higher-level goal of creating a more general

GA, to solve new problems never seen before.

9 References

[1] L. B. Booker, D. E. Goldberg, and J. H. Holland,

―Classifier Systems and Genetic Algorithms‖; Artificial

Intelligence, 40, 1/3, 1989, 235—282.

[2] J. H. Holland, ―Adaptation in Natural and Artificial

Systems‖. The University of Michigan Press, 1975.

[3] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R.

Thagard. ―Induction: Processes of inference, learning, and

discovery‖. MIT Press, 1986.

[4] J. C. Venter. ―A Life Decoded: My Genome: My Life‖.

Penguin Group, 1998.

[5] D. S. Burke, K. A. De Jong, J. J. Grefenstette, C. L.

Ramsey, and A. S. Wu, ―Putting More Genetics into GA‖,

Evolutionary Computation, 6, 4, Oct 1998, 387—410.

[6] J. R. Koza, et al. ―Genetic Programming IV: routine

human-competitive machine Intelligence‖. Kluwer Academic

Publishers, 2003.

[7] F. Gobet, et al. ―Chunking Mechanisms in Human

Learning‖; Trends in Cognitive Science, 5, 6, 236—243.

[8] S. E. Fahlman. ―NETL: A System for Representing and

Using Real-World Knowledge‖. MIT Press, 1979.

[9] J. Hawkins, ―Vision Framework Guide NuPIC 1.7.1‖

[Online]. Available: http://numenta.com

Oct 2011.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0 5 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8: The Best individual solution produced.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 9

Stock price prediction using genetic algorithms and evolution
strategies

Ganesh Bonde
Institute of Artificial Intelligence

University Of Georgia
Athens,GA-30601

Email: ganesh84@uga.edu

Rasheed Khaled
Institute of Artificial Intelligence

University Of Georgia
Athens,GA-30601

Email: khaled@uga.edu

Abstract:-
 To many, the stock market is a very challenging and
interesting field. In this paper we try to predict whether the
prices of the stocks are going to increase or decrease on the
next day. We are predicting the highest stock price for eight
different companies individually. For each company six
attributes are used which help us to find whether the prices
are going to increase or decrease. The evolutionary
techniques used for this experiment are genetic algorithms and
evolution strategies. Using these algorithms we are trying to
find the connection weight for each attribute, which helps in
predicting the highest price of the stock. The input for each
attribute is given to a sigmoid function after it is amplified
based on its connection weight. The experimental results show
that this new way of predicting the stock price is promising. In
each case the algorithms were able to predict with an
accuracy of at least 70.00%. Since this approach is new any
further study in this field can definitely give better results.

Keywords:
Machine learning,stock market, genetic algorithm,

Eovolutionary Strategies.

I. Introduction
The prediction of stock prices has always been a

challenging task. It has been observed that the stock price of
any company does not necessarily depend on the economic
situation of the country. It is no more directly linked with the
economic development of the country or particular area. Thus
the stock prices prediction has become even more difficult
than before.

These days stock prices are affected due to many
reasons like company related news, political events, natural
disasters … etc. The fast data processing of these events with
the help of improved technology and communication systems
has caused the stock prices to fluctuate very fast. Thus many
banks, financial institutions, large scale investors and stock
brokers have to buy and sell stocks within the shortest possible
time. Thus a time span of even few hours between buying and
selling is not unusual.
 To invest money in the stock market we need to have
an idea whether the prices of stocks are going to increase or

decrease on the next day. Thus in this project we are trying to
predict whether the highest price of a stock is going to
increase or decrease on the next day. In this paper we are
trying to predict the price of stocks of eight different
companies. For each company we are predicting whether its
highest price is increasing or decreasing next day. Thus it is a
classification problem with only two classes involved. Thus
we have tried to make the problem as simple as possible.

Kyoung-jae Kim and Won Boo Lee [13] developed a
feature transformation method using genetic algorithms. This
approach reduces the dimensionality of the feature space and
removes irrelevant factors involved in stock price prediction.
This approach performed better when compared with linear
transformation and fuzzification transformation. This GA
based transformation looks promising when compared with
other feature transformations. Another research done on
genetic algorithms (GAs) by Kyoung-jae Kim [4] again to
predict stock market is to use a GA not only to improve the
learning algorithm, but also to reduce the complexity of the
feature space. Thus this approach reduces dimensionality of
the feature space and enhances the generalizability of the
classifier. Also Ajith Abraham [15] developed a hybrid
intelligent system, which consists of a neural network, fuzzy
inference systems, approximate reasoning and derivative free
optimization techniques. That system also gives promising
results but was not compared with any other existing
intelligent systems.

Frank Cross [16] tries to find relationships that could
exist between stock price changes on Mondays and Fridays in
the stock market. It has been observed that prices on Friday
have risen more often than any other day. It has also been
observed that on Monday the prices have least often risen
compared to other days. Boris Podobnik [17] tried to find
cross-correlation between volume change and price change.
For the stock prices to change, it takes volumes to move the
stock price. They found two major empirical results. One is
power law cross-correlation between logarithmic price change
and logarithmic volume change and the other is that the
logarithmic volume change follows the same cubic law as
logarithmic price change.
 Abdüsselam Altunkaynak [1] used a genetic
algorithm for the prediction of sediment load and discharge.
Not many have tried to use only genetic algorithms to predict

10 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

stock prices. Since the genetic algorithm can perform
reasonably well in many cases there has to be a way to predict
stock price using GA as well. Hyunchul Ahn [2] suggested
that the genetic algorithm can be used to predict in financial
bankruptcy. We have also tried to use a similar approach to
predict the stock. The method used in this experiment is
completely novel and looks very promising.
 Many machine-learning techniques are used for
predicting different target values [5,6,10]. This could be even
to predict stock price. The genetic algorithm has been used for
prediction and extraction important features [1,4]. Lot of
analysis has been done on what are the factors that affect stock
prices and financial market [2,3,8,9]. There are different ways
by which stock prices can be predicted. One way is to reduce
the complexity by extracting best features or by feature
selection [7,11,12,13,14]. This approach will help us predict
stock prices with better accuracy as the complexity reduces.
 In this project the method used for predicting the
highest price is novel. We try to find the connection weights of
each attribute used for predicting the stock price. There are a
total of six attributes used for each company. Hence we use six
connection weights, one for each attribute. Each connection
weight value defines the contribution given by each attribute
in predicting the stock price. For example it could happen that
the volume attribute contributes more than other attributes.
Thus more importance is given to that attribute. Thus
obviously this attribute will have a higher connection weight
compared to other attributes. This concept is explained in
more detail below.

Feature discretization of each input:-
 The main concept in discretization is that we try to
normalize each input attribute with respect to each other
attribute. Thus we try to find the connection weight for each
attribute that decides on the contribution given by that
attribute. The summation of each attribute after multiplying
by the connection weight is given to a sigmoid function. This
function is used to classify the next stock price into increasing
or decreasing class.
 The sigmoid function in terms of mathematical
expression is given below. It is used when we do not have
detailed information of the input we are trying to predict. This
function will classify each input into mainly two classes. So it
can be used for binary classification problems.

 P(t) = (1)

The two evolutionary techniques used for predicting the stock
price are given below:-

Genetic Algorithm:-
A genetic algorithm (GA) is a search technique used

in computing to find exact or approximate solutions to search
and optimization problems. Genetic algorithms are a
particular class of evolutionary computation that uses
techniques inspired by evolutionary biology such

as inheritance, mutation, selection, and crossover. A genetic
algorithm finds the potential solution to a specific problem as
a simple chromosome like data structure so as to preserve the
critical information.

Its implementation begins with the selection of a
population of chromosomes, which is a set of solutions to
problems that could occur for a particular scenario. One
evaluates its fitness and then does its reproduction to get better
solutions with respect to the target problem. The
chromosomes, which represent better solutions, are given
more chance for reproduction than those which represent
poorer solutions. This process continues for a number of
generations after which we get the optimal solution.

The operators used for this experiment are two-point
crossover and creep mutation. The crossover is a genetic
operator used to vary chromosome gene structure where gene
information is interchanged between selected parents by
selecting two points in the gene structure of each parent.

Figure 1. Two point crossover

The creep mutation used works by adding a small

value to each gene with probability p. The selection method
used to select the population is roulette wheel selection. In this
method the fitness assigned to each individual is used for the
selection process. This fitness is used to associate a probability
selection with each individual. This can be given as below:-

 Pi = (2)

 Where fi is the fitness of the ith individual and N is the
population size.

Evolution Strategies:-
 The evolution strategy (ES) is also an idea inspired
by concepts of adaptation and evolution. This type of
algorithm is mainly used for continuous parameter
optimization. The representation of the gene is vector. The
intermediate recombination technique is used in this
algorithm. In this the selected parent values are averaged to
give the child and one of the other parents is selected
randomly so that two individual can go to the next generation.
 The algorithm for evolutionary strategies is given
below:
1. Randomly create an initial population of individuals.
2. From the current population generate offspring by applying
a reproduction operator (described below).
3. Determine the fitness of each individual.
4. Select the fittest individuals for survival. Discard the other
individuals.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 11

5. Proceed to step 2 unless the number of generations have
been exhausted.
 In this experiment we are using a (µ , λ)-ES strategy
in which the parents (candidate solutions) produce offspring
(new solutions) by mutating one or more problem parameters.
Offspring compete for survival; only the best (i.e., those with
the highest �fitness) will survive to reproduce in the next
generation. If done properly, the population will evolve
towards increasingly better regions of the search space by
means of reproduction and survival of the fittest.
 The mutation technique used is based on a Gaussian
distribution requiring mainly two parameters the mean ξ and
the standard deviation σ. In this small amounts of f(x) are
randomly calculated using the Gaussian distribution N(ξ, σ).
This is given as

f(x)= (3)

The new value of x is calculated as the sum of previous gene
value and some small random value calculated using the above
equation.

 Xnew = Xold + N(ξ, σ) (4)
where ξ=0 and σ=1.

II. Experimental Setup

Dataset used:
 The dataset used for this experiment consists of data
for the last five years. A total of six attributes for each
company are used for prediction. These are opening price,
closing price, highest price, lowest price, volume and adjusted
closing price. The eight companies used for this experiment
are Adobe, Apple, Google, IBM, Microsoft, Oracle, Sony and
Symantec.
 Two datasets are used for the experiment. One
training dataset is used for finding the connection weights for
each attribute used. We used another testing dataset so that we
can verify the result. Thus we can check if over fitting is
occurring or not. The results obtained actually showed that no
over fitting occurred.

 The representation for the problem is floating point
so each connection weight used for a particular attribute is a
floating point number. The fitness used in this problem is the
number of times the connection weights result in predicting
stock price correctly. So if it was able to predict the stock
price correctly in 500 data points, then its fitness is 500. There
are a total of 620 data entries for each dataset, which we need
to predict. We first use the training dataset to find the exact
connection weight for each attribute and then using these
connection weights we try to predict the testing data. The

different parameter settings for each algorithm are given
below:

The parameter settings for the Genetic algorithm are:-

No. Parameters Values
1 Population Size: 100
2 Crossover Probability: 0.5

3 Mutation Probability: 0.013
4 Selection: Roulette Wheel

5 Stopping Criteria: 1000 generations

Chart 1: Parameter settings for the genetic algorithm

The parameter settings for the Evolution strategy algorithm are
given below:-

No Parameters Values
1 Population Size with (µ , λ)-ES

strategy
20-100

2 Crossover Probability: 0.6

3 Mutation Probability: 0.015
4 Selection: Roulette Wheel

used only for
initial population.

5 Stopping Criteria: 1000 generations
Chart 2: Parameter settings for the evolutionary strategies

III. Results

 Tables 1 and 2 show the optimal connection weights
used for predicting stock price in each algorithm. Table 3
shows the best fitness values evaluated for each company.
Table 4 shows the accuracy of the algorithm to predict the
highest price. The connection weights are calculated using the
training dataset and is tested on the testing dataset. This
protects against any over-fitting occurring in the model. From
the results shown in Table 3 and 4 it can be seen that over-

12 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

fitting is not occurring. The fitness also indicates the number
of times it actually predicted the stock price correctly. The
total number of entries present in each set is 620.

It can be seen from Table 4 that we were able to
predict the stock price with considerable accuracy. The search
space for this problem is very large. This is because the
connection weight can range from zero to even a million or
more. Since we have restriction on space search we have kept
the upper end to be 1000 only for floating representation.

 From table 4 it can be seen that the connection weight
evaluated for each attribute do not get over-fitted. In fact in
some cases the accuracy for prediction is higher for testing
data than training data. The highest accuracy obtained using
the genetic algorithm is 73.87% and using the evolutionary
strategies is 71.77%.

Company Open price Closing price Highest price Lowest price Volume Adjusted

closing price
Adobe 995.0 10.0 27.0 83.0 929.0 38.0
Apple 98.0 12.0 85.0 18.0 30.0 17.0

Google 89.0 12.0 18.0 15.0 87.0 21.0
IBM 87.0 5.0 39.0 44.0 71.0 23.0

Microsoft 1212.0 135.0 223.0 138.0 218.0 148.0
Oracle 963.0 1.0 24.0 18.0 989.0 28.0
Sony 921.0 7.0 54.0 37.0 975.0 38.0

Symantec 976.0 8.0 23.0 18.0 55.0 2.0
Table 1: Connection weights for each company using the genetic algorithm.

Company Open price Closing price Highest price Lowest price Volume Adjusted
closing price

Adobe 804.0 36.0 767.0 18.0 601.0 727.0
Apple 309.0 20.0 116.0 8.0 158.0 111.0

Google 890.0 15.0 27.0 46.0 43.0 830.0
IBM 247.0 23.0 35.0 8.0 907.0 72.0

Microsoft 285.0 5.0 70.0 42.0 24.0 183.0
Oracle 842.0 1.0 769.0 7.0 103.0 281.0
Sony 856.0 9.0 861.0 44.0 854.0 42.0

Symantec 778.0 13.0 161.0 302.0 938.0 23.0
Table 2: Connection weights for each company using the evolutionary strategy.

Fitness Value
Using GA

Fitness using Evolutionary Strategy Company

Training data Testing data Training data Testing data
Adobe 447 454 450 434
Apple 457 439 460 445

Google 465 430 462 435
IBM 438 439 452 442

Microsoft 467 436 472 440
Oracle 445 452 434 444
Sony 412 431 421 441

Symantec 440 458 431 439
Table 3: The best fitness calculated for each company.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 13

Fitness Value
Using GA

Fitness using Evolutionary Strategy Company

Training data Testing data Training data Testing data
Adobe 72.09% 73.22% 72.58% 70.00%
Apple 73.70% 70.80% 74.19% 71.77%

Google 75.00% 69.35% 74.51% 70.16%
IBM 70.64% 70.80% 72.90% 71.29%

Microsoft 75.32% 70.32% 76.12% 70.96%
Oracle 71.77% 72.90% 70.00% 71.61%
Sony 66.45% 69.51% 67.90% 71.11%

Symantec 70.96% 73.87% 69.51% 70.80%

Table 4: The accuracy with which the stock price was predicted for each company.

IV. Conclusion and Future Work

 The novel method of predicting stock prices using the
genetic algorithm and evolutionary strategies looks promising.
It was found that the genetic algorithm and evolution
strategies have performed almost evenly. The best accuracy
found using the genetic algorithm was 73.87% and using
evolutionary strategies was 71.77%. The genetic algorithm
was able to predict better than the evolutionary strategies in
five cases. The evolutionary strategy reached an accuracy of
70% or better in all cases.
 We used two different datasets for predicting the
stock prices. The first one acts as training set and the other
acts as testing set. This division is required so that we can test
if over-fitting is occurring or not. The results show that over-
fitting has not occurred.
 There are many aspects we can consider in the future.
We need to include more attributes to predict stock prices. The
six attributes used are very similar to each other hence we
need more attributes, which are not similar but affect the
prices.
 We can try different activation functions for
classification. Thus instead of using the sigmoid function we
can use some other function.
 This method can be compared with other popular
algorithms used for stock price prediction such as neural
networks and support vector machines.

Future Work:-
 The evolutionary algorithms used for this experiment
looks very promising. Therefore, further research is required
in this field. We can even try to use attributes of other
companies to predict the prices to check whether they help in
predicting the prices. Thus we can use only those company’s
data, which will help in predicting the data in a better way.
There is a high chance that the accuracy for prediction will be

above 80.0% if we used other companies’ data also instead of
using just individual company’s data.
 Since the results obtained are above 70.0% in every case
then we can test the performance on real time data as well.
This will give us an idea whether only historical data is good
enough to predict data or not. If not, then we need to find the
factors other than historical data which affect the prices. This
information can also be fed to the algorithms we used for this
experiment. There is a high chance that the accuracy will
increase.
 The companies used in this experiment were big
companies. We can check the performance of those algorithms
on small size companies as well.

REFERENCES:
[1] Abdüsselam Altunkaynak, Sediment load prediction by

genetic algorithms Advances in Engineering Software,
Volume 40, Issue 9, September 2009, Pages 928–934

[2] Hyunchul Ahn , Kyoung-jae Kimb. Bankruptcy prediction
modeling with hybrid case-based reasoning and genetic
algorithms approach, Applied Soft Computing,Volume 9,
Issue 2, March 2009, Pages 599–607

[3] Po-Chang Ko, Ping-Chen Lin. An evolution-based
approach with modularized evaluations to forecast
financial distress, Knowledge-Based Systems,Volume 19,
Issue 1, March 2006, Pages 84–91

[4] Kyoung-jae Kim, Ingoo Han. Genetic algorithms
approach to feature discretization in artificial neural
networks for the prediction of stock price index. Expert
systems with Applications, 2000.

[5] Chung-I Chou, You-ling Chu and Sai-Ping Li .
Evolutionary Strategy for Political Districting Problem

14 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Using Genetic Algorithm, Lecture Notes in Computer
Science, 2007, Volume 4490/2007, 1163-1166.

[6] Guangwen Li, Qiuling Jia, Jingping Shi , The
Identification of Unmanned Helicopter Based on
Improved Evolutionary Strategy, Intelligent Computation
Technology and Automation, 2009. ICICTA '09. Second
International Conference on, 205-208

[7] Chih-Fong Tsai , Yu-Chieh Hsiao . Combining multiple
feature selection methods for stock prediction: Union,
intersection, and multi-intersection approaches, Decision
Support Systems, Volume 50, Issue 1, December 2010,
Pages 258–269.

[8] Xiaodong Li, Chao Wang, Jiawei Dong, Feng Wang,
Xiaotie Deng, Shanfeng Zhu. Improving stock market
prediction by integrating both market news and stock
prices

[9] F. Mokhatab Rafiei, Manzari, S. Bostanian, Financial
health prediction models using artificial neural networks,
genetic algorithm and multivariate discriminant analysis:
Iranian evidence, Expert Systems with Applications,
Volume 38, Issue 8, August 2011, Pages 10210–10217

[10] George S. Atsalakis, Kimon P. Valavanis . Surveying

stock market forecasting techniques – Part II: Soft
computing methods, Expert Systems with Applications,
Volume 36, Issue 3, Part 2, April 2009, Pages 5932–5941

[11] Kyoung-jae Kim. Financial time series forecasting using
support vector machines, Neurocomputing, Volume 55,
Issues 1-2 (September 2003), Pages 307-319.

[12] Ping-Feng Pai, Chih-sheng Lin. A hybrid ARIMA and
support vector machines model in stock price forecasting,
Omega ,Volume 33, Issue 6, December 2005, Pages 497–
505.

[13] Kyoung-jae Kim, Won Boo Lee. Stock market prediction
using artificial neural networks with optimal feature
transformation. Neural Computing and
Applications (2004),
Volume: 13, Issue: 3, Publisher: Citeseer, Pages: 255-260

[14] Kyoung-jae Kim, Ingoo Han. Genetic algorithms
approach to feature discretization in artificial neural
networks for the prediction of stock price index. Expert
Systems with Applications, Volume 19, Issue 2, August
2000, Pages 125–132.

[15] Ajith Abraham, Baikunth Nath and P. K. Mahanti. Hybrid

intelligent systems for stock market analysis. Proceedings
of the International Conference on Computational Science
Part 2, Pages 337-345.

[16] Frank Cross. The behavior of stock prices on Fridays and

Mondays. Financial Analyst Journal Vol. 29 No. 6, pages
67-69.

[17] Boris Podobnik, Davor Horvatic, Alexander M. Peterson

and Eugene Stanley. Cross-correlations between volume
change and price change. Proceedings of the National
Academy of Sciences of the United States of America,
Vol. 106, No. 52, pp. 22079-22084, December 2009

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 15

This material is based in part upon work supported by the National Science Foundation under Cooperative Agreement No. DBI-0939454.

Fitness Proportionate Niching: Maintaining Diversity in a

Rugged Fitness Landscape.

Abrham Workineh, Abdollah Homaifar
Autonomous Control and Information Technology Center

North Carolina A & T State University
Greensboro, NC 27411

atworkin@ncat.edu, homaifar@ncat.edu

Abstract: Traditional Genetic Algorithms (GAs) fail to

maintain useful diversity in the population as a result of a

genetic drift due to selection pressure, selection noise and

operator disruption. Genetic drift leads to early

convergence making simple GAs suitable only for

discovering the optimum of unimodal functions. However,

most real world optimization problems often deal with

multi-modal functions and hence require a technique to

discover the location of multiple optima in the search

space. The conventional fitness sharing scheme based on

the niche count has a limitation when there is a high gap

between the peaks of the multimodal function. This paper

introduced a new niching technique based on fitness

proportionate resource sharing to overcome this limitation.

 A comparison is made both using mathematical analysis

and simulations on well known multi-modal test functions

with unequal peaks. Unlike the conventional sharing

scheme, the difference in the fitness of the highest and

lowest peaks does not affect the performance of the

proposed niching scheme.

Key Words: Evolutionary algorithm, fitness sharing,

genetic algorithms, multimodal optimization, niching

methods.

1. Introduction

 GAs are a class of computerized search procedures

that are based on the mechanics of natural genetics [1].

Traditional GAs suffer from early convergence and in the

case of multimodal functions, they evolve the whole

population towards convergence to discover only one of the

solutions. This makes them suitable only for locating the

optimum of unimodal functions as they converge to a

single solution of the search space. Most optimization

problems, however, often lead to multimodal domains and

so require the identification of multiple optima, either

global or local. For this purpose, niching methods extend

the application of simple GAs by promoting the formation

of stable subpopulations in the neighborhood of optimal

solutions [2]. The whole purpose of niching is to promote

useful diversity in a population. Conventional GAs tend to

lose diversity due to selection pressure, selection noise and

operator disruption. In the case of multimodal functions

with unequal peaks, the simple GA converges to the best

peak. Also, for a function with multiple equal peaks, the

population converges to only one of the peaks at random

due to the selection noise and operator disruption (mutation

and crossover operations).

 Niching in GA is analogous to the mechanics of

natural ecosystems where animals compete to survive by

performing a differentiated role (hunting, grazing, feeding

etc) at distinct ecological niches [3]. A niche can also be

viewed as an organism’s task, which permits species to

survive in their environment. For each niche, the physical

resources are finite and must be shared among the

population of that niche. The subdivision of environment

on the basis of an organism’s role reduces interspecies

competition for environmental resources, and this

reduction in competition help stable sub-population to form

around different niches in the environment [4]. A niche is

commonly referred to as an optimum of the domain, the

fitness representing the resources of that niche [3].

 By the same analogy, niching methods tend to

achieve a natural emergence of niches and species in the

search space. In multi-modal GA, a niche represents the

location of each optimum in the search space [5]. Niching

enables the standard GA to encourage the formation of

subpopulations representing locally optimized solutions. It

provides a restoring force for the GA to counterbalance the

impact of genetic drift due to the selection pressure.

Maintaining useful diversity avoids early convergence and

hence allows sufficient exploration of the search space and

enables the GA to locate multiple optima at the same time.

 An algorithm that locates multiple optima will definitely

delay convergence whereas one that intends to delay

convergence may not necessarily locate multiple solutions.

 For instance, increasing the mutation rate protects loss of

genetic material by maintaining diversity in the population.

The role of mutation is to allow sufficient exploration of

the search space but this diversity may not necessarily lead

to the formation of stable subpopulations at multiple

optimum points. Effective application of niching extends

the success and power of GAs for multimodal function and

multi-objective optimization, machine learning and

classification problems [6]. In our previous work [7], we

applied this niching technique for evolving hierarchical

cooperation in learning classifier systems. The focus of

this paper is to emphasize its significance for multimodal

16 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

mailto:atworkin@ncat.edu
mailto:homaifar@ncat.edu

function optimization with unequal peaks of high fitness

variation and comparing its performance with the existing

fitness sharing scheme.

 The remaining section of the paper is organized as

follows. Section 2 investigates previous work on various

types of niching techniques. Section 3 presets the

modification to the existing fitness sharing scheme.

Mathematical analysis of the fitness proportionate niching

scheme is also presented in this section. Section 4 discusses

the simulation results obtained by comparing the proposed

niching technique with the existing approaches. Finally,

the last section concludes the paper highlighting the

achievements obtained.

2. Review on Niching

 The need for maintaining useful diversity in a

population to reduce the effect of genetic drift in the

standard GA has been emphasized by several researchers

in previous work [4-8]. To date, various niching strategies

have been proposed in literatures and this section presents

a brief survey of the art on the three most notable niching

techniques: crowding, fitness sharing and clearing.

2.1. Fitness Sharing

Fitness sharing is the most well-known method for

creating stable subpopulations of individuals around the

multiple local or global optimum points in the search space

[8, 9]. The inspiration for adapting the sharing technique

to the traditional GAs emanates from the natural ecosystem

where individuals of the same species share a finite natural

resource in an environment. The hierarchical organization

of species in a competing world of limited resources is

shaped by the location and distribution of these resources.

Traditional GAs assume an infinite resource model where

there is no need for competition of resources and all

individuals can comfortably coexist on the same peak and

receive the same fitness that they would have if they were

the only individual on that peak. Hence, in the case of

multimodal functions of unequal peaks, all individuals tend

to seek the highest peak and converge to that point. Also,

in multimodal functions of equal peaks, the population will

converge to one of the peak locations arbitrarily. The

feasibility of resource sharing in evolutionary algorithms

was first pointed out by Holland [10]. But the first

implementation of fitness sharing to model a resource

contention with in a simple GA was given by Goldberg and

Richardson [8]. It is based on the idea that a point in a

search space has limited resources which must be shared by

all individuals that occupy similar search space [11]. As

more and more individuals get attracted to the highest

peak, the resource at that peak gets depleted and other

lower peaks in the search space begin to attract individuals.

 Sharing in an Evolutionary Algorithm (EA) is

implemented by scaling the fitness of an individual based

on the number of “similar” individuals present in the

population [12]. It lowers each individual’s fitness by an

amount nearly equal to the number of similar individuals

in the population. The raw fitness of the individual is

reduced by the number of similar solutions in the

population belonging to the same niche [8, 9].

Derating an individual’s fitness is controlled by two

operations, a similarity function, which measures the

distance between two individuals in either the genotypic or

phenotypic space, and a sharing function [11]. The

sharing function is shown in equation (1).

)1(

,0

,)(1
)(

,

,

,

otherwise

dif
d

dsh
shji

sh

ji

ji

And the niche count is calculated by summing a sharing

function over all individuals of the population as:

)2()(
1

,

m

j

jii dshn

Now, the shared fitness of an individual i is given by the

following equation

)3(,

i

i
ish

n

F
F

Where Fi is the raw fitness of the individual, di,j is the

distance between individual i and j, ni is the niche count, m

is the number of individuals occupying the same niche and

σsh is the niche radius. The constant α is usually set to 1 for

a triangular sharing function.

As can be seen from the equation above, the degree to

which two individuals are considered to belong to the same

niche is controlled by the sharing radius. And, the

performance of the fitness sharing highly relies on the

proper choice of the niching radius. This is one of the

limitations of the fitness sharing technique. In general

choosing the optimum niche radius requires a priori

knowledge of the distribution of the peaks in the objective

function [13].

2.2 Crowding

The standard crowding method was first introduced

by De Jong to promote useful diversity in the population to

prevent premature convergence of the GA [14]. In this

method, a fraction of the total population called the

generation gap is allowed to reproduce at each generation

[14]. The crowding factor (CF) determines the number of

individuals selected from the population for comparing the

similarity of the new offspring. Similarity of individuals

can be determined by means of a distance measure, either

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 17

genotypic or phenotypic distance between individuals. The

new offspring then replaces the most similar individual

taken from this randomly drawn subpopulation of size CF.

 Later, Mahfoud introduced a modified crowding technique

termed “Deterministic Crowding” [5, 15] to improve the

standard crowding by introducing competition between

children and parents of identical niches [11]. In a

deterministic crowding, the new offsprings replace the

nearest (phenotypic distance) parent provided it has a

higher fitness [11].

2.3 Clearing

The clearing type niching is essentially similar in

principle to the explicit fitness sharing technique. But,

instead of uniformly distributing the resource to all

subpopulation in a given niche, it allocates the whole

resource only to the best members of the subpopulation. It

is based on a winner takes all strategy where it preserves

the fitness of the best individuals of each niche and resets

the fitness of the others with in the niche radius [16]. This

convergence to only one of the alternatives is undesirable

in multimodal optimization of real problems, because we

are interested on getting information about good points and

better solutions.

3. Fitness Proportionate Niching (FPN)

This section presents the proposed niching technique.

Like the traditional fitness sharing based on niche counts,

this technique is also based on the notion of limited

resources where individuals in a given niche share the

resource of that niche. But, resource sharing here is in

proportion to strength. According to this sharing scheme,

the sharing function is given in equation (4) and the

derated fitness of individual i is given by equation (5).

)4(
,0

,
)(

,

,

otherwise

difF
dsh

shjij

ji

)5(

)(
1

,

,

M

j

ji

i
ish

dsh

F
F

Where M is the number of individuals in a given niche, di, j

is the phenotypic distance between individuals i and j.

3.1 Test Functions

For testing the performance of the algorithm, three

well known multimodal functions of different difficulty are

considered for simulation [3-6]. All the three functions are

defined on [0, 1] interval and maxima (labeled P1 to P5 in

the figures) are located at approximate values of 0.1, 0.3,

0.5, 0.7 and 0.9. The first function has equal peaks where

the other two have unequal peaks (see equations 14-16).

)14()5(
6

)(
1

xSinxF

)15(5
6

sin
2

8.0

10
2log2exp2 x))())

.x-
((-(x)F

)16(

10.2),(5
6

sin)
2

)
8.0

1.0-
2(logexp(-2

0.20if),5(
6

sin)
2

)
8.0

0.1-
2(logexp(-210

)(3

xx
x

xx
x

xF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
1
(x

)

P2P1 P3 P4 P5

Figure 1: F1(x)-a multi-modal function with 5

equidistant peaks of equal height.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 0.09971

Y: 0.9999

x

F
2
(x

)

X: 0.8974

Y: 0.251

P3

P4

P5

P1

P2

Figure 2: F2(x)-A multi-modal function with 5 unequal

peaks and a small variation between the peak values.

18 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

X: 0.8974

Y: 0.251

X: 0.09971

Y: 9.999

x

F
3
(x

)

P1

P2 P3

P5P4

Figure 3: F3(x)-A multi-modal function with 5 unequal

peaks and a large fitness variation at the peaks.

3.2 Mathematical Analysis

The feasibility of the proposed niching scheme can be

verified both mathematically and using simulation. It can

be demonstrated analytically that FPN is indeed insensitive

to the difference in fitness of the peaks. We want to show

that unlike the traditional fitness sharing, the FPN will

tend to form a stable subpopulation around all the niches

with no additional restriction on the size of the population

for multi-modal functions of unequal peaks.

To get an insight on its performance as compared to

the existing sharing technique, consider the three multi-

modal test functions given above with corresponding

fitness values of P1 to P5 at the 5 niche locations. Let the

subpopulation size at each of the niches is denoted by n1 to

n5 respectively.

Using the traditional fitness sharing scheme, the

shared fitness of an individual at the kth niche is given by

equation (6).

)6(

k
n

k
P

k
P

Assuming that after sufficient iteration almost all the

population distributes around the five peaks, we get

equation (7).

)7(54321 Nnnnnn

To discover all the peaks, it is required that the

shared fitness values at each niche should be approximately

equal (i.e. P’1=P’2=P’3= P’4= P’5).

Substituting and rearranging terms, the number of

individuals at the kth niche is governed by equation (8).

)8(*
5

1

N

i
iP

k
P

k
n

If a niche size of at least two individuals is required at

the lowest peak (i.e. n5>=2), the minimum population size

required to discover all the peaks using the traditional

sharing technique is given by equation (9).

)9()(*2
5

5

1

P

P

N i

k

This indicates that the traditional sharing scheme

based on the niche count has a threshold requirement on

the minimum population size to discover all the peaks

when the objective function has unequal peaks. As the gap

of the peak values increases, the required minimum

population size also increases drastically.

But using FPN, the shared fitness of an individual in

the kth niche is given by equation (10).

)10(

1

'

k

n

i
iP

k
P

kP

Where nk is the subpopulation size at the kth niche (location

of a peak). After sufficient generations, individuals in each

niche will have approximately equal fitness (i.e. fi=fj, for

two individuals i and j in the same niche). Hence a

simplified form of equation (10) is shown in equation (11).

)11(
1'

k
n

kP

From equation (11), for the shared fitness values to be

equal, the population has to be evenly distributed among all

the peaks, irrespective of the difference in the fitness value

at the peaks (i.e. n1=n2=n3= n4= n5=N/5). In general, for a

multimodal function having M optimum points, the

expected number of individuals at the kth peak using the

traditional fitness sharing scheme is given by equation

(12). And FPN distributes the population around the

optimum points uniformly as shown in equation (13).

)12(*

1

N
M

i i
F

k
F

k
n

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 19

)13(
M

N
ni

Where Fk is the fitness value representing the kth niche, M

is the number of peaks of the multimodal function and N is

the population size.

It can be observed that, for a multimodal function

with equal peaks (e.g. F1(x)), equation (12) would

degenerate to equation (13). Hence, for multimodal

functions with equal peaks, FPN is essentially the same as

the traditional sharing scheme. The underlying principle in

FPN looks contrary to the concept of ecological niches

where most of the population settles at a niche of more

resources. But from the perspective of the GA, what is

important is whether the niching scheme is able to form a

stable sub population around all the multiple optimum

points. In other words, FPN considers all the peaks as

equally important for the GA and hence the proportion of

the population at the different peaks does not really matter.

Once all the peaks are discovered, a preference between the

different peaks can be made by arranging the final

population based on the fitness value.

F2(x) and F3(x) have 5 unequal peaks as shown in Figures 2

and 3 respectively. F3(x) has a large fitness gap between its

highest and lowest peaks. Plugging in the values, the

expected subpopulation size at P5 for F2(x) is given by:

N*0.0758

)17(
2510450709101

2510

54321

5
5

 *N

....

.

*N
+P+P+P+PP

P
=n

This implies that for the niching technique to locate

all the peaks with at least two individuals at the lowest

peak, a population size of at least 27 is required. In

practice, the desired population size has to be much larger

than this ideal mathematical threshold. The optimum

population size to discover all the peaks is largely

dependent on the ratio of the fitness at the peaks. The

higher the fitness ratio between the peaks, the larger is the

size of the population required to discover all the peaks.

This is more evident from F3(x) (see Figure 3). F3(x) has a

much higher fitness gap between its highest and lowest

peaks as compared to F2(x).

Using the same expression given above and plugging

in the numerical values from the plot, the expected number

of individuals at P5 will be:

N*0.02

)18(
25104507091010

2510

54321

5
5

 *N

....

.

*N
+P+P+P+PP

P
=n

Quantitatively speaking, a population size of at least 100 is

required to have at least two individuals at the lowest niche

(P5). FPN overcomes this requirement on the minimum

size of the population by uniformly distributing the total

population among the various peaks, irrespective of the

difference in the fitness value (see equation (13)). From

equation (13), it only requires a population size of at least

twice the number of peaks to have at least two individuals

at each of the niches (i.e. one tenth of the population size

required by the traditional sharing scheme).

3.3 Performance Criteria

To verify the performance of FPN and compare it

with the existing approach, two criteria are used. The first

criterion is the percentage of number of peaks discovered

by the niching algorithm as a function of search cycle

(generation). This in effect is equivalent to comparing the

ratio of the sum of the fitness of the local optima identified

by the niching technique divided by the sum of the fitness

of the actual optima in the search space. The other criterion

is the distribution of the population around the optimum

points. This shows whether the niching technique is able

to evolve a stable and diverse subpopulation.

4. Simulation Results

The proposed fitness proportionate niching scheme is

applied for the optimization of multimodal functions both

with equal and unequal peaks and its performance is

compared with the traditional fitness sharing scheme.

Simulation is carried out with various population sizes to

investigate how the niching techniques behave as the

population size varies. As the goal of a niching technique

is to discover multiple peaks in parallel, one possible way

of measuring system performance is displaying the number

of peaks discovered as the search process goes on. Figure 4

shows the performance for equal peaks. As can be seen

from this figure, there is no significance difference in

performance between the two algorithms for this function.

For instance, for a population size of 50, both algorithms

discovered almost all the 5 peaks. This result is normal

and expected as the two approaches are essentially the

same for multimodal functions having equal peaks.

However, for multimodal functions having unequal peaks,

there is a significant difference in performance (see Figures

5 and 6). Two categories of simulation are carried out

here. The first is for a function with a small fitness ratio

among the different peaks (F2(x) function). For this

20 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

scenario, FPN has a reasonably fair performance even at a

small population size. For a population size of 30, the

traditional niching scheme discovered nearly 75% of the

peaks whereas the fitness proportionate niching discovered

about 95% of the peaks. As the population size increases,

there is an improvement in performance of both. For a

population size of 50, both algorithms discovered almost

all the peaks. In the simulation results (both tables and

figures), TN refers to the traditional fitness sharing scheme

where as FPN stands for the fitness proportionate niching.

0 20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

N
u
m

b
e
r

o
f

P
e
a
k
s
 D

is
c
o
v
e
re

d
 (

%
)

Generations

TN PS=30

FPN PS=30

TN PS=50

FPN PS=50

Figure 4: total number of peaks discovered out of a total

of 5 peaks (in %).

0 20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

80

85

90

95

100

N
u
m

b
e
r

o
f

P
e
a
k
s
 D

is
c
o
v
e
re

d
 (

%
)

Generations

TN PS=30

FPN PS=30

TN PS=50

FPN PS=50

TN PS=80

FPN PS=80

Figure 5: Percentage of the number of peaks discovered

for F2(x), Averaged over 10 runs.

Figure 6 displays the simulation result for F3(x) for

various population sizes. As can be seen from the first

subplot in Figure 6, the traditional fitness sharing

technique discovers only the location of the highest peak

(only 1 peak out of a total of 5 peaks). But the fitness

proportionate niching discovered almost all of the peaks.

The results for F3(x) show how the traditional niching

technique is sensitive to the difference in fitness at the

peaks. To discover all the peak locations, it requires a very

large population size which depends on the fitness ratio at

the highest and lowest peaks. In this particular simulation,

the traditional niching technique requires a population size

of 150 to discover all the peaks as compared to 50 or lower

population size for the fitness proportionate niching

scheme.

Tables 1 and 2 show the distribution of the population

among the various peaks for F2(x) and F3(x) functions. The

values given are the average number of individuals at each

of the five peaks over 10 runs. As can be seen from both

tables, FPN tends to distribute the population among the

various peaks uniformly irrespective of the fitness

difference at the peaks.

0 50 100 150 200
20

40

60

80

100

N
u
m

b
e
r

o
f

P
e
a
k
s
(%

)

Pop Size=30

TN

FPN

0 50 100 150 200
40

60

80

100
Pop Size=50

TN

FPN

0 50 100 150 200
40

60

80

100

N
u
m

b
e
r

o
f

P
e
a
k
s
(%

)

Generations

Pop Size= 100

TN

FPN

0 50 100 150 200
40

60

80

100

Generations

Pop Size= 150

TN

FPN

Figure 6: Percentage of number of peaks discovered for

F3(x), averaged over 10 runs.

Table 1: Population distribution at the five different

peaks, averaged over 10 runs for F2(x).

PS Peak1 Peak2 Peak3 Peak4 Peak5

30 TN 10 9.7 7.1 3 0

FPN 7.3 6.8 6.7 5.3 3.6

50 TN 15.9 14.4 10.9 5.7 2

FPN 11 10.9 10.4 9.7 7.3

80 TN 24.6 23.1 17 10.3 4.6

FPN 18 16 16 15 15

Table 2: Population distribution at the five different

peaks, averaged over 10 runs for F3(x).

PS Peak1 Peak2 Peak3 Peak4 Peak5

30 TN 29.8 0.2 0 0 0

FPN 7.9 6.9 6.3 5.5 3

50 TN 47.1 2 0.7 0.1 0

FPN 12.1 10.7 9.7 9.3 7.5

100 TN 88 5.7 4.5 1.4 0.2

FPN 21.6 20.6 20 19.9 17.1

150 TN 128.4 9.8 7 3.5 1.3

FPN
31.9 31.5 30.5 28.9 26.9

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 21

5. Conclusion

This work has shown the feasibility of fitness

proportionate niching scheme for multimodal function

optimization. When the objective function has several

unequal peaks with a large peak ratio, the traditional

niching techniques tend to discover only the location of the

highest peak or require a very large population size in

order to discover all the peaks. This demand of large

population size added with the distance comparison

between individuals makes the traditional sharing

techniques computationally cumbersome.

The performance of the fitness proportionate sharing

method was compared with the existing niching method for

multimodal functions of unequal peaks. Both simulation

results and mathematical analyses showed that the

performance of the proposed niching technique is

insensitive to the fitness difference at the various peaks.

When individuals share the resource of a given niche in

proportion to the strength, the population distributes

around all the peaks uniformly irrespective of the fitness

variation at the niches.

6. References

1. D. Goldberg, "Genetic algorithms in search,

optimization, and machine learning," Reading, MA:

Addison-Wesley, 1989.

2. D. Beasley, eta’l, “A sequential niche technique for

multimodal function optimization,” Evol. Comput.,

vol. 1, no. 2, pp.101–125, 1993.

3. Cheol-Gyun Lee;eta’l, “Niching genetic algorithm

with restricted competition selection for multimodal

function optimization”, IEEE Transactions on

Magnetics, Vol.35, Issue 3, pps 1722-1725, May 1999.

4. Sareni, B. Krahenbuhl, L.” Fitness Sharing and

Niching Methods Revisited”, IEEE Transactions on

Evolutionary Computations, Vol. 2, Issue 3, pps.97-

106, 1998.

5. S. W. Mahfoud, “Niching methods for genetic

algorithms,” Ph.D.dissertation, Univ. of Illinois,

Urbana-Champaign, 1995.

6. K. Deb and D. E. Goldberg, “An investigation of

niche and species formation in genetic function

optimization,” in Proc. 3rd Int. Conf.Genetic

Algorithms, J. D. Schaffer, Ed. San Mateo, CA:

Morgan Kaufmann, 1989, pp. 42–50.

7. Abrham Workineh and Abdollah Homaifar, “Evolving

Hierarchical Cooperation in Classifiers via Fitness

Proportionate Niching”, IEEE Transactions on

Evolutionary Computations (submitted).

8. D. E. Goldberg, K. Deb, and J. Horn, “Massive

multimodality, deception and genetic algorithms,” in

Parallel Problem Solving from Nature (PPSN-2), R.

Manner and B. Manderick, Eds. North Holland:

Amsterdam, pp. 37–46, 1992.

9. D. E. Goldberg and J. Richardson, “Genetic

algorithms with sharing for multimodal function

optimization,” in Proc. 2nd Int. Conf. Genetic

Algorithms, J. J. Grefenstette, Ed. Hillsdale, NJ:

Lawrence Erlbaum, 1987, pp. 41–49.

10. J. H. Holland, Adaptation in Natural and Artificial

Systems. Ann Arbor, MI: Univ. of Michigan Press,

1975.

11. Y. Davidor, “A naturally occurring niche & species

phenomenon: The model and first results,” in Proc. 4th

Int. Conf. Genetic Algorithms, R. Belew and L.

Booker, Eds. San Mateo, CA: Morgan Kaufmann,

1991,pp. 257–263.

12. Antonio Della Cioppa, etal, “Where are the Niches?

Dynamic Fitness Sharing”, IEEE Transactions on

Evolutionary Computation, Vol. 11, No. 4, August

2007.

13. Grant Dick and Peter A. Whigha, “Spatially-

Structured Evolutionary Algorithms and Sharing: Do

They Mix?”, Proceedings of Proceedings of the 5th

International Conference on Simulated Evolution and

Learning (SEAL), pp. 457-464, 2006.

14. K. A. DeJong, “An analysis of the behavior of a class

of genetic adaptative systems,” Ph.D. dissertation,

Univ. of Michigan, Ann Arbor,1975.

15. Mahfoud, S.W, “Crossover Interaction Among

Niches,” Proceedings of the First IEEE Conference on

Evolutionary Computation, IEEE World Congress on

Computational Intelligence, pps 188-193.

16. A. Petrowski, “A clearing procedure as a niching

method for genetic algorithms,” in Proc. 1996 IEEE

Int. Conf. Evolutionary Computation, Nagoya, Japan,

1996, pp. 798–803.

ACKNOWLEDGMENT

This material is based in part upon work supported by

the National Science Foundation under Cooperative

Agreement No. DBI-0939454. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

22 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Using Simple Ancestry to Deter Inbreeding for Persistent Genetic

Algorithm Search

Aditya Wibowo and Peter Jamieson

Dept. of Electrical and Computer Engineering

Miami University

Abstract— In this work, we explore how a mechanism for

recording ancestry helps avoid inbreeding and, ultimately,

convergence for persistent optimization problems. We focus

our experimentation on the traveling salesman problem and

introduce a tabu search “like” mechanism in a CHC algorithm

and preselection genetic algorithm. We then compare how

this mechanism improves the diversity within the solution

population. We compare this mechanism to a basic genetic

algorithm and show how the quality of results is improved

and convergence is delayed. Our results indicate that the

CHC algorithm with the inbreeding avoidance mechanism is

the current best implementation for persistent optimization

problems in maintaining diversity of solutions and to find

the best solutions. Preselection shows improvement with our

mechanism, but does not seem to have sufficient exploitation

to find quality results. Our overall goal is to find the best way

to maintain diversity while finding good solutions for single-

threaded genetic algorithms.

1. Introduction

There is a small subset of optimization problems that we call

persistent optimization problems (POPs), and these problems

are characterized by problems that can have their solution

space continuously searched for better solutions. One of the

most recent of these types of problems is persistent computer

aided design (CAD) for Field-Programmable Gate Arrays

(FPGAs). FPGAs are programmable chips that can be updated

in the field with new and better designs. The placement

stage of FPGA CAD, which tries to pack hardware structures

that are connected to one another, can be algorithmically

solved using genetic algorithms (GAs), and researchers have

explored persistently searching for better placement solutions

(improving power consumption) using a GA [1], [2]. Other

examples of where persistent optimization algorithms may be

useful include energy control and distribution, financials, and

data mining. In each of these domains, the solution space is

dynamically changing over time, and better optimizations for

the problems may result in saved money and higher efficiency.

The key question for POPs is whether the additional run-time

costs justifies the benefit of potential improved solutions and

the incremental cost savings.

POPs fit well into GA frameworks since GAs can be

manipulated in terms of exploration versus exploitation phases

to continually cross a solution space. Still, convergence [3]

[4] defined as the lack of diversity in a population such that

new offspring are not sufficiently diverse, therefore, resulting

in suboptimal solutions, is a major concern for POPs in

addition to all GAs. For problems such as the FPGA placement

problem [5] and the Traveling Salesman Problem (TSP), where

a genome is expressed as unique string of individual genomes,

traditional algorithms such as CHC [6], which are built to

preserve diversity, are not directly applicable to these problems

since the hamming distance measure of familiarity does not

apply.

In this work, we implement versions of CHC and prese-

lection GAs to solve the TSP, and we include an inbreeding

avoidance technique inspired by Tabu Search [7]. Our goal is

to develop a single threaded GA that avoids convergence for

the longest period possible while still generating good results.

With the improvements of these algorithms, we plan to further

investigate divergence techniques such as the island model [8]

to build a larger system for POPs using GAs.

Our results show that our inbreeding avoidance mechanism

does achieve higher diversity for both preselection GAs and

the CHC algorithm based on a greater number of generations

before the the problem stabilizes. Preselection algorithms with

inbreeding avoidance last the most number of generations,

but it seems that this crowding technique loses some of the

advantages of competition/exploitation that the CHC algorithm

achieves.

The remainder of this paper is organized as follows. Sec-

tion 2 describes various techniques to maintain diverse popu-

lations for GAs and the relevance of crossbreeding operator to

our problems. Section 2.2 describes our inbreeding avoidance

technique and the two algorithms that they are implemented

within. Section 4 describes our experimental setup and Sec-

tion 5 shows our results. Finally, Section 6 concludes this

work.

2. Background

In this section, we examine various approaches to avoiding

premature convergence and the crossover operator for ordered

chromosomes.

2.1 Approaches to Avoiding Premature Conver-

gence

Premature convergence is a well known problem with GAs

[3] [4]. This problem has been addressed using a number of

methods including basic approaches such as:

1) Increasing population size

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 23

2) Island models/ Niching [8]

3) Crowding [9]

4) Preselection [10]

5) Inbreeding prevention [6], [11]

The first approach, increasing population size, impacts

memory usage and algorithmic run-time, but this approach can

be used in combination with all the other approaches to the

premature convergence problem. The second approach, Island

models, divides the search into a number of parallel solutions

where each is run independently of one another. In this way,

there is no sharing of genetic material of individuals from one

island population to another. This approach can also be applied

to any other approach for improving diversity. Therefore, the

first two approaches can be used to improve our results and

will be considered, in a larger system, once we wish to build

a larger system to solve POPs, but our focus for this work

is single-threaded approaches at fixed population size that

maintain genetic diversity while finding good solutions.

The last three schemes in the list are some examples of

algorithmic approaches to the premature convergence prob-

lem. Crowding works by having offspring compete against

individuals in the population that are most similar and thus

maintaining niche lineages within the populations. Similar in-

dividuals are found by making a comparison of their genomic

strings, and this comparison comes at a computation cost.

Preselection is a similar approach to crowding, but to avoid the

computational cost an assumption is made; the assumption is

that a parent will be a similar individual, and therefore parent

and child will compete against each other. Finally, the CHC

algorithm takes a number of steps towards avoiding premature

convergence, and of main interest to this work, parents of

similar genome structure are not bred together (inbreeding

prevention). These three approaches have been extensively

studied for problems that have a binary encoded genome,

and this work looks at two of these approaches for genomes

that have unique chromosome encoding (described in the next

section).

As mentioned before, the CHC algorithm is a non-traditional

GA that was created to avoid premature convergence. In this

paper, we implement the CHC algorithm [6] as one of the

comparison points for our inbreeding avoidance technique.

The CHC algorithm has four main components:

1) Parents and children combined together in competition

for next population

2) Inbreeding avoidance by comparing binary encoded

genomes hamming distance

3) Highly disruptive crossover operator

4) Full restart (from the best individual) once no new

offspring are created in a generation

Since our work is focused on genomes that are not a simple

binary encoded string, we take a modified approach to this

algorithm. In particular, we use a crossover method described

in the next sub section and our inbreeding avoidance technique

is described in the section following the background.

2.2 Crossover Operators for Permutation Based

Genomes

Fig. 1

SAMPLE OF A SMALL PLACEMENT GENOME

In the case of both the TSP and the FPGA placement

problem (among other problems) the genome consists of a

permutation in which each chromosome is unique. These types

of chromosomes are called ordered chromosomes. In the TSP

problem, this genomic string represents the order of a tour;

for example, for a four city problem we might see the string

A, C, B, D which means this solution will go from city A

to C, C to B, and B to D in that order. For the placement

problem this permutation string indicates which pieces of a

circuit are located in a 2D plane. For the previous example,

piece A would be placed at x=0, y=0, piece C is at x=0, y=1,

piece B is at x=1, y=0, and piece D is at x=1, y=1. Figure

1 shows this example of the 2D placement and the respective

genome. This genome structure was originally proposed by

Venkatraman et. al. [12].

For these types of strings, crossover operators that simply

copy the genome of parent 1 and take parts of the genome from

parent 2 and map them into the child cannot be used. Instead,

careful consideration must be used to perform the crossover.

A number of crossover operators of this nature have been

proposed and studied ([4], [13], [14], [15], [16], [17], [18],

[19]). Cicirello et. al. [18] provide a useful classification of

these crossover methods by first classifying them as problem

dependent or general crossover operators. Cicirello et. al.

further classify crossovers into three categories (a) position-

based crossover (e.g. [16]), (b) order-based crossover (e.g.

[19]), and (c) hybrid crossover operators (e.g. [15]).

24 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Recently, the success of a problem dependent crossover

operator proposed b Whitley et. al. for the TSP suggests that

careful thought should be given to a problem with ordered

chromosomes. The same is, likely, true for the FPGA place-

ment problem among other problems, and this is an are for

future work if we pursue FPGA placement POPs.

Fig. 2

SAMPLE PMX MUTATION

For this work, we are attempting to find a general single-

threaded framework for solving POPs that do not use any of

the more modern domain specific solutions that would target

the TSP. Instead, we use the partially mapped crossover (PMX)

[15], which randomly selects a set of parent genes to be copied

to the new child from parent 1. Then, the remaining genes are

transferred from parent 2 unless this gene has already been

assigned by parent 1. If it has, a reverse mapping using the the

information in parent 1 is used to find an appropriate gene to

be copied to the empty spot. Figure 2 shows a simple example

of the PMX operator where a set of chromosomes have been

selected to be copied from parent 1 to child 1 and parent

2 to child 2. The remaining genes are copied over from the

opposite parent using a remapping process when needed. Note

how, in the figure, child 2 has some chromosomes from parent

1 (illustrated in red), some from parent 2 (illustrated in green),

and one remapped chromosome (illustrated in black) . Note

that the highly disruptive aspect of the CHC algorithm is not

specifically explored in this work, and we simply assume that

our crossover operator is sufficient, and we leave this issue as

future work, if necessary.

3. Inbreeding Prevention for Permutation

Based Genomes
In Eshelman’s [6] original work on the CHC algorithm,

he introduced inbreeding prevention for binary encoded chro-

mosomes, and in this work we look at a technique to avoid

inbreeding for ordered chromosomes and apply this technique

both to preselection GAs and our implementation of the CHC

algorithm. Our technique is inspired by tabu search [7] where a

simple history is kept for previous solutions. In the same way,

we can keep ancestry records for each individual by keeping

am ancestor tree to a certain depth of generations.

Figure 3 shows how two parents ancestral trees that contain

three past generations are combined together in a respective

Fig. 3

SHOWS HOW TWO PARENTS ANCESTRY IS RECOMBINED FOR A CHILD

child. Based on our crossbreeding operator, we can assume

that both parents contribute roughly 50% of their genetic in-

formation to the child. Similarly, grandparents will contribute

25% of their genetic material to the child, and so on for

older generations where 4th generation contributes 12.5%, 5th

generation contributes 6.25%, and 6th generation contributes

3.125%. Therefore, from a perspective of our inbreeding

avoidance it doesn’t make much more sense to record deeper

than 6 generations, where 6 generations costs us only 128 data

locations in memory. This memory cost for ancestry records is

small for each member of the population in comparison with

the size of their genomic information. Therefore, the memory

cost is not significant. We will explore the depth of ancestry

in the experimental section.

With the ancestors recorded, avoiding inbreeding is done by

comparing two candidate parents and checking if they share

any common ancestors. If they do share common ancestors,

depending on the GA, a new suitable pair of parents is

found or the crossbreeding operation is skipped. In terms

of the computation cost to search for shared ancestry, we

simply do an exhaustive search of both family trees. We have

implemented these trees as arrays, and therefore, the search is

very simple. The cost for this comparison is similar to that of

calculating the hamming distance between individual genomic

strings.

Our inbreeding avoidance mechanism, however, differs from

the original approaches in CHC and crowding GAs where

the goal is to compare individuals based on how similar they

are to one another. Instead, our inbreeding mechanism makes

a similar assumption to preselection GAs, where children

sharing ancestry will be similar just based on lineage. The

problem in implementing a comparison of individuals with

ordered chromosomes, like that of the original CHC and

crowding GA, is identifying similar solutions, which will

lead to implementations of subgraph isomorphism problems

[20]. For example, a tour in the TSP might include the sub-

string ”A, R, C”, and other population solutions with the sub-

string ”A, R, C” at some point might be considered similar.

Searching for all such string matches would be expensive.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 25

Fig. 4

SHOWS FOUR EXAMPLES OF WHAT MIGHT BE CONSIDERED SIMILAR

PLACEMENTS

In the case of the 2D placement problem the problem

of finding similar individuals is even harder than finding

subgraphs. Figure 4 shows four examples of how 4 things

(from a set of, potentially, thousands) can be placed relative

close to each other, and in each case we might consider

examples (a), (b), (c), and (d) similar to one another since

the components are only one hop away from one another.

These four components, however, will not be adjacent to one

another in the genomic string. For example, example (a) would

have a genome of the form “..., B, D, ..., C, A, ...” and

(b) would have the form “..., A, D, ..., C, B, ...” meaning

sub-string matching approaches cannot be used. Our proposed

mechanism, however, can deal with both problems by trading

off the measure of similarity for the simplicity of comparing

ancestry.

It may also be possible to implement comparison of indi-

viduals using some sort of clustering technique, but again, the

computational complexity of these approaches is high.

In the original implementation of the CHC algorithm, as

the population becomes more and more similar the algorithm

relaxes the similarity comparison. This relaxation, eventually,

activates a restart condition for the algorithm. Using our

ancestry mechanism we implement a similar mechanism in our

implementation of the algorithm for ordered chromosomes. In

our case, relaxation is implemented by changing the depth of

generations explored for similar ancestors. Once the number

of generations drops below one (which just compares parents)

we activate the same restart mechanism as CHC where the

best individual is mutated to create a new restarted population.

During this restart, we eliminate all ancestry information and

completely start over.

4. Experimental Setup
With our inbreeding avoidance technique, our goal is to de-

lay convergence using a single-threaded algorithm for as long

as possible while generating good solutions to the problem.

In the case of POPs, run-time is not, necessarily, the most

important concern, and instead, the number of generations

before convergence occurs is what we are hoping to extend

in this work. To study if our inbreeding mechanism achieves

this we will compare a GA and a preselection based GA to

an implementation of the CHC algorithm and a preselection

based GA with inbreeding prevention. Our comparison will

be based on how many generations each of the algorithms

generates before the best solution exists for 500 new gener-

ations. Additionally, we will experiment with the number of

generations of ancestors to be recorded to see how this impacts

the results.

Before showing data from the results of these experiments,

we will describe some of the details for our TSP and each of

the candidate GAs.

4.1 TSP instance

Instead of using a particular benchmark such as TSPLIB

[21] we build our benchmarks with randomly created cities and

the distances are based on Euclidean distance measurements.

The reason for this approach is our need for large problems

with a high number of nodes to look at POPs where the

likelihood of finding a global optimum is unlikely. For each

experiment we use the same benchmark to fairly compare each

of the algorithmic approaches.

4.2 Common Algorithmic Parameters

To keep our experiments fair, there are a few parameters

and operations that are common for all of the GAs in this

work. Population size for all of the algorithms is set to

500 individuals per generation. The crossover operator is as

described in section 2 and is the PMX based crossover. The

mutation operator is a random swap between two locations in

the genomic string and this value is set 5% of the number

of cities in the TSP. The initial population for each of the

algorithms is generated randomly.

4.3 Base GA

The base GA consists of previously described parameters

and operators with the following additional aspects. The GA

creates each new generation with approximately 20% of the

population from crossbreeding, 79% from crossbreeding and

mutations, and 1% random new individuals. Crossbreeding

and mutations are taken from the best 25% of individuals in

the previous population, and no parents are kept from one

generation to the next. References to this algorithm will use

the name “base ga”.

4.4 Preselection GA

Our implementation of the preselection GA has all the pre-

viously described common parameters. The crowding aspect

of this algorithm is implemented based on the assumption

26 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

that children of parents are the most similar (without doing

a formal comparison), and therefore, parents will compete

directly with their children for the next generation. In our

implementation, two parents are selected and the crossover

operation is implemented. The two resulting children are then

mutated and are grouped with the parents, and the best two

individuals are propagated to the next generation.

In the case where inbreeding prevention is part of this

algorithm, parents are only selected when they share no

ancestry. If they do share ancestry then a new pairing is found

by keeping one of the candidate parents and randomly finding

a new second candidate parent. There may be a concern that

depending on the depth of ancestry there will be no suitable

pairing, but given the population size and depth of ancestors

to be recorded, this does not occur for our implementation.

However, algorithm designers should consider this when im-

plementing a similar mechanism for their own problems.

References to these two algorithms will be “preselect ga”

and “preselect no inbreeding ga” where the later has the

mechanism to prevent inbreeding.

4.5 CHC algorithm

Our implementation of the CHC algorithm is derived from

the original publication by Eschelman and a brief description is

included for each of the 4 main concepts within his algorithm.

1) Parents and children combined together in competition

for next population - This is implemented by ranking

both children and parents together and then destroying

the lower half of these individuals. In the case of a tie,

the parent individuals are chosen first.

2) Inbreeding avoidance - this mechanism was described

in the previous section, and when the population of

individual remains the same from one generation to the

next then the depth of ancestry search is reduced by one.

3) Highly disruptive crossover operator - as described in

the background we make the assumption that the PMX

crossover, where approximately 50% of the genetic ma-

terial comes from each of the two parents, is sufficiently

disruptive.

4) Full restart (from the best individual) once no new

offspring are created in a generation - once the depth of

search in the inbreeding avoidance mechanism reaches

zero, we take the best individual and copy and mutate

(with a 35% chromosome mutation rate) to create a

new population. The algorithm then resumes normal

operation.

References to this algorithm will be “chc algorithm”.

5. Experimental Results
In this section, we will look at two experiments. First, what

happens to chc algorithm as we change the number of past

generations to record. These results will show us if there is any

clear advantage to having a deeper record of ancestry. Next,

we will look at how all three algorithms compare to each other

observing how our mechanism improves the perseverance of

diversity.

5.1 Impact of Ancestors on Diversity

For this experiment, we vary the depth of the ancestry tree

between 3 and 8 generations for the chc algorithm. In this

experiment, the depth of ancestry search is controlled by the

algorithm as described earlier in section 4.5. Each instantiation

of the algorithms are executed until 500 iterations of the

algorithm provide no improvement on the cost function and

the run exits.

100000

105000

110000

115000

120000

125000

130000

135000

140000

1 51 101 151 201 251 301 351 401

Generations

Inbreeding Mechanism for CHC

chc-3

chc-4

chc-5

chc-6

Fig. 5

SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS

Figure 5 shows a graph of our CHC implementation for the

different ancestry depths. The y-axis shows the cost function

measure for a TSP consisting of 2000 cities. The x-axis

is the number of generations, where the last generation is

reported before the 500 repetitions of no improvement. A

legend is provided and the number for each corresponds to

the maximum depth of ancestry to be recorded. Note that for

each instance of the algorithm the random starting population

is the same (chc-3, chc-4, chc-5, and chc-6 all have the same

initial population).

From this example, we can see that as the ancestry depth

is increased, the number of generations tends to increase.

This tendency, however, is not the case for the 3 ancestor

generation run labeled as chc-3. Also, the instance chc-3 finds

one of the best solutions to the problem. This type of result

is possible based on the randomness of the algorithm, and the

more general result that diversity is maintained based on the

trend that increasing the depth of generations recorded tends

to increase the number of generations before the run exits.

To get a more thorough picture of what is happening,

Figure 6 shows more runs of the CHC algorithm with inbreed-

ing avoidance mechanism and a maximum ancestral depth

of eight. For each of the five runs, we have colored the

respective ancestry depth runs with the same coloring. The

lower number of generations (3, 4, 5) are in dark colors, and

the higher number of generations are in the lighter colors. The

graph clearly shows that there is randomness for each run as

expected. In terms of trends, the higher number of generation

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 27

100000

105000

110000

115000

120000

125000

130000

135000

140000

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Generations

Inbreeding Mechanism for CHC
chc-3

chc-4

chc-5

chc-6

chc-7

chc-8

Fig. 6

SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS FOR 5 INSTANCES

based algorithms find a path to the low-energy solution later.

The best solutions are found by execution runs by chc-5, chc-

4, chc-6, and chc-7 in that order. We conclude that the depth

range between 5 through 7 seems to be the best choice for

ancestry records based on the results and the intuition that

algorithms maintaining generations past 6 are unnecessarily

restricting mating for unlike individuals.

One other thing we have observed in our CHC algorithm

experiments is the lack of effectiveness for the restart mech-

anism. Only in 2 of the 30 runs of the algorithm was the

restart effective in finding better solutions, noting that all 30

instances do initiate the restart mechanism. We hypothesize

that random mutations for ordered chromosomes at low energy

solution spaces is not effective, and other mechanisms need to

be employed. We leave this to future work.

5.2 Comparison of All Algorithms

In this experiment, we compare all our implementations.

Our comparison points include those algorithms with an

inbreeding avoidance mechanism including the preselection

algorithm with an ancestor depth of 6 previous generations.

The exit condition is the same as previously described, and

our overall goal is to maintain diversity as long as possible

while finding good solutions.

Figure 7 shows a graph of our algorithmic implementations

with a selection of CHC runs from the previous experiment.

Similar to the previous graphs, the y-axis shows the cost

function measure for a TSP consisting of 2000 cities, and the

x-axis shows the number of generations, where the last gen-

eration is reported before the 500 repetitions of no improve-

ment. The legend shows the name for each of the algorithm

implementations with the numbering showing an algorithm

with inbreeding prevention according to the depth of ancestors

recorded. Note that the preselect no inbreeding ga algorithm

uses a depth of 6 ancestral generations to be recorded and

when a pair of parents are selected, all ancestors are searched

for common relations.

From the graph, we see a number of trends. First, pres-

election GAs maintain diversity for the greatest number of

generations. This is to be expected since the crowding nature

of this algorithm maintains highly diverse pockets of evolution.

The best results generated by the preselection GAs, however,

are not as good as the CHC algorithm. This is partially

due to the pockets of evolution, which maintains diversity

at a cost of less competition. The addition of the inbreeding

avoidance mechanism in the preselection algorithm improves

the quality of the solution and extends the diversity (number of

generations), but not by a significant amount. For our purposes,

the small crowding pockets do not seem to allow sufficient

exploitation to find good solutions.

Overall, the best solutions are found by the more diverse

algorithms that do not allow inbreeding based on the mech-

anism we have introduced. From our experimental data, this

suggests that our inbreeding avoidance technique is provid-

ing the desired outcome, and overall, we observe significant

improvement on diversity and quality for all the algorithms

compared to our base ga.

6. Conclusion

In this work, we introduced the concept of POPs and

how GAs can play a valuable roll in solving these types

of problems. We then explored how to maintain genetic

diversity within a single-threaded GA run targeting POPs. We

introduced an inbreeding avoidance technique inspired by tabu

search, and we described how such a mechanism can be used

both with the CHC algorithm and preselection algorithm for

genomic strings that have ordered chromosomes. These types

of chromosomes can be used to solve problems such as TSP

and the FPGA placement problem.

28 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

100000

105000

110000

115000

120000

125000

130000

135000

140000

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

Generations

Inbreeding Mechanism for CHC

base_ga

preselect_ga

preselect_ga_no_inbreed

chc-4

chc-5

chc-6

chc-3

Fig. 7

SHOWS THE RESULTS ALL OUR THE IMPLEMENTATIONS.

The experiments with our inbreeding avoidance mechanism

shows that the more levels of recording for generations im-

proves the diversity of the population, and tends to improve

the quality of results generated by the GAs. We believe that

these types of mechanisms are not only valuable for POPs,

but this could be exploited by other GAs for other types of

problems.

References
[1] P. Jamieson, “Exploring inevitable convergence for a genetic algorithm

persistent fpga placer,” in GEM, 2011, pp. 1–8. [Online]. Available:
http://www.users.muohio.edu/jamiespa/html papers/gem 11.pdf

[2] ——, “Persistent cad for in-the-field power optimization,” in ERSA,
2010, pp. 267–270. [Online]. Available: http://www.users.muohio.edu/
jamiespa/html papers/ersa 10.pdf

[3] M. Rocha and J. Neves, “Preventing premature convergence to local
optima in genetic algorithms via random offspring generation,” in
Proceedings of the 12th international conference on Industrial and

engineering applications of artificial intelligence and expert systems:

multiple approaches to intelligent systems, 1999, pp. 127–136. [Online].
Available: http://portal.acm.org/citation.cfm?id=341506.341546

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, 1st ed. Addison-Wesley Professional, January 1989.
[Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0201157675

[5] K. Roy and C. Sechen, “A timing driven n-way chip and
multi-chip partitioner,” in Computer-Aided Design, 1993. ICCAD-

93. Digest of Technical Papers., 1993 IEEE/ACM International
Conference on, 1993, pp. 240 –247. [Online]. Available: http:
//www.eecg.toronto.edu/∼jayar/pubs/sankar/fpga99sankar.pdf

[6] L. J. Eshelman, “The chc adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination,” in
FOGA, 1990, pp. 265–283.

[7] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Comput. Oper. Res., vol. 13, pp. 533–549, May 1986.
[Online]. Available: http://dl.acm.org/citation.cfm?id=15310.15311

[8] R. E. Smith, S. Forrest, and A. S. Perelson, “Searching for
diverse, cooperative populations with genetic algorithms,” Evol.

Comput., vol. 1, pp. 127–149, June 1993. [Online]. Available:
http://dx.doi.org/10.1162/evco.1993.1.2.127

[9] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems.” Ph.D. dissertation, Ann Arbor, MI, USA, 1975, aAI7609381.

[10] D. J. Cavicchio, “Adaptive Search Using Simulated Evolution,” Ph.D.
dissertation, University of Michigan, 1970.

[11] S. De, S. K. Pal, and A. Ghosh, “Genotypic and phenotypic assortative
mating in genetic algorithm,” Inf. Sci., vol. 105, pp. 209–226, March
1998. [Online]. Available: http://dx.doi.org/10.1016/S0020-0255(97)
10035-4

[12] R. Venkatraman and L. M. Patnaik, “An evolutionary approach to
timing driven fpga placement,” in GLSVLSI ’00: Proceedings of the

10th Great Lakes symposium on VLSI, 2000, pp. 81–85. [Online].
Available: http://doi.acm.org/10.1145/330855.330986

[13] D. Whitley, D. Hains, and A. Howe, “A hybrid genetic algorithm for
the traveling salesman problem using generalized partition crossover,”
in Proceedings of the 11th international conference on Parallel problem

solving from nature: Part I, 2010, pp. 566–575. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1885031.1885092

[14] ——, “Tunneling between optima: partition crossover for the traveling
salesman problem,” in Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, 2009, pp. 915–922. [Online].
Available: http://doi.acm.org/10.1145/1569901.1570026

[15] D. E. Goldberg and R. Lingle, Jr., “Alleles, loci, and the traveling
salesman problem,” in Proceedings of the 1st International Conference

on Genetic Algorithms, 1985, pp. 154–159. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645511.657095

[16] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation
crossover operators on the traveling salesman problem,” in Proceedings

of the Second International Conference on Genetic Algorithms on
Genetic algorithms and their application, 1987, pp. 224–230. [Online].
Available: http://dl.acm.org/citation.cfm?id=42512.42542

[17] B. A. Julstrom, “Very greedy crossover in a genetic algorithm for
the traveling salesman problem,” in Proceedings of the 1995 ACM
symposium on Applied computing, 1995, pp. 324–328. [Online].
Available: http://doi.acm.org/10.1145/315891.316009

[18] V. A. Cicirello, “Non-wrapping order crossover: an order preserving
crossover operator that respects absolute position,” in Proceedings of
the 8th annual conference on Genetic and evolutionary computation,
2006, pp. 1125–1132. [Online]. Available: http://doi.acm.org/10.1145/
1143997.1144177

[19] L. Davis, “Applying adaptive algorithms to epistatic domains,” in IJCAI,
1985, pp. 162–164.

[20] H. G. Barrow and R. M. Burstall, “Subgraph isomorphism, matching
relational structures and maximal cliques,” Information Processing Let-
ters, vol. 4, pp. 83–84, 1976.

[21] G. Reinelt, “TSPLIB — a traveling salesman problem library,” ORSA

Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 29

Optimal Design of Islanded Microgrid Using Genetic
Algorithm

*Farzad Razavi, **Reza Torani, ***Iman Askarian, ****Alireza Asgharizadeh, *Nima Masoomi
*Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin

** Department of Electrical Engineering, Tafresh University
*** Department of Electrical Engineering, Tehran University

**** Department of Electrical Engineering, Amirkabir University
(Corresponding author: Farzad Razavi, tell: +98912177 3241; email: farzad.razavi@qiau.ac.ir)

Abstract—This paper focuses on an optimization method for a
droop controlled microgrid in islanding operation. The ultimate
goal is to optimize droop coefficient to minimize frequency
variation. Also, gains of PI controllers are optimized to ensure
good behavior of the controller. Optimizations are implemented
in MATLAB software using Genetic Algorithm (GA). Stability of
optimized PI gains of voltage and current controllers are
analyzed.

Keywords- Microgrid; Distributed Generation(DG); Droop Control;
Islanding operation; V/f control; power sharing; Voltage Source
Inverter (VSI); Genetic Algorithm(GA).

I. INTRODUCTION
Advancement in Distributed Generations (DGs) systems

and power electronic devices led to concept of Microgrid. It
can integrate renewable energy and other forms of DG and also
increase reliability and efficiency [1]. Many forms of DG such
as fuel cell and photovoltaic are interfaced to the network
through power electronic devices. These interfaced devices
make the system more flexible in their operation and their
control compared to the conventional electrical machine [2- 4].
Consequently, control strategy of parallel connected inverters
is important for microgrid operating.

The basic objective in microgrid control is to achieve an
accurate power sharing and regulation of the microgrid voltage
and frequency. Centralized control of microgrid is proposed in
[5]. However, this method is impractical and costly in
microgrid with long distance between DG units. To overcome
this limitation, decentralized controllers based on the droop
control method are proposed [6-9]. This method does not need
any communication.

In normal condition, Microgrid operates in grid-connected
mode and the main grid can support the system frequency and
voltages by supplying the power mismatch immediately. When
a fault occurs in the main grid, Microgrid needs to disconnect
from the main grid to provide uninterrupted power to the loads.
In islanding operation mode, DGs operate in Vf control for
supplying microgrid load and controlling voltage and
frequency [10]. To this purpose, droop control that assigns the
amount of power sharing for changes of load without
communication is used [11].

After transition from grid-connected to islanding, the
frequency of microgrid is determined by the droop coefficients
of DGs. Since the droop control changes the system frequency
to supply the power mismatch, the frequency variation occurs.
To maintain frequency close to the nominal value, droop
coefficients should be determined properly. The droop
coefficient and sharing ratio may be dictated by economic
interested of the system operators [12]. The choice of droop
coefficients in such case is analyzed in [13].

The main problems for controller parameter optimization
are nonlinearity and complexity of the system. Small signal
linearization is a usual method for designing of controller
parameters. But this method depends on the operation point
[14]. Hence, in this paper simulation model in
MATLAB/Simulink is employed as a replacement for small
signal method for optimization.

This paper concentrates on optimization of microgrid
controller. Genetic algorithm is used to optimize the droop
coefficients. The proportional and integral gains of voltage and
current controller are optimized to achieve the system stability.

II. MICROGRID CONFIGURATION
A microgrid configuration with two DG is shown in Fig.1.

Each DG consists of DC source, voltage source inverter (VSI)
and LC filter for rejecting high frequency harmonics. Load 1 is
sensitive load. Load 2 is non sensitive load.

Under normal operation, the microgrid is a part of main
grid. In this mode, DGs injected predefined active and reactive
powers and main grid regulate voltage and frequency of
microgrid. When disturbance such as fault occurs in the main
grid, the switch k opens and microgrid operate in islanding
mode. Hence, increase the reliability of the microgrid. In
islanding operation mode, due to absence of main grid, DGs
should be able to share the power mismatch to supply loads and
to maintain power quality. In this situation, DGs operate in V/f
control for controlling the voltage and frequency of microgrid
and feeding the loads.

30 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Fig. 1. Microgrid Configuration

III. CONTROL STRATEGY
This section presents the control strategy for islanding

operation mode of microgrid. Fig.2 shows the V/f controller
and Fig.3 shows the power controller that consists of power
calculation and droop controller. The droop control is used for
sharing power between DGs in islanding operation.

Fig. 2. V/f Control

Power calculation block calculates active and reactive
powers from measured instantaneous values of d axis and q
axis voltage and current. Equations 1 and 2 show the
calculation procedure of powers:

(1) ()c
od od oq oq

c

wP V I V I
S w

= +
+

(2) ()c
od oq oq od

c

wQ V I V I
S w

= −
+

The basic idea behind the droop control is to mimic the
governor of synchronous generator. In a conventional power
system, synchronous generators will share any increase in the
load by decreasing the frequency according to their governor
droop characteristic. This principle is implemented in inverters
by decreasing the reference frequency when there is an increase
in the load. Similarly, reactive power is shared by introducing a
droop characteristic in the voltage magnitude. In islanding
operation, droop method can be used to share loads and
controlling voltage and frequency in special range [14], [15].

Fig. 3. Droop Control

Two coefficients control the changes slope of frequency
and voltage against active and reactive power.

(3) nw w mP= −

(4) nV V nQ= −

where nw , nV , m , n , P and Q are rated frequency, rated v
oltage, active power droop coefficient, reactive power droop co
efficient, output active power and output reactive power of VSI
, respectively. Droop coefficients are defined below:

(5)
max

wm
P
∆=

(6)
max

Vn
Q
∆=

where w∆ and V∆ are maximum allowable deviations of
frequency and voltages. Also maxP and maxQ are maximum
output active and reactive powers of DG.

The reference frequency and amplitude of the output voltage
can be obtained by the droop control. Then drefV and qrefV are
obtained by dq transformation.

Fig.4 shows the voltage and current controller loops.
Voltage and current control loops use PI controllers.

IV. OPTIMIZATION ALGORITHM (GA)

A. Genetic Algorithm
In this paper, Genetic Algorithm is used to optimize the

objective function. To optimize a problem, using the GA, a
population is required to be defined at the first step. This
population is formed by binary accidental quantization of
chromosomes. In the next step, produced population is applied
to the objective function and the fitness of chromosomes is
obtained, using equation 7. Some of the best answers are
chosen and new generation is produced by the genetic
operators of crossover and mutation. In the first type, two gens,
that should be combined, are placed beside each other and are
divided from a specified point. Then, the sides that are placed
in front of each other are combined together. In the second
type, a percent of chromosomes are substituted by another
value of their allowable confine, in order to make the
optimization, global and not local. To have a global and the
fastest answers, both of these genetic operators are used in this
paper [16].

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 31

(7) 1Fitness
OF

=

Fig. 4. Voltage and Current Controller

B. Controller Parameters Optimization
The main problems in control optimization are nonlinearity

and complexity of the system. A method for this purpose is
small signal linearization. But linearization of microgrid for
optimization of droop controller may result in difference with
the actual microgrid [14, 17]. Hence in this paper, simulation
model in MATLAB/Simulink is used for optimization.

After transition from grid-connected to islanding, the
frequency of microgrid is determined by the droop coefficients
of DGs. Since the droop control changes the system frequency
to supply the power mismatch, the frequency variation occurs.
To maintain frequency close to the nominal value, droop
coefficients should be determined properly.

The control problems are formulated as optimization
problem. The criteria of droop control optimization are:

1) Frequency of microgrid should be maintained near
nominal value. It means that, frequency variation
of microgrid after transition to islanding and load
changes should be minimal.

2) DGs output power should be equal to load power
and power sharing between DGs should be based
on the droop control.

The proportional and integral constants of PI controllers for
voltage and current controller are determined by GA to obtain
good response and stability of system.

C. Technical Constraints
I. Frequency Deviation

Selection of appropriate droop coefficient results lower
deviation of microgrid frequency. Frequency deviation after
change of load is determined by following equation, as
explained in Appendix.

(8) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

According to equation (8), droop coefficient should be
optimized for minimizing the frequency deviation. The
constraint for droop coefficient is presented bellow.

(9) 0 < <optimizedm m

where m value is determined according to equation (5).

I. Power Sharing
In optimization process, load should be supplied and shared

between DGs correctly. Following equations shows the power
sharing mechanism between DGs after any change of the load,
as explained in Appendix.

(10) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

(11) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

According to equations (10) and (11), change of the load
between DGs should satisfy the following equation.

(12) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

D. Objective Function
The proposed objective function of this paper consists of

droop coefficient and power sharing. The first part of objective
function represents frequency deviation, as in equation (13).

13 1 min()= ∆F f
If the constraints of F1 are violated, the output would be
infinite value.

The second part of objective function represents the power
sharing accuracy between DGs.

(14) 2
2 1 2

1

min()= −
mF P P
m

It should be note that, in this paper it’s assumed that DGs
have the same droop coefficients. So, the purpose of second
part is to equally share load between DGs.

V. SIMULATION RESULTS

The control method for islanded microgrid of Fig.1 have
been modeled and simulated in MATLAB/Simulink. System
parameters are presented in TABLE I. For verifying the power
sharing between DGs, load is changes from 6 KW to 10 KW at
t=0.3 s. Results are presented in two cases. In these cases, the
droop coefficients of DGs are chosen equally, so that the power
is shared between them equally.

TABLE I. SYSTEM PARAMETERS

Parameters Values

DG1
&

DG2

DC-link Voltage 580V
Inverter filter inductance 1.35mH
Inverter filter capacitance 50µF

Inverter switching frequency 8KHz
Srate 10KVA

Controller

m 6.25e-5
n 1.83e-5

Wn 50Hz
Vn 220V

Parameters of Lines1and 2 0.03+ j0.11Ώ
Load 6KW

RMS line voltage 220√3

32 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Case1:
In this case, selection of droop coefficients are based on the

equations 5 and 6. Allowable frequency deviation is considered
to 0.5 Hz for determination of droop coefficient. Parameters of
PI controller for Voltage and current controller are obtained
using try and error. These parameters are presented below.

IV PI II0.19, K 398, K 0.5, K 800PVK = = = =

Fig.5 depicts the output active powers of DGs. Since DGs
have a same droop coefficient, change of the load is shared
between them equally.

Fig.6 shows the frequency of islanded microgrid. After
transition to islanding and change of load in this mode,
frequency of microgrid is determined by droop coefficients of
DGs in microgrid. It can be seen from Figs.5-6 that the system
does not have a good behavior. Although the deviation of
frequency in islanding mode is in allowable limit, but it can be
minimize using Genetic algorithm.

Fig. 5. Output power of DGs

Fig. 6. Frequency of the microgrid

Case 2:
Selection of droop coefficient in this case is based on the

Genetic Algorithm. Constraints on the droop coefficient for
optimization are 0 and 56.25 10−× . Value of 56.25 10−× is
obtained based on equation (5) for 0.5Hz allowable deviation.
Optimized parameters are:

5
IV

PI II

0.0206 10 , 0.4296, K 81.946,
K 1.3123, K 309.08

−= × = =
= =

PVm K

Fig.7 shows the output active powers of DGs with
optimized parameters. Since DGs have a same droop
coefficient, change of the load is shared between them equally.

Fig. 7. Output power of DGs

Fig.8 shows the frequency of islanded microgrid. It can be
seen from Fig.8 that the frequency variations of microgrid in
this case become very smaller than the case1. Also it can be
seen from Figs.7-8 that the system behavior with optimized PI
gains is better than case1. As a result, with optimization of
droop coefficient and PI gains, frequency deviation become
smaller and the system behavior is improved.

Fig. 8. Frequency of the microgrid

VI. STABILITY ANALYSIS
In this section, stability of voltage and current controllers

with optimized PI gains are verified. For this purpose, their
transfer functions should be determined.

1) Current Controller Transfer Function:
Fig. 9 shows the block diagram of the current controller for

Islanding operation. oV is the disturbance input. The inverter
stage does not have any significant transient time associated
with it [18], and hence, it modeled as an ideal gain. This ideal
gain can be given by () 1invG s = . Block diagram of current
controller is shown in fig.9.

Fig. 9. Block diagram of current controller

The transfer function of the current controller is given by
equation (15). It can be seen from equation (15) that the system
is stable based on the conventional control theory.

(15) 3

1.3123 309.08()
1.35 10 1.3123 309.08

ST S
S S−

+=
× + +

Fig.10 Shows bode plot of the current controller. It can be
seen that the system have positive phase margin and is stable.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 33

Fig.11 shows step response of the controller. In Fig.11, Rise
time (tr) is 0.00151, Overshoot is 13.3% and steady state error
is zero. We can find out that the system has appropriate
performance.

For analysis response of current controller to disturbance,
the unit step is applied to disturbance input (0V) in Fig.12. It
can be seen that the system have good response and
disturbance is damped very soon. Settling time is less than
15ms.

Fig. 10. Bode diagram of the current controller

Fig. 11. Step response of the current controller

Fig. 12. Disturbance response of the current controller

2) Voltage Controller Transfer Function:
Block diagram of voltage controller is shown in Fig.13.

Fig. 13. Block diagram of voltage controller

The transfer function of this controller system is given by
equation (16). According to equation (16), the system is stable
based on the conventional control theory.

(16)
2

8 4 4 3 2

4.511 3438 491676()
6.75 10 5.25 10 4.811 3438 491676

S ST S
S S S S− −

+ +=
× + × + + +

Fig.14 Shows bode plot of the voltage controller. It can be
seen that the system have positive phase margin and is stable.
Fig.15 shows step response of the controller. In Fig.15, settling
time (ts) is 0.00144, Overshoot is 24% and steady state error is
zero. We can find out that the system has appropriate
performance.

Fig. 14. Bode diagram of the voltage controller

Fig. 15. Step response of the voltage controller

For analysis the response of voltage controller to
disturbance, the unit step is applied to disturbance input (0i) in
Fig.16. It can be seen that the system have good response and
disturbance is damped very soon. Settling time is less than
19ms.

34 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Fig. 16. Disturbance response of the voltage controller

VII. CONCLUSION
This paper described an optimization method for a droop

controlled islanded microgrid based on the Genetic Algorithm,
which successfully implements optimal frequency deviation by
selecting droop coefficients from a region where the frequency
deviation is in an allowable range. The proportional and
integral gains of PI controller are optimized to achieve good
response and stability of the system.

 Particular emphasis has been paid to the impact of droop
coefficient on frequency deviation, because this coefficient
plays a significant role in the microgrid frequency deviation
after transient to island and change of load in this situation.

 Simulation results are presented that support validity of
this optimization. A comparison has been done between
optimized and common method for coefficient selection.
Finally, stability analyses for optimized PI gains are presented.

APPENDIX
If the load of microgrid is changed in islanding mode, the

frequency of microgrid and share of DGs are determined
according to following equation.

1 2DG DG loadP P P∆ +∆ = ∆ (1A)
According to droop equation:

1 2
load

f f P
m m
∆ ∆

− − = ∆ (2A)

where 1m and 2m are droop coefficients of 1DG and 2DG ,
respectively.

Hence, the frequency deviation and power sharing between
DGs for load change in islanding operation is obtained.

1 2

1 2
load

m mf P
m m

∆ = − ∆
+

(3A)

2
1

1 2
DG load

mP P
m m

∆ = − ∆
+

(4A)

1
2

1 2
DG load

mP P
m m

∆ = − ∆
+

(5A)

REFERENCES
[1] R. H. Lasseter, “Microgrids,” in Proc. Power Eng. Soc.Winter Meeting,
Jan. 2002, vol. 1, pp. 305–308.

[2] A. Arulapalam, M. Barnes, A. Engler, A. Goodwin, and N. Jenkins,
“Control of power electronic interfaces in distributed generation microgrids,”
Int. J. Electron., vol. 91, no. 9, pp. 503–523, Sep. 2004.
[3] Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “Design, analysis and real
time testing of a controller for multibus microgrid system,” IEEE Trans.
Power Electron., vol. 19, no. 5, pp. 1195–1204, Sep. 2004.
[4] Nagaraju Pogaku, Milan Prodanovic´, and Timothy C. Green” Modeling,
Analysis and Testing of Autonomous Operation of an Inverter-Based
Microgrid” IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL.
22, NO. 2, MARCH 2007
[5] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining control
strategies for microgrids islanded operation,” IEEE Trans. Power Syst., vol.
21, no. 2, pp. 916–924, May 2006.
[6] Yasser Abdel-Rady Ibrahim Mohamed and Ehab F. El-Saadany” Adaptive
Decentralized Droop Controller to Preserve Power Sharing Stability of
Paralleled Inverters in Distributed Generation Microgrids” IEEE
TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 6,
NOVEMBER 2008
[7] Il-Yop Chung, Wenxin Liu, David A. Cartes, Emmanuel G. Collins, Jr,
and Seung-Il Moon,” Control Methods of Inverter-Interfaced Distributed
Generators in a Microgrid System” IEEE TRANSACTIONS ON INDUSTRY
APPLICATIONS, VOL. 46, NO. 3, MAY/JUNE 2010
[8] W. Yao, M. Chen, J. Matas, J. M. Guerrero, Z. M. Qian, “Design and
Analysis of the Droop Control Method for Parallel Inverters Considering
the Impact of the Complex Impedance on the Power Sharing”. IEEE Trans.
Ind. Electron., vol.58, pp.576-588, February 2010.
[9] X. T. Zhang, Q. C. Zhong, H. Zhang, X. k. Ma, “Proportional load sharing
method for parallel connected inverters”, in Proc. IEEE ISIE’10, 2010, pp.
2261- 2265.
[10] F. Z. Peng, et al., "Control and protection of power electronics interfaced
distributed generation systems in a customer-driven microgrid," in Power &
Energy Society General Meeting, 2009. PES '09. IEEE, 2009, pp. 1-8.
[11] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen,
and R. Belmans, “A voltage and frequency droop control method for parallel
inverters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1107– 1115, Jul.
2007.
 [12] M. A. Hassan and M. A. Abido” Optimal Autonomous Control of an
Inverter- Based Microgrid Using Particle Swarm Optimization” IEEE 2010
[13] Barklund, N. Pogaku, M. Prodanovi´c, C. Hernandez-Aramburo, and T.
C. Green, “Energy Management in Autonomous Microgrid using Stability-
constrained droop control of inverters,” IEEE Trans. Power Electron., Vol. 23,
No. 5, pp. 2346–2352, Sept.
2008.
[14] Il-Yop Chung, Wenxin Liu, David A. Cartes, Emmanuel G. Collins, Jr,
and Seung-Il Moon” Control Methods of Inverter-Interfaced Distributed
Generators in a Microgrid System” IEEE TRANSACTIONS ON INDUSTRY
APPLICATIONS, VOL. 46, NO. 3, MAY/JUNE 2010
[15] M. C. Chandorkar, et al., "Control of parallel connected inverters in
stand-alone AC supply systems," in Industry Applications Society Annual
Meeting, 1991., Conference Record of the 1991 IEEE, 1991, pp. 1003-1009
vol.1.
[16] S.A. Hosseini, M. Karami, S.S. Karimi Madahi, F. Razavi and A.A.
Ghadimi, “Finding the optimal capacity and location of distributed generation
resources and analyzing the impact of different coefficient factors”, J. Basic
Appl. Sci. Res., 1(12), 2578-2589, 2011
[17] I. Chung, W. Liu, D. A. Cartes, and K. Schoder, “Control parameter
optimization for a microgrid system using particle swarm optimization,” in
Proc. IEEE ICSET, Singapore, Nov. 2008, pp. 837–842.
[18] Irvin J. Balaguer, Qin Lei, Shuitao Yang, Uthane Supatti, and Fang

Zheng Peng, “Control for Grid-Connected and Intentional Islanding
Operations of Distributed Power Generation,” IEEE TRANSACTIONS
ON INDUSTRIAL ELECTRONICS, vol. 58, no. 1, January2011.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 35

This material is based in part upon work supported by the National Science Foundation under Cooperative Agreement No. DBI-0939454.

A Fitness Proportionate Reward Sharing: a Viable Default

Hierarchy Formation Strategy in LCS
Abrham Workineh and Abdollah Homaifar

Department of Electrical and Computer Engineering,
North Carolina A&T State University, Greensboro, North Carolina, USA

atworkin@ncat.edu, homaifar@ncat.edu

Abstract: The learning task in a Learning Classifier System

(LCS) is aimed at building a set of rules that work in

coordination to accurately model a given environment.

The addition of the hash symbol (‘#’) in LCS’s condition

provides varying degree of coverage to environmental

niches. Building a hierarchical set of rules, where

accurate and more specific rules respond to a subset of the

situations covered by more general but less accurate

default rules will be vital to achieve a compact rule set

size, especially when dealing with an environment that has

huge numbers of states. However, the formation of viable

default hierarchy in LCS has been a nightmare in this

research area for decades. This paper presents a new

resource allocation scheme that leads to the formation of a

default hierarchy in LCS. A fitness proportionate reward

sharing scheme is introduced and the performance of the

algorithm is tested using known test functions.

Keywords: LCS, Default Hierarchy, Genetic Algorithm,

Reward Sharing.

1. Introduction

 A Learning Classifier System (LCS) is a machine

learning paradigm where an agent learns to perform a

certain task by interacting with a partially known

environment. Learning is via the guidance of a reward

signal that indicates the quality of action taken by the

learning agent [1]. Classifiers are rules in the form of “if

condition then action” format. In LCS, learning is an

iterative process that begins with a randomly initialized

population of candidate classifiers and evolves the initial

population to build an accurate model of the environment

as iteration goes on. The intention of the classifier in the

learning process is to accumulate as much reward as

possible. The reinforcement program guides the search for

solution by rewarding classifiers that propose a correct

action.

To date, several modifications have been made to the

traditional LCS. Wilson introduced a strength based

learning classifier system known as the zeroth-level

classifier system (ZCS) in 1994 [2]. A year later, he

introduced accuracy based classifier system (XCS) which

brought a major change in LCS's rule fitness calculation

[3]. The fitness is made to represent the accuracy of the

prediction instead of the prediction itself. In this work, we

considered a stimulus-response (SR) based LCS system

where an immediate reward or punishment is provided at

each computational time step by the external environment

[4]. For such a system, there is no need for a complex

credit assignment algorithm like the bucket brigade [5] and

the message list in Holland’s formulation of LCS is also

omitted.

In a strength based LCS, the past performance of a

classifier is measured by the amount of its current strength

[6]. Strength is used both as a means of resolving conflicts

and as a fitness for the Genetic Algorithm (GA). In our

previous work, we introduced a modified bidding strategy

in LCSs by allowing classifiers to get a loan from a central

loaning agent during auctions [7]. The loaning approach

followed was centralized in the sense that there is only one

central bank issuing the loan. A bid history variable that

gives classifiers a clue on the potential of competent

classifiers was also introduced. A more compact, less

complex and more realistic distributed loaning approach

where loaning occurs among classifiers in the system was

also suggested for an improved performance [8]. The

generalization capability of LCS by means of using hash

symbols gives it the potential to develop a compact

representation of the concepts learned.

The remaining part of the paper is organized as

follows: Section 2 discusses LCS in brief. Section 3

presents default hierarchy, the challenges and survey of the

art. Section 4 details the system formulation followed in

this paper. The fitness proportionate reward sharing

scheme is also presented in this section. Section 5

summarizes the learning cycle for LCS. Section 6

discusses the simulation set up and results obtained while

the last section concludes the paper by highlighting the

achievements obtained in this work.

2. LCS Overview

An LCS is a machine learning system based on

reinforcement learning and genetic algorithms. Like an

expert system, it utilizes a knowledge base of syntactically

simple production rules that can be manipulated by a

genetic algorithm [9]. The use of a rule-based system

allows an LCS to conveniently represent and refine

complex control strategies [10]. The robust search ability

of the GA enables effective discovery of new rules on the

basis of performance only feedback. The reinforcement

learning technique determines the rule fitness and enables

36 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

mailto:atworkin@ncat.edu
mailto:homaifar@ncat.edu

the system to learn from its environment based on a reward

signal that implies the quality of its action.

There are two major types of LCS: Michigan and

Pittsburgh style LCSs. In Pittsburgh formulation of LCS,

individuals in a population are complete solutions to the

problem [11]. An individual is a rule set and the length of

a rule is fixed while the number of rules in one rule set

varies. Individuals in the population compete among

themselves to correctly classify the training samples. The

working principle of Pittsburgh LCSs is essentially similar

to GA. The fitness of an individual in the population is

measured by the classification accuracy of the rule set. But

in Michigan style LCS, individuals are rules and the

solution to the problem is the whole population. An

individual rule covers part of the solution and coordination

among rules and a mechanism to evaluate the performance

of rules in the form of reward or punishment is essential.

The use of the term LCS in this work adheres to Michigan

style LCS.

The standard LCS consists of three major

components: the message and rule system, the

apportionment of credit and the discovery component [1,

12]. The apportionment of credit subsystem in an LCS

addresses the issue of credit assignment which serves as a

measure of the classifier’s performance. It is based on an

economic analogy where a classifier garners credit in the

form of strength (a kind of capital). It involves a bid

competition among classifiers that match to the current

environmental input. Accordingly matched classifiers bid

a certain proportion of their strength and rule conflicts are

resolved based on a probability distribution over the bids

[13,14]. Also, to promote the exploration of the classifier

space, a random noise is added to the deterministic bid

[15].

3. Default Hierarchy

In a Michigan style LCS, an individual classifier in

the population represents part of a solution to a given

problem. There is no single rule that adequately models

the environment. Instead, an accurate modeling of the

working environment requires coordination among sets of

rules in the population. Consider a learning system that

tries to model an environment with huge number of states.

There is no rule of thumb to determine the optimum

number of rules that sufficiently model the environment.

An LCS that is to operate in such an environment can be

modeled in either of two ways. The first is to build a

model of the environment using a set of rules that never

make mistakes. This homomorphic approach, however, is

practically unfeasible as it requires a vast number of rules

to model realistic environments [16]. Besides, an

environment exhibiting perpetual novelty combined with a

limited sampling of it adds another order of complexity to

this homomorphic approach [12, 17]. The other alternative

is to build a hierarchical model where the task of the

learning system is to categorize the states into groups that

can be treated in a similar way [13, 16]. A hierarchical

rule set provides a multi-level structure in which rules at

the bottom of the hierarchy are very general and those at

the top are very specific (see Figure 1). Hierarchy can

occur at any level within the rule sets. Here, the term

default hierarchy refers to a hierarchical set of rules that

contain a default rule for the default class along with other

exception rules.

S

p

e

c

i

f

i

c

i

t

y

H

e

r

a

r

c

h

y

######:1

0###1#:0

100###:0

01##10:1

0011#0:0

General

Classifiers

Specific

Classifiers

Input Space Coverage

i

Figure 1-A hierarchical structure in LCS

Consider the 6-bit Boolean multiplexer (6-mux) problem

whose disjunctive normal form is as follows:

)1(421321221121 assassassassY

Where a1…a4 are the address lines, s1 and s2 are the select

inputs and Y is the output. The system’s decision is correct

when its output value is the same as the value of Y in

equation 1 for a given input.

000###:0

001###:1

01#0##:0

01#1##:1

10##0#:0

10##1#:1

11###0:0

11###1:1

000###:0

01#0##:0

10##0#:0

11###0:0

######:1

Non hierarchical set Hierarchical set

Figure 2- Default Hierarchy for 6-mux problem

The 8 rules in the non-hierarchical set (the left column in

figure 2) are the perfect solutions to the 6-mux problem.

With default hierarchy, the same problem can be solved

with a more compact hierarchical rule set (right column in

figure 2). The last rule in the hierarchical set is a default

rule. The default rule matches to all inputs but it makes a

correct decision only 50% of the time. A working default

hierarchy provides a great parsimony of the required rules

to model the environment. In addition, the system’s

performance can be improved by adding more exception

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 37

rules to the hierarchy. The essence behind achieving a

working default hierarchy is therefore to build a more

compact rule set with a reasonably fair accuracy as

compared to the homomorphic model. This requires the

coexistence of exception and default rules in the system so

that the exception rules provide protection to the default

when it is wrong.

3.1 Starvation versus Protection

The starvation-protection dilemma has been a

bottleneck to the research in attaining a working default

hierarchy. The objective here is to protect the default rule

from firing when it is wrong without starving it. This

requires a bidding strategy that favors the exception when

both match to a given input. In literatures [13, 14, 16, 18],

a bid amount proportional to the specificity is proposed. In

this kind of bidding strategy, exception classifiers bid a

higher amount as compared to more general classifiers in

the system. The shortcoming of this type of bidding is the

consequent starvation of the default classifier when it is

right. Protection is usually associated with an immediate

starvation of the default.

To solve the starvation problem, Wilson, in his

detailed experiment using Boole, proposed key

modifications to the standard LCS formulation [19]. One

modification to reduce starvation is extending system

decision to the match set instead of limiting it to the active

set. In Holland’s formulation of LCS, only classifiers in

the active set make decision on the system and any reward

by the external environment goes to the active set.

Extending the decision making and reinforcement to a

rather bigger set of classifiers (match set) improved the

systems performance [19]. But under the same bidding

and paying policy as proposed in Smith [13] and Riolo

[16], avoiding the active set might lead to rampant

overgeneralization. To overcome this problem, Wilson

suggested a different bidding and paying policy in which

specificity is retained in the bid calculation but eliminated

when calculating the classifier’s payout [18, 19]. The bid

amount is scaled by the specificity while the actual pay out

of the classifier depends entirely on its strength and the bid

coefficient.

3.2 Reward Sharing

The environment provides a reinforcement signal to

the learning system when it responds correctly. In a

stimulus response LCS, the system takes action on its

environment directly and receives an immediate reward or

punishment as a consequence of its action.

There are two major notions on how to distribute the

reward among classifiers in the active set. Holland [1] first

suggested that all classifiers in the active set should receive

a constant reward R and pay out their bid. This notion of

sharing however does not lead to the formation of default

hierarchy as it does not distinguish between correct and

wrong classifiers. The limitation of this kind of reward

sharing on the formation of default hierarchy can be

explained this way. Consider for instance a scenario where

a default classifier of action zero exists in the system.

Assume also that its strength is high enough to outbid

other specific classifiers in the match set and join the active

set. This classifier may or may not agree with the winner

classifier’s decision but is going to receive a reward from

the environment either ways. This kind of indiscriminate

rewarding leads to the emergence of sneaky classifiers that

survives on the bear of other reward generating classifiers

and results in a poor system performance.

The theory of equal reward sharing ignored the whole

notion of competition in LCS. From the classifier’s

perspective, the intention is to build up its strength by

garnering as much reward as possible from its

environment. A good analogy here is a competitive market

economy where whoever strived hard should be rewarded

and accumulates wealth. Wealth in classifiers is measured

in terms of strength. Hence instead of using equal resource

sharing, the rewarding scheme must somehow be biased

towards stronger classifiers. Strength is a measure of

quality of a classifier and the rewarding scheme has to

adjust the strength to reflect the classifier’s overall

usefulness to the system. The higher the strength, the more

influential the classifier is on the system’s decision. We

applied a fitness proportionate reward sharing scheme

where classifiers proposing the same action as the winner

will get credit proportional to their strength. The proposed

rewarding scheme resulted in a remarkable improvement

in the performance of the system and produced a viable and

robust default hierarchy.

4. System Formulation

4.1 Classifier Format

The classifier format is shown in Figure 3 and has 5

parameters: condition, action, strength, experience (Exp)

and creation time (Ctime). The condition is a string from

the ternary alphabet (0, 1 or #) and the action is binary (0

or 1). The hash symbol (#) in the condition is “don’t care”

and matches to any input. The experience and creation

time parameters are added for better understanding of the

learning process. Experience (Exp) indicates the

participation of a classifier in decision making process (i.e.

match set) and the creation time refers to the iteration time

at which the classifier is created. It helps to investigate

whether a hierarchy once evolved can be sustained for

generations.

Condition Action Strength Exp Ctime

Figure 3 – Classifier format

38 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

4.2 Learning System

Learning in an LCS is an ongoing adaption to a

partially known environment and not an optimization

problem as in most reinforcement learning systems. The

learning system includes the following major components:

the auction, clearing house (CH), fitness proportionate

reward sharing (FPRS) and the GA.

4.2.1 Auction

This is the part where classifiers in the match set

participate in auctions by bidding a fixed proportion of

their strength. The bid amount depends on the value of its

current strength and the specificity. The deterministic

potential bid (PB) of a classifier i during auction is given in

equation (2).

)2()1(**

ySpecificit

ibidi
CL

NH
SCPB

Where NH is the number of hashes in the condition string,

Cbid is the bid constant (see Table 1) and CL is the

condition length. The specificity parameter is the ratio of

the number of non hash symbols to the condition length.

The deterministic bid is not used directly to determine

the auction winner. Instead, it is slightly perturbed by

adding a random noise to promote exploration of the

classifier space.The effective bid (EB) is computed by

adding a random noise to the bids submitted by each

competing classifier using equation (3).

)3()*()1(EBIDrandPBEB ii

Where EBID is a constant used during simulations (see

Table 1).

4.2.2 Fitness Proportionate Reward Sharing (FPRS)
The learning system continuously interacts with its

environment through its detectors and effectors. It uses a

feedback about the effect on the environment to learn from

experience. The learning agent is blind without a proper

guidance by a reward signal. A trainer is therefore

necessary to determine whether the environmental

modification was beneficial or detrimental.

The reinforcement program (RP) determines the rule's

fitness by generating a signal in the form of a reward or

punishment. If the whole learning system is a water fall,

the RP is the pipe that guides it to a point of interest. This

work introduced a novel fitness proportionate reward

sharing scheme given in equation (4), for the formation of

a viable default hierarchy.

)4(

)(

)(
*)(

)(

1

tM

k

k

i
i

tS

tS
Rtr

Where R is the total reward provided by the environment

whose value is initialized once, M(t) is the number of

classifiers in the advocate list at iteration t, ri(t) is the

fraction of the total reward (R) that goes to classifier i at

iteration t and Si(t) is the strength of classifier i at iteration

t. The constant reward provided by the external

environment is shared proportionally among classifiers in

the advocate list.

4.2.3 Clearing House (CH)
The CH is the part of the learning system that deals

with the modifications in strength of classifiers as the

classifier system learns. All classifiers pay existence tax

and classifiers in the match set pay an additional overhead

tax while classifiers in the advocate list has to pay also the

bid amount. Assuming correct decision is taken by the

system at iteration t, the strength of a classifier i in the

advocate list at the next iteration is governed by equation

(5).

)5()()1(*)()1(trCCCtStS ibidohextii

Where Cext and Coh are the existence and overhead tax

constants respectively, Cbid is the bid constant, and Si(t) and

ri(t) are the strength and reward for classifier i at iteration

time t. For the same reason mentioned earlier, the pay out

of a classifier in equation (5) is different from the bid

amount given in equation (2).

4.2.4 Genetic Algorithm (GA)
The GA discovers new rules among a population of

candidate rules based on the experience of existing rules.

Each GA operation brings two new classifiers to the

existing population of classifiers. It diversifies the

population using mutation and cross over operators. A

roulette wheel selection method is used to select parents for

reproduction. The strength of new classifiers emerging

from GA is initialized to a value that is neither too high (so

that they do not dominate experienced classifiers) nor too

low (to make them competent with the relatively more

experienced classifiers in the system during auctions).

Table1: List of simulation parameters with their

optimum values.

Parameter Value Meaning

Pop size 200:6-mux

400:11-mux

Number of classifiers

Cexs 0.001 Existence tax

Coh 0.005 Over head tax

Cbid 0.1 Bid coefficient

Px 0.35 Probability of crossover

Pm 0.008 Probability of mutation

EBID 0.1 Ebid constant

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 39

5. Results and Discussion

For the sake of comparing results with previous

research work, the proposed algorithm is applied to the 6 &

11-multiplexer problems. Classifiers are initialized to an

initial strength of 100. The payoff for a correct decision

(R) by the system was set to 1000 while absence of a

reward was considered as punishment for a wrong

response. The specificity value for the default classifier is

set to 0.1 for 6-mux and 0.05 for 11-mux. The values for

the other parameters are given in Table 1.

The performance of the system is measured by the

accuracy of its response to a given input. Figures 4 and 5

show the percentage of correctly identified environmental

inputs by the system and the solution count as a function of

the number of epochs. For the 6-mux problem an epoch

stands for one complete presentation of the environmental

inputs to the system. So an epoch represents the average

system response on the past 64 inputs. But for the 11-mux,

an epoch represented only 512 (25% of the inputs)

iterations or input presentations. In general, for an n-bit

string, there are a total of 2n different environmental inputs

to the system. Simulation is carried out 20 times and as

can be seen from Figures 4 and 5, the percentage accuracy

of the system averaged over the 20 runs is well over 95%

after the 100th epoch for the 6-mux and 250th epoch for

the 11-mux. The solution count is the percentage of

population that contains instances of the perfect solution

set (refer to Figure 2) averaged over the size of an epoch.

For instance, 90% of the population contains instances of

the perfect solution at the 350th epoch (see Figure 4). The

high percentage accuracy and solution count achieved is an

indication of how well the system learns its environment.

The effect of varying the mutation and cross over rates is

also investigated and best results are obtained for the

values given in Table 1.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Number of Epoches

S
o
lu

ti
o
n
 C

o
u
n
t,

 A
c
c
u
ra

c
y
 (

%
)

% Correct

Solution Count

Figure 4- Simulation result for the 6-mux problem

averaged over 20 runs. The upper curve represent the

percentage of correct decision by the system, the lower

curve is the percentage of the population that contains

the perfect solution set.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of Epoches

S
o
lu

ti
o
n
 C

o
u
n
t,

 A
c
c
u
ra

c
y
 (

%
)

% Correct

Solution Count

Figure 5-Simulation result for the 11-mux problem

averaged over 20 runs. The upper curve represents the

percentage of correct decision by the system; the lower

curve is the percentage of the population that contains

the perfect solution set.

Figures 6 and 7 display the average bid amount of

winner classifiers for the 20 runs as iteration goes on for 6

and 11 multiplexer problems respectively. The bid

interaction helps to get an insight on how the fitness of the

population varies with time. It gives a qualitative clue on

the steady state strength of classifiers that influence the

system’s decision. At the start of the iteration, the

population is more likely to be packed with specific

classifiers. But as time goes on, the hierarchical set

dominates the population resulting in a decline of the bid

amount as the bid amount is dependent on the specificity.

This trend is clearly evident from the plots in Figure 5

having a high peak at the start and declining abruptly until

it finally settles to some steady state value.

0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

60

70

80

90

Number of Epoches

A
v
e
ra

g
e
 B

id
 H

is
to

ry

Figure 6- The average bid amount of winner classifiers

at each epoch for 6-mux, averaged over a total of 20

runs.

40 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

0 50 100 150 200 250 300
10

20

30

40

50

60

70

80

Number of Epoches

A
v
e
ra

g
e
 B

id
 H

is
to

ry

Figure 7-The average bid amount of winner classifiers

at each epoch for 11-mux, averaged over a total of 20

runs.

To check whether the system has evolved to a default

hierarchy and its ability to sustain it once formed, a tabular

result showing a sorted list of the top nine classifiers in the

population with their creation time and numerosity is

displayed in Tables 2 and 3. A perfect default hierarchy

has been achieved in 19 (9 of them with a default of action

0 and the remaining 10 with a default of action 1) out of a

total of 20 runs. In one of the runs, a default hierarchy is

also attained but one of the 4 perfect solutions is missed.

Table 2 shows a scenario where a default of action 0 and

the 4 perfect solutions of action 1 dominating the total

population. As can be seen from the number of copies

column, these classifiers comprises 96% of the population

(192 instances out of a total population of 200 classifiers).

Table 3 displays the same statistics for a default of action 1

and the other 4 perfect solutions of action 0 case. Again,

these hierarchical set contains 193 instances of the total

population. The creation time (Ctime column in the tables)

gives an insight on the time of emergence of a hierarchical

set and whether the learning system was able to maintain

it. It is measured in terms of iteration, not epoch. In one

iteration, a single input is given to the system and its

response to it is evaluated. Hence, 500 epochs is

tantamount to a total of 32000 (i.e. 500*64) iterations. The

time of formation of the default hierarchy can be inferred

by looking at the creation times of individual classifiers in

the hierarchical set. In table 2 for instance, considering the

top 5 classifiers that comprise a default hierarchy, the

highest creation time value is 4330 (nearly at the 9th

epoch), which means that the latest classifier that joined

the hierarchical set is “11###1/1”.

Table 3 shows similar results for the 11-mux problem

displaying the top 10 classifiers in the final population. As

can be seen from the table, the hierarchical set comprises

of 98% of the population (i.e. 392 instances out of a

population size of 400). From the creation time, it can also

be seen that the hierarchy once formed in the learning

process is maintained for generations. For instance,

observing the top 9 classifiers that comprise a hierarchical

set in Table 3, the default hierarchy was achieved at the

42000th iteration. A creation time of 0 indicates that

particular classifier was part of the initial population.

Table 2-A sample pattern of the final population for 6-

mux with a default of action 0.

Conditio

n

Action Str

(Max)

Str

(Avg)

Num.

Copies

Ctime

001### 1 2959 274 29 5

10##1# 1 1935 241 32 3795

11###1 1 1310 244 33 4330

01#1## 1 927 242 33 2460

0 471 119 65 1315

###0## 0 193 193 1 23600

#####0 0 184 184 1 3695

##0### 0 175 175 1 18655

#0##1# 1 115 116 1 24475

Table 3-A sample pattern of the final population for 11-

mux with default action of 1.

Condition Act
Str(max

)
Copies Ctime

111#######0 0 2892 38 31990

001#0###### 0 2739 34 42000

101#####0## 0 2698 32 31220

011###0#### 0 2246 37 24080

110######0# 0 1913 45 17390

0000####### 0 955 44 26790

100####0### 0 790 48 12490

010##0##### 0 635 48 7750

########### 1 261 66 19990

########0## 0 223 1 137630

6. Conclusion

The learning task in an LCS is to build a set of rules

that work in coordination to accurately model a given

environment. Depending on the complexity of the working

environment, adequate modeling of the environment might

require a huge number of rules that collectively give a

better model of the environment. Building a hierarchical

set of rules, where accurate and more specific rules respond

to a subset of the situations covered by more general but

less accurate default rules will be vital to achieve a compact

rule set size, especially when dealing with an environment

that has huge numbers of states. This requires the co-

existence of exception and default rules in the system so

that the exception rules can protect the default rule from

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 41

making mistakes without starving it. To the best of our

knowledge, the techniques proposed in literatures so far

have failed to provide useful protection without a

subsequent starvation of the default. This work introduced

a novel reward sharing technique based on a competitive

market analogy that leads to the formation of a viable

default hierarchy. The technique introduced here has led

to the evolution of cooperative classifiers by maintaining

diversity in the population via a fitness proportionate

implicit niching. Classifiers with actions that agree with

the system’s decision share a reward from the environment

in proportion to their current strength. The results

obtained for all the simulations proved the effectiveness of

the proposed reward sharing technique.

7. References

[1] Holland, J. “Adaptive algorithms for discovering and

using general patterns in growing knowledge bases”,

International Journal of Policy Analysis and

Information Systems, vol. 4, no. 3, pp. 245-268, 1980.

[2] Wilson, S., "ZCS: A zeroth level classifier system,"

Evolutionary Computation, vol. 2, no. 1, pp. 1.18,

1994.

[3] Wilson, S., "Classifier fitness based on accuracy,"

Evolutionary Computation, vol. 3, no. 2, pp. 149.175,

1995.

[4] Butz, M. V. et al, “Toward a Theory of Generalization

and Learning in XCS,” IEEE Transactions on

evolutionary computation, Vol. 8, February 2004.

[5] Holland, J., “Properties of the Bucket Brigade”,

Proceedings of an International Conference on Genetic

Algorithms and their Applications, 1-7, John J.

Grefenstette (Ed), Carnegie-Mellon University,

Pittsburg, 1985.

[6] Kovacs, T., “Strength or Accuracy: Credit Assignment

in Learning Classifiers Systems”, Springer-Verlag,

Berlin 2003.

[7] Workineh, A. and Homaifar, A., “Robust Bidding in

Learning Classifier Systems Using Loan and Bid

History”, Journal of Complex Systems, Vol. 19, Issue

3, pps. 287-303, 2011.

[8] Workineh, A. and Homaifar, A., “A New Bidding

Strategy in LCS using a Decentralized Loaning and

Bid History”, IEEE Aerospace Conference, pp. 1-8,

Big Sky, Montana, March 03-12, 2012 (in press).

[9] Goldberg, D.E, "Genetic algorithms in search,

optimization, and machine learning," Reading, MA:

Addison-Wesley, 1989.

[10] Wilson, S. and Goldberg, D.E, “A critical review of

classifier systems”, in Proceedings of the Third

International Conference on Genetic Algorithms and

Their Applications, Morgan Kaufmann, 1989, pp. 244-

255.

[11] Smith, S. F., "A learning system based on genetic

adaptive algorithms," Unpublished Doctoral

Dissertation, University of Pittsburgh, 1980.

[12] Booker, L.B. et al, “Classifier Systems and Genetic

Algorithms”, Artificial Intelligence, Elsevier Science

Publishers, pps. 235-282, 1989.

[13] Smith, R.E. and Goldberg, D.E., "Reinforcement

learning with classifier systems,” in IEEE proceedings

of AI Simulation and Planning in high autonomy

systems, March 1990, pp.184-192.

[14] Smith, R. and Goldberg, D.E, “Adaptive Default

Hierarchy Formation”, Applied Artificial Intelligence,

Volume 6, Issue 1, 1992.

[15] Homaifar, A. et al, "Boolean Function Learning with A

Classifier System", Proceedings of the Applications of

Artificial Intelligence VI at the International Society of

Optical Engineering and the Computer Society of the

IEEE, Orlando, FL, April 1988, pp.264-272.

[16] Riolo, R.L., “Bucket Brigade Performance II: Default

Hierarchies”, Genetic Algorithms and teir applications:

Proceedings of the second internation conference on

genetic algortithms, pps. 196-201, MIT, Cambridge,

MA, July 28-31, 1987.

[17] Booker, L. B., "Intelligent behavior as an adaptation to

the task environment," Dissertations Abstracts

International, University Microfilms No.8214966, vol.

43(2), p. 4G9B, 1982.

[18] Holland, J. et al, “What is a Learning Classifier

System?,”LCS’99, LNAI 1813, pp. 3-32, Springer-

Verlag, Berlin Heidelberg, 2000.

[19] Wilson, S., “Bid Competition and Specificity

Reconsidered”, journal of Complex Systems, Issue 2,

pps. 705-723, 1989.

Acknowledgment

 This material is based in part upon work supported by

the National Science Foundation under Cooperative

Agreement No. DBI-0939454. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

42 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Evolutionary Refinement of Trading Algorithms for

Dividend Stocks

Robert E. Marmelstein, Bryan P. Balch, Scott R. Campion, Michael J. Foss, Mary G. Devito

Department of Computer Science,

East Stroudsburg University

East Stroudsburg, Pennsylvania, USA

Abstract - This paper describes a Stock Strategist application

which can mine, test, validate and refine complex equity

trading strategies based on historical financial data. We

address the capabilities and operation of the program and

detail the currently implemented strategy to trade stocks

that pay high dividend yields. Additionally we will present

preliminary results which show the ability of the system to

automatically refine a specific trading strategy using genetic

algorithms. The methodology of the test will be discussed

and the results of two variant genetic algorithm approaches

will be compared and contrasted.

KEY WORDS Data Mining, Simulation, Algorithmic

Trading, Genetic Algorithms.

I. INTRODUCTION

This paper describes a Stock Strategist application that

is designed to evaluate and refine specific stock trading
strategies. There is definitely a very large body of
academic work on the application of data mining
techniques to discover and validate patterns in the stock
market [1]. For this project, we decided to pursue a
strategy focused on trading strategies for stocks that pay
substantial dividends due to their predictable behavior both
before and after the Ex-Dividend (Ex-Div) date. Further,
we restricted our stock pool to those stocks which
historically have a high dividend yield (6% or more).

A dividend is a payout of profits to owners
(shareholders) of a company. The dividend is some
percentage of the stock price, typically anywhere from 1%
to 12% annually. Most companies that pay dividends do
so quarterly. Unlike like certificates of deposits or bonds
(where earned interest is proportional to holding time),
companies will pay the entire dividend to whoever holds
the stock on the Ex-Div date. As a result, the price of a
stock tends to rise in the lead up to a dividend payment;
often the price will rise by significantly more than the
amount of the dividend payment itself. After the Ex-Div
date, the stock drops sharply, sometimes by much more
than the dividend amount. In these cases, the stock price
may recover quickly from the typical Ex-Div drop.

Figure 1 illustrates this pattern for the stock of Vector
Group Limited (symbol: VGR). There are two basic
strategies for trading the dividend event. The first is riding
the wave on the way up and selling at, or near, the
predicted peak. The other is buying right after the Ex-Div
drop in anticipation of a quick price recovery.

Figure 1. Example Dividend Trading Period

II. SYSTEM DESCRIPTION

The following paragraphs describe how the Stock

Strategist program operates for a given strategy. Strategies
are implemented as a composite set of C# classes that
conform to interface specifications that facilitate
extensibility, as well as, support for multiple strategies and
comparative analysis. A strategy can be compiled, linked,
and executed if it is written according to an Interface
specification.

A. Preliminaries

Before running the Stock Strategist, the user must
specify the following information:

 Stock Pool – The set of stock symbols of interest
to the current strategy. Only stocks in the pool can
be purchased for the asset portfolio.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 43

 Start/End Dates – The data range over which a
simulation will be run. Typically, the end date is
the current date.

 Starting Capital Balance – The initial capital
available to purchase portfolio assets.

 Transaction size – The minimum size of a buy
transaction. Larger sizes result in less diversity
and more risk, while smaller sizes diversify more
at the expense of using capital for less attractive
positions.

 Commission amount – This is the brokerage fee
associated with each buy and sell transaction.

B. Modes

The Stock Strategist has four basic modes: Data
Acquisition, Opportunity Identification, Backtesting, and
Strategy Refinement. The Data Acquisition mode
updates the database for those stocks in the stock pool.
Data is incrementally extracted from several financial
websites. The Opportunity Identification mode identifies
opportunities for purchase within some time window from
a specified date. Only stocks within the stock pool are
eligible for this evaluation. The Backtesting mode
evaluates the performance of a given strategy over a [past]
data range. Lastly, the Strategy Refinement mode applies
a search technique to improve the performance of a given
strategy. This is typically done by optimizing the rule
weights for scoring a given candidate stock. Note that
these modes are not mutually exclusive. For example, the
Strategy Refinement mode makes use of the Backtesting

mode which, in turn, makes use of functionality in the
Opportunity Identification mode.

C. Backtesting and Decision Cycle

As stated above, the Backtesting mode evaluates how a
given strategy would have worked over a selected time
period in the past. To accomplish this, a decision cycle is
applied to the portfolio on a weekly basis from the
specified start date through the end date. The purpose of
this cycle is to make buy/sell decisions based on the
strategy. The success of the strategy is gauged by the
amount of portfolio net profit achieved over the test period
after subtracting out transaction fees.

Per Figure 2, the Stock Strategist looks back one week
to determine what holdings in the current portfolio should
have been sold based on calculated price targets. If these
price targets are not met, the stock is ultimately “sold” the
day prior to the Ex-Div using the opening price for that
day. The gain (or loss) from these sales are added to the
current capital balance. Potential buying opportunities for
the next week are then evaluated, scored, and then sorted
by score in descending order. Using the available capital
balance, stock purchase orders are initiated (per the
specified transaction size) by descending order of score
until the available balance is below the minimum
transaction. Any remaining balance is then used to
increase the transaction size of the order with the highest
scored stock. This approach ensures that the available
capital is always fully utilized and limits exposure to
individual stocks by having a diverse set of positions. The

Figure 2. Weekly Decision Cycle for Backtesting

44 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

detailed steps in the weekly decision cycle are shown
below in Figure 3.

Figure 3. Decision Cycle Steps

III. SYSTEM COMPONENTS

The following paragraphs describe the major components
of the Stock Strategist system.

A. Automated Data Acquisition

This component automatically extracts (“scrapes”)
stock data from a number of investment-oriented websites.
From a web programming standpoint, extraction of this
data requires a two-step process. Like many contemporary
websites, the sites above utilize AJAX to produce dynamic
content. As such, attempting to extract information
requires reviewing the communication data flow that
results in the final displayed page content. This can be
achieved using developer browser extensions. When a
desired data element of the displayed page is associated
with a web resource, the URL of the resource is noted. In
most cases, the URL has to be constructed dynamically
from an intermediate stock code embedded in the target
website’s HTML. Once the URL has been constructed
and data retrieved, a flexible HTML parser is used to
transform the potentially malformed HTML into XHTML
which allows the usage of XPATH queries to surgically
extract the desired data. Post extraction, the data is then
validated and the updates are saved in the database. To
avoid unnecessary website bandwidth and processing time,
the data acquisition process only performs incremental
updates. Following a successful update, the stock is
updated with a timestamp for the property that was
retrieved, such as quote information or quarterly data. This
allows the data acquisition process to operate as a system

service or start-up routine for the application to maintain
an up to date view of the market.

B. Common Framework & Database Layer

This component contains the classes for each major
type of data object (e.g., real-time quote, stock, daily
quote, quarterly data, etc.). It also provides the code for
associated database stores and queries of these objects.
Interactions with the database are performed through a
common database provider, which currently targets
MySQL. Other databases could be used with minimal code
changes such as SQLite.

C. Asset (Portfolio) Manager

The Asset Manager component contains all functionality
for maintaining the list of currently held assets. Each of
the assets must be one of the stocks listed in the stock
pool. During a given decision cycle, the Asset Manager
also tracks the various buy and sell decisions made. At the
end of each decision cycle, the entire value of the portfolio
(cash and currently held assets) is computed. The Asset
Manager has a number of wrappers for the identification
and scoring of buy or sell candidates. These wrappers rely
on method calls to the Strategy component class to
accomplish their primary functions.

D. Analytics

This component computes technical indicators
(features) and related statistics based on the historical
stock performance. While these are independent of a
given strategy, they are generated for input to the Strategy
component. Analytics output fall into two general
categories: features snapshot or statistical distribution.
The snapshot is a feature’s value at a given point in time.
With regard to the statistical distribution, the mean or
standard deviation of the distribution is reported. For
example, the Price to Earnings (PE) ratio of a stock may
be the current PE ratio (snapshot) or the mean PE ratio (of
a Normal distribution) over a specified time period.

Another key feature of the Analytics component is to
predict stock-related events based on their past occurrence.
For example, a strategy may require prediction of a date
range when the declaration of a dividend will occur. Since
dividends are paid quarterly, it becomes necessary to first
cluster these events into quarters (using the K-Means
method [2]) to determine the likely time window for this
event in any future quarter. The capability to predict
future events is critical to the Strategy component and
distinguishes the Stock Strategist from most commercially
available trading platforms.

Once these events are predicted, the Strategy
component can set up triggers based on these predictions.
In most cases, an event that is (first) predicted is later
confirmed by the data. These transitions are discovered as
a result of the automated data acquisition process. At this
point, the software changes the status of the event from

1. Identify candidates for purchase – These are based
on known or predicted trigger events in the
strategy. Example of trigger events include:
dividend declarations, earnings reports and stock
splits.

2. Score candidates for purchase – The specific
scoring criteria is strategy dependent.

3. Identify current assets for sale – These are strategy
dependent but can be based on stop-loss or date
triggers, percentage gains, and relative value
compared to candidate buy positions.

4. Unload existing assets – Assets are sold once their
sell trigger conditions are met. Again, these
conditions are strategy dependent.

5. Buy new assets (based on candidate score).

6. Compute portfolio value.

7. Advance simulation time – Advance by one week.
Exit loop if past specified end date.

8. Remove expired [buy-related] events.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 45

predicted to known. When this happens, the event may be
treated differently by the logic in the Strategy component.

E. Strategy

The Strategy component implements the logic behind
the buy/sell decisions of the application. This component
determines trigger conditions (for buying or selling) and
scores candidate stocks for purchase. In general, Strategy
component decisions are based on a series of distinct rules
native to each strategy. The output of these rules are
categorized, weighted, and summed to compute a single
score for decision making purposes. The buy signal
computation is shown below in Equation 1.

 () ∑

()

As previously stated, these rules are supported by
selected, lower level snapshot features and statistics
available from the Analytics component. For example,
one of the rules computes the ratio of the current change in
price (after the dividend declaration date) to the historic
(mean) change in price after that event. Once computed,
the goodness of that ratio is categorized (good, acceptable,
or poor) and a weight is applied to that rule. The Strategy
component implements a standardized set of classes and
methods. This design makes it straightforward to plug
different equity trading strategies into the Stock Strategist
framework.

F. Simulation

The Simulation component is an essential capability
for backtesting a given strategy. It runs the decision cycle
once per week over a given date range. After each cycle,
the simulation time is advanced forward by one week.
This component also logs the weekly portfolio value and
all asset buy/sell transactions that occur over the simulated
time period. The most critical ingredient of the Simulation
is having sufficient and accurate data for a given date
range. As previously noted, this task is accomplished by
the Automated Data Acquisition component. The online
sources we rely on only provide summary data for any
given data; intra-day data is only available in real-time and
is not stored in the database. The practical impact is that
the simulation rarely utilizes real-time current data.

G. Search

The purpose of the Search component is to refine the
current strategy in a way that increases (maximizes)
portfolio return. The Search is performed with respect to
key parameters for a specific strategy. For the most part,
these parameters correspond to the strategy rule weights
discussed in Section 4E. However, they can also include
other parameters, such as the minimum Transaction Size
and the size of the time window used for predictions. To
conduct the search, these parameters are then passed as
input to a given simulation instance. The simulation is
then executed and the ending portfolio balance is passed

back to the search routine. The fitness of the parameter set
is computed simply as the ratio of the ending to starting
balances (see Equation 2); the higher the ratio, the greater
the fitness.

 ()

 ()

Although the parameter set optimized by the Search
component is somewhat strategy dependent, it can be
easily reconfigured. Currently, the search techniques
utilized are Hill Climbing and evolutionary search using a
Genetic Algorithm (GA). Unlike Hill Climbing
algorithms, GAs can escape local optima traps [3]. While
the GA is a highly effective technique for global search,
the biggest impediment to its use is the amount of time to
evaluate each generation, even with a small population.
This is because each chromosome is a variation in trading
strategy that takes several minutes to simulate. Thus,
accelerating the Search component without degrading the
fitness metric has been one of our top research priorities.

IV. EVOLUTIONARY APPROACH FOR BUY SIGNAL

COMPUTATION

Researchers have long sought automated “black box”
techniques to identify and trade financial instruments of all
varieties. Applying GAs to the evolution of trading
strategies is not new—there is a solid body of work in this
area. Allen and Karjalainen [4] were among the first to
develop a GA-based system for finding technical trading
rules. Becker [5] expanded on this using a Genetic
Programming (GP) approach and an emphasis on monthly
(vs. daily) trading. Schoreels [6] employed GAs to design
agent-based systems for trading. Subramanian [7]
developed a similar agent-based system, but with an
emphasis on reducing trade risk and volatility. In contrast
to the focus on trading rules, other researches including
Yang [8], Lin [9], and Lai [10] utilized GAs for the
selection and optimization of stock portfolios.

The key component of these systems is the signal to
buy or sell a given security. The goal of our experiments
was to evolve a set of weights (W) for each rule
component to improve the performance of the buy signal
for our dividend stock trading strategy. In this case, the
size of the weight set was 12. Two sets of weights were
evolved. The first set (W0-1) had a range of (0, 1). These
weights serve to select the rule components of the Buy
signal as indicated in Equation 1. The second set (W0-5)
has a range of (0, 5). These can both select and amplify
the contribution of a given rule to the overall Buy signal.
As indicated earlier, the fitness of a given weight set is
determined by the overall portfolio return.

In this experiment, each type of weight set was evolved
over a simulated one year period for eleven periods (2001-
2011). At the beginning of each one year training period,
the Stock Strategist has an initial balance of $200K to
trade with. After each training period, the best performing

46 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

set of evolved weights were evaluated on two sets test
scenarios:

Portfolio Continuation (PC) – The evolved weights are
used to continue run the simulation where the training left
off. Thus, the trading continues over a follow-on trading
period (1 and 6 months, respectively) with the portfolio
and balance that remained at the end of the trading period.
Given the dynamic nature of the modern financial markets,
it was judged that six (6) months was the maximum
amount of time to safely continue using a set of weights
before they became stale.

Portfolio Restart (PR) – The evolved weights are used
to start a new trading simulation in the follow-on trading
period (one and six months, respectively). In this case,
however, the strategist starts from scratch with a $200K
balance and no pending transactions. Thus, any decisions
made during training (beyond the evolved weights) are
forgotten.

The GA library used for this experiment was part of
the AForge.NET Framework [11]. A population of 30
chromosomes was utilized over 50 generations. Elitist
selection was used with a crossover rate of 0.75 and a
mutation rate of 0.01.

V. RESULTS

Figures 4 and 5 show the results for the W0-5 and W0-1,

respectively. These bar charts show the relative
performance of each weight set vs. those of the default
weight set (WD). In WD, the Buy signal is computed with
each rule selected and given a unity weighting.

These results are noteworthy in two respects. The PC
scenarios dramatically outperform PR scenario. In fact,
the performance of the PR scenario is not much better than
the default approach for computing the Buy signal. This
indicates that the evolved rule weights are much better
suited to running the existing portfolio versus starting over
with a new portfolio using the same general strategy.

Figure 4. Return of W05 vs. WD

Figure 5. Return of W01 vs. WD

The W0-5 variant evolves a solution that performs much
better during training than the W0-1 variant. This is not at
all unexpected since the W0-5 variant offers a much bigger
search space. Unfortunately, this advantage does not hold
up during testing. Indeed, the W0-1 variant is much more
consistent than the W0-1 variant’s performance (training vs.
test) on the PC cases. This is likely due to overlearning on
the W0-5 variant. Thus, while the W0-1 variant is simpler, it
is also more powerful due to its ability to better generalize
its performance into the future.

VI. CONCLUSION

In this paper, we have introduced the Stock Strategist

application. Initially, we are using this program to pursue

a dividend stock trading strategy. We chose this strategy

due to its relative simplicity, stability, and predictability

vs. the myriad of other possible equity trading strategies.

Our experiment in automatically refining our trading

strategy yielded some interesting results in how to

effectively structure GA-based training and apply the

results. In particular, it indicates that simple, 0-1 rule

selection is a better alternative to more complex

weighting factors. The experiment also suggests that the

evolved weights be used to continue the existing portfolio

momentum, rather than restarting the portfolio. We have

also experimented with techniques to accelerate the GA

search and made substantial progress in this area (to be

documented in an upcoming paper). Our future research

seeks to expand the GA to cover additional algorithm

parameters (such as the nominal size of a given stock buy)

and strategies (such as using a limit strategy when

initiating a stock purchase).

REFERENCES

[1] E. Hajizadeh, H. D. Ardakani and J. Shahrabi, "Application of data

mining techniques in stock markets: A survey," Jornal of

Economics and International Finance, vol. 2, no. 7, pp. 109-118,
2010.

[2] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A K-Means

Clustering Algorithm," Journal of the Royal Statistical Society.
Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 47

[3] S. Baluja and R. Caruana, "Removing the genetics from the
standard genetic algorithm.," Carnegie Mellon University -

Computer Science Dept, Pittsburg, PA, 1995.

[4] F. Allen and R. Karjalainen, "Using genetic algorithms to find

technical trading rules," Journal of Financial Economics, vol. 51,

pp. 245-271, 1999.

[5] L. A. Becker and M. Seshadri, "GP-evolved technical trading rules

can outperform buy and hold," in Sixth International Conference on

Computational Intelligence, Cary, NC, USA, 2003.

[6] C. Schoreels, B. Logan and J. M. Garibaldi, "Agent based genetic

algorithm employing financial technical analysis for marking

trading decisions using historical equity market data," in Intelligent
Agent Technology , Beijing, China, 2004.

[7] H. Subramanian, S. Ramamoorthy, P. Stone and B. Kuipers,

"Designing safe, profitable automated stock trading agents using
evolutionary algorithms," in GECCO, Seattle, WA, USA, 2006.

[8] X. Yang, "Improving portfolio efficiency: A genetic algorithm

approach," Computational Economics, vol. 28, no. 1, pp. 1-14,
2006.

[9] C.-M. Lin and M. Gen, "An effective decision-based genetic

algorithm approach to multiobjective portfolio optimization
problem," Applied Mathematical Sciences, vol. 1, no. 5, pp. 201-

210, 2007.

[10] K. K. Lai, L. Yu, S. Wang and C. Zhou, "A double-stage genetici
optimzation algorithm for portfolio selection.," in Neural

Information Processing - Lecture Notes in Computer Science,

Berlin Heidelburg, SpringerLink, 2006, pp. 928-937.

[11] AForgenet.com, "AForge.NET Framework - Genetic Algorithms

Library," 23 Feburary 2012. [Online]. Available:

www.aforgenet.com.

48 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Template Personalization and Evolutionary Algorithms

H. ElGibreen
1
, S. El-Masri

2

1
 IT Department, King Saud University, College of Computer and Information Sciences, Riyadh, SA,

hjibreen@ksu.edu.sa
2
 IS Department, King Saud University, College of Computer and Information Sciences, Riyadh, SA,

selmasri@ksu.edu.sa

Abstract – Due to the rapid and hectic growth of the Web, its

access and design have become a challenge. Web

personalization has occurred to solve this problem. However,

such personalization mostly deals with the visitors rather than

other types of website users. Alternatively, Web Content

Management System (WCMS) has occurred to facilitate

website development, including its design. Nevertheless,

designing of such websites are only customized. Thus, website

developers need to further choose and refine the appropriate

design. Such process needs a lot of effort and wastes a lot of

time. Consequently, this paper will present a new approach

that extracts and personalize templates by combining web

personalization and template extraction in order to

automatically extract templates and, thereby, simplify WCMS

and increase its scalability. In specific, to accomplish this

approach a new technique is used, which mixes Genetic

Algorithm, Ant Colony Clustering, and Cluster Tree

Matching. This approach is tested with an experiment, which

proved its quality, in regard of speed, precision, and

accuracy.

Keywords – Evolutionary Algorithm, Template Extraction,

Web personalization, Web Content Management System

1 Introduction

Nowadays, the Web has emerged and become the most

wanted method for information sharing and communication.

In consequence, to such a rapid and hectic growth, Web

access and effective design have become a challenge.

Websites that lack in its information and structure make the

visitors get lost and feel disoriented [1]. Consequently, web

personalization has emerged to better fit the information

access and design to the user’s need [2]. Originally, it was

used in advertisement and promotion personalization for

different visitors. Currently, it focuses more on visitors to

provide the appropriate information and service access and,

thus, make the websites more useful [3]. However, up until

now website developers are usually forgotten when it comes

to personalization.

 Alternatively, Web Content Management System

(WCMS) concentrates more on website developers’ need

rather than the visitors. It is a tool that allows a variety of

centralized and decentralized non-technical people to manage,

edit, create, and control a large and dynamic collection of

HTML content [4]. However, the available WCMS allows for

customization of website design rather than personalizations,

i.e. developers customize the web pages by themselves.

Sometimes WCMS provides template samples but such

samples do not automatically consider the developers’ needs

or the purpose of the website to be developed. In addition, it

has been stated in [5] that high productivity of web pages can

be accomplished by automatic web page generation using

common template and data. Thus, designing effective web

page templates is wearying mission [6]. Website developers

must consider the feature of web pages and investigate what

design structure would work better.

Accordingly, using personalization in WCMS will help

both WCMS and website developers. WCMS developers

would not have to provide a large repository of template and,

thus, no need to study the templates' usability or update it

every period of time. In addition, using personalization will

reduce the website developers’ time for checking similar

websites and studying the visitors’ need to choose which

structure is more appropriate for them. As a result, instead of

studying Human Computer Interaction strategies, repeatedly,

and searching for usable page structure, using personalization

will take advantage of others' experiences. Additionally, it

would guarantee covering all possible cases of the dynamic

demands of Web users who are excessively changing. To

further motivate the use of web personalization in WCMS, it

has been found that the spread of the World Wide Web and

the increase of website development to match visitors’ needs

have increased the necessity for WCMS to tailor itself for

different web pages design depending on the need.

Consequently, this paper presents a new approach which

improves WCMS using web personalization, where WCMS

can take advantage of previous developers’ knowledge, to

automatically offer different template designs for each

website developer and, thus, increase the websites

productivity and WCMSs scalability and flexibility, by

merging web personalization with automatic template

extraction. To accomplish such an approach a new technique

has also been developed, which mixes hybrid Evolutionary

Algorithm (Genetic Algorithm and Ant Colony Clustering)

with Cluster Tree Matching.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 49

This paper is organized as follows. First, background is

explained and some related works are discussed. Then, the

proposed approach is explained in details. Afterwards, an

experiment is explained and its results are discussed. Finally,

the paper is concluded and some future works are proposed.

2 Background

In this section, the main aspects that are needed to

understand the proposed approach are defined and discussed.

2.1 Web Personalization

In [1] web personalization has been defined as “any

action that adapts the information or services provided by a

web site to an individual user, or a set of users”. Thus, in

personalization all the work is done automatically for the

users based on their data. It uses different techniques to

collect users’ data and then personalize the services by

measuring the similarity degree between the current data and

other content or users of the website. In general, web

personalization must first collect the web data to be pre-

processed and modeled. Then, such data must be analyzed

and matched to determine what action should be performed

[7].

2.2 User Profiling

Discovering users’ differences is essential to provide the

required personalized service. User profile has been defined

in [8] as “the process of ‘discovering’ correlations between

data in databases that can be used to identify and represent a

human or nonhuman subject (individual or group) and/or the

application of profiles (sets of correlated data) to individuate

and represent a subject or to identify a subject as a member

of a group or category”. In general, user profiles vary in

content and types, which usually depend on the application

[8] [9]. In order to build and use profiles different techniques

have been developed in the last few years, such as machine

learning, genetic algorithm, and classification techniques

[10].

2.3 HTML Web Pages

Hypertext Mark-up Language (HTML) has been defined

in [10] as “a web programming language used to display web

pages”. Usually, browsers provide web pages based on

HTML files, which define the structure and represent the

pages as tags and attributes. HTML contains tags that are

nested in a tree structure. Thus, different web pages can be

generated by extracting some nodes of the HTML tree [11].

In order to navigate, modify, add, or delete content or

elements of HTML web pages, Document Object Model

(DOM) has been developed by W3C as HTML standard

interface [12]. Specifically, HTML files are represented by

DOM trees in order to apply different similarity measures and

extract common templates [5]. Its representation aims to

display and show the structure of HTML web pages rather

than its content. Web pages are converted into DOM trees

using its tag structure, which labels each node in the tree with

its matching tag [13]. The hierarchy of the tags is preserved

and the content of the page is stored at the leaf nodes.

To extract templates, HTML web page structure must be

compared and, thus, DOM tree similarity must be measured.

One of the most recent measures in that field is Cluster Tree

Matching (CTM). It is developed by Ferrara and Baumgartner

[14] to calculate the tree similarity recursively in a matrix and

count the weight difference between two trees. CTM clusters

the matching process sub-tree by sub-tree and assign a

weighted value to give less weight for insignificant sub-trees;

such that deep levels of the trees usually indicate an

insignificant component of the web pages like table rows or

list of items. This measure is used in the proposed approach

and, thus, more details will be explained later.

2.4 Evolutionary Algorithms

Evolutionary Algorithm (EA) [15] is an artificial

intelligent algorithm that has been inspired by nature. Such an

algorithm is used to solve any kind of problem and identify

candidate solutions as fast as possible. It is useful when the

best solution is unknown while the data repository is very

large. Different techniques have been developed under the

umbrella of EA, such as Genetic Algorithm (GA) [16] and

Ant Colony Clustering (ACC) [17]. Each technique has been

tailored in different domains depending on the requirement.

GA is considered as the most popular technique of EA.

It is “a general purpose search algorithm which use

principles inspired by natural genetic populations to evolve

solutions to problems” [16]. It typically starts from a

collection of random solutions, called population, and then

evolves it using selection and reproduction procedures. The

best solution is chosen based on a fitness function that

measures the solution strength. The population contains

elements, called individuals or chromosomes, to represent

possible solutions. In GA, four steps are performed to match

individuals [18]. First it represents the available dataset to the

required data type. Then it initializes the population by

randomly assigning different values to the chromosomes.

Afterward, it reproduces a new solution by mixing every

chromosome with another to produce a new offspring.

Finally, it selects the best chromosomes based on their fitness

value.

Alternatively, ACC method is a new type of clustering

that is based on an algorithm called Ant Colony Optimization.

Such an algorithm is an Evolutionary Algorithm that is built

based on how ants look for food by spreading their

pheromone to find the food path [19]. It starts updating its

local pheromone and explores all possible roads to finally

emphasize the shortest one. As a result, the global pheromone

will be emphasized, while the other pheromone is fading, i.e.

the best road will be chosen. ACC is developed to optimize

50 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

the process of clustering and improve its time. It is mostly

used in web usage mining [20] and basically divided into

three steps [21]. First, it updates the local pheromone, i.e.

update each ant solution with the suitable cluster. Then,

applies the state transition rule, i.e. decide if a certain ant

should be dropped in/out of a cluster. Finally, it updates the

global pheromone, i.e. update the final solution (road map).

3 Related Work

After discussing the main aspects needed to understand

the paper, it is time to discuss other works in that area. To the

best of our knowledge, no one yet has considered

personalization in template extraction. Thus, the available

works in template extraction and personalization are

separately discussed.

In [3], a new methodology that allows users to

personalize their web page navigation through websites has

been presented. They emerged content and usage mining

techniques with the field of recommendation systems to

suggest the most relevant pages to users. Similarly, in [2] web

mining model that dynamically creates personalized web

pages is presented; such that users with similar interest are

grouped and their visited pages are related. On the other hand,

in [22] a complete framework is presented along with web

usage mining of real websites. It profiles users explicitly

using search query that is stored in the web log data. For

further improvement, Eirinaki et al. [1] proposed a semantic

web personalization that is applied to semantically annotate

websites' content. They integrated content semantic with

usage information to improve the semantics of navigational

patterns.

Alternatively, when it comes to template extraction, in

[23] a new method has been proposed to parse different

websites into HTML tag trees to generate a template for each

site and identify repeated patterns and extract pages' content.

Moreover, in [24] another method is presented to induce web

page template. They first select websites randomly, and then

transform it into DOM trees, judge its similarity, and cluster

the web page to extract templates, correlate it, and extract

other pages' content. Furthermore, in [25] an approach of

three steps has been proposed. It generates templates, extract

data, and then edit the template. Finally, Shui-Lung and Jane

Yung-jen [6] introduced a Tree Template Automatic

Generator to learn template from given web pages. The

template is generated using a top down approach starting

from the root and then going down one level at a time.

Regardless of all the evaluation conducted in the

previous works, some important deficiencies have been

noticed. When it comes to web personalization, all the works

discussed have only considered the visitor behavior and the

content similarity; i.e. the problem of navigation is only

considered and the focus was on the website/visitor

relationship while the website designers have been neglected.

Consequently, even though it is called web personalization

but the focus was mostly directed to navigation

personalization and content similarity. Alternatively, when it

comes to template extraction, the available works have

directed the focus to the dynamic content of the websites

rather than the template itself. Templates were generated only

to identify the content of different websites without taking

advantage of the semi-structured static
1
 knowledge that

already has been extracted. In addition, time of template

extraction and its accuracy was not fully considered in most

of the work. Therefore, the next section presents a new

approach which is developed to increase the website's

productivity and WCMS scalability and flexibility by

personalizing template extraction and, thus, automating the

process of website design.

4 WCMS Personalization

WCMS personalization is a new approach that

personalizes the process of template extraction in WCMS.

Such an approach uses a new technique that is based on

hybrid EA (GA and ACC) and CTM measure. It mainly

applies two steps: pre-personalization and personalization. In

the pre-personalization step data are collected from

developers then profiles are generated. However, in the

personalization step profiles are matched, and common

templates are extracted.

4.1 Pre-Personalization

In order to start the personalization process, data used to

build the profiles must be first collected explicitly from the

developer account. Such data would contain the developers’

country, religion, and their business scale, and also the visitor

age, language, gender, ability, and nature. In addition, after

collecting these data, profiles are generated. Thus, websites'

profiles are gathered in Extensible Markup Language (XML)

files and all websites that target the same age are grouped

together, as illustrated in Figure 1, in order to simplify and

speed up the process of matching.

Figure 1: Individual profile

It must be noted that changes in the collected data are

usually not frequent, i.e. it is a long-term interest. Thus, every

period of time this step is repeated, in the background, in

order to consider the possible changes in the long-term

interest.

1 Semi-structured documents are documents that have a known content without knowing

where such content is placed in the document. In addition, static data are the data that is

statically written in the page without deriving it dynamically from the database.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 51

4.2 Personalization

Whenever the developers access WCMS, in order to

design the website interface, templates will be personalized

by matching profiles and generating the required templates.

This step is repeated every time the users want to redesign

their website because users and visitors’ interest might

frequently change; thus, changing in the short-term interest is

considered. The pseudo code of this step is illustrated in

Figure 2.

Personalization {

Input: users profile U, target user T, population size: β, stop condition α,
chromosome size γ, HTML pages HP, Kp, Kd, Number of Cluster cβ.

Output: generated template.

// 1- profile matching (GA algorithm)
//Initialize population and calculate the fitness of each solution

P = GeneratePopulation (U, T, β, γ);

S = best solution in P;

While (α not reached) and (F(S) ≠ 1) do

//Crossover to produce better solutions

Pnew = Reproduce (P)
Calculate Pnew fitness;

//Selection

P = Select best β chromosomes from P and Pnew

S = best solution in P;

End while
// 2- template extraction (ACC and CTM algorithm)

DomT = ParseHTML (HP, S); //parse HTML of best users to DOM

// Start clustering
Initialize global pheromone C;

// Spread the ants

For each tree do
 Assign cluster randomly based on cβ;

End for

a = 0;
// Start the learning process

While (global pheromone is not filled) OR (a <= α) do

 i = j = 0;
 //Apply transition rule and update local pheromone

 For each tree do

 i++;
 For all other trees do

 j++;

 f(i,j)= TreeMatch (DomTi, DomTj);
 //if more than 75% of the characteristic matches, then similar

 if (f(i,j) >= 0.75) then

 Calculate Pp;
 Update DomTi local pheromone with DomTj cluster based on Pp

 //drop down if not similar but same cluster

 Else if (DomTi cluster = DomTj cluster) then
 Calculate Pd;

 Drop down DomTi cluster based on Pd

 End for
 End for

Update global pheromone C;

End while
Generate Templates using C, HP, and S; }

//CTM measure function

TreeMatch {

Input: two trees T1 and T2.

Output: weighted similarity measure W.

If T1.root ≠ T2.root
 Return 0;

Else

 m = d(T1.root);
 n = d(T2.root);

 // Initialize measure matrix

 M [i][j] = 0 for all i = (0 .. m) and (j = 0 .. n);
 //start matching sub-trees

 For i = 1 to m do

 For j = 1 to n do

 // Recursive call to measure sub trees similarities

 // starting from current node as root

 SupTreeM = TreeMatch (T1[i-1], T2[j-1]);

 M [i][j] = Max (M[i][j-1], M[i-1][j], (M[i-1][j-1] + SupTreeM));
 End for

 End for

//Check if leaf nodes is reached
If m ≠ 0 and n ≠ 0 then

;

Else

;

Return W;

End if }
Figure 2: Personalization algorithm

Developers are matched using GA, which typically

starts with random solutions then evolves it by repeated

selection and reproduction. Chromosomes are used to

represent the candidate solutions; for example, if the

chromosome size is 4 then it can be represented as illustrated

in Figure 3. The content represents the similar users' ID, i.e.

possible solution, and each gene in the chromosome is linked

to the related characteristic extracted from the XML file.

“123456” “123789” “654321” “987654”

Figure 3: Solution Chromosome

First, the population will be initialized by users of the

same age, given the maximum number of genes; such that

each chromosome will represent a solution. Maximum

number of genes represents the maximum number of similar

users who can be considered; it is restricted because the

repository of profiles can be very large, which tremendously

increases the chromosome length to the extent that might

affect the process time without much of improvement in the

solution.

The fitness value of chromosome I is calculated using

Equation(1), where D(I, T) is the similarity distance between

the targeted user profile T and other users included in the

chromosome, G is number of genes, and Ch is number of

characteristic in profiles. The similarity measure D (I, T) is

calculated using Equation (2) for all genes in the

chromosome. ChMatch is a function that calculates the

similarity between two profile characteristics using Equation

(3).

 (1)

 (2)

 (3)

After calculating the fitness of all users in the

chromosome the population is reproduced until the stop

condition is reached or the target solution, where the fitness is

52 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

equal to one, is found. After that, using the resulting solution,

templates can be extracted. This extraction is divided into

three steps, as follows.

4.2.1 HTML Parsing

Parsing web pages into trees will simplify and speed up

the search in such pages. Hence, each website front page is

parsed into a tree using DOM representation where each node

in the tree represents an HTML tag. In addition, each tree will

be identified by the developer (user) id and his profile fitness.

4.2.2 Tree Clustering

After parsing HTML pages to DOM trees, the resulting

trees are clustered into groups to identify similar templates

and avoid redundant results. To accomplish this step ACC

and CTM are used. Each tree represents an ant, clusters

represent roads, and a solution is represented by a vector with

N (number of trees) elements and W (number of clusters)

values. For example, if (N=5) and (W=3) then a solution

could be as illustrated in Figure 4; which means that the

second, fourth, and fifth trees belong to the same cluster while

the first belong to cluster#2 and the third tree belong to

cluster#3.

T1 T2 T3 T4 T5

2 1 3 1 1

Figure 4: Cluster solution

After initializing all the attributes, this step works as

follows. First, each tree will be assigned randomly to a

cluster. Then, while the stop condition is not reached, each

tree is matched with all other trees. The similarity measure

between two trees Ti and Tj is calculated using the TreeMatch

function illustrated in Figure 2, where d(n) is number of first-

level children of node n, T[i] is a sub-tree T starting from

level i, s(n) is number of siblings of node n including itself,

and M is the measure matrix. Such measure selects sub-trees

that share the same root and analyze its tag name to return the

similarity weighted measure between two trees. TreeMatch

function use CTM measure, discussed previously, which

calculates tree similarity recursively in a matrix and counts

the weight difference between two trees.

After calculating the similarity measure it will be

possible to apply the transition rule and decide whether to

pick up a neighbor cluster or drop the current tree cluster in

order to update the local pheromone. In the proposed

approach, a slightly different transition rule has been

exploited and used, as follows. If the current tree has a similar

clustered neighborhood, then the neighbors' cluster will be

picked up, based on probability Pp, and the current tree will

join the same cluster. On the other hand, if the current tree has

a similar cluster to none neighborhood tree then it means that

the clustering is inaccurate; thus, the target tree must drop

down its cluster, based on a certain probability Pd.

The probability of picking up (PP) and dropping down

(Pd) a tree out/in a certain cluster is calculated using Equation

(4) and (5), respectively, where f is the similarity measure,

calculated previously using TreeMatch function, Kp and Kd

are threshold constant. Note that if the similarity between two

trees is zero while they have the same cluster then Pd will be

equal to 1 in order to force the drop down of the cluster.

 (4)

 (5)

After comparing all trees together and updating their

local pheromone, the global pheromone will be updated. At

the end, this step will be repeated in order to improve the

solution and assign trees to the most appropriate cluster. Note

that only one tree can update the global pheromone in each

round in order to guarantee testing as many roads as possible.

In addition, some trees might not find any similar

neighborhood; thus, such trees will be left in a separate

cluster to make sure that its characteristic does not disappear.

Consequently, unique web pages are preserved in case similar

websites join the Web.

4.2.3 Template Generation

In order to extract the common template, resulting

clusters will be examined and trees with the highest fitness in

each cluster will be chosen. After that, attributes such as

images and colors will be changed to random values. Then,

DOM trees are parsed back to HTML files to be viewed as a

personalized template.

5 Implementation

In order to test the performance of the proposed

approach an experiment has been conducted. This section

discusses the details of the experiment and explains its result.

5.1 Experiment Settings

The proposed approach has been implemented with Java

language and executed on a PC with Intel®Core™ i7 CPU,

and 2.67 GHz processes. In addition, websites with different

languages and characteristics have been used in the

experiment. Each website has a full profile which was

synthetically build in a database. Moreover, since almost all

the websites have unclean structure, an external library called

HTML Cleaner [26], was used to extract the websites from its

URL, clean it, and then convert it to HTML pages. During the

experiment, all the parameters were unchanged, except for the

stop condition. Population and chromosome size was set to

“10” because only ten templates are wished to be viewed; Kp

and Kd were set to “0.5” to give 50% chance of

dropping/picking, while the maximum number of group was

set to “5”. In the experiment ten trials have been recorded,

each trial has a different stop condition starting from 10 to

100.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 53

5.2 Evaluation Measure

In order to evaluate the result of the experiment three

types of measures have been calculated. The first measure is

the algorithm speed, which record the time of personalization

step. The second measure, however, records the quality of GA

using the fitness of each trial extracted solution to indicate the

similarity degree between the users included in the solution

and the target user. The final measure, on the other hand,

assesses the clustering quality using two measures: inter-

cluster and intra-cluster similarity. Inter-cluster similarity

measures the similarity between pages in the same cluster

using TreeMatch function. If its value is high, it would mean

pages in one cluster are very similar. On the other hand, intra-

cluster similarity measures the similarity between the clusters.

It measures the distance between the most fitted trees of each

cluster using TreeMatch function. If it has a low value, it

would mean that each cluster is very dissimilar from the

other.

5.3 Experiment Result

After conducting the ten trials, using the parameters

specified previously, each measure is calculated and recorded.

In Figure 5 the execution time of the algorithm is illustrated.

As it can be noted, when the stop condition increases the time

will also increase. Such result is normal because matching

and clustering steps depend on this condition. Nevertheless,

the time taken to execute the algorithm, in any trial, is very

low. Most of the trails have taken less than one second, which

indicates a good performance in terms of speed.

Figure 5: Algorithm speed

Additionally, in Figure 6 the solution fitness (matching

quality) and inter/intra cluster similarity (clustering quality)

are recorded in each trial. As it can be noted, the quality of

the solution extracted in each trial was, on average, 98%

match with the target user. Thus, it can be stated that the

quality of profile matching is very good.

In addition, inter-cluster similarity indicated high

percentage (99%) while intra-cluster similarity, on the other

hand, indicated low percentage (0.1%). These results reveal

that such algorithm did not group dissimilar trees together and

did not separate similar ones. However, we must emphasize

on the fact that increasing of the stop condition did not affect

the value of the clustering quality while slightly decreased the

quality of the solution. Thus, a fair stop condition (equal to

the number of pages) is recommended.

Figure 6: Matching and Clustering quality

5.4 Discussion

After understanding and testing the proposed approach,

it is time to summarize its contribution. First of all, such an

approach has further generalized web personalization. Instead

of only using web personalization on navigation and dynamic

data it was applied on the static part of web pages to consider

the developer of websites rather than only the visitors. Thus,

such an approach has added a value to the area of web

personalization to include providers’ need, personalizing

static content, and consider characteristics when matching

rather than keywords.

Moreover, long and short term interest has been

considered; such that it does not always update and re-execute

the whole process. Only the personalization step is repeated

with every query; however, the rest is done once and updated

every period of time while its result is stored in XML files.

Such decision reduced the time tremendously without

affecting the accuracy and improved the scalability of

WCMS. In addition, using of XML files simplified and speed

up the process of matching because XML is a standard

language for describing the data in a tree structure; thus,

profiles will be easily searched and information can quickly

be fetched.

In addition, to handle web pages' content it was parsed

to DOM trees, which simplified and further improved the

speed of web page matching and clustering because searching

and matching trees is much better than going through the

whole web page. Moreover, such an approach is very

dynamic due to the use of different parameters, which can be

changed depending on the providers’ need; for example, one

provider could prefer to view only one template; thus, the

chromosome length can be set to one. Additionally, pages

were not forced to join a cluster to preserve unique web pages

and improve the clustering in case similar websites join the

Web.

Finally, even though the testing result is mathematically

good, but we could not compare it with other methods

because no other works of template personalization in WCMS

have been found. Thus, as future work, the proposed approach

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

s)

Iteration

Execution
Time

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

Tr
e

e
 M

at
ch

 (
0

 -
 1

)

Iteration

Inter-cluster

Intra-Cluster

Solution
Fitness

54 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

should be tested with real users to ensure its satisfaction. In

addition, ontology, which is a structured knowledge

repository, could also be used when acquiring data. Instead of

giving limited options when entering the characteristics

developers can enter what they wish and translate it using

ontology’s repository. Therefore, providers will have more

freedom in designing their websites.

6 Conclusion

In today’s World Wide Web, the use of Web

personalization has increased tremendously. However, such

use has only concentrated on the visitors’ behavior.

Alternatively, WCMS has occurred to help website

developers to create, edit, organize, and publish the web

content. Nevertheless, when designing a website, WCMS has

only considered customization; thus, WCMS developers must

design some templates in advance. Such process consumes a

lot of effort and time. Therefore, the paper proposed a new

approach which improves the quality of WCMS and increases

its flexibility and scalability. Such an approach use web

personalization and template extraction to take advantage of

previous developers’ knowledge and automatically offer

different template designs for each website developer by

mixing GA and ACC with CTM. In addition, an experiment

has been conducted to finally conclude that this approach has

a high quality, in regard to speed, precision, and accuracy.

Finally, as future work, it was recommended to use ontology

to further enrich the scalability of the proposed approach.

7 References

[1] M. Eirinaki, D. Mavroeidis, G. Tsatsaronis, and M. Vazirgiannis,

"Introducing Semantics in Web Personalization: The Role of
Ontologies," in Semantics, Web and Mining. vol. 4289, M. Ackermann,

B. Berendt, M. Grobelnik, A. Hotho, D. Mladenic, G. Semeraro, M.

Spiliopoulou, G. Stumme, V. Svátek, and M. van Someren, Eds., ed:
Springer Berlin / Heidelberg, 2006, pp. 147-162.

[2] H.-z. Shen, J.-d. Zhao, and Z.-z. Yang, "A Web Mining Model for Real-

time Webpage Personalization," in Management Science and
Engineering, 2006. ICMSE '06. 2006 International Conference on,

2006, pp. 8-12.

[3] S. Flesca, S. Greco, A. Tagarelli, and E. Zumpano, "Non-invasive
support for personalized navigation of Websites," in Database

Engineering and Applications Symposium, 2004. IDEAS '04.

Proceedings. International, 2004, pp. 183-192.
[4] L. He and Y. Chen, "Design and implementation of Web Content

Management System by J2EE-based three-tier architecture: Applying in
maritime and shipping business," in Information Management and

Engineering (ICIME), 2010 The 2nd IEEE International Conference on,

2010, pp. 513-517.

[5] K. Chulyun and S. Kyuseok, "TEXT: Automatic Template Extraction

from Heterogeneous Web Pages," Knowledge and Data Engineering,

IEEE Transactions on, vol. 23, pp. 612-626, 2011.
[6] C. Shui-Lung and H. Jane Yung-jen, "Tree-Structured Template

Generation for Web Pages," in Web Intelligence, 2004. WI 2004.

Proceedings. IEEE/WIC/ACM International Conference on, 2004, pp.
327-333.

[7] M. Eirinaki and M. Vazirgiannis, "Web mining for web

personalization," ACM Trans. Internet Technol., vol. 3, pp. 1-27, 2003.
[8] M. Hildebrandt, "Defining Profiling: A New Type of Knowledge?," in

Profiling the European Citizen, M. Hildebrandt and S. Gutwirth, Eds.,

ed: Springer Netherlands, 2008, pp. 17-45.
[9] M. Crossley, N. J. Kings, and J. R. Scott, "Profiles — Analysis and

Behaviour," BT Technology Journal, vol. 21, pp. 56-66, 2003.

[10] W. A. M. A. Wan Mohd Mahidin, "Dynamic template for lecturers'

webpages in FTMSK," Information Technology, Universiti Teknologi
MARA, 2003.

[11] B. Christos, K. Vaggelis, and M. Ioannis, "Web page fragmentation for

personalized portal construction," in Information Technology: Coding
and Computing, 2004. Proceedings. ITCC 2004. International

Conference on, 2004, pp. 332-336 Vol.1.

[12] (2004). What is the Document Object Model? Available:
http://www.w3.org/TR/DOM-Level-3-Core/introduction.html

[13] Y. Kim, J. Park, T. Kim, and J. Choi, "Web Information Extraction by

HTML Tree Edit Distance Matching," pp. 2455-2460, 2007.
[14] E. Ferrara and R. Baumgartner, "Automatic Wrapper Adaptation by

Tree Edit Distance Matching," CoRR, vol. abs/1103.1252, 2011.

[15] A. Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Berlin: Spinger-Verlag, 2002.

[16] J. Wook and S. Woo, "New Encoding/Converting Methods of Binary

GA/Real-Coded GA," IEICE Trans, vol. E88-A, pp. 1545-156, 2005.
[17] L. Deneubourg, S. Goss, N. Franks, C. Detrain, and L. Chretien, "The

Dynamics of Collective Sorting: Robot-Like Ant and Ant-Like Robot,"

in from animals to animats : proc. of the first int. conf. on simulation of
adaptive behavior, 1991, pp. 356 - 365.

[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

second ed.: Prentice Hall, 2003.
[19] S. Wei, L. Jian-Chang, H. Yu-Jun, and L. Jian-Qiang, "Application of

neural network model combining information entropy and ant colony

clustering theory for short-term load forecasting," in Machine Learning
and Cybernetics, 2005. Proceedings of 2005 International Conference

on, 2005, pp. 4645-4650 Vol. 8.

[20] J. Lu, D. Ruan, and G. Zhang, "E-Service Intelligence: An
Introduction," in E-Service Intelligence. vol. 37, J. Lu, G. Zhang, and D.

Ruan, Eds., ed: Springer Berlin / Heidelberg, 2007, pp. 1-33.

[21] T. Dinh and A. Mamun, "A combination of clustering algorithms with
Ant Colony Optimization for large clustered Euclidean Travelling

Salesman Problem," in WSEAS SOSM 2004, Miami, Florida, 2004, pp.

484-352.
[22] O. Nasraoui, M. Soliman, E. Saka, A. Badia, and R. Germain, "A Web

Usage Mining Framework for Mining Evolving User Profiles in

Dynamic Web Sites," Knowledge and Data Engineering, IEEE
Transactions on, vol. 20, pp. 202-215, 2008.

[23] X. Ji, J. Zeng, S. Zhang, and C. Wu, "Tag tree template for Web

information and schema extraction," Expert Systems with Applications,
vol. 37, pp. 8492-8498, 2010.

[24] Y. Gui-Sheng, G. Guang-Dong, and S. Jing-Jing, "A template-based

method for theme information extraction from web pages," in Computer
Application and System Modeling (ICCASM), 2010 International

Conference on, 2010, pp. V3-721-V3-725.

[25] H. Haikun, C. Xiaoxin, W. Guoshi, and L. Jing, "Web Data Extraction
Based on Tree Structure Analysis and Template Generation," in E-

Product E-Service and E-Entertainment (ICEEE), 2010 International

Conference on, 2010, pp. 1-5.
[26] net.sourceforge.htmlcleaner. (2010). HtmlCleaner release 2.2.

Available: http://htmlcleaner.sourceforge.net

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 55

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html
http://htmlcleaner.sourceforge.net/

A Simulated Docking of TOK-001 with Cytochrome

P450 17A1

Jack K. Horner

PO Box 266

Los Alamos NM 87544

jhorner@cybermesa.com

Abstract

Cytochrome P450 17A1 (also known as CYP17A1) catalyses the biosynthesis of androgens in humans. Because

prostate cancer cells proliferate in response to androgen steroids, CYP17A1 inhibition can help to prevent

androgen synthesis and treat lethal metastatic prostate cancer. Here I report the results of a computational

docking of TOK-001, a steroidal inhibitor of CYP17A1 currently under investigation for the treatment of advanced

prostate cancer, with the CYP17A1 active site, based on recent X-ray crystallography of the receptor/ligand

complex.The docking uses a Lamarckian genetic algorithm.

Keywords: cytochrome P450, CYP17A1, TOK-001, computational docking, prostate cancer, Lamarkian genetic

algorithm

1.0 Introduction

Cytochrome P450 17A1 (also known as

CYP17A1 and cytochrome P450c17) is a

membrane-bound monooxygenase that plays a

fundamental role in the synthesis of several

human steroid hormones ([5]). The 17α-

hydroxylase activity of CYP17A1 is required for

the generation of glucocorticoids such as

cortisol; the hydroxylase and 17,20-lyase

activities of CYP17A1 are required for the

production of androgenic and oestrogenic sex

steroids. CYP17A1 is thus an important target

for the treatment of breast and prostate cancers

that proliferate in response to oestrogens and

androgens ([6],[7]).

Until recently, steroidal CYP17A1 inhibitors

were thought to bind the cytochrome P450 haem

iron, more or less parallel to the plane of the

haem group in the active site ([8]).

TOK-001 is a steroidal drug currently being

investigated for the treatment of metastatic

prostate cancer ([8]). Recent X-ray

crystallography of TOK-001 complexed with the

active site of CYP17A1 shows the drug binds

the haem iron in the receptor active site, forming

a 60° angle above the haem plane and packing

against the central I helix with the 3β-OH

interacting with aspargine 202 in the F helix

([1],[3]). This conformation differs substantially

from those that are predicted by homology

models and from steroids in other cytochrome

P450 enzymes with known structures; some

features of this conformation are more similar to

steroid receptors ([1]).

56 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

2.0 Method

The general objective of this study is

straightforward: to computationally assess the

binding energy of the active site of crystallized

cytochrome p450 17A1 with TOK-001. Unless

otherwise noted, all processing described in this

section was performed on a Dell Inspiron 545

with an Intel Core2 Quad CPU Q8200 (clocked

@ 2.33 GHz) and 8.00 GB RAM, running under

the Windows Vista Home Premium (SP2)

operating environment.

Protein Data Bank (PDB) 3SWZ is a structural

description of a crystallized cytochrome p450

17A1 bound to TOK-001. 3SWZ has 4 chains,

designated A-D.

3SWZ was downloaded from PDB ([3]) on 30

January 2012. The ligand and receptor-active-

site portions of 3SWZ Chain A were extracted to

separate files, , using AutoDock Tools (ADT,

[2]). ADT was then used to perform the

docking of the ligand to the receptor. More

specifically, in ADT, approximately following

the rubric documented in [4]

 -- all waters and Chains B-D of 3SWZ

were deleted

 -- the ligand (TOK-001) and Chain A's

active-site were extracted to separate files, one

for each of the ligand and the receptor (3SWZ

identifies the active site of Chain A as 10

residues: ALA113, PHE114, ASN202,

ILE205, ALA302, THR306, VAL366,

ALA367, VAL482, and HEM600.)

 -- the hydrogens, charges, and

torsions in the ligand and active site were

adjusted using ADT default recommendations

and finally, the ligand, assumed to be flexible

wherever that assumption is physically possible,

was auto-docked to the active site, assumed to

be rigid, using the Lamarckian genetic

algorithm implemented in ADT.

__

autodock_parameter_version 4.2 # used by autodock to validate parameter

 set

outlev 1 # diagnostic output level

intelec # calculate internal electrostatics

seed pid time # seeds for random generator

ligand_types A C OA HD N # atoms types in ligand

fld 3SWZ_A_active_receptor.maps.fld # grid_data_file

map 3SWZ_A_active_receptor.A.map # atom-specific affinity map

map 3SWZ_A_active_receptor.C.map # atom-specific affinity map

map 3SWZ_A_active_receptor.OA.map # atom-specific affinity map

map 3SWZ_A_active_receptor.HD.map # atom-specific affinity map

map 3SWZ_A_active_receptor.N.map # atom-specific affinity map

elecmap 3SWZ_A_active_receptor.e.map # electrostatics map

desolvmap 3SWZ_A_active_receptor.d.map# desolvation map

move 3RUK_A_ligand.pdbqt # small molecule

about 27.936 -1.9813 32.3924 # small molecule center

tran0 random # initial coordinates/A or random

axisangle0 random # initial orientation

dihe0 random # initial dihedrals (relative) or random

tstep 2.0 # translation step/A

qstep 50.0 # quaternion step/deg

dstep 50.0 # torsion step/deg

torsdof 2 # torsional degrees of freedom

rmstol 2.0 # cluster_tolerance/A

extnrg 1000.0 # external grid energy

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 57

e0max 0.0 10000 # max initial energy; max number of

 retries

ga_pop_size 150 # number of individuals in population

ga_num_evals 2500000 # maximum number of energy evaluations

ga_num_generations 27000 # maximum number of generations

ga_elitism 1 # number of top individuals to survive

 to next generation

ga_mutation_rate 0.02 # rate of gene mutation

ga_crossover_rate 0.8 # rate of crossover

ga_window_size 10 #

ga_cauchy_alpha 0.0 # Alpha parameter of Cauchy distribution

ga_cauchy_beta 1.0 # Beta parameter Cauchy distribution

set_ga # set the above parameters for GA or LGA

sw_max_its 300 # iterations of Solis & Wets local

 search

sw_max_succ 4 # consecutive successes before changing

 rho

sw_max_fail 4 # consecutive failures before changing

 rho

sw_rho 1.0 # size of local search space to sample

sw_lb_rho 0.01 # lower bound on rho

ls_search_freq 0.06 # probability of performing local search

 on individual

set_psw1 # set the above pseudo-Solis & Wets

 parameters

unbound_model bound # state of unbound ligand

ga_run 10 # do this many hybrid GA-LS runs

analysis # perform a ranked cluster analysis

Figure 1. ADT parameters used in this study. The setup uses a Lamarckian genetic algorithm

minimum-energy search; all other ADT parameters are defaulted.

__

The minimum-energy configuration was

selected from the configurations generated, and

saved. Interatomic distances between ligand and

receptor in the computed form were compared to

those in [3].

3.0 Results

The interactive problem setup, which assumes

familiarity with the general CYP17A1

"landscape", took about 20 minutes in ADT; the

docking proper, about 24 minutes on the

platform described in Section 2.0 The platform's

performance monitor suggested that the

calculation was more or less uniformly

distributed across the four processors at ~25% of

peak per processor (with occasional bursts to

40% of peak), and required a constant 2.9 GB

of memory.

Figure 2 shows the ligand/receptor energy and

position summary produced by ADT for the

best-fit conformation obtained under the

conditions described in Figure 2.0. The

estimated free energy of binding is ~ -7.9

kcal/mol; the estimated inhibition constant,

~1.75 microMolar at 298 K. All distances

between receptor and ligand atoms in the

computed ligand position lie within 10% of the

distances of the corresponding atoms in 3SWZ.

58 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

 LOWEST ENERGY DOCKED CONFORMATION from EACH CLUSTER

Keeping original residue number (specified in the input PDBQ file) for outputting.

MODEL 8

USER Run = 8

USER Cluster Rank = 1

USER Number of conformations in this cluster = 5

USER

USER RMSD from reference structure = 10.790 A

USER

USER Estimated Free Energy of Binding = -7.85 kcal/mol [=(1)+(2)+(3)-(4)]

USER Estimated Inhibition Constant, Ki = 1.75 uM (micromolar) [Temperature = 298.15 K]

USER

USER (1) Final Intermolecular Energy = -8.45 kcal/mol

USER vdW + Hbond + desolv Energy = -8.40 kcal/mol

USER Electrostatic Energy = -0.05 kcal/mol

USER (2) Final Total Internal Energy = -0.16 kcal/mol

USER (3) Torsional Free Energy = +0.60 kcal/mol

USER (4) Unbound System's Energy [=(2)] = -0.16 kcal/mol

USER

USER

USER

USER DPF = 3SWZ_A.dpf

USER NEWDPF move 3RUK_A_ligand.pdbqt

USER NEWDPF about 27.936001 -1.981300 32.392399

USER NEWDPF tran0 20.130862 7.221189 34.800957

USER NEWDPF axisangle0 -0.007078 0.803179 -0.595696 -140.734418

USER NEWDPF quaternion0 -0.006666 0.756486 -0.561065 -0.335991

USER NEWDPF dihe0 2.04 -178.84

USER

USER x y z vdW Elec q RMS

ATOM 1 C1 AER A 601 21.585 8.609 31.649 -0.21 +0.00 +0.016 10.790

ATOM 2 C2 AER A 601 21.647 9.403 30.352 -0.17 -0.00 +0.033 10.790

ATOM 3 C3 AER A 601 20.280 9.574 29.742 -0.22 -0.02 +0.122 10.790

ATOM 4 C4 AER A 601 19.351 10.306 30.715 -0.25 -0.03 +0.066 10.790

ATOM 5 C5 AER A 601 19.376 9.713 32.096 -0.41 +0.02 -0.072 10.790

ATOM 6 C6 AER A 601 18.195 9.661 32.707 -0.49 -0.00 -0.023 10.790

ATOM 7 C7 AER A 601 17.917 8.839 33.940 -0.38 +0.01 +0.033 10.790

ATOM 8 C8 AER A 601 19.182 8.454 34.702 -0.46 -0.00 -0.001 10.790

ATOM 9 C9 AER A 601 20.304 8.080 33.721 -0.33 +0.00 +0.003 10.790

ATOM 10 C10 AER A 601 20.670 9.195 32.730 -0.31 +0.00 -0.017 10.790

ATOM 11 C11 AER A 601 21.521 7.442 34.395 -0.29 +0.00 +0.007 10.790

ATOM 12 C12 AER A 601 21.150 6.331 35.386 -0.29 +0.01 +0.014 10.790

ATOM 13 C13 AER A 601 20.167 6.836 36.406 -0.39 -0.01 -0.016 10.790

ATOM 14 C14 AER A 601 18.961 7.212 35.572 -0.42 +0.00 +0.003 10.790

ATOM 15 C15 AER A 601 17.753 7.179 36.506 -0.58 +0.00 +0.010 10.790

ATOM 16 C16 AER A 601 18.058 6.134 37.563 -0.35 +0.03 +0.036 10.790

ATOM 17 C17 AER A 601 19.545 5.867 37.355 -0.35 -0.04 -0.060 10.790

ATOM 18 C18 AER A 601 20.783 7.922 37.307 -0.39 +0.01 +0.020 10.790

ATOM 19 C19 AER A 601 21.471 10.305 33.394 -0.23 -0.01 +0.020 10.790

ATOM 20 C20 AER A 601 20.298 4.767 38.073 -0.31 -0.02 -0.018 10.790

ATOM 21 C25 AER A 601 19.715 3.500 38.254 -0.26 +0.02 +0.014 10.790

ATOM 22 C24 AER A 601 20.422 2.508 38.915 -0.24 +0.02 +0.018 10.790

ATOM 23 C23 AER A 601 21.698 2.812 39.369 -0.22 +0.09 +0.087 10.790

ATOM 24 N22 AER A 601 22.241 4.038 39.185 -0.08 -0.30 -0.375 10.790

ATOM 25 H22 AER A 601 23.180 4.225 39.540 -0.36 +0.09 +0.164 10.790

ATOM 26 C21 AER A 601 21.578 5.012 38.550 -0.14 +0.07 +0.099 10.790

ATOM 27 O3 AER A 601 20.432 10.399 28.591 -0.10 +0.07 -0.395 10.790

ATOM 28 H3 AER A 601 19.566 10.534 28.225 -0.17 -0.06 +0.210 10.790

TER

ENDMDL

Figure 2. Coordinates of TOK-001 generated by this study.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 59

Figure 3 is a rendering produced in ADT of the CYP17A1/TOK-001 docking described in Section 2.0.

Figure 3. AutoDock Tools (ADT,[2]) rendering of a computational docking of TOK-001 (the ligand,

shown in stick-and-ball form) with molecular surface of the active site of Chain A of cytochrome

p450 17A1 (shown in white), derived from PDB 3SWZ ([1],[3]). The upper right end of the ligand

lies directly below the center of the haem group in the active site.

__

4.0 Discussion

The method described in Section 2.0 and the

results of Section 3.0 motivate several

observations:

 1. The inhibition constant computed in

this study (~1.75 microMolar at ~298 K) is

comparable to the inhibition constant of cancer-

therapeutic ligand/receptor interactions that are

clinically effective.

 2. All distances between receptor and

ligand atoms in the computed ligand position lie

within 10% of the distances of the corresponding

atoms in 3SWZ. (For electrostatic forces, a 10%

distance difference would correspond to a ~20%

difference in electrostatic force and potential

energy, in the worst case. One could of course

apply other statistics to the coordinate sets and

provide a more comprehensive comparison of

60 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

other forces/energies. Future work will address

those issues.)

 3. The docking study reported here

assumes that the receptor is rigid. This

assumption is appropriate for the binding energy

computation for PDB 3SWZ per se. However,

the calculation does not reflect what receptor

"flexing" could contribute to the interaction of

the ligand with native unliganded receptor.

 4. The analysis described in Sections

2.0 and 3.0 assumes receptor is in a crystallized

form. In situ, at physiologically normal

temperatures (~310 K), the receptor is not in

crystallized form. The ligand/receptor

conformation in situ, therefore, may not be

identical to their conformation in the crystallized

form.

 5. Minimum-energy search algorithms

other than the Lamarckian genetic algorithm

used in this work could be applied to this

docking problem. Future work will use Monte

Carlo/simulated annealing algorithms.

 6. A variety of torsion and charge

models could be applied to this problem, and

future work will do so.

 7. 3SWZ has four chains, each with its

own active site. The work described in this

paper was performed on Chain A only. Chains

B-D appear to have active sites highly similar to

the Chain A active site. Future work will assess

the ligand/receptor binding energies of Chains

B-D.

 8. CYP17A1 is a membrane-bound

protein; 3SWZ describes a conformation that is

not bound to a membrane. The membrane-

bound conformation of CYP17A1 may differ

from the conformation in 3SWZ.

 9. The free energy of binding of TOK-

001 to CYP17A1 is ~20% larger than the free

energy of binding of abiraterone, a steroidal

CYP17A1 inhibitor, to CYP17A1, suggesting

that TOK-001 may be a more effective

CYP17A1 inhibitor than abiraterone ([9]).

5.0 References

[1] DeVore NM and Scott EE. Structure of

cytochrome P450 17A1 with prostate cancer

drugs abiraterone and TOK-001. Nature online

pre-publication doi:10.1038/nature10743.

[2] Morris GM, Goodsell DS, Huey R,

Lindstrom W, Hart WE, Kurowski S, Halliday

S, Belew R, and Olson AJ. AutoDock Tools

v4.2. http://autodock.scripps.edu/. 2011.

[3] Protein Data Bank. PDB ID: 3SWZ.

DeVore NM and Scott EE. Structure of

cytochrome P450 17A1 with prostate cancer

drugs abiraterone and TOK-001. Nature online

pre-publication doi:10.1038/nature10743.

[4] Huey R and Morris GM. Using Autodock4

with AutoDock Tools: A Tutorial. 8 January

2008.

[5] Miller WK and Auchus RJ. The molecular

biology, biochemistry, and physiology of human

steroidogenesis and its disorders. Endocrine

Reviews 32 (2011), 81–151.

[6] Attard G, Reid,AH, Olmos D, and de Bono

JS. Antitumor activity with CYP17

blockade indicates that castration-resistant

prostate cancer frequently remains hormone

driven. Cancer Research 69 (2009), 4937–4940.

[7] Yap TA, Carden CP, Attard G, and de Bono

JS. Targeting CYP17: Established and novel

approaches in prostate cancer. Current Opinion

in Pharmacology 8 (2008), 449–457.

[8] Vasaitis TS, Bruno RD and Njar VC.

CYP17 inhibitors for prostate cancer therapy.

Journal of. Steroid Biochemistry and Molecular

Biology 125 (2011), 23–31.

[9] Horner JK. A simulated docking of

abiraterone with cytochrome P450 17A1.

Submitted to the 2012 International Conference

on Bioinformatics and Computational Biology.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 61

http://autodock.scripps.edu/

An Application-Specific Approach in Automotive

Network Optimization

Martin Dohr and Bernd Eichberger

Institute of Electronics, Graz University of Technology, Austria

Abstract - The increasing number of automotive

functionalities becomes a significant challenge for in-car

communication and network architecture. Our approach

provides optimized network architectures by applying

evolutionary algorithms and application-specific

representations. In this paper, we present a new network

encoding supported by feasibility-preserving mutation

and routing operators. We show that well-established

algorithms can be extended with our operators to

efficiently optimize cost and complexity of automotive

networks.

Keywords: Evolutionary algorithm; automotive network;

optimization; network encoding; AUTOSAR;

1 Introduction

Increasing amounts of new functionality in modern cars

have over the last decade lead to ever more complex

architectures. This complexity presents new challenges

for the Original Equipment Manufacturers (OEMs) in

terms of the automotive development process and

especially for communication architecture. Those

challenges can be outlined as follows:

1.1 Automotive development process

The state of the art in automotive Electric/Electronic (EE)

systems comprises among others the following

complexities:

 Multiple bus systems and sub-bus systems

 Extensive gateway functionality between bus

systems

 Increased effort for testing and multiple variant

management

 Exponential growth of software costs.

To handle these complexities, positive experience from

software engineering suggests model driven

development and similar paradigms also for the

automotive domain [1]. Thus, initiatives like

AUTOSAR [2] are addressing a standardized software

architecture and model driven EE tools like

PREEvision [3] support the OEMs in early architecture

decisions and variant management. Furthermore, the

modeling of complex functionalities using tools like

Matlab/Simulink simplifies the interface from OEM to

supplier as well as testing and verification efforts. In

summary, a holistic and consistent top-down

architecture and development methodology is essential

to maintain automotive quality requirements.

1.2 Communication architecture

Nearly 20 years have passed since the introduction of

first bus-based communication in cars [4]. While new bus

systems like FlexRay [5] and Media Oriented Systems

Transport (MOST) [6] have addressed higher bandwidth

requirements for vehicle dynamics and multimedia

applications respectively, most basic applications still

utilize the well established Controller Area Network

(CAN) [7] bus. Additionally, sub-systems based on Local

Interconnect Network (LIN) [8] have been introduced to

reduce costs and complexity of the overall network.

When looking at the historical development of the

network topology, one can notice an organic growth of

buses around an ever more complex central gateway. The

reasons for this growth are the repeated usage of legacy

hardware combined with the introduction of new

functionality as individual Electronic Control Units

(ECUs) and bus systems. Another reason for this growth

is, that newly added features often lead to the installation

of a dedicated bus system while leaving existing

communication structures untouched due to bandwidth

limitations.

Figure 1. Example car network

Hence, a premium class car nowadays consists of several

independent bus systems for the domains powertrain,

chassis, body and comfort. In addition to those buses,

new features like drive by wire or active suspension

imply the need for a safety critical bus system like

FlexRay. Furthermore, the multimedia and infotainment

cluster is networked with the high-speed bus MOST.

With all those new systems it is clear that, apart from

power consumption, also the wiring costs have

dramatically increased during the last few years.

1.3 Motivation

As new network technologies like Ethernet are making

their way into the automotive domain [9], we must now

question the suitability of those old network architectures

and topologies. Furthermore we need to explore the

62 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

optimization potential of new topologies especially in the

light of cost reduction and complexity.

To explore the optimization potential, this paper

introduces a new heuristic for the following network

architecture tasks:

 Mapping of software components onto ECUs

 Layout of network topology

 Routing of communication and creation of

gateway tables

These tasks are done using multi objective evolutionary

algorithms (MOEAs) and application-specific network

encodings to efficiently handle constrains. To take

advantage of these encodings, new stochastic operators

for mutation and message routing are presented.

The presented methodology is compliant with the system

development tasks defined by AUTOSAR and supports

automotive development tool chains like PREEvision.

Therefore, the challenges of a consistent and model

driven automotive development process as described

above are met.

2 Related Work

2.1 Application specific encodings

A network encoding with focus on multicast networks

has been presented by Ahlswede et al. [10] and used for

deterministic topology design by Chi et al. [11]. The cost

modeling of automotive electrical architectures was

investigated by Quigley et al. [12].

Regarding constraint handling, Coello Coello gave a very

good survey in [13], also stating a constraint-consistent

GA approach proposed by Kowalczyk [14].

2.2 Automotive network optimization

An automated bus system synthesis for PREEvision was

presented by Heinz et al. [15]. Their method based on

Hierarchical Clustering and functional nearness of ECUs

without considering variations in application mapping.

In contrast to that, Lukasiewycz et al. [16] as well as

Glass et al. [17] optimized automotive networks with

respect to reliability using a binary Integer Linear

Program (ILP) [18].

Furthermore, Kim et al. [19] showed an efficient method

to optimize task allocation, ECU positioning and network

assignment using a repeated matching method and

simulated annealing.

3 Problem Formulation

3.1 Prerequisites

The network optimization problem at hand is defined by

a communication description, network constraints and

available hardware.

1) In every layered or model driven development, all

aspects the resulting product will have are defined by

functional and non-functional requirements. The first task

is to transform these requirements into technical features

and applications, so-called “Software Components” in

AUTOSAR. Already, these components form a logical

network based on communication requirements. At the

time of this task, the timing constraints and required

bandwidth of the communications are subject to

implementation and therefore not exactly known. We can

however approximate the requirements based on previous

implementations or estimations on data types and

frequency. Furthermore, multicast and broadcast

messages, together with their receivers and respective

update rates can be identified at this stage.

2) Another aspect of the optimization problem is defined

by local or supplier-specific constraints. Local constraints

state, that specific software components need to be

executed in vicinity to their relevant sensors or actuators.

Supplier-specific constraints come from the fact, that the

development of some features is often outsourced by the

OEM. This outsourcing implies, that the OEM needs to

integrate hardware without a reasonable opportunity to

manipulate the software components executing on those

ECUs. Therefore, some software components are locked

to specific ECUs and cannot be remapped.

3) The third input parameter describes the layout of

ECUs within the car; providing information about

processing unit, available memory, bus connections and

peripherals for each unit. It is also possible to consider

multiple hardware manifestations and their corresponding

costs for the same mounting location.

Figure 2. Design System process in AUTOSAR

Using those input parameters, the heuristic has to find a

feasible network topology while optimizing several

objectives. This process of finding a topology is

represented by the “Design System” task in the

AUTOSAR specification and metamodel.

3.2 Objectives

The Objectives evaluated by our algorithm are introduced

as follows:

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 63

 Monetary costs: Our main objective is to

minimize the amount of ECUs installed by

deploying several software components onto the

same ECU. Additional costs can be saved by

simplifying the bus structure. Thus, hardware

costs are modeled as a fixed amount for each

used ECU and additional costs for each

communication controller and bus coupler.

 Cable length: Reduces wiring costs as well as

overall weight and manufacturing time.

 Bandwidth reserves: Subsequent changes in

requirements and communication cannot be

ruled out during a typical development time of

several years. Therefore it is considered a good

practice to reserve some bandwidth for future

extensions on each bus system.

 Gateway complexity: Gateway routing tables

represent additional implementation and testing

effort. To minimize this effort we prefer

message routing within one network and want to

add gateway functionality to as few ECUs as

possible.

4 Implementation
The realization of our encodings and operators is written

in Java and based on the jMetal [20] framework. Due to

the extensible design of the framework, new solution

variables and operators can be added easily while

providing wide compatibility with already implemented

algorithms.

Figure 3. UML relationships between input, parameters,

solution and objectives

4.1 Descision variables

Each solution represents a full network and consists of 3

abstract variables.

 A class representing the mapping between each

software component and corresponding ECU.

 The definition of all used bus systems and their

connected nodes.

 The communication description for nodes and

gateway routing tables.

New solutions are created with all software components

randomly deployed on allowed ECUs and all network

nodes connected to the fastest available bus system. The

routing is then straight forward without any gateway

functionality. This solutions is always a feasible but very

expensive.

4.2 Stochastic Operators

Our approach comprises a set of mutation operators

specifically designed for our network optimization

problem:

 A mapping mutation deploys software

components onto different ECUs within their

allowed borders. To maintain feasibility, the

corresponding bus variable has to be repaired or

reinitialized.

 A bus mutation operator randomly adds ECUs to

a bus network. For the sake of simplicity it

cannot remove existing connections as this

would threaten the feasibility of the system.

 In every case the communication has to be re-

routed after changes in other variables. We

implemented an efficient algorithm to find the

cheapest possible route for each communication

requirement. The sequence by which the router

iterates through the messages is randomly

chosen to add another stochastic influence.

Furthermore, this influence allows us to use the

router as single operator in order to mutate an

existing communication.

Figure 4. Possible mutations

64 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

4.3 Algorithm workflow

Since our network representation is closely related to

jMetal´s software design, we could easily adapt

algorithms like the SPEA2 [21] for our purposes. The

most important adaption was in the algorithm´s variation

step. There, we removed the crossover operator and

added our own mutation and routing methodologies.

Apart from those changes in the variation step, the

existing software can be used unaltered. The evaluation

of solutions includes a deterministic reduction algorithm,

to delete unused bus connections and nodes.

Figure 5. Algorithm workflow

5 Experimental Results
In order to verify the functionality of the presented

implementation and characterize it´s behavior under

different conditions, experiments with test networks were

performed. All experiments were executed on an Intel

Core2 Duo T7500 CPU at 2.2GHz with 3 GB Ram

running Windows 7.

5.1 Test networks

We created various test networks with 10 to 80 nodes and

various constraints. The 10-node network has exactly one

known optimal solution and is used for performance

benchmarks. The latter 2 networks might represent a low-

end and high-end car respectively, but all communication

values are purely fictional. Due to their complexity, a

optimal solution or true pareto front is not known.

TABLE I. DIMENSIONS OF TEST NETWORKS

Test network 1 2 3

No. Nodes 10 40 80

Location constrained SW components 10 20 70

Unconstrained SW components 0 30 30

Gross bit rate [MBit/sec] 0.2 1 10

5.2 Convergence

Our first experiment series evaluated the mean

convergence speed of our optimization. First, we

executed 100 independent runs using test network 1. We

aborted each run after the optimal solution had been

found or 2000 solutions had been evaluated.

82% of our testruns hit the global optimum within 2000

evaluations while the rest was stuck in local optima and,

to our observation, would not have succeeded in

reasonable time. The results in Fig. 6 support this

assumption since the probability of finding the global

optimum within a run decreases after 500 evaluations.

TABLE II. CONVERGENCE EXPERIMENT 1

Test network model 1

Mutation probability
Software mapping 0.2

Bus connections 0.2

Archive size 20

Population size 20

Max. evaluations 2000

Runs 100

Optimum hit 82 %

Average execution time 0.68 s

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 65

Figure 6. Results for convergence experiment 1

To further examine the convergence behavior we

observed the best cost objective of the population while

optimizing test network 3. Figure 7 illustrates the

optimization process for 5 independent runs. The

execution time for each run has been significantly higher

due to the larger network model and data output during

execution.

TABLE III. CONVERGENCE EXPERIMENT 2

Test network model 3

Mutation

probability

Software mapping 0.2

Bus connections 0.2

Archive size 50

Population size 50

Max. evaluations 30000

Runs 5

Average execution time 36.4 s

Figure 7. Results for convergence experiment 2

5.3 Performance

In a final step we have studied the influence of archive

size and number of evaluations on calculation time.

Therefore, for each setting we measured the average

execution time of 10 independent runs using test network

2. The results in Fig 8 show that the archive size only

influences the overall execution time for large numbers

of evaluations. The significant difference in performance

for 15.000 and 20.000 evaluations is subject to further

investigations.

Figure 8. Calculation performance for different amounts

of evaluations

6 Conclusion and Further Work
In this paper, we presented a novel approach for

automotive network encoding and optimization using

evolutionary algorithms.

First, we introduced typical initial situations and

challenges for network architects at OEMs and

automotive suppliers. Subsequently, we listed

requirements and constraints which have to be taken into

consideration when developing a new communication

network. This network development can be described as a

series of tasks: After defining atomic software

components and logical links representing transmission

requirements, we want to effectively deploy those

software components onto corresponding ECUs.

Simultaneously to the deployment, we need to interlink

these ECUs using automotive specific bus systems while

keeping hardware costs, wiring effort and network

complexity low.

These tasks can be optimized using our new encoding

scheme. In our encoding, we presented 3 objects to

represent bus connections, software mapping and

network communication respectively. Those objects are

varied using established evolutionary algorithms like the

SPEA2 to obtain near-optimal network solutions. We

ensure the technical feasibility of our solutions by

implementing problem specific mutation operators and

routing algorithms.

0

5

10

15

20

25

30

35

40

45

250 500 750 1000 1250 1500

N
u

m
b

e
r
 o

f
r
u

n
s

Evaluations until optimum is found

340

350

360

370

380

390

400

410

420

430

0 5000 10000 15000 20000 25000 30000

C
o
st

 o
b

je
ct

iv
e

Evaluated solutions

Run 1

Run 2

Run 3

Run 4

Run 5

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200

E
x
ec

u
ti

o
n

 t
im

e
[m

s]

Archive Size

20000 15000

10000 5000
Evaluations:

66 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

We have shown that the SPEA2 algorithm, as already

implemented in the jMetal framework, can easily be

adopted to optimize our test networks. Additionally,

initial experiments have confirmed a fast and reliable

convergence towards optimal results.

Further work will include the introduction of a crossover

operator as well as benchmarks regarding common

quality indicators used in evolutionary algorithms.

Another interesting task will be the implementation of

algorithms like differential evolution [22] or particle

swarm optimization [23] since our encodings were

designed to utilize different optimization strategies.

We also want to compare our algorithm´s results with

currently established car networks to explore the potential

of cost optimization in the automotive domain.

7 References

[1] M. Broy, "Challenges in automotive software

engineering," New York, NY, USA, 2006.

[2] Automotive Open System Architecture, [Online].

Available: http://www.autosar.org.

[3] Aquintos PREEvision, [Online]. Available:

http://www.aquintos.com/.

[4] L. Vlacic, M. Parent and F. Harashima, Intelligent

Vehicle Technologies, Butterworth-Heinemann,

2001.

[5] FlexRay, [Online]. Available:

http://www.flexray.com/.

[6] MOST Coorperation, [Online]. Available:

http://www.mostcooperation.com/home/index.html.

[7] Bosch Controller Area Network, [Online].

Available:

http://www.semiconductors.bosch.de/en/ipmodules/

can/can.asp.

[8] Local Interconnect Network, [Online]. Available:

http://www.lin-subbus.org/.

[9] H.-T. Lim, L. Volker and D. Herrscher, "Challenges

in a future IP/Ethernet-based in-car network for

real-time applications," 2011.

[10] R. Ahlswede, N. Cai, S. y. Robert and R. W.

Yeung, "Network Information Flow," IEEE

TRANSACTIONS ON INFORMATION THEORY,

vol. 46, no. 4, pp. 1204-1216, 2000.

[11] K. Chi, X. Jiang, S. Horiguchi and M. Guo,

"Topology Design of Network-Coding-Based

Multicast Networks," IEEE Trans. Parallel Distrib.

Syst., vol. 19, no. 5, pp. 627-640, #may# 2008.

[12] C. Quigley, R. McMurran, R. Jones and P.

Faithfull, "An Investigation into Cost Modelling for

Design of Distributed Automotive Electrical

Architectures," 2007.

[13] C. A. Coello, "A Survey of Constraint Handling

Techniques used with Evolutionary Algorithms,"

1999.

[14] R. Kowalczyk, "Constraint consistent genetic

algorithms," 1997.

[15] M. Heinz, M. Hillenbrand, K. Klindworth and K.-

D. Mueller-Glaser, "Rapid automotive bus system

synthesis based on communication requirements,"

2011.

[16] M. Lukasiewycz, M. Glass, C. Haubelt, J. Teich, R.

Regler and B. Lang, "Concurrent topology and

routing optimization in automotive network

integration," 2008.

[17] M. Glass, M. Lukasiewycz, R. Wanka, C. Haubelt

and J. Teich, "Multi-objective routing and topology

optimization in networked embedded systems,"

2008.

[18] M. Lukasiewycz, M. Glass, C. Haubelt and J.

Teich, "SAT-decoding in evolutionary algorithms

for discrete constrained optimization problems,"

2007.

[19] S. Kim, E. Lee, M. Choi, H. Jeong and S. Seo,

"Design Optimization of Vehicle Control

Networks," Vehicular Technology, IEEE

Transactions on, vol. 60, no. 7, pp. 3002-3016, sept.

2011.

[20] J. J. Durillo and A. J. Nebro, "jMetal: A Java

framework for multi-objective optimization,"

Advances in Engineering Software, vol. 42, pp.

760-771, 2011.

[21] E. Zitzler, M. Laumanns and L. Thiele, "SPEA2:

Improving the Strength Pareto Evolutionary

Algorithm," 2001.

[22] R. Storn and K. Price, "Differential Evolution – A

Simple and Efficient Heuristic for global

Optimization over Continuous Spaces," Journal of

Global Optimization, vol. 11, pp. 341-359, 1997.

[23] J. Kennedy and R. Eberhart, "Particle swarm

optimization," 1995.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 67

68 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

SESSION

PARTICLE SWARM OPTIMIZATION + FIREFLY
ALGORITHMS + BEE COLONY OPTIMIZATION

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 69

70 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Application of a New Multi-Valued Particle Swarm

Optimization to Forest Harvest Schedule Optimization

Jared Smythe
1
, Walter D. Potter

1
, and Pete Bettinger

2

1
Institute for Artificial Intelligence, University of Georgia, Athens, Georgia, United States

2
Warnell School of Forest Resources, University of Georgia, Athens, Georgia, United States

Abstract - Discrete Particle Swarm Optimization has been

noted to perform poorly on a forest harvest planning

combinatorial optimization problem marked by harvest

period-stand adjacency constraints with the goal of

maximizing the even-flow of harvest lumber across harvest

periods. Attempts have been made to improve the performance

of discrete Particle Swarm Optimization on this type of

problem. However, these results do not unquestionably

outperform Raindrop Optimization, an algorithm developed

specifically for this type of problem. In order to address this

issue, this paper proposes a new Roulette Wheel Particle

Swarm Optimization algorithm, which markedly outperforms

Raindrop Optimization on two of three planning problems.

Keywords: particle swarm optimization, roulette wheel,

forest planning, raindrop optimization

1 Introduction

 In [7], the authors evaluated the performance of four

nature-inspired optimization algorithms on four quite different

optimization problems in the domain of diagnosis,

configuration, planning, and path-finding. The algorithms

considered were the Genetic Algorithm (GA) [6], Discrete

Particle Swarm Optimization (DPSO) [5], Raindrop

Optimization (RO) [1], and Extremal Optimization (EO). On

the 73-stand forest planning optimization problem, DPSO

performed much worse than the other three algorithms, despite

thorough testing of parameter combinations, as shown in the

following table. Note that the forest planning problem is a

minimization problem, so lower objective values represent

better quality solutions.

Table 1: Results obtained in [7]

 GA DPSO RO EO

Diagnosis 87% 98% 12% 100%

Configuration 99.6% 99.85% 72% 100%

Planning 6,506,676 35M 5,500,391 10M

Path-finding 95 95 65 74

 In [2], the authors address this shortcoming of DPSO by

introducing a continuous PSO with a priority representation,

an algorithm which they call PPSO. This yielded significant

improvement over DPSO, as shown in the following table,

where they included results for various values of inertia ()

and swarm size.

Table 2: Results from [2]

 PPSO DPSO

Pop. Size Best Avg Best Avg

1.0 100 7,346,998 9,593,846 118M 135M

1.0 500 6,481,785 9,475,042 133M 139M

1.0 1000 5,821,866 10M 69M 110M

0.8 100 8,536,160 13M 47M 70M

0.8 500 5,500,330 8,831,332 61M 72M

0.8 1000 6,999,509 10M 46M 59M

 Although the results from [2] are an improvement over

the DPSO, PPSO does not have a resounding victory over RO.

In [1], the average objective value on the 73-stand forest was

9,019,837 after only 100,000 iterations, compared to the

roughly 1,250,000 fitness evaluations used to obtain the best

solution with an average of 8,831,332 by the PPSO.

Obviously, the comparison is difficult to make, not only

because of the closeness in value of the two averages, but also

because the termination criteria are not of the same metric.

 In this paper we experiment with RO to generate

relatable statistics, and we formulate a new multi-value

discrete PSO that is more capable of dealing with multi-

valued nominal variable problems such as this one.

Additionally, we develop two new fitness functions to guide

the search of the PSO and detail their effects. Finally, we

experiment with a further modification to the new algorithm

to examine its impact on solution quality. The optimization

problems addressed are not only the 73-stand forest planning

problem [1][2][7], but also the 40- and 625-stand forest

problems described in [1].

2 Forest planning problem

 In [1], a forest planning problem is described in which

the goal is to develop a forest harvest schedule that would

maximize the even-flow of harvest timber, subject to the

constraint that no adjacent forest partitions (called stands) may

be harvested during the same period. The goal of maximizing

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 71

the even-flow of harvest volume was translated into

minimizing the sum of squared errors of the harvest totals

from a target harvest volume during each time period. This

objective function f1 can be defined as:

 (1) (1)

where z is the number of time periods, T is the target harvest

volume during each time period, an is the number of acres in

stand n, hn,k is the volume harvested per acre in stand n at the

harvest time k, and d is the number of stands. A stand may be

harvested only during a single harvest period or not at all, so

anhn,k will be either the volume from harvesting an entire stand

n at time k or zero if that stand is not scheduled for harvest at

time k.

 Three different forests are considered in this paper,

namely a 40-stand northern forest [1] (shown in Figure 1), the

73-stand Daniel Pickett Forest used in [1][2][7] (shown in

Figure 2), and a much larger 625-stand southern forest [1] (not

shown). The relevant stand acreage, adjacency, centroids, and

time period harvest volumes are located
1
 under “Northern US

example forest,” “Western US example forest,” and “Southern

US example forest.” Three time periods and a no-cut option

are given for the problem. For the 40-stand forest the target

harvest is 9,134.6 m
3
, for the 73-stand forest the target harvest

is 34,467 MBF (thousand board feet), and for the 625-stand

forest the target harvest is 2,972,462 tons.

 In summary, a harvest schedule is defined as an array of

length equal to the number of stands in the problem and whose

elements are composed of integers on the range zero to three

inclusively, where 0 specifies the no-cut option, and 1 through

3 specify harvest periods. Thus, solutions to the 40-, 73-, and

625-stand forest planning problems should be 40-, 73-, and

625-length integer arrays. A valid schedule is a schedule with

no adjacency violations, and an optimal schedule is a valid

schedule that minimizes f1.

Figure 1: 40-Stand Forest Figure 2: 73-Stand Forest

 Many algorithms have been applied towards this

problem. In [1] Raindrop Optimization, Threshold Accepting,

and Tabu Search were used on the 40-, 73-, and 625-stand

1
 Available at:

http://www.warnell.forestry.uga.edu/Warnell/Bettinger/planni

ng/index.htm

forest planning problems. In [7], a Genetic Algorithm, integer

Particle Swarm Optimization, Discrete Particle Swarm

Optimization, Raindrop Optimization, and Extremal

Optimization were applied to the 73-stand forest planning

problem. In [2], a Priority Particle Swarm Optimization

algorithm was applied to the 73-stand forest problem.

 In this paper, tests will be run with Raindrop

Optimization and a new proposed algorithm, Roulette Wheel

Particle Swarm Optimization. Comparisons will be made

between these test results and the test results from [1], [2], and

[7].

3 Raindrop optimization

 Described in [1], Raindrop Optimization (RO) is a

stochastic point-based search algorithm developed for the

forest planning problem and inspired by the ripples in a pond

generated from a falling raindrop. It starts with an initial valid

schedule, perturbing the harvest period at a random stand and

repairing the resulting period adjacency violations in an ever-

expanding ripple from the original perturbation, based on the

centroids of the stands. The perturbation repeats, and the best

solution is reverted to after a certain interval. This

perturbation and repair process repeats until the termination

criteria are met. The number of intervals until reversion is

called the reversion rate. Note that there is no set ratio

between the number of iterations and the number of fitness

evaluations.

4 Particle swarm optimization

 Particle swarm optimization (PSO) [3][4] is a stochastic

population-based search algorithm, where each member

(called a particle) of the population (called a swarm) has a

dynamic velocity v and a location x, which is a point in the

search space. The particle “flies” through the search space

using its velocity to update its location. The particle

“remembers” its (local) best location p so far and is aware of

the (global) best current location g for any particle in the

swarm. The attraction to the former is called the cognitive

influence c1, and the attraction to the latter is called the social

influence c2. Each iteration of the PSO involves evaluating

each particle’s location according to a fitness function,

updating the local and global bests, updating each particle’s

velocity, and updating each particle’s location. The formula to

update the velocity and location of a particle in the i
th

dimension at time t is specified by the following:

 (2)

 (3)

where is the inertia, r1 and r2 are random numbers between

0 and 1, and t is the new iteration step.

72 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

http://www.warnell.forestry.uga.edu/Warnell/Bettinger/planning/index.htm
http://www.warnell.forestry.uga.edu/Warnell/Bettinger/planning/index.htm

4.1 The proposed PSO

 In the proposed multi-valued algorithm Roulette Wheel

PSO (RWPSO), a particle’s location in each dimension is

generated by a roulette wheel process over that particle’s

roulette wheel probabilities (here called its velocities) in that

dimension; in a given dimension, the particle has a velocity for

every permissible location in that dimension. The algorithm

deterministically updates the velocity of each permissible

location k in each dimension i for each particle using the

following formulas:

 (4)

 where (5)

and m is the maximum step size, s is the social emphasis, and

(1-s) is the cognitive emphasis. The velocity vi,k is limited to

the range [0,1], but is initially set to the reciprocal of the

number of permissible values in dimension i for two reasons:

(1) the velocities represent roulette probabilities and so

together should sum to 1, and (2) with no domain knowledge

of the likelihood of each location k in the optimal solution,

there is no reason to favor one location over another. As

previously mentioned, the particle’s location in dimension i is

determined by a roulette wheel process, where the probability

of choosing location k in dimension i is given by:

 (6)

 RWPSO parameters include the swarm size, the stopping

criterion, the maximum step size, and the social emphasis.

The maximum step size controls the maximum rate at which

the RWPSO velocities will change and thus determines how

sensitive the RWPSO is to the local and global fitness bests.

The social emphasis parameter determines what fraction of

the maximum step size is portioned to attraction to swarm

global best versus how much is portioned to attraction to the

local best.

 RWPSO is applicable to problems with nominal (un-

ordered, finite, and discrete) variables. In this forest planning

problem, harvest period variables can be considered nominal

variables, because not only are they discrete and finite, but

there is also no obvious ordering or “between” relation to the

periods with respect to the objective value.

 The algorithm is robust because it lacks inherent bias in

the variable value encodings, and because it is not a

specialized algorithm, it is useable as-is on a variety of

problems. In this paper, the only (eventual) modification is the

biasing of initial velocities, which is a modification applicable

to any other problem where there is a little domain knowledge

about the likelihood of certain variable values in the optimal

solution.

 Note that as with any parameterized heuristic method,

time must be spent to experiment with various parameter

combinations to tweak the algorithm for a given problem. This

is addressed for the forest planning problem later in this paper.

5 RWPSO guide functions

 Since RWPSO will generate schedules that are not

necessarily valid, the original objective function f1 cannot be

used to guide the RWPSO, because f1 does not penalize such

schedules. Thus, two fitness functions are derived that

provide penalized values for invalid schedules and also

provide values for valid schedules which are identical to those

produced by f1.

5.1 RWPSO guide function f2

 The fitness function f2 is defined as:

 (7)

 where

 and

where s is the harvest schedule, and sn is the scheduled harvest

time of stand n.

 Essentially, this function penalizes infeasible solutions

by harvesting only those stands that do not share a common

scheduled harvest period with an adjacent stand; this is

effectively a temporary repair on the schedule to bring it into

feasible space for fitness evaluation by omitting all scheduled

stand harvests that are part of an adjacency violation. As with

f1, anhn,k will be either the volume from harvesting an entire

stand n at time k or zero if that stand is not scheduled for

harvest at time k.

5.2 Alternate RWPSO guide function f3

 The final fitness function f3 uses a copy of the harvest

schedule s, denoted s , and modifies it throughout the fitness

evaluation. It is the harmonic mean of f2 and f3 defined as:

 (8)

 Where

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 73

 (9)

 Fitness function f3 combines the strict penalizing fitness

function f2 with the more lenient function f3 . The function f3

creates a copy of the schedule s and modifies this copy s

during the fitness evaluation. The function iteratively

considers each stand in a schedule, and whenever an

adjacency violation is reached, the harvest volume of the

currently considered stand is compared to the total harvest

sum of the adjacent stands having the same harvest period. If

the former is greater, then the stands adjacent to the current

stand that violate the adjacency constraint are set to no-cut in

s . Otherwise, the current stand’s harvest schedule is set to no-

cut in s . As with f1, anhn,k will be either the volume from

harvesting an entire stand n at time k or zero if that stand is not

scheduled for harvest at time k.

 Note that for every feasible schedule, if the schedule is

given to all three fitness functions, each will yield identical

fitness values, because the difference between them is in how

each one temporarily repairs an infeasible schedule in order to

give it a fitness value; f1 does no repair, f2 does a harsh repair,

and f3 combines f2 with a milder repair f3 .

6 Tests

 Having a comparable measure of process time poses a

problem in determining the statistics of RO, because unlike

RWPSO, the number of fitness evaluations is not the same as

the number of candidate solutions. In fact, RO may use many

fitness evaluations in the process of mitigating infeasibilities

before offering a single candidate solution. Thus, two sets of

statistics will be offered for RO, where ROc specifies the case

of limiting the number of candidate solutions to 1,000,000,

and ROf specifies the case of limiting to 1,000,000 the number

of fitness evaluations over 10 trials on the 40- and 73-stand

forests. Each RWPSO parameter combination was allowed to

run for 10 trials of 1,000,000 fitness evaluations on the 40-

and 73-stand forests. In order to allow the algorithms more

time on a more difficult problem, both algorithms were run for

5 trials of 5,000,000 fitness evaluations on the 625-stand

forest.

 To find good parameter combinations, RO was run for

10 trials with reversion rates from 1 to 10 in steps of 1 on the

73-stand forest. RWPSO was run for 10 trials with f2 on the

73-stand forest with all combinations of the following

parameters:

Swarm Size: {20, 40, 80, 160, 320, 640, 1280, 2560, 5120}

Max Step Size: {0.01, 0.05, 0.09, 0.13}

Social emphasis: {0.0, 0.25, 0.50, 0.75}

 Even though RWPSO was tested over roughly 15 times

the number of parameter combinations of RO, run-time to

complete all combinations was roughly the same between RO

and RWPSO. Note also that both algorithms were rather

forgiving in terms of performance over parameter combination

variations. The best parameter combinations from this were

used on the remainder of the tests. Tests where RWPSO used

f2 are denoted RWPSOf2. Similarly, tests where RWPSO used

f3 are denoted RWPSOf3.

 One final variation on the configuration used for

RWPSO is denoted RWPSOf3-pb. This configuration involves

biasing the initial velocities of the RWPSO using some

expectation of the likelihood of the no-cut option being

included in the optimal schedule. It is expected that an

optimal schedule will have few no-cuts in its schedule.

However, there is no expectation of the other harvest period

likelihoods. Therefore, the initial probabilities were tested for

the following cases:

7 Results

 As with [1], the best reversion rate found for RO was 4

iterations. Similarly, the best parameter combination found

for RWPSO was swarm size 640, max step size 0.05, and a

social emphasis of 0.25. Of the initial no-cut probabilities

tried, 0.04 gave the best objective values.

 Table 3 shows the results of running each algorithm

configuration on the 73-stand forest. Clearly, the choice of

how RO is limited—either by candidate solutions produced or

by the number of objective function evaluations—will

substantially affect the solution quality. In fact, if the number

of objective function evaluations is considered as the

termination criterion for both algorithms, then every

configuration of RWPSO outperforms RO on the 73-stand

forest. However, the use of f3 improves the performance of

RWPSO over RO, regardless of the termination criterion used

for RO. Also, note that although the use of biased initial no-

cut probability makes RWPSOf3-pb outperform RWPSOf3, the

largest gains by RWPSO in terms of average objective values

come from using f3 instead of f2. Additionally, changing the

function that guides RWPSO drastically decreases the

standard deviation of the solution quality.

74 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Table 3: 73-Stand Forest Results
 Best

Solution

Average Solution Standard

Deviation

ROc 5,500,330 6,729,995 1,472,126

ROf 5,741,971 8,589,280 2,458,152

RWPSOf2 5,500,330 7,492,459 1,920,752

RWPSOf3 5,500,330 5,844,508 450,614

RWPSOf3-pb 5,500,330 5,786,583 437,916

 The distribution of the 73-stand forest results from an

additional set of trials is given in the following graph:

Figure 3: 73-stand forest distribution of samples

 The results for the 40-stand forest in Table 4 are similar

to those in Table 3, except that every configuration of

RWPSO outperforms RO, regardless of the termination

criterion used. Additionally, RWPSO’s greatest increase in

performance came through using f3 instead of f2.

Table 4: 40-Stand Forest Results
 Best

Solution

Average Solution Standard

Deviation

ROc 90,490 160,698 46,879

ROf 98,437 190,567 63,314

RWPSOf2 90,490 151,940 46,431

RWPSOf3 90,490 123,422 30,187

RWPSOf3-pb 90,490 113,624 23,475

 The distribution of the 40-stand forest results from an

additional set of trials is shown in the following graph:

Figure 4: 40-stand forest distribution of samples

 The results from Table 5 illustrate that the 625-stand

forest is much more difficult for RWPSO than either of the

other forests. RO with both termination criteria outperformed

every configuration of RWPSO. It can be noted that, just like

for the other forests, the use of f3 improved RWPSO’s

performance over f2, and the use of biased initial no-cut

probability further improved the quality of the RWPSO

solutions.

Table 5: 625-Stand Forest Results
 Best Solution Average Solution Standard

Deviation

ROc 61,913,898,152 66,142,041,314 2,895,384,577

ROf 66,223,010,632 72,552,142,872 3,732,367,645

RWPSOf2 118,239,623,212 150,819,800,640 14,487,010,747

RWPSOf3 91,224,899,372 100,862,133,880 6,894,894,714

RWPSOf3-pb 87,444,889,432 95,872,673,094 6,808,823,161

 The distribution of the 625-stand forest results from an

additional set of trials is given in the following graph:

8 Discussion

 Some comparisons to the studies in Section 1 may be

made, limited by the fact that they limited the runtimes or

iterations differently. Additionally, most of those studies deal

only with the 73-stand forest.

 In [1], comparisons are difficult to make, because the

number of fitness evaluations was not recorded. In that paper,

the best performance on the 73-stand forest was a best fitness

of 5,556,343 and an average of 9,019,837 via RO. On the 40-

stand forest, it was a best of 102,653 and an average of

217,470, and on the 625-stand forest via RO, it was a best of

69B and an average of 78B via RO. In [7], the DPSO was

allowed to run on the 73-stand forest up to 2,500 iterations

with swarm sizes in excess of 1000, which translates to a

maximum of 2.5M fitness evaluations for a 1000 particle

swarm. With DPSO, they obtained a best fitness in the range

of 35M. In that paper, the best fitness value found was

5,500,391 via RO. In [2], the best performance from their

PPSO on the 73-stand forest was with 2,500 iterations of a

size 500 swarm, which translates to 1,250,000 fitness

evaluations. They achieved a best fitness of 5,500,330 and an

average fitness of 8,831,332.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 75

 In comparison, the best results from this paper on the 73-

stand forest are a best of 5,500,330 and an average of

5,786,583 after 1M fitness evaluations. RWPSO obtained the

best results of all the studies discussed for the 73-stand forest.

Similarly, it outperformed on the 40-stand forest with a best

objective value of 90,490 and an average of 113,624.

However, on the 625-stand forest, RO outperforms RWPSO,

regardless of the termination criterion used.

9 Conclusion and future directions

 The functions f2 and f3 promote Lamarckian learning by

assigning fitnesses to infeasible schedules based on nearby

feasible schedules. The use of Lamarckian learning may be

beneficial in general on similar problems, and additional

research would be required to test this.

 RWPSO was formulated specifically for multi-valued

nominal variable problems, and it treats velocity more

explicitly as a roulette probability than do other probability

based PSOs. Additionally, by expressing parameters of the

algorithm in terms of their effects on the roulette wheel,

parameter selection is more intuitive. Future work needs to be

done to determine if this explicit roulette wheel formulation

yields any benefit in general to RWPSO’s performance over

other discrete PSOs.

10 References

[1] P. Bettinger, J. Zhu. “A new heuristic for solving

spatially constrained forest planning problems based on

mitigation of infeasibilities radiating outward from a forced

choice”; in Silva Fennica, vol. 40(2): p315-33, 2006.

[2] P. W. Brooks, and W. D. Potter. “Forest Planning Using

Particle Swarm Optimization with a Priority Representation”;

in Modern Approaches in Applied Intelligence, edited by

Kishan Mehrotra, Springer, Lecture Notes in Computer

Science, vol. 6704: p312-8, 2011.

[3] R. Eberhart, and J. Kennedy. “A new optimizer using

particle swarm theory”; in Proceedings 6th International

Symposium Micro Machine and Human Science, Nagoya,

Japan, p39-43, 1995.

[4] J. Kennedy, and R. Eberhart. “Particle Swarm

Optimization”; in Proceedings IEEE International

Conference Neural Network, Perth, WA, Australia, vol. 4:

p1942-8, 1995.

[5] J. Kennedy, and R. Eberhart. “A Discrete Binary

Version of the Particle Swarm Algorithm”; IEEE Conference

on Systems, Man, and Cybernetics, Orlando, FL, vol. 5:

p4104-9, 1997.

[6] J.H. Holland. Adaptation in Natural and Artificial

Systems; Ann Arbor, MI: The University of Michigan Press,

1975.

[7] W.D. Potter, E. Drucker, P. Bettinger, F. Maier, D.

Luper, M. Martin, M. Watkinson, G. Handy, and C. Hayes.

“Diagnosis, Configuration, Planning, and Pathfinding:

Experiments in Nature-Inspired Optimization”; in Natural

Intelligence for Scheduling, Planning and Packing Problems,

edited by Raymond Chong, Springer-Verlag, Studies in

Computational Intelligence, vol. 250: p267-94, 2009.

76 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Parallel Parametric Optimisation with Firefly Algorithms on
Graphical Processing Units

A.V. Husselmann and K.A. Hawick
Computer Science, Institute for Information and Mathematical Sciences,

Massey University, North Shore 102-904, Auckland, New Zealand
email: { a.v.husselmann, k.a.hawick }@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

March 2012

Abstract
Parametric optimisation techniques such as Particle
Swarm Optimisation (PSO), Firefly algorithms (FAs),
genetic algorithms (GAs) are at the centre of attention
in a range of optimisation problems where local min-
ima plague the parameter space. Variants of these algo-
rithms deal with the problems presented by local minima
in a variety of ways. A salient feature in designing algo-
rithms such as these is the relative ease of performance
testing and evaluation. In the literature, a set of well-
defined functions, often with one global minimum and
several local minima is available to evaluate the conver-
gence of an algorithm. This allows for simultaneously
evaluating performance as well as the quality of the so-
lutions calculated. We report on a parallel graphical pro-
cessing unit (GPU) implementation of a modified Firefly
algorithm, and the associated performance and quality
of this algorithm. We also discuss spatial partitioning
techniques to dramatically reduce redundant entity in-
teractions introduced by our modifications of the Firefly
algorithm.

Keywords: optimisation; firefly algorithm; GPU;
CUDA; spatial partitioning.

1 Introduction
Research towards metaheuristic optimisation algorithms
has begun as far back as 1975, in which John Hol-
land introduced Genetic Algorithms [1]. Several years
after this discovery, Simulated Annealing followed in
1983, which is inspired by the annealing process in met-
allurgy [2]. It was another 12 years before Kennedy
and Eberhart developed the Particle Swarm Optimiser
(PSO), which lead to the development of the Firefly
Algorithm (FA) by Yang [3], which was introduced in

Figure 1: 65536 fireflies attempting to optimise a 3-
parameter generalised Rosenbrock Function. The global
minimum is at coordinates (1, 1, 1), which is near the
centre of the box. The Rosenbrock function is charac-
terised by a low-lying valley, which is easy to find, but
the minimum inside this valley is more difficult to find.
2008. Yang observed better performance in the Firefly
algorithm than the standard PSO, as did Aungkulanon
and Chai-ead [4]. As can be seen by the great milestones
of computational metaheuristic optimisation, algorithms
in this domain generally share a natural or biological in-
spiration.

Parametric optimisation has been an area of interest for
decades however, with early techniques such as linear
programming. As computational power increased in lat-
ter years, interest and scientific inquiry has increased ex-
ponentially in the search for algorithms to effectively ex-
ploit this computing power. This is even more so with

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 77

Figure 2: A visualisation of a uniform grid datastructure.
the development of multi-core chips and indeed a mas-
sively parallel environment such as NVidia’s Compute
Unified Device Architecture (CUDA). Graphical Pro-
cessing Units (GPUs) [5] have shown excellent ability
in accelerating agent-based simulations, and continues
to impress with newer algorithms.

Problems involving parametric optimisation are plentiful
in the areas of image compression [6, 7], manufacturing
improvement [4], structure design [8], scheduling prob-
lems [9], cryptanalysis [10], object clustering/recogni-
tion [11], economics [12–14], structure design [8, 15],
Antenna design [16, 17], isospectral systems [18] and
more. Generally, in parameter-based optimisation, one
attempts to obtain a vector x with d dimensions (param-
eters) which minimises a scalar-valued function f(x). In
practice, the function f(x) is not normally known. This
makes parametric optimisation very versatile. However,
when evaluating the performance of algorithms such as
these, the function f(x) is known exactly. An example
of this is the Rosenbrock function, given in Equation 1.
For this equation, the global minimum is f(x, y) = 0 for
x = y = 1.

f(x, y) = (1− x)2 + 100(y − x2)2 (1)

To facilitate the evaluation of n-parameter optimisers,
these functions are normally generalised in some way.
For Rosenbrock’s function, a common generalisation is
shown in Equation 2. Similar generalisations exist for
most of the other evaluation functions.

f(x) =

n−2∑
i=0

100(xi+1 − x2i)2 + (1− xi)2 (2)

For the purpose of visualisation, we restricted the num-
ber of parameters to 3. This is a severely limiting at-
tribute in real-world applications, but the visualisation

Figure 3: A surface plot of the 3-parameter Schwefel
function.

of the algorithm is extremely useful.

The Firefly algorithm [3] is a homogeneous, metaheuris-
tic, evolutionary optimisation algorithm, and a recent
addition to the particle-based optimiser family. Macro-
scopic effects of this algorithm is reminiscent of emer-
gence in agent-based systems. It finds several similari-
ties with the standard PSO algorithm, but in the original
article, Yang states that the PSO is simply a special case
of the Firefly algorithm. In nature, the displays of flash-
ing lights from fireflies is associated with mating habits.
This served as the source of inspiration for Yang, who
idealised the biological phenomenon with a few assump-
tions. Firstly, the algorithm would have unisex fireflies
which would be attracted to any other fireflies regard-
less. Secondly, the attractiveness of a firefly must be
essentially proportional to the objective function. For
minimisation problems which we discuss, the attractive-
ness of a firefly is inversely proportional to the objective
function value.

The use of these homogeneous spatial agents involves
each firefly performing a movement calculation based on
a deterministic part and a stochastic part in conjunction
with other spatially local agents. While not always local,
distant fireflies have a degraded influence. Depending on
the parameter count, the parameter space is easily mod-
ified (albeit less able to be visualised).

By making use of what can be seen as the de facto stan-
dard naming convention, the α-step and the β-step, ev-
ery firefly is influenced by every other firefly in a de-
terministic and stochastic way respectively. The α-step
refers to the stochastic space exploration, and the β-step
refers to the deterministic bias towards other fireflies
with better solutions in the parameter space.

As described by Yang, the update formula for any two
fireflies xi and xj is shown in equation 3.

78 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Figure 4: A surface plot of the 3-parameter Rosenbrock
function.

xi = xi + β0e
−γr2ij (xj − xi) + α(d) (3)

Apart from advancing the firefly based on its previous
position, the equation begins with the β-step. β0 refers
to an attractiveness coefficient, while the exponential
e−γr

2
ij degrades the attractiveness of firefly xj over dis-

tance rij . The second term is the α-step. The α variable
is the random step size, where d refers to a random vec-
tor.

As can be seen from this equation, the algorithm has an
inherent O(n2) complexity, since every firefly xi must
evaluate this equation n times, for every other firefly xj .
This complexity is not normally reduced because of its
scaling problems, but because of diversity loss in fireflies
in the parameter space [19]. There are a handful of al-
gorithms which attempt to rectify this problem, most of
which involve maintaining multiple independent swarms
[19, 20]. Our algorithm differs from these approaches
by very loosely maintaining separate swarms, and al-
lowing full interaction between these swarms. By limit-
ing the interaction distance, we also permit ourselves to
use acceleration data-structures to dramatically increase
performance and hence allow the use of much, much
larger systems which greatly increase accuracy and re-
duces computation time necessary.

Some report that the FA responds well to hybridisation,
especially with algorithms from the realm of artificial
intelligence [19, 21]. As with PSO, the FA does require
tuning, but far less than the standard PSO.

Some popular functions for evaluating the performance
of optimisation algorithms include the Rosenbrock func-
tion, Ackley’s Path function, the Schwefel Function and
the Rastrigin function. Each of these have vastly differ-
ent appearances, and their 3-parameter counterparts are
shown in Figures 2, 4, 5 and 3. For visualisation, these

Figure 5: A surface plot of the 3-parameter Rastrigin
function.

functions are best constrained to 3 parameters (dimen-
sions) or less.

It is important to note that these have very different char-
acteristics. As we observed from our results in Section
3, unimodal and multimodal test functions can have stag-
gering performance implications.

2 CUDA Fixed-Interaction Firefly
Algorithm

There have been various attempts to parallelise swarm
intelligence and particularly the PSO [20,22–24]. A few
of these include CUDA implementations.

Our algorithm differs greatly in two aspects from the
original FA. Firstly, our algorithm can support large
numbers of fireflies due to optimised data-structures.
The second difference is that we impose a maximum in-
teraction distance, which is dramatically smaller than the
values some authors have suggested. In this limited in-
teraction distance, we still degrade attractiveness of fire-
flies that are more distance, but at roughly the same rate
as the original algorithm would. These two differences
go hand-in-hand as the interaction distance allows us to
accelerate the simulation. According to authors who im-
plement multi-swarm modifications in the FA, smaller
interaction distances improves accuracy when there are
local minima to avoid, as is often the case [19].

Following from Equation 3, we first modified the update
to incorporate our smaller interaction distance. This is
shown in Equation 4.

xi+1 = xi + βe−γr
2
ij (xj − xi) + α(d) (4)

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 79

Figure 6: A surface plot of the 3-parameter version of
Ackley’s Path function.
Where we specifically choose γ to be

γ =
1

g2(1 + ln(β))

with g being size of a grid box. This will ensure that the
β step will give less notice to fireflies that are at the edge
of visibility to a particular firefly. In our experience, this
does not seem to provide far better results, but it will
preserve some diversity. Instead of this, for simplicity
and speed, we multiply the β-step with N(r), as defined
below.

N(r) =

{
0 r > m
r r < m

This is very simple, and by choosing a suitable γ, we
need not add extra complexity as indicated above.

When optimising a function, it is beneficial to have as
many fireflies or agents as possible to avoid convergence
to local minima. We are able to simulate large numbers
of fireflies with this algorithm by means of acceleration
data-structures which dramatically reduce redundant en-
tity interactions. We use a method named grid-boxing
parallelised for CUDA (sometimes known as uniform-
grid space partitioning) [25] to localise interactions of
fireflies, in order to improve performance greatly. Our
single-GPU implementation of this algorithm is simi-
lar to the data-structure used by the Particle simulation
shipped with the CUDA SDK [26]. This allows sepa-
rate (yet fully interacting) swarms to search in parallel,
while still allowing complete interaction between these
swarms. The simulation is not initialised with a random
set of independent swarms. Rather, these seemingly sep-
arate swarms spontaneously form as a side effect of us-
ing grid-boxing with a suitably chosen interaction dis-
tance.

Figure 7: 4096 fireflies solving a 3-parameter De Jong
function.

Figure 8: 262,244 fireflies optimising a 3-parameter
Rosenbrock function.

The α-step in the update formula requires a random vec-
tor d. This is a significant problem, considering that
this code executes almost entirely on GPU. Fortunately,
a library named CURAND is available directly from
NVidia, distributed within the CUDA SDK. This library
provides a high performance Mersenne Twistor(MT),
which we use to generate enough d vectors to satisfy the
α-steps for all the fireflies in the simulation There is a
complex tradeoff between quality and raw performance
of random number generators [27], but we believe the
MT is a suitable compromise for both criteria for teh
work reported here.

3 Performance Evaluation
In our performance evaluations, we primarily used an
Intel Core i7 server running at 3.4GHz, configured with
two NVidia GTX 590 graphics cards. The implementa-
tion of the original firefly algorithm was obtained from
[28]. This program includes a hybridised Firefly algo-
rithm, which we did not use in our evaluations. This
modified algorithm by Mancuso modifies the size of the
α step size before every simulation step.

80 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Figure 9: 262,244 fireflies optimising a 3-parameter
Rosenbrock function.

CPU GPU
Rosenbrock 3D
Time (msec) 368455.2 9488.725
Minimum 0.000071 0.000045
Rastrigin 3D
Time (msec) 367329.1 966.5312
Minimum 1.445014 1.174144
Schwefel 3D
Time (msec) 369934.9 848.6163
Minimum 73.26784 25.47458
Ackley’s Path 3D
Time (msec) 368384.2 949.9359
Minimum 1.138163 3.060646

Table 1: CPU vs GPU Parallel Firefly algorithm in opti-
mising the 3-parameter Rosenbrock function.
To compare algorithms we use the 3-parameter version
of the Rosenbrock function, which is shown in Figure 4.
This function is as follows:

f(x) =
n∑
i=0

100(xi+1 − x2i)2 + (1− xi)2 (5)

In Equation 5, xi refers to parameter i, n refers to the
number of parameters, which in our simulations is set
to a constant 3, so that we can easily view the results.
For this function, the global minimum is f(x) = 0 when
x = (1, 1, 1) when n = 3.

Table 3 contains some performance data for the compar-
ison between the original CPU Firefly algorithm and our
GPU Parallel Firefly algorithm. The data was averaged
over 100 runs. Both the CPU and the GPU parallel algo-
rithms were configured with 4096 particles/fireflies, and
set to run for exactly 600 full simulation steps. Configu-
ration for each of the evaluation functions are shown in

Boundary (min,max)
Rosenbrock 3D -2.0, 2.0
Rastrigin 3D -5.0, 5.0
Schwefel 3D -500, 500
Ackley’s Path 3D -20, 20

Table 2: CPU vs GPU Parallel Firefly algorithm in opti-
mising the 3-parameter Rosenbrock function.
Table 3. The optima for each of the four algorithms is as
follows:

1. Rosenbrock function:
for f(x, y, z), f(1, 1, 1) = 0.

2. Ackley’s Path function:
for f(x, y, z), f(0, 0, 0) = 0.

3. Rastrigin function:
for f(x, y, z), f(0, 0, 0) = 0.

4. Schwefel function:
for (x, y, z), f(420.9, 420.9, 420.9) = 0.

We modified our Schwefel function by adding
3(418.9829) to the function, in order to yield a
minimum of 0.

The algorithms were both configured to randomly dis-
tribute particles in the ranges described in Table 3 in
each parameter range. We removed boundary checks in
the CPU Firefly algorithm to more closely resemble the
implementation of our GPU algorithm, but the CPU al-
gorithm is implemented in double precision, whereas the
GPU algorithm is implemented in single precision. This
makes comparison more difficult, but with the great mar-
gin of performance difference obtained, the differenceb
becomes more pronounced.

The results show a clear difference in performance, both
in computation time, and accuracy of the solution, al-
beit, the latter is not true for Ackley’s Path function.
The accuracy of the algorithm can be attributed to the
difference in interaction distance, making it more resis-
tant to converging to a local minimum instead of the
global minimum. The decreased computation time can
be immediately attributed to the parallel environment.
The local minma of the Ackley’s Path function is not as
pronounced as the Schwefel function or Rastrigin func-
tion, so it seems possible that global interaction is indeed
more suitable for this function. Another consideration is
that all particles in the CPU Firefly algorithm will even-
tually reach the area around the global minimum, which
means there will be more fireflies in that area.

So far we have compared the quality of the optimis-
ers and the performance to some extent, but good per-

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 81

formance is possible to achieve with far less fireflies,
depending on the application (unimodal or multimodal
functions). Our testing revealed that the CPU Firefly al-
gorithm can easily outperform the GPU algorithm with a
simple unimodal function such as the Rosenbrock func-
tion, by simply having 16 fireflies which obtains an error
of less than 0.00005 in approximately 25msec (10-run
average). The GPU counterpart is only effective from
4096 fireflies up, and this takes on a 10-run average
approximately 338msec for an error less than 0.00005.
A clear advantage. However, when facing multimodal
functions such as the Schwefel function, Rastrigin func-
tion and Ackley’s path function with low numbers of
fireflies, the CPU algorithm either fails to achieve the
global minimum, or takes an inordinate amount of time
to compute it (days, weeks).

The GPU algorithm can easily optimise multimodal
functions such as the Schwefel function in a fraction
of the time it would take the CPU algorithm. Roughly
2048 or more fireflies would be needed to ensure the al-
gorithm saturates the parameter space enough to obtain
the global minimum. As seen above, the GPU speed-up
over the CPU firefly algorithm is 39 times for 4096 fire-
flies, this would mean the GPU algorithm is far superior
in multi-modal optimisation, whereas the CPU firefly al-
gorithm is far superior in unimodal optimisation, where
large numbers of fireflies are not necessary. It is diffi-
cult to compare with absolute certainty in meta-heuristic
optimisation, but in our observations, we could not use
the CPU firefly algorithm for optimising the multimodal
functions with less than 2000 fireflies - Schwefel, Rastri-
gin, and Ackley’s Path in reasonable time at all, whereas
the GPU algorithm could optimise all three within one
second.

4 Discussion
Our algorithm seems to perform more accurately and
faster than the original Firefly algorithm. There is how-
ever, a clear difference when comparing multimodal
functions to unimodal functions. The original Firefly
algorithm is very well suited to optimising unimodal
functions, as very few fireflies are required, and frame
calculation times are dramatically lower. However, for
multimodal functions, it is imperative to have a larger
number of fireflies to avoid local minima. This results
in an O(n2) complexity which our algorithm reduces
to O(n log n) and also parallelises. The acceleration
data-structure allows this, thanks to a small modifica-
tion we made to the original firefly algorithm, namely
the smaller and fixed interaction distance.

Using ideas contained within this new GPU algorithm,

it is possible to dramatically increase system sizes, and
efficiently optimise multimodal functions. However, it
is well worth noting that we only discuss 3-parameter
functions in this article. In practice, it is common to find
functions which require hundreds of parameters. The
Firefly algorithm easily adapts to this by simply moving
through n-dimensional space towards other fireflies, and
having an n-dimensional random step. A CUDA imple-
mentation which allows n-dimensional optimisation will
require extra considerations to be made, as it will require
far more storage among others.

We observe that the greater the number of fireflies, the
more likely it is that the global minimum will be ob-
tained. This is certainly the case with Ackley’s Path
function, as the GPU algorithm could only obtain the
global minimum (0) consistently when run with 266,144
fireflies. This serves to saturate the parameter space to
the extent that the global minimum is obtained. It is
noteworthy however, that with 262,144 fireflies, it takes
substantially longer to compute 600 frames, but it is still
within two minutes on average.

5 Conclusions and Future Work
We have presented a GPU-based Firefly algorithm with
a fixed-interaction distance and a uniform-grid acceler-
ation data-structure. We compared this algorithm in ac-
curacy and performance to the original single-threaded
Firefly algorithm, and found a vast performance in-
crease, but only for multimodal test functions. Global
interaction in very few numbers of fireflies could still
outperform the GPU algorithm in a unimodal function
such as Rosenbrock’s function. However, we observed
that the multimodal test functions could only be opti-
mised with the GPU algorithm, and it consistently does
so in less than one second for 4096 fireflies. This is ap-
proximately a 39-fold speedup over the same number of
fireflies simulated by the CPU-based algorithm.

We conclude that for massively multimodal functions
such as the Schwefel function, the GPU algorithm is by
far the better choice. This is especially applicable to
functions which also have geometrically distant global
minima.

In future we will explore methods of effectively par-
allelising this algorithm across several GPUs in order
to increase system sizes with a much smaller computa-
tional cost. We will also aim to support n-dimensional
optimisation problems. These data-parallelisable opti-
misation algorithms show great promise across a range
of complex systems applications.

82 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

References
[1] Holland, J.H.: Adaptation in natural and artificial sys-

tems. Ann Arbor: University of Michigan Press (1975)
[2] Kirkpatrick, e.a.: Optimization by simulated annealing.

Science 220 (1983) 671–680
[3] Yang, X.S.: Firefly algorithms for multimodal optimiza-

tion. In: Stochastic Algorithms: Foundations and Appli-
cations, SAGA. (2009)

[4] Aungkulanon, P., Chai-ead, N., Luangpaiboon, P.: Sim-
ulated manufacturing process improvement via particle
swarm optimisation and firefly algorithms. Prof. Int.
Multiconference of Engineers and Computer Scientists 2
(2011) 1123–1128

[5] Leist, A., Playne, D., Hawick, K.: Exploiting Graphi-
cal Processing Units for Data-Parallel Scientific Applica-
tions. Concurrency and Computation: Practice and Ex-
perience 21 (2009) 2400–2437 CSTN-065.

[6] Horng, M.H.: Vector quantization using the firefly al-
gorithm for image compression. Expert Systems with
Applications 38 (2011)

[7] Horng, e.a.: The codebook design of image vector quan-
tization based on the firefly algorithm. Computational
Collective Intelligence, Technologies and Applications
6426 (2010) 438–447

[8] Azad, S.K., Azad, S.K.: Optimum design of structures
using an improved firefly algorithm. International Journal
of Optimization in Civil Engineering 1 (2011) 327–340

[9] Khadwilard, e.a.: Application of firefly algorithm and its
parameter setting for job shop scheduling. First Sympo-
sium on Hands-On Research and Development 1 (2011)

[10] Palit, S., Sinha, S.N., Molla, M.A., Khanra, A., Kule,
M.: A cryptanalytic attach on the knapsack cryptosystem
using binary firefly algorithm. Int. Conf. on Computer
and Communication Technology (ICCCT) 2 (2011) 428–
432

[11] Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using
firefly algorithm: Performance study. Swarm and Evolu-
tionary Computation (2011)

[12] Yang, X.S.: Firefly algorithm for solving non-convex
economic dispatch problems with valve loading effect.
Applied Soft Computing 12 (2012) 1180–1186

[13] Giannakouris, G., Dounias, V.V.G.: Experimental study
on a hybrid nature-inspired algorithm for financial port-
folio optimization. SETN 2010, LNAI 6040 1 (2010)
101–111

[14] Apostolopoulos, Vlachos: Application of the firefly al-
gorithm for solving the economic emissions load dis-
patch problem. International Journal of Combinatorics
1 (2011)

[15] Gandomi, A.H., Yang, X.S.: Mixed variable structural
optimization using firefly algorithm. Computers and
Structures 89 (2011) 2325–2336

[16] Chatterjee, A., Mahanti, G.K., Chatterjee, A.: Design of
a fully digital controlled reconfigurable switched beam
coconcentric ring array antenna using firefly and particle
swarm optimization algorithms. Progress in Electromag-
netic Research B (2012) 113–131

[17] Basu, B., Mahanti, G.K.: Firefly and artificial bees

colony algorithm for synthesis of scanned and broadside
linear array antenna. Progress in Electromagnetic Re-
search 32 (2011) 169–190

[18] Dutta, R., Ganguli, R., Mani, V.: Exploring isospectral
spring-mass systems with firefly algorithm. Proc. Roy.
Soc. A. 467 (2011)

[19] Farahani, S.M., Nasiri, B., Meybodi, M.R.: A mul-
tiswarm based firefly algorithm in dynamic environ-
ments. Third Int. Conf. on Signal Processing Systems
(ICSPS2011) 3 (2011) 68–72

[20] Mussi, L., Daoilo, F., Cagoni, S.: Evaluation of parallel
particle swarm optimization algorithms within the cuda
architecture. Information Sciences 181 (2011) 4642–
4657

[21] Farahani, S.M., Abshouri, A.A., Nasiri, B., Meybodi,
M.R.: Some hybrid models to improve firefly algorithm
performance. Int. J. Artificial Intelligence 8 (2012) 97–
117

[22] Schutte, J.F., Fregly, B.J., Haftka, R.T., George, A.D.:
A parallel particle swarm optimizer. Technical report,
University of Florida, Department of Electrical and Com-
puter Engineering, Gainesville, FL, 32611 (2003)

[23] Venter, Sobieszczanski-Sobieski: A parallel parti-
cle swarm optimization algorithm accelerated by asyn-
chronous evaluations. 6th World Congresses of Structural
and Multidisciplinary Optimization 6 (2005)

[24] Zhou, Tan: Gpu-based parallel particle swarm optimiza-
tion. Evolutionary Computing (2009)

[25] Hawick, K.A., James, H.A., Scogings, C.J.: Grid-
boxing for spatial simulation performance optimisation.
In T.Znati, ed.: Proc. 39th Annual Simulation Sympo-
sium, Huntsville, Alabama, USA (2006) The Society for
Modeling and Simulation International, Pub. IEEE Com-
puter Society.

[26] Green, S.: Particle simulation using cuda. Technical
report, NVIDIA (2010)

[27] Hawick, K., Leist, A., Playne, D., Johnson, M.: Speed
and Portability issues for Random Number Generation on
Graphical Processing Units with CUDA and other Pro-
cessing Accelerators. In: Proc. Australasian Computer
Science Conference (ACSC 2011). (2011)

[28] Mancuso, N.: Firefly algorithm implementation.
http://code.google.com/p/csc6810project/ (2010)

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 83

Smooth Path Planning for Mobile Robot Using
Particle Swarm Optimization and Radial Basis

Functions
Contact Author: Nancy Arana-Daniel,

Alberto A. Gallegos, Carlos López-Franco and Alma Y. Alanis
Department of Computer Science, CUCEI, University of Guadalajara (UDG),

Av. Revolución 1500, Col. Olı́mpica, C.P. 44430, Guadalajara, Jalisco, México
Email: nancy.arana, carlos.lopez, alma.alanis@cucei.udg.mx

gallegos.alberto.a@gmail.com

Abstract—One of the most important tasks to be performed
by a mobile robot is to find a collision-free and smooth path to
follow. Given a set of initial control points and using a Radial
Basis Function (RBF), a method is proposed, in which is used
the RBF’s property to approximate smooth functions to define
a collision-free and short path. In this paper we formulate the
training technique of an RBF as an optimization problem and
employed Particle Swarm Optimization (PSO) to solve it.

The path planning problem is equivalent to optimize the
parameters of the RBF using a set of trajectory constraints
based on coverage control points as input pattern, which can
be seen as places where is desirable for the robot to explore.
Furthermore, a combined fitness function is proposed with
respect to three requirements: (i) achieve minimum mean square
RBF- function approximation error ; (ii) avoid collisions and
(iii) minimize the length of the obtained path .

Keywords: Path planning, PSO, RBF.

PAPER TO BE SUBMITED TO: The 2012 International
Conference on Genetic and Evolutionary Methods (GEM’12)

I. INTRODUCTION

Considerable number of research papers exist in the field of
robot path planning. Classic methods used to solve path plan-
ning include grid based path planning algorithms as the most
commonly used methods [5], [16], [1], [18]. Unfortunately,
even though algorithms like A* and D* are complete (they’ll
always find a solutions if there is one), the paths made by
this algorithms lack of smoothness; the robots will often have
to stop and readjust their trajectory to continue following the
path with every drastic change of direction. For the modeling
of the environment, the map is discretized, by doing this, lots
of solutions may be excluded, and also it could cause non-
smooth paths in algorithms like A*, D* and potential fields.
Furthermore, in the case of potential fields, the algorithm could
be trapped in a local minimum formed by concave obstacles
[1].

Smooth paths are important in robotics because nonholo-
nomic mobile robots are commonly used in practice, so, a
smooth path will be more suitable for such robots because

this kind of paths are more preferable for designing continuous
control algorithms to follow the paths.

New methods based on evolutionary computational methods
have been used recently to solve path planning problems due
to they are relatively simple to implement, they have fast
processing speed, few parameters to be adjusted and good
performance. In addition to the above, it is known that the
path planning problem can be stated as an optimization (multi-
objective optimization) problem and evolutionary computa-
tional methods, for instance genetic algorithms (GAs) were
used in solving the optimization of path planning successfully
[4], [7].

PSO, is a method for optimization of continuous nonlinear
functions, created by James Kenedy and Russell Eberhart
in 1995 [9]; inspired by the social behavior of bird flocks
and school of fishes. In PSO, each individual would be the
equivalent of a bird on a flock, each ’bird’ is named ’particle’,
and the ’flock’ is called a ’swarm’. A particle is analogous to
a chromosome in Genetic Algorithms.
Compared to other Evolutionary Algorithms, classic PSO has
no crossover and mutation calculation, actually this is one of
the things that makes it really easy to implement. PSO only
evolve their social behavior and accordingly their movement
towards the best solutions [3]. The search can be carried
out by the speed of the particle during the development of
several generations, and only the most optimist solution can
pass their information over iterations.

The main properties of collective behavior, are a few of
the characteristics that make algorithms based in swarm
intelligence so effective [15]:

• Homogeneity: Every particle in the swarm has the same
behavioral model. The swarm moves without a fixed
leader, even if a temporary leader appear.

• Locality: Its nearest swarm mates only influence the
motion of each individual.

• Collision Avoidance: Avoid colliding with nearby swarm
mates.

84 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

• Velocity Matching: Attempt to match velocity with
nearby swarm mates.

• Flock Centering: Attempt to stay close to nearby swarm
mates.

PSO has proven to have good results in path planning
to perform obstacle avoidance [8], [17], [14]. An algorithm
for path planning for mobile robot using PSO with mutation
operator is proposed in [12]. Its strategy consists in three steps:
First the MAKLINK graph is built to describe the working
space of the mobile robot. Then, the Dijkstra’s algorithm
is used to obtain a sub-optimal path and finally PSO is
adopted to get the optimal path. In order to generate enough
particles in PSO, it has to be chosen a parameter ti ∈ [0, 1]
for each free-link in the MAKLINK graph. A free-link is
defined as a line whose two ends are either corners of two
obstacles or one of them is a corner and the other is a
point on a working space boundary wall. Therefore, complex
environments containing large number of obstacles mean great
increase in the complexity of the whole path planning system.
Besides, the mutation operator used to avoid local minimum
problems consists in a random strategy and it does not make
good use of the evolution of population and this approach
produces non-smooth paths.

In 2010, an algorithm of improved PSO was applied in
mobile robotic path planning [10]. This approach proposes
a grid method to model the path space which results in
nonsmooth paths, it also includes mutation and crossover
operators in order to avoid local minimum. But in addition
to avoidance of local optimum these two steps add to PSO
algorithm computational complexity.

A smooth path planning of a mobile robot using Stochastic
PSO is implemented in [2]. It uses a kind of cubic spline in
which coefficients are trained with PSO in order to produce
smooth paths. The fitness function with respect to obstacle
avoidance makes necessary to know each center of each
obstacle in the environment, as well as the calculation of
critical points defined as points on the trajectory that are at
the minimum distance to an obstacle. So, the fitness function
includes these calculations for each one of the M obstacles in
the environment.

In this paper it is proposed an approach using Particle
Swarm Optimization (PSO) technique to train a Radial Basis
Function Network (RBF) used to solve a function approxi-
mation problem in order to obtain a smooth path of a mobile
robot through an environment containing static obstacles. RBF
networks were chosen to be trained with PSO to meet the
following objectives: 1) to keep relatively simple the imple-
mentation of the path planning system and therefore 2)to get
an efficient path planner and 3) To obtain smooth paths making
use of their excellent capabilities as function approximators.

Next two sections, II, III show the methods which comprise
the path planner system. Section IV describes the particle mod-
eling and the fitness function implementation. Last section, V
is devoted to show the simulation results and parameter tuning
of the PSO-RBF path planning algorithm.

II. PARTICLE SWARM OPTIMIZATION, PSO

PSO exploits a population of potential solutions, each
solution consists of a set of parameters, representing a point
in a search spaceA ⊂ <n. The population of solutions is
called swarm and each individual from a swarm is called a
particle. A swarm is defined as a set of N particles. Each
particle i is represented as a D-dimensional position vector
xi(t). The particles are assumed to move within the search
space A iteratively. This is done by adjusting their position
using a proper position shift, called velocity vi(t).

Each iteration t, the velocity changes by applying equation
(1) to each particle.

vi(t+1) = ωvi(t)+c1ϕ1(Pibest−xi)+c2ϕ2(Pgbest−xi), (1)

where ϕ1 and ϕ2 are random variables uniformly distributed
within [0,1]; c1 and c2 are weighting factors, also called the
cognitive and social parameters, respectively; ω is called the
inertia weight, which decreases linearly from ωstart to ωend

during iterations. Pibest and Pgbest represent the best position
visited by a particle and the best position visited by the swarm
till the current iteration t, respectively.
The position update is applied by equation (2) based on the
new velocity and the current position.

xi(t+ 1) = xi(t) + vi(t+ 1). (2)

The basic algorithm is as follows:

1) Initialize each particle of the swarm, with random values
for position and velocity in the search space.

2) Evaluate member of the swarm with the fitness function.
3) Compare the value obtained from the fitness function

from particle i, with the value of Pibest. If the value of
the fitness function is better than the Pibest value, this
new value takes the place of Pibest.

4) If the value in Pibest is better than Pgbest, then Pgbest =
Pibest.

5) Modify the velocity and position of the particles using
equations (1) and (2), respectively.

6) If the maximum number of iterations or the ending
condition isn’t achieved, return to step 2.

To solve the uncontrolled increase of magnitude of the
velocities (swarm explosion effect), is often used to restrict
the velocity with a clamping at desirable levels, preventing
particles from taking extremely large steps from their current
position [11].

vij(t+ 1) =

{
vmax ifvij(t+ 1) > vmax,

−vmax ifvij(t+ 1) < −vmax

Although the use of a maximum velocity threshold improves
the performance, by controlling the swarm explosions,

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 85

without the inertia weight, the swarm would not be able to
concentrate its particles around the most promising solutions
in the last phase of the optimization procedures; even if a
promising region of the search space would be detected, no
further refinement would be able, with the particles oscillating
on wide trajectories around their best positions [11].

III. RADIAL BASIS FUNCTIONS

The structure of an RBF neural network consists on three
layers [13], as seen in Fig. 2:

• The input nodes layer.
• The hidden neuron layer, that provides a nonlinear trans-

formation from the input through RBFs.
• The output layer, is the linear combination from the

outputs from the hidden layer.

When a RBF neural network is used to perform a complex
pattern classification task, the problem is basically solved
by first transforming it into a high dimensional space in
a nonlinear manner and then separating the classes in the
output layer. The underlying justification is found in Cover’s
theorem on the separability of patterns, which, in qualitative
terms, may be stated as follows:

A complex pattern-classification problem, cast in a high-
dimensional space nonlinearly, is more likely to be linearly
separable than in a low-dimensional space, provided that the
space is not densely populated.

From Cover’s theorem, we can state that a non linear
mapping is employed to transform a nonlinearly separable
classification problem into a linearly separable one with high
probability.
The neural network is designed to perform a nonlinear map-
ping from the input space to the hidden space, followed by a
linear mapping from the hidden space to the output space [6].
The radial basis equation for interpolation consists in selecting
F as:

F (x) =
N∑
i=1

wiϕ(‖ x− Ci ‖), (3)

ϕ(r) = exp(− r2

2σ2
). (4)

Where,

• ϕ() : Is the set of N nonlinear functions, known as
radial basis. Equation (4) is a gaussian function, but there
are other type of RBFs like multicuadratics and inverse
multiquadratics.

• wi : Represents the weight of the connection between the
neuron i from the hidden layer with the output layer.

• ‖‖: Represents the euclidean norm.
• Ci : Are the centers of each of the gaussian functions;

where Ci ∈ <p, i = 1, 2, 3, ..., N.

Fig. 1. Set of gaussian functions that conform the RBF neural network output

Fig. 2. RBF Neural Network Structure

• σ2 : Represents the variance.
• x : Is the input signal.

IV. PARTICLE DESCRIPTION AND FITNESS FUNCTION

Path planning for car-like mobile robots can be realized
through a search space of functions [7], [8]. In this case we
reduce the space to a sub-space of RBFs.
Usually, RBFs are trained by algorithms like k-means and
a totally supervised learning method; but by using PSO we
substitute this phases.
Each particle in the swarm is composed by the Ci, σ2 and wi
parameters to be used by the RBF function, to approximate
a function that passes by a predefined set of points; this
set of points is taken as the RBF input points for the input
nodes layer. They represent trajectory constraints, i.e. coverage
control points can be seen as places where is desirable for the
robot to explore in the environment.

The input points are not fixed, excepting for the first and
the last point, that are the start and goal points respectively;
actually they vary randomly with each PSO iteration in a
range of 1 map state, in any direction respect to the first
set of input points; this helps to make the obstacle avoidance
easier, especially when one of the points is near an obstacle
and it transform the problem from interpolation to function
approximation.
What defines the efficiency of PSO is the fitness function

86 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

(aside of the parameters tuning). We must find a fitness
function that allows to find a collision free path for the mobile
robot to follow.
The global minimum should correspond whit a smooth and
safe (collision free) trajectory, and an unsafe trajectory should
be penalized by the fitness function.
For this approach, the following fitness function was designed:

f = RMSE +
l

sf
+ c (5)

Where RMSE is the root mean square error (equation (6)),
l is the length of the path (equation (8)), sf is a scaling
factor (so that the length of the path could have more or
less influence on the final result) and c (equation (10)) is
the collision variable (it takes a higher value proportional to
the number of states that a path crosses that are occupied by
obstacles or near them).

RMSE(f) =

√∑n
k=1(ek)

2

n
(6)

ek = yk − f(xk), where f(xk) ≈ yk. (7)

l =
n−1∑
k=1

√
(xk+1 − xk)2 + (f(xk+1)− f(xk))2 (8)

S = {(x, y)|(x, y) ∈ obstacles range} (9)

c =
∑

fm(s) where s ⊆ S (10)

H =

0.0001 0.0006 0.0012 0.0006 0.0001
0.0006 0.0049 0.0099 0.0049 0.0006
0.0012 0.0099 0.0200 0.0099 0.0012
0.0006 0.0049 0.0099 0.0049 0.0006
0.0001 0.0006 0.0012 0.0006 0.0001

Max(fm(s)) = 0.02| it′s an obstacle. (11)

Min(fm(s)) = 0.0001| barely in the obstacle range. (12)

The s value from equation (9) is the set of points in the
range of an obstacle crossed by the path. As was mentioned
before, the map is discretized, so a value is assigned to
each state that is within a certain range from an object, like
mentioned in (11) and (12), and zero if it’s out of range; for
this case, the gaussian mask H was used to define the values
of the map fm following the next pseudocode:

for obstacle = 1→ |S| do
(x, y)← S(obstacle)
for j = −2→ 2 do

for i = −2→ 2 do

fm(x+ i, y+ j)←MAX(fm(x+ i, y+ j), H(i+
3, j + 3))

end for
end for

end for

V. SIMULATION RESULTS

For all the tests a swarm with 40 particles was used, and the
stop condition is that the number of iterations is t=100; each
test was repeated 100 times and the average was obtained;
the results can be seen in Table I. One first comparison
was made between the MSE obtained from the approximated
function obtained by this approach against the MSE obtained
by MATLABs RBF neural network newrb; as seen in the table,
the results obtained were favorable by a good margin.
Also the results illustrated in Figures from 3 to 7, show good
results for the path planning problem, all the paths are collision
free, pass through or acceptably near all the control points and
it is obtained smooth paths for a mobile robot to follow.
It is important to note that approaches like Maklink-graph
mutation PSO [12] can not deal with environments with
concave obstacles, like the one showed in Fig. 4. If the
navigation environment contains concave obstacles it would
be necessary to compute something like convex hull of each
one of them in order to produce the MAKLINK graph. This
step will add complexity to the path planning system.

All the PSO adjustable parameters, where heuristically
selected, of which were selected the next values as the set
of parameters that gave the best results: c1 = 2, c2 = 2.5,
vmax = 0.15, ωstart = 1 and ωend = 0.0005.
The value of sf in the fitness function was selected also
heuristically, for this case sf = 37; the value has to be high
to prevent the dominating influence of the length in the fitness
function, with smaller values the fitness function would favor
the shorter paths instead of the paths that pass through the
control points and avoid obstacles.
By giving c2 a higher value than c1 we are biasing the
particles search ability towards Pgbest.
The inertia weight ω reduces the perturbations that make
the particles walk away from promising positions, the best
positions require strong attraction to refine the search results.
A value bigger than 1 in ωstart = 1 would make the particles
spread more in the search space, making them to reach further
positions, but it will take longer for the particles to converge
in a promising region as ωend tends to approximate ωstart.
But also selecting a value higher than 1 form ωend would
make it difficult for the particles to converge faster.

Map showed in Fig. 8 was used to compare PSO-RBF
approach against Maklink graph-Mutation PSO [12] for path
planning. Map showed in Fig. 8 includes some coverage
control points as blue squares. All the obstacles are modeled
as convex polygons and therefore the Maklink graph-Mutation
PSO can be applied to find optimal paths. As mentioned
in Section I the strategy consists in three steps: First the
MAKLINK graph is built to describe the working space of

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 87

TABLE I
MSE VALUES OBTAINED FROM AN RBF TRAINED WITH PSO AND

MATLAB’S RBF (NEWRB)

MSE

RBF trained
with PSO

RBF (MAT-
LAB newrb)

Map 1 1.4236e-04 0.0395139

Map 2 0.0053 0.08875

Map 3 8.5718e-005 0.0738776

Map 4 4.9906e-004 0.065

Map 5 0.0176 0.0726276

Fig. 3. Simulation Results from Map No. 1. Initial coverage control points
of the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

Fig. 4. Simulation Results from Map No. 2.Initial coverage control points of
the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

the mobile robot. Then, the Dijkstra’s algorithm is used to
obtain a sub-optimal path and finally PSO is adopted to get
the optimal path. In order to generate enough particles in PSO,
it has to be chosen a parameter ti ∈ [0, 1] for each free-

Fig. 5. Simulation Results from Map No. 3.Initial coverage control points of
the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

Fig. 6. Simulation Results from Map No. 4.Initial coverage control points of
the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

link in the MAKLINK graph. A free-link is defined as a line
whose two ends are either corners of two obstacles or one of
them is a corner and the other is a point on a working space
boundary wall. Fig. 9 shows the MAKLINK graph generated
from map in Fig. 8. Maklink graph-Mutation PSO was forced
to take into account coverage control points by making that
Dijkstra’s algorithm looked for the sub-optimal path into the
set of free links that pass on (or near of) these control points.
The resulting sub-optimal path includes D = 17 free links
and ti ∈ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. All the steps
mentioned above make the computational complexity of the
Makling graph-Mutation PSO algorithm grows with respect
to the number of obstacles in the environment. Large number
of obstacles generates MAKLINK graph with large number of
nodes and edges and therefore it makes the Dijktra’s algorithm
takes long time to run. Nevertheless, the path obtained with

88 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Fig. 7. Simulation Results from Map No. 5. Initial coverage control points
of the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

this approach is the shortest one that covers (or pass near of)
all the control points.

On the other hand, Fig.11 shows the path obtained with the
path planner proposed in this paper. This path was obtained
with a swarm with 40 particles, evolved by 100 iterations.
Although this path is not the shortest one, it is a smooth
path easy to be followed by a nonholonomic robot, and our
approach needs fewer particles than Maklink graph approach
which makes the last one of these, slower than PSO-RBF when
the number of obstacles in the environment are numerous and
the coverage control points are used.

All simulations were executed in a computer with Windows
7, Intel Core i5, 2.4 GHz, 4 GB RAM, Matlab 2009a.
Maklink graph-Mutation PSO algorithm and PSO-RBF algo-
rithm evolved 40 particles with 100 iterations. First approach
mentioned took a total time for getting the final path showed in
Fig. 10 of 40.56s, considering all the steps of the approach,
since the generation of MAKLINK graph to the training of
PSO. Meanwhile our approach took 8.39s to get the path
showed in Fig.11, although it is not the shortest path is a
smooth path which is much easier to follow for a mobile
nonholonomic robot than the one showed in Fig.10.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an approach to solve the path planning
problem as an optimization problem using the RBF networks
trained with PSO algorithm. A set of trajectory constraints
based on coverage control points as input pattern, which
can be seen as places where is desirable for the robot to
explore were used to approximate functions with PSO-RBF
approach, in order to obtain smooth and collision-free
paths. Furthermore, a combined fitness function is proposed
with respect to three requirements: (i) achieve minimum
mean square RBF- function approximation error ; (ii) avoid
collisions and (iii) minimize the length of the obtained path .

Fig. 8. Map with convex obstacles and coverage control points showed as
blue squares.

Fig. 9. Maklink graph generated from map showed in Fig.8

Results in simulation environments show that our approach
obtains smooth and collision free trajectories regardless of
the concavity of the obstacles or the number of these taking
advantage of the using of coverage control points as trajectory
constraints.

Future work includes the development of an hybrid al-
gorithm which combines PSO-RBF with some PSO-based
obstacle avoidance methodology in order to solve motion
planning in dynamic environments

REFERENCES

[1] J. Barraquand, B. Langlois, and J.C. Latombe. Numerical potential field
techniques for robot path planning. Systems, Man and Cybernetics, IEEE
Transactions on, 22(2):224–241, 1992.

[2] Xin Chen and Yangmin Li. Smooth path planning of a mobile robot
using stochastic particle swarm optimization. In Proceedings of the
IEEE International Conference on Mechatronics and Automation, pages
1722–1727, Luoyang, China, 2006.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 89

Fig. 10. Path obtained with Maklink-graph mutation PSO approach. This
path was obtained with Maklink-graph, Dijkstra’s algorithm and evolving 40
particles with PSO in a total time of 40.56s. The path obtained with this
approach is the shortest one that covers (or pass near of) all the control points.

Fig. 11. Smooth Path obtained with PSO-RBF approach. It was obtained
evolving 40 particles in a total time of 8.39s.

[3] E. Elbeltagi, T. Hegazy, and D. Grierson. Comparison among five
evolutionary-based optimization algorithms. Advanced Engineering
Informatics, 19(1):43–53, 2005.

[4] M. Gerke. Genetic path planning for mobile robots. In Proceedings
of the American Control Conference, pages 2424–2429, San Diego
California, 1999.

[5] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107, 1968.

[6] S.S. Haykin. Neural networks and learning machines, volume 3.
Prentice Hall, 2009.

[7] Y. Hu and S. X. Yang. A knowledge based genetic algorithm for path
planning of a mobile robot. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pages 4350–4355, New Orleans,
2004.

[8] M. Hua-Qing, Z. Jin-Hui, and Z. Xi-Jing. Obstacle avoidance with
multiobjective optimization by pso in dynamic environment. In Proceed-
ings of International Conference Machine Learning and Cybernetics,
volume 5, pages 2950–2956, Luoyang, China, 2005.

[9] James Kennedy and Russell C. Eberhart. Particle Swarm Optimization.
In Proceedings of IEEE International Conference on Neural Networks,
volume 4, pages 1942–1948, Washington, DC, USA, November 1995.
IEEE Computer Society.

[10] Wei Li and Gai-Yun Wang. Application of improved pso in mobile
robotic path planning. In Proceedings of the International Conference
on Intelligent Computing and Integrated Systems (ICISS) 2010, pages
45–48, Guilin, 2010.

[11] K.E. Parsopoulos and M.N. Vrahatis. Particle swarm optimization and
intelligence: advances and applications. Information Science Reference,
2010.

[12] Yuan-Qing Qin, De-Bao Sun, Ning Li, and Yi-Gang Cen. Path planning
for mobile robot using the particle swarm optimization with mutation
operator. In Proceedings of the Third International Conference on
Machine Learning and Cybernetics 2004, pages 2473–2478, Shanghai,
2004.

[13] E. N. Sánchez and A. Alanis. Redes neuronales: conceptos fundamen-
tales y aplicaciones a control automático. Cinvestav Unidad Guadalara.
Editorial Prentice Hall, 2006.

[14] M. Saska, M. MacaÌs, L. Preucil, and L. Lhotska. Robot path planning
using particle swarm optimization of Ferguson splines. In Emerging
Technologies and Factory Automation, 2006. ETFA’06. IEEE Conference
on, pages 833–839. IEEE, 2006.

[15] V. Selvi and R. Umarani. Comparative Analysis of Ant Colony and
Particle Swarm Optimization Techniques. International Journal of
Computer Applications IJCA, 5(4):1–6, 2010.

[16] A. Stentz. Optimal and efficient path planning for unknown and dynamic
environments. Technical report, DTIC Document, 1993.

[17] Li W., Yushu L., Hongbin D., and Yuanqing X. Obstacle-avoidance
path planning for soccer robots using particle swarm optimization.
In Proceedings of IEEE International Conference on Robotics and
Biomimetics, ROBIO 2006, pages 1233–1238, 2006.

[18] Yunfeng Wang and G. S. Chirikjian. A new potential field method for
robot path planning. In Proc. IEEE Int. Conf. Robotics and Automation
ICRA ’00, volume 2, pages 977–982, 2000.

90 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Call Admission Control Using Artificial Bee Colony
Optimization

Pratyusha Rakshit1, Pratyusha Das2, Amit Konar1, Atulya K. Nagar3
ETCE Department, Jadavpur University1, Institute of Engineering & Management2, Kolkata, India

3Department of Math & Computer Science, Liverpool Hope University, Liverpool, UK

Abstract- The paper provides a new approach to Call
Admission Control (CAC) problem using Artificial Bee
Colony (ABC) optimization algorithm. This paper
formulates CAC problem as a constrained optimization
problem, where the primary objective is to minimize the call
drop under dynamic condition of the mobile stations,
satisfying the constraints to maximize the channel
assignment and minimize the dynamic traffic load in the
network. The performance of the ABC algorithm is
compared to DE in connection with the CAC problem and
the experimental results reveal that the ABC outperforms
DE in all the experiments.

Keywords- call admission control; feasibility; hotness;
quality of service; artificial bee colony optimization.
1 INTRODUCTION

With the evolution of mobile communication, the types
of services have been evolved from voice service to
multimedia. As a large number of bandwidths are required
for multimedia services for wireless cellular networks, the
most important issue is to support Quality of Service (QoS)
for subscribers. There has been a rapid development in
wireless cellular communications, in which QoS guarantee
remains one of the most challenging issues. One of the key
elements in providing QoS guarantees is an effective Call
Admission Control (CAC) policy, which not only has to
ensure that the network meets the QoS of the newly arriving
calls if accepted, but also guarantees that the QoS of the
existing calls does not deteriorate. An efficient call
management also aims at satisfying additional objective to
assign appropriate channels to the incoming/handoff calls, so
that the necessary soft constraints for channel assignment are
maintained. Typically, soft constraints include co-channel,
co-site, and adjacent channel constraints, all of which need to
be satisfied to serve the secondary objective. CAC systems
are mainly used to take decisions, whether a call should be
serviced, blocked or dropped by a Base Station, and if
serviced, it identifies the channel to be assigned to that call.
At the time of taking such decision, the interference is
considered the only factor in most of the current literature [1,
2].

In this paper, we propose a scheme that takes a more
wide view of the CAC problem. We here use three
parameters: i) speed, ii) direction, and iii) distance of the
MS from the nearest base station to model the motion of the
mobile station. The above three parameters play an important
role at the time of soft handoff of a call from one cell to
other. The importance can be explained with the help of

Fig.1, where the central cell has six neighbors. The MS in
such a cell while in service may move in various directions
with different speed. If it moves toward cell 5 or 6 directly
then the channel for handoff will be searched in those cells.
When it moves slowly along the common boundary of cell 5
and 6, the cell with base station nearer to the current location
of MS is considered. Again, if the above movement takes
place with a very high speed, then the call may be dropped
due to high interference. Suppose, it moves towards cell 2
very slowly, then there may not be a requirement for a soft
handoff at all since it may never cross the existing cell
boundary. Hence, we aim at searching an optimal set of
assignment, which will take care of the quality of service,
and the velocity aspect of the scheme.

In this paper, we propose a CAC scheme that employs
Artificial Bee Colony (ABC) optimization algorithm. The
ABC technique is a population based algorithm for
numerical function optimization that draws inspiration from
the stochastic behavior of foraging in bees [3, 6, 7]. We here
apply the algorithm to the call admission control problem.
Although any stochastic optimization algorithm, such as
genetic algorithm (GA), particle swarm optimization (PSO),
differential evolution (DE) and the like could have been
used for the problem, we have selected ABC because of its
faster convergence and qualitative time-optimal solution [8].
It has also been verified in the paper that ABC has
outperformed DE in allocating channels dynamically in all
the different types of settings of velocity.

Section 2 explains the formulation of CAC in light of the
mobility of the MS and changing traffic load. Here in the
beginning all the terms are defined and symbolized
properly. Then in the next sub section the formulation for
fitness evaluation is undertaken. Section 3 gives a detail
outline of the artificial bee colony optimization algorithm.
Section 4 states the algorithm together with all the
operations done in it. Section 5 provides the simulation
results with an explanation of them. Conclusions are listed
at the end of section 6.
2 FORMULATION OF THE PROBLEM

2.1 Definitions
 We consider a system of M hexagonal cells present in

the network and each of them has N number of frequency
channels. The maximum number of calls that can be
serviced is given by Call. In CAC we need to find out the
best allocation of calls in different cells which is usually
represented by an allocation matrix. In this paper, we plan to
select the appropriate allocation matrix online, so as to

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 91

satisfy given objective function and systems constraints to
be introduced later. The knowledge of calls assigned to
channels in any cell is a very important to measure the
feasibility of assigning the new calls satisfying the soft
constraints.

 1

 2 6

 MS
 3 5

 4

Definition 1: Let F= [fi, m], ,, NmMi be a binary

matrix describing allocation of channels in given cells, where

 free. is cell i in the channel m theif ,0
 cell i in the call a serve toallocated is channel m if ,1]f[F thth

thth

m,i

Example: An example of a 4x3 allocation matrix where there
are 4 cells and 3 channels is given as

100
001
000
010

 Cell

channel

This implies that the 2nd channel of the 1st cell is serving
a call and rest of the channels is free.

Definition 2: Let assignment matrix

A= ,,,, CallmMia mi be a matrix describing the
assignment of calls to the channels of a cell, where

i cell in callm the to assigned channel of number the is p wherepa th
mi ,,

Example: Let there be 10 calls in the network with 4 cells
and 3 channels. Then

0003001000
0030100020
0200000100
3000020001

 Cell

 calls

We can see that the 1st call is served by the 1st channel
of the 1st cell, the 2nd call by the 2nd channel of 3rd cell, 3rd
call by the 1st channel of 2nd cell and so on.

While allocating the calls to the channels we should
maintain the QoS in terms soft constraints which ensure that
the new call assignment do not have any interference with
the existing calls assignment in the neighboring cells or in
the same cell. In this paper, we measure the QoS as a
function of three important network attributes: feasibility,
hotness and motion of the MS. The feasibility of channel
assignment is often expressed as linear combination of
allocation and compatibility matrices.

Definition 3: The compatibility matrix C gives a

measure of satisfaction of the soft constraints, attempted to
minimize co-channel, co-site and the adjacency-channel
interference, whose non-diagonal and diagonal elements are
expressed by

andll kgned in cecalls assithere are

 j when cell in assignment call a for required n seperatiochannel minimum

,
kj,C

.
,

ame celld in the sls assigneher channeere are ot when th

l i all in celassign a cquired to eration rehannel sep minimum ciiC

Example: A compatibility matrix in a 4 cell network is as

4320
3432
2343
0234

 0 to 3 C
4 andC where

i,j

i,i

,

Definition 4: Speed V= [vi, p] in the present context refer
to rate of position changing of a MS busy with a call utilizing
a channel p in cell i.

 Example:

highways in v
city the inside when v

 staticis MSthe when v

pi

pi

pi

60

600

0

,

,

,

Definition 5: Distance of MS j from the BS i i M is

denoted as Dis = [dist i, j].
Example: ddist ji, where d is the distance of the MS

from BS as in Fig. 2.

 .

Fig. 2. Distance between BS and MS

Definition 6: Hotness of a cell is defined as the number

of incoming calls per unit time and is denoted as H= [hi]. If
the number of incoming calls becomes very high the limited
resource of the system will not be able to handle the
incoming calls and thus subsequent new calls will be
blocked.

Example: Hotness in a 4-cell scenario where maximum
number of incoming calls is 10 can be given as

 58102][ihH

Definition 7: Angle of motion is the angle made by the

direction of motion of a MS p with respect to the BS i and is
denoted by Delt = [i, p], and is illustrated in Fig. 3. It shows
the direction in which the MS is moving and hence the
search for cells with free channels becomes easier.

Fig. 3. Angle of motion

Time taken by each call is useful for finding out the calls

going for a very long time. At the time of high congestion,
these calls are dropped to free the channels for reuse.

d BS

MS

Fig.1 illustrating the need to consider speed in a given
mobile cellular network.

MS p BS i

 pi,

Fig.1. Illustrating the need to consider speed in a given mobile cellular network

92 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

2.2 Formulation
Let the time taken by each call in a given channel p, of

each cell i is denoted by Ti, p. If vi,p be the speed with which
an MS is moving in any direction, then, its velocity along
that direction is pipiv ,, cos . Again if jpdist , be the distance

traversed by the MS in time piT , then average probability
of capturing that MS is denoted as PCMS and is given by

p jp

pipipi

dist
T v

,

,,,
CMS

cos
P

 (1)

An increase in the value of the above expression is
created by a high range of velocity, which gives very little
time to search a new channel and to go for a soft hand off
(SHO). Hence it should be minimized.

The difference between the two calls in the two different
channels should be at a minimum distance to avoid the
interference described as soft constrains above. The
feasibility of assignment of calls in a cell i can be checked by
satisfying inequality (2).The condition demands that the
channel separation should satisfy the bare minimum value
obtained from compatibility matrix and is denoted by Feas.

 jiC
m n i njamiajFeas

i jiC
m n i njamia 0)),|,,(|(,))|,,(|(

(2)

It follows from the last inequality that smaller the value
of the left hand side, lesser is the interference and thus better
is the quality of service of the call assigned to the channel.

The traffic load in a cell is an important issue to
determine the possible admission of incoming calls in a
given cell. Traffic load in the cell i may be expressed as the
ratio of incoming calls and the total free channels of the cell.
We define a metric to measure the traffic load in a given cell
i, denoted as Load and is given by

m
mi

i

f
h

Load
)1(,

 (3)

Hence the traffic load is the more if the number of
incoming calls exceeds considerably than the free cells in the
system and starts affecting the overall system performance.
Hence this is also to be minimized.

Since expressions (1), (2) and (3) all need to be
minimized, a minimization of their linear combination offers
an objective that jointly satisfies all the three basic
objectives. The overall objective function, the minimization
of which yields a possible solution to the call admission
problem, is given by

m
)m,if1(

ih
))

mn
j,iC|

j
n,jam,ia(|(

i p j,pdist
p,iT)p,icosp,iv(

LoadFeasCMSP Z

 (4)
The lower the value of the function better is the

performance of CAC system. Hence, the fitness is defined as
)1(1 Zfit (5)

 Here we also define the difference of fitness Z as

parentoffspring ZZZ (6)

3 ARTIFICIAL BEE COLONY OPTIMIZATION
ALGORITHM (ABC)

In ABC algorithm, the colony of artificial bees contains
three groups of bees:
 Onlooker bee makes decision to choose a food source.
 Employed bee goes to the food visited by it previously.
 Scout bee carries out random search of food source.

Here, the position of a food source represents a possible
solution of the optimization problem and the nectar amount
of a food source corresponds to the fitness of the associated
solution. The number of employed bees and onlooker bees is
equal to the number of solutions in the population ABC
consists of following steps:

3.1 Initialization

ABC generates a randomly distributed initial population
P (g=0) of Np food source position where Np denotes the
size of population. Each solution Xi (i=0, 1, 2,…, Np-1) is a
D dimensional vector.

3.2 Placement of employed bees on the food sources

An employed bee produces a modification on the
position in her memory depending on the local information
(visual information) as stated by equation (8) and tests the
nectar amount of the new source. Provided that the nectar
amount of the new one is higher than that of the previous
one, the bee memorizes the new position and forgets the old
one. Otherwise she keeps the position of the previous one in
her memory.

3.3 Placement of onlooker bees on the food sources

An onlooker bee evaluates the nectar information from
all employed bees and chooses a food source depending on
the probability value associated with that food source, pi,
calculated by the following expression:

 1

0

Np

j
j

i
i

fit

fit
p (7)

where fiti is the fitness value of the solution i evaluated by its
employed bee. After that, as in case of employed bee,
onlooker bee produces a modification on the position in her
memory and checks the nectar amount of the candidate
source and memorizes the better position only.

In order to find a solution Xi
/ in the neighborhood of

food source Xi, a solution parameter j and another solution
Xk are selected on random basis. Except for the value of
chosen parameter j, all other parameter values of Xi

/ are
same as in the solution Xi, for example,

Xi
/= (xi0, xi1, xi2, …, xi(j-1), xij

/, xi(j+1), …, xi(D-1)).
The value of xij

/ parameter in Xi
/ solution is computed

using the following expression:
).(/ xxxx kjijijij u (8)

where u is a uniform variable in [-1, 1] and k is any number
between 0 to Np-1 but not equal to i.

3.4 Send scouts for discovering the new food sources
In the ABC algorithm, if a position cannot be improved

further through a predefined number of cycles called ‘limit’,

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 93

the food source is abandoned. This abandoned food source is
replaced by the scout by randomly producing a position.

 After that again steps (B), (C) and (D) will be repeated
until the stopping criteria is met.

4 CAC REALIZED WITH ABC

Here, we propose a CAC algorithm which ensures
minimization of call drop and noise. We use ABC to ensure
the optimization.
Pseudo Code:
Input: Compatibility matrix C and hotness H for a network of M
cells, each with N channels and a threshold value .
Output: Allocation matrix F for the network.
Begin
 Repeat Until Z
 Call ABC (C, H)
End.

Procedure ABC (C, H)
Begin
 Initialize all the food sources Xi satisfying condition (2) with

trial[i]=0 for i = [0, Np-1], and problem parameters as well as
algorithm parameters like “limit”.

 Evaluate the fitness fit (Xi), i using (4) and (5) .
 For Iter=1 to Maxiter do
 Begin
 For each employed bee
 Begin
 Produce a new solution Xi

/ from (8);
 Calculate its fitness value fit (Xi

/) using (4) and (5);
 If fit (Xi

/)> fit (Xi) Then Xi Xi
/; trial[i]=0;

 Else trial[i]= trial[i]+1;
 End If;

End For;
For each onlooker bee
Begin

Select the food source Xi depending on pi as in (7);
Produce new solution Xi

/ using the same (8);
Calculate its fitness value fit (Xi

/) using (4) and (5);
 If fit (Xi

/)> fit (Xi) Then Xi Xi
/; trial[i]=0;

 Else trial[i]= trial[i]+1;
 End If;

End For;
 Memorize the best solution Xbest obtained so far;
 Set index arg (max (trial[0], trial[1],…, trail[Np-1]));
 If trial[index]>limit Then reinitialize Xindex by scout bee;
 End If;

End For;
 Update: F Xbest ;
Return.

5 EXPERIMENTS AND RESULTS

5.1 Basic assumptions
In this experiment we have considered the following

assumptions:
 The network has 21 hexagonal cells and 7 channels as

shown in Fig. 4.

 The value of
o Co-channel distance is 2
o Adjacency channel distance is 3
o Co-site distance is 4
 The number of incoming calls lies in the range 0 to 150

and changes dynamically.
 Initial population size was taken as 20.
 The velocity change was from 0 to 120 km/hr.
 The distance between two base stations is 2 km and

remains unchanged.
 The calls are considered long if they go on more than 30

minutes.
 The direction of the MS, its distance from the base station

and velocity changes dynamically.
In addition to these, we consider the random call hang-up

in the system and express this phenomenon as Change.
Suppose in a given cell r, a call served with channel c is
disconnected by the caller. Then following the definition of
allocation matrix F, we understand that the element fm,l = 0
for m= r and l=c, after disconnection of the call.

i.e., cl r,m where0, f lm , (9)
We have considered minimum two such hang-ups in the

network. Accordingly random positions are generated where
Change is done as described above. A call is forcefully
terminated if the duration of the call is greater than Long call
interval L. The initial conditions and necessary changes of
the dynamic network are enforced obeying the above stated
assumptions.

5.2 Results
The experiment was carried out on a simulated

environment on Intel Core 2 Duo processor architecture
with clock speed of 2GHz. Fig. 5 shows that the average
cost function value gradually diminishes with iterations.
Further, it is noted that the smaller the velocity settings of
the mobile stations in program run, the faster is the fall off
in the average cost function profile. An intuitive
interpretation of this phenomenon is that with increase in
velocity i.e., a high rate of change in position of the MS,
more constraints are faced to allocate channels to the MS,
thereby increasing average cost function.

 Fig.4. Network of 21 cells

2
100

3
28

5
24

1
70

4
23

7
55

8
79

10
90

6
35

9
103

14
75

15
20

17
30

13
85

16
49

20
40

21
60

12
70

19
50

11
 120

18
27

94 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

0 10 20 30 40 50 60 70 80 90 100
-1.22

-1.2

-1.18

-1.16

-1.14

-1.12

-1.1
x 10

6

Iteration

A
ve

ra
ge

 C
os

t F
un

ct
io

n

Velocity 0-40
Velocity 40-80
Velocity 80-120

Fig.5. Average cost function vs. Iteration

The relative performance of DE and ABC can be studied
through error estimation as indicated in Fig. 6-8. In these
figures, we plotted the average cost function obtained from
classical DE- and ABC - based experiments, corresponding
to each value of iteration. We also evaluated the error in
average cost function by taking the difference of the same
obtained from DE and ABC as shown in Fig. 8(a) and (b).
Let Ei be the error for the i-th sample data. Since the errors
for different sample data are all positive, indicating a
superiority of ABC over DE, a measure of the relative
goodness of ABC over DE can be defined as the root mean
square error Er.m.s= 29869 and Er.m.s= 29581 respectively.
This shows ABC as having an advantage over DE for the
call assignment control problem. Of course, the root mean
square error (29869 and 29581 respectively) at the sample
points being insignificantly less than the root mean square
value (1162200 and 1159200 respectively) of the averaged
average cost function profiles for DE- and ABC - based
simulations.

0 10 20 30 40 50 60 70 80 90 100
-1.19

-1.18

-1.17

-1.16

-1.15

-1.14

-1.13

-1.12

-1.11
x 106

Iteration

A
ve

ra
ge

 C
os

t F
un

ct
io

n

ABC
DE

Fig.6. Average cost function vs. Iteration for velocity [0, 40]

0 10 20 30 40 50 60 70 80 90 100
-1.2

-1.19

-1.18

-1.17

-1.16

-1.15

-1.14

-1.13

-1.12
x 106

Iteration

Av
er

ag
e

Co
st

 F
un

ct
io

n

ABC
DE

Fig.7. Average cost function vs. Iteration for velocity [40, 80]

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Iteration

D
iff

er
en

ce
 in

 A
ve

ra
ge

 C
os

t F
un

ct
io

n
w

ith
 D

E
 a

nd
 A

B
C

Fig. 8(a). Difference in Average cost function with DE and ABC vs.

Iteration for velocity [0, 40]

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3

4

5
x 10

4

Iteration

D
iff

er
en

ce
 in

 A
ve

ra
ge

 C
os

t F
un

ct
io

n
w

ith
 D

E
 a

nd
 A

B
C

Fig. 8(b). Difference in Average cost function with DE and ABC vs.

Iteration for velocity [40, 80]

The allocation matrices obtained using ABC and DE-

based simulation with a velocity range of 0 to 40 and for a
generation of 100 are given in TABLEs I-II.

TABLE-I
Allocation matrix obtained from ABC-based simulation with velocity

 [0. 40]

For simulation purposes, we have considered two

different classes of problems available in the literature:

 Channel No.
1 2 3 4 5 6 7

Cell
No.

1 0 1 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 0 1 1 1 0 0
4 0 1 1 1 1 0 1
5 0 0 0 1 1 1 0
6 1 1 0 0 1 0 0
7 1 0 1 1 0 1 0
8 1 1 0 1 1 0 1
9 1 1 0 0 1 0 0
10 0 1 1 0 0 0 1
11 1 0 1 1 0 1 1
12 0 0 1 0 0 1 0
13 0 0 1 1 1 0 1
14 1 1 1 1 0 1 1
15 1 0 0 1 0 1 0
16 1 0 1 1 1 1 1
17 1 0 0 0 0 0 0
18 1 1 1 1 0 1 1
19 1 1 0 1 1 1 0
20 1 1 1 1 1 0 1
21 0 1 1 0 1 1 1

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 95

1. The first class consists of data set, denoted as EX1 [4], as
well as a slightly larger extension of EX1, denoted as
EX2 [5].

2. The final set of problems is KUNZ1-KUNZ4 [5].
However, we have used only KUNZ1 in this paper.
Using the descriptive details of each problem, as tabulated

in [5], we have obtained the following allocation matrices
from ABC-based simulation as shown in TABLE-III.

The average cost function profiles for three problem using
ABC and DE are given in Fig. 9. A close observation of Fig.
9 indicates that ABC-based simulation has outperformed
DE-based simulation in terms of convergence speed as well
as quality of solution.

TABLE-II
Allocation matrix obtained from DE-based simulation with velocity [0, 40]

6 CONCLUSION
In the proposed work, we consider our cells to be

hexagonal so as to easily track the movement of MS in the
neighborhood cells. Instead of considering a single cell
scenario, we have taken a small network to implement the
algorithm to incorporate the intercellular communication
efficiently. The decision of acceptance or rejection of a call
dose not only depend on the feasibility and availability of
the channel but also on the speed at which the MS moves
and its direction of movement. Its geographical location
with respect to the base station also has a significant
importance. Moreover the traffic density on a cell is also
considered to be a determining factor. The reuses of the
channels also make the approach more effective. The CAC
scheme using ABC technique has been compared with a
similar scheme using DE. The results show that when ABC
scheme is considered, a better optimum is obtained in
comparison to the scheme using DE irrespective of the load
value or the velocity of the MS as well as for different
problem sets.

0 10 20 30 40 50 60 70 80 90 100
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5
x 104

Iteration

A
ve

ra
ge

 C
os

t F
un

ct
io

n

ABC
DE

(a)

0 10 20 30 40 50 60 70 80 90 100
-3

-2.5

-2

-1.5

-1

-0.5

0
x 105

Iteration

A
ve

ra
ge

 C
os

t F
un

ct
io

n

ABC
DE

(b)

0 10 20 30 40 50 60 70 80 90 100
5

5.5

6

6.5

7

7.5

8

8.5
x 10

6

Iteration

A
ve

ra
ge

 C
os

t F
un

ct
io

n

ABC
DE

(c)

Fig.9. Average cost function profiles for (a) EX1 (b) EX2 (c) KUNZ-1

7 REFERENCES
[1] L. Wang, S. Arunkumaar, and W. Gu, “Genetic

algorithms for optimal channel assignment inmobile
communications”, Proceedings of the 9th International
Conference on Neural Information Processing ICONIP
2002, Vol. 3, pp. 1221-1225 Nov. 2002.

[2] J. Hou, and Y. Fang “Mobility-based call admission
control schemes for wireless mobile networks” Wirel.
Commun. Mob. Comput. 1:269–282 2001.

[3] B. Basturk, and Dervis Karaboga, “An artificial bee
colony (ABC) algorithm for numeric function
optimization”, IEEE Swarm Intelligence Symposium
2006, May 12-14, 2006, Indianapolis, Indiana, USA.

[4] K. N. Sivarajan, R. J. McEliece, and J. W. Ketchum,
“Channel assignment in cellular radio”, Proc. 39th
IEEE Veh. Technol. Soc. Conf., pp. 846-850, May,
1989.

[5] K. Smith, and M. Palaniswami, “Static and dynamic
channel assignment using neural network”, IEEE
Journal on Selected Areas in Communications, vol. 15,
no. 2, Feb 1997.

[6] P. Rakshit, A. K. Sadhu, P. Bhattacharjee, A.
Konar, and R. Janarthanan, “Multi-robot box-pushing

 Channel No.
1 2 3 4 5 6 7

Cell
No.

1 0 1 0 0 0 0 0
2 0 0 0 0 0 0 0
3 1 1 1 1 1 1 0
4 1 1 0 0 1 1 1
5 0 1 1 1 1 1 0
6 1 1 1 0 1 0 1
7 1 0 0 1 0 1 1
8 1 1 0 1 1 0 1
9 1 0 0 1 1 0 1
10 0 1 0 1 0 0 1
11 1 0 0 1 1 1 1
12 1 0 0 0 0 0 0
13 1 0 1 0 0 0 1
14 1 0 0 1 1 1 0
15 1 1 0 1 1 0 0
16 1 0 1 1 1 0 1
17 1 1 0 0 0 0 1
18 0 1 0 0 0 0 0
19 1 1 1 1 0 1 0
20 0 1 1 1 1 0 1
21 1 1 1 1 0 1 1

96 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

using non-dominated sorting bee colony optimization
algorithm”, SEMCCO 2011: 601-609.

[7] P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, and
A. K. Nagar, “Multi-robot path-planning using artificial
bee colony optimization algorithm”, NaBIC 2011: 219-
224.

[8] A. Halder, P. Rakshit, A. Chakraborty, A. Konar, and
R. Janarthanan, “Emotion recognition from the lip-
contour of a subject using artificial bee colony
optimization algorithm”, SEMCCO 2011: 610-617.

[9] S. Ghosh, A. Konar, and A. Nagar, “Dynamic channel
assignment problem in mobile networks using particle
swarm optimization”, EMS 2008: 64-69.

[10] S. Bhattacharjee, A. Konar, and A. K. Nagar, “Channel
allocation for a single cell cognitive radio network
using genetic algorithm”, IMIS 2011: 258-264.

TABLE-III

Allocation matrices obtained for EX1, EX2 and KUNZ1 using ABC-based simulation
Problem Allocation Matrix

EX1

0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

EX2

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0

KUNZ1

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1
1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1
0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0
1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1
1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0
1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0
0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 97

98 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

SESSION

MEMETIC ALGORITHMS + FUZZY LOGIC +
HEURISTIC METHODS

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 99

100 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

An Efficient Direct Torque Control Based on Fuzzy Logic

Technique

Jibo Zhao
1
 and Hong Wang

2

1
 Electrical Engineering and Computer Science Department, University of Toledo , Toledo, OH, USA

2Engineering Technique Department, University of Toledo, Toledo, OH, USA

Abstract - Conventional Direct Torque Control (CDTC)

system of Induction Motor (IM) faces the problem of high

torque ripples, and has difficulty in improving the

performance of dynamic torque response and controlling flux

locus at very low speed. In this paper, a DTC control system

for induction motor based on Fuzzy Logic technology

(FLDTC) is proposed. The proposed system aims to make less

torque ripples, faster dynamic response, and higher

performance of flux control at very low speed by introducing

some new fuzzy variables and rescheduling the fuzzy switcher

rules. The model of the proposed system is built on

simulink/matlab. Simulation results show that the proposed

technique FLDTC is more efficient than CDTC.

Keywords-Direct torque control, induction motor, fuzzy logic,

and fuzzy switcher rules.

1 Introduction

Conventional direct torque control is a simple and

efficient control technique to provide quick torque and flux

control. The major advantages of direct torque control

technique are its simple structure and robust control scheme

without the complex mathematical transforms. However,

CDTC also has some drawbacks like high electromagnetic

torque ripple, high stator current distortion, relatively slow

transient response to torque step changes of load and flux

locus attenuation at very low speed [1-3].

To improve the performance of dynamic response of

CDTC, some studies have been carried out in the past [4] [5]

to increase the response speed of torque step change. One

research has developed a methodology of optimizing the

selection of the voltage vectors to give a maximum rate of

torque increase or decrease to meet the torque step change [6],

and dramatically improved the CDTC responding speed, but

the expense is the low performance of flux locus.

By introducing CDTC technique to induction motor, the

controller uses voltage vectors to control the flux or torque

according to three elements: hysteresis of flux error, torque

error and flux location. However, sometimes the flux locus or

the torque only needs the voltage vectors to last for a very

short time during a switching period in steady-state, or

perhaps it needs the control signal to last for several switching

period in dynamic-state. The hysteresis of CDTC system can

only judge the situation by positive and negative error values,

but it does not have the ability to adjust the flux and torque

according to exact error values. For the purpose of handling

this problem, a method to reduce torque ripple in DTC of

induction motor by using fuzzy mode duty cycle [7] is applied

to control the duty cycle of the switches according to the exact

value of the torque and flux errors and has successfully

decreased the torque ripples. On the other hand, lots of

attempts based on fuzzy logic technique are shown to be

efficient in many researches. For instance, in the fuzzy logic

control method proposed in [8] and [9], the fuzzy logic

controller can recognize how big the error is and makes an

optimal adjustment; Moreover, a stator resistance estimator

using fuzzy logic at low speed applied in [10], can help to

improve the performance of torque ripple by making the

mathematical model of CDTC more accurate. Some other

researches [11-13] also provide several useful applications of

fuzzy logic in DTC. All these methods have proven that fuzzy

logic technique can make great contributions to DTC.

This paper aimed to take advantage of fuzzy logic

technique to solve the problems mentioned above. A group of

new FL switcher rules will be introduced. This FL controller

can detect the steady and dynamic states of induction motor

automatically, and control the flux and torque with optimal

vectors according to fuzzy switcher rules. The FL controller

has also solved the problem of flux attenuation at very low

speed. Both the steady and dynamic performance of torque

error and torque response to step changes can be improved by

the proposed methodology. The simulation results of CDTC

and FLDTC will be studied and compared.

2 Proposed technology with fuzzy logic

To improve the performance of CDTC, we apply a

Mamdani-type fuzzy logic system based on DTC principles.

The torque hysteresis in CDTC is substituted by this FL-

controller. Different from commonly used controller, the

proposed FL-controller has six input variables: Torque error

(Te), flux error (Fe), flux position (SE), angle difference (A),

rotor speed (SP) and working state (WS).

The membership function of “flux error” (Fe) has four

fuzzy sets: negative (N), zero (Z), positive (P) and positive

large (PL). The fuzzy variable “torque error” (Te) is

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 101

D
eg

re
e

o
f

m
em

b
er

sh
ip

D

eg
re

e
o

f
m

em
b

er
sh

ip

D
eg

re
e

o
f

m
em

b
er

sh
ip

represented by five fuzzy sets: negative large (NL), negative

(N), zero (Z), positive (P) and positive large (PL). The fuzzy

membership function of “sector” (SE) which stands for the

location of flux is represented by six fuzzy sets: sector (1-6)

S1, S2, S3, S4, S5 and S6 as shown in Fig. 1. The

membership functions of the three fuzzy variables are shown

in Fig. 2 (a-c). The other three fuzzy variables will be

introduced separately in the following paragraphs.

S2

S1

S3

S6

S4

S5

Figure 1. Spatial distribution of six sectors

Flux error

(a). Fuzzy membership functions for Fe.

Torque error (N.m.)

(b). Fuzzy membership functions for Te.

Sectors

(c). Fuzzy membership functions for SE.

Figure 2. Fuzzy membership functions for Fe, Te and SE.

The electromagnetic torque of IM can be expressed as

follows,

3

sin
2

n

e s r

P
T

L

 (1)

where 2() /s rL L L M M (2)

s and
r are the stator and rotor flux vectors,

sL is the

stator inductance,
rL is the rotor inductance, M is the

magnetizing inductance, δ is the angle between the stator and

rotor fluxes and
nP is the number of the pole pairs.

When 90 ,
3

2

n

e s r

P
T

L

 (3)

If the system is ideal no-load, then the average torque is zero.

If assuming =s r , then we can get the maximum value of

dynamic torque:

2

max

3

2

n

e s

P
T

L

 (4)

Thus, the electromagnetic torque can be written as

max sine eT T (5)

Because of the assumption that the IM is ideal no-load, the

average torque is zero. The torque ripple can be written as:

 max sine eT T (6)

Assuming the rotating speed of rotator flux is a short-term

constant value, then,

 ()s r t (7)

In condition that δ is very small,

max ()e e s rT T t (8)

The rotating speed of
s when the reference torque is ideal

no-load can be expressed as:

2

a

aT

 (9)

aT is the time period for the stator flux. Merge (8) and (9), we

can get the increasing time of torque:

max (1)

e a

i

r
e

a

T T
t

T

 (10)

Similarly, we can get the torque decreasing time:

max

e a

d

r
e

a

T T
t

T

 (11)

Formula (11) can be written as:

 max

2 e

d

e r

T
t

T

 (12)

From (12) we can get the conclusion that the time

required to decrease the torque gets longer when the rotating

speed is very low. It is clear that the torque decreases slower

at low speed than that at high speed if the controller still uses

zero voltage vectors. Thus, replacing zero voltage vectors

with reversed voltage vectors may increase the response speed

102 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

D
eg

re
e

o
f

m
em

b
er

sh
ip

D
eg

re
e

o
f

m
em

b
er

sh
ip

because reversed voltage vectors can produce bigger negative

torque change. Moreover, if we only use zero vectors to

reduce the negative torque error without the usage of reversed

vectors at very low speed, the flux locus would attenuate and

even result in failure start. On the other hand, if using

reversed vectors too often at very low speed may result in

bigger toque ripple in steady state than zero vectors. To

balance the problem, another fuzzy variable “SP” is used in

the FL controller. The membership function of SP as

indicated in Fig. 3 is divided into low speed mode (L) and

high speed mode (H). When working at low speed (the speed

less than 30% of rated speed is defined as low speed), the FL

controller will test the flux error. If the flux error is N, Z or P,

and the torque error is in the range of P, Z and N, the

controller will work exactly in the same way as it does in high

speed mode. However, if the flux error is PL, which means

the flux locus is attenuating, the controller will enable the

reversed voltage vectors to justify the flux locus. The

switching rules at high speed and very low speed are shown in

table 1 and table 2. The fuzzy variable “A” in the two tables

will be introduced later. This method can take advantages of

both zero vector and reversed vector.

Rotating speed (as a fraction of rated speed)

Figure 3. Memberships function for SP.

TABLE I. FUZZY CONTROL RULES OF FLDTC IN HIGH SPEED (K IS THE

NUMBER OF SECTOR)

Te Fe A V

NL/N/Z N/Z/P/PL L/S V0/V7

P N L/S V(k+2)

Z/P/PL L/S V(k+1)

PL N/Z/P/P L V(k+1)

S V(k+2)

In order to detect the working state, another variable

“WS” is added to the FL controller. The variable “WS”

carries the information of whether or not there is a toque step

change in the load. The system can decide which working

mode of the FL controller should be taken based on this

information. The system automatically tests the change of the

torque in the load and compares it with the output toque. Once

the difference between them reaches the predefined threshold,

the state of the system will change into dynamic working state.

In this working state, the fuzzy rules will allow the controller

temporarily neglects the regulation of flux locus. Because the

dynamic state lasts only for a very short time, the transient

change will not influence flux locus significantly, and the

locus will recover as soon as the system turn back to steady

state. The variable “WS” is composed of three fuzzy sets:

dynamic work state whose step change is negative (DN),

dynamic work state whose step change is positive (DP) and

steady work state (S). The membership function is shown in

Fig. 4.

TABLE II. FUZZY CONTROL RULES OF FLDTC IN LOW SPEED (K IS THE

NUMBER OF SECTOR)

Te Fe A V

NL

N/Z L V(k-2)

S V(k-1)

PL L/S V(k-1)

N

N/Z L/S V0/V7

P L/S V(k)

PL L/S V(k-1)

Z N/Z/P L/S V0/V7

PL L/S V(k+1)

P N L/S V(k+2)

 Z/P/PL L/S V(k+1)

PL

N/Z L/S V(k+2)

P/PL L V(k+1)

S V(k+2)

Working state (as a fraction of rated torque)

Figure 4. Memberships function for WS.

We can directly get the conclusion from [6] that the

optimal voltage vectors giving the fastest response can be

simplified as a problem of maximization:

 max{sin()}k ro
k

fn (13)

where k is the order of voltage vector,
k and

ro are the stator

voltage vector angle and initial rotor flux angle, respectively.

From (13) we know that the voltage vector which creates

the largest sine value with rotor flux has the ability to produce

the largest torque change. In order to take advantage of the

conclusion, another fuzzy variable “A” is added to the fuzzy

controller. The rotor flux can be approximately equivalent to

stator flux because the slip angular velocity is actually very

small. When torque needs to be increased, the fuzzy variable

A is the angle between rotor flux and voltage vector V (k+1).

When torque needs to be decreased, variable A becomes the

angle between rotor flux and voltage vectors V (k-2).

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 103

D
eg

re
e

o
f

m
em

b
er

sh
ip

For instance, as shown in figure 5, when the flux is at

point P1, the angle between the vector V (k+1) and flux is π/2,

which means that V (k+1) can create the biggest torque

change according to (13), so A is L at this moment and V

(k+1) is chosen to produce the biggest torque increase. As

soon as the flux moves to point P2, the angle variable A

decreases to π/3, which means that V (k+1) will not produce

the fastest torque response in the following time and variable

A becomes S at this moment. Hence V (k+2) will be taken

instead of V (k+1). The way to produce the fastest torque

decrease is similar. This conclusion also explains the reason

to use the fuzzy variable A in table 1 and table 2.

V(k+2)

S(k)
V(k+1)

S(k-1)

S(k+1)

V(k)
S(k-2)

S(k+2)

S(k+3)

V(k+3)

V(k-1)

V(k-2)

P1

P2

A=π/3

Direction of

rotation

Figure 5. Rotor flux vectors and six voltage vectors.

Whether A is Large (L) or Small (S) is defined in the

following way. When the torque needs to be increased quickly,

if the difference between the angles of rotor flux and the

voltage vector V (k+1) is in the range of (π/3, π/2), then A is

large (L), otherwise A is small (S). Conversely, when the

torque needs to be decreased quickly, if the difference

between the angles of rotor flux and voltage vector V (k-2) is

in the range of (π/2, 2π/3), then A is large (L), otherwise A is

small (S).The results will be transferred to the FL controller

which can analyze the composite conditions and give an

optimal voltage vector selection according to the expert

knowledge. The membership function of A shown in figure 6

is represented by two fuzzy sets: large (L) and small (S).

Flux angle (Degree)

Figure 6. Membership function of A.

 From the fuzzy variables and fuzzy rules introduced

above, we can get the flow chart of the FL controller in Fig. 7.

To sum up, the fuzzy switching rules can be summarized

to table 3. Each rule in table 3 can be written as: Ri: if WS is

Ai, SP is Bi, Te is Ci, Fe is Di, SE is Ei and A is Fi, then V is

Vi, where Ri is the ith fuzzy rule. Ai, Bi, Ci, Di, Ei and Fi are

the values of fuzzy sets of the fuzzy variables WS, SP, Te, Fe,

SE and A.

Negative,
positive, or

none?

Flux angle
is large?

Flux angle
is large?

Positive

 Speed is
very low?

Negative

None

V=V(k+1) V=V(k-2)V=V(k+2) V=V(k-1)

Get torque
step change

Get flux
angle

Get
rotating
speed

Using Fuzzy
logic rules

for low speed

Using Fuzzy
logic rules
for normal

speed

Yes No

Yes YesNo No

 Figure 7. Flow chart of the FL controller

TABLE III. FUZZY CONTROL RULES OF FLDTC (K IS THE NUMBER OF

SECTOR)

WS SP Te Fe A V

S

L

NL

N/Z L V (k-2)

S V (k-1)

PL L/S V (k-1)

N

N/Z L/S V0/V7

P L/S V(k)

PL L/S V (k-1)

Z N/Z/P L/S V0/V7

PL L/S V (k+1)

P N L/S V (k+2)

Z/P/PL L/S V (k+1)

PL

N/Z L/S V (k+2)

P/PL L V (k+1)

S V (k+2)

H

NL/N/Z N/Z/P/PL L/S V0/V7

P N L/S V (k+2)

Z/P/PL L/S V (k+1)

PL N/Z/P/P L V (k+1)

S V (k+2)

DP L/H N/P/Z

N/Z/P/PL L V (k+1)

S V (k+2)

DN L/H N/P/Z N/Z/P/PL L V (k-2)

S V (k-1)

3 Simulation results

 To verify the efficiency of the proposed system, the

model is tested on matlab tool. The induction motor’s

parameters are given as follows:

104 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

E
le

ct
ro

m
ag

n
et

ic
 T

o
rq

u
e

(N
.m

.)

E

le
ct

ro
m

ag
n

et
ic

 T
o

rq
u

e
(N

.m
.)

E
le

ct
ro

m
ag

n
et

ic
 T

o
rq

u
e

(N
.m

.)

E
le

ct
ro

m
ag

n
et

ic
 T

o
rq

u
e

(N
.m

.)

Rated Voltage: 380 V

Pole pairs: 2

Stator Resistance 1.111 Ω

Rotor Resistance 1.083 Ω

Stator Inductance: 0.5974 H

Rotor Inductance: 0.5974 H

Mutual Inductance: 0.2037 H

Moment of inertia J: 0.02 kg.m^2

Friction factor: 0.0057 N.m.s

Sampling period of the system: 50 μs

Time (s)

(a). Electromagnetic torque for CDTC

Time (s)

(b). Electromagnetic torque for FLDTC

Figure 8. Electromagnetic torque

Fig. 8 (a) and (b) show the performances of the torque

ripples of the motor at 300 rad/sec and no load for CDTC and

FLDTC, respectively. It is clearly shown that the toque ripple

in Fig. 8(b) is approximately 40% smaller than that in Fig. 8

(a). Hence we can conclude that FLDTC produce less torque

ripple than CDTC in steady state.

Keeping the speeds unchanged, and adding a step torque

change as big as 12N.m. at 0.08sec in the load, we can get

the curves of torque response illustrated in Fig. 9. The torque

response of FLDTC is significantly faster than that of CDTC.

Time (s)

(a). Response of the step torque change for CDTC

Time (s)

(b). Response of the step torque change for FLDTC

Figure 9. Electromagnetic torque responses with a step change of 12N.m

at 0.08 sec for CDTC and FLDTC

The flux locus of FLDTC in both steady state and

dynamic state with a torque step change of 12N.m at 0.08 sec

are given by Fig. 10. From Fig. 10(a), we can see that the flux

locus is not significantly different from the flux locus of

CDTC in steady state. Nevertheless, the flux locus shown in

Fig. 10(b) has a transient change when a step change is

applied in the load. That is because the FL controller

temporarily ignores the flux locus when working in dynamic

state. In this state, the controller only imposes the voltage

vectors producing the biggest torque change rate. Hence the

flux locus moves toward the same direction as the voltages

vector. This is why the flux locus rotates along a hexagon

track at that moment, and then recovers as soon as the torque

reaches the reference value.

Fig. 11 shows the flux locus of FLDTC at 20rad/sec and

no load. We know that CDTC has the disadvantages such as

flux locus distortion in very low speed. Simulation result

proves that the flux locus can be improved by using the

proposed controller. The success can be attributed to the

rational selection between reversed voltage vectors and zero

voltage vectors.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 105

(a). Flux locus of FLDTC in steady state

(b). Flux locus of FLDTC in dynamic state

Figure 10. Flux locus of FLDTC

Figure 11. Flux locus of FLDTC at 20 rad/sec

4 Conclusion

A fuzzy logic based direct torque control system is

implemented in this paper to improve the performance of

conventional DTC system. The FL controller enables the

system to choose optimal stator voltage vectors producing the

most suitable rate of torque change according to the six fuzzy

variables. Simulation results have shown the effectiveness of

the proposed method. Through the comparison between

CDTC and FLDTC, we have shown that the FLDTC design in

this paper keeps all the advantages of CDTC, and makes some

improvement in reducing torque ripples, faster torque

response, and stability at very low speed.

5 References

[1] Chintan Patel, Rajeevan P. P, Anubrata Dey, Rijil

Ramchand, K. Gopakumar, “Fast Direct Torque Control of

Open-end Induction Motor Drive using 12-sided Polygonal

Voltage Space Vectors,” IEEE Transactions on Power

Electronics, Vol. 27, Issue 1, 400 – 410, Jan. 2012.

[2] Eric Monmasson, Marcian N. Cirstea, “FPGA Design

Methodology for Industrial Control Systems—A Review,”

IEEE transactions on industrial electronics, Vol. 54, Issue. 4,

1824-1842, Aug. 2007.

[3] Yongchang Zhang, Jianguo Zhu, Zhengming Zhao, Wei

Xu, David G. Dorrell, “An Improved Direct Torque Control

for Three-Level Inverter-Fed Induction Motor Sensorless

Drive,” IEEE transactions on power electronics, Vol. 27,

Issue 3, 1502 – 1513, Mar. 2012.

[4] Narasimham PVRL, Sarma AVRS, Vargilkumar E, “A

Sector Advanced Technique to improve dynamic response of

a Direct Torque Controlled induction motor,” 2010 IEEE

International Conference on Power and Energy (PECon), 456-

461, Dec. 2010.

[5] Auzani Jidin, Tole Sutikno, Aiman Z. Jidin, Nik Rumzi

Nik Idris, Abdul Halim M. Yatim, “A Novel Dynamic

Overmodulation Strategy of Direct Torque Control,”

Indonesian Journal of Electrical Engineering, Vol. 8, Issue 3,

275 – 284, Dec. 2010.

[6] S.A.Zaid, O.A.Mahgoub, K.A.El-Metwally, “Implement

-ation of a new fast direct torque control algorithm for

induction motor drives,” IET Electr. Power Appl., 2010, Vol.

4, Issue 5, 305–313, May 2010.

[7] Turki Y. Abdalla, Haroution Antranik Hairik, Adel M.

Dakhil, “Minimization of Torque Ripple in DTC of Induction

Motor Using Fuzzy Mode Duty Cycle Controller,” 2010 1st

International Conference on Energy, Power and Control

(EPC-IQ), 237-244, Dec. 2010.

[8] Soufien Gdaim, Abdellatif Mtibaa, Mohamed Faouzi

Mimouni, “Direct Torque Control of Induction Machine

based on Intelligent Techniques, “ International Journal of

Computer Applications, Vol. 10, Issue 8, 29-35, Nov. 2010.

[9] R.Toufouti S, Meziane, H. Benalla, “Direct Torque

Control for Induction Motor Using Fuzzy Logic,” ACSE

Journal, Vol. 6, Issue 2, 19-26, June, 2006.

[10] F. Zidani, D. Diallo, M. E. H. Benbouzid, and R.Nait-

Said, “Direct Torque Control of Induction Motor With Fuzzy

Stator Resistance Adaptation,” IEEE transactions on energy

conversion, Vol. 21, Issue 2, 619-621, June 2006.

106 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

[11] YAN Wei-Sheng, LIN Hai, LI Hong, Yan Wei,

“Sensorless Direct Torque Controlled Drive of Brushless DC

Motor based on Fuzzy Logic,” 4th IEEE Conference on

Industrial Electronics and Applications, 2009. ICIEA 2009,

3411 – 3416, May 2009.

[12] Gao Sheng-wei, Wang You-Hua1, Cai Yan, Zhang

Chuang, “Research on Reducing Torque Ripple of DTC

Fuzzy Logic-based,” 2010 2nd International Conference on

Advanced Computer Control (ICACC), Vol. 2, 631 – 634,

Mar. 2010.

[13] Yuedou Pan, Yihai Zhang. “Research on Direct Torque

Control of Induction Motor Based on Dual-Fuzzy Space

Vector Modulation Technology”, Sixth International

Conference on Fuzzy Systems and Knowledge Discovery,

2009. FSKD ‘09, Vol. 6, 383-388, Aug. 2009.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 107

 A Memetic Algorithm for Parallel Machine
Scheduling

Serafettin Alpay
Eskişehir Osmangazi University, Industrial Engineering Department, Eskisehir, Turkiye

Abstract - This paper focuses on the problem of

scheduling a set of independent jobs with setup times and

job splitting, on a set of identical parallel machines such

that total tardiness is minimized. In this study, it is

assumed that a job can be split into sub-jobs and these

sub-jobs can be processed independently on parallel

machines. Because the problem is NP-hard, a memetic

algorithm (MA) is proposed. Several test problems are

solved via MA and its performance is compared to

solutions obtained via simulated annealing (SA) and tabu

search (TS) approaches from the literature. Experimental

results reveal that proposed MA produces better total

tardiness performance than SA and TS.

Keywords- Memetic Algorithms, Parallel Machines,

Scheduling, Total Tardiness, Job Splitting

1 Introduction

The scheduling of jobs on parallel machines provides

for interesting and challenging combinatorial problems

that continue to interest researchers [1]. Parallel machine

scheduling comes down to assigning each operation to one

of the machines and sequencing the operations assigned to

the same machine. We may have identical, uniform or

unrelated parallel machines. If the machines are identical,

then the processing time of each job is the same on all

machines. Uniform machines work at different speeds,

i.e., the processing time of each job differs by a constant

factor for the individual machines. If the machines are

unrelated, then there is no relation between the processing

times of the jobs and the machines. [2]

Generally, there are two decisions to be made in

parallel-machine scheduling problems. One is to assign

jobs to the machines, and the other is to determine the

sequence of the jobs on each machine [3]. Therefore,

parallel machine problems generally seem to be harder

than single machine problems [4].

There are various published papers in parallel machine

scheduling problems. The common objectives studied in

this area include the minimization of completion time,

tardiness, and make-span [5]. As the single machine total

tardiness problem is strongly NP-hard, it follows that the

parallel-machine total tardiness problem is strongly NP-

hard, too [4]. It was showed that even the minimization of

total tardiness in two identical machine scheduling

problem was NP-hard [6].

In this paper, an identical parallel machine scheduling

problem with the objective of minimizing of total

tardiness is addressed while considering a job splitting

property of the jobs. The jobs can be split into a number

of sub-jobs that can be processed independently on two or

more parallel machines at the same time. Such a problem

is called the parallel machine scheduling problem with

splitting jobs [7]. Also in the paper, a job is assumed to be

composed of a number of unit-jobs and unit-jobs from a

job are identical. So, the processing times and the due

dates of unit-jobs are the same. A set of unit-jobs from a

job is defined as a sub-job that is processed on a machine

consecutively and the sub-jobs from a job are processed

on the parallel machines independently.

 Although many studies have been published on

parallel machine problems [8], there are very few research

results on identical parallel machine scheduling problems

with job splitting properties [7]. Serafini [19] studied

identical parallel machine problem with a job-splitting

property. He considered the objective of minimizing the

maximum weighted tardiness for both uniform and

unrelated parallel machine environments. He showed that

minimizing maximum weighted tardiness can be done in

polynomial time. Xing and Zhang [9] also consider the

same problem with the objective of minimizing makespan

and they proposed a heuristic algorithm to solve it. Kim et

al. [10] proposed a two-phase heuristic algorithm for

identical parallel machine scheduling problems with the

objective of minimizing total tardiness. Logendran and

Surbur [11] reported a methodology for minimizing the

total weighted tardiness of all jobs intended to be

processed on unrelated parallel machines while each job

can only be split into two portions. Tahar et al. [12]

studied the problem of scheduling a set of independent

jobs with sequence-dependent setup times and job

splitting, on a set of identical parallel machines such that

maximum completion time (makespan) is minimized.

They suggested a heuristic algorithm using a linear

programming modeling with setup times and job splitting

considerations. They tested the performance of their

algorithm on large number of randomly generated

instances. Shim and Kim [7] proposed a branch and bound

108 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

(B&B) algorithm for the identical parallel machine

scheduling problem with the objective of minimizing total

tardiness considering the job splitting property. They

developed several dominance properties and lower bounds

for the problem and incorporated them with their B&B

algorithm. They concluded that the suggested algorithm

solves problems of moderate sizes in a reasonable amount

of computation time. Sarıçiçek and Çelik [13] dealt with

the scheduling problem of identical parallel machines with

splitting jobs. They formulated a mixed integer

programming model for the problem and proposed two

meta-heuristics: simulated annealing (SA) and tabu search

(TS). Their computational results showed that SA has a

better performance and consumes less time than TS, so

they suggested SA as a better heuristic method than TS for

considered problem.

In this paper, a memetic algorithm (MA) is proposed

for parallel machine scheduling problem addressed above.

Several test problems provided by Sarıçiçek and Çelik

[13] are solved by MA and its performance is compared to

their results obtained via SA and TS heuristics.

2 Problem Description

Some definitions used in this paper are given below.

Job : a production order unit to be composed of a number

of unit-jobs

Unit-Job: A unit of a minimum process batch for a job.

Unit-jobs from a job are identical so their processing

times and their due dates are the same.

Sub-Jobs: A set of unit-jobs from a job that is processed

on a machine consecutively. Sub-jobs from a job are

processed on the parallel machines independently.

Tardiness of a job: Tj = max{0, Cj – dj }, where Cj and dj

are the completion time and due date of job j,

respectively

Completion time of a job: The time when all sub-jobs

from the job are completed.

For the problem addressed here, it is assumed that:

• As the machines are identical, processing times

of a unit-job on all the machines are equal,

• All jobs are available at time zero.

• Each machine can process only one sub-job at

time.

• Each sub-job can be processed on only one

machine.

• A setup operation is required before a sub-job is

processed on a machine, if the job type of a sub-

job to be processed is different from the job type

of the sub-job just processed and setup times are

independent of sequences of the sub-jobs.

Other notations:

m: number of parallel machines

n: number of jobs

i: index for machines, i=1,…,m

j: index for jobs, j=1,…,n

k: index for position of sub-job of job j on machine,

 k=1,…,n

uj: number of unit-jobs of job j

pj: processing time of each unit-job of job j

sj: sequence-independent setup time for job j

dj: due date of job j

M: a large constant number which is at least as large as

the sum of the processing times and setup times of

all jobs

xijk : 1; if the sub-job of j is processed on machine i in

the kth position, 0; otherwise:

yijk : The number of unit-jobs of the sub-job of job j

which is processed on machine i in the kth

position;

Tijk : Tardiness of the sub-job of a job j processed on

machine i in the kth position.

Gj : a decision variable that can have a value greater

than Tijk and is constrained to be non-negative.

Based on the definitions, notations and assumptions

above, Sarıçiçek and Çelik [13] presented a mathematical

model which is also considered in this study. The

objective function of the model is minimizing the total

tardiness and expressed as:

(1)

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 109

Mathematical model:

As the problem is NP-hard, finding an exact solution

to the model in polynomial time is possible for only small

sized problems in which n is relatively small, i.e. n<10. If

n gets large, the time required to solve such problems

increases exponentially with respect to n [13]. On the

other hand, heuristic methods can produce good solutions

(possibly even an optimal solution) quickly. In this paper,

a memetic algorithm is proposed for the problem.

3 Proposed Memetic Algorithm

Memetic Algorithm also called hybrid genetic

algorithm, represents a new meta-heuristic for

combinatorial optimization problems [14]. The proposed

MA integrates Variable Neighborhood Decent (VND)

with the Genetic Algorithm (GA) to improve the

solutions. During the processing of MA, VND is executed

on each individual in the population to find the better

solution. If it is found, it is replaced with the original

individual.

The flowchart of the proposed MA is illustrated in

Figure 1.

Start

Stop

Generation of Initial
Population

Local Search

Evaluation

Selection

Stopping Criteria
Satisfied?

Crossover

Mutation

N

Y

Fig. 1 Flowchart of the Proposed MA

Step 1: The initial population is generated by

randomly. Each chromosome is encoded by using Earliest

Due Date (EDD) dispatching rule on each initial solution.

What that means is that randomly assigned unit jobs on

each machine are sequenced by using EDD rule.

Step 2: To improve the solution quality, the local

search based on VND is executed on each individual.

Step 3: Each individual is evaluated and obtained its

fitness function value, that is, total tardiness. Then, all

total tardiness values are compared with each other to find

the local best solution. If the local best solution is better

than the global best solution found so far in whole

process, the global best solution is updated.

Step 4: If the stopping criteria is satisfied, the iterative

process is stopped and the global best solution is returned.

Otherwise, the process is continued with step 5.

Step 5: New population is generated by executing

selection, crossover and mutation operators respectively.

Then the process is continued with step 2.

3.1 Solution representation and selection

mechanism

The most commonly used solution representation for

the parallel machine scheduling problem is an array of

jobs for each machine that represents the processing order

of the jobs assigned to that machine [15]. As the jobs are

considered to be consisted of unit jobs in this study, the

arrays are based on unit jobs represented by a unique job

numbers so the unit jobs of a job have the same job

number. An example solution representation for 2 jobs, 2

110 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

machines, 3 unit jobs is given in Figure 2. The figure

shows a single array composed by two groups of elements

for two machines. The number of elements related to each

machine is counted by multiplying the number of jobs and

the number of unit jobs. For the example, the array

consists of 6 (2x3) elements for each machine so there are

total of 12 elements in the array.

Fig. 2. Example solution encoding

The jobs given in the example are represented by the

digits of “1” and “2” respectively in Figure 2. Each “1”

denotes a unit job of job 1 assigned to the machines and

each “2” shows a unit job of a job 2 assigned to the

machines. “0” denotes no unit-jobs assigned to that

position. Consequently, according to the figure 2, the

processing order of the unit jobs is 1,1,2 for machine 1

and 2,2,1 for machine 2.

The selection is performed using a roulette wheel

selection mechanism. The idea behind the roulette wheel

selection is that each individual is given a chance to

become a parent in proportion to its fitness.

3.2 Genetic operators

In genetic algorithms, genetic operators are used to

combine existing solutions into new better solutions

(crossover operator) and to generate diversity (mutation

operator).

Crossover:

In general, the goal of the crossover operator is to

generate two good individuals, called offspring, from the

two selected progenitors. One of the most used crossover

operators to the parallel machine case is the one-point-

crossover [15]. So one-point-crossover is performed in

this study. This type of crossover includes one point

which is randomly selected for dividing first parent [16].

Once the parents have been selected, the crossover

operator is applied according to the crossover probability

that is 0.55 in the study. To prevent the generation of

infeasible solutions after crossover operation, a repair

operator is applied on the new offsprings. Repair operator

can both repair infeasible total number of unit-jobs for

each job by considering unchanged elements beyond the

crossover point and infeasible solutions contains more

than one sub-jobs of the same job on the same machine.

Mutation:

Once the offspring is obtained, the mutation operator

is applied according to the mutation probability that is

0.05 in the study. The mutation operator is used to reduce

the convergence rate [17]. In other words, the application

of the mutation operator can increase the diversity of the

population and avoid local optimization [16]. Two genes

in the chromosome are randomly selected and exchanged

their values. If a chromosome after mutation becomes

infeasible according to the constraints 4 in the model then

the repair operator is applied to maintain feasibility.

3.3 Local search

The local search procedure is employed to enrich and

diversify the population produced by the genetic crossover

operator without visiting other regions of the search space

[16]. In this study, VND is used as local search procedure.

VND is a variant of Variable Neighborhood Search

(VNS) where the change of neighborhood is realized in a

deterministic way during the local search phase [14]. Two

different search neighborhoods [18] incorporated into the

VND are defined below.

Forward insertion neighborhood

By starting from the leftmost unit job in an individual,

all unit jobs are shifted forward to other positions

respectively. After each shifting operation, a new solution

is generated. From the generated solutions, non-feasible

ones violate the constraints 4 in the model are eliminated.

If an improvement occurs during the generating process,

the original individual is updated. The process is stopped

when no more improvement is found and the current

solution is accepted as locally optimal.

Backward insertion neighborhood

This type of neighborhood is very similar to forward

insertion neighborhood except all shifting operations are

performed in reverse order by starting from the rightmost

unit job. The process continues until no shifting operation

gives a better result and the current solution is accepted as

locally optimal.

All shifting operations for both search neighborhoods

are performed without considering “0” values in the

chromosomes to reduce the CPU times to complete local

searches.

Based on the above neighborhood structures, the local

search phase is described below:

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 111

Local search

0 Select first individual from the population.

1 Take the individual as the current solution and

execute backward insertion neighborhood search.

The local optimal solution the current solution.

2 Take the current solution and execute forward

insertion neighborhood search. The local optimal

solution the current solution.

3 If the local search was performed for all individuals

then Stop, otherwise select the next individual on

which local search has not been performed yet from

the population and go to step 1.

4 Computational Results

The proposed MA was coded in Borland Delphi 7 and

run 10 times at each problem on Intel Core 2 Duo T6400

2.0 Ghz computer. The size of population varies

according to the problem size. All other required

parameter values for the problem are generated in a same

way as Sarıçiçek and Çelik do: the processing time of a

unit-job is integer and randomly generated from uniform

distribution with range [5, 60]. Setup time for a job may

be short, middle or long and it is generated from the

discrete uniform distribution with range [5, 60] for short,

[60, 120] for middle and [120, 180] for long. Due date of

job j, dj, is generated from the discrete uniform

distribution with range [α∑(sj + ujpj)/m, β∑(sj + ujpj)/m],

where sj, pj and uj denote the setup time of job j,

processing time of a unit-job of job j and the number of

unit-jobs associated with job j respectively, α and β are

parameters used to control tightness (and range) of due

dates. A pair of values for (α, β) is used as (0, 1.2) in this

study.

 The performance related results of the proposed MA

for average of 100 generations were compared with the

results from the search heuristic approaches of SA and TS

for the test problems and detailed in the Tables 1, 2, 3

respectively. The results for SA and TS on the test

problems are reported by Sarıçiçek and Çelik [13]. The

reported performance measures are based on Total

Tardiness (TT) and CPU time. A comparison of the results

of total tardiness of SA, TS and MA is reasonable but,

because of the difference of the test platforms, the CPU

time results of MA and other heuristics are not

comparable. Nevertheless, the CPU time results of MA

are given in this study for information purposes only.

Also in the study, the number of tardy jobs (n.of.TJ)

results obtained from MA runs are reported as another

performance measure.

Table 1 – Test problems 1 and obtained results

Table 2 – Test problems 2 and obtained results

Table 3 – Test problems 3 and obtained results

Tables show means of the three performance measures

of interest: number of tardy jobs, total tardiness and CPU

time. The tables are organized by the type of search

procedure used: MA, TS and SA.

5 Conclusions

The results indicate that total tardiness performance of

MA is superior to that of other heuristics for all test

problems. As the problem size grows, MA gives much

better performance in terms of total tardiness when

112 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

compared to TS and SA. Only for 40 jobs, 20 machines,

12 unit jobs and medium setup problem, the TT

performance of MA is nearly same or similar to the

performances of TS and SA. It should be noted that the

local search presented here will probably need more CPU

time to end up searching for the feasible search space than

those of TS and SA heuristics as the problem size grows.

So, one further investigation would be to enhance the

computational efficiency of this approach especially for

really large size scheduling problems.

6 References

[1] A. Cossari, J.C. Ho and G. Paletta, “A new heuristic for

workload balancing on identical parallel machines and a

statistical perspective on the workload balancing criteria”,

Computers and Operations Research, 39, 2012, pp. 1382-

1393

[2] I. A. Chaudhry, S. Mahmood and R. Ahmad , “Minimizing

Makespan for Machine Scheduling and Worker Assignment

Problem in Identical Parallel Machine Models Using GA”,

Proceedings of the World Congress on Engineering 2010,

Vol III, WCE 2010, June 30 - July 2, 2010, London, U.K.

[3] S. Shim and Y. Kim, “Scheduling on parallel identical

machines to minimize total tardiness”, European Journal of

Operation Research, 177, 2007, pp. 135-146

[4] D. Biskup, J. Herrmann and J.N.D. Gupta, “Scheduling

identical parallel machines to minimize total tardiness”, Int.

J. Production Economics, 115, 2008, pp. 134-142.

 [5] D. Kim, K. Kim, W. Jang and F.F. Chen, “Unrelated

parallel machine scheduling with setup times using simulated

annealing”, Robotics and Computer Integrated

Manufacturing, 18, 2002, pp. 223–231

[6] R.M. Karp, “Reducibility among combinatorial problems:

complexity of computer computations”, NewYork: Plenum

Press, 1972, p. 85–103.

[7] S. Shim and Y. Kim, “A branch and bound algorithm for an

identical parallel machine scheduling problem with a job

splitting property”, Computers & Operations Research, 35,

2008, 863 – 875

[8] M. Ranjbar, M. Davari and R. Leus, “Two branch-and-

bound algorithms for the robust parallel machine scheduling

problem”, Computers & Operations Research, 39, 2012, pp.

1652–1660

[9] W. Xing, J. Zhang, “Parallel machine scheduling with

splitting jobs”, Discr. Appl. Math., 103, 2000, pp. 259–269

[10] Y.D. Kim, S.O. Shim, S.B. Kim, Y.C. Choi, H.M. Yoon,

“Parallel machine scheduling considering a job splitting

property”, Int. J. Prod. Res,. 42, 2004, pp. 4531–4546.

[11] R. Logendran, F. Subur, “Unrelated parallel machine

scheduling with job splitting”, IIE Transactions, 36, 2004,

pp. 359–372

[12] D.N. Tahar, F. Yalaoui, C. Chu and L. Amodeo, “A linear

programming approach for identical parallel machine

scheduling with job splitting and sequence dependent setup

times”, Int. J. Prod. Econ., 99, 2006, pp. 63–73.

[13] İ. Sarıçiçek and C. Çelik, “Two Meta-heuristics for Parallel

Machine Scheduling with Job Splitting to Minimize Total

Tardiness”, Applied Mathematical Modelling, 35, 2011, pp.

4117-4126.

 [14] B. Wang and G. Zhang, “Hybrid VNS and Memetic

Algorithm for Solving the Job Shop Scheduling

Problem”, 18th International Conference on Industrial

Engineering and Engineering Management (IE&EM

2011), 2011, China, pp. 924-927

[15] E. Vallada and R. Ruiz, “A Genetic Algorithm for the

Unrelated Parallel Machine Scheduling Problem with

Sequence Dependent Setup Times”, European Journal of

Operational Research, 211, 2011, pp. 612-622.

 [16] M. Souki, S.B. Youssef and A. Rebai, “Memetic

Algorithm for Operating Room Admissions”, International

Conference on Computers & Industrial Engineering, 2009.

CIE 2009, 519-524, 2009

[17] C.R.A., Reeves, “Genetic Algorithm for Flowshop

Sequencing”, Computers and Operations Research, 22, 1,

1995, pp. 5-13.

 [18] Ş. Alpay, “GRASP with path relinking for a multiple

objective sequencing problem for a mixed-model assembly

line”, International Journal of Production Research, Vol 47,

No. 21, 2009, pp. 6001-6017

 [19] P. Serafini, “Scheduling jobs on several machines with job

splitting property”, Oper. Res., 44, 1996, pp. 617–628.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 113

An Intelligent Invasive Weed Optimization: a Q-learning

Approach

Abhronil Sengupta
 1
, Tathagata Chakraborti

 1
, Amit Konar

 1
, and Atulya K. Nagar

 2

1
 Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India

2
 Department of Computer and Math Sciences, Liverpool Hope University,�United Kingdom

Abstract - Invasive Weed Optimization is a recently proposed

population based meta-heuristic that mimics the colonizing

action of weeds. In this article, an improvement to the

classical algorithm has been proposed by introducing a

constriction factor in the seed dispersal stage. Temporal

Difference Q-Learning has been employed to adapt this

parameter for different population members through the

successive generations. The proposed memetic approach,

named Intelligent Invasive Weed Optimization (IIWO) has

been tested extensively on a set of 15 benchmark functions as

well as the real world Circular Antenna Array Design

problem. The results indicate the efficacy of our proposed

approach.

Keywords: Invasive Weed Optimization (IWO), Memetic

Algorithms, Q-Learning

1 Introduction

Invasive Weed Optimization (IWO) [1] is a derivative-

free optimization technique that mimics the ecological

behavior of weeds. This meta-heuristic algorithm has attracted

researchers because of its reduced computational cost and

efficiency in tackling real world optimization problems.

However, it is not free from the problems of stagnation and

pre-convergence. We attempt to improve the performance of

the traditional IWO algorithm by incorporating a learning

strategy in the weed population to efficiently disperse seeds

throughout the problem space during the reproduction phase.

Such a memetic learning technique helps in balancing the

exploration and exploitation capabilities of the weeds which is

necessary for providing precise solutions to global

optimization problems.

Coined by Dawkins[2] in 1976, the term “meme” refers

to the basic unit of cultural transmission or imitation [1].

Memetic Algorithms (MAs) are population-based meta-

heuristic search algorithms that combine the composite

benefits of natural and cultural evolution. Natural evolution

realized by Evolutionary Algorithm (EA) works on the

Darwinian principle of the struggle for existence, and aims at

determining the global optima in a given search landscape.

Traditional EA usually takes an excessively large time to

locate a precise enough solution because of its inability to

exploit local information. Cultural evolution, on the other

hand, is capable of local refinement. MA captures the power

of global search by its evolutionary component and local

search by its cultural component.

The early research on MA was confined in manual

crafting of dedicated memes for a given problem. A paradigm

shift in research to adaptively select a meme from a pool of

memes for application to an individual member of the

population has been observed during the new millennium. The

class of algorithms incorporating the adaptive selection of

memes is referred to as Adaptive MA (AMA). AMAs

“promote both cooperation and competition among various

problem-specific memes and favors neighborhood structures

containing high quality solutions” to be attained at low

computational costs. Usually, the selection of the meme for an

individual member of the population is done based on its

ability to perform local improvement.

Several variants of AMAs are found in the literature [4-

5]. The one we would use in this paper is Roulette-Choice

strategy based Hyperheuristic AMA [4]. In the Roulette-

choice strategy, a meme Me is selected with probability

relative to the overall improvement. Given that g(.) is a choice

function, then the probability of selection of Me is ������� �����	�
� where n is the total number of memes

considered.

The AMA to be proposed, named Intelligent Invasive

Weed Optimization (IIWO) includes an Invasive Weed

Optimization (IWO) algorithm for global search and a

Temporal Difference Q-Learning (TDQL) [6-7] for local

refinement. A constriction factor has been included in the

expression for standard deviation for dispersal of seeds. It is

important to mention here that the constriction factors for all

members of the population should not be equal for the best

performance. A member with a good fitness should search in

the local neighbourhood, whereas a poor performing member

should participate in the global search. A good member thus

should have small constriction factors, while worse members

should have relatively large constriction factors. This is

realized in the paper with the help of TDQL.

The TDQL works on the principle of reward and

penalty. It employs a Q-table to store the reward/penalty given

to an individual member of the population. Members are

assigned suitable values of their constriction factors from a

given meme pool before participation in the evolutionary

process. After completion of the evolutionary process,

members are rewarded based on their fitness, and the

114 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

reward/penalty given to the member depending on the

improvement/deterioration in fitness measures of the trial

solution is stored in the Q-table. The process of evolution and

Q-table updating thus synergistically helps each other,

resulting in an overall improvement in the performance of the

AMA.

The rest of the paper is organized as follows. Sections 2

and 3 provide an overview of the Classical IWO algorithm

and Differential Q-Learning. Our proposed approach has been

described in Section 4. Extensive experimental results

comparing the IIWO algorithm with IWO as well as other

popular meta-heuristic algorithms namely Particle Swarm

Optimization (PSO) [8] and Differential Evolution (DE) [9-

10] have been presented in Section 5. Comparative results

have been presented on a set of 15 benchmark functions as

well as the Circular Antenna Array Design problem.

2 An Outline of Iwo Algorithm

2.1 Generation of Initial Population

 IWO starts with a population of NP D-dimensional

parameter vectors or weeds representing the candidate

solutions. We shall denote subsequent generations in IWO by

G = 0, 1, …, Gmax. We represent the i-th vector of the

population at the current generation as:

���� � ������� � ������ � ������ � � � �������
 The initial population (at G = 0) should cover the entire

search space as much as possible by uniformly randomizing

individuals within the search space constrained by the

prescribed minimum and maximum bounds:

���	 � ������	� �����	� �� � �����	�
 and ���� � �������� ������� ��� �������
So we may initialize the j-th component of the i-th vector as

 ������ �������	 !"#$����%�&�' (������) �����	*���&�
where !"#$����%�&� is a uniformly distributed random

number lying between 0 and 1 and is instantiated

independently for each component of the i-th vector.

2.2 Reproduction

The plants will produce seeds depending on their relative

fitness which will be spread out over the problem space. Each

seed, in turn, will grow into a flowering plant. Thus, if Smax

and Smin denote the number of seeds produced by plants with

best and worst fitness respectively then seed count of plants

will increase linearly from Smin to Smax depending on their

corresponding fitness values. The number of seeds produced

by the i-th weed ����� is therefore given by,

+��� � ,-�����) .(�����*-�����) -��	�� ' �/���) /��	�0����1�
where -����� and -��	�� are the maximum and minimum

fitness values at the G-th generation of the weed colony.

2.3 Dispersal of Seeds through Search Space

The produced seeds are randomly distributed over the D

dimensional search space by random numbers drawn from a

normal distribution with zero mean but with a varying

variance. However, the standard deviation (SD), �, of the

normal distribution decreases over the generations from an

initial value, �max, to a value, �min, and is determined by the

following equation,

2 � 34���) 44��� 5	 ' �2���) 2��	� �2��	����6�
where � is the SD at the current generation and Gmax is the

maximum number of iterations while n is the non linear

modulation index. This is the adaptation property of the

algorithm.

2.4 Competitive Exclusion

 If a plant does not reproduce it will become extinct.

Hence this leads to the requirement of a competitive

exclusion in order to eliminate plants with low fitness values.

This is done to limit the maximum number of plants in the

colony. Initially fast reproduction of plants take place and all

the plants are included in the colony. The fitter plants

reproduce more than the undesirable ones. The elimination

mechanism is activated when the population exceeds a

stipulated NPmax. The plants and produced seeds are ranked

together as a colony and plants with lower fitness values are

eliminated to limit the population count to NPmax. This is the

selection property of the algorithm. The above steps are

repeated until maximum number of iterations is reached..

3 Differential Q-Learning

 In classical Q-learning, all possible states of an agent

and its possible actions in a given state are deterministically

known. In other words, for a given agent A, let S1, S2,..., Sn, be

n- possible states, where each state has m possible actions a1,

a2, …, am. At a particular state-action pair, the specific reward

that the agent acquires is known as immediate reward. Let

r(Si, aj) be the immediate reward that the agent A acquires by

executing an action aj at state Si. The agent selects its next

state from its current states by using a policy. The policy

attempts to maximize the cumulative reward that the agent

could acquire in subsequent transition of states from its next

state.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 115

Let the agent be in state Si and is expecting to select the

next best state. Then the Q-value at state Si due to action of aj

is given by,

 7(/�� "�* � !(/�� "�* 89:;�� 7� ��(/�� "�*� "������<�
where 0<γ <1 and δ (Si,aj) denotes the next state due to the

selection of action aj at state Si. Let the next state selected be

Sk. Then Q(δ (Si,aj), a
/
)= Q(Sk, a

/
). Consequently selection of

a
/

that maximizes Q(Sk, a
/
) and in turn Q(Si, aj) is an

interesting problem.

The classical Q-learning algorithm for deterministic

state transitions starts with a randomly selected initial state.

An action ‘a’ from a list of actions a1, a2, …, am is selected,

and the agent because of this action receives an immediate

reward r, and moves to the new state following the δ-

transition rule given in a table. The Q-value of the previous

state due to the action of the agent is updated following the

Q-learning equation. Now, the next state is considered as the

initial state and the steps of action selection, receiving

immediate reward, transition to next state and Q-update are

repeated forever.

Differential Q-learning is a modified version of Q

learning. The Q-table update policy in Differential Q-learning

is different from classical Q-learning. It has the ability to

remember the effect of past Q value of a particular state-

action pair while updating the corresponding Q value. The

modified Q update equation is given by

7(/�� "�* = �&) >�' 7(/�� "�* >' �!(/�� "�* 89:;�� 7� ��(/? � "�*� "��������@�
The formula has the effect, that the Q-value Q(Si, aj) is

incremented, when the action aj led to a state δ(Si,aj) in which

there exists an action a', such that the best possible Q-value

Q(δ (Si,aj), a
/
) in the next time step plus the achieved reward

r(Si,aj) is greater than the current value of Q(Si, aj). This is

exactly the desired behaviour, because in such a situation, the

old estimate of Q(Si, aj) was too pessimistic. The learning rate

α determines the extent to which the newly acquired

information will override the old information. A setting of α=

0 makes the agent stop learning, while α=1 would make the

agent consider only the most recent information.

The discount factor γ determines the importance of future

rewards. A factor of 0 will make the agent "opportunist" by

only considering current rewards, while a factor approaching

1 will make it strive for a long-term high reward. If the

discount factor is greater than or equal to 1, the Q values may

diverge.

4 IIWO: The Proposed Approach

The modified algorithm is based on the concept that

fitter individuals should be involved in local search while the

remaining plants should search the problem space globally at

a particular generation. The classical IWO algorithm neglects

this fact by assuming the same standard deviation 2 for all the

weeds in the seed dispersal stage. Although 2 is made to

decay through the successive generations yet there is no

provision for 2 to attain low values for fitter individuals at a

particular generation to enable the local search procedure.

Local search is initiated only when the generation count has

increased to a large value to ensure a low value of 2. Thus in

classical IWO, all the weeds undergo a gradual behavioral

transformation from an explorative to an exploitive one. In

our proposed algorithm, we state that fitter individuals should

behave in an exploitative manner through successive

generations from the initialization of the weed colony and not

wait for the standard deviation to reduce to low values.

Following this concept we introduce a constriction factor, A in

equation (3) as follows,

2 � A' B34���) 44��� 5	 ' �2���) 2��	� �2��	C���D�
where A E �%�&� . The proper choice of parameter A for

different population members will help balance the

explorative and exploitive capabilities of the individuals

resulting in local refinement.

The proposed approach employs a synergy of IWO and

TDQL to realize an Adaptive Memetic Algorithm for

achieving superior performance in global optimization

problems. After each evolutionary step, the performance of

the members is evaluated based on their fitness. High

performing members are rewarded with positive immediate

reward, whereas low performing members are penalized. The

reward/penalty given to a member is stored in the Q-table

Step 1 For each state S and action a, initialize 7�/� "� � %.

Step 2 Observe the current state /�
Step 3 REPEAT

 Select "� E �"�� "�� � � "�� and execute it.

 Receive an immediate reward �!(/� � "�*.
 Observe the new state /? = ��(/� � "�*.
 Update the table entry 7(/� � "�* by

 7(/� � "�* = �&) >�' 7(/� � "�* >' �!(/� � "�* 89:;�� 7� ��(/� � "�*� "���.
 /� = /?

 FOR EVER�

Algorithm 1. Differential Q-Learning Algorithm.

116 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

using the TDQL learning rule. A meme pool for parameter A

is maintained in order to select the control parameters for

individual members of the population. The adaptive selection

of memes is performed by a hyperheuristic choice-metric

based selection from the meme pool. The process of selection

of A from the meme pool, followed by one step of IWO and

reward/penalty updating in the Q-table is continued until the

condition for convergence of the AMA is satisfied.

The proposed AMA algorithm accesses the Q-table to

select the appropriate constriction factors of the individual

members before evolution, and updates the Q-table after one

evolution. The row indices of the Q-table represent states of

the population members obtained from the last iteration of the

IWO algorithm, in order of their fitness. The column indices

which represent the actions performed by the members at a

particular state correspond to uniform quantized values of the

control parameter in the range (0, 1]. For example, let the

parameter under consideration be A with possible quantized

values �A�� A�� � � A���'�Then 7�/�� A�� represents the total

reward given to a member at state /�for selecting A � A� . The

Roulette-Choice strategy is used to select a particular value of A from the meme pool �A�� A�� � � A���� using the 7(/�� A�*� F � &�1� � �&% for the individual member located

at state Si.

The adaptation of 7�/�� A�� is done through a

reward/penalty mechanism as used in classical TDQL. If a

member of the population, residing at state Si on selecting A � A� moves to a new state Sk by the evolutionary

algorithm, and such state transition causes an improvement in

fitness measure, then 7�/�� A�� is given a positive reward

following the TDQL algorithm. If the state transition results in

no improvement in fitness measure, then a penalty is given to

the selected 7�/�� A�� . The penalty is introduced by a

decrease in Q-value. Principles used in designing the AMA

are introduced below.

4.1 Initialization

 The algorithm employs a population of NP D-

dimensional parameter vectors representing the candidate

solutions. The initial population (at G = 0) should cover the

entire search space as much as possible by uniformly

randomizing individuals within the search space constrained

by the prescribed minimum and maximum bounds. Thus the

j-th component of the i-th population member is initialized

according to (1) as mentioned in section 2.

 The entries for the Q-table are initialized as small

values. If the maximum Q-value attainable is 100, then we

initialize the Q-values of all cells in the Q-table as 1.

4.2 Adaptive Selection of Memes

 We employ Fitness proportionate selection, also known

as Roulette-Wheel selection, for the selection of potentially

useful memes. A basic advantage of this selection mechanism

is that diversity of the meme population can be maintained.

Although fitter memes would enjoy much higher probability

of selection, yet the memes with poorer fitness do manage to

survive and may contribute some components as evolution

continues. Mathematically, the selection commences by the

selection of a random number in the range [0, 1] for each

population member. Let us consider the selection from the A

meme pool for a member of state /�' The next step involves

the selection of A�such that the cummulative probability of

selction of A � A� through A�G�� is greater than r.

Symbolically,

�������H I�/�� A � A�� J ! K
�G�

�
�
H I�/�� A � A����������L�
��

�
�

 The probability of selection of A � A� from the meme

pool �A�� A�� � � A����is given by

 I(/�� A � A�* � M(NO�PQ*
� M�NO�PR�STRUS �����V�

4.3 Invasive Weed Optimization

The IWO algorithm used here employs reproduction,

seed dispersal and competitive exclusion as introduced in

Section 3. The basic difference of the current realization is the

selection of constriction factor �A from the meme pool

adaptively by step 4.2 before invoking the IWO process.

4.4 State Assignment

 The population members are now ranked in increasing

order of fitness and assigned corresponding states.

4.5 Updating the Q-table

 Let a member at state /� on selection of A� moves to a

new state Sk. The update equation for 7(/� � A�* is given by,

7(/�� A�* = �&) >�' 7(/�� A�* >' �!(/�� A�*
 89:;PW 7� ��(/? � A�*� A�������X�

 The choice of the reward function is critical to the

proper operation of the Q-learning mechanism. In case the

seeds produced by a particular weed experience greater

fitness in comparison to the parent weed then !(/� � A�* is set

equal to the absolute difference of fitness of the parent weed

and the fittest seed. Otherwise a penalty of –K is applied,

however small.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 117

+��� � ,-�����) .(�����*-�����) -��	�� ' �/���) /��	�0

Step 1 Set the generation number G=0 and randomly initialize a population of NP individuals,

 ���Y� � ����� � ���� � � � �Z[��� with ���� � ������� � ������ � ������ � � � ������� with i= [1, 2,……., NP].

 Initialize the Q-table: 7(/� � A�* � &�\] � �&� � � ^Y�"#$F � �&�� �&%�
Step 2 Evaluate the population.

Step 3 WHILE stopping criterion is not reached, DO

 Step 3.1 Initialize !(/�� A�* � %�\] � �&�� � ^Y�"#$F � �&�� �&%�.
Step 3.2 /*Adaptive Selection of memes*/

FOR i=1 to NP

 Select A � A? �by Roulette-Wheel Selection.

 END FOR

 Step 3.3/*Reproduction*/
 FOR i=1 to NP

 Determine the number of seeds produced by the i-th population member at generation G,�

 END FOR

 Step 3.4/*Seed Dispersal*/
 FOR i=1 to NP

 FOR j=1 to +���

 Generate a population of +��� seeds by,

 _̀����� � �a������� � a������� � a������� � � � a��������
 where a?������ � �?���� !"#$#�%� 2� with k=[1,2,…, D]

 and 2 � A' b�cdeG��cde f
	 �2���) 2��	� �2��	

 END FOR

 END FOR

 Step 3.5/*Competitive Exclusion*/
 Evaluate the colony of seeds and weeds.

FOR i=1 to NP

 FOR j=1 to +���

 IF .(_̀�����* J .(�����*
 ghiI � j�.(_̀�����*) .(�����*�j
 IF ghiI k !�/� � A?�
 !�/� � A?� � ghiI.

 END IF

 ELSE !�/� � A?� �)l.

 END IF

 END FOR

 END FOR

 IF ^Y � +����
Z[�
� k ^Y���

 Form new weed colony with the first ^Y���weeds arranged in order of fitness.

 END IF

 Step 3.6 /*State Assignment*/
 Rank individuals in order of fitness and assign corresponding states.

 Step 3.7/*Update of the Q-table*/
 FOR i=1 to NP

 FOR j=1 to 10

 IF !(/� � A�* m %

 7(/� � A�* = �&) >�' 7(/� � A�* >' �!(/� � A�* 89:;PW 7� ��(/?� A�*� A����
 END IF

 END FOR

 END FOR

 Step 3.8/*Increment the generation count*/ G=G+1

Step 4 END WHILE

�

Algorithm 2. The Proposed IIWO Algorithm.

118 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

 The next step involves the determination of the factor 9:;PW7� ��(/?� A�*� A���' A particular weed may enter the

next generation along with multiple seeds or it may be

completely eliminated. In case of multiple state acquisition in

the next generation the factor is set equal to the maximum of 9:;PW7� ��(/?� A�*� A����for all /? s. Otherwise it is set

equal to 0 in case of plant exclusion.

 The sections B-E are repeated till maximum number of

iterations is reached.

5 Experiments and Results

5.1 Experimental Setup

We evaluate the performance of our proposed IIWO

algorithm on a test-suite of 15 benchmark functions with

varying degrees of complexity. The functions have been

chosen from the benchmarks proposed in the CEC 2005

conference. Among them, the first five functions are unimodal

while the remaining are multimodal. Due to lack of space we

provide the results on the first 15 representative benchmarks.

Details of the benchmark functions can be found in [12].

Results have been presented for 30 dimensions of all the

benchmark functions. Each of the algorithms was run for a

specified number of function evaluations: D*1e+05 where D

is the dimension of the problem. The mean value and standard

deviation (within parenthesis) of the error in fitness value over

25 independent runs of each algorithm are presented in table

2.

Since all the algorithms start with the same initial

population over each problem instance, we have used paired t-

tests to compare the means of the results produced by the best

and second-best algorithm (with respect to their final

accuracies) for each benchmark. We have also reported the

statistical significance level of the difference of means of the

two algorithms in the respective columns of Table 2 and 3.

The best performance has been highlighted in each row. The †

sign indicates the t value of 49 degrees of freedom is

significant at a 5% tolerance level of significance by 2 tailed

test. The ‡ sign indicates that it is non-significant.

 Comparisons have also been presented for the real world

Circular Antenna Array Design problem [11]. The mean and

standard deviation results have been presented after 1.5e+05

function evaluations. The optimization problem is briefly

outlined below.

 The array factor of a circular antenna array of N antenna

elements placed on a circle of radius r in the x-y plane is

given by:

n-��� �Ho	p;q��Fr! bstu b�) ��	v	 f) stu b��) ��	v	 ff
Z

�
� w	�
where ��	v	 � 1x�#) &� ^y is the angular position of the n

th

element in the x-y plane,

 r! � ^$ where k is the wave-number, d is the angular

spacing between elements and r is the radius of the circle

defined by the antenna array,

 �� is the direction of maximum radiation,

 is the angle of incidence of the plane wave,

 o	 is the current excitation and

 w	 is the phase excitation of the n
th

 element.

 Here we shall try to suppress side-lobes, minimize

beamwidth and achieve null control at desired directions by

varying the current and phase excitations of the antenna

elements. For a symmetrical excitation of the circular antenna

array objective function as:

z- � {n|�}~�� � o� w� }��{ {n|�}��� � o� w� }��{�

 & �o|�}�� o� w�y j}�) }��~j
 H{n|�}? � o� w� }��{
	��

?
�

where }~�� is the angle at which maximum sidelobe level is

attained, }��~ is the desired maxima, num is the number of

null control directions and }? specifies the k
th

 null control

direction.

 The first component attempts to suppress the sidelobes.

Nowadays directivity has become a very useful figure of

merit for comparing array patterns. The second component

attempts to maximize directivity of the array pattern and the

third component strives to drive the maxima of the array

pattern close to the desired maxima. The fourth component

penalizes the objective function if sufficient null control is not

achieved.

5.2 Other Competitive Algorithms

 Differential Evolution and Particle Swarm

Optimization has recently gained wide popularity as a fast and

efficient optimization algorithm over continuous search

spaces. We compare the performance of IIWO with classical

IWO, DE and PSO. The parameter settings are given in the

next page.

5.3 Simulation Results

The results obtained for the 15 benchmark problems as

well as the real world optimization problem are tabulated

below.

Table 1. Parameter Settings

PARAMETER VALUE

Pop_size 50

Inertia weight 0.25-0.4

C1,C2 2

F 0.5

Cr 0.9

�max 10% of search range

�min 1% of search range

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 119

Figure 1. Power radiation pattern.

�

Table 2. Results for 30D Benchmark Problems

F. IIWO IWO DE PSO

1
8.537e-01†

(2.673e-01)

4.977e+01

(9.453e-00)

7.229e+04

(2.599e+03)

1.523e+03

(3.743e+02)

2
1.653e+00†

(4.373e-01)

8.251e+01

(9.487e+00)

7.176e+04

(6.289e+03)

8.578e+03

(2.788e+02)

3
5.124e+05†

(8.763e+04)

2.899e+06

(5.11e+05)

6.286e+08

(5.271e+07)

8.176e+06

(2.389e+05)

4
2.075e+00†

(1.745e-02)

1.667e+02

(1.013e+01)

4.389e+02

(1.865e+01)

4.391e+03

(5.283e+02)

5
2.481e+03

(8.351e+02)

5.419e+01†

(1.032e+01)

2.747e+04

(2.577e+03)

1.011e+04

(3.733e+02)

6
2.961e+02†

(8.927e+01)

3.766e+04

(1.198e+04)

3.281e+10

(2.744e+09)

5.789e+08

(7.639e+07)

7
7.989e-02†

(2.322e-03)

1.836e+00

(1.921e-01)

2.836e+02

(4.899e+01)

3.137e+03

(5.533e+02)

8
2.016e+01†

(5.814e-05)

2.094e+01

(1.344e-04)

2.115e+01

(4.436e-02)

2.291e+01

(2.487e-01)

9
1.185e+02

(4.013e+01)

5.962e+01†

(6.392e+01)

7.321e+02

(2.987e+01)

7.491e+01

(3.987e+01)

10
1.173e+02

(1.332e+01)

8.673e+01†

(2.587e+01)

5.287e+02

(4.731e+01)

1.928e+02

(2.677e+01)

11
1.384e+01‡

(6.037e+00)

1.437e+01

(1.345e+00)

9.663e+01

(1.393e+00)

2.349e+01

(1.024e01)

12
5.196e+04†

(9.723e+03)

9.148e+05

(7.285e+04)

9.825e+05

(1.281e+05)

1.064e+05

(3.112e+05)

13
3.052e+00†

(1.021e+00)

1.265e+01

(1.626e+00)

5.973e+02

(1.385e+02)

6.979e+00

(2.562e+00)

14
1.126e+01†

(2.311e-01)

1.135e+01

(3.156e-01)

1.453e+01

(1.121e-01)

1.217e+01

(1.452e+00)

15
4.013e+02‡

(6.724e+01)

4.038e+02‡

(5.982e+01)

8.832e+02

(2.281e+01)

6.747e+02

(1.043e+02)

Table 3. Objective Function Values for the Circular Antenna

Array Design Problem

IIWO IWO DE PSO

-20.7013†

(1.312e-01)

-16.4178

(4.293e+00)

-13.9306

(1.041e-01)

-5.4852

(3.543e-00)

6 Conclusions

In this paper we present a novel approach to improved

global optimization by using a synergy of Invasive Weed

Optimization and Temporal Difference Q-Learning to

adaptively select memes (constriction factors) from the meme

pool. To the best of our knowledge, such Machine Learning

techniques have not been used previously to incorporate

learning strategies in Evolutionary Algorithms. Experimental

results conducted on a wide variety of benchmark functions as

well as a real world optimization problem justifies our claim

to the robustness and efficiency of the proposed approach.

7 References

[1] Mehrabian, A. R. and Lucas, C. 2006. A novel numerical
optimization algorithm inspired from weed colonization.
Ecological Informatics 1 (2006), 355–366.

[2] Dawkins R. 1976. The Selfish Gene. Oxford University Press
(1976).

[3] Moscato, P. On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms. In
Caltech Concurrent Computation Program (report 826).

[4] Ong, Y.-S., Lim, M.H., Zhu, N. and Wong, K.-W. 2006.
Classification of Adaptive Memetic Algorithms: A Comparative
Study. In IEEE Trans. on Systems, Man and Cybernetics 36, 1
(Feb. 2006).

[5] Kendall, G., Cowling, P. and Soubeiga, E. 2002. Choice
function and random hyperheuristics. In Proceedings of the 4th
Asia-Pacific Conferrence on simulated Evolution and Learning
(Singapore, Nov. 2002), 667-671.

[6] Watkins, C. 1989. Learning from delayed rewards. PhD
dissertation (King’s College, Cambridge, England, 1989).

[7] Watkins, C. and Dayan P. 1992. Q-learning. Machine Learning,
8, (1992), 279- 292.

[8] Kennedy, J. and Eberhart, R.C. 1995. Particle swarm
optimization. In Proceedings of IEEE International conference
on Neural Networks (1995), 1942-1948,

[9] Konar, A. and Das, S. 2006. Recent advances in evolutionary
search and optimization algorithms. In Proceedings of NGMS
2006 (BESU, Shibpur, Howrah, India, January 11-13, 2006).

[10] Storn, R. and Price, K. V. 1997. Differential Evolution–a simple
and efficient heuristic for global optimization over continuous
spaces. J. Global Optimization 11, 4 (1997), 341–359.

[11] Gurel, L. and Ergul, O. 2008. Design and simulation of circular
arrays of trapezoidal-tooth logperiodic antennas via genetic
optimization. Progress In Electromagnetics Research PIER 85
(2008), 243 - 260.

[12] P.N. Suganthan, N. Hansen , J.J. Liang, K. Deb, Y. P. Chen A.
Auger and S. Tiwari, “Problem Definitions and Evalution
Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization,” Technical Report, Nanyang Technological
University, Singapore.

120 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

An Excel-based, Rotating Constellation Heuristic for

Solving the Travelling Salesman Problem

Richard J. Perle

Department of Finance and Computer Information Systems,

Loyola Marymount University, Los Angeles, CA, USA

Abstract - The Travelling Salesman Problem (TSP) is a well-

known combinatorial problem that finds many applications in

operational settings such as product distribution and

manufacturing. Finding exact solutions to TSPs can be

difficult, so heuristic methods are sometimes implemented.

This paper develops and tests the performance of a new and

novel, Excel-based heuristic algorithm for solving Euclidian

plane, symmetric TSPs where the X-Y coordinates of all

nodes are known. Test results show that the method works

well for small problems. The method has an error function

that varies linearly with the problem size. An advantage of

the algorithm is that it is relatively easy to implement and so

might be useful in smaller organizations which do not posses

sophisticated mathematical or financial resources. It also

might be used in an academic setting to demonstrate heuristic

solution processes.

Keywords: Traveling salesman problem, Heuristic,

Algorithm

1 Introduction

The Travelling Salesman Problem (TSP) is a well-known and

important example of combinatorial sequencing problems that

find wide practical application in many fields. The classic

case is where a salesperson wants to travel from his home

base and visit clients in a number of other cities. The problem

is to define a least-costly tour from city-to-city in which each

city is visited only once and the salesperson ends up back at

the home base. Interest in and application of the TSP began

with the seminal paper by Dantzig, Fulkerson and Johnson [1]

which found the shortest-route tour of 49 cities in the U.S.

Other important, practical and useful examples of

combinatorial sequencing problems with added refinements

and extensions are; assigning airliners to routes [2], routing

delivery trucks [3], drilling holes in printed circuit boards [4],

order picking in a warehouse [5], and sequencing jobs on a

machine [6].

A characteristic of any TSP is that it is easy to describe but

difficult to solve to an exact, provable optimum. An exact

solution to a TSP can be found by branch-and bound integer

programming methods, described by Lawler, et. al. [7] and

branch-and-cut methods, described by Junger, et al. [8]. An

exact solution can also be found by explicit enumeration of

all possible solutions ; however, this is not a viable

methodology for larger problems as the number of possible

solutions is a factorial of the number of nodes (cities). As a

result of the difficulty in finding exact solutions, practical and

useful solutions to TSPs can be obtained by the use of

heuristic algorithms. A heuristic algorithm is a solution

procedure that can lead to a good solution, but one that is not

necessarily optimal. There are three general types of TSP

heuristics; (1) construction methods, (2) improvement

methods and (3) metaheuristic methods. Construction

methods start at an arbitrary node and then select succeeding

nodes according to a criterion such as cheapest or shortest

distance. Well-known examples of construction methods are

variations of the Nearest Neighbor Greedy (NNG) algorithm

[9] which will be used for comparison purposes in this paper.

Improvement methods start with a feasible tour and then

make changes in a effort to find a shorter tour. The 2-Opt, 3-

Opt and Lin-Kernighan algorithm [10] are examples of

improvement methods. Metaheuristics such as simulated

annealing, tabu search, genetic algorithms and artificial

neural networks search neighborhoods for local optima and

then use that information to search for better solutions

without getting trapped in any one local neighborhood. A

good description of basic metaheuristic methods can be

found in [11]. A disadvantage of many of these methods is

that they usually require specialized software that may be

difficult or expensive to acquire and implement, especially

for small companies that may find less than exact solutions to

be an acceptable trade-off for a simpler solution

methodology.

The Rotating Constellation Heuristic (RCH) algorithm

described in this paper is a hybrid method. It starts with a

feasible tour constructed by a simple node-to-node process,

then systematically generates a subset of additional complete,

feasible tours, ultimately selecting the best tour from the set

of feasible tours. It has the advantage that the software may

be developed and implemented by using the Excel sort

function, and does not require extensive training in

mathematics or expertise in a programming language.

However, some basic skills in Excel Macros and VBA would

be helpful to reduce the amount of time and effort required to

find the best solution that the method is capable of delivering.

The practical usefulness of any non-optimal heuristic

solution, of course, would depend on its expected accuracy

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 121

which in this paper is measured as the expected percent over

an optimal or benchmark tour.

The next two sections of this paper will present the RCH

process logic by example, and then the mathematics of the

general RCH model will be developed. Its robustness and

accuracy will then be benchmarked against actual TSP data

for which a very good or optimum solution is known.

2 The Rotating Constellation Heuristic:

Description by Example

As a simple example consider a set of ordered pair X-Y

values for a ten node TSP, shown in Table 1, where the pairs

are sorted in ascending X-value order.

 Table 1

 X-Y values for a 10 node TSP.

 Node X-value Y-value

 1 7 53

2 15 81

3 20 26

4 26 67

5 32 39

6 54 57

7 61 80

8 68 37

9 87 49

10 93 72

The RCH algorithm is an eight step procedure, the first six of

which are listed below. Steps 2, 4 and 5 are implemented by

an Excel sort command. The algorithm is applied iteratively

using Excel VBA in a search for a best solution tour distance

value.

The RCH algorithm:

1. Assign a unique number to each node

2. Sort the complete set of nodes on the X-values, from low

to high.

3. Based on the X-values, separate the nodes into two equal

size sets.

 Left-most set = nodes with the smallest X-values.

 Right-most set = node with the largest X-values.

4. Sort the left-most set of nodes on the Y-values, from low

to high.

5. Sort the right-most set of nodes on the Y-values, from high

to low.

6. Connect the two sets to identify the complete tour and

calculate the tour distance value.

Fig. 1 shows a graphic example of the first six steps of the

algorithm applied to the data in Table 1. The vertical dashed

line separates the 10 nodes into two equal size sets of five

nodes each, designated as the left-most set and the right-most

set (steps 2 and 3). The arrows show the tour path that the

first six steps of the first iteration of the RCH algorithm

would find from start to finish. Step 4 sorts the left-most set

of nodes on the Y-values from low to high; step 5 sorts the

right-most set on the Y-values, from high to low. The tour

path by node number is 3-5-1-4-2-7-10-6-9-8-3. Its length is

314.20.

 Fig. 1. Two-set Solution Path for Table 1 Data

It can also be inferred from Fig. 1 that an advantage of the

RCH algorithm is that there will be no crossing-paths within

either set. Crossing paths will add to the tour length, assuring

that it is not optimal. The only time a crossing path could (but

not necessarily) be generated is on the two paths that connect

the sets together; the upper-most arrow and the lower-most

arrow in Fig. 1.

The entire set of nodes is now treated as a constellation of

ordered pair points that will be rotated about its geometric

center in successive iterations of the RCH algorithm. The

rotation does not change the distance between any pair of

nodes. After each iterative rotation, steps 2 through 6 in the

algorithm are repeated to generate a new solution. For

example, the constellation of Fig. 1 is rotated 90 degrees

clockwise and a new RCH solution is generated from the

new, rotated X-Y coordinates shown in Table 2.

 Table 2

 Rotated X-Y values.

 Node New X-value New Y-value

 1 16.6 82.8

2 29.6 70.8

3 43.6 95.8

4 57.6 76.8

5 71.6 83.8

6 70.6 41.8

7 62.6 9.8

8 47.6 48.8

9 39.6 15.8

10 27.6 34.8

0

20

40

60

80

100

0 20 40 60 80 100

Start and

finish node

Left-most

set

Right-most

set

122 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

The new tour path by node number as shown in Fig. 2 is

9-10-2-1-3-5-4-8-6-7-9. The tour length is reduced to 262.83

which is a 31.69 percent improvement over the tour in Fig. 1.

It is also optimal, proved by explicit enumeration.

 Fig. 2. Two-set Solution Path Rotated 90 Degrees,

 for Table 2 Data

Even though 90 degrees is the best rotation angle there is no

way to know, a priori, that this is the case. So the objective in

the RCH algorithm is to rotate the constellation

incrementally, attempting to generate a new solution with

each incremental rotation until a best, but not necessarily

optimal solution is found. The condition that creates a new

solution path occurs when a node passes from the right-most

set to the left-most set and vice-versa due to rotation. In effect

the two sets evolve by exchanging a pair of nodes at each

incremental rotation. Consequently, the largest number of

different solutions that the rotation process is capable of

generating is n, the number of nodes. The set of n unique

solutions, if they are all detected, is generated over a total

rotation of only 180 degrees. Rotating the constellation

beyond 180 and on to 360 degrees simply generates a repeat

of the zero to 180 degree rotation solutions, except the tour

path is in the opposite direction. But the tour length is

obviously the same in either direction. There are a number of

rules that could be used to determine the incremental angle of

rotation, but the simplest rule, used here, is to rotate 180/n

degrees in contiguous increments, starting from zero to (180 -

180/n) degrees. The zero degree position is the original

configuration of the constellation. Two additional steps (7

and 8) are now added to complete the RCH algorithm.

7. Incrementally rotate the constellation 180/n degrees, then

repeat steps 3 - 6 until the constellation has been rotated a

total of (180 - 180/n) degrees.

8. Select the solution with the best tour length.

Another question to address is how to handle an instance

where there is an odd number of nodes. Obviously the

constellation cannot be divided into two sets, each with the

same number of nodes. The easiest way to handle this is to

arbitrarily assign one extra node to either set, which is done

here. There are more sophisticated ways to solve the problem

such as creating a “dummy” node as a duplicate of an existing

node which will add nothing to any tour length because the

sorting process should always connect the dummy node to its

real node. However, this could perturb the geometric center

of the constellation leading to unknown effects. The general

RCH model will now be developed.

3 The Rotating Constellation Heuristic:

General Model

 Assume the Cartesian coordinates, xiyi (i = 1 to n) in a two-

dimensional flat plane for a TSP with n nodes are known.

The symmetric Euclidian distance, dij between any two nodes,

i and j (i ≠ j) is calculated as:

 dij = SQRT[(xi - xj)
2
 + (yi + yj)

2
] (1)

The ordered pair, xcyc is defined as the geometric center of

the constellation and is calculated as the mean of the X-values

and the Y-values:

 n

 xc = [∑ xi]/n (2)

 i=1

 n

 yc = [∑ yi]/n (3)

 i=1

Consider now a translated coordinate system centered on xcyc

in the original Euclidian plane which is divided into four

quadrants (Q1 to Q4) as shown in Fig. 3. An arbitrary node,

xiyi and its vector is shown in Quadrant 2 along with its angle,

θi relative to the positive X-axis which is defined as zero

degrees. The Euclidian distance from xcyc to xiyi is hi and

calculated as :

 hi = SQRT[(xi - xc)
2
 + (yi - yc)

2
] (4)

 Fig. 3 Translated X-Y Coordinates

0

20

40

60

80

100

120

0 20 40 60 80

Start and

finish node

Left-most

set

Right-most

set

Q2 Q1

Q3 Q4

X

Y

hi

xi,yi o

θi

xc,yc

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 123

The calculation of any value of θi depends on which quadrant

the node is in.

 If: xi - xc >= 0 and yi - yc >= 0, the node is in Q1, and:

 θi = sin
-1

[(yi - yc)/hi] (5)

 If: xi - xc < 0 and yi - yc >= 0, the node is in Q2, and:

 θi = 180 - sin
-1

[(yi - yc)/hi] (6)

 If: xi - xc < 0 and yi - yc < 0, the node is in Q3, and:

 θi = 180 - sin
-1

[(yi - yc)/hi] (7)

 If: xi - xc >= 0 and yi - yc < 0, the node is in Q4, and:

 θi = 360 + sin
-1

[(yi - yc)/hi] (8)

Once the set of θi have been calculated the entire constellation

is incrementally rotated about the geometric center by angle,

φk (k = 0 to n-1), where k is the kth iteration out of n total

iterations.

 φk = (180/n)k (9)

If k = 0, then φk = 0, and the constellation is in its original,

unrotated position. After each rotation, each node’s new

vector angle relative to the zero degree position in Fig. 3 is (θi

- φk), assuming clockwise rotation. New coordinates, xiyi in

the original Euclidian plane can then be calculated for each

rotated node:

 xi = hi[cos(θi - φk)]xc (10)

 yi = hi[sin(θi - φk)]yc (11)

Of course the distance, dij between any two rotated nodes is

the same as the original, unrotated distances:

 dij = dij (12)

And the tour distance value, vk for the kth contiguous

rotational iteration is:

 vk = ∑dijk (13)

where i and j are determined by the final sort sequence which

becomes known after step 7 in the RCH algorithm. The best

overall solution, v
*
 is then selected in step 8 of the RCH as:

 v
*
 = min{vk} (14)

which occurs at a rotation angle of φ
*
.

4 Computational Test Results and

Discussion

In this section results are presented on the performance of the

RCH algorithm compared to the performance of the NNG

algorithm using instances available in TSPLIB [12].

Instances of up to 76 nodes were selected from TSPLIB for

which the X-Y coordinates and the optimal or best tour were

known and available. All tour values are assumed to be

correct as specified in TSPLIB. NNG and RCH solutions

were generated for each instance and compared to the

TSPLIB tour. Overall results are presented in Table 3.

It can be seen in Table 3 that the RCH algorithm at φ
*

performed better than the NNG algorithm for instances of 38

nodes, or less. For these four instances, rotation of the

constellation from φ

= 0 to φ = φ

*
 improved the solution tour

from an average of 35.87 percent over TSPLIB to 14.96

percent over TSPLIB. As might be expected, it can be seen

in Table 3 that the error increases with the number of nodes.

The data in the second and last columns in Table 3 can be

used to estimate the expected accuracy of the RCH algorithm,

relative to TSPLIB, as a function of the number of nodes

which have been divided into two sets, each of size n/2.

Defining:

 p = % over TSPLIB, RCH at φ = φ
*

 n = number of nodes

Simple linear regression generates the following equation

with adjusted R
2
 = 0.89.

 p = 0.93(n) - 10.56 (15)

Obviously, the p value in (15) cannot be less than zero. The

p-value is equal to zero when the n-value is 11.35. Given that

the n-value must be integer, the error predictor equation is

modified accordingly and approximated as:

 0 for n <= 11

 p = (16)

 0.93(n) - 10.56 for n >= 12

124 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Table 3.

Selected instances from TSPLIB with known X-Y coordinates and optimal solutions

 % over % over % over

TSPLIB Number TSPLIB, TSPLIB, φ
*
, TSPLIB,

Instance of nodes NNG RCH at φ = 0 degrees RCH at φ = φ
*

ulysses16 16 52.70 9.84 0.00 9.84

ulysses22 22 27.82 12.84 163.64 10.69

wi29 29 31.83 53.69 43.45 5.15

dj38 38 46.47 67.12 123.16 34.16

att48 48 20.89 118.55 127.50 28.01

berlin52 52 19.08 86.02 72.69 38.26

st70 70 19.34 80.11 146.57 58.66

pr76 76 41.89 122.08 61.58 60.14

5 Conclusions

A new heuristic algorithm for solving the TSP has been

developed and tested. The algorithm can be implemented

with only a basic knowledge of trigonometry, Excel and

Excel macros or VBA programming. The algorithm performs

well for small problems with the error increasing linearly

with the problem size. This decrease in accuracy is caused by

the sort solution methodology which naturally searches for

the outside perimeter defined on the graph of the nodes for all

values of φ which can lead to excessive back and

forth, zigzag travel in larger problems. Accuracy could likely

be increased by dividing the complete set of nodes into more

than two sets, allowing the sort procedure to delve more

deeply into the interior region of the node graph with less

overall travel within each set. It is expected that the error

predictor equation (16) would hold within each pair of sets,

even as the overall number of nodes in the instance increases.

Connecting the pairs of sets into a complete tour would likely

contribute additional error. This is a topic for future research.

Another avenue for future research could address more

thoroughly the question of how to handle an odd number of

nodes, especially when more than two sets are defined.

Additional rules for determining the incremental rotation

angles could also be investigated. The general solution

methodology might also be modified to work for three-

dimensional or spherical coordinate problems as long as the

node coordinates are specified.

6 References

[1] Dantzig, G. B., D. R. Fulkerson and S.M. Johnson,

Solution of a Large-scale Traveling Salesman Problem.

Journal of Operations Research 1954;2(4): 393-410.

[2] Clarke, Lloyd, Ellis Johnson, George Nemhauser and

Zhongxi Zhu, The Aircraft Rotation Problem. Annals of

Operations Research 1997; 69(0):33-46.

[3] Laporte, Gilbert, The Vehicle Routing Problem: An

Overview of Exact and Approximate Algorithms.

European Journal of Operational Research 1992;59(3):

345-58.

[4] Grotschel, M., M. Junger and G. Reinelt, Optimal Control

of Plotting and Drilling Machines: A Case Study.

Mathematical Methods of Operations Research

1991;35(1): 61-84.

[5] Ratlif, H. Donald. and Arnon S. Rosenthal, Order-Picking

in a Rectangular Warehouse; A Solvable case for the

Traveling Salesman Problem. Operations Research

1983;31(3):507-21.

[6] Lenstra, JK, AHGR Kan and P Brucker, Complexity of

Machine Scheduling Problems. Annals of Discrete

mathematics. North Holland, Amsterdam, 1977:343-62.

[7] Lawler, E. L., J. K. Lenstra, A. H. J. Rinnooy Kan, and B.

B. Shmoys (eds.). The Travelling Salesman: a Guided

Tour of Combinatorial Optimization. J. Wiley and Sons,

Chichester, England: 1985.

[8] Junger, M. G., G Reinelt, and G. Rinaldi, The Travelling

Salesman Problem, in: Handbooks in Operations

Research and management Science, edited by M. O. Ball,

T. L. Magnanti, C. L. Monma, and G. L. Nemhauser,

North Holland, 1995, pp. 225-330.

[9] Rosenkrantz. D. J., R. E. Stearns and P. M. Lewis, An

Analysis of several Heuristics for the Travelling

salesman Problem. SIAM Journal of Computing

1977;6:563-581.

[10] Lin, S. and B. W. Kernighan, An Effective Heuristic

Algorithm for the Travelling Salesman Problem.

Operations Research 1973;21:498-516.

[11] Reeves, Collin, R. (ed.), Modern Heuristic Techniques

for Combinatorial Problems, Halstad Press: an Imprint

of J. Wiley and Sons, New York, 1993.

[12] TSPLIB. URL: <http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/>Last access;

December 7, 2011.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 125

126 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

SESSION

APPLICATIONS

Chair(s)

TBA

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 127

128 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Intelligent Players Competing in the Game of Qubic

James G. Schiiller, Greg L. Vitko, and Gautam B. Singh

Department of Computer Science, Oakland University, Rochester, MI, United States

Abstract - The objective of this research is to develop two

intelligent players to competitively play against each other in

the game of Qubic. The two-player computerized board game

environment possesses an excellent setting in which to

conduct programming experiments. One player selected to

compete in the contest is a deterministic, heuristic-based

approach to artificial intelligence that plays well. The other

player selected is a non-deterministic, genetic programming-

based approach to machine learning. The immediate results

clearly show the heuristic player as the dominant one. Two-

pass evolution is applied to strengthen the genetic

programmer well enough to win more than a few matches

against the heuristic opponent. The analysis opened up areas

of research into developing stronger intelligent heuristic and

genetic programming players.

Keywords: Artificial Intelligence in Games, Genetic

Programming, Heuristics, Qubic

1 Introduction

 The two-player computerized board game environment

possesses an excellent setting in which to conduct

programming experiments. The ultimate goal is to establish

one winner for each game played. The outcome of the games,

in their entirety, holds the key-point in which to compare

intelligent players. Qubic, an advanced version of the

traditional tic-tac-toe game, is the board game chosen for this

study. The research trials were conducted with a two-player

stance, competing over a 100 game set of Qubic. One of the

competing players is the Open-123 heuristic; the other

competing player is referred to as genetic programming (GP).

The object of this research paper is to: develop two intelligent

Qubic players; compete the players against each other;

discover the final results of each game played; examine the

moves; interpret the results of the analysis and state the final

verdict of the project. The conclusion of the experiment will

establish that the player with the most wins at the end of the

tournament is the ultimate winner of the competition.

 Keep in mind, there are more properties of the

competition to consider than just the final outcome. These

properties should not be dismissed as inconsequential.

Although the outcome is decisive, many other factors are

equally as important, since they may hold considerable

bearing on the eventual outcome. For instance, the winner

could move at an extremely slow pace while the loser moves

more swiftly. Additionally, the loser may have an interesting

playing style or possesses the potential to play at a higher-

level, and so on. The ideas discovered while playing Qubic

can be mapped to less trivial and more serious problems, e.g.)

the medical field. Games could be the domain where ―it‖ all

starts).

2 Qubic

2.1 The Game of Qubic

 Qubic is a board game originally sold by Parker

Brothers, in the late 1960's. Qubic consists of four 4x4 tic-tac-

toe boards. Qubic is easier to understand, visualize, and talk

about in a two-dimensional representation as seen in Figure 1.

Additionally, the boards can be combined together to form a

three-dimensional cube as seen in the same Figure 1. [1]

Figure 1: Two- and three-dimensional Qubic in layers.

 Each board layer labeled 1, 2, 3, 4 are the same as the

corresponding two-dimensional board representation. Sixteen

squares on each of the four boards total the entire 64 square

playing surface. The object of the game is to line four ―X‘s‖

or ―O‘s‖ in a row, along, for instance, the horizontal, vertical,

or diagonal axes, on one square of each board, beginning with

an outer board. X is the first player to move. Players then

alternate moves. The first player to line four of their squares

up in a row wins.

2.2 Qubic Mathematics

 There are 76 winning lines in Qubic. Further details are

contained within [2]-[4]. See Table 1 to view all of the 76

possible winning move sets. Qubic has an upper bound

complexity level of 3
64

. Each square can be filled by either X,

O, or empty [5]. There are 64 total squares. That is, multiply

three times three, 64 times. The result is an astronomical

number. There are this many combinations (total number of

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 129

Table 1: The 76 winning line sets in Qubic

positions) in Qubic. If you wanted to get an even more

accurate picture of the complexity of Qubic, use 64 factorial,

an even larger number, as the upper bound complexity level

estimate of Qubic [6]. This estimate includes the 364 estimate

plus it counts move order, a key game property to consider

[6]. Counting move order is the difference between the two

estimates. Either way, it means the Qubic search space is

extremely large. This qualifies it as a computationally

intractable game (NP-hard problem, concerning the time

required to solve the game). We are forced to estimate

solutions to the problem.

3 Intelligent Players

 Processes found within the gaming communities are

integral to the development of artificial intelligence (AI).

Intelligent players are AI in the form of computer programs

developed to play board games. Intelligent players have the

notable ability to quickly solve complex problems. At the

same time, intelligent players have trouble solving simple,

very basic (common sense) types of problems. Two AI

players can complete nearly 100,000 games of Qubic in a

matter of hours. The same amount of games would take two

human players, 100,000 consecutive minutes (or two months)

of play to complete at the alarming rate of one minute per

game.

3.1 Heuristics

 Heuristics are deterministic, problem-dependent, and

rule-based solutions to problems. Human programmers

consult with experts in the field to take human experiences

and advice, trial and error, educated guesses, or even brute

force tactics, and transform the knowledge into computer

procedures and programs. Improvement to the heuristic

requires human programmer intervention. The problem with

heuristics is the knowledge is considered shallow and the

expertise is limited to the domain the system knows about.

Heuristics do not generalize their knowledge. However,

heuristics can provide valuable shortcuts that can reduce both

time and cost. [7]

 The heuristic player is one of the players to compete in

the Qubic contest. The power of the heuristic player is

contained within the evaluation function. The logic behind the

evaluation function is called Open-123. The heuristic player is

deterministic; it will make the same exact move each time it is

given the same situation. The logic defining the evaluation

function is simple. Higher values are assigned to moves

containing a higher number of friendly squares, meaning

squares filled by the player it is evaluating. Each line in each

square is summed to give one total value to the square. Open

3 is assigned a higher value than Open 1. If there is a square

filled by an enemy in the line being evaluated, the value is

automatically returned as 0.0. The square containing the

highest value is returned from the evaluation function. This is

the square it will move to on the actual board. The Open-123

evaluation function can be used in opposites as the player's

defense logic to block. Before evaluating itself, it can evaluate

the opponent in order to detect an immediate win threat. Then,

according to the killer heuristic philosophy, move to this very

spot first before the opponent. During development, the

heuristic player was benchmarked against the skill level of

human players. It was found to be extremely difficult for

humans to calculate what square Open-123 will play on next.

The player was good enough at the moment in time when the

Vertical Horizontal Straight up
Vertical /

Horizontal
Diagonal

{0,1,2,3}

{5,6,7,8}

{10,11,12,13}

{15,16,17,18}

{20,21,22,23}

{25,26,27,28}

{30,31,32,33}

{35,36,37,38}

{40,41,42,43}

{45,46,47,48}

{50,51,52,53}

{55,56,57,58}

{60,61,62,63}

{65,66,67,68}

{70,71,72,73}

{75,76,77,78}

{0,5,10,15}

{1,6,11,16}

{2,7,12,17}

{3,8,13,18}

{20,25,30,35}

{21,26,31,36}

{22,27,32,37}

{23,28,33,38}

{40,45,50,55}

{41,46,51,56}

{42,47,52,57}

{43,48,53,58}

{60,65,70,75}

{61,66,71,76}

{62,67,72,77}

{63,68,73,78}

{0,20,40,60}

{1,21,41,61}

{2,22,42,62}

{3,23,43,63}

{5,25,45,65}

{6,26,46,66}

{7,27,47,67}

{8,28,48,68}

{10,30,50,70}

{11,31,51,71}

{12,32,52,72}

{13,33,53,73}

{15,35,55,75}

{16,36,56,76}

{17,37,57,77}

{18,38,58,78}

{0,21,42,63}

{5,26,47,68}

{10,31,52,73}

{15,36,57,78}

{0,25,50,75}

{1,26,51,76}

{2,27,52,77}

{3,28,53,78}

{0,6,12,18}

{3,7,11,15}

{20,26,32,38}

{23,27,31,35}

{40,46,52,58}

{43,47,51,55}

{60,66,72,78}

{63,67,71,75}

{3,22,41,60}

{8,27,46,65}

{13,32,51,70}

{18,37,56,75}

{15,30,45,60}

{16,31,46,61}

{17,32,47,62}

{18,33,48,63}

{0,26,52,78}

{15,31,47,63}

{3,27,51,75}

{18,32,46,60}

130 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

author of this work and other subjects were unable to defeat it.

One person who was able to beat the player was Greg Vitko

(Chess master). Vitko notably achieved the win in 30 moves

on the first attempt, while playing second at a disadvantage.

The other human players did not do as well. The final verdict

was the Open-123 player plays well. There were some

weaknesses exposed. All around, it evaluates well enough to

serve its purpose. The move string and graphic game of the

winning sequence can be seen in Figure 2. The graphical

example game on the tilted boards below are the graphics

developed by David Cao and reused to clearly demonstrate

example games of Qubic.

Figure 2: Heuristic player defeated.

3.2 Genetic Programming

 Genetic programming is a new, resurrected, exciting,

and actively being researched area. It has been around since

the 1960‘s and taken on and off of the shelf during the 1980‘s.

It has been shelved in the past because of the limitations on

computing power and heavy requirements placed on

execution. Any modern personal computer satisfies the power

requirements. Genetic programming is being revisited today.

 Genetic programming is a machine learning technique

inspired by the theory of biological evolution. Genetic

programmers are algorithms that create algorithms. In tree-

based GP, the generated computer programs are similar to

decision trees and more precisely parse trees: decisions travel

up the tree. Each node can be a complex mathematical

formula (function) [8]. The general idea is to first try a few

thousand random guesses to see which ones are best; then,

take the random guesses and improve them. The basic work

flow follows. First, generate the initial population of random

programs built from the primitive function set. Then, rank the

programs by evaluating them in some predefined way. The

best programs are then selected. These are mutated and bred

with crossover (recombination). The process is continued

until the termination condition is satisfied.

 GP programs in the Qubic implementation are stored as

tree structures. The trees are initialized with a primitive set of

five functions shown in the following list.

1) add(l):=return l0 + l1

2) multiply(l):=return l0* l1

3) subtract(l):=return l0 – l1

4) if(l):=if l0 > 0:return l1 else:return l2

5) is_greater(l):=if l0 > l1:return 1 else:return 0

Each function contains a set of simple operators. The GP

recursively recombines and forms these functions into

programs. The nodes on the trees are function, parameter, or

constant nodes. For each function node there is a list l of other

function, parameter, and constant nodes. The functions are

represented in the list; the parameters are simple auto-

generated lookup values determined at runtime; and the

constants are hard coded integer values.

 Trees are programs. They calculate their next move by

propagating return values up the tree from the bottom nodes,

towards the root of the tree, formulating to the output number

in which the GP uses to make its next move (see Figure 3 for

an example of a genetic program). Programs are designed by

means of evolutionary pressure. The best player remains or is

replaced, dependent on how well it plays against other

competitors in its run. To be useful, the GP should be

serialized to disk. The player can then be brought back to life

and compete in more rounds of evolution and serialized back

to disk again.

Figure 3: Example tree-based program.

4 Experiment

4.1 Hypothesis

 The purpose of this experiment is to compete two AI

players against each other in a 100 game contest of Qubic, to

see who wins and to see what thoughts emerge. Solving the

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 131

game of Qubic is not the purpose. Qubic has already been

weakly solved. Qubic is not being used for that purpose, but it

supplies the domain which conducted the comparison results.

It is the hope of this study to develop the GP player to win at

least a few games against the heuristic player. If this

experiment reveals the GP loses, it means there are open areas

for future work.

4.2 Experiment Results

 The heuristic player won every single game! The length

of the games is an indicator of the equality of the players. This

is true when humans compete against other human players in

games such as chess. It is logical to deduce the same for AI

players for Qubic. An average game of Qubic with roughly

equal players lasts 20 moves. In this contest, an average game

lasted only 10 moves. The length is not long enough to

warrant equality of the players.

5 Opened Areas of Research

5.1 First Attempt Failed

 The results of the experiment opened up areas of

research into developing stronger intelligent GP players. The

basic problem is the GP player lost all 100 games. This

opened up an opportunity to improve the evolutionary process

of the genetic programmer. There were three main problems

with the earlier approach:

1) GP was not blocking immediate win threats (basic need).

2) The is_greater primitive function was returning 1/0.

3) The evolution process only involved self-competition.

5.2 Second Attempt Plan

 In the first contest, the outcome of running the 100 game

set of Qubic resulted in the heuristic player winning every

single game. This means one pass of 100,000 evolutions of

the GP player results in a poor playing program. Increasing

the game experience would not improve the player. The

genetic programmer is not executing basic needs by failing to

block simple initial ‗X‘ player moves 0, 18, 12 as seen in

Figure 4. Computers are not skilled at handling common sense

type of basic problems. The first problem to solve on the way

to beating the heuristic player is to endow the GP player with

basic logic to block. The GP needs to defend against

immediate win threats. The second problem to address is to

modify the is_greater primitive function to return moves,

ranging from 0 - 78, including a padding of bits separating

each 4x4 board, instead of returning binary numbers.

Additionally, to address the third problem, instead of solely

competing against itself, let it compete against a predator

opponent.

Figure 4: Genetic programmer not blocking.

5.3 Solutions

 The solution to the first main problem, to block, is

apparent, and easy to correct. Use the same Open-123 logic as

the heuristic player for defensive moves. The solution to the

second problem requires more thought and includes the

blocking solution for the first problem. After much

experimentation, it was found that the set of initial programs

to start the GP out with should be geared more towards Qubic.

One specialized function was made to reference an in-memory

lookup table into a small subset of winning lines. This idea

fits into the way humans think. During a game of Qubic,

human players follow six or seven solution lines they know

will win. If one of the lines is blocked, they try another line.

People also combine solutions to collect threats. The new

function content pulls solutions from the 76 winning line sets

of Qubic. Particularly, the new GP is made to pull from the

fourteen handpicked solutions in the memory list of Table 2.

Table 2: Lookup Table of Solution Sets.

First Set of Solutions Second Set of Solutions

{18,32,46,60}

{3,27,51,75}

{5,26,47,68}

{22,27,32,37}

{18,33,48,63}

{20,21,22,23}

{65,66,67,68}

{0,26,52,78}

{15,31,47,63}

{6,26,46,66}

{7,27,47,67}

{17,32,47,62}

{25,26,27,28}

{70,71,72,73}

 The modified version of the is_greater primitive

function takes the first or second element from the input list l,

depending on the greater of the values, and applies the

modulus operator to regularize the number as a valid solution

in the lookup table:

 is_greater(l): if l0 > l1: return l0 mod 7 from S1 else:

return l1 mod 7 from S2

The first two elements in the first and second set of solutions

S1, S2 were chosen for the reason these lines contain four rich

points (seven winning lines running through them). Two of

which are the richest points on the board (i.e., the centers of

the middle boards). Players past the beginning skill level of

Qubic know perfect players open their games by playing on

rich points. The rest of the solutions in the list are randomly

132 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

chosen. Comparable results would be generated using

different sets of solutions. This solves the second problem.

Lastly, to offset the domination of the heuristic player, the

two-step evolution process is applied to solve the third main

problem.

5.4 Two-Pass Evolution

 Two-pass Evolution models the behavior of bucks (male

deer) in the wild and may answer the third problem. Bucks

compete by colliding antlers with other bucks where the act of

competition decides dominance, and the winning males mate

[9]. In the artificial model, colliding antlers is naturally

equivalent to competing programs to decide dominance, and

this is accomplished with first-pass evolution. The dominant

program is now ready and allowed to mate. In the artificial

world, mating is equivalent to throwing the best player, along

with the heuristic player (predator), into the initial set of

programs within second-pass evolution. In this second pass of

evolution, the best GP player and predator mate. Hopefully,

the mating produces better offspring through genetic

evolution by applying genetic operators, recombination and

mutation, to the best GP player with good players from the

previous generation. By including the heuristic player as one

of the players in the initial population of programs, the GP

will eventually learn to block from the bad experience of

losing to the predator, if reinforced with a win. This approach

causes the evolving player to learn from others outside of its

own class. Once the GP has evolved with the predator in the

population, it is ready to compete in the real world. The aim is

to evolve the GP into a stronger player capable to win more

than a couple of games out of another 100 game contest of

Qubic.

6 Next Experiment

6.1 Experiment Results: Second Attempt

 The GP won 5 out of another 100 game contest of

Qubic. Earlier, it was found, the GP was unable to solve the

problem on its own. Now that the human programmer

provided the right basic functions, modification of one of the

primitive functions, and the addition of the equal blocking

logic, it worked. The GP player defeated the heuristic player.

The GP was able to find the right combination to pull the

moves in by discovering the best way to arrange and the best

order to call the solution sets. The most evolved player to date

including second-pass evolution and selective termination

achieved 25 wins and 12 draws, slowly approaching equality

with the heuristic player. As a result of adding defense and

second-pass evolution, the players start to become equal and

longer games emerge.

6.2 Corrections to the Plan

 Once the individual games start becoming long, the GP

cannot find a valid move from the solutions (answers) list, all

moves have already been taken, and the GP ends up timing

out, or rather over-evaluating, and must give away the game

to the opponent. There are only a maximum of 28 moves to

choose from the list. If the opponent takes some of the moves

away then there are less. Adding more solution lists to the

specialized primitive function is not the answer. The set of

solutions needs to be small enough to make sequential moves

from within the same lists. Creating seven solution lists gives

―optimal‖ success. For this reason, the GP had to generate

random moves to complete close end games. The random

move generator starts generating random moves until the

move is allowed. For instance, if GP was the X player, it was

X‘s move, the game was already 60 ply deep, and the GP‘s

list of solutions were exhausted on the 61st ply, then the

random move generator would kick in and return random

moves for the GP to successfully complete the game.

7 Future Work

 The evaluation function, as well as it plays, has some

flaws, and can be improved upon. First, the heuristic player is

being overcautious, playing unnecessary defensive moves,

before spotting a winning offense. Small corrections in the

evaluation function will change the function's behavior.

Greater improvements can be made in the area of inserting

further expert knowledge into the evaluation function. For

instance, it is safe to say that making three blindfolded corner

moves on rich points at the beginning of the game is a strong

play. Another possible improvement could be to implement

the concept of collecting threats, where the number of threats

is more important than the threat itself [6]. Significant

improvements can be made to the GP. For instance, the list of

solutions referenced by the primitive function can be

rearranged. Moreover, an improved method could be

implemented for the times when the GP runs out of solutions

in the end game. After these changes are made, the challenge

would of course be to further develop the Qubic GP to

dominate the heuristic player. After this, the next challenger

to try and beat would be Lutz Tautenhahn‘s Qubic AI at

http://www.lutanho.net/stroke/play.html. It is beatable on

expert level, although, it plays extremely well and plays

stronger than the Open-123 heuristic player.

8 Final Conclusions

 The original hypothesis of developing a strong GP

player for competing in the Qubic competition failed in some

respects. One major problem was discovered in the course of

the experiment. The GP player lost every game. The

corrections to the GP player resulted in more than a few

defeats of the heuristic player. An intelligent Qubic player

was developed to beat the heuristic in 25 out of 100 games of

Qubic. This was achieved without adding considerable expert

knowledge to the GP. The GP plays at a higher skill level than

its author; however, the end result of the contest, in terms of

the number of wins, finds the heuristic player as the better

Qubic player. It was found, the human programmer needs to

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 133

supply basic needs, the right initial set of functions, and the

right environment for the GP to evolve.

9 References

[1] B. Challenor. ―Qubic2: 4x4x4 tictactoe, ti-83/84 plus

assembly games (mirageos)‖; [Online]. Available:

http://www.ticalc.org/pub/83plus/asm/games/mirageos/

April 2012.

[2] J. Beck. ―Combinatorial Games: Tic-Tac-Toe Theory‖.

Cambridge University Press, 2008.

[3] N. Do, ―Mathellaneous: How to win at tic-tac-toe‖;

Gazette of the Australian Mathematical Society, 32, 3, 159,

July 2005.

[4] O. Patashnick, ―Qubic: 4 x 4 x 4 tic-tac-toe‖; Mathematics

Magazine, 33, 4, 151—161, Sept 1980.

[5] L. V. Allis, ―Searching for Solutions in Games and

Artificial Intelligence,‖ Phd dissertation, University of

Limburg, 1994.

[6] G. Vitko, Oakland University Virtual Reality Lab,

Rochester, MI, private communication, Feb 2009.

[7] J. Giarratano and G. Riley. ―EXPERT SYSTEMS

Principles and Programming‖. PWS Publishing Company,

1998, 8.

[8] T. Segeran. ―Programming Collective Intelligence. 1st

ed.‖. O‘Reilly Media, Inc., 2007, 250–273.

[9] W. Embar, ―Animal facts – deer‖; [Online]. Available:

http://www.veganpeace.com/animal_facts/Deer.htm

July 2005.

134 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Optimization of SMC parameters Using GA in a Full-
Bridge Dc-Dc Converter

Amirhasan Shams Ansari

Department of Electrical Engineering, Tafresh University, Tafresh, Iran (email: ahsha123@gmail.com)
Farzad Razavi

Department of Electrical Engineering, University of Tafresh, Tafresh, Iran, P.O.BOX39518-79611 (Corresponding
author phone: +98912177 3241; email: farzad.razavi@tafreshu.ac.ir)

Ahsan Ghoncheh
Department of Electrical Engineering, California State University, Fullerton, (email: a.ghoncheh@csu.fullerton.edu)

Hesamoddin Abdollahi
Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran (e-mail:

hessam.abdollahi@gmail.com)
Ali Rahimi Mehrnia

Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran (e-mail: mehrnia.ali@gmail.com)

Abstract— Converters are one of the inseparable parts of
Distributed Generation systems. They are variety of control
methods implemented in converters in order to control their
output quantities. One the robust methods which is considerably
useful in such applications is Sliding Mode Control which is
robust against inherent uncertainties and imprecisions of
converters. The proposed method is explained and formulated
using state space average model of a sample full-bridge converter
in order to have a perfect current tracking of a full-bridge
converter. Since the best output is obtained using the optimum
design parameters, the parameters of the full-bridge converter
are optimized using Genetic Algorithm (GA) in order to have the
best response.

Keywords- Sliding Mode control, Genetic Algorithm, Full Bridge
Converter, Current Tracking, Parameter Optimization

I. INTRODUCTION
Clean Power Generation (CPG) is at the center of the

attention these days because it can protect environment from
the problems of classical power generation such as greenhouse
gas emission and pollution. Besides environmental
repercussions, energy demand rise and depletion of energy
resources are other reasons of CPG appearance [1-3]. There
are different types of environmental-friendly generations
systems such as wind turbines, hydro turbines, photovoltaic
arrays, biomass and fuel cells. Advances in energy storage
devices have greatly assisted the flourishing penetration of
distributed generation (DG) into installation and operation of
power generation plants [4-6]

Most of the DG generators do not have a considerable and
well-regulated DC output. To tackle this problem, a dc-dc
power electronic converter is used in order to regulate and
boost the output to the desired value [7]. Power converters can
be assigned to perform some functions such as output
regulation under load variation or source change [1]. Several
types of converters have been studied for such purpose. Buck
converter, Boost Converter, Buck-Boost Converter, Push-Pull
boost convert and full bridge converter are the most common

converters which are used in DG applications [8-14]. To have
the best performance of a converter, several control methods
have been used [15-21]. The reason of this implementation is
the generation systems limitations rooted in their physical
characteristics. In order to have an acceptable control over the
output of the DG system (DG) there are two ways exists. First,
Control the rate of the physical and chemical quantities which
take part in reactions to produce electricity. For example,
output voltage of a fuel-cell is made of the reactions between
hydrogen and oxygen. Thus if the rate of the Hydrogen and
Oxygen is controlled, the output value is controllable [22].
Since controlling Chemical and physical quantities are not
easy, a second way which is the control implementation in the
connected converter is used. It is possible to regulate and
change the output of a converter by changing its duty cycle
[2].

PID controllers are the most common use controller in the
case of converter control. They can improve system transient
response during load step changes and source changes [23, 24]
or using loop up tables instead of multiplier in order to
minimize the energy consumption [25]. PID controllers are
valid only around the nominal power point of the system and
they cannot have an acceptable response in large scale
disturbances and wide variety of load changes. Intelligent
modern controllers such as fuzzy controller are alternatives
controllers to obtain better performance of converters [8, 18] .

They are robust against such disturbances and uncertainties.
In [26], PID method and fuzzy logic theorem are combined via
a Linear Quadratic Regulator (LQR) to have a better
performance. Some other combinations of fuzzy logic and PID
are presented in [27, 28]. Besides Fuzzy and PID controllers,
the most appropriate controller in order to use in converter
control applications is nonlinear control methods. These
controllers are the best options because of uncertainties in
converters rooted in their elements and design. In addition to
uncertainties, the behavior of controllers is nonlinear and the
best option to use in their application is a nonlinear controller

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 135

to be valid in a large variety of values. This Basis is derived
from the non-minimum phase nature of converters, variability
in their structure and unpredictable nonlinear load changes
[29, 30]. Sliding mode control is one of the well-fitted and
useful methods converter studies especially in DG connected
samples.[31] presents a simple unified approach to the design
of fixed-frequency pulse width-modulation-based sliding-
mode controllers for dc-dc converters operating in the
continuous conduction mode. The problem of combining
interleaved operation of several identical power converters
with a hysteretic control is solved in [32] by inducing a sliding
regime to all inductor currents in a ring configuration. In some
references a combination of sliding mode with other methods
is presented [11, 28, 33-36].The sliding mode fuzzy controller
combines the advantages of both fuzzy controllers and sliding
mode controllers. It also has advantages of its own that are
well suited for digital control design and implementation [28].
In [37-39], investigations on Buck, Boost and Buck-Boost
converters are carried out using SMCs in order to reach a
desired voltage profile tracking during a load change, start-ups
and transients. Full Bridge buck converter is studied in a part
of the [40] in comparison with a cascaded connection boost
converter for voltage, but not considering the transformer.

In this paper, a proposed sliding mode controller (SMC) is
introduced and implemented in a full-bridge converter using its
average model. The parameters of SMC are optimized using
GA to have a proper response from two points of view; settling
time and final value. The proposed method is confirmed using
simulation in tracking performance and settling time.

II. FULL BRIDGE CONVERTER AND THE CONTROL SYSTEM

A. Full-Bridge Converter Performance and Average
Modeling

Fig.1 depicts the general schematic of a full-bridge converter circuit. Error!
Reference source not

found.

Fig.1. The full-bridge converter

 The sample full bridge converter is made of a full bridge
power converter (1 4Q toQ), a high turns-ratio transformer with
ratio 1: n, a diode bridge rectifier and an output filter. The
switches (1 4Q toQ) are located diagonally and turned on and
off. The pulses are sent to the switches using a PWM pulse
generator with the time duration of . SD T . The PWM pulse
generator has the value D as duty cycle input. The
transformer eases boosting the output voltage.

The average model of a Full-Bridge DC-DC converter is
derived in [1] and its state space model is shown in (1)-(5). In
this model state variables are; inductor current (1x) and

capacitor voltage (2x).

dX AX BV= +& (1)

OV CX= (2)
2 (1 2) 1

1 1

th DR d r d
L LA

C RC

+ − − −
=
 −

(3)

2

0

dn
B L

 =

(4)

[]0 1C = (5)
The average model is beneficial for simulation because of

not using multiple switches and other electrical elements.
Therefore, the time of simulation decreases. Also the state
space model is suitable for controller design and stability
analysis.

B. Implementation Of Sliding Mode Controller in a Full
Bridge Converter

There are two stages exist in the design of a SMC
controller; first, determining the sliding surface to provide
sliding condition and second, reaching the sliding surface.

Consider the following single input dynamics.
() () () ()nx f x b x u t= + (6)
()f x and ()b x both are not exactly known but the former is

upper bounded by a known continuous function of x named

F where ˆf f F− ≤ and the latter sign is known and it is also

upper bounded by a continuous function of x . The objective is
determination of u .

The tracking error vector is defined by the following
equation;

(1). . . n
dx x x x x x − = − =

&% % % % (7)

%1(;) ()nds x t x
dt

λ −= + (8)

Where 0λ > and 0n > are design parameter and system
order respectively.

It is obvious that if the tracking error equals zero then (8)
equals zero. It means:

% 0 (;) 0dx x x s x t= − = ⇔ = (9)
Where dx is the desired output value.
Therefore, it is possible to keep s at zero with a proper

choice of ()u t at (1) .
A control law is introduced in order to keep the s at zero.

21
2

d s s
dt

η≤ − (10)

where 0η > is a design parameter.
State-space equations of the full-bridge converter can be

obtained from (1) – (5) as

1 1 2
2 (1 2) 1 2

d

th dR d r d dnx x x V
L L L

− − −
= − +& (11)

136 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

2 1 2
1 1x x x
c RC

= −& (12)

2OV x= (13)
By changing (11) and (12) in the form of (6) we have:

1 1 2 1
2()1 2

d

d d thr r R nx x x x V d
L L L L
− − = − + +

& (14)

2 1 2
1 1x x x
c RC

= −& (15)

d is the controlling parameter of the system is the same as
u in (6). Since there is no d available at (14) only the tracking
of 1x is accessible. Of course, it is highly likely that the

tracking 1x leads to the stability of 2x . Hence,

1 1 2
1ˆ () dR

f x x x
L L

−
= − (16)

1 1
2ˆ () 2 d th

d
r R nb x x V

L L
 − = +

(17)

f̂ is an estimation for f because of some available
uncertainties in full-bridge converter. Another reason for this
estimation is the semiconductor nonlinear characteristic. This

explanation is also correct for b and b̂ .
Considering 2n = in (8), the sliding surface is as follows
s x xλ= +&% % (18)
The general form of (12) in comparison with (6) can be

written as (20)
1 () () ()x f x b x u t= +& (19)

Where ()f x and ()b x can be the function of 1x and 2x .
By replacing (20) in (19) we have

ds f bu x xλ= + − +& % (20)
Now the effort is on the finding of the appropriate u in

order to make 0s = .
by taking the estimations on f and b into account, the best

u is found to satisfy 0s =
Firstly by considering 1b = , the following equation is

derived
ˆˆ du f x xλ= − + −& % (21)

The above conditions in (21) and (22) are formulated with
the assumption of 0s = , but there are some uncertainties in
the parameters and the problem is out of the s plane.
Therefore, u should be defined as

ˆ sgn()u u k s= − (22)

Where
1 0

sgn() 1 0
0 0

if s
s if s

if s

>
= − <
 =

Secondly, u is derived from (23) while 1b ≠
()1ˆ ˆ sgn()u b u k s−= − (23)

By putting (24) in (20) and after some simplifications, the
sliding surface could be achieved as

1 1 1 1ˆ ˆ ˆ ˆ ˆ sgn()d ds f bb f bb x bb x bb k s x xλ λ− − − −= − + − − − +& % & %

(24)
In order to calculate k , 0s = must be solved, hence

1 1 1ˆ ˆ ˆ ˆsgn() () (1)()dbb k s f bb f bb x xλ− − −= − + − − +& % (25)

Where 0.5
min max

ˆ ()b b b=

After some simplifications with regard to ˆ ˆ()f f f f= + − k
is represented as

ˆ() (1)k F uβ η β≥ + + − (26)
Where

0.5
max

min

b
b

β

=

and min max0 b b b< ≤ ≤

After calculation of k , x is capable of tracking dx and it
can be controlled.

There are three design parameters. F is assumed as the

radius of error between f and f̂ . Thus it is predicted that

lower F results in better tracking accuracy and lowering the
error. λ is another SMC parameter. λ is the coefficient of the
non-derivative term of the sliding surface presented in (8). It
affects the resolution of tracking the desired point in
comparison with the reaching speed. Moreover it may
influence the amount of the chattering. η is a positive constant
design parameter and defines the sliding condition. It also
implies that some of the system uncertainties and disturbances
can be tolerated while still keeping the surface invariant set.
Also,η can be influential on system dynamic especially in the
system speed and changing in the proportion of chattering.
General scheme of the proposed control system and its output
and input is shown in Fig.2.

Li
d

cv

Li
cv

()L desiredi

Fig.2. General Scheme of the Proposed SMC

III. OPTIMIZATION OF THE PROPOSED SMC USING GENETIC
ALGORITHM

In this paper, GA is used in order to optimize the three
mentioned parameters of the proposed SMC to have the best
output. In order to start the solution, first population size
should be determined at the first step. This population is
obtained from accidental quantization of chromosomes. These
numbers are inserted to the function which is going to be
optimized. The next step is injecting the generated population
to objective function. The aim of this action is creating of
fitness function which is derived from chromosomes. In this
case proper answers are kept and others will be omitted. This
circle will be continued until the size of population is reached.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 137

the following chart illustrates the proposed GA.

Fig.3. The proposed Genetic Algorithm chart

IV. IMPLEMENTATION OF THE PROPOSED METHOD
In order to verify the proposed method

MATLAB/SIMULINK is used. The Converter model is
modeled as follows:

Fig.4. The Model of Dc-Dc Full-bridge Converter in MATLAB/SIMULINK

As it can be seen in above picture, because of some
simulation problems such as increasing the time of the
simulation and increasing the error message of the software
during simulation with electrical parameters the full-bridge
converter is simulated using block diagrams instead of
resistors and capacitors.

As it can be understood from the simulated SMC, the inputs
of the SMC are 1x and 2x . The output of the system is the
appropriate duty cycle which is sent to the converter switches.

For implementation of GA, MATLAB/GA toolbox is used.
The specification of the 5 kW sample Full-Bridge converter

is presented in Table 1.

TABLE I
SPECIFICATION OF FULL-BRIDGE CONVERTER

Description Parameter Nominal Value
Input Voltage dV 50 V

Inductance L 7 mH
Capacitance C 330 µH

Diodes Resistance dR 1 mΩ
Switches On-Resistance TR 5 mΩ

Transformer Ratio n 100
Switching Frequency sf 2000 Hz

Load Resistance LR 12.5 Ω
Equivalent Thevenin

Resistance
thR 100.002 Ω

V. SIMULATION RESULTS AND DISCUSSION
In this part, the simulations and results using

MATLAB/SIMULINK and MATLAB/GA toolbox is given
and the appropriate explanations are also presented.

A. Design Parameter Study
First of all to have a better recognition of the design

parameters their approximate effect on the tracking
performance is discussed.

1) Effect of F
F may decrease the resolution of tracking. For example,

10F = expresses that the absolute deviation of the available
values of the converter elements from original values are less
than 10. The default values of other SMC parameters are as
follows:

1
10

η
λ

=
 =

The optional value for 1x to track is 22.5 A. The simulated waveforms for

F=0.1, F=10, F=100, and F=1000 are shown in

Fig.5.

0 0.1 0.2 0.3 0.4 0.5
0

22.4999

F=0.1

Time (s)

x1
(In

du
ct

or
C

ur
re

nt
(A

))

0 0.1 0.2 0.3 0.4 0.5
0

22.4989

F=10

Time (s)

x1
(In

du
ct

or
C

ur
re

nt
(A

))

0 0.1 0.2 0.3 0.4 0.5
0

22.4899

30
F=100

Time (s)

x1
(In

du
ct

or
C

ur
re

nt
(A

))

0 0.1 0.2 0.3 0.4 0.5
0

22.3999

30
F=1000

Time (s)

x1
(In

du
ct

or
C

ur
re

nt
(A

))

Fig.5. Simulated wave forms of Inductor Current for F=0.1, F=10, F=100,
F=1000

2) Effect of “λ ”
The simulation is performed for different values of λ using

the following values for other parameters of the SMC.
0.1
1

F
η

=
 =
Also, in this study, the desired value of current is equal to

22.5 (A).

138 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

0 10 20 30 40 50 60

0

5

10

15

20

25
Inductor Current By Changing The Lambda Value

Time (s)

x1
(I

nd
uc

to
rC

ur
re

nt
)(

A
)

Lambda=100
Lambda=10
Lambda=1
Lambda=0.5
Lambda=0.1

Increase in Lambda

Fig.6. Simulated Waveforms of Inductor Current for
0.1, 0.5,λ λ= = 1, 10, 100λ λ λ= = =

As it can be understood from the above figure, by
increasing λ , the slope of the current rises and the system
reaches the steady-state condition in a shorter time.

0 10 20 30 40 50 60

22.478

22.489

22.5

Inductor Current By Changing The Lambda Value

Time (s)

x1
(I

nd
uc

to
rC

ur
re

nt
)(

A
)

Lambda=100
Lambda=10
Lambda=1
Lambda=0.5

x1==22.4989 for Lambda=10

x1=22.5 for Lambda=100

Fig.7. Tracking accuracy for 0.5,λ = 1, 10, 100λ λ λ= = =

Also it has got a significant effect on the tracking accuracy.
For example the tracking error for F=10 is 0.0049%.

3) Effect of “η ”
To study the effect of η , the default values for other

parameters are
0.1
10

F
λ

=
 =

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

22.5

25

Time (s)

x1
(In

du
ct

or
C

ur
re

nt
(A

))

Eta=0.1
Eta=1
Eta=10
Eta=100
Eta=1000

Fig.8. Simulated Waveforms for Inductor Current for
0.1, 1, 10, 100, 1000η η η η η= = = = =

The relative tracking error is around 4% for 1000η = ,
around 0.44% for 100η = and approximately zero for other
values.

B. Simulation of SMC Parameter Optimization Using GA
The estimated parameters to start simulation are:

0.1
1

100

F
η
λ

=
 =
 =
And the result is presented in Fig.8. with a green dotted

line.
Now the effort is to optimize the mentioned values in order

to have the best response using GA. The simulation is run for
the following values:

, ,
10

50
 0.001

Variable Names F
Population size

Generation
Absolute error

η λ=
 =
 =
 =
The optimized values for converter parameters are as

follows:
0.051607
0.39232
778.27

F
η
λ

=
 =
 =
And the specified point that the output has reached the best

value is 14. It means that in 14 ms, the answer has got the best
characteristics with the mentioned optimized values.

Now the effort is to run simulation for different values for
absolute error to have a better understanding of the optimized
points. The values for absolute error are 0.1, 0.01, 0.001 and
0.0001.

As it can be seen in Table II, the decrease in absolute error
leads to the increase in reaching time.

TABLE II

GA RESULTS FOR DIFFERENT VALUES FOR ABSOLUTE ERROR
Absolute

Error
0.1 0.01 0.001 0.0001

F 0.086175 0.038527 0.051607 0.37661
η 0.607 1.1747 0.39232 0.15359
λ 812.69 645.24 778.27 701.02

Reaching
Time
(ms)

8 13 14 19

The following figure depicts the inductor current simulated
wave form for different values of absolute error.

0 0.008 0.013 0.019
0

22.5

Change in GA absolute error

Time (s)

In
du

ct
or

C
ur

re
nt

(x
1)

(A
)

x1 for Absolute error = 0.01
x1 for Absolute error = 0.1
x1 for Absolute error = 0.001
x1 for Absolute error = 0.0001

Fig.9. Simulated Waveforms for Inductor Current for different values for
Absolute error

As it can be seen, the settling time is different for different
values of absolute error. This method can be helpful during
much sensitive cases like connection of a Dc-Dc converter to a
distributed generator such as fuel cell and photovoltaic.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 139

VI. CONCLUSION
Since most of the distributed generators does not have a

considerable and regulated output, converters are implemented
in DG systems in order to overcome the mentioned problems.
Full-bridge converter is a useful converter which can perform
both output regulation process and output boosting. SMC is a
robust method which can be employed in order to force the
variables of the converter to track a reference value. SMC has
three design parameters. To obtain the best performance of the
converter and controller this parameters should be optimized.
In this paper GA is used in order to optimize the SMC
parameters in order to have the best current output with the best
tracking performance.

REFERENCES
[1] [1] H.R. Ali Asghar Ghadimi, Ali Keyhani, Journal of Iranian

Association of Electrical and Electronics Engineers (IAEEE), 4 (2007)
52-59.

[2] [2] H.R. S.H Fathi, A.A Ghadimi, European Transactions on Electrical
Power, 21 (2011) 801-823.

[3] [3] H. Kakigano, Y. Miura, T. Ise, Power Electronics, IEEE
Transactions on, 25 (2010) 3066-3075.

[4] [4] M.N. Marwali, A. Keyhani, Power Electronics, IEEE Transactions
on, 19 (2004) 1541-1550.

[5] [5] M.N. Marwali, J. Jin-Woo, A. Keyhani, Power Electronics, IEEE
Transactions on, 19 (2004) 1551-1561.9

[6] [6] E. Ibarra, J. Andreu, I. Kortabarria, E. Ormaetxea, I.M. de Alegría,
J.L. Martín, P. Ibañez, Electric Power Systems Research, 81 (2011) 538-
552.

[7] [7] I.-Y. Chung, W. Liu, K. Schoder, D.A. Cartes, Electric Power
Systems Research, 81 (2011) 1051-1059.

[8] [8] C. Elmas, O. Deperlioglu, H.H. Sayan, Expert Systems with
Applications, 36 (2009) 1540-1548.

[9] [9] S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, J.C. Clare, Smart
Grid, IEEE Transactions on, 2 (2011) 231-243.

[10] [10] M. Brenna, G.C. Lazaroiu, G. Superti-Furga, E. Tironi, Power
Delivery, IEEE Transactions on, 23 (2008) 907-914.

[11] [11] M. Phattanasak, R. Gavagsaz-Ghoachani, J.P. Martin, B. Nahid-
Mobarakeh, S. Pierfederici, B. Davat, in, 2011.

[12] [12] H. Karimi, H. Nikkhajoei, R. Iravani, Power Delivery, IEEE
Transactions on, 23 (2008) 493-501.

[13] [13] Y.Q. Zhan, Y.H. Li, S.S. Choi, S. Rajakaruna, D.M. Vilathgamuwa,
Power Delivery, IEEE Transactions on, 21 (2006) 1421-1429.

[14] [14] H. Valderrama-Blavi, J.M. Bosque, J.A. Barrado, M. Munoz, J.
Calvente, Power Electronics, IET, 1 (2008) 203-213.

[15] [15] C.-H. Cheng, P.-J. Cheng, M.-J. Xie, Expert Systems with
Applications, 37 (2010) 733-740.

[16] [16] F.A. Olsen Berenguer, M.G. Molina, International Journal of
Hydrogen Energy, 35 (2010) 5974-5980.

[17] [17] A. Hasanzadeh, C.S. Edrington, H. Mokhtari, Electric Power
Systems Research, 81 (2011) 2188-2197.

[18] [18] L. Guo, J.Y. Hung, R.M. Nelms, Electric Power Systems Research,
83 (2011) 104-109.

[19] [19] T. Niknam, H.Z. Meymand, H.D. Mojarrad, Energy, 36 (2011) 119-
132.

[20] [20] A. Sakhare, A. Davari, A. Feliachi, Journal of Power Sources, 135
(2004) 165-176.

[21] [21] C.N. Papadimitriou, N.A. Vovos, in: Power Electronics and
Applications, 2009. EPE '09. 13th European Conference on, 2009, pp. 1-
10.

[22] [22] P. Thounthong, S. Pierfederici, B. Davat, Energy Conversion, IEEE
Transactions on, 25 (2010) 909-920.

[23] [23] F. Kurokawa, Y. Maeda, Y. Shibata, H. Maruta, T. Takahashi, K.
Bansho, T. Tanaka, K. Hirose, in: TENCON 2010 - 2010 IEEE Region
10 Conference, 2010, pp. 2159-2164.

[24] [24] F. Kurokawa, Y. Maeda, Y. Shibata, H. Maruta, T. Takahashi, K.
Bansho, T. Tanaka, K. Hirose, in: Power Electronics and Motion
Control Conference (EPE/PEMC), 2010 14th International, 2010, pp.
S13-15-S13-19.

[25] [25] A. Prodic, D. Maksimovic, in: Computers in Power Electronics,
2002. Proceedings. 2002 IEEE Workshop on, 2002, pp. 18-22.

[26] [26] W. Kexin, S. Qiang, L. Bin, D. Mingxing, in: Computational
Intelligence and Industrial Application, 2008. PACIIA '08. Pacific-Asia
Workshop on, 2008, pp. 139-143.

[27] [27] Y. Guo, C. Zhang, Z. Wang, L. Huang, in: Information Networking
and Automation (ICINA), 2010 International Conference on, 2010, pp.
V1-329-V321-332.

[28] [28] L. Guo, J.Y. Hung, R.M. Nelms, Electric Power Systems Research,
81 (2011) 99-106.

[29] [29] W.L. Jean-Jacques E.Slotine, Applied Nonlinear Control, 1 ed.,
Prentice Hall, New Jersey, 1991.

[30] [30] H. K.Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, New Jersey,
2002.

[31] [31] T. Siew-Chong, Y.M. Lai, C.K. Tse, Circuits and Systems I:
Regular Papers, IEEE Transactions on, 53 (2006) 1816-1827.

[32] [32] A. Cid-Pastor, R. Giral, J. Calvente, V.I. Utkin, L. Martinez-
Salamero, Circuits and Systems I: Regular Papers, IEEE Transactions
on, 58 (2011) 2566-2577.

[33] [33] W. Rong-Jong, S. Kuo-Ho, Industrial Electronics, IEEE
Transactions on, 53 (2006) 569-580.

[34] [34] R. Melício, V.M.F. Mendes, J.P.S. Catalão, Energy, 36 (2011) 520-
529.

[35] [35] C.P. Coleman, D. Godbole, in: Fuzzy Systems, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the Third IEEE
Conference on, 1994, pp. 1654-1659 vol.1653.

[36] [36] S.F. Pinto, J.F.A. Silva, Industrial Electronics, IEEE Transactions
on, 46 (1999) 39-51.

[37] [37] J.F.A. da Silva, V. Fernão Pires, S.F. Pinto, J.D.s. Barros,
Mathematics and Computers in Simulation, 63 (2003) 281-295.

[38] [38] E.M. Navarro-López, D. Cortés, C. Castro, Electric Power Systems
Research, 79 (2009) 796-802.

[39] [39] Y.B. Shtessel, A.S.I. Zinober, I.A. Shkolnikov, Automatica, 39
(2003) 1061-1067.

[40] [40] D. Biel, F. Guinjoan, E. Fossas, J. Chavarria, Circuits and Systems
I: Regular Papers, IEEE Transactions on, 51 (2004) 1539-1551.

140 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Optimal Solution to the Problem of Balanced Academic

Curriculum Problem Using Tabu Search

Lorna V. Rosas-Téllez
1
, José L. Martínez-Flores

2
, and Vittorio Zanella-Palacios

1

1
Engineering Department ,Universidad Popular Autónoma del Estado de Puebla UPAEP,21 sur 1103 Col.

Santiago C.P. 72410,Puebla Pue., México
2
 Interdisciplinary Center for Postgraduate Studies, Research, and Consulting ,Universidad Popular Autónoma

del Estado de Puebla UPAEP, 17 sur 901 Col. Santiago C.P. 72410,Puebla Pue., México

Abstract - The Balanced Academic Curriculum Problem

(BACP) is a constraint satisfaction problem classified as

NP- Hard, this problem consists in the allocation of

courses in the periods that are part of a curriculum such

that the prerequisites are satisfied and the load of

courses is balanced for the students. In this paper is

presented the solution for a modified BACP where the

loads may be the same or different for each one of the

periods and is allowed to have some courses in a specific

period. This problem is modeled as an integer

programming problem and is proposed the use of tabu

search for its solution because was not possible to find

solutions for all the instances of this modified problem

with formal methods.

Keywords: Academic Curriculum Balanced Problem,

Tabu Search

1 Introduction

 A curriculum is formed by a set of courses and

these courses have assigned a number of credits that

represent the effort in hours per week that the student

requires to follow the courses successfully. For parents or

tutors and for the institution represents the economic cost

of this course. The academic load is the sum of the

credits of all the courses in a given period. Therefore, the

correct planning of the curriculum results in benefit of the

all the involved: For the institutions, favors the

departmentalization and the resulting cost savings, for the

students, one good load distribution represents the

academic effort that they require invest, for the parents or

tutors, a good distribution of the credits allow planning

financial efforts. Balanced Academic Curriculum Problem

(BACP) consists in the allocation of courses in the

periods that are part of a curriculum such that the

prerequisites are satisfied and the credits load is balanced.

The BACP belongs to the class of problems CSP

(Constraint Satisfaction Problems), and this is a

decisional optimization problem classified as NP-Hard

[1].

The BACP problem was introduced by Castro and

Manzano [2] with three test cases called BACP8,

BACP10 and BACP12 included in CSPLib [3] and these

have been used to test models proposed by other

researchers.

The model proposed in [2] uses the following integer

programming model:

Parameters

m : Number of courses

n : Number of periods

i : Number of credits of course i; i =1..m

 : Minimum academic load allowed per period

 : Maximum academic load allowed per period

 : Minimum amount of courses per period

 : Maximum amount of courses per period

Decision Variables

xij =

ci : academic load of period j, j =1, ..., n

m

i

ijij njxc
1

..1

(1)

Objective function

 nccMaxcMin ,, 1

(2)

Constraints

If the course b has the course a as prerequisite then:

xa < xb

njck ,.1

(3)

njx
m

k

ij ,,1
1

 (4)

 1 if course i is assigned to period j

 0 otherwise

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 141

Recent works have tried to solve this problem using

genetic algorithms and constraint propagation [4], local

search techniques [5], formal methods (HyperLingo) for

the integer programming problems [6] and multiple

optimization, using genetic algorithm of local search [7].

All these approach have found the optimal for the three

test cases included in CSPLib and in some cases also for

the curriculums of their universities.

In [6] was proposed a modified BACP problem

where are considered constraints of academic load and

total of courses within a specific range per period, i.e.,

not necessarily all periods will have the same ranges for

their academic loads and number of courses; also add the

restriction of to locate a course in a given period. This

problem was modeled as an integer programming

problem and is reported to find optimum solutions using

a formal method for some of its instances but not for all,

and the solutions for the three instances included in

CSPLib.

In this paper is solved the modified BACP using

tabu search to find solutions to the instances that the

formal method could not to solve

1.1 Formulation for Model BACP

Modified.

In the model of interest proposed in [6] is considered to

modify two constraints of the base formulation, the first

one is to make flexible the course load per period and the

second one is to make flexible the number of courses per

period, i.e., that we can place different limits on course

load and number of courses for each period. It also adds

a restriction which allows the location of some of the

courses in a specific period.

Parameters

Nta : Number of courses

Ntp : Number of academic periods

crdi : Number of course credits i=1..Nta

mcaj: Minimum academic load allowed per period

Mcaj: Maximum academic load allowed per period

mnaj: Minimum number of courses per period

Mnaj: Maximum number of courses per period

c: Course it is desirable to locate between certain periods.

mpcc: Minimum period of location of the course

Mpcc: Maximum period of location of the course

Cj : Academic load

NtpjxcrdC
Nta

i

ijij ..1
1

(5)

Decision Variables

Cj : Academic load for the period j =1..Ntp

Cmx : Maximum course load

xij =

Objective Function

 CmxMinfobjective (6)

where Cmx = Max { c1, c2, …, cNtp }

Constraints

The load of the period j must be within the allowable

range.

NtpjMcaCmca jji ..1 (7)

The number of courses of the period must be within the

allowable range.

NtpjMnaxmna j

Nta

i

ijj ..1
1

 (8)

If the course b has the course a as prerequisite then

Ntpjxx
j

r

arbj ..2
1

1

 (9)

Convenient location for the course c

1

c

c

Mpc

mpvj

cjx (10)

2 Tabu Search

 The proposal solution is based on use of heuristic in

this case tabu search. The tabu search is a method used to

solve combinatorial optimization problems. The main

idea behind the tabu search method is that by using a

"memory" forces the method to explore new areas in the

search space. That is, it can "memorize" some solutions

that have been examined recently and these points

become forbidden (taboo) to make decisions about the

following solution. To use this method is used the

following structure to represent the different actors

involved in the model. One element of the population is

represented by a vector, where the position indicates the

course and the content of each position indicates the

period to which it was assigned, as shown in figure 1.

 1 if course i is assigned to period j

 0 otherwise

142 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

0 1 2 3 4 5 59 60 61

1 1 3 1 2 2 9 9 0

Figure 1 Element of the solution

In our case we use a short-term memory on the

movements of courses by period. To keep track of

movements that have been made, and will are prohibited,

we use a two dimensional array, of size total number of

periods (ntp), in which is stored the periods between

which the movement took place as shown in figure 2.

 0 1 ntp-1

min 1 2 … 4

max 3 7 … 2

Figure 2 Short-term memory

We can consider that a balanced curriculum should

have a uniform distribution of all the credits that make up

the curriculum, so the fitness function used is the sum of

the absolute error, which is calculated using the following

function.

Ntp

k

k PChFitness
1

)(

(9)

Where Ck is the academic load of the period k calculated

with the formula (4) and P is the average number of

credits per period.

NtpCP i

Ntp

i

/
1

(10)

The initial population consists of the curriculum that

we want to balance, this is a feasible solution. Once we

have the first feasible solution is necessary to obtain the

period with least load and period with more load. And

these periods are stored in the array that will handle the

short-term memory for the tabu search.

Pmax = max{Ck} to k=1, …, ntp

Pmin = min{Ck} to k=1, …, ntp

To generate a new possible solution is sought the

first course in order of appearance, which belongs to the

period with maximum load (Pmax). Given the course are

validated the restrictions of prerequisites, load and

preference of the period of a course, if they are satisfied

the change is made, in another way another course is

chosen in the same way and redo the validation of the

new course. In case that none of the courses reassigned

to Pmax period allow the change, the minimum period

current is marked as ineligible and is calculate a new

minimum period, with which is repeat the above process.

At the time of finding a solution the periods marked as

ineligible are marked as eligible. The two solutions, the

current and the solution generated, are evaluated by the

fitness function (formula 10) and the best is selected for

the next generation. In each iteration is tested that the

Pmax and Pmin periods are not in the tabu list. Once that

the tabu list is filled, the counter of the tabu list is set at 0

to begin replacing first the old value like a circular list.

 When is detected that a local optimum has been

reached, a change in the process of generation of a new

solution is made. Now the new solution is generated

exchanging two courses, the first one in the period with

more load and the second one in the period with less

load. Having the two courses which will be exchanged,

are evaluated the restrictions of prerequisite , load,

course and period of preference, if the exchange can be

given, the new individual is generated, in other way is

chosen another course of the minimum period and the

validation is made newly.

3 Results

The tests were carried out for the three base cases

included in CSPLib and the cases proposed by [5] for

which no solution could be found.

3.1 Base Cases

The base cases included in CSPLib are: BACP8,

BACP10 and BACP12, whose features are shown in

table 1.

Table 1. General features of curriculums

Code BACP8 BACP10 BACP12

Total Courses 46 42 66

Total credits 133 134 204

#Total Academic

period

8 10 12

#Relation Prerequisite 33 34 65

Min. Courses /period 2 2 2

Max. Courses / period 10 10 10

Min Load/ period 10 10 10

Max Load/ period 24 24 24

#Courses with location 0 0 0

Table 2 shows the result obtained with the proposed

algorithm, in all cases the optimum is reached.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 143

Table 2. Results summary

Code Optimum
Average

Iterations

Average time

(min.)

BACP 8 17 57.6 1.5

BACP 10 14 87.7 1.7

BACP 12 17 162.0 2.5

The academic load per period obtained by the

algorithm is shown in table 3.

Table 3. Solution found for BACP 8

Period Load Courses

1 17 7

2 17 5

3 17 5

4 17 6

5 17 6

6 17 6

7 15 5

8 16 6

3.2 Proposed Cases

The cases not included in library CSPLib used to test this

algorithm are taken from [5], the first is one for which

could not always find the optimal and the second is where

the optimum never was found. The features of these two

problems are shown in table 4.

Table 4. General features of curriculums

Code Ici-06 Ind-06

Total Courses 61 61

Total credits 488 376

#Total Academic

period

9 9

#Relation

Prerequisite

48 47

Min. Courses /period 5 4, 4, 4, 4, 4, 4, 4, 4, 2

Max. Courses/

period

8 9, 9, 9, 9, 9, 9, 9, 9, 4

Min Load/ period 20 20, 20, 20, 20, 20, 20,

20, 20, 15

Max Load/ period 60 60, 60, 60, 60, 60, 60,

60, 60, 40

#Courses with

location

15 21

In tables 5 and 6 is showing the courses that have

preference of location in each of the curriculums, Ici-06

and Ind-06 respectively.

Table 5. Preference of location Ici-06

Course Code Minimum Period Maximum Period

C07001 7 9

C07002 7 9

C07003 7 9

CIV200 1 2

CIV400 6 9

CIV401 8 9

CIV403 6 9

MAT005 1 5

MAT006 1 5

MAT008 1 5

MAT009 1 5

OI103101 1 4

OI103102 1 4

OI103103 1 4

OI103104 1 4

Table 6. Preference of location Ind-06

Course Code Minimum Period Maximum Period

C12001 7 9

C12002 7 9

C12003 7 9

C12004 8 9

FHU001 1 6

FHU002 1 6

FHU003 1 6

IND100 1 2

IND208 4 6

IND212 4 6

IND214 6 8

IND400 7 9

LPCI 1 6

LPCII 1 6

OH25001 1 6

OI103101 1 6

OI103102 1 6

OI103103 1 6

OI103104 1 6

SSC001 5 9

SSP002 5 9

Table 7 shows the results obtained with the

algorithm; in all cases the optimum was reached.

144 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Table 7. Results summary

Code Optimum
Average

Iterations

Average time

(min.)

Ici-06 55 57.6 16

Ind-06 44 87.7 19.7

The academic load per period obtained by the algorithm

is shown in table 8.

Table 8. Solution found for Ind-06

Period Load Courses

1 54 7

2 54 6

3 54 6

4 54 7

5 55 6

6 55 6

7 54 8

8 54 7

9 54 8

4 Conclusions

In this paper we present the solution, using tabu search,

for a modified Balanced Academic Curriculum Problem,

where the load for each period can be equal or different

and is allowed to have some courses in a specific period.

In a previous work is showed that is possible to find

solutions with HyperLingo for some of the instances of

the problem, but not for all of them. However by the

results obtained was proved that the use of tabu search

helps to find solutions to the problems that could not be

resolved with the formal method.

5 References

[1] J. Salazar, “Programación matemática”, Madrid:

Diaz de Santos, 2001.

[2] C. Castro and S. Manzano, “Variable and value

ordering when solving balanced academic curriculum

problem”, Proc. of the ERCIM Working Group on

Constraints, 2001.

[3] T. Lambert, C. Castro, E. Monfroy, F. Saubion,

“Solving the Balanced Academic Curriculum

Problem with an Hybridization of Genetic Algorithm

an Constraint Propagation”, In Proceedings of

ICAISC, pages 410-419, Berlin: Springer-Verlag,

2006.

[4] Luca Di Gaspero, Andrea Schaerf, “Hybrid Local

Search Techniques for the Generalized Balanced

Academic Curriculum”, In Proceedings of HM,

pages 146-157, Berlin: Springer-Verlag, 2008.

[5] José Antonio Aguilar Solís, “Un modelo basado en

optimización para balancear planes de estudio en

Instituciones de Educación Superior”, Phd.Tesis,

Puebla: UPAEP, 2008

[6] Carlos Castro, Broderick Crawford, Eric Monfroy,

“A Genetic Local Search Algorithm for the Multiple

Optimisation of the Balanced Academic Curriculum

Problem”, In Proceedings of MCDM, pages 824-

832, Berlin: Springer-Verlag, 2009.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 145

146 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

SESSION

GENETIC AND EVOLUTIONAY ALGORITHMS +
NOVEL APPLICATIONS

Chair(s)

Prof. Hamid Arabnia

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 147

148 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Application of Genetic Algorithm to Sequential
Irrigation/Single Machine Scheduling Problem

Zia Ul Haq1 and Arif A. Anwar2

1Assistant Professor, Department of Agricultural Engineering, University of Engineering and Technology,
Peshawar, KPK, Pakistan.

2Senior Researcher-Irrigation and Head, International Water Management Institute (IWMI) Pakistan 12km
Multan Road Chowk Thokar Niaz Baig, Lahore, Pakistan

Abstract- In sequential/rotation irrigation scheduling
farmers are supplied water sequentially. This problem
has an analogy with the classical single machine
earliness/tardiness scheduling problem in operations
research. Such scheduling problems belong to a class of
combinatorial optimization problems known to be
computationally demanding (NP-hard) where
computation time increases exponentially with problem
size. Hence exact algorithms like integer program can
only be used to solve relatively small problems. For
practical applications (having large problem size),
metaheuristics such as genetic algorithms, simulated
annealing, or tabu search methods need to be used. This
paper explores the potential of genetic algorithm (GA)
to solve the sequential irrigation scheduling problems.

Keywords: Sequential irrigation scheduling, single

machine earliness/tardiness, genetic algorithm.

1 Introduction
Several delivery methods are in practice in irrigated
agriculture throughout the world and a variety of
classifications have been suggested by different
researchers. Demand, arranged, and rotation are the
three main types of irrigation schedules/delivery
methods. The rate, frequency, and duration are all fixed
and remain fixed for the entire irrigation season in
rotation schedules and each farmer is supplied water
sequentially for a specified period of time. [1] described
rotation schedules (sequential irrigation) known as
warabandi in the Indian subcontinent, as the most
widely used of the modern irrigation delivery methods.
The supply of irrigation water to farmers in an irrigation
scheme under rotation or warabandi can be described as
a single machine scheduling problem [2]. There is a
single resource/machine i.e. water and a number of jobs
to be processed, i.e. farmers supplied with water. The
duration of water required by any farmer is comparable
to the processing time of any job. In irrigation
scheduling the term irrigation interval is used to
describe the time period within which all farmers have
to be supplied with water. A comparable term for
irrigation interval in OR is the deadline which is
different than the due dates mostly used in OR for the
desirable completion time of jobs. [3] argued that
deadlines must be met and cannot be violated in
contrast to due dates which may be violated. This is also

compatible with irrigation systems where the irrigation
interval is never violated but the supply of water i.e.
jobs may be either early or tardy. [4] used the term
preferred starting time at which it would be desirable to
start processing a job and preferred completion time as
an equivalent term for due dates. Although there is no
such term as due date used in irrigation, however it may
be conveniently replaced by target start time. Target
start time plus duration of a certain job becomes the due
date for that job. However it is more convenient to use
the target start time in irrigation, as the farmers usually
place their orders in terms of the start time of their
irrigation not completion time.

There are different ways whereby the distribution of
irrigation water can be managed. The better among
them are the flexible distribution systems, where an
effort is made by the supplier to match the scheduled
irrigation start times to the target start times requested
by the farmers. It will be more intuitive to judge the
suitability of any such schedule by the determination of
how close the scheduled start times are to the target
start times. This constitutes a typical OR scheduling
problem, i.e. sequencing with earliness and tardiness
(ET), distinct due dates and a common deadline. [3]
described one such problem briefly while citing an
earlier reference. [5] described distinct due dates as one
of the classes of single machine ET problems and
argued that the ET model with the distinct due date
assumption intentionally minimizes the sum of job’s
earliness and tardiness, and facilitates a feasible
delivery schedule. [4] also described the problem of
minimizing the total discrepancy from preferred starting
times over a single machine. [6] described the single
machine job scheduling problem with distinct due dates
and general penalty weights for early and tardy jobs.
They presented a two-step solution to the problem, i.e. a
timing algorithm first to determine the optimal start for
each job and then a genetic algorithm for determining
near optimal sequences with idle time inserted between
blocks with contiguous jobs. However, [7]
demonstrated how this two-step solution i.e. sequencing
and scheduling separately, could lead to deterioration in
solution. [8] described considering sequencing and
scheduling simultaneously with inserted idle time as a
new area of research and recommended further research
on it. This wealth of information may be very
effectively applied to irrigation scheduling which is as

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 149

demonstrated, not any different from the classical
scheduling problems found in OR.

[5] described the just-in-time (JIT) philosophy to be a
popular management concept since its introduction in
1970s. Earliness and tardiness problem where both
early and late jobs are undesirable is one of the key
problem areas in JIT implementation. [9] observed that
JIT production philosophy led to a growing interest in
scheduling problems considering both earliness and
tardiness penalties and that a majority of which are
devoted to single machine problems. Similarly [5] also
concluded that the vast majority of published ET
research dealt with sequencing jobs on a single
machine.

In machine scheduling problems idle time insertion can
result in a better schedule. [7] defined inserted idle time
(IIT) schedules as a feasible schedule in which a
machine is kept idle when it could begin processing an
operation. [8] described idle time insertion necessary in
just-in-time (JIT) environments where costs associated
with even early completion of jobs are relevant i.e. the
performance measure is nonregular. Similarly [3]
considered the assumption of no inserted idle time to be
inconsistent with JIT philosophy or earliness and
tardiness criteria where jobs are neither allowed to be
early nor tardy. [5] cautioned that an ET solution
procedure may fail to find a true solution if idle time is
not treated properly.

From irrigation scheduling perspective, idle time can
only be inserted in a sequential irrigation system when
the sum of all the individual farmers’ irrigation (or
jobs’) durations called makespan in OR is less than the
irrigation interval. However if simultaneous application
to several farmers is allowed this becomes irrelevant. If
idle time has to be inserted, two scenarios could be
imagined. One is that the supply channel is
continuously flowing; farmers abstract water as
scheduled; and when water is not being used i.e. idle
time inserted, it is either drained and/or if possible
reused. The other scenario could be to shut the channel
each time idle time is inserted or water is not being
used. The former may result in wastage of water while
the latter would result in an excessive number of gate
operations. An alternative solution would be to
schedule the irrigation water supply contiguously, i.e.
when one farmer finishes his turn of irrigation the
supply is diverted to the next adjacent farmer and so on
[2]. There are some implicit assumptions here that
either no time is taken by water to travel from one
farmer’s outlet to another or the travel time is part of
each farmer’s irrigation duration or is very small and
hence negligible. If all jobs are scheduled contiguously
the gates are only needed to be opened at the beginning
of the first farmer irrigation and closed when the last
farmer has finished his turn. However the idle time
insertion still needs to be addressed. There are three
options: either to insert all the idle time in the beginning
of the schedule, or to insert all the idle time at the end
of the schedule or both, though corresponding parallel
with OR literature could not be drawn for either of these

options. However, examples of jobs scheduled
contiguously in blocks or groups and then inserting idle
time between different blocks could be found in OR
literature e.g. [6]. The three options discussed in the
preceding lines for idle time insertion are also
considered by [2] in their contiguous sequential
irrigation models. The decision to insert idle time or
not, or schedule jobs contiguously is dictated by several
factors. These include the type of distribution system in
vogue, the level of service provided, the total amount of
water available, and canal capacities and automation
etc.

[2] were the first to demonstrate sequential irrigation
analogous to single machine scheduling problem and
presented an integer programming solution. Machine
scheduling problems belong to a class of combinatorial
optimization problems known to be computationally
demanding (NP-hard). A problem is termed NP-hard if
its solution time increases exponentially with the
problem size. As described by [10], for NP-hard
optimization problems like the machine scheduling
problems, larger problems may require excessive
solution times using exact algorithms e.g. the integer
program. Approximate algorithms or heuristics like GA,
are considered the appropriate choice for such
problems. Similar views are shared in OR literature
(e.g. [5]).

This paper explores the potential of GA for sequential
irrigation scheduling problem (single machine
scheduling in OR). Single machine irrigation scheduling
models are developed using GA. These GA models are
applied to the practical application by [11], for
validation and evaluation purposes.

2 Mathematical formulation
2.1 Model 1
Model 1 refers to the non-contiguous single machine
ET model that allows idle time to be inserted between
jobs i.e. there will be times within the irrigation interval
where water will not be used by any farmer. This
arrangement may require an excessive number of gate
opening and closing operations, depending on the
number of times idle time is inserted between jobs.
Alternatively, a continuous flow system may be adopted
and water allowed draining when not in use. A detailed
description of the decision variables, objective function
and the constraints is given below.

2.1.1 Decision variables
There are two decisions to be made: which outlet to
receive water and at what time, i.e. the sequencing and
scheduling. Thus the genes of a chromosome
representing solution to this problem must have answers
to these questions. The answers to these questions are
incorporated into a single decision variable. This
decision variable is represented by a scheduled start
time row vector. Each element in the vector is a positive
integer representing the point in time at which an outlet

150 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

is scheduled to start receiving water and is expressed as
follows.

Sj = an element of the scheduled start time row vector
(schedule start time of outlet j) (1)

where subscript j represents the outlet index i.e. the
position of job in the chromosome and hence the
sequence.

2.1.2 Objective function
The objective of the model is to find a sequence of jobs
and the scheduled start times for all jobs with a
minimum difference between the scheduled start time
and the target start time. This is achieved by penalizing
both early and tardy jobs. Some farmers may have
higher priority for getting water supply earlier than
others for a variety of reasons. For example, his/her
crops have more value than others or more sensitive to
water stress or perhaps for social/political reasons, etc.
By using different unit costs for either earliness or
tardiness, jobs may be prioritized. The objective
function can be expressed as

Minimize [)(
1

jj

J

j
jj TE βα +∑

=

]

 ∀ j =1, 2…J (2)

where Ej = earliness of job j (the difference of the target
start time and the scheduled start time of outlet j); Tj =
tardiness of job j (the difference of the scheduled start
time and the target start time of outlet j); jα = cost of

earliness per unit of time for job j; jβ = cost of
tardiness per unit of time for job j; j = job/outlet index =
1, 2… J; and J= total number of jobs/outlets.

2.1.3 Constraints
Any constraint violation causes a schedule to become
infeasible. There are different techniques available to
control infeasibility in genetic algorithm. Based on the
literature reviewed, penalty strategy that turns out to be
the most simple and widely practiced technique for
controlling infeasibility, is adopted for the present
model. In the penalty function technique each instance
of infeasibility is appropriately penalized and
(constraint violations expressed as) penalties are then
added to the objective function. The resulting objective
function may then be termed as fitness function. There
are two constraints in the current model. The first
constraint is the irrigation interval constraint and the
second is the overlap constraint. The penalties for
constraint violations in the present formulation are as
follows.

2.1.3.1 Irrigation interval constraint
Each outlet is to be scheduled within the specified
irrigation period. Any outlet scheduled outside this
period will result in infeasible schedule. The penalty
for this constraint violation may be mathematically
expressed as:

])()[(
1

jjintjj

J

j
jI λSSGDSP −+−+= ∑

=

δ

∀ j =1, 2…J (3)

where PI = penalty for irrigation interval violation; G =
total irrigation time available; Sint = start time of the
irrigation interval; Sj = scheduled start time of outlet j;
and Dj = duration of outlet j.

δj = 1 if Sj + Dj > G ∀ j
 (4)
 = 0 otherwise

λj = 1 if Sj < Sint ∀ j
 (5)
 = 0 otherwise.

2.1.3.2 Overlap constraint
Only one outlet is to be served at a time. The penalty for
violation of this constraint is determined by summation
of the number of times overlap occurs in all time blocks
and is expressed mathematically as follows.

)(
11

tj

J

j

T

t
OP ψ∑∑

==

=

 (6)

if (tj

J

j
ψ∑

=1

) ≤ 1 then (tj

J

j
ψ∑

=1

) = 0

∀ t = 1, 2… T (7)
where PO = penalty for overlap of jobs; t = time block
index = 1, 2…T; and, T = total number of time blocks.

tjψ = 1 if Sj ≤ t < Sj + Dj; ∀ t, ∀ j (8)
 = 0 otherwise

By adding these penalties for constraint violations to the
objective the resultant fitness function is expressed as
follows.
Minimize

])([
1

OOIIjj

J

j
jj PRPRTEF +++= ∑

=

βα (9)

where F = fitness function; RI = penalty weight for PI ;
and RO = penalty weight for PO .

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 151

2.2 Model 2
Model 2 refers to a series of single machine ET
contiguous irrigation scheduling models. There are
three variations of Model 2 i.e. 2a, 2b, and 2c. In Model
2a jobs are scheduled contiguously and idle time
inserted at the end of the last job. In Model 2b all the
jobs are scheduled contiguously and idle time inserted
before the start of the first job. In Model 2c the jobs are
scheduled contiguously and idle is inserted preceding
the start of first job and /or proceeding the end of the
last job.

2.2.1 Decision variables
The only decision to be made in these permutation
models is the sequence of jobs. The chromosome is a
permutation of jobs where each gene represents job j.
Once the sequence of jobs is decided, the scheduled
start time of each job can then be calculated. For Model
2a the scheduled start time of the first job in the
sequence is “0” or the time the irrigation interval starts.
The scheduled start time for the rest of the jobs can be
calculated as follows.

Ši = Ši-1 + Ďi-1 ∀ i =2, 3…J (10)

where Ši = scheduled start time of the job at the ith
position in the jobs sequence (chromosome); Ši-1 =
scheduled start time of the job preceding the job at the
ith position in the jobs sequence; Ďi-1 = duration of the
job preceding the job at the ith position in the jobs
sequence; and i = position of the job in the jobs
sequence, so that i = 2 represents the second job in the
sequence whereas i = J the last job in the sequence. For
Model 2b the scheduled start time of the first job is the
end of the idle time and can be expressed as:

Š1 = G - ∑
=

J

j
jD

1

 (11)
where Š1 = the scheduled start time of the first job in
the sequence. For the remaining jobs the scheduled start
time can be calculated as in (10) after Š1 has been
calculated. For Model 2c the scheduled start time of the
first job is the end of the idle time inserted before the
start of first job. Idle time in this case has a value equal
to a random integer number in the range of irrigation
interval minus the makespan. For the remaining jobs the
scheduled start time can be calculated as in (10) after Š1
has been calculated as follows.

Š1 = an integer randomly selected in the range between

0 and (G -)
1

∑
=

J

j
jD (12)

2.2.2 Objective function
There is no change in the objective function and is
similar to that of Model 1 (2) for all contiguous models

i.e. 2a, 2b, and 2c. The objective is to find a sequence or
permutation of jobs that best matches the scheduled
start times with the target start times.

2.2.3 Constraints
Since in single machine contiguous models the
population consists of a permutation of jobs, no
irrigation interval constraint violation occurs. Other
infeasibility problems are controlled via modified
genetic operators. The objective function for all models
in this category is the fitness function for all the
individuals of the population.

3 GA implementation
The GA, for all the models described in the preceding
sections, was implemented using JGA, a java genetic
algorithms library ([12]). Some of the built-in classes
were modified and some additional new classes were
added to develop a complete GA implementation. The
logic for this implementation of the genetic algorithm is
presented in Figure 1; where, t is the generation
counter; T is the maximum number of generations; P(t)
is the population at generation t; Cm(t) and Cc(t) are the
children populations obtained by the mutation and
crossover operators, respectively; C(t) is the children
population; and E(t) is the expanded population formed
by the current population and their children.

Figure 1 The logic behind GA implementation ([12]).

3.1 Initial Population
Initial population for Model 1 is randomly generated.
The chromosome consists of positive integers,
randomly generated within the range of irrigation
interval. The length of the chromosome is equal to the
number of jobs considered. The population size of 100,
that proved sufficient during preliminary experiments,
is used for Model 1. For all versions of Model 2 the
chromosome consists of non-repeated integer valued
genes, of length equal to the number of jobs. Each gene
is an integer in the range between 1 and the total

152 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

number of jobs. The population consists of randomly
generated permutations of job sequences because
permutations are considered natural representation for
sequences. Initial population size of 200 is used that
proved satisfactory during preliminary experiments.

3.2 Selection
The best individual selection is used for the present
models. Best individual selection is described by [13] as
“elitism”, where the elite member is not only selected
but a copy of it is also preserved and becomes a part of
the next generation without any perturbation by
crossover or mutation operators. In the best individual
selection used here, best individuals are selected from
an enlarged population. The enlarged population is
formed by offspring produced from crossover and
mutation of parents as well as by the individuals from
the current population ([14]).

3.3 Crossover
For Model 1, the most simple and widely used
crossover operator, the single point crossover is used.
For all versions of Model 2, order-based crossover (OX)
is used ([15]). The OX operator selects at random two
cut points along the strings. The substrings between the
two cut points of both parents are exchanged. Starting
from the second (right) cut point of both parents the
remaining positions for each chromosome is completed
by omitting the duplicated genes. When the end position
of the string is reached, it continues from the first
position till the chromosome is completed. In this way
the OX operator avoid any infeasibility due to repeated
genes in a sequence. A crossover probability of 0.8 was
used for all models after satisfactory initial
experimentation, and which is also used by [14] in some
of their JGA application.

3.4 Mutation
For non-contiguous model, random assignment
mutation is implemented which is a simple and widely
used operator. In random assignment mutation each
position in the chromosome is randomly reassigned
with a certain probability. For all contiguous models,
inversion mutation is used as a mutation operator. In
inversion mutation the order of a randomly picked
permutation section is inverted. For instance, if 1-2-3-4-
5-6 is a sequence, and 3-4-5 is the randomly picked
section; the mutated permutation is 1-2-5-4-3-6. The
purpose is to maintain diversity as well as feasibility. A
mutation rate of 0.2, which was found satisfactory
during preliminary experimentation, is used in all
models. The mutation rate is interpreted as the chance
of mutation of a given genotype. The same has been
used in some of the application of JGA by [14] and
several other applications in literature.

3.5 Termination
 An early auto-stopping criteria is used for all models.
The improvement in the fitness function is monitored
over 1000 generations (iterations). If the improvement
is less than or equal to 0.001%, the iterations are
terminated otherwise it continues until the given
maximum number of generation is reached. The
maximum number of generations used is 10,000
generations.

4 Practical Application
The GA models developed in this paper are applied to
the tertiary unit taken from [1] and used by [11] with
some modification for the purpose of demonstrating
application of their models. The data for the practical
application used by [11] and for the application in this
paper is presented in Table 1. Table 2 presents a
comparison of the GA models with the integer
programming (IP) and heuristics (H) by [11] when
applied to the data in Table 1.

Table 2 presents only the objective function values
which is the earliness/tardiness (in minutes) of the
schedules developed. The contiguous GA models have
performed very well, with 1% or less than 1 % error
relative to IP and outperforming the heuristics by a
significant margin. The non-contiguous model did not
perform as well against IP as it did against H.

Table 1. Data for Practical Application (Tertiary
unit, Bula Project, Philiphine) [11]
Lot Area (ha) Target

start time
Duration
(h:min)

24.1 1.05 Mo 08:19 8:57
25.1 3.00 Mo 20:51 8:57
22.1 3.20 Tu 00:30 9:32
23.2 1.00 Tu 09:03 3:13
24.2 3.00 Tu 06:45 8:57
26.3 2.56 Tu 19:40 7:41
22.2 3.20 Tu 04:06 9:32
24.4 1.05 We 16:02 3:22
25.2 3.00 Th 16:41 8:57
26.1 3.00 Sa 21:29 8:57
25. 3 2.13 Su 12:09 6:27
23.4 1.97 Fr 02:08 6:00
24. 3 1.00 Fr 05:55 3:13
23.3 1.00 Fr 06:59 3:13
23.1 2.50 Su 22:35 7:31
26.2 2.50 Mo 03:03 7:31
Note: Mo = Monday; Tu = Tuesday; We =Wednesday;
Th =Thursday; Fr = Friday; Sa = Saturday; and Su =
Sunday.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 153

5 Conclusions
The GA models have performed very well and
completely outperformed the heuristics by [11]. The
difference in performance of the three contiguous GA
models shows the sensitivity of the models to the
insertion of the idle time. Inserting idle time on both
sides of a schedule (before the start of irrigation and
after the irrigation is complete), has been found useful.
This is indicated by the fact that Model 2c performed
better than Model 2a and 2b in terms of solution quality
and computational efficiency. Having some spare time
before the start of irrigation and after the irrigation is
complete, may also provide some convenience to
irrigation managers in managing the water supply.

The potential of the GA, to model the warabandi type
(sequential irrigation) of irrigation systems has been
demonstrated. The GA has proved to be an efficient
optimization tool for the contiguous irrigation
scheduling problems in particular. The contiguous
scheduling models presented in this paper models the
type of warabandi widely practiced in the sub-continent
with the additional advantage of incorporating farmers
desires as regard to their requested irrigation times, thus
providing a better level of service. The models also
have the ability to prioritize the irrigation turns, based
on crops value, or sensitivity to water stress, or
social/political reasons, etc.

6 Notation
The following symbols are used in this paper:

Ďi-1 = duration of the job preceding the job at the ith

position in the jobs sequence;
Dj = duration of outlet j;
Ej = earliness of outlet j;
F = fitness function;
G = irrigation interval;
i = position of the job in the jobs sequence;
j = represents the outlet index;
J = total number of outlets;
PI = penalty for irrigation interval violation;
PO = penalty for overlap of jobs;
RI = penalty weight for PI;
RO = penalty weight for PO;
Š1 = the scheduled start time of the first job in the

sequence;
Ši = scheduled start time of the job at the ith

position in the jobs sequence;

Ši-1 = scheduled start time of the job preceding the

job at the ith position in the jobs sequence;
Sint = start time of the irrigation interval;
Sj = an element of the scheduled start time row

vector;
t = time block index = 1, 2…T;
T = total number of time blocks;
Tj = tardiness of outlet j;

jα = cost of earliness per unit of time for job j;

jβ = cost of tardiness per unit of time for job j;
δj = binary variable;
λj = binary variable;

tjψ = binary variable;

7 References

[1] Bishop, A. A., and Long, A. K. ‘‘Irrigation
water delivery for equity between users.’’ J. Irrig.
Drain. Eng., 109(4), 349–356. (1983).

 [2] De Vries, T.T., and Anwar, A.A. “Irrigation
scheduling I: Integer programming approach.” J. Irrig.
Drain. Eng., 130(1), 9-16. (2004).

[3] Baker K.R. and Scudder G.D. “Sequencing with
earliness and tardiness penalties: A review”. Operations
Research, Operations Research Society of America,
38(1), 22-36. (1990).

[4] Garey, M.R., Tarjan, R.E., and Wilfong, G.T. “One-
processor scheduling with symmetric earliness and
tardiness penalties”. Mathematics of Operations
Research, 13(2), 330-348. (1988).

[5] Heady, R. B., Zhu, Z. “Minimizing the sum of job
earliness and tardiness in a multimachine system”. Int.
J. Prod. Res. 36, 1619-1632. (1998).

[6] Lee, C.Y. and Choi, J.Y. “A genetic algorithm for

job sequencing problems with distinct
due dates and general early-tardy penalty weights”.
Computers Ops Res., 22(8), 857-869. (1995).

[7] Kanet, J.J and Sridharan, V. “Scheduling
with inserted idle time: problem taxonomy and
 literature review”. Operations Research, 48(1), 99-110.
(2000).

Table 2. Results for Practical Application (Objective function values)

Statistics

Model
1 2a 2b 2c

Optimum value (IP) 3,822 19,667 31,952 19,001
Heuristics (H) 15,830 19,987 33,821 25,635
Genetic Algorithms (GA) 6,578 19,667 32280 19,146
Relative error of GA with IP (%) 72.0 0.0 1.0 0.8
Relative error of GA with H (%) -58.0 -1.6 -4.6 -25.3

154 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

[8] Colin, E.C. and Quinino, R.C. “An algorithm for
insertion of idle time in the single machine scheduling
problem with convex cost functions”. Computer &
 Operations Research, 32, 2285-2296. (2005).

[9] Lauff V. and Werner F. “Scheduling with common
due date, earliness and tardiness penalties for
multimachine problems: A survey”, Mathematical and
Computer Modelling .40, 637-655. (2004).

[10] De Vries, T.T., and Anwar, A.A.).
 “Irrigation scheduling with travel times.” J. Irrig.
 Drain. Eng.,132(3), 220-227. (2006

[11] Anwar, A.A., and De Vries, T.T.
“Irrigation scheduling II: Heuristics approach”.
 J. Irrig. Drain Eng., 130(1),17-25. (2004)

[12] Medaglia, A. L., and Gutiérrez, E. JGA:
An Object-Oriented Framework for Rapid Development
of Genetic Algorithms. IN: Rennard, J.P., ed. Handbook
of Research on Nature Inspired Computing for
Economics and Management. (2006a).

[13] Coley D.A., An Introduction to Genetic
Algorithms for Scientists and Engineers, World
Scientific Publishing Co. Pte. Ltd. (1999)

[14] Medaglia, A. L., and Gutiérrez, E.
 Applications of JGA to Operations Management and
 Vehicle Routing. IN: Rennard, J.P., ed. Handbook of
Research on Nature Inspired Computing for Economics
and Management. (2006b).

[15] Davis, L. A handbook of genetic algorithms, Van
Nostrad Reinhold, New York. (1991)

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 155

New Parameters for the Evaluation of Benchmarks for

Fast Evolutionary Scheduling of Workflows

Sylvia Strack
1
, Wilfried Jakob

2
, Günther Bengel

1
, Alexander Quinte

2
, Karl-Uwe Stucky

2
 and

Wolfgang Süß
2

1
 University of Applied Sciences, Department of Computer Science, Paul-Wittsack-Str. 10, 68163 Mann-

heim, Germany
2
 Karlsruhe Institute of Technology (KIT), Institute of Applied Comp. Sc. (IAI), P.O. Box 3640, 76021

Karlsruhe, Germany

Abstract - The basic task is the scheduling of application jobs

consisting of a workflow of elementary grid jobs to a set of

heterogeneous resources forming a computational grid. Ap-

plication jobs have due dates and cost budgets, which must be

adhered to resulting in a multi-objective optimisation prob-

lem. It is also a highly dynamic task as e.g. new application

jobs may be added or resources may be switched off. Due to

this dynamic nature of grid scheduling a permanent replan-

ning process is required that adjusts the actual plan to the

changed conditions. For the assessment of scheduling proce-

dures benchmarks are needed that represent different load

conditions as best as possible. Based on our benchmark pa-

rameters introduced in 2007 additional new ones were defined

to cover the tightness of time and cost limits of application

jobs with respect to the available resources.

Keywords: Scheduling, benchmark parameter, workflow,

grid computing, Evolutionary Algorithms

1 Introduction

 This paper continues our work on benchmarks for the as-

sessment of scheduling procedures for jobs on a computa-

tional grid [16]. Our investigation is motivated by the task of

scheduling several application jobs organised as workflows

consisting of elementary grid jobs. For each grid job users

state which resources like software, storage or computing

power are needed and how long the job will run on a standard

hardware. Users also specify due dates, cost budgets and a

preference for cheap or fast execution for their application

jobs. Resources have different abilities and pricing schemes

according to day time or day of the week and the costs may

reflect their performances like CPU speed or bandwidth in

case of computing or storage hardware. A formal definition of

the basic scheduling problem can be found in [8] or [13],

where it is also shown that the task is NP-complete. To meet

the different requirements of resource owners and users the

optimisation is based on the following main criteria: costs and

execution times of the application jobs measured as the usage

of user given budgets and time frames and then averaged.

Additionally and more provider oriented, the rate of utilisa-

tion and the total makespan of all application jobs are

weighted together with the two other criteria and summed up

for the raw fitness. If application jobs are late or too costly

penalty functions are applied, yielding a value between zero

and one, with which the raw fitness is multiplied resulting in

the end fitness. If no violations occur, both fitness values are

equal. For more details see [7] and [8].

The practice of grid scheduling is characterised by a per-

manent replanning process as the following events may occur

long before the actual plan is completed: new application jobs

may introduce the system, waiting or running ones may be

cancelled, new resources may become serviceable or others

unavailable, to name only the most important inducements.

The resulting benchmarks for replanning are based on the

ideas and characteristics of those for the investigation of the

“planning from scratch”-scenario as described by Süß et al.

[16]. They are enhanced by new parameters, which express

the tightness of budgets and time frames. Additionally, they

are constructed in a more systematic way to allow a better

scaling of the amounts of grid jobs and resources while keep-

ing the other properties as far as possible unchanged. The time

for planning is limited to three minutes as we can assume that

this is much shorter than the processing times of most grid

jobs. Due to this limit and the NP-completeness of the task

only approximate solutions can be expected.

 The new benchmarks described in detail in Sect. 3 are

used firstly to find out the maximum possible scheduling load

which can be processed by our Global Optimising Resource

Broker and Allocator GORBA and secondly to assess the

newly introduced parameters. Sect. 2 gives a brief overview

about related work. In Sect. 4 the heuristic and the evolution-

ary planning phases of GORBA are explained together with

the algorithms used. The two questions raised above are an-

swered by the experiments reported about in Sect. 5 and the

paper concludes with Sect. 6.

2 Related work

 When we started our work on grid job scheduling in 2006

little literature about a comparable problem could be found

only, see e.g. Brucker [3] or Brucker and Knust [4]. The lit-

erature review from Setämaa-Kärkkäinen et al. [15] came to

156 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

the same result. But then more papers have been published

that dealt with multi-objective optimisation in the field of grid

job scheduling. Wieczorek et al. [17] reported in a review

article that frequently just two criteria are used, from which

one often serves as a constraint so that only one is really op-

timised, like in the work of Sakellariou et al. [14] or Yu and

Buyya [19]. An early real multi-objective optimisation seek-

ing a compromise between resource owners and users was

investigated by Kurowski et al. [10]. They used a modified

weighted sum for contradicting criteria like costs and several

time-related objectives. But their work was based on single

grid jobs instead of workflows. Later they extended their work

to a workload of up to 1500 jobs, which were grouped into 60

sets with different optimisation preferences [11]. They used

advanced reservations like we do and extended their scheduler

by the standard multi-objective genetic algorithm NSGA-II.

The work of Mika et al. [12] is based on workflows and con-

strained resources like ours but based on an algorithm for

finding feasible solutions. They discuss similarities with the

resource-constrained project scheduling problem (RCPSP),

see also Brucker and Knust [4].

 The work of Xhafa et al. [18] will be discussed in more

detail as their work comes closest to ours. The following fea-

tures are in common: usage of an Evolutionary Algorithm, the

concept of fast and permanent replanning, multi-criteria opti-

misation, and experiments based on large workloads and het-

erogeneous resource pools (up to half the size of ours). The

main differences concern the following three issues. They

schedule single jobs rather than multiple workflows and use

only two criteria, makespan and average flow time, which can

be estimated as less conflicting as time, costs, and utilisation

rate. Thirdly, we use more heuristics for seeding the initial

population and for resource allocation, as we have found that

heuristic resource selection outperforms its evolutionary coun-

terpart, if the runtime for planning is strictly limited [7]. But

despite these differences both approaches can be regarded as

successful solutions to the problem of fast rescheduling of

grid jobs.

3 Benchmarks

 Benchmarks are widely used for the assessment of schedul-

ing procedures. They are either derived from real applications

or constructed synthetically. For our purpose they should

cover a wide range of possible scheduling loads and they

should be scalable. As it is easier to steer dissimilarities and to

ensure desired properties, we decided for synthetic bench-

marks. For a more detailed discussion of that topic, see [16].

Our benchmarks are constructed according to a given

number of grid jobs and resources, and a small or large degree

of resource alternatives R and of mutual dependencies of the

grid jobs D. Due to the lack of space we give here the formu-

las in Eq. 1 only and refer to the detailed description given by

Süß et al. [16].

All four combinations of small or large degrees result in

four basic benchmark classes denoted by sRsD, sRlD, lRsD,

and lRlD, where s stands for small and l for large.

)(1nn

p2

D

n

1i

i

mn

m

R

n

1i

i

with

pi number of all direct or indirect

predecessors

of grid job i

n number of all grid jobs

m number of all resources

mi number of all alternatively

usable resources of grid job i

(1)

The first experiments based on 50, 100, and 200 grid jobs

and 10 or 20 resources indicated that the two benchmark

classes sRlD and lRlD are the most hardest ones [7]. Thus,

they were also used for first experiments for replanning [8]. In

[9] these experiments were widened to the two remaining

classes, but unfortunately the two new benchmark series were

faulty due to a software error of the benchmark generator.

Therefore, and for the reasons given in the introduction, we

constructed complete new benchmarks for the experiments

reported here.

3.1 New benchmark parameters

 The new parameters are aimed at an evaluation of the aver-

age time and cost reserves of the application jobs with respect

to their user given limits. These reserves have an important

impact on the complexity of the scheduling task. They are

based on the average performance, costs, and off times of the

resources and on the critical path of a workflow.

The average performance f of all hardware resources,

the average costs c , and the off time rate offR of all re-

sources are defined as

hw

m

1j

j

m

f

f

hw

m

f

c

c

m

1j j

j

m

R

R

m

1j

joff

off

,

with

mhw number of hardware

resources

fj speed factor of

resource j w.r.t. a

standard CPU

cj costs per time unit of

resource j

m number of all resources

Roff, j ratio between off-time of re-

source j and the latest due date

of all application jobs minus

the earliest start time of all ap-

plication jobs

(2)

The average processing time tk of application job k is

based on the grid jobs of the critical path of its workflow,

while the average cost ck has to take all grid jobs into account.

They are calculated as follows.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 157

kkritn

1i

i
k

f

t
t

,

kn

1i

i
k

f

t
cc

with

nkrit,k number of grid jobs of the

critical path of application job

k

ti processing time of grid job i on

a standard CPU

nk number of grid jobs of applica-

tion job k

(3)

Now the average time and cost reserves tres,k and cres,k of

application job k can be calculated. They are given as relative

values with respect to the available time frame and budget

respectively.

kstkfin

offkkstkfin

kres
tt

R1ttt
t

,,

,,

,

)(

kBUD

kkBUD

kres
c

cc
c

,

,

,

with

tfin,k latest finishing time of application job k

tst,k earliest start time of application job k

cBUD,k budget of application job k

(4)

 They are averaged for all application jobs of a benchmark

bm yielding the time and cost benchmark reserve bmrest , and

bmresc , . Their use will be described at the end of the next

section.

3.2 Benchmarks for rescheduling

As we consider the arrival of new grid jobs as one of the re-

planning events with the greatest impact, we chose it as the

basic scenario of our replanning benchmarks. They are cre-

ated in the following two steps. Firstly basic benchmarks

consisting of 200 grid jobs and 20 resources are constructed

for each benchmark class. For this purpose a set of application

jobs with short sequences of grid jobs and therefore more

parallel branches is manually created for benchmarks with

small dependencies. For those with large dependencies appli-

cation jobs with long sequences are made. A basic benchmark

is assembled randomly from these application jobs of the

actual class in such a way that the given number of grid jobs is

adhered to and that the application jobs have ten grid jobs on

average.

Small groups of resources with the same ability but differ-

ent cost performance ratios are formed. If a large degree of

alternatives is required more groups of the same ability are

merged than in case of a low degree. The requests of the grid

jobs are then distributed evenly among the available resource

abilities. Next the due dates and budgets of the application

jobs of each basic benchmark are adjusted in such a way that

the heuristics of the first planning phase of GORBA (see also

Sect. 4) just cannot produce violation free schedules. This

means that there are a few application jobs which are a little

bit too late or too costly or both. The resulting question for the

experiments is, whether the subsequent GLEAM run can

overcome these violations or not as explained in Sect. 5.

The basic units of resources and application jobs are di-

mensioned in such a way that they can be scaled easily in the

steps of factors of 1.5, 2, 2.5, 3, and so on resulting in the 23

scheduling loads per benchmark class as shown in figures 2

and 3 or 4. All benchmarks have a resource set of the size of

10% of the number of grid jobs.

If the scaling of each basic benchmark is done well all

benchmarks of a class should have almost the same amount of

time and cost benchmark reserves. The mean values of these

reserves per benchmark class are shown in Table 1 together

with their minima and maxima. As the values deviate per class

only slightly, we can conclude that the benchmarks of a class

differ mostly in size and not in the two key properties budget

and time reserves as desired. The small differences between

the classes can be explained by the stochastic elements of the

construction of the basic benchmarks and the varying flexibil-

ity for scheduling when using small or large values for R and

D.

In the first step described so far a total of 92 benchmarks

for all four classes is constructed on the basis of an empty

grid. In the second step GORBA is run three times for every

benchmark and the best schedule is taken. This is done to

avoid distortions by accidental poor schedules, as they can

occur in a stochastic scheduler (see also Sect. 4.2). The best

schedule is processed until 10% of the grid jobs are finished

Table 1: Averages rest and resc of the time and cost benchmark reserves bmrest , and bmresc , together with their minima and maxima

per benchmark class. The reserve values are given as percentages of the corresponding time frames and budgets.

benchmark

class

time benchmark reserve [%] cost benchmark reserve [%]

)min(,bmrest
rest)max(,bmrest)min(,bmresc

resc)max(.bmresc

lRlD 47.2 48.9 50.1 27.3 27.7 28.1

sRlD 53.7 55.9 58.3 25.2 25.9 26.7

lRsD 57.2 59.2 62.1 22.3 23.3 24.1

sRsD 63.4 64.4 65.5 20.8 21.5 22.0

158 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

and then the same amount of new grid jobs is added to the

scheduling task. Together with the active allocations of the

old schedule this creates a rescheduling benchmark.

4 Scheduling algorithms

 Scheduling is done in GORBA in two stages. In the first

stage two sets of heuristics produce schedules, which are used

in the second stage to seed the initial population of a subse-

quent run of the Evolutionary Algorithm GLEAM (General

Learning Evolutionary Algorithm and Method) [1], [2]. The

second stage is described in Sect. 4.2.

4.1 Heuristic scheduling and rescheduling

 The first set of heuristics is aimed at scheduling jobs to an

empty grid while the second one is designed for replanning.

The first set works with the following heuristic rules:

earliest due time: grid jobs of the application job with the

earliest due time first,

shortest working time of grid job: grid jobs with the shortest

working time first,

shortest working time of application job: grid jobs of the

application job with the shortest working time

first.

Resources are allocated to the resulting three grid job se-

quences by applying each of the following three resource

allocation strategies (RAS) yielding nine schedules in total.

RAS-1: Use the fastest of the earliest available resources for

all grid jobs.

RAS-2: Use the cheapest of the earliest available resources

for all grid jobs.

RAS-3: Use RAS-1 or RAS-2 for all grid jobs of an applica-

tion job according to its time/cost preference given

by the user.

All grid jobs which have not been started at the replanning

event or will not be started within three minutes after it are

subject to replanning. They are put into the same sequence as

they have been in the old schedule. All other grid jobs affect

the scheduling as already existing resource allocations, which

must be observed by the scheduler. If the replanning event is

the arrival of new grid jobs, as it is the case for our investiga-

tion, the new grid jobs are added to the sequence of old ones

by applying each of the three heuristics for sequence genera-

tion described above. This yields three sequences, while for

other replanning events only the one of the old schedule is

produced. Again, the three RAS are applied, resulting in ei-

ther nine or three replanning schedules. The best of them is

regarded as the preliminary result, which is hopefully im-

proved by the subsequent GLEAM run.

The effect of the heuristics for scheduling was investigated

in [7], while those for replanning were assessed in [8].

4.2 Evolutionary scheduling

 Evolutionary Algorithms (EA) mimic the principles of bio-

logical evolution like heredity, or survival of the fittest to

improve already found solutions or to generate new ones. EAs

are stochastic algorithms by nature and do not guarantee to

find the optimum in reasonable time. On the other hand they

are well known to come up with good or at least feasible solu-

tions comparatively fast. Our GLEAM based scheduler is

described in detail in [7] and [9]. We give here only a sum-

mary of the features important to the task at hand. As GLEAM

is an elitist EA the best individual will always survive. Hence,

the best heuristic result can only be improved.

 A chromosome consists of genes, each of which represents

a grid job and the gene sequence determines the scheduling

sequence of the corresponding grid jobs. Resource assign-

ments are made by one of the three RAS (see Sect. 4.1), which

is selected by an additional special gene. This coding restricts

the search space to some extent, which is accepted because it

yields better improvements within the given time frame of

three minutes for planning [7]. Possible precedence violations

of the grid jobs caused by mutations or crossover are cured by

a phenotypic repair. For more details the interested reader is

referred to the given literature.

5 Experimental results

 Due to the stochastic nature of EAs several runs have to be

accomplished to compare e.g. different settings of an EA. The

comparison is then based on the averages of e.g. the achieved

fitness values. To obtain sound results with reasonable effort

we set the number of GLEAM runs to 50 per benchmark and

parameter setting of the EA as described later.

We compare the heuristic results with those from the sub-

sequent GLEAM run by their success rate and the fitness gain

attained from the GLEAM run. A run is considered successful

if the generated schedule is free of budget or due date viola-

tions (cf. Sect. 3.2). The success rate is the percentage of

successful runs in relation to all 50 runs. The fitness gain is

the difference between the best heuristic result and the aver-

age of all GLEAM runs. A fitness gain can be regarded as

significant, if the best heuristic result is outside of the confi-

dence interval of the corresponding set of GLEAM runs. This

is always the case for our experiments, even if a confidence

value as high as 99.9% is taken as the basis.

The course of the success rate with growing numbers of

grid jobs and resources is shown in Figure 1 for all scheduling

loads, where at least one benchmark yields a success rate

greater than zero. It is not surprising that the rates drop differ-

ently depending on the benchmark class. But within a class a

more or less continuous decline was expected from the homo-

geneous values of the two benchmark reserves. This is obvi-

ously not the case as e.g. the results of sRsD-400, lRsD-500,

lRlD-700 or lRlD-900 show. In these examples we have suc-

cess rates below 100% followed by benchmark sizes, which

can be scheduled always successfully. Of course, the tendency

of a decreasing success rate with growing loads exists, but it is

much more disrupted as expected. The reason for these distor-

tions may be the stochastic elements of the GLEAM run that

produced the first schedule, which was interrupted by the

rescheduling event to create a replanning benchmark (cf. Sect.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 159

3.2). Or the two benchmark reserves do not have the signifi-

cance as expected since they are based on the assumption of

an empty grid. As explained in Sect.3.1 they were calculated

per application job without taking the competition from other

application jobs for the resources into account. But this is true

for all other characteristic numbers calculated prior to sched-

uling too. The analysis of the fitness gain will give some rea-

sons that the influence of the stochastic GLEAM run for pre-

paring the benchmarks has a greater impact than originally

expected.

The results of the fitness gain are shown in two diagrams

for better representation. Figure 2 starts with the results for up

to 2000 grid jobs. Large improve-

ments in the magnitude of 2500%

contrast to small ones of 11.6% or

69% at minimum. Big enhance-

ments are possible if the heuristics

performed poorly. An example for

this is the sRlD-200 benchmark,

for which the best heuristic

yielded a normalised fitness value

of 2.35. Normalisation is done in

the range of 0 to 100. The average

GLEAM result is 61.0, which is a

growth of 2496%. On the other

hand lRlD-500 has a heuristic

result of 37.0 which is improved

to 62.5, an increase of 69%. Thus,

GLEAM and the heuristics fre-

quently complement each other.

The lRlD-200 benchmark with its

improvement rate of 11.6% is an

exceptional case because the re-

planning task meets the cost and

time constraints, while its basic

plan did not. Thus only comparable small improvements of

the fitness value are possible. This is the only benchmark with

such an exception and all others started with solutions below

the level of violation free schedules as desired. Both figures

also show that successful runs have small confidence inter-

vals, which means that their fitness values deviate only

slightly from each other. The much larger confidence intervals

of only partially successful benchmarks are based mostly on

the high fitness devaluations due to the penalty functions

activated by violations of time and/or cost limits.

The example of benchmark lRlD-200 demonstrates the

possible impact of the stochastic improvement of the basic

schedule by GLEAM, followed by

an execution of some grid jobs

and the arrival of new ones. It may

change the tightness of cost and

time limits drastically. This is a

clear indication that the observed

inhomogeneous decline of the

success rate is due to the creation

of the rescheduling benchmarks

and less because of a lack of sig-

nificance of the cost and time

benchmark reserves.

Figure 3 shows the improve-

ment rates with increasing sched-

uling loads beyond the achievabil-

ity of schedules free of budget or

due date violations. The tendency

of decreasing improvement rates

with growing loads continues as

expected. In the end, rates be-

tween 33% and 133% can still be

achieved as the results for bench-

Figure 1: Success rates for all grid job loads yielding successful runs.

Figure 2: Improvement rates and confidence intervals (95% confidence) for all grid job

loads of up to 2000 jobs for all four benchmark classes.

160 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Figure 4: Number of evaluations achievable in three minutes for increasing numbers of

grid jobs and resources and for all four benchmark classes.

mark sizes of 6000 or 7000 grid jobs show. As these runs still

reduce the amount of accumulated budget or due date over-

runs as well as the number of affected application jobs, it is

useful to maintain the EA run.

This raises the question whether further improvements for

more than 7000 grid jobs and 700 resources are possible with

the given hard- and software. This issue is close related to the

number of evaluations which can be performed within the

three minutes time frame available for EA improvement. The

time required to assess a schedule depends on the size of the

allocation matrix, on the number of grid jobs to be processed

and on the number of alternatively available resources, among

which a selection must be made. As the matrix lists the time of

allocation, suspension and availability for all resources, its

size depends on the number of resources as well as on the

time scale of possible makespans. Thus, the processing time

of a schedule increases with

 the number of all re-

sources

 the average number of re-

source alternatives per

grid job (i.e. parameter R

of a benchmark)

 the range of possible

makespans

 the number of grid jobs

Consequently, the number of

processible evaluations drops with

an increasing number of grid jobs

as Figure 4 shows. And the impact

of the benchmark parameter R can

be seen clearly: small values of R

correspond with less resource

alternatives which can be checked

faster than many and therefore,

more evaluations can be per-

formed as with large values of R.

Regardless of the degree of re-

source alternatives R the number

of evaluations per GLEAM run

drops below 5000 for scheduling

loads of more than 5000 grid jobs

Figure 3: Continuation of Fig.2 for all loads from 2000 grid jobs and 200 resources to 7000 and 700 respectively.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 161

and 500 resources. But since EAs need an application-

dependent number of trials to the search space of at least some

thousands to gain a relevant improvement, we cannot expect

further advancements of the heuristic schedules for considera-

bly greater loads. To overcome this, either a tuning of the

scheduling and assessment software as well as faster hardware

might help to some extend or a parallelisation of the EA itself,

see e.g. [5] or [2].

6 Conclusion and outlook

 We have introduced two new benchmark parameters, the

time and cost benchmark reserves, for the problem of re-

scheduling large quantities of grid jobs based on advanced

reservations. The parameters are aimed at determining the

tightness of user given due dates and budgets, two properties

which have a great impact on the complexity of a scheduling

task. New benchmarks for rescheduling were constructed so

that only very small deviations of these figures could be ob-

served while scaling them from 200 grid jobs to 7000 and 20

resources to 700. The experiments showed a greater disrup-

tion of quality decrease with growing loads as expected from

the homogeneity of the two benchmark parameters. This is

probably due to some stochastic elements in the construction

process of the rescheduling benchmarks as described. The

experiments also showed the limits of EA based scheduling as

a supplement of heuristic planning when the load exceeds

5000 grid jobs and 500 resources and the processing time is

strictly limited. Especially the population size has to be ad-

justed well for loads greater than about 600 grid jobs. As

shown by Jakob [6], the extension of an EA to a Memetic

Algorithm by adding local search to the offspring creation

process can significantly reduce the range of well performing

population sizes as well as improve the performance consid-

erably.

7 References

[1] Blume, C. and Jakob, W., 2002. GLEAM – An Evolutionary

Algorithm for Planning and Control Based on Evolution Strategy. In

Cantú-Paz, E. (ed), Conf. Proc. GECCO-2002, vol. LBP, p. 31-38.

[2] Blume, C. and Jakob, W., 2009. GLEAM – General Learning

Evolutionary Algorithm and Method: ein Evolutionärer Algorithmus

und seine Anwendungen. In German. Series of the Inst. for Appl.

Comp. Science / Automation Technology, Karlsruhe Institute of

Technology, vol 32, KIT Scientific Publishing. Karlsruhe.

[3] Brucker, P., 2004. Scheduling Algorithms. Springer. Berlin.

[4] Brucker, P and Knust, S., 2006. Complex Scheduling.

Springer. Berlin.

[5] Gorges-Schleuter, M., 1990. Genetic Algorithms and Popula-

tion Structures - A Massively Parallel Algorithm. (PhD Thesis).

Dept. of Comp. Science, University of Dortmund, Germany.

[6] Jakob, W., 2010. A general cost-benefit-based adaptation

framework for multimeme algorithms. Memetic Computing, (2)3:

201-218.

[7] Jakob, W., Quinte, A., Stucky, K.-U. and Süß, W., 2008. Fast

Multi-objective Scheduling of Jobs to Constrained Resources Using

a Hybrid Evolutionary Algorithm. In Rudolph, G. et al. (eds.) Conf.

Proc. PPSN X, LNCS 5199, pages 1031-1040. Springer. Berlin.

[8] Jakob, W., Quinte, A., Stucky, K.-U. and Süß, W., 2010a.

Fast Multi-objective Rescheduling of Grid Jobs by Heuristics and

Evolution. In Wyrzykowski, R. et al. (eds.), Par. Proc. and Appl.

Math., 8th Int. Conf. PPAM 2009, LNCS 6068, pages 21-30.

Springer. Berlin.

[9] Jakob, W., Möser, F., Quinte, A., Stucky, K.-U. and Süß, W.,

2010b. Fast Multi-objective Rescheduling of Workflows Using

Heuristics and Memetic Evolution. Scalable Computing: Practice

and Experience, 11(2):173-188.

[10] Kurowski, K., Nabrzyski, J., Oleksiak, A. and Węglarz, J.,

2006. Scheduling Jobs on the Grid - Multicriteria Approach. Com-

putational Methods in Science and Technology 12(2): 123-138.

[11] Kurowski, K., Oleksiak, A. and Węglarz, J., 2010. Multicrite-

ria, multi-user scheduling in grids with advanced reservation. Jour-

nal of Scheduling, 13(5):493-508.

[12] Mika, M., Waligóra, G., and Węglarz, J., 2011. Modelling

and solving grid allocation problem with network resources for

workflow applications. Journal of Scheduling, 14(3):291-306.

[13] Möser, F., Jakob, W., Quinte, A., Stucky, K.-U. and Süß, W.,

2010. An Assessment of Heuristics for Fast Scheduling of Grid Jobs.

In Cordeiro, J. Virvou, M. and Shishkov, B. (eds.), Proceedings of

the Fifth Int. Conf. on Software and Data Technologies (ICSOFT

2010), vol. 1, pages 184-191. SciTePress.

[14] Sakellariou, S., Zhao, H., Tsiakkouri, E. and Dikaiakos,

M.D., 2007. Scheduling Workflows with Budget Constraints. In

Gorlatch, S. and Danelutto, M. (eds.), Integrated Research in GRID

Computing (CoreGRID Integration Workshop 2005, Selected Pa-

pers), CoreGRID Series, pages 189-202. Springer. Berlin.

[15] Setämaa-Kärkkäinen, A., Miettinen, K. and Vuori, J., 2006.

Best Compromise Solution for a New Multiobjective Scheduling

Problem. Computers & OR, 33(8):2353-2368.

[16] Süß, W., Quinte, A., Jakob, W. and Stucky, K.-U., 2007

Construction of Benchmarks for Comparison of Grid Resource

Planning Algorithms. In Filipe, J. et al. (eds.): ICSOFT 2007, Proc.

of the 2nd ICSOFT. Vol. PL/DPS/ KE/WsMUSE, pages 80-87. Inst.f.

Systems and Techn. of Inf., Control and Com., INSTICC Press.

[17] Wieczorek, M., Hoheisel, A. and Prodan, R., 2008. Taxon-

omy of the Multi-criteria Grid Workflow Scheduling Problem. In

Talia, D., Yahyapour, R. and Ziegler, W. (eds.), Grid Middleware

and Services - Challenges and Solutions, p. 237-264. Springer. NY.

[18] Xhafa, F., Alba, E., Dorronsoro, B., Duran, B. and Abraham,

A., 2008. Efficient Batch Job Scheduling in Grids Using Cellular

Memetic Algorithms. In Xhafa, F. and Abraham, A. (eds.), Metaheu-

ristics for Scheduling in Distributed Computing Environments,

pages 273-299. Springer. Berlin.

[19] Yu, J. and Buyya, R. 2006. A Budget Constrained Schedul-

ing of Workflow Applications on Utility Grids using Genetic Algo-

rithms. In Workshop on Workflows in Support of Large-Scale Sci-

ence, Proc. of the 15th IEEE Int. Symp. on High Performance Dis-

tributed Computing (HPDC 2006), IEEE CS Press.

162 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

A Novel Cooperation Strategy in Artificial Immune Network
for Multimodal Optimization

Ehsan Biria1 and Kamran Zamanifar2

Department of Computer Engineering, University of Isfahan, Isfahan, Iran
1ehsanbiria@gmail.com, 2zamanifar@eng.ui.ac.ir

Abstract - In recent years, among many branches of artificial
immune systems (AIS), artificial immune networks could
attract many researchers' interest in solving the engineering
problems. Considering a noticeable drawback in the original
optimization version of artificial immune network (opt-aiNet)
that is the lack of any cooperative interaction between cells,
several methods are proposed to introduce cooperation in the
population for better multimodal optimization. Most of these
methods emphasize on moving new cells towards the best
experience of population. On the contrary, for a better
exploration, a new strategy, named Reverse Cooperation, is
introduced in this paper which applies a new Repulse
operator to repel new cells from the discovered peaks. This
strategy is accompanied with two modifications in
hypermutation operator and diverse introduction process in
order to increase the number of optima that is found and
accelerate the convergence of population. The new algorithm,
as compared with the others, could optimize multimodal
functions more effectively and efficiently.

Keywords: Artificial immune network, Multimodal function
optimization, Reverse cooperation, Repulse operator

1 Introduction
Multimodal functions are problems that may have

several global optima, i.e. several points where the values of
the objective function are equal to the global optimum value.
Furthermore, there exist some local optima in the function's
landscape. These local optima may not be undesirable
necessarily. Since algorithmic modeling of a real-world
problem often involves some abstractions, finding all global
optima and the utmost number of local optima would supply
multiple choices for decision makers and engineers [1].

Traditional optimization methods, like the quasi-Newton
method, emphasize on accurate and exact computation, so
they cannot optimize multimodal functions efficiently. During
recent years, several bio-inspired techniques have been
proposed to solve multimodal optimization problems. These
techniques provide more robust and efficient solutions for
multimodal optimization. However, they may fail to find all
global and local optima. Some bio-inspired techniques which
are engaged in multimodal optimization are the Genetic
Algorithms (GA), Particle Swarm Optimization (PSO) and
Artificial Immune Systems (AIS) [2].

Artificial Immune System, also called Immunological
Computation, is a field of research that mimics the biological
immune system behavior in human and animal for developing
computational models. Biological immune system is a
complex, adaptive and distributed learning system with
several mechanisms as a defensive means against pathogens
[3]. Hence AIS attracts the researcher's attention to apply to
various engineering application areas, including optimization
problems [4].

The remainder of the paper is organized as follows. In
section 2, some of the related works that have applied AIS in
multimodal optimization are reviewed and the authors'
opinions on a better algorithm are presented. In section 3, a
reverse cooperative immune network is proposed in detail. In
section 4, several experimental results are discussed and the
performances of the new algorithm with the two others are
compared. Finally, section 5 concludes the paper.

2 Related works
The clonal selection principle [5] is applied to explain

the basic features of an adaptive immune response to an
antigenic stimulation. This principle establishes the idea that
only those cells that recognize the antigens are selected to be
proliferated. The selected cells are subject to an affinity
maturation process where their affinity to the selective
antigens is improved. The CLONALG algorithm is primarily
derived from the clonal selection principle with the theory of
evolution in order to perform pattern recognition tasks and
then it is adapted to solve optimization tasks, emphasizing
multimodal and combinatorial optimization problems [6].

An artificial immune network, called aiNet, is presented
to accompany the clonal selection and immune network
theories [7]. The aiNet algorithm introduced for data
compression and data clustering first and then was further
extended to solve multimodal optimization problems. The
optimization version of aiNet, called opt-aiNet, is a well-
known immune network with some intriguing features for
optimization, such as dynamic adjustable population size,
exploration and exploitation of the search space and
capability of locating and maintaining multiple optima
solutions [8]. The opt-aiNet consists of a network of cells
which evolves in two phases: local search phase, to exploit
better optima and global search phase, to explore the function

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 163

landscape. At local exploitation the cells continuously pass
through clonal expansion, fitness maturation and elitist
selection steps while reaching a stable state. Afterwards, at
global exploration the network cells undergo suppression
operation that removes cells with lower fitness values and
similar to those with higher fitness values. Fundamentally, the
network suppression describes interactions within network
cells as competition correlation to prevent their clustering on
a single optima. After suppression, a number of new random
cells are generated to introduce more diversity in the network
population and then, the local exploitation process restarts
[9].

There are some drawbacks in opt-aiNet, such as lack of
cooperation between network cells and unused cells'
experiences in previous iterations. Moreover, new random
cells can land in already exploited landscape which makes
these cells inefficient and leads in the waste of resources.
Several other algorithms are proposed on the base of opt-
aiNet in order to reduce its drawbacks or improve the
capabilities [2].

A Hybrid Artificial Immune Network (HaiNet) is
proposed in [10], inspired not only from biological immune
system but also from the group behaviors of particle swarm
optimization. The swarm learning technique in PSO is
applied in the hypermutation operation of the artificial
immune network, in a manner where each cell can use its own
best encountered position and the best encountered position
among all the cells, in order to speed up the optimization
process. The addition of swarm learning aims at faster
convergence to global optima, but reduces the number of
known local optima.

In [9] another Cooperative Artificial Immune Network
(CoAIN) model is proposed for multimodal function
optimization. The CoAIN uses cooperative strategy inspired
by particle swarm behavior to explore and exploit searching
space efficiently and effectively. In this model, a new distinct
cooperative step is introduced after the suppression step. This
step enables each network cell to cooperate with the others as
a particle flying around in a searching space for adjusting its
position according to its own experience and the experience
of other particles.

Another algorithm is a Predication-based Immune
Network (PiNet) proposed in [2]. To explore and exploit the
searching space efficiently and effectively, the PiNet uses a
cooperative strategy between homologous antibodies, that is
to say, the next position of a cell is related not only to its
position but also its parent antibody. Moreover, the selection
probability of a new random cell changes dynamically
according to the sum of affinities between memory cells and
itself [2].

In this paper, a Reverse Cooperative Artificial Immune
Network called RC-aiNet, is proposed to improve both search
ability as well as search speed. The RC-aiNet introduces a
new strategy for inter-cellular cooperation, which is called
reverse cooperation. Here, younger cells are repulsed by

memory cells instead of inducing younger cells to move
towards the best encountered position. The reverse
cooperation increases the chance for the new cells to
investigate unexplored sections of solution space.

Here, some modifications are proposed in the
hypermutation operation of the affinity maturation process,
which establishes acceleration in local exploitation. In this
manner, the position of a mutated cell, in addition to its
current position, is related to the previous movements at prior
iterations. It should be added that the RC-aiNet proposes a
mechanism in the diverse introduction step (update step in
PiNet) which changes the probability of different zones in
solution space to embrace new cells. This new mechanism
increases the probability of placing the new cells in
unexplored landscapes, thereupon causes better exploration.

The experiments show that compared to PiNet and opt-
aiNet, the suggested mechanisms in new algorithm lead to
optimizing multimodal functions more effectively and
efficiently.

3 Artificial Immune Network with
Reverse Cooperation
In order to present RC-aiNet algorithm, the following

list of terminology is assumed:

• Antibody cell: an individual of the network population
which indicates a point in function landscape; each
cell is presented as a real-valued vector in an
Euclidean shape-space

• Antigen: an objective multimodal function to be
optimized

• Fitness: interaction between antibody cells and
antigen; the cell fitness is the value of objective
function when evaluated for the given cell

• Affinity: interaction between two antibody cells that
will be calculated as Euclidean space between them

• Clone: the offspring that are exact copies of a cell; the
offspring cells will further suffer hypermutation for
become variations of their original cell

3.1 Procedure of the RC-aiNet algorithm
The main process of the new algorithm can be described

through the following 9 steps:

Step 1. Initialization: Randomly initialize a population of
N1 cells.

Step 2. Reverse cooperation: The memory cells of the last
global exploration phase repulse younger cells in
their neighborhood. In other words, the new cells are
repelled by the neighbor memory cells. The neighbor
cell is one that its affinity is less than repulse
threshold σrep.

Step 3. Clone expansion: Generate Nc clones for each
network cell.

164 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Step 4. Affinity maturation: Compute a mutation center for
each clone according to its prior movement. A
mutation center is a point that mutation performs in
the centrality of it instead of the original cell's
coordinates. Afterwards mutate the clones in
proportion to the fitness of their original cell.

Step 5. Elitist selection: Determine the fitness of all mutated
clones and in each subpopulation of clones which
are copied from an original cell, select one with the
highest fitness.

Step 6. Exploitation convergence criteria: Calculate the
average fitness of the network population. If the
average fitness does not change significantly in
comparison to the previous iteration, then continue,
otherwise return to step 2.

Step 7. Suppression: Compute the affinity between all cells
in the network, next eliminate all but the highest
fitness of the cells whose affinities are less than the
suppression threshold σsup, then determine the
number of remaining cells as memory cells.

Step 8. Termination criteria: If the number of memory cells
does not vary in comparison to the prior global
exploration phase, the optimization process is
completed, otherwise continue. Other stopping
criterion is to meet the maximum number of
evaluated points in search space.

Step 9. Diverse introduction: To generate d% new cells,
first assume that the objective function's landscape
as a crisscrossed grid where the number of squares in
the grid is twice the number of the memory cells.
Second, rank the squares in inverse proportion to the
number of the memory cells in each square and its
adjacent squares and then create a roulette wheel
according to these ranks. Third, select a square from
the wheel and randomly generate a new cell inside
the bounds of selected square followed by uniform
distribution. Fourth, reduce the rank of the selected
square and repeat creating roulette wheel, selecting a
square and generating a new cell inside again. And
finally, add the new cells to current population and
return to step 2 to restart local exploitation.

Since RC-aiNet is extended from opt-aiNet, accordingly,
the new algorithm consists of two phases: local search, to
exploit feasible solutions and global search, to explore
solution space. Steps 2 to 6 above constitute the local
exploitation where at each iteration a population of cells is
optimized locally through the repetition of clone expansion,
fitness hypermutation and elitist selection. Steps 7 to 9 are
involved in the global exploration process by introducing a
number of new cells probably in unexplored zones first and
then the local search restarts. Although the reverse
cooperation step is involved in local exploitation phase, it
really complements the global exploration process to examine
unsought zones.

3.2 Repulse operator for reverse cooperation
The reverse cooperation subjective is using the memory

cells' experience in order to avoid locating the peaks which
are found in prior iterations. Therefore, a new operator is
introduced called the repulse operator. This operator repels
the new generated cells from old memory cells, which
increases the chance for the new cells to find some
unprecedented optima. To perform repulsing operation for a
population cell denoted as ia , the set of its neighbor memory

cells denoted as iR should be determined as equation (1),

where ia is a population cell, F is the set of all memory cells,

repσ is repulse threshold and |||| ji fa − is the affinity of two

cells calculated as Euclidean distance between them.

)1(}||||,|{ repjijji faFffR σ<−∈=

Next, for each neighbor memory cell
if , a partial repulse

vector jV is defined as equation (2).

)2(||)||(
|||| jirep

ji

ji
j fa

fa

fa
V −−×

−
−

= σ

It is clear that
|||| ji

ji

fa

fa

−
− is a unit vector in the direction

from
if to

ia and the phrase ||)||(jirep fa −−σ determines the

length of the partial repulse vector, in inverse proportion to
affinity of

if and
ia . Afterward, a repulse resultant vector

for
ia , named iRv , is created from these partial vectors and

then
ia moves based on the repulse resultant vector,

according to equation (3).

)3()2()(iaIt
iii Rvaa −×+=′

In equation (3),
ia′ is repulsed cell of

ia and)(iaIt is the
age of

ia that represents the number of iterations that
ia has

been through. The phrase)(2 iaIt− decays repulsion, so that the
older the cell

ia , the weaker the repulsing. Consider that
memory cells will not be repulsed at all.

A repulsed cell should not exceed the bounds of the
objective function. Also, a factor named

irw computes which
displays the weakness of repulsing for

ia , to use in mutation
operator.

3.3 Accelerating in hypermutation operation
To increase the speed of the local exploitation, a

technique is suggested in mutation operator which uses the
experience of a cell in prior iterations to accelerate its
movement towards an optimum. For this purpose, a mutation
center is defined for each cell as a point that mutation
performs in the centrality of it, instead of original cell's
coordinates. One of the factors involved in the mutation
center computation is the cell's last movement.

The mutation operator is defined by the following
equation (4), where

ic is a mutated cell of the cell
ib , ip is the

mutation center calculated as equation (5), parameter β is to

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 165

control the decay of mutation,
ib′ is the parent of

ib in the last
iteration,)(*

ibf is the fitness of
ib normalized in the interval

[0,1],)(*
ibfΔ is the fitness variation between the parent and

the son cell in two continuous populations which is restrained
up to 1 as equation 6,

irw is the repulse weakness factor
computed in reverse cooperation step, 1c is a constant to
regulate tendency to previous fitness variation,)1,0(N is a
Gaussian random variable of zero mean and standard
deviation 1=σ and

ipf is a factor defined to regulate the
consideration of previous experiment for the mutation center
calculation.

A mutation is only accepted if the mutated cell
ic is

within the objective function bounds.

)4()1,0())()(exp(
1 **

1 Nbfbfcrwpc iiiii ×

−Δ×××+=

β

())5()(, iiiiii bbpfrwbp ′−××+=

{ })6(
)()(

)()(
)(

1

*

jj
Nj

ii
i bfbfMax

bfbf
bf

′−
′−=Δ

≤≤

The ipf factor is defined as equation (7):

>

−

=

=

=

1)(
180

1

)7(1)(
2

1

)(

2

i
i

i

i

i

bItif
angle

bItif

bItif

pf

where,)8(),(iiiii pbbpAngleangle ′−′−′=

and
ip′ is the mutation center of

ib′ in last iteration. The
phrase

iangle refers to the angle between two vectors, where

ii bp ′−′ determines the algorithmic desired direction in the last
iteration and

ii pb ′− determines the direction of real

movement in the last iteration. Therefore, a straight
movement in prior iteration will increase the speed and any
deviation leads to reduction in speed.

3.4 Purposeful mechanism for generating cells
In the diverse introduction step, situating the new

random cells at unsought zones of landscape causes the
power of exploration to increase. To generate new random
cells followed by non-uniform distribution, first the objective
function's landscape is assumed as a crisscrossed grid with
the number of squares twice the number of memory cells. In
this grid, every memory cell contained in a square scores a
constant ns1 for that square and scores a constant ns2 for the
adjacent squares; hence, the more optima within or close to a
square result in more scores for that square. Next, create a
roulette wheel in inverse proportion to the scores. Afterwards,
algorithm repeats the following cycle: first, it selects a square
from the wheel; second it generates a new uniform random
cell in the bounds of the selected square and adds constant
score ns3 to the selected cell and finally it creates the roulette
wheel using modified score again and the cycle repeats while
d% new cells are generated. Here, the constants ns1=2, ns2=1
and ns3=4 are assumed.

4 Experiments and Results
4.1 Experimental protocols

The proposed RC-aiNet is coded in Matlab 2008 and is
compared to opt-aiNet and PiNet. To examine the search
ability and the performance of the proposed
RC-aiNet, 9 benchmark functions with different complexities
are used [2]. The benchmark functions are listed in Table 1.

Table 1. Benchmark functions for multimodal optimization

Notation Name Function Interval Number of local optima

F1 Multi 1)4sin()4sin(22111 ++−= πππ xxxxF]2,2[, 21 −∈xx 100

F2 Schaffer ()22
2

2
1

2
2

2
1

2

2
)(001.01

5.0)(sin
5.0

xx

xx
F

++

−+
−=

]10,10[, 21 −∈xx infinite

F3 Roots 2163 ,
11

1
ixxz

z
F +=

−+
=]2,2[, 21 −∈xx 6

F4 Sinc
()

1010

1010sin

21

21
4 −+−

−+−
=

xx

xx
F

]20,20[, 21 −∈xx infinite

F5 Alex)sin()7()11(2
2

2
1

2
21

2
2

2
15 xxxxxxF +−−+−−+−=]4,4[, 21 −∈xx 4

F6 Rastrigin ())2cos()2cos(1020 21
2
2

2
16 xxxxF ππ +−++=]5.2,5.2[, 21 −∈xx 36

F7 Shubert [] []
==

++×++=
5

1
2

5

1
17)1(cos)1(cos

ii

jxjjixiiF

]10,10[, 21 −∈xx 761

F8 Camel 4
2

2
221

6
1

4
1

2
18 44

3

1
1.24 xxxxxxxF −+−−+−=]3,3[, 21 −∈xx 6

F9 Rastrigin2 2
2

2
1219)18cos()18cos(xxxxF −−+=]2,2[, 21 −∈xx 169

166 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Table 2. Specialized parameters for optimization of
benchmark functions

Fu
nc

tio
ns

Mutation
strength

β

Affinity
suppression

threshold
σsup

Fitness
improvement
threshold λf

(only for
PiNet)

Repulse
threshold

σrep
(only for

 RC-aiNet)

Search
space

S

F1 100 0.2 0.1 0.8 550,000
F2 100 0.2 0.1 0.8 550,000
F3 100 0.2 0.01 0.8 550,000
F4 100 0.2 0.1 0.8 1,000,000
F5 100 0.2 0.1 0.8 200,000
F6 200 0.1 0.1 0.4 400,000
F7 100 0.2 0.1 0.8 800,000
F8 100 0.5 0.1 0.8 100,000
F9 100 0.2 0.3 0.8 800,000

All of common parameters for RC-aiNet are set exactly
the same as the values used in [2] for testing opt-aiNet and
PiNet. So in all benchmarks, initial population size (N1) is 20,
cell cloning scale (Nc) is 10 and diverse introduction rate (d)
is 40%. Some other parameters including mutation decay (β),
affinity suppression threshold (σsup), maximum search space
(S), fitness improvement threshold (λf only for PiNet) and
repulse threshold (σrep only for RC-aiNet), according to [2],
are specialized for each function as Table 2 shows. Each
function test is repeated 50 times and the average and the
standard deviation of results are calculated. The results of
benchmarks optimization using RC-aiNet, opt-aiNet and

PiNet are presented in Table 3. The results of the latter two
algorithms are extracted from [2].

4.2 Comparison of the proposed algorithm
with opt-aiNet and PiNet

The comparative factors used in evaluating the
algorithm's efficiency include: success rate, the number of
discovered optima, the generations of convergence and the
number of function evaluations.

Success rate is the probability of finding a stable state of
memory cells in limited number of function evaluations
which is named as maximum search space. The RC-aiNet
could record good success rates as well as PiNet and do much
better than that of the opt-aiNet.

As described before, finding all global optima and the
utmost number of local optima is an important aspect of the
performance of multimodal optimization. With the help of
reverse cooperation and purposeful diverse introduction
mechanism, RC-aiNet performs better a global exploration in
landscape which assures an increase in the number of
discovered optima. According to Table 3, when compared
with opt-aiNet and PiNet, the new algorithm on average finds
36% more optima than opt-aiNet and 16% more than PiNet.
The number of generations to convergence has an effective
reflection on algorithm speed. Using the accelerating
mechanism in hypermutation causes a decrease in the number
of iterations required for local exploitation.

Table 3. Optimization results of benchmark functions using the three algorithms

Function Algorithm Success
Rate (%)

Local optima number Generations of
convergence Function evaluation number

Avg SD Avg SD Avg SD

F1
opt-aiNet 96 *91.1 *5.8 *441 *72 *370,657 *122,270

PiNet 100 94.9 3.4 219 27 187,374 34,881
RC-aiNet 100 99.5 0.7 154 15 140,038 21,565

F2
opt-aiNet 0 219.3 10.3 682 37 550,000+ 580

PiNet 0 279.5 9.5 317 17 550,000+ 1320
RC-aiNet 0 394.3 9.0 243 14 550,000+ 36,581

F3
opt-aiNet 100 6.1 0.54 542 326 79,705 43,179

PiNet 100 6 0 191 136 35,051 20,512
RC-aiNet 100 6 0 72 32 11,645 4,197

F4
opt-aiNet 0 287.2 38.3 1040 62 1,000,000+ 947

PiNet 0 444.9 27.3 458 42 1,000,000+ 1992
RC-aiNet 0 730.8 34.0 325 18 1,000,000+ 106,415

F5
opt-aiNet 100 4 0 620 70 99,990 16,326

PiNet 100 4 0 175 31 28,517 4659
RC-aiNet 100 4 0 77 5.4 12,488 851

F6
opt-aiNet 66 35.97 3.522 674 156 229,247 88,901

PiNet 100 34.76 1.836 208 52 77,396 28,126
RC-aiNet 100 34.90 1.200 144 29 53,325 13,869

F7
opt-aiNet 0 538.4 32.480 485 20 800,000+ 1832

PiNet 0 596.94 17.875 239 12 800,000+ 2364
RC-aiNet 0 753.4 3.618 214 6 800,000+ 68,524

F8
opt-aiNet 100 5.94 0.240 491 68 82,933 8074

PiNet 100 5.98 0.141 194 111 31,955 16,225
RC-aiNet 100 5.98 0.141 66 10 10,932 1293

F9
opt-aiNet 100 120.14 2.382 492 54 561,508 101,582

PiNet 100 157.42 4.343 253 37 383,938 81,899
RC-aiNet 100 167.56 1.013 198 18 275,729 42,941

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 167

Figure 1. Comparison of maximum and average fitness of population on Multi Function. (a) opt-aiNet. (b) RC-aiNet.

The better exploration techniques lead to reduce the
repetitions of global search, therefore the number of
generations to convergence which consists of local and global
search iterations in RC-aiNet is significantly less than opt-
aiNet and PiNet. Figure 1 illustrates the average fitness and
maximum fitness of cells population on F1 for opt-aiNet and
RC-aiNet.

The number of function evaluation, called search space,
is another criterion to estimate convergence speed. The new
algorithm uses the information of prior movements of a cell
to generate acceleration. This technique results in decreasing
the required number of points to evaluate for each cell to
reach to an optima. So the number of evaluations in RC-aiNet
on average is 75% less than opt-aiNet and 49% less than
PiNet. Therefore, the RC-aiNet could improve both the
number of discovered optima and convergence speed.

It is clear in Table 3 that standard deviation in every
criteria obtained by RC-aiNet usually is much less than that
of the other two algorithms, especially in the number of
optima and the generations of convergence. Figure 2 contains
two box plots which compare the distribution of results in
opt-aiNet, PiNet and RC-aiNet on F1. The closeness of the
results indicates that RC-aiNet is more reliable and robust and

is far from being affected by several executions with different
initial populations.

5 Conclusion
In this paper, an improved algorithm named RC-aiNet is

presented to optimize multimodal functions. For a better
exploration in RC-aiNet, memory cells repel new generated
cells. Also, the information of cells in current population and
their parents in previous iterations has been utilized to affect
exploitation speed. Compared with opt-aiNet and PiNet, the
newly proposed algorithm is capable of improving algorithm
performance in convergence speed and quality of solutions.
Also, notable decrement in standard deviation of criteria is a
reason for this newly proposed algorithm robustness.

For further studies, finding another dynamic diverse
introduction technique based on a non-uniform probability
distribution function may lead to an improved exploration.
Some other techniques could introduce to reduce the
influence of function shape in algorithm performance. Also
algorithm's parameters could be adjusted more accurately to
increase their efficiency.

Figure 2. Two box plots to compare the three algorithms.
 (a) The generations to convergence. (b) The number of discovered optima.

168 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

6 References
[1] A. Ahrari, M. Shariat Panahi and A.A. Atai, “GEM: a

novel evolutionary optimization method with improved
neighborhood search.” Applied Mathematics and
Computation, vol. 210, issue 2, pp. 376–386, 2009.

[2] Q. Xu, L. Wanga and J. Si, “Predication based immune
network for multimodal function optimization.”
Engineering Applications of Artificial Intelligence, vol.
23, pp. 495-504, 2010.

[3] D. Dasgupta and L.F. Nino, Immunological
Computation; theories and applications, New York:
Auerbach, 2009.

[4] E. Hart and J. Timmis, “Application areas of AIS: the
past, the present and the future. ” Applied Soft
Computing, vol. 8, issue 1, pp. 191–201, 2008.

[5] F.M. Burnet, The Clonal Selection Theory of Acquired
Immunity, Cambridge University Press, 1959.

[6] L.N. De Castro and F.J. Von Zuben, “Learning and
optimization using the clonal selection principle.” IEEE
Trans. on Evolutionary Computation, vol. 6, pp. 239–
251, 2002.

[7] L.N. De Castro and F.J. Von Zuben, “aiNet: An artificial
immune network for data analysis”, In Data Mining: A
Heuristic Approach, by H.A. Charles, R.A.S. Newton
and S. Abbas (Eds.), Hershey, PA: Idea Group
Publishing, pp. 231–259, 2001.

[8] L.N. De Castro and J. Timmis, “An artificial immune
network for multimodal function optimization. ”, Proc.
IEEE Congresson Evolutionary Computation, 2002.

[9] L. Liu and W.B. Xu, “A cooperative artificial immune
network with particle swarm behavior for multimodal
function optimization.” Proc. IEEE Congress on
Evolutionary Computation, pp. 1550–1555, 2008.

[10] J. Timmis, C. Edmonds and J. Kelsey, “Assessing the
Performance of Two Immune Inspired Algorithms and a
Hybrid Genetic Algorithm for Function Optimisation”,
Proc. IEEE Conference od Evolutionary Computations
(CEC2004), pp. 1044-1051, 2004.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 169

Community Detection in Complex Networks based on
Multiobjective Honey Bee Mating Optimization

Babak Amiri, Liaquat Hossain and John W Crawford

The University of Sydney, Sydney, NSW, Australia

Abstract— Detecting community structure is crucial for
uncovering the links between structures and functions in
complex networks. Most of contemporary community
detection algorithms employ single optimization criteria
(e.g., modularity), which may have fundamental
disadvantages. This paper considers the community
detection process as a Multi-Objective optimization
Problem (MOP). To solve the community detection
problem this study used improved honey bee mating
optimization (HBMO) algorithm. In the proposed
algorithm, an external repository is considered to save
non-dominated (Pareto) solutions found during the
search process. The efficiency of the proposed
algorithm is studied by testing on several data sets.
Numerical results show that the proposed evolutionary
optimization algorithm is robust and suitable for
community detection problem.

Keywords- complex network; community; multi-objective;
honey bee mating optimization

I. INTRODUCTION

Most of real word networks possess inherent
community structure, such as biological networks, web
graphs and social networks. In network a community is
a group of nodes with high dens connection within
groups and sparse connection between groups.
Communities in networks provide us information about
how network function and topology affect each
other[1].
In complex networks the number of communities is
typically unknown and the communities are often of
unequal size or density, and it has been shown that in
complex networks communities have a hierarchical
structure so we can say that finding communities in
complex networks is a non trivial task [2]. Community
detection problem has been introduced formally by
Gervan and Newman in 2002 [3] and recently has been
attracted the attention of researches in deferent areas.
The community detection problem can be considered
almost like an optimization problem [4] and lots of
studies have been done based on evolutionary methods
like GA [5-9], SA [10] and collaborative evolutionary
algorithms[11] and [12] to solve it. To consider
community detection problem as an optimization
problem we need an objective function to be improved
like modularity Q that is used as the stopping criterion
in GN [3]. Most of community detection problems are
based on the single objective optimization and their
differences are based on their objective functions. The
single objective based community detection algorithms

have some shortcomings such as: single-objective
optimization algorithms attempt to optimize just one
criterion, they may fail when the optimization criteria
are inappropriate and also most of them require prior
information like the number of communities, which is
usually unknown for real networks.
To overcome these shortcomings the community
detection problem can be considered as a multi-
objective problem, so multiple objective functions can
be considered to obtain more accurate and
comprehensive community structure.
In this paper we considered community detection
problem as a multi-objective optimization problem and
introduced an improved multi-objective algorithm based
on honey bee mating optimization algorithm.
One of the recently proposed evolutionary algorithms
that have shown great potential and good perspective
for the solution of various optimization problems is
honey bee mating optimization (HBMO). The HBMO
algorithm has remarkable accuracy and calculation
speed to deal with the optimization problem.
Advantages of the HBMO algorithm are presented in
[13, 14]. Refs. [15] and [14] have used the HBMO
algorithm for solving optimization problems on two
separate applications. In this paper, a multiobjective
optimization is used for the placement and sizing of
REGs by the improved HBMO algorithm. Original
HBMO often converges to local optima. In order to
avoid this shortcoming, in this paper a new mating
process is proposed for rising accuracy of the algorithm.
The proposed algorithm optimized two objective
functions, the community score that measures the
density of the clusters obtained and community fitness
that minimizes the external links. A prior knowledge of
a number of communities was not needed because this
method returns a set of solutions where each of them
correspond to different trade- offs between the two
objectives, and gives a great chance to analyze the
hierarchy of communities. The rest of the paper is
organized as follows. Section 2 introduced the problem
of community detection. The concept of a multi-
objective optimization problem is reviewed in section 3.
The original honey bee mating optimization algorithm
is explained in section 4. In section 5 the proposed
multiobjective algorithm used to detect community is
presented, and then in section 6 the experimental results
of the proposed algorithm in comparison with other
approaches are shown.

II. COMMUNITY DETECTION

170 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

Community detection has been studied in many fields
for many years such as computer science, physics and
biology and lots of methods have been introduced in
this field. In this study an undirected network G = (V,
E) defined by a set of nodes [13] or vertices, and a set
of links [16] connect two elements of V. A community
consists of vertices and an edge between these nodes,
where the nodes often cluster into tightly knit groups
with a high density and a lower density of between the
group connections[17].
A network can be represented mathematically by an
adjacency matrix A, if there is an edge from vi to vj,

1 and 0 otherwise. The degree ki of a node
i, defined as ∑ . Let C ⊂ G the sub-graph
where node i belongs to, the degree of i with respect to
C can be split as , where

∑ ∈ is the number of edges connect the i
to the other nodes in C, and ∑ ∉ is the
number of edges connecting i to the rest of the network.
A sub-graph C is a community in a strong sense
if , ∀i ∈ C. A sub-graph C is a
community if ∑ ∈ ∑ ∈ .
The quality measure of a community C that maximizes
the in-degree of the nodes belonging to C has been
introduced in [8]. On the other hand, in [18] a criterion
that minimizes the out-degree of a community is
defined. We now recall the definitions of these
measures first, and then we show how they can be
exploited in a multi-objective approach to find
communities. In the following, without losing its
generality, the network graph is assumed to be
undirected.
Let μi denote the fraction of edges connecting node i to

the other nodes in C. More formally,
| |

where |C| is the cardinality of C.
The power mean of C of order r, denoted as M(C) is
defined as

∑ ∈

| |
 (1)

Notice that in the calculation of M(C), since 0≤μ≤1, the
exponent r increases the weight of nodes having many
connections with other nodes belonging to the same
module, and diminishes the weight of those nodes
having few connections inside C.
The volume vC of a community C is defined as the
number of edges connecting vertices inside C, i.e the
number of 1 entries in the adjacency sub-matrix of A
corresponding to C, ∑ , ∈ .
The score of C is defined as score (C) = M(C) × vC.
Thus, the score takes into account both the fraction of
interconnections among the nodes (through the power
mean) and the number of interconnections contained in
the module C (through the volume). The community
score of a clustering {C1, ... Ck} of a network is defined
as

(2)

The community score gives a global measure of the
network division in communities by summing up the

local score of each module found. The problem of
community detection has been formulated in [8] as the
problem of maximizing CS.
In [18] the concept of community fitness of a module C
is defined as

∝
∈

(3)

where and are the internal and external
degrees of the nodes belonging to the community C,
and α is a positive real-valued parameter controlling the
size of the communities. The community fitness has
been used by [18] to find communities.

III. MULTI-OBJECTIVE OPTIMISATION

In a multi-objective optimization problem, the purpose
is to optimize several conflicting objectives
simultaneously while still meeting some constraints.
The community detection problem algorithm can be
formulized as a multi-objective problem because two
objective functions are competing with each other. The
first is maximizing the inter-connecting links and the
second is minimizing connections between
communities. The multi-objective problem can be
described as follows[19]:

, , … ,

(4)

where is the ith objective function and X is the
vector of the optimization variables, n is the number of
objective functions.
The solution to the multi-objective optimisation
problem is a set of Pareto points. In the multi-objective
optimization problem, a solution ∗ ∈ is a Pareto
optimal if there is no solution (X) in such that X
dominates X*. is the set of all feasible values of X.
The solution X1 is said to dominate the solution X2 if
∀ ∈ 1, 2, … , ,
∃ ∈ 1, 2, … , ,

(5)

Solutions which dominate others but not themselves,
are called non-dominated solutions.

IV. HONEY BEE MAITING OPTIMIZATION
ALGORITHM

In order to deal with multiobjective problems, some
modifications in the HBMO algorithm should be made.
After the generation of the initial population and
respective evaluation of objective functions, the
selection of the ‘‘best solutions’’ (queens) should be
made, but no longer based only on the comparison of
single objective function values. Under a multiobjective
approach, a new concept, such as the Pareto dominance
concept, is needed for dealing with different solutions,
i.e. classifying them as dominated or non-dominated
solutions. The ‘‘best solutions’’ (queens) selected from
the initial population are the non-dominated solutions.
Once identified the non-dominated solutions (queens),
the iterative process is initiated in the same way as in
the single objective case (mating flights, generation of
new queens, improvement of the queens and of the new
generation and selection of new queens). Each non-
dominated solution will generate a certain number of
solutions after each iteration. The criteria for generation

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 171

and improvement of the solutions specially best
solution (queen) are the same as employed in the uni-
objective version. With the new generated solutions and
the non-dominated solutions from the previous iteration,
the new set of non-dominated solutions is identified,
which forms the Pareto front. These new solutions are
saved in the repository and will generate the new
solutions in the next iteration. The process is repeated
until the stop criterion is satisfied. Frequently, the
number of solutions that belong to the Pareto front
increases as the algorithm evolves, thus each non-
dominated solution is a potential generator (queen) of
new solutions in the next iteration of the algorithm. It is
noted that these non-dominated solutions saved in the
repository are not the final non-dominated solutions
because the repository will be updated after generation
of broods in the next iterations. Besides, our
experiences in the implementation of the proposed
algorithm shows that it is safe to say the repository of
the non-dominated solutions will be significantly
updated in each new iteration with respect to the
previous ones in the initial iterations. However, after
some iteration the results of the repository may be
saturated. That is the non-dominated solutions may be
remained unchanged. Indeed the new solutions in the
higher number of the iterations may be equal to the
same of the repository solutions or they will be
dominated by the repository ones. Therefore, it can be
concluded from this manner that the non-dominated
solutions of the repository after some iteration are
trustworthy.

V. ROPOSED ALGORITHM

Previously in this work the search capability of the honey bee
mating optimization algorithm was specifically used to find
communities in complex networks. The steps of the proposed
community detection algorithm as shown in figure 1 are as
follows:

Step 1: Initializing the problem and algorithm parameters
In this phase, as described above, we are interested in
identifying a partitioning {C1 , . . . Ck} that maximizes the
number of connections inside each community and minimizes
the number of links between the modules. The first objective
was fulfilled by the community score. The first objective
function is therefore ∑ . The second
objective was carried out by the community fitness by
summing up the fitness of all the Ci modules. The parameter
α, that tunes the size of the communities, has been set to 1
because in most cases the partitioning found for this value are
relevant [18]. The second objective is therefore∑ .
Our partitioning algorithm uses the locus-based adjacency
representation proposed in [20] and used by [20] for multi-
objective clustering. In this graphic representation, an
individual of the population consists of N variable x1, . . . , xN
and for each variable there is a set of possible range of values
based on the adjacency matrix. For example, if node 1 has a
connection with nodes 3, 5, and 6, the possible range of values
for x1 will be {3, 5, and 6}. For the isolated node k in the
network, the possible range of values can be {1, 2, …, k-1,
k+1,…N}.
Variables and values represent nodes of the graph G = (V, E)
modeling a network N, and a value j assigned to the ith
variable is interpreted as a link between the nodes i and j of V.
This means that in the clustering solution found, i and j will be

in the same cluster. However, a decoding step is needed to
identify all the components of the corresponding graph. The
nodes participating with the same component are assigned to
one cluster. As observed in [20], the decoding step can be
done in linear time. The main advantage of this representation
is that the number of communities will be automatically
determined by the number of components contained in an
individual, and will be determined by the decoding step.

Step 2: Generate initial population

Step 3: Begin with i = 1.

Step 2: Pick randomly two candidates for selection X1 and
X2.

Step 3: Pick randomly a comparison set of individuals from
the population.

Step 4: Compare each candidate, X1 and X2, against each
individual in the comparison set for domination using the
conditions for domination given in Eqs. (4) and (5).

Step 5: If one candidate is dominated by the comparison set
while the other is not, then select the later for reproduction
and go to Step 7, else proceed to step 6.

Step 6: If neither or both candidates are dominated by the
comparison set, then use sharing to choose winner.

Step 7: If the criteria i = N is reached, stop selection
procedure, else set i = i + 1 and go to Step 2.

VI. Experimental results
In this section effectiveness of the proposed multi-
objective honey bee mating optimization algorithm
(MHBMO) has been compared with Clauset, Newman
and Moore (CNM) [21] and MOGA-Net [8] using some
real world datasets and synthetic benchmark datasets.
The effectiveness of stochastic algorithms is greatly
dependent on the generation of initial solutions and
therefore, for every dataset, algorithms have
individually performed 100 times to test their own
effectiveness, and each time with randomly generated
initial solutions. Our algorithm was implemented into
Matlab 7.1. All the experiments were conducted on a
computer with Intel Core 2 Duo, 2.66 GHz, 4 GB
RAM.

A. Evaluation Criteria
To evaluate the quality of the proposed community
detection method we used Normalized Mutual
Information (NMI) and Modularity (Q). The
Normalized Mutual Information (NMI) is a similarity
measure proven by Danon et al [22] to be reliable.
Given two partitions A and B of a network in
communities, let C be the confusion matrix whose
element Cij is the number of nodes of community i of
the partition A that are also in the community j of the
partition B. The normalized mutual information I(A, B)
is defined as:

172 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

,

2 ∑ ∑
. .

∑ .
. ∑ .

.

(6)

where cA (cB) is the number of groups in the partition A
(B), Ci. (C.j) is the sum of the elements of C in row i
(column j), and N is the number of nodes. If A=B, I(A,
B =1. If A and B are completely different then I(A,
B)=0.
The modularity of Newman and Girvan[23] is a well
known quality function used to evaluate the goodness of
a partition. Let k be the number of modules found inside
a network, the modularity is defined as:

2

(7)

where ls is the total number of edges joining vertices
inside the module s, and ds is the sum of the degrees of
the nodes of s. The first term of each summand of the
modularity Q is the fraction of edges inside a
community and the second one is the expected value of
the fraction of edges that would be in the network if
they fell at random without regard to the community
structure. Values approaching 1 indicate a strong
community structure.

B. Real World Networks
The Zackary’s Karate Club network was generated by
Zachary, who studied the friendship of 34 members of a
karate club over a period of two years [24]. During this
period, because of disagreements, the club divided in
two groups almost of the same size.
The Bottlenose Dolphins network: A network of 62
bottlenose dolphins living in Doubtful Sound, New
Zealand, was compiled by Lusseau after studying their
behavior for seven years. A tie between two dolphins
was established by their statistically significant frequent
association. The network split naturally into two large
groups where the number of ties was 159[25].
The American College Football network: comes from
the United States college football. The network
represents the schedule of Division I games during the
2000 season. Nodes in the graph represent teams and
edges represent the regular season games between the
two teams they connect. The teams are divided into
conferences. On average the teams played 4 inter-
conference matches and 7 intra-conference matches,
thus they tend to play between members of the same
conference. The network consists of 115 nodes and 616
edges grouped in 12 teams [3].
The political books compiled by V. Krebs: The nodes
represent 105 books on American politics brought from
Amazon.com, and the edges join pairs of books
frequently purchased by the same buyer. Books were
divided by Newman [28] according to their political
alignment (conservative or liberal), except for a small
number (13) having no clear affiliation.
The e-print Arxiv: initiated in Aug 1991, has become
the primary mode of research communication in
multiple fields of physics, and some related disciplines.

It is a network of 9000 scientific paper and their
citations (9000 nodes and 24000 links) [29].
The webpage network: were obtained from the
complete map of the nd.edu domain, which contains
325,729 documents and 1,469,680 links [26].

C. Results
A comparison of results for running different algorithms
on each real world dataset that mentioned in last section
is illustrated in Tables 1–8.

Table 1. Modularity result obtained by the three algorithms on

Zackary’s Karate Club data

Method
Modularity Standard

deviation Best Average Worst
MHBMO 0.4161 0.4161 0.4161 0.0000
CNM 0.3811 0.3708 0.3621 0.0100
MOGA-Net 0.4151 0.4149 0.4148 0.0010

Table 2. Modularity result obtained by the three algorithms on

Bottlenose Dolphins data

Method
Modularity Standard

deviation Best Average Worst
MHBMO 0.5233 0.5233 0.5233 0.0000
CNM 0.4605 0.4486 0.4367 0.0110
MOGA-Net 0.5048 0.5038 0.5029 0.0090

Table 3. Modularity result obtained by the three algorithms on

American College Football data

Method
Modularity Standard

deviation Best Average Worst
MHBMO 0.5812 0.5804 0.5793 0.0010
CNM 0.5433 0.5188 0.5046 0.0237
MOGA-Net 0.5148 0.4978 0.4784 0.0158

Table 4. Modularity result obtained by the three algorithms on

Krebs’ books on American politics data

Method
Modularity Standard

deviation Best Average Worst
MHBMO 0.5162 0.5162 0.5162 0.0000
CNM 0.4934 0.4715 0.4522 0.0186
MOGA-Net 0.5176 0.5136 0.5075 0.0039

Table 5. Modularity result obtained by the three algorithms on

Arxiv data

Method
Modularity Standard

deviation Best Average Worst
MHBMO 0.7854 0.7811 0.7776 0.0042
CNM 0.7721 0.7415 0.7112 0.0304
MOGA-Net 0.7911 0.7226 0.7743 0.0083

Table 6. Modularity result obtained by the three algorithms on

Web nd.edu data

Method
Modularity Standard

deviation Best Average Worst
MHBMO 0.9286 0.9274 0.9260 0.0011
CNM 0.9274 0.8852 0.8501 0.0411
MOGA-Net 0.9304 0.9187 0.9073 0.0116

For Zachary’s Karate Club data the MHBMO algorithm
provided a value of 0.4161 in all runs, but on the other
hand the CNM and MOGA-Net algorithms attained
0.3811 and 0.4151 respectively, as shown in Table 1.
The MHBMO found 4 communities for this dataset in
all runs. For Bottlenose Dolphins data (Table 2) the

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 173

MHBMO algorithm attained the values of 0.5233 for
modularity in all runs and four communities were
detected by the MHBMO. The best modularity values
provided by MOGA-Net and CNM were 0.4605 and
0.5048. The MHBMO algorithm detected 11
communities for the American College Football data
(Table 3) attained the best value of 0.5812 for
modularity. The CNM and MOGA-Net algorithms
provided the best values of 0.5433 and 0.5148 in terms
of modularity. For the community detection problem,
Krebs’ books on the results of the American Politics
data given in Table 4 shows that the MHBMO provided
an optimum value of 0.5162 for modularity, and it found
4 communities in every solution. The proposed multi-
objective algorithm works better than CNM and
MOGA-Net in large datasets as shown in tables 5 and 6.
For Arxiv and Web nd.edu datasets the MHBMO found
0.7854 and 0.9286 for modularity. The MHBMO algorithm
was much more stable than the other algorithms, as can
be observed from Tables 1 to 6. The results illustrate
that the proposed MHBMO community detection
approach can be considered as a viable and an efficient
heuristic to find optimal or near optimal solutions to the
problem of community detection in networks

VII. CONCLUSION
This paper presents a multiobjective community
detection algorithm based on the improved honey bee
mating optimization. The proposed algorithm has
several advantages compared to other optimization
techniques in that it does not require a complex
calculus, thus it is free from divergence and there is no
need to set initial values for the decision variables. The
proposed algorithm for community detection can be
used when the number of clusters is unknown a priori.
To evaluate the performance of the proposed algorithm,
it was compared with the MOGA-Net and CNM
algorithms. The algorithm was implemented and tested
on several real world datasets, and showed that it was
quite efficient at discovering the community structure of
complex networks. Thus, this proposed algorithm can
be considered as a viable and an efficient heuristic to
find the optimal or near optimal solutions to clustering
problems.

REFERENCES

[1] S. Fortunato, "Community detection in
graphs," Physics Reports, vol. 486, pp. 75-174,
2010.

[2] T. B. S. de Oliveira and L. Zhao, "Complex
Network Community Detection Based on
Swarm Aggregation," 2008, pp. 604-608.

[3] M. Girvan and M. E. J. Newman, "Community
structure in social and biological networks,"
Proceedings of the National Academy of
Sciences, vol. 99, p. 7821, 2002.

[4] A. Ferligoj and V. Batagelj, "Direct
multicriteria clustering algorithms," Journal of
Classification, vol. 9, pp. 43-61, 1992.

[5] M. Tasgin, A. Herdagdelen, and H. Bingol,
"Community detection in complex networks

using genetic algorithms," Arxiv preprint
arXiv:0711.0491, 2007.

[6] X. Liu, D. Li, S. Wang, and Z. Tao, "Effective
algorithm for detecting community structure in
complex networks based on GA and
clustering," Computational Science–ICCS
2007, pp. 657-664, 2007.

[7] C. Pizzuti, "Community detection in social
networks with genetic algorithms," 2008, pp.
1137-1138.

[8] C. Pizzuti, "GA-Net: A genetic algorithm for
community detection in social networks,"
Parallel Problem Solving from Nature–PPSN
X, pp. 1081-1090, 2008.

[9] C. Pizzuti, "A multi-objective genetic
algorithm for community detection in
networks," 2009, pp. 379-386.

[10] J. Liu and T. Liu, "Detecting community
structure in complex networks using simulated
annealing with k-means algorithms," Physica
A: Statistical Mechanics and its Applications,
vol. 389, pp. 2300-2309, 2010.

[11] A. Gog, D. Dumitrescu, and B. Hirsbrunner,
"Community detection in complex networks
using collaborative evolutionary algorithms,"
Advances in Artificial Life, pp. 886-894, 2007.

[12] J. Liu, W. Zhong, H. A. Abbass, and D. G.
Green, "Separated and overlapping community
detection in complex networks using
multiobjective Evolutionary Algorithms,"
2010, pp. 1-7.

[13] A. Afshar, O. Bozorg Haddad, M. A. Mariño,
and B. Adams, "Honey-bee mating
optimization (HBMO) algorithm for optimal
reservoir operation," Journal of the Franklin
Institute, vol. 344, pp. 452-462, 2007.

[14] M. Fathian, B. Amiri, and A. Maroosi,
"Application of honey-bee mating optimization
algorithm on clustering," Applied Mathematics
and Computation, vol. 190, pp. 1502-1513,
2007.

[15] O. B. Haddad, A. Afshar, and M. A. Marino,
"Honey-bees mating optimization (HBMO)
algorithm: a new heuristic approach for water
resources optimization," Water Resources
Management, vol. 20, pp. 661-680, 2006.

[16] Available:
http://www.cs.cornell.edu/projects/kddcup

[17] F. Radicchi, C. Castellano, F. Cecconi, V.
Loreto, and D. Parisi, "Defining and
identifying communities in networks,"
Proceedings of the National Academy of
Sciences of the United States of America, vol.
101, p. 2658, 2004.

[18] A. Lancichinetti, S. Fortunato, and J. Kertész,
"Detecting the overlapping and hierarchical
community structure in complex networks,"
New Journal of Physics, vol. 11, p. 033015,
2009.

[19] C. M. Lin and M. Gen, "Multi-criteria human
resource allocation for solving multistage
combinatorial optimization problems using

174 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

multiobjective hybrid genetic algorithm,"
Expert Systems with Applications, vol. 34, pp.
2480-2490, 2008.

[20] J. Handl and J. Knowles, "An evolutionary
approach to multiobjective clustering,"
Evolutionary Computation, IEEE Transactions
on, vol. 11, pp. 56-76, 2007.

[21] A. Clauset, M. E. J. Newman, and C. Moore,
"Finding community structure in very large
networks," Physical review E, vol. 70, p.
066111, 2004.

[22] L. Danon, A. Díaz-Guilera, J. Duch, and A.
Arenas, "Comparing community structure
identification," Journal of Statistical
Mechanics: Theory and Experiment, vol. 2005,
p. P09008, 2005.

[23] M. E. J. Newman and M. Girvan, "Finding and
evaluating community structure in networks,"
Physical review E, vol. 69, p. 026113, 2004.

[24] W. W. Zachary, "An information flow model
for conflict and fission in small groups,"
Journal of anthropological research, pp. 452-
473, 1977.

[25] D. Lusseau, K. Schneider, O. J. Boisseau, P.
Haase, E. Slooten, and S. M. Dawson, "The
bottlenose dolphin community of Doubtful
Sound features a large proportion of long-
lasting associations," Behavioral Ecology and
Sociobiology, vol. 54, pp. 396-405, 2003.

[26] R. Albert, H. Jeong, and A. L. Barabási, "The
diameter of the world wide web," Arxiv
preprint cond-mat/9907038, 1999.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 175

INVESTOR PROTECTION AND REGULATIONS IN
DERIVATIVE MARKET

Dr. Rajiv Kumar Agarwal

Assistant Professor, Faculty of Commerce
S.S.(PG) College, MJP Rohilkhand University
 Mumukshu Ashram, Shahjahanpur(UP)-India

Mobile no. +919415060433
Email : dr.rajivkagarwal@gmail.com

ABSTRACT

With the opening of the economy to multinationals and the
adoption of the liberalized economic policies the economy is
driven more towards the free market economy. The complex
nature of the financial structuring is self involves the
utilization of multicurrency transaction. It exposes the
clients to various risks such as exchange rate risk, interest
risk, economic risk & political risk .In the present state of
the economy there is an imperative need for the clients to
protect their operating profits by shifting some of the
uncontrollable financial risk to those who are able bear and
manage them. Thus, risk management becomes a must for
survival since there is a high volatility in the present’s
financial markets In the context, derivatives occupy an
important place as a risk reducing machinery. Derivatives
are useful to reduce many of the risks. Importance of
Derivatives led to high growth of Derivatives trading and
development of Derivatives market in India. Therefore there
is a great need of investors protection and regulatory
mechanisms for such markets. SEBI plays an important role
in this process. This paper tends to highlights some
regulatory and investors protection measures related to
Derivatives Market in India.

1. Introduction:

Derivative trading in India takes can place either
on a separate and independent Derivative
Exchange or on a separate segment of an existing Stock
Exchange. Derivative Exchange/Segment function as a Self-
Regulatory Organisation (SRO) and SEBI acts as the
oversight regulator. The clearing & settlement of all trades
on the Derivative Exchange/Segment would have to be
through a Clearing Corporation/House, which is
independent in governance and membership from the
Derivative Exchange/Segment.

2. Regulatory Objectives:
The LCGC outlined the goals of regulation admirably well
in this report which believes that "The regulation should be

designed to achieve specific, well-defined goals. It is
inclined towards positive regulation designed to encourage
healthy activity and behavior. It has been guided by the
following objectives:

2.1. Investor Protection: Attention needs to be
given to the following four aspects:

2.1.1. Fairness & Transparency: The
trading rules should ensure that trading is
conducted in a fair and transparent manner.
Experience in other countries shows that in
many cases, derivatives-brokers / dealers
failed to disclose potential risk to the clients.
In this context, sales practices adopted by
dealers for derivatives would require specific
regulation. In some of the most widely
reported mishaps in the derivatives market
elsewhere, the underlying reason was
inadequate internal control system at the
user-firm itself so that overall exposure was
not controlled and the use of derivatives was
for speculation rather than for risk hedging.
These experiences provide useful lessons for
us for designing regulations.

2.1.2. Safeguard for clients' moneys:
Moneys and securities deposited by clients
with the trading members should not only be
kept in a separate clients' account but should
also not be attachable for meeting the
broker's own debts. It should be ensured that
trading by dealers on own account is totally
segregated from that for clients.

2.1.3. Competent and honest service: The
eligibility criteria for trading members
should be designed to encourage competent
and qualified personnel so that
investors/clients are served well. This makes
it necessary to prescribe qualification for
derivatives brokers/dealers and the sales
persons appointed by them in terms of a
knowledge base.

2.1.4. Market integrity: The trading system
should ensure that the market's integrity is

176 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

safeguarded by minimizing the possibility of
defaults. This requires framing appropriate
rules about capital adequacy, margins,
clearing corporation, etc.

2.2. Quality Markets:
The concept of "Quality of Markets" goes

well beyond market integrity and aims at
enhancing important market qualities, such as cost-
efficiency, price-continuity, and price-discovery.
This is a much broader objective than market
integrity.

2.3 Innovation:
While curbing any undesirable tendencies,

the regulatory framework should not stifle
innovation which is the source of all economic
progress, more so because financial derivatives
represent a new rapidly developing area, aided by
advancements in information technology."

3. Derivatives Trading – Regulatory
Framework :

With the amendment in the definition of 'securities' under
SC(R)A (to include derivative contracts in the definition of
securities), derivatives trading takes place under the
provisions of the Securities Contracts (Reg Contracts)
(Regulation) Act, 1956 and the Securities and Exchange
Board of India Act, 1992. Dr. L.C Gupta Committee
constituted by SEBI had laid down the regulatory
framework for derivative trading in India. SEBI has also
framed suggestive bye-law for Derivative
Exchanges/Segments and their Clearing Corporation/House
which lay's down the provisions for trading and settlement
of derivative contracts. The Rules, Bye-laws & Regulations
of the Derivative Segment of the Exchanges and their
Clearing Corporation/House have to be framed in line with
the suggestive Bye-laws. SEBI has also laid the eligibility
conditions for Derivative Exchange/Segment and its
Clearing Corporation/House. The eligibility conditions have
been framed to ensure that Derivative Exchange/Segment &
Clearing Corporation/House provide a transparent trading
environment, safety & integrity and provide facilities for
redressal of investor grievances.

4. Market Regulation and Investor
Protection:

We have seen that pursuant to the recommendations of JR
Verma Committee SEBI formulated and approved

guidelines to the stock exchanges (NSE/BSE) and permitted
trading in Derivatives. We will now discuss the regulatory
measures as envisaged by SEBI.

4.1 Futures/ Options contracts in both index as well as
stocks can be bought and sold through the trading
members of National Stock Exchange, or the BSE
Mumbai Stock Exchange. Some of the trading
members also provide the internet facility to trade
in the futures and options market.

4.2 The investor is required to open an account with
one of the trading members and complete the
related formalities which include signing of
member-constituent agreement, constituent
registration form and risk disclosure document.

4.3 The trading member will allot the investor an
unique client identification number.

4.4 To begin trading, the investor must deposit cash
and/or other collaterals with his trading member as
may be stipulated by him. SEBI has issued detailed
guidelines for the benefit of the investor trading in
the derivatives exchanges. These may be viewed
and studied.

4.5 Margins are computed and collected on-line, real
time on a portfolio basis at the client level.
Members are required to collect the margin upfront
from the client & report the same to the Exchange.

4.6 All the Futures and Options contracts are settled in
cash at the expiry or exercise of the respective
contracts as the case may, be. Members are not
required to hold any stock of the underlying for
dealing in the Futures / Options market.

5 Important Regulatory Conditions
Specified by SEBI:
5.1 Derivative trading to take place through an on-line

screen based Trading System.
5.2 The Derivatives Exchange/Segment shall have on-

line surveillance capability to monitor positions,
prices, and volumes on a real time basis so as to
deter market manipulation.

5.3 The Derivatives Exchange/ Segment should have
arrangements for dissemination of information
about trades, quantities and quotes on a real time
basis through at least two information vending
networks, which are easily accessible to investors
across the country.

5.4 The Derivatives Exchange/Segment should have
arbitration and investor grievances redressal
mechanism operative from all the four areas /
regions of the country.

5.5 The Derivatives Exchange/Segment should have
satisfactory system of monitoring investor
complaints and preventing irregularities in trading.

5.6 The Derivative Segment of the Exchange would
have a separate Investor Protection Fund.

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 177

5.7 The Clearing Corporation/House shall perform full
novation, i.e., the Clearing Corporation/House shall
interpose itself between both legs of every trade,
becoming the legal counterparty to both or
alternatively should provide an unconditional
guarantee for settlement of all trades.

5.8 The Clearing Corporation/House shall have the
capacity to monitor the overall position of
Members across both derivatives market and the
underlying securities market for those Members
who are participating in both.

5.9 The level of initial margin on Index Futures
Contracts shall be related to the risk of loss on the
position. The concept of value-at-risk shall be used
in calculating required level of initial margins. The
initial margins should be large enough to cover the
one-day loss that can be encountered on the
position on 99% of the days.

5.10 The Clearing Corporation/House shall establish
facilities for electronic funds transfer (EFT) for
swift movement of margin payments.

5.11 In the event of a Member defaulting in meeting its
liabilities, the Clearing Corporation/House shall
transfer client positions and assets to another
solvent Member or close-out all open positions.

5.12 The Clearing Corporation/House should have
capabilities to segregate initial margins deposited
by Clearing Members for trades on their own
account and on account of his client. The Clearing
Corporation/House shall hold the clients' margin
money in trust for the client purposes only and
should not allow its diversion for any other
purpose.

5.13 The Clearing Corporation/House shall have a
separate Trade Guarantee Fund for the trades
executed on Derivative Exchange / Segment.

6 Measures Specified by SEBI to
Ensure Investor Protection in
Derivative Market:

SEBI has also specified measures to ensure protection of the
rights of investors. These measures are as follows:

6.1 Investor's money has to be kept separate at all
levels and is permitted to be used only against the
liability of the Investor and is not available to the
trading member or clearing member or even any
other investor.

6.2 The Trading Member is required to provide every
investor with a risk disclosure document which will
disclose the risks associated with the derivatives
trading so that investors can take a conscious
decision to trade in derivatives.

6.3 Investor would get the contract note duly time

stamped for receipt of the order and execution of
the order. The order will be executed with the
identity of the client and without client ID order
will not be accepted by the system. The investor
could also demand the trade confirmation slip with
his ID in support of the contract note. This will
protect him from the risk of price favor, if any,
extended by the Member.

6.4 In the derivative markets all money paid by the
Investor towards margins on all open positions is
kept in trust with the Clearing House /Clearing
Corporation and in the event of default of the
Trading or Clearing Member the amounts paid by
the client towards margins are segregated and not
utilized towards the default of the member.
However, in the event of a default of a member,
losses suffered by the Investor, if any, on settled /
closed out position are compensated from the
Investor Protection Fund, as per the rules, bye-laws
and regulations of the derivative segment of the
exchanges.

6.5 Presently, SEBI has permitted Derivative Trading
on the Derivative Segment of BSE and the F&O
Segment of NSE. Derivative products have been
introduced in a phased manner starting with Index
Futures Contracts in June 2000, Index Options and
Stock Options introduced in June 2001 and July
2001 followed by Stock Futures in November
2001.

7 Types of Derivative Contracts
Permitted by SEBI

Derivative products have been introduced in a phased
manner starting with Index Futures Contracts in June 2000.
Index Options and Stock Options were introduced in June
2001 and July 2001 followed by Stock Futures in November
2001.

7.1 Minimum Contract Size

The Standing Committee on Finance, a
Parliamentary Committee, at the time of recommending
amendment to Securities Contract (Regulation) Act,
1956 had recommended that the minimum contract size
of derivative contracts traded in the Indian Markets
should be pegged not below Rs. 2 Lakhs. Based on this
recommendation SEBI has specified that the value of a
derivative contract should not be less than Rs. 2 Lakh at
the time of introducing the contract in the market.

178 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

 7.2 The Lot Size of a Contract

Lot size refers to number of underlying
securities in one contract. Additionally, for stock
specific derivative contracts SEBI has specified
that the lot size of the underlying individual
security should be in multiples of 100 and
fractions, if any, should be rounded of to the next
higher multiple of 100. This requirement of SEBI
coupled with the requirement of minimum contract
size forms the basis of arriving at the lot size of a
contract

For example, if shares of XYZ Ltd are
quoted at Rs.1000 each and the minimum contract
size is Rs.2 lacs, then the lot size for that particular
scrips stands to be 200000/1000 = 200 shares i.e.
one contract in XYZ Ltd. covers 200 shares.

7.3 SEBI Amendment to Stipulations on
Lot Size

While the Legislative body stipulated the
minimum contract size in terms of value (Rs.2
Lacs), the system of standardizing securities trade
in Lots, had a multiplying effect, on the minimum
value of a contract, when the prices of the premium
Scrips started appreciating over time. BSE Sensix
Index which was less than 3000 at that time
swelled to nearly 6000 presently. As the value of
individual scrips increased, smaller number of such
scrips would be sufficient to cover the minimum
contract value of Rs.2.00 Lacs prescribed by the
Standing Committee of the Parliament. But
stipulating a fixed number of shares as the lot in
many cases swelled the value of the contract to
Rs.5 Lacs and even more in many cases. This
brought derivatives trading beyond he scope of the
small investor.

Considering the fact SEBI revised its
stipulations regarding Lot size, but retaining the
minimum contract value at Rs.2 Lacs and issued a
press release on 07.01.2004 stating:

It has been noticed that in several
derivative contracts the value has exceeded Rs. 2
lakh. In such cases it has been decided to reduce
the value of the contract to close to but not less
than Rs. 2 lakh by using an appropriate lot size /
multiplier which could be half or 50%. The
exchanges could determine any other lot size /
multipliers to keep the contract size of derivatives
close to Rs. 2 lakh, but in any case not less than Rs.

2 lakh. The exchanges would be able to reduce the
contract size of a derivative contract by submitting
a detailed proposal to SEBI and after giving at least
two weeks prior notice to the market.

8. CONCLUSION:

Though Financial markets experts and regulatory authorities
specially SEBI has successfully implemented various
strategic measures to control, regulate and strengthen the
Derivatives markets as far as investors protection is
concerned but even then a lot more has to be achieved in
this regard. This volume driven market is still lacking on
parameters like more transparency , fairness in dealing ,
investor knowledge , prohibition of insider trading ,
adaptability of processes , accessibility of information ,
determination of brokerage rates and marketing strategies of
derivatives trading companies.

9. Refernces:

9.1 Bhalla, V.K. , "Investment Management - Security
Analysis and Portfolio management", 15th
Edition(2009) ISBN 81-219-1248-2

9.2 Dash , A.P. , "Security Analysis and Portfolio
management" Second Edition (2009), ISBN
9789380026107.

9.3 "Derivatives and Alternative Investments" CFA
curriculum, Volume 6, Level 1 (2009),ISBN 978-
0-536-53708-9

9.4 Rustagi , R.P., "Financial Management" , Third
edition (2006) ISBN 81-85989-28-1

9.5 Singh , Rohini , "Security Analysis and Portfolio
management" , First edition (2009) ,ISBN
9788174467485

9.6 Varma , Jayanth Rama, "Derivatives and Risk
Management", Fourth edition (2010) ISBN 978-0-
07-060430-8

Int'l Conf. Genetic and Evolutionary Methods | GEM'12 | 179

180 Int'l Conf. Genetic and Evolutionary Methods | GEM'12 |

