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Abstract - The Many treatises on genetic algorithms (GA) 

analyze particular methods of developing problem specific GA 

and few try to develop a comprehensive analysis of 

combinations of all methods into a universal framework. Such a 

universal framework could be used to develop what could be 

called a Universal Adaptable GA. One of the problems of GA is 

that no one exactly knows all the details. These can be the ever-

changing parts and cannot be made static at this time until they 

are more fully understood. Other areas are well understood, 

these should be the static parts in the universal adaptable GA.  

The goal of this work is to explain both general and problem 

specific areas by an example with a variant of Tetris as case 

study to demonstrate how a GA can solve problems. This 

example will make GA easier to understand and replicate. 

Keywords: Artificial Intelligence in Games, DNA, Genetic 

Algorithm, Tetris 

 

1 Introduction 

  The development of faster computers in the twenty-first 

century has made it possible for computers to explore their 

environments and create solutions for many types of problems 

without much human intervention. The computer is no longer 

seen as a big storage bin, but as a useful supplement to help 

people solve complex problems, on condition: we have to give 

the computer the right set of instructions. Coming up with these 

right set of instructions is a problem. The instructions given 

have to be both general and specific enough to satisfy the 

minimum requirements for responding to many different types 

of problems. Responses do not have to be perfect. The 

universal adaptable genetic algorithm (GA) has been proposed 

as a suitable method to apply to get the computer to respond to 

many different types of problems for us. 

 

 Before continuing on to having the computer respond to 

some challenging problems, we have to have a clear 

understanding of how a computer GA exactly works, absent 

from all the common misunderstandings. After understanding, 

we can proceed to deal with more difficult aspects of the GA 

and see why developing the universal adaptable GA is a good 

idea. It is the high hopes of this research to start to assemble a 

universal adaptable GA, for other researchers to adjust and 

expand and apply to larger scale problems. How this is done is 

by demonstrating an application of GA to a variant of the game 

of Tetris.  

2 Quality of Solutions 

 The computer can be used as a resource to solve real 

problems by applying a GA and running it to speed up millions 

of years of evolution by simulation within an hour‘s amount of 

time. The result is the creation of an ―individual‖ who can 

solve problems in a real environment. In order for the computer 

to be resourceful for us, we have to first understand the GA. 

Knowing what quality of solution it seeks is a good place to 

start.  

 

 The GA aspires to converge on the equilibrium solution 

to satisfy the minimum requirements of a problem. This is an 

adequate compromise when facing new problems. The GA 

does not normally seek to converge on perfection, so there has 

to be this compromise of a robust solution but not necessarily 

the optimum solution. For example, a genetically bred 

thoroughbred horse can be seen as a genetic solution for short 

distance speed, but even champion thoroughbreds have been 

defeated in extreme distance horse races by ―mutt‖ American 

mustangs without as specialized short race breeding. The point 

is the realistic goal of any artificial general intelligence method 

including GA is to find the mutt. 

 

3 Genetic Algorithm 

 John Holland discovered the GA in terms of AI for 

applying it to computers [1]–[3]. Holland first started looking 

around at how the GA even works. We know it takes place 

from sex. There is the DNA strand from the father and the 

DNA strand from the mother. Somehow two DNA strands 

come together and create a child. The first questions he asked 

then were ―What‘s the mechanism by which this happens? 

What do you do? How do you get these DNA strands to work? 

What‘s the mechanism behind it?‖ 

3.1 Genetic Algorithm Outline 

 The overall idea of what is going on with genetic learning 

is shown in the steps below. These are the steps in genetics 

given to the computer to use genetics to create intelligence.  

The steps are as follows: 

1) Define what a DNA strand is for our setting AND we have 

to define an interpreter that transforms any DNA strand 

into an individual that performs in the environment. 

Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  | 3



2) Randomly create a population of N individuals (e.g.,1,000 

individuals). 

3) Now we have to determine the fitness of any individual. 

4) We create a new population of 1,000 by creating pairs of 

parents to produce one offspring 1,000 times. Pick two 

parents at random where the fitness of each parent affects 

the likelihood that it is selected (the better the fitness, the 

more likely it is selected). When the two parents are 

selected, the new child is determined by genetic operators: 

e.g., crossover, inversion and mutation. 

5) Keep the new population of 1,000 and discard the old 

(many variations exist – e.g., keep the 5% best, can one 

individual be father and mother?). 

 

 The GA has a simple outline, yet the devil is lurking in 

the details. Keep in mind this is an oversimplification of how 

real DNA works in biology. 

3.2 Mapping the Outline 

 Step one in the preceding outline asks us to define the 

DNA strand. The definition of the DNA strand in the universal 

adaptable GA is shown below. The words DNA strand, 

chromosome, organism, and individual are interchangeable 

words. The length and number of organisms are scaled down 

for illustration. Contrast the number of individuals below with 

the example number given in the outline. There would 

normally be more than 10 initial organisms in the initial 

population, as the steps in the GA specified there should be 

1,000 individuals. Additionally, the DNA strands below only 

have a chromosome length of 10. The size of the organisms 

listed is a gross simplification of DNA in GA. Remember the 

goal is to avoid all the common misunderstandings. Some 

definitions have to be defined and simplifications made on 

smaller scales, to see the respective computer model part 

matched to the equivalent part in the biological genetics. 

 

organism0 = (0000000000) 

organism1 = (0101010101) 

organism2 = (1010101010) 

organism3 = (1110000111) 

organism4 = (0011001100) 

organism5 = (1100110011) 

organism6 = (1010101010) 

organism7 = (0011111100) 

organism8 = (0000000000) 

organism9 = (0101010101) 

 

Each gene in the organism is equivalent to a pair of zeros in the 

first organism0 = (0000000000) <=> (|00|00|00|00|00|), where 

the ‗|‘ delimits the beginning and end of a gene. The full four 

letter genetic alphabet ACGT can be represented the same way 

in a computer using the following binary assignments:              

A = 00, C = 01, G = 10, T = 11. 

 Everything we perceive can be encoded in ―0‘s‖ and 

―1‘s.‖ Computers are only limited by the hardware, thanks to 

current software implements of larger integer values. 

 This completes the illustration of the DNA strand of an 

organism from the outline. There is however two other things 

in the outline we need to map for step 1 to be complete. First, 

the interpreter must be defined, but we find quickly we don‘t 

know what to interpret – there is no problem to respond to – 

yet. It will have to wait until later when more information is 

gathered on the specific example problem given in a later 

section. Second, the environment has to be defined.  

 Stated more implicitly in the outline is the environment 

(or input) to define, or the part of the environment to pay 

attention to. These implicit details are one of the places the 

devil lurks. Are the environmental inputs words, sentences, 

shapes, etc.? It likewise will have to wait until a specific 

problem is given. It‘s the same situation the interpreter had. 

This lack of information to define these parts tells us something 

important. The  Environment (Inputs) and the Interpreter need 

to be replaced for every different problem encountered, making 

them changeable parts. There are a few other similar problem 

specific elements to go on the changeable parts list. Altogether, 

they are the 1) Inputs, 2) DNA Instructions, 3) Interpreter, 4) 

Goals, and the 5) Outputs. These elements all need to be 

implemented differently for each unique problem. 

 

 Reproduction can also be done many different ways. It is 

reasonable to use a cumulative distribution function for the 

selection of parents, stochastic crossover, and 5% mutation rate 

for each bit position in the gene; these are as good as any other 

methods to use. These genetic operators are candidates to be 

the sixth part on the changeable parts list. They will be static 

here for simplicity of keeping the changeable parts list down to 

five items. 

 

 The other remaining steps can be mapped. Mapping the 

rest of the steps outlined above to something closer to 

computer language yields the following algorithm. Notice, this 

step would not be necessary if a universal adaptable GA was 

available as proposed. For now there is no universal GA, so the 

following steps are an idea about how to map the steps given 

earlier as a main function for the universal adaptable GA. 

These steps are the fixed parts to the Universal Adaptable GA.  

 

 If the individual is to perform in an actual real life 

environment, there needs to be another small addition made 

after the outline so the individual can perform in the 

environment, as shown below. 

Algorithm 1 Universal Adaptable GA Main 

Input: Environmental inputs, initial chromosomes. 

Output: Highest rated individual. 

1:  repeat for number of GENERATIONS (e.g., 2) 

2:    repeat for number of ENV INPUTS (e.g., 14 shapes) 

3:      repeat for number of CHROMOSOMES (e.g., 10) 

4:        interpret (chromosome, environmental input) 

5:    rate chromosomes 

6:    if generation < GENERATIONS 

7:      reproduce 

8.  save highest individual 
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 Everything is mapped besides the changeable parts. 

Actually, these are the hardest parts to get right to make use of 

genetics. Before defining these parts, we need a problem to 

solve. In order to get something more concrete, an example 

problem is given. 

 

4 Example Problem 

 What we have chosen for our fist problem to solve is the 

fairly well-known problem of dropping dies (or parts) on a 

cloth to make seat covers. The problem has many varieties. All 

varieties of the problem generally try to fit shapes on a surface, 

without overlapping, trying to get the least amount of waste as 

possible. You could add as many constraints to the problem as 

you like. You have to stop somewhere to get something done. 

The point being, the added constraints you impose should be 

implementable within a day‘s work. This is the right level of 

generalization without having to start over each time with a 

fresh implementation whenever presented with a new 

constraint, or problem. 

4.1 Tetris Variant 

 We look at most hard problems as games. Instead of 

looking at the problem as cloth cutting, it can be fitted into 

something more entertaining, into a variant of the game of 

Tetris, with the same inherent problems. See Figure 1 for an 

arrangement of how the Tetris shapes should be placed on the 

board (or cloth) in a compressed format. 

 

 
Figure 1: Tetris blocks arranged in compressed format. 

 

 The object of the ―Tetris‖ game is to create an individual  

player, which places the different parts, the Tetris blocks called 

tetriminos, ―tets‖ for short, on the board, opting to place the 

most pieces on the board as possible. It is easier to start with a 

smaller scale problem and solve the problem on this smaller 

scale before scaling it up to the same problem with larger size. 

You should eventually be able to scale it up to an inexhaustible 

size, and get a good enough solution using the same universal 

GA and adapting it to the larger board size with a little 

engineering help. Of course, first you have to understand how 

to solve the smaller scale problem before it will take a day‘s 

work to expand it to a larger scale problem. For our concerns 

the size of the board is a sheet of 6x10 squares. See Figure 2 for 

the board representation used. 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 The border of four extra squares surrounding all sides of 

the inner board is to ease with  implementation details, and 

seems to be a recurring way to make problems more 

implementable, instead of having to do level logic, such as, if 

this, else if that, else this, and so on. Exactly four outer board 

squares is constant for any sized board, for reasons shown later. 

It may have its genetic equivalence in biology as part of the 

extra bits material that doesn‘t seem to be used, in the non-

coding regions of DNA, termed the dead code as opposed to 

the inner board, termed the active DNA or active code. It has 

definitely been useful when placing the proximity numbers on 

the smaller contained board, not having to worry about if the 

shapes go over the inner board‘s area. 

 

4.2 Changeable Parts 

 The variant of the game of Tetris is the specific problem 

needed before being able to define the abstract parts into 

something concrete. The parts of GA on the changeable parts 

list, the 1) Inputs, 2) DNA Instructions, 3) Interpreter, 4) 

Goals, and 5) Outputs will now be defined.  

5 Mapping Tetris Variant 

5.1 Environmental Inputs 

 All shapes have four squares. There are a total of seven 

different types of tets. All types can be seen looking back to 

Figure 1: one of each tet shape in each symmetrical triangular 

group split by the diagonal. The actual environmental inputs 

will come in as shown in the following sequence. 

square, s, z, T, L, J, l, square, s, z, T, L, J, l 

 

 Any amount of shapes which can cover at least 90% of 

the board space is reasonable to consider. Anything less is too 

Algorithm 2 Universal Adaptable GA Perform 

Input: Environmental inputs, chromosome. 

Output: Response to problem. 

1:  repeat for number of ENV_INPUTS (e.g., 14 shapes) 

2:    interpret_real_life  

       (chromosome, real environmental input) 

3:  rate chromosome     

Figure 2: Inner board of 6x10 squares. 
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trivial. There are 14 shapes, since 14 fills over 90% of the 

board. The tets could come down in random order, whatever 

the constraints they come down in; here they come down in 

fixed order. However elements you are sensing or suppressing 

usually have random behaviors. 

5.2 DNA Instructions 

 The DNA strand (or genetic string) has been defined in a 

previous section, but without DNA instructions, DNA cannot 

do anything. Recall that DNA instructions are one of the 

different changeable parts for each implementation. Each gene 

has a different set of DNA instructions. The first DNA 

instructions that we define for the first gene are called 

proximity numbers. When the chromosome recognizes a shape, 

it categorizes it according to its DNA. Specifically, its gene 

value can be |00|, |01|, |10|, or |11|. The method each 

chromosome uses for proximity number instructions is decided 

by the chromosome‘s DNA by use of a case statement 0-3 with 

strategy names: TRIVIAL, SIMPLE, COMPLEX, MIXED 

(See Figure 3). There are a total of seven different tets. 

Strategy names are listed at the bottom. The proximity numbers 

keep the tets glued together by directing placement of next tets. 

 

Tet(0, 1) Tet(1, 1) Tet(2, 1) Tet(3, 1) 

(000000000) 
(000000000) 
(000000000) 
(000000000) 
(0000##000) 
(0000##000) 
(000000000) 

(000000000) 
(000000000) 
(000000000) 
(000001000) 
(0000##000) 
(0000##000) 
(000000000) 

(000000000) 
(000000000) 
(000000000) 
(000011000) 
(0001##100) 
(0001##100) 
(000011000) 

(000000000) 
(000000000) 
(000000000) 
(000001000) 
(0000##100) 
(0001##000) 
(000010000) 

(000000000) (000000000) (000000000) (000000000) 
(000000000) (000000000) (000000000) (000000000) 

S 

TRIVIAL SIMPLE COMPLEX MIXED 

 

Figure 2: Definition of the square tet.  

The # symbols represent shapes. The numerical values 

surrounding the shapes are proximity numbers. 

 

 The second set of DNA instructions for the second gene 

values to choose from is called Search Procedures (SP). One 

tricky part of studying DNA is in knowing the difference 

between the genes and the instructions carried out by the genes. 

For the second gene on the Tetris DNA strand, the |00| decides 

which SP the organism uses, meaning which set of instructions 

to carry out when searching for an open square to place the 

incoming tet. In other words, what set of DNA instructions 

does it select? Here there are only four different choices, SP0, 

SP1, SP2, and SP3; however, there can be more, but four is 

sufficient to gain an understanding. Notice there are 60 squares 

on each SP to match the size of the inner board. See Figure 4 

for the four SP instructions serving as the second set of DNA 

Instructions for the DNA to select 0-3. 

 

SP0 

1 6 15 29 37 38 30  16 7 2 

5 22 28 42 48 55 49 43 23 8 

14 27 36 47 54 59 56 50  31 17 

13 26 35 46 53 60  57 51 32 18 

12 21 25 41 45 58 52 44 24 9 

4 11 20  34 40  39 33 19 10  3 

 

SP1 

1 2 3 4 5 6 7 8 9 10  

11 12 13 14 15 16 17 18 19 20  

21 22 23 24 25 26 27 28 29 30  

31 32 33 34 35 36 37 38 39 40  

41 42 43 44 45 46 47 48 49 50  

51 52 53 54 55 56 57 58 59 60  

 

SP2 

1 2 4 10  11 21 22 33 34 45 

3 5 9 12 20  23 32 35 44 46 

6 8 13 19 24 31 36 43 47 54 

7 14 18 25 30  37 42 48 53 55 

15 17 26 29 38 41 49 52 56 59 

16 27 28 39 40  50  51 57 58 60  

 

SP3 

11 16 46 37 30  52 9 39 20  4 

29 35 2 15 24 56 47 3 33 27 

43 59 49 38 31 14 41 26 44 54 

17 12 8 23 1 32 10  53 58 18 

7 55 51 40  19 60  34 21 13 48 

22 28 5 6 45 57 25 50  42 36 

Figure 4: Search Procedures 

 
When following the DNA instructions for the second gene, the 

chromosome starts by trying to drop pieces on the inner board 

beginning at the corners with squares labeled 1, 2, 3, 4, and so on until 

60, maybe moving in an inward pattern towards the center or maybe 

starting at a corner (1) and moving towards the other side on the 

diagonal if the DNA instruction specifies. The search procedures can 

be defined with any pattern, even random ones. The creator decides 

what to use for DNA instructions. The SPs in the figures are only 

examples.  

 

5.3 Genes 

 It is important to notice there are only two genes |00|00| 

being actively used on the DNA strand. The other three genes 

are not being used for anything, although they could be. Some 

of the other organisms have some of their extra gene bits set to 

1. Still they are not being used for anything at the moment. 

They may be activated for a different problem. Five total genes 

is a gross simplification of how DNA really works. Recall the 

mile high stack of procurement documents needed just to build 

the C-5 aircraft. Imagine the amount of information needed in 

DNA to build a human, or even a big toe. The DNA is doing 

much more than it first appears, and therefore should definitely 

be far longer than 10 bits in length. 
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5.4 Interpreter 

 This is entering into interpreter territory, another one of 

the changeable parts to be made abstract. The interpreter is the 

key part to the GA. Despite the recent ―solving of the genome‖ 

[4], with the many correlations found of genetic material to 

body characteristics, it appears that even with the DNA 

―source‖ code, we still do not comprehend exactly how this 

code is interpreted. We emphasize the interpreter, looking for a 

general purpose one, but once one is found, then the secret is 

figured out. For now all we have is the option to plug our 

dreams in there for how the interpreter works. The interpreter 

goes from the DNA strand to the full formed individual that 

works in the environment. Here, ―interpreter‖ means roughly 

the same thing as it does in a language such as java. Something 

has to make the programs work. Something has to interpret the 

DNA strand to work in the environment. It is the problem of 

going from genotype to phenotype [5]. The cell in biology 

depends on the context it finds itself in. In Genetic 

Programming [6] the interpreter is done for us. Not everything 

can be written as nice little programs, and the GA is pulled off 

the shelf again to tackle harder problems. In the GA, this 

interpreter is difficult to define [1] for each problem. Since no 

one knows how it is exactly done in genetics, all ideas are just 

wild guesses and dreams. For us, the unknown has to point to 

some address in a universal GA, to where different interpreters 

can plug in as any genetic code interpreter you want. The 

interpreter interprets the given chromosome in the given 

environment to make the transformation into an individual that 

performs in the environment; in our case, a player that plays the 

variant game of Tetris. For an analogy, a book or blueprint is 

nothing without someone to read and interpret the book or 

interpret the blueprint to build the house. The perfect example 

to think about as an interpreter is the mother‘s womb. 

Somehow the mother‘s womb forms a baby out of the DNA 

instructions. 

 

 In our case there are only two pieces of data to interpret, 

the 1) Proximity Numbers, and the 2) SP. The interpreter, as 

was shown in the previous algorithms, takes the following 

form. Depending on the situation, there may need to be two 

interpreter(s) defined. 

 

  interpret (chromosome, environment) 

  interpret_real_life (chromosome, real environment) 

 

5.5 Goals 

 The goal for this Tetris problem is fairly simple; to have 

the greatest number of tets placed on the board. Placing all 14 

shapes on the board would be a perfect solution. There would 

be a minimum waste of only four squares. Goals are also 

related to constraints. The constraints for this problem are: 

shapes cannot overlap, and shapes have to be placed within the 

inner board area. If any portion besides the proximity numbers 

goes outside of the inner board‘s area, it is not a valid 

placement, and therefore is not placed. For example, the 

following in Figure 5 could not take place.  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 # 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

 

 The line shape ‗l‘ runs outside of the inner board. Now it 

can be seen why the square padding around the outside of the 

inner board needs to be size four. This is the minimum amount 

needed to contemplate placing the longest shape ‗l‘ on the 

borders of the inner board. Anything larger would be wasteful, 

and anything shorter would not suffice. This contemplation is 

the farthest case where one square is on the board as close to 

the edge as possible. The two miniature squares are where 

placement starts and ends when contemplating placement. The 

9x9 squares show the placement of the whole shape‘s area for 

proximity number. The square labeled ‗C‘ is the center of 

another furthest possible proximity number to contemplate 

shape placement. Starting from the left top corner, using 

coordinates (1, 1) as the first miniature square on the corner 

extends to the (6, 10) second miniature square, spans the exact 

same size as the inner board. 

 

 The ranking computation sweeps over the entire inner 

board of chromosomes at the end of generations. For each ‗#‘ 

sign it adds 1,000 points. These are the places where the 

shape‘s area is placed on the board. The proximity numbers 

falling within the inner board are added on to this number to 

give the total score for the chromosome. The proximity 

numbers add when overlapped. For instance, placing 14 shapes 

on the 6x10 cloth would sum to 56,000 points (14 shapes x 4 

squares per shape) + overlapping proximity numbers, say 15 

more points, totaling 56,015 points, a perfect solution. 

 

5.6 Outputs 

 The output is the last changeable part on the list. It is 

possibly more effective to understand the output by seeing a 

demonstration of the algorithm in action. 

6 Demonstration 

 Even though the outline of the GA is not very 

complicated, it is helpful to be able to see everything sketched 

out at a detailed enough level to explain. So the demonstration 

uses this strategy to show the GA in process.  

Figure 5: Invalid Placement of Line Tet. 
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6.1 Mapping Outline 

1) Problem: Place 14 tets on a 6x10 (60 square) board with 

the least amount of waste. 

2) Tets come in to the cognitive system in the order: square,s, 

z, T, L, J, l, square, s, z, T, L, J, l. 

3) One by one, shapes are perceived by each chromosome. 

4) The chromosome recognizes the first shape as being a 

square. The interpreter translates what the |00| on the first 

chromosome‘s first gene means for the shape coming 

down. It means select the TRIVIAL strategy, or naked 

shape, meaning no proximity numbers around it. 

5) Then, according to the chromosome‘s DNA value at the 

second gene, it selects one of the four search procedures to 

start trying to place the incoming tet. The range of places 

to try is from 1 to 60. If it cannot place the tet, it tries the 

next place in sequential order. Once it reaches 60, there is 

nothing more it can do for this shape. There is nowhere 

else to try to place the tet. Its board squares are all used up. 

6) The above are done for two generations with 10 initial 

chromosomes. At the end of each N-1 generation, the 

individuals are ranked. Then parents are selected and 

offspring are reproduced. For the Nth generation, selection 

and reproduction does not occur. The highest ranking 

individual from the last generation is saved to perform in 

the real environment.  

 

 The first attempt at placing 14 tets on a 6x10 board 

resulted in many isolated squares on the inner board. The 

isolated squares were greatly fragmented, not a good 

characteristic, and a low ranking best individual was produced, 

which took one hour to complete. The slow execution time is 

offset by being able to visually see and able to visually debug 

the GA in a spreadsheet G.U.I. and to allow quick and 

automated adjustments. There are a couple of things to try in 

order to correct generating these bad results.  

Tet(2, 4) Tet(2, 4) Tet(2, 4) Tet(2, 4) 

(000000000) 
(000000000) 
(000000000) 
(000010000) 
(0001#3000) 
(0001##000) 
(0001#3000) 

(000000000) 
(000000000) 
(000000000) 
(001110000) 
(01###1000) 
(003#30000) 
(000000000) 

(000000000) 
(000010000) 
(0003#1000) 
(000##1000) 
(0003#1000) 
(000010000) 
(000000000) 

(000000000) 
(000000000) 
(000000000) 
(00003#300) 
(0001###10) 
(000011100) 
(000000000) 

(000010000) (000000000) (000000000) (000000000) 

Figure 6: Rotation of 'T' Shape with COMPLEX Strategy. 

 

6.2 Corrections 
 

 The first idea is to add rotations. This took no more than a 

day‘s worth of programming work. See Figure 6 above for an 

example of one shape‘s rotation, the rotation of the ‗T‘ shape 

for the COMPLEX strategy. 

 

 Something similar had to be done for the other six shapes 

and for all different strategies. Once the work was done, an 

unexpected and considerable speed-up in time occurred. 

Adding rotations sped up processing time significantly. The 

reason is because when trying each number from its SP on the 

board, there are more possibilities to try from the added three 

directions for open squares to drop the piece. However, the 

results were similar to the first attempt and not satisfactory. 

Something else needed to be applied to converge on a 

reasonable response.  

 

 The second idea was to add more search procedures. Another 

gene could be used or the alphabet of the current gene changed. 

The latter method was chosen. The problem was the gene only 

allowed for four different SPs to choose from, since the 

alphabet was binary. The idea was to convert from binary to 

trinary (00=0, 01=1, 02=2, 10=3, 11=4, 12=5, 20=6, 21=7, 22 = 8) to 

provide more search procedures to choose from without 

overwriting previous SP. 

 

 Applying trinary to the first gene on all the organisms 

yielded something similar to a modified definition of the DNA 

Strand. The trinary modifications can be seen on the DNA 

strands. Notice the remaining genes still use the binary 

alphabet. 

 

Modified DNA Strands:      Offspring DNA Strands: 

organism0 = (0000000000)    organism0  = (2100000000) 

organism1 = (0101010101)      organism1 = (0001010101) 

organism2 = (0210101010)    organism2 = (1011101010) 

organism3 = (1010000111)    organism3 = (2210000111) 

organism4 = (1111001100)    organism4 = (1110001100) 

organism5 = (1200110011)    organism5 = (1000110011) 

organism6 = (2010101010)      organism6 = (2001101010) 

organism7 = (2111111100)    organism7 = (2000111100) 

organism8 = (1000000000)    organism8 = (0200000000) 

organism9 = (2201010101)    organism9 = (2211010101) 

 

 Increasing the first gene‘s alphabet to nine letters with 

trinary allows an extra possibility for each bit position (instead 

of only having two, this gives five extra spaces for five more 

search procedures) totaling nine search procedures to choose 

from, where there used to be only four. The best performing 

individual‘s SP after reproduction is shown in Figure 7. 

SP4 

12 25 33 38 6 24 23 13 32 14 

19 36 37 7 20 5 39 40 42 43 

35 48 8 50 55 30 4 41 31 22 

18 9 52 47 59 21 54 3 46 44 

10 27 60 57 53 49 58 29 2 28 

26 17 34 16 56 11 51 15 45 1 

Figure 7: Best Performing Individual’s SP. 

 

The offspring of the individual resulted in the new DNA 

strands. Of these offspring, organism4 performed the best, 

where it choose the first newly added fifth SP4 and the 

COMPLEX strategy as its proximity number. 
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 This combination of two changes resulted in a satisfactory 

solution. Only one shape from the environment did not make it 

onto the inner board area. This response is adequate for giving 

a minimal answer to the problem. The best individual produced 

was organism4 = (1110001100) with ranking = 52,023. Output 

can be seen below in Figure 8. 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                  
7 Conclusions 

 Some areas of the DNA are well understood, and those 

should be the fixed areas in the universal adaptable GA. The 

fixed areas have already been figured out for the most part, and 

only need to be assembled into a main algorithm. These areas 

do not have to be reinvented every time a new problem is 

presented. The areas where there are always uncertainties are 

where there is always debate. These parts cannot be fixed at 

this time until they are more fully understood. Otherwise, the 

same basic GA will end up being reinvented over and over 

again by a new author for possibly the same problem yet all 

implementations would be done differently. These areas need 

to be abstracted away, left up to each unique realization. These 

ever-changing parts are the only things that need to change for 

each new problem encountered. The GA should be easily 

modifiable to satisfice many new problems without more than a 

day‘s worth of engineering work required for each new 

problem. 

 

8 Future Work 

 The current implementation for SPs does not scale up to 

larger board sizes. For example, if the size of the inner board 

was increased to 50x50 squares, all SPs would have to be 

2,500 cells. This would be infeasible, even with the number 

drag automation a spreadsheet provides. One idea is to change 

the DNA instructions; instead of SPs, use a command list, such 

as move left, right, up, down, choosing to place the tet as close 

to the left of the starting position as possible, which could be 

the closest right. This approach would make the individual 

more relative than absolute. Similar to how our hands are 

connected to our arms connected to our shoulders and neck 

relative to our head and so on.  

 The highest level goal in AGI is to build an AGI. This 

work has that goal in mind. The ultimate far reaching goal of 

this work is to disseminate the idea of learning how we can 

obtain intelligence from the brain or otherwise by means of 

GA. We already know the microbiology and the fundamental 

macro primitives of the brain; we only do not know how they 

all fit together. We understand why we have failed to learn how 

the brain works itself. The solution is to bring an outsider in, 

the computer, to crank away at the problem by giving it 

primitive functions, then using millions of years of evolution by 

speeding it up inside the computer to fit the known 

fundamental pieces together and generate new ideas via 

mutation. 

 

 If the A.I. went out to a rich environment such as the 

Internet, where there is constant change, read some text, and 

looked at pictures on a webpage, it should be able to be asked 

questions about what it perceived, and give an intelligent 

answer. Then we could declare with confidence we have 

figured out how to obtain intelligence. The idea is to use GA as 

control strategy to figure out how intelligence works, given 

sound primitives, such as NETL [8], hierarchy, lookup table, 

short term memory with 5+/-2 chunks, large matrix, production 

rules, an HTM for the five senses [9], even another GA itself 

(whatever you can dream up until we get it right) then letting 

GA work on it. All it takes is one person with the right idea. 

 

 Most of this research work was dedicated to solving a 

pseudo-Tetris problem with the GA as the learning mechanism 

to create the individual for playing the ―game‖ well. In the 

background is this higher-level goal of creating a more general 

GA, to solve new problems never seen before. 
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Figure 8: The Best individual solution produced. 
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Abstract:- 
 To many, the stock market is a very challenging and 
interesting field. In this paper we try to predict whether the 
prices of the stocks are going to increase or decrease on the 
next day. We are predicting the highest stock price for eight 
different companies individually. For each company six 
attributes are used which help us to find whether the prices 
are going to increase or decrease. The evolutionary 
techniques used for this experiment are genetic algorithms and 
evolution strategies. Using these algorithms we are trying to 
find the connection weight for each attribute, which helps in 
predicting the highest price of the stock. The input for each 
attribute is given to a sigmoid function after it is amplified 
based on its connection weight. The experimental results show 
that this new way of predicting the stock price is promising. In 
each case the algorithms were able to predict with an 
accuracy of at least 70.00%. Since this approach is new any 
further study in this field can definitely give better results. 
 

Keywords: 
Machine learning,stock market, genetic algorithm, 

Eovolutionary Strategies.   

I. Introduction 
The prediction of stock prices has always been a 

challenging task. It has been observed that the stock price of 
any company does not necessarily depend on the economic 
situation of the country. It is no more directly linked with the 
economic development of the country or particular area. Thus 
the stock prices prediction has become even more difficult 
than before.  

These days stock prices are affected due to many 
reasons like company related news, political events, natural 
disasters … etc. The fast data processing of these events with 
the help of improved technology and communication systems 
has caused the stock prices to fluctuate very fast.   Thus many 
banks, financial institutions, large scale investors and stock 
brokers have to buy and sell stocks within the shortest possible 
time. Thus a time span of even few hours between buying and 
selling is not unusual.  
 To invest money in the stock market we need to have 
an idea whether the prices of stocks are going to increase or 

decrease on the next day. Thus in this project we are trying to 
predict whether the highest price of a stock is going to 
increase or decrease on the next day. In this paper we are 
trying to predict the price of stocks of eight different 
companies. For each company we are predicting whether its 
highest price is increasing or decreasing next day. Thus it is a 
classification problem with only two classes involved. Thus 
we have tried to make the problem as simple as possible. 
   

Kyoung-jae Kim and Won Boo Lee [13] developed a 
feature transformation method using genetic algorithms. This 
approach reduces the dimensionality of the feature space and 
removes irrelevant factors involved in stock price prediction. 
This approach performed better when compared with linear 
transformation and fuzzification transformation. This GA 
based transformation looks promising when compared with 
other feature transformations. Another research done on 
genetic algorithms (GAs) by Kyoung-jae Kim [4] again to 
predict stock market is to use a GA not only to improve the 
learning algorithm, but also to reduce the complexity of the 
feature space. Thus this approach reduces dimensionality of 
the feature space and enhances the generalizability of the 
classifier. Also Ajith Abraham [15] developed a hybrid 
intelligent system, which consists of a neural network, fuzzy 
inference systems, approximate reasoning and derivative free 
optimization techniques. That system also gives promising 
results but was not compared with any other existing 
intelligent systems.  

Frank Cross [16] tries to find relationships that could 
exist between stock price changes on Mondays and Fridays in 
the stock market. It has been observed that prices on Friday 
have risen more often than any other day. It has also been 
observed that on Monday the prices have least often risen 
compared to other days. Boris Podobnik [17] tried to find 
cross-correlation between volume change and price change. 
For the stock prices to change, it takes volumes to move the 
stock price. They found two major empirical results. One is 
power law cross-correlation between logarithmic price change 
and logarithmic volume change and the other is that the 
logarithmic volume change follows the same cubic law as 
logarithmic price change. 
 Abdüsselam Altunkaynak [1] used a genetic 
algorithm for the prediction of sediment load and discharge. 
Not many have tried to use only genetic algorithms to predict 
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stock prices. Since the genetic algorithm can perform 
reasonably well in many cases there has to be a way to predict 
stock price using GA as well. Hyunchul Ahn [2] suggested 
that the genetic algorithm can be used to predict in financial 
bankruptcy. We have also tried to use a similar approach to 
predict the stock. The method used in this experiment is 
completely novel and looks very promising. 
 Many machine-learning techniques are used for 
predicting different target values [5,6,10]. This could be even 
to predict stock price. The genetic algorithm has been used for 
prediction and extraction important features [1,4]. Lot of 
analysis has been done on what are the factors that affect stock 
prices and financial market [2,3,8,9]. There are different ways 
by which stock prices can be predicted. One way is to reduce 
the complexity by extracting best features or by feature 
selection [7,11,12,13,14]. This approach will help us predict 
stock prices with better accuracy as the complexity reduces. 
    In this project the method used for predicting the 
highest price is novel. We try to find the connection weights of 
each attribute used for predicting the stock price. There are a 
total of six attributes used for each company. Hence we use six 
connection weights, one for each attribute. Each connection 
weight value defines the contribution given by each attribute 
in predicting the stock price. For example it could happen that 
the volume attribute contributes more than other attributes. 
Thus more importance is given to that attribute. Thus 
obviously this attribute will have a higher connection weight 
compared to other attributes. This concept   is explained in 
more detail below. 
 
Feature discretization of each input:- 
 The main concept in discretization is that we try to 
normalize each input attribute with respect to each other 
attribute. Thus we try to find the connection weight for each 
attribute that decides on the contribution given by that 
attribute.  The summation of each attribute after multiplying 
by the connection weight is given to a sigmoid function. This 
function is used to classify the next stock price into increasing 
or decreasing class.  
 The sigmoid function in terms of mathematical 
expression is given below. It is used when we do not have 
detailed information of the input we are trying to predict. This 
function will classify each input into mainly two classes. So it 
can be used for binary classification problems. 

                     P( t ) =              (1) 

                      
 

The two evolutionary techniques used for predicting the stock 
price are given below:- 

Genetic Algorithm:- 
A genetic algorithm (GA) is a search technique used 

in computing to find exact or approximate solutions to search 
and optimization problems.  Genetic algorithms are a 
particular class of evolutionary computation that uses 
techniques inspired by evolutionary biology such 

as inheritance, mutation, selection, and crossover. A genetic 
algorithm finds the potential solution to a specific problem as 
a simple chromosome like data structure so as to preserve the 
critical information. 

Its implementation begins with the selection of a 
population of chromosomes, which is a set of solutions to 
problems that could occur for a particular scenario. One 
evaluates its fitness and then does its reproduction to get better 
solutions with respect to the target problem. The 
chromosomes, which represent better solutions, are given 
more chance for reproduction than those which represent 
poorer solutions. This process continues for a number of 
generations after which we get the optimal solution. 

The operators used for this experiment are two-point 
crossover and creep mutation. The crossover is a genetic 
operator used to vary chromosome gene structure where gene 
information is interchanged between selected parents by 
selecting two points in the gene structure of each parent.  

 

               
Figure 1. Two point crossover 

 
The creep mutation used works by adding a small 

value to each gene with probability p. The selection method 
used to select the population is roulette wheel selection. In this 
method the fitness assigned to each individual is used for the 
selection process. This fitness is used to associate a probability 
selection with each individual. This can be given as below:-  

 Pi  =                                      (2) 

       Where fi is the fitness of the ith individual and N is the 
population size.                         
  
Evolution Strategies:- 
 The evolution strategy (ES) is also an idea inspired 
by concepts of adaptation and evolution. This type of 
algorithm is mainly used for continuous parameter 
optimization. The representation of the gene is vector. The 
intermediate recombination technique is used in this 
algorithm. In this the selected parent values are averaged to 
give the child and one of the other parents is selected 
randomly so that two individual can go to the next generation. 
 The algorithm for evolutionary strategies is given 
below: 
1. Randomly create an initial population of individuals. 
2. From the current population generate offspring by applying 
a reproduction operator (described below). 
3. Determine the fitness of each individual. 
4. Select the fittest individuals for survival. Discard the other 
individuals. 
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5. Proceed to step 2 unless the number of generations have 
been exhausted.  
 In this experiment we are using a (µ , λ)-ES strategy 
in which the parents (candidate solutions) produce offspring 
(new solutions) by mutating one or more problem parameters. 
Offspring compete for survival; only the best (i.e., those with 
the highest �fitness) will survive to reproduce in the next 
generation. If done properly, the population will evolve 
towards increasingly better regions of the search space by 
means of reproduction and survival of the fittest. 
 The mutation technique used is based on a Gaussian 
distribution requiring mainly two parameters the mean ξ and 
the standard deviation σ. In this small amounts of f(x) are 
randomly calculated using the Gaussian distribution N(ξ, σ). 
This is given as  

f(x)=                               (3) 

 
 
The new value of x is calculated as the sum of previous gene 
value and some small random value calculated using the above 
equation.  
 

 Xnew = Xold + N(ξ, σ)       (4) 
where ξ=0 and σ=1. 

 
 

II. Experimental Setup 
 
Dataset used: 
 The dataset used for this experiment consists of data 
for the last five years. A total of six attributes for each 
company are used for prediction.  These are opening price, 
closing price, highest price, lowest price, volume and adjusted 
closing price. The eight companies used for this experiment 
are Adobe, Apple, Google, IBM, Microsoft, Oracle, Sony and 
Symantec. 
  Two datasets are used for the experiment. One 
training dataset is used for finding the connection weights for 
each attribute used. We used another testing dataset so that we 
can verify the result. Thus we can check if over fitting is 
occurring or not. The results obtained actually showed that no 
over fitting occurred. 
 
 The representation for the problem is floating point 
so each connection weight used for a particular attribute is a 
floating point number. The fitness used in this problem is the 
number of times the connection weights result in predicting 
stock price correctly. So if it was able to predict the stock 
price correctly in 500 data points, then its fitness is 500. There 
are a total of 620 data entries for each dataset, which we need 
to predict. We first use the training dataset to find the exact 
connection weight for each attribute and then using these 
connection weights we try to predict the testing data. The 

different parameter settings for each algorithm are given 
below: 
 
The parameter settings for the Genetic algorithm are:-  

  

 
No. Parameters Values 
1 Population Size: 100 
2 Crossover Probability:        0.5 

 
3 Mutation Probability:          0.013 
4 Selection:                            Roulette Wheel 

 
5 Stopping Criteria:               1000 generations 

Chart 1: Parameter settings for the genetic algorithm 
 
 
 
 

The parameter settings for the Evolution strategy algorithm are 
given below:-  

 
 

No Parameters Values 
1 Population Size with (µ , λ)-ES           

strategy 
20-100 

2 Crossover Probability:        0.6 

 
3 Mutation Probability:          0.015 
4 Selection:                            Roulette Wheel 

used only for 
initial population. 

 
5 Stopping Criteria:               1000 generations 
Chart 2: Parameter settings for the evolutionary strategies 

 
 
 

III.  Results 
  
 Tables 1 and 2 show the optimal connection weights 
used for predicting stock price in each algorithm. Table 3 
shows the best fitness values evaluated for each company. 
Table 4 shows the accuracy of the algorithm to predict the 
highest price. The connection weights are calculated using the 
training dataset and is tested on the testing dataset. This 
protects against any over-fitting occurring in the model. From 
the results shown in Table 3 and 4 it can be seen that over-
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fitting is not occurring. The fitness also indicates the number 
of times it actually predicted the stock price correctly. The 
total number of entries present in each set is 620. 

It can be seen from Table 4 that we were able to 
predict the stock price with considerable accuracy. The search 
space for this problem is very large. This is because the 
connection weight can range from zero to even a million or 
more. Since we have restriction on space search we have kept 
the upper end to be 1000 only for floating representation. 

 From table 4 it can be seen that the connection weight 
evaluated for each attribute do not get over-fitted. In fact in 
some cases the accuracy for prediction is higher for testing 
data than training data. The highest accuracy obtained using 
the genetic algorithm is 73.87% and using the evolutionary 
strategies is 71.77%. 
 

 
 
 

 
Company Open price Closing price Highest price Lowest price Volume Adjusted 

closing price 
Adobe 995.0 10.0 27.0 83.0 929.0 38.0 
Apple 98.0 12.0 85.0 18.0 30.0 17.0 

Google 89.0 12.0 18.0 15.0 87.0 21.0 
IBM 87.0 5.0 39.0 44.0 71.0 23.0 

Microsoft 1212.0 135.0 223.0 138.0 218.0 148.0 
Oracle 963.0 1.0 24.0 18.0 989.0 28.0 
Sony 921.0 7.0 54.0 37.0 975.0 38.0 

Symantec 976.0 8.0 23.0 18.0 55.0 2.0 
Table 1: Connection weights for each company using the genetic algorithm. 

 
 

Company Open price Closing price Highest price Lowest price Volume Adjusted 
closing price 

Adobe 804.0 36.0 767.0 18.0 601.0 727.0 
Apple 309.0 20.0 116.0 8.0 158.0 111.0 

Google 890.0 15.0 27.0 46.0 43.0 830.0 
IBM 247.0 23.0 35.0 8.0 907.0 72.0 

Microsoft 285.0 5.0 70.0 42.0 24.0 183.0 
Oracle 842.0 1.0 769.0 7.0 103.0 281.0 
Sony 856.0 9.0 861.0 44.0 854.0 42.0 

Symantec 778.0 13.0 161.0 302.0 938.0 23.0 
Table 2: Connection weights for each company using the evolutionary strategy. 

 
 
 
 

Fitness Value 
Using GA 

Fitness using Evolutionary Strategy Company 

Training data Testing data Training data Testing data 
Adobe 447 454 450 434 
Apple 457 439 460 445 

Google 465 430 462 435 
IBM 438 439 452 442 

Microsoft 467 436 472 440 
Oracle 445 452 434 444 
Sony 412 431 421 441 

Symantec 440 458 431 439 
Table 3: The best fitness calculated for each company. 
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Fitness Value 
Using GA 

Fitness using Evolutionary Strategy Company 

Training data Testing data Training data Testing data 
Adobe 72.09% 73.22% 72.58% 70.00% 
Apple 73.70% 70.80% 74.19% 71.77% 

Google 75.00% 69.35% 74.51% 70.16% 
IBM 70.64% 70.80% 72.90% 71.29% 

Microsoft 75.32% 70.32% 76.12% 70.96% 
Oracle 71.77% 72.90% 70.00% 71.61% 
Sony 66.45% 69.51% 67.90% 71.11% 

Symantec 70.96% 73.87% 69.51% 70.80% 
 

Table 4: The accuracy with which the stock price was predicted for each company. 
 
 
 

 
IV. Conclusion and Future Work 

 The novel method of predicting stock prices using the 
genetic algorithm and evolutionary strategies looks promising. 
It was found that the genetic algorithm and evolution 
strategies have performed almost evenly. The best accuracy 
found using the genetic algorithm was 73.87% and using 
evolutionary strategies was 71.77%. The genetic algorithm 
was able to predict better than the evolutionary strategies in 
five cases. The evolutionary strategy reached an accuracy of 
70% or better in all cases. 
 We used two different datasets for predicting the 
stock prices. The first one acts as training set and the other 
acts as testing set. This division is required so that we can test 
if over-fitting is occurring or not. The results show that over-
fitting has not occurred.  
 There are many aspects we can consider in the future. 
We need to include more attributes to predict stock prices. The 
six attributes used are very similar to each other hence we 
need more attributes, which are not similar but affect the 
prices. 
 We can try different activation functions for 
classification. Thus instead of using the sigmoid function we 
can use some other function. 
 This method can be compared with other popular 
algorithms used for stock price prediction such as neural 
networks and support vector machines. 
 
Future Work:-  
 The evolutionary algorithms used for this experiment 
looks very promising. Therefore, further research is required 
in this field. We can even try to use attributes of other 
companies to predict the prices to check whether they help in 
predicting the prices. Thus we can use only those company’s 
data, which will help in predicting the data in a better way. 
There is a high chance that the accuracy for prediction will be 

above 80.0% if we used other companies’ data also instead of 
using just individual company’s data. 
          Since the results obtained are above 70.0% in every case 
then we can test the performance on real time data as well. 
This will give us an idea whether only historical data is good 
enough to predict data or not. If not, then we need to find the 
factors other than historical data which affect the prices. This 
information can also be fed to the algorithms we used for this 
experiment. There is a high chance that the accuracy will 
increase. 
 The companies used in this experiment were big 
companies. We can check the performance of those algorithms 
on small size companies as well. 
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Abstract: Traditional Genetic Algorithms (GAs) fail to 

maintain useful diversity in the population as a result of a 

genetic drift due to selection pressure, selection noise and 

operator disruption.  Genetic drift leads to early 

convergence making simple GAs suitable only for 

discovering the optimum of unimodal functions. However, 

most real world optimization problems often deal with 

multi-modal functions and hence require a technique to 

discover the location of multiple optima in the search 

space. The conventional fitness sharing scheme based on 

the niche count has a limitation when there is a high gap 

between the peaks of the multimodal function.  This paper 

introduced a new niching technique based on fitness 

proportionate resource sharing to overcome this limitation. 

 A comparison is made both using mathematical analysis 

and simulations on well known multi-modal test functions 

with unequal peaks.  Unlike the conventional sharing 

scheme, the difference in the fitness of the highest and 

lowest peaks does not affect the performance of the 

proposed niching scheme. 
 

Key Words: Evolutionary algorithm, fitness sharing, 

genetic algorithms, multimodal optimization, niching 

methods. 

1. Introduction 

 GAs are a class of computerized search procedures 

that are based on the mechanics of natural genetics [1]. 

Traditional GAs suffer from early convergence and in the 

case of multimodal functions, they evolve the whole 

population towards convergence to discover only one of the 

solutions. This makes them suitable only for locating the 

optimum of unimodal functions as they converge to a 

single solution of the search space. Most optimization 

problems, however, often lead to multimodal domains and 

so require the identification of multiple optima, either 

global or local. For this purpose, niching methods extend 

the application of simple GAs by promoting the formation 

of stable subpopulations in the neighborhood of optimal 

solutions [2]. The whole purpose of niching is to promote 

useful diversity in a population.  Conventional GAs tend to 

lose diversity due to selection pressure, selection noise and 

operator disruption.  In the case of multimodal functions 

with unequal peaks, the simple GA converges to the best 

peak. Also, for a function with multiple equal peaks, the 

population converges to only one of the peaks at random 

due to the selection noise and operator disruption (mutation 

and crossover operations).  

 Niching in GA is analogous to the mechanics of 

natural ecosystems where animals compete to survive by 

performing a differentiated role (hunting, grazing, feeding 

etc) at distinct ecological niches [3]. A niche can also be 

viewed as an organism’s task, which permits species to 

survive in their environment. For each niche, the physical 

resources are finite and must be shared among the 

population of that niche. The subdivision of environment 

on the basis of an organism’s role reduces interspecies 

competition for environmental resources, and this 

reduction in competition help stable sub-population to form 

around different niches in the environment [4]. A niche is 

commonly referred to as an optimum of the domain, the 

fitness representing the resources of that niche [3]. 

 By the same analogy, niching methods tend to 

achieve a natural emergence of niches and species in the 

search space.  In multi-modal GA, a niche represents the 

location of each optimum in the search space [5]. Niching 

enables the standard GA to encourage the formation of 

subpopulations representing locally optimized solutions. It 

provides a restoring force for the GA to counterbalance the 

impact of genetic drift due to the selection pressure. 

Maintaining useful diversity avoids early convergence and 

hence allows sufficient exploration of the search space and 

enables the GA to locate multiple optima at the same time. 

 An algorithm that locates multiple optima will definitely 

delay convergence whereas one that intends to delay 

convergence may not necessarily locate multiple solutions. 

 For instance, increasing the mutation rate protects loss of 

genetic material by maintaining diversity in the population. 

The role of mutation is to allow sufficient exploration of 

the search space but this diversity may not necessarily lead 

to the formation of stable subpopulations at multiple 

optimum points.  Effective application of niching extends 

the success and power of GAs for multimodal function and 

multi-objective optimization, machine learning and 

classification problems [6].  In our previous work [7], we 

applied this niching technique for evolving hierarchical 

cooperation in learning classifier systems.  The focus of 

this paper is to emphasize its significance for multimodal 
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function optimization with unequal peaks of high fitness 

variation and comparing its performance with the existing 

fitness sharing scheme.  

 The remaining section of the paper is organized as 

follows. Section 2 investigates previous work on various 

types of niching techniques.  Section 3 presets the 

modification to the existing fitness sharing scheme.  

Mathematical analysis of the fitness proportionate niching 

scheme is also presented in this section. Section 4 discusses 

the simulation results obtained by comparing the proposed 

niching technique with the existing approaches. Finally, 

the last section concludes the paper highlighting the 

achievements obtained. 

2. Review on Niching 

 The need for maintaining useful diversity in a 

population to reduce the effect of genetic drift in the 

standard GA has been emphasized by several researchers 

in previous work [4-8].  To date, various niching strategies 

have been proposed in literatures and this section presents 

a brief survey of the art on the three most notable niching 

techniques: crowding, fitness sharing and clearing.   

2.1. Fitness Sharing 

Fitness sharing is the most well-known method for 

creating stable subpopulations of individuals around the 

multiple local or global optimum points in the search space 

[8, 9].  The inspiration for adapting the sharing technique 

to the traditional GAs emanates from the natural ecosystem 

where individuals of the same species share a finite natural 

resource in an environment.  The hierarchical organization 

of species in a competing world of limited resources is 

shaped by the location and distribution of these resources.  

Traditional GAs assume an infinite resource model where 

there is no need for competition of resources and all 

individuals can comfortably coexist on the same peak and 

receive the same fitness that they would have if they were 

the only individual on that peak.  Hence, in the case of 

multimodal functions of unequal peaks, all individuals tend 

to seek the highest peak and converge to that point.  Also, 

in multimodal functions of equal peaks, the population will 

converge to one of the peak locations arbitrarily. The 

feasibility of resource sharing in evolutionary algorithms 

was first pointed out by Holland [10].  But the first 

implementation of fitness sharing to model a resource 

contention with in a simple GA was given by Goldberg and 

Richardson [8].  It is based on the idea that a point in a 

search space has limited resources which must be shared by 

all individuals that occupy similar search space [11].  As 

more and more individuals get attracted to the highest 

peak, the resource at that peak gets depleted and other 

lower peaks in the search space begin to attract individuals. 

 Sharing in an Evolutionary Algorithm (EA) is 

implemented by scaling the fitness of an individual based 

on the number of “similar” individuals present in the 

population [12]. It lowers each individual’s fitness by an 

amount nearly equal to the number of similar individuals 

in the population. The raw fitness of the individual is 

reduced by the number of similar solutions in the 

population belonging to the same niche [8, 9].  

Derating an individual’s fitness is controlled by two 

operations, a similarity function, which measures the 

distance between two individuals in either the genotypic or 

phenotypic space, and a sharing function [11].  The 

sharing function is shown in equation (1). 
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And the niche count is calculated by summing a sharing 

function over all individuals of the population as: 

)2()(
1

,



m

j

jii dshn

 
 

Now, the shared fitness of an individual i is given by the 

following equation 
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Where Fi is the raw fitness of the individual, di,j is the 

distance between individual i and j, ni is the niche count, m 

is the number of individuals occupying the same niche and 

σsh is the niche radius. The constant α is usually set to 1 for 

a triangular sharing function.  

As can be seen from the equation above, the degree to 

which two individuals are considered to belong to the same 

niche is controlled by the sharing radius. And, the 

performance of the fitness sharing highly relies on the 

proper choice of the niching radius. This is one of the 

limitations of the fitness sharing technique.  In general 

choosing the optimum niche radius requires a priori 

knowledge of the distribution of the peaks in the objective 

function [13]. 

2.2 Crowding 

The standard crowding method was first introduced 

by De Jong to promote useful diversity in the population to 

prevent premature convergence of the GA [14].  In this 

method, a fraction of the total population called the 

generation gap is allowed to reproduce at each generation 

[14]. The crowding factor (CF) determines the number of 

individuals selected from the population for comparing the 

similarity of the new offspring.  Similarity of individuals 

can be determined by means of a distance measure, either 
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genotypic or phenotypic distance between individuals. The 

new offspring then replaces the most similar individual 

taken from this randomly drawn subpopulation of size CF. 

 Later, Mahfoud introduced a modified crowding technique 

termed “Deterministic Crowding” [5, 15] to improve the 

standard crowding by introducing competition between 

children and parents of identical niches [11]. In a 

deterministic crowding, the new offsprings replace the 

nearest (phenotypic distance) parent provided it has a 

higher fitness [11]. 

2.3 Clearing  

The clearing type niching is essentially similar in 

principle to the explicit fitness sharing technique.  But, 

instead of uniformly distributing the resource to all 

subpopulation in a given niche, it allocates the whole 

resource only to the best members of the subpopulation.  It 

is based on a winner takes all strategy where it preserves 

the fitness of the best individuals of each niche and resets 

the fitness of the others with in the niche radius [16]. This 

convergence to only one of the alternatives is undesirable 

in multimodal optimization of real problems, because we 

are interested on getting information about good points and 

better solutions. 

3. Fitness Proportionate Niching (FPN) 

This section presents the proposed niching technique. 

Like the traditional fitness sharing based on niche counts, 

this technique is also based on the notion of limited 

resources where individuals in a given niche share the 

resource of that niche. But, resource sharing here is in 

proportion to strength. According to this sharing scheme, 

the sharing function is given in equation (4) and the 

derated fitness of individual i is given by equation (5).  
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Where M is the number of individuals in a given niche, di, j 

is the phenotypic distance between individuals i and j.  

3.1 Test Functions  

For testing the performance of the algorithm, three 

well known multimodal functions of different difficulty are 

considered for simulation [3-6].  All the three functions are 

defined on [0, 1] interval and maxima (labeled P1 to P5 in 

the figures) are located at approximate values of 0.1, 0.3, 

0.5, 0.7 and 0.9.  The first function has equal peaks where 

the other two have unequal peaks (see equations 14-16). 
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Figure 1: F1(x)-a multi-modal function with 5 

equidistant peaks of equal height. 
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Figure 2: F2(x)-A multi-modal function with 5 unequal 

peaks and a small variation between the peak values. 
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Figure 3: F3(x)-A multi-modal function with 5 unequal 

peaks and a large fitness variation at the peaks. 

3.2 Mathematical Analysis 

The feasibility of the proposed niching scheme can be 

verified both mathematically and using simulation.  It can 

be demonstrated analytically that FPN is indeed insensitive 

to the difference in fitness of the peaks.  We want to show 

that unlike the traditional fitness sharing, the FPN will 

tend to form a stable subpopulation around all the niches 

with no additional restriction on the size of the population 

for multi-modal functions of unequal peaks.  

To get an insight on its performance as compared to 

the existing sharing technique, consider the three multi-

modal test functions given above with corresponding 

fitness values of P1 to P5 at the 5 niche locations.  Let the 

subpopulation size at each of the niches is denoted by n1 to 

n5 respectively.  

Using the traditional fitness sharing scheme, the 

shared fitness of an individual at the kth niche is given by 

equation (6). 
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Assuming that after sufficient iteration almost all the 

population distributes around the five peaks, we get 

equation (7). 
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To discover all the peaks, it is required that the 

shared fitness values at each niche should be approximately 

equal (i.e.  P’1=P’2=P’3= P’4= P’5).  

Substituting and rearranging terms, the number of 

individuals at the kth niche is governed by equation (8). 
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If a niche size of at least two individuals is required at 

the lowest peak (i.e. n5>=2), the minimum population size 

required to discover all the peaks using the traditional 

sharing technique is given by equation (9).  
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This indicates that the traditional sharing scheme 

based on the niche count has a threshold requirement on 

the minimum population size to discover all the peaks 

when the objective function has unequal peaks. As the gap 

of the peak values increases, the required minimum 

population size also increases drastically.   

But using FPN, the shared fitness of an individual in 

the kth niche is given by equation (10).  
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Where nk is the subpopulation size at the kth niche (location 

of a peak). After sufficient generations, individuals in each 

niche will have approximately equal fitness (i.e. fi=fj, for 

two individuals i and j in the same niche). Hence a 

simplified form of equation (10) is shown in equation (11). 
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From equation (11), for the shared fitness values to be 

equal, the population has to be evenly distributed among all 

the peaks, irrespective of the difference in the fitness value 

at the peaks (i.e. n1=n2=n3= n4= n5=N/5).  In general, for a 

multimodal function having M optimum points, the 

expected number of individuals at the kth peak using the 

traditional fitness sharing scheme is given by equation 

(12). And FPN distributes the population around the 

optimum points uniformly as shown in equation (13).  
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Where Fk is the fitness value representing the kth niche, M 

is the number of peaks of the multimodal function and N is 

the population size.  

It can be observed that, for a multimodal function 

with equal peaks (e.g. F1(x)), equation (12) would 

degenerate to equation (13).  Hence, for multimodal 

functions with equal peaks, FPN is essentially the same as 

the traditional sharing scheme. The underlying principle in 

FPN looks contrary to the concept of ecological niches 

where most of the population settles at a niche of more 

resources. But from the perspective of the GA, what is 

important is whether the niching scheme is able to form a 

stable sub population around all the multiple optimum 

points.  In other words, FPN considers all the peaks as 

equally important for the GA and hence the proportion of 

the population at the different peaks does not really matter. 

Once all the peaks are discovered, a preference between the 

different peaks can be made by arranging the final 

population based on the fitness value.  

F2(x) and F3(x) have 5 unequal peaks as shown in Figures 2 

and 3 respectively. F3(x) has a large fitness gap between its 

highest and lowest peaks. Plugging in the values, the 

expected subpopulation size at P5 for F2(x) is given by: 
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This implies that for the niching technique to locate 

all the peaks with at least two individuals at the lowest 

peak, a population size of at least 27 is required.  In 

practice, the desired population size has to be much larger 

than this ideal mathematical threshold. The optimum 

population size to discover all the peaks is largely 

dependent on the ratio of the fitness at the peaks. The 

higher the fitness ratio between the peaks, the larger is the 

size of the population required to discover all the peaks. 

This is more evident from F3(x) (see Figure 3). F3(x) has a 

much higher fitness gap between its highest and lowest 

peaks as compared to F2(x).  

Using the same expression given above and plugging 

in the numerical values from the plot, the expected number 

of individuals at P5 will be: 

N*0.02    
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Quantitatively speaking, a population size of at least 100 is 

required to have at least two individuals at the lowest niche 

(P5). FPN overcomes this requirement on the minimum 

size of the population by uniformly distributing the total 

population among the various peaks, irrespective of the 

difference in the fitness value (see equation (13)). From 

equation (13), it only requires a population size of at least 

twice the number of peaks to have at least two individuals 

at each of the niches (i.e. one tenth of the population size 

required by the traditional sharing scheme).   

3.3 Performance Criteria 

To verify the performance of FPN and compare it 

with the existing approach, two criteria are used. The first 

criterion is the percentage of number of peaks discovered 

by the niching algorithm as a function of search cycle 

(generation). This in effect is equivalent to comparing the 

ratio of the sum of the fitness of the local optima identified 

by the niching technique divided by the sum of the fitness 

of the actual optima in the search space. The other criterion 

is the distribution of the population around the optimum 

points.  This shows whether the niching technique is able 

to evolve a stable and diverse subpopulation. 

4. Simulation Results 

The proposed fitness proportionate niching scheme is 

applied for the optimization of multimodal functions both 

with equal and unequal peaks and its performance is 

compared with the traditional fitness sharing scheme.  

Simulation is carried out with various population sizes to 

investigate how the niching techniques behave as the 

population size varies. As the goal of a niching technique 

is to discover multiple peaks in parallel, one possible way 

of measuring system performance is displaying the number 

of peaks discovered as the search process goes on. Figure 4 

shows the performance for equal peaks. As can be seen 

from this figure, there is no significance difference in 

performance between the two algorithms for this function. 

For instance, for a population size of 50, both algorithms 

discovered almost all the 5 peaks.  This result is normal 

and expected as the two approaches are essentially the 

same for multimodal functions having equal peaks. 

However, for multimodal functions having unequal peaks, 

there is a significant difference in performance (see Figures 

5 and 6).  Two categories of simulation are carried out 

here. The first is for a function with a small fitness ratio 

among the different peaks (F2(x) function).  For this 
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scenario, FPN has a reasonably fair performance even at a 

small population size.  For a population size of 30, the 

traditional niching scheme discovered nearly 75% of the 

peaks whereas the fitness proportionate niching discovered 

about 95% of the peaks.  As the population size increases, 

there is an improvement in performance of both.  For a 

population size of 50, both algorithms discovered almost 

all the peaks. In the simulation results (both tables and 

figures), TN refers to the traditional fitness sharing scheme 

where as FPN stands for the fitness proportionate niching. 
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Figure 4: total number of peaks discovered out of a total 

of 5 peaks (in %). 
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Figure 5: Percentage of the number of peaks discovered 

for F2(x), Averaged over 10 runs. 

Figure 6 displays the simulation result for F3(x) for 

various population sizes.  As can be seen from the first 

subplot in Figure 6, the traditional fitness sharing 

technique discovers only the location of the highest peak 

(only 1 peak out of a total of 5 peaks).  But the fitness 

proportionate niching discovered almost all of the peaks.  

The results for F3(x) show how the traditional niching 

technique is sensitive to the difference in fitness at the 

peaks.  To discover all the peak locations, it requires a very 

large population size which depends on the fitness ratio at 

the highest and lowest peaks. In this particular simulation, 

the traditional niching technique requires a population size 

of 150 to discover all the peaks as compared to 50 or lower 

population size for the fitness proportionate niching 

scheme.  

Tables 1 and 2 show the distribution of the population 

among the various peaks for F2(x) and F3(x) functions. The 

values given are the average number of individuals at each 

of the five peaks over 10 runs. As can be seen from both 

tables, FPN tends to distribute the population among the 

various peaks uniformly irrespective of the fitness 

difference at the peaks. 
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Figure 6: Percentage of number of peaks discovered for 

F3(x), averaged over 10 runs. 

Table 1: Population distribution at the five different 

peaks, averaged over 10 runs for F2(x).  

PS Peak1 Peak2 Peak3 Peak4 Peak5 

30 TN 10 9.7 7.1 3 0 

FPN 7.3 6.8 6.7 5.3 3.6 

50 TN 15.9 14.4 10.9 5.7 2 

FPN 11 10.9 10.4 9.7 7.3 

80 TN 24.6 23.1 17 10.3 4.6 

FPN 18 16 16 15 15 

 

Table 2: Population distribution at the five different 

peaks, averaged over 10 runs for F3(x).  

PS Peak1 Peak2 Peak3 Peak4 Peak5 

30 TN 29.8 0.2 0 0 0 

FPN 7.9 6.9 6.3 5.5 3 

50 TN 47.1 2 0.7 0.1 0 

FPN 12.1 10.7 9.7 9.3 7.5 

100 TN 88 5.7 4.5 1.4 0.2 

FPN 21.6 20.6 20 19.9 17.1 

150 TN 128.4 9.8 7 3.5 1.3 

FPN 
31.9 31.5 30.5 28.9 26.9 
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5. Conclusion 

This work has shown the feasibility of fitness 

proportionate niching scheme for multimodal function 

optimization.  When the objective function has several 

unequal peaks with a large peak ratio, the traditional 

niching techniques tend to discover only the location of the 

highest peak or require a very large population size in 

order to discover all the peaks. This demand of large 

population size added with the distance comparison 

between individuals makes the traditional sharing 

techniques computationally cumbersome.  

The performance of the fitness proportionate sharing 

method was compared with the existing niching method for 

multimodal functions of unequal peaks.  Both simulation 

results and mathematical analyses showed that the 

performance of the proposed niching technique is 

insensitive to the fitness difference at the various peaks.  

When individuals share the resource of a given niche in 

proportion to the strength, the population distributes 

around all the peaks uniformly irrespective of the fitness 

variation at the niches.  
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Abstract— In this work, we explore how a mechanism for

recording ancestry helps avoid inbreeding and, ultimately,

convergence for persistent optimization problems. We focus

our experimentation on the traveling salesman problem and

introduce a tabu search “like” mechanism in a CHC algorithm

and preselection genetic algorithm. We then compare how

this mechanism improves the diversity within the solution

population. We compare this mechanism to a basic genetic

algorithm and show how the quality of results is improved

and convergence is delayed. Our results indicate that the

CHC algorithm with the inbreeding avoidance mechanism is

the current best implementation for persistent optimization

problems in maintaining diversity of solutions and to find

the best solutions. Preselection shows improvement with our

mechanism, but does not seem to have sufficient exploitation

to find quality results. Our overall goal is to find the best way

to maintain diversity while finding good solutions for single-

threaded genetic algorithms.

1. Introduction

There is a small subset of optimization problems that we call

persistent optimization problems (POPs), and these problems

are characterized by problems that can have their solution

space continuously searched for better solutions. One of the

most recent of these types of problems is persistent computer

aided design (CAD) for Field-Programmable Gate Arrays

(FPGAs). FPGAs are programmable chips that can be updated

in the field with new and better designs. The placement

stage of FPGA CAD, which tries to pack hardware structures

that are connected to one another, can be algorithmically

solved using genetic algorithms (GAs), and researchers have

explored persistently searching for better placement solutions

(improving power consumption) using a GA [1], [2]. Other

examples of where persistent optimization algorithms may be

useful include energy control and distribution, financials, and

data mining. In each of these domains, the solution space is

dynamically changing over time, and better optimizations for

the problems may result in saved money and higher efficiency.

The key question for POPs is whether the additional run-time

costs justifies the benefit of potential improved solutions and

the incremental cost savings.

POPs fit well into GA frameworks since GAs can be

manipulated in terms of exploration versus exploitation phases

to continually cross a solution space. Still, convergence [3]

[4] defined as the lack of diversity in a population such that

new offspring are not sufficiently diverse, therefore, resulting

in suboptimal solutions, is a major concern for POPs in

addition to all GAs. For problems such as the FPGA placement

problem [5] and the Traveling Salesman Problem (TSP), where

a genome is expressed as unique string of individual genomes,

traditional algorithms such as CHC [6], which are built to

preserve diversity, are not directly applicable to these problems

since the hamming distance measure of familiarity does not

apply.

In this work, we implement versions of CHC and prese-

lection GAs to solve the TSP, and we include an inbreeding

avoidance technique inspired by Tabu Search [7]. Our goal is

to develop a single threaded GA that avoids convergence for

the longest period possible while still generating good results.

With the improvements of these algorithms, we plan to further

investigate divergence techniques such as the island model [8]

to build a larger system for POPs using GAs.

Our results show that our inbreeding avoidance mechanism

does achieve higher diversity for both preselection GAs and

the CHC algorithm based on a greater number of generations

before the the problem stabilizes. Preselection algorithms with

inbreeding avoidance last the most number of generations,

but it seems that this crowding technique loses some of the

advantages of competition/exploitation that the CHC algorithm

achieves.

The remainder of this paper is organized as follows. Sec-

tion 2 describes various techniques to maintain diverse popu-

lations for GAs and the relevance of crossbreeding operator to

our problems. Section 2.2 describes our inbreeding avoidance

technique and the two algorithms that they are implemented

within. Section 4 describes our experimental setup and Sec-

tion 5 shows our results. Finally, Section 6 concludes this

work.

2. Background

In this section, we examine various approaches to avoiding

premature convergence and the crossover operator for ordered

chromosomes.

2.1 Approaches to Avoiding Premature Conver-

gence

Premature convergence is a well known problem with GAs

[3] [4]. This problem has been addressed using a number of

methods including basic approaches such as:

1) Increasing population size
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2) Island models/ Niching [8]

3) Crowding [9]

4) Preselection [10]

5) Inbreeding prevention [6], [11]

The first approach, increasing population size, impacts

memory usage and algorithmic run-time, but this approach can

be used in combination with all the other approaches to the

premature convergence problem. The second approach, Island

models, divides the search into a number of parallel solutions

where each is run independently of one another. In this way,

there is no sharing of genetic material of individuals from one

island population to another. This approach can also be applied

to any other approach for improving diversity. Therefore, the

first two approaches can be used to improve our results and

will be considered, in a larger system, once we wish to build

a larger system to solve POPs, but our focus for this work

is single-threaded approaches at fixed population size that

maintain genetic diversity while finding good solutions.

The last three schemes in the list are some examples of

algorithmic approaches to the premature convergence prob-

lem. Crowding works by having offspring compete against

individuals in the population that are most similar and thus

maintaining niche lineages within the populations. Similar in-

dividuals are found by making a comparison of their genomic

strings, and this comparison comes at a computation cost.

Preselection is a similar approach to crowding, but to avoid the

computational cost an assumption is made; the assumption is

that a parent will be a similar individual, and therefore parent

and child will compete against each other. Finally, the CHC

algorithm takes a number of steps towards avoiding premature

convergence, and of main interest to this work, parents of

similar genome structure are not bred together (inbreeding

prevention). These three approaches have been extensively

studied for problems that have a binary encoded genome,

and this work looks at two of these approaches for genomes

that have unique chromosome encoding (described in the next

section).

As mentioned before, the CHC algorithm is a non-traditional

GA that was created to avoid premature convergence. In this

paper, we implement the CHC algorithm [6] as one of the

comparison points for our inbreeding avoidance technique.

The CHC algorithm has four main components:

1) Parents and children combined together in competition

for next population

2) Inbreeding avoidance by comparing binary encoded

genomes hamming distance

3) Highly disruptive crossover operator

4) Full restart (from the best individual) once no new

offspring are created in a generation

Since our work is focused on genomes that are not a simple

binary encoded string, we take a modified approach to this

algorithm. In particular, we use a crossover method described

in the next sub section and our inbreeding avoidance technique

is described in the section following the background.

2.2 Crossover Operators for Permutation Based

Genomes

Fig. 1

SAMPLE OF A SMALL PLACEMENT GENOME

In the case of both the TSP and the FPGA placement

problem (among other problems) the genome consists of a

permutation in which each chromosome is unique. These types

of chromosomes are called ordered chromosomes. In the TSP

problem, this genomic string represents the order of a tour;

for example, for a four city problem we might see the string

A, C, B, D which means this solution will go from city A

to C, C to B, and B to D in that order. For the placement

problem this permutation string indicates which pieces of a

circuit are located in a 2D plane. For the previous example,

piece A would be placed at x=0, y=0, piece C is at x=0, y=1,

piece B is at x=1, y=0, and piece D is at x=1, y=1. Figure

1 shows this example of the 2D placement and the respective

genome. This genome structure was originally proposed by

Venkatraman et. al. [12].

For these types of strings, crossover operators that simply

copy the genome of parent 1 and take parts of the genome from

parent 2 and map them into the child cannot be used. Instead,

careful consideration must be used to perform the crossover.

A number of crossover operators of this nature have been

proposed and studied ([4], [13], [14], [15], [16], [17], [18],

[19]). Cicirello et. al. [18] provide a useful classification of

these crossover methods by first classifying them as problem

dependent or general crossover operators. Cicirello et. al.

further classify crossovers into three categories (a) position-

based crossover (e.g. [16]), (b) order-based crossover (e.g.

[19]), and (c) hybrid crossover operators (e.g. [15]).
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Recently, the success of a problem dependent crossover

operator proposed b Whitley et. al. for the TSP suggests that

careful thought should be given to a problem with ordered

chromosomes. The same is, likely, true for the FPGA place-

ment problem among other problems, and this is an are for

future work if we pursue FPGA placement POPs.

Fig. 2

SAMPLE PMX MUTATION

For this work, we are attempting to find a general single-

threaded framework for solving POPs that do not use any of

the more modern domain specific solutions that would target

the TSP. Instead, we use the partially mapped crossover (PMX)

[15], which randomly selects a set of parent genes to be copied

to the new child from parent 1. Then, the remaining genes are

transferred from parent 2 unless this gene has already been

assigned by parent 1. If it has, a reverse mapping using the the

information in parent 1 is used to find an appropriate gene to

be copied to the empty spot. Figure 2 shows a simple example

of the PMX operator where a set of chromosomes have been

selected to be copied from parent 1 to child 1 and parent

2 to child 2. The remaining genes are copied over from the

opposite parent using a remapping process when needed. Note

how, in the figure, child 2 has some chromosomes from parent

1 (illustrated in red), some from parent 2 (illustrated in green),

and one remapped chromosome (illustrated in black) . Note

that the highly disruptive aspect of the CHC algorithm is not

specifically explored in this work, and we simply assume that

our crossover operator is sufficient, and we leave this issue as

future work, if necessary.

3. Inbreeding Prevention for Permutation

Based Genomes
In Eshelman’s [6] original work on the CHC algorithm,

he introduced inbreeding prevention for binary encoded chro-

mosomes, and in this work we look at a technique to avoid

inbreeding for ordered chromosomes and apply this technique

both to preselection GAs and our implementation of the CHC

algorithm. Our technique is inspired by tabu search [7] where a

simple history is kept for previous solutions. In the same way,

we can keep ancestry records for each individual by keeping

am ancestor tree to a certain depth of generations.

Figure 3 shows how two parents ancestral trees that contain

three past generations are combined together in a respective

Fig. 3

SHOWS HOW TWO PARENTS ANCESTRY IS RECOMBINED FOR A CHILD

child. Based on our crossbreeding operator, we can assume

that both parents contribute roughly 50% of their genetic in-

formation to the child. Similarly, grandparents will contribute

25% of their genetic material to the child, and so on for

older generations where 4th generation contributes 12.5%, 5th

generation contributes 6.25%, and 6th generation contributes

3.125%. Therefore, from a perspective of our inbreeding

avoidance it doesn’t make much more sense to record deeper

than 6 generations, where 6 generations costs us only 128 data

locations in memory. This memory cost for ancestry records is

small for each member of the population in comparison with

the size of their genomic information. Therefore, the memory

cost is not significant. We will explore the depth of ancestry

in the experimental section.

With the ancestors recorded, avoiding inbreeding is done by

comparing two candidate parents and checking if they share

any common ancestors. If they do share common ancestors,

depending on the GA, a new suitable pair of parents is

found or the crossbreeding operation is skipped. In terms

of the computation cost to search for shared ancestry, we

simply do an exhaustive search of both family trees. We have

implemented these trees as arrays, and therefore, the search is

very simple. The cost for this comparison is similar to that of

calculating the hamming distance between individual genomic

strings.

Our inbreeding avoidance mechanism, however, differs from

the original approaches in CHC and crowding GAs where

the goal is to compare individuals based on how similar they

are to one another. Instead, our inbreeding mechanism makes

a similar assumption to preselection GAs, where children

sharing ancestry will be similar just based on lineage. The

problem in implementing a comparison of individuals with

ordered chromosomes, like that of the original CHC and

crowding GA, is identifying similar solutions, which will

lead to implementations of subgraph isomorphism problems

[20]. For example, a tour in the TSP might include the sub-

string ”A, R, C”, and other population solutions with the sub-

string ”A, R, C” at some point might be considered similar.

Searching for all such string matches would be expensive.
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Fig. 4

SHOWS FOUR EXAMPLES OF WHAT MIGHT BE CONSIDERED SIMILAR

PLACEMENTS

In the case of the 2D placement problem the problem

of finding similar individuals is even harder than finding

subgraphs. Figure 4 shows four examples of how 4 things

(from a set of, potentially, thousands) can be placed relative

close to each other, and in each case we might consider

examples (a), (b), (c), and (d) similar to one another since

the components are only one hop away from one another.

These four components, however, will not be adjacent to one

another in the genomic string. For example, example (a) would

have a genome of the form “..., B, D, ..., C, A, ...” and

(b) would have the form “..., A, D, ..., C, B, ...” meaning

sub-string matching approaches cannot be used. Our proposed

mechanism, however, can deal with both problems by trading

off the measure of similarity for the simplicity of comparing

ancestry.

It may also be possible to implement comparison of indi-

viduals using some sort of clustering technique, but again, the

computational complexity of these approaches is high.

In the original implementation of the CHC algorithm, as

the population becomes more and more similar the algorithm

relaxes the similarity comparison. This relaxation, eventually,

activates a restart condition for the algorithm. Using our

ancestry mechanism we implement a similar mechanism in our

implementation of the algorithm for ordered chromosomes. In

our case, relaxation is implemented by changing the depth of

generations explored for similar ancestors. Once the number

of generations drops below one (which just compares parents)

we activate the same restart mechanism as CHC where the

best individual is mutated to create a new restarted population.

During this restart, we eliminate all ancestry information and

completely start over.

4. Experimental Setup
With our inbreeding avoidance technique, our goal is to de-

lay convergence using a single-threaded algorithm for as long

as possible while generating good solutions to the problem.

In the case of POPs, run-time is not, necessarily, the most

important concern, and instead, the number of generations

before convergence occurs is what we are hoping to extend

in this work. To study if our inbreeding mechanism achieves

this we will compare a GA and a preselection based GA to

an implementation of the CHC algorithm and a preselection

based GA with inbreeding prevention. Our comparison will

be based on how many generations each of the algorithms

generates before the best solution exists for 500 new gener-

ations. Additionally, we will experiment with the number of

generations of ancestors to be recorded to see how this impacts

the results.

Before showing data from the results of these experiments,

we will describe some of the details for our TSP and each of

the candidate GAs.

4.1 TSP instance

Instead of using a particular benchmark such as TSPLIB

[21] we build our benchmarks with randomly created cities and

the distances are based on Euclidean distance measurements.

The reason for this approach is our need for large problems

with a high number of nodes to look at POPs where the

likelihood of finding a global optimum is unlikely. For each

experiment we use the same benchmark to fairly compare each

of the algorithmic approaches.

4.2 Common Algorithmic Parameters

To keep our experiments fair, there are a few parameters

and operations that are common for all of the GAs in this

work. Population size for all of the algorithms is set to

500 individuals per generation. The crossover operator is as

described in section 2 and is the PMX based crossover. The

mutation operator is a random swap between two locations in

the genomic string and this value is set 5% of the number

of cities in the TSP. The initial population for each of the

algorithms is generated randomly.

4.3 Base GA

The base GA consists of previously described parameters

and operators with the following additional aspects. The GA

creates each new generation with approximately 20% of the

population from crossbreeding, 79% from crossbreeding and

mutations, and 1% random new individuals. Crossbreeding

and mutations are taken from the best 25% of individuals in

the previous population, and no parents are kept from one

generation to the next. References to this algorithm will use

the name “base ga”.

4.4 Preselection GA

Our implementation of the preselection GA has all the pre-

viously described common parameters. The crowding aspect

of this algorithm is implemented based on the assumption
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that children of parents are the most similar (without doing

a formal comparison), and therefore, parents will compete

directly with their children for the next generation. In our

implementation, two parents are selected and the crossover

operation is implemented. The two resulting children are then

mutated and are grouped with the parents, and the best two

individuals are propagated to the next generation.

In the case where inbreeding prevention is part of this

algorithm, parents are only selected when they share no

ancestry. If they do share ancestry then a new pairing is found

by keeping one of the candidate parents and randomly finding

a new second candidate parent. There may be a concern that

depending on the depth of ancestry there will be no suitable

pairing, but given the population size and depth of ancestors

to be recorded, this does not occur for our implementation.

However, algorithm designers should consider this when im-

plementing a similar mechanism for their own problems.

References to these two algorithms will be “preselect ga”

and “preselect no inbreeding ga” where the later has the

mechanism to prevent inbreeding.

4.5 CHC algorithm

Our implementation of the CHC algorithm is derived from

the original publication by Eschelman and a brief description is

included for each of the 4 main concepts within his algorithm.

1) Parents and children combined together in competition

for next population - This is implemented by ranking

both children and parents together and then destroying

the lower half of these individuals. In the case of a tie,

the parent individuals are chosen first.

2) Inbreeding avoidance - this mechanism was described

in the previous section, and when the population of

individual remains the same from one generation to the

next then the depth of ancestry search is reduced by one.

3) Highly disruptive crossover operator - as described in

the background we make the assumption that the PMX

crossover, where approximately 50% of the genetic ma-

terial comes from each of the two parents, is sufficiently

disruptive.

4) Full restart (from the best individual) once no new

offspring are created in a generation - once the depth of

search in the inbreeding avoidance mechanism reaches

zero, we take the best individual and copy and mutate

(with a 35% chromosome mutation rate) to create a

new population. The algorithm then resumes normal

operation.

References to this algorithm will be “chc algorithm”.

5. Experimental Results
In this section, we will look at two experiments. First, what

happens to chc algorithm as we change the number of past

generations to record. These results will show us if there is any

clear advantage to having a deeper record of ancestry. Next,

we will look at how all three algorithms compare to each other

observing how our mechanism improves the perseverance of

diversity.

5.1 Impact of Ancestors on Diversity

For this experiment, we vary the depth of the ancestry tree

between 3 and 8 generations for the chc algorithm. In this

experiment, the depth of ancestry search is controlled by the

algorithm as described earlier in section 4.5. Each instantiation

of the algorithms are executed until 500 iterations of the

algorithm provide no improvement on the cost function and

the run exits.
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Fig. 5

SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS

Figure 5 shows a graph of our CHC implementation for the

different ancestry depths. The y-axis shows the cost function

measure for a TSP consisting of 2000 cities. The x-axis

is the number of generations, where the last generation is

reported before the 500 repetitions of no improvement. A

legend is provided and the number for each corresponds to

the maximum depth of ancestry to be recorded. Note that for

each instance of the algorithm the random starting population

is the same (chc-3, chc-4, chc-5, and chc-6 all have the same

initial population).

From this example, we can see that as the ancestry depth

is increased, the number of generations tends to increase.

This tendency, however, is not the case for the 3 ancestor

generation run labeled as chc-3. Also, the instance chc-3 finds

one of the best solutions to the problem. This type of result

is possible based on the randomness of the algorithm, and the

more general result that diversity is maintained based on the

trend that increasing the depth of generations recorded tends

to increase the number of generations before the run exits.

To get a more thorough picture of what is happening,

Figure 6 shows more runs of the CHC algorithm with inbreed-

ing avoidance mechanism and a maximum ancestral depth

of eight. For each of the five runs, we have colored the

respective ancestry depth runs with the same coloring. The

lower number of generations (3, 4, 5) are in dark colors, and

the higher number of generations are in the lighter colors. The

graph clearly shows that there is randomness for each run as

expected. In terms of trends, the higher number of generation
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SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS FOR 5 INSTANCES

based algorithms find a path to the low-energy solution later.

The best solutions are found by execution runs by chc-5, chc-

4, chc-6, and chc-7 in that order. We conclude that the depth

range between 5 through 7 seems to be the best choice for

ancestry records based on the results and the intuition that

algorithms maintaining generations past 6 are unnecessarily

restricting mating for unlike individuals.

One other thing we have observed in our CHC algorithm

experiments is the lack of effectiveness for the restart mech-

anism. Only in 2 of the 30 runs of the algorithm was the

restart effective in finding better solutions, noting that all 30

instances do initiate the restart mechanism. We hypothesize

that random mutations for ordered chromosomes at low energy

solution spaces is not effective, and other mechanisms need to

be employed. We leave this to future work.

5.2 Comparison of All Algorithms

In this experiment, we compare all our implementations.

Our comparison points include those algorithms with an

inbreeding avoidance mechanism including the preselection

algorithm with an ancestor depth of 6 previous generations.

The exit condition is the same as previously described, and

our overall goal is to maintain diversity as long as possible

while finding good solutions.

Figure 7 shows a graph of our algorithmic implementations

with a selection of CHC runs from the previous experiment.

Similar to the previous graphs, the y-axis shows the cost

function measure for a TSP consisting of 2000 cities, and the

x-axis shows the number of generations, where the last gen-

eration is reported before the 500 repetitions of no improve-

ment. The legend shows the name for each of the algorithm

implementations with the numbering showing an algorithm

with inbreeding prevention according to the depth of ancestors

recorded. Note that the preselect no inbreeding ga algorithm

uses a depth of 6 ancestral generations to be recorded and

when a pair of parents are selected, all ancestors are searched

for common relations.

From the graph, we see a number of trends. First, pres-

election GAs maintain diversity for the greatest number of

generations. This is to be expected since the crowding nature

of this algorithm maintains highly diverse pockets of evolution.

The best results generated by the preselection GAs, however,

are not as good as the CHC algorithm. This is partially

due to the pockets of evolution, which maintains diversity

at a cost of less competition. The addition of the inbreeding

avoidance mechanism in the preselection algorithm improves

the quality of the solution and extends the diversity (number of

generations), but not by a significant amount. For our purposes,

the small crowding pockets do not seem to allow sufficient

exploitation to find good solutions.

Overall, the best solutions are found by the more diverse

algorithms that do not allow inbreeding based on the mech-

anism we have introduced. From our experimental data, this

suggests that our inbreeding avoidance technique is provid-

ing the desired outcome, and overall, we observe significant

improvement on diversity and quality for all the algorithms

compared to our base ga.

6. Conclusion

In this work, we introduced the concept of POPs and

how GAs can play a valuable roll in solving these types

of problems. We then explored how to maintain genetic

diversity within a single-threaded GA run targeting POPs. We

introduced an inbreeding avoidance technique inspired by tabu

search, and we described how such a mechanism can be used

both with the CHC algorithm and preselection algorithm for

genomic strings that have ordered chromosomes. These types

of chromosomes can be used to solve problems such as TSP

and the FPGA placement problem.
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SHOWS THE RESULTS ALL OUR THE IMPLEMENTATIONS.

The experiments with our inbreeding avoidance mechanism

shows that the more levels of recording for generations im-

proves the diversity of the population, and tends to improve

the quality of results generated by the GAs. We believe that

these types of mechanisms are not only valuable for POPs,

but this could be exploited by other GAs for other types of

problems.
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Abstract—This paper focuses on an optimization method for a 
droop controlled microgrid in islanding operation. The ultimate 
goal is to optimize droop coefficient to minimize frequency 
variation. Also, gains of PI controllers are optimized to ensure 
good behavior of the controller. Optimizations are implemented 
in MATLAB software using Genetic Algorithm (GA). Stability of 
optimized PI gains of voltage and current controllers are 
analyzed.

Keywords- Microgrid; Distributed Generation(DG); Droop Control; 
Islanding operation; V/f control; power sharing; Voltage Source 
Inverter (VSI); Genetic Algorithm(GA). 

I. INTRODUCTION  
Advancement in Distributed Generations (DGs) systems 

and power electronic devices led to concept of Microgrid. It 
can integrate renewable energy and other forms of DG and also 
increase reliability and efficiency [1]. Many forms of DG such 
as fuel cell and photovoltaic are interfaced to the network 
through power electronic devices. These interfaced devices 
make the system more flexible in their operation and their 
control compared to the conventional electrical machine [2- 4]. 
Consequently, control strategy of parallel connected inverters 
is important for microgrid operating.  

The basic objective in microgrid control is to achieve an 
accurate power sharing and regulation of the microgrid voltage 
and frequency. Centralized control of microgrid is proposed in 
[5]. However, this method is impractical and costly in 
microgrid with long distance between DG units. To overcome 
this limitation, decentralized controllers based on the droop 
control method are proposed [6-9]. This method does not need 
any communication. 

In normal condition, Microgrid operates in grid-connected 
mode and the main grid can support the system frequency and 
voltages by supplying the power mismatch immediately. When 
a fault occurs in the main grid, Microgrid needs to disconnect 
from the main grid to provide uninterrupted power to the loads. 
In islanding operation mode, DGs operate in Vf control for 
supplying microgrid load and controlling voltage and 
frequency [10]. To this purpose, droop control that assigns the 
amount of power sharing for changes of load without 
communication is used [11].  

After transition from grid-connected to islanding, the 
frequency of microgrid is determined by the droop coefficients 
of DGs. Since the droop control changes the system frequency 
to supply the power mismatch, the frequency variation occurs. 
To maintain frequency close to the nominal value, droop 
coefficients should be determined properly. The droop 
coefficient and sharing ratio may be dictated by economic 
interested of the system operators [12]. The choice of droop 
coefficients in such case is analyzed in [13]. 

The main problems for controller parameter optimization 
are nonlinearity and complexity of the system. Small signal 
linearization is a usual method for designing of controller 
parameters. But this method depends on the operation point 
[14]. Hence, in this paper simulation model in 
MATLAB/Simulink is employed as a replacement for small 
signal method for optimization. 

This paper concentrates on optimization of microgrid 
controller. Genetic algorithm is used to optimize the droop 
coefficients. The proportional and integral gains of voltage and 
current controller are optimized to achieve the system stability.   

II. MICROGRID CONFIGURATION 
A microgrid configuration with two DG is shown in Fig.1. 

Each DG consists of DC source, voltage source inverter (VSI) 
and LC filter for rejecting high frequency harmonics. Load 1 is 
sensitive load. Load 2 is non sensitive load. 

Under normal operation, the microgrid is a part of main 
grid. In this mode, DGs injected predefined active and reactive 
powers and main grid regulate voltage and frequency of 
microgrid. When disturbance such as fault occurs in the main 
grid, the switch k opens and microgrid operate in islanding 
mode. Hence, increase the reliability of the microgrid. In 
islanding operation mode, due to absence of main grid, DGs 
should be able to share the power mismatch to supply loads and 
to maintain power quality. In this situation, DGs operate in V/f 
control for controlling the voltage and frequency of microgrid 
and feeding the loads. 
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Fig. 1. Microgrid Configuration 

III. CONTROL STRATEGY 
This section presents the control strategy for islanding 

operation mode of microgrid. Fig.2 shows the V/f controller 
and Fig.3 shows the power controller that consists of power 
calculation and droop controller. The droop control is used for 
sharing power between DGs in islanding operation.  

Fig. 2. V/f Control 

Power calculation block calculates active and reactive 
powers from measured instantaneous values of d axis and q 
axis voltage and current. Equations 1 and 2 show the 
calculation procedure of powers: 

(1) ( )c
od od oq oq

c

wP V I V I
S w

= +
+

(2) ( )c
od oq oq od

c

wQ V I V I
S w

= −
+

The basic idea behind the droop control is to mimic the 
governor of synchronous generator. In a conventional power 
system, synchronous generators will share any increase in the 
load by decreasing the frequency according to their governor 
droop characteristic. This principle is implemented in inverters 
by decreasing the reference frequency when there is an increase 
in the load. Similarly, reactive power is shared by introducing a 
droop characteristic in the voltage magnitude. In islanding 
operation, droop method can be used to share loads and 
controlling voltage and frequency in special range [14], [15].  

Fig. 3. Droop Control 

Two coefficients control the changes slope of frequency 
and voltage against active and reactive power.  

(3) nw w mP= −

(4) nV V nQ= −

where nw , nV , m , n , P and Q are rated frequency, rated  v
oltage, active power droop coefficient, reactive power droop co
efficient, output active power and output reactive power of VSI
, respectively. Droop coefficients are defined below: 

(5) 
max

wm
P
∆=

(6) 
max

Vn
Q
∆=

where w∆ and V∆ are maximum allowable deviations of 
frequency and voltages. Also maxP and maxQ are maximum 
output active and reactive powers of DG. 

The reference frequency and amplitude of the output voltage 
can be obtained by the droop control. Then drefV and qrefV are 
obtained by dq transformation. 

Fig.4 shows the voltage and current controller loops. 
Voltage and current control loops use PI controllers. 

IV. OPTIMIZATION ALGORITHM (GA) 

A. Genetic Algorithm 
In this paper, Genetic Algorithm is used to optimize the 

objective function. To optimize a problem, using the GA, a 
population is required to be defined at the first step. This 
population is formed by binary accidental quantization of 
chromosomes. In the next step, produced population is applied 
to the objective function and the fitness of chromosomes is 
obtained, using equation 7. Some of the best answers are 
chosen and new generation is produced by the genetic 
operators of crossover and mutation. In the first type, two gens, 
that should be combined, are placed beside each other and are 
divided from a specified point. Then, the sides that are placed 
in front of each other are combined together. In the second 
type, a percent of chromosomes are substituted by another 
value of their allowable confine, in order to make the 
optimization, global and not local. To have a global and the 
fastest answers, both of these genetic operators are used in this 
paper [16]. 

Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  | 31



(7) 1Fitness
OF

=

Fig. 4. Voltage and Current Controller 

B. Controller Parameters Optimization  
The main problems in control optimization are nonlinearity 

and complexity of the system. A method for this purpose is 
small signal linearization. But linearization of microgrid for 
optimization of droop controller may result in difference with 
the actual microgrid [14, 17]. Hence in this paper, simulation 
model in MATLAB/Simulink is used for optimization.                                                 

After transition from grid-connected to islanding, the 
frequency of microgrid is determined by the droop coefficients 
of DGs. Since the droop control changes the system frequency 
to supply the power mismatch, the frequency variation occurs. 
To maintain frequency close to the nominal value, droop 
coefficients should be determined properly. 

The control problems are formulated as optimization 
problem. The criteria of droop control optimization are:  

1) Frequency of microgrid should be maintained near 
nominal value. It means that, frequency variation 
of microgrid after transition to islanding and load 
changes should be minimal. 

2) DGs output power should be equal to load power 
and power sharing between DGs should be based 
on the droop control.  

The proportional and integral constants of PI controllers for 
voltage and current controller are determined by GA to obtain 
good response and stability of system. 

C. Technical Constraints  
I. Frequency Deviation 

Selection of appropriate droop coefficient results lower 
deviation of microgrid frequency. Frequency deviation after 
change of load is determined by following equation, as 
explained in Appendix. 

(8) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

 

According to equation (8), droop coefficient should be 
optimized for minimizing the frequency deviation. The 
constraint for droop coefficient is presented bellow. 

(9) 0 < <optimizedm m

where m value is determined according to equation (5). 
 

I. Power Sharing 
In optimization process, load should be supplied and shared 

between DGs correctly. Following equations shows the power 
sharing mechanism between DGs after any change of the load, 
as explained in Appendix. 

(10) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

 

(11) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

 

According to equations (10) and (11), change of the load 
between DGs should satisfy the following equation. 

(12) 1 2

1 2

∆ = ∆
+ Load

m mf P
m m

 

D. Objective Function  
The proposed objective function of this paper consists of 

droop coefficient and power sharing. The first part of objective 
function represents frequency deviation, as in equation (13). 

13 1 min( )= ∆F f
If the constraints of F1 are violated, the output would be 
infinite value.  

The second part of objective function represents the power 
sharing accuracy between DGs. 

(14) 2
2 1 2

1

min( )= −
mF P P
m

It should be note that, in this paper it’s assumed that DGs 
have the same droop coefficients. So, the purpose of second 
part is to equally share load between DGs.

 
V. SIMULATION RESULTS 

The control method for islanded microgrid of Fig.1 have 
been modeled and simulated in MATLAB/Simulink. System 
parameters are presented in TABLE I. For verifying the power 
sharing between DGs, load is changes from 6 KW to 10 KW at 
t=0.3 s. Results are presented in two cases. In these cases, the 
droop coefficients of DGs are chosen equally, so that the power 
is shared between them equally. 

TABLE I. SYSTEM PARAMETERS 

Parameters Values 

DG1 
&

DG2 
 

DC-link Voltage 580V 
Inverter filter inductance 1.35mH 
Inverter filter capacitance 50µF

Inverter switching frequency 8KHz 
Srate 10KVA 

Controller 

m 6.25e-5 
n 1.83e-5 

Wn 50Hz 
Vn 220V 

Parameters of Lines1and 2 0.03+ j0.11Ώ
Load 6KW 

RMS line voltage 220√3

32 Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  |



Case1: 
In this case, selection of droop coefficients are based on the 

equations 5 and 6. Allowable frequency deviation is considered 
to 0.5 Hz for determination of droop coefficient. Parameters of 
PI controller for Voltage and current controller are obtained 
using try and error. These parameters are presented below.  

IV PI II0.19,  K 398,       K 0.5,  K 800PVK = = = =

Fig.5 depicts the output active powers of DGs. Since DGs 
have a same droop coefficient, change of the load is shared 
between them equally. 

Fig.6 shows the frequency of islanded microgrid. After 
transition to islanding and change of load in this mode, 
frequency of microgrid is determined by droop coefficients of 
DGs in microgrid. It can be seen from Figs.5-6 that the system 
does not have a good behavior. Although the deviation of 
frequency in islanding mode is in allowable limit, but it can be 
minimize using Genetic algorithm. 

Fig. 5.  Output power of DGs 

Fig. 6.  Frequency of the microgrid 

Case 2: 
Selection of droop coefficient in this case is based on the 

Genetic Algorithm. Constraints on the droop coefficient for 
optimization are 0 and 56.25 10−× . Value of 56.25 10−× is 
obtained based on equation (5) for 0.5Hz allowable deviation. 
Optimized parameters are:    

5
IV

PI II

0.0206 10 ,    0.4296,  K 81.946,
K 1.3123,  K 309.08

−= × = =
= =

PVm K
 

Fig.7 shows the output active powers of DGs with 
optimized parameters. Since DGs have a same droop 
coefficient, change of the load is shared between them equally. 

Fig. 7.  Output power of DGs 

Fig.8 shows the frequency of islanded microgrid. It can be 
seen from Fig.8 that the frequency variations of microgrid in 
this case become very smaller than the case1. Also it can be 
seen from Figs.7-8 that the system behavior with optimized PI 
gains is better than case1. As a result, with optimization of 
droop coefficient and PI gains, frequency deviation become 
smaller and the system behavior is improved. 

 

Fig. 8.  Frequency of the microgrid 

VI. STABILITY ANALYSIS 
In this section, stability of voltage and current controllers 

with optimized PI gains are verified. For this purpose, their 
transfer functions should be determined.  

1) Current Controller Transfer Function: 
Fig. 9 shows the block diagram of the current controller for 

Islanding operation. oV is the disturbance input. The inverter 
stage does not have any significant transient time associated 
with it [18], and hence, it modeled as an ideal gain. This ideal 
gain can be given by ( ) 1invG s = . Block diagram of current 
controller is shown in fig.9. 

Fig. 9.  Block diagram of current controller 

The transfer function of the current controller is given by 
equation (15). It can be seen from equation (15) that the system 
is stable based on the conventional control theory.  

(15) 3

1.3123 309.08( )
1.35 10 1.3123 309.08

ST S
S S−

+=
× + +

 

Fig.10 Shows bode plot of the current controller. It can be 
seen that the system have positive phase margin and is stable. 
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Fig.11 shows step response of the controller. In Fig.11, Rise 
time (tr) is 0.00151, Overshoot is 13.3% and steady state error 
is zero. We can find out that the system has appropriate 
performance.  

For analysis response of current controller to disturbance, 
the unit step is applied to disturbance input ( 0V ) in Fig.12. It 
can be seen that the system have good response and 
disturbance is damped very soon. Settling time is less than 
15ms.  

 

Fig. 10.  Bode diagram of  the current controller 

Fig. 11.  Step response of  the current controller 

Fig. 12.  Disturbance response of  the current controller 

2) Voltage Controller Transfer Function: 
Block diagram of voltage controller is shown in Fig.13. 

Fig. 13.  Block diagram of voltage controller 

The transfer function of this controller system is given by 
equation (16). According to equation (16), the system is stable 
based on the conventional control theory. 

(16)
2

8 4 4 3 2

4.511 3438 491676( )
6.75 10 5.25 10 4.811 3438 491676

S ST S
S S S S− −

+ +=
× + × + + +

 

Fig.14 Shows bode plot of the voltage controller. It can be 
seen that the system have positive phase margin and is stable. 
Fig.15 shows step response of the controller. In Fig.15, settling 
time (ts) is 0.00144, Overshoot is 24% and steady state error is 
zero. We can find out that the system has appropriate 
performance. 

Fig. 14.  Bode diagram of  the voltage controller 

Fig. 15.  Step response of  the voltage controller 

For analysis the response of voltage controller to 
disturbance, the unit step is applied to disturbance input ( 0i ) in 
Fig.16. It can be seen that the system have good response and 
disturbance is damped very soon. Settling time is less than 
19ms.  
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Fig. 16.  Disturbance response of  the voltage controller 

VII. CONCLUSION 
This paper described an optimization method for a droop 

controlled islanded microgrid based on the Genetic Algorithm, 
which successfully implements optimal frequency deviation by 
selecting droop coefficients from a region where the frequency 
deviation is in an allowable range. The proportional and 
integral gains of PI controller are optimized to achieve good 
response and stability of the system. 

 Particular emphasis has been paid to the impact of droop 
coefficient on frequency deviation, because this coefficient 
plays a significant role in the microgrid frequency deviation 
after transient to island and change of load in this situation. 

 Simulation results are presented that support validity of 
this optimization. A comparison has been done between 
optimized and common method for coefficient selection. 
Finally, stability analyses for optimized PI gains are presented.   

APPENDIX 
If the load of microgrid is changed in islanding mode, the 

frequency of microgrid and share of DGs are determined 
according to following equation. 

1 2DG DG loadP P P∆ +∆ = ∆ (1A) 
According to droop equation:  

1 2
load

f f P
m m
∆ ∆

− − = ∆ (2A) 

where 1m and 2m are droop coefficients of 1DG and 2DG ,
respectively. 

Hence, the frequency deviation and power sharing between 
DGs for load change in islanding operation is obtained. 

1 2

1 2
load

m mf P
m m

∆ = − ∆
+

(3A)
 

2
1

1 2
DG load

mP P
m m

∆ = − ∆
+

(4A) 

1
2

1 2
DG load

mP P
m m

∆ = − ∆
+

(5A) 
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Abstract: The learning task in a Learning Classifier System 

(LCS) is aimed at building a set of rules that work in 

coordination to accurately model a given environment.  

The addition of the hash symbol (‘#’) in LCS’s condition 

provides varying degree of coverage to environmental 

niches.  Building a hierarchical set of rules, where 

accurate and more specific rules respond to a subset of the 

situations covered by more general but less accurate 

default rules will be vital to achieve a compact rule set 

size, especially when dealing with an environment that has 

huge numbers of states.  However, the formation of viable 

default hierarchy in LCS has been a nightmare in this 

research area for decades.  This paper presents a new 

resource allocation scheme that leads to the formation of a 

default hierarchy in LCS.  A fitness proportionate reward 

sharing scheme is introduced and the performance of the 

algorithm is tested using known test functions.  

Keywords: LCS, Default Hierarchy, Genetic Algorithm, 

Reward Sharing. 

1. Introduction 

 A Learning Classifier System (LCS) is a machine 

learning paradigm where an agent learns to perform a 

certain task by interacting with a partially known 

environment. Learning is via the guidance of a reward 

signal that indicates the quality of action taken by the 

learning agent [1].  Classifiers are rules in the form of “if 

condition then action” format.  In LCS, learning is an 

iterative process that begins with a randomly initialized 

population of candidate classifiers and evolves the initial 

population to build an accurate model of the environment 

as iteration goes on.  The intention of the classifier in the 

learning process is to accumulate as much reward as 

possible.  The reinforcement program guides the search for 

solution by rewarding classifiers that propose a correct 

action. 

To date, several modifications have been made to the 

traditional LCS.  Wilson introduced a strength based 

learning classifier system known as the zeroth-level 

classifier system (ZCS) in 1994 [2].  A year later, he 

introduced accuracy based classifier system (XCS) which 

brought a major change in LCS's rule fitness calculation 

[3].  The fitness is made to represent the accuracy of the 

prediction instead of the prediction itself.  In this work, we 

considered a stimulus-response (SR) based LCS system 

where an immediate reward or punishment is provided at 

each computational time step by the external environment 

[4].  For such a system, there is no need for a complex 

credit assignment algorithm like the bucket brigade [5] and 

the message list in Holland’s formulation of LCS is also 

omitted. 

In a strength based LCS, the past performance of a 

classifier is measured by the amount of its current strength 

[6].  Strength is used both as a means of resolving conflicts 

and as a fitness for the Genetic Algorithm (GA).  In our 

previous work, we introduced a modified bidding strategy 

in LCSs by allowing classifiers to get a loan from a central 

loaning agent during auctions [7].  The loaning approach 

followed was centralized in the sense that there is only one 

central bank issuing the loan.  A bid history variable that 

gives classifiers a clue on the potential of competent 

classifiers was also introduced.  A more compact, less 

complex and more realistic distributed loaning approach 

where loaning occurs among classifiers in the system was 

also suggested for an improved performance [8].  The 

generalization capability of LCS by means of using hash 

symbols gives it the potential to develop a compact 

representation of the concepts learned. 

The remaining part of the paper is organized as 

follows: Section 2 discusses LCS in brief.  Section 3 

presents default hierarchy, the challenges and survey of the 

art.  Section 4 details the system formulation followed in 

this paper.  The fitness proportionate reward sharing 

scheme is also presented in this section.  Section 5 

summarizes the learning cycle for LCS.  Section 6 

discusses the simulation set up and results obtained while 

the last section concludes the paper by highlighting the 

achievements obtained in this work. 

2. LCS Overview 

An LCS is a machine learning system based on 

reinforcement learning and genetic algorithms.  Like an 

expert system, it utilizes a knowledge base of syntactically 

simple production rules that can be manipulated by a 

genetic algorithm [9].  The use of a rule-based system 

allows an LCS to conveniently represent and refine 

complex control strategies [10].  The robust search ability 

of the GA enables effective discovery of new rules on the 

basis of performance only feedback.  The reinforcement 

learning technique determines the rule fitness and enables 
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the system to learn from its environment based on a reward 

signal that implies the quality of its action.  

There are two major types of LCS: Michigan and 

Pittsburgh style LCSs.  In Pittsburgh formulation of LCS, 

individuals in a population are complete solutions to the 

problem [11].  An individual is a rule set and the length of 

a rule is fixed while the number of rules in one rule set 

varies.  Individuals in the population compete among 

themselves to correctly classify the training samples.  The 

working principle of Pittsburgh LCSs is essentially similar 

to GA.  The fitness of an individual in the population is 

measured by the classification accuracy of the rule set.  But 

in Michigan style LCS, individuals are rules and the 

solution to the problem is the whole population.  An 

individual rule covers part of the solution and coordination 

among rules and a mechanism to evaluate the performance 

of rules in the form of reward or punishment is essential.  

The use of the term LCS in this work adheres to Michigan 

style LCS.  

The standard LCS consists of three major 

components: the message and rule system, the 

apportionment of credit and the discovery component [1, 

12].  The apportionment of credit subsystem in an LCS 

addresses the issue of credit assignment which serves as a 

measure of the classifier’s performance.  It is based on an 

economic analogy where a classifier garners credit in the 

form of strength (a kind of capital).  It involves a bid 

competition among classifiers that match to the current 

environmental input.  Accordingly matched classifiers bid 

a certain proportion of their strength and rule conflicts are 

resolved based on a probability distribution over the bids 

[13,14].  Also, to promote the exploration of the classifier 

space, a random noise is added to the deterministic bid 

[15].  

3. Default Hierarchy 

In a Michigan style LCS, an individual classifier in 

the population represents part of a solution to a given 

problem.  There is no single rule that adequately models 

the environment.  Instead, an accurate modeling of the 

working environment requires coordination among sets of 

rules in the population.  Consider a learning system that 

tries to model an environment with huge number of states.  

There is no rule of thumb to determine the optimum 

number of rules that sufficiently model the environment.  

An LCS that is to operate in such an environment can be 

modeled in either of two ways.  The first is to build a 

model of the environment using a set of rules that never 

make mistakes.  This homomorphic approach, however, is 

practically unfeasible as it requires a vast number of rules 

to model realistic environments [16].  Besides, an 

environment exhibiting perpetual novelty combined with a 

limited sampling of it adds another order of complexity to 

this homomorphic approach [12, 17].  The other alternative 

is to build a hierarchical model where the task of the 

learning system is to categorize the states into groups that 

can be treated in a similar way [13, 16].  A hierarchical 

rule set provides a multi-level structure in which rules at 

the bottom of the hierarchy are very general and those at 

the top are very specific (see Figure 1).  Hierarchy can 

occur at any level within the rule sets.  Here, the term 

default hierarchy refers to a hierarchical set of rules that 

contain a default rule for the default class along with other 

exception rules. 
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Figure 1-A hierarchical structure in LCS 

Consider the 6-bit Boolean multiplexer (6-mux) problem 

whose disjunctive normal form is as follows:  

)1(421321221121 assassassassY   

Where a1…a4 are the address lines, s1 and s2 are the select 

inputs and Y is the output.  The system’s decision is correct 

when its output value is the same as the value of Y in 

equation 1 for a given input. 
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Figure 2- Default Hierarchy for 6-mux problem 

The 8 rules in the non-hierarchical set (the left column in 

figure 2) are the perfect solutions to the 6-mux problem.  

With default hierarchy, the same problem can be solved 

with a more compact hierarchical rule set (right column in 

figure 2).  The last rule in the hierarchical set is a default 

rule.  The default rule matches to all inputs but it makes a 

correct decision only 50% of the time.  A working default 

hierarchy provides a great parsimony of the required rules 

to model the environment.  In addition, the system’s 

performance can be improved by adding more exception 
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rules to the hierarchy.  The essence behind achieving a 

working default hierarchy is therefore to build a more 

compact rule set with a reasonably fair accuracy as 

compared to the homomorphic model.  This requires the 

coexistence of exception and default rules in the system so 

that the exception rules provide protection to the default 

when it is wrong. 

3.1 Starvation versus Protection 

The starvation-protection dilemma has been a 

bottleneck to the research in attaining a working default 

hierarchy.  The objective here is to protect the default rule 

from firing when it is wrong without starving it.  This 

requires a bidding strategy that favors the exception when 

both match to a given input.  In literatures [13, 14, 16, 18], 

a bid amount proportional to the specificity is proposed.  In 

this kind of bidding strategy, exception classifiers bid a 

higher amount as compared to more general classifiers in 

the system.  The shortcoming of this type of bidding is the 

consequent starvation of the default classifier when it is 

right.  Protection is usually associated with an immediate 

starvation of the default. 

To solve the starvation problem, Wilson, in his 

detailed experiment using Boole, proposed key 

modifications to the standard LCS formulation [19].  One 

modification to reduce starvation is extending system 

decision to the match set instead of limiting it to the active 

set.  In Holland’s formulation of LCS, only classifiers in 

the active set make decision on the system and any reward 

by the external environment goes to the active set.  

Extending the decision making and reinforcement to a 

rather bigger set of classifiers (match set) improved the 

systems performance [19].  But under the same bidding 

and paying policy as proposed in Smith [13] and Riolo 

[16], avoiding the active set might lead to rampant 

overgeneralization.  To overcome this problem, Wilson 

suggested a different bidding and paying policy in which 

specificity is retained in the bid calculation but eliminated 

when calculating the classifier’s payout [18, 19].  The bid 

amount is scaled by the specificity while the actual pay out 

of the classifier depends entirely on its strength and the bid 

coefficient. 

3.2 Reward Sharing 

The environment provides a reinforcement signal to 

the learning system when it responds correctly.  In a 

stimulus response LCS, the system takes action on its 

environment directly and receives an immediate reward or 

punishment as a consequence of its action. 

There are two major notions on how to distribute the 

reward among classifiers in the active set.  Holland [1] first 

suggested that all classifiers in the active set should receive 

a constant reward R and pay out their bid.  This notion of 

sharing however does not lead to the formation of default 

hierarchy as it does not distinguish between correct and 

wrong classifiers.  The limitation of this kind of reward 

sharing on the formation of default hierarchy can be 

explained this way.  Consider for instance a scenario where 

a default classifier of action zero exists in the system.  

Assume also that its strength is high enough to outbid 

other specific classifiers in the match set and join the active 

set.  This classifier may or may not agree with the winner 

classifier’s decision but is going to receive a reward from 

the environment either ways.  This kind of indiscriminate 

rewarding leads to the emergence of sneaky classifiers that 

survives on the bear of other reward generating classifiers 

and results in a poor system performance. 

The theory of equal reward sharing ignored the whole 

notion of competition in LCS.  From the classifier’s 

perspective, the intention is to build up its strength by 

garnering as much reward as possible from its 

environment.  A good analogy here is a competitive market 

economy where whoever strived hard should be rewarded 

and accumulates wealth.  Wealth in classifiers is measured 

in terms of strength.  Hence instead of using equal resource 

sharing, the rewarding scheme must somehow be biased 

towards stronger classifiers.  Strength is a measure of 

quality of a classifier and the rewarding scheme has to 

adjust the strength to reflect the classifier’s overall 

usefulness to the system.  The higher the strength, the more 

influential the classifier is on the system’s decision.  We 

applied a fitness proportionate reward sharing scheme 

where classifiers proposing the same action as the winner 

will get credit proportional to their strength.  The proposed 

rewarding scheme resulted in a remarkable improvement 

in the performance of the system and produced a viable and 

robust default hierarchy. 

4. System Formulation 

4.1 Classifier Format 

The classifier format is shown in Figure 3 and has 5 

parameters: condition, action, strength, experience (Exp) 

and creation time (Ctime).  The condition is a string from 

the ternary alphabet (0, 1 or #) and the action is binary (0 

or 1).  The hash symbol (#) in the condition is “don’t care” 

and matches to any input.  The experience and creation 

time parameters are added for better understanding of the 

learning process.  Experience (Exp) indicates the 

participation of a classifier in decision making process (i.e. 

match set) and the creation time refers to the iteration time 

at which the classifier is created.  It helps to investigate 

whether a hierarchy once evolved can be sustained for 

generations. 

Condition Action Strength Exp Ctime

 

Figure 3 – Classifier format 
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4.2 Learning System 

Learning in an LCS is an ongoing adaption to a 

partially known environment and not an optimization 

problem as in most reinforcement learning systems.  The 

learning system includes the following major components: 

the auction, clearing house (CH), fitness proportionate 

reward sharing (FPRS) and the GA. 

4.2.1 Auction 

This is the part where classifiers in the match set 

participate in auctions by bidding a fixed proportion of 

their strength.  The bid amount depends on the value of its 

current strength and the specificity.  The deterministic 

potential bid (PB) of a classifier i during auction is given in 

equation (2). 

)2()1(**
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Where NH is the number of hashes in the condition string, 

Cbid is the bid constant (see Table 1) and CL is the 

condition length.  The specificity parameter is the ratio of 

the number of non hash symbols to the condition length. 

The deterministic bid is not used directly to determine 

the auction winner.  Instead, it is slightly perturbed by 

adding a random noise to promote exploration of the 

classifier space.The effective bid (EB) is computed by 

adding a random noise to the bids submitted by each 

competing classifier using equation (3). 

)3()*()1( EBIDrandPBEB ii   

Where EBID is a constant used during simulations (see 

Table 1). 

4.2.2 Fitness Proportionate Reward Sharing (FPRS) 
The learning system continuously interacts with its 

environment through its detectors and effectors.  It uses a 

feedback about the effect on the environment to learn from 

experience.  The learning agent is blind without a proper 

guidance by a reward signal.  A trainer is therefore 

necessary to determine whether the environmental 

modification was beneficial or detrimental.   

The reinforcement program (RP) determines the rule's 

fitness by generating a signal in the form of a reward or 

punishment.  If the whole learning system is a water fall, 

the RP is the pipe that guides it to a point of interest.  This 

work introduced a novel fitness proportionate reward 

sharing scheme given in equation (4), for the formation of 

a viable default hierarchy. 
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Where R is the total reward provided by the environment 

whose value is initialized once, M(t) is the number of 

classifiers in the advocate list at iteration t, ri(t) is the 

fraction of the total reward (R) that goes to classifier i at 

iteration t and Si(t) is the strength of classifier i at iteration 

t.  The constant reward provided by the external 

environment is shared proportionally among classifiers in 

the advocate list. 

4.2.3 Clearing House (CH) 
The CH is the part of the learning system that deals 

with the modifications in strength of classifiers as the 

classifier system learns.  All classifiers pay existence tax 

and classifiers in the match set pay an additional overhead 

tax while classifiers in the advocate list has to pay also the 

bid amount.  Assuming correct decision is taken by the 

system at iteration t, the strength of a classifier i in the 

advocate list at the next iteration is governed by equation 

(5).  
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Where Cext and Coh are the existence and overhead tax 

constants respectively, Cbid is the bid constant, and Si(t) and 

ri(t) are the strength and reward for classifier i at iteration 

time t.  For the same reason mentioned earlier, the pay out 

of a classifier in equation (5) is different from the bid 

amount given in equation (2). 

4.2.4 Genetic Algorithm (GA) 
The GA discovers new rules among a population of 

candidate rules based on the experience of existing rules.  

Each GA operation brings two new classifiers to the 

existing population of classifiers.  It diversifies the 

population using mutation and cross over operators.  A 

roulette wheel selection method is used to select parents for 

reproduction.  The strength of new classifiers emerging 

from GA is initialized to a value that is neither too high (so 

that they do not dominate experienced classifiers) nor too 

low (to make them competent with the relatively more 

experienced classifiers in the system during auctions).   

Table1: List of simulation parameters with their 

optimum values. 

Parameter Value Meaning 

Pop size 200:6-mux 

400:11-mux 

Number of classifiers 

Cexs 0.001 Existence tax 

Coh 0.005 Over head tax 

Cbid 0.1 Bid coefficient 

Px 0.35 Probability of crossover 

Pm 0.008 Probability of mutation 

EBID 0.1 Ebid constant 
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5. Results and Discussion 

For the sake of comparing results with previous 

research work, the proposed algorithm is applied to the 6 & 

11-multiplexer problems. Classifiers are initialized to an 

initial strength of 100.  The payoff for a correct decision 

(R) by the system was set to 1000 while absence of a 

reward was considered as punishment for a wrong 

response.  The specificity value for the default classifier is 

set to 0.1 for 6-mux and 0.05 for 11-mux.  The values for 

the other parameters are given in Table 1.  

The performance of the system is measured by the 

accuracy of its response to a given input.  Figures 4 and 5 

show the percentage of correctly identified environmental 

inputs by the system and the solution count as a function of 

the number of epochs.  For the 6-mux problem an epoch 

stands for one complete presentation of the environmental 

inputs to the system.  So an epoch represents the average 

system response on the past 64 inputs.  But for the 11-mux, 

an epoch represented only 512 (25% of the inputs) 

iterations or input presentations. In general, for an n-bit 

string, there are a total of 2n different environmental inputs 

to the system.  Simulation is carried out 20 times and as 

can be seen from Figures 4 and 5, the percentage accuracy 

of the system averaged over the 20 runs is well over 95% 

after the 100th epoch for the 6-mux and 250th epoch for 

the 11-mux.  The solution count is the percentage of 

population that contains instances of the perfect solution 

set (refer to Figure 2) averaged over the size of an epoch.  

For instance, 90% of the population contains instances of 

the perfect solution at the 350th epoch (see Figure 4).  The 

high percentage accuracy and solution count achieved is an 

indication of how well the system learns its environment.  

The effect of varying the mutation and cross over rates is 

also investigated and best results are obtained for the 

values given in Table 1. 
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Figure 4- Simulation result for the 6-mux problem 

averaged over 20 runs. The upper curve represent the 

percentage of correct decision by the system, the lower 

curve is the percentage of the population that contains 

the perfect solution set. 
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Figure 5-Simulation result for the 11-mux problem 

averaged over 20 runs. The upper curve represents the 

percentage of correct decision by the system; the lower 

curve is the percentage of the population that contains 

the perfect solution set. 

Figures 6 and 7 display the average bid amount of 

winner classifiers for the 20 runs as iteration goes on for 6 

and 11 multiplexer problems respectively.  The bid 

interaction helps to get an insight on how the fitness of the 

population varies with time.  It gives a qualitative clue on 

the steady state strength of classifiers that influence the 

system’s decision.  At the start of the iteration, the 

population is more likely to be packed with specific 

classifiers.  But as time goes on, the hierarchical set 

dominates the population resulting in a decline of the bid 

amount as the bid amount is dependent on the specificity.  

This trend is clearly evident from the plots in Figure 5 

having a high peak at the start and declining abruptly until 

it finally settles to some steady state value.   
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Figure 6- The average bid amount of winner classifiers 

at each epoch for 6-mux, averaged over a total of 20 

runs. 
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Figure 7-The average bid amount of winner classifiers 

at each epoch for 11-mux, averaged over a total of 20 

runs. 

To check whether the system has evolved to a default 

hierarchy and its ability to sustain it once formed, a tabular 

result showing a sorted list of the top nine classifiers in the 

population with their creation time and numerosity is 

displayed in Tables 2 and 3.  A perfect default hierarchy 

has been achieved in 19 (9 of them with a default of action 

0 and the remaining 10 with a default of action 1) out of a 

total of 20 runs.  In one of the runs, a default hierarchy is 

also attained but one of the 4 perfect solutions is missed.  

Table 2 shows a scenario where a default of action 0 and 

the 4 perfect solutions of action 1 dominating the total 

population.  As can be seen from the number of copies 

column, these classifiers comprises 96% of the population 

(192 instances out of a total population of 200 classifiers).  

Table 3 displays the same statistics for a default of action 1 

and the other 4 perfect solutions of action 0 case.  Again, 

these hierarchical set contains 193 instances of the total 

population.  The creation time (Ctime column in the tables) 

gives an insight on the time of emergence of a hierarchical 

set and whether the learning system was able to maintain 

it.  It is measured in terms of iteration, not epoch.  In one 

iteration, a single input is given to the system and its 

response to it is evaluated.  Hence, 500 epochs is 

tantamount to a total of 32000 (i.e. 500*64) iterations.  The 

time of formation of the default hierarchy can be inferred 

by looking at the creation times of individual classifiers in 

the hierarchical set.  In table 2 for instance, considering the 

top 5 classifiers that comprise a default hierarchy, the 

highest creation time value is 4330 (nearly at the 9th 

epoch), which means that the latest classifier that joined 

the hierarchical set is “11###1/1”.   

Table 3 shows similar results for the 11-mux problem 

displaying the top 10 classifiers in the final population. As 

can be seen from the table, the hierarchical set comprises 

of 98% of the population (i.e. 392 instances out of a 

population size of 400). From the creation time, it can also 

be seen that the hierarchy once formed in the learning 

process is maintained for generations. For instance, 

observing the top 9 classifiers that comprise a hierarchical 

set in Table 3, the default hierarchy was achieved at the 

42000th iteration. A creation time of 0 indicates that 

particular classifier was part of the initial population.  

Table 2-A sample pattern of the final population for 6-

mux with a default of action 0. 

Conditio

n 

Action Str 

(Max) 

Str 

(Avg) 

Num. 

Copies 

Ctime 

001### 1 2959 274 29 5 

10##1# 1 1935 241 32 3795 

11###1 1 1310 244 33 4330 

01#1## 1 927 242 33 2460 

###### 0 471 119 65 1315 

###0## 0 193 193 1 23600 

#####0 0 184 184 1 3695 

##0### 0 175 175 1 18655 

#0##1# 1 115 116 1 24475 

 

Table 3-A sample pattern of the final population for 11-

mux with default action of 1. 

Condition Act 
Str(max

) 
Copies Ctime 

111#######0 0 2892 38 31990 

001#0###### 0 2739 34 42000 

101#####0## 0 2698 32 31220 

011###0#### 0 2246 37 24080 

110######0# 0 1913 45 17390 

0000####### 0 955 44 26790 

100####0### 0 790 48 12490 

010##0##### 0 635 48 7750 

########### 1 261 66 19990 

########0## 0 223 1 137630 

6. Conclusion 

The learning task in an LCS is to build a set of rules 

that work in coordination to accurately model a given 

environment.  Depending on the complexity of the working 

environment, adequate modeling of the environment might 

require a huge number of rules that collectively give a 

better model of the environment.  Building a hierarchical 

set of rules, where accurate and more specific rules respond 

to a subset of the situations covered by more general but 

less accurate default rules will be vital to achieve a compact 

rule set size, especially when dealing with an environment 

that has huge numbers of states.  This requires the co-

existence of exception and default rules in the system so 

that the exception rules can protect the default rule from 
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making mistakes without starving it.  To the best of our 

knowledge, the techniques proposed in literatures so far 

have failed to provide useful protection without a 

subsequent starvation of the default.  This work introduced 

a novel reward sharing technique based on a competitive 

market analogy that leads to the formation of a viable 

default hierarchy.  The technique introduced here has led 

to the evolution of cooperative classifiers by maintaining 

diversity in the population via a fitness proportionate 

implicit niching.  Classifiers with actions that agree with 

the system’s decision share a reward from the environment 

in proportion to their current strength.  The results 

obtained for all the simulations proved the effectiveness of 

the proposed reward sharing technique. 
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Abstract - This paper describes a Stock Strategist application 

which can mine, test, validate and refine complex equity 

trading strategies based on historical financial data.  We 

address the capabilities and operation of the program and 

detail the currently implemented strategy to trade stocks 

that pay high dividend yields.  Additionally we will present 

preliminary results which show the ability of the system to 

automatically refine a specific trading strategy using genetic 

algorithms.  The methodology of the test will be discussed 

and the results of two variant genetic algorithm approaches 

will be compared and contrasted. 
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I. INTRODUCTION 

 
This paper describes a Stock Strategist application that 

is designed to evaluate and refine specific stock trading 
strategies.  There is definitely a very large body of 
academic work on the application of data mining 
techniques to discover and validate patterns in the stock 
market [1].  For this project, we decided to pursue a 
strategy focused on trading strategies for stocks that pay 
substantial dividends due to their predictable behavior both 
before and after the Ex-Dividend (Ex-Div) date.  Further, 
we restricted our stock pool to those stocks which 
historically have a high dividend yield (6% or more). 

A dividend is a payout of profits to owners 
(shareholders) of a company.  The dividend is some 
percentage of the stock price, typically anywhere from 1% 
to 12% annually.  Most companies that pay dividends do 
so quarterly.  Unlike like certificates of deposits or bonds 
(where earned interest is proportional to holding time), 
companies will pay the entire dividend to whoever holds 
the stock on the Ex-Div date.  As a result, the price of a 
stock tends to rise in the lead up to a dividend payment; 
often the price will rise by significantly more than the 
amount of the dividend payment itself.  After the Ex-Div 
date, the stock drops sharply, sometimes by much more 
than the dividend amount. In these cases, the stock price 
may recover quickly from the typical Ex-Div drop.   

 

Figure 1 illustrates this pattern for the stock of Vector 
Group Limited (symbol: VGR).   There are two basic 
strategies for trading the dividend event.  The first is riding 
the wave on the way up and selling at, or near, the 
predicted peak.  The other is buying right after the Ex-Div 
drop in anticipation of a quick price recovery. 

 

 
Figure 1.  Example Dividend Trading Period 

  

II. SYSTEM DESCRIPTION 

 
The following paragraphs describe how the Stock 

Strategist program operates for a given strategy.  Strategies 
are implemented as a composite set of C# classes that 
conform to interface specifications that facilitate 
extensibility, as well as, support for multiple strategies and 
comparative analysis.  A strategy can be compiled, linked, 
and executed if it is written according to an Interface 
specification. 

 

A. Preliminaries 

Before running the Stock Strategist, the user must 
specify the following information: 

 

 Stock Pool – The set of stock symbols of interest 
to the current strategy.  Only stocks in the pool can 
be purchased for the asset portfolio. 
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 Start/End Dates – The data range over which a 
simulation will be run.  Typically, the end date is 
the current date. 

 Starting Capital Balance – The initial capital 
available to purchase portfolio assets.   

 Transaction size – The minimum size of a buy 
transaction. Larger sizes result in less diversity 
and more risk, while smaller sizes diversify more 
at the expense of using capital for less attractive 
positions. 

 Commission amount – This is the brokerage fee 
associated with each buy and sell transaction. 

B. Modes 

The Stock Strategist has four basic modes:  Data 
Acquisition, Opportunity Identification, Backtesting, and 
Strategy Refinement.    The Data Acquisition mode 
updates the database for those stocks in the stock pool.  
Data is incrementally extracted from several financial 
websites.  The Opportunity Identification mode identifies 
opportunities for purchase within some time window from 
a specified date.  Only stocks within the stock pool are 
eligible for this evaluation.  The Backtesting mode 
evaluates the performance of a given strategy over a [past] 
data range.  Lastly, the Strategy Refinement mode applies 
a search technique to improve the performance of a given 
strategy.  This is typically done by optimizing the rule 
weights for scoring a given candidate stock.  Note that 
these modes are not mutually exclusive.  For example, the 
Strategy Refinement mode makes use of the Backtesting 

mode which, in turn, makes use of functionality in the 
Opportunity Identification mode. 

C. Backtesting and Decision Cycle 

As stated above, the Backtesting mode evaluates how a 
given strategy would have worked over a selected time 
period in the past.  To accomplish this, a decision cycle is 
applied to the portfolio on a weekly basis from the 
specified start date through the end date.  The purpose of 
this cycle is to make buy/sell decisions based on the 
strategy.  The success of the strategy is gauged by the 
amount of portfolio net profit achieved over the test period 
after subtracting out transaction fees. 

 

Per Figure 2, the Stock Strategist looks back one week 
to determine what holdings in the current portfolio should 
have been sold based on calculated price targets.  If these 
price targets are not met, the stock is ultimately “sold” the 
day prior to the Ex-Div using the opening price for that 
day.  The gain (or loss) from these sales are added to the 
current capital balance.  Potential buying opportunities for 
the next week are then evaluated, scored, and then sorted 
by score in descending order.  Using the available capital 
balance, stock purchase orders are initiated (per the 
specified transaction size) by descending order of score 
until the available balance is below the minimum 
transaction.  Any remaining balance is then used to 
increase the transaction size of the order with the highest 
scored stock.   This approach ensures that the available 
capital is always fully utilized and limits exposure to 
individual stocks by having a diverse set of positions.  The 

 

Figure 2.   Weekly Decision Cycle for Backtesting 
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detailed steps in the weekly decision cycle are shown 
below in Figure 3. 

 

 
Figure 3.    Decision Cycle Steps 

 

III. SYSTEM COMPONENTS 

 
The following paragraphs describe the major components 
of the Stock Strategist system. 

A. Automated Data Acquisition  

This component automatically extracts (“scrapes”) 
stock data from a number of investment-oriented websites.  
From a web programming standpoint, extraction of this 
data requires a two-step process.  Like many contemporary 
websites, the sites above utilize AJAX to produce dynamic 
content.  As such, attempting to extract information 
requires reviewing the communication data flow that 
results in the final displayed page content.  This can be 
achieved using developer browser extensions.  When a 
desired data element of the displayed page is associated 
with a web resource, the URL of the resource is noted.  In 
most cases, the URL has to be constructed dynamically 
from an intermediate stock code embedded in the target 
website’s HTML.  Once the URL has been constructed 
and data retrieved, a flexible HTML parser is used to 
transform the potentially malformed HTML into XHTML 
which allows the usage of XPATH queries to surgically 
extract the desired data.  Post extraction, the data is then 
validated and the updates are saved in the database.  To 
avoid unnecessary website bandwidth and processing time, 
the data acquisition process only performs incremental 
updates. Following a successful update, the stock is 
updated with a timestamp for the property that was 
retrieved, such as quote information or quarterly data. This 
allows the data acquisition process to operate as a system 

service or start-up routine for the application to maintain 
an up to date view of the market. 

 

B. Common Framework & Database Layer 

This component contains the classes for each major 
type of data object (e.g., real-time quote, stock, daily 
quote, quarterly data, etc.).  It also provides the code for 
associated database stores and queries of these objects. 
Interactions with the database are performed through a 
common database provider, which currently targets 
MySQL. Other databases could be used with minimal code 
changes such as SQLite. 

 

C. Asset (Portfolio) Manager 

The Asset Manager component contains all functionality 
for maintaining the list of currently held assets.  Each of 
the assets must be one of the stocks listed in the stock 
pool.  During a given decision cycle, the Asset Manager 
also tracks the various buy and sell decisions made.  At the 
end of each decision cycle, the entire value of the portfolio 
(cash and currently held assets) is computed. The Asset 
Manager has a number of wrappers for the identification 
and scoring of buy or sell candidates.  These wrappers rely 
on method calls to the Strategy component class to 
accomplish their primary functions. 

 

D. Analytics 

This component computes technical indicators 
(features) and related statistics based on the historical 
stock performance.  While these are independent of a 
given strategy, they are generated for input to the Strategy 
component.  Analytics output fall into two general 
categories:  features snapshot or statistical distribution.  
The snapshot is a feature’s value at a given point in time.  
With regard to the statistical distribution, the mean or 
standard deviation of the distribution is reported.  For 
example, the Price to Earnings (PE) ratio of a stock may 
be the current PE ratio (snapshot) or the mean PE ratio (of 
a Normal distribution) over a specified time period.   

Another key feature of the Analytics component is to 
predict stock-related events based on their past occurrence.  
For example, a strategy may require prediction of a date 
range when the declaration of a dividend will occur.  Since 
dividends are paid quarterly, it becomes necessary to first 
cluster these events into quarters (using the K-Means 
method [2]) to determine the likely time window for this 
event in any future quarter.  The capability to predict 
future events is critical to the Strategy component and 
distinguishes the Stock Strategist from most commercially 
available trading platforms.   

Once these events are predicted, the Strategy 
component can set up triggers based on these predictions.  
In most cases, an event that is (first) predicted is later 
confirmed by the data.  These transitions are discovered as 
a result of the automated data acquisition process.  At this 
point, the software changes the status of the event from 

1. Identify candidates for purchase – These are based 
on known or predicted trigger events in the 
strategy.  Example of trigger events include:  
dividend declarations, earnings reports and stock 
splits. 

2. Score candidates for purchase – The specific 
scoring criteria is strategy dependent. 

3. Identify current assets for sale – These are strategy 
dependent but can be based on stop-loss or date 
triggers, percentage gains, and relative value 
compared to candidate buy positions.  

4. Unload existing assets – Assets are sold once their 
sell trigger conditions are met.  Again, these 
conditions are strategy dependent. 

5. Buy new assets (based on candidate score). 

6. Compute portfolio value. 

7. Advance simulation time – Advance by one week.  
Exit loop if past specified end date. 

8. Remove expired [buy-related] events. 
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predicted to known.  When this happens, the event may be 
treated differently by the logic in the Strategy component.   

E. Strategy 

The Strategy component implements the logic behind 
the buy/sell decisions of the application.   This component 
determines trigger conditions (for buying or selling) and 
scores candidate stocks for purchase.    In general, Strategy 
component decisions are based on a series of distinct rules 
native to each strategy.  The output of these rules are 
categorized, weighted, and summed to compute a single 
score for decision making purposes.  The buy signal 
computation is shown below in Equation 1. 

           (   )   ∑      

 

   

(   )      

As previously stated, these rules are supported by 
selected, lower level snapshot features and statistics 
available from the Analytics component.   For example, 
one of the rules computes the ratio of the current change in 
price (after the dividend declaration date) to the historic 
(mean) change in price after that event.  Once computed, 
the goodness of that ratio is categorized (good, acceptable, 
or poor) and a weight is applied to that rule.  The Strategy 
component implements a standardized set of classes and 
methods.  This design makes it straightforward to plug 
different equity trading strategies into the Stock Strategist 
framework. 

 

F. Simulation 

The Simulation component is an essential capability 
for backtesting a given strategy.  It runs the decision cycle 
once per week over a given date range.  After each cycle, 
the simulation time is advanced forward by one week.  
This component also logs the weekly portfolio value and 
all asset buy/sell transactions that occur over the simulated 
time period.  The most critical ingredient of the Simulation 
is having sufficient and accurate data for a given date 
range.  As previously noted, this task is accomplished by 
the Automated Data Acquisition component.   The online 
sources we rely on only provide summary data for any 
given data; intra-day data is only available in real-time and 
is not stored in the database. The practical impact is that 
the simulation rarely utilizes real-time current data. 

 

G. Search 

The purpose of the Search component is to refine the 
current strategy in a way that increases (maximizes) 
portfolio return.  The Search is performed with respect to 
key parameters for a specific strategy.  For the most part, 
these parameters correspond to the strategy rule weights 
discussed in Section 4E.  However, they can also include 
other parameters, such as the minimum Transaction Size 
and the size of the time window used for predictions.  To 
conduct the search, these parameters are then passed as 
input to a given simulation instance.  The simulation is 
then executed and the ending portfolio balance is passed 

back to the search routine.  The fitness of the parameter set 
is computed simply as the ratio of the ending to starting 
balances (see Equation 2); the higher the ratio, the greater 
the fitness.   

         
                ( )          

                 ( )        
  

Although the parameter set optimized by the Search 
component is somewhat strategy dependent, it can be 
easily reconfigured.  Currently, the search techniques 
utilized are Hill Climbing and evolutionary search using a 
Genetic Algorithm (GA).  Unlike Hill Climbing 
algorithms, GAs can escape local optima traps [3].  While 
the GA is a highly effective technique for global search, 
the biggest impediment to its use is the amount of time to 
evaluate each generation, even with a small population.  
This is because each chromosome is a variation in trading 
strategy that takes several minutes to simulate.  Thus, 
accelerating the Search component without degrading the 
fitness metric has been one of our top research priorities. 

 

IV. EVOLUTIONARY APPROACH FOR BUY SIGNAL 

COMPUTATION 

Researchers have long sought automated “black box” 
techniques to identify and trade financial instruments of all 
varieties.  Applying GAs to the evolution of trading 
strategies is not new—there is a solid body of work in this 
area.   Allen and Karjalainen [4] were among the first to 
develop a GA-based system for finding technical trading 
rules. Becker [5] expanded on this using a Genetic 
Programming (GP) approach and an emphasis on monthly 
(vs. daily) trading. Schoreels [6]  employed GAs to design 
agent-based systems for trading. Subramanian [7] 
developed a similar agent-based system, but with an 
emphasis on reducing trade risk and volatility.  In contrast 
to the focus on trading rules, other researches including 
Yang [8], Lin [9], and Lai [10] utilized GAs for the 
selection and optimization of stock portfolios. 

The key component of these systems is the signal to 
buy or sell a given security.  The goal of our experiments 
was to evolve a set of weights (W) for each rule 
component to improve the performance of the buy signal 
for our dividend stock trading strategy.  In this case, the 
size of the weight set was 12.  Two sets of weights were 
evolved.  The first set (W0-1) had a range of (0, 1).  These 
weights serve to select the rule components of the Buy 
signal as indicated in Equation 1.  The second set (W0-5) 
has a range of (0, 5).  These can both select and amplify 
the contribution of a given rule to the overall Buy signal.  
As indicated earlier, the fitness of a given weight set is 
determined by the overall portfolio return.   

In this experiment, each type of weight set was evolved 
over a simulated one year period for eleven periods (2001-
2011).  At the beginning of each one year training period, 
the Stock Strategist has an initial balance of $200K to 
trade with. After each training period, the best performing 
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set of evolved weights were evaluated on two sets test 
scenarios: 

Portfolio Continuation (PC) – The evolved weights are 
used to continue run the simulation where the training left 
off.  Thus, the trading continues over a follow-on trading 
period (1 and 6 months, respectively) with the portfolio 
and balance that remained at the end of the trading period.  
Given the dynamic nature of the modern financial markets, 
it was judged that six (6) months was the maximum 
amount of time to safely continue using a set of weights 
before they became stale. 

Portfolio Restart (PR) – The evolved weights are used 
to start a new trading simulation in the follow-on trading 
period (one and six months, respectively).  In this case, 
however, the strategist starts from scratch with a $200K 
balance and no pending transactions.  Thus, any decisions 
made during training (beyond the evolved weights) are 
forgotten. 

The GA library used for this experiment was part of 
the AForge.NET Framework [11]. A population of 30 
chromosomes was utilized over 50 generations.  Elitist 
selection was used with a crossover rate of 0.75 and a 
mutation rate of 0.01. 

 

V. RESULTS 

 
Figures 4 and 5 show the results for the W0-5 and W0-1, 

respectively. These bar charts show the relative 
performance of each weight set vs. those of the default 
weight set (WD).  In WD, the Buy signal is computed with 
each rule selected and given a unity weighting. 

These results are noteworthy in two respects.  The PC 
scenarios dramatically outperform PR scenario.  In fact, 
the performance of the PR scenario is not much better than 
the default approach for computing the Buy signal.  This 
indicates that the evolved rule weights are much better 
suited to running the existing portfolio versus starting over 
with a new portfolio using the same general strategy.   

 

 
Figure 4.    Return of W05 vs. WD 

 

 

 
Figure 5.    Return of W01 vs. WD 

 

The W0-5 variant evolves a solution that performs much 
better during training than the W0-1 variant.  This is not at 
all unexpected since the W0-5 variant offers a much bigger 
search space. Unfortunately, this advantage does not hold 
up during testing.  Indeed, the W0-1 variant is much more 
consistent than the W0-1 variant’s performance (training vs. 
test) on the PC cases.  This is likely due to overlearning on 
the W0-5 variant.  Thus, while the W0-1 variant is simpler, it 
is also more powerful due to its ability to better generalize 
its performance into the future. 

 

VI. CONCLUSION 

 

In this paper, we have introduced the Stock Strategist 

application.  Initially, we are using this program to pursue 

a dividend stock trading strategy.  We chose this strategy 

due to its relative simplicity, stability, and predictability 

vs. the myriad of other possible equity trading strategies.  

Our experiment in automatically refining our trading 

strategy yielded some interesting results in how to 

effectively structure GA-based training and apply the 

results.  In particular, it indicates that simple, 0-1 rule 

selection is a better alternative to more complex 

weighting factors.  The experiment also suggests that the 

evolved weights be used to continue the existing portfolio 

momentum, rather than restarting the portfolio.  We have 

also experimented with techniques to accelerate the GA 

search and made substantial progress in this area (to be 

documented in an upcoming paper).  Our future research 

seeks to expand the GA to cover additional algorithm 

parameters (such as the nominal size of a given stock buy) 

and strategies (such as using a limit strategy when 

initiating a stock purchase).   
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Abstract – Due to the rapid and hectic growth of the Web, its 

access and design have become a challenge. Web 

personalization has occurred to solve this problem. However, 

such personalization mostly deals with the visitors rather than 

other types of website users. Alternatively, Web Content 

Management System (WCMS) has occurred to facilitate 

website development, including its design. Nevertheless, 

designing of such websites are only customized. Thus, website 

developers need to further choose and refine the appropriate 

design. Such process needs a lot of effort and wastes a lot of 

time. Consequently, this paper will present a new approach 

that extracts and personalize templates by combining web 

personalization and template extraction in order to 

automatically extract templates and, thereby, simplify WCMS 

and increase its scalability. In specific, to accomplish this 

approach a new technique is used, which mixes Genetic 

Algorithm, Ant Colony Clustering, and Cluster Tree 

Matching. This approach is tested with an experiment, which 

proved its quality, in regard of speed, precision, and 

accuracy. 

 

Keywords – Evolutionary Algorithm, Template Extraction, 

Web personalization, Web Content Management System 

 

1 Introduction  

Nowadays, the Web has emerged and become the most 

wanted method for information sharing and communication. 

In consequence, to such a rapid and hectic growth, Web 

access and effective design have become a challenge. 

Websites that lack in its information and structure make the 

visitors get lost and feel disoriented [1]. Consequently, web 

personalization has emerged to better fit the information 

access and design to the user’s need [2]. Originally, it was 

used in advertisement and promotion personalization for 

different visitors. Currently, it focuses more on visitors to 

provide the appropriate information and service access and, 

thus, make the websites more useful [3]. However, up until 

now website developers are usually forgotten when it comes 

to personalization.   

 Alternatively, Web Content Management System 

(WCMS) concentrates more on website developers’ need 

rather than the visitors. It  is a tool that allows a variety of 

centralized and decentralized non-technical people to manage, 

edit, create, and control a large and dynamic collection of 

HTML content [4]. However, the available WCMS allows for 

customization of website design rather than personalizations, 

i.e. developers customize the web pages by themselves. 

Sometimes WCMS provides template samples but such 

samples do not automatically consider the developers’ needs 

or the purpose of the website to be developed. In addition, it 

has been stated in [5] that high productivity of web pages can 

be accomplished by automatic web page generation using 

common template and data. Thus, designing effective web 

page templates is wearying mission [6]. Website developers 

must consider the feature of web pages and investigate what 

design structure would work better.   

Accordingly, using personalization in WCMS will help 

both WCMS and website developers. WCMS developers 

would not have to provide a large repository of template and, 

thus, no need to study the templates' usability or update it 

every period of time. In addition, using personalization will 

reduce the website developers’ time for checking similar 

websites and studying the visitors’ need to choose which 

structure is more appropriate for them. As a result, instead of 

studying Human Computer Interaction strategies, repeatedly, 

and searching for usable page structure, using personalization 

will take advantage of others' experiences. Additionally, it 

would guarantee covering all possible cases of the dynamic 

demands of Web users who are excessively changing. To 

further motivate the use of web personalization in WCMS, it 

has been found that the spread of the World Wide Web and 

the increase of website development to match visitors’ needs 

have increased the necessity for WCMS to tailor itself for 

different web pages design depending on the need.   

Consequently, this paper presents a new approach which 

improves WCMS using web personalization, where WCMS 

can take advantage of previous developers’ knowledge, to 

automatically offer different template designs for each 

website developer and, thus, increase the websites 

productivity and WCMSs scalability and flexibility, by 

merging web personalization with automatic template 

extraction. To accomplish such an approach a new technique 

has also been developed, which mixes hybrid Evolutionary 

Algorithm (Genetic Algorithm and Ant Colony Clustering) 

with Cluster Tree Matching.  
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This paper is organized as follows. First, background is 

explained and some related works are discussed. Then, the 

proposed approach is explained in details. Afterwards, an 

experiment is explained and its results are discussed. Finally, 

the paper is concluded and some future works are proposed.   

2 Background  

In this section, the main aspects that are needed to 

understand the proposed approach are defined and discussed.  

2.1 Web Personalization 

In [1] web personalization has been defined as “any 

action that adapts the information or services provided by a 

web site to an individual user, or a set of users”. Thus, in 

personalization all the work is done automatically for the 

users based on their data. It uses different techniques to 

collect users’ data and then personalize the services by 

measuring the similarity degree between the current data and 

other content or users of the website. In general, web 

personalization must first collect the web data to be pre-

processed and modeled. Then, such data must be analyzed 

and matched to determine what action should be performed 

[7]. 

2.2 User Profiling  

Discovering users’ differences is essential to provide the 

required personalized service. User profile has been defined 

in [8] as “the process of ‘discovering’ correlations between 

data in databases that can be used to identify and represent a 

human or nonhuman subject (individual or group) and/or the 

application of profiles (sets of correlated data) to individuate 

and represent a subject or to identify a subject as a member 

of a group or category”.  In general, user profiles vary in 

content and types, which usually depend on the application 

[8]  [9]. In order to build and use profiles different techniques 

have been developed in the last few years, such as machine 

learning, genetic algorithm, and classification techniques 

[10].   

2.3 HTML Web Pages 

Hypertext Mark-up Language (HTML) has been defined 

in [10] as “a web programming language used to display web 

pages”. Usually, browsers provide web pages based on 

HTML files, which define the structure and represent the 

pages as tags and attributes. HTML contains tags that are 

nested in a tree structure. Thus, different web pages can be 

generated by extracting some nodes of the HTML tree [11]. 

In order to navigate, modify, add, or delete content or 

elements of HTML web pages, Document Object Model 

(DOM) has been developed by W3C as HTML standard 

interface [12]. Specifically, HTML files are represented by 

DOM trees in order to apply different similarity measures and 

extract common templates [5]. Its representation aims to 

display and show the structure of HTML web pages rather 

than its content. Web pages are converted into DOM trees 

using its tag structure, which labels each node in the tree with 

its matching tag [13]. The hierarchy of the tags is preserved 

and the content of the page is stored at the leaf nodes. 

To extract templates, HTML web page structure must be 

compared and, thus, DOM tree similarity must be measured. 

One of the most recent measures in that field is Cluster Tree 

Matching (CTM). It is developed by Ferrara and Baumgartner 

[14] to calculate the tree similarity recursively in a matrix and 

count the weight difference between two trees. CTM clusters 

the matching process sub-tree by sub-tree and assign a 

weighted value to give less weight for insignificant sub-trees; 

such that deep levels of the trees usually indicate an 

insignificant component of the web pages like table rows or 

list of items. This measure is used in the proposed approach 

and, thus, more details will be explained later.  

2.4 Evolutionary Algorithms  

Evolutionary Algorithm (EA) [15] is an artificial 

intelligent algorithm that has been inspired by nature. Such an 

algorithm is used to solve any kind of problem and identify 

candidate solutions as fast as possible. It is useful when the 

best solution is unknown while the data repository is very 

large. Different techniques have been developed under the 

umbrella of EA, such as Genetic Algorithm (GA) [16] and 

Ant Colony Clustering (ACC) [17]. Each technique has been 

tailored in different domains depending on the requirement.  

GA is considered as the most popular technique of EA. 

It is “a general purpose search algorithm which use 

principles inspired by natural genetic populations to evolve 

solutions to problems” [16].  It typically starts from a 

collection of random solutions, called population, and then 

evolves it using selection and reproduction procedures. The 

best solution is chosen based on a fitness function that 

measures the solution strength. The population contains 

elements, called individuals or chromosomes, to represent 

possible solutions. In GA, four steps are performed to match 

individuals [18]. First it represents the available dataset to the 

required data type.  Then it initializes the population by 

randomly assigning different values to the chromosomes.  

Afterward, it reproduces a new solution by mixing every 

chromosome with another to produce a new offspring. 

Finally, it selects the best chromosomes based on their fitness 

value.   

Alternatively, ACC method is a new type of clustering 

that is based on an algorithm called Ant Colony Optimization. 

Such an algorithm is an Evolutionary Algorithm that is built 

based on how ants look for food by spreading their 

pheromone to find the food path [19]. It starts updating its 

local pheromone and explores all possible roads to finally 

emphasize the shortest one. As a result, the global pheromone 

will be emphasized, while the other pheromone is fading, i.e. 

the best road will be chosen.  ACC is developed to optimize 
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the process of clustering and improve its time. It is mostly 

used in web usage mining [20] and basically divided into 

three steps [21]. First, it updates the local pheromone, i.e. 

update each ant solution with the suitable cluster. Then, 

applies the state transition rule, i.e. decide if a certain ant 

should be dropped in/out of a cluster. Finally, it updates the 

global pheromone, i.e. update the final solution (road map).  

3 Related Work 

After discussing the main aspects needed to understand 

the paper, it is time to discuss other works in that area. To the 

best of our knowledge, no one yet has considered 

personalization in template extraction. Thus, the available 

works in template extraction and personalization are 

separately discussed.  

In [3], a new methodology that allows users to 

personalize their web page navigation through websites has 

been presented. They emerged content and usage mining 

techniques with the field of recommendation systems to 

suggest the most relevant pages to users. Similarly, in [2] web 

mining model that dynamically creates personalized web 

pages is presented; such that users with similar interest are 

grouped and their visited pages are related. On the other hand, 

in [22] a complete framework is presented along with web 

usage mining of real websites. It profiles users explicitly 

using search query that is stored in the web log data. For 

further improvement, Eirinaki et al. [1] proposed a semantic 

web personalization that is applied to semantically annotate 

websites' content. They integrated content semantic with 

usage information to improve the semantics of navigational 

patterns.   

Alternatively, when it comes to template extraction, in 

[23] a new method has been proposed to parse different 

websites into HTML tag trees to generate a template for each 

site and identify repeated patterns and extract pages' content. 

Moreover, in [24] another method is presented to induce web 

page template. They first select websites randomly, and then 

transform it into DOM trees, judge its similarity, and cluster 

the web page to extract templates, correlate it, and extract 

other pages' content. Furthermore, in [25] an approach of 

three steps has been proposed. It generates templates, extract 

data, and then edit the template. Finally, Shui-Lung and Jane 

Yung-jen [6] introduced a Tree Template Automatic 

Generator to learn template from given web pages. The 

template is generated using a top down approach starting 

from the root and then going down one level at a time. 

Regardless of all the evaluation conducted in the 

previous works, some important deficiencies have been 

noticed.  When it comes to web personalization, all the works 

discussed have only considered the visitor behavior and the 

content similarity; i.e. the problem of navigation is only 

considered and the focus was on the website/visitor 

relationship while the website designers have been neglected. 

Consequently, even though it is called web personalization 

but the focus was mostly directed to navigation 

personalization and content similarity. Alternatively, when it 

comes to template extraction, the available works have 

directed the focus to the dynamic content of the websites 

rather than the template itself. Templates were generated only 

to identify the content of different websites without taking 

advantage of the semi-structured static
1
 knowledge that 

already has been extracted. In addition, time of template 

extraction and its accuracy was not fully considered in most 

of the work. Therefore, the next section presents a new 

approach which is developed to increase the website's 

productivity and WCMS scalability and flexibility by 

personalizing template extraction and, thus, automating the 

process of website design.    

4 WCMS Personalization 

WCMS personalization is a new approach that 

personalizes the process of template extraction in WCMS. 

Such an approach uses a new technique that is based on 

hybrid EA (GA and ACC) and CTM measure. It mainly 

applies two steps: pre-personalization and personalization. In 

the pre-personalization step data are collected from 

developers then profiles are generated. However, in the 

personalization step profiles are matched, and common 

templates are extracted.  

4.1 Pre-Personalization   

In order to start the personalization process, data used to 

build the profiles must be first collected explicitly from the 

developer account. Such data would contain the developers’ 

country, religion, and their business scale, and also the visitor 

age, language, gender, ability, and nature. In addition, after 

collecting these data, profiles are generated. Thus, websites' 

profiles are gathered in Extensible Markup Language (XML) 

files and all websites that target the same age are grouped 

together, as illustrated in Figure 1, in order to simplify and 

speed up the process of matching.   

 
Figure 1: Individual profile  

It must be noted that changes in the collected data are 

usually not frequent, i.e. it is a long-term interest. Thus, every 

period of time this step is repeated, in the background, in 

order to consider the possible changes in the long-term 

interest.   

                                                           
1 Semi-structured documents are documents that have a known content without knowing 

where such content is placed in the document. In addition, static data are the data that is 

statically written in the page without deriving it dynamically from the database. 
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4.2 Personalization  

Whenever the developers access WCMS, in order to 

design the website interface, templates will be personalized 

by matching profiles and generating the required templates. 

This step is repeated every time the users want to redesign 

their website because users and visitors’ interest might 

frequently change; thus, changing in the short-term interest is 

considered. The pseudo code of this step is illustrated in 

Figure 2. 

Personalization { 

Input: users profile U, target user T, population size: β, stop condition α, 
chromosome size γ, HTML pages HP, Kp, Kd, Number of Cluster cβ. 

Output: generated template. 

// 1- profile matching (GA algorithm) 
//Initialize population and calculate the fitness of each solution   

P = GeneratePopulation (U, T, β, γ); 

S = best solution in P; 

While (α not reached) and (F(S) ≠ 1) do 

//Crossover to produce better solutions 

Pnew = Reproduce (P) 
Calculate Pnew fitness; 

//Selection  

P = Select best β chromosomes from P and Pnew 

S = best solution in P; 

End while 
// 2- template extraction (ACC and CTM algorithm) 

DomT = ParseHTML (HP, S);   //parse HTML of best users to DOM 

// Start clustering   
Initialize global pheromone C;   

// Spread the ants  

For each tree do 
     Assign cluster randomly based on cβ; 

End for 

a = 0; 
// Start the learning process 

While (global pheromone is not filled) OR ( a <= α ) do 

     i = j = 0; 
     //Apply transition rule and update local pheromone 

     For each tree do 

          i++; 
          For all other trees do  

               j++; 

               f(i,j)= TreeMatch (DomTi, DomTj); 
               //if more than 75% of the characteristic matches, then similar 

               if (f(i,j) >= 0.75) then 

                  Calculate Pp; 
                    Update DomTi local pheromone with DomTj cluster based on Pp 

                    //drop down if not similar but same cluster 

               Else if (DomTi cluster = DomTj cluster) then 
                    Calculate Pd; 

                    Drop down DomTi cluster based on Pd 

           End for  
      End for  

Update global pheromone C; 

End while  
Generate Templates using C, HP, and S;  } 

//CTM measure function 

TreeMatch { 

Input: two trees T1 and T2. 

Output: weighted similarity measure W. 

If T1.root ≠ T2.root 
     Return 0; 

Else  

     m = d(T1.root); 
     n = d(T2.root); 

     // Initialize measure matrix 

     M [i][j] = 0 for all i = (0 .. m) and (j = 0 .. n); 
     //start matching sub-trees 

     For i = 1 to m do 

        For j = 1 to n do  

            // Recursive call to measure sub trees similarities  

           // starting from current node as root 

           SupTreeM = TreeMatch (T1[i-1], T2[j-1]); 

           M [i][j] = Max ( M[i][j-1], M[i-1][j], (M[i-1][j-1] + SupTreeM) ); 
        End for 

      End for 

//Check if leaf nodes is reached 
If m ≠ 0 and n ≠ 0 then 

         
        

                           
; 

Else 

        
          

                           
; 

Return W; 

End if } 
Figure 2: Personalization algorithm  

Developers are matched using GA, which typically 

starts with random solutions then evolves it by repeated 

selection and reproduction. Chromosomes are used to 

represent the candidate solutions; for example, if the 

chromosome size is 4 then it can be represented as illustrated 

in Figure 3. The content represents the similar users' ID, i.e. 

possible solution, and each gene in the chromosome is linked 

to the related characteristic extracted from the XML file. 

“123456” “123789” “654321” “987654” 

Figure 3: Solution Chromosome 

First, the population will be initialized by users of the 

same age, given the maximum number of genes; such that 

each chromosome will represent a solution. Maximum 

number of genes represents the maximum number of similar 

users who can be considered; it is restricted because the 

repository of profiles can be very large, which tremendously 

increases the chromosome length to the extent that might 

affect the process time without much of improvement in the 

solution.   

The fitness value of chromosome I is calculated using 

Equation(1), where D(I, T) is the similarity distance between 

the targeted user profile T and other users included in the 

chromosome, G is number of genes, and Ch is number of 

characteristic in profiles. The similarity measure D (I, T) is 

calculated using Equation (2) for all genes in the 

chromosome. ChMatch is a function that calculates the 

similarity between two profile characteristics using Equation 

(3).  

      
      

       
     (1) 

                           
   

 
     (2) 

                 

                              

                              

  (3) 

After calculating the fitness of all users in the 

chromosome the population is reproduced until the stop 

condition is reached or the target solution, where the fitness is 
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equal to one, is found. After that, using the resulting solution, 

templates can be extracted. This extraction is divided into 

three steps, as follows.  

4.2.1 HTML Parsing   

Parsing web pages into trees will simplify and speed up 

the search in such pages. Hence, each website front page is 

parsed into a tree using DOM representation where each node 

in the tree represents an HTML tag. In addition, each tree will 

be identified by the developer (user) id and his profile fitness.   

4.2.2 Tree Clustering  

After parsing HTML pages to DOM trees, the resulting 

trees are clustered into groups to identify similar templates 

and avoid redundant results. To accomplish this step ACC 

and CTM are used. Each tree represents an ant, clusters 

represent roads, and a solution is represented by a vector with 

N (number of trees) elements and W (number of clusters) 

values. For example, if (N=5) and (W=3) then a solution 

could be as illustrated in Figure 4; which means that the 

second, fourth, and fifth trees belong to the same cluster while 

the first belong to cluster#2 and the third tree belong to 

cluster#3.  

T1 T2 T3 T4 T5 

2 1 3 1 1 

Figure 4: Cluster solution  

After initializing all the attributes, this step works as 

follows. First, each tree will be assigned randomly to a 

cluster. Then, while the stop condition is not reached, each 

tree is matched with all other trees. The similarity measure 

between two trees Ti and Tj is calculated using the TreeMatch 

function illustrated in Figure 2, where d(n) is number of first-

level children of node n, T[i] is a sub-tree T starting from 

level i, s(n) is number of siblings of node n including itself, 

and M is the measure matrix. Such measure selects sub-trees 

that share the same root and analyze its tag name to return the 

similarity weighted measure between two trees. TreeMatch 

function use CTM measure, discussed previously, which 

calculates tree similarity recursively in a matrix and counts 

the weight difference between two trees. 

After calculating the similarity measure it will be 

possible to apply the transition rule and decide whether to 

pick up a neighbor cluster or drop the current tree cluster in 

order to update the local pheromone. In the proposed 

approach, a slightly different transition rule has been 

exploited and used, as follows. If the current tree has a similar 

clustered neighborhood, then the neighbors' cluster will be 

picked up, based on probability Pp, and the current tree will 

join the same cluster. On the other hand, if the current tree has 

a similar cluster to none neighborhood tree then it means that 

the clustering is inaccurate; thus, the target tree must drop 

down its cluster, based on a certain probability Pd.   

The probability of picking up (PP) and dropping down 

(Pd) a tree out/in a certain cluster is calculated using Equation 

(4) and (5), respectively, where f is the similarity measure, 

calculated previously using TreeMatch function, Kp and Kd 

are threshold constant. Note that if the similarity between two 

trees is zero while they have the same cluster then Pd will be 

equal to 1 in order to force the drop down of the cluster.  

    
  

          
      (4) 

    
 

      

          
 

 

                       

                                        

   (5) 

After comparing all trees together and updating their 

local pheromone, the global pheromone will be updated. At 

the end, this step will be repeated in order to improve the 

solution and assign trees to the most appropriate cluster. Note 

that only one tree can update the global pheromone in each 

round in order to guarantee testing as many roads as possible. 

In addition, some trees might not find any similar 

neighborhood; thus, such trees will be left in a separate 

cluster to make sure that its characteristic does not disappear. 

Consequently, unique web pages are preserved in case similar 

websites join the Web.  

4.2.3 Template Generation  

In order to extract the common template, resulting 

clusters will be examined and trees with the highest fitness in 

each cluster will be chosen. After that, attributes such as 

images and colors will be changed to random values. Then, 

DOM trees are parsed back to HTML files to be viewed as a 

personalized template. 

5 Implementation  

In order to test the performance of the proposed 

approach an experiment has been conducted. This section 

discusses the details of the experiment and explains its result.  

5.1 Experiment Settings  

The proposed approach has been implemented with Java 

language and executed on a PC with Intel®Core™ i7 CPU, 

and 2.67 GHz processes. In addition, websites with different 

languages and characteristics have been used in the 

experiment. Each website has a full profile which was 

synthetically build in a database. Moreover,  since almost all 

the websites have unclean structure, an external library called 

HTML Cleaner [26], was used to extract the websites from its 

URL, clean it, and then convert it to HTML pages. During the 

experiment, all the parameters were unchanged, except for the 

stop condition. Population and chromosome size was set to 

“10” because only ten templates are wished to be viewed; Kp 

and Kd were set to “0.5” to give 50% chance of 

dropping/picking, while the maximum number of group was 

set to “5”. In the experiment ten trials have been recorded, 

each trial has a different stop condition starting from 10 to 

100.  
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5.2 Evaluation Measure 

In order to evaluate the result of the experiment three 

types of measures have been calculated. The first measure is 

the algorithm speed, which record the time of personalization 

step. The second measure, however, records the quality of GA 

using the fitness of each trial extracted solution to indicate the 

similarity degree between the users included in the solution 

and the target user.  The final measure, on the other hand, 

assesses the clustering quality using two measures: inter-

cluster and intra-cluster similarity. Inter-cluster similarity 

measures the similarity between pages in the same cluster 

using TreeMatch function. If its value is high, it would mean 

pages in one cluster are very similar. On the other hand, intra-

cluster similarity measures the similarity between the clusters. 

It measures the distance between the most fitted trees of each 

cluster using TreeMatch function. If it has a low value, it 

would mean that each cluster is very dissimilar from the 

other. 

5.3 Experiment Result  

After conducting the ten trials, using the parameters 

specified previously, each measure is calculated and recorded. 

In Figure 5 the execution time of the algorithm is illustrated. 

As it can be noted, when the stop condition increases the time 

will also increase. Such result is normal because matching 

and clustering steps depend on this condition. Nevertheless, 

the time taken to execute the algorithm, in any trial, is very 

low. Most of the trails have taken less than one second, which 

indicates a good performance in terms of speed.  

 
Figure 5: Algorithm speed 

Additionally, in Figure 6 the solution fitness (matching 

quality) and inter/intra cluster similarity (clustering quality) 

are recorded in each trial. As it can be noted, the quality of 

the solution extracted in each trial was, on average, 98% 

match with the target user. Thus, it can be stated that the 

quality of profile matching is very good.  

In addition, inter-cluster similarity indicated high 

percentage (99%) while intra-cluster similarity, on the other 

hand, indicated low percentage (0.1%). These results reveal 

that such algorithm did not group dissimilar trees together and 

did not separate similar ones. However, we must emphasize 

on the fact that increasing of the stop condition did not affect 

the value of the clustering quality while slightly decreased the 

quality of the solution. Thus, a fair stop condition (equal to 

the number of pages) is recommended.  

 
Figure 6: Matching and Clustering quality 

5.4 Discussion  

After understanding and testing the proposed approach, 

it is time to summarize its contribution.  First of all, such an 

approach has further generalized web personalization. Instead 

of only using web personalization on navigation and dynamic 

data it was applied on the static part of web pages to consider 

the developer of websites rather than only the visitors. Thus, 

such an approach has added a value to the area of web 

personalization to include providers’ need, personalizing 

static content, and consider characteristics when matching 

rather than keywords.  

Moreover, long and short term interest has been 

considered; such that it does not always update and re-execute 

the whole process. Only the personalization step is repeated 

with every query; however, the rest is done once and updated 

every period of time while its result is stored in XML files. 

Such decision reduced the time tremendously without 

affecting the accuracy and improved the scalability of 

WCMS. In addition, using of XML files simplified and speed 

up the process of matching because XML is a standard 

language for describing the data in a tree structure; thus, 

profiles will be easily searched and information can quickly 

be fetched.   

In addition, to handle web pages' content it was parsed 

to DOM trees, which simplified and further improved the 

speed of web page matching and clustering because searching 

and matching trees is much better than going through the 

whole web page. Moreover, such an approach is very 

dynamic due to the use of different parameters, which can be 

changed depending on the providers’ need; for example, one 

provider could prefer to view only one template; thus, the 

chromosome length can be set to one. Additionally, pages 

were not forced to join a cluster to preserve unique web pages 

and improve the clustering in case similar websites join the 

Web.   

Finally, even though the testing result is mathematically 

good, but we could not compare it with other methods 

because no other works of template personalization in WCMS 

have been found. Thus, as future work, the proposed approach 
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should be tested with real users to ensure its satisfaction. In 

addition, ontology, which is a structured knowledge 

repository, could also be used when acquiring data. Instead of 

giving limited options when entering the characteristics 

developers can enter what they wish and translate it using 

ontology’s repository. Therefore, providers will have more 

freedom in designing their websites. 

6 Conclusion  

In today’s World Wide Web, the use of Web 

personalization has increased tremendously. However, such 

use has only concentrated on the visitors’ behavior. 

Alternatively, WCMS has occurred to help website 

developers to create, edit, organize, and publish the web 

content. Nevertheless, when designing a website, WCMS has 

only considered customization; thus, WCMS developers must 

design some templates in advance. Such process consumes a 

lot of effort and time. Therefore, the paper proposed a new 

approach which improves the quality of WCMS and increases 

its flexibility and scalability. Such an approach use web 

personalization and template extraction to take advantage of 

previous developers’ knowledge and automatically offer 

different template designs for each website developer by 

mixing GA and ACC with CTM. In addition, an experiment 

has been conducted to finally conclude that this approach has 

a high quality, in regard to speed, precision, and accuracy. 

Finally, as future work, it was recommended to use ontology 

to further enrich the scalability of the proposed approach.   
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Abstract 

 
Cytochrome P450 17A1 (also known as CYP17A1) catalyses the biosynthesis of androgens in humans. Because 

prostate cancer cells proliferate in response to androgen steroids,  CYP17A1 inhibition can help to prevent 

androgen synthesis and treat lethal metastatic prostate cancer.   Here I report the results of a computational 

docking of TOK-001, a steroidal inhibitor of CYP17A1 currently under investigation for the treatment of advanced 

prostate cancer,  with the CYP17A1 active site,  based on recent X-ray crystallography of the receptor/ligand 

complex.The docking uses a Lamarckian genetic algorithm. 
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1.0  Introduction 

 
Cytochrome P450 17A1 (also known as 

CYP17A1 and cytochrome P450c17) is a 

membrane-bound monooxygenase that plays a 

fundamental role in the synthesis of several 

human steroid hormones ([5]).  The 17α-

hydroxylase activity of CYP17A1 is required for 

the generation of glucocorticoids such as 

cortisol;  the hydroxylase and 17,20-lyase 

activities of CYP17A1 are required for the 

production of androgenic and oestrogenic sex 

steroids.  CYP17A1 is thus an important target 

for the treatment of breast and prostate cancers 

that proliferate in response to oestrogens and 

androgens ([6],[7]).  

 

Until recently,  steroidal CYP17A1 inhibitors 

were thought to bind the cytochrome P450 haem 

iron, more or less parallel to the plane of the 

haem group in the active site ([8]).   

 

TOK-001 is a steroidal drug currently being 

investigated for the treatment of  metastatic 

prostate cancer ([8]).  Recent X-ray 

crystallography of TOK-001 complexed with the 

active site of CYP17A1 shows the drug binds 

the haem iron in the receptor active site, forming 

a 60° angle above the haem plane and packing 

against the central I helix with the 3β-OH 

interacting with aspargine 202 in the F helix 

([1],[3]). This conformation differs substantially 

from those that are predicted by homology 

models and from steroids in other cytochrome 

P450 enzymes with known structures; some 

features of this conformation are more similar to 

steroid receptors ([1]). 
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2.0  Method 
 
The general objective of this study is 

straightforward:  to computationally assess the 

binding energy of the active site of  crystallized 

cytochrome p450 17A1 with TOK-001.    Unless 

otherwise noted, all processing described in this 

section was performed on a Dell Inspiron 545 

with an  Intel Core2 Quad CPU Q8200 (clocked 

@ 2.33 GHz) and 8.00 GB RAM, running under 

the Windows Vista Home Premium (SP2) 

operating environment.   

 

Protein Data Bank (PDB) 3SWZ is a structural 

description of a crystallized cytochrome p450 

17A1  bound to TOK-001.  3SWZ has 4 chains, 

designated A-D.  

 

3SWZ was downloaded from PDB ([3]) on 30 

January 2012.  The ligand and receptor-active-

site portions of 3SWZ Chain A were extracted to 

separate files, , using AutoDock Tools (ADT, 

[2]).    ADT was then used to perform the 

docking of the ligand to the receptor.  More 

specifically, in ADT, approximately following 

the rubric documented in [4] 

 

 -- all waters and Chains B-D of 3SWZ 

were deleted  

 

 -- the ligand (TOK-001) and Chain A's 

active-site were extracted  to separate files, one 

for each of the ligand and the receptor (3SWZ 

identifies the active site of Chain A as 10 

residues: ALA113, PHE114, ASN202, 

ILE205, ALA302, THR306, VAL366, 

ALA367, VAL482, and HEM600.) 

 

  -- the hydrogens, charges, and 

torsions in the ligand and active site were 

adjusted using ADT default recommendations 

 

and finally,  the ligand, assumed to be flexible 

wherever that assumption is physically possible, 

was auto-docked to the active site, assumed to 

be rigid, using the Lamarckian genetic 

algorithm  implemented in ADT. 

 

______________________________________________________________________________ 

 

 
autodock_parameter_version 4.2       # used by autodock to validate parameter 

                                       set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types A C OA HD N             # atoms types in ligand 

fld 3SWZ_A_active_receptor.maps.fld  # grid_data_file 

map 3SWZ_A_active_receptor.A.map     # atom-specific affinity map 

map 3SWZ_A_active_receptor.C.map     # atom-specific affinity map 

map 3SWZ_A_active_receptor.OA.map    # atom-specific affinity map 

map 3SWZ_A_active_receptor.HD.map    # atom-specific affinity map 

map 3SWZ_A_active_receptor.N.map     # atom-specific affinity map 

elecmap 3SWZ_A_active_receptor.e.map # electrostatics map 

desolvmap 3SWZ_A_active_receptor.d.map# desolvation map 

move 3RUK_A_ligand.pdbqt             # small molecule 

about 27.936 -1.9813 32.3924         # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 2                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 
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e0max 0.0 10000                      # max initial energy; max number of 

                                       retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive 

                                       to next generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local 

                                       search 

sw_max_succ 4                        # consecutive successes before changing 

                                       rho 

sw_max_fail 4                        # consecutive failures before changing 

                                       rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search 

                                       on individual 

set_psw1                             # set the above pseudo-Solis & Wets 

                                       parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 
 

 
Figure 1.  ADT parameters used in this study.  The setup uses a Lamarckian genetic algorithm 

minimum-energy search; all other ADT parameters are defaulted. 

 

______________________________________________________________________________ 

 
The minimum-energy configuration was 

selected from the configurations generated, and 

saved. Interatomic distances between ligand and 

receptor in the computed form were compared to 

those in [3]. 

 

 

3.0  Results 
 
The interactive problem setup, which assumes 

familiarity with the general CYP17A1 

"landscape", took about 20 minutes in ADT; the 

docking proper, about 24 minutes on the 

platform described in Section 2.0  The platform's 

performance monitor suggested that the 

calculation was more or less uniformly 

distributed across the four processors at ~25% of 

peak per processor (with occasional bursts to 

40% of peak), and required  a constant 2.9 GB 

of memory. 

 

Figure 2 shows the ligand/receptor energy and 

position summary produced by ADT for the 

best-fit conformation obtained under the 

conditions described in Figure 2.0.  The 

estimated free energy of binding is ~ -7.9 

kcal/mol; the estimated inhibition constant, 

~1.75 microMolar at 298 K.  All distances 

between receptor and ligand atoms in the 

computed ligand position lie within 10% of the 

distances of the corresponding atoms in 3SWZ.   
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 LOWEST ENERGY DOCKED CONFORMATION from EACH CLUSTER 

 ___________________________________________________ 

 

 

 

Keeping original residue number (specified in the input PDBQ file) for outputting. 

 

MODEL        8 

USER    Run = 8 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 5 

USER   

USER    RMSD from reference structure       = 10.790 A 

USER   

USER    Estimated Free Energy of Binding    =   -7.85 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =    1.75 uM (micromolar)  [Temperature = 298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =   -8.45 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -8.40 kcal/mol 

USER        Electrostatic Energy            =   -0.05 kcal/mol 

USER    (2) Final Total Internal Energy     =   -0.16 kcal/mol 

USER    (3) Torsional Free Energy           =   +0.60 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -0.16 kcal/mol 

USER     

USER     

USER   

USER    DPF = 3SWZ_A.dpf 

USER    NEWDPF move 3RUK_A_ligand.pdbqt 

USER    NEWDPF about 27.936001 -1.981300 32.392399 

USER    NEWDPF tran0 20.130862 7.221189 34.800957 

USER    NEWDPF axisangle0 -0.007078 0.803179 -0.595696 -140.734418 

USER    NEWDPF quaternion0 -0.006666 0.756486 -0.561065 -0.335991 

USER    NEWDPF dihe0 2.04 -178.84  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C1  AER A 601      21.585   8.609  31.649 -0.21 +0.00    +0.016 10.790 

ATOM      2  C2  AER A 601      21.647   9.403  30.352 -0.17 -0.00    +0.033 10.790 

ATOM      3  C3  AER A 601      20.280   9.574  29.742 -0.22 -0.02    +0.122 10.790 

ATOM      4  C4  AER A 601      19.351  10.306  30.715 -0.25 -0.03    +0.066 10.790 

ATOM      5  C5  AER A 601      19.376   9.713  32.096 -0.41 +0.02    -0.072 10.790 

ATOM      6  C6  AER A 601      18.195   9.661  32.707 -0.49 -0.00    -0.023 10.790 

ATOM      7  C7  AER A 601      17.917   8.839  33.940 -0.38 +0.01    +0.033 10.790 

ATOM      8  C8  AER A 601      19.182   8.454  34.702 -0.46 -0.00    -0.001 10.790 

ATOM      9  C9  AER A 601      20.304   8.080  33.721 -0.33 +0.00    +0.003 10.790 

ATOM     10  C10 AER A 601      20.670   9.195  32.730 -0.31 +0.00    -0.017 10.790 

ATOM     11  C11 AER A 601      21.521   7.442  34.395 -0.29 +0.00    +0.007 10.790 

ATOM     12  C12 AER A 601      21.150   6.331  35.386 -0.29 +0.01    +0.014 10.790 

ATOM     13  C13 AER A 601      20.167   6.836  36.406 -0.39 -0.01    -0.016 10.790 

ATOM     14  C14 AER A 601      18.961   7.212  35.572 -0.42 +0.00    +0.003 10.790 

ATOM     15  C15 AER A 601      17.753   7.179  36.506 -0.58 +0.00    +0.010 10.790 

ATOM     16  C16 AER A 601      18.058   6.134  37.563 -0.35 +0.03    +0.036 10.790 

ATOM     17  C17 AER A 601      19.545   5.867  37.355 -0.35 -0.04    -0.060 10.790 

ATOM     18  C18 AER A 601      20.783   7.922  37.307 -0.39 +0.01    +0.020 10.790 

ATOM     19  C19 AER A 601      21.471  10.305  33.394 -0.23 -0.01    +0.020 10.790 

ATOM     20  C20 AER A 601      20.298   4.767  38.073 -0.31 -0.02    -0.018 10.790 

ATOM     21  C25 AER A 601      19.715   3.500  38.254 -0.26 +0.02    +0.014 10.790 

ATOM     22  C24 AER A 601      20.422   2.508  38.915 -0.24 +0.02    +0.018 10.790 

ATOM     23  C23 AER A 601      21.698   2.812  39.369 -0.22 +0.09    +0.087 10.790 

ATOM     24  N22 AER A 601      22.241   4.038  39.185 -0.08 -0.30    -0.375 10.790 

ATOM     25  H22 AER A 601      23.180   4.225  39.540 -0.36 +0.09    +0.164 10.790 

ATOM     26  C21 AER A 601      21.578   5.012  38.550 -0.14 +0.07    +0.099 10.790 

ATOM     27  O3  AER A 601      20.432  10.399  28.591 -0.10 +0.07    -0.395 10.790 

ATOM     28  H3  AER A 601      19.566  10.534  28.225 -0.17 -0.06    +0.210 10.790 

TER 

ENDMDL 

 

Figure 2.  Coordinates of TOK-001 generated by this study. 

 

_____________________________________________________________________________________ 
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Figure 3 is a rendering produced in ADT of the CYP17A1/TOK-001 docking described in Section 2.0. 

 

_____________________________________________________________________________________ 

 

 

 
 

 
Figure 3.  AutoDock Tools (ADT,[2]) rendering of a computational docking of TOK-001 (the ligand, 

shown in stick-and-ball form) with molecular surface of the active site of Chain A of cytochrome 

p450 17A1 (shown in white),  derived from PDB 3SWZ ([1],[3]).  The upper right end of the ligand 

lies directly below the center of the haem group in the active site.   

 

__________________________________________________________________ 

 

4.0  Discussion 

 
The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

 

 1.  The inhibition constant computed in 

this study (~1.75 microMolar at ~298 K) is 

comparable to the inhibition constant of cancer-

therapeutic ligand/receptor interactions that are 

clinically effective.   

 

 2.  All distances between receptor and 

ligand atoms in the computed ligand position lie 

within 10% of the distances of the corresponding 

atoms in 3SWZ.  (For electrostatic forces, a 10% 

distance difference would correspond to a ~20% 

difference in electrostatic force and potential 

energy, in the worst case.  One could of course 

apply other statistics to the coordinate sets and 

provide a more comprehensive comparison of 
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other forces/energies.   Future work will address 

those issues.) 

 

 3.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding energy 

computation for PDB 3SWZ per se.  However, 

the calculation does not reflect what  receptor 

"flexing"  could contribute to the interaction of 

the ligand with native unliganded receptor.   

 

 4.  The analysis described in Sections 

2.0 and 3.0 assumes receptor is in a crystallized 

form.  In situ, at physiologically normal 

temperatures (~310 K), the receptor is not in 

crystallized form. The ligand/receptor 

conformation in situ, therefore,  may not be 

identical to their conformation in the crystallized 

form. 

 

 5.  Minimum-energy search algorithms 

other than the Lamarckian genetic algorithm 

used in this work could be applied to this 

docking problem.  Future work will use Monte 

Carlo/simulated annealing algorithms. 

 

 6.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 

 

 7.  3SWZ has four chains, each with its 

own active site.  The work described in this 

paper was performed on Chain A only.  Chains 

B-D appear to have active sites highly similar to 

the Chain A active site.  Future work will assess 

the ligand/receptor binding energies of Chains 

B-D. 

 

 8.  CYP17A1 is a membrane-bound 

protein; 3SWZ describes a conformation that is 

not bound to a membrane.  The membrane-

bound conformation of CYP17A1 may differ 

from the conformation in 3SWZ.   

 

 9.  The free energy of binding of TOK-

001 to CYP17A1 is ~20%  larger than the free 

energy of binding of abiraterone, a steroidal 

CYP17A1 inhibitor, to CYP17A1, suggesting 

that TOK-001 may be a more effective 

CYP17A1 inhibitor than abiraterone ([9]). 
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Abstract - The increasing number of automotive 

functionalities becomes a significant challenge for in-car 

communication and network architecture. Our approach 

provides optimized network architectures by applying 

evolutionary algorithms and application-specific 

representations. In this paper, we present a new network 

encoding supported by feasibility-preserving mutation 

and routing operators. We show that well-established 

algorithms can be extended with our operators to 

efficiently optimize cost and complexity of automotive 

networks. 

Keywords: Evolutionary algorithm; automotive network; 

optimization; network encoding; AUTOSAR; 

1  Introduction 

Increasing amounts of new functionality in modern cars 

have over the last decade lead to ever more complex 

architectures. This complexity presents new challenges 

for the Original Equipment Manufacturers (OEMs) in 

terms of the automotive development process and 

especially for communication architecture. Those 

challenges can be outlined as follows: 

1.1 Automotive development process 

The state of the art in automotive Electric/Electronic (EE) 

systems comprises among others the following 

complexities: 

 Multiple bus systems and sub-bus systems 

 Extensive gateway functionality between bus 

systems 

 Increased effort for testing and multiple variant 

management 

 Exponential growth of software costs. 

To handle these complexities, positive experience from 

software engineering suggests model driven 

development and similar paradigms also for the 

automotive domain [1]. Thus, initiatives like 

AUTOSAR [2] are addressing a standardized software 

architecture and model driven EE tools like 

PREEvision [3] support the OEMs in early architecture 

decisions and variant management. Furthermore, the 

modeling of complex functionalities using tools like 

Matlab/Simulink simplifies the interface from OEM to 

supplier as well as testing and verification efforts. In 

summary, a holistic and consistent top-down 

architecture and development methodology is essential 

to maintain automotive quality requirements. 

 

1.2 Communication architecture 

Nearly 20 years have passed since the introduction of 

first bus-based communication in cars [4]. While new bus 

systems like FlexRay [5] and Media Oriented Systems 

Transport (MOST) [6] have addressed higher bandwidth 

requirements for vehicle dynamics and multimedia 

applications respectively, most basic applications still 

utilize the well established Controller Area Network 

(CAN) [7] bus. Additionally, sub-systems based on Local 

Interconnect Network (LIN) [8] have been introduced to 

reduce costs and complexity of the overall network. 

When looking at the historical development of the 

network topology, one can notice an organic growth of 

buses around an ever more complex central gateway. The 

reasons for this growth are the repeated usage of legacy 

hardware combined with the introduction of new 

functionality as individual Electronic Control Units 

(ECUs) and bus systems. Another reason for this growth 

is, that newly added features often lead to the installation 

of a dedicated bus system while leaving existing 

communication structures untouched due to bandwidth 

limitations. 

 

Figure 1. Example car network 

 

Hence, a premium class car nowadays consists of several 

independent bus systems for the domains powertrain, 

chassis, body and comfort. In addition to those buses, 

new features like drive by wire or active suspension 

imply the need for a safety critical bus system like 

FlexRay. Furthermore, the multimedia and infotainment 

cluster is networked with the high-speed bus MOST. 

With all those new systems it is clear that, apart from 

power consumption, also the wiring costs have 

dramatically increased during the last few years. 

1.3 Motivation 

As new network technologies like Ethernet are making 

their way into the automotive domain [9], we must now 

question the suitability of those old network architectures 

and topologies. Furthermore we need to explore the 

62 Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  |



optimization potential of new topologies especially in the 

light of cost reduction and complexity. 

To explore the optimization potential, this paper 

introduces a new heuristic for the following network 

architecture tasks: 

 Mapping of software components onto ECUs 

 Layout of network topology 

 Routing of communication and creation of 

gateway tables 

These tasks are done using multi objective evolutionary 

algorithms (MOEAs) and application-specific network 

encodings to efficiently handle constrains. To take 

advantage of these encodings, new stochastic operators 

for mutation and message routing are presented. 

The presented methodology is compliant with the system 

development tasks defined by AUTOSAR and supports 

automotive development tool chains like PREEvision. 

Therefore, the challenges of a consistent and model 

driven automotive development process as described 

above are met. 

2 Related Work 

2.1 Application specific encodings 

A network encoding with focus on multicast networks 

has been presented by Ahlswede et al. [10] and used for 

deterministic topology design by Chi et al. [11]. The cost 

modeling of automotive electrical architectures was 

investigated by Quigley et al. [12]. 

Regarding constraint handling, Coello Coello gave a very 

good survey in [13], also stating a constraint-consistent 

GA approach proposed by Kowalczyk [14].  

2.2 Automotive network optimization 

An automated bus system synthesis for PREEvision was 

presented by Heinz et al. [15]. Their method based on 

Hierarchical Clustering and functional nearness of ECUs 

without considering variations in application mapping. 

In contrast to that, Lukasiewycz et al. [16] as well as 

Glass et al. [17] optimized automotive networks with 

respect to reliability using a binary Integer Linear 

Program (ILP) [18]. 

Furthermore, Kim et al. [19] showed an efficient method 

to optimize task allocation, ECU positioning and network 

assignment using a repeated matching method and 

simulated annealing.  

3 Problem Formulation 

3.1 Prerequisites 

The network optimization problem at hand is defined by 

a communication description, network constraints and 

available hardware. 

1) In every layered or model driven development, all 

aspects the resulting product will have are defined by 

functional and non-functional requirements. The first task 

is to transform these requirements into technical features 

and applications, so-called “Software Components” in 

AUTOSAR. Already, these components form a logical 

network based on communication requirements. At the 

time of this task, the timing constraints and required 

bandwidth of the communications are subject to 

implementation and therefore not exactly known. We can 

however approximate the requirements based on previous 

implementations or estimations on data types and 

frequency. Furthermore, multicast and broadcast 

messages, together with their receivers and respective 

update rates can be identified at this stage. 

2) Another aspect of the optimization problem is defined 

by local or supplier-specific constraints. Local constraints 

state, that specific software components need to be 

executed in vicinity to their relevant sensors or actuators. 

Supplier-specific constraints come from the fact, that the 

development of some features is often outsourced by the 

OEM. This outsourcing implies, that the OEM needs to 

integrate hardware without a reasonable opportunity to 

manipulate the software components executing on those 

ECUs. Therefore, some software components are locked 

to specific ECUs and cannot be remapped. 

3) The third input parameter describes the layout of 

ECUs within the car; providing information about 

processing unit, available memory, bus connections and 

peripherals for each unit. It is also possible to consider 

multiple hardware manifestations and their corresponding 

costs for the same mounting location. 

 

Figure 2. Design System process in AUTOSAR 

 

Using those input parameters, the heuristic has to find a 

feasible network topology while optimizing several 

objectives. This process of finding a topology is 

represented by the “Design System” task in the 

AUTOSAR specification and metamodel. 

3.2 Objectives 

The Objectives evaluated by our algorithm are introduced 

as follows: 
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 Monetary costs: Our main objective is to 

minimize the amount of ECUs installed by 

deploying several software components onto the 

same ECU. Additional costs can be saved by 

simplifying the bus structure. Thus, hardware 

costs are modeled as a fixed amount for each 

used ECU and additional costs for each 

communication controller and bus coupler. 

 Cable length: Reduces wiring costs as well as 

overall weight and manufacturing time.  

 Bandwidth reserves: Subsequent changes in 

requirements and communication cannot be 

ruled out during a typical development time of 

several years. Therefore it is considered a good 

practice to reserve some bandwidth for future 

extensions on each bus system. 

 Gateway complexity: Gateway routing tables 

represent additional implementation and testing 

effort. To minimize this effort we prefer 

message routing within one network and want to 

add gateway functionality to as few ECUs as 

possible. 

4 Implementation 
The realization of our encodings and operators is written 

in Java and based on the jMetal [20] framework. Due to 

the extensible design of the framework, new solution 

variables and operators can be added easily while 

providing wide compatibility with already implemented 

algorithms. 

 

 

Figure 3. UML relationships between input, parameters, 

solution and objectives 

 

4.1 Descision variables 

Each solution represents a full network and consists of 3 

abstract variables. 

 A class representing the mapping between each 

software component and corresponding ECU. 

 The definition of all used bus systems and their 

connected nodes. 

 The communication description for nodes and 

gateway routing tables. 

New solutions are created with all software components 

randomly deployed on allowed ECUs and all network 

nodes connected to the fastest available bus system. The 

routing is then straight forward without any gateway 

functionality. This solutions is always a feasible but very 

expensive. 

4.2 Stochastic Operators 

Our approach comprises a set of mutation operators 

specifically designed for our network optimization 

problem: 

 A mapping mutation deploys software 

components onto different ECUs within their 

allowed borders. To maintain feasibility, the 

corresponding bus variable has to be repaired or 

reinitialized. 

 A bus mutation operator randomly adds ECUs to 

a bus network. For the sake of simplicity it 

cannot remove existing connections as this 

would threaten the feasibility of the system. 

 In every case the communication has to be re-

routed after changes in other variables. We 

implemented an efficient algorithm to find the 

cheapest possible route for each communication 

requirement. The sequence by which the router 

iterates through the messages is randomly 

chosen to add another stochastic influence. 

Furthermore, this influence allows us to use the 

router as single operator in order to mutate an 

existing communication. 

 

Figure 4. Possible mutations 
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4.3 Algorithm workflow 

Since our network representation is closely related to 

jMetal´s software design, we could easily adapt 

algorithms like the SPEA2 [21] for our purposes. The 

most important adaption was in the algorithm´s variation 

step. There, we removed the crossover operator and 

added our own mutation and routing methodologies. 

Apart from those changes in the variation step, the 

existing software can be used unaltered. The evaluation 

of solutions includes a deterministic reduction algorithm, 

to delete unused bus connections and nodes. 

 

 

Figure 5. Algorithm workflow 

5 Experimental Results 
In order to verify the functionality of the presented 

implementation and characterize it´s behavior under 

different conditions, experiments with test networks were 

performed. All experiments were executed on an Intel 

Core2 Duo T7500 CPU at 2.2GHz with 3 GB Ram 

running Windows 7. 

5.1 Test networks 

We created various test networks with 10 to 80 nodes and 

various constraints. The 10-node network has exactly one 

known optimal solution and is used for performance 

benchmarks. The latter 2 networks might represent a low-

end and high-end car respectively, but all communication 

values are purely fictional. Due to their complexity, a 

optimal solution or true pareto front is not known. 

 

TABLE I.  DIMENSIONS OF TEST NETWORKS 

Test network 1 2 3 

No. Nodes 10 40 80 

Location constrained SW components 10 20 70 

Unconstrained SW components 0 30 30 

Gross bit rate [MBit/sec] 0.2 1 10 

5.2 Convergence 

Our first experiment series evaluated the mean 

convergence speed of our optimization. First, we 

executed 100 independent runs using test network 1. We 

aborted each run after the optimal solution had been 

found or 2000 solutions had been evaluated. 

82% of our testruns hit the global optimum within 2000 

evaluations while the rest was stuck in local optima and, 

to our observation, would not have succeeded in 

reasonable time. The results in Fig. 6 support this 

assumption since the probability of finding the global 

optimum within a run decreases after 500 evaluations. 

TABLE II.  CONVERGENCE EXPERIMENT 1 

Test network model 1 

Mutation probability 
Software mapping 0.2 

Bus connections 0.2 

Archive size 20 

Population size 20 

Max. evaluations 2000 

Runs 100 

Optimum hit 82 % 

Average execution time 0.68 s 
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Figure 6. Results for convergence experiment 1 

 

To further examine the convergence behavior we 

observed the best cost objective of the population while 

optimizing test network 3. Figure 7 illustrates the 

optimization process for 5 independent runs. The 

execution time for each run has been significantly higher 

due to the larger network model and data output during 

execution. 

TABLE III.  CONVERGENCE EXPERIMENT 2 

Test network model 3 

Mutation 

probability 

Software mapping 0.2 

Bus connections 0.2 

Archive size 50 

Population size 50 

Max. evaluations 30000 

Runs 5 

Average execution time 36.4 s 

 

 

Figure 7. Results for convergence experiment 2 

 

5.3 Performance 

In a final step we have studied the influence of archive 

size and number of evaluations on calculation time. 

Therefore, for each setting we measured the average 

execution time of 10 independent runs using test network 

2. The results in Fig 8 show that the archive size only 

influences the overall execution time for large numbers 

of evaluations. The significant difference in performance 

for 15.000 and 20.000 evaluations is subject to further 

investigations. 

 

 

Figure 8. Calculation performance for different amounts 

of evaluations 

6 Conclusion and Further Work 
In this paper, we presented a novel approach for 

automotive network encoding and optimization using 

evolutionary algorithms. 

First, we introduced typical initial situations and 

challenges for network architects at OEMs and 

automotive suppliers. Subsequently, we listed 

requirements and constraints which have to be taken into 

consideration when developing a new communication 

network. This network development can be described as a 

series of tasks: After defining atomic software 

components and logical links representing transmission 

requirements, we want to effectively deploy those 

software components onto corresponding ECUs. 

Simultaneously to the deployment, we need to interlink 

these ECUs using automotive specific bus systems while 

keeping hardware costs, wiring effort and network 

complexity low. 

These tasks can be optimized using our new encoding 

scheme. In our encoding, we presented 3 objects to 

represent bus connections, software mapping and 

network communication respectively. Those objects are 

varied using established evolutionary algorithms like the 

SPEA2 to obtain near-optimal network solutions. We 

ensure the technical feasibility of our solutions by 

implementing problem specific mutation operators and 

routing algorithms. 
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We have shown that the SPEA2 algorithm, as already 

implemented in the jMetal framework, can easily be 

adopted to optimize our test networks. Additionally, 

initial experiments have confirmed a fast and reliable 

convergence towards optimal results. 

Further work will include the introduction of a crossover 

operator as well as benchmarks regarding common 

quality indicators used in evolutionary algorithms. 

Another interesting task will be the implementation of 

algorithms like differential evolution [22] or particle 

swarm optimization [23] since our encodings were 

designed to utilize different optimization strategies. 

We also want to compare our algorithm´s results with 

currently established car networks to explore the potential 

of cost optimization in the automotive domain. 
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Abstract - Discrete Particle Swarm Optimization has been 

noted to perform poorly on a forest harvest planning 

combinatorial optimization problem marked by harvest 

period-stand adjacency constraints with the goal of 

maximizing the even-flow of harvest lumber across harvest 

periods. Attempts have been made to improve the performance 

of discrete Particle Swarm Optimization on this type of 

problem. However, these results do not unquestionably 

outperform Raindrop Optimization, an algorithm developed 

specifically for this type of problem.  In order to address this 

issue, this paper proposes a new Roulette Wheel Particle 

Swarm Optimization algorithm, which markedly outperforms 

Raindrop Optimization on two of three planning problems. 

Keywords: particle swarm optimization, roulette wheel, 

forest planning, raindrop optimization 

 

1 Introduction 

  In [7], the authors evaluated the performance of four 

nature-inspired optimization algorithms on four quite different 

optimization problems in the domain of diagnosis, 

configuration, planning, and path-finding.  The algorithms 

considered were the Genetic Algorithm (GA) [6], Discrete 

Particle Swarm Optimization (DPSO) [5], Raindrop 

Optimization (RO) [1], and Extremal Optimization (EO).  On 

the 73-stand forest planning optimization problem, DPSO 

performed much worse than the other three algorithms, despite 

thorough testing of parameter combinations, as shown in the 

following table.  Note that the forest planning problem is a 

minimization problem, so lower objective values represent 

better quality solutions.   

 

Table 1:  Results obtained in [7] 

 GA DPSO RO EO 

Diagnosis 87% 98% 12% 100% 

Configuration 99.6% 99.85% 72% 100% 

Planning 6,506,676 35M 5,500,391 10M 

Path-finding 95 95 65 74 

 

 In [2], the authors address this shortcoming of DPSO by 

introducing a continuous PSO with a priority representation, 

an algorithm which they call PPSO.  This yielded significant 

improvement over DPSO, as shown in the following table, 

where they included results for various values of inertia ( ) 

and swarm size.   

 

Table 2: Results from [2] 

 PPSO DPSO 

 
Pop. Size Best Avg Best Avg 

1.0 100 7,346,998 9,593,846 118M 135M 

1.0 500 6,481,785 9,475,042 133M 139M 

1.0 1000 5,821,866 10M 69M 110M 

0.8 100 8,536,160 13M 47M 70M 

0.8 500 5,500,330 8,831,332 61M 72M 

0.8 1000 6,999,509 10M 46M 59M 

 

 Although the results from [2] are an improvement over 

the DPSO, PPSO does not have a resounding victory over RO.  

In [1], the average objective value on the 73-stand forest was 

9,019,837 after only 100,000 iterations, compared to the 

roughly 1,250,000 fitness evaluations used to obtain the best 

solution with an average of 8,831,332 by the PPSO.  

Obviously, the comparison is difficult to make, not only 

because of the closeness in value of the two averages, but also 

because the termination criteria are not of the same metric. 

 In this paper we experiment with RO to generate 

relatable statistics, and we formulate a new multi-value 

discrete PSO that is more capable of dealing with multi-

valued nominal variable problems such as this one.  

Additionally, we develop two new fitness functions to guide 

the search of the PSO and detail their effects.  Finally, we 

experiment with a further modification to the new algorithm 

to examine its impact on solution quality.  The optimization 

problems addressed are not only the 73-stand forest planning 

problem [1][2][7], but also the 40- and 625-stand forest 

problems described in [1].  

2 Forest planning problem 

 In [1], a forest planning problem is described in which 

the goal is to develop a forest harvest schedule that would 

maximize the even-flow of harvest timber, subject to the 

constraint that no adjacent forest partitions (called stands) may 

be harvested during the same period.  The goal of maximizing 
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the even-flow of harvest volume was translated into 

minimizing the sum of squared errors of the harvest totals 

from a target harvest volume during each time period.  This 

objective function f1 can be defined as: 

 

  (1)  (1) 

 

where z is the number of time periods, T is the target harvest 

volume during each time period, an is the number of acres in 

stand n, hn,k is the volume harvested per acre in stand n at the 

harvest time k, and d  is the number of stands.  A stand may be 

harvested only during a single harvest period or not at all, so 

anhn,k will be either the volume from harvesting an entire stand 

n at time k or zero if that stand is not scheduled for harvest at 

time k. 

 Three different forests are considered in this paper, 

namely a 40-stand northern forest [1] (shown in Figure 1), the 

73-stand Daniel Pickett Forest used in [1][2][7] (shown in 

Figure 2), and a much larger 625-stand southern forest [1] (not 

shown). The relevant stand acreage, adjacency, centroids, and 

time period harvest volumes are located
1
 under “Northern US 

example forest,” “Western US example forest,” and “Southern 

US example forest.”  Three time periods and a no-cut option 

are given for the problem.  For the 40-stand forest the target 

harvest is 9,134.6 m
3
, for the 73-stand forest the target harvest 

is 34,467 MBF (thousand board feet), and for the 625-stand 

forest the target harvest is 2,972,462 tons. 

 In summary, a harvest schedule is defined as an array of 

length equal to the number of stands in the problem and whose 

elements are composed of integers on the range zero to three 

inclusively, where 0 specifies the no-cut option, and 1 through 

3 specify harvest periods.  Thus, solutions to the 40-, 73-, and 

625-stand forest planning problems should be 40-, 73-, and 

625-length integer arrays.  A valid schedule is a schedule with 

no adjacency violations, and an optimal schedule is a valid 

schedule that minimizes f1. 

 

 
Figure 1: 40-Stand Forest    Figure 2: 73-Stand Forest 

 

 Many algorithms have been applied towards this 

problem.  In [1] Raindrop Optimization, Threshold Accepting, 

and Tabu Search were used on the 40-, 73-, and 625-stand 

                                                           
1
 Available at: 

http://www.warnell.forestry.uga.edu/Warnell/Bettinger/planni

ng/index.htm 

forest planning problems.  In [7], a Genetic Algorithm, integer 

Particle Swarm Optimization, Discrete Particle Swarm 

Optimization, Raindrop Optimization, and Extremal 

Optimization were applied to the 73-stand forest planning 

problem.  In [2], a Priority Particle Swarm Optimization 

algorithm was applied to the 73-stand forest problem.   

 In this paper, tests will be run with Raindrop 

Optimization and a new proposed algorithm, Roulette Wheel 

Particle Swarm Optimization.  Comparisons will be made 

between these test results and the test results from [1], [2], and 

[7]. 

3 Raindrop optimization 

 Described in [1], Raindrop Optimization (RO) is a 

stochastic point-based search algorithm developed for the 

forest planning problem and inspired by the ripples in a pond 

generated from a falling raindrop.  It starts with an initial valid 

schedule, perturbing the harvest period at a random stand and 

repairing the resulting period adjacency violations in an ever-

expanding ripple from the original perturbation, based on the 

centroids of the stands.  The perturbation repeats, and the best 

solution is reverted to after a certain interval.  This 

perturbation and repair process repeats until the termination 

criteria are met.  The number of intervals until reversion is 

called the reversion rate.  Note that there is no set ratio 

between the number of iterations and the number of fitness 

evaluations. 

4 Particle swarm optimization 

 Particle swarm optimization (PSO) [3][4] is a stochastic 

population-based search algorithm, where each member 

(called a  particle) of the population (called a swarm) has a 

dynamic velocity v and a location x, which is a point in the 

search space.  The particle “flies” through the search space 

using its velocity to update its location.  The particle 

“remembers” its (local) best location p so far and is aware of 

the (global) best current location g for any particle in the 

swarm.  The attraction to the former is called the cognitive 

influence c1, and the attraction to the latter is called the social 

influence c2.  Each iteration of the PSO involves evaluating 

each particle’s location according to a fitness function, 

updating the local and global bests, updating each particle’s 

velocity, and updating each particle’s location. The formula to 

update the velocity and location of a particle in the i
th

 

dimension at time t is specified by the following:  

 

  (2) 

  

  
 

  (3) 

 

where  is the inertia, r1 and r2 are random numbers between 

0 and 1, and t is the new iteration step. 
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4.1 The proposed PSO 

 In the proposed multi-valued algorithm Roulette Wheel 

PSO (RWPSO), a particle’s location in each dimension is 

generated by a roulette wheel process over that particle’s 

roulette wheel probabilities (here called its velocities) in that 

dimension; in a given dimension, the particle has a velocity for 

every permissible location in that dimension.  The algorithm 

deterministically updates the velocity of each permissible 

location k in each dimension i for each particle using the 

following formulas: 

 

  

  (4) 

 

 where  (5) 

 

and m is the maximum step size, s is the social emphasis, and 

(1-s) is the cognitive emphasis.  The velocity vi,k is limited to 

the range [0,1], but is initially set to the reciprocal of the 

number of permissible values in dimension i for two reasons: 

(1) the velocities represent roulette probabilities and so 

together should sum to 1, and (2) with no domain knowledge 

of the likelihood of each location k in the optimal solution, 

there is no reason to favor one location over another. As 

previously mentioned, the particle’s location in dimension i is 

determined by a roulette wheel process, where the probability 

of choosing location k in dimension i is given by: 

 

  (6) 

 

 RWPSO parameters include the swarm size, the stopping 

criterion, the maximum step size, and the social emphasis.  

The maximum step size controls the maximum rate at which 

the RWPSO velocities will change and thus determines how 

sensitive the RWPSO is to the local and global fitness bests.  

The social emphasis parameter determines what fraction of 

the maximum step size is portioned to attraction to swarm 

global best versus how much is portioned to attraction to the 

local best.  

 RWPSO is applicable to problems with nominal (un-

ordered, finite, and discrete) variables. In this forest planning 

problem, harvest period variables can be considered nominal 

variables, because not only are they discrete and finite, but 

there is also no obvious ordering or “between” relation to the 

periods with respect to the objective value. 

 The algorithm is robust because it lacks inherent bias in 

the variable value encodings, and because it is not a 

specialized algorithm, it is useable as-is on a variety of 

problems. In this paper, the only (eventual) modification is the 

biasing of initial velocities, which is a modification applicable 

to any other problem where there is a little domain knowledge 

about the likelihood of certain variable values in the optimal 

solution. 

 Note that as with any parameterized heuristic method, 

time must be spent to experiment with various parameter 

combinations to tweak the algorithm for a given problem. This 

is addressed for the forest planning problem later in this paper.  

5 RWPSO guide functions 

 Since RWPSO will generate schedules that are not 

necessarily valid, the original objective function f1 cannot be 

used to guide the RWPSO, because f1 does not penalize such 

schedules.  Thus, two fitness functions are derived that 

provide penalized values for invalid schedules and also 

provide values for valid schedules which are identical to those 

produced by f1.  

5.1 RWPSO guide function f2 

 The fitness function f2 is defined as: 

 

  (7) 

 

 where   

 

  

 

 and 

 

  
 

where s is the harvest schedule, and sn is the scheduled harvest 

time of stand n. 

 Essentially, this function penalizes infeasible solutions 

by harvesting only those stands that do not share a common 

scheduled harvest period with an adjacent stand; this is 

effectively a temporary repair on the schedule to bring it into 

feasible space for fitness evaluation by omitting all scheduled 

stand harvests that are part of an adjacency violation.  As with 

f1, anhn,k will be either the volume from harvesting an entire 

stand n at time k or zero if that stand is not scheduled for 

harvest at time k.  

5.2 Alternate RWPSO guide function f3 

 The final fitness function f3 uses a copy of the harvest 

schedule s, denoted s , and modifies it throughout the fitness 

evaluation.  It is the harmonic mean of f2 and f3  defined as: 

  (8) 

 

  Where 
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  (9) 

 

 
 

 
 

 
 

 Fitness function f3 combines the strict penalizing fitness 

function f2 with the more lenient function f3 .  The function f3  

creates a copy of the schedule s and modifies this copy s  

during the fitness evaluation.  The function iteratively 

considers each stand in a schedule, and whenever an 

adjacency violation is reached, the harvest volume of the 

currently considered stand is compared to the total harvest 

sum of the adjacent stands having the same harvest period.  If 

the former is greater, then the stands adjacent to the current 

stand that violate the adjacency constraint are set to no-cut in 

s .  Otherwise, the current stand’s harvest schedule is set to no-

cut in s .  As with f1, anhn,k will be either the volume from 

harvesting an entire stand n at time k or zero if that stand is not 

scheduled for harvest at time k. 

 Note that for every feasible schedule, if the schedule is 

given to all three fitness functions, each will yield identical 

fitness values, because the difference between them is in how 

each one temporarily repairs an infeasible schedule in order to 

give it a fitness value; f1 does no repair, f2 does a harsh repair, 

and f3 combines f2 with a milder repair f3 .  

6 Tests 

 Having a comparable measure of process time poses a 

problem in determining the statistics of RO, because unlike 

RWPSO, the number of fitness evaluations is not the same as 

the number of candidate solutions.  In fact, RO may use many 

fitness evaluations in the process of mitigating infeasibilities 

before offering a single candidate solution.  Thus, two sets of 

statistics will be offered for RO, where ROc specifies the case 

of limiting the number of candidate solutions to 1,000,000, 

and ROf specifies the case of limiting to 1,000,000 the number 

of fitness evaluations over 10 trials on the 40- and 73-stand 

forests.  Each RWPSO parameter combination was allowed to 

run for 10 trials of 1,000,000 fitness evaluations on the 40- 

and 73-stand forests.  In order to allow the algorithms more 

time on a more difficult problem, both algorithms were run for 

5 trials of 5,000,000 fitness evaluations on the 625-stand 

forest.  

 To find good parameter combinations, RO was run for 

10 trials with reversion rates from 1 to 10 in steps of 1 on the 

73-stand forest.  RWPSO was run for 10 trials with f2 on the 

73-stand forest with all combinations of the following 

parameters:  

 

Swarm Size: {20, 40, 80, 160, 320, 640, 1280, 2560, 5120} 

Max Step Size: {0.01, 0.05, 0.09, 0.13} 

Social emphasis: {0.0, 0.25, 0.50, 0.75} 

 

 Even though RWPSO was tested over roughly 15 times 

the number of parameter combinations of RO, run-time to 

complete all combinations was roughly the same between RO 

and RWPSO.  Note also that both algorithms were rather 

forgiving in terms of performance over parameter combination 

variations.  The best parameter combinations from this were 

used on the remainder of the tests.  Tests where RWPSO used 

f2 are denoted RWPSOf2.  Similarly, tests where RWPSO used 

f3 are denoted RWPSOf3. 

 One final variation on the configuration used for 

RWPSO is denoted RWPSOf3-pb.  This configuration involves 

biasing the initial velocities of the RWPSO using some 

expectation of the likelihood of the no-cut option being 

included in the optimal schedule.  It is expected that an 

optimal schedule will have few no-cuts in its schedule.  

However, there is no expectation of the other harvest period 

likelihoods.  Therefore, the initial probabilities were tested for 

the following cases: 

 

 

7 Results 

 As with [1], the best reversion rate found for RO was 4 

iterations.  Similarly, the best parameter combination found 

for RWPSO was swarm size 640, max step size 0.05, and a 

social emphasis of 0.25.  Of the initial no-cut probabilities 

tried, 0.04 gave the best objective values.  

 Table 3 shows the results of running each algorithm 

configuration on the 73-stand forest.  Clearly, the choice of 

how RO is limited—either by candidate solutions produced or 

by the number of objective function evaluations—will 

substantially affect the solution quality.  In fact, if the number 

of objective function evaluations is considered as the 

termination criterion for both algorithms, then every 

configuration of RWPSO outperforms RO on the 73-stand 

forest.  However, the use of f3 improves the performance of 

RWPSO over RO, regardless of the termination criterion used 

for RO.  Also, note that although the use of biased initial no-

cut probability makes RWPSOf3-pb outperform RWPSOf3, the 

largest gains by RWPSO in terms of average objective values 

come from using f3  instead of f2.  Additionally, changing the 

function that guides RWPSO drastically decreases the 

standard deviation of the solution quality. 
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Table 3: 73-Stand Forest Results 
 Best 

Solution 

Average Solution Standard 

Deviation 

ROc 5,500,330 6,729,995 1,472,126 

ROf 5,741,971 8,589,280 2,458,152 

RWPSOf2 5,500,330 7,492,459 1,920,752 

RWPSOf3 5,500,330 5,844,508 450,614 

RWPSOf3-pb 5,500,330 5,786,583 437,916 

 

 The distribution of the 73-stand forest results from an 

additional set of trials is given in the following graph: 

 

 

Figure 3: 73-stand forest distribution of samples 

  

 The results for the 40-stand forest in Table 4 are similar 

to those in Table 3, except that every configuration of 

RWPSO outperforms RO, regardless of the termination 

criterion used.  Additionally, RWPSO’s greatest increase in 

performance came through using f3 instead of f2. 

 

Table 4: 40-Stand Forest Results 
 Best 

Solution 

Average Solution Standard 

Deviation 

ROc 90,490 160,698 46,879 

ROf 98,437 190,567 63,314 

RWPSOf2 90,490 151,940 46,431 

RWPSOf3 90,490 123,422 30,187 

RWPSOf3-pb 90,490 113,624 23,475 

  

 The distribution of the 40-stand forest results from an 

additional set of trials is shown in the following graph: 

 

Figure 4: 40-stand forest distribution of samples 

 The results from Table 5 illustrate that the 625-stand 

forest is much more difficult for RWPSO than either of the 

other forests.  RO with both termination criteria outperformed 

every configuration of RWPSO.  It can be noted that, just like 

for the other forests, the use of f3 improved RWPSO’s 

performance over f2, and the use of biased initial no-cut 

probability further improved the quality of the RWPSO 

solutions. 

 

Table 5: 625-Stand Forest Results 
 Best Solution Average Solution Standard 

Deviation 

ROc 61,913,898,152 66,142,041,314 2,895,384,577 

ROf 66,223,010,632 72,552,142,872 3,732,367,645 

RWPSOf2 118,239,623,212 150,819,800,640 14,487,010,747 

RWPSOf3 91,224,899,372 100,862,133,880 6,894,894,714 

RWPSOf3-pb 87,444,889,432 95,872,673,094 6,808,823,161 

 

 The distribution of the 625-stand forest results from an 

additional set of trials is given in the following graph: 

 

 
 

8 Discussion  

 Some comparisons to the studies in Section 1 may be 

made, limited by the fact that they limited the runtimes or 

iterations differently.  Additionally, most of those studies deal 

only with the 73-stand forest.  

 In [1], comparisons are difficult to make, because the 

number of fitness evaluations was not recorded.  In that paper, 

the best performance on the 73-stand forest was a best fitness 

of 5,556,343 and an average of 9,019,837 via RO.  On the 40-

stand forest, it was a best of 102,653 and an average of 

217,470, and on the 625-stand forest via RO, it was a best of 

69B and an average of 78B via RO.  In [7], the DPSO was 

allowed to run on the 73-stand forest up to 2,500 iterations 

with swarm sizes in excess of 1000, which translates to a 

maximum of 2.5M fitness evaluations for a 1000 particle 

swarm.  With DPSO, they obtained a best fitness in the range 

of 35M.  In that paper, the best fitness value found was 

5,500,391 via RO.  In [2], the best performance from their 

PPSO on the 73-stand forest was with 2,500 iterations of a 

size 500 swarm, which translates to 1,250,000 fitness 

evaluations.  They achieved a best fitness of 5,500,330 and an 

average fitness of 8,831,332.   
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 In comparison, the best results from this paper on the 73-

stand forest are a best of 5,500,330 and an average of 

5,786,583 after 1M fitness evaluations.  RWPSO obtained the 

best results of all the studies discussed for the 73-stand forest.  

Similarly, it outperformed on the 40-stand forest with a best 

objective value of 90,490 and an average of 113,624.  

However, on the 625-stand forest, RO outperforms RWPSO, 

regardless of the termination criterion used.  

9 Conclusion and future directions 

 The functions f2 and f3 promote Lamarckian learning by 

assigning fitnesses to infeasible schedules based on nearby 

feasible schedules.  The use of Lamarckian learning may be 

beneficial in general on similar problems, and additional 

research would be required to test this. 

 RWPSO was formulated specifically for multi-valued 

nominal variable problems, and it treats velocity more 

explicitly as a roulette probability than do other probability 

based PSOs.  Additionally, by expressing parameters of the 

algorithm in terms of their effects on the roulette wheel, 

parameter selection is more intuitive.  Future work needs to be 

done to determine if this explicit roulette wheel formulation 

yields any benefit in general to RWPSO’s performance over 

other discrete PSOs.  
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Abstract
Parametric optimisation techniques such as Particle
Swarm Optimisation (PSO), Firefly algorithms (FAs),
genetic algorithms (GAs) are at the centre of attention
in a range of optimisation problems where local min-
ima plague the parameter space. Variants of these algo-
rithms deal with the problems presented by local minima
in a variety of ways. A salient feature in designing algo-
rithms such as these is the relative ease of performance
testing and evaluation. In the literature, a set of well-
defined functions, often with one global minimum and
several local minima is available to evaluate the conver-
gence of an algorithm. This allows for simultaneously
evaluating performance as well as the quality of the so-
lutions calculated. We report on a parallel graphical pro-
cessing unit (GPU) implementation of a modified Firefly
algorithm, and the associated performance and quality
of this algorithm. We also discuss spatial partitioning
techniques to dramatically reduce redundant entity in-
teractions introduced by our modifications of the Firefly
algorithm.

Keywords: optimisation; firefly algorithm; GPU;
CUDA; spatial partitioning.

1 Introduction
Research towards metaheuristic optimisation algorithms
has begun as far back as 1975, in which John Hol-
land introduced Genetic Algorithms [1]. Several years
after this discovery, Simulated Annealing followed in
1983, which is inspired by the annealing process in met-
allurgy [2]. It was another 12 years before Kennedy
and Eberhart developed the Particle Swarm Optimiser
(PSO), which lead to the development of the Firefly
Algorithm (FA) by Yang [3], which was introduced in

Figure 1: 65536 fireflies attempting to optimise a 3-
parameter generalised Rosenbrock Function. The global
minimum is at coordinates (1, 1, 1), which is near the
centre of the box. The Rosenbrock function is charac-
terised by a low-lying valley, which is easy to find, but
the minimum inside this valley is more difficult to find.
2008. Yang observed better performance in the Firefly
algorithm than the standard PSO, as did Aungkulanon
and Chai-ead [4]. As can be seen by the great milestones
of computational metaheuristic optimisation, algorithms
in this domain generally share a natural or biological in-
spiration.

Parametric optimisation has been an area of interest for
decades however, with early techniques such as linear
programming. As computational power increased in lat-
ter years, interest and scientific inquiry has increased ex-
ponentially in the search for algorithms to effectively ex-
ploit this computing power. This is even more so with
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Figure 2: A visualisation of a uniform grid datastructure.
the development of multi-core chips and indeed a mas-
sively parallel environment such as NVidia’s Compute
Unified Device Architecture (CUDA). Graphical Pro-
cessing Units (GPUs) [5] have shown excellent ability
in accelerating agent-based simulations, and continues
to impress with newer algorithms.

Problems involving parametric optimisation are plentiful
in the areas of image compression [6, 7], manufacturing
improvement [4], structure design [8], scheduling prob-
lems [9], cryptanalysis [10], object clustering/recogni-
tion [11], economics [12–14], structure design [8, 15],
Antenna design [16, 17], isospectral systems [18] and
more. Generally, in parameter-based optimisation, one
attempts to obtain a vector x with d dimensions (param-
eters) which minimises a scalar-valued function f(x). In
practice, the function f(x) is not normally known. This
makes parametric optimisation very versatile. However,
when evaluating the performance of algorithms such as
these, the function f(x) is known exactly. An example
of this is the Rosenbrock function, given in Equation 1.
For this equation, the global minimum is f(x, y) = 0 for
x = y = 1.

f(x, y) = (1− x)2 + 100(y − x2)2 (1)

To facilitate the evaluation of n-parameter optimisers,
these functions are normally generalised in some way.
For Rosenbrock’s function, a common generalisation is
shown in Equation 2. Similar generalisations exist for
most of the other evaluation functions.

f(x) =

n−2∑
i=0

100(xi+1 − x2i )2 + (1− xi)2 (2)

For the purpose of visualisation, we restricted the num-
ber of parameters to 3. This is a severely limiting at-
tribute in real-world applications, but the visualisation

Figure 3: A surface plot of the 3-parameter Schwefel
function.

of the algorithm is extremely useful.

The Firefly algorithm [3] is a homogeneous, metaheuris-
tic, evolutionary optimisation algorithm, and a recent
addition to the particle-based optimiser family. Macro-
scopic effects of this algorithm is reminiscent of emer-
gence in agent-based systems. It finds several similari-
ties with the standard PSO algorithm, but in the original
article, Yang states that the PSO is simply a special case
of the Firefly algorithm. In nature, the displays of flash-
ing lights from fireflies is associated with mating habits.
This served as the source of inspiration for Yang, who
idealised the biological phenomenon with a few assump-
tions. Firstly, the algorithm would have unisex fireflies
which would be attracted to any other fireflies regard-
less. Secondly, the attractiveness of a firefly must be
essentially proportional to the objective function. For
minimisation problems which we discuss, the attractive-
ness of a firefly is inversely proportional to the objective
function value.

The use of these homogeneous spatial agents involves
each firefly performing a movement calculation based on
a deterministic part and a stochastic part in conjunction
with other spatially local agents. While not always local,
distant fireflies have a degraded influence. Depending on
the parameter count, the parameter space is easily mod-
ified (albeit less able to be visualised).

By making use of what can be seen as the de facto stan-
dard naming convention, the α-step and the β-step, ev-
ery firefly is influenced by every other firefly in a de-
terministic and stochastic way respectively. The α-step
refers to the stochastic space exploration, and the β-step
refers to the deterministic bias towards other fireflies
with better solutions in the parameter space.

As described by Yang, the update formula for any two
fireflies xi and xj is shown in equation 3.
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Figure 4: A surface plot of the 3-parameter Rosenbrock
function.

xi = xi + β0e
−γr2ij (xj − xi) + α(d) (3)

Apart from advancing the firefly based on its previous
position, the equation begins with the β-step. β0 refers
to an attractiveness coefficient, while the exponential
e−γr

2
ij degrades the attractiveness of firefly xj over dis-

tance rij . The second term is the α-step. The α variable
is the random step size, where d refers to a random vec-
tor.

As can be seen from this equation, the algorithm has an
inherent O(n2) complexity, since every firefly xi must
evaluate this equation n times, for every other firefly xj .
This complexity is not normally reduced because of its
scaling problems, but because of diversity loss in fireflies
in the parameter space [19]. There are a handful of al-
gorithms which attempt to rectify this problem, most of
which involve maintaining multiple independent swarms
[19, 20]. Our algorithm differs from these approaches
by very loosely maintaining separate swarms, and al-
lowing full interaction between these swarms. By limit-
ing the interaction distance, we also permit ourselves to
use acceleration data-structures to dramatically increase
performance and hence allow the use of much, much
larger systems which greatly increase accuracy and re-
duces computation time necessary.

Some report that the FA responds well to hybridisation,
especially with algorithms from the realm of artificial
intelligence [19, 21]. As with PSO, the FA does require
tuning, but far less than the standard PSO.

Some popular functions for evaluating the performance
of optimisation algorithms include the Rosenbrock func-
tion, Ackley’s Path function, the Schwefel Function and
the Rastrigin function. Each of these have vastly differ-
ent appearances, and their 3-parameter counterparts are
shown in Figures 2, 4, 5 and 3. For visualisation, these

Figure 5: A surface plot of the 3-parameter Rastrigin
function.

functions are best constrained to 3 parameters (dimen-
sions) or less.

It is important to note that these have very different char-
acteristics. As we observed from our results in Section
3, unimodal and multimodal test functions can have stag-
gering performance implications.

2 CUDA Fixed-Interaction Firefly
Algorithm

There have been various attempts to parallelise swarm
intelligence and particularly the PSO [20,22–24]. A few
of these include CUDA implementations.

Our algorithm differs greatly in two aspects from the
original FA. Firstly, our algorithm can support large
numbers of fireflies due to optimised data-structures.
The second difference is that we impose a maximum in-
teraction distance, which is dramatically smaller than the
values some authors have suggested. In this limited in-
teraction distance, we still degrade attractiveness of fire-
flies that are more distance, but at roughly the same rate
as the original algorithm would. These two differences
go hand-in-hand as the interaction distance allows us to
accelerate the simulation. According to authors who im-
plement multi-swarm modifications in the FA, smaller
interaction distances improves accuracy when there are
local minima to avoid, as is often the case [19].

Following from Equation 3, we first modified the update
to incorporate our smaller interaction distance. This is
shown in Equation 4.

xi+1 = xi + βe−γr
2
ij (xj − xi) + α(d) (4)
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Figure 6: A surface plot of the 3-parameter version of
Ackley’s Path function.
Where we specifically choose γ to be

γ =
1

g2(1 + ln(β))

with g being size of a grid box. This will ensure that the
β step will give less notice to fireflies that are at the edge
of visibility to a particular firefly. In our experience, this
does not seem to provide far better results, but it will
preserve some diversity. Instead of this, for simplicity
and speed, we multiply the β-step with N(r), as defined
below.

N(r) =

{
0 r > m
r r < m

This is very simple, and by choosing a suitable γ, we
need not add extra complexity as indicated above.

When optimising a function, it is beneficial to have as
many fireflies or agents as possible to avoid convergence
to local minima. We are able to simulate large numbers
of fireflies with this algorithm by means of acceleration
data-structures which dramatically reduce redundant en-
tity interactions. We use a method named grid-boxing
parallelised for CUDA (sometimes known as uniform-
grid space partitioning) [25] to localise interactions of
fireflies, in order to improve performance greatly. Our
single-GPU implementation of this algorithm is simi-
lar to the data-structure used by the Particle simulation
shipped with the CUDA SDK [26]. This allows sepa-
rate (yet fully interacting) swarms to search in parallel,
while still allowing complete interaction between these
swarms. The simulation is not initialised with a random
set of independent swarms. Rather, these seemingly sep-
arate swarms spontaneously form as a side effect of us-
ing grid-boxing with a suitably chosen interaction dis-
tance.

Figure 7: 4096 fireflies solving a 3-parameter De Jong
function.

Figure 8: 262,244 fireflies optimising a 3-parameter
Rosenbrock function.

The α-step in the update formula requires a random vec-
tor d. This is a significant problem, considering that
this code executes almost entirely on GPU. Fortunately,
a library named CURAND is available directly from
NVidia, distributed within the CUDA SDK. This library
provides a high performance Mersenne Twistor(MT),
which we use to generate enough d vectors to satisfy the
α-steps for all the fireflies in the simulation There is a
complex tradeoff between quality and raw performance
of random number generators [27], but we believe the
MT is a suitable compromise for both criteria for teh
work reported here.

3 Performance Evaluation
In our performance evaluations, we primarily used an
Intel Core i7 server running at 3.4GHz, configured with
two NVidia GTX 590 graphics cards. The implementa-
tion of the original firefly algorithm was obtained from
[28]. This program includes a hybridised Firefly algo-
rithm, which we did not use in our evaluations. This
modified algorithm by Mancuso modifies the size of the
α step size before every simulation step.
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Figure 9: 262,244 fireflies optimising a 3-parameter
Rosenbrock function.

CPU GPU
Rosenbrock 3D
Time (msec) 368455.2 9488.725
Minimum 0.000071 0.000045
Rastrigin 3D
Time (msec) 367329.1 966.5312
Minimum 1.445014 1.174144
Schwefel 3D
Time (msec) 369934.9 848.6163
Minimum 73.26784 25.47458
Ackley’s Path 3D
Time (msec) 368384.2 949.9359
Minimum 1.138163 3.060646

Table 1: CPU vs GPU Parallel Firefly algorithm in opti-
mising the 3-parameter Rosenbrock function.
To compare algorithms we use the 3-parameter version
of the Rosenbrock function, which is shown in Figure 4.
This function is as follows:

f(x) =
n∑
i=0

100(xi+1 − x2i )2 + (1− xi)2 (5)

In Equation 5, xi refers to parameter i, n refers to the
number of parameters, which in our simulations is set
to a constant 3, so that we can easily view the results.
For this function, the global minimum is f(x) = 0 when
x = (1, 1, 1) when n = 3.

Table 3 contains some performance data for the compar-
ison between the original CPU Firefly algorithm and our
GPU Parallel Firefly algorithm. The data was averaged
over 100 runs. Both the CPU and the GPU parallel algo-
rithms were configured with 4096 particles/fireflies, and
set to run for exactly 600 full simulation steps. Configu-
ration for each of the evaluation functions are shown in

Boundary (min,max)
Rosenbrock 3D -2.0, 2.0
Rastrigin 3D -5.0, 5.0
Schwefel 3D -500, 500
Ackley’s Path 3D -20, 20

Table 2: CPU vs GPU Parallel Firefly algorithm in opti-
mising the 3-parameter Rosenbrock function.
Table 3. The optima for each of the four algorithms is as
follows:

1. Rosenbrock function:
for f(x, y, z), f(1, 1, 1) = 0.

2. Ackley’s Path function:
for f(x, y, z), f(0, 0, 0) = 0.

3. Rastrigin function:
for f(x, y, z), f(0, 0, 0) = 0.

4. Schwefel function:
for (x, y, z), f(420.9, 420.9, 420.9) = 0.

We modified our Schwefel function by adding
3(418.9829) to the function, in order to yield a
minimum of 0.

The algorithms were both configured to randomly dis-
tribute particles in the ranges described in Table 3 in
each parameter range. We removed boundary checks in
the CPU Firefly algorithm to more closely resemble the
implementation of our GPU algorithm, but the CPU al-
gorithm is implemented in double precision, whereas the
GPU algorithm is implemented in single precision. This
makes comparison more difficult, but with the great mar-
gin of performance difference obtained, the differenceb
becomes more pronounced.

The results show a clear difference in performance, both
in computation time, and accuracy of the solution, al-
beit, the latter is not true for Ackley’s Path function.
The accuracy of the algorithm can be attributed to the
difference in interaction distance, making it more resis-
tant to converging to a local minimum instead of the
global minimum. The decreased computation time can
be immediately attributed to the parallel environment.
The local minma of the Ackley’s Path function is not as
pronounced as the Schwefel function or Rastrigin func-
tion, so it seems possible that global interaction is indeed
more suitable for this function. Another consideration is
that all particles in the CPU Firefly algorithm will even-
tually reach the area around the global minimum, which
means there will be more fireflies in that area.

So far we have compared the quality of the optimis-
ers and the performance to some extent, but good per-
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formance is possible to achieve with far less fireflies,
depending on the application (unimodal or multimodal
functions). Our testing revealed that the CPU Firefly al-
gorithm can easily outperform the GPU algorithm with a
simple unimodal function such as the Rosenbrock func-
tion, by simply having 16 fireflies which obtains an error
of less than 0.00005 in approximately 25msec (10-run
average). The GPU counterpart is only effective from
4096 fireflies up, and this takes on a 10-run average
approximately 338msec for an error less than 0.00005.
A clear advantage. However, when facing multimodal
functions such as the Schwefel function, Rastrigin func-
tion and Ackley’s path function with low numbers of
fireflies, the CPU algorithm either fails to achieve the
global minimum, or takes an inordinate amount of time
to compute it (days, weeks).

The GPU algorithm can easily optimise multimodal
functions such as the Schwefel function in a fraction
of the time it would take the CPU algorithm. Roughly
2048 or more fireflies would be needed to ensure the al-
gorithm saturates the parameter space enough to obtain
the global minimum. As seen above, the GPU speed-up
over the CPU firefly algorithm is 39 times for 4096 fire-
flies, this would mean the GPU algorithm is far superior
in multi-modal optimisation, whereas the CPU firefly al-
gorithm is far superior in unimodal optimisation, where
large numbers of fireflies are not necessary. It is diffi-
cult to compare with absolute certainty in meta-heuristic
optimisation, but in our observations, we could not use
the CPU firefly algorithm for optimising the multimodal
functions with less than 2000 fireflies - Schwefel, Rastri-
gin, and Ackley’s Path in reasonable time at all, whereas
the GPU algorithm could optimise all three within one
second.

4 Discussion
Our algorithm seems to perform more accurately and
faster than the original Firefly algorithm. There is how-
ever, a clear difference when comparing multimodal
functions to unimodal functions. The original Firefly
algorithm is very well suited to optimising unimodal
functions, as very few fireflies are required, and frame
calculation times are dramatically lower. However, for
multimodal functions, it is imperative to have a larger
number of fireflies to avoid local minima. This results
in an O(n2) complexity which our algorithm reduces
to O(n log n) and also parallelises. The acceleration
data-structure allows this, thanks to a small modifica-
tion we made to the original firefly algorithm, namely
the smaller and fixed interaction distance.

Using ideas contained within this new GPU algorithm,

it is possible to dramatically increase system sizes, and
efficiently optimise multimodal functions. However, it
is well worth noting that we only discuss 3-parameter
functions in this article. In practice, it is common to find
functions which require hundreds of parameters. The
Firefly algorithm easily adapts to this by simply moving
through n-dimensional space towards other fireflies, and
having an n-dimensional random step. A CUDA imple-
mentation which allows n-dimensional optimisation will
require extra considerations to be made, as it will require
far more storage among others.

We observe that the greater the number of fireflies, the
more likely it is that the global minimum will be ob-
tained. This is certainly the case with Ackley’s Path
function, as the GPU algorithm could only obtain the
global minimum (0) consistently when run with 266,144
fireflies. This serves to saturate the parameter space to
the extent that the global minimum is obtained. It is
noteworthy however, that with 262,144 fireflies, it takes
substantially longer to compute 600 frames, but it is still
within two minutes on average.

5 Conclusions and Future Work
We have presented a GPU-based Firefly algorithm with
a fixed-interaction distance and a uniform-grid acceler-
ation data-structure. We compared this algorithm in ac-
curacy and performance to the original single-threaded
Firefly algorithm, and found a vast performance in-
crease, but only for multimodal test functions. Global
interaction in very few numbers of fireflies could still
outperform the GPU algorithm in a unimodal function
such as Rosenbrock’s function. However, we observed
that the multimodal test functions could only be opti-
mised with the GPU algorithm, and it consistently does
so in less than one second for 4096 fireflies. This is ap-
proximately a 39-fold speedup over the same number of
fireflies simulated by the CPU-based algorithm.

We conclude that for massively multimodal functions
such as the Schwefel function, the GPU algorithm is by
far the better choice. This is especially applicable to
functions which also have geometrically distant global
minima.

In future we will explore methods of effectively par-
allelising this algorithm across several GPUs in order
to increase system sizes with a much smaller computa-
tional cost. We will also aim to support n-dimensional
optimisation problems. These data-parallelisable opti-
misation algorithms show great promise across a range
of complex systems applications.
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Abstract—One of the most important tasks to be performed
by a mobile robot is to find a collision-free and smooth path to
follow. Given a set of initial control points and using a Radial
Basis Function (RBF), a method is proposed, in which is used
the RBF’s property to approximate smooth functions to define
a collision-free and short path. In this paper we formulate the
training technique of an RBF as an optimization problem and
employed Particle Swarm Optimization (PSO) to solve it.

The path planning problem is equivalent to optimize the
parameters of the RBF using a set of trajectory constraints
based on coverage control points as input pattern, which can
be seen as places where is desirable for the robot to explore.
Furthermore, a combined fitness function is proposed with
respect to three requirements: (i) achieve minimum mean square
RBF- function approximation error ; (ii) avoid collisions and
(iii) minimize the length of the obtained path .

Keywords: Path planning, PSO, RBF.
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I. INTRODUCTION

Considerable number of research papers exist in the field of
robot path planning. Classic methods used to solve path plan-
ning include grid based path planning algorithms as the most
commonly used methods [5], [16], [1], [18]. Unfortunately,
even though algorithms like A* and D* are complete (they’ll
always find a solutions if there is one), the paths made by
this algorithms lack of smoothness; the robots will often have
to stop and readjust their trajectory to continue following the
path with every drastic change of direction. For the modeling
of the environment, the map is discretized, by doing this, lots
of solutions may be excluded, and also it could cause non-
smooth paths in algorithms like A*, D* and potential fields.
Furthermore, in the case of potential fields, the algorithm could
be trapped in a local minimum formed by concave obstacles
[1].

Smooth paths are important in robotics because nonholo-
nomic mobile robots are commonly used in practice, so, a
smooth path will be more suitable for such robots because

this kind of paths are more preferable for designing continuous
control algorithms to follow the paths.

New methods based on evolutionary computational methods
have been used recently to solve path planning problems due
to they are relatively simple to implement, they have fast
processing speed, few parameters to be adjusted and good
performance. In addition to the above, it is known that the
path planning problem can be stated as an optimization (multi-
objective optimization) problem and evolutionary computa-
tional methods, for instance genetic algorithms (GAs) were
used in solving the optimization of path planning successfully
[4], [7].

PSO, is a method for optimization of continuous nonlinear
functions, created by James Kenedy and Russell Eberhart
in 1995 [9]; inspired by the social behavior of bird flocks
and school of fishes. In PSO, each individual would be the
equivalent of a bird on a flock, each ’bird’ is named ’particle’,
and the ’flock’ is called a ’swarm’. A particle is analogous to
a chromosome in Genetic Algorithms.
Compared to other Evolutionary Algorithms, classic PSO has
no crossover and mutation calculation, actually this is one of
the things that makes it really easy to implement. PSO only
evolve their social behavior and accordingly their movement
towards the best solutions [3]. The search can be carried
out by the speed of the particle during the development of
several generations, and only the most optimist solution can
pass their information over iterations.

The main properties of collective behavior, are a few of
the characteristics that make algorithms based in swarm
intelligence so effective [15]:

• Homogeneity: Every particle in the swarm has the same
behavioral model. The swarm moves without a fixed
leader, even if a temporary leader appear.

• Locality: Its nearest swarm mates only influence the
motion of each individual.

• Collision Avoidance: Avoid colliding with nearby swarm
mates.
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• Velocity Matching: Attempt to match velocity with
nearby swarm mates.

• Flock Centering: Attempt to stay close to nearby swarm
mates.

PSO has proven to have good results in path planning
to perform obstacle avoidance [8], [17], [14]. An algorithm
for path planning for mobile robot using PSO with mutation
operator is proposed in [12]. Its strategy consists in three steps:
First the MAKLINK graph is built to describe the working
space of the mobile robot. Then, the Dijkstra’s algorithm
is used to obtain a sub-optimal path and finally PSO is
adopted to get the optimal path. In order to generate enough
particles in PSO, it has to be chosen a parameter ti ∈ [0, 1]
for each free-link in the MAKLINK graph. A free-link is
defined as a line whose two ends are either corners of two
obstacles or one of them is a corner and the other is a
point on a working space boundary wall. Therefore, complex
environments containing large number of obstacles mean great
increase in the complexity of the whole path planning system.
Besides, the mutation operator used to avoid local minimum
problems consists in a random strategy and it does not make
good use of the evolution of population and this approach
produces non-smooth paths.

In 2010, an algorithm of improved PSO was applied in
mobile robotic path planning [10]. This approach proposes
a grid method to model the path space which results in
nonsmooth paths, it also includes mutation and crossover
operators in order to avoid local minimum. But in addition
to avoidance of local optimum these two steps add to PSO
algorithm computational complexity.

A smooth path planning of a mobile robot using Stochastic
PSO is implemented in [2]. It uses a kind of cubic spline in
which coefficients are trained with PSO in order to produce
smooth paths. The fitness function with respect to obstacle
avoidance makes necessary to know each center of each
obstacle in the environment, as well as the calculation of
critical points defined as points on the trajectory that are at
the minimum distance to an obstacle. So, the fitness function
includes these calculations for each one of the M obstacles in
the environment.

In this paper it is proposed an approach using Particle
Swarm Optimization (PSO) technique to train a Radial Basis
Function Network (RBF) used to solve a function approxi-
mation problem in order to obtain a smooth path of a mobile
robot through an environment containing static obstacles. RBF
networks were chosen to be trained with PSO to meet the
following objectives: 1) to keep relatively simple the imple-
mentation of the path planning system and therefore 2)to get
an efficient path planner and 3) To obtain smooth paths making
use of their excellent capabilities as function approximators.

Next two sections, II, III show the methods which comprise
the path planner system. Section IV describes the particle mod-
eling and the fitness function implementation. Last section, V
is devoted to show the simulation results and parameter tuning
of the PSO-RBF path planning algorithm.

II. PARTICLE SWARM OPTIMIZATION, PSO

PSO exploits a population of potential solutions, each
solution consists of a set of parameters, representing a point
in a search spaceA ⊂ <n. The population of solutions is
called swarm and each individual from a swarm is called a
particle. A swarm is defined as a set of N particles. Each
particle i is represented as a D-dimensional position vector
xi(t). The particles are assumed to move within the search
space A iteratively. This is done by adjusting their position
using a proper position shift, called velocity vi(t).

Each iteration t, the velocity changes by applying equation
(1) to each particle.

vi(t+1) = ωvi(t)+c1ϕ1(Pibest−xi)+c2ϕ2(Pgbest−xi), (1)

where ϕ1 and ϕ2 are random variables uniformly distributed
within [0,1]; c1 and c2 are weighting factors, also called the
cognitive and social parameters, respectively; ω is called the
inertia weight, which decreases linearly from ωstart to ωend

during iterations. Pibest and Pgbest represent the best position
visited by a particle and the best position visited by the swarm
till the current iteration t, respectively.
The position update is applied by equation (2) based on the
new velocity and the current position.

xi(t+ 1) = xi(t) + vi(t+ 1). (2)

The basic algorithm is as follows:

1) Initialize each particle of the swarm, with random values
for position and velocity in the search space.

2) Evaluate member of the swarm with the fitness function.
3) Compare the value obtained from the fitness function

from particle i, with the value of Pibest. If the value of
the fitness function is better than the Pibest value, this
new value takes the place of Pibest.

4) If the value in Pibest is better than Pgbest, then Pgbest =
Pibest.

5) Modify the velocity and position of the particles using
equations (1) and (2), respectively.

6) If the maximum number of iterations or the ending
condition isn’t achieved, return to step 2.

To solve the uncontrolled increase of magnitude of the
velocities (swarm explosion effect), is often used to restrict
the velocity with a clamping at desirable levels, preventing
particles from taking extremely large steps from their current
position [11].

vij(t+ 1) =

{
vmax ifvij(t+ 1) > vmax,

−vmax ifvij(t+ 1) < −vmax

Although the use of a maximum velocity threshold improves
the performance, by controlling the swarm explosions,
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without the inertia weight, the swarm would not be able to
concentrate its particles around the most promising solutions
in the last phase of the optimization procedures; even if a
promising region of the search space would be detected, no
further refinement would be able, with the particles oscillating
on wide trajectories around their best positions [11].

III. RADIAL BASIS FUNCTIONS

The structure of an RBF neural network consists on three
layers [13], as seen in Fig. 2:

• The input nodes layer.
• The hidden neuron layer, that provides a nonlinear trans-

formation from the input through RBFs.
• The output layer, is the linear combination from the

outputs from the hidden layer.

When a RBF neural network is used to perform a complex
pattern classification task, the problem is basically solved
by first transforming it into a high dimensional space in
a nonlinear manner and then separating the classes in the
output layer. The underlying justification is found in Cover’s
theorem on the separability of patterns, which, in qualitative
terms, may be stated as follows:

A complex pattern-classification problem, cast in a high-
dimensional space nonlinearly, is more likely to be linearly
separable than in a low-dimensional space, provided that the
space is not densely populated.

From Cover’s theorem, we can state that a non linear
mapping is employed to transform a nonlinearly separable
classification problem into a linearly separable one with high
probability.
The neural network is designed to perform a nonlinear map-
ping from the input space to the hidden space, followed by a
linear mapping from the hidden space to the output space [6].
The radial basis equation for interpolation consists in selecting
F as:

F (x) =
N∑
i=1

wiϕ(‖ x− Ci ‖), (3)

ϕ(r) = exp(− r2

2σ2
). (4)

Where,

• ϕ() : Is the set of N nonlinear functions, known as
radial basis. Equation (4) is a gaussian function, but there
are other type of RBFs like multicuadratics and inverse
multiquadratics.

• wi : Represents the weight of the connection between the
neuron i from the hidden layer with the output layer.

• ‖‖: Represents the euclidean norm.
• Ci : Are the centers of each of the gaussian functions;

where Ci ∈ <p, i = 1, 2, 3, ..., N.

Fig. 1. Set of gaussian functions that conform the RBF neural network output

Fig. 2. RBF Neural Network Structure

• σ2 : Represents the variance.
• x : Is the input signal.

IV. PARTICLE DESCRIPTION AND FITNESS FUNCTION

Path planning for car-like mobile robots can be realized
through a search space of functions [7], [8]. In this case we
reduce the space to a sub-space of RBFs.
Usually, RBFs are trained by algorithms like k-means and
a totally supervised learning method; but by using PSO we
substitute this phases.
Each particle in the swarm is composed by the Ci, σ2 and wi
parameters to be used by the RBF function, to approximate
a function that passes by a predefined set of points; this
set of points is taken as the RBF input points for the input
nodes layer. They represent trajectory constraints, i.e. coverage
control points can be seen as places where is desirable for the
robot to explore in the environment.

The input points are not fixed, excepting for the first and
the last point, that are the start and goal points respectively;
actually they vary randomly with each PSO iteration in a
range of 1 map state, in any direction respect to the first
set of input points; this helps to make the obstacle avoidance
easier, especially when one of the points is near an obstacle
and it transform the problem from interpolation to function
approximation.
What defines the efficiency of PSO is the fitness function
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(aside of the parameters tuning). We must find a fitness
function that allows to find a collision free path for the mobile
robot to follow.
The global minimum should correspond whit a smooth and
safe (collision free) trajectory, and an unsafe trajectory should
be penalized by the fitness function.
For this approach, the following fitness function was designed:

f = RMSE +
l

sf
+ c (5)

Where RMSE is the root mean square error (equation (6)),
l is the length of the path (equation (8)), sf is a scaling
factor (so that the length of the path could have more or
less influence on the final result) and c (equation (10)) is
the collision variable (it takes a higher value proportional to
the number of states that a path crosses that are occupied by
obstacles or near them).

RMSE(f) =

√∑n
k=1(ek)

2

n
(6)

ek = yk − f(xk), where f(xk) ≈ yk. (7)

l =
n−1∑
k=1

√
(xk+1 − xk)2 + (f(xk+1)− f(xk))2 (8)

S = {(x, y)|(x, y) ∈ obstacles range} (9)

c =
∑

fm(s) where s ⊆ S (10)

H =


0.0001 0.0006 0.0012 0.0006 0.0001
0.0006 0.0049 0.0099 0.0049 0.0006
0.0012 0.0099 0.0200 0.0099 0.0012
0.0006 0.0049 0.0099 0.0049 0.0006
0.0001 0.0006 0.0012 0.0006 0.0001



Max(fm(s)) = 0.02| it′s an obstacle. (11)

Min(fm(s)) = 0.0001| barely in the obstacle range. (12)

The s value from equation (9) is the set of points in the
range of an obstacle crossed by the path. As was mentioned
before, the map is discretized, so a value is assigned to
each state that is within a certain range from an object, like
mentioned in (11) and (12), and zero if it’s out of range; for
this case, the gaussian mask H was used to define the values
of the map fm following the next pseudocode:

for obstacle = 1→ |S| do
(x, y)← S(obstacle)
for j = −2→ 2 do

for i = −2→ 2 do

fm(x+ i, y+ j)←MAX(fm(x+ i, y+ j), H(i+
3, j + 3))

end for
end for

end for

V. SIMULATION RESULTS

For all the tests a swarm with 40 particles was used, and the
stop condition is that the number of iterations is t=100; each
test was repeated 100 times and the average was obtained;
the results can be seen in Table I. One first comparison
was made between the MSE obtained from the approximated
function obtained by this approach against the MSE obtained
by MATLABs RBF neural network newrb; as seen in the table,
the results obtained were favorable by a good margin.
Also the results illustrated in Figures from 3 to 7, show good
results for the path planning problem, all the paths are collision
free, pass through or acceptably near all the control points and
it is obtained smooth paths for a mobile robot to follow.
It is important to note that approaches like Maklink-graph
mutation PSO [12] can not deal with environments with
concave obstacles, like the one showed in Fig. 4. If the
navigation environment contains concave obstacles it would
be necessary to compute something like convex hull of each
one of them in order to produce the MAKLINK graph. This
step will add complexity to the path planning system.

All the PSO adjustable parameters, where heuristically
selected, of which were selected the next values as the set
of parameters that gave the best results: c1 = 2, c2 = 2.5,
vmax = 0.15, ωstart = 1 and ωend = 0.0005.
The value of sf in the fitness function was selected also
heuristically, for this case sf = 37; the value has to be high
to prevent the dominating influence of the length in the fitness
function, with smaller values the fitness function would favor
the shorter paths instead of the paths that pass through the
control points and avoid obstacles.
By giving c2 a higher value than c1 we are biasing the
particles search ability towards Pgbest.
The inertia weight ω reduces the perturbations that make
the particles walk away from promising positions, the best
positions require strong attraction to refine the search results.
A value bigger than 1 in ωstart = 1 would make the particles
spread more in the search space, making them to reach further
positions, but it will take longer for the particles to converge
in a promising region as ωend tends to approximate ωstart.
But also selecting a value higher than 1 form ωend would
make it difficult for the particles to converge faster.

Map showed in Fig. 8 was used to compare PSO-RBF
approach against Maklink graph-Mutation PSO [12] for path
planning. Map showed in Fig. 8 includes some coverage
control points as blue squares. All the obstacles are modeled
as convex polygons and therefore the Maklink graph-Mutation
PSO can be applied to find optimal paths. As mentioned
in Section I the strategy consists in three steps: First the
MAKLINK graph is built to describe the working space of

Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  | 87



TABLE I
MSE VALUES OBTAINED FROM AN RBF TRAINED WITH PSO AND

MATLAB’S RBF (NEWRB)

MSE

RBF trained
with PSO

RBF (MAT-
LAB newrb)

Map 1 1.4236e-04 0.0395139

Map 2 0.0053 0.08875

Map 3 8.5718e-005 0.0738776

Map 4 4.9906e-004 0.065

Map 5 0.0176 0.0726276

Fig. 3. Simulation Results from Map No. 1. Initial coverage control points
of the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

Fig. 4. Simulation Results from Map No. 2.Initial coverage control points of
the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

the mobile robot. Then, the Dijkstra’s algorithm is used to
obtain a sub-optimal path and finally PSO is adopted to get
the optimal path. In order to generate enough particles in PSO,
it has to be chosen a parameter ti ∈ [0, 1] for each free-

Fig. 5. Simulation Results from Map No. 3.Initial coverage control points of
the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

Fig. 6. Simulation Results from Map No. 4.Initial coverage control points of
the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

link in the MAKLINK graph. A free-link is defined as a line
whose two ends are either corners of two obstacles or one of
them is a corner and the other is a point on a working space
boundary wall. Fig. 9 shows the MAKLINK graph generated
from map in Fig. 8. Maklink graph-Mutation PSO was forced
to take into account coverage control points by making that
Dijkstra’s algorithm looked for the sub-optimal path into the
set of free links that pass on (or near of) these control points.
The resulting sub-optimal path includes D = 17 free links
and ti ∈ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. All the steps
mentioned above make the computational complexity of the
Makling graph-Mutation PSO algorithm grows with respect
to the number of obstacles in the environment. Large number
of obstacles generates MAKLINK graph with large number of
nodes and edges and therefore it makes the Dijktra’s algorithm
takes long time to run. Nevertheless, the path obtained with
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Fig. 7. Simulation Results from Map No. 5. Initial coverage control points
of the trajectory are illustrated as blue squares, meanwhile final control points
on which obtained trajectory passes on are shown as yellow squares. Smooth
and collision free trajectory is obtained regardless of the concavity of the
obstacles or the number of these.

this approach is the shortest one that covers (or pass near of)
all the control points.

On the other hand, Fig.11 shows the path obtained with the
path planner proposed in this paper. This path was obtained
with a swarm with 40 particles, evolved by 100 iterations.
Although this path is not the shortest one, it is a smooth
path easy to be followed by a nonholonomic robot, and our
approach needs fewer particles than Maklink graph approach
which makes the last one of these, slower than PSO-RBF when
the number of obstacles in the environment are numerous and
the coverage control points are used.

All simulations were executed in a computer with Windows
7, Intel Core i5, 2.4 GHz, 4 GB RAM, Matlab 2009a.
Maklink graph-Mutation PSO algorithm and PSO-RBF algo-
rithm evolved 40 particles with 100 iterations. First approach
mentioned took a total time for getting the final path showed in
Fig. 10 of 40.56s, considering all the steps of the approach,
since the generation of MAKLINK graph to the training of
PSO. Meanwhile our approach took 8.39s to get the path
showed in Fig.11, although it is not the shortest path is a
smooth path which is much easier to follow for a mobile
nonholonomic robot than the one showed in Fig.10.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an approach to solve the path planning
problem as an optimization problem using the RBF networks
trained with PSO algorithm. A set of trajectory constraints
based on coverage control points as input pattern, which
can be seen as places where is desirable for the robot to
explore were used to approximate functions with PSO-RBF
approach, in order to obtain smooth and collision-free
paths. Furthermore, a combined fitness function is proposed
with respect to three requirements: (i) achieve minimum
mean square RBF- function approximation error ; (ii) avoid
collisions and (iii) minimize the length of the obtained path .

Fig. 8. Map with convex obstacles and coverage control points showed as
blue squares.

Fig. 9. Maklink graph generated from map showed in Fig.8

Results in simulation environments show that our approach
obtains smooth and collision free trajectories regardless of
the concavity of the obstacles or the number of these taking
advantage of the using of coverage control points as trajectory
constraints.

Future work includes the development of an hybrid al-
gorithm which combines PSO-RBF with some PSO-based
obstacle avoidance methodology in order to solve motion
planning in dynamic environments

REFERENCES

[1] J. Barraquand, B. Langlois, and J.C. Latombe. Numerical potential field
techniques for robot path planning. Systems, Man and Cybernetics, IEEE
Transactions on, 22(2):224–241, 1992.

[2] Xin Chen and Yangmin Li. Smooth path planning of a mobile robot
using stochastic particle swarm optimization. In Proceedings of the
IEEE International Conference on Mechatronics and Automation, pages
1722–1727, Luoyang, China, 2006.

Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  | 89



Fig. 10. Path obtained with Maklink-graph mutation PSO approach. This
path was obtained with Maklink-graph, Dijkstra’s algorithm and evolving 40
particles with PSO in a total time of 40.56s. The path obtained with this
approach is the shortest one that covers (or pass near of) all the control points.

Fig. 11. Smooth Path obtained with PSO-RBF approach. It was obtained
evolving 40 particles in a total time of 8.39s.

[3] E. Elbeltagi, T. Hegazy, and D. Grierson. Comparison among five
evolutionary-based optimization algorithms. Advanced Engineering
Informatics, 19(1):43–53, 2005.

[4] M. Gerke. Genetic path planning for mobile robots. In Proceedings
of the American Control Conference, pages 2424–2429, San Diego
California, 1999.

[5] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107, 1968.

[6] S.S. Haykin. Neural networks and learning machines, volume 3.
Prentice Hall, 2009.

[7] Y. Hu and S. X. Yang. A knowledge based genetic algorithm for path
planning of a mobile robot. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pages 4350–4355, New Orleans,
2004.

[8] M. Hua-Qing, Z. Jin-Hui, and Z. Xi-Jing. Obstacle avoidance with
multiobjective optimization by pso in dynamic environment. In Proceed-
ings of International Conference Machine Learning and Cybernetics,
volume 5, pages 2950–2956, Luoyang, China, 2005.

[9] James Kennedy and Russell C. Eberhart. Particle Swarm Optimization.
In Proceedings of IEEE International Conference on Neural Networks,
volume 4, pages 1942–1948, Washington, DC, USA, November 1995.
IEEE Computer Society.

[10] Wei Li and Gai-Yun Wang. Application of improved pso in mobile
robotic path planning. In Proceedings of the International Conference
on Intelligent Computing and Integrated Systems (ICISS) 2010, pages
45–48, Guilin, 2010.

[11] K.E. Parsopoulos and M.N. Vrahatis. Particle swarm optimization and
intelligence: advances and applications. Information Science Reference,
2010.

[12] Yuan-Qing Qin, De-Bao Sun, Ning Li, and Yi-Gang Cen. Path planning
for mobile robot using the particle swarm optimization with mutation
operator. In Proceedings of the Third International Conference on
Machine Learning and Cybernetics 2004, pages 2473–2478, Shanghai,
2004.

[13] E. N. Sánchez and A. Alanis. Redes neuronales: conceptos fundamen-
tales y aplicaciones a control automático. Cinvestav Unidad Guadalara.
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Abstract- The paper provides a new approach to Call 
Admission Control (CAC) problem using Artificial Bee 
Colony (ABC) optimization algorithm. This paper 
formulates CAC problem as a constrained optimization 
problem, where the primary objective is to minimize the call 
drop under dynamic condition of the mobile stations, 
satisfying the constraints to maximize the channel 
assignment and minimize the dynamic traffic load in the 
network. The performance of the ABC algorithm is 
compared to DE in connection with the CAC problem and 
the experimental results reveal that the ABC outperforms 
DE in all the experiments. 
 
Keywords- call admission control; feasibility; hotness; 
quality of service; artificial bee colony optimization. 
1  INTRODUCTION  

With the evolution of mobile communication, the types 
of services have been evolved from voice service to 
multimedia. As a large number of bandwidths are required 
for multimedia services for wireless cellular networks, the 
most important issue is to support Quality of Service (QoS) 
for subscribers. There has been a rapid development in 
wireless cellular communications, in which QoS guarantee 
remains one of the most challenging issues. One of the key 
elements in providing QoS guarantees is an effective Call 
Admission Control (CAC) policy, which not only has to 
ensure that the network meets the QoS of the newly arriving 
calls if accepted, but also guarantees that the QoS of the 
existing calls does not deteriorate. An efficient call 
management also aims at satisfying additional objective to 
assign appropriate channels to the incoming/handoff calls, so 
that the necessary soft constraints for channel assignment are 
maintained. Typically, soft constraints include co-channel, 
co-site, and adjacent channel constraints, all of which need to 
be satisfied to serve the secondary objective. CAC systems 
are mainly used to take decisions, whether a call should be 
serviced, blocked or dropped by a Base Station, and if 
serviced, it identifies the channel to be assigned to that call. 
At the time of taking such decision, the interference is 
considered the only factor in most of the current literature [1, 
2]. 

In this paper, we propose a scheme that takes a more 
wide view of the CAC problem. We here use three 
parameters:  i) speed, ii) direction, and iii) distance of the 
MS from the nearest base station to model the motion of the 
mobile station. The above three parameters play an important 
role at the time of soft handoff of a call from one cell to 
other. The importance can be explained with the help of 

Fig.1, where the central cell has six neighbors. The MS in 
such a cell while in service may move in various directions 
with different speed. If it moves toward cell 5 or 6 directly 
then the channel for handoff will be searched in those cells. 
When it moves slowly along the common boundary of cell 5 
and 6, the cell with base station nearer to the current location 
of MS is considered. Again, if the above movement takes 
place with a very high speed, then the call may be dropped 
due to high interference. Suppose, it moves towards cell 2 
very slowly, then there may not be a requirement for a soft 
handoff at all since it may never cross the existing cell 
boundary. Hence, we aim at searching an optimal set of 
assignment, which will take care of the quality of service, 
and the velocity aspect of the scheme. 

In this paper, we propose a CAC scheme that employs 
Artificial Bee Colony (ABC) optimization algorithm. The 
ABC technique is a population based algorithm for 
numerical function optimization that draws inspiration from 
the stochastic behavior of foraging in bees [3, 6, 7]. We here 
apply the algorithm to the call admission control problem. 
Although any stochastic optimization algorithm, such as 
genetic algorithm (GA), particle swarm optimization (PSO), 
differential evolution (DE) and the like could have been 
used for the problem, we have selected ABC because of its 
faster convergence and qualitative time-optimal solution [8]. 
It has also been verified in the paper that ABC has 
outperformed DE in allocating channels dynamically in all 
the different types of settings of velocity. 

Section 2 explains the formulation of CAC in light of the 
mobility of the MS and changing traffic load. Here in the 
beginning all the terms are defined and symbolized 
properly. Then in the next sub section the formulation for 
fitness evaluation is undertaken. Section 3 gives a detail 
outline of the artificial bee colony optimization algorithm. 
Section 4 states the algorithm together with all the 
operations done in it. Section 5 provides the simulation 
results with an explanation of them. Conclusions are listed   
at the end of section 6. 
2 FORMULATION OF THE PROBLEM 

2.1 Definitions 
 We consider a system of M hexagonal cells present in 

the network and each of them has N number of frequency 
channels. The maximum number of calls that can be 
serviced is given by Call. In CAC we need to find out the 
best allocation of calls in different cells which is usually 
represented by an allocation matrix. In this paper, we plan to 
select the appropriate allocation matrix online, so as to 
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satisfy given objective function and systems constraints to 
be introduced later. The knowledge of calls assigned to 
channels in any cell is a very important to measure the 
feasibility of assigning the new calls satisfying the soft 
constraints. 
 

 
                   1  
 
      2                       6  
 
                        MS 
     3                        5  
 
                   4  
 
 
Definition 1: Let F= [fi, m], ,, NmMi   be a binary 

matrix describing allocation of channels in given cells, where  

 
                         free. is cell  i in the channel m  theif    ,0
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Example: An example of a 4x3 allocation matrix where there 
are 4 cells and 3 channels is given as 
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This implies that the 2nd channel of the 1st cell is serving 
a call and rest of the channels is free. 

 
Definition 2: Let assignment matrix 

A=   ,,,, CallmMia mi   be a matrix describing the 
assignment of calls to the channels of a cell, where 

i cell in callm the to assigned channel of number the is p  wherepa th
mi ,, 

Example:  Let there be 10 calls in the network with 4 cells 
and 3 channels. Then  
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We can see that the 1st call is served by the 1st channel 
of the 1st cell, the 2nd call by the 2nd channel of 3rd cell, 3rd 
call by the 1st channel of 2nd cell and so on. 

While allocating the calls to the channels we should 
maintain the QoS in terms soft constraints which ensure that 
the new call assignment do not have any interference with 
the existing calls assignment in the neighboring cells or in 
the same cell. In this paper, we measure the QoS as a 
function of three important network attributes: feasibility, 
hotness and motion of the MS. The feasibility of channel 
assignment is often expressed as linear combination of 
allocation and compatibility matrices.  

 
Definition 3: The compatibility matrix C  gives a 

measure of satisfaction of the soft constraints, attempted to 
minimize co-channel, co-site and the adjacency-channel 
interference, whose non-diagonal and diagonal elements are 
expressed by 
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Example:  A compatibility matrix in a 4 cell network is as 
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Definition 4: Speed V= [vi, p] in the present context refer 
to rate of position changing of a MS busy with a call utilizing 
a channel p in cell i. 

 Example: 
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Definition 5: Distance of MS j from the BS i i M is 

denoted as Dis = [dist i, j]. 
Example: ddist ji,   where d is the distance of the MS 

from BS as in Fig. 2. 
 
 
                                                                 .     
 
   
Fig. 2. Distance between BS and MS 
 
Definition 6: Hotness of a cell is defined as the number 

of incoming calls per unit time and is denoted as H= [hi]. If 
the number of incoming calls becomes very high the limited 
resource of the system will not be able to handle the 
incoming calls and thus subsequent new calls will be 
blocked.  

Example: Hotness in a 4-cell scenario where maximum 
number of incoming calls is 10 can be given as 

   58102][  ihH              
 
Definition 7: Angle of motion is the angle made by the 

direction of motion of a MS p with respect to the BS i and is 
denoted by Delt = [i, p], and is illustrated in Fig. 3. It shows 
the direction in which the MS is moving and hence the 
search for cells with free channels becomes easier. 

 
 
 
 

 
 
 

 
 
Fig. 3. Angle of motion 

 
Time taken by each call is useful for finding out the calls 

going for a very long time. At the time of high congestion, 
these calls are dropped to free the channels for reuse. 

d BS 

MS 

Fig.1  illustrating the need to consider speed in a given 
mobile cellular network. 

MS p BS i 

 pi,  

Fig.1. Illustrating the need to consider speed in a given mobile cellular network 
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2.2 Formulation 
Let the time taken by each call in a given channel p, of 

each cell i is denoted by Ti, p. If vi,p be the speed with which 
an MS is moving in any direction, then, its velocity along 
that direction is pipiv ,, cos . Again if jpdist ,  be the distance 

traversed by the MS in time piT , then average probability 
of capturing that MS is denoted as PCMS and is given by 

          
 


p jp

pipipi

dist
T v

,

,,,
CMS

cos
P


                       (1) 

An increase in the value of the above expression is 
created by a high range of velocity, which gives very little 
time to search a new channel and to go for a soft hand off 
(SHO). Hence it should be minimized.  

The difference between the two calls in the two different 
channels should be at a minimum distance to avoid the 
interference described as soft constrains above. The 
feasibility of assignment of calls in a cell i can be checked by 
satisfying inequality (2).The condition demands that the 
channel separation should satisfy the bare minimum value 
obtained from compatibility matrix and is denoted by Feas. 

   jiC
m n i njamiajFeas 

i jiC 
m n i njamia     0)),|,,(|(,))|,,(|(     

(2) 

It follows from the last inequality that smaller the value 
of the left hand side, lesser is the interference and thus better 
is the quality of service of the call assigned to the channel. 

The traffic load in a cell is an important issue to 
determine the possible admission of incoming calls in a 
given cell. Traffic load in the cell i may be expressed as the 
ratio of incoming calls and the total free channels of the cell.  
We define a metric to measure the traffic load in a given cell 
i, denoted as Load and is given by 
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h
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)1( ,

                                    (3) 

Hence the traffic load is the more if the number of 
incoming calls exceeds considerably than the free cells in the 
system and starts affecting the overall system performance. 
Hence this is also to be minimized. 

Since expressions (1), (2) and (3) all need to be 
minimized, a minimization of their linear combination offers 
an objective that jointly satisfies all the three basic 
objectives. The overall objective function, the minimization 
of which yields a possible solution to the call admission 
problem, is given by  
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                               (4) 
The lower the value of the function better is the 

performance of CAC system. Hence, the fitness is defined as 
)1(1  Zfit                                                               (5) 

 Here we also define the difference of fitness Z as 

parentoffspring ZZZ                                              (6) 

3 ARTIFICIAL BEE COLONY OPTIMIZATION 
ALGORITHM (ABC) 

In ABC algorithm, the colony of artificial bees contains 
three groups of bees: 
 Onlooker bee makes decision to choose a food source. 
 Employed bee goes to the food visited by it previously.  
 Scout bee carries out random search of food source. 

Here, the position of a food source represents a possible 
solution of the optimization problem and the nectar amount 
of a food source corresponds to the fitness of the associated 
solution. The number of employed bees and onlooker bees is 
equal to the number of solutions in the population ABC 
consists of following steps: 

 
3.1   Initialization 

ABC generates a randomly distributed initial population 
P (g=0) of Np food source position where Np denotes the 
size of population. Each solution Xi (i=0, 1, 2,…, Np-1) is a 
D dimensional vector.  
 
3.2 Placement of employed bees on the food sources  

An employed bee produces a modification on the 
position in her memory depending on the local information 
(visual information) as stated by equation (8) and tests the 
nectar amount of the new source. Provided that the nectar 
amount of the new one is higher than that of the previous 
one, the bee memorizes the new position and forgets the old 
one. Otherwise she keeps the position of the previous one in 
her memory. 

 
3.3 Placement of onlooker bees on the food sources  

An onlooker bee evaluates the nectar information from 
all employed bees and chooses a food source depending on 
the probability value associated with that food source, pi, 
calculated by the following expression: 

             





 1

0

Np

j
j

i
i

fit

fit
p                                     (7) 

where fiti is the fitness value of the solution i evaluated by its 
employed bee. After that, as in case of employed bee, 
onlooker bee produces a modification on the position in her 
memory and checks the nectar amount of the candidate 
source and memorizes the better position only. 

In order to find a solution  Xi
/ in the neighborhood of 

food source Xi, a solution parameter j and another solution 
Xk are selected on random basis. Except for the value of 
chosen parameter j, all other parameter values of  Xi

/ are 
same as in the solution Xi, for example, 

Xi
/= (xi0, xi1, xi2, …, xi(j-1), xij

/, xi(j+1), …, xi(D-1)). 
The value of xij

/ parameter in  Xi
/  solution is computed 

using the following expression: 
).(/ xxxx kjijijij u                                (8)  

where u is a uniform variable in [-1, 1] and k is any number  
between 0 to Np-1 but not equal to i. 

3.4 Send scouts for discovering the new food sources  
In the ABC algorithm, if a position cannot be improved 

further through a predefined number of cycles called ‘limit’, 
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the food source is abandoned. This abandoned food source is 
replaced by the scout by randomly producing a position. 

   After that again steps (B), (C) and (D) will be repeated 
until the stopping criteria is met. 

 
4 CAC REALIZED WITH ABC 

Here, we propose a CAC algorithm which ensures 
minimization of call drop and noise. We use ABC to ensure 
the optimization. 
Pseudo Code: 
Input: Compatibility matrix C and hotness H for a network of M 
cells, each with N channels and a threshold value . 
Output: Allocation matrix F for the network. 
Begin 
 Repeat Until  Z  
           Call ABC (C, H) 
End. 
 
Procedure ABC (C, H) 
Begin 
  Initialize all the food sources Xi  satisfying condition (2) with 

trial[i]=0 for i = [0, Np-1], and problem parameters as well as 
algorithm parameters like “limit”. 

  Evaluate the fitness fit (Xi), i using (4) and (5) . 
  For Iter=1 to Maxiter do 
   Begin 
    For each employed bee 
     Begin 
      Produce a new solution Xi

/ from (8); 
       Calculate its fitness value  fit (Xi

/) using (4) and (5); 
       If  fit (Xi

/)> fit (Xi) Then   Xi  Xi
/; trial[i]=0; 

       Else  trial[i]= trial[i]+1;       
        End If; 

End For; 
For each onlooker bee 
Begin 

Select the food source Xi depending on pi as in (7);  
Produce new solution Xi

/ using the same (8); 
Calculate its fitness value fit (Xi

/) using (4) and (5); 
        If  fit (Xi

/)> fit (Xi) Then   Xi  Xi
/; trial[i]=0; 

        Else  trial[i]= trial[i]+1;       
        End If; 

End For; 
    Memorize the best solution  Xbest obtained so far; 
    Set index arg (max (trial[0], trial[1],…, trail[Np-1])); 
    If trial[index]>limit Then reinitialize  Xindex by scout bee; 
    End If; 

End For; 
  Update: F  Xbest ; 
Return. 
 

5 EXPERIMENTS AND RESULTS 

5.1 Basic assumptions 
In this experiment we have considered the following 

assumptions: 
 The network has 21 hexagonal cells and 7 channels as 

shown in Fig. 4. 

 The value of  
o Co-channel distance is 2 
o Adjacency channel distance is 3 
o Co-site distance is 4 
 The number of incoming calls lies in the range 0 to 150 

and changes dynamically. 
 Initial population size was taken as 20. 
 The velocity change was from 0 to 120 km/hr. 
 The distance between two base stations is 2 km and 

remains unchanged. 
 The calls are considered long if they go on more than 30 

minutes. 
 The direction of the MS, its distance from the base station 

and velocity changes dynamically. 
In addition to these, we consider the random call hang-up 

in the system and express this phenomenon as Change. 
Suppose in a given cell r, a call served with channel c is 
disconnected by the caller. Then following the definition of 
allocation matrix F, we understand that the element fm,l = 0 
for m= r and l=c, after disconnection of the call. 

 
i.e., cl r,m      where0,  f lm ,                                   (9) 
We have considered minimum two such hang-ups in the 

network. Accordingly random positions are generated where 
Change is done as described above. A call is forcefully 
terminated if the duration of the call is greater than Long call 
interval L. The initial conditions and necessary changes of 
the dynamic network are enforced obeying the above stated 
assumptions.  

5.2 Results 
The experiment was carried out on a simulated 

environment on Intel Core 2 Duo processor architecture 
with clock speed of 2GHz. Fig. 5 shows that the average 
cost function value gradually diminishes with iterations. 
Further, it is noted that the smaller the velocity settings of 
the mobile stations in program run, the faster is the fall off 
in the average cost function profile. An intuitive 
interpretation of this phenomenon is that with increase in 
velocity i.e., a high rate of change in position of the MS, 
more constraints are faced to allocate channels to the MS, 
thereby increasing average cost function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.4. Network of 21 cells 

2 
100 

3 
28 

5 
24 

1 
70 

 

4 
23 

7 
55 

8 
79 

10 
90 

6 
35

  

9 
103 

14 
75 

15 
20 

17 
30 

13 
85 

16 
49 

20 
40 

21 
60 

12 
70 

19 
50 

11 
  120 

18 
27 

94 Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  |



0 10 20 30 40 50 60 70 80 90 100
-1.22

-1.2

-1.18

-1.16

-1.14

-1.12

-1.1
x 10

6

Iteration

A
ve

ra
ge

 C
os

t F
un

ct
io

n 

Velocity 0-40
Velocity 40-80
Velocity 80-120

 
Fig.5. Average cost function vs. Iteration 

The relative performance of DE and ABC can be studied 
through error estimation as indicated in Fig. 6-8. In these 
figures, we plotted the average cost function obtained from 
classical DE- and ABC - based experiments, corresponding 
to each value of iteration. We also evaluated the error in 
average cost function by taking the difference of the same 
obtained from DE and ABC as shown in Fig. 8(a) and (b). 
Let Ei be the error for the i-th sample data. Since the errors 
for different sample data are all positive, indicating a 
superiority of ABC over DE, a measure of the relative 
goodness of ABC over DE can be defined as the root mean 
square error Er.m.s= 29869 and Er.m.s= 29581 respectively. 
This shows ABC as having an advantage over DE for the 
call assignment control problem. Of course, the root mean 
square error (29869 and 29581 respectively) at the sample 
points being insignificantly less than the root mean square 
value (1162200 and 1159200 respectively) of the averaged 
average cost function profiles for DE- and ABC - based 
simulations. 
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Fig.6. Average cost function vs. Iteration for velocity  [0, 40] 
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Fig.7. Average cost function vs. Iteration for velocity  [40, 80] 
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Fig. 8(a). Difference in Average cost function with DE and ABC vs. 

Iteration for velocity  [0, 40] 
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Fig. 8(b). Difference in Average cost function with DE and ABC vs. 

Iteration for velocity  [40, 80] 
 
The allocation matrices obtained using ABC and DE-

based simulation with a velocity range of 0 to 40 and for a 
generation of 100 are given in TABLEs I-II. 

 
 

TABLE-I 
Allocation matrix obtained from ABC-based simulation with velocity  

 [0. 40] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For simulation purposes, we have considered two 

different classes of problems available in the literature: 

 Channel No. 
1 2 3 4 5 6 7 

Cell 
No. 

1 0 1 0 0 0 0 0 
2 1 0 0 0 0 0 0 
3 1 0 1 1 1 0 0 
4 0 1 1 1 1 0 1 
5 0 0 0 1 1 1 0 
6 1 1 0 0 1 0 0 
7 1 0 1 1 0 1 0 
8 1 1 0 1 1 0 1 
9 1 1 0 0 1 0 0 
10 0 1 1 0 0 0 1 
11 1 0 1 1 0 1 1 
12 0 0 1 0 0 1 0 
13 0 0 1 1 1 0 1 
14 1 1 1 1 0 1 1 
15 1 0 0 1 0 1 0 
16 1 0 1 1 1 1 1 
17 1 0 0 0 0 0 0 
18 1 1 1 1 0 1 1 
19 1 1 0 1 1 1 0 
20 1 1 1 1 1 0 1 
21 0 1 1 0 1 1 1 
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1. The first class consists of data set, denoted as EX1 [4], as 
well as a slightly larger extension of EX1, denoted as 
EX2 [5]. 

2. The final set of problems is KUNZ1-KUNZ4 [5]. 
However, we have used only KUNZ1 in this paper. 
Using the descriptive details of each problem, as tabulated 

in [5], we have obtained the following allocation matrices 
from ABC-based simulation as shown in TABLE-III. 

The average cost function profiles for three problem using 
ABC and DE are given in Fig. 9. A close observation of Fig. 
9 indicates that ABC-based simulation has outperformed 
DE-based simulation in terms of convergence speed as well 
as quality of solution. 

TABLE-II 
Allocation matrix obtained from DE-based simulation with velocity [0, 40] 

 

6 CONCLUSION 
In the proposed work, we consider our cells to be 

hexagonal so as to easily track the movement of MS in the 
neighborhood cells. Instead of considering a single cell 
scenario, we have taken a small network to implement the 
algorithm to incorporate the intercellular communication 
efficiently. The decision of acceptance or rejection of a call 
dose not only depend on the feasibility and availability of 
the channel but also on the speed at which the MS moves 
and its direction of movement. Its geographical location 
with respect to the base station also has a significant 
importance. Moreover the traffic density on a cell is also 
considered to be a determining factor. The reuses of the 
channels also make the approach more effective. The CAC 
scheme using ABC technique has been compared with a 
similar scheme using DE. The results show that when ABC 
scheme is considered, a better optimum is obtained in 
comparison to the scheme using DE irrespective of the load 
value or the velocity of the MS as well as for different 
problem sets.   
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Fig.9. Average cost function profiles for (a) EX1 (b) EX2 (c) KUNZ-1 
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TABLE-III 

Allocation matrices obtained for EX1, EX2 and KUNZ1 using ABC-based simulation 
Problem Allocation Matrix 

EX1 

0 1 0 1 0 0 0 0 0 0 0                    
0 1 0 0 0 0 0 0 0 0 1                    
0 0 0 0 1 0 0 0 0 0 0                    
0 0 0 0 0 0 0 0 0 0 0                    

EX2 

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0              
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0              
1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0              
0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0              
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0              

KUNZ1 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 
1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 
1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 
0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 
0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 
0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 
1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 
1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 
1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 
0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 
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Abstract - Conventional Direct Torque Control (CDTC) 

system of Induction Motor (IM) faces the problem of high 

torque ripples, and has difficulty in improving the 

performance of dynamic torque response and controlling flux 

locus at very low speed. In this paper, a DTC control system 

for induction motor based on Fuzzy Logic technology 

(FLDTC) is proposed. The proposed system aims to make less 

torque ripples, faster dynamic response, and higher 

performance of flux control at very low speed by introducing 

some new fuzzy variables and rescheduling the fuzzy switcher 

rules. The model of the proposed system is built on 

simulink/matlab. Simulation results show that the proposed 

technique FLDTC is more efficient than CDTC.  

Keywords-Direct torque control, induction motor, fuzzy logic, 

and fuzzy switcher rules. 

 

1 Introduction 

Conventional direct torque control is a simple and 

efficient control technique to provide quick torque and flux 

control. The major advantages of direct torque control 

technique are its simple structure and robust control scheme 

without the complex mathematical transforms. However, 

CDTC also has some drawbacks like high electromagnetic 

torque ripple, high stator current distortion, relatively slow 

transient response to torque step changes of load and flux 

locus attenuation at very low speed [1-3]. 

To improve the performance of dynamic response of 

CDTC, some studies have been carried out in the past [4] [5] 

to increase the response speed of torque step change. One 

research has developed a methodology of optimizing the 

selection of the voltage vectors to give a maximum rate of 

torque increase or decrease to meet the torque step change [6], 

and dramatically improved the CDTC responding speed, but 

the expense is the low performance of flux locus. 

By introducing CDTC technique to induction motor, the 

controller uses voltage vectors to control the flux or torque 

according to three elements: hysteresis of flux error, torque 

error and flux location. However, sometimes the flux locus or 

the torque only needs the voltage vectors to last for a very 

short time during a switching period in steady-state, or 

perhaps it needs the control signal to last for several switching 

period in dynamic-state. The hysteresis of CDTC system can 

only judge the situation by positive and negative error values, 

but it does not have the ability to adjust the flux and torque 

according to exact error values. For the purpose of handling 

this problem, a method to reduce torque ripple in DTC of 

induction motor by using fuzzy mode duty cycle [7] is applied 

to control the duty cycle of the switches according to the exact 

value of the torque and flux errors and has successfully 

decreased the torque ripples. On the other hand, lots of 

attempts based on fuzzy logic technique are shown to be 

efficient in many researches. For instance, in the fuzzy logic 

control method proposed in [8] and [9], the fuzzy logic 

controller can recognize how big the error is and makes an 

optimal adjustment; Moreover, a stator resistance estimator 

using fuzzy logic at low speed applied in [10], can help to 

improve the performance of torque ripple by making the 

mathematical model of CDTC more accurate. Some other 

researches [11-13] also provide several useful applications of 

fuzzy logic in DTC. All these methods have proven that fuzzy 

logic technique can make great contributions to DTC.  

This paper aimed to take advantage of fuzzy logic 

technique to solve the problems mentioned above. A group of 

new FL switcher rules will be introduced. This FL controller 

can detect the steady and dynamic states of induction motor 

automatically, and control the flux and torque with optimal 

vectors according to fuzzy switcher rules. The FL controller 

has also solved the problem of flux attenuation at very low 

speed. Both the steady and dynamic performance of torque 

error and torque response to step changes can be improved by 

the proposed methodology. The simulation results of CDTC 

and FLDTC will be studied and compared. 

2  Proposed technology with fuzzy logic  

To improve the performance of CDTC, we apply a 

Mamdani-type fuzzy logic system based on DTC principles. 

The torque hysteresis in CDTC is substituted by this FL-

controller. Different from commonly used controller, the 

proposed FL-controller has six input variables: Torque error 

(Te), flux error (Fe), flux position (SE), angle difference (A), 

rotor speed (SP) and working state (WS).  

The membership function of “flux error” (Fe) has four 

fuzzy sets: negative (N), zero (Z), positive (P) and positive 

large (PL). The fuzzy variable “torque error” (Te) is 
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represented by five fuzzy sets: negative large (NL), negative 

(N), zero (Z), positive (P) and positive large (PL). The fuzzy 

membership function of “sector” (SE) which stands for the 

location of flux is represented by six fuzzy sets: sector (1-6) 

S1, S2, S3, S4, S5 and S6 as shown in Fig. 1. The 

membership functions of the three fuzzy variables are shown 

in Fig. 2 (a-c). The other three fuzzy variables will be 

introduced separately in the following paragraphs. 

S2

S1

S3

S6

S4

S5

 

Figure 1. Spatial distribution of six sectors 

 

 

Flux error 

(a). Fuzzy membership functions for Fe. 

 

 
Torque error (N.m.) 

(b). Fuzzy membership functions for Te. 

 

 
Sectors 

(c). Fuzzy membership functions for SE. 

 

Figure 2.  Fuzzy membership functions for Fe, Te and SE. 

The electromagnetic torque of IM can be expressed as 

follows,    

                               
3

sin
2

n

e s r

P
T

L

                         (1) 

where                          2( ) /s rL L L M M                           (2) 

s and 
r are the stator and rotor flux vectors, 

sL  is the 

stator inductance, 
rL  is the rotor inductance, M  is the 

magnetizing inductance, δ is the angle between the stator and 

rotor fluxes and 
nP is the number of the pole pairs.  

When 90  ,                
3

2

n

e s r

P
T

L

                                (3) 

If the system is ideal no-load, then the average torque is zero. 

If assuming =s r  , then we can get the maximum value of 

dynamic torque:  

                              
2

max

3

2

n

e s

P
T

L

                                (4) 

Thus, the electromagnetic torque can be written as 

                                
max sine eT T                                   (5) 

Because of the assumption that the IM is ideal no-load, the 

average torque is zero. The torque ripple can be written as:                            

                               max sine eT T                                  (6) 

Assuming the rotating speed of rotator flux is a short-term 

constant value, then, 

                                 ( )s r t                                      (7) 

In condition that δ is very small, 

                            
max ( )e e s rT T t                               (8) 

The rotating speed of 
s when the reference torque is ideal 

no-load can be expressed as: 

                                   
2

a

aT


                                          (9) 

aT  is the time period for the stator flux. Merge (8) and (9), we 

can get the increasing time of torque:             

                                   

max (1 )

e a

i

r
e

a

T T
t

T









                              (10) 

Similarly, we can get the torque decreasing time:  

                                      

max

e a

d

r
e

a

T T
t

T





                                  (11) 

Formula (11) can be written as:   

                                max

2 e

d

e r

T
t

T








                                   (12) 

 

From (12) we can get the conclusion that the time 

required to decrease the torque gets longer when the rotating 

speed is very low. It is clear that the torque decreases slower 

at low speed than that at high speed if the controller still uses 

zero voltage vectors. Thus, replacing zero voltage vectors 

with reversed voltage vectors may increase the response speed 
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because reversed voltage vectors can produce bigger negative 

torque change. Moreover, if we only use zero vectors to 

reduce the negative torque error without the usage of reversed 

vectors at very low speed, the flux locus would attenuate and 

even result in failure start. On the other hand, if using 

reversed vectors too often at very low speed may result in 

bigger toque ripple in steady state than zero vectors. To 

balance the problem, another fuzzy variable “SP” is used in 

the FL controller. The membership function of SP as 

indicated in Fig. 3 is divided into low speed mode (L) and 

high speed mode (H). When working at low speed (the speed 

less than 30% of rated speed is defined as low speed), the FL 

controller will test the flux error. If the flux error is N, Z or P, 

and the torque error is in the range of P, Z and N, the 

controller will work exactly in the same way as it does in high 

speed mode. However, if the flux error is PL, which means 

the flux locus is attenuating, the controller will enable the 

reversed voltage vectors to justify the flux locus. The 

switching rules at high speed and very low speed are shown in 

table 1 and table 2. The fuzzy variable “A” in the two tables 

will be introduced later. This method can take advantages of 

both zero vector and reversed vector.  

 

Rotating speed (as a fraction of rated speed) 

 

Figure 3. Memberships function for SP. 

TABLE I.  FUZZY CONTROL RULES OF FLDTC IN HIGH SPEED (K IS THE 

NUMBER OF SECTOR) 

Te Fe A V 

NL/N/Z N/Z/P/PL L/S V0/V7 

P N L/S V(k+2) 

Z/P/PL L/S V(k+1) 

PL N/Z/P/P L V(k+1) 

S V(k+2) 

 

In order to detect the working state, another variable 

“WS” is added to the FL controller. The variable “WS” 

carries the information of whether or not there is a toque step 

change in the load. The system can decide which working 

mode of the FL controller should be taken based on this 

information. The system automatically tests the change of the 

torque in the load and compares it with the output toque. Once 

the difference between them reaches the predefined threshold, 

the state of the system will change into dynamic working state. 

In this working state, the fuzzy rules will allow the controller 

temporarily neglects the regulation of flux locus. Because the 

dynamic state lasts only for a very short time, the transient 

change will not influence flux locus significantly, and the 

locus will recover as soon as the system turn back to steady 

state. The variable “WS” is composed of three fuzzy sets: 

dynamic work state whose step change is negative (DN), 

dynamic work state whose step change is positive (DP) and 

steady work state (S). The membership function is shown in 

Fig. 4. 

TABLE II.  FUZZY CONTROL RULES OF FLDTC IN LOW SPEED (K IS THE 

NUMBER OF SECTOR) 

Te Fe A V 

 

NL 

N/Z L V(k-2) 

S V(k-1) 

PL L/S V(k-1) 

 

N 

N/Z L/S V0/V7 

P L/S V(k) 

PL L/S V(k-1) 

Z N/Z/P L/S V0/V7 

PL L/S V(k+1) 

P N L/S V(k+2) 

  Z/P/PL L/S V(k+1) 

 

PL 

N/Z L/S V(k+2) 

P/PL L V(k+1) 

S V(k+2) 

 

 
Working state (as a fraction of rated torque) 

 

Figure 4. Memberships function for WS. 

 

We can directly get the conclusion from [6] that the 

optimal voltage vectors giving the fastest response can be 

simplified as a problem of maximization: 

                                 max{sin( )}k ro
k

fn                         (13)   

where k is the order of voltage vector,
k and 

ro  are the stator 

voltage vector angle and initial rotor flux angle, respectively. 

From (13) we know that the voltage vector which creates 

the largest sine value with rotor flux has the ability to produce 

the largest torque change. In order to take advantage of the 

conclusion, another fuzzy variable “A” is added to the fuzzy 

controller. The rotor flux can be approximately equivalent to 

stator flux because the slip angular velocity is actually very 

small. When torque needs to be increased, the fuzzy variable 

A is the angle between rotor flux and voltage vector V (k+1). 

When torque needs to be decreased, variable A becomes the 

angle between rotor flux and voltage vectors V (k-2).  
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For instance, as shown in figure 5, when the flux is at 

point P1, the angle between the vector V (k+1) and flux is π/2, 

which means that V (k+1) can create the biggest torque 

change according to (13), so A is L at this moment and V 

(k+1) is chosen to produce the biggest torque increase. As 

soon as the flux moves to point P2, the angle variable A 

decreases to π/3, which means that V (k+1) will not produce 

the fastest torque response in the following time and variable 

A becomes S at this moment. Hence V (k+2) will be taken 

instead of V (k+1). The way to produce the fastest torque 

decrease is similar. This conclusion also explains the reason 

to use the fuzzy variable A in table 1 and table 2.  

V(k+2)

S(k)
V(k+1)

S(k-1)

S(k+1)

V(k)
S(k-2)

S(k+2)

S(k+3)

V(k+3)

V(k-1)

V(k-2)

P1

P2

A=π/3

Direction of 

rotation

 
Figure 5. Rotor flux vectors and six voltage vectors. 

 

Whether A is Large (L) or Small (S) is defined in the 

following way. When the torque needs to be increased quickly, 

if the difference between the angles of rotor flux and the 

voltage vector V (k+1) is in the range of (π/3, π/2), then A is 

large (L), otherwise A is small (S). Conversely, when the 

torque needs to be decreased quickly, if the difference 

between the angles of rotor flux and voltage vector V (k-2) is 

in the range of (π/2, 2π/3), then A is large (L), otherwise A is 

small (S).The results will be transferred to the FL controller 

which can analyze the composite conditions and give an 

optimal voltage vector selection according to the expert 

knowledge. The membership function of A shown in figure 6 

is represented by two fuzzy sets: large (L) and small (S).  

 
Flux angle (Degree) 

 

Figure 6. Membership function of A. 

 

         From the fuzzy variables and fuzzy rules introduced 

above, we can get the flow chart of the FL controller in Fig. 7. 

To sum up, the fuzzy switching rules can be summarized 

to table 3. Each rule in table 3 can be written as: Ri: if WS is 

Ai, SP is Bi, Te is Ci, Fe is Di, SE is Ei and A is Fi, then V is 

Vi, where Ri is the ith fuzzy rule. Ai, Bi, Ci, Di, Ei and Fi are 

the values of fuzzy sets of the fuzzy variables WS, SP, Te, Fe, 

SE and A.  

Negative, 
positive, or 

none?

Flux angle 
is large?

Flux angle 
is large?

Positive

 Speed is 
very low?

Negative

None

V=V(k+1) V=V(k-2)V=V(k+2) V=V(k-1)

Get torque 
step change

Get flux 
angle

Get 
rotating 
speed

Using Fuzzy 
logic rules 

for low speed

Using Fuzzy 
logic rules 
for normal 

speed

Yes No

Yes YesNo No

 Figure 7. Flow chart of the FL controller 

 

TABLE III.  FUZZY CONTROL RULES OF FLDTC (K IS THE NUMBER OF 

SECTOR) 

WS SP Te Fe A V 

 

 

 

 

 

 

 

 

 

S 

 

 

 

 

 

L 

 

NL 

N/Z L V (k-2) 

S V (k-1) 

PL L/S V (k-1) 

 

N 

N/Z L/S V0/V7 

P L/S V(k) 

PL L/S V (k-1) 

Z N/Z/P L/S V0/V7 

PL L/S V (k+1) 

P N L/S V (k+2) 

Z/P/PL L/S V (k+1) 

 

PL 

N/Z L/S V (k+2) 

P/PL L V (k+1) 

S V (k+2) 

 

 

H 

NL/N/Z N/Z/P/PL L/S V0/V7 

P N L/S V (k+2) 

Z/P/PL L/S V (k+1) 

PL N/Z/P/P L V (k+1) 

S V (k+2) 

DP L/H N/P/Z 

 

N/Z/P/PL L V (k+1) 

S V (k+2) 

DN L/H N/P/Z N/Z/P/PL L V (k-2) 

S V (k-1) 

 

3 Simulation results 

 To verify the efficiency of the proposed system, the 

model is tested on matlab tool. The induction motor’s 

parameters are given as follows:  

104 Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  |



E
le

ct
ro

m
ag

n
et

ic
 T

o
rq

u
e 

(N
.m

.)
 

 
E

le
ct

ro
m

ag
n

et
ic

 T
o

rq
u

e 
(N

.m
.)

 

 

E
le

ct
ro

m
ag

n
et

ic
 T

o
rq

u
e 

(N
.m

.)
 

 

E
le

ct
ro

m
ag

n
et

ic
 T

o
rq

u
e 

(N
.m

.)
 

 

Rated Voltage: 380 V 

Pole pairs: 2 

Stator Resistance 1.111 Ω 

Rotor Resistance 1.083 Ω 

Stator Inductance: 0.5974 H 

Rotor Inductance: 0.5974 H 

Mutual Inductance: 0.2037 H 

Moment of inertia J: 0.02 kg.m^2 

Friction factor: 0.0057 N.m.s 

Sampling period of the system: 50 μs 

 

 
Time (s) 

(a). Electromagnetic torque for CDTC 

 

 
Time (s) 

(b). Electromagnetic torque for FLDTC 

 

Figure 8. Electromagnetic torque 

 

Fig. 8 (a) and (b) show the performances of the torque 

ripples of the motor at 300 rad/sec and no load for CDTC and 

FLDTC, respectively. It is clearly shown that the toque ripple 

in Fig.  8(b) is approximately 40% smaller than that in Fig. 8 

(a). Hence we can conclude that FLDTC produce less torque 

ripple than CDTC in steady state.  

Keeping the speeds unchanged, and adding a step torque 

change as big as 12N.m. at 0.08sec in the load, we can get                          

the curves of torque response illustrated in Fig. 9. The torque 

response of FLDTC is significantly faster than that of CDTC. 

 

 
Time (s) 

(a). Response of the step torque change for CDTC 

 

 
Time (s) 

(b). Response of the step torque change for FLDTC 

 

Figure 9. Electromagnetic torque responses with a step change of 12N.m 

at 0.08 sec for CDTC and FLDTC 

 

The flux locus of FLDTC in both steady state and 

dynamic state with a torque step change of 12N.m at 0.08 sec 

are given by Fig. 10. From Fig. 10(a), we can see that the flux 

locus is not significantly different from the flux locus of 

CDTC in steady state. Nevertheless, the flux locus shown in 

Fig. 10(b) has a transient change when a step change is 

applied in the load. That is because the FL controller 

temporarily ignores the flux locus when working in dynamic 

state. In this state, the controller only imposes the voltage 

vectors producing the biggest torque change rate. Hence the 

flux locus moves toward the same direction as the voltages 

vector. This is why the flux locus rotates along a hexagon 

track at that moment, and then recovers as soon as the torque 

reaches the reference value. 

Fig. 11 shows the flux locus of FLDTC at 20rad/sec and 

no load. We know that CDTC has the disadvantages such as 

flux locus distortion in very low speed. Simulation result 

proves that the flux locus can be improved by using the 

proposed controller. The success can be attributed to the 

rational selection between reversed voltage vectors and zero 

voltage vectors. 
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(a). Flux locus of FLDTC in steady state 

 

 
(b). Flux locus of FLDTC in dynamic state 

 

Figure 10. Flux locus of FLDTC 

 

 
 

Figure 11. Flux locus of FLDTC at 20 rad/sec 

 

4 Conclusion 

A fuzzy logic based direct torque control system is 

implemented in this paper to improve the performance of 

conventional DTC system. The FL controller enables the 

system to choose optimal stator voltage vectors producing the 

most suitable rate of torque change according to the six fuzzy 

variables. Simulation results have shown the effectiveness of 

the proposed method. Through the comparison between 

CDTC and FLDTC, we have shown that the FLDTC design in 

this paper keeps all the advantages of CDTC, and makes some 

improvement in reducing torque ripples, faster torque 

response, and stability at very low speed. 
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Abstract - This paper focuses on the problem of 

scheduling a set of independent jobs with setup times and 

job splitting, on a set of identical parallel machines such 

that total tardiness is minimized. In this study, it is 

assumed that a job can be split into sub-jobs and these 

sub-jobs can be processed independently on parallel 

machines. Because the problem is NP-hard, a memetic 

algorithm (MA) is proposed. Several test problems are 

solved via MA and its performance is compared to 

solutions obtained via simulated annealing (SA) and tabu 

search (TS) approaches from the literature. Experimental 

results reveal that proposed MA produces better total 

tardiness performance than SA and TS.  

 

Keywords- Memetic Algorithms, Parallel Machines, 

Scheduling, Total Tardiness, Job Splitting 

 

1  Introduction 
 

The scheduling of jobs on parallel machines provides 

for interesting and challenging combinatorial problems 

that continue to interest researchers [1]. Parallel machine 

scheduling comes down to assigning each operation to one 

of the machines and sequencing the operations assigned to 

the same machine. We may have identical, uniform or 

unrelated parallel machines. If the machines are identical, 

then the processing time of each job is the same on all 

machines. Uniform machines work at different speeds, 

i.e., the processing time of each job differs by a constant 

factor for the individual machines.  If the machines are 

unrelated, then there is no relation between the processing 

times of the jobs and the machines.  [2]  

Generally, there are two decisions to be made in 

parallel-machine scheduling problems. One is to assign 

jobs to the machines, and the other is to determine the 

sequence of the jobs on each machine [3]. Therefore, 

parallel machine problems generally seem to be harder 

than single machine problems [4].   

There are various published papers in parallel machine 

scheduling problems. The common objectives studied in 

this area include the minimization of completion time, 

tardiness, and make-span [5]. As the single machine total 

tardiness problem is strongly NP-hard, it follows that the 

parallel-machine total tardiness problem is strongly NP-

hard, too [4]. It was showed that even the minimization of 

total tardiness in two identical machine scheduling 

problem was NP-hard [6]. 

In this paper, an identical parallel machine scheduling 

problem with the objective of minimizing of total 

tardiness is addressed while considering a job splitting 

property of the jobs. The jobs can be split into a number 

of sub-jobs that can be processed independently on two or 

more parallel machines at the same time. Such a problem 

is called the parallel machine scheduling problem with 

splitting jobs [7]. Also in the paper, a job is assumed to be 

composed of a number of unit-jobs and unit-jobs from a 

job are identical. So, the processing times and the due 

dates of unit-jobs are the same.  A set of unit-jobs from a 

job is defined as a sub-job that is processed on a machine 

consecutively and the sub-jobs from a job are processed 

on the parallel machines independently. 

 Although many studies have been published on 

parallel machine problems [8], there are very few research 

results on identical parallel machine scheduling problems 

with job splitting properties [7].   Serafini [19] studied 

identical parallel machine problem with a job-splitting 

property. He considered the objective of minimizing the 

maximum weighted tardiness for both uniform and 

unrelated parallel machine environments. He showed that 

minimizing maximum weighted tardiness can be done in 

polynomial time. Xing and Zhang [9] also consider the 

same problem with the objective of minimizing makespan 

and they proposed a heuristic algorithm to solve it. Kim et 

al. [10] proposed a two-phase heuristic algorithm for 

identical parallel machine scheduling problems with the 

objective of minimizing total tardiness.  Logendran and 

Surbur [11] reported a methodology for minimizing the 

total weighted tardiness of all jobs intended to be 

processed on unrelated parallel machines while each job 

can only be split into two portions. Tahar et al. [12]  

studied the problem of scheduling a set of independent 

jobs with sequence-dependent setup times and job 

splitting, on a set of identical parallel machines such that 

maximum completion time (makespan) is minimized. 

They suggested a heuristic algorithm using a linear 

programming modeling with setup times and job splitting 

considerations. They tested the performance of their 

algorithm on large number of randomly generated 

instances. Shim and Kim [7] proposed a branch and bound 
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(B&B) algorithm for the identical parallel machine 

scheduling problem with the objective of minimizing total 

tardiness considering the job splitting property. They 

developed several dominance properties and lower bounds 

for the problem and incorporated them with their B&B 

algorithm. They concluded that the suggested algorithm 

solves problems of moderate sizes in a reasonable amount 

of computation time. Sarıçiçek and Çelik [13] dealt with 

the scheduling problem of identical parallel machines with 

splitting jobs. They formulated a mixed integer 

programming model for the problem and proposed two 

meta-heuristics: simulated annealing (SA) and tabu search 

(TS).  Their computational results showed that SA has a 

better performance and consumes less time than TS, so 

they suggested SA as a better heuristic method than TS for 

considered problem. 

In this paper, a memetic algorithm (MA) is proposed 

for parallel machine scheduling problem addressed above. 

Several test problems provided by Sarıçiçek and Çelik 

[13] are solved by MA and its performance is compared to 

their results obtained via SA and TS heuristics. 

 

 

2  Problem Description  
 

Some definitions used in this paper are given below. 

 

Job : a production order unit to be composed of a number 

of unit-jobs 

Unit-Job: A unit of a minimum process batch for a job. 

Unit-jobs from a job are identical so their processing 

times and their due dates are the same. 

Sub-Jobs: A set of unit-jobs from a job that is processed 

on a machine consecutively. Sub-jobs from a job are 

processed on the parallel machines independently. 

 

Tardiness of a job: Tj = max{0, Cj – dj }, where Cj and dj 

are the completion time and due date of job j, 

respectively  

Completion time of a job: The time when all sub-jobs 

from the job are completed. 

 

For the problem addressed here, it is assumed that: 

 

• As the machines are identical, processing times 

of a unit-job on all the machines are equal, 

• All jobs are available at time zero. 

• Each machine can process only one sub-job at 

time. 

• Each sub-job can be processed on only one 

machine. 

• A setup operation is required before a sub-job is 

processed on a machine, if the job type of a sub-

job to be processed is different from the job type 

of the sub-job just processed and setup times are 

independent of sequences of the sub-jobs. 

 

Other notations: 

 

m: number of parallel machines 

n: number of jobs 

i: index for machines, i=1,…,m 

j: index for jobs, j=1,…,n 

k: index for position of sub-job of job j on machine,  

 k=1,…,n 

uj: number of unit-jobs of job j  

pj: processing time of each unit-job of job j 

sj: sequence-independent setup time for job j 

dj: due date of job j 

M: a large constant number which is at least as large as 

the sum of the processing times and setup times of 

all jobs 

 

xijk : 1; if the sub-job of j is processed on machine i in 

the kth position, 0; otherwise: 

 

yijk : The number of unit-jobs of the sub-job of job j 

which is processed on machine i in the kth 

position;  

 

Tijk : Tardiness of the sub-job of a job j processed on 

machine i in the kth position. 

 

Gj   : a decision variable that can have a value greater 

than Tijk  and is constrained to be non-negative. 

 

Based on the definitions, notations and assumptions  

above, Sarıçiçek and Çelik [13] presented a mathematical 

model which is also considered in this study. The 

objective function of the model is minimizing the total 

tardiness and expressed as:  

 

 

 

(1) 
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Mathematical model:  

 

 
 

 
As the problem is NP-hard, finding an exact solution 

to the model in polynomial time is possible for only small 

sized problems in which n is relatively small, i.e. n<10. If 

n gets large, the time required to solve such problems 

increases exponentially with respect to n [13]. On the 

other hand, heuristic methods can produce good solutions 

(possibly even an optimal solution) quickly. In this paper, 

a memetic algorithm is proposed for the problem. 

  

3  Proposed Memetic Algorithm 
 

Memetic Algorithm also called hybrid genetic 

algorithm, represents a new meta-heuristic for 

combinatorial optimization problems [14]. The proposed 

MA integrates Variable Neighborhood Decent (VND) 

with the Genetic Algorithm (GA) to improve the 

solutions. During the processing of MA, VND is executed 

on each individual in the population to find the better 

solution. If it is found,   it is replaced with the original 

individual.  

 

The flowchart of the proposed MA is illustrated in 

Figure 1.  

 

Start

Stop

Generation of Initial 
Population

Local Search

Evaluation

Selection

Stopping Criteria  
Satisfied?

Crossover

Mutation

N

Y

 
 

Fig. 1 Flowchart of the Proposed MA 

 

Step 1: The initial population is generated by 

randomly. Each chromosome is encoded by using Earliest 

Due Date (EDD) dispatching rule on each initial solution. 

What that means is that randomly assigned unit jobs on 

each machine are sequenced by using EDD rule. 

Step 2: To improve the solution quality, the local 

search based on VND is executed on each individual.  

Step 3: Each individual is evaluated and obtained its 

fitness function value, that is, total tardiness.  Then, all 

total tardiness values are compared with each other to find 

the local best solution. If the local best solution is better 

than the global best solution found so far in whole 

process, the global best solution is updated.   

Step 4: If the stopping criteria is satisfied, the iterative 

process is stopped and the global best solution is returned. 

Otherwise, the process is continued with step 5. 

Step 5: New population is generated by executing 

selection, crossover and mutation operators respectively. 

Then the process is continued with step 2.  

 

3.1 Solution representation and selection 

mechanism 
 

The most commonly used solution representation for 

the parallel machine scheduling problem is an array of 

jobs for each machine that represents the processing order 

of the jobs assigned to that machine [15]. As the jobs are 

considered to be consisted of unit jobs in this study, the 

arrays are based on unit jobs represented by a unique job 

numbers so the unit jobs of a job have the same job 

number. An example solution representation for 2 jobs, 2 
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machines, 3 unit jobs is given in Figure 2. The figure 

shows a single array composed by two groups of elements 

for two machines.  The number of elements related to each 

machine is counted by multiplying the number of jobs and 

the number of unit jobs. For the example, the array 

consists of 6 (2x3) elements for each machine so there are 

total of 12 elements in the array.        

 

 

 

Fig. 2. Example solution encoding 

 
 

The jobs given in the example are represented by the 

digits of “1” and “2” respectively in Figure 2. Each “1” 

denotes a unit job of job 1 assigned to the machines and 

each “2” shows a unit job of a job 2 assigned to the 

machines.  “0” denotes no unit-jobs assigned to that 

position.    Consequently, according to the figure 2, the 

processing order of the unit jobs is 1,1,2 for machine 1 

and 2,2,1 for machine 2.  

The selection is performed using a roulette wheel 

selection mechanism. The idea behind the roulette wheel 

selection is that each individual is given a chance to 

become a parent in proportion to its fitness. 

 

3.2 Genetic operators 
 

In genetic algorithms, genetic operators are used to 

combine existing solutions into new better solutions 

(crossover operator) and to generate diversity (mutation 

operator).  

 

Crossover: 

 

In general, the goal of the crossover operator is to 

generate two good individuals, called offspring, from the 

two selected progenitors. One of the most used crossover 

operators to the parallel machine case is the one-point-

crossover [15]. So one-point-crossover is performed in 

this study. This type of crossover includes one point 

which is randomly selected for dividing first parent [16]. 

Once the parents have been selected, the crossover 

operator is applied according to the crossover probability 

that is 0.55 in the study. To prevent the generation of 

infeasible solutions   after crossover operation, a repair 

operator is applied on the new offsprings. Repair operator 

can both repair infeasible total number of unit-jobs for 

each job by considering unchanged elements beyond the 

crossover point and infeasible solutions contains more 

than one sub-jobs of the same job on the same machine.   

 

Mutation: 

Once the offspring is obtained, the mutation operator 

is applied according to the mutation probability that is 

0.05 in the study.  The mutation operator is used to reduce 

the convergence rate [17]. In other words, the application 

of the mutation operator can increase the diversity of the 

population and avoid local optimization [16].  Two genes 

in the chromosome are randomly selected and exchanged 

their values. If a chromosome after mutation becomes 

infeasible according to the constraints 4 in the model then 

the repair operator is applied to maintain feasibility.   

3.3 Local search 
 
The local search procedure is employed to enrich and 

diversify the population produced by the genetic crossover 

operator without visiting other regions of the search space 

[16]. In this study, VND is used as local search procedure. 

VND is a variant of Variable Neighborhood Search 

(VNS) where the change of neighborhood is realized in a 

deterministic way during the local search phase [14]. Two 

different search neighborhoods [18] incorporated into the 

VND are defined below. 

 

Forward insertion neighborhood 

 

By starting from the leftmost unit job in an individual, 

all unit jobs are shifted forward to other positions 

respectively. After each shifting operation, a new solution 

is generated. From the generated solutions, non-feasible 

ones violate the constraints 4 in the model are eliminated. 

If an improvement occurs during the generating process, 

the original individual is updated. The process is stopped 

when no more improvement is found and the current 

solution is accepted as locally optimal. 

 

Backward insertion neighborhood 

 

This type of neighborhood is very similar to forward 

insertion neighborhood except all shifting operations are 

performed in reverse order by starting from the rightmost 

unit job. The process continues until no shifting operation 

gives a better result and the current solution is accepted as 

locally optimal. 

All shifting operations for both search neighborhoods 

are performed without considering “0” values in the 

chromosomes to reduce the CPU times to complete local 

searches. 

 

Based on the above neighborhood structures, the local 

search phase is described below: 
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Local search 

 

0  Select first individual from the population.  

1 Take the individual as the current solution and 

execute backward insertion neighborhood search. 

The local optimal solution  the current solution. 

2 Take the current solution and execute forward 

insertion neighborhood search. The local optimal 

solution  the current solution. 

3  If the local search was performed for all individuals 

then Stop, otherwise select the next individual on 

which local search has not been performed yet from 

the population and go to step 1.   

 

4  Computational Results 
 
The proposed MA was coded in Borland Delphi 7 and 

run 10 times at each problem on Intel Core 2 Duo T6400 

2.0 Ghz computer. The size of population varies 

according to the problem size. All other required 

parameter values for the problem are generated in a same 

way as Sarıçiçek and Çelik do: the processing time of a 

unit-job is integer and randomly generated from uniform 

distribution with range [5, 60]. Setup time for a job may 

be short, middle or long and it is generated from the 

discrete uniform distribution with range [5, 60] for short, 

[60, 120] for middle and [120, 180] for long. Due date of 

job j, dj, is generated from the discrete uniform 

distribution with range [α∑(sj + ujpj)/m, β∑(sj + ujpj)/m], 

where sj, pj and uj denote the setup time of job j, 

processing time of a unit-job of job j and the number of 

unit-jobs associated with job j respectively, α and β are 

parameters used to control tightness (and range) of due 

dates. A pair of values for (α, β) is used as (0, 1.2) in this 

study. 

 The performance related results of the proposed MA 

for average of 100 generations were compared with the 

results from the search heuristic approaches of SA and TS 

for the test problems and detailed in the Tables 1, 2, 3 

respectively. The results for SA and TS on the test 

problems are reported by Sarıçiçek and Çelik [13]. The 

reported performance measures are based on Total 

Tardiness (TT) and CPU time. A comparison of the results 

of total tardiness of SA, TS and MA is reasonable but, 

because of the difference of the test platforms, the CPU 

time results of MA and other heuristics are not 

comparable.  Nevertheless, the CPU time results of MA 

are given in this study for information purposes only.  

Also in the study, the number of tardy jobs (n.of.TJ) 

results obtained from MA runs are reported as another 

performance measure.  

 

 

 

 

 

Table 1 – Test problems 1 and obtained results 

 
 

Table 2 – Test problems 2 and obtained results 

 
 

Table 3 – Test problems 3 and obtained results 

 
 

Tables show means of the three performance measures 

of interest: number of tardy jobs, total tardiness and CPU 

time. The tables are organized by the type of search 

procedure used: MA, TS and SA. 

 

 

5  Conclusions 
 

The results indicate that total tardiness performance of 

MA is superior to that of other heuristics for all test 

problems. As the problem size grows, MA gives much 

better performance in terms of total tardiness when 
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compared to TS and SA.  Only for 40 jobs, 20 machines, 

12 unit jobs and medium setup problem, the TT 

performance of MA is nearly same or similar to the 

performances of TS and SA.  It should be noted that the 

local search presented here will probably need more CPU 

time to end up searching for the feasible search space than 

those of TS and SA heuristics as the problem size grows. 

So, one further investigation would be to enhance the 

computational efficiency of this approach especially for 

really large size scheduling problems.  
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Abstract - Invasive Weed Optimization is a recently proposed 

population based meta-heuristic that mimics the colonizing 

action of weeds. In this article, an improvement to the 

classical algorithm has been proposed by introducing a 

constriction factor in the seed dispersal stage. Temporal 

Difference Q-Learning has been employed to adapt this 

parameter for different population members through the 

successive generations. The proposed memetic approach, 

named Intelligent Invasive Weed Optimization (IIWO) has 

been tested extensively on a set of 15 benchmark functions as 

well as the real world Circular Antenna Array Design 

problem. The results indicate the efficacy of our proposed 

approach. 

Keywords: Invasive Weed Optimization (IWO), Memetic 

Algorithms, Q-Learning 

1 Introduction 

Invasive Weed Optimization (IWO) [1] is a derivative-

free optimization technique that mimics the ecological 

behavior of weeds. This meta-heuristic algorithm has attracted 

researchers because of its reduced computational cost and 

efficiency in tackling real world optimization problems. 

However, it is not free from the problems of stagnation and 

pre-convergence. We attempt to improve the performance of 

the traditional IWO algorithm by incorporating a learning 

strategy in the weed population to efficiently disperse seeds 

throughout the problem space during the reproduction phase. 

Such a memetic learning technique helps in balancing the 

exploration and exploitation capabilities of the weeds which is 

necessary for providing precise solutions to global 

optimization problems.  

Coined by Dawkins[2] in 1976, the term “meme” refers 

to the basic unit of cultural transmission or imitation [1]. 

Memetic Algorithms (MAs) are population-based meta-

heuristic search algorithms that combine the composite 

benefits of natural and cultural evolution. Natural evolution 

realized by Evolutionary Algorithm (EA) works on the 

Darwinian principle of the struggle for existence, and aims at 

determining the global optima in a given search landscape. 

Traditional EA usually takes an excessively large time to 

locate a precise enough solution because of its inability to 

exploit local information. Cultural evolution, on the other 

hand, is capable of local refinement. MA captures the power 

of global search by its evolutionary component and local 

search by its cultural component. 

The early research on MA was confined in manual 

crafting of dedicated memes for a given problem.  A paradigm 

shift in research to adaptively select a meme from a pool of 

memes for application to an individual member of the 

population has been observed during the new millennium. The 

class of algorithms incorporating the adaptive selection of 

memes is referred to as Adaptive MA (AMA). AMAs 

“promote both cooperation and competition among various 

problem-specific memes and favors neighborhood structures 

containing high quality solutions” to be attained at low 

computational costs. Usually, the selection of the meme for an 

individual member of the population is done based on its 

ability to perform local improvement. 

Several variants of AMAs are found in the literature [4-

5]. The one we would use in this paper is Roulette-Choice 

strategy based Hyperheuristic AMA [4]. In the Roulette-

choice strategy, a meme Me is selected with probability 

relative to the overall improvement. Given that g(.) is a choice 

function, then the probability of selection of Me is  ������� �����	�
�   where n is the total number of memes 

considered. 

The AMA to be proposed, named Intelligent Invasive 

Weed Optimization (IIWO) includes an Invasive Weed 

Optimization (IWO) algorithm for global search and a 

Temporal Difference Q-Learning (TDQL) [6-7] for local 

refinement. A constriction factor has been included in the 

expression for standard deviation for dispersal of seeds. It is 

important to mention here that the constriction factors for all 

members of the population should not be equal for the best 

performance. A member with a good fitness should search in 

the local neighbourhood, whereas a poor performing member 

should participate in the global search. A good member thus 

should have small constriction factors, while worse members 

should have relatively large constriction factors. This is 

realized in the paper with the help of TDQL. 

The TDQL works on the principle of reward and 

penalty. It employs a Q-table to store the reward/penalty given 

to an individual member of the population. Members are 

assigned suitable values of their constriction factors from a 

given meme pool before participation in the evolutionary 

process. After completion of the evolutionary process, 

members are rewarded based on their fitness, and the 
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reward/penalty given to the member  depending on the 

improvement/deterioration in fitness measures of the trial 

solution is stored in the Q-table. The process of evolution and 

Q-table updating thus synergistically helps each other, 

resulting in an overall improvement in the performance of the 

AMA. 

The rest of the paper is organized as follows. Sections 2 

and 3 provide an overview of the Classical IWO algorithm 

and Differential Q-Learning. Our proposed approach has been 

described in Section 4. Extensive experimental results 

comparing the IIWO algorithm with IWO as well as other 

popular meta-heuristic algorithms namely Particle Swarm 

Optimization (PSO) [8] and Differential Evolution (DE) [9-

10] have been presented in Section 5. Comparative results 

have been presented on a set of 15 benchmark functions as 

well as the Circular Antenna Array Design problem. 

2 An Outline of Iwo Algorithm 

2.1 Generation of Initial Population 

 IWO starts with a population of NP D-dimensional 

parameter vectors or weeds representing the candidate 

solutions. We shall denote subsequent generations in IWO by 

G = 0, 1, …, Gmax. We represent the i-th vector of the 

population at the current generation as:   

���� � ������� � ������ � ������ � � � ������� 
 The initial population (at G = 0) should cover the entire 

search space as much as possible by uniformly randomizing 

individuals within the search space constrained by the 

prescribed minimum and maximum bounds: 

���	 � ������	� �����	� �� � �����	� 
 and   ���� � �������� ������� ��� ������� 
So we may initialize the j-th component of the i-th vector as 

 ������ �������	  !"#$����%�&�' (������ ) �����	*���&�   
where !"#$����%�&�  is a uniformly distributed random 

number lying between 0 and 1 and is instantiated 

independently for each component of the i-th vector.  

2.2 Reproduction 

The plants will produce seeds depending on their relative 

fitness which will be spread out over the problem space. Each 

seed, in turn, will grow into a flowering plant. Thus, if Smax 

and Smin denote the number of seeds produced by plants with 

best and worst fitness respectively then seed count of plants 

will increase linearly from Smin to Smax depending on their 

corresponding fitness values. The number of seeds produced 

by the  i-th weed ����� is therefore given by, 

 

 

 

+��� � ,-����� ) .(�����*-����� ) -��	�� ' �/��� ) /��	�0����1� 
where -�����  and -��	��  are the maximum and minimum 

fitness values at the G-th generation of the weed colony. 

2.3 Dispersal of Seeds through Search Space 

The produced seeds are randomly distributed over the D 

dimensional search space by random numbers drawn from a 

normal distribution with zero mean but with a varying 

variance. However, the standard deviation (SD), �, of the 

normal distribution decreases over the generations from an 

initial value, �max, to a value, �min, and is determined by the 

following equation, 

2 � 34��� ) 44��� 5	 ' �2��� ) 2��	�  �2��	����6� 
where � is the SD at the current generation and Gmax is the 

maximum number of iterations while n is the non linear 

modulation index. This is the adaptation property of the 

algorithm. 

2.4 Competitive Exclusion 

 If a plant does not reproduce it will become extinct. 

Hence this leads to the requirement of a competitive 

exclusion in order to eliminate plants with low fitness values. 

This is done to limit the maximum number of plants in the 

colony. Initially fast reproduction of plants take place and all 

the plants are included in the colony. The fitter plants 

reproduce more than the undesirable ones. The elimination 

mechanism is activated when the population exceeds a 

stipulated NPmax. The plants and produced seeds are ranked 

together as a colony and plants with lower fitness values are 

eliminated to limit the population count to NPmax. This is the 

selection property of the algorithm. The above steps are 

repeated until maximum number of iterations is reached.. 

3 Differential Q-Learning 

 In classical Q-learning, all possible states of an agent 

and its possible actions in a given state are deterministically 

known. In other words, for a given agent A, let S1, S2,..., Sn, be 

n- possible states, where each state has m possible actions  a1, 

a2, …, am. At a particular state-action pair, the specific reward 

that the agent acquires is known as immediate reward. Let 

r(Si, aj) be the immediate reward that the agent A acquires by 

executing an action aj at state Si. The agent selects its next 

state from its current states by using a policy. The policy 

attempts to maximize the cumulative reward that the agent 

could acquire in subsequent transition of states from its next 

state. 
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Let the agent be in state Si and is expecting to select the 

next best state. Then the Q-value at state Si due to action of aj  

is given by, 

 7(/�� "�* � !(/�� "�*  89:;�� 7� ��(/�� "�*� "������<� 
where 0<γ <1 and δ (Si,aj) denotes the next state due to the 

selection of action aj at state Si. Let the next state selected be 

Sk. Then Q(δ (Si,aj), a
/
)= Q(Sk, a

/
). Consequently selection of 

a
/ 

that maximizes Q(Sk, a
/
) and in turn Q(Si, aj) is an 

interesting problem.  

The classical Q-learning algorithm for deterministic 

state transitions starts with a randomly selected initial state. 

An action ‘a’ from a list of actions a1, a2, …, am is selected, 

and the agent because of this action receives an immediate 

reward r, and moves to the new state following the δ-

transition rule given in a table. The Q-value of the previous 

state due to the action of the agent is updated following the 

Q-learning equation. Now, the next state is considered as the 

initial state and the steps of action selection, receiving 

immediate reward, transition to next state and Q-update are 

repeated forever. 

Differential Q-learning is a modified version of Q 

learning. The Q-table update policy in Differential Q-learning 

is different from classical Q-learning.  It has the ability to 

remember the effect of past Q value of a particular state-

action pair while updating the corresponding Q value. The 

modified Q update equation is given by 

7(/�� "�* = �& ) >�' 7(/�� "�*  >' �!(/�� "�*  89:;�� 7� ��(/? � "�*� "��������@� 
The formula has the effect, that the Q-value Q(Si, aj) is 

incremented, when the action aj led to a state δ( Si,aj) in which 

there exists an action a', such that the best possible Q-value  

Q(δ (Si,aj), a
/
) in the next time step plus the achieved reward 

r(Si,aj)  is greater than the current value of Q(Si, aj). This is 

exactly the desired behaviour, because in such a situation, the 

old estimate of Q(Si, aj) was too pessimistic. The learning rate  

α determines the extent to which the newly acquired 

information will override the old information. A setting of α= 

0 makes the agent stop learning, while α=1 would make the 

agent consider only the most recent information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The discount factor γ determines the importance of future 

rewards. A factor of 0 will make the agent "opportunist" by 

only considering current rewards, while a factor approaching 

1 will make it strive for a long-term high reward. If the 

discount factor is greater than or equal to 1, the Q values may 

diverge. 

 

4 IIWO: The Proposed Approach 

The modified algorithm is based on the concept that 

fitter individuals should be involved in local search while the 

remaining plants should search the problem space globally at 

a particular generation. The classical IWO algorithm neglects 

this fact by assuming the same standard deviation 2 for all the 

weeds in the seed dispersal stage. Although 2  is made to 

decay through the successive generations yet there is no 

provision for 2 to attain low values for fitter individuals at a 

particular generation to enable the local search procedure. 

Local search is initiated only when the generation count has 

increased to a large value to ensure a low value of 2. Thus in 

classical IWO, all the weeds undergo a gradual behavioral 

transformation from an explorative to an exploitive one.  In 

our proposed algorithm, we state that fitter individuals should 

behave in an exploitative manner through successive 

generations from the initialization of the weed colony and not 

wait for the standard deviation to reduce to low values. 

Following this concept we introduce a constriction factor, A in 

equation (3) as follows, 

 

2 � A' B34��� ) 44��� 5	 ' �2��� ) 2��	�  �2��	C���D� 
where A E �%�&� . The proper choice of parameter A  for 

different population members will help balance the 

explorative and exploitive capabilities of the individuals 

resulting in local refinement. 

The proposed approach employs a synergy of IWO and 

TDQL to realize an Adaptive Memetic Algorithm for 

achieving superior performance in global optimization 

problems. After each evolutionary step, the performance of 

the members is evaluated based on their fitness. High 

performing members are rewarded with positive immediate 

reward, whereas low performing members are penalized. The 

reward/penalty given to a member is stored in the Q-table 

Step 1   For each state S and action a, initialize 7�/� "� � %. 

Step 2   Observe the current state /� 
Step 3   REPEAT 

                 Select "� E �"�� "�� � � "�� and execute it. 

                 Receive an immediate reward �!(/� � "�*. 
                 Observe the new state /? = ��(/� � "�*. 
                 Update the table entry 7(/� � "�* by 

                7(/� � "�* = �& ) >�' 7(/� � "�*  >' �!(/� � "�*  89:;�� 7� ��(/� � "�*� "���. 
                 /� = /? 

             FOR EVER�

Algorithm 1. Differential Q-Learning Algorithm. 
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using the TDQL learning rule. A meme pool for parameter A 

is maintained in order to select the control parameters for 

individual members of the population. The adaptive selection 

of memes is performed by a hyperheuristic choice-metric 

based selection from the meme pool. The process of selection 

of A from the meme pool, followed by one step of IWO and 

reward/penalty updating in the Q-table is continued until the 

condition for convergence of the AMA is satisfied. 

The proposed AMA algorithm accesses the Q-table to 

select the appropriate constriction factors of the individual 

members before evolution, and updates the Q-table after one 

evolution. The row indices of the Q-table represent states of 

the population members obtained from the last iteration of the 

IWO algorithm, in order of their fitness. The column indices 

which represent the actions performed by the members at a 

particular state correspond to uniform quantized values of the 

control parameter in the range (0, 1]. For example, let the 

parameter under consideration be A  with possible quantized 

values �A�� A�� � � A���'�Then 7�/�� A��  represents the total 

reward given to a member at state /�for selecting A � A� . The 

Roulette-Choice strategy is used to select a particular value of A  from the meme pool �A�� A�� � � A���� using the 7(/�� A�*� F � &�1� � �&% for the individual member located 

at state Si. 

The adaptation of 7�/�� A��  is done through a 

reward/penalty mechanism as used in classical TDQL. If a 

member of the population, residing at state Si on selecting A � A�  moves to a new state Sk by the evolutionary 

algorithm, and such state transition causes an improvement in 

fitness measure, then 7�/�� A��  is given a positive reward 

following the TDQL algorithm. If the state transition results in 

no improvement in fitness measure, then a penalty is given to 

the selected 7�/�� A�� . The penalty is introduced by a 

decrease in Q-value. Principles used in designing the AMA 

are introduced below. 

4.1 Initialization 

 The algorithm employs a population of NP D-

dimensional parameter vectors representing the candidate 

solutions. The initial population (at G = 0) should cover the 

entire search space as much as possible by uniformly 

randomizing individuals within the search space constrained 

by the prescribed minimum and maximum bounds. Thus the 

j-th component of the i-th population member is initialized 

according to (1) as mentioned in section 2. 

 The entries for the Q-table are initialized as small 

values. If the maximum Q-value attainable is 100, then we 

initialize the Q-values of all cells in the Q-table as 1. 

4.2 Adaptive Selection of Memes 

 We employ Fitness proportionate selection, also known 

as Roulette-Wheel selection, for the selection of potentially 

useful memes. A basic advantage of this selection mechanism 

is that diversity of the meme population can be maintained. 

Although fitter memes would enjoy much higher probability 

of selection, yet the memes with poorer fitness do manage to 

survive and may contribute some components as evolution 

continues. Mathematically, the selection commences by the 

selection of a random number in the range [0, 1] for each 

population member. Let us consider the selection from the A 

meme pool for a member of state /�' The next step involves 

the selection of A�such that the cummulative probability of 

selction of A � A�  through A�G�� is greater than r. 

Symbolically, 

�������H I�/�� A � A�� J ! K
�G�

�
�
H I�/�� A � A����������L�
��

�
�
 

 The probability of selection of A � A� from the meme 

pool �A�� A�� � � A����is given by 

  I(/�� A � A�* � M(NO�PQ*
� M�NO�PR�STRUS �����V� 

4.3 Invasive Weed Optimization 

The IWO algorithm used here employs reproduction, 

seed dispersal and competitive exclusion as introduced in 

Section 3. The basic difference of the current realization is the 

selection of constriction factor �A  from the meme pool 

adaptively by step 4.2 before invoking the IWO process. 

 

4.4 State Assignment 

 The population members are now ranked in increasing 

order of fitness and assigned corresponding states. 

4.5 Updating the Q-table 

 Let a member at state /� on selection of A�  moves to a 

new state Sk. The update equation for 7(/� � A�* is given by,       

7(/�� A�* = �& ) >�' 7(/�� A�*  >' �!(/�� A�* 
 89:;PW 7� ��(/? � A�*� A�������X� 

 The choice of the reward function is critical to the 

proper operation of the Q-learning mechanism. In case the 

seeds produced by a particular weed experience greater 

fitness in comparison to the parent weed then   !(/� � A�*   is set 

equal to the absolute difference of fitness of the parent weed 

and the fittest seed. Otherwise a penalty of –K is applied, 

however small. 
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+��� � ,-����� ) .(�����*-����� ) -��	�� ' �/��� ) /��	�0 

  

Step 1     Set the generation number G=0  and randomly initialize a population of NP individuals,   

             ���Y� � ����� � ���� � � � �Z[��� with  ���� � ������� � ������ � ������ � � � ������� with   i= [1, 2,……., NP].              

 Initialize the Q-table: 7(/� � A�* � &�\] � �&� � � ^Y�"#$F � �&�� �&%� 
Step 2    Evaluate the population.  

Step 3    WHILE stopping criterion is not reached, DO 

 Step 3.1 Initialize !(/�� A�* � %�\] � �&�� � ^Y�"#$F � �&�� �&%�. 
Step 3.2 /*Adaptive Selection of memes*/ 

FOR i=1 to NP 

         Select A � A? �by Roulette-Wheel Selection. 

  END FOR 

                Step 3.3/*Reproduction*/ 
                                FOR i=1 to NP 

                                        Determine the number of seeds produced by the i-th population member at generation G,�

  END FOR 

       Step 3.4/*Seed Dispersal*/ 
                                FOR i=1 to NP 

                                      FOR  j=1 to +���  

                                        Generate a population of +���  seeds by, 

                                     _̀����� � �a������� � a������� � a������� � � � a�������� 
                                              where a?������ � �?����  !"#$#�%� 2� with k=[1,2,…, D] 

                                               and 2 � A' b�cdeG��cde f
	 �2��� ) 2��	�  �2��	 

                                      END FOR 

                           END FOR 

 Step 3.5/*Competitive Exclusion*/ 
  Evaluate the colony of seeds and weeds. 

FOR i=1 to NP 

                                      FOR  j=1 to +���  

                  IF .(_̀�����* J .(�����* 
                                                     ghiI � j�.(_̀�����* ) .(�����*�j 
                                                      IF ghiI k !�/� � A?� 
    !�/� � A?� � ghiI. 

                                                      END IF 

                                                ELSE !�/� � A?� � )l. 

                                                END IF 

                                      END FOR 

                                END FOR 

  IF ^Y  � +����
Z[�
� k ^Y��� 

                                   Form new weed colony with the first ^Y���weeds arranged in order of fitness. 

  END IF 

 Step 3.6 /*State Assignment*/ 
  Rank individuals in order of fitness and assign corresponding states. 

 Step 3.7/*Update of the Q-table*/ 
  FOR i=1 to NP 

          FOR j=1 to 10 

     IF !(/� � A�* m % 

                                                 7(/� � A�* = �& ) >�' 7(/� � A�*  >' �!(/� � A�*  89:;PW 7� ��(/?� A�*� A���� 
     END IF 

          END FOR 

  END FOR 

 Step 3.8/*Increment the generation count*/ G=G+1  

Step 4    END WHILE 

�

Algorithm 2. The Proposed IIWO Algorithm. 
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 The next step involves the determination of the factor 9:;PW7� ��(/?� A�*� A���' A particular weed may enter the 

next generation along with multiple seeds or it may be 

completely eliminated. In case of multiple state acquisition in 

the next generation the factor is set equal to the maximum of 9:;PW7� ��(/?� A�*� A����for all /?  s. Otherwise it is set 

equal to 0 in case of plant exclusion. 

 The sections B-E are repeated till maximum number of 

iterations is reached. 

5 Experiments and Results 

5.1 Experimental Setup 

We evaluate the performance of our proposed IIWO 

algorithm on a test-suite of 15 benchmark functions with 

varying degrees of complexity. The functions have been 

chosen from the benchmarks proposed in the CEC 2005 

conference. Among them, the first five functions are unimodal 

while the remaining are multimodal. Due to lack of space we 

provide the results on the first 15 representative benchmarks. 

Details of the benchmark functions can be found in [12]. 

Results have been presented for 30 dimensions of all the 

benchmark functions. Each of the algorithms was run for a 

specified number of function evaluations: D*1e+05 where D 

is the dimension of the problem. The mean value and standard 

deviation (within parenthesis) of the error in fitness value over 

25 independent runs of each algorithm are presented in table 

2. 

Since all the algorithms start with the same initial 

population over each problem instance, we have used paired t-

tests to compare the means of the results produced by the best 

and second-best algorithm (with respect to their final 

accuracies) for each benchmark. We have also reported the 

statistical significance level of the difference of means of the 

two algorithms in the respective columns of Table 2 and 3. 

The best performance has been highlighted in each row. The † 

sign indicates the t value of 49 degrees of freedom is 

significant at a 5% tolerance level of significance by 2 tailed 

test. The ‡ sign indicates that it is non-significant. 

 Comparisons have also been presented for the real world 

Circular Antenna Array Design problem [11]. The mean and 

standard deviation results have been presented after 1.5e+05 

function evaluations. The optimization problem is briefly 

outlined below. 

 The array factor of a circular antenna array of N antenna 

elements placed on a circle of radius r in the x-y plane is 

given by: 

n-��� �Ho	p;q��Fr! bstu b�) ��	v	 f ) stu b�� ) ��	v	 ff
Z

�
�  w	� 
where   ��	v	 � 1x�# ) &� ^y  is the angular position of the n

th
 

element in the x-y plane, 

 r! � ^$ where k is the wave-number, d is the angular 

spacing between elements and r is the radius of the circle 

defined by the antenna array, 

 �� is the direction of maximum radiation, 

  is the angle of incidence of the plane wave, 

 o	 is the current excitation and 

 w	 is the phase excitation of the n
th

 element. 

 Here we shall try to suppress side-lobes, minimize 

beamwidth and achieve null control at desired directions by 

varying the current and phase excitations of the antenna 

elements. For a symmetrical excitation of the circular antenna 

array objective function as: 

z- � {n|�}~�� � o� w� }��{ {n|�}��� � o� w� }��{�  

 & �o|�}�� o� w�y  j}� ) }��~j
 H{n|�}? � o� w� }��{
	��

?
�
 

where }~�� is the angle at which maximum sidelobe level is 

attained, }��~  is the desired maxima, num is the number of 

null control directions and }?  specifies the k
th

 null control 

direction. 

 The first component attempts to suppress the sidelobes. 

Nowadays directivity has become a very useful figure of 

merit for comparing array patterns. The second component 

attempts to maximize directivity of the array pattern and the 

third component strives to drive the maxima of the array 

pattern close to the desired maxima. The fourth component 

penalizes the objective function if sufficient null control is not 

achieved. 

5.2 Other Competitive Algorithms 

  Differential Evolution and Particle Swarm 

Optimization has recently gained wide popularity as a fast and 

efficient optimization algorithm over continuous search 

spaces. We compare the performance of IIWO with classical 

IWO, DE and PSO. The parameter settings are given in the 

next page. 

5.3 Simulation Results 

The results obtained for the 15 benchmark problems as 

well as the real world optimization problem are tabulated 

below. 

Table 1. Parameter Settings 

PARAMETER VALUE 

Pop_size 50 

Inertia weight 0.25-0.4 

C1,C2 2 

F 0.5 

Cr 0.9 

�max 10% of search range 

�min 1% of search range 
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Figure 1. Power radiation pattern. 

�

Table 2. Results for 30D Benchmark Problems 

F. IIWO IWO DE PSO 

1 
8.537e-01† 

(2.673e-01) 

4.977e+01 

(9.453e-00) 

7.229e+04 

(2.599e+03) 

1.523e+03 

(3.743e+02) 

2 
1.653e+00† 

(4.373e-01) 

8.251e+01 

(9.487e+00) 

7.176e+04 

(6.289e+03) 

8.578e+03 

(2.788e+02) 

3 
5.124e+05† 

(8.763e+04) 

2.899e+06 

(5.11e+05) 

6.286e+08 

(5.271e+07) 

8.176e+06 

(2.389e+05) 

4 
2.075e+00† 

(1.745e-02) 

1.667e+02 

(1.013e+01) 

4.389e+02 

(1.865e+01) 

4.391e+03 

(5.283e+02) 

5 
2.481e+03 

(8.351e+02) 

5.419e+01† 

(1.032e+01) 

2.747e+04 

(2.577e+03) 

1.011e+04 

(3.733e+02) 

6 
2.961e+02† 

(8.927e+01) 

3.766e+04 

(1.198e+04) 

3.281e+10 

(2.744e+09) 

5.789e+08 

(7.639e+07) 

7 
7.989e-02† 

(2.322e-03) 

1.836e+00 

(1.921e-01) 

2.836e+02 

(4.899e+01) 

3.137e+03 

(5.533e+02) 

8 
2.016e+01† 

(5.814e-05) 

2.094e+01 

(1.344e-04) 

2.115e+01 

(4.436e-02) 

2.291e+01 

(2.487e-01) 

9 
1.185e+02 

(4.013e+01) 

5.962e+01† 

(6.392e+01) 

7.321e+02 

(2.987e+01) 

7.491e+01 

(3.987e+01) 

10 
1.173e+02 

(1.332e+01) 

8.673e+01† 

(2.587e+01) 

5.287e+02 

(4.731e+01) 

1.928e+02 

(2.677e+01) 

11 
1.384e+01‡ 

(6.037e+00) 

1.437e+01 

(1.345e+00) 

9.663e+01 

(1.393e+00) 

2.349e+01 

(1.024e01) 

12 
5.196e+04† 

(9.723e+03) 

9.148e+05 

(7.285e+04) 

9.825e+05 

(1.281e+05) 

1.064e+05 

(3.112e+05) 

13 
3.052e+00† 

(1.021e+00) 

1.265e+01 

(1.626e+00) 

5.973e+02 

(1.385e+02) 

6.979e+00 

(2.562e+00) 

14 
1.126e+01† 

(2.311e-01) 

1.135e+01 

(3.156e-01) 

1.453e+01 

(1.121e-01) 

1.217e+01 

(1.452e+00) 

15 
4.013e+02‡ 

(6.724e+01) 

4.038e+02‡ 

(5.982e+01) 

8.832e+02 

(2.281e+01) 

6.747e+02 

(1.043e+02) 

 

Table 3. Objective Function Values for the Circular Antenna 

Array Design Problem 

IIWO IWO DE PSO 

-20.7013† 

(1.312e-01) 

-16.4178 

(4.293e+00) 

-13.9306 

(1.041e-01) 

-5.4852 

(3.543e-00) 

 

6 Conclusions 

In this paper we present a novel approach to improved 

global optimization by using a synergy of Invasive Weed 

Optimization and Temporal Difference Q-Learning to 

adaptively select memes (constriction factors) from the meme 

pool. To the best of our knowledge, such Machine Learning 

techniques have not been used previously to incorporate 

learning strategies in Evolutionary Algorithms. Experimental 

results conducted on a wide variety of benchmark functions as 

well as a real world optimization problem justifies our claim 

to the robustness and efficiency of the proposed approach. 
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Abstract - The Travelling Salesman Problem (TSP) is a well-

known combinatorial problem that finds many applications in 

operational settings such as product distribution and 

manufacturing. Finding exact solutions to TSPs can be 

difficult, so heuristic methods are sometimes implemented.  

This paper develops and tests the performance of a new and 

novel, Excel-based heuristic algorithm for solving Euclidian 

plane, symmetric TSPs where the X-Y coordinates of all 

nodes are known. Test results show that the method works 

well for small problems. The method has an error function 

that varies linearly with the problem size.  An advantage of 

the algorithm is that it is relatively easy to implement and so 

might be useful in smaller organizations which do not posses 

sophisticated mathematical or financial resources. It also 

might be used in an academic setting to demonstrate heuristic 

solution processes. 

Keywords: Traveling salesman problem, Heuristic, 

Algorithm 

1 Introduction 

The Travelling Salesman Problem (TSP) is a well-known and 

important example of combinatorial sequencing problems that 

find wide practical application in many fields. The classic 

case is where a salesperson wants to travel from his home 

base and visit clients in a number of other cities. The problem 

is to define a least-costly tour from city-to-city in which each 

city is visited only once and the salesperson ends up back at 

the home base.  Interest in and application of the TSP began 

with the seminal paper by Dantzig, Fulkerson and Johnson [1] 

which found the shortest-route tour of 49 cities in the U.S.  

Other important, practical and useful examples of 

combinatorial sequencing problems with added refinements 

and extensions are; assigning airliners to routes [2], routing 

delivery trucks [3], drilling holes in printed circuit boards [4], 

order picking in a warehouse [5],  and sequencing jobs on a 

machine [6].  

  

A characteristic of any TSP is that it is easy to describe but 

difficult to solve to an exact, provable optimum. An exact 

solution to a TSP can be found by branch-and bound integer 

programming methods, described by Lawler, et. al. [7] and 

branch-and-cut methods, described by Junger, et al. [8].  An 

exact solution can also be found by explicit enumeration of 

all possible solutions ; however, this is not a viable 

methodology for larger problems as the number of possible 

solutions is a factorial of the number of nodes (cities). As a 

result of the difficulty in finding exact solutions, practical and 

useful solutions to TSPs can be obtained by the use of 

heuristic algorithms. A heuristic algorithm is a solution 

procedure that can lead to a good solution, but one that is not 

necessarily optimal. There are three general types of TSP 

heuristics; (1) construction methods, (2) improvement 

methods and (3) metaheuristic methods. Construction 

methods start at an arbitrary node and then select succeeding 

nodes according to a criterion such as cheapest or shortest 

distance. Well-known examples of construction methods are 

variations of the Nearest Neighbor Greedy (NNG) algorithm 

[9] which will be used for comparison purposes in this paper. 

Improvement methods start with a feasible tour and then 

make changes in a effort to find a shorter tour. The 2-Opt, 3-

Opt and Lin-Kernighan algorithm [10] are examples of 

improvement methods. Metaheuristics such as simulated 

annealing, tabu search, genetic algorithms and artificial 

neural networks search neighborhoods for local optima and 

then use that information to search for better solutions 

without getting trapped in any one local neighborhood. A 

good description of  basic metaheuristic methods can be 

found in [11]. A disadvantage of many of these methods is 

that they usually require specialized software that may be 

difficult or expensive to acquire and implement, especially 

for small companies that may find less than exact solutions to 

be an acceptable trade-off for a simpler solution 

methodology.  

 

The Rotating Constellation Heuristic (RCH) algorithm 

described in this paper is a hybrid method. It starts with a 

feasible tour constructed by a simple node-to-node process,  

then systematically generates a subset of additional complete, 

feasible tours, ultimately selecting the best tour from the set 

of feasible tours.  It has the  advantage that the software may 

be developed and implemented by using the Excel sort 

function, and does not require extensive training in 

mathematics or expertise in a programming language. 

However, some basic skills in Excel Macros and VBA would 

be helpful to reduce the amount of time and effort required to 

find the best solution that the method is capable of delivering. 

The practical usefulness of any non-optimal heuristic 

solution, of course, would depend on its expected accuracy 
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which in this paper is measured as the expected percent over 

an optimal or benchmark  tour.  

 

The next two sections of this paper will present the RCH 

process logic by example, and then the mathematics of the 

general RCH model will be developed. Its robustness and 

accuracy will then be benchmarked against actual TSP data 

for which a very good or optimum solution is known. 

 

2 The Rotating Constellation Heuristic: 

Description by Example 
 

As a simple example consider a set of ordered pair X-Y 

values for a ten node TSP, shown in Table 1, where the pairs 

are sorted in ascending X-value order.   

 

    Table 1 

     X-Y values for a 10 node TSP. 

    _________________________________ 

          Node      X-value        Y-value 

    _________________________________ 

         1 7 53 

2 15 81 

3 20 26 

4 26 67 

5 32 39 

6 54 57 

7 61 80 

8 68 37 

9 87 49 

10  93 72 

    ________________________________ 

 

The RCH algorithm is an eight step procedure, the first six of 

which are listed below. Steps 2, 4 and 5 are implemented by 

an Excel sort command. The algorithm is applied iteratively 

using Excel VBA in a search for a best solution tour distance 

value. 

 

The RCH algorithm:   

1.  Assign a unique number to each node 

2.  Sort the complete set of nodes on the X-values, from low 

to high.  

3.  Based on the X-values, separate the nodes into two equal 

size sets. 

     Left-most set = nodes with the smallest X-values. 

     Right-most set = node with the largest X-values.  

4.  Sort the left-most set of nodes on the Y-values, from low 

to high. 

5.  Sort the right-most set of nodes on the Y-values, from high 

to low.   

6. Connect the two sets to identify the complete tour and 

calculate the tour distance value. 

 

Fig. 1 shows a graphic example of the first six steps of the 

algorithm applied to the data in Table 1. The vertical dashed 

line separates the 10 nodes into two equal size sets of five 

nodes each, designated as the left-most set and the right-most 

set (steps 2 and 3). The arrows show the tour path that the 

first six steps of the first iteration of the RCH algorithm 

would find from start to finish. Step 4 sorts the left-most set 

of nodes on the Y-values from low to high; step 5 sorts the 

right-most set on the Y-values, from high to low. The tour 

path by node number is 3-5-1-4-2-7-10-6-9-8-3. Its length is 

314.20.  

 
     Fig. 1. Two-set Solution Path for Table 1 Data 

 

It can also be inferred from Fig. 1 that an advantage of the 

RCH algorithm is that there will be no crossing-paths within 

either set. Crossing paths will add to the tour length, assuring 

that it is not optimal. The only time a crossing path could (but 

not necessarily) be generated is on the two paths that connect 

the sets together; the upper-most arrow and the lower-most 

arrow in Fig. 1.  

 

The entire set of nodes is now treated as a constellation of 

ordered pair points that will be rotated about its geometric 

center in successive iterations of the RCH algorithm. The 

rotation does not change the distance between any pair of 

nodes.  After each iterative rotation, steps 2 through 6 in the 

algorithm are repeated to generate a new solution. For 

example, the constellation of Fig. 1 is rotated 90 degrees 

clockwise and a new RCH solution is generated from the 

new, rotated X-Y coordinates shown in Table 2. 

 

    Table 2 

     Rotated X-Y values. 

    _________________________________ 

          Node  New X-value  New Y-value 

    _________________________________ 

         1 16.6 82.8 

2 29.6 70.8 

3 43.6 95.8 

4 57.6 76.8 

5 71.6 83.8 

6 70.6 41.8 

7 62.6 9.8 

8 47.6 48.8 

9 39.6 15.8 

10  27.6 34.8 

    _________________________________ 
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The new tour path by node number as shown in Fig. 2 is  

9-10-2-1-3-5-4-8-6-7-9. The tour length is reduced to 262.83 

which is a 31.69 percent improvement over the tour in Fig. 1. 

It is also optimal, proved by explicit enumeration.  

 

 
 Fig. 2. Two-set Solution Path Rotated 90 Degrees,   

     for Table 2 Data 

 

Even though 90 degrees is the best rotation angle there is no 

way to know, a priori, that this is the case.  So the objective in 

the RCH algorithm is to rotate the constellation 

incrementally, attempting to generate a new solution with 

each incremental rotation until a best, but not necessarily 

optimal solution is found. The condition that creates a new 

solution path occurs when a node passes from the right-most 

set to the left-most set and vice-versa due to rotation. In effect 

the two sets evolve by exchanging a pair of nodes at each 

incremental rotation. Consequently, the largest number of 

different solutions that the rotation process is capable of 

generating is n, the number of nodes. The set of n unique 

solutions, if they are all detected, is generated over a total 

rotation of only 180 degrees. Rotating the constellation 

beyond 180 and on to 360 degrees simply generates a repeat 

of the zero to 180 degree rotation solutions, except the tour 

path is in the opposite direction. But the tour length is 

obviously the same in either direction. There are a number of 

rules that could be used to determine the incremental angle of 

rotation, but the simplest rule, used here, is to rotate 180/n 

degrees in contiguous increments, starting from zero to (180 - 

180/n) degrees. The zero degree position is the original 

configuration of the constellation.  Two additional steps (7 

and 8) are now added to complete the RCH algorithm. 

 

7. Incrementally rotate the constellation 180/n degrees, then 

repeat steps 3 - 6 until the constellation has been rotated a 

total of (180 - 180/n) degrees. 

8. Select the solution with the best tour length. 

 

Another question to address is how to handle an instance 

where there is an odd number of nodes. Obviously the 

constellation cannot be divided into two sets, each with the 

same number of nodes. The easiest way to handle this is to 

arbitrarily assign one extra node to either set, which is done 

here.  There are more sophisticated ways to solve the problem 

such as creating a “dummy” node as a duplicate of an existing 

node which will add nothing to any tour length because the 

sorting process should always connect the dummy node to its 

real node. However, this could perturb the geometric center 

of the constellation leading to unknown effects.  The general 

RCH model will now be developed. 

 

3 The Rotating Constellation Heuristic: 

General Model 
 

 Assume the Cartesian coordinates, xiyi  (i = 1 to n) in a two-

dimensional flat plane for a TSP with n nodes are known.  

The symmetric Euclidian distance, dij between any two nodes, 

i and j (i ≠ j) is calculated as: 

 

       dij = SQRT[(xi - xj)
2
 + (yi + yj)

2
]     (1) 

 

The ordered pair, xcyc is defined as the geometric center of 

the constellation and is calculated as the mean of the X-values 

and the Y-values:  

 

                    n  

           xc = [∑ xi]/n            (2)  

                   i=1 

 

                     n  

           yc = [∑ yi]/n               (3) 

                   i=1 

  

Consider now a translated coordinate system centered on xcyc 

in the original Euclidian plane which is divided into four 

quadrants (Q1 to Q4) as shown in Fig. 3.  An arbitrary node, 

xiyi and its vector is shown in Quadrant 2 along with its angle, 

θi relative to the positive X-axis which is defined as zero 

degrees. The Euclidian distance from xcyc to xiyi is hi and 

calculated as : 

 

       hi = SQRT[(xi - xc)
2
 + (yi - yc)

2
]        (4) 

 

 
   

       Fig. 3 Translated X-Y Coordinates  
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The calculation of any value of θi depends on which quadrant 

the node is in. 

 

 If:  xi - xc >= 0 and yi - yc >= 0, the node is in Q1, and:  

         θi = sin
-1

[(yi - yc)/hi]        (5) 

 

 If:  xi - xc < 0 and yi - yc >= 0, the node is in Q2, and:   

         θi = 180 - sin
-1

[(yi - yc)/hi]      (6) 

 

 If:  xi - xc < 0 and yi - yc < 0, the node is in Q3, and:     

         θi = 180 - sin
-1

[(yi - yc)/hi]      (7) 

 

 If:  xi - xc >= 0 and yi - yc < 0, the node is in Q4, and:   

         θi = 360 + sin
-1

[(yi - yc)/hi]     (8) 

 

Once the set of θi have been calculated the entire constellation 

is incrementally rotated about the geometric center by angle, 

φk (k = 0 to n-1), where k is the kth iteration out of n total 

iterations.  

  

          φk = (180/n)k           (9) 

 

If k = 0, then φk = 0, and the constellation is in its original, 

unrotated position. After each rotation, each node’s new 

vector angle relative to the zero degree position in Fig. 3 is (θi 

- φk), assuming clockwise rotation.  New coordinates, xiyi in 

the original Euclidian plane can then be calculated for each 

rotated node: 

 

         xi = hi[cos(θi - φk)]xc       (10) 

  

         yi = hi[sin(θi - φk)]yc       (11) 

 

Of course the distance, dij between any two rotated nodes is 

the same as the original, unrotated distances: 

 

           dij = dij            (12) 

 

And the tour distance value, vk for the kth contiguous 

rotational iteration is: 

 

            vk = ∑dijk             (13) 

 

where i and j are determined by the final sort sequence which 

becomes known after step 7 in the RCH algorithm. The best 

overall solution, v
*
 is then selected in step 8 of the RCH as: 

 

           v
*
 = min{vk}           (14) 

 

 

which occurs at a rotation angle of φ
*
. 

 

4 Computational Test Results and 

Discussion 
 

In this section results are presented on the performance of the 

RCH algorithm compared to the performance of the NNG 

algorithm using instances available in TSPLIB [12].  

Instances of up to 76 nodes were selected from TSPLIB  for 

which the X-Y coordinates and the optimal or best tour were 

known and available.  All tour values are assumed to be 

correct as specified in TSPLIB. NNG and RCH solutions 

were generated for each instance and compared to the 

TSPLIB tour.  Overall results are presented in Table 3.   

 

It can be seen in Table 3 that the RCH algorithm at φ
*
 

performed better than the NNG algorithm for instances of  38 

nodes, or less. For these four instances, rotation of the 

constellation from φ
 
= 0 to φ = φ

*
  improved the solution tour 

from an average of 35.87 percent over TSPLIB to 14.96 

percent over TSPLIB.  As might be expected, it can be seen 

in Table 3 that the error increases with the number of nodes.  

The data in the second and last columns in Table 3 can be 

used to estimate the expected accuracy of the RCH algorithm, 

relative to TSPLIB, as a function of the number of nodes 

which have been divided into two sets, each of size n/2.  

Defining:  

 

  p = % over TSPLIB, RCH at φ = φ
*
      

  n = number of nodes 

  

Simple linear regression generates the following equation 

with adjusted R
2
 =  0.89.  

 

          p = 0.93(n) - 10.56       (15) 

 

Obviously, the p value in (15) cannot be less than zero.  The 

p-value is equal to zero when the n-value is 11.35.  Given that 

the n-value must be integer, the error predictor equation is 

modified accordingly and approximated as: 

 

 

        0  for n <= 11 

     p =                        (16) 

        0.93(n) - 10.56  for n >= 12 
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Table 3. 

Selected instances from TSPLIB with known X-Y coordinates and optimal solutions        

_____________________________________________________________________________    

                       % over      % over              % over 

TSPLIB  Number     TSPLIB,     TSPLIB,    φ
*
,        TSPLIB, 

Instance  of nodes     NNG        RCH at φ = 0  degrees    RCH at φ = φ
*
   

_____________________________________________________________________________ 

ulysses16 16 52.70 9.84 0.00 9.84 

ulysses22 22 27.82 12.84 163.64 10.69 

wi29 29 31.83 53.69 43.45 5.15 

dj38 38 46.47 67.12 123.16 34.16 

att48 48 20.89 118.55 127.50 28.01 

berlin52 52 19.08 86.02 72.69 38.26 

st70 70 19.34 80.11 146.57 58.66 

pr76 76 41.89 122.08 61.58 60.14 

_____________________________________________________________________________ 

 

 

5  Conclusions 
 

A new heuristic algorithm for solving the TSP has been 

developed and tested. The algorithm can be implemented 

with only a basic knowledge of trigonometry, Excel and 

Excel macros or VBA programming. The algorithm performs 

well for small problems with the error increasing linearly 

with the problem size. This decrease in accuracy is caused by 

the sort solution methodology which naturally searches for 

the outside perimeter defined on the graph of the nodes for all 

values of φ which can lead to excessive back and 

forth, zigzag travel in larger problems. Accuracy could likely 

be increased by dividing the complete set of nodes into more 

than two sets, allowing the sort procedure to delve more 

deeply into the interior region of the node graph with less 

overall travel within each set. It is expected that the error 

predictor equation (16) would hold within each pair of sets, 

even as the overall number of nodes in the instance increases. 

Connecting the pairs of sets into a complete tour would likely 

contribute additional error. This is a topic for future research.  

Another  avenue for future research could address more 

thoroughly the question of how to handle an odd number of 

nodes, especially when more than two sets are defined. 

Additional rules for determining the incremental rotation 

angles could also be investigated. The general solution 

methodology might also be modified to work for three-

dimensional or spherical coordinate problems as long as the 

node coordinates are specified.  
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Abstract - The objective of this research is to develop two 

intelligent players to competitively play against each other in 

the game of Qubic. The two-player computerized board game 

environment possesses an excellent setting in which to 

conduct programming experiments. One player selected to 

compete in the contest is a deterministic, heuristic-based 

approach to artificial intelligence that plays well. The other 

player selected is a non-deterministic, genetic programming-

based approach to machine learning. The immediate results 

clearly show the heuristic player as the dominant one. Two-

pass evolution is applied to strengthen the genetic 

programmer well enough to win more than a few matches 

against the heuristic opponent. The analysis opened up areas 

of research into developing stronger intelligent heuristic and 

genetic programming players. 

Keywords: Artificial Intelligence in Games, Genetic 

Programming, Heuristics, Qubic  

 

1 Introduction 

  The two-player computerized board game environment 

possesses an excellent setting in which to conduct 

programming experiments. The ultimate goal is to establish 

one winner for each game played. The outcome of the games, 

in their entirety, holds the key-point in which to compare 

intelligent players. Qubic, an advanced version of the 

traditional tic-tac-toe game, is the board game chosen for this 

study. The research trials were conducted with a two-player 

stance, competing over a 100 game set of Qubic. One of the 

competing players is the Open-123 heuristic; the other 

competing player is referred to as genetic programming (GP). 

The object of this research paper is to: develop two intelligent 

Qubic players; compete the players against each other; 

discover the final results of each game played; examine the 

moves; interpret the results of the analysis and state the final 

verdict of the project. The conclusion of the experiment will 

establish that the player with the most wins at the end of the 

tournament is the ultimate winner of the competition. 

 Keep in mind, there are more properties of the 

competition to consider than just the final outcome. These 

properties should not be dismissed as inconsequential. 

Although the outcome is decisive, many other factors are 

equally as important, since they may hold considerable 

bearing on the eventual outcome. For instance, the winner 

could move at an extremely slow pace while the loser moves 

more swiftly. Additionally, the loser may have an interesting 

playing style or possesses the potential to play at a higher-

level, and so on. The ideas discovered while playing Qubic 

can be mapped to less trivial and more serious problems, e.g.) 

the medical field. Games could be the domain where ―it‖ all 

starts). 

2 Qubic 

2.1 The Game of Qubic 

 Qubic is a board game originally sold by Parker 

Brothers, in the late 1960's. Qubic consists of four 4x4 tic-tac-

toe boards. Qubic is easier to understand, visualize, and talk 

about in a two-dimensional representation as seen in Figure 1. 

Additionally, the boards can be combined together to form a 

three-dimensional cube as seen in the same Figure 1. [1]  

Figure 1: Two- and three-dimensional Qubic in layers. 

 

 Each board layer labeled 1, 2, 3, 4 are the same as the 

corresponding two-dimensional board representation. Sixteen 

squares on each of the four boards total the entire 64 square 

playing surface. The object of the game is to line four ―X‘s‖ 

or ―O‘s‖ in a row, along, for instance, the horizontal, vertical, 

or diagonal axes, on one square of each board, beginning with 

an outer board. X is the first player to move. Players then 

alternate moves. The first player to line four of their squares 

up in a row wins. 

 

2.2 Qubic Mathematics 

 There are 76 winning lines in Qubic. Further details are 

contained within [2]-[4]. See Table 1 to view all of the 76 

possible winning move sets. Qubic has an upper bound 

complexity level of 3
64

. Each square can be filled by either X, 

O, or empty [5]. There are 64 total squares. That is, multiply 

three times three, 64 times. The result is an astronomical 

number. There are this many combinations (total number of  
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Table 1: The 76 winning line sets in Qubic 

 

 

 

 

 

 

 

 

 

 

 

positions) in Qubic. If you wanted to get an even more 

accurate picture of the complexity of Qubic, use 64 factorial, 

an even larger number, as the upper bound complexity level 

estimate of Qubic [6]. This estimate includes the 364 estimate 

plus it counts move order, a key game property to consider 

[6]. Counting move order is the difference between the two 

estimates. Either way, it means the Qubic search space is 

extremely large. This qualifies it as a computationally 

intractable game (NP-hard problem, concerning the time 

required to solve the game). We are forced to estimate 

solutions to the problem. 

3 Intelligent Players 

 Processes found within the gaming communities are 

integral to the development of artificial intelligence (AI). 

Intelligent players are AI in the form of computer programs 

developed to play board games. Intelligent players have the 

notable ability to quickly solve complex problems. At the 

same time, intelligent players have trouble solving simple, 

very basic (common sense) types of problems. Two AI 

players can complete nearly 100,000 games of Qubic in a 

matter of hours. The same amount of games would take two 

human players, 100,000 consecutive minutes (or two months) 

of play to complete at the alarming rate of one minute per 

game. 

3.1 Heuristics 

 Heuristics are deterministic, problem-dependent, and 

rule-based solutions to problems. Human programmers 

consult with experts in the field to take human experiences 

and advice, trial and error, educated guesses, or even brute 

force tactics, and transform the knowledge into computer 

procedures and programs. Improvement to the heuristic 

requires human programmer intervention. The problem with 

heuristics is the knowledge is considered shallow and the 

expertise is limited to the domain the system knows about. 

Heuristics do not generalize their knowledge. However, 

heuristics can provide valuable shortcuts that can reduce both 

time and cost. [7] 

 The heuristic player is one of the players to compete in 

the Qubic contest. The power of the heuristic player is 

contained within the evaluation function. The logic behind the 

evaluation function is called Open-123. The heuristic player is 

deterministic; it will make the same exact move each time it is 

given the same situation. The logic defining the evaluation 

function is simple. Higher values are assigned to moves 

containing a higher number of friendly squares, meaning 

squares filled by the player it is evaluating. Each line in each 

square is summed to give one total value to the square. Open 

3 is assigned a higher value than Open 1. If there is a square 

filled by an enemy in the line being evaluated, the value is 

automatically returned as 0.0. The square containing the 

highest value is returned from the evaluation function. This is 

the square it will move to on the actual board. The Open-123 

evaluation function can be used in opposites as the player's 

defense logic to block. Before evaluating itself, it can evaluate 

the opponent in order to detect an immediate win threat. Then, 

according to the killer heuristic philosophy, move to this very 

spot first before the opponent. During development, the 

heuristic player was benchmarked against the skill level of 

human players. It was found to be extremely difficult for 

humans to calculate what square Open-123 will play on next. 

The player was good enough at the moment in time when the 

Vertical Horizontal Straight up 
Vertical /  

Horizontal 
Diagonal  

{0,1,2,3} 

{5,6,7,8} 

{10,11,12,13} 

{15,16,17,18} 

{20,21,22,23} 

{25,26,27,28} 

{30,31,32,33} 

{35,36,37,38} 

{40,41,42,43} 

{45,46,47,48} 

{50,51,52,53} 

{55,56,57,58} 

{60,61,62,63} 

{65,66,67,68} 

{70,71,72,73} 

{75,76,77,78} 

{0,5,10,15} 

{1,6,11,16} 

{2,7,12,17} 

{3,8,13,18} 

{20,25,30,35} 

{21,26,31,36} 

{22,27,32,37} 

{23,28,33,38} 

{40,45,50,55} 

{41,46,51,56} 

{42,47,52,57} 

{43,48,53,58} 

{60,65,70,75} 

{61,66,71,76} 

{62,67,72,77} 

{63,68,73,78} 

{0,20,40,60} 

{1,21,41,61} 

{2,22,42,62} 

{3,23,43,63} 

{5,25,45,65} 

{6,26,46,66} 

{7,27,47,67} 

{8,28,48,68} 

{10,30,50,70} 

{11,31,51,71} 

{12,32,52,72} 

{13,33,53,73} 

{15,35,55,75} 

{16,36,56,76} 

{17,37,57,77} 

{18,38,58,78} 

{0,21,42,63} 

{5,26,47,68} 

{10,31,52,73} 

{15,36,57,78} 

{0,25,50,75} 

{1,26,51,76} 

{2,27,52,77} 

{3,28,53,78} 

{0,6,12,18} 

{3,7,11,15} 

{20,26,32,38} 

{23,27,31,35} 

{40,46,52,58} 

{43,47,51,55} 

{60,66,72,78} 

{63,67,71,75} 

{3,22,41,60} 

{8,27,46,65} 

{13,32,51,70} 

{18,37,56,75} 

{15,30,45,60} 

{16,31,46,61} 

{17,32,47,62} 

{18,33,48,63} 

{0,26,52,78} 

{15,31,47,63} 

{3,27,51,75} 

{18,32,46,60} 
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author of this work and other subjects were unable to defeat it. 

One person who was able to beat the player was Greg Vitko 

(Chess master). Vitko notably achieved the win in 30 moves 

on the first attempt, while playing second at a disadvantage. 

The other human players did not do as well. The final verdict 

was the Open-123 player plays well. There were some 

weaknesses exposed. All around, it evaluates well enough to 

serve its purpose. The move string and graphic game of the 

winning sequence can be seen in Figure 2. The graphical 

example game on the tilted boards below are the graphics 

developed by David Cao and reused to clearly demonstrate 

example games of Qubic. 

 

Figure 2: Heuristic player defeated. 

 

3.2 Genetic Programming 

 Genetic programming is a new, resurrected, exciting, 

and actively being researched area. It has been around since 

the 1960‘s and taken on and off of the shelf during the 1980‘s. 

It has been shelved in the past because of the limitations on 

computing power and heavy requirements placed on 

execution. Any modern personal computer satisfies the power 

requirements. Genetic programming is being revisited today.  

 Genetic programming is a machine learning technique 

inspired by the theory of biological evolution. Genetic 

programmers are algorithms that create algorithms. In tree-

based GP, the generated computer programs are similar to 

decision trees and more precisely parse trees: decisions travel 

up the tree. Each node can be a complex mathematical 

formula (function) [8]. The general idea is to first try a few 

thousand random guesses to see which ones are best; then, 

take the random guesses and improve them. The basic work 

flow follows. First, generate the initial population of random 

programs built from the primitive function set. Then, rank the 

programs by evaluating them in some predefined way. The 

best programs are then selected. These are mutated and bred 

with crossover (recombination). The process is continued 

until the termination condition is satisfied. 

 GP programs in the Qubic implementation are stored as 

tree structures. The trees are initialized with a primitive set of 

five functions shown in the following list. 

1) add(l):=return l0 + l1 

2) multiply(l):=return l0* l1 

3) subtract(l):=return l0 – l1 

4) if(l):=if l0 > 0:return l1 else:return l2 

5) is_greater(l):=if l0 > l1:return 1 else:return 0 
 

Each function contains a set of simple operators. The GP 

recursively recombines and forms these functions into 

programs. The nodes on the trees are function, parameter, or 

constant nodes. For each function node there is a list l of other 

function, parameter, and constant nodes. The functions are 

represented in the list; the parameters are simple auto-

generated lookup values determined at runtime; and the 

constants are hard coded integer values. 

 

 Trees are programs. They calculate their next move by 

propagating return values up the tree from the bottom nodes, 

towards the root of the tree, formulating to the output number 

in which the GP uses to make its next move (see Figure 3 for 

an example of a genetic program). Programs are designed by 

means of evolutionary pressure. The best player remains or is 

replaced, dependent on how well it plays against other 

competitors in its run. To be useful, the GP should be 

serialized to disk. The player can then be brought back to life 

and compete in more rounds of evolution and serialized back 

to disk again. 

 

Figure 3: Example tree-based program. 

 

4 Experiment 

4.1 Hypothesis 

  The purpose of this experiment is to compete two AI 

players against each other in a 100 game contest of Qubic, to 

see who wins and to see what thoughts emerge. Solving the 

Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  | 131



game of Qubic is not the purpose. Qubic has already been 

weakly solved. Qubic is not being used for that purpose, but it 

supplies the domain which conducted the comparison results. 

It is the hope of this study to develop the GP player to win at 

least a few games against the heuristic player. If this 

experiment reveals the GP loses, it means there are open areas 

for future work. 

 

4.2 Experiment Results 

 The heuristic player won every single game! The length 

of the games is an indicator of the equality of the players. This 

is true when humans compete against other human players in 

games such as chess. It is logical to deduce the same for AI 

players for Qubic. An average game of Qubic with roughly 

equal players lasts 20 moves. In this contest, an average game 

lasted only 10 moves. The length is not long enough to 

warrant equality of the players. 

5 Opened Areas of Research 

5.1 First Attempt Failed 

 The results of the experiment opened up areas of 

research into developing stronger intelligent GP players. The 

basic problem is the GP player lost all 100 games. This 

opened up an opportunity to improve the evolutionary process 

of the genetic programmer. There were three main problems 

with the earlier approach: 

1) GP was not blocking immediate win threats (basic need). 

2) The is_greater primitive function was returning 1/0. 

3) The evolution process only involved self-competition. 

5.2 Second Attempt Plan 

 In the first contest, the outcome of running the 100 game 

set of Qubic resulted in the heuristic player winning every 

single game. This means one pass of 100,000 evolutions of 

the GP player results in a poor playing program. Increasing 

the game experience would not improve the player. The 

genetic programmer is not executing basic needs by failing to 

block simple initial ‗X‘ player moves 0, 18, 12 as seen in 

Figure 4. Computers are not skilled at handling common sense 

type of basic problems. The first problem to solve on the way 

to beating the heuristic player is to endow the GP player with 

basic logic to block. The GP needs to defend against 

immediate win threats. The second problem to address is to 

modify the is_greater primitive function to return moves, 

ranging from 0 - 78, including a padding of bits separating 

each 4x4 board, instead of returning binary numbers. 

Additionally, to address the third problem, instead of solely 

competing against itself, let it compete against a predator 

opponent. 

 

Figure 4: Genetic programmer not blocking. 

 

5.3 Solutions 

 The solution to the first main problem, to block, is 

apparent, and easy to correct. Use the same Open-123 logic as 

the heuristic player for defensive moves. The solution to the 

second problem requires more thought and includes the 

blocking solution for the first problem. After much 

experimentation, it was found that the set of initial programs 

to start the GP out with should be geared more towards Qubic. 

One specialized function was made to reference an in-memory 

lookup table into a small subset of winning lines. This idea 

fits into the way humans think. During a game of Qubic, 

human players follow six or seven solution lines they know 

will win. If one of the lines is blocked, they try another line. 

People also combine solutions to collect threats. The new 

function content pulls solutions from the 76 winning line sets 

of Qubic. Particularly, the new GP is made to pull from the 

fourteen handpicked solutions in the memory list of Table 2.  

 

Table 2: Lookup Table of Solution Sets. 

First Set of Solutions  Second Set of Solutions  

{18,32,46,60} 

{3,27,51,75} 

{5,26,47,68} 

{22,27,32,37} 

{18,33,48,63} 

{20,21,22,23} 

{65,66,67,68} 

{0,26,52,78} 

{15,31,47,63} 

{6,26,46,66} 

{7,27,47,67} 

{17,32,47,62} 

{25,26,27,28} 

{70,71,72,73} 

 

 

   The modified version of the is_greater primitive 

function takes the first or second element from the input list l, 

depending on the greater of the values, and applies the 

modulus operator to regularize the number as a valid solution 

in the lookup table: 

 

  is_greater(l): if l0 > l1: return l0 mod 7 from S1 else: 

return l1 mod 7 from S2 

 

The first two elements in the first and second set of solutions 

S1, S2 were chosen for the reason these lines contain four rich 

points (seven winning lines running through them). Two of 

which are the richest points on the board (i.e., the centers of 

the middle boards). Players past the beginning skill level of 

Qubic know perfect players open their games by playing on 

rich points. The rest of the solutions in the list are randomly 
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chosen. Comparable results would be generated using 

different sets of solutions. This solves the second problem. 

Lastly, to offset the domination of the heuristic player, the 

two-step evolution process is applied to solve the third main 

problem. 

 

5.4 Two-Pass Evolution 

 Two-pass Evolution models the behavior of bucks (male 

deer) in the wild and may answer the third problem. Bucks 

compete by colliding antlers with other bucks where the act of 

competition decides dominance, and the winning males mate 

[9]. In the artificial model, colliding antlers is naturally 

equivalent to competing programs to decide dominance, and 

this is accomplished with first-pass evolution. The dominant 

program is now ready and allowed to mate. In the artificial 

world, mating is equivalent to throwing the best player, along 

with the heuristic player (predator), into the initial set of 

programs within second-pass evolution. In this second pass of 

evolution, the best GP player and predator mate. Hopefully, 

the mating produces better offspring through genetic 

evolution by applying genetic operators, recombination and 

mutation, to the best GP player with good players from the 

previous generation. By including the heuristic player as one 

of the players in the initial population of programs, the GP 

will eventually learn to block from the bad experience of 

losing to the predator, if reinforced with a win. This approach 

causes the evolving player to learn from others outside of its 

own class. Once the GP has evolved with the predator in the 

population, it is ready to compete in the real world. The aim is 

to evolve the GP into a stronger player capable to win more 

than a couple of games out of another 100 game contest of 

Qubic. 

6 Next Experiment 

6.1 Experiment Results: Second Attempt 

 The GP won 5 out of another 100 game contest of 

Qubic. Earlier, it was found, the GP was unable to solve the 

problem on its own. Now that the human programmer 

provided the right basic functions, modification of one of the 

primitive functions, and the addition of the equal blocking 

logic, it worked. The GP player defeated the heuristic player. 

The GP was able to find the right combination to pull the 

moves in by discovering the best way to arrange and the best 

order to call the solution sets. The most evolved player to date 

including second-pass evolution and selective termination 

achieved 25 wins and 12 draws, slowly approaching equality 

with the heuristic player. As a result of adding defense and 

second-pass evolution, the players start to become equal and 

longer games emerge.  

6.2 Corrections to the Plan 

 Once the individual games start becoming long, the GP 

cannot find a valid move from the solutions (answers) list, all 

moves have already been taken, and the GP ends up timing 

out, or rather over-evaluating, and must give away the game 

to the opponent. There are only a maximum of 28 moves to 

choose from the list. If the opponent takes some of the moves 

away then there are less. Adding more solution lists to the 

specialized primitive function is not the answer. The set of 

solutions needs to be small enough to make sequential moves 

from within the same lists. Creating seven solution lists gives 

―optimal‖ success. For this reason, the GP had to generate 

random moves to complete close end games. The random 

move generator starts generating random moves until the 

move is allowed. For instance, if GP was the X player, it was 

X‘s move, the game was already 60 ply deep, and the GP‘s 

list of solutions were exhausted on the 61st ply, then the 

random move generator would kick in and return random 

moves for the GP to successfully complete the game. 

 

7 Future Work 

 The evaluation function, as well as it plays, has some 

flaws, and can be improved upon. First, the heuristic player is 

being overcautious, playing unnecessary defensive moves, 

before spotting a winning offense. Small corrections in the 

evaluation function will change the function's behavior. 

Greater improvements can be made in the area of inserting 

further expert knowledge into the evaluation function. For 

instance, it is safe to say that making three blindfolded corner 

moves on rich points at the beginning of the game is a strong 

play. Another possible improvement could be to implement 

the concept of collecting threats, where the number of threats 

is more important than the threat itself [6]. Significant 

improvements can be made to the GP. For instance, the list of 

solutions referenced by the primitive function can be 

rearranged. Moreover, an improved method could be 

implemented for the times when the GP runs out of solutions 

in the end game. After these changes are made, the challenge 

would of course be to further develop the Qubic GP to 

dominate the heuristic player. After this, the next challenger 

to try and beat would be Lutz Tautenhahn‘s Qubic AI at 

http://www.lutanho.net/stroke/play.html. It is beatable on 

expert level, although, it plays extremely well and plays 

stronger than the Open-123 heuristic player. 

 

8 Final Conclusions 

 The original hypothesis of developing a strong GP 

player for competing in the Qubic competition failed in some 

respects. One major problem was discovered in the course of 

the experiment. The GP player lost every game. The 

corrections to the GP player resulted in more than a few 

defeats of the heuristic player. An intelligent Qubic player 

was developed to beat the heuristic in 25 out of 100 games of 

Qubic. This was achieved without adding considerable expert 

knowledge to the GP. The GP plays at a higher skill level than 

its author; however, the end result of the contest, in terms of 

the number of wins, finds the heuristic player as the better 

Qubic player. It was found, the human programmer needs to 
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supply basic needs, the right initial set of functions, and the 

right environment for the GP to evolve. 
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Abstract— Converters are one of the inseparable parts of 
Distributed Generation systems. They are variety of control 
methods implemented in converters in order to control their 
output quantities. One the robust methods which is considerably 
useful in such applications is Sliding Mode Control which is 
robust against inherent uncertainties and imprecisions of 
converters. The proposed method is explained and formulated 
using state space average model of a sample full-bridge converter 
in order to have a perfect current tracking of a full-bridge 
converter. Since the best output is obtained using the optimum 
design parameters, the parameters of the full-bridge converter 
are optimized using Genetic Algorithm (GA) in order to have the 
best response. 

Keywords- Sliding Mode control, Genetic Algorithm, Full Bridge 
Converter, Current Tracking, Parameter Optimization 

I. INTRODUCTION  
Clean Power Generation (CPG) is at the center of the 

attention these days because it can protect environment from 
the problems of classical power generation such as greenhouse 
gas emission and pollution. Besides environmental 
repercussions, energy demand rise and depletion of energy 
resources are other reasons of CPG appearance [1-3]. There 
are different types of environmental-friendly generations 
systems such as wind turbines, hydro turbines, photovoltaic 
arrays, biomass and fuel cells. Advances in energy storage 
devices have greatly assisted the flourishing penetration of 
distributed generation (DG) into installation and operation of 
power generation plants [4-6] 

Most of the DG generators do not have a considerable and 
well-regulated DC output. To tackle this problem, a dc-dc 
power electronic converter is used in order to regulate and 
boost the output to the desired value [7]. Power converters can 
be assigned to perform some functions such as output 
regulation under load variation or source change [1]. Several 
types of converters have been studied for such purpose. Buck 
converter, Boost Converter, Buck-Boost Converter, Push-Pull 
boost convert and full bridge converter are the most common 

converters which are used in DG applications [8-14]. To have 
the best performance of a converter, several control methods 
have been used [15-21]. The reason of this implementation is 
the generation systems limitations rooted in their physical 
characteristics.  In order to have an acceptable control over the 
output of the DG system (DG) there are two ways exists. First, 
Control the rate of the physical and chemical quantities which 
take part in reactions to produce electricity. For example, 
output voltage of a fuel-cell is made of the reactions between 
hydrogen and oxygen. Thus if the rate of the Hydrogen and 
Oxygen is controlled, the output value is controllable [22]. 
Since controlling Chemical and physical quantities are not 
easy, a second way which is the control implementation in the 
connected converter is used. It is possible to regulate and 
change the output of a converter by changing its duty cycle 
[2]. 

PID controllers are the most common use controller in the 
case of converter control. They can improve system transient 
response during load step changes and source changes [23, 24]  
or using loop up tables instead of multiplier in order to 
minimize the energy consumption [25]. PID controllers are 
valid only around the nominal power point of the system and 
they cannot have an acceptable response in large scale 
disturbances and wide variety of load changes. Intelligent 
modern controllers such as fuzzy controller are alternatives 
controllers to obtain better performance of converters [8, 18] .  

They are robust against such disturbances and uncertainties. 
In [26], PID method and fuzzy logic theorem are combined via 
a Linear Quadratic Regulator (LQR) to have a better 
performance. Some other combinations of fuzzy logic and PID 
are presented in [27, 28]. Besides Fuzzy and PID controllers, 
the most appropriate controller in order to use in converter 
control applications is nonlinear control methods. These 
controllers are the best options because of uncertainties in 
converters rooted in their elements and design. In addition to 
uncertainties, the behavior of controllers is nonlinear and the 
best option to use in their application is a nonlinear controller 
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to be valid in a large variety of values. This Basis is derived 
from the non-minimum phase nature of converters, variability 
in their structure and unpredictable nonlinear load changes 
[29, 30]. Sliding mode control is one of the well-fitted and 
useful methods converter studies especially in DG connected 
samples.[31] presents a simple unified approach to the design 
of fixed-frequency pulse width-modulation-based sliding-
mode controllers for dc-dc converters operating in the 
continuous conduction mode. The problem of combining 
interleaved operation of several identical power converters 
with a hysteretic control is solved in [32] by inducing a sliding 
regime to all inductor currents in a ring configuration. In some 
references a combination of sliding mode with other methods 
is presented [11, 28, 33-36].The sliding mode fuzzy controller 
combines the advantages of both fuzzy controllers and sliding 
mode controllers. It also has advantages of its own that are 
well suited for digital control design and implementation [28]. 
In [37-39], investigations on Buck, Boost and Buck-Boost 
converters are carried out using SMCs in order to reach a 
desired voltage profile tracking during a load change, start-ups 
and transients. Full Bridge buck converter is studied in a part 
of the [40] in comparison with a cascaded connection boost 
converter for voltage, but not considering the transformer. 

In this paper, a proposed sliding mode controller (SMC) is 
introduced and implemented in a full-bridge converter using its 
average model. The parameters of SMC are optimized using 
GA to have a proper response from two points of view; settling 
time and final value. The proposed method is confirmed using 
simulation in tracking performance and settling time. 

II. FULL BRIDGE CONVERTER AND THE CONTROL SYSTEM 

A. Full-Bridge Converter Performance and Average 
Modeling 

Fig.1 depicts the general schematic of a full-bridge converter circuit. Error! 
Reference source not 

found.

Fig.1. The full-bridge converter 

 The sample full bridge converter is made of a full bridge 
power converter ( 1 4Q toQ ), a high turns-ratio transformer with 
ratio 1: n, a diode bridge rectifier and an output filter. The 
switches ( 1 4Q toQ ) are located diagonally and turned on and 
off. The pulses are sent to the switches using a PWM pulse 
generator with the time duration of . SD T . The PWM pulse 
generator has the value D as duty cycle input. The 
transformer eases boosting the output voltage. 

The average model of a Full-Bridge DC-DC converter is 
derived in [1] and its state space model is shown in (1)-(5). In 
this model state variables are; inductor current ( 1x ) and 

capacitor voltage ( 2x ). 

dX AX BV= +& (1) 

OV CX= (2) 
2 (1 2 ) 1

1 1

th DR d r d
L LA

C RC

+ − − − 
=  
 −  

(3) 

2

0

dn
B L

 
 =
 
 

(4) 

[ ]0 1C = (5) 
The average model is beneficial for simulation because of 

not using multiple switches and other electrical elements. 
Therefore, the time of simulation decreases. Also the state 
space model is suitable for controller design and stability 
analysis. 

B. Implementation Of Sliding Mode Controller in a Full 
Bridge Converter 

There are two stages exist in the design of a SMC 
controller; first, determining the sliding surface to provide 
sliding condition and second, reaching the sliding surface.  

Consider the following single input dynamics. 
( ) ( ) ( ) ( )nx f x b x u t= +  (6) 
( )f x and ( )b x both are not exactly known but the former is 

upper bounded by a known continuous function of x named 

F where ˆf f F− ≤ and the latter sign is known and it is also 

upper bounded by a continuous function of x . The objective is 
determination of u .

The tracking error vector is defined by the following 
equation; 

( 1). . . n
dx x x x x x − = − =  

&% % % %  (7) 

%1( ; ) ( )nds x t x
dt

λ −= +  (8) 

Where 0λ > and 0n > are design parameter and system 
order respectively. 

It is obvious that if the tracking error equals zero then (8) 
equals zero. It means: 

% 0 ( ; ) 0dx x x s x t= − = ⇔ = (9) 
Where dx is the desired output value. 
Therefore, it is possible to keep s at zero with a proper 

choice of ( )u t at (1) .
A control law is introduced in order to keep the s at zero. 

21
2

d s s
dt

η≤ −  (10) 

where 0η > is a design parameter.  
State-space equations of the full-bridge converter can be 

obtained from (1) – (5) as 

1 1 2
2 (1 2 ) 1 2

d

th dR d r d dnx x x V
L L L

− − −
= − +& (11) 
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2 1 2
1 1x x x
c RC

= −& (12) 

2OV x= (13) 
By changing (11) and (12) in the form of (6) we have: 

1 1 2 1
2( )1 2

d

d d thr r R nx x x x V d
L L L L
− − = − + + 

 
& (14) 

2 1 2
1 1x x x
c RC

= −& (15) 

d is the controlling parameter of the system is the same as 
u in (6). Since there is no d available at (14) only the tracking 
of 1x is accessible. Of course, it is highly likely that the 

tracking 1x leads to the stability of 2x . Hence, 

1 1 2
1ˆ ( ) dR

f x x x
L L

−
= − (16) 

1 1
2ˆ ( ) 2 d th

d
r R nb x x V

L L
 −  = +  

  
(17) 

f̂ is an estimation for f because of some available 
uncertainties in full-bridge converter. Another reason for this 
estimation is the semiconductor nonlinear characteristic. This 

explanation is also correct for b and b̂ .
Considering 2n = in (8), the sliding surface is as follows 
s x xλ= +&% % (18) 
The general form of (12) in comparison with (6) can be 

written as (20) 
1 ( ) ( ) ( )x f x b x u t= +& (19) 

Where ( )f x and ( )b x can be the function of 1x and 2x .
By replacing (20) in (19) we have 

ds f bu x xλ= + − +& % (20) 
Now the effort is on the finding of the appropriate u in 

order to make 0s = .
by taking the estimations on f and b into account, the best 

u is found to satisfy 0s =
Firstly by considering 1b = , the following equation is 

derived 
ˆˆ du f x xλ= − + −& % (21) 

The above conditions in (21) and (22) are formulated with 
the assumption of 0s = , but there are some uncertainties in 
the parameters and the problem is out of the s plane. 
Therefore, u should be defined as 

ˆ sgn( )u u k s= − (22) 

Where 
1 0

sgn( ) 1 0
0 0

if s
s if s

if s

>
= − <
 =

Secondly, u is derived from (23) while 1b ≠
( )1ˆ ˆ sgn( )u b u k s−= − (23) 

By putting (24) in (20) and after some simplifications, the 
sliding surface could be achieved as 

1 1 1 1ˆ ˆ ˆ ˆ ˆ sgn( )d ds f bb f bb x bb x bb k s x xλ λ− − − −= − + − − − +& % & %

(24) 
In order to calculate k , 0s = must be solved, hence 

1 1 1ˆ ˆ ˆ ˆsgn( ) ( ) (1 )( )dbb k s f bb f bb x xλ− − −= − + − − +& % (25)

Where 0.5
min max

ˆ ( )b b b=

After some simplifications with regard to ˆ ˆ( )f f f f= + − k
is represented as 

ˆ( ) ( 1)k F uβ η β≥ + + − (26) 
Where 

0.5
max

min

b
b

β
 

=  
 

and min max0 b b b< ≤ ≤  

After calculation of k , x is capable of tracking dx and it 
can be controlled. 

There are three design parameters. F is assumed as the 

radius of error between f and f̂ . Thus it is predicted that 

lower F results in better tracking accuracy and lowering the 
error. λ is another SMC parameter. λ is the coefficient of the 
non-derivative term of the sliding surface presented in (8). It 
affects the resolution of tracking the desired point in 
comparison with the reaching speed. Moreover it may 
influence the amount of the chattering. η is a positive constant 
design parameter and defines the sliding condition. It also 
implies that some of the system uncertainties and disturbances 
can be tolerated while still keeping the surface invariant set. 
Also,η can be influential on system dynamic especially in the 
system speed and changing in the proportion of chattering. 
General scheme of the proposed control system and its output 
and input is shown in Fig.2. 

Li
d

cv

Li
cv

( )L desiredi

Fig.2.  General Scheme of the Proposed SMC 

III. OPTIMIZATION OF THE PROPOSED SMC USING GENETIC 
ALGORITHM 

In this paper, GA is used in order to optimize the three 
mentioned parameters of the proposed SMC to have the best 
output. In order to start the solution, first population size 
should be determined at the first step. This population is 
obtained from accidental quantization of chromosomes. These 
numbers are inserted to the function which is going to be 
optimized. The next step is injecting the generated population 
to objective function. The aim of this action is creating of 
fitness function which is derived from chromosomes. In this 
case proper answers are kept and others will be omitted. This 
circle will be continued until the size of population is reached. 
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the following chart illustrates the proposed GA. 

Fig.3. The proposed Genetic Algorithm chart 

IV. IMPLEMENTATION OF THE PROPOSED METHOD 
In order to verify the proposed method 

MATLAB/SIMULINK is used. The Converter model is 
modeled as follows: 

Fig.4. The Model of Dc-Dc Full-bridge Converter in MATLAB/SIMULINK 

As it can be seen in above picture, because of some 
simulation problems such as increasing the time of the 
simulation and increasing the error message of the software 
during simulation with electrical parameters the full-bridge 
converter is simulated using block diagrams instead of 
resistors and capacitors. 

As it can be understood from the simulated SMC, the inputs 
of the SMC are 1x and 2x . The output of the system is the 
appropriate duty cycle which is sent to the converter switches. 

For implementation of GA, MATLAB/GA toolbox is used. 
The specification of the 5 kW sample Full-Bridge converter 

is presented in Table 1. 
 

TABLE I
SPECIFICATION OF FULL-BRIDGE CONVERTER 

Description Parameter Nominal Value 
Input Voltage dV 50  V 

Inductance L 7 mH 
Capacitance C 330 µH

Diodes Resistance dR 1 mΩ
Switches On-Resistance TR 5 mΩ

Transformer Ratio n 100 
Switching Frequency sf 2000 Hz 

Load Resistance LR 12.5 Ω
Equivalent Thevenin 

Resistance 
thR 100.002 Ω

V. SIMULATION RESULTS AND DISCUSSION 
In this part, the simulations and results using 

MATLAB/SIMULINK and MATLAB/GA toolbox is given 
and the appropriate explanations are also presented. 

A. Design Parameter Study 
First of all to have a better recognition of the design 

parameters their approximate effect on the tracking 
performance is discussed. 

1) Effect of F
F may decrease the resolution of tracking. For example, 

10F = expresses that the absolute deviation of the available 
values of the converter elements from original values are less 
than 10. The default values of other SMC parameters are as 
follows: 

1
10

η
λ

=
 =

The optional value for 1x to track is 22.5 A. The simulated waveforms for 

F=0.1, F=10, F=100, and F=1000 are shown in   

Fig.5. 
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Fig.5.  Simulated wave forms of Inductor Current for F=0.1, F=10, F=100, 
F=1000 

2) Effect of “λ ”
The simulation is performed for different values of λ using 

the following values for other parameters of the SMC. 
0.1
1

F
η

=
 =
Also, in this study, the desired value of current is equal to 

22.5 (A). 
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Fig.6. Simulated Waveforms of Inductor Current for 
0.1, 0.5,λ λ= = 1, 10, 100λ λ λ= = =

As it can be understood from the above figure, by 
increasing λ , the slope of the current rises and the system 
reaches the steady-state condition in a shorter time. 
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Fig.7. Tracking accuracy for 0.5,λ = 1, 10, 100λ λ λ= = =

Also it has got a significant effect on the tracking accuracy. 
For example the tracking error for F=10 is 0.0049%. 

3) Effect of “η ”
To study the effect of η , the default values for other 

parameters are  
0.1
10

F
λ

=
 =
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Fig.8.  Simulated Waveforms for Inductor Current for 
0.1, 1, 10, 100, 1000η η η η η= = = = =  

The relative tracking error is around 4% for 1000η = ,
around 0.44% for 100η = and approximately zero for other 
values. 

B. Simulation of SMC Parameter Optimization Using GA 
The estimated parameters to start simulation are: 

0.1
1

100

F
η
λ

=
 =
 =
And the result is presented in Fig.8. with a green dotted 

line.  
Now the effort is to optimize the mentioned values in order 

to have the best response using GA. The simulation is run for 
the following values: 

, ,
10

50
 0.001

Variable Names F
Population size

Generation
Absolute error

η λ=
 =
 =
 =
The optimized values for converter parameters are as 

follows: 
0.051607
0.39232
778.27

F
η
λ

=
 =
 =
And the specified point that the output has reached the best 

value is 14. It means that in 14 ms, the answer has got the best 
characteristics with the mentioned optimized values. 

Now the effort is to run simulation for different values for 
absolute error to have a better understanding of the optimized 
points. The values for absolute error are 0.1, 0.01, 0.001 and 
0.0001. 

As it can be seen in Table II, the decrease in absolute error 
leads to the increase in reaching time. 

 
TABLE II 

GA RESULTS FOR DIFFERENT VALUES FOR ABSOLUTE ERROR 
Absolute 

Error 
0.1 0.01 0.001 0.0001 

F 0.086175 0.038527 0.051607 0.37661 
η 0.607 1.1747 0.39232 0.15359 
λ 812.69 645.24 778.27 701.02 

Reaching 
Time 
(ms) 

8 13 14 19 

The following figure depicts the inductor current simulated 
wave form for different values of absolute error. 
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Fig.9.  Simulated Waveforms for Inductor Current for different values for 
Absolute error 

As it can be seen, the settling time is different for different 
values of absolute error. This method can be helpful during 
much sensitive cases like connection of a Dc-Dc converter to a 
distributed generator such as fuel cell and photovoltaic. 
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VI. CONCLUSION 
Since most of the distributed generators does not have a 

considerable and regulated output, converters are implemented 
in DG systems in order to overcome the mentioned problems. 
Full-bridge converter is a useful converter which can perform 
both output regulation process and output boosting. SMC is a 
robust method which can be employed in order to force the 
variables of the converter to track a reference value. SMC has 
three design parameters. To obtain the best performance of the 
converter and controller this parameters should be optimized. 
In this paper GA is used in order to optimize the SMC 
parameters in order to have the best current output with the best 
tracking performance.  
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Abstract - The Balanced Academic Curriculum Problem 

(BACP) is a constraint satisfaction problem classified as 

NP- Hard, this problem consists in the allocation of 

courses in the periods that are part of a curriculum such 

that the prerequisites are satisfied and the load of 

courses is balanced for the students. In this paper is 

presented the solution for a modified BACP where the 

loads may be the same or different for each one of the 

periods and is allowed to have some courses in a specific 

period. This problem is modeled as an integer 

programming problem and is proposed the use of tabu 

search for its solution because was not possible to find 

solutions for all the instances of this modified problem 

with formal methods. 

 

Keywords: Academic Curriculum Balanced Problem, 

Tabu Search 

 

1 Introduction 

 A curriculum is formed by a set of courses and 

these courses have assigned a number of credits that 

represent the effort in hours per week that the student 

requires to follow the courses successfully. For parents or 

tutors and for the institution represents the economic cost 

of this course. The academic load is the sum of the 

credits of all the courses in a given period. Therefore, the 

correct planning of the curriculum results in benefit of the 

all the involved: For the institutions, favors the 

departmentalization and the resulting cost savings, for the 

students, one good load distribution represents the 

academic effort that they require invest, for the parents or 

tutors, a good distribution of the credits  allow planning 

financial efforts. Balanced Academic Curriculum Problem 

(BACP) consists in the allocation of courses in the 

periods that are part of a curriculum such that the 

prerequisites are satisfied and the credits load is balanced. 

The BACP belongs to the class of problems CSP 

(Constraint Satisfaction Problems), and this is a 

decisional optimization problem classified as NP-Hard 

[1].   

The BACP problem was introduced by Castro and 

Manzano [2] with three test cases called BACP8, 

BACP10 and BACP12 included in CSPLib [3] and these 

have been used to test models proposed by other 

researchers. 

 

The model proposed in [2] uses the following integer 

programming model: 

 

Parameters 

 

m : Number of courses 

n  : Number of periods 

i : Number of credits of course i; i =1..m 

  : Minimum academic load allowed per period 

  : Maximum academic load allowed per period 

 : Minimum amount of courses per period  

 : Maximum amount of courses per period 

 

Decision Variables 

 

xij =  

 

ci : academic load of period j, j =1, ..., n 





m

i

ijij njxc
1

..1      
                  

(1) 

Objective function 

 nccMaxcMin ,,  1 
                    

(2) 

Constraints 

If the course b has the course a as prerequisite then:  

xa < xb  

njck ,.1  
                   

(3) 

njx
m

k

ij ,,1 
1




               (4) 

   1 if course i is assigned to period j 

   0 otherwise 
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Recent works have tried to solve this problem using 

genetic algorithms and constraint propagation [4], local 

search techniques [5], formal methods (HyperLingo) for 

the integer programming problems [6] and multiple 

optimization, using genetic algorithm of local search [7]. 

All these approach have found the optimal for the three 

test cases included in CSPLib and in some cases also for 

the curriculums of their universities. 

In [6] was proposed a modified BACP problem 

where are considered constraints of academic load and 

total of courses within a specific range per period, i.e., 

not necessarily all periods will have the same ranges for 

their academic loads and number of courses; also add the 

restriction of to locate a course in a given period. This 

problem was modeled as an integer programming 

problem and is reported to find optimum solutions using 

a formal method for some of its instances but not for all, 

and the solutions for the three instances included in 

CSPLib. 

In this paper is solved the modified BACP using 

tabu search to find solutions to the instances that the 

formal method could not to solve 

1.1 Formulation for Model BACP 

Modified. 

In the model of interest proposed in [6] is considered to 

modify two constraints of the base formulation, the first 

one is to make flexible the course load per period and the 

second one is to make flexible the number of courses per 

period, i.e., that we can place different limits on course 

load and number of courses for each period. It also adds 

a restriction which allows the location of some of the 

courses in a specific period. 

 

Parameters 

 

Nta : Number of courses 

Ntp : Number of academic periods  

crdi : Number of course credits i=1..Nta 

mcaj: Minimum academic load  allowed per period 

Mcaj: Maximum academic load allowed per period 

mnaj: Minimum number of courses per period 

Mnaj: Maximum number of courses per period 

c: Course it is desirable to locate between certain periods. 

mpcc: Minimum period of location of the course  

Mpcc: Maximum period of location of the course 

Cj : Academic load 

NtpjxcrdC
Nta

i

ijij ..1      
1


               

(5) 

 

Decision Variables 

 

Cj : Academic load for the period j =1..Ntp 

Cmx : Maximum course load 

 

xij =   

 

 
Objective Function 

 CmxMinfobjective                        (6) 

where Cmx = Max { c1, c2, …, cNtp } 

 

Constraints 

 

The load of the period j must be within the allowable 

range. 

NtpjMcaCmca jji ..1                (7) 

The number of courses of the period must be within the 

allowable range. 

NtpjMnaxmna j

Nta

i

ijj ..1      
1




      (8) 

If the course b has the course a as prerequisite then  

Ntpjxx
j

r

arbj ..2      
1

1






           (9) 

Convenient location for the course c 

1


c

c

Mpc

mpvj

cjx                        (10) 

2 Tabu Search 

 The proposal solution is based on use of heuristic in 

this case tabu search. The tabu search is a method used to 

solve combinatorial optimization problems. The main 

idea behind the tabu search method is that by using a 

"memory" forces the method to explore new areas in the 

search space. That is, it can "memorize" some solutions 

that have been examined recently and these points 

become forbidden (taboo) to make decisions about the 

following solution. To use this method is used the 

following structure to represent the different actors 

involved in the model. One element of the population is 

represented by a vector, where the position indicates the 

course and the content of each position indicates the 

period to which it was assigned, as shown in figure 1. 

   1 if course i is assigned to period j 

   0 otherwise 
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0 1 2 3 4 5   59 60 61 

1 1 3 1 2 2   9 9 0 

Figure 1 Element of the solution 

 

In our case we use a short-term memory on the 

movements of courses by period. To keep track of 

movements that have been made, and will are prohibited, 

we use a two dimensional array, of size total number of 

periods (ntp), in which is stored the periods between 

which the movement took place as shown in figure 2. 

 

 0 1   ntp-1 

min 1 2 … 4  

max 3 7 … 2  

Figure 2 Short-term memory 

 

We can consider that a balanced curriculum should 

have a uniform distribution of all the credits that make up 

the curriculum, so the fitness function used is the sum of 

the absolute error, which is calculated using the following 

function.  





Ntp

k

k PChFitness
1

)(

                   

(9) 

 

Where Ck is the academic load of the period k calculated 

with the formula (4) and P is the average number of 

credits per period. 

NtpCP i

Ntp

i

/
1






                        

(10) 

 

The initial population consists of the curriculum that 

we want to balance, this is a feasible solution. Once we 

have the first feasible solution is necessary to obtain the 

period with least load and period with more load. And 

these periods are stored in the array that will handle the 

short-term memory for the tabu search. 

 

Pmax = max{Ck}   to   k=1, …, ntp 

Pmin =  min{Ck}   to   k=1, …, ntp 

 

To generate a new possible solution is sought the 

first course in order of appearance, which belongs to the 

period with maximum load (Pmax).  Given the course are 

validated the restrictions of prerequisites, load and 

preference of the period of a course, if they are satisfied 

the change is made, in another way another course is 

chosen in the same way and redo the validation of the 

new course. In case that none of the courses reassigned 

to  Pmax period allow the change, the minimum period 

current is marked as ineligible  and is calculate a new 

minimum period, with which is repeat the above process. 

At the time of finding a solution the periods marked as 

ineligible are marked as eligible.  The two solutions, the 

current and the solution generated, are evaluated by the 

fitness function (formula 10) and the best is selected for 

the next generation. In each iteration is tested that the 

Pmax and Pmin periods are not in the tabu list. Once that 

the tabu list is filled, the counter of the tabu list is set at 0 

to begin replacing first the old value like a circular list. 

 When is detected that a local optimum has been 

reached, a change in the process of generation of a new 

solution is made.  Now the new solution is generated 

exchanging two courses, the first one in the period with 

more load and the second one in the period with less 

load. Having the two courses which will be exchanged, 

are evaluated the restrictions of prerequisite , load, 

course and period of preference, if the exchange can be 

given, the new individual is generated, in other way is 

chosen another course of the minimum period and the 

validation is made newly. 

 

3 Results 

The tests were carried out for the three base cases 

included in CSPLib and the cases proposed by [5] for 

which no solution could be found. 

 

 

3.1 Base Cases 

The base cases included in CSPLib are:  BACP8, 

BACP10 and BACP12, whose features are shown in 

table 1. 

 

 

Table 1. General features of curriculums 

Code BACP8 BACP10 BACP12 

# Total Courses 46 42 66 

# Total credits 133 134 204 

#Total Academic 

period 

8 10 12 

#Relation Prerequisite 33 34 65 

Min. Courses /period 2 2 2 

Max. Courses / period 10 10 10 

Min Load/ period 10 10 10 

Max Load/ period 24 24 24 

#Courses with location 0 0 0 

   

 

Table 2 shows the result obtained with the proposed 

algorithm, in all cases the optimum is reached. 
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Table 2. Results summary 

Code Optimum 
Average 

Iterations  

Average time 

(min.) 

BACP 8 17 57.6 1.5 

BACP 10 14 87.7 1.7 

BACP 12 17 162.0 2.5 

 

The academic load per period obtained by the 

algorithm is shown in table 3. 

 

Table 3. Solution found for  BACP 8 

Period Load Courses 

1 17 7 

2 17 5 

3 17 5 

4 17 6 

5 17 6 

6 17 6 

7 15 5 

8 16 6 

 

 

3.2 Proposed Cases 

The cases not included in library CSPLib used to test this 

algorithm are taken from [5], the first is one for which 

could not always find the optimal and the second is where 

the optimum never was found. The features of these two 

problems are shown in table 4. 

 

Table 4. General features of curriculums 

Code Ici-06 Ind-06 

# Total Courses 61 61 

# Total credits 488 376 

#Total Academic 

period 

9 9 

#Relation 

Prerequisite 

48 47 

Min. Courses /period 5 4, 4, 4, 4, 4, 4, 4, 4, 2 

Max. Courses/ 

period 

8 9, 9, 9, 9, 9, 9, 9, 9, 4 

Min Load/ period 20 20, 20, 20, 20, 20, 20, 

20, 20, 15 

Max Load/ period 60 60, 60, 60, 60, 60, 60, 

60, 60, 40 

#Courses with 

location 

15 21 

 

In tables 5 and 6 is showing the courses that have 

preference of location in each of the curriculums, Ici-06 

and Ind-06 respectively. 

 

Table 5. Preference of location  Ici-06 

Course Code Minimum Period Maximum Period 

C07001 7 9 

C07002 7 9 

C07003 7 9 

CIV200 1 2 

CIV400 6 9 

CIV401 8 9 

CIV403 6 9 

MAT005 1 5 

MAT006 1 5 

MAT008 1 5 

MAT009 1 5 

OI103101 1 4 

OI103102 1 4 

OI103103 1 4 

OI103104 1 4 

 

 

Table 6. Preference of location Ind-06 

Course Code Minimum Period Maximum Period 

C12001 7 9 

C12002 7 9 

C12003 7 9 

C12004 8 9 

FHU001 1 6 

FHU002 1 6 

FHU003 1 6 

IND100 1 2 

IND208 4 6 

IND212 4 6 

IND214 6 8 

IND400 7 9 

LPCI 1 6 

LPCII 1 6 

OH25001 1 6 

OI103101 1 6 

OI103102 1 6 

OI103103 1 6 

OI103104 1 6 

SSC001 5 9 

SSP002 5 9 

 

Table 7 shows the results obtained with the 

algorithm; in all cases the optimum was reached. 
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Table 7. Results summary 

Code Optimum 
Average 

Iterations  

Average time 

(min.) 

Ici-06 55 57.6 16 

Ind-06 44 87.7 19.7 

 

The academic load per period obtained by the algorithm 

is shown in table 8. 

 

 

Table 8. Solution found for Ind-06 

Period Load Courses 

1 54 7 

2 54 6 

3 54 6 

4 54 7 

5 55 6 

6 55 6 

7 54 8 

8 54 7 

9 54 8 

 

 

 

4     Conclusions  

In this paper we present the solution, using tabu search, 

for a modified Balanced Academic Curriculum Problem, 

where the load for each period can be equal or different 

and is allowed to have some courses in a specific period. 

In a previous work is showed that is possible to find 

solutions with HyperLingo for some of the instances of 

the problem, but not for all of them. However by the 

results obtained was proved that the use of tabu search 

helps to find solutions to the problems that could not be 

resolved with the formal method.   
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Abstract- In sequential/rotation irrigation scheduling 
farmers are supplied water sequentially. This problem 
has an analogy with the classical single machine 
earliness/tardiness scheduling problem in operations 
research. Such scheduling problems belong to a class of 
combinatorial optimization problems known to be 
computationally demanding (NP-hard) where 
computation time increases exponentially with problem 
size. Hence exact algorithms like integer program can 
only be used to solve relatively small problems. For 
practical applications (having large problem size), 
metaheuristics such as genetic algorithms, simulated 
annealing, or tabu search methods need to be used. This 
paper explores the potential of genetic algorithm (GA) 
to solve the sequential irrigation scheduling problems.  
 
Keywords: Sequential irrigation scheduling, single 

machine earliness/tardiness, genetic algorithm. 

1 Introduction 
Several delivery methods are in practice in irrigated 
agriculture throughout the world and a variety of 
classifications have been suggested by different 
researchers. Demand, arranged, and rotation are the 
three main types of irrigation schedules/delivery 
methods. The rate, frequency, and duration are all fixed 
and remain fixed for the entire irrigation season in 
rotation schedules and each farmer is supplied water 
sequentially for a specified period of time. [1] described 
rotation schedules (sequential irrigation) known as 
warabandi in the Indian subcontinent, as the most 
widely used of the modern irrigation delivery methods. 
The supply of irrigation water to farmers in an irrigation 
scheme under rotation or warabandi can be described as 
a single machine scheduling problem [2]. There is a 
single resource/machine i.e. water and a number of jobs 
to be processed, i.e. farmers supplied with water. The 
duration of water required by any farmer is comparable 
to the processing time of any job. In irrigation 
scheduling the term irrigation interval is used to 
describe the time period within which all farmers have 
to be supplied with water. A comparable term for 
irrigation interval in OR is the deadline which is 
different than the due dates mostly used in OR for the 
desirable completion time of jobs. [3] argued that 
deadlines must be met and cannot be violated in 
contrast to due dates which may be violated. This is also 

compatible with irrigation systems where the irrigation 
interval is never violated but the supply of water i.e. 
jobs may be either early or tardy. [4] used the term 
preferred starting time at which it would be desirable to 
start processing a job and preferred completion time as 
an equivalent term for due dates. Although there is no 
such term as due date used in irrigation, however it may 
be conveniently replaced by target start time. Target 
start time plus duration of a certain job becomes the due 
date for that job. However it is more convenient to use 
the target start time in irrigation, as the farmers usually 
place their orders in terms of the start time of their 
irrigation not completion time.  
 
There are different ways whereby the distribution of 
irrigation water can be managed. The better among 
them are the flexible distribution systems, where an 
effort is made by the supplier to match the scheduled 
irrigation start times to the target start times requested 
by the farmers. It will be more intuitive to judge the 
suitability of any such schedule by the determination of 
how close the scheduled start times are to the target 
start times. This constitutes a typical OR scheduling 
problem, i.e. sequencing with earliness and tardiness 
(ET), distinct due dates and a common deadline. [3] 
described one such problem briefly while citing an 
earlier reference. [5] described distinct due dates as one 
of the classes of single machine ET problems and 
argued  that the ET model with the distinct due date 
assumption intentionally minimizes the sum of job’s 
earliness and tardiness, and facilitates a feasible 
delivery schedule. [4] also described the problem of 
minimizing the total discrepancy from preferred starting 
times over a single machine. [6] described the single 
machine job scheduling problem with distinct due dates 
and general penalty weights for early and tardy jobs. 
They presented a two-step solution to the problem, i.e. a 
timing algorithm first to determine the optimal start for 
each job and then a genetic algorithm for determining 
near optimal sequences with idle time inserted between 
blocks with contiguous jobs. However, [7] 
demonstrated how this two-step solution i.e. sequencing 
and scheduling separately, could lead to deterioration in 
solution. [8] described considering sequencing and 
scheduling simultaneously with inserted idle time as a 
new area of research and recommended further research 
on it. This wealth of information may be very 
effectively applied to irrigation scheduling which is as 

Int'l Conf. Genetic and Evolutionary Methods |  GEM'12  | 149



demonstrated, not any different from the classical 
scheduling problems found in OR.  
 
[5] described the just-in-time (JIT) philosophy to be a 
popular management concept since its introduction in 
1970s. Earliness and tardiness problem where both 
early and late jobs are undesirable is one of the key 
problem areas in JIT implementation. [9] observed that 
JIT production philosophy led to a growing interest in 
scheduling problems considering both earliness and 
tardiness penalties and that a majority of which are 
devoted to single machine problems. Similarly [5] also 
concluded that the vast majority of published ET 
research dealt with sequencing jobs on a single 
machine.  
 
In machine scheduling problems idle time insertion can 
result in a better schedule. [7] defined inserted idle time 
(IIT) schedules as a feasible schedule in which a 
machine is kept idle when it could begin processing an 
operation. [8] described idle time insertion necessary in 
just-in-time (JIT) environments where costs associated 
with even early completion of jobs are relevant i.e. the 
performance measure is nonregular. Similarly [3] 
considered the assumption of no inserted idle time to be 
inconsistent with JIT philosophy or earliness and 
tardiness criteria where jobs are neither allowed to be 
early nor tardy. [5] cautioned that an ET solution 
procedure may fail to find a true solution if idle time is 
not treated properly.  
 
From irrigation scheduling perspective, idle time can 
only be inserted in a sequential irrigation system when 
the sum of all the individual farmers’ irrigation (or 
jobs’) durations called makespan in OR is less than the 
irrigation interval. However if simultaneous application 
to several farmers is allowed this becomes irrelevant. If 
idle time has to be inserted, two scenarios could be 
imagined. One is that the supply channel is 
continuously flowing; farmers abstract water as 
scheduled; and when water is not being used i.e. idle 
time inserted, it is either drained and/or if possible 
reused. The other scenario could be to shut the channel 
each time idle time is inserted or water is not being 
used. The former may result in wastage of water while 
the latter would result in an excessive number of gate 
operations.  An alternative solution would be to 
schedule the irrigation water supply contiguously, i.e. 
when one farmer finishes his turn of irrigation the 
supply is diverted to the next adjacent farmer and so on 
[2]. There are some implicit assumptions here that 
either no time is taken by water to travel from one 
farmer’s outlet to another or the travel time is part of 
each farmer’s irrigation duration or is very small and 
hence negligible. If all jobs are scheduled contiguously 
the gates are only needed to be opened at the beginning 
of the first farmer irrigation and closed when the last 
farmer has finished his turn. However the idle time 
insertion still needs to be addressed. There are three 
options: either to insert all the idle time in the beginning 
of the schedule, or to insert all the idle time at the end 
of the schedule or both, though corresponding parallel 
with OR literature could not be drawn for either of these 

options. However, examples of jobs scheduled 
contiguously in blocks or groups and then inserting idle 
time between different blocks could be found in OR 
literature e.g. [6]. The three options discussed in the 
preceding lines for idle time insertion are also 
considered by [2] in their contiguous sequential 
irrigation models. The decision to insert idle time or 
not, or schedule jobs contiguously is dictated by several 
factors. These include the type of distribution system in 
vogue, the level of service provided, the total amount of 
water available, and canal capacities and automation 
etc.  
 
[2] were the first to demonstrate sequential irrigation 
analogous to single machine scheduling problem and 
presented an integer programming solution.  Machine 
scheduling problems belong to a class of combinatorial 
optimization problems known to be computationally 
demanding (NP-hard). A problem is termed NP-hard if 
its solution time increases exponentially with the 
problem size. As described by [10], for NP-hard 
optimization problems like the machine scheduling 
problems, larger problems may require excessive 
solution times using exact algorithms e.g. the integer 
program. Approximate algorithms or heuristics like GA, 
are considered the appropriate choice for such 
problems. Similar views are shared in OR literature 
(e.g. [5]).  
 
This paper explores the potential of GA for sequential 
irrigation scheduling problem (single machine 
scheduling in OR). Single machine irrigation scheduling 
models are developed using GA. These GA models are 
applied to the practical application by [11], for 
validation and evaluation purposes.  
 
2 Mathematical formulation 
2.1 Model 1  
Model 1 refers to the non-contiguous single machine 
ET model that allows idle time to be inserted between 
jobs i.e. there will be times within the irrigation interval 
where water will not be used by any farmer. This 
arrangement may require an excessive number of gate 
opening and closing operations, depending on the 
number of times idle time is inserted between jobs. 
Alternatively, a continuous flow system may be adopted 
and water allowed draining when not in use. A detailed 
description of the decision variables, objective function 
and the constraints is given below. 

2.1.1 Decision variables 
There are two decisions to be made: which outlet to 
receive water and at what time, i.e. the sequencing and 
scheduling. Thus the genes of a chromosome 
representing solution to this problem must have answers 
to these questions. The answers to these questions are 
incorporated into a single decision variable. This 
decision variable is represented by a scheduled start 
time row vector. Each element in the vector is a positive 
integer representing the point in time at which an outlet 
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is scheduled to start receiving water and is expressed as 
follows.  
 
Sj = an element of the scheduled start time row vector 
(schedule start time of outlet j)                                    (1) 
 
where subscript j represents the outlet index i.e. the 
position of job in the chromosome and hence the 
sequence.  
 

2.1.2 Objective function 
The objective of the model is to find a sequence of jobs 
and the scheduled start times for all jobs with a 
minimum difference between the scheduled start time 
and the target start time. This is achieved by penalizing 
both early and tardy jobs. Some farmers may have 
higher priority for getting water supply earlier than 
others for a variety of reasons. For example, his/her 
crops have more value than others or more sensitive to 
water stress or perhaps for social/political reasons, etc. 
By using different unit costs for either earliness or 
tardiness, jobs may be prioritized. The objective 
function can be expressed as  
 

Minimize [ )(
1

jj

J

j
jj TE βα +∑

=

]      

 ∀  j =1, 2…J                                                         (2) 
 
where Ej = earliness of job j (the difference of the target 
start time and the scheduled start time of outlet j); Tj = 
tardiness of job j (the difference of the scheduled start 
time and the target start time of outlet j); jα = cost of 

earliness per unit of time for job j; jβ = cost of 
tardiness per unit of time for job j; j = job/outlet index = 
1, 2… J; and J= total number of jobs/outlets.  
 

2.1.3 Constraints 
Any constraint violation causes a schedule to become 
infeasible. There are different techniques available to 
control infeasibility in genetic algorithm. Based on the 
literature reviewed, penalty strategy that turns out to be 
the most simple and widely practiced technique for 
controlling infeasibility, is adopted for the present 
model. In the penalty function technique each instance 
of infeasibility is appropriately penalized and 
(constraint violations expressed as) penalties are then 
added to the objective function. The resulting objective 
function may then be termed as fitness function. There 
are two constraints in the current model. The first 
constraint is the irrigation interval constraint and the 
second is the overlap constraint.  The penalties for 
constraint violations in the present formulation are as 
follows. 
 

2.1.3.1 Irrigation interval constraint  
Each outlet is to be scheduled within the specified 
irrigation period. Any outlet scheduled outside this 
period will result in infeasible schedule.  The penalty 
for this constraint violation may be mathematically 
expressed as: 
 

])()[(
1

jjintjj

J

j
jI λSSGDSP −+−+= ∑

=

δ   

∀  j =1, 2…J                                                         (3) 
 
where PI = penalty for irrigation interval violation; G = 
total irrigation time available; Sint = start time of the 
irrigation interval; Sj = scheduled start time of outlet j; 
and Dj = duration of outlet j. 
 
δj   = 1          if     Sj + Dj > G    ∀  j  
                                             (4) 
      = 0          otherwise    
 
λj    = 1          if     Sj < Sint       ∀  j  
                                                          (5) 
      = 0          otherwise. 
 

2.1.3.2 Overlap constraint  
Only one outlet is to be served at a time. The penalty for 
violation of this constraint is determined by summation 
of the number of times overlap occurs in all time blocks 
and is expressed mathematically as follows.   
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∀   t = 1, 2… T                                 (7) 
where PO = penalty for overlap of jobs; t = time block 
index = 1, 2…T; and, T = total number of time blocks.  
 

tjψ   = 1    if Sj ≤ t < Sj + Dj;  ∀ t, ∀  j              (8) 
        = 0   otherwise 
 
By adding these penalties for constraint violations to the 
objective the resultant fitness function is expressed as 
follows.  
Minimize

])([
1

OOIIjj

J

j
jj PRPRTEF +++= ∑

=

βα          (9) 

 
where F = fitness function;  RI = penalty weight for PI ; 
and RO = penalty weight for PO . 
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2.2 Model 2  
Model 2 refers to a series of single machine ET 
contiguous irrigation scheduling models. There are 
three variations of Model 2 i.e. 2a, 2b, and 2c. In Model 
2a jobs are scheduled contiguously and idle time 
inserted at the end of the last job. In Model 2b all the 
jobs are scheduled contiguously and idle time inserted 
before the start of the first job. In Model 2c the jobs are 
scheduled contiguously and idle is inserted preceding 
the start of first job and /or proceeding the end of the 
last job.   
 

2.2.1 Decision variables 
The only decision to be made in these permutation 
models is the sequence of jobs. The chromosome is a 
permutation of jobs where each gene represents job j. 
Once the sequence of jobs is decided, the scheduled 
start time of each job can then be calculated. For Model 
2a the scheduled start time of the first job in the 
sequence is “0” or the time the irrigation interval starts. 
The scheduled start time for the rest of the jobs can be 
calculated as follows. 
 
Ši = Ši-1 + Ďi-1            ∀  i =2, 3…J                            (10) 
 
where Ši = scheduled start time of the job at the ith 
position in the jobs sequence (chromosome); Ši-1 = 
scheduled start time of the job preceding the job at the 
ith position in the jobs sequence; Ďi-1 = duration of the 
job preceding the job at the ith position in the jobs 
sequence; and i = position of the job in the jobs 
sequence, so that i = 2 represents the second job in the 
sequence whereas i = J the last job in the sequence. For 
Model 2b the scheduled start time of the first job is the 
end of the idle time and can be expressed as: 
 

Š1 = G -  ∑
=

J

j
jD

1
      

                           (11) 
where Š1  = the scheduled start time of the first job in 
the sequence. For the remaining jobs the scheduled start 
time can be calculated as in (10) after Š1 has been 
calculated. For Model 2c the scheduled start time of the 
first job is the end of the idle time inserted before the 
start of first job. Idle time in this case has a value equal 
to a random integer number in the range of irrigation 
interval minus the makespan. For the remaining jobs the 
scheduled start time can be calculated as in (10) after Š1 
has been calculated as follows.  
 
Š1 = an integer randomly selected in the range between 

0 and (G - )
1

∑
=

J

j
jD                                                     (12) 

 

2.2.2 Objective function 
There is no change in the objective function and is 
similar to that of Model 1 (2) for all contiguous models 

i.e. 2a, 2b, and 2c. The objective is to find a sequence or 
permutation of jobs that best matches the scheduled 
start times with the target start times. 
 

2.2.3 Constraints 
Since in single machine contiguous models the 
population consists of a permutation of jobs, no 
irrigation interval constraint violation occurs. Other 
infeasibility problems are controlled via modified 
genetic operators. The objective function for all models 
in this category is the fitness function for all the 
individuals of the population. 
 
3 GA implementation 
The GA, for all the models described in the preceding 
sections, was implemented using JGA, a java genetic 
algorithms library ([12]). Some of the built-in classes 
were modified and some additional new classes were 
added to develop a complete GA implementation. The 
logic for this implementation of the genetic algorithm is 
presented in Figure 1; where, t is the generation 
counter; T is the maximum number of generations; P(t) 
is the population at generation t; Cm(t) and Cc(t) are the 
children populations obtained by the mutation and 
crossover operators, respectively; C(t) is the children 
population; and E(t) is the expanded population formed 
by the current population and their children. 
 
 
 

 
 

Figure 1 The logic behind GA implementation ([12]). 
 
 
3.1 Initial Population 
Initial population for Model 1 is randomly generated. 
The chromosome consists of positive integers, 
randomly generated within the range of irrigation 
interval. The length of the chromosome is equal to the 
number of jobs considered. The population size of 100, 
that proved sufficient during preliminary experiments, 
is used for Model 1. For all versions of Model 2 the 
chromosome consists of non-repeated integer valued 
genes, of length equal to the number of jobs. Each gene 
is an integer in the range between 1 and the total 
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number of jobs. The population consists of randomly 
generated permutations of job sequences because 
permutations are considered natural representation for 
sequences. Initial population size of 200 is used that 
proved satisfactory during preliminary experiments. 
 
3.2 Selection 
The best individual selection is used for the present 
models. Best individual selection is described by [13] as 
“elitism”, where the elite member is not only selected 
but a copy of it is also preserved and becomes a part of 
the next generation without any perturbation by 
crossover or mutation operators. In the best individual 
selection used here, best individuals are selected from 
an enlarged population. The enlarged population is 
formed by offspring produced from crossover and 
mutation of parents as well as by the individuals from 
the current population ([14]). 
 
3.3 Crossover 
For Model 1, the most simple and widely used 
crossover operator, the single point crossover is used. 
For all versions of Model 2, order-based crossover (OX) 
is used ([15]). The OX operator selects at random two 
cut points along the strings. The substrings between the 
two cut points of both parents are exchanged. Starting 
from the second (right) cut point of both parents the 
remaining positions for each chromosome is completed 
by omitting the duplicated genes. When the end position 
of the string is reached, it continues from the first 
position till the chromosome is completed. In this way 
the OX operator avoid any infeasibility due to repeated 
genes in a sequence. A crossover probability of 0.8 was 
used for all models after satisfactory initial 
experimentation, and which is also used by [14] in some 
of their JGA application.  
 
3.4 Mutation 
For non-contiguous model, random assignment 
mutation is implemented which is a simple and widely 
used operator. In random assignment mutation each 
position in the chromosome is randomly reassigned 
with a certain probability. For all contiguous models, 
inversion mutation is used as a mutation operator. In 
inversion mutation the order of a randomly picked  
permutation section is inverted. For instance, if 1-2-3-4-
5-6 is a sequence, and 3-4-5 is the randomly picked 
section; the mutated permutation is 1-2-5-4-3-6. The 
purpose is to maintain diversity as well as feasibility.  A 
mutation rate of 0.2, which was found satisfactory 
during preliminary experimentation, is used in all 
models. The mutation rate is interpreted as the chance 
of mutation of a given genotype. The same has been 
used in some of the application of JGA by [14] and 
several other applications in literature.  
 

3.5 Termination 
 An early auto-stopping criteria is used for all models. 
The improvement in the fitness function is monitored  
over 1000 generations (iterations). If the improvement 
is less than or equal to 0.001%, the iterations are 
terminated otherwise it continues until the given 
maximum number of generation is reached. The 
maximum number of generations used is 10,000 
generations. 
 
 
4 Practical Application 
The GA models developed in this paper are applied to 
the tertiary unit taken from [1] and used by [11] with 
some modification for the purpose of demonstrating 
application of their models. The data for the practical 
application used by [11] and for the application in this 
paper is presented in Table 1.  Table 2 presents a 
comparison of the GA models with the integer 
programming (IP) and heuristics (H) by [11] when 
applied to the data in Table 1. 
 
Table 2 presents only the objective function values 
which is the earliness/tardiness (in minutes) of the 
schedules developed. The contiguous GA models have 
performed very well, with 1% or less than 1 % error 
relative to IP and outperforming the heuristics by a 
significant margin.  The non-contiguous model did not 
perform as well against IP as it did against H.  
 
 
 
Table 1. Data for Practical Application (Tertiary 
unit, Bula Project, Philiphine) [11] 
Lot Area (ha) Target 

start time 
Duration 
(h:min) 

24.1  1.05 Mo 08:19 8:57 
25.1 3.00 Mo 20:51 8:57 
22.1 3.20 Tu 00:30 9:32 
23.2 1.00 Tu 09:03 3:13 
24.2 3.00 Tu 06:45 8:57 
26.3 2.56 Tu 19:40 7:41 
22.2 3.20 Tu 04:06 9:32 
24.4  1.05 We 16:02 3:22 
25.2 3.00 Th  16:41 8:57 
26.1 3.00 Sa 21:29 8:57 
25. 3 2.13 Su 12:09 6:27 
23.4  1.97 Fr 02:08 6:00 
24. 3 1.00 Fr 05:55 3:13 
23.3  1.00 Fr 06:59 3:13 
23.1  2.50 Su 22:35 7:31 
26.2  2.50 Mo 03:03 7:31 
Note: Mo = Monday; Tu = Tuesday; We =Wednesday; 
Th =Thursday; Fr = Friday; Sa = Saturday; and Su = 
Sunday. 
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5 Conclusions 
The GA models have performed very well and 
completely outperformed the heuristics by [11]. The 
difference in performance of the three contiguous GA 
models shows the sensitivity of the models to the 
insertion of the idle time. Inserting idle time on both 
sides of a schedule (before the start of irrigation and 
after the irrigation is complete), has been found useful. 
This is indicated by the fact that Model 2c performed 
better than Model 2a and 2b in terms of solution quality 
and computational efficiency. Having some spare time 
before the start of irrigation and after the irrigation is 
complete, may also provide some convenience to 
irrigation managers in managing the water supply.  
 
The potential of the GA, to model the warabandi type 
(sequential irrigation) of irrigation systems has been 
demonstrated. The GA has proved to be an efficient 
optimization tool for the contiguous irrigation 
scheduling problems in particular. The contiguous 
scheduling models presented in this paper models the 
type of warabandi widely practiced in the sub-continent 
with the additional advantage of incorporating farmers 
desires as regard to their requested irrigation times, thus 
providing a better level of service. The models also 
have the ability to prioritize the irrigation turns, based 
on crops value, or sensitivity to water stress, or 
social/political reasons, etc. 

 
6 Notation 
The following symbols are used in this paper: 
 
Ďi-1  = duration of the job preceding the job at the ith                

position in the jobs sequence; 
Dj = duration of outlet j; 
Ej  = earliness of outlet j; 
F  = fitness function;   
G  = irrigation interval; 
i  = position of the job in the jobs sequence; 
j   = represents the outlet index; 
J = total number of outlets; 
PI  = penalty for irrigation interval violation; 
PO  = penalty for overlap of jobs; 
RI = penalty weight for PI; 
RO = penalty weight for PO; 
Š1   = the scheduled start time of the first job in the    

sequence; 
Ši  = scheduled start time of the job at the ith 

position in the jobs sequence; 

 
 
Ši-1  = scheduled start time of the job preceding the 

job at the ith position in the jobs sequence; 
Sint  = start time of the irrigation interval;  
Sj = an element of the scheduled start time row 

vector; 
t  = time block index = 1, 2…T;  
T  = total number of time blocks; 
Tj  = tardiness of outlet j; 

jα  = cost of earliness per unit of time for job j; 

jβ  = cost of tardiness per unit of time for job j; 
δj = binary variable; 
λj = binary variable; 

tjψ  = binary variable; 
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Abstract - The basic task is the scheduling of application jobs 

consisting of a workflow of elementary grid jobs to a set of 

heterogeneous resources forming a computational grid. Ap-

plication jobs have due dates and cost budgets, which must be 

adhered to resulting in a multi-objective optimisation prob-

lem. It is also a highly dynamic task as e.g. new application 

jobs may be added or resources may be switched off. Due to 

this dynamic nature of grid scheduling a permanent replan-

ning process is required that adjusts the actual plan to the 

changed conditions. For the assessment of scheduling proce-

dures benchmarks are needed that represent different load 

conditions as best as possible. Based on our benchmark pa-

rameters introduced in 2007 additional new ones were defined 

to cover the tightness of time and cost limits of application 

jobs with respect to the available resources. 

Keywords: Scheduling, benchmark parameter, workflow, 

grid computing, Evolutionary Algorithms  

 

1 Introduction 

  This paper continues our work on benchmarks for the as-

sessment of scheduling procedures for jobs on a computa-

tional grid [16]. Our investigation is motivated by the task of 

scheduling several application jobs organised as workflows 

consisting of elementary grid jobs. For each grid job users 

state which resources like software, storage or computing 

power are needed and how long the job will run on a standard 

hardware. Users also specify due dates, cost budgets and a 

preference for cheap or fast execution for their application 

jobs. Resources have different abilities and pricing schemes 

according to day time or day of the week and the costs may 

reflect their performances like CPU speed or bandwidth in 

case of computing or storage hardware. A formal definition of 

the basic scheduling problem can be found in [8] or [13], 

where it is also shown that the task is NP-complete. To meet 

the different requirements of resource owners and users the 

optimisation is based on the following main criteria: costs and 

execution times of the application jobs measured as the usage 

of user given budgets and time frames and then averaged. 

Additionally and more provider oriented, the rate of utilisa-

tion and the total makespan of all application jobs are 

weighted together with the two other criteria and summed up 

for the raw fitness. If application jobs are late or too costly 

penalty functions are applied, yielding a value between zero 

and one, with which the raw fitness is multiplied resulting in 

the end fitness. If no violations occur, both fitness values are 

equal. For more details see [7] and [8]. 

The practice of grid scheduling is characterised by a per-

manent replanning process as the following events may occur 

long before the actual plan is completed: new application jobs 

may introduce the system, waiting or running ones may be 

cancelled, new resources may become serviceable or others 

unavailable, to name only the most important inducements. 

The resulting benchmarks for replanning are based on the 

ideas and characteristics of those for the investigation of the 

“planning from scratch”-scenario as described by Süß et al. 

[16]. They are enhanced by new parameters, which express 

the tightness of budgets and time frames. Additionally, they 

are constructed in a more systematic way to allow a better 

scaling of the amounts of grid jobs and resources while keep-

ing the other properties as far as possible unchanged. The time 

for planning is limited to three minutes as we can assume that 

this is much shorter than the processing times of most grid 

jobs. Due to this limit and the NP-completeness of the task 

only approximate solutions can be expected.  

 The new benchmarks described in detail in Sect. 3 are 

used firstly to find out the maximum possible scheduling load 

which can be processed by our Global Optimising Resource 

Broker and Allocator GORBA and secondly to assess the 

newly introduced parameters. Sect. 2 gives a brief overview 

about related work. In Sect. 4 the heuristic and the evolution-

ary planning phases of GORBA are explained together with 

the algorithms used. The two questions raised above are an-

swered by the experiments reported about in Sect. 5 and the 

paper concludes with Sect. 6. 

2 Related work 

 When we started our work on grid job scheduling in 2006 

little literature about a comparable problem could be found 

only, see e.g. Brucker [3] or Brucker and Knust [4]. The lit-

erature review from Setämaa-Kärkkäinen et al. [15] came to 
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the same result. But then more papers have been published 

that dealt with multi-objective optimisation in the field of grid 

job scheduling. Wieczorek et al. [17] reported in a review 

article that frequently just two criteria are used, from which 

one often serves as a constraint so that only one is really op-

timised, like in the work of Sakellariou et al. [14] or Yu and 

Buyya [19]. An early real multi-objective optimisation seek-

ing a compromise between resource owners and users was 

investigated by Kurowski et al. [10]. They used a modified 

weighted sum for contradicting criteria like costs and several 

time-related objectives. But their work was based on single 

grid jobs instead of workflows. Later they extended their work 

to a workload of up to 1500 jobs, which were grouped into 60 

sets with different optimisation preferences [11]. They used 

advanced reservations like we do and extended their scheduler 

by the standard multi-objective genetic algorithm NSGA-II. 

The work of Mika et al. [12] is based on workflows and con-

strained resources like ours but based on an algorithm for 

finding feasible solutions. They discuss similarities with the 

resource-constrained project scheduling problem (RCPSP), 

see also Brucker and Knust [4]. 

 The work of Xhafa et al. [18] will be discussed in more 

detail as their work comes closest to ours. The following fea-

tures are in common: usage of an Evolutionary Algorithm, the 

concept of fast and permanent replanning, multi-criteria opti-

misation, and experiments based on large workloads and het-

erogeneous resource pools (up to half the size of ours). The 

main differences concern the following three issues. They 

schedule single jobs rather than multiple workflows and use 

only two criteria, makespan and average flow time, which can 

be estimated as less conflicting as time, costs, and utilisation 

rate. Thirdly, we use more heuristics for seeding the initial 

population and for resource allocation, as we have found that 

heuristic resource selection outperforms its evolutionary coun-

terpart, if the runtime for planning is strictly limited [7]. But 

despite these differences both approaches can be regarded as 

successful solutions to the problem of fast rescheduling of 

grid jobs. 

3 Benchmarks 

 Benchmarks are widely used for the assessment of schedul-

ing procedures. They are either derived from real applications 

or constructed synthetically. For our purpose they should 

cover a wide range of possible scheduling loads and they 

should be scalable. As it is easier to steer dissimilarities and to 

ensure desired properties, we decided for synthetic bench-

marks. For a more detailed discussion of that topic, see [16].  

Our benchmarks are constructed according to a given 

number of grid jobs and resources, and a small or large degree 

of resource alternatives R and of mutual dependencies of the 

grid jobs D. Due to the lack of space we give here the formu-

las in Eq. 1 only and refer to the detailed description given by 

Süß et al. [16]. 

All four combinations of small or large degrees result in 

four basic benchmark classes denoted by sRsD, sRlD, lRsD, 

and lRlD, where s stands for small and l for large. 
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pi  number of all direct or indirect 

predecessors  

of grid job i 

n   number of all grid jobs 

m  number of all resources 

mi  number of all alternatively 

usable resources of grid job i 

(1) 

 

The first experiments based on 50, 100, and 200 grid jobs 

and 10 or 20 resources indicated that the two benchmark 

classes sRlD and lRlD are the most hardest ones [7]. Thus, 

they were also used for first experiments for replanning [8]. In 

[9] these experiments were widened to the two remaining 

classes, but unfortunately the two new benchmark series were 

faulty due to a software error of the benchmark generator. 

Therefore, and for the reasons given in the introduction, we 

constructed complete new benchmarks for the experiments 

reported here. 

3.1 New benchmark parameters 

 The new parameters are aimed at an evaluation of the aver-

age time and cost reserves of the application jobs with respect 

to their user given limits. These reserves have an important 

impact on the complexity of the scheduling task. They are 

based on the average performance, costs, and off times of the 

resources and on the critical path of a workflow. 

The average performance f  of all hardware resources, 

the average costs c , and the off time rate offR  of all re-

sources are defined as  
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with 

mhw   number of hardware  

resources 

fj       speed factor of  

resource j w.r.t. a  

standard CPU 

cj       costs per time unit of  

resource j 

m      number of all resources 

Roff, j  ratio between off-time of re-

source j and the latest due date 

of all application jobs minus 

the earliest start time of all ap-

plication jobs 

(2) 

 

The average processing time tk of application job k is 

based on the grid jobs of the critical path of its workflow, 

while the average cost ck has to take all grid jobs into account. 

They are calculated as follows. 
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nkrit,k  number of grid jobs of the 

critical path of application job 

k 

ti       processing time of grid job i on 

a standard CPU 

nk      number of grid jobs of applica-

tion job k 

(3) 

 

Now the average time and cost reserves tres,k and cres,k of 

application job k can be calculated. They are given as relative 

values with respect to the available time frame and budget 

respectively. 
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with 

tfin,k     latest finishing time of application job k 

tst,k      earliest start time of application job k 

cBUD,k  budget of application job k 

(4) 

 

 They are averaged for all application jobs of a benchmark 

bm yielding the time and cost benchmark reserve bmrest ,  and 

bmresc , . Their use will be described at the end of the next 

section. 

3.2 Benchmarks for rescheduling 

As we consider the arrival of new grid jobs as one of the re-

planning events with the greatest impact, we chose it as the 

basic scenario of our replanning benchmarks. They are cre-

ated in the following two steps. Firstly basic benchmarks 

consisting of 200 grid jobs and 20 resources are constructed 

for each benchmark class. For this purpose a set of application 

jobs with short sequences of grid jobs and therefore more 

parallel branches is manually created for benchmarks with 

small dependencies. For those with large dependencies appli-

cation jobs with long sequences are made. A basic benchmark 

is assembled randomly from these application jobs of the 

actual class in such a way that the given number of grid jobs is 

adhered to and that the application jobs have ten grid jobs on 

average.  

Small groups of resources with the same ability but differ-

ent cost performance ratios are formed. If a large degree of 

alternatives is required more groups of the same ability are 

merged than in case of a low degree. The requests of the grid 

jobs are then distributed evenly among the available resource 

abilities. Next the due dates and budgets of the application 

jobs of each basic benchmark are adjusted in such a way that 

the heuristics of the first planning phase of GORBA (see also 

Sect. 4) just cannot produce violation free schedules. This 

means that there are a few application jobs which are a little 

bit too late or too costly or both. The resulting question for the 

experiments is, whether the subsequent GLEAM run can 

overcome these violations or not as explained in Sect. 5.  

The basic units of resources and application jobs are di-

mensioned in such a way that they can be scaled easily in the 

steps of factors of 1.5, 2, 2.5, 3, and so on resulting in the 23 

scheduling loads per benchmark class as shown in figures 2 

and 3 or 4. All benchmarks have a resource set of the size of 

10% of the number of grid jobs.  

If the scaling of each basic benchmark is done well all 

benchmarks of a class should have almost the same amount of 

time and cost benchmark reserves. The mean values of these 

reserves per benchmark class are shown in Table 1 together 

with their minima and maxima. As the values deviate per class 

only slightly, we can conclude that the benchmarks of a class 

differ mostly in size and not in the two key properties budget 

and time reserves as desired. The small differences between  

the classes can be explained by the stochastic elements of the 

construction of the basic benchmarks and the varying flexibil-

ity for scheduling when using small or large values for R and 

D. 

In the first step described so far a total of 92 benchmarks 

for all four classes is constructed on the basis of an empty 

grid. In the second step GORBA is run three times for every 

benchmark and the best schedule is taken. This is done to 

avoid distortions by accidental poor schedules, as they can 

occur in a stochastic scheduler (see also Sect. 4.2). The best 

schedule is processed until 10% of the grid jobs are finished 

Table 1: Averages rest  and resc  of the time and cost benchmark reserves bmrest ,  and bmresc ,  together with their minima and maxima 

per benchmark class. The reserve values are given as percentages of the corresponding time frames and budgets.  

benchmark 

class 

time benchmark reserve [%] cost benchmark reserve [%] 

)min( ,bmrest  
rest  )max( ,bmrest  )min( ,bmresc  

resc  )max( .bmresc  

lRlD 47.2 48.9 50.1 27.3  27.7  28.1 

sRlD 53.7 55.9 58.3 25.2  25.9  26.7 

lRsD 57.2 59.2 62.1 22.3  23.3  24.1 

sRsD 63.4 64.4 65.5 20.8  21.5  22.0 
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and then the same amount of new grid jobs is added to the 

scheduling task. Together with the active allocations of the 

old schedule this creates a rescheduling benchmark. 

 

4 Scheduling algorithms 

 Scheduling is done in GORBA in two stages. In the first 

stage two sets of heuristics produce schedules, which are used 

in the second stage to seed the initial population of a subse-

quent run of the Evolutionary Algorithm GLEAM (General 

Learning Evolutionary Algorithm and Method) [1], [2]. The 

second stage is described in Sect. 4.2. 

4.1 Heuristic scheduling and rescheduling 

 The first set of heuristics is aimed at scheduling jobs to an 

empty grid while the second one is designed for replanning. 

The first set works with the following heuristic rules: 

earliest due time: grid jobs of the application job with the 

earliest due time first, 

shortest working time of grid job: grid jobs with the shortest 

working time first, 

shortest working time of application job: grid jobs of the 

application job with the shortest working time 

first. 

Resources are allocated to the resulting three grid job se-

quences by applying each of the following three resource 

allocation strategies (RAS) yielding nine schedules in total. 

RAS-1: Use the fastest of the earliest available resources for 

all grid jobs. 

RAS-2: Use the cheapest of the earliest available resources 

for all grid jobs. 

RAS-3: Use RAS-1 or RAS-2 for all grid jobs of an applica-

tion job according to its time/cost preference given 

by the user.  

All grid jobs which have not been started at the replanning 

event or will not be started within three minutes after it are 

subject to replanning. They are put into the same sequence as 

they have been in the old schedule. All other grid jobs affect 

the scheduling as already existing resource allocations, which 

must be observed by the scheduler. If the replanning event is 

the arrival of new grid jobs, as it is the case for our investiga-

tion, the new grid jobs are added to the sequence of old ones 

by applying each of the three heuristics for sequence genera-

tion described above. This yields three sequences, while for 

other replanning events only the one of the old schedule is 

produced. Again, the three RAS are applied, resulting in ei-

ther nine or three replanning schedules. The best of them is 

regarded as the preliminary result, which is hopefully im-

proved by the subsequent GLEAM run. 

The effect of the heuristics for scheduling was investigated 

in [7], while those for replanning were assessed in [8].  

4.2 Evolutionary scheduling 

 Evolutionary Algorithms (EA) mimic the principles of bio-

logical evolution like heredity, or survival of the fittest to 

improve already found solutions or to generate new ones. EAs 

are stochastic algorithms by nature and do not guarantee to 

find the optimum in reasonable time. On the other hand they 

are well known to come up with good or at least feasible solu-

tions comparatively fast. Our GLEAM based scheduler is 

described in detail in [7] and [9]. We give here only a sum-

mary of the features important to the task at hand. As GLEAM 

is an elitist EA the best individual will always survive. Hence, 

the best heuristic result can only be improved.  

 A chromosome consists of genes, each of which represents 

a grid job and the gene sequence determines the scheduling 

sequence of the corresponding grid jobs. Resource assign-

ments are made by one of the three RAS (see Sect. 4.1), which 

is selected by an additional special gene. This coding restricts 

the search space to some extent, which is accepted because it 

yields better improvements within the given time frame of 

three minutes for planning [7]. Possible precedence violations 

of the grid jobs caused by mutations or crossover are cured by 

a phenotypic repair. For more details the interested reader is 

referred to the given literature. 

5 Experimental results 

 Due to the stochastic nature of EAs several runs have to be 

accomplished to compare e.g. different settings of an EA. The 

comparison is then based on the averages of e.g. the achieved 

fitness values. To obtain sound results with reasonable effort 

we set the number of GLEAM runs to 50 per benchmark and 

parameter setting of the EA as described later. 

We compare the heuristic results with those from the sub-

sequent GLEAM run by their success rate and the fitness gain 

attained from the GLEAM run. A run is considered successful 

if the generated schedule is free of budget or due date viola-

tions (cf. Sect. 3.2). The success rate is the percentage of 

successful runs in relation to all 50 runs. The fitness gain is 

the difference between the best heuristic result and the aver-

age of all GLEAM runs. A fitness gain can be regarded as 

significant, if the best heuristic result is outside of the confi-

dence interval of the corresponding set of GLEAM runs. This 

is always the case for our experiments, even if a confidence 

value as high as 99.9% is taken as the basis.  

The course of the success rate with growing numbers of 

grid jobs and resources is shown in Figure 1 for all scheduling 

loads, where at least one benchmark yields a success rate 

greater than zero. It is not surprising that the rates drop differ-

ently depending on the benchmark class. But within a class a 

more or less continuous decline was expected from the homo-

geneous values of the two benchmark reserves. This is obvi-

ously not the case as e.g. the results of sRsD-400, lRsD-500, 

lRlD-700 or lRlD-900 show. In these examples we have suc-

cess rates below 100% followed by benchmark sizes, which 

can be scheduled always successfully. Of course, the tendency 

of a decreasing success rate with growing loads exists, but it is 

much more disrupted as expected. The reason for these distor-

tions may be the stochastic elements of the GLEAM run that 

produced the first schedule, which was interrupted by the 

rescheduling event to create a replanning benchmark (cf. Sect. 
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3.2). Or the two benchmark reserves do not have the signifi-

cance as expected since they are based on the assumption of 

an empty grid. As explained in Sect.3.1 they were calculated 

per application job without taking the competition from other 

application jobs for the resources into account. But this is true 

for all other characteristic numbers calculated prior to sched-

uling too. The analysis of the fitness gain will give some rea-

sons that the influence of the stochastic GLEAM run for pre-

paring the benchmarks has a greater impact than originally 

expected.  

The results of the fitness gain are shown in two diagrams 

for better representation. Figure 2 starts with the results for up 

to 2000 grid jobs. Large improve-

ments in the magnitude of 2500% 

contrast to small ones of 11.6% or 

69% at minimum. Big enhance-

ments are possible if the heuristics 

performed poorly. An example for 

this is the sRlD-200 benchmark, 

for which the best heuristic 

yielded a normalised fitness value 

of 2.35. Normalisation is done in 

the range of 0 to 100. The average 

GLEAM result is 61.0, which is a 

growth of 2496%. On the other 

hand lRlD-500 has a heuristic 

result of 37.0 which is improved 

to 62.5, an increase of 69%. Thus, 

GLEAM and the heuristics fre-

quently complement each other. 

The lRlD-200 benchmark with its 

improvement rate of 11.6% is an 

exceptional case because the re-

planning task meets the cost and 

time constraints, while its basic 

plan did not. Thus only comparable small improvements of 

the fitness value are possible. This is the only benchmark with 

such an exception and all others started with solutions below 

the level of violation free schedules as desired. Both figures 

also show that successful runs have small confidence inter-

vals, which means that their fitness values deviate only 

slightly from each other. The much larger confidence intervals 

of only partially successful benchmarks are based mostly on 

the high fitness devaluations due to the penalty functions 

activated by violations of time and/or cost limits.  

The example of benchmark lRlD-200 demonstrates the 

possible impact of the stochastic improvement of the basic 

schedule by GLEAM, followed by 

an execution of some grid jobs 

and the arrival of new ones. It may 

change the tightness of cost and 

time limits drastically. This is a 

clear indication that the observed 

inhomogeneous decline of the 

success rate is due to the creation 

of the rescheduling benchmarks 

and less because of a lack of sig-

nificance of the cost and time 

benchmark reserves. 

Figure 3 shows the improve-

ment rates with increasing sched-

uling loads beyond the achievabil-

ity of schedules free of budget or 

due date violations. The tendency 

of decreasing improvement rates 

with growing loads continues as 

expected. In the end, rates be-

tween 33% and 133% can still be 

achieved as the results for bench-

 

Figure 1: Success rates for all grid job loads yielding successful runs.  

 

Figure 2: Improvement rates and confidence intervals (95% confidence) for all grid job 

loads of up to 2000 jobs for all four benchmark classes. 
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Figure 4: Number of evaluations achievable in three minutes for increasing numbers of 

grid jobs and resources and for all four benchmark classes. 

mark sizes of 6000 or 7000 grid jobs show. As these runs still 

reduce the amount of accumulated budget or due date over-

runs as well as the number of affected application jobs, it is 

useful to maintain the EA run. 

This raises the question whether further improvements for 

more than 7000 grid jobs and 700 resources are possible with 

the given hard- and software. This issue is close related to the 

number of evaluations which can be performed within the 

three minutes time frame available for EA improvement. The 

time required to assess a schedule depends on the size of the 

allocation matrix, on the number of grid jobs to be processed 

and on the number of alternatively available resources, among 

which a selection must be made. As the matrix lists the time of 

allocation, suspension and availability for all resources, its 

size depends on the number of resources as well as on the 

time scale of possible makespans. Thus, the processing time 

of a schedule increases with  

 the number of all re-

sources 

 the average number of re-

source alternatives per 

grid job (i.e. parameter R 

of a benchmark) 

 the range of possible 

makespans 

 the number of grid jobs 

Consequently, the number of 

processible evaluations drops with 

an increasing number of grid jobs 

as Figure 4 shows. And the impact 

of the benchmark parameter R can 

be seen clearly: small values of R 

correspond with less resource 

alternatives which can be checked 

faster than many and therefore, 

more evaluations can be per-

formed as with large values of R.  

Regardless of the degree of re-

source alternatives R the number 

of evaluations per GLEAM run 

drops below 5000 for scheduling 

loads of more than 5000 grid jobs 

 

Figure 3: Continuation of Fig.2 for all loads from 2000 grid jobs and 200 resources to 7000 and 700 respectively. 
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and 500 resources. But since EAs need an application-

dependent number of trials to the search space of at least some 

thousands to gain a relevant improvement, we cannot expect 

further advancements of the heuristic schedules for considera-

bly greater loads. To overcome this, either a tuning of the 

scheduling and assessment software as well as faster hardware  

might help to some extend or a parallelisation of the EA itself, 

see e.g. [5] or [2].  

6 Conclusion and outlook 

 We have introduced two new benchmark parameters, the 

time and cost benchmark reserves, for the problem of re-

scheduling large quantities of grid jobs based on advanced 

reservations. The parameters are aimed at determining the 

tightness of user given due dates and budgets, two properties 

which have a great impact on the complexity of a scheduling 

task. New benchmarks for rescheduling were constructed so 

that only very small deviations of these figures could be ob-

served while scaling them from 200 grid jobs to 7000 and 20 

resources to 700. The experiments showed a greater disrup-

tion of quality decrease with growing loads as expected from 

the homogeneity of the two benchmark parameters. This is 

probably due to some stochastic elements in the construction 

process of the rescheduling benchmarks as described. The 

experiments also showed the limits of EA based scheduling as 

a supplement of heuristic planning when the load exceeds 

5000 grid jobs and 500 resources and the processing time is 

strictly limited. Especially the population size has to be ad-

justed well for loads greater than about 600 grid jobs. As 

shown by Jakob [6], the extension of an EA to a Memetic 

Algorithm by adding local search to the offspring creation 

process can significantly reduce the range of well performing 

population sizes as well as improve the performance consid-

erably. 
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Abstract - In recent years, among many branches of artificial 
immune systems (AIS), artificial immune networks could 
attract many researchers' interest in solving the engineering 
problems. Considering a noticeable drawback in the original 
optimization version of artificial immune network (opt-aiNet) 
that is the lack of any cooperative interaction between cells, 
several methods are proposed to introduce cooperation in the 
population for better multimodal optimization. Most of these 
methods emphasize on moving new cells towards the best 
experience of population. On the contrary, for a better 
exploration, a new strategy, named Reverse Cooperation, is 
introduced in this paper which applies a new Repulse 
operator to repel new cells from the discovered peaks. This 
strategy is accompanied with two modifications in 
hypermutation operator and diverse introduction process in 
order to increase the number of optima that is found and 
accelerate the convergence of population. The new algorithm, 
as compared with the others, could optimize multimodal 
functions more effectively and efficiently. 

Keywords: Artificial immune network, Multimodal function 
optimization, Reverse cooperation, Repulse operator 

1 Introduction 
Multimodal functions are problems that may have 

several global optima, i.e. several points where the values of 
the objective function are equal to the global optimum value. 
Furthermore, there exist some local optima in the function's 
landscape. These local optima may not be undesirable 
necessarily. Since algorithmic modeling of a real-world 
problem often involves some abstractions, finding all global 
optima and the utmost number of local optima would supply 
multiple choices for decision makers and engineers [1]. 

Traditional optimization methods, like the quasi-Newton 
method, emphasize on accurate and exact computation, so 
they cannot optimize multimodal functions efficiently. During 
recent years, several bio-inspired techniques have been 
proposed to solve multimodal optimization problems. These 
techniques provide more robust and efficient solutions for 
multimodal optimization. However, they may fail to find all 
global and local optima. Some bio-inspired techniques which 
are engaged in multimodal optimization are the Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO) and 
Artificial Immune Systems (AIS) [2]. 

Artificial Immune System, also called Immunological 
Computation, is a field of research that mimics the biological 
immune system behavior in human and animal for developing 
computational models. Biological immune system is a 
complex, adaptive and distributed learning system with 
several mechanisms as a defensive means against pathogens 
[3]. Hence AIS attracts the researcher's attention to apply to 
various engineering application areas, including optimization 
problems [4]. 

The remainder of the paper is organized as follows. In 
section 2, some of the related works that have applied AIS in 
multimodal optimization are reviewed and the authors' 
opinions on a better algorithm are presented. In section 3, a 
reverse cooperative immune network is proposed in detail. In 
section 4, several experimental results are discussed and the 
performances of the new algorithm with the two others are 
compared. Finally, section 5 concludes the paper. 

2 Related works 
The clonal selection principle [5] is applied to explain 

the basic features of an adaptive immune response to an 
antigenic stimulation. This principle establishes the idea that 
only those cells that recognize the antigens are selected to be 
proliferated. The selected cells are subject to an affinity 
maturation process where their affinity to the selective 
antigens is improved. The CLONALG algorithm is primarily 
derived from the clonal selection principle with the theory of 
evolution in order to perform pattern recognition tasks and 
then it is adapted to solve optimization tasks, emphasizing 
multimodal and combinatorial optimization problems [6].  

An artificial immune network, called aiNet, is presented 
to accompany the clonal selection and immune network 
theories [7]. The aiNet algorithm introduced for data 
compression and data clustering first and then was further 
extended to solve multimodal optimization problems. The 
optimization version of aiNet, called opt-aiNet, is a well-
known immune network with some intriguing features for 
optimization, such as dynamic adjustable population size, 
exploration and exploitation of the search space and 
capability of locating and maintaining multiple optima 
solutions [8]. The opt-aiNet consists of a network of cells 
which evolves in two phases: local search phase, to exploit 
better optima and global search phase, to explore the function 
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landscape. At local exploitation the cells continuously pass 
through clonal expansion, fitness maturation and elitist 
selection steps while reaching a stable state. Afterwards, at 
global exploration the network cells undergo suppression 
operation that removes cells with lower fitness values and 
similar to those with higher fitness values. Fundamentally, the 
network suppression describes interactions within network 
cells as competition correlation to prevent their clustering on 
a single optima. After suppression, a number of new random 
cells are generated to introduce more diversity in the network 
population and then, the local exploitation process restarts 
[9]. 

There are some drawbacks in opt-aiNet, such as lack of 
cooperation between network cells and unused cells' 
experiences in previous iterations. Moreover, new random 
cells can land in already exploited landscape which makes 
these cells inefficient and leads in the waste of resources. 
Several other algorithms are proposed on the base of opt-
aiNet in order to reduce its drawbacks or improve the 
capabilities [2]. 

A Hybrid Artificial Immune Network (HaiNet) is 
proposed in [10], inspired not only from biological immune 
system but also from the group behaviors of particle swarm 
optimization. The swarm learning technique in PSO is 
applied in the hypermutation operation of the artificial 
immune network, in a manner where each cell can use its own 
best encountered position and the best encountered position 
among all the cells, in order to speed up the optimization 
process. The addition of swarm learning aims at faster 
convergence to global optima, but reduces the number of 
known local optima. 

In [9] another Cooperative Artificial Immune Network 
(CoAIN) model is proposed for multimodal function 
optimization. The CoAIN uses cooperative strategy inspired 
by particle swarm behavior to explore and exploit searching 
space efficiently and effectively. In this model, a new distinct 
cooperative step is introduced after the suppression step. This 
step enables each network cell to cooperate with the others as 
a particle flying around in a searching space for adjusting its 
position according to its own experience and the experience 
of other particles. 

Another algorithm is a Predication-based Immune 
Network (PiNet) proposed in [2]. To explore and exploit the 
searching space efficiently and effectively, the PiNet uses a 
cooperative strategy between homologous antibodies, that is 
to say, the next position of a cell is related not only to its 
position but also its parent antibody. Moreover, the selection 
probability of a new random cell changes dynamically 
according to the sum of affinities between memory cells and 
itself [2]. 

In this paper, a Reverse Cooperative Artificial Immune 
Network called RC-aiNet, is proposed to improve both search 
ability as well as search speed. The RC-aiNet introduces a 
new strategy for inter-cellular cooperation, which is called 
reverse cooperation.  Here, younger cells are repulsed by 

memory cells instead of inducing younger cells to move 
towards the best encountered position. The reverse 
cooperation increases the chance for the new cells to 
investigate unexplored sections of solution space. 

Here, some modifications are proposed in the 
hypermutation operation of the affinity maturation process, 
which establishes acceleration in local exploitation. In this 
manner, the position of a mutated cell, in addition to its 
current position, is related to the previous movements at prior 
iterations. It should be added that the RC-aiNet proposes a 
mechanism in the diverse introduction step (update step in 
PiNet) which changes the probability of different zones in 
solution space to embrace new cells. This new mechanism 
increases the probability of placing the new cells in 
unexplored landscapes, thereupon causes better exploration. 

The experiments show that compared to PiNet and opt-
aiNet, the suggested mechanisms in new algorithm lead to 
optimizing multimodal functions more effectively and 
efficiently. 

3 Artificial Immune Network with  
Reverse Cooperation 
In order to present RC-aiNet algorithm, the following 

list of terminology is assumed: 

• Antibody cell:  an individual of the network population 
which indicates a point in function landscape; each 
cell is presented as a real-valued vector in an 
Euclidean shape-space 

• Antigen:  an objective multimodal function to be 
optimized 

• Fitness:  interaction between antibody cells and 
antigen; the cell fitness is the value of objective 
function when evaluated for the given cell 

• Affinity:  interaction between two antibody cells that 
will be calculated as Euclidean space between them 

• Clone:  the offspring that are exact copies of a cell; the 
offspring cells will further suffer hypermutation for 
become variations of their original cell 

3.1 Procedure of the RC-aiNet algorithm  
The main process of the new algorithm can be described 

through the following 9 steps: 

Step 1.  Initialization:  Randomly initialize a population of 
N1 cells. 

Step 2.  Reverse cooperation:  The memory cells of the last 
global exploration phase repulse younger cells in 
their neighborhood. In other words, the new cells are 
repelled by the neighbor memory cells. The neighbor 
cell is one that its affinity is less than repulse 
threshold σrep. 

Step 3. Clone expansion:  Generate Nc clones for each 
network cell. 
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Step 4.  Affinity maturation:  Compute a mutation center for 
each clone according to its prior movement. A 
mutation center is a point that mutation performs in 
the centrality of it instead of the original cell's 
coordinates. Afterwards mutate the clones in 
proportion to the fitness of their original cell.  

Step 5.   Elitist selection:  Determine the fitness of all mutated 
clones and in each subpopulation of clones which 
are copied from an original cell, select one with the 
highest fitness. 

Step 6. Exploitation convergence criteria:  Calculate the 
average fitness of the network population. If the 
average fitness does not change significantly in 
comparison to the previous iteration, then continue, 
otherwise return to step 2. 

Step 7.  Suppression:  Compute the affinity between all cells 
in the network, next eliminate all but the highest 
fitness of the cells whose affinities are less than the 
suppression threshold σsup, then determine the 
number of remaining cells as memory cells. 

Step 8.   Termination criteria:  If the number of memory cells 
does not vary in comparison to the prior global 
exploration phase, the optimization process is 
completed, otherwise continue. Other stopping 
criterion is to meet the maximum number of 
evaluated points in search space. 

Step 9.  Diverse introduction:  To generate d% new cells, 
first assume that the objective function's landscape 
as a crisscrossed grid where the number of squares in 
the grid is twice the number of the memory cells. 
Second, rank the squares in inverse proportion to the 
number of the memory cells in each square and its 
adjacent squares and then create a roulette wheel 
according to these ranks. Third, select a square from 
the wheel and randomly generate a new cell inside 
the bounds of selected square followed by uniform 
distribution. Fourth, reduce the rank of the selected 
square and repeat creating roulette wheel, selecting a 
square and generating a new cell inside again. And 
finally, add the new cells to current population and 
return to step 2 to restart local exploitation. 

Since RC-aiNet is extended from opt-aiNet, accordingly, 
the new algorithm consists of two phases:  local search, to 
exploit feasible solutions and global search, to explore 
solution space. Steps 2 to 6 above constitute the local 
exploitation where at each iteration a population of cells is 
optimized locally through the repetition of clone expansion, 
fitness hypermutation and elitist selection. Steps 7 to 9 are 
involved in the global exploration process by introducing a 
number of new cells probably in unexplored zones first and 
then the local search restarts. Although the reverse 
cooperation step is involved in local exploitation phase, it 
really complements the global exploration process to examine 
unsought zones. 

3.2 Repulse operator for reverse cooperation 
The reverse cooperation subjective is using the memory 

cells' experience in order to avoid locating the peaks which 
are found in prior iterations. Therefore, a new operator is 
introduced called the repulse operator. This operator repels 
the new generated cells from old memory cells, which 
increases the chance for the new cells to find some 
unprecedented optima.  To perform repulsing operation for a 
population  cell denoted as ia , the set of its neighbor memory 

cells denoted as iR should be determined as equation (1), 

where ia is a population cell, F is the set of all memory cells, 

repσ  is repulse threshold and |||| ji fa − is the affinity of two 

cells calculated as Euclidean distance between them. 

)1(}||||,|{ repjijji faFffR σ<−∈=  

Next, for each neighbor memory cell
if , a partial repulse 

vector jV is defined as equation (2). 

)2(||)||(
|||| jirep

ji

ji
j fa

fa

fa
V −−×

−
−

= σ  

It is clear that 
|||| ji

ji

fa

fa

−
− is a unit vector in the direction 

from 
if to 

ia and the phrase ||)||( jirep fa −−σ determines the 

length of the partial repulse vector, in inverse proportion to 
affinity of 

if  and 
ia . Afterward, a repulse resultant vector  

for
ia , named iRv , is created from these partial vectors and 

then 
ia  moves based on the repulse resultant vector, 

according to equation (3). 

)3()2( )( iaIt
iii Rvaa −×+=′  

In equation (3), 
ia′ is repulsed cell of 

ia and )( iaIt is the 
age of 

ia  that represents the number of iterations that 
ia  has 

been through. The phrase )(2 iaIt− decays repulsion, so that the 
older the cell 

ia , the weaker the repulsing. Consider that 
memory cells will not be repulsed at all. 

A repulsed cell should not exceed the bounds of the 
objective function. Also, a factor named 

irw  computes which 
displays the weakness of repulsing for

ia , to use in mutation 
operator. 

3.3 Accelerating in hypermutation operation 
To increase the speed of the local exploitation, a 

technique is suggested in mutation operator which uses the 
experience of a cell in prior iterations to accelerate its 
movement towards an optimum. For this purpose, a mutation 
center is defined for each cell as a point that mutation 
performs in the centrality of it, instead of original cell's 
coordinates. One of the factors involved in the mutation 
center computation is the cell's last movement. 

The mutation operator is defined by the following 
equation (4), where 

ic is a mutated cell of the cell
ib , ip  is the 

mutation center calculated as equation (5), parameter β  is to 
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control the decay of mutation, 
ib′  is the parent of 

ib  in the last 
iteration, )(*

ibf  is the fitness of 
ib  normalized in the interval 

[0,1], )(*
ibfΔ  is the fitness variation between the parent and 

the son cell in two continuous populations which is restrained 
up to 1 as equation 6, 

irw is the repulse weakness factor 
computed in reverse cooperation step, 1c is a constant to 
regulate tendency to previous fitness variation, )1,0(N  is a 
Gaussian random variable of zero mean and standard 
deviation 1=σ  and 

ipf  is a factor defined to regulate the 
consideration of previous experiment for the mutation center 
calculation. 

A mutation is only accepted if the mutated cell 
ic  is 

within the objective function bounds. 
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The ipf  factor is defined as equation (7): 
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where, )8(),( iiiii pbbpAngleangle ′−′−′=  

and 
ip′  is the mutation center of 

ib′ in last iteration. The 
phrase 

iangle  refers to the angle between two vectors, where 

ii bp ′−′  determines the algorithmic desired direction in the last 
iteration and 

ii pb ′−  determines the direction of real  
 

movement in the last iteration. Therefore, a straight 
movement in prior iteration will increase the speed and any 
deviation leads to reduction in speed. 

3.4 Purposeful mechanism for generating cells 
In the diverse introduction step, situating the new 

random cells at unsought zones of landscape causes the 
power of exploration to increase. To generate new random 
cells followed by non-uniform distribution, first the objective 
function's landscape is assumed as a crisscrossed grid with 
the number of squares twice the number of memory cells. In 
this grid, every memory cell contained in a square scores a 
constant ns1 for that square and scores a constant ns2 for the 
adjacent squares; hence, the more optima within or close to a 
square result in more scores for that square. Next, create a 
roulette wheel in inverse proportion to the scores. Afterwards, 
algorithm repeats the following cycle: first, it selects a square 
from the wheel; second it generates a new uniform random 
cell in the bounds of the selected square and adds constant 
score ns3 to the selected cell and finally it creates the roulette 
wheel using modified score again and the cycle repeats while 
d% new cells are generated. Here, the constants ns1=2, ns2=1 
and ns3=4 are assumed. 

4 Experiments and Results 
4.1 Experimental protocols 

The proposed RC-aiNet is coded in Matlab 2008 and is 
compared to opt-aiNet and PiNet. To examine the search 
ability and the performance of the proposed  
RC-aiNet, 9 benchmark functions with different complexities 
are used [2]. The benchmark functions are listed in Table 1.  

 

Table 1.  Benchmark functions for multimodal optimization 

Notation Name Function Interval Number of local optima 
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Table 2.  Specialized parameters for optimization of 
benchmark functions 

Fu
nc

tio
ns

 

Mutation  
strength 

β 

Affinity 
suppression 

threshold 
σsup 

Fitness 
improvement 
threshold λf 

(only for 
PiNet) 

Repulse 
threshold 

σrep 
(only for

 RC-aiNet)

Search 
space  

S 

F1 100 0.2 0.1 0.8 550,000
F2 100 0.2 0.1 0.8 550,000
F3 100 0.2 0.01 0.8 550,000
F4 100 0.2 0.1 0.8 1,000,000
F5 100 0.2 0.1 0.8 200,000
F6 200 0.1 0.1 0.4 400,000
F7 100 0.2 0.1 0.8 800,000
F8 100 0.5 0.1 0.8 100,000 
F9 100 0.2 0.3 0.8 800,000

 

All of common parameters for RC-aiNet are set exactly 
the same as the values used in [2] for testing opt-aiNet and 
PiNet. So in all benchmarks, initial population size (N1) is 20, 
cell cloning scale (Nc) is 10 and diverse introduction rate (d) 
is 40%. Some other parameters including mutation decay (β), 
affinity suppression threshold (σsup), maximum search space 
(S), fitness improvement threshold (λf only for PiNet) and 
repulse threshold (σrep only for RC-aiNet), according to [2], 
are specialized for each function as Table 2 shows. Each 
function test is repeated 50 times and the average and the 
standard deviation of results are calculated. The results of 
benchmarks optimization using RC-aiNet, opt-aiNet and 

PiNet are presented in Table 3. The results of the latter two 
algorithms are extracted from [2]. 

4.2 Comparison of the proposed algorithm 
with opt-aiNet and PiNet 

The comparative factors used in evaluating the 
algorithm's efficiency include: success rate, the number of 
discovered optima, the generations of convergence and the 
number of function evaluations. 

Success rate is the probability of finding a stable state of 
memory cells in limited number of function evaluations 
which is named as maximum search space. The RC-aiNet 
could record good success rates as well as PiNet and do much 
better than that of the opt-aiNet.  

As described before, finding all global optima and the 
utmost number of local optima is an important aspect of the 
performance of multimodal optimization. With the help of 
reverse cooperation and purposeful diverse introduction 
mechanism, RC-aiNet performs better a global exploration in 
landscape which assures an increase in the number of 
discovered optima. According to Table 3, when compared 
with opt-aiNet and PiNet, the new algorithm on average finds 
36% more optima than opt-aiNet and 16% more than PiNet. 
The number of generations to convergence has an effective 
reflection on algorithm speed. Using the accelerating 
mechanism in hypermutation causes a decrease in the number 
of iterations required for local exploitation. 

Table 3.  Optimization results of benchmark functions using the three algorithms 

Function Algorithm Success 
Rate (%) 

Local optima number Generations of 
convergence Function evaluation number 

Avg SD Avg SD Avg SD 

F1 
opt-aiNet 96 *91.1  *5.8  *441  *72  *370,657  *122,270  

PiNet 100 94.9 3.4 219 27 187,374 34,881 
RC-aiNet 100 99.5 0.7 154 15 140,038 21,565 

F2 
opt-aiNet 0 219.3 10.3 682 37 550,000+  580 

PiNet 0 279.5 9.5 317 17 550,000+  1320 
RC-aiNet 0 394.3 9.0 243 14 550,000+  36,581 

F3 
opt-aiNet 100 6.1 0.54 542 326 79,705 43,179 

PiNet 100 6 0 191 136 35,051 20,512 
RC-aiNet 100 6 0 72 32 11,645 4,197 

F4 
opt-aiNet 0 287.2 38.3 1040 62 1,000,000+  947 

PiNet 0 444.9 27.3 458 42 1,000,000+  1992 
RC-aiNet 0 730.8 34.0 325 18 1,000,000+  106,415 

F5 
opt-aiNet 100 4 0 620 70 99,990 16,326 

PiNet 100 4 0 175 31 28,517 4659 
RC-aiNet 100 4 0 77 5.4 12,488 851 

F6 
opt-aiNet 66 35.97 3.522 674 156 229,247 88,901 

PiNet 100 34.76 1.836 208 52 77,396 28,126 
RC-aiNet 100 34.90 1.200 144 29 53,325 13,869 

F7 
opt-aiNet 0 538.4 32.480 485 20 800,000+  1832 

PiNet 0 596.94 17.875 239 12 800,000+  2364 
RC-aiNet 0 753.4 3.618 214 6 800,000+  68,524 

F8 
opt-aiNet 100 5.94 0.240 491 68 82,933 8074 

PiNet 100 5.98 0.141 194 111 31,955 16,225 
RC-aiNet 100 5.98 0.141 66 10 10,932 1293 

F9 
opt-aiNet 100 120.14 2.382 492 54 561,508 101,582 

PiNet 100 157.42 4.343 253 37 383,938 81,899 
RC-aiNet 100 167.56 1.013 198 18 275,729 42,941 
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Figure 1.  Comparison of maximum and average fitness of population on Multi Function. (a) opt-aiNet. (b) RC-aiNet. 

The better exploration techniques lead to reduce the 
repetitions of global search, therefore the number of 
generations to convergence which consists of local and global 
search iterations in RC-aiNet is significantly less than opt-
aiNet and PiNet. Figure 1 illustrates the average fitness and 
maximum fitness of cells population on F1 for opt-aiNet and 
RC-aiNet. 

The number of function evaluation, called search space, 
is another criterion to estimate convergence speed. The new 
algorithm uses the information of prior movements of a cell 
to generate acceleration. This technique results in decreasing 
the required number of points to evaluate for each cell to 
reach to an optima. So the number of evaluations in RC-aiNet 
on average is 75% less than opt-aiNet and 49% less than 
PiNet. Therefore, the RC-aiNet could improve both the 
number of discovered optima and convergence speed.  

It is clear in Table 3 that standard deviation in every 
criteria obtained by RC-aiNet usually is much less than that 
of the other two algorithms, especially in the number of 
optima and the generations of convergence. Figure 2 contains 
two box plots which compare the distribution of results in 
opt-aiNet, PiNet and RC-aiNet on F1. The closeness of the 
results indicates that RC-aiNet is more reliable and robust and 

is far from being affected by several executions with different 
initial populations. 

5 Conclusion 
In this paper, an improved algorithm named RC-aiNet is 

presented to optimize multimodal functions. For a better 
exploration in RC-aiNet, memory cells repel new generated 
cells. Also, the information of cells in current population and 
their parents in previous iterations has been utilized to affect 
exploitation speed. Compared with opt-aiNet and PiNet, the 
newly proposed algorithm is capable of improving algorithm 
performance in convergence speed and quality of solutions. 
Also, notable decrement in standard deviation of criteria is a 
reason for this newly proposed algorithm robustness.  

For further studies, finding another dynamic diverse 
introduction technique based on a non-uniform probability 
distribution function may lead to an improved exploration. 
Some other techniques could introduce to reduce the 
influence of function shape in algorithm performance. Also 
algorithm's parameters could be adjusted more accurately to 
increase their efficiency. 

 

       

Figure 2.  Two box plots to compare the three algorithms. 
 (a) The generations to convergence. (b) The number of discovered optima. 
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Abstract— Detecting community structure is crucial for 
uncovering the links between structures and functions in 
complex networks. Most of contemporary community 
detection algorithms employ single optimization criteria 
(e.g., modularity), which may have fundamental 
disadvantages. This paper considers the community 
detection process as a Multi-Objective optimization 
Problem (MOP). To solve the community detection 
problem this study used improved honey bee mating 
optimization (HBMO) algorithm. In the proposed 
algorithm, an external repository is considered to save 
non-dominated (Pareto) solutions found during the 
search process. The efficiency of the proposed 
algorithm is studied by testing on several data sets. 
Numerical results show that the proposed evolutionary 
optimization algorithm is robust and suitable for 
community detection problem. 
 
Keywords- complex network; community; multi-objective; 
honey bee mating optimization 

 
I. INTRODUCTION 

Most of real word networks possess inherent 
community structure, such as biological networks, web 
graphs and social networks. In network a community is 
a group of nodes with high dens connection within 
groups and sparse connection between groups.  
Communities in networks provide us information about 
how network function and topology affect each 
other[1].   
In complex networks the number of communities is 
typically unknown and the communities are often of 
unequal size or density, and it has been shown that in 
complex networks communities have a hierarchical 
structure so we can say that finding communities in 
complex networks is a non trivial task [2]. Community 
detection problem has been introduced formally by 
Gervan and Newman in 2002 [3] and recently has been 
attracted the attention of researches in deferent areas. 
The community detection problem can be considered 
almost like an optimization problem [4] and lots of 
studies have been done based on evolutionary methods 
like GA [5-9], SA [10] and collaborative evolutionary 
algorithms[11] and [12] to solve it. To consider 
community detection problem as an optimization 
problem we need an objective function to be improved 
like modularity Q that is used as the stopping criterion 
in GN [3].  Most of community detection problems are 
based on the single objective optimization and their 
differences are based on their objective functions. The 
single objective based community detection algorithms 

have some shortcomings such as: single-objective 
optimization algorithms attempt to optimize just one 
criterion, they may fail when the optimization criteria 
are inappropriate and also most of them require prior 
information like the number of communities, which is 
usually unknown for real networks. 
To overcome these shortcomings the community 
detection problem can be considered as a multi-
objective problem, so multiple objective functions can 
be considered to obtain more accurate and 
comprehensive community structure.  
In this paper we considered community detection 
problem as a multi-objective optimization problem and 
introduced an improved multi-objective algorithm based 
on honey bee mating optimization algorithm.  
One of the recently proposed evolutionary algorithms 
that have shown great potential and good perspective 
for the solution of various optimization problems is 
honey bee mating optimization (HBMO). The HBMO 
algorithm has remarkable accuracy and calculation 
speed to deal with the optimization problem. 
Advantages of the HBMO algorithm are presented in 
[13, 14]. Refs. [15] and [14] have used the HBMO 
algorithm for solving optimization problems on two 
separate applications. In this paper, a multiobjective 
optimization is used for the placement and sizing of 
REGs by the improved HBMO algorithm. Original 
HBMO often converges to local optima. In order to 
avoid this shortcoming, in this paper a new mating 
process is proposed for rising accuracy of the algorithm.  
The proposed algorithm optimized two objective 
functions, the community score that measures the 
density of the clusters obtained and community fitness 
that minimizes the external links. A prior knowledge of 
a number of communities was not needed  because this  
method returns a set of solutions where each of them 
correspond  to different trade- offs  between the two 
objectives, and gives a great chance to analyze the 
hierarchy of communities. The rest of the paper is 
organized as follows. Section 2 introduced the problem 
of community detection.  The concept of a multi-
objective optimization problem is reviewed in section 3. 
The original honey bee mating optimization algorithm 
is explained in section 4. In section 5 the proposed 
multiobjective algorithm used to detect community is 
presented, and then in section 6 the experimental results 
of the proposed algorithm in comparison with other 
approaches are shown. 
 

II. COMMUNITY DETECTION 
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Community detection has been studied in many fields 
for many years such as computer science, physics and 
biology and lots of methods have been introduced in 
this field. In this study an undirected network G = (V, 
E) defined by a set of nodes [13] or vertices, and a set 
of links [16] connect two elements of V. A community 
consists of vertices and an edge between these nodes, 
where the nodes often cluster into tightly knit groups 
with a high density and a lower density of between the 
group connections[17].  
A network can be represented mathematically by an 
adjacency matrix A, if there is an edge from vi to vj, 

1 and 0 otherwise.  The degree ki of a node 
i, defined as ∑ . Let C ⊂ G the sub-graph 
where node i belongs to, the degree of i with respect to 
C can be split as , where 

∑ ∈  is the number of edges connect the i 
to the other nodes in C, and ∑ ∉  is the 
number of edges connecting i to the rest of the network. 
A sub-graph C is a community in a strong sense 
if  , ∀i ∈ C. A sub-graph C is a 
community if ∑ ∈ ∑ ∈ . 
The quality measure of a community C that maximizes 
the in-degree of the nodes belonging to C has been 
introduced in [8]. On the other hand, in [18] a criterion 
that minimizes the out-degree of a community is 
defined. We now recall the definitions of these 
measures first, and then we show how they can be 
exploited in a multi-objective approach to find 
communities. In the following, without losing its 
generality, the network graph is assumed to be 
undirected. 
Let μi denote the fraction of edges connecting node i to 

the other nodes in C. More formally, 
| |

 

where |C| is the cardinality of C. 
The power mean of C of order r, denoted as M(C) is 
defined as 

∑ ∈

| |
  (1)  

Notice that in the calculation of M(C), since 0≤μ≤1, the 
exponent r increases the weight of nodes having many 
connections with other nodes belonging to the same 
module, and diminishes the weight of those nodes 
having few connections inside C. 
The volume vC of a community C is defined as the 
number of edges connecting vertices inside C, i.e the 
number of 1 entries in the adjacency sub-matrix of A 
corresponding to C, ∑ , ∈ . 
The score of C is defined as score (C) = M(C) × vC. 
Thus, the score takes into account both the fraction of 
interconnections among the nodes (through the power 
mean) and the number of interconnections contained in 
the module C (through the volume). The community 
score of a clustering {C1, ... Ck} of a network is defined 
as 

 
             
(2) 

The community score gives a global measure of the 
network division in communities by summing up the 

local score of each module found. The problem of 
community detection has been formulated in [8] as the 
problem of maximizing CS. 
In [18] the concept of community fitness of a module C 
is defined as 

∝
∈

           
(3) 

where  and  are the internal and external 
degrees of the nodes belonging to the community C, 
and α is a positive real-valued parameter controlling the 
size of the communities. The community fitness has 
been used by [18] to find communities. 

 
III. MULTI-OBJECTIVE OPTIMISATION 

In a multi-objective optimization problem, the purpose 
is to optimize several conflicting objectives 
simultaneously while still meeting some constraints. 
The community detection problem algorithm can be 
formulized as a multi-objective problem because two 
objective functions are competing with each other. The 
first is maximizing the inter-connecting links and the 
second is minimizing connections between 
communities. The multi-objective problem can be 
described as follows[19]: 

, , … ,  
          
(4) 

where  is the ith objective function and X is the 
vector of the optimization variables, n is the number of 
objective functions. 
The solution to the multi-objective optimisation 
problem is a set of Pareto points. In the multi-objective 
optimization problem, a solution ∗ ∈  is a Pareto 
optimal if there is no solution (X) in  such that X 
dominates X*.  is the set of all feasible values of X. 
The solution X1 is said to dominate the solution X2 if 
∀ ∈ 1, 2, … , ,  
∃ ∈ 1, 2, … , ,  

          
(5) 

Solutions which dominate others but not themselves, 
are called non-dominated solutions.  
 

IV. HONEY BEE MAITING OPTIMIZATION 
ALGORITHM 

In order to deal with multiobjective problems, some 
modifications in the HBMO algorithm should be made. 
After the generation of the initial population and 
respective evaluation of objective functions, the 
selection of the ‘‘best solutions’’ (queens) should be 
made, but no longer based only on the comparison of 
single objective function values. Under a multiobjective 
approach, a new concept, such as the Pareto dominance 
concept, is needed for dealing with different solutions, 
i.e. classifying them as dominated or non-dominated 
solutions. The ‘‘best solutions’’ (queens) selected from 
the initial population are the non-dominated solutions. 
Once identified the non-dominated solutions (queens), 
the iterative process is initiated in the same way as in 
the single objective case (mating flights, generation of 
new queens, improvement of the queens and of the new 
generation and selection of new queens). Each non-
dominated solution will generate a certain number of 
solutions after each iteration. The criteria for generation 
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and improvement of the solutions specially best 
solution (queen) are the same as employed in the uni-
objective version. With the new generated solutions and 
the non-dominated solutions from the previous iteration, 
the new set of non-dominated solutions is identified, 
which forms the Pareto front. These new solutions are 
saved in the repository and will generate the new 
solutions in the next iteration. The process is repeated 
until the stop criterion is satisfied. Frequently, the 
number of solutions that belong to the Pareto front 
increases as the algorithm evolves, thus each non-
dominated solution is a potential generator (queen) of 
new solutions in the next iteration of the algorithm. It is 
noted that these non-dominated solutions saved in the 
repository are not the final non-dominated solutions 
because the repository will be updated after generation 
of broods in the next iterations. Besides, our 
experiences in the implementation of the proposed 
algorithm shows that it is safe to say the repository of 
the non-dominated solutions will be significantly 
updated in each new iteration with respect to the 
previous ones in the initial iterations. However, after 
some iteration the results of the repository may be 
saturated. That is the non-dominated solutions may be 
remained unchanged. Indeed the new solutions in the 
higher number of the iterations may be equal to the 
same of the repository solutions or they will be 
dominated by the repository ones. Therefore, it can be 
concluded from this manner that the non-dominated 
solutions of the repository after some iteration are 
trustworthy. 

 
V. ROPOSED ALGORITHM 

Previously in this work the search capability of the honey bee 
mating optimization algorithm was specifically used to find 
communities in complex networks. The steps of the proposed 
community detection algorithm as shown in figure 1 are as 
follows: 
 
Step 1: Initializing the problem and algorithm parameters 
In this phase, as described above, we are interested in 
identifying a partitioning {C1 , . . . Ck} that maximizes  the 
number of connections inside each community and minimizes  
the number of links between the modules. The first objective 
was fulfilled by the community score. The first objective 
function is therefore ∑   . The second 
objective was carried out by the community fitness by 
summing up the fitness of all the Ci modules. The parameter 
α, that tunes the size of the communities, has been set to 1 
because in most cases the partitioning found for this value are 
relevant [18]. The second objective is therefore∑   . 
Our partitioning algorithm uses the locus-based adjacency 
representation proposed in [20] and used by [20] for multi-
objective clustering. In this graphic representation, an 
individual of the population consists of N variable x1, . . . , xN 
and for each variable there is a set of possible range of values 
based on the adjacency matrix. For example, if node 1 has a 
connection with nodes 3, 5, and 6, the possible range of values 
for x1 will be {3, 5, and 6}. For the isolated node k in the 
network, the possible range of values can be {1, 2, …, k-1, 
k+1,…N}. 
Variables and values represent nodes of the graph G = (V, E) 
modeling a network N, and a value j assigned to the ith 
variable is interpreted as a link between the nodes i and j of V. 
This means that in the clustering solution found, i and j will be 

in the same cluster. However, a decoding step is needed to 
identify all the components of the corresponding graph. The 
nodes participating with the same component are assigned to 
one cluster. As observed in [20], the decoding step can be 
done in linear time. The main advantage of this representation 
is that the number of communities will be automatically 
determined by the number of components contained in an 
individual, and will be determined by the decoding step.  
 
Step 2: Generate initial population 
 
Step 3: Begin with i = 1. 
 
Step 2: Pick randomly two candidates for selection X1 and 
X2. 
 
Step 3: Pick randomly a comparison set of individuals from 
the population. 
 
Step 4: Compare each candidate, X1 and X2, against each 
individual in the comparison set for domination using the 
conditions for domination given in Eqs. (4) and (5). 
 
Step 5: If one candidate is dominated by the comparison set 
while the other is not, then select the later for reproduction 
and go to Step 7, else proceed to step 6. 
 
Step 6: If neither or both candidates are dominated by the 
comparison set, then use sharing to choose winner. 
 
Step 7: If the criteria i = N is reached, stop selection 
procedure, else set i = i + 1 and go to Step 2. 
 

 
 

VI. Experimental results 
In this section effectiveness of the proposed multi-
objective honey bee mating optimization algorithm 
(MHBMO) has been compared with Clauset, Newman 
and Moore (CNM) [21] and MOGA-Net [8] using some 
real world datasets and synthetic benchmark datasets.  
The effectiveness of stochastic algorithms is greatly 
dependent on the generation of initial solutions and 
therefore, for every dataset, algorithms have 
individually performed 100 times to test their own 
effectiveness, and each time with randomly generated 
initial solutions. Our algorithm was implemented into 
Matlab 7.1. All the experiments were conducted on a 
computer with Intel Core 2 Duo, 2.66 GHz, 4 GB 
RAM. 
 

A. Evaluation Criteria 
To evaluate the quality of the proposed community 
detection method we used Normalized Mutual 
Information (NMI) and Modularity (Q). The 
Normalized Mutual Information (NMI) is a similarity 
measure proven by Danon et al [22] to be reliable. 
Given two partitions A and B of a network in 
communities, let C be the confusion matrix whose 
element Cij is the number of nodes of community i of 
the partition A that are also in the community j of the 
partition B. The normalized mutual information I(A, B) 
is defined as: 
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where cA (cB) is the number of groups in the partition A 
(B), Ci. (C.j) is the sum of the elements of C in row i 
(column j), and N is the number of nodes. If A=B, I(A, 
B =1. If A and B are completely different then I(A, 
B)=0. 
The modularity of Newman and Girvan[23] is a well 
known quality function used to evaluate the goodness of 
a partition. Let k be the number of modules found inside 
a network, the modularity is defined as: 

2
 

            
(7) 
 

where ls is the total number of edges joining vertices 
inside the module s, and ds is the sum of the degrees of 
the nodes of s. The first term of each summand of the 
modularity Q is the fraction of edges inside a 
community and the second one is the expected value of 
the fraction of edges that would be in the network if 
they fell at random without regard to the community 
structure. Values approaching 1 indicate a strong 
community structure. 
 

B. Real World Networks 
The Zackary’s Karate Club network was generated by 
Zachary, who studied the friendship of 34 members of a 
karate club over a period of two years [24]. During this 
period, because of disagreements, the club divided in 
two groups almost of the same size.  
The Bottlenose Dolphins network: A network of 62 
bottlenose dolphins living in Doubtful Sound, New 
Zealand, was compiled by Lusseau after studying their 
behavior for seven years.   A tie between two dolphins 
was established by their statistically significant frequent 
association. The network split naturally into two large 
groups where the number of ties was 159[25].  
The American College Football network: comes from 
the United States college football. The network 
represents the schedule of Division I games during the 
2000 season. Nodes in the graph represent teams and 
edges represent the regular season games between the 
two teams they connect. The teams are divided into 
conferences. On average the teams played 4 inter-
conference matches and 7 intra-conference matches, 
thus they tend to play between members of the same 
conference. The network consists of 115 nodes and 616 
edges grouped in 12 teams [3].  
The political books compiled by V. Krebs: The nodes 
represent 105 books on American politics brought from 
Amazon.com, and the edges join pairs of books 
frequently purchased by the same buyer. Books were 
divided by Newman [28] according to their political 
alignment (conservative or liberal), except for a small 
number (13) having no clear affiliation. 
The e-print Arxiv: initiated in Aug 1991, has become 
the primary mode of research communication in 
multiple fields of physics, and some related disciplines. 

It is a network of 9000 scientific paper and their 
citations (9000 nodes and 24000 links) [29].   
The webpage network: were obtained from the 
complete map of the nd.edu domain, which contains 
325,729 documents and 1,469,680 links [26]. 
 

C. Results 
A comparison of results for running different algorithms 
on each real world dataset that mentioned in last section 
is illustrated in Tables 1–8. 

 
Table 1. Modularity result obtained by the three algorithms on 

Zackary’s Karate Club data 

Method 
Modularity Standard 

deviation Best Average Worst 
MHBMO 0.4161 0.4161 0.4161 0.0000 
CNM 0.3811 0.3708 0.3621 0.0100 
MOGA-Net 0.4151 0.4149 0.4148 0.0010 

 
Table 2. Modularity result obtained by the three algorithms on 

Bottlenose Dolphins data 

Method 
Modularity Standard 

deviation Best Average Worst 
MHBMO 0.5233 0.5233 0.5233 0.0000 
CNM 0.4605 0.4486 0.4367 0.0110 
MOGA-Net 0.5048 0.5038 0.5029 0.0090 

 
Table 3. Modularity result obtained by the three algorithms on 

American College Football data 

Method 
Modularity Standard 

deviation Best Average Worst 
MHBMO 0.5812 0.5804 0.5793 0.0010 
CNM 0.5433 0.5188 0.5046 0.0237 
MOGA-Net 0.5148 0.4978 0.4784 0.0158 

 
Table 4. Modularity result obtained by the three algorithms on 

Krebs’ books on American politics data 

Method 
Modularity Standard 

deviation Best Average Worst 
MHBMO 0.5162 0.5162 0.5162 0.0000 
CNM 0.4934 0.4715 0.4522 0.0186 
MOGA-Net 0.5176 0.5136 0.5075 0.0039 

 
Table 5. Modularity result obtained by the three algorithms on 

Arxiv data 

Method 
Modularity Standard 

deviation Best Average Worst 
MHBMO 0.7854 0.7811 0.7776 0.0042 
CNM 0.7721 0.7415 0.7112 0.0304 
MOGA-Net 0.7911 0.7226 0.7743 0.0083 

 
Table 6. Modularity result obtained by the three algorithms on 

Web nd.edu data 

Method 
Modularity Standard 

deviation Best Average Worst 
MHBMO 0.9286 0.9274 0.9260 0.0011 
CNM 0.9274 0.8852 0.8501 0.0411 
MOGA-Net 0.9304 0.9187 0.9073 0.0116 

 
For Zachary’s Karate Club data the MHBMO algorithm 
provided a value of 0.4161 in all runs, but on the other 
hand the CNM and MOGA-Net algorithms attained 
0.3811 and 0.4151 respectively, as shown in Table 1. 
The MHBMO found 4 communities for this dataset in 
all runs. For Bottlenose Dolphins data (Table 2) the 
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MHBMO algorithm attained the values of 0.5233 for 
modularity in all runs and four communities were 
detected by the MHBMO. The best modularity values 
provided by MOGA-Net and CNM were 0.4605 and 
0.5048. The MHBMO algorithm detected 11 
communities for the American College Football data 
(Table 3) attained the best value of 0.5812 for 
modularity. The CNM and MOGA-Net algorithms 
provided the best values of 0.5433 and 0.5148 in terms 
of modularity. For the community detection problem, 
Krebs’ books on the results of the American Politics 
data given in Table 4 shows that the MHBMO provided 
an optimum value of 0.5162 for modularity, and it found 
4 communities in every solution. The proposed multi-
objective algorithm works better than CNM and 
MOGA-Net in large datasets as shown in tables 5 and 6. 
For Arxiv and Web nd.edu datasets the MHBMO found 
0.7854 and 0.9286 for modularity. The MHBMO algorithm 
was much more stable than the other algorithms, as can 
be observed from Tables 1 to 6. The results illustrate 
that the proposed MHBMO community detection 
approach can be considered as a viable and an efficient 
heuristic to find optimal or near optimal solutions to the 
problem of community detection in networks 
 

VII. CONCLUSION 
This paper presents a multiobjective community 
detection algorithm based on the improved honey bee 
mating optimization. The proposed algorithm has 
several advantages compared to other optimization 
techniques in that it does not require a complex 
calculus, thus it is free from divergence and there is no 
need to set initial values for the decision variables. The 
proposed algorithm for community detection can be 
used when the number of clusters is unknown a priori. 
To evaluate the performance of the proposed algorithm, 
it was compared with the MOGA-Net and CNM 
algorithms. The algorithm was implemented and tested 
on several real world datasets, and showed that it was 
quite efficient at discovering the community structure of 
complex networks. Thus, this proposed algorithm can 
be considered as a viable and an efficient heuristic to 
find the optimal or near optimal solutions to clustering 
problems. 
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ABSTRACT 

With the opening of the economy to multinationals and the 
adoption of the liberalized economic policies the economy is 
driven more towards the free market economy. The complex 
nature of the financial structuring is self involves the 
utilization of multicurrency transaction. It exposes the   
clients to various risks such as exchange rate risk, interest 
risk, economic risk & political risk .In the present state of 
the economy there is an imperative need for the clients to 
protect their operating profits by shifting some of the 
uncontrollable financial risk to those who are able bear and 
manage them. Thus, risk management becomes a must for 
survival since there is a high volatility in the present’s 
financial markets In the context, derivatives occupy an 
important place as a risk reducing machinery. Derivatives 
are useful to reduce many of the risks. Importance of 
Derivatives led to high growth of Derivatives trading and 
development of Derivatives market in India. Therefore there 
is a great need of investors protection and regulatory 
mechanisms for such markets. SEBI plays an important role 
in this process. This paper tends to highlights some 
regulatory and investors protection measures related to 
Derivatives Market in India.  

1. Introduction: 

Derivative trading in India takes can place either 
on a separate and independent Derivative 
Exchange or on a separate segment of an existing Stock 
Exchange. Derivative Exchange/Segment function as a Self-
Regulatory Organisation (SRO) and SEBI acts as the 
oversight regulator. The clearing & settlement of all trades 
on the Derivative Exchange/Segment would have to be 
through a Clearing Corporation/House, which is 
independent in governance and membership from the 
Derivative Exchange/Segment.  

2. Regulatory Objectives: 
The LCGC outlined the goals of regulation admirably well 
in this report which believes that "The regulation should be 

designed to achieve specific, well-defined goals. It is 
inclined towards positive regulation designed to encourage 
healthy activity and behavior. It has been guided by the 
following objectives: 

2.1. Investor Protection: Attention needs to be 
given to the following four aspects: 

2.1.1. Fairness & Transparency: The 
trading rules should ensure that trading is 
conducted in a fair and transparent manner. 
Experience in other countries shows that in 
many cases, derivatives-brokers / dealers 
failed to disclose potential risk to the clients. 
In this context, sales practices adopted by 
dealers for derivatives would require specific 
regulation. In some of the most widely 
reported mishaps in the derivatives market 
elsewhere, the underlying reason was 
inadequate internal control system at the 
user-firm itself so that overall exposure was 
not controlled and the use of derivatives was 
for speculation rather than for risk hedging. 
These experiences provide useful lessons for 
us for designing regulations. 

2.1.2. Safeguard for clients' moneys: 
Moneys and securities deposited by clients 
with the trading members should not only be 
kept in a separate clients' account but should 
also not be attachable for meeting the 
broker's own debts. It should be ensured that 
trading by dealers on own account is totally 
segregated from that for clients. 

2.1.3. Competent and honest service: The 
eligibility criteria for trading members 
should be designed to encourage competent 
and qualified personnel so that 
investors/clients are served well. This makes 
it necessary to prescribe qualification for 
derivatives brokers/dealers and the sales 
persons appointed by them in terms of a 
knowledge base. 

2.1.4. Market integrity: The trading system 
should ensure that the market's integrity is 
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safeguarded by minimizing the possibility of 
defaults. This requires framing appropriate 
rules about capital adequacy, margins, 
clearing corporation, etc. 
 

2.2. Quality Markets: 
The concept of "Quality of Markets" goes 

well beyond market integrity and aims at 
enhancing important market qualities, such as cost-
efficiency, price-continuity, and price-discovery. 
This is a much broader objective than market 
integrity. 

2.3 Innovation: 
While curbing any undesirable tendencies, 

the regulatory framework should not stifle 
innovation which is the source of all economic 
progress, more so because financial derivatives 
represent a new rapidly developing area, aided by 
advancements in information technology." 

 

 

3. Derivatives Trading – Regulatory 
Framework : 

With the amendment in the definition of 'securities' under 
SC(R)A (to include derivative contracts in the definition of 
securities), derivatives trading takes place under the 
provisions of the Securities Contracts (Reg Contracts) 
(Regulation) Act, 1956 and the Securities and Exchange 
Board of India Act, 1992. Dr. L.C Gupta Committee 
constituted by SEBI had laid down the regulatory 
framework for derivative trading in India. SEBI has also 
framed suggestive bye-law for Derivative 
Exchanges/Segments and their Clearing Corporation/House 
which lay's down the provisions for trading and settlement 
of derivative contracts. The Rules, Bye-laws & Regulations 
of the Derivative Segment of the Exchanges and their 
Clearing Corporation/House have to be framed in line with 
the suggestive Bye-laws. SEBI has also laid the eligibility 
conditions for Derivative Exchange/Segment and its 
Clearing Corporation/House. The eligibility conditions have 
been framed to ensure that Derivative Exchange/Segment & 
Clearing Corporation/House provide a transparent trading 
environment, safety & integrity and provide facilities for 
redressal of investor grievances. 

4. Market Regulation and Investor 
Protection: 

We have seen that pursuant to the recommendations of JR 
Verma Committee SEBI formulated and approved 

guidelines to the stock exchanges (NSE/BSE) and permitted 
trading in Derivatives. We will now discuss the regulatory 
measures as envisaged by SEBI. 

4.1 Futures/ Options contracts in both index as well as 
stocks can be bought and sold through the trading 
members of National Stock Exchange, or the BSE 
Mumbai Stock Exchange. Some of the trading 
members also provide the internet facility to trade 
in the futures and options market.  

4.2 The investor is required to open an account with 
one of the trading members and complete the 
related formalities which include signing of 
member-constituent agreement, constituent 
registration form and risk disclosure document.  

4.3 The trading member will allot the investor an 
unique client identification number.  

4.4 To begin trading, the investor must deposit cash 
and/or other collaterals with his trading member as 
may be stipulated by him. SEBI has issued detailed 
guidelines for the benefit of the investor trading in 
the derivatives exchanges. These may be viewed 
and studied.  

4.5 Margins are computed and collected on-line, real 
time on a portfolio basis at the client level. 
Members are required to collect the margin upfront 
from the client & report the same to the Exchange.  

4.6 All the Futures and Options contracts are settled in 
cash at the expiry or exercise of the respective 
contracts as the case may, be. Members are not 
required to hold any stock of the underlying for 
dealing in the Futures / Options market. 

5 Important Regulatory Conditions 
Specified by SEBI: 
5.1 Derivative trading to take place through an on-line 

screen based Trading System.  
5.2 The Derivatives Exchange/Segment shall have on-

line surveillance capability to monitor positions, 
prices, and volumes on a real time basis so as to 
deter market manipulation.  

5.3 The Derivatives Exchange/ Segment should have 
arrangements for dissemination of information 
about trades, quantities and quotes on a real time 
basis through at least two information vending 
networks, which are easily accessible to investors 
across the country.  

5.4 The Derivatives Exchange/Segment should have 
arbitration and investor grievances redressal 
mechanism operative from all the four areas / 
regions of the country.  

5.5 The Derivatives Exchange/Segment should have 
satisfactory system of monitoring investor 
complaints and preventing irregularities in trading.  

5.6 The Derivative Segment of the Exchange would 
have a separate Investor Protection Fund.  
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5.7 The Clearing Corporation/House shall perform full 
novation, i.e., the Clearing Corporation/House shall 
interpose itself between both legs of every trade, 
becoming the legal counterparty to both or 
alternatively should provide an unconditional 
guarantee for settlement of all trades.  

5.8 The Clearing Corporation/House shall have the 
capacity to monitor the overall position of 
Members across both derivatives market and the 
underlying securities market for those Members 
who are participating in both.  

5.9 The level of initial margin on Index Futures 
Contracts shall be related to the risk of loss on the 
position. The concept of value-at-risk shall be used 
in calculating required level of initial margins. The 
initial margins should be large enough to cover the 
one-day loss that can be encountered on the 
position on 99% of the days.  

5.10 The Clearing Corporation/House shall establish 
facilities for electronic funds transfer (EFT) for 
swift movement of margin payments.  

5.11 In the event of a Member defaulting in meeting its 
liabilities, the Clearing Corporation/House shall 
transfer client positions and assets to another 
solvent Member or close-out all open positions.  

5.12 The Clearing Corporation/House should have 
capabilities to segregate initial margins deposited 
by Clearing Members for trades on their own 
account and on account of his client. The Clearing 
Corporation/House shall hold the clients' margin 
money in trust for the client purposes only and 
should not allow its diversion for any other 
purpose.  

5.13 The Clearing Corporation/House shall have a 
separate Trade Guarantee Fund for the trades 
executed on Derivative Exchange / Segment. 

6 Measures Specified by SEBI to 
Ensure Investor Protection in 
Derivative Market: 

SEBI has also specified measures to ensure protection of the 
rights of investors. These measures are as follows:  

6.1 Investor's money has to be kept separate at all 
levels and is permitted to be used only against the 
liability of the Investor and is not available to the 
trading member or clearing member or even any 
other investor.  
 

6.2 The Trading Member is required to provide every 
investor with a risk disclosure document which will 
disclose the risks associated with the derivatives 
trading so that investors can take a conscious 
decision to trade in derivatives.  

 
6.3 Investor would get the contract note duly time 

stamped for receipt of the order and execution of 
the order. The order will be executed with the 
identity of the client and without client ID order 
will not be accepted by the system. The investor 
could also demand the trade confirmation slip with 
his ID in support of the contract note. This will 
protect him from the risk of price favor, if any, 
extended by the Member.  
 

6.4 In the derivative markets all money paid by the 
Investor towards margins on all open positions is 
kept in trust with the Clearing House /Clearing 
Corporation and in the event of default of the 
Trading or Clearing Member the amounts paid by 
the client towards margins are segregated and not 
utilized towards the default of the member. 
However, in the event of a default of a member, 
losses suffered by the Investor, if any, on settled / 
closed out position are compensated from the 
Investor Protection Fund, as per the rules, bye-laws 
and regulations of the derivative segment of the 
exchanges.  
 

6.5 Presently, SEBI has permitted Derivative Trading 
on the Derivative Segment of BSE and the F&O 
Segment of NSE. Derivative products have been 
introduced in a phased manner starting with Index 
Futures Contracts in June 2000, Index Options and 
Stock Options introduced in June 2001 and July 
2001 followed by Stock Futures in November 
2001. 

7 Types of Derivative Contracts 
Permitted by SEBI  

Derivative products have been introduced in a phased 
manner starting with Index Futures Contracts in June 2000. 
Index Options and Stock Options were introduced in June 
2001 and July 2001 followed by Stock Futures in November 
2001. 

7.1 Minimum Contract Size 

The Standing Committee on Finance, a 
Parliamentary Committee, at the time of recommending 
amendment to Securities Contract (Regulation) Act, 
1956 had recommended that the minimum contract size 
of derivative contracts traded in the Indian Markets 
should be pegged not below Rs. 2 Lakhs. Based on this 
recommendation SEBI has specified that the value of a 
derivative contract should not be less than Rs. 2 Lakh at 
the time of introducing the contract in the market. 
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       7.2  The Lot Size of a Contract 

Lot size refers to number of underlying 
securities in one contract. Additionally, for stock 
specific derivative contracts SEBI has specified 
that the lot size of the underlying individual 
security should be in multiples of 100 and 
fractions, if any, should be rounded of to the next 
higher multiple of 100. This requirement of SEBI 
coupled with the requirement of minimum contract 
size forms the basis of arriving at the lot size of a 
contract 

For example, if shares of XYZ Ltd are 
quoted at Rs.1000 each and the minimum contract 
size is Rs.2 lacs, then the lot size for that particular 
scrips stands to be 200000/1000 = 200 shares i.e. 
one contract in XYZ Ltd. covers 200 shares. 

7.3 SEBI Amendment to Stipulations on 
Lot Size 

While the Legislative body stipulated the 
minimum contract size in terms of value (Rs.2 
Lacs), the system of standardizing securities trade 
in Lots, had a multiplying effect, on the minimum 
value of a contract, when the prices of the premium 
Scrips started appreciating over time. BSE Sensix 
Index which was less than 3000 at that time 
swelled to nearly 6000 presently. As the value of 
individual scrips increased, smaller number of such 
scrips would be sufficient to cover the minimum 
contract value of Rs.2.00 Lacs prescribed by the 
Standing Committee of the Parliament. But 
stipulating a fixed number of shares as the lot in 
many cases swelled the value of the contract to 
Rs.5 Lacs and even more in many cases. This 
brought derivatives trading beyond he scope of the 
small investor. 

Considering the fact SEBI revised its 
stipulations regarding Lot size, but retaining the 
minimum contract value at Rs.2 Lacs and issued a 
press release on 07.01.2004 stating: 

It has been noticed that in several 
derivative contracts the value has exceeded Rs. 2 
lakh. In such cases it has been decided to reduce 
the value of the contract to close to but not less 
than Rs. 2 lakh by using an appropriate lot size / 
multiplier which could be half or 50%. The 
exchanges could determine any other lot size / 
multipliers to keep the contract size of derivatives 
close to Rs. 2 lakh, but in any case not less than Rs. 

2 lakh. The exchanges would be able to reduce the 
contract size of a derivative contract by submitting 
a detailed proposal to SEBI and after giving at least 
two weeks prior notice to the market. 

8. CONCLUSION: 

Though Financial markets experts and regulatory authorities 
specially SEBI has successfully implemented   various 
strategic measures to control, regulate and strengthen the 
Derivatives markets as far as investors protection is 
concerned but  even then a lot more has to be achieved in 
this regard. This volume driven market is still lacking on 
parameters like more transparency , fairness in dealing , 
investor knowledge , prohibition of insider trading , 
adaptability of processes , accessibility of information , 
determination of brokerage rates and marketing strategies of 
derivatives trading companies.  
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