
SESSION

CLOUD COMPUTING AND RELATED ISSUES

Chair(s)

TBA

Int'l Conf. Grid Computing and Applications | GCA'12 | 1

2 Int'l Conf. Grid Computing and Applications | GCA'12 |

Accounting Models for Cloud Computing: A
Systematic Mapping Study

Francisco Airton Pereira da Silva1, Paulo Anselmo da Mota Silveira Neto1,
Vinicius Cardoso Garcia1, Rodrigo Elia Assad1, Fernando Antonio Mota Trinta2

1Federal University of Pernambuco (UFPE) – Recife, Pernambuco, Brazil
2Federal University of Ceará (UFC) – Fortaleza, Ceará, Brazil

{faps,pamsn,vcg,rea}@cin.ufpe.br {fernando.trinta}@virtual.ufc.br

Abstract—Cloud services change the economics of computing
by enabling users to pay only for the capacity that they actually
use. In this context, cloud providers have their own accounting
models including their billing mechanisms and pricing schemes
to achieve this efficient pay-as-you-go model. Thus it is important
to study this heterogeneity aiming to map out the existing
accounting models to become possible new proposals or future
standardizations. Therefore, this paper focuses on mapping
accounting models for cloud computing, where a mapping study
process was undertaken, and a total of 23 primary studies were
considered, which evidenced 5 accounting models, 23 different
pricing scheme types and 4 primary studies related to SLA
(Service-Level Agreement) composition. Although the significant
number of studies found address grid computing it was possible
to identify one accounting model which was very complete from
different points of view for cloud environments.

Index Terms—Cloud Computing; mapping study; pricing
scheme; accounting model; Service Level Agreement.

I. INTRODUCTION

Cloud computing has become an established paradigm for
running services on external infrastructure, where virtually
unlimited capacity can be dynamically allocated. However this
unlimited aspect in some cases can become expensive, and
research projects have tried to mitigate it through the devel-
opment of new architectures, exploring different accounting
models [1] [2] [3] [4].

Accounting in cloud computing is a recent discipline, hence
there have few attempts to find a model which considers all the
accounting requirements, and none work has tried to address a
mapping of the existing accounting models that could identify
research gaps and encourage future proposals.

In this context, this paper introduces a mapping study
performed between July and December, 2011, addressing
accounting models for Cloud Computing environments and
other aspects related also to Grid Computing.

We had to encompass the grid computing research field,
mainly due to three considerations. The first point is the
correlated aspects between cloud and grid computing, the
second point is the older grid origin with probable relevant
contributions and as final reason, the existing mature account-
ing models under this research area.

In [32] the authors perform a comparison between the six
most known accounting systems in grid computing, evidencing

the advantages and disadvantages of them whereas allowing
to realise what aspects they have in common.

First, they use a proper taxonomy to describe their functions
which make part of an accounting process (a set of operations
that manages the data regarding the use of the resources [5]).

Next, they present a measurement unit mechanism to apply
under the resource consumption and accordingly charge for it,
called pricing scheme [6].

Finally, all of them worry about QoS Requirements and
explores how to monitor this Quality of Service. In some cases
establishing Service Level Agreements (SLA).

Based on aforementioned items and previous literature
investigation, four research questions were derived to guide
this mapping study, as follows:

• RQ1: Is there any taxonomy for concepts related to
accounting process in cloud computing?

• RQ2: What are the existing accounting models for cloud
computing?

• RQ3: What are the existing pricing schemes for cloud or
grid computing?

• RQ4: What are the aspects taken into account to compose
a SLA in cloud/grid computing scenario?

The remainder of the paper is structured as follows: Sec-
tion II introduces the related work; Section III presents the
systematic mapping study process; Section IV describes the
main findings of the study; Section V presents the analysis
of the results, studies classification and mapping; Section
VI introduces some threats to validity. Finally, Section VII
presents the conclusions and future research.

II. RELATED WORK

Basically our research started motivated by the evolution in
federated cloud infrastructures field, which two works stands
out (RESERVOIR and JiT Clouds).

RESERVOIR Project [2] presents an architecture (including
an advanced accounting model) that allows providers of cloud
infrastructures to dynamically partner with each other to create
a virtually infinite pool of resources.

JiT Clouds Project [7] also allows providers of cloud
infrastructures to dynamically partner with each other, but with
the advantage where providers does not need keep dedicated

Int'l Conf. Grid Computing and Applications | GCA'12 | 3

resources to meet the service providers demands, however does
not have an accounting model.

In [8] the authors present a comparative review of grid and
cloud computing pricing models. Unlike our proposal, this
paper is not a systematic study and related only with our RQ3.

III. SYSTEMATIC MAPPING STUDY PROCESS

A Mapping Study is a systematic process that provides an
overview and summarizes published paper results of a partic-
ular research area, by answering questions and categorizing
the studies. As main benefit, it can be used to identify gaps
in the existing research that will lead to topics for further
investigation [9].

Therefore, a Systematic Mapping Study was used in this
research to “map out” the accounting models for cloud com-
puting, performing five steps (Questions Definition, Search,
Screening, Keywording and Extraction) [9].

A. Conduct Search

The strategy used to construct the search terms, follows
the same approach used in [10], since it is systematized in
essence and defines steps to derive the search strings from
the questions and the viewpoints of experts in the area and
relevant papers. The strategy steps are described as follows:

• Derive major terms from the questions by identifying the
population, intervention, outcomes and study design;

• Identify, by inquiries with experts in the field, alternative
spellings and synonyms for major terms; and

• Check the keywords in the relevant papers.
The complete list of search strings and their combination

are presented in Table I.

TABLE I
SEARCH STRING

SLA OR “Service Level Agreement” OR billing OR pricing
OR payment OR accounting AND “cloud computing” OR
“grid computing” OR “Infrastructure as a Service” OR “Plat-
form as a Service” OR “Software as a Service”

Firstly an automatic search was conducted in different
search engines (IEEEXplore, ACM Digital Library, Scopus
and ScienceDirect digital databases). It is important to men-
tioned that all search strings were calibrated regarding to
each search engine. Next, a manual search was performed by
visiting some important conference proceedings. As a results
from the application of both search strategies 580 studies were
collected.

At this point, the studies were excluded according to the
exclusion criteria:

• Studies did not address or just mentioned accounting
models/processes, pricing schemes, SLA composition on
cloud/grid computing;

• Studies only available as abstracts or presentations; and
• Duplicate studies. When a study has been published in

more than one publication, the most complete version will
be considered.

B. Screening of Papers

Firstly, the exclusion criteria were applied on the title and
abstract of the identified studies, resulting in 98 studies being
selected. The large number of duplicated studies contributed
to this large difference. Next, a second filter was applied,
analysing the introduction and conclusion, which resulted in
23 studies ([1], [2], [3], [4], [5], [6], [8], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]
and [26]).

C. Keywording

A classification scheme was built which analysed the ab-
stract, titles and keywords of the selected primary studies to
identify different facets. This way, three different facets were
used. They are described following:

• Contribution Type: Method, Process, Technique, Model
and Framework [27];

• Accounting Model Features: Pricing, Metering, Media-
tion, Accounting, Roaming, Billing, Charging, Financial
Clearing, Cloud Federation, Just in Time Clouds, User
Interface, Security Support, SLA Support and Variable
Payment Models;

• Research Type: Validation Research, Evaluation Re-
search, Solution Proposal, Philosophical Papers, Opinion
Papers, and Experience Papers [28] (see definitions in
Table II).

TABLE II
RESEARCH TYPE FACET [28]

Class Description
Validation Research Techniques investigated are novel and have not yet been

implemented in practice. Techniques used are for example
experiments, i.e., work done in the lab.

Evaluation Research Techniques are implemented in practice and an evaluation
of the technique is conducted. That means, it is shown how
the technique is implemented in practice (solution imple-
mentation) and what are the consequences of the implemen-
tation in terms of benefits and drawbacks (implementation
evaluation). This also includes identification of problems in
industry.

Solution Proposal A solution for a problem is proposed, the solution can
be either novel or a significant extension of an existing
technique. The potential benefits and the applicability of the
solution is shown by a small example or a good line of
argumentation.

Philosophical Papers These papers sketch a new way of looking at existing things
by structuring the field inform of a taxonomy or conceptual
framework.

Opinion Papers These papers express the personal opinion of somebody
whether a certain technique is good or bad, or how things
should been done. They do not rely on related work and
research methodologies.

Experience Papers Experience papers explain what and how something has been
done in practice. It has to be the personal experience of the
author.

D. Data Extraction

A data extraction form was designed in order to gather the
required information to address the objectives of this study,
classifying and answering the research questions. The full
paper was read and the following information was extracted

4 Int'l Conf. Grid Computing and Applications | GCA'12 |

from each study: the research categorization (Contribution
Type, Accounting Model Features and Research Type), in
addition the information required to answer some of the
research questions.

IV. RESULTS

In this section, each topic presents the findings regarding
to a specific research question, highlighting the evidences
gathered from the data extraction process.

A. RQ1 - Is there any taxonomy for concepts related to
accounting process in cloud computing?

In our research only one primary study effectively answered
this question. The study [5] presents a taxonomy of full
accounting process and its functions from the resource usage
to the financial clearing. It is not applied only to cloud
computing, but other areas related to Services on the Internet
(see Table III).

TABLE III
TAXONOMY OF ACCOUNTING PROCESS [5]

Concept Function
Pricing Function of giving a price to a certain resource usage.

Metering Collects raw information regarding the resource usage of a
certain service by a consumer and its usage.

Mediation Is intended to do a first treatment of raw technical data by
transforming these metering records into a data format that
can be used for storing and further processing.

Accounting Has the function of filtering and treat more accurately the
records passed by mediation function.

Roaming Allows using more than one provider while maintaining a
formal, customer-vendor relationship just with one.

Billing Also called of invoicing, is the process of transforming
charge records into the final bill, summarizing the charge
records of a certain time period and indicating the amount
of monetary units to be paid by the customer.

Charging Is the process of calculating the cost of a resource usage,
the function that translates technical values into monetary
units by applying a pricing function to the session records.

Financial
Clearing

Includes activities from a commitment for a transaction to its
settlement. In the case of resource accounting, this function
implies the payment of a bill.

Although it was found only this taxonomy formally defined,
other terms are widely used with the same meanings. For ex-
ample, monitoring has the same sense of metering. According
to [25] the metrics generated by the monitoring function can be
used both for accounting purposes as for performance analysis.
In other study [5], monitoring is a sub-function of metering
that collects the information of a resource usage as raw data
and provides usage metrics to the metering function.

B. RQ2 - What are the existing accounting models for cloud
computing?

When performing the analysis, were found five primary
studies ([1], [2], [3], [4] and [25]) that proposed some kind of
accounting model, summarized following:

a) Flexible Accounting Model [1] - This paper proposes
a flexible accounting model suitable to any service of cloud
computing. This model is based on the accounting process of
the Internet and it can fit any pricing scheme using jBilling

accounting platform and mainly through the use of IPDR
(Internet Protocol Detail Record).

b) A Model for Federated Clouds [2] - This primary study
presents a solution for an accounting and billing architecture
for use in federated cloud environments like the RESERVOIR
project (funded by European Union). The model is organized
in layers(Accounting, Billing and Business Layer)

c) ABS for SOA [3] - This primary study presents a
framework wherein authentication of the clients and billing
of services used by client is carried out. So this paper threats
the security as an essential requirement in billing services. like
generates instances of virtual machines for a particular time
period ordered by user (time-based pricing scheme) in safe
mode.

d) THEMIS [4] - This model proposed a mutually (provider
and user) verifiable billing system called THEMIS to Cloud
Computing scenario in which has as main requirements the
transparency, security and low latency in billing transactions.
Thus, the system introduces the concept of a Cloud Notary
Authority to supervise billing transactions, using a level of
security that is identical to that of a Public Key Infrastruc-
ture (PKI), combating the malicious behaviour of users and
providers.

e) Cloud Supply Chain [25] - This model proposes the
Cloud Supply Chain concept, which represents a network
of interconnected businesses in the cloud computing area
involved in the end-to-end provision of product and aggregated
service packages required by end cloud service customers.
This includes the actual provisioning of infrastructure services
and the Information Model supporting monitoring, accounting
and billing processes.

C. RQ3 - What are the existing pricing schemes for cloud or
grid computing?

Table IV summarizes all the pricing schemes found with
their respective concepts and in which study they were dis-
cussed.

There is a lot of work that mention some type of pricing
scheme. However it is used different terms to the same pricing
scheme meaning. In [8], [15] and [16] the authors refers to
pricing schemes as pricing models and specially in [8] the
pricing models are grouped in a general way called economic
models. For example, the economic model Commodity Market
(price defined based on amount of resource that users used)
has as pricing models: Usage Duration and Flat Fee.

D. RQ4 - What are the aspects taken into account to compose
a SLA in cloud/grid computing scenario?

In order to cloud providers supply clients with services that
meet their quality constraints, they both need to negotiate the
clients requirements and the provider’s infrastructure capabili-
ties. It is known as Service Level Agreement (SLA) . However,
this is not an easy task, according to [29] there are many
difficulties to formalize a SLA, such as lack of flexibility and
precision. This way, to compound a SLA it is important to
know which aspects have to be taken into account.

Int'l Conf. Grid Computing and Applications | GCA'12 | 5

TABLE IV
PRICING SCHEMES

Pricing Scheme Definition Studies
Time-based Pricing based on how long a service is used. [24], [1], [6]

Paris-Metro pricing Used for shared resources. Resources are split by the amount of users per split. [1]
Priority pricing Services are labelled and priced according to their priority. [1]

Flat-rate A fixed tariff for a specified amount of time. [24], [1], [6]
Edge pricing Calculation is done based on the distance between the service and the user. [1]

Responsive pricing Charging is activated only on service congestion. [1]
Effective bandwidth pricing Charging is based on an expected usage function. [1]
Proportional fairness pricing It is according to the user’s willingness to pay, in other words, It is based on the real value of

product or service.
[16], [1]

Cumulus pricing Based on flat pricing and dynamically priced by using a credit point system. [1]
Session-oriented Based on the use given to the session. [1]

One-off charge per service One charge per service session. [1]
Usage-based Pricing based on the general use of the service for a period of time, e.g. a moth. [6], [15], [1]

Content-based Pricing based on the accessed content. [1]
QoS-based Pricing depends on the hired quality of service. [22], [1]

Location-based Pricing based on the access point of the user. [1]
Service type Pricing based on the usage of the service. [1]

Volume-based Pricing based on the volume of a metric (e.g. downloaded bytes). [22], [1]
Differentiation on

time-of-day
Pricing based on the hour when the service is used. [1]

Progressive Co-design Seller and buyer try to convene on a pricing plan. The seller announces a fixed price pair (p1, p2),
where p1 ¡ p2. Subsequently, the buyer commits a consumption level quality related to each price

announced and if agreed so he can buy additional units progressively if needed.

[6]

Competitor-Oriented (CO)
Pricing

At first, the vendor agent needs to select the competitor to compete with. Then, the vendor simply
decreases the price just below of the rival’s price. This algorithm requires perfect information of

the rival’s price.

[20], [22], [16]

Cost-based Following the approach of cost-based pricing, the price level is established using cost accounting.
According to it price determination based on costs can make good sense for SaaS.

[16]

Supply and Demand based In general way the unit price will vary until it settles at a point where the quantity demanded by
consumers (at current price) will equal the quantity supplied by providers (at current price),

resulting in an economic equilibrium of price and quantity.

[18], [23], [24],
[26], [19], [20]

Real-Time Pricing (RTP) Is a pricing model that dynamically changes its rate reacting to the classical supply and demand
rule, but with the difference that there is only one supplier. Amazon Web Services (AWS) offer a

simplified form of this pricing model called Spot Instances.

[26]

Derivative Follower Model It’s a kind of supply and demand based model simply adjusts prices by incrementally increasing
or decreasing them until the observed profitability level falls, then the direction of price

adjustment is reversed, thus seeking a local maximum of profitability.

[19], [20]

Hybrid Pricing Model This model allows a third entity called Price Authority dynamically adjust prices within static
limits to balance the workload on the basis of the queue wait times of jobs in grid environments.

[19]

Auction based Services are priced in an auction and usually carried out by a third party, called the market maker,
which collects the bids, selects the winners and computes the payments.

[17], [18], [1], [24]

English Auction All bidders are free to increase their bids exceeding other offers. When none of the bidders are
willing to raise the price anymore, the auction ends, and the highest bidder wins the item at the

price of his bid.

[24]

First-Price Sealed-Bid
Auction

Each bidder submits one bid without knowing the others’ bids. The highest bidder wins the item
at the price of his bid.

[24]

Vickrey Each bidder submits one bid without knowing the others’ bids. The highest bidder wins the item
at the price of the second highest bidder.

[24]

Dutch Auction The auctioneer starts with a high bid/price and continuously lowers the price until one of the
bidders takes the item at the current price. It is similar to a first-price sealed-bid auction because

in both cases the bid matters only if it is the highest, and no relevant information is revealed
during the auction process.

[24]

Double Auction In the double auction model, buy orders (bids) and sell orders (asks) may be submitted at any time
during the trading period. If at any time there are open bids and asks that match or are compatible

in terms of price and requirements (e.g., quantity of goods or shares), a trade is executed
immediately.

[24]

When performing the analysis, few studies explicitly stated
the formalization of SLA in Cloud/Grid Computing scenario.
However 4 primary studies ([11], [12], [14] and [21]) are
complementary. They are summarized following.

a) In [11] is introduced a framework that enables dynamic
specification and verification of SLAs on the Cloud. Its main
contribution to our research is an format of SLA-Description

based on XML specification which defines the main Quality
of Services (QoS) along with their threshold values agreed
up on selection of cloud services. It also defines the period
of service provision, the cost of using the service, and the
possible actions that should be taken if QoS provision is
frequently violated.

b) In [12] is presented a framework which the SLA pa-

6 Int'l Conf. Grid Computing and Applications | GCA'12 |

rameters are specified by metrics. These metrics define how
cloud service parameters can be measured and specify values
of measurable parameters. In addition to specific metrics this
study also propose general metrics that can be defined for SLA
with any or all types of cloud users.

c) In [14] the authors addressed the use of Cloud Comput-
ing for web hosting providers by creating a Cloud Hosting
Provider (CHP). They designed an SLA-aware web servers
management system in order to address the resources out-
sourcing mechanism on the provider’s part, defining important
economic variables to this kind of technology.

d) In [21] is proposed an unambiguous and flexible language
for formalizing SLAs and an architecture for specifying and
monitoring SLA’s on grid computing scenario. It references
a typical SLA formulated by Morris et al. [29] that includes
the components: Purpose, Parties, Validity Period, Scope, Re-
strictions, Service-Level Objectives, Service-Level Indicators,
Penalties, Optional Services, Exclusions and Administration.

V. ANALYSIS OF THE RESULTS AND MAPPING OF STUDIES

By analysing the results, it can enable us to present the
number of studies tabulated in each category defined in this
study. Thus, it is possible to identify what have been empha-
sized in past research and determine gaps and opportunities
for future research [9].

A. Research Type Classification

TABLE V
RESEARCH TYPE CLASSIFICATION

Research Type Studies Quantity
Validation Research [14], [17], [18], [8], [22],[23], [25] 7 (30,4%)

Evaluation
Research

[4], [20], [1], [24], [26], [25] 6 (26%)

Solution Proposal [11], [12], [13], [2], [15], [16], [3], [4],
[19], [21], [22], [5]

12
(52,1%)

Philosophical
Papers

[6] 1 (4,3%)

Opinion Papers - 0 (0%)
Experience Papers - 0 (0%)

Initially, let us analyse the studies distribution regarding to
the research type classification (Table V).

It was notorious the “Opinion” and “Experience” papers
inexistence, while a number of “Validation”, “Evaluation” and
mainly “Solution Proposal” was found. Perhaps the rationale
was the contribution level desired by researches proposing
evaluable solutions to have more scientific relevance.

However, another more important point was observed re-
lated to “Evaluation Research”, it is notable the small quan-
tity of studies that matches this facet indicating insufficient
experimentation in industry.

Certainly there is progress in this direction, but the acceler-
ated growth in the cloud providers number (reported by [30])
influences the degree of competitiveness, causing the non-
disclosure of their proposals in the scientific community. This
fact encourages us to perform another research analysing cloud
provider’s accounting models in practice and comparing them.

B. Contribution Type Classification

Table VI shows the contribution type classification scheme,
which we can observe the most of studies propose concrete
“Models” or “Frameworks” instead of address activities re-
lated to accounting functions. This way, few “Processes”,
“Techniques” and none “Method” was registered. One possible
explanation may be the observation made earlier, regarding the
lack of practical results disclosed by the industry. In this case,
we can conclude that even small-scale, companies publish
“what they did” (models and frameworks) but hide the “how
they did” (processes, techniques and methods).

TABLE VI
CONTRIBUTION TYPE CLASSIFICATION

Contribution Type Studies Quantity
Method - 0 (0%)
Process [11], [4], [21], [5], [25] 5 (21,7%)

Technique [14] 1 (4,3%)
Model [13], [6], [2], [15], [16], [19],

[20], [1], [21], [8], [22], [23],
[24], [25]

14 (60,8%)

Framework [11], [12], [6], [17], [18], [3] 6 (26%)

C. Research Types X Research Questions

There were an effort in analysing the relationship between
the research questions and the research type, using a bubble
plot to represent the interconnected frequencies (Figure 1).

Fig. 1. Research type x Research questions

By analysing the chart upwards, none question was an-
swered by papers that addressed personal opinion or expe-
rience, on the other hand one paper gave a big contribution,
answering RQ2 and RQ3, classified as philosophical paper,
discussing a general pricing scheme that can be applied to
define variations for any computational element [12].

Most of the information (about 4 studies) related to account-
ing models comes from papers classified as “Solution Papers”.
Since this category includes 12 primary studies, it is clear that
there has been few research effort directed to the issue of
mitigating mechanisms aiming architecture improvements.

Related to RQ3, although the majority of studies was
classified as “Solution Proposal” and “Validation Research”,

Int'l Conf. Grid Computing and Applications | GCA'12 | 7

the papers doesn’t discusses how the pricing schemes could
be applied in a detailed way, unlike give just short concepts.
So, as our research aims to give a general overview mapping
the pricing schemes, future researches can focus on explain
how the pricing schemes can works in practice.

D. Accounting Models Analysis

The accounting models collected by this research were
categorized according to their features (see Table VII).

TABLE VII
ACCOUNTING MODELS ANALYSIS

Studies Fe
at

ur
es

Pr
ic

in
g

M
et

er
in

g

M
ed

ia
tio

n

A
cc

ou
nt

in
g

R
oa

m
in

g

B
ill

in
g

C
ha

rg
in

g

Fi
na

nt
ia

l
C

le
ar

in
g

C
lo

ud
Fe

de
ra

tio
n

Ju
st

in
Ti

m
e

C
lo

ud
s

U
se

r
In

te
rf

ac
e

Se
cu

ri
ty

Su
pp

or
t

SL
A

Su
pp

or
t

V
ar

ia
bl

e
Pa

ym
en

t
M

od
el

s
[1] X X X X X X X X X X X
[2] X X X X X
[3] X X
[4] X X
[25] X X X X X

Firstly, we used the taxonomy proposed by [5], aiming
to check what functions the proposed models used. Thus,
the terms pricing, accounting and billing appeared in more
than one paper and with the same meanings, which this
homogeneity indicates a certain taxonomy validity. Related to
accounting, two information stands out:

• In [1] the authors disambiguated the expressions account-
ing process and accounting function. Whereas accounting
process refer to a meta-concept that includes all the
taxonomy functions, accounting function is related to
recording and summarizing technical data in terms of
money, transactions and events;

• In [25] the accounting and billing functions are grouped
as integrated sub processes forming a type of macro-
process.

Lastly, it is important to highlight that the term billing was
cited by all primary studies. We attribute this result to the
influence of other areas such as telephony that has used largely
this term before cloud computing became a research trend.

Other features were derived from the most relevant aspects
found in primary studies. Cloud Federation was the first
feature. In this case it was observed a research gap in which
only one accounting model [2] were directed to federated
cloud infrastructures, needing to stress that this paper and [25]
belong to the same research group (the RESERVOIR project
[31]), showing as pioneer researchers in the area.

The feature Just in Time Clouds is a recent concept in which
providers only allocate resources when they are demanded
and only for the duration they are needed by their clients
[7]. To explore this mechanism showed promise, because
none accounting model addressed this feature. Something
previously expected, due to be a recent issue.

The User Interface Support was analysed, noticing that
some proposed models own a user interface that gives the
access control to managing accounting mechanisms on the
systems, but not all worried with this feature, only 40% of
them had a final user or admin user interface support.

In Security Support, just 60% of studies at least cited some
security mechanism like user authentication or transaction
authorization. When analysed SLA Support, it was verified if
the studies had SLA monitoring or the customer would choose
their service quality desired, noticing that, as such Security
Support, 60% fit this requirement. Therefore, SLA and Security
Support have been showed as relevant topics of interest in
accounting model field for cloud computing.

As last feature, it was investigated if the models were pre-
pared to support different payment models (Variable Payment
Models) such as Pre-Paid, Pos-Paid or Hybrid. These models
are in no way unique to clouds and on the contrary they are
well known to customers after being used for years in other
utility markets, most notably the mobile phone industry [25].
Hence some accounting models (40%) are ready, for exam-
ple, to work with resource consumption based on previous
purchased credits (Pre-Paid).

It has to be mentioned that initially it was thought to include
the term monitoring, however was preferred to use the term
SLA Support instead, due its less ambiguous concept. Accord-
ing to [25], SLA and monitoring are strictly related each other,
because the metric concept (from a monitoring point of view)
is very semantically close to the “Key Performance Indicators”
concept (from a SLA point of view).

Concluding, observing the fourteen features, one paper
had a greater coverage. The primary study [1] proposed a
flexible accounting model which can fit any service of cloud
computing that encompassed almost all features taken into
account by our classification. Therefore this paper can be used
as a starting point for future accounting models propositions.

VI. THREATS TO VALIDITY

There are some threats to the validity of our study, which
we briefly describe below.

• Research Questions: The research questions we defined
cannot provide complete coverage of the accounting field
related cloud and mainly grid computing, however, we
had several discussions to validate the questions.

• Publication Bias: We cannot guarantee that all relevant
studies were selected. We mitigated this threat as much as
possible, by following references in the relevant studies.

• Data Extraction: The studies were classified based on
our judgement, however, some studies could have been
classified incorrectly. To mitigate this threat, the classifi-
cation was performed by more than one researcher.

VII. CONCLUSION AND FUTURE WORK

We have introduced the results of a systematic mapping
study about accounting models for cloud computing investi-
gating scientific literature. In the end, starting from 580 papers,
23 filtered studies answered the research questions.

8 Int'l Conf. Grid Computing and Applications | GCA'12 |

As major contribution, this paper provides an overview
of the area and specific findings related to i) taxonomy for
accounting process, ii) accounting models, iii) pricing schemes
and iv) SLA composition.

i) The terms pricing, accounting and billing are the most
used terms. Among these, the term billing surely is the main
term in the area. This result is influenced by other fields such
as telephony that has used largely this word before cloud
computing became a research trend.

ii) In general there are few studies related to accounting
models for cloud computing, mainly in industry environment.
Besides there is a need for new proposals in federated cloud
infrastructures whereas the topics related to SLA and Security
have gained considerable attention.

iii) Despite the large amount of existing pricing scheme
types, there is a need in expose how they could be applied in
a detailed way, unlike give just short concepts.

iv) Related to SLA composition there are studies that
propose possible general items to compose the contract (e.g.
Scope, Penalties, Restrictions), others propose specific metrics
to monitor the services quality and others presents mechanisms
based on XML to specify metrics. Thus studying these results
it is possible to develop new solutions combining ideas.

Future work will focus on analyse more accurately these
mapping study results in order to match mainly the SLA
composition ideas with accounting processes/models found to
develop a more advanced accounting model. Also we intend to
study the use on real market of the pricing schemes identified.

ACKNOWLEDGEMENTS

This research was sponsored by the Program Center for the Re-
search and Development on Digital Technologies and Communication
(CTIC) of the Brazilian Minister of Science and Technology, grant
68/2012. In addition, this work was partially supported by the Na-
tional Institute of Science and Technology for Software Engineering
(INES1), funded by CNPq and FACEPE, grants 573964/2008-4 and
APQ-1037-1.03/08

REFERENCES

[1] I. R. Agundez et al., “A flexible accounting model for cloud comput-
ing,” in Proc. Global Conference (SRII 11). IEEE Computer Society,
Washington, DC, USA, Jul. 2011, pp. 277–284.

[2] E. Elmroth et al., “Accounting and billing for federated cloud infras-
tructures,” in Proc. Int. Conference on Grid and Cooperative Computing
(GCC 09), Aug. 2009, pp. 27–29.

[3] T. Pandey et al., “Authentication and billing framework for service
oriented architecture,” in Proc. Int. Conference on Systems, (ICONS 09),
Mar. 2009, pp. 91–95.

[4] K. W. Park et al., “Themis: Towards mutually verifiable billing transac-
tions in the cloud computing environment,” in Proc.Int. Conference on
Cloud Computing (CLOUD 10), Jul. 2010, pp. 139–147.

[5] I. Agundez et al., “A taxonomy of the future internet accounting
process,” in Int. Conference on Advanced Engineering Computing and
Applications in Sciences (ADVCOMP 10), Jun. 2010, pp. 111–117.

[6] A. Caracas and J. Altmann, “A pricing information service for grid
computing,” in Proc. Int. Conference on Middleware (MGC ’07), New
York, NY, USA, 2007, pp. 1–6.

[7] R. Costa et al. (2010) Just in time clouds: Enabling highly-elastic
public clouds over low scale amortized resources. [Online]. Available:
http://www.lsd.ufcg.edu.br/index.php/documentacao-menu#tr

1www.ines.org.br

[8] P. Samimi and A. Patel, “Review of pricing models for grid and cloud
computing,” in Proc. IEEE Symposium on Computers and Informatics
(ISCI 11), Mar. 2011, pp. 634–639.

[9] Petersen et al., “Systematic mapping studies in software engineering,”
12th Int. Conference on Evaluation and Assessment in Software Engi-
neering, vol. 17, no. 1, pp. 1–10, 2007.

[10] B. A. Kitchenham et al., “Cross versus within-company cost estimation
studies: A systematic review,” in Proc. IEEE Transactions on Software
Engineering, May 2007, pp. 316–329.

[11] A. A. Falasi and M. A. Serhani, “A framework for sla-based cloud
services verification and composition,” in Proc. Int. Conference on
Innovations in Information Technology (IIT), Apr. 2011, pp. 287–292.

[12] M. Alhamad et al., “Conceptual sla framework for cloud computing,” in
Proc. International Conference on Digital Ecosystems and Technologies
(DEST), Apr. 2010, pp. 606–610.

[13] M. Buthelezi et al., “Accounting, pricing and charging service models for
a guiset grid-based service provisioning environment,” in Proc. CSREA
EEE, 2008, pp. 350–355.

[14] J. O. Fito et al., “Sla-driven elastic cloud hosting provider,” in Proc. 18th
Euromicro Int. Conference on Parallel, Distributed and Network-Based
Processing (PDP 10), Feb. 2010, pp. 111–118.

[15] B. Jai, “The economy of parallel and distributed computing in the cloud,”
in Proc. Int. Symposium on VLSI Design, Automation and Test (VLSI-
DAT 2011), Apr. 2011, pp. 25–28.

[16] Lehmann et al., “Pricing strategies of software vendors,” Business and
Information Systems Engineering, pp. 452–462, 2009.

[17] M. Mihailescu and Y. M. Teo, “On economic and computational-efficient
resource pricing in large distributed systems,” in Proc. Int. Conference
on Cluster, Cloud and Grid Computing (CCGRID 10), Washington, DC,
USA, 2010, pp. 838–843.

[18] M. Mihailescu and Y. Teo, “Dynamic resource pricing on federated
clouds,” in Int. Conference on Cluster, Cloud and Grid Computing
(CCGrid), May 2010, pp. 513–517.

[19] R. M. Piro et al., “An economy-based accounting infrastructure for the
datagrid,” in Proc. Int. Workshop on Grid Computing(GRID 03), Nov.
2003, pp. 202– 204.

[20] Rohitratana et al., “Agent-based simulations of the software market
under different pricing schemes for software-as-a-service and perpetual
software,” in Economics of Grids, Clouds, Systems, and Services, ser.
Lecture Notes in Computer Science, Altmann et al., Eds. Springer
Berlin / Heidelberg, 2010, vol. 6296, pp. 62–77.

[21] A. Sahai et al., “Specifying and monitoring guarantees in commercial
grids through sla,” in Proc. Int. Symposium on Cluster Computing and
the Grid (CCGrid 2003), May 2003, pp. 292–299.

[22] J. Song et al., “Competitive pricing model for resource scheduling in
grid computing,” in Int. Conference on Semantics, Knowledge and Grid,
Oct. 2007, pp. 406–409.

[23] J. Yu et al., “A service-oriented accounting architecture on the grid,” in
Proc. Int. Conference Parallel and Distributed Computing: Applications
and Technologies (PDCAT 04), Dec. 2004, pp. 310–313.

[24] R. Buyya et al., “Economic models for resource management and
scheduling in grid computing,” in Concurrency and Computation Prac-
tice and Experience 14, Wiley Press, 2002, pp. 1507–1542.

[25] M. Lindner et al., “The cloud supply chain : A framework for infor-
mation, monitoring, accounting and billing,” in 2nd International ICST
Conference on Cloud Computing (CloudComp 2010), 2011.

[26] W. Sewook, “Debunking real-time pricing in cloud computing,” in Proc.
Int. Symposium on Cluster, Cloud and Grid Computing (CCGRID ’11),
May 2011, pp. 585–590.

[27] I. Freitas et al., “Agile software product lines: a systematic mapping
study,” Softw. Pract. Exper., vol. 41, pp. 899–920, July 2011.

[28] Wieringa et al., “Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion,” Requir. Eng., vol. 11,
pp. 102–107, December 2005.

[29] R. Jain et al., “Congestion avoidance in computer networks with a
connectionless network layer,” Digital Equipment Corporation, MA,
Tech. Rep. DEC-TR-506, Aug. 1987.

[30] G. Jeremy. (2010, Oct.) The top 250 players in the cloud
computing ecosystem. [Online]. Available: http://cloudcomputing.sys-
con.com/node/1386896

[31] RESERVOIR. (2012) Resources and services virtualization without
barriers. [Online]. Available: http://62.149.240.97/

[32] M. Gohner et al. (2006) Accounting-ansatze im bereich des grid-
computing. [Online]. Available: http://tinyurl.com/87goucy

Int'l Conf. Grid Computing and Applications | GCA'12 | 9

A SECURE CLOUD-ENABLED WIRELESS SENSOR NETWORK PLATFORM

Felix Njeh and Dr. Bo Yang
Department of Computer Science

Bowie State University, Bowie, Maryland 20715

Abstract - Nowadays, Wireless Sensor Networks (WSN) have

become a key enabling technology and consequently demands

a secure, distributed and globally available network of

sensors. Various technologies have evolved and are used to

facilitate the deployment and use of WSNs. The rapid

development in Micro-Electro-Mechanical Systems (MEMS)

technology has facilitated the development of smart and

highly capable sensors to solve a multitude of real world

problems.

Keywords: Wireless Sensor Networks, Cloud Computing, SOA

1 Introduction

 The emergence of the Internet, for example has enabled

the deployment of sensor network applications accessible

through the World Wide Web. Cloud Computing has become

another technology of choice for many due to the numerous

benefits it brings to the Information Technology industry.

Grid Computing uses the concept of parallel processing to

introduce a platform on which a computationally intensive

problem could be solved by harnessing the unused compute

power of many computer resources distributed globally. The

Internet of Things is another paradigm that extends the

capabilities and use of WSNs.

 With these concepts, we propose a Service-Oriented

Architecture (SOA) in which WSNs distributed world-wide

can be interconnected into a secure global network of sensors.

This secured and unified platform will provide the end-user

with a large choice of virtual configurations for sensing,

monitoring and analytics capabilities. An experimental testbed

has been setup and a feasibility study of the model will be

conducted and the results analyzed.

2 Background

2.1. Wireless Sensor Networks

 A Wireless Sensor Network (WSN) consists of a large

number of low-cost, low-power, multifunctional and resource-

constrained sensor nodes with each sensor node consisting of

sensing, data processing, and communicating components;

these nodes can operate unattended for long durations. Sensor

nodes perform measurements of some physical phenomena,

collect and process data, communicate with other peers or a

central information processing unit, the sink. These nodes are

capable of sensing various phenomena, such as Pressure,

Temperature, Humidity, Position, Velocity, Acceleration,

Force, Vibration, Proximity, Motion, Biochemical agents, and

more.

 There are several characteristics that influence the

design and use of WSNs. Some of such considerations

include: robustness, fault tolerance, self-configuration, energy

efficiency and lifetime maximization. Standards have been

developed to remediate some of the issues in Sensor

Networks. A good example is the ZigBee/IEEE 802.15.4

standard.

2.2. ZigBee/IEEE 802.15.4

 ZigBee is a specification for a reliable, low-cost, low-

power consumption, self-organizing, ad-hoc, mesh networking

standard. It is based on the IEEE 802.15.4 standard for Low-

Rate Wireless Personal Area Networks. ZigBee operates in

unlicensed bands - 2.4 GHz Global Band at 250kbps, 868

MHz European band at 20kbps and 915 MHz North American

band at 40kbps. ZigBee was initiated when it became clear

that Wi-Fi and Bluetooth technologies were going to be

unsuitable for many wireless applications. The standard

provides low-cost, long battery life, secure wireless

networking for tracking, control and monitoring. Compared to

other wireless standards, ZigBee connects the widest variety

of devices. With these capabilities, ZigBee can be used for

military applications, industrial control, embedded sensing,

medical data collection, smoke and intruder warning, building

automation, home automation, and more.

Table 1.0: Comparison of ZigBee and other wireless standards

Source: http://www.zigbee.org/About/FAQ.aspx

10 Int'l Conf. Grid Computing and Applications | GCA'12 |

The IEEE 802.15.4 standard provides specifications for point-

to-point or point-to-multipoint networks. The nodes in the

network are either full function devices or reduced function

devices.

 WSNs have been studied for a good length of time

resulting in improved sensors or sensor-enabled systems.

These WSNs have evolved and have become quite popular

that they spand various applications and industries. WSNs

have been used in health, commercial, military applications

including battle-field surveillance and enemy tracking, home

automation and security, habitat and environmental

monitoring. This illustrates the significance of WSNs in these

industries.

2.3. Cloud Computing

 Cloud Computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or

service provider interaction. This cloud model promotes

availability and is composed of five essential characteristics,

three service models, and four deployment models [2]. Figure

1 below illustrates the service and deployment models.

Figure 1: The integrated Cloud WSN Platform

 Cloud Computing consists of three service models,

Software as a Service (SaaS), Platform as a service (PaaS),

and Infrastructure as a Service (IaaS); and four deployment

models, Private cloud, Hybrid cloud, Public cloud and

Community cloud.

Service Models

The three service models include Software as a Service

(SaaS), Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS).

2.3.1. Software as a Service (SaaS)

 This is a software delivery model in which the provider

gives customers on-demand access to the applications hosted

in a cloud infrastructure. The infrastructure is managed by the

provider while the consumer has only limited user-specific

application configuration settings. SaaS is increasingly

becoming a common delivery model for most business

applications. The consumer usually pays a subscription fee

instead of a licensing fee.

2.3.2. Platform as a service (PaaS)

 This service delivery model allows the customer to rent

the cloud infrastructure (virtualized servers and associated

services) to run consumer-created or acquired applications or

to develop and test new ones. The infrastructure is managed

and controlled by the provider; the consumer has some control

over the deployed applications and possibly application

hosting environment configurations.

2.3.3. Infrastructure as a Service (IaaS)

 IaaS is a delivery capability in which the consumer

provisions processing, storage, networks, and other

fundamental computing resources. The consumer can deploy

and run arbitrary software (operating systems and

applications) but does not manage or control the underlying

cloud infrastructure.

Deployment Models

The deployment models include Private cloud, Hybrid cloud,

Public cloud and Community cloud.

2.3.4. Private Cloud

 With this model, the internal or corporate cloud

infrastructure (systems and services) is operated solely for an

organization. This gives the organization better management

and control over their data and systems. It is also considered a

proprietary network or a data center that supplies hosted

services to a limited number of people.

2.3.5. Hybrid Cloud

 A Hybrid Cloud is made up of at least one private cloud

and at least one public cloud. An example is when a vendor

has a private cloud and forms a partnership with a public

cloud provider, or a public cloud provider forms a partnership

with a vendor that provides private cloud platforms. In other

instances, the organization owns and manages some of the

cloud resources internally while others are made available

C
o

m
m

u
n

it
y

C
lo

u
d

P
u

b
li
c

 C
lo

u
d

H
y

b
ri

d
 C

lo
u

d
P

ri
v

a
te

 C
lo

u
d

Software as a Service

(SaaS)

Platform as a Service

(PaaS)

Infrastructure as a

Service (IaaS)

Internet

Cloud

Sensor

Network

Users

Sensor

Network

Users

Sensor

Network

Users

Physical LayerVirtualization LayerSecurity LayerUser Layer

Storage

Server

Hardware

Wireless Sensors

Facility

Network

Int'l Conf. Grid Computing and Applications | GCA'12 | 11

externally. A hybrid cloud provides the consumer the best of

both worlds.

2.3.6. Public Cloud

 A public cloud is a cloud model in which the cloud

provider makes the cloud infrastructure available to the

general public; and is owned by the cloud provider. This

model is also considered as external cloud. It has several

advantages to include: lower cost of deployment, scalability

and efficient use of resources (since you only pay for what

you use).

2.3.7. Community Cloud

 A Community Cloud allows the cloud infrastructure to

be shared by several organizations and supports a specific

community that has shared concerns. This model can be

managed by the organizations involved or a third party, and

may exist on premise or off premise.

3 Related Works

 In (Briefings, 2009), the authors evaluated the potentials

of the integration of Wireless Sensor Networks and Cloud

Computing and drew the conclusion that this marriage is not

only possible but makes it more feasible to collect, analyze

and share sensor data. A content-based publish/subscribe

platform is proposed; where the WSNs publish the data

collected while the subscribers consume the data. Services are

delivered to consumers continuously, periodically, event-

based or query-based.

(Hassan & Korea, 2009) propose “a content-based pub-sub

model which simplifies the integration of sensor network with

cloud based community centric applications”. In this study,

the provider also publishes data and consumers access the

data and applications through a cloud infrastructure on-

demand from anywhere. A Pub/Sub broker monitors,

processes and delivers events to registered users through SaaS

applications. An event matching algorithm matches

subscribed users to events of interest. A simulation was done

to test this algorithm but with no use of any real-world data.

The literature does not clearly state how data transitions

through the different layers or stacks of the CC model.

WSNs generate huge amounts of data. (Bose & Liu, n.d.)

believe that sensor data will continue to increase

exponentially, with the side effect that traditional platforms

cannot sustain this increase. They suggest that CC is a viable

answer to this problem. (Kurschl & Beer, 2009) also identify

the massive amounts of data generated by WSNs as one of the

key motivations to amalgamate sensor networks with CC, and

agree that with other studies that the resulting platform will

provide for interoperability with other vendors’ sensors,

scalability of system resources (storage, compute, network,

etc.), accessibility to sensor data from any location

worldwide. A model is proposed that is based on pipes and

filters; where the filters process and transform input data

while pipes provide an interconnection mechanism for filters.

Base services identified include: Sensor Data Management,

Runtime for Filter Chains, Filter Chain and Filter

Management, Visualization, and Notification Service. A

prototype Energy Monitoring shows a Zigbee based WSN for

gathering energy consumption data and dispatching into the

Cloud.

(Benson, Dowsley, & Shacham, 2011) examines the issue of

geolocation of data in the Cloud and propose a method of

efficiently retrieving data stored as multiple copies in

geographically disparate datacenter locations. For critical

sensor applications, it is important to know the location of

data in the Cloud to ensure accessibility and security. It is

important to route application requests to the nearest data

center in order to minimize response time.

In (Hauswirth & Decker, 2007), the authors discuss the

unification of the real and the virtual worlds using sensor

technologies and the Semantic Web; with applications in

monitoring, manufacturing, health, tracking and planning.

(Melchor, n.d.) proposes a toolkit for sensor-cloud

integration. Both approaches fail to identify or leverage the

features of CC as enabling characteristics.

4 Motivation

 Sensor networks are found in disparate locations all

around the world supporting a myriad of applications. For

example, in military applications we find robots carrying

sensors in remote tactical environments to monitor or track

the enemies.

With the recent advancements in cloud computing, we

realized the importance of defining a standard architecture

that unifies these disparate wireless sensor networks. This will

provide for global connectivity and accessibility to these

sensor networks. Figure 1 below illustrates sensor networks in

disparate locations around the world. In Figure 3, we illustrate

the experimental network setup showing a WSN connecting to

the iDigi Cloud from which web client applications provide

sensor data or information to approved and authenticated

users.

5 The Integrated Cloud WSN Platform

Figure 1 shows the integration between the Cloud and

Wireless Sensor Networks. WSNs are often omitted as part of

the Cloud infrastructure. In this paper we strive to fit WSNs

into the Cloud architecture and conduct research to find out

how well the WSNs fit with other famous IaaS components. In

order to perform these findings, we look at performance

metrics of worldwide Cloud providers to gauge if the existing

12 Int'l Conf. Grid Computing and Applications | GCA'12 |

platform gives room for the introduction of other

infrastructure components.

Our goal is to leverage the beneficial features of Cloud

Computing which include on-demand self-service, broad

network access, resource pooling (location independence),

rapid elasticity, measured service, massive scale,

homogeneity, virtualization, resilient computing, geographic

distribution, service orientation and advanced security

technologies.

5.1. Cloud Performance Metrics

Performance and availability are key metrics when

considering any Cloud application. CloudSleuth
1
 provides us

with the tools to measure these metrics. From the available

data we see that Cloud providers in the United States and

Europe provide reasonable response time of less than 3

seconds (see Figure 2a below).

Figure 2a: Performance of worldwide Cloud Providers

Source: https://cloudsleuth.net

Figure 2b: Performance of worldwide Cloud Providers

Source: https://cloudsleuth.net

1
 https://cloudsleuth.net

In terms of availability, most of the major cloud service

providers worldwide were available almost 100% of the time,

this is quite promising and gives us confidence that our

integrated platform will survive in real applications.

Figure 2c: Performance of worldwide Cloud Providers

Source: https://cloudsleuth.net

6 Experimental Setup

In our experiment, we setup a WSN that monitors light,

temperature, power draw, and control. The WSN connects to a

Digi
2
 gateway which sends all traffic into the iDigi cloud

through an access gateway.

The setup uses the iDigi
3
 Gateway Development platform

which consists of the Digi ConnectPort® X4 (ZigBee Ethernet

gateway), the XBee Smart Plug™, the XBee Sensor and the

ESP Integrated Development Environment (IDE) for iDigi

Dia/Python development. The setup provides tools to setup a

ZigBee network, design, test and upload applications, make

web service calls and provide connectivity to the Internet.

Web applications can be designed to access real-time sensor

data. The experimental testbed is illustrated below.

Figure 3: iDigi Gateway Development kit

Source: http://www.digi.com/

2
 Digi International Inc. develops networking products and

solutions.
3
 http://www.digi.com/

Int'l Conf. Grid Computing and Applications | GCA'12 | 13

http://www.digi.com/

This platform is called the iDigi Device Cloud. It facilitates

the creation and deployment of device applications. This iDigi

Cloud platform provides desirable features such as

performance, reliability, scalability, security, seamless device

and application integration.

6.1. Data Collection and Visualization

 In our prototype, the wireless sensors collect data which

is retrieved and transmitted wirelessly through the XBee

network. The portable battery-powered sensors can be

dropped into an environment of interest for data collection

and communication.

 The information collected is displayed as a dashboard,

graphs or charts. Data or information collected is displayed

through a web interface or on a smart device.

 Light - the XBee Smart Plug Ambient light sensor

measures indoor light intensity.

 Temperature - the XBee Sensor is a battery-powered

sensor that measures temperature and light.

 Power draw - the XBee Smart Plug detects current

draw from the AC socket (standard AC 110V, 3-prong).

 Control – The XBee Smart Plug provides power control

to the user outlet. It is configured through the XBee

module’s digital I/O channel, D4 which can be set to high

or low to turn power on or off.

 Our experimental setup was limited to one sensor

network. For that reason we extrapolate the capability of the

experiment by looking at the behavior of the worldwide cloud

content delivery network (CDN). Figures 2a Figure 2b and

Figure 2c above show availability and response time for

worldwide cloud providers.

7 Conclusions

 In this paper we propose a new type of platform which

integrates and leverages the features of two key technologies,

Cloud Computing and Wireless Sensor Network. This unified

platform leverages the key benefits of two core technologies

to provide a secure platform through which sensor data can be

processed and assimilated. We ran Cloud performance tests

for availability and response time to weigh Cloud

performance through worldwide Cloud providers’ backbones.

The performance results indicate the potentials of Cloud

Computing and further give us confidence in our endeavor to

merge the two technologies together to provide a secure

worldwide cloud-enabled WSN services.

 In future works, we will address the lack of widely

accepted open standards and interoperability between sensor-

cloud platforms. Data analytics and security also require more

research to highlight issues affecting the platform.

8 References

[1] Peter Mell, Tim Grance. “Effectively and Securely

Using the Cloud Computing Paradigm”, NIST, Information

Technology Laboratory.

[2] NIST Cloud Computing Standards Roadmap. “NIST

CCSRWG – 070 Eleventh Working Draft”. May 2, 2011

[3] iDigi® Gateway Development Kit. “ Development Kit

for ZigBee Gateways and iDigi Platform”

[4] Jennifer Yick, Biswanath Mukherjee, Dipak Ghosal:

“Wireless sensor network survey. Computer Networks”

52(12): 2292-2330 (2008)

[5] The ZigBee Alliance,

http://www.zigbee.org/About/AboutTechnology/Standards.

aspx, 2011 ZigBee Alliance

[6] Theoretical and practical aspects of military wireless

sensor networks”

[7] Madoka Yuriyama, Takayuki Kushida, “Sensor-Cloud

Infrastructure - Physical Sensor Management with Virtualized

Sensors on Cloud Computing”, IBM Research - Tokyo,

March 17, 2010

[8] Peter Mell and Tim Grance. “The NIST Definition of

Cloud Computing”. 10-7-09

[9] Duane Nickul et al. “Service Oriented Architecture

(SOA) and Specialized Messaging Patterns”

[10] Peter Mell, Tim Grance. “The NIST Definition of

Cloud Computing. NIST Special Publication 800-145

[11] Mark Gaynor, Steve Moulton et al. “Integrating

Wireless Sensor Networks with the Grid”, AUGUST 2004

[12] Cuno Pfister. “Getting Started with the Internet of

Things”. 2011. Published by O’Reilly Media, Inc.

[13] Aditya Goel and Ajaii Sharma. “Performance Analysis

of Mobile Ad-hoc Network Using AODV Protocol”.

International Journal of Computer Science and Security

(IJCSS)

[14] Briefings, S. (2009). Can We Plug Wireless Sensor

Network to Cloud? cloud computing pinnacle of IT

Infrastructure democratization, 7(7), 33. Retrieved from

http://www.infosys.com/infosys-

labs/publications/documents/cloud-computing.pdf#page=35

[15] Hassan, M. M., & Korea, S. (2009). A Framework of

Sensor - Cloud Integration Opportunities and Challenges,

618-626.

[16] Kurschl, W., & Beer, W. (2009). Combining cloud

computing and wireless sensor networks. Proceedings of the

11th International Conference on Information Integration and

Web-based Applications & Services - iiWAS ’09, 512. New

York, New York, USA: ACM Press.

doi:10.1145/1806338.1806435

[17] Bose, B. S., & Liu, R. (n.d.). Cloud Computing

Complements Wireless Sensor Networks to, 10-11.

[18] Kang, Y., Zhou, Y., Zheng, Z., & Lyu, M. R. (2011). A

User Experience-Based Cloud Service Redeployment

Mechanism. 2011 IEEE 4th International Conference on

Cloud Computing, 227-234. Ieee.

doi:10.1109/CLOUD.2011.20

14 Int'l Conf. Grid Computing and Applications | GCA'12 |

http://www.zigbee.org/About/AboutTechnology/Standards.%20aspx
http://www.zigbee.org/About/AboutTechnology/Standards.%20aspx

[19] Benson, K., Dowsley, R., & Shacham, H. (2011). Do

you know where your cloud files are? Proceedings of the 3rd

ACM workshop on Cloud computing security workshop -

CCSW ’11, 73. New York, New York, USA: ACM Press.

doi:10.1145/2046660.2046677

[20] Hauswirth, M., & Decker, S. (2007). Semantic Reality –

Connecting the Real and the Virtual World Position Paper, 1-

4.

Int'l Conf. Grid Computing and Applications | GCA'12 | 15

A Novel Heuristics based Energy Aware Resource
Allocation and Job Prioritization in HPC Clouds

Thamarai Selvi Somasundaram1, Kannan Govindarajan1, T.D. Rohini1, K. Kavithaa1, R. Preethi1

1Department of Computer Technology, Anna University, Chennai, Tamil Nadu, India
Email: stselvi@annauniv.edu, kannan.gridlab@gmail.com, rohinitd@gmail.com,

kavithaa.aswi@gmail.com, preethi.r@gmail.com
 Website: www.annauniv.edu/care

Abstract - Cloud Computing provides the computational,
storage, network and database resources to the consumers in
a pay-as-per usage mode. In recent years, the data centers
play a major role in hosting the cloud applications in the
cloud infrastructure. The data centers are consuming huge
electrical power and emits large amount of carbon footprint.
It is essential to incorporate the Energy Efficient Resource
Management (EERM) mechanism to control the electric power
consumption and reduce the carbon footprint emission. EERA
comprises of matching the user application requests with
available cloud resources and allocating the user application
requests to the matched cloud resources in an efficient
manner. This paper mainly focused on proposing a novel
heuristics based Energy Aware Resource Allocation (EARA)
mechanism to allocate the user applications to the cloud
resources that consumes minimal energy and incorporating
the prioritization mechanism based on the deadline. It is
simulated using the CloudSim toolkit and by generating High
Performance Computing (HPC) type of application requests
with the generated Eucalyptus based private Cloud
environment. The results prove the effectiveness of the
proposed mechanism in the cloud infrastructure by
maximizing the number of users completed their applications
within deadline and minimize the energy consumption in the
cloud resources.

Keywords: Cloud Computing; Resource Management;
Energy Efficiency; Eucalyptus; Heuristics.

1. Introduction
 Cloud Computing [1] provides ondemand computing in
terms of application, platform and infrastructure in a pay as
per usage mode. The Cloud service models are categorized
into three major types based on the applications, platform and
infrastructure namely SaaS, PaaS and IaaS. The IaaS service
delivery model is plays a major role in hosting the PaaS or
SaaS in the data centers. The four major players of the Cloud
are (i) Cloud Users (CUs) (ii) Cloud Service Providers (CSPs)
(iii) Cloud Applications (CAs) and (iv) Cloud Service Brokers
(CSPs). The CUs are submitting the jobs with software,
hardware and QoS parameters. The requirements are varied in
terms of hardware (Processor Speed, RAM Memory,
Bandwidth and etc.), software (Java 1.6, apache tomcat-
5.0.27, MPICH-1.2.7, Charm++ 3.x and etc.) and QoS

(deadline, throughput and etc.). The CSPs are managing the
huge datacenters for the purpose of computation, storage and
etc. CSPs are managing the physical resources to host the
Cloud applications in the virtual resources. The CRPs have to
consider the user required parameters when they are selecting
the resources to run the user applications. In this scenario,
CRP’s are facing the problem in the selection of resources to
run the application. The CAs may be of different types such as
web sites, web applications, high-performance computing
applications and etc. In recent years, the huge datacenters are
popular for hosting the CAs. The CSBs acts as the mediator
between the CUs, CSPs and user’s CA, so it is essential to
incorporate the efficient Resource Management (RM)
technique. RM is the challenging task due to the dynamic
nature of Cloud Computing environment and ondemand user
requirement. It mainly consists of five major functionalities
are shown in Figure 1 and they are (i) Matchmaking the user
job requests with available cloud resources (Resource
Discovery) (ii) Allocating the user job requests with available
cloud resources in an efficient manner (Resource Selection)
(iii) Provisioning of virtual resources in the selected resources
(Resource Provisioning) (iv) Running the user jobs in the
created virtual resources (Running Application) and (v)
Monitoring the running applications (Monitoring
Applications).

Figure 1: Functionalities of Resource Management (RM)

Nowadays scientific applications are becoming complex and
it is composed of various application components and it
requires heterogeneous set of resources. The High
Performance Computing Clouds (HPCCs) or Science Cloud
provides a great platform for researchers to test their ideas
using simulation process. The scientific applications requires
large amount of computational steps and customized
execution environment and also it processes and generates

16 Int'l Conf. Grid Computing and Applications | GCA'12 |

huge amount of data. Cloud Computing provide benefits to
the scientific applications using the concept of resource
provisioning through virtualization technology and it provides
different operating systems with different software
configurations.However, it is very difficult to incorporate the
efficient RM mechanism in every cloud provider site and also
it is very tedious for the cloud user’s to search the suitable
cloud resources that are geographically distributed in nature to
run their applications. These drawbacks can be achieved by
integrating the efficient RM mechanism in CSB to efficiently
manage the user requests and Cloud resources. In recent days,
the data centers are consuming more amount of electrical
energy and emitting large amount of carbon foot prints. The
high energy consumption increases the running cost of the
data centers. So, it is essential to decrease the high energy
consumption of the data centers that will maximize the
revenue of the resource providers, reduce the carbon emission
and running cost of the data centers. To achieve the above
objectives, we have proposed the energy efficient resource
management mechanism that is mainly aimed to improve the
maximum number of users completed their jobs within
deadline and minimize the consumption of energy in the
datacenters. These two factors influence the revenue of the
cloud resource providers in an impressive manner. The
maximum number of users completed within the deadline is
achieved by giving more priority to the jobs nearer to the
deadline. The resource selection process is carried out by
employing the optimization algorithm of Particle Swarm
Optimization [2]. The proposed approach selects the
resources that consume less energy. In addition to that, it
accommodates or allocates the maximum number of user
requests in the datacenters that will increase the revenue of the
service providers and increase the utilization of the resources.
In brief the contributions of the research work are summarized
below.

a. To design and develop the matchmaking algorithm
for matching the HPC user requests with available
cloud resources. (A)

b. To design and develop a Particle Swarm
Optimization based Energy Aware Resource
Allocation (PSOEAR) mechanism for allocating the
user requests to the Cloud resources in a near
optimal manner. (B)

c. Integration of (A) and (B) with Cloud Service Broker
(CSB) for matchmaking, allocating and provisioning
for the HPC user requests. (C)

d. The proposed work is simulated and the results have
been analyzed in the simulation based cloud
environment. (D)

 The rest of the paper is organized as follows: Section 2
presents the high-level architecture of proposed framework;
Section 3 presents the proposed system model and its
description. Section 4 describes the simulation results and its
inferences observed from the simulation. Section 5 describes
the related works closely related to our proposed work.

Section 6 concludes the proposed work and explores the
feasibility of future work.

2. Proposed High-Level Architecture

The proposed high-level architecture for cloud resource
management framework with energy aware allocation is
shown in Figure 2. It consists of the five major components
and the functionalities of each component are described in
detail.

2.1 Request Handler & Match Maker

The user submits the job requirements as an XML file or
through Graphical User Interface (GUI). The parser in the
request handler parses the job requirements and the parsed
information is updated in the User Job Request Pool (UJRP).
Once the job requests are parsed it invokes the Match Maker
to match the user job requirements with the available cloud
resources. The matchmaker component filters the potential
resources that are capable of creating virtual resources and
run the job. Finally, it generates the matched resource list and
the generated list is sent to the Particle Swarm Optimization
based Energy Aware Resource Allocator (PSOEARA). The
matchmaking algorithm for HPC job request is shown below.

Figure 2: Cloud Resource Management Framework for
Energy Aware Resource Allocation

Algorithm 1 Matchmaking Algorithm

Input : Fetch the job requests with hardware, software and
 QoS requirements.
Output: Matchmaking the job requests with available cloud
 resources and generate the matched resource list.
Step 1 : Submit the job requests with requirements, parse the
 requirements and store it in the Broker Queue (BQ).
Step 2 : Match the job requirements with available cloud
 resources and generate the resource list that are
 capable of creating the virtual instances and run the
 job.

Int'l Conf. Grid Computing and Applications | GCA'12 | 17

Step 3 : For (I= 1 to N ‘Job Request’)
 {
 For (J = 1 to M ‘Datacenters’)
 {
 For (K=1 to O ‘Hosts’)
 {
 Match the job requirements with available cloud
 resources.
 Generate the matched host list that is capable of
 satisfying the user job requests.
 }
 Generate Matched Datacenter List that has
 capable hosts to create the virtual instances
 and run the jobs.
 }
 }
Step 4 : End

2.2 Particle Swarm Optimization based Energy
Aware Resource Allocator (PSOEARA)

PSOEARA is implemented with Particle Swarm Optimization
(PSO) and Energy Aware Resource Allocation algorithm.
PSO is a population based stochastic optimization technique.
It is initialized with a group of random particles or solutions.
Each particle is updated by the two best values known as
pbest (the personal best) and gbest (the global best) in every
iteration. Pbest represents the best solution achieved by one
particle and gbest represents the best value obtained by any
particle in the population. PSOEAR mainly consists of three
fold processes such as (1) Initial job assignment to the
matched resource list (2) Calculation of Expected Completion
Time (ECT) and Energy Consumption (EC) of the job (3)
Final job assignment to the selected cloud resource.

2.2.1 Initial job assignment to the matched resource list -
PSOEARA takes the batch of jobs as input and each job is
randomly allocated to the matched resource list. In each
assignment the ECT and the EC is computed for each job.

2.2.2 Calculation of ECT and EC of the jobs - The ECT is
computed using the Equation (1).

 ECTij = STij + BTij +EETij - (1)
 EETij = Job Length / MIPS of VM - (2)
 Job Length = Million Instructions (MI) /60 - (3)
 MIPS of VM = Job Length/Deadline + x - (4)
Where ECTij represents the expected completion time of job i
on resource j, STij represent the start time of job i on resource
j, BTij represents the boot time of the virtual instances for the
ith job on resource i, EETij represents the estimated execution
time of job i on resource j. The EC is computed using the
Equation (5) and it is given below.

 ECij (in watts) =
N,M

i j
i=1,j=1

RMIP / AMIP *100∑ - (5)

Where ECij represents the energy consumption of the
particular job, RMIPS represents the Requested Millions of
Instructions per Second for job i and AMIPS represents the
Available Millions of Instructions Per Second in resource j.
Where i= 1 To N represents number of VMs, j=1 To M
represents the number of hosts.

2.2.3 Final job assignment to the selected cloud resource -
In the final assignment process the jobs are assigned to the
cloud resource which completes the job within the deadline
and consumes less energy.

Algorithm 2 PSOEARA Algorithm

Input: Fetch the job requests with matched host list and
datacenter list.
Output: Optimal selection of cloud resources that consumes
less energy and completes the job requests within deadline.
Step 1 Get the ‘N’ number of job requests with matched
 datacenter list and the host list.
Step 4 For (I= 1 to N ‘Job Request’)
 {
 For (J=1 to M ‘Virtual Machines’ of each job)
 {
 For (K = 1 to O ‘Matched Datacenter List’)
 {
 GetMatchedHostList ();
 For (L = 1 to P ‘MatchedHostList’)
 {
 Compute the Expected Completion Time (ETC)
 using the Equation (1);
 Compute the Present Energy Consumption (PEC)
 using the Equation (5);
 }
 If (K==0) {
 Pbest = PEC;
 Chosen DC= DC (0)
 }
 Else
 {
 If (PEC < Pbest && ECT < Deadline) //Compare the
 energy consumption difference
 {
 Gbest = PEC;
 Chosen DC = DC (K);
 }
 Else If
 {
 Gbest = Pbest;
 }
 }
 }
}}

18 Int'l Conf. Grid Computing and Applications | GCA'12 |

2.3 Cloud Resource Information Aggregator

This work is extension of our previous work Cloud
Monitoring and Discovery Service (CMDS) [3]. CMDS will
aggregate the cloud resource information such as processor,
memory and network using the external information providers
Ganglia, NWS and our own user-defined script. CMDS is
extended to aggregate the energy and load information from
the cloud resources. The collected information is updated in
the Cloud Resource Information Repository (CRIP).

2.4 Virtual Machine Provisioner

It is mainly responsible for interacting with Cloud middleware
to provision the virtual machine instances. It fetches the
virtual machine request with the parameters of type of
instances, ram capacity and number of instances to be created
to run the job.

2.5 Virtual Machine Energy Monitor

It is running in the cloud resources and it collects the energy
consumed by the virtual machine instances. The collected
information is updated to the VM Energy Aggregator.

3. Implementation Details
In this paper we have simulated and compared the proposed
PSO based energy aware resource allocation with DVFS and
Round Robin. The simulation is carried out using the
CloudSim [4] toolkit. The CloudSim source code is analyzed
and incorporated with the major modifications in the classes
DatacenterBroker.java, Host.java, Cloudlet.java and newly
added PSOEARAllocationPolicy.java. The available
resources in the cloud environment are represented as ‘ACR’.
Each cloud resource has ‘mh’ number of hosts and every host
is capable of hosting/creating ‘nv’ number of virtual machine
instances. The proposed system is accessed by ‘mu’ number of
users the users are arrived at a regular interval of ‘I’ in a
Poisson distribution manner. Each user job request will
require ‘N‘ number of nodes, ‘M’ amount of RAM memory,
‘P’ amount of processor speed. The sample HPC job request
is shown in Table 1 and it is generated by doing the
modifications in the Cloudlet.java class. We have generated
the job requests for three types of HPC applications such as
NAMD [5], Clustal [6] and FASTA [7]. The Host.java class is
modified and the generated Eucalyptus based private cloud
resources is shown in Table 2.

Table 1: Simulated HPC User Job Requests

User
Name

Job Type Number
Of

Nodes

Processor
Speed
(MHZ)

RAM
Memory

(MB)

Disk
Memory

(GB)

stselvi NAMD 5 2200 512 10

preethi CLUSTAL 10 2000 1024 20

Rohini NAMD 5 2200 1024 10

kavitha FASTA 5 2000 512 20

Table 2: Simulated Eucalyptus based Private Cloud
Resources

4. Simulation Details and its Inferences
The experimentation is carried out by generating a Cloud
Service Broker (CSB) with multiple Cloud Service Providers
(CSPs). We have considered 5 CSPs each CSP maintains one
datacenter. Each datacenter is generated with 1000, 2000,
3000, 1000, 2000 cloud hosts respectively. The cloud hosts
has different capabilities in terms of number of processors,
processor speed, ram speed, hard disk memory, bandwidth,
latency, type of hypervisor and etc. The job request is
generated randomly using the random access model that
generates the job requests as Cloudlets in the range of 1000 to
10000 in the random fashion. The job parameters such as
length of job (JA), job arrival rate (AA) and number of Job
requests (NJ) also generated. The job requests are mapped
with available cloud resources for creating virtual instances
and running the applications. The experimental setup is shown
in Figure 3. The simulation has been carried out for type of
use cases (i) Use Case 1 - Resource Allocation within
datacenter (ii) Use Case 2 - Resource Allocation across
datacenters. The performance measures such as number of
users completed within deadline, energy consumption of the
datacenters are represented figuratively.

(i) Use Case 1 - Resource Allocation within datacenter – In
this use case, the resource allocation policy finds out the
suitable resources for every job requests that consumes less
energy within the single datacenter. If the job requests could
not able to satisfy within single datacenter the resource
allocation policy sends the message to the broker COULD
NOT be ABLE TO CREATE required VIRTUAL MACHINE
WITHIN SINGLE DATACENTER”. The broker invokes the
resource co-allocation policy to satisfy the job request could
not be processed in the single data center.

(i) Use Case 1 - Resource Allocation across datacenters –
In this use case, the resource allocation policy finds out the
suitable resources for every job requests that consumes less
energy across the datacenters. If the job requests could not

Int'l Conf. Grid Computing and Applications | GCA'12 | 19

able to satisfy across the datacenters the resource allocation
policy sends the message to the broker “COULD NOT be
ABLE TO CREATE ENOUGH VIRTUAL MACHINES
ACROSS THE DATACENTERS”. The broker rejects the
request and notifies to the user.

Figure 3: Experimental Setup

Figure 4: Energy Consumption using PSOEARA

Figure 5: Energy Consumption using DVFS with RR

The job requests are generated in the order 1000 to 10000
cloudlets and the job rejection rate of PSOEARA is compared
DVFS with RR. The proposed mechanism has the job
rejection rate with an average of 10% and the RR has the job
rejection rate of 35%.

Figure 6: Comparison of Job Rejection Rate PSOEARA
versus DVFS with RR

5. Related Works
Thamarai Selvi et. al [8] has proposed and implemented a
Java based architectural framework to schedule and support
the virtual resource management in the Grid environment. It
handles the various scheduling scenarios of Physical, Coalloc,
Virtual Cluster and etc. Eucalyptus [9] is the open source
cloud middleware and it consists of cloud controller, cluster
controller, node controller and storage controller. These
components are arranged in a hierarchical fashion and
eucalyptus has incorporated with Greedy, Round Robin, and
Power Save scheduling algorithm. These three scheduling
algorithms do not select the resource in a near optimal manner
and also it does not have considered the priority. OpenNebula
(2005) [10] is an open source cloud middleware that creates
virtual machines in a physical cluster and its main focus is
virtual resource management in the infrastructure. It has
incorporated with rank based scheduling approach and does
not consider the energy efficiency and deadline parameters
and it is mainly working in the host level. Das et. al. [11] has
built the commercialized computing system called Unity; the
main aspects are application environment centric,
computation of optimal configuration of resources in the
datacenters, absence of the cost of components during the
problem formulation.
 Biao Song [12] has discussed the heuristic based task
selection and allocation framework in cloud environment.
They have classified the resource allocation problem into two
things such as heavy workload and light workload. In the
heavy workload scenario they have consider the Quality of
Service (QoS) is their major focus and in the light workload
scenario the resource utilization is their main focus. They
maintained the threshold value based on that value they will
allocate the tasks to the resources with an objective of
increasing the resource utilization. But they have not
discusses anything about the energy efficiency and deadline of
the job requests. Hai Zhong et. al [13] proposed the optimized
resource scheduling for open-source cloud systems using the
Improved Genetic Algorithm (IGA). They have derived the
fitness algorithm using the dividend policy mechanism. They
have compared their proposed approach with First Fit and RR.
They claimed that their proposed algorithm increases the
utilization of the cloud resources and saves much energy. The
major difference of our work from their work is they have not

20 Int'l Conf. Grid Computing and Applications | GCA'12 |

discussed anything HPC job requests, energy efficiency in
detail and deadline of the job requests.

6. Conclusion and Future Work
The datacenters are consuming huge amount of electric power
and emits large amount of carbon footprints that pollutes the
environment. This paper mainly aimed to provide an efficient
resource management mechanism in the cloud service broker.
It handles the user job requests as HPC applications based on
the user required parameters it selects the cloud resources in a
near optimal manner using the heuristics based energy aware
resource allocation mechanism. The proposed work
minimizes the consumption of power and maximizes the
revenue of the CRP’s. The main contributions of the proposed
work are summarized as follows: ability of handling the HPC
job requests in Cloud Service Broker, matchmaking the user
job requests and allocating the user job requests to the
available cloud resources that consumes less energy in an
optimal manner and completes the job within deadline. It
increases the maximum number of jobs completed within the
deadline and minimize the consumption of energy in the
datacenters. These two factors influence to maximize the
revenue of the cloud resource providers. The proposed work
is simulated using the CloudSim toolkit and compared with
the most well-known algorithm DVFS using Round Robin.
The results are evident that proposed work minimizes the
consumption of energy in the datacenters and maximizes the
number of users completed within the deadline.
 As a future work the proposed work to be tested in the
Eucalyptus based real private cloud environment for HPC
applications. And also, it can be extended for decentralized
mode incorporated with load balancing mechanism that will
enhance the scalability and utilization of cloud resources
further.

ACKNOWLEDGMENT
The authors sincerely thank the Ministry of communication
and Information Technology, Government of India, for
financially supporting the Centre for Advanced Computing
Research and Education of Anna University Chennai, India in
this project

REFERENCES

[1] NIST, National Institute of Standards and Technology (2011),
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-
145_cloud-definition.pdf.

[2] Particle Swarm Optimization (PSO),
http://www.swarmintelligence.org/.

[3] Thamarai Selvi Somasundaram, Kannan Govindarajan, “Cloud
Monitoring and Discovery Service (CMDS) for IaaS resources”, has
been accepted in ICoAC 2011.

[4] CLOUDSIM, http://www.cloudbus.org/cloudsim/.

[5] NAMD, http://www.ks.uiuc.edu/Research/namd/.

[6] CLUSTAL, http://www.clustal.org/.

[7] FASTA, http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml.

[8] Thamarai Selvi Somasundaram, Balachandar R. Amarnath, R. Kumar,
P. Balakrishnan, K. Rajendar, R.Rajiv, G. Kannan, G. Rajesh Britto, E.
Mahendran & B. Madusudhanan, “CARE Resource Broker: A

framework for scheduling and supporting virtual resource
management”, Journal: Future Generation Computer System, Volume
26, Issue 3, March 2010, Pages 337-347,
doi:10.1016/j.physletb.2003.10.071.

[9] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli,
Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov ,“The Eucalyptus
Open source Cloud-computing System”, Proceedings of Cloud
Computing and Its Applications, October 2008.

[10] OpenNebula (2011): The Open Source Toolkit for Cloud Computing.
http://opennebula.org/start.

[11] R. Das, J. Kephart, I. Whalley and P. Vyas, “Towards
Commercialization of Utility-based Resource Allocateion,” in ICAC
’06:IEEE International Conference on Autonomic Computing, 2006,
pp.287-290.

[12] Biao Song, Mohammad Mehedi Hassan, Eui-nam Huh: A Novel
Heuristic-Based Task Selection and Allocation Framework in Dynamic
Collaborative Cloud Service Platform. CloudCom 2010: 360-367.

[13] Hai Zhong, Kun Tao, Xuejie Zhang, “An approach to Optimized
Resource Scheduling Algorithm for Open-source Cloud Systems,” The
Fifth Annual ChinaGrid Conference, 2010. DOI
10.1109/ChinaGrid.2010.37.

Int'l Conf. Grid Computing and Applications | GCA'12 | 21

22 Int'l Conf. Grid Computing and Applications | GCA'12 |

SESSION

WORKFLOW + SCHEDULING

Chair(s)

TBA

Int'l Conf. Grid Computing and Applications | GCA'12 | 23

24 Int'l Conf. Grid Computing and Applications | GCA'12 |

TSM-SIM: An Evaluation Tool for Grid Workflow Scheduling

Mohamed Amine Belkoura1and Noé Lopez-Benitez1

1Department of Computer Science, Texas Tech University, Lubbock, Texas, USA

Abstract— Implementing efficient workflow job scheduling
is a key challenge in grid computing environments. Sim-
ulation is an efficient mechanism to evaluate scheduling
algorithms and their applicability to various classes of
grid applications. Several grid simulation tools exist, and
provide a framework for studying grid job execution in
conjunction with different scheduling algorithms. However,
these simulators are tailored only to independent grid jobs,
with limited support for complex grid workflows submission
and scheduling.

This paper presents TSM-SIM, a two-stage metasched-
uler simulator for grid workflow applications. It supports
dynamic grid resource and job simulation, and provides a
submission interface for workflow grid applications as a
single unit, rather than as a set of grid jobs. We detail
the overall architecture TSM-SIM as well as example of
its scheduling algorithms. We demonstrate how it can be
used to collect performance scheduling data of complex grid
workflow benchmarks.

Keywords: metascheduling, task management, middleware, grid,
simulator, architecture

1. Introduction
Grid workflows are orchestrated by grid meta-schedulers,

matching grid application jobs with available resources,
in order to achieve an optimal execution [1]. To sat-
isfy such requirement for complex grid flows, a Two-
Stage Metascheduler (TSM) decouples logical task meta-
scheduling from physical task/node matchmaking, while
achieving an improved overall performance [2]. In order
to validate the effectiveness of this scheduling architecture,
only a comprehensive and rigorous testing process can
produce accurate and meaningful results. Given its inherent
complex and dynamic nature, computing grids are hard to
evaluate. Setting up grid testbeds that are both realistic
and adequately sized is an expensive and time consuming
process, and therefore represents a barrier to meta-scheduler
algorithm evaluation. We propose the use of grid simulators
to measure the efficiency of metascheduling algorithms in
a diverse and comprehensive set of scenarios. To evaluate
the efficiency of two-stage metascheduling, it is important
to run a number of tests, varying different parameters and
platform scenarios, with the goal of producing statistically
significant quantitative results. However, real-world grid
platforms are hard to setup, labor-intensive, and are gen-
erally constrained by the available hardware and software

infrastructure. To preserve the security and consistence of
valuable grid resources, grid administrators tend not to allow
users to modify some grid parameters, such us participating
nodes, network connections and bandwidth, and some lower
level grid middleware and operating system configuration.
For all these reasons, a simpler and reproducible approach
to evaluate grid application scheduling requires the use of
simulators.

2. Background and Related Work
Several solutions were proposed in the realm of grid appli-

cation scheduling simulation. Bricks simulator [8] is a JAVA
simulation framework used to evaluate the performance ap-
plications and scheduling algorithms in Grid environments.
It consists of a discrete event simulator, a simulated grid
computing and data environment, as well as network com-
ponents. It allows the analysis and comparison of various
scheduling algorithms on simulated grid settings, taking
into consideration network components effect on the overall
performance. SimGrid [6] is another widely used toolkit for
the simulation of parallel and grid application scheduling.
It supports an out-of-the-box creation of time-shared grid
and cluster resources. It also supports varying resource loads
statically and dynamically. It also provides an extensibility
programming layer for adding or customizing grid jobs and
resources creation based on various parameters. Its program-
ming interface provides several mechanisms to implement
resource scheduling policies. GridSim [3] is also a popular
simulation framework for grid and parallel applications. It
supports different resource schedulers, including time-shared
and space-shared resources. It contains a network simulation
component, used for simulating network topologies, links
and switches. it also allows incorporating resource failure
into the grid application simulation. OptorSim [9] is a
java based grid simulator focusing on data grids. It can
simulate grid resources of different storage or computing
elements, and allows the testing of data replication strategies.
Its scheduling simulation is achieved through a resource
broker, which implement scheduling schemes. It treats sites
computing or data facility as network nodes and routers. For
data replication, it features a replica manager and optimizer
that handles advanced data manipulation and management.

While these simulators provide mechanisms for a flexible
grid application modeling, they do not support the submis-
sion of the whole grid application workflow as an input, with
all its data and sequence job dependencies, but only support

Int'l Conf. Grid Computing and Applications | GCA'12 | 25

Fig. 1: TSM Simulator System View.

individual jobs submission. The proposed TSM simulator
in this paper will extend some of GridSim components,
and provide a two stage logical/physical scheduling module
based on the TSM architecture.

3. Simulator System Overview
TSM-SIM allows a comprehensive study of the dynamic

interaction of multiple grid components, including grid
users, resources, networks and various scheduling algo-
rithms. It provides a virtual grid infrastructure that enables
grid workflow application experimentation with dynamic
meta-scheduling algorithms, supporting controllable, repeat-
able, and observable experiments. From a system view,
TSM-SIM is composed of three main components: TSM
Virtual Messaging Bus, TSM GridSim Services, and TSM
Custom Workflow Services, as shown in figure 1. It uses
an inter-process discrete event based system for communi-
cation. Each layer exposes functions for reuse with other
services. The following section provides a detailed descrip-
tion of each layer components.

At the core of the TSM simulator is a virtual messaging
bus implemented using Simjava framework, inherited from
GridSim [5]. Simjava is a inter thread messaging framework
that allows sending tagged event from one entity to another
within the same java process. Simjava entities are connected
to each other using ports and can inter communicate by send-
ing and receiving tagged event objects. A separate thread
controls the lifecycle of the entity threads, by synchronizes
their execution

4. Simulation Algorithms
In this section, TSM logical and physical metaschedulers

algorithms are presented. For the logical metascheduler,
details of the Execution Set Algorithm (ESA), the De-
layed Execution Set Algorithm (DESA), and the Block
Notification Execution Set Algorithm (BNESA) are given.
For the physical metascheduler, the ClassAdd Matchmaking

Algorithm (CMA), and the Workflow Weight Algorithm
(WWA) are outlined.

4.1 Logical Metascheduler Algorithms
TSM scheduling approach consists of decomposing a grid

workflow into a set of individual jobs that can be executed in
parallel. Any logical algorithm should compose these tasks
either dynamically or statically, taking into consideration
only job dependencies. The rest of this section presents
three logical metascheduler algorithms: the Execution Set
Algorithm (ESA), the Delayed Execution Set Algorithm
(DESA), and the Block Notification Execution Set Algo-
rithm (BNESA).

4.1.1 Execution Set Algorithm
The Execution Set Algorithm (ESA) accepts as an input

the grid application flow in a digraph format (directed
graph). It processes the flow composing tasks (graph nodes),
data and control flow (edges), and produces a set of task
pools, called Execution Sets (E). These sets are submitted
to the physical metascheduler in order. None of the task of
certain set can be submitted to a physical scheduler unless all
the tasks of the preceding set have been submitted. However,
the composing tasks of each pool can be submitted in any
order. The execution set is updated after execution success
notification.

The ESA logic is described by the following algorithm.

ESA Algorithm

P ←Initial flow graph of N nodes.
E ←Current execution set.
S ←Set of nodes submitted, but not executed yet.
G←Graph of N nodes; G={ni; i ∈ [1;N]}.
while E 6= � do

Submit S elements for execution.
if receipt of sucessful execution of nj then
E ←E - {nj}.
S ←E
Remove mode nj and its edges from P
Update E with additional free nodes of P

4.1.2 Delayed Execution Set Algorithm
The Delayed Execution Set Algorithm (DESA) is a variant

of ESA that introduces a delay between the receipt of the
first notification, and the submission of the next execution
set. A delay allows collecting more individual grid jobs
into individual execution sets. This reduces the number of
submissions and execution notifications, but generates bigger
execution sets. DESA is analyzed with various delay times,
in order to study its impact on grid utilization, and total grid
application execution time.

26 Int'l Conf. Grid Computing and Applications | GCA'12 |

4.1.3 Block Notification Execution Set Algorithm

The Block Notification Execution Set Algorithm
(BNESA) is a second variant of ESA, where the next
algorithm execution set will not be updated immediately
after the first successful job notification. Instead the
algorithm waits for k numbers of notifications, where k
is directly correlated with the size of the execution set E.
As for DESA, a delay will allow for potential addition
execution notifications, therefore a bigger execution set.
This variant is studied with various values of k, in order
to analyze its impact on grid utilization and total grid
application execution time.

4.2 Physical Metascheduler Algorithms

Different grid job/grid resource algorithms are used in grid
environments. They can be classified into three main cat-
egories: time-shared, space-shared and backfill algorithms.
Time-shared grid scheduling algorithm allocates grid re-
sources in a round robin scheme, and exclusively allocated
a grid resource to a grid job until it is completed. Space
shared grid scheduling algorithm allocates grid resources in
a First Come First Serve (FCFS) and executes more than one
processing element (PE) to a grid job. Backfill algorithms
attempts to reorder jobs queued to be executed, by moving
small jobs ahead of big ones in the scheduling queue. The
job prioritization is done to fill in holes in the schedule,
without delaying the first job in the queue. Two variants of
this class of algorithms exist. The first is called aggressive
backfilling, where short jobs will automatically priority over
long jobs. The second is called conservative backfilling,
where the acceleration of short jobs happens only of such
reorder does not delay any job in the schedule queues.

4.2.1 Condor ClassAd Algorithm

TSM physical metascheduler implements Condor ClassAd
Algorithm (CCA), the standard matchmaking alogorithm
used by Condor [10] . Each executing node in the grid
advertises its resource ClassAd, while each workflow grid
job is defined by its processing requirement within its job
ClassAd. For each execution set received from the logical
metascheduler, a single round of matchmaking algorithm is
made, based on the constraints defined by both the resource
and job ClassAds. If a requirement of a job is not met during
the matchmaking process, it is delayed until the current
execution set is refreshed after the next logical execution
set is received. However, if a grid resource is a positive
match for a grid job, such matching is selected, and no
other possible matchmaking combination is evaluated. In our
implementation of CCA, only the requirement part of the
ClassAd is considered. The optional rank attributes are not
used in our matchmaking process.

4.2.2 Workflow Weight Algorithm

The second TSM physical metascheduler prototyped is
called Workflow Weight Algorithm (WWA). It is a time
shared, first-come-first-served class algorithm that captures
the instant load of each grid resource using an auction style
election process. Each grid resource (Rj1 < i < m, m is
the number of resources) is characterized by its number
of machines Rmi(Rmi = 1 for a non-cluster resource),
the number of its processing units Rpui, its processing
power Rppi in Million Instructions Per Seconds (MIPS), its
available memory Rmemi, and its network connection speed
Rni. Each grid job/task (Tj1 < j < n, n is the number
of tasks) has a strict number of processor units Tpuj and
memory requirement that need to be satisfied at a single
grid resource, in order to be considered in the match-making.
Each grid job will advertise its computing power need Tppj ,
its memory requirement Tmemj , its total data input size
Tinj , its total output size Toutj , its height in the workflow
tree Thij , and its offspring count Toffj .

The algorithms works as follow: In the physical
metascheduler, a discrete scheduling interval ∇τ will be
defined (for example a 10 second interval). At each interval
beginning, the metascheduler calculates a scalar value called
grid task weight Tweightj . This value provides a quantifying
value of all the computing characteristics of a grid job/task,
and is defined as follows:

Tweightj = CT × Tpuj × Tppj × Tmemj

× Tinj × Toutj × Thij × Toffj , 1 < j < n

(1)

where CT is a constant at each scheduling iteration.
Simultaneously, a similar weight, called the Resource Weight
Rweighti, is calculated. The logical scheduler will request
from each grid resource site its dynamic computing data.
Only grid resources that are free submit their data, indicating
that they are willing to participate in the current scheduling
round. The metascheduler will then calculate the Resource
Weight Rweighti defined as follows:

Rweighti = CR ×Rmii ×Rpui ×Rppi ×Rmemi ×Rni

1 < i < m
(2)

The next step of the algorithm is to sort all the values
of Tweight and Rweight in a descending order. A height
Rweight value indicates a fast grid resource, while a high
Tweight value indicates a demanding grid job/task. The
algorithm assigns the grid job/task of highest Tweight value
to the grid resource of the highest Rweight value, with the
condition that equation 3 satisfied:

Int'l Conf. Grid Computing and Applications | GCA'12 | 27

Tpuj ≤ Rpui and Tmemj ≤ Rmemi

1 < j < n and 1 < i < m

(3)

Note that the number of grid tasks “n" is generally
different than the number of grid resources “m" (being equal
is only one special case). In case the case of n<m, only the
available fast grid resources of the grid are being used. In
the case of n>m, a resource starvation is happening, and
only a portion of the execution set is actually assigned a
grid resource. Grid tasks that are not scheduled will be part
of the next scheduling round.

5. Grid Benchmarks
NAS Grid Benchmarks (NGB) were used to test the TSM

simulator. NGB is a benchmark suite designed by NASA,
based on the NAS Parallel Benchmarks (NPB) [11]. The
suite contains different classes of workflow application, and
thus helps measuring the capability of a grid infrastructure to
execute distributed, communicating processes while testing
its functionality and efficiency. NGB benchmarks are defined
as data flow graphs, with nodes and arcs representing compu-
tations and communications respectively. NGB benchmarks
are used to measure each node execution time, as well as
the data transfer capabilities of the communication network,
particularly latency and bandwidth. An instance of NGB
benchmark grid flow is a collection of six types of computing
programs. They are called Block Traditional solver (BT),
Scalar Pentadiagonal solver (SP), Lower-Upper symmetric
solver (LU), Multigrid solver (MG), fast Fourier Transform
solver (FT), and Mesh Filter solver (MF). Each instance of
these programs is characterized by a class, which describes
the size of its input data. These programs different classes are
S, W, A, B, C. In our experiments, we considered only S, A,
B classes. Every benchmark program code (BT, SP, LU, MG,
or FT) is specified by class (mesh size), number of iterations,
source(s) of the input data, and consumer(s) of solution
values. The DFG consists of nodes connected by directed
arcs. It is constructed such that there is a directed path from
any node to the sink node of the graph. All of NPB’s mesh
based problems are defined on the three-dimensional unit
cube. However, even within the same problem class (S, W,
A, B, or C) there are different mesh sizes for the different
benchmark codes.

Table 1 gives the problem size and the memory re-
quirement for every computing program used in the NGB
benchmark used in [12].

5.1 Class of NGB Benchmarks
NGB benchmarks consist of four families of problems:

Embarrassingly Distributed (ED), Helical Chain (HC), Vi-
sualization Pipeline (VP), and Mixed Bag (MB). These
benchmarks are described in the rest of this section.

Program Class Problem Size Memory requirement (MW)
SP S 123 0.2

A 643 6
B 1023 22

BT S 123 0.3
A 643 24
B 1023 96

LU S 123 0.3
A 643 30
B 1023 122

MG S 323 0.1
A 2563 57
B 2563 59

FT S 643 2
A 2562 × 128 59
B 2562 × 512 162

Table 1: NGB programs size and memory requirement

Fig. 2: ED, class B (18x1) grid flow.

5.1.1 Embarrassingly Distributed

The Embarrassingly Distributed (ED) benchmark repre-
sents a class of grid applications called parameters studies,
where the same basic program is executed multiple times,
and each time with a different input data. This class of
benchmark models applications that can be obviously di-
vided into a number of independent tasks. The application
tasks are executed independently, with different inputs. Fig-
ure 2 shows the b-class ED benchmark grid workflow used
in our simulations.

5.1.2 Helical Chain

Helical Chain (HC) benchmark models grid application
with long chains of repeating programs, such as a set of flow
computations executed in order. It consists of a sequence
of jobs that model long running simulations that can be
divided into different tasks. Each job in the sequence uses the
computed solution of its predecessor to initialize. Figure 3
shows an example of a b-class HC benchmark grid workflow.

5.1.3 Visualization Pipeline

Visualization Pipeline (VP) benchmark models grid work-
flow application composed of multiple chains of compound
processes. It represents a chain of grid jobs, but with limited
parallelism. It models grid applications where the last itera-

28 Int'l Conf. Grid Computing and Applications | GCA'12 |

Fig. 3: HC, class B (5x9) grid flow.

Fig. 4: VP, class B (5x9) grid flow.

tion step is a visualization/analysis task. Figure 4 illustrate
an example of a b-class VP benchmark grid workflow.

5.1.4 Mixed Bags

Mixed Bag (MB) benchmark models grid applications
composed of post-processing, computation and visualization
computing tasks, but with inter asymmetric communication.
It also features different tasks that require both different
data and computing power. It introduces double and triple
dependencies, where some jobs have two or three parent
tasks. It constitutes the most complex benchmark in the NGB
suite, and thus making it hard for any scheduler to schedule
its tasks efficiently. Figure 5 shows an example of a b-class
MB benchmark grid workflow.

Fig. 5: MB, class B (5x9) grid flow.

Cluster Cluster Node Memory Computing Network
Name Name Name (GB) Power Speed

(MFLOPS) (GB/S)
Main TTU Cluster 1 Compute1-1 12 9320 10

Campus Compute1-2 12 9320 10
Cluster 2 Compute3-1 4 6400 10

Compute3-2 4 6400 10
Cluster 3 Compute8-1 64 10400 10
Cluster 4 Compute6-9 4 6400 10

Compute6-10 4 6400 10
Cluster 5 Compute6-1 12 9320 10

Compute6-2 12 9320 10
TTU Reese Cluster 6 Compute10-1 4 12000 10

Campus Compute10-2 4 12000 10
Cluster 7 Compute11-17 4 9320 10

Compute11-18 4 9320 10

Table 2: Resource Properties of the Grid Testbed

6. Simulation Environment Setup
In our experiments, we simulated a subset of Texas Tech

Hrothgar and Antaeus clusters [13] as part of a computing
grid. The grid modeled in our simulations contains 13
resources, spread both among the main and satellite Texas
Tech campuses. We modeled each of its grid resources with
a total number of processing elements (PEs) characterized
by their MIPS rating (Million Instructions per Second)
and their internal memory capacity. We also model the
network connecting all the grid computing elements, by
specifying, the network layout, the number of routers, and
the network link properties such as bandwidth in bits/second
and Maximum Transmission Unit (MTU) in bits.

Table 2 shows the grid test bed properties simulated, while
figure 6 details the network topology of the simulated grid
environment.

6.1 Experimental Methodology
A set of each NGB benchmark grid application is gener-

ated, and submitted to the TSM simulator, under the different
benchmark type (ED, HC, VP and MB), class (S, A, and

Int'l Conf. Grid Computing and Applications | GCA'12 | 29

Fig. 6: Network Topology of the Grid Test Bed.

Load Pattern normal distribution Poisson distribution
size(MB) inter-arrival time (s)

Min Max Min Max
Medium 2,5 5 10 50

High 10 20 10 50

Table 3: Background Traffic Generator Pattern Parameters

B), background load (none, medium, high). Both Execution
Set Algorithm (ESA) and Delayed Execution Set Algorithm
(DESA) for the logical metascheduler and Workflow Weight
Algorithm (WWA) for the physical metascheduler were
implemented. A background traffic generator is used to
simulate a non-exclusive access schema to a grid. The back-
ground traffic generator was configured with two different
load patterns: a medium and a high load pattern, which are
generated based on the size of background data, the job size,
and the inter-arrival time. The background load data size
follows a normal distribution of a minimum size of 2.5 KB
and a maximum of 5 KB. Its arrival time follows a Poisson
distribution, with an inter arrival times varying from 10 to
50 seconds. The traffic generator is bound to each resource,
so the background traffic and load hits all resources and
its network route, starting from the TSM simulator. Table
3 shows the values for each background traffic generator
pattern parameters.

6.1.1 Performance Metrics of TSM Algorithms
Various metrics were defined and captured during each

simulation execution. The overall performance of a grid
workflow application can be measured by the time it takes
to finish its total execution, which starts with the time it
is submitted to the TSM metascheduler and finishes when
the last composing job executes successfully, and its output
is received by the TSM metascheduler. We refer to this
time as Grid Application Execution Time (TGAET). This
execution time takes into consideration the execution of the
grid application composing tasks, as well as the network

time consumed to transfer input and output files needed by
each composing task. Because a grid is a parallel execution
environment, TGAET is not the sum of each task execution
time, and each file transfer time. As more than a task can
execute at the same time, several execution and transfer tasks
overlap. On the other hand, contention over grid resources
and network connection introduces additional delays counted
toward TGAET . In addition, the use of the TSM algorithm
introduces another meta-scheduling computing time. As a
result, the total workflow execution time consists mainly
of three components: a task execution component TEX ,
a data transfer time component TDT , a meta-scheduling
component TTSM , and an idle time component TIDLE ,
spent either waiting for resources to be available, or when a
job is queued at the local grid machine scheduler. Therefore,
TGAET calculation formula is obtained as follows.

TGAET = TEX + TDT + TTSM + TIDLE (4)

TEX is the time spent running the task program on a grid
resource, and does not count network time. TDT is the total
time use to transfer data in and out of grid resources. TTSM

is the total meta-scheduling time taken by both the logical
and physical metascheduler to allocate resources to grid jobs
will depend on how many times it execute the matchmaking
algorithm. TIDLE is the time slot not used for the three main
active times is considered idle or unused. We also define the
Total Grid Time TTGT , which constitute the total time per
grid resource that was spent executing the grid application.
It is obtained as follows:

TTGT = TGAET ×Nr (5)

Where Nr is the number of available grid resources. In
our experimental simulated grid environment, Nr = 13.

7. Experiment Results
The purpose of these experiments is to study the effect of

varying both the background load and the scheduler variant
on the performance of the scheduling policies, and show
how grid workflow applications benefit from the two-stage
scheduling in real workflow situations. It also showcases
the value of TSM-SIM producing experimental results for
various grid scheduling and load conditions. We first present
an analysis of background load on grid workflow scheduling,
where we test the combination of ESA/WWA algorithms.
Second, we analyze the impact of delayed submission, using
the DESA/WWA algorithm combination.

7.1 Background Load Effect
We first consider the effect of background load on

scheduling different class of workflow grid applications. The
effect of background load effect on the total time is shown
in figures 7 to 10. As the load increases, the total time
increases, especially for the pure parallel flow (ED), and the

30 Int'l Conf. Grid Computing and Applications | GCA'12 |

Fig. 7: Load Effect on ED Class Workflow.

pure sequential flow (HC). For the case of (ED), only high
background load effect the response time, while it only takes
some low background load to slow the workflow execution
in case of HC. Also, the effect of high load on the most
complex (ED) class workflow is more than 3 times the effect
of the type of load on HC class workflow. Note also that
slowdown due high load on HC class workflows is more
influenced by the size of the data, than by the complexity
of the workflow.

For a more general type workflow, such as class VP
and MB, the background load have less effect than the
case of ED and HC, with a maximum of 1.1 ratios for
VP, and of 1.5 for MB. The VP figure (figure 9) shows
an insignificant load effect on the total workflow execution
time, with no more that 0.1 increase ratio. This means a
close to optimal experimental utilization of grid resources.
However, the higher level of parallelism in a workflow (case
of MB), the more significant is the effect of background
load, especially in when it is high. In fact, for the case
of MB benchmark, which is the most complex benchmark,
the overall slowdown aproaches 50% under sustainable grid
load, especially in the case of the MB.B class benchmark.

As a conclusion, we can state that experimental tests using
TSM-SIM show that the effect of background grid loads
have a higher impact of grid workflows with high level of
parallelism (ED and MB). This can be correlated to the
average execution set size. In fact, a high level of parallelism
in a grid workflow causes the TSM logical metascheduler to
generate bigger execution sets. The jobs composing these
execution sets are more penalized by the background load,
because they also compete with each other for fast resources.

This peer competition effect, while it can also effect
non-related grid jobs, significantly impacts grid workflow
applications more than isolated grid jobs. The background
load effect in case of grid workflows is higher, because its
impact on scheduling and execution is compounded.

Fig. 8: Load Effect on HC Class Workflow.

Fig. 9: Load Effect on VP Class Workflow.

Fig. 10: Load Effect on MB Class Workflow.

Int'l Conf. Grid Computing and Applications | GCA'12 | 31

7.2 Submission Delay Effect
In this experiment, we test the difference between the

ESA/WWA and DESA/WWA, and study the effect of the
introduction of a delay in submitting execution sets by
the logical meta-scheduler. In a real grid environment, the
motivation of such delay is to allow other grid resources to
become available, so that a better choice of grid resources is
possible. The intention is to wait for potential powerful grid
resources to join the pool of available grid resources, which
can be beneficial for the overall grid execution. We want to
measure if the time wasted waiting for such resources can
be easily made up by using a powerful grid resources. The
goal of this simulation run is to experimentally study when
such strategy is beneficial for grid workflow scheduling, and
identify application and environment properties that impact
this scheduling strategy. We simulate the submission delay
variant (TSM-SDV) in TSM-SIM, by keeping a constant
delay of 10 seconds, while varying the background load
on the grid infrastructure (grid network and resources). We
run 10 simulation of each kind, and measured the average
simulation time. We tested this scheduling variant for each
grid NGB benchmark (with the S, A, and B complexity
classes).

Figures 11 to 14 show the summary of these sim-
ulation runs. The Y axis shows the improvement rate
RATETSM−SDV that DESA contributes to the total work-
flow execution time compared to ESA. RATETSM−SDV is
calculated using the following equation:

RATETSM−SDV = TndGAET /TndGAET (6)

with TndGAET is the experiment total workflow execution
time in case of no submission delay, and TndGAET the same
time with submission delay.

The common observation is that submission-delay nega-
tively impacts the grid workflow execution time. In most
of the cases, a 50% performance hit is observed. (ED)
benchmarks experience the worst performance. The impact
can be as much as 500% (rate of 0.2) for the simple class
S under no background load. The impact is less visible in
case of high than low background load. We can explain this
by the 100% parallelism of ED applications. Delaying the
submission of the execution set, which contains most of
the grid workflow jobs in case of ED benchmarks, gives
the opportunity to background load jobs to use fast grid
resources. Thus, the penalty of any delay is greater than
any benefit that might be achieved. (HC) benchmarks suffer
similar negative impact. The performance hit, however, is
about constant, varying from a 0.35 to 0.6 factor depending
on the load. (MB) benchmarks, the most complex type
amount tested benchmarks, do record a similar performance
hit in the range of 0.25 to 0.75. The only difference with the
impact is amplified by heavy load in a significant proportion.
The response time for (VP) type benchmarks seems to be

Fig. 11: Submission Delay Effect on ED Class Workflow.

Fig. 12: Submission Delay Effect on HC Class Workflow.

different from other benchmarks. While the behavior seems
to be similar than other benchmarks in case of no or little
background load, the total grid application performance
seems to be un-affected by the submission delay variant.
In fact, in case of no load, a slight 10% improvement is
recorded, making it the only case where the submission delay
benefits the overall grid workflow performance.

8. Conclusions and Future Work

This paper outlined the details of TSM-SIM, a two-stage
grid metascheduling simulator aimed at grid workflow appli-
cations. It is primarily intended to test the TSM architecture
on a simulated environment, by building on existing GridSim
services to configure two-stage scheduling services. We have
demonstrated how it can be used to evaluate grid workflow
scheduling algorithms using NAS Grid benchmarks.

For future work, TSM-SIM will be used to analyze
the performance of other logical and physical scheduling
algorithms, using grid workflows. We also intend to build
extensibility modules to support high level grid schedulers
such as GridWay [14].

32 Int'l Conf. Grid Computing and Applications | GCA'12 |

Fig. 13: Submission Delay Effect on VP Class Workflow.

Fig. 14: Submission Delay Effect on MB Class Workflow.

References
[1] M. Amine Belkoura and N. Lopez Benitez, Two-Stage Metascheduling

for Computational Grids, World Congress in Computer Science,
Computer Engineering, and Applied Computing, 2009.

[2] M. Amine Belkoura and N. Lopez Benitez, TSM-SIM: A Two-
Stage Grid Metascheduler Simulator, International Journal of Grid
Computing Applications (IJGCA), 2(4), 11 - 26, 2012.

[3] R. Buyya and M. Murshed, GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for
Grid Computing, Journal of Concurrency and Computation: Practice
and Experience (CCPE), 2002.

[4] Anthony Sulistio, Uros Cibej, Srikumar Venugopal, Borut Robic and
Rajkumar Buyya, A Toolkit for Modelling and Simulating Data Grids:
An Extension to GridSim , Concurrency and Computation: Practice
and Experience (CCPE), Online ISSN: 1532-0634, Printed ISSN:
1532-0626, 20(13): 1591-1609, Wiley Press, New York, USA, 2008.

[5] Agustin Caminero, Anthony Sulistio, Blanca Caminero, Carmen
Carrion and Rajkumar Buyya,Extending GridSim with an Architecture
for Failure Detection , Proc. of the 13th International Conference on
Parallel and Distributed Systems (ICPADS 2007), Dec. 5-7, 2007,
Hsinchu, Taiwan.

[6] S. De Munck, K. Vanmechelen and J. Broeckhove, Improving The
Scalability of SimGrid Using Dynamic Routing,Proceedings of ICCS,
2009.

[7] Fred Howell and Ross McNab, Simjava: A Discrete Event Simulation
Package for Java with Applications in Computer Systems Modelling,
in Proc. of First International Conference on Web-based Modelling
and Simulation, San Diego CA, Society for Computer Simulation,
1998.

[8] A. Takefusa, K. Aida, S. Matsuoka, Overview of a Performance
Evaluation System for Global Computing Scheduling Algorithms,
Proceedings of the 8th IEEE International Symposium on High
Performance Distributed Computing (HPDC8), 1999.

[9] William H. Bell and David G. Cameron and Luigi Capozza and A.
Paul Millar and Kurt Stockinger and Floriano Zini, OptorSim - A
Grid Simulator for Studying Dynamic Data Replication Strategies,
International Journal of High Performance Computing Applications,
2003.

[10] M. Litzkow and M. Livny, Experience with the Condor Distributed
Batch System, Proceedings. of IEEEWorkshop on Experimental
Distributed Systems , 1990.

[11] Michael A. Frumkin and Rob F. Van der Wijngaart, NAS Grid
Benchmarks: A Tool for Grid Space Exploration, HPDC, 2001.

[12] Rob F. Van Der Wijngaart and Michael Frumkin, NAS Grid
Benchmarks Version 1.0, 2002.

[13] Anonymous, HPCC OSG Cluster Grid, available at http://antaeus.
hpcc.ttu.edu/wordpress/.

[14] Huedo, Eduardo and Montero, Ruben S. and Llorente, Ignacio M.
A Framework for Adaptive Execution in Grids, SoftwareŮPractice
Experience, Volume 34 Issue 7, 2004.

Int'l Conf. Grid Computing and Applications | GCA'12 | 33

Multi-objective Heuristic for Workflow Scheduling on

Grids
Vahid Khajehvand

1
, Hossein Pedram

2
, and Mostafa Zandieh

3

1
Department of Computer Engineering and Information Technology, Qazvin Branch, Islamic Azad University,

Qazvin, Iran
2
Department of Computer Engineering and Information Technology, Amirkabir University of Technology

(Tehran Polytechnic), Tehran, Iran
3
Department of Industrial Management, Shahid Beheshti University, G.C., Tehran, Iran

Abstract—The Utility Grids develop a cyber-infrastructure

for using services transparently in a distributed

environment. The parameters of the Quality of Service such

as the allocation-cost and turnaround time, needs to be

taken care of for scheduling a workflow application in the

Utility Grids. These target parameters are sometimes likely

to be in conflict. In this paper, a multi-objective cost-based

model along with a heuristic algorithm is presented for

scheduling a workflow application in order to optimize the

multi-objective allocation-cost and makespan in a very low

runtime. The results of the wide-spread simulation indicate

that the proposed algorithm is effective against an increase

in the application size. The proposed algorithm effectively

outperforms the current algorithms in terms of the

allocation-cost, makespan and runtime scalability.

Keyword: Utility Grids; Application Scheduling; Multi-

objective Optimization.

1 Introduction

Grid computing is capable of controlling a wide

variety of heterogeneous distributed resources to execute

computation and data intensive applications. Grid

computing has recently been oriented towards pay-as-you-

go models. In these models, the resource providers receive

fees from the users for presenting computing and data

services. Shared distributed infrastructures come up with

the grid environment software and hardware resources, in

order to conduct large-scale computations. These

infrastructures turned out to be efficient for executing

applications in sciences such as astronomy [1], high energy

physics [2] and others.

The challenge faced by the scientists in these fields is

how to use cyber-infrastructure for transferring knowledge

from the scientific environments to the distributed

computing environments. The workflow is the most

common approach to describe an application in a high level

form regardless of the distributed computing environment.

A workflow is represented in a ―Direct Acyclic Graph‖

(DAG) with nodes and edges representing the tasks and

data dependencies between the tasks, respectively. Once an

application is transformed into the workflow structure, a

workflow management system will be ready to control and

manage the execution of workflow on the distributed

infrastructure. In these environments, indeed, access to the

shared computational resources is carried out through the

queue-based Local Resource Management (LRM) system.

The grid computing is an interactive environment in

which at one end, the users are expecting to receive

services for their applications, whereas the resource

providers are ready to offer services to the users at the

other. The resource providers advertise the available

resources set to be planned by the users, brokers and the

application-level schedulers who receive fees upon

providing services. An environment characterized with the

above-mentioned users and service providers is known as

Utility Grids. A competition develops among users caused

by the resources-pricing policies so that users begin being

involved in a competition with one another only to gain a

resource with an affordable cost and an efficient processing

capability. Similarly, resource providers are driven into a

competition with one another to sell their idle resources to

the users in order to gain more profits as well as enhance

the resource utilization.

The scheduling problem becomes highly complicated

and NP-complete [3] in such an environment due to the

different resource consumers and providers so that each

side pursues its own profits. It is worth noting that the

resource consumers and providers are acting independently

with conflicting aims. The resource consumers seek the

minimum time (makespan) and allocation-cost for

scheduling application, whereas the resource providers

seek the resource utilization gains. Thus, the main

challenge confronted by the users in this environment, will

be scheduling an application on the heterogeneous

resources in which the users have no explicit control so that

both time and allocation-cost can be minimized.

The present paper deals with developing a Workflow

Planning Cost-based (WPC) model in order to effectively

schedule an application in the Utility Grids so that the

application makespan and allocation-cost can be

minimized. In fact, the WPC model allows the users to

make a trade-off between an application makespan and

34 Int'l Conf. Grid Computing and Applications | GCA'12 |

allocation-cost. Next, a First-fit Cost-Time Trade-off

(FCTT) heuristic algorithm is employed to solve the WPC

model. The FCTT is a heuristic algorithm that schedules an

application in a form that both the makespan and the

allocation-cost can be optimized due to the trade-off factor.

The trade-off factor shows the preference of the allocation-

cost optimization to the turnaround-time. Finally, to study

and evaluate the efficiency of the proposed algorithm on

the proposed model, a handful of experiments have been

conducted and simulated. The simulation results show that

the FCTT algorithm is effective due to an increase in

workflow size. The main contributions of the present paper

are as follows:

 Developing a WPC model based on provisioning the
resources for scheduling a workflow, so that the
application makespan and allocation-cost can be
minimized.

 Developing a multi-objective FCTT heuristic algorithm
based on the WPC model with an effective performance
due to an increase in the workflow size.

The rest of this paper is organized as follows: Section

2 discusses the related works. Section 3 introduces an

application scheduling problem and execution

environment. A proposed detailed model and heuristic

algorithm is described in section 4. Section 5 involves a

simulation setup and its relevant experiments in order to

evaluate the efficiency of the proposed algorithm. In

section 6, the results have been analyzed. Finally, section 7

ends with a conclusion.

2 Related works

As shared multiprocessing systems advance, the issue

of the application scheduling has been the main concern.

To tackle the problem, the providers seek to maximize the

utilization of the resources whereas the users seek to

minimize turnaround time of the application. There is a

comprehensive introduction on the job scheduling

strategies [4, 5]. Moreover, in [6], the computational

models are surveyed for Grid scheduling problems and

their resolutions using the heuristic and meta-heuristic

approaches.

In the queue-based systems, the users submit the tasks

to the resource queues, whereas the resource allocation will

subsequently be conducted due to the strategy of LRM

system. In such systems neither has the user explicit

control on the allocating resources to the tasks nor can the

user optimize the performance. This delivered quality of

service to the users is known as the best effort QoS.

The alternative approach is one of the planning-based

systems [7]. In these systems, according to agreements the

start time of the task can be established in advance instead

of the task waits in queue in order to get access to the

resource. The above-mentioned agreements are based on an

abstract description, so-called ―slot‖ so that the slots are

specified by the start time, the number of available

processors, the cost and the duration parameters. In this

paper, the planning-based system is exploited as the

resource management strategy.

In [8], a heuristic algorithm is presented for

scheduling many parallel applications on the Utility Grids

so that it can manage and optimize the cost-to-time trade-

off. This approach is close to the studies conducted for this

paper and its main difference from that of the proposed

approach lies scheduling the parallel applications, whereas

the approach adopted by present paper is based on

scheduling the workflow application. Due to the data

dependencies among tasks, scheduling the workflow

application becomes more complex than scheduling the

parallel application.

The main objective of the conventional workflow

scheduling is the minimization of the time. A large number

of the workflow-based scheduling algorithms rest on the

list-scheduling technique. Due to this technique, a rank is

typically assigned to each application task, the tasks are,

subsequently, sorted and scheduled in a descending order

of the corresponding rank. The Heterogeneous Earliest

Finish Time (HEFT) algorithm [9] is one of the most

common list-based workflow scheduling algorithms. To

obtain the list-scheduling, the HEFT takes the task runtime

and the data transfer between the tasks and the

heterogeneity of the resources into account. The HEFT

schedules the workflow application with a high

performance in the heterogeneous environment [9, 10].

There is a handful of the different studies conducted

on the cost optimization of the workflow scheduling close

to the current paper’s study. In [11], a genetic algorithm is

proposed to find an optimized mapping of the tasks to the

resources which minimizes both financial cost and

makespan. This approach is developed in [12, 13] which

presents the cost-based model in which the resource

providers advertise the available resource slots to the users.

A multi-objective genetic algorithm is presented which is

capable of provisioning a subset of the resource slots to

minimize the application makespan under the minimum

resource allocation-cost. The main difference between

these cost minimization algorithms and the present paper’s

algorithm lies in the fact that these minimization

algorithms rely on a cluster with all processors which are

homogeneous. Thus, in [12, 13], the entire resources

possess identical CPU ratings and cost processing whereas

in the proposed model, all resources are constituted of the

heterogeneous clusters with different processing cost and

CPU ratings in the real-world Utility Grids environments.

Hence, removing this resource homogeneity complicates

the identification of an appropriate resource selection.

Since the above-mentioned cost optimization

algorithms [12, 13] are genetic-based ones, the runtime

Int'l Conf. Grid Computing and Applications | GCA'12 | 35

takes a longer time. In case, the slots’ characteristics

undergo a change during scheduling, the slots’

characteristics are to be updated and a rescheduled

resulting in a far longer runtime. Hence, these approaches

do not serve the purpose in the dynamic environments such

as the Grids.

3 Application scheduling problem

Workflow execution planning is carried out prior to

the workflow execution. It intends to examine users'

execution requirements and to generate suitable execution

schedules. The formulation of the optimization problem of

the workflow execution and execution environment is

presented for the workflow planning problem beneath.

The agreement-based resource management allows an

application-level scheduler to attain the resources in the

desired time. The workflow management system, therefore,

ensures access to the desired resources within the agreed

time and cost. In the most resources, an abstract-agreed

structure is reached between the provider and consumer in

terms of available time slots. In clusters, for instance a slot

indicates the availability of a number of the related

processors, start time, duration and cost. Once a slot is

obtained, it can later on be used without an extra

interaction between the provider and consumer. For

example, a slot on a cluster is likely to be used to execute a

workflow consisting of a number of tasks.

A workflow-application is represented in a DAG. A

DAG is defined as G = (V, E), where V is a set of nodes,

each node representing a task, and E is a set of links, each

link representing the execution precedence order between

two tasks. For example, a link (i, j) ∈ E represents the

precedence constraint that task vi needs to be completed

before task vj starts. The data is a V*V matrix of the

communication data, where dij is the amount of the data

required to be transmitted from the task vi to the task vj. As

a workflow may consist of sub-workflows with multiple

entries and exits so the first thing to be done is to add two

pseudo-tasks, a top task and a bottom task, with zero

execution time indicated by 0 and n + 1, respectively. The

top task spawns all actual entry tasks of the workflow to be

linked to a single node, while the bottom task joins all

actual exit tasks to a single node.

The user submits the application characteristics to the

application-level scheduler only to be executed on the grid

environment. The user expects to have his application

executed with the minimal time and allocation-cost.

Certainly, the users exploit trade-off factor in order to show

a preference for cost to time. In cases where this factor is

not specified by the users, the default trade-off factor is

considered as equal.

In fact, the application-level scheduler acts as a

mediator between the resource providers and users. Due to

the reports of the available slots obtained from the resource

providers, the application-level scheduler plans the

application. The entire slots exploited in planning the

application, will be submitted to LRM in order to provision

the resources. Each computational resource is equipped

with a number of the processors, the memory and the

network interfaces which reveals an independent

processing unit. The entire resources are fully-connected

while being capable of executing all application-tasks. All

of the computational resources can act as a service-

provider (site) for time-slots.

The application-tasks will be non-preemptively

executed, so that one or a multiple of computational

resources are exclusively applied to in order to be executed

in due time. We suppose that the application-task

performance models are clear on each resource. The

execution time of a certain task, therefore, may be obtained

from a certain resource due to application performance

models. Also, the execution of a single task consists of

three phases: (a) the input data retrieval from the resource

executing the immediate predecessors of the task (b) the

task execution and (c) the output data communication from

the current resources to the resources presumed to execute

successors of the task.

To transfer the data between the application-tasks,

three data-management strategies have been proposed by

Deelman et al. [14] known as the regular, dynamic cleanup

and the remote I/O (on demand). In this paper, the remote

I/O (on demand) strategy has been used, so that the output

data are submitted to the resource that is seeking to execute

immediate the successor-tasks from the immediate

predecessor-tasks using the existing high-speed network

among the resources. As the application tasks are assumed

to be rigid, eventually, processors in need are

simultaneously and exclusively handed over to desired task

throughout the execution time.

4 Proposed model and heuristic

algorithm

In general, the users are in need of two QoS: the

deadline and budget of their applications on the pay-per-

use services [15]. The users normally tend to run their

applications in as the minimum time and cost as possible.

Thus, a trade-off factor indicating the significance of the

cost to time will be used. In this section, the issue of

application scheduling will be stated and the WPC model

will be presented and then solved in order to optimize the

application cost-time trade-off. Finally, a heuristic

algorithm will be developed to conduct the application

scheduling with the aim of optimizing the cost and time.

36 Int'l Conf. Grid Computing and Applications | GCA'12 |

4.1 The proposed multi-objective cost-based

model

The execution model consists of a set of

heterogeneous consumers and resource providers where the

consumers seek to schedule their workflow applications

with the minimum cost and time. In this model, R is a set

of available heterogeneous resources and V is a set of the

tasks of the workflow application. Each resource consists

of a set of slots for executing the task vi.

Services have different processing capabilities which

are delivered with different prices. The time(vij) is the

normalized completion time of vi on the resource rj and the

cost(vij) is the normalized allocation-cost of vi on the

resource rj. The normalization matters since it is not clear

what value ranges the allocation-cost and finish time will

take in a given solution. The scheduling optimization

problem seeks to generate solution S, which maps every

task vi to a suitable resource rj to achieve the multi-

objective cost-based metric defined by

() (1) cos (), ,ij ij ij i jS time v t v v V r R          (1)

where α is a trade-off factor that indicates a preference of
the allocation-cost to the execution time of the workflow
scheduling. Thus, the objective function of the application
scheduling problem is obtained by the minimization of the
sum of the multi-objective cost-based metrics for the whole
application-tasks reached by

min(min).
j

i

ij
r R

v V

S
 

 

 (2)

The application scheduling problem involves

mapping each task vi to the suitable slot of the resource rj,

so that the application makespan and allocation-cost can be

minimized. Upon the completion of the whole application

tasks, makespan and allocation-cost will be computed. In

the following section, a heuristic algorithm is presented to

solve the WPC model as a whole.

4.2 The proposed heuristic algorithm

The FCTT is an algorithm which selects the most

appropriate slots for each task, which are ready to be

executed. There is a handful of choices for each task,

among which the choice capable of minimizing the multi-

objective cost metric of (1) will be selected as the best

solution. According to the best solution, the Earliest Start

Time (EST) needs to be computed to execute immediate

successor tasks and this procedure will be carried on so

long as the execution of the whole application tasks will be

finished.

The FCTT algorithm pseudo-code is presented in

algorithm 1 which operates according to the WPC model.

The algorithm obtains the available slot lists to all

resources and the unscheduled tasks as an input parameter

(lines 1, 2). Moreover, the EST is initialized with

simulation current time (line 3). The application-level

scheduler carries out the planning of each application task

due to available slots list characteristics with an eye on the

multi-objective cost metric presented in (1), (lines 4 to 14).

Initially, a list of unplanned tasks which are eligible to be

executed is selected (line 5). Next, the eligible tasks are

defined as the ones whose parents’ tasks execution is

completed, though the very same tasks have not been

executed yet. The available slots list of each resource is

obtained by line 7. In line 8, the EST of the task T on all the

resources is computed. Eventually, the Earliest Finish Time

(EFT) of the task T is computed, (line 9).

The EST is computed on the basis of the completion-

time of the latest parents tasks T. Next, the best slot

capable of executing the task is selected for each task T on

each resource. In cases, the selected resource does not

match with the resource which executes the parents’ tasks,

the data-transfer time needs to be added to the EST.

 Once the best slot to execute task T is obtained on

each resource, the resource which minimizes the multi-

objective cost metric in (1) will be selected as the best

resource (line 10). Now, it comes to allocating the task T

to a selected resource (line 11) as well as updating the slots

list of the selected resource (line 12). This procedure needs

to be continued as long as there still exists an eligible task

(lines 4 to 14). Finally, when the entire application tasks

are planned, the time and allocation-cost need to be

computed. At the end of the completion of the whole

application tasks, the slots assigned to the application tasks

will be released.

5 Simulation setup

To conduct an experimental evaluation of the

efficiency of algorithm 1, the GridSim [16] is used to

simulate the application-level scheduler in the Utility Grids

environment. The Grids environment which is modeled in

this simulation consists of ten sites belonging to a subset of

the European Data Grid (EDG) spread across five countries

which are interconnected via a high-speed network [8, 17].

The workload simulated on these sites follows the

workload model generated by Lublin [18]. The main

purpose of the use of this model is to create a realistic

simulation environment where the tasks compete with one

another.

The Lublin workload model determines the arrival-

time, the number of required processors and the estimated

runtime parameters. This model is derived from the trace of

the existing model to do rigid tasks. Table 1 shows the

workload parameters values applied to in the Lublin model.

Table 2 shows resource configuration on the Grids test-bed

in order to simulate the distributed system as well as the

cost of using a processor, a CPU rating, the number of

CPUs and the site-location of each resource.

This resource configuration is used in order to show

the heterogeneity of the execution environment. The entire

Int'l Conf. Grid Computing and Applications | GCA'12 | 37

resources are simulated using the advance reservation

policy and the conservative backfilling policy in order to

improve response time. In general, in the real-world, the

resource pricing is controlled by different economic

factors, thus, the time and allocation-cost minimization is

likely to conflict with one another.

To conduct experiments, a parameterized graph

generator is used to create a synthetic workflow application

[9]. The application characteristics contain n=100 tasks

with an average execution time of 1000 s [13]. The

workflow on the average consists of n levels (the

workflow graph depths) and n tasks at each level. Each

task on the average needs 25 CPUs for executing. The

mean value of the data transfer among the tasks is 1000

Gb. The mean bandwidth value among resources is 10 Gb/s

with a mean latency time of 150 s.

Algorithm 1: The pseudo-code for the FCTT algorithm

Input:

An application characteristics with an instruction length for
each task and the required CPUs
The resource characteristics and the available slots to each
resource

Output: The workflow scheduling

1 Get the list of the available time slots for all resources
2 UnScheduledTask = get the list of the tasks which have not

been scheduled yet.
3 Assign the simulation current time to the Earliest Start

Time(EST).
4 While UnScheduledTask is not empty do
5

EligibleTasks = select all tasks which executions of their
parents have been completed.

6 for each T in the EligibleTasks do
7 Acquire the available slots of each resource.
8 Compute the EST of the task T on each resource.
9 Compute the Earliest Finish Time (EFT) of the task T.
10

Find a time slot (TS) which is feasible for the task T
while minimizing the multi-objective cost-based
 metrics defined by (1).

11 Allocate the TS on the resource r to the task T
12 Update the list of available slots to the resource r

13 end for
14 end while
15 Compute the makespan and allocation-cost of the application.

Table 1: Lublin workload model parameter values.
Workload parameter Value

JobType
Maximum number of CPUs required by a
job(p)
uHi
uMed
Other parameters

Batch JOBS
1000
Log2(p)
uHi-2.5
As created by Lublin
model

Table 2: Simulated EDG testbed resources.
Resource name
(Location)

Number
of CPUs

Single CPU
rating(MIPS)

Processing
cost(G$)

RAL(UK) 20 1140 0.0061
Imperial College(UK) 26 1330 0.1799
NorduGrid(Norway) 265 1176 0.0627
NIKHEF(Netherlands) 54 1166 0.0353
Lyon(France) 60 1320 0.1424
Milano(Italy) 135 1000 0.0024
Torina(Italy) 200 1330 1.856
Catania(Italy) 252 1200 0.1267
Padova(Italy) 65 1000 0.0032
Bologna(Italy) 100 1140 0.0069

At this stage, the scheduling algorithm which uses the

best-effort QoS for scheduling, is simulated and tagged as

the BE. As the number of the resources is m and the

resources are heterogeneous in terms of CPU rating and

allocating-cost, a heuristic algorithm needs to be taken into

account to select a suitable resource in the best-effort QoS.

In BE, the exploited heuristic method selects a resource

with the minimum number of tasks in the waiting and

running queues. The majority of the resource management

systems make it possible for users to obtain the number of

the tasks in the waiting and running queues [13].

An application scheduling algorithm using cost model

is presented by Singh et al. [12, 13]. Their algorithm has

provisioned a set of the slots to optimize performance

under the minimum allocation-cost in order to execute

application on the provisioned slots. This cost-modeled

algorithm makes a trade-off between scheduling and

allocation-cost based on trade-off factor. After that, the

scheduling takes place using a multi-objective genetic

algorithm [19], as well as simulating the algorithm. It is

tagged as the MOGA for brevity [12, 13].

The FCTT, the MOGA and the BE algorithms are

simulated and their performance is evaluated through

conducting a number of experiments. Finally, the results

from the algorithms are compared with one another. In the

next section, simulation results which are compared will be

thoroughly analyzed.

6 Analysis of results

In this section, the application performance results are

compared and analyzed with criteria such as the makespan,

allocation-cost and runtime of the proposed FCTT

algorithm along with the MOGA and the BE algorithms

[12, 13]. Also, it will be shown how the proposed heuristic

schedules the application through optimizing the makespan

and the allocation-cost in the minimum runtime. According

to the presented characteristics in the section 3, a synthetic

workflow application is generated considering “trade-off

factor=0.5”. The rest of the simulation parameters is

compatible with the setups in the section 5. The Y-axis is

drawn in logarithmic scale to make the experiments results

discernable.

A few experiments have been conducted to determine

the impact of the workflow size on the allocation-cost,

makespan and runtime in terms of the number of the

application tasks. It is followed by an analysis of the

comparison between the FCTT, MOGA and BE

algorithms. The experiments were conducted with the

application tasks’ sizes of 25, 50, 100, 200, 300 and 500 in

order to study the impacts on the allocation-cost, makespan

and runtime in the application scheduling due to the

increasing number of the application tasks.

Figs. 1 and 2 show the impact of the workflow size on

the allocation-cost and makespan in the application

38 Int'l Conf. Grid Computing and Applications | GCA'12 |

scheduling, respectively. As Figs. 1 and 2 indicate, the

allocation cost and makespan of the proposed algorithm

which the average of all its instances are around 37% and

1% less than the MOGA algorithm, respectively, and one

order of magnitude less than the BE algorithm. The low

cost and makespan in proposed algorithm is explained by

the fact that it selects a slot with the earliest start-time to

run the eligible task from the whole existing slots

according to the multi-objective cost metric of (1).

However, the MOGA algorithm randomly selects a subset

of the slots for scheduling the whole tasks. Due to the

existing data dependency among tasks, if the execution of

an eligible task is postponed, it will result in lengthening

the makespan. In the BE algorithm, as long as the

executions of the parent tasks are not completed, child-

tasks will not be submitted. As the workflow graph depth is

n , the higher the number of the tasks n is, the deeper the

workflow will be. Eventually, an increase in the workflow

graph depth leads to an increase in the number of the times

a task needs to wait, causing an increase in the makespan.

Fig. 3 reveals the FCTT, MOGA and BE algorithms’

runtime relative to an increase in the number of the

application tasks. As the figure shows, the proposed

algorithm in all instances is almost three orders of

magnitude less than the MOGA and the BE algorithms.

The low time-complexity of the proposed algorithm is

explained by the fact that it seeks the best slot for a single

task just once, while the MOGA algorithm is implemented

based on the genetic algorithm. One of the disadvantages

of the genetic algorithms is length of their runtime.

Moreover, in order to seek a subset of proper slots, the

MOGA algorithm needs to repetitively plan the whole

chromosomes of each generation of the population so that

the best solution of each generation can be selected. The

whole process involves a very high time-complexity.

Therefore, the higher the number of the application tasks

is, the longer the runtime of the algorithm will be. Due to

Fig. 3, if the number of the tasks increases from 300 tasks

to 500 tasks in the MOGA algorithm, its runtime will

increase around one order of magnitude. The BE algorithm

employs the best-effort service while neglecting the cost

metric optimization. After the executions of all the parent

tasks of a single task are completed the execution of the

desired task will start which results in a longer runtime.

According to Fig. 3, due to an increase in the

application tasks even when it is running 500 tasks the

FCTT algorithm requires much lower runtime. The runtime

required by the FCTT algorithm is around 0.7 second for

500 tasks to be executed, whereas in the MOGA algorithm,

the application runtime takes almost one hour and twenty

minutes. As a result, the FCTT algorithm is scalable caused

by an increase in the application tasks as well as capable of

scheduling huge applications with the lowest runtime in the

heterogeneous environment.

Figure 1. Workflow size impact on the application allocation-cost.

Figure 2. Workflow size impact on the application makespan.

Figure 3.Workflow size impact on the application runtime.

7 Conclusion

The present paper deals with designing, implementing

and evaluating the FCTT heuristic algorithm in order to

schedule a workflow application. The paper seeks to

optimize the multi-objective cost-time based on the

proposed WPC model. To develop a real distributed

environment, the resources workload is simulated based on

the Lublin model. Due to many experiments conducted on

a generated syntactic workflow, it was shown that the

FCTT heuristic algorithm is far more effective than the

existing algorithms in terms of the cost-time optimization

and scalability for scheduling the workflow application.

1

10

100

1000

10000

100000

1000000

10000000

100000000

25 50 100 200 300 500

C
o

st
/A

p
p

li
c
a

ti
o

n
(G

$
)

Number of tasks in workflow

BE MOGA FCTT

1

10

100

1000

10000

25 50 100 200 300 500

M
a

k
e
sp

a
n

(h
r
s)

Number of tasks in workflow

BE MOGA FCTT

1

10

100

1000

10000

100000

1000000

10000000

25 50 100 200 300 500

R
u

n
ti

m
e
 o

f
a

lg
o

r
it

h
m

(m
s)

Number of tasks in workflow

BE MOGA FCTT

Int'l Conf. Grid Computing and Applications | GCA'12 | 39

Also, in this paper, a few experiments have been

conducted to determine the impact of the workflow size on

the allocation-cost, makespan and runtime in terms of the

number of the application tasks. Next, it is followed by an

analysis of a comparison between the FCTT, MOGA and

BE algorithms. As a result, it was shown the FCTT

algorithm is scalable due to an increase in the application

tasks as well as capable of scheduling huge applications

with the lowest runtime in the heterogeneous environment.

8 References

[1] D. S. Katz, J. C. Jacob, G. B. Berriman, J. Good,

A. C. Laity, E. Deelman, C. Kesselman, G. Singh,

M. H. Su, and T. A. Prince, "A comparison of two

methods for building astronomical image mosaics

on a grid," in proceedings of the 34th

International Conference on Parallel Processing

Workshops (ICPP 2005 Workshops), Oslo,

Norway, 2005.

[2] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat,

L. Pearlman, K. Blackburn, P. Ehrens, A.

Lazzarini, R. Williams, and S. Koranda, "GriPhyN

and LIGO, building a virtual data grid for

gravitational wave scientists," in 11th IEEE

International Symposium on High Performance

Distributed Computing (HPDC-11), Edinburgh,

Scotland, UK, 2002.

[3] J. D. Ullman, "NP-complete scheduling

problems," Journal of Computer and System

Sciences, vol. 10, pp. 384-393, 1975.

[4] D. Feitelson and L. Rudolph, "Parallel job

scheduling: Issues and approaches," in 1st

Workshop on Job Scheduling Strategies for

Parallel Processing, Santa Barbara, CA, 1995, pp.

1-18.

[5] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K.

Sevcik, and P. Wong, "Theory and practice in

parallel job scheduling," in 3rd Workshop on Job

Scheduling Strategies for Parallel Processing,

Geneva, Switzerland, 1997, pp. 1-34.

[6] F. Xhafa and A. Abraham, "Computational models

and heuristic methods for Grid scheduling

problems," Future Generation Computer Systems,

vol. 26, pp. 608-621, 2010.

[7] M. Hovestadt, O. Kao, A. Keller, and A. Streit,

"Scheduling in HPC resource management

systems: Queuing vs. planning," in 9th Workshop

on Job Scheduling Strategies for Parallel

Processing, Seattle, WA, 2003, pp. 1-20.

[8] S. K. Garg, R. Buyya, and H. J. Siegel, "Time and

cost trade-off management for scheduling parallel

applications on Utility Grids," Future Generation

Computer Systems, vol. 26, pp. 1344-1355, 2010.

[9] H. Topcuoglu, S. Hariri, and M. Wu,

"Performance-effective and low-complexity task

scheduling for heterogeneous computing," IEEE

Transactions on Parallel and Distributed Systems,

vol. 13, pp. 260-274, 2002.

[10] M. Wieczorek, R. Prodan, and T. Fahringer,

"Scheduling of scientific workflows in the

ASKALON grid environment," ACM SIGMOD

Record, vol. 34, pp. 56-62, 2005.

[11] G. Singh, C. Kesselman, and E. Deelman,

"Application-level resource provisioning on the

grid," in E-SCIENCE '06 Proceedings of the

Second IEEE International Conference on e-

Science and Grid Computing Amsterdam, The

Netherlands, 2006, pp. 83-83.

[12] G. Singh, C. Kesselman, and E. Deelman, "A

provisioning model and its comparison with best-

effort for performance-cost optimization in grids,"

in Proceedings of the 16th international

symposium on High performance distributed

computing, Monterey, CA, USA, 2007, pp. 117-

126.

[13] G. Singh, C. Kesselman, and E. Deelman, "An

end-to-end framework for provisioning-based

resource and application management," Systems

Journal, IEEE, vol. 3, pp. 25-48, 2009.

[14] E. Deelman, G. Singh, M. Livny, B. Berriman,

and J. Good, "The cost of doing science on the

cloud: the montage example," in Proceedings of

the 2008 ACM/IEEE conference on

Supercomputing, NJ, USA, 2008, pp. 1-12.

[15] J. Yu, R. Buyya, and C. K. Tham, "Cost-based

scheduling of scientific workflow application on

utility grids," in First International Conference on

e-Science and Grid Technologies (e-Science'05),

Melbourne, Australia, 2005, pp. 140-147.

[16] R. Buyya and M. Murshed, "Gridsim: A toolkit for

the modeling and simulation of distributed

resource management and scheduling for grid

computing," Concurrency and Computation:

Practice and Experience, vol. 14, pp. 1175-1220,

2002.

[17] W. Hoschek, J. Jaen-Martinez, A. Samar, H.

Stockinger, and K. Stockinger, "Data management

in an international data grid project," in Grid

Computing - GRID 2000: First IEEE/ACM

International Workshop, Bangalore, India, 2000,

pp. 333-361.

[18] U. Lublin and D. G. Feitelson, "The workload on

parallel supercomputers: modeling the

characteristics of rigid jobs," Journal of Parallel

and Distributed Computing, vol. 63, pp. 1105-

1122, 2003.

[19] C. M. Fonseca and P. J. Fleming, "Genetic

algorithms for multiobjective optimization:

Formulation, discussion and generalization," in

Proceedings of the 5th International Conference

on Genetic Algorithms, Urbana-Champaign, IL,

USA, 1993, pp. 416–423.

40 Int'l Conf. Grid Computing and Applications | GCA'12 |

Adaptive Divisible Load Scheduling in

Computational Grids
Luis de la Torre

1
 Héctor de la Torre

2

1
Science and Technology School, Universidad Metropolitana, San Juan, PR

2
School of Engineering, Turabo University, Gurabo, PR

Ana G. Mendez University System.

del1@suagm.edu, hectorfabio50@hotmail.com

Abstract

 Several problems in science and engineering admit

computational solutions that are implementable over

Grid computing platforms. One problem, frequently

faced by implementers is how to divide and distribute

the workload into chunks among the Grid workers, the

so-called load scheduling problem. Most commonly

researches have studied this phenomena departing from

a statics approach. This assumption is not fully

functional in Grid environment where the resources are

non-dedicated. This research proposed a methodology

to integrate a statistic heterogeneous platform

scheduling with a dynamic resources prediction to

distribute the workload depending on future available

resources. The SCOW algorithm is integrated to a

tendency-based method, a mechanism to predict CPU

utilization. These implementations can retro aliment the

statistic scheduling algorithm to produce accuracy

estimation to the Grid resources changes.

Kewords: Scheduling, grid computing, divisible load,

divisible task, makespan, Throughput

1. Introduction

 Divisible workload consists of workloads that can be

partitioned into arbitrary tasks or chunks. These chunks

in many cases are a core task that is repeated a number

of times over different data. In single-program multiple-

data (SPMD) style, these tasks are implemented as

nested sequences of do-loops around the core task.

Usually, a master process scheduler the chunks across

all participating workers (round of data installments), so

the execution time of the entire load (makespan) is

minimum. In this research, is assumed that the

distribution process use the network connection in a

sequential fashion [3]. Each data installment is followed

by a receive and a compute operation, both performed

by the receiving worker. The p workers can compute

and receive the next tasks concurrently. In SPMD

implementations, rounds are controlled by an external

do-loop, which imposes the periodic character of the

job's execution. The main parameters in a SPMD

implementation are thus, the number of rounds, denoted

below by m, the number of workers involved in the

concurrent computations, denoted below by q and the

chuck sizes xi to the worker i, 1≤ i ≤p.

Two approaches dominate among the methodologies

developed for scheduling of master-workers load.

These methodologies are: steady state scheduling

(SSS)[6, 7], and divisible load theory (DLT) [2, 3, 4.].

Both methodologies assume dedicated resources. These

assumptions make the algorithm poor in real time

environment such as Grid computing platforms with

non-dedicated workers.

 SCOW is a periodic user-level scheduler that tunes

some selected parameters in a single-program multiple-

data implementation of a master-worker parallel

solution. SCOW minimizes the job make-span under

either maximal production per period, or perfect worker

utilization. This paper presents the theoretical

foundations of SCOW to maximal production per

period improving with the mixed tendency based

strategy for predicting the CPU utilization of workers.

UMR [12] is a DLT multi-round algorithm for

scheduling divisible loads on parallel computing

systems. For homogeneous systems, the method uses

uniform rounds meaning that in each round, each

worker receives the same amount of work. There are

two versions for the UMR idea. In the original, called

UMR, the uniform amount of work is increased with

each round. In a revised version, called UMR2, the

uniform amount is increased or decreased depending on

a parameter . If  > 1 the amount is increased, and

decreased if  < 1. The UMR scheduler maintains

perfect worker utilization throughout the execution, but

if  < 1 there is no perfect worker utilization for

URM2. Both methods model the system with a set of

affine equations expressing execution times in terms of

load. These equations are similar in spirit to the one

used for SCOW. The model gives the amount of work

for the first round and, through a recursive formula, the

increments or decrements per round. Authors in [13]

improve the UMR by predict the workers CPU

utilization with a mixed tendency based strategy.

Int'l Conf. Grid Computing and Applications | GCA'12 | 41

This paper is organized as follows: Section 2 discusses

the model. Section 3 describes the Theoretical

Foundations of SCOW. Section 4 shows the Makespan

minimization problem to develop a multiround divisible

load scheduling algorithm for affine cost models. In

section 5, the local tasks CPU utilization in a CPU

prediction strategy is incorporated. SCOWS was

evaluated with extensive simulation in Section 6 and

the executions is discuss later in on section 7.

Finally, Section 8 concludes the paper and discusses

future directions.

2. Model

 As stated in 1, is assumed a total number X of core

tasks. These core tasks can be agglomerated to produce

different chunks sizes (portion of job). These jobs are

independent in the sense that neither ordering between

them, nor synchronization among them is necessary.

2.1. Notation

 As illustrated in Figure 1, the STARAFFINE network

consists of p +1 processor, P= {P0,P1,P2, ..., Pp}. The

master processor is denoted P0 while the p workers are

labeled as Pi, 1≤ i ≤ p. There are p communication links

li from the master P0 to each one of the workers Pi. Let

xi be the number of units of core tasks sent to worker Pi.

li (x) measures the time units that takes for a load x to

be moved from the master to the i
th

 worker in affine

mapping model. Each worker i performs two

operations, as well. These operations are message

reception and the actual execution of the job, referred as

computation. The worker i spends wi(x) time units in

executing x core tasks, wi(x) is supposed to be an affine

mapping.

Figure1. Heterogeneous Star Graph

2.2. Architectural Model

 As mentioned before, within a round, the master

performs a sequence of data sends operations. Each

data retrieval and send is followed by the data

transmissions (l) over the network. Receive and

compute (w) operations are performed by the workers

upon the arrival of the data package. As a result, two

major concurrent time segments are distinguished

within a round: L, time spent by all network link in

transmitting a round of data chunks; W maximum time

spent by all workers in completing the reception of the

data and execution of the corresponding data chunk.

This research assumes the full overlap, single-port

model. In this model, the master uses the network

connection in a sequential fashion and the workers can

perform the computation concurrently with data

reception. One of the assumptions in this research is

that the workers are non-dedicated processors. In Grid

environmental the CPU power is distributed between

local task and the Grid users.

2.3. Affine mapping

 This subsection is a brief discussion of the affine

maps in which the mathematical model is based. The

execution times to each operations of data

communication, and tasks execution vary as an affine

mapping on the number of agglomerated core tasks x.

This is,

li (x) = li x + Li (1)

wi (x) = wi x + Wi (2)

for 1≤ i ≤ p, where Li is the initial cost of establishing a

connection between the master P0 and worker i, li is the

send time associate to the data of a single core task; Wi

is the overhead (startup time) of the computation in

processor i and wi corresponds to the execution time of

a single core task.

3. Theoretical Foundations of SCOW

 SCOW is designed as a periodic user-level scheduler

for allocating agglomerated core tasks on parallel

heterogeneous computing systems. This means that the

mathematical framework behind SCOW is designed to

return optimal constant values of the three parameter

describe above m, q, and xi to a master-worker SPMD

implementation; under some specific constraints.

Indeed, SCOW minimizes the make-span of the job

under either maximal production per round or perfect

system utilization [1]. In this research, the maximal

production per period SCOW ability is selected, refers

to a distribution of agglomerated core tasks across the

workers that maximizes the total number of tasks

completed in a round.

3.1. Maximal periodic production

 In this section a brief description of scheduler theory

is presented. The maximal production problem (MP) is

a problem that imposes a restriction in the period to find

the best approximation to the maximum number of task

performed.

w1

lp

w2 wi wp

li
l2

l1

P1 Pi PpP2

P0

42 Int'l Conf. Grid Computing and Applications | GCA'12 |

3.2. Problem

 Suppose

1

p

i

i

m x X


 (3)

where m is a number of round of data installments. The

(MP) problem is stated as follows: Given a time period

T, find a subset of q+1 workers such as

Maximize
1

1

q

i

i

x




 (4)

Subject to

3.3. Solution

 Let MAXTASK(T) be the optimal solution of the

previous problem. The next theorem provides a close

form solution for the MP problem in homogeneous

platform.

Theorem 1. Let T be a real nonnegative numbers,

wi=w and li=l for all i and

1() (9)

/ () (10)

() (11)

y w T

q T l y

T T q l y



   

  

Then

 MAXTASK(T) =
1max{0, ()}qy l T

 (12)

The previous theorem has a possible extension to the

heterogeneous problems. At this moment the best

solution is an approximation theorem.

Theorem 2. Let T be a real nonnegative number, p be a

positive integer. The method:

1. Sort the workers by increasing communication times.

Renumber them so that l1≤ l2 ≤ … ≤ lp.

2. Let yi=w
-1

(T) for 1 ≤ i ≤ p and q the largest index so

that
1

() .
q

i ii
l y T


 If q<p, let T =T-

1
()

q

i ii
l y

 ;

otherwise let T=0.

Return the values to construct the following

inequalities:

i.

1

1 1
1

1 1

AX ASKM T () max{0, ()}

q
q

ii
i q

i q

L
T y l T

l




 


 

  




ii.If the period T is large enough

 11

1

1 1

AX ASKM T () max{0, ()}
q

q

i q

i q

L
T y l T

l






 

  

Figure 2. Gantt Char interpretation to the proposes

solution

The theorem 2 gives an approximate to the optimal

solution to the MP problem. In section 4 this

approximation is used as a restriction to formulate a

makespan minimization problem.

Figure 2 is a graphical representation to the solution

given by the theorem 2. This solution follows the

principle of bandwidth-centric [3, 4] because the

priorities do not depend on the workers computation

capabilities, only on their communication capabilities.

Elsewhere, the number of select processor is directly

affected by the computation capacity. In Grid

computing the computational capacity depends on the

local CPU utilization. This tendency is estimated using

prediction strategy described in section 6

3.4. Last round modification

 A common condition to get an optimal schedule is

that all processor finishes the work at the same time.

Modifications of the last round are used to impose the

condition that all processors end operating at the same

time[1]. This last round modification introduces a

constant makespan reduction of 1/2T .

4. Makespan minimization

 The makespan minimization problem constrained to

maximal production (MMP-MP) solution approxi-

mation and the workers order described in theorem 2 is

formulate as follow:

Minimize (T) = (M+1/2)T + l1(Y)

subject to

1

1

1

1

1 1

X (13)

(), 1 (14)

() (15)

() (16)

0, 1 (17)

1 (18)

q

i q

i

i i

q

i i

i

q q

i

v yy

T w y i q

T l y

T w y

y i q

p q









 

 
  

 

  





  

 





1

1

() (5)

max{ () /1 1} (6)

0, 1 1 (7)

q

i i

i

i i

i

L l x T

W w x i q T

x i q





 

    

   



Int'l Conf. Grid Computing and Applications | GCA'12 | 43

The problem is solved by Lagrange multipliers [9]. This

solution is stated in the next theorem.

Theorem 3: Let X be a nonnegative real number and q

a positive integer (q+1  p) . Then the solution to the

MMP-MP problem without restriction 16 with q+1

processor is,

 1

1
1 12

()1 ()

() ()

b q w X b q
T

a q w l a q
 


 (19)

where 1 1

1 1
1

1 1
() 1

q q j

j j
j q j

l
a q

w l w

 

 


 
    

 
  (20)

and
1 1 1

1 1 11

1
()

q q q
j j j

j

j j jj q j

W l W
b q L

w l w

  

  

 
    

 
   (19)

the theorem 3 permit reformulates the MMP-MP, in the

problem to finding the minimal value of (T) with i

ranging over the subset the i that satisfying

 1 1()i iw y T   (20)

5. CPU prediction strategy

 In Grid computing typically the resources are non-

dedicated, that is, the availability of the full processing

speed is no guaranteed. Let S, the full processor speed.

The local task execution generates a CPU utilization, if

the Utilization can be predicted them the ActualSpeed

can be computed as follows:

 ActualSpeed = S * (100%-Utilization) (21)

This ActualSpeed is used as retro-alimentation

information to the static scheduler. To predict the CPU

load and utilization is used a time series prediction

approach [10, 11] that has been probed the effective

empirically.

The idea of this prediction strategy is based on the

assumption that if the current value increases, the next

value will also increase, and if the current value

decreases, the next value will also decrease.

Formally, we can write:

If (UT-1 < UT)

 IncrementValueAdaptation()

 PT+1 = UT + IncrementValue

Else if(UT-1 > UT)

 DecrementFactorAdaptation()

 PT+1 = UT × IncrementValue

Where,

UT: the measured utilization at measurement T,

PT+1: the predicted utilization for measurement UT+1,

H: the number of historical data points used in the

prediction.

Increment value and decrement factor can be calculated

as:
Procedure: INNCREMENTVALUEADAPTATION()
Mean = (1/n)∑i

RealIncValue =UT – UT-1 ;

NormalInc = IncrementValue + (RealIncValue –

 IncrementValue) × AdaptDegree;

if (UT < Mean)

 IncrementValue = NormalInc;

Else

 PastGreater = (number of data points>UT)/H

 TurningPointInc=IncrementValue×PastGreater

 IncrementValue=Min(NormalInc,

 TurningPointInc)

AdaptDegree can range from 0 to 1 and expresses the

adaptation degree of the variation. The best values for

input parameters such as AdaptDegree and

DecrementFactor are determined empirically.

6. Experiment

 In table 1 the group of numerical values selected to

perform the simulation is presented. The values are

used to predict the corresponding SCOW-MP and UMR

version develop in [13]. These predictions are made

using the mathematical equations underlying them and

a random variable to CPU simulation is also generated

using gamma function

Table 1: Simulation Parameter

Parameter Values

Number of workers p=10,20,30,40

Agglomerated tasks X = 1000

Computational rate Si=.5+randonvariavle

wi = 1/Si

randonvariavle is also generated using

gamma function with

fixed arrival time

landa=.5 and beta = 1

Transfer rate Bi = 1.1p to 1.1p + 1;

 li =1/b

Computational latency cLati = 0:03; Wi = cLat;

Communication latency nLati = 0:03; Li = nLat

7. Result

 It is worth remarking that UMR methods and the

optimal number of rounds, and perform no

discretization on the amount of work per round. Thus,

in order to make the comparisons possible, SCOW

discretizations are made on the number of rounds and

not on the amount of agglomerated tasks per round. The

randomly chosen values are shown in Table1.

44 Int'l Conf. Grid Computing and Applications | GCA'12 |

The numerical prediction of the performances of UMR

and SCOW are shown in Table 2.

Table 2: Comparison Between SCOW and UMR

 SCOW-MP UMR UMR2

Normalized

Make-span

1.000 1.012 1.032

Normalized

Workers CPU

Utilization

1.000 1.008 1.009

Table 2 shows the comparison between SCOW-MP,

UMR and UMR2, averaged over similar (in the number

of workers) experiment. All the scheduler was

improved by a last round modification in order keep

consistent the comparison.

The first row shows the ratio of make-span achieved for

the 3 schedulers. The second row shows the similar

ratio for the system utilization, but at this time the ratio

is inverted, because the maximal values is the best. The

main observation is that SCOW-MP outperforms UMR

and UMR2 on average. The SCOW-MP is the best

algorithm in Make-span and system utilization.

8. Conclusions

 Many researches in maximal throughput in lineal

model can be found in the literature. These results are

developed to the problem formulated for fixed sizes

tasks. In this research the problem is exported to affine

model and in contrast the goal is maximize the

production, that is, the total number of tasks processed.

The contribution of this research includes an optimal

solution in the homogeneous case and approximate

solution in the heterogeneous case, integrate with a

CPU prediction strategy to perform a scheduler reliable

in a Grid environment. The makespan and system

utilization of two algorithms is also compared.

The results show that the proposed SCOW-MP

algorithms outperform the competitors. Future work

includes the development of a strategy to predict the

network utilization; due to SCOW is a bandwidth-

centric algorithm.

9. Acknowledgments

 This work was made possible by funding from the

Caribbean Computer Center of Excellence (CCCE)

under NSF Award number CNS-0940522.

Thanks are due to Dr. Juan F Arratia and Dr. Oliva

Primera-Pedrozo from the Universidad Metropolitana-

Cupey for their support.

References

1. L. de la Torre, “Scheduling divisible tasks under

production or utilization constraints”, PhD diss.,

University of Puerto Rico, Mayaguez, Puerto Rico

2010.

2. Y. Yang, K. van der Raadt, H. Casanove,

Multiround Algorithms for Scheduling Divisible

Loads, IEEE Transactions on Parallel and

Distributed Systems, Vol. 16, No. 11, 2005.

3. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A.

Legrand and Y. Robert, Scheduling Strategies for

Master-slave Tasking on Heterogeneous Processor

Platforms, IEEE Transactions on Parallel and

Distributed Systems, Vol. 15, No. 4, pp. 319-330,

2004.

4. M. Drozdowski and P. Wolniewicz Optimum

Divisible Load Scheduling on Heterogeneous Stars

with Limited Memory, European Journal of

Operation Research, Vol. 172, No. 2, 2006.

5. N. Jones and P. Pevzner An Introduction to

Bioinformatics Algorithms, MIT Press, 2000.

6. V. Bharadwaj, D. Ghose, V. Mani, and T.G.

Robertazzi. Scheduling Divisible Loads in Parallel

and Distributed Systems. IEEE Computer Society

Press, 1996.

7. O. Beaumont, H. Casanova, A. Legrand, Y. Robert,

Y. Yang: Scheduling Divisible Loads on Star and

Tree Networks: Results and Open Problems. IEEE

Trans. on Parallel and Distributed Systems, vol.

16, no. 3, 2005, 207-218.

8. D. Bertsekas. Constrained Optimization and

Lagrange Multiplier Methods. Athena Scientific,

Belmont, Mass., 1996.

9. D. Bertsekas, editor. Constrained Optimization and

Lagrange Multiplier Methods. Athena Scienti_c,

Belmont, Mass., 1996.

10. L. Yang, J.M. Schopf, and I. Foster, Conservative

Scheduling: Using Predicted Variance to Improve

Scheduling Decision in Dynamic Environments,

SuperComputing 2003, Phoenix, Arizona USA

November 2003.

11. L.Yang, I. Foster, and J.M. Schopf, Homeostatic

and Tendency-Based CPU Load Predictions,

International Parallel and Distributed Processing

Symposium (IPDPS'03), Nice,France, April 2003.

12. Yang Yang and Henri Casanova, UMR: A Multi-

Round Algorithm for Scheduling Divisible

Workloads; Proceeding of the International

Parallel and Distributed Processing Symposium

(IPDPS’03), Nice, France, April 2003.

13. Said Elnaffar and Nguyen The Loc. "Enabling

Dynamic Scheduling in Computational Grids by

Predicting CPU Utilization"; WSEAS Transactions

on Communications Issue 12, Volume 4, pages

1419-1426. December 2005.

Int'l Conf. Grid Computing and Applications | GCA'12 | 45

46 Int'l Conf. Grid Computing and Applications | GCA'12 |

SESSION

GRID MIDDLEWARE + RESOURCE DISCOVERY

Chair(s)

TBA

Int'l Conf. Grid Computing and Applications | GCA'12 | 47

48 Int'l Conf. Grid Computing and Applications | GCA'12 |

Grid Resource Discovery using Tree Data Structure for
Multi-Trait Requests

Leyli Mohammad Khanli1, Saeed Kargar2, Ali Kazemi Niari2

1 CS Department, University of Tabriz, Tabriz, Iran
2Department of Computer Engineering, Islamic Azad University, Tabriz Branch, Tabriz, Iran

Abstract - Grid is an extensive environment in which different
resources are dispersed geographically. A user may need a
resource or a combination of resources in order to solve a
problem. The task to find such a resource is borne by resource
discovery algorithms. Therefore, the resource discovery
algorithms are of high importance in grids. The methods
proposed to resource discovery so far have not suggested a
method to discover several resources simultaneously in the
form of a request.
 In this paper, we have proposed a method that is able to
discover simultaneously the desired number of the resources
for the user. In our proposed algorithm, the cost of the
resource discovery is very low. By means of this method, a
user will be able to request several resources simultaneously
in one format.
 The results of simulations indicate that fewer numbers of
nodes meet in the resource discovery stages in this method
than that in the other suggested methods. Compared to other
methods, this method also creates less traffic in the network.

Keywords: Grid, Resource Discovery, Multi-Trait Requests

1 Introduction
 Grid is a new technology that enables the users to share
different resources from long distance by using network and
communication infrastructures. These resources can be
heterogeneous and far from one another geographically [1].
Different methods have been suggested for resource
discovery. Centralized methods [2-4] are among the methods
that have been used. These methods have a central server that
manages all nodes. In such environments as grids where there
is a large number of users, there has been mounted a
bottleneck in the server region, which reduces the system
efficiency. The other methods are decentralized. There is not
a centralized server in these methods which can manage all
nodes. Flooding-based and Random-based are instances of
this method. Although these methods have removed many
faults of the previous methods, the system efficiency reduces
with the increase in the number of nodes and with the
variation in the resources.

Recently, there have been introduced distributed
methods that use tree structure for resource discovery. These
methods are more optimal in terms of the number of the

produced traffic, etc. However, in none of these methods
occurs the discovery of several resources simultaneously in
one format. “A resource discovery tree using bitmap for grids”
[5] and “FRDT: Footprint Resource Discovery Tree for grids”
[6] and the methods proposed in [7-8] are instances of this
method.

This paper proposes a method for resource discovery that
uses a weighted tree structure as the method [6] does with this
difference that the former makes it possible for the user to
search for several resources simultaneously. The simulations
show that the algorithms suggested in this paper find one or
more resource for users without recourse to unnecessary and
extra nodes, creating less traffic.

Below are discussed some of the works done with regard
to the resource discovery so far. Section 3 is concerned with
the explanation of the method suggested in this paper. Section
4 is associated with the results of the simulations. Finally,
section 5 concerns Conclusion and further studies.

2 Related work
Various methods have been proposed as regards the

resource discovery in the grid. Below are presented some of
these methods.

Matchmaking is one of these methods [9] in which
matchmaking service find a correspondence between requests
and entities. Most methods use this algorithm [10-13].

Another group of methods uses a Semantic Communities
among the nodes in the grid [14-17].

 Juan Li. [18] has proposed a resource discovery method
based on the Semantic Communities. In this method, a
Semantic structure is used to group the similar nodes;
therefore, the request for the resource discovery is sent to the
related nodes only.

There is another method suggested recently for the
resource discovery which makes use of tree structure [5]. A
series of bitmaps have been used in the nodes. Upon the
resource discovery, the user's requests are transformed to these
formats and delivered to one of the nodes existing in the
environment. These nodes utilizes AND operation to discover
the resources required by the users.

In the previous work by the authors [6], a weighted tree
structure had been used for the resource discovery. In this
method are used a series of bitmaps that maintain the path to

Int'l Conf. Grid Computing and Applications | GCA'12 | 49

the target in addition to keep the information of the resources
existing in the environment.

In contrary to all previous methods, the method proposed
in this work is able to discover a combination of the resources
for the users at the same time. Another advantage of this
method is that it is able to perform resource discovery without
recourse to unnecessary nodes.

3 Our proposed method
As mentioned earlier, this method is based on a

weighted tree structure. The information of the resources
in the nodes will be stored in the form of a tree data
structure called “Resource-Tree” (RT). Through RT, the
information of the combined resources will be stored in the
nodes, and the user's requests will be guided to the
appropriate paths in the environment. To get more familiar
with this method, the general structure of RT and the
format that is stored in each field RT will be discussed in
the later subsection, and then the resource discovery will
be discussed in next subsections.

3.1 Resource-Tree (RT)

 As pointed out before, the method proposed in this paper
uses a tree data structure called RT. The size of RT depends
on the type of the resources in the environment. RT includes
fields in which the information related to the local node
resource and/or the information of the children of this node
will be stored. Fig. 1 shows an instance of RT. This RT is
devised for an environment which shares 3 kinds of Operating
Systems (OS) and 2 kinds of RAM. It is noted that the general
structure of RT is known for all nodes in the environment. Not
all nodes in the environment will use all fields in RT, but they
will use some of these fields depending on the resources at
hand. A sample of field RT is shown in Fig. 2. This field
consists of two columns called “Resource” and “Children”.
The meaning of the numbers stored in these columns is
explained through an example.

Fig. 1: An example of Resource-Tree (RT).

Fig. 2: The content of the highlighted field in Fig. 1.

Assume that the field in Fig. 2 has been stored in the
place highlighted in Fig. 1. In Resource column, the number
11 has been stores. This means that this node possesses the
resource level 1 (OS) and the resource level 2 (RAM).
Considering the place where is stored in RT, it possesses
Linux and RAM 4G. For better comprehension, you can look
at Fig. 3 and Fig. 4. Fig 3 illustrates the assumed environment
of our grid on a weighted tree structure. As seen in the figure,
each node shares a resource or a combination of resources in
the environment. How the resource information is stored
inside some of the nodes is clearly seen in Fig. 4.

Fig. 3. An example of typical grid environment on a weighted
tree.

Each part of Fig. 4 is explained subsequently. Just for
simplification, O1, O2, O3, R1 and R2 will be used to refer to
MacOS, Seven, Linux, RAM 2G and RAM 4G respectively.
In Fig. 4(a), the RT stored in the nodes J and K are shown. As
both nodes share the resources Mac OS and RAM 2G in the
environment, they have similar RTs. Number 11 stored in
Resource column means that in this place exists the
information related to a combinational resource that possesses
both OS and RAM, and they are Mac OS and RAM 2G with
consideration of the place where they are stored. The mark “---
” in the Children column indicates that these resources are the
local resources of the node itself.

For another example, look at Fig. 4(b) related to the node
G in Fig. 3. This node which receives information from its
own children in addition to its own local information will store
all this information in its RT as shown in Fig. 4(b). This node
itself consists of O1 and R1 which will store the information
of which as 11 in Resource column and mark “---” in Children

50 Int'l Conf. Grid Computing and Applications | GCA'12 |

(a)

(b)

Fig. 4. The stored RTs in the (a) nodes J and K; (b) node G.

column, but will store the information related to children (O1
and R1 from both children) in the related place (number 11 in
Resource column). Number 01 stored in Children column
means that because this node has two children; therefore, it
allocated at least 2 bits to each node, which is 0 and 1 as in
Fig. 3. Since it receives similar information from both its
children, the children's weight; that is 0 and 1 is written beside
Children column (01).

It is pointed out that the information the method
proposed here is stored in nodes distributary. This reduces the
volume of the information stored in the nodes.

3.2 Multi-resource discovery

As seen in Fig. 5, there is a sample of the request form.
The request form consists of two columns, Location and
Resource. Resource Column resembles the column with the
same title in RT, and its bits indicate the existence or non-
existence of resources. The other column; that is, Location
column, indicates a field to which referral will be made in
every node in the course of the resource discovery.

Fig. 5. A sample of Request form.

For example in Fig. 5, when the user needs a resource
R1, the information related to R1 in RTs may be stored in
each of three fields at the address of 000, 010 and 100 (Fig.
1). That is to say, for the applicant R1, the resource level 1;

i.e., OS is not important, and only the second path ending in
RAM is of importance.

As such, in Location column, sign XX (X means an
unimportant state) is stored, and any field that receives this
request searches for three fields at 000, 010 and 100.

In Fig. 6, a sample of the resource discovery is shown.
As seen in this figure, a user needs the resources O1 and R1
simultaneously, and delivers a requested form as shown in this
figure to the node D in the tree. Receiving this form, this node
immediately refers to the same column in its RT using the
position written in Location column, and compares Resource
columns. But as it is seen, this position does not exist in the
RT of node D. Thus, it passes the request to its parent node.
Referring to a place in its RT, node A compares Resource
column of the request with Resource column in the related
place and finds a correspondence in the second line and sends
the request to a child with weight 00. Node B, too, repeats this
process, and delivers the request form to node G. Finding a
correspondence in the related field and referring to Children
column, node G notices this resource in children with edge 0
and 1 and sends the request to one of the nodes selectively
(node J here). Finally, node J finds the requested resource for
the user and reserves O1 and R1, and then sends a successful
response to the origin node. As seen, the resource discovery
method suggested in this paper is simple and does not meet
any extra nodes.

Fig. 6. An example of resource discovery in our method.

Int'l Conf. Grid Computing and Applications | GCA'12 | 51

4 Simulation results
The simulations required for this work have been

performed in MATLAB environment. The resources have
been distributed randomly in this environment, and the
requests, too, have been delivered to every tree node
randomly. The height of the trees has been assumed 4 as in
[5,6,19].

Since we did not find a method that can discover several
resources in one format at the same time, we compared our
method with other available methods with one resource. To
compare multi-resources, we assumed that other methods
discover the users' requested resources altogether in one place.

In the first simulations, we compared our method with
"A resource discovery tree using bitmap for grids "[5] (which
is called tree method), "Using Matrix indexes for Resource
Discovery in Grid Environment" [8] (which is called UMIRD)
and " FRDT: Footprint Resource Discovery Tree for grids "[6]
methods. In Fig. 7, we supposed that the user requested
different number of resources. In these tests, it is supposed
that the 100 of the users, requested different number of
resources. In our method, 100 requests will be sent but in
other ones, for example for request six resources (Fig. 7(b)),
600 separate requests should be sent. As observed in the Fig.
7, the number of the nodes visited in our method is lower than
other methods.

(a)

(b)

Fig. 7. The number of the nodes met by the users' requests
during the resource discovery that the user requests; (a) two
resources; (b) six resources.

In the next simulations, the traffic produced by the
methods tree method, UMIRD, FRDT and our method upon
resource discovery was compare, which is shown in Fig. 8. In
these tests, it is supposed that the 300 of the users, requested
different number of resources. As shown, our method is able
to discover a desired number of resources for the user
producing the least traffic and not referring to unnecessary
nodes. Therefore, this method is more effective in the grid
environment with many resources.

(a)

(b)

Fig. 8. The traffic produced by the different methods during
the resource discovery for 300 users that each user requests:
(a) three resources; (b) seven resources.

In the last tests, our method was compared with methods
flooding-based, MMO [20-21], Tree method [5] and FRDT
[6]. In this experiment, the mean of the number of met nodes
was compared in different methods. It was assumed that any
user would request only one resource (Fig. 9).

0

500

1000

1500

2000

2500

3000

3500

4000

15 40 85 156 259 400

Tree method

FRDT

UMIRD

Oue method

0

2000

4000

6000

8000

10000

12000

15 40 85 156259400

Tree method

FRDT

UMIRD

Oue method

0 10000 20000

85

156

259

400

Our method

UMIRD

FRDT

Tree method

0 20000 40000

85

156

259

400

Our method

UMIRD

FRDT

Tree method

52 Int'l Conf. Grid Computing and Applications | GCA'12 |

Fig. 9. The mean of the number of met nodes by different methods.

5 Conclusions and future work
As discussed earlier, we have proposed a method that is

able to discover simultaneously the desired number of the
resources for the user. In our proposed algorithm, the cost of
the resource discovery is very low. The results of simulations
indicate that our method is more efficient than other methods.
In the future, the researchers will try to suggest a method
which takes into account such factors as the cost, geographical
distance, etc. for the resource discovery.

6 References
[1] I. Foster and C. Kesselman. “The Grid 2: Blueprint for a
New Computing Infrastructure”. Morgan Kaufmann
Publishers Inc., San Francisco, CA, 2003.

[2] A. A. Chien, B. Calder, S. Elbert, K. Bhatia, “Entropia:
Architecture and performance of an enterprise desktop grid
system”, J. Parallel Distrib. Comput. (Elsevier), vol. 63, pp.
597-610,2003.

[3] F. Berman, et al., “Adaptive computing on the grid using
AppLeS”, TPDS, vol. 14, pp.369-382, 2003.

[4] M.O. Neary, S.P. Brydon, P. Kmiec, S. Rollins, P.
Capello. “JavelinCC: Scalability issues in global computing”.
Journal of Future Gener. Comput. Syst. (Elsevier), Vol. 15,
pp. 659-674, 1999.

[5] Chang, R-.S. and M-.S .Hu. “A resource discovery tree
using bitmap for grids”. Future Generation Computer Systems
(Elsevier), vol. 26, pp. 29-37, 2010.

[6] L.M Khanli, and S. Kargar. “FRDT: Footprint Resource
Discovery Tree for grids”. Future Gener. Comput. Syst.
(Elsevier), vol. 27, pp. 148–156, 2011.

[7] L.M Khanli, A. Kazemi Niari and S. Kargar. “An
Efficient Resource Discovery Mechanism Based on Tree
Structure”. In the 16th International Symposium on Computer
Science and Software Engineering (CSSE 2011), p. 48-53,
2011.

[8] Leyli Mohammad Khanli, Saeed Kargar, Ali Kazemi
Niari. “Using Matrix indexes for Resource Discovery in Grid
Environment”. In the 2011 International Conference on Grid
Computing and Applications (GCA’11), Las Vegas, Nevada,
USA, pp. 38-43, 2011.

[9] R. Raman, M. Livny, M. Solomon, “Matchmaking:
distributed resource management for high throughput
computing”, In the Seventh IEEE International Symposium on
High Performance Distributed Computing (HPDC-7’98), pp.
140, 1998.

[10] Ye Zhu, Junzhou Luo, Teng Ma, “Dividing Grid Service
Discovery into 2-stage matchmaking”, ISPA 2004 (LNCS),
vol. 3358, pp. 372–381, 2004.

[11] Sanya Tangpongprasit, Takahiro Katagiri, Hiroki
Honda, Toshitsugu Yuba, “A time-to-live based reservation
algorithm on fully decentralized Resource Discovery in Grid
computing”, Parallel Computing (Elsevier), vol. 31, pp. 529-
543, 2005.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Flooding-based MMO Tree height 4 FRDT our method

85

156

259

400

Int'l Conf. Grid Computing and Applications | GCA'12 | 53

[12] Simone A. Ludwig, S.M.S. Reyhani, “Introduction of
semantic matchmaking to Grid computing”, J. Parallel Distrib.
Comput. (Elsevier), vol. 65, pp.1533 – 1541, 2005.

[13] Ami T.Choksi, Devesh Jinwala, “Improving Semantic
Matching of Grid Resources Using refined Ontology with
Complement Class”, Journal of AICIT, vol. 2, no. 5, pp.129-
139, 2010.

[14] J. Li. and Son Vuong, “Grid resource discovery using
semantic communities”. In the proceedings of the 4th International
Conference on Grid and Cooperative Computing, Beijing, China,
2005.

[15] Juan Li, Son Vuong, “Semantic overlay network for
Grid Resource Discovery”, In Grid Computing Workshop,
2005.

[16] Cheng Zhu, Zhong Liu, Weiming Zhang, Weidong Xiao,
Zhenning Xu, Dongsheng Yang, “Decentralized Grid
Resource Discovery based on Resource Information
Community”, Journal of Grid Computing (Springer), vol.
2,no. 3, pp. 261-277,2004.

[17] Thamarai Selvi Somasundaram, R.A. Balachandar,
Vijayakumar Kandasamy, Rajkumar Buyya, Rajagopalan
Raman, N. Mohanram, S. Varun, “Semantic based Grid
Resource Discovery and its integration with the Grid Service
Broker”, In the proceedings of 14th International Conference
on Advanced Computing & Communications (ADCOM
2006), pp. 84–89, 2006.

[18] J. Li, “Grid resource discovery based on semantically linked
virtual organizations”. Future Gener. Comput. Syst. Vol. 26, pp.
361–373, 2010.

[19] Mastroianni, C., D. Talia and O. Versta. “Evaluating resource
discovery protocols for hierarchical and super-peer grid information
systems”. In the proceedings of the 15th EUROMICRO
International Conference on Parallel, Distributed and Network-
Based Processing, PDP’07, February 7– 9, pp. 147–154, 2007.

[20] Marzolla, M., M. Mordacchini and S. Orlando. “Resource
discovery in a dynamic environment”. In the proceedings of the 16th
International Workshop on Database and Expert Systems
Applications, DEXA’05, September 3–7, pp. 356–360, 2005.

[21] Marzolla, M., M. Mordacchini and S. Orlando. “Peer-to-peer
systems for discovering resources in a dynamic grid”. Parallel
Comput. Vol. 33, pp. 339–358, 2007.

54 Int'l Conf. Grid Computing and Applications | GCA'12 |

ITU-GRAM+: A WEB Based Grid Middleware

G. Bengi TURKEL

Department of Computer Engineering

Istanbul Technical University

Istanbul, Turkey

bengi.sendur@avea.com.tr

D. Turgay ALTILAR

Department of Computer Engineering

Istanbul Technical University

Istanbul, Turkey

altilar@itu.edu.tr

Abstract— This paper describes the Grid middleware (ITU-

GRAM+) which is implemented by using only open source

software based on trend web technologies. The ITU-GRAM+

allows users to access computational and data resources, submit

their jobs and track job status via standard interfaces. Main goal

of ITU-GRAM+ is mapping the job resource requests to the

resources in a way that will satisfy both the application users and

resource owners. In order to satisfy this requirement ITU-

GRAM+ is designed to have Resource Discovery, Resource

Allocation, Job Submission, Job Execution and Job Monitoring

components. Some of these components in ITU-GRAM+ work

with SOA architecture to facilitate a communication between

resources and resource manager which also gain flexibility to the

system in terms of adding new resources and new users. For this

communication ITU-GRAM+ exposes different web services to

run both on resources and resource manager. In this paper all

details about components are described with their additional

functionality comparing to existing middleware.

Keywords-Grid Computing, Grid Middleware, Resource

Manager, Web Service

I. INTRODUCTION

Grid middleware are large software which provide a set of
basic functionalities, each one implemented by a separate
component. Such functionalities include data storage,
authentication and authorization, resource monitoring, resource
management and job management.[1]

One of the most challenging areas of Grid application
development is the construction of portals to allow
computational scientists, researchers and high performance
computer/application users to access the resources via an easy
to use web page interface. The aim is to develop common
components that can be used by portal developers to allow
them to build a web application that can securely authenticate
users to remote resources and help them make better decisions
for scheduling jobs by allowing them to view pertinent
resource information.

In this paper, a new Grid Middleware (ITU-GRAM+)
system that contains these components is designed and
implemented using standard interfaces and protocols through
new technologies which are open source to all people. The
ITU-GRAM+ responds both data and computational intensive
requirements of users. In order to meet these requirements in
such environment, Service Oriented Architecture (SOA)
principles have gained great importance. Service-Oriented
Architecture (SOA) is a set of principles and methodologies for
designing and developing software in the form

of interoperable services [2]. For ITU-GRAM+, SOA is the
main architecture to provide a communication between
resources. Due to allow users to reach these resources, a web
application is designed and developed. Getting job specific
information by users and allow them to reserve and allocate the
resources according to these requirements is main goal of this
web application. But resources in grid system are not only
belongs to system, they have to maintain their daily work
issues. For this reason, to keep update information about
resources in such system, Grid Information System is
implemented.[3] The aim of this component to retrieve
resource information such as available cpu, available storage,
available memory which could be changed dynamically. The
challenging question is that how the system informs the
resources about releasing job after reservation of resource is
completed. The Job Execution Component is developed to send
job information to resources via web services which is exposed
by resource. So far the components of ITU-GRAM+ are
described, now we will have a look state of todays grid
middleware.

Currently, the Globus Toolkit is the de facto standard for
grid computing because of its wide acceptance and deployment
worldwide, even though several alternatives do exist, like
Legion and Condor[4] . Web services-based GT4 which is one
of the latest deliveries of Globus team provides significant
improvements over previous releases in terms of robustness,
performance, usability, documentation, standards compliance
and functionality. A set of service implementations provide
useful infrastructure services. These services address such
concerns as execution management (GRAM), data access and
movement (GridFTP , RFT, OGSA-DAI), replica management
(RLS , DRS), monitoring and discovery (Index,Trigger,
WebMDS), credential management (MyProxy, Delegation
,SimpleCA), and instrument management (GTCP). Most are
Java Web services but some are implemented in other
languages and use other protocols. Grid Resource Allocation
and Management (GRAM) service addresses these issues,
providing a Web services interface for initiating, monitoring,
and managing the execution of arbitrary computations on
remote computers.[5] During ITU-GRAM+ design phase, all
Globus components are investigated and analyzed. Most of
Globus components have corresponding component in ITU-
GRAM+ such as GRAM, GridFTP , Index that’s why we
called the with + suffix. It have additional components plus to
GRAM.

Condor is the one of alternative resource management
system which is designed to support high-throughput
computations by discovering idle resources on a network and

Int'l Conf. Grid Computing and Applications | GCA'12 | 55

mailto:%7bbengi.sendur@avea.com.tr,altilar@itu.edu.tr%7d
http://dast.nlanr.net/Articles/GridandGlobus/
http://en.wikipedia.org/wiki/Methodologies
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Service_(systems_architecture)

allocating those resources to application tasks. Legion is the
other alternative to existing resource management system
which is a reflective, object-based operating system for the
Grid. It offers the infrastructure for grid computing. Legion
provides a framework for scheduling which can accommodate
different placement strategies for different classes of
applications.

Limitations of the existing Grid middleware which does not
take into account the needs of everyday scientific and business
users. Day-to-day computer users and small to medium sized
organizations often do not use clusters, and thus for them
setting up Grids using the existing middleware is complex [6].
Furthermore, Grid enabling their applications is nearly
impossible, as they are not easily supported, and this poses a
massive barrier to the pervasive adoption of Grid computing by
these communities. Grid Middleware is also complex to setup
and necessitates a steep learning curve. But ITU-GRAM+ has
basic interface to use and it is not necessary to adapt your
application for grid system. You can submit your jobs as it is.

The paper is organized as fallowing.Section2 will describe
the reasons that motivate me to do this work.. Section 3
describes main functionalities of ITU-GRAM+ and details of
the components are explained in Section 4. Last section
includes future works and conclusion.

II. MOTIVATION

Many Grid Portals can provide a customizable interface
allowing scientists and researchers to perform Grid operations
such as remote submission of their own programs, staging
input and output files, and querying resources and queues
information. Some of them is widely used by most of people
and contains all necessary components to support grid
infrastructure. According to my best knowledge there is no
such a grid middleware is implemented is only using open
source software .From the perspective of developers , it is easy
to create their own middleware which provides basic
infrastructure to add new functionalities and improve the
system themselves. From the perspective of day-to-day
computer users, scientists and business users it is easy to start
work on it without having computational knowledge. These are
the key points of my work to motivate me.

III. ITU-GRAM+ OVERVIEW

ITU-GRAM+ main functionalities are Resource Discovery,

Resource Allocation, Job Submission, Job Execution and Job

Monitoring. In this section it will be given brief description of

these components respectively.

Computational or data-intensive applications use the

resources according to the requests from the user in order to

achieve results quickly and efficiently. The resource

management system must take into account not only

computational resources such as the amount of available CPU,

memory, data storage capacity but also starting time of job, the

financial value of the resource and the efficiency of the

resource in order to find these resources. Source information on

the resource can change dynamically, so to make the right

choices these information should be kept constantly up to date.

Grid Information Service component is implemented on ITU-

GRAM+ using web-service and batch job technologies in order

to satisfy this update requirement of grid nature.

Job management component is used to submit, cancel and

monitor jobs for execution on available resources. Users can

submit their jobs using job description language (jdl) which is a

high-level, user oriented language [7]. It has lot of information

about content of job. It is based on XML structure which is a

standard to exchange data between systems. After submitting

jobs, it is possible to monitor job steps. The resource will

update the grid resource manager on critical points of the

process with unique id which is provided by Grid Resource

Manager in the beginning of job submission.

Resource management is used to allocate suitable resources

to jobs. As in the economy, if we think that there are

unlimited demands and limited number of resources,

scheduling of resources is the one of the challenge problem on

Grid systems. In this work resources selection is done not only

the physical properties of the resources but also the distances

from each other is considered. At the same time

this distance varies depending on the type of job is relatively.

All of these components will be analyzed one by one in next

section.

IV. ITU-GRAM+ ARCHITECTURE AND

IMPLEMENTATION

The above components which are given a brief description

will be more detailed in this section. In Figure1 describes the

architecture of ITU-GRAM+. ITU-GRAM+ includes a web

application which allow users to use a standard interfaces in

order to submit their jobs. The application container is the

Tomcat for both web services and web application. Apache

Tomcat is an open source webserver and servlet container

developed by the Apache Software Foundation [8] .Java is the

language used to develop these components. Java is currently

one of the most popular programming languages in use,

particularly for client-server web applications [9]. MySQL

officially, but also commonly the world's most used relational

and open source database management system [10]. ITU-

GRAM+ choose the MYSQL to store all the information about

users, resources, jobs and reservations. Hibernate is one of the

free software that facilitated the storage and retrieval of Java

domain objects via Object/Relational Mapping [11]. Java

Server Pages (JSP) is a technology that helps software

developers to serve dynamically generated web pages based

on HTML , XML, or other document types [12]. Apache Struts

2 is an elegant, extensible framework for creating enterprise-

ready Java web applications [13]. Apache Axis2 is a Web

Services / SOAP / WSDL engine, the successor to the widely

used Apache Axis SOAP stack. [14]

Figure1 shows that all the relations between these

technologies and which of them are used for which component

of ITU-GRAM+. From the Grid Middleware point of view

there are three different part of system. The Web Application

which interacts with end user, the web service which is

exposed to get update status of job and the batch jobs which are

running at background to retrieve update resource information

and submit jobs.

56 Int'l Conf. Grid Computing and Applications | GCA'12 |

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/Web_container
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Relational_database_management_system
http://www.hibernate.org/hibernate/about/orm.html
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Dynamic_web_page
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XML
http://ws.apache.org/axis/

Figure 1. ITU-GRAM+ Architecture

From the resource point of view, only one web service is

exposed includes three different methods inside.

Figure 2 shows a sample grid job life beginning from user

submission to the completion of job in grid environment as an

overview. The resources showed in the figure are small subset

of in all resources. Client (user) gives the requirements inside

job description language file (jdl) and user interface. Resource

manager shows all available resource list and allows to user

select one of them. System allocate resources during job

execution time (Step1).A batch job waits for starting time of

the job and invoke a web service to send job to computing

resource (Step2). If the input file is stored in remote resource

then it retrieves the file from File resources (Step3). After

execution of job in computing resource, if output file is

produced and if it is needed to keep in remote resources then

the computing resource will send the file to storage resources.-

(Step 4). The computing resource will inform resource manager

for each step of job execution (Step5). Users could track their

jobs via user interface (Step6).

Figure 2.Grid Job Life

A. Grid Information Service

The resource information on Grid system can be changed

dynamically because of grid nature. The nodes are not just a

computational or data resource for Grid they also have their

own work. So grid system should be aware of the changes on

the resources. In order keep track these changes a web service

is implemented which is running on the resources. The batch

job on grid resource manager runs in a periodic time to retrieve

the number of available processors, free memory and free disk

space.

B. Get User Requirements

The users enter their requirements using both web user

interface and job description language (jdl) file. The sample jdl

file is showed in Figure 3. Some of them are clear to

understand the meaning considering the tags but some of them

are not. gridType could be DataIntensive or Computing-

Intensive based on which resource type is needed more

comparing to other types. ioType could be Read or Write based

on input file size is greater or smaller than output file size

relatively. Considering this comparison between output and

input files, computing resource will be chosen to be closer to

(as distances) file resource or storage resource in order to

decrease the time during network transfer. inputFileType or

outputFileType are the tags which are valuable to understand

where input file will be found and where the output file will be

kept. These tags values could be Local, Remote or Expected.

Local means that input or output file exists on local system of

user that submits jobs. Remote means that the user knows

where input file could be found or output file could be kept and

they are not on local. Expected means that user does not know

where input file could be found and asks to grid system to find

it. According to gridType, ioType, inputFileType, output-

FileType values, some tags become mandatory. Based on

combination of these tags the algorithm and resource types

could differ.

As a result, user provides the details of the job in this sample

xml file. Deadline, execution time of job, budget, execution file

and other related information will be taken via user interface as

shown in Figure 4.

Figure 3.JDL File

 Figure 4.Webpage of job submission

Int'l Conf. Grid Computing and Applications | GCA'12 | 57

C. List Available Resources

As soon as the users pass their requirements to web

application, the system checks firstly what kind of resources

(such as computational, file or storage) are required and which

of them meet the physical requirements of job. Expected

execution time of job is important to find available interval

time of resources. Figure 4 shows the one of sample scenario

which contains the all resource types defined in ITU-GRAM+.

For each resource type the system finds time interval which is

blank and add to list. Each minute in time table is represented

with “1” and “0”. For the example in Figure 5, the time table

list is constructed as following.

Deadline-Job Submission Time=25 m

CR1={1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1}

SR1={0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1}

FR1={0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1}

List of ResourceList = { CR1SR1FR1, CR1SR2FR1,

 CR1SR2FR2…. CRx SRy FRz }

 Figure5-List Available Intervals

But this list could be so much to show the user. So when the

list is populated it will be filtered in terms of budget which is

one of the input passing by user. Every resource has own cost

which is calculated by the system based on their physical

properties. A discount will be applied to calculated cost

according to some conditions such as total load on the system

during job execution or how long before the deadline the job is

submitted or how many times the user submit a job to check

loyalty of user. All these different situations cause a change on

calculated cost. Despite of removing some triples from list

based on budget there are still some triples are inefficient

comparing the other triples. For example the input file of the

job is larger than output file this means that CR should be

closer to FR instead of SR in order to decrease time during

transfer of the file through network.

If Distances(CR1-SR1) > Distances(CR1-SR2) then

CR1SR1 should be removed from the list. The distances is not

a physical distances between resources. As showed in Figure 1

every resources has pingService which takes the ip of other

resource as an input in order to send a ping request and waiting

for response. It calculates duration and send back to resource

manager. It compares these results and filters triples which will

not worth to select them. As a result, maximum 10 different

options should be presented to the customer. A sample resource

list is showed in figure 6.

Figure 6-Available Resource List

D. Allocate the Resource

Best 10 resource triples at maximum are displayed to the

user. The system asks users to choose only one of them. As

showed in Figure 6, users can select resources for specified

time interval. But the system actually does not reserve all

resources in same period. If Expected Input File Size or

Expected Output File Size is defined in jdl file, in order to

increase the efficiency of resources, the system allocates the

resources in different period. Execution time of job could be

retrieved from job information but the user could not estimate

the time during transferring the files through network. While

allocating the resources, this information also should be

considered. In figure 7, T and Z zones shows actual usage of

resources. In available interval, there are some idle time for SR

and FR so new jobs can be scheduled on this interval. Ratio

of X to Z and T regions vary depending on the type of grid. If

the grid is data intensive grid the large part of the work will be

on SR or FR but if it is computational intensive grid then the

large part of the work will be on CR. Since these calculations

are done approximately Z and T zones should be considered as

calculated with buffered time to prevent conflict with other

jobs.

Figure7-Allocate Resources

E. Submit Jobs to Resources

This section describes how the system will submit jobs to

resources. This component of ITU-GRAM+ works as a batch

job in background to listen database for reservation jobs.

Before submitting the job, execution file of the job should be

transferred to CR. For this purpose, another batch job is

58 Int'l Conf. Grid Computing and Applications | GCA'12 |

defined to check the database and retrieve jobs which will start

immediately. This batch job works in a periodic time with

multithread to send files using secure FTP protocol. Submitting

jobs to resources is done by using web service technologies.

All necessary parameters to execute job will be passed to

resources via web service. In figure 8 shows interactions

between resources and resource manager during execution of

job. In first step job object of sendJob method includes

parameters listed below. These parameters will be used by

resource in different steps of job execution as showed

following.

Job {resIdList, remoteInputIp, remoteInputPath,

inputFileName, userId, jobName, command, remoteOutputIp,

remoteOutputPath, outputFileName, executableFile, ioType,

inputType, outputType, gridType}

After this submission, ITU-GRAM + waits update from the

resources, after that time, control is on resources. If we go over

the same example is described previous sections the steps on

execution of job is showed in Figure 8. These states have been

defined in the system in order to track jobs in every step.

UpdateJobStatus is an another web service which is exposed

by Grid Resource Manager to retrieve the status of job from

resources. resIdList parameter is passed to resource in step1

while submitting the job so the resources have this information.

Since the web service is a stateless protocol it is important for

grid system to restore the parameter on database and when any

update comes from resources it matches the job with this

resIdList parameter.

Figure 8-Submit Job

F. Monitoring Job Status

This section describes how to user can track their jobs on

ITU-GRAM+. For this purpose a new web page is

implemented to show the jobs status to users. ITU-GRAM+ has

capability to allow users to cancel their jobs before starting job

execution. But in this case penalty will be charged on users in

order to keep stable the performance of the system. Figure 9

shows the all states are described in ITU-GRAM+ and which

transactions are possible between these states. These states of

job are stored on the database table which is called

“ReservationJob”. This table keeps the information which

resources will be matched which jobs in which time period. All

possible transition between these states are showed with letters

below.

Figure9-State Diagram of Job

aThe status is changed Active to Ready when execution

file transferred to CR.

bThe status is changed from Ready to Submitted when

web service of sendJob is invoked.

cThe status is changed from Submitted to Started when

resource received job information.

d The status is changed from Started to FileReceived

when input file is retrieved.

e The status is changed from FileReceived to Execution

when resource started to run job.

f The status is changed from Execution to FileSent when

output file is sent.

g The status is changed from FileSent to Completed

when job finished successfully.

h,j,kThe status is changed from Active, Ready or

Submitted to Cancelled when the users want to cancel job.

l,m,n,p,r,s The status is changed from Ready, Submitted,

Started , FileReceived, Execution , FileSent to Failed when

any error occurs during job execution

Resource states are also kept in ITU-GRAM+ as showed in

Figure10. ITU-GRAM+ works with reservation method so

these states are valuable for the system in order to prevent

conflicts.

Available Suspend

In Use

a

b

c
d

Figure 10. State Diagram of Resource

 a The status is changed from Available to Suspend when

resources are displayed to user.

 b The status is changed from Suspend to Available when

user releases or timeout is reached.

 c The status is changed from Suspend to In Use when user

selects resources that meets requirements

 d The status is changed from In Use to Available when job

is completed.

Int'l Conf. Grid Computing and Applications | GCA'12 | 59

To display completed and waiting jobs to user, specific web

pages are implemented. It is also possible to cancel or monitor

jobs using these pages.

V. CONCLUSION AND FUTURE WORK

ITU-GRAM+ is a grid middleware which allows to users lot

of capabilities to execute their jobs. The important feature of

the system is that it is implemented using all open source

software. In addition to this the other functionalities on the

components are valuable for future work such as allocation

resources considering not only availability of all resources but

also the resource utilization. Besides using web service

technology to ensure communication between resources and

middleware is added value for Grid system. ITU-GRAM+ is

not only support data or computational grids it works with fine

both of them. As a result ITU-GRAM+ helps developers to

create their own middleware based on open source software

and provide standard and basic interfaces to users to submit

their jobs. Behind of these functionalities basic user access

protocols has been developed but other security related issues

are kept out of the scope of this paper. In addition to this

recover mechanism for failure states is handled with basic

implementation. Since the ITU-GRAM+ is free software it is

open any improvement for future works.

REFERENCES

[1] Job submission and management through web services: the experience
with the CREAM service C Aiftimiei, P Andreetto, S Bertocco, D
Cesini, M Corvo,S Dalla Fina, S Da Ronco, D Dongiovanni, A Dorigo,
A Gianelle,C Grandi, M Marzolla, M Mazzucato, V Miccio, A
Sciaba’,M Sgaravatto, M Verlato and L Zangrando, 2008

[2] Service-Oriented Architecture: Concepts, Technology, and Design,
Thomas Erl Prentice Hall PTR Upper Saddle River, NJ, USA ©2005
ISBN:013185858

[3] Ten actions when Grid scheduling: the user as a Grid scheduler, Kluwer
AcademicPublishers Norwell,MA,USA ©2004 table of contents ISBN:1
-4020-7575-8

[4] A Taxonomy and Survey of Grid Resource Management Systems,

Chaitanya Kandagatla,2003

[5] Globus Toolkit Version 4:Software for Service-Oriented Systems,Ian
Foster,2006

[6] Job Submission Description Language (JSDL) Specification,
Version1.0, 2005 http://www.gridforum.org/documents/GFD.56.pdf

[7] From Grid Middleware to a Grid Operating System, Arshad Ali, Richard
McClatchey, Ashiq Anjum, Irfan Habib, Kamran Soomro, Mohammed
Asif, Ali Adil, Athar Mohsin ,2006

[8] Available on 2012, http://tomcat.apache.org/

[9] Available on 2012, http://www.oracle.com/technetwork/java/

[10] Available on 2012, http://www.mysql.com/

[11] Available on 2012, http://www.hibernate.org/

[12] Available on 2012,

 http://www.oracle.com/technetwork/java/javaee/jsp/index.html

[13] Available on 2012, http://struts.apache.org/2.x/

[14] Available on 2012, http://axis.apache.org/axis2/java/core/

60 Int'l Conf. Grid Computing and Applications | GCA'12 |

http://dl.acm.org/author_page.cfm?id=81367597558&coll=DL&dl=ACM&trk=0&cfid=96288355&cftoken=74024429
http://portal.acm.org/citation.cfm?id=976113&picked=prox&cfid=18348679&cftoken=81082427
http://www.gridforum.org/documents/GFD.56.pdf
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.mysql.com/
http://www.hibernate.org/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://struts.apache.org/2.x/
http://axis.apache.org/axis2/java/core/

SESSION

COMPUTATIONAL GRID AND SCHEDULING

Chair(s)

Prof. Hamid Arabnia

Int'l Conf. Grid Computing and Applications | GCA'12 | 61

62 Int'l Conf. Grid Computing and Applications | GCA'12 |

Survey of Real Time Divisible Load Scheduling

Algorithms in computational grid

Mohamed Youssri A. El Nahas
 1
, Nahed M. El Desouky

 2
, Sahar A. Gomaa

2
and Naglaa Mostafa

 2

1
Faculty of Engineering , Al-Azhar University(girls) Cairo, Egypt.

2
Departement of Mathematics, Computer Branch, Faculty of Science ,

 Al-Azhar University(girls), Cairo, Egypt

Abstract - Cluster computing has emerged as a new

paradigm for solving large-scale problems. These workloads

represent a broad variety of real-world applications in cluster

and grid computing, such as BLAST (Basic Local Alignment

Search Tool) [2], a bioinformatics application, and high

energy and particle physics applications in ATLAS (A

Toroidal LHC Apparatus) [6] and CMS (Compact Muon

Solenoid) [10] projects. To provide performance guarantees

in cluster computing environments, various real-time

scheduling algorithms and workload models have been

investigated. Computational loads that can be arbitrarily

divided into independent pieces represent many real-world

applications. Divisible load theory (DLT) provides insight into

distribution strategies for such computations. However, the

problem of providing performance guarantees to divisible

load applications has not yet been systematically studied. This

paper provides a survey and compares different algorithms for

a cluster environment that provide a solution for the real time

divisible load applications. And provide different parameters

that affect the performance of these algorithms and scenarios

when the choice of these parameters has significant effects are

studied. It provides a taxonomy of the different scheduling

methods, and considers the various performance metrics that

can be used for comparison purposes.

Keywords: grid computing, divisible load theory.

1 Introduction

 Real-time Divisible Load Theory (RT-DLT) holds great

promise for modeling an emergent class of massively parallel

real-time workloads. However, the theory needs strong formal

foundations before it can be widely used for the design and

analysis of hard real-time safety-critical applications. In[1] the

general problem of obtaining such formal foundations, by

generalizing and extending recent results and concepts from

multiprocessor real-time scheduling theory.

 Cluster computing has become an important paradigm

[2] for solving large-scale problems. However, as the size of a

cluster increases, so does the complexity of resource

management and maintenance. Therefore, automated

performance control and resource management are expected

to play critical roles in sustaining the evolution of cluster

computing.

 Real-time divisible load scheduling is a well researched

area [3, 4, 5, 6, 7, 8]. Focusing on satisfying QoS (Quality of

services), providing real-time guarantees, and better utilizing

cluster resources, existing approaches give little emphasis to

scheduling efficiency. They assume that scheduling takes

much less time than the execution of a task, and thus the

scheduling overhead is ignored. When the processors in a

cluster platform all become available at the same instant in

time, the issue of scheduling a real-time divisible workload on

such platforms is pretty well understood. However, the reality

in many multiprocessor environments is that all the processors

do not become available to a given workload at the same

instant (perhaps because some of the processors are also being

used for other purposes).

 Broadly speaking, computational loads submitted to a

cluster are structured in two primary ways: indivisible and

divisible. An indivisible load is essentially a sequential job

and thus must be assigned to a single processor. The divisible

loads are comprised of tasks that can be executed in parallel

and can be further divided into two categories: modularly

divisible and arbitrarily divisible loads. Modularly divisible

loads are divided a priori into a certain number of subtasks

and are often described by a task (or processing) graph.

Arbitrarily divisible loads can be partitioned into an

arbitrarily large number of load fractions. Examples of

arbitrarily divisible loads can be easily found in high-energy

and particle physics as well as bio-metrics. For example, the

CMS (Compact Muon Solenoid) [18] and ATLAS (A

Toroidal LHC Apparatus) [19] projects, which are asso-ciated

with the LHC (Large Hadron Collider) at CERN (European

Laboratory for Particle Physics), execute cluster-based

applica-tions with arbitrarily divisible loads.

 There are three important decisions for an algorithm of

real-time scheduling to schedule divisible loads. The first is to

adopt a scheduling policy to determine the order of execution

for tasks. The second decision is to determine the number of

processing nodes (n) to allocate to each task and the third is to

choose a strategy to partition the task among the allocated n

nodes.

Int'l Conf. Grid Computing and Applications | GCA'12 | 63

 Description of the distributed system and assumption

used by different algorithms of real time divisible load are

discussed in section 2. Section 3 studies different scheduling

policies that classify the algorithms used in real time divisible

load. Different algorithms that are used to decide the number

of nodes must be assigned to each task and method of

portioning the task itself is discussed in section 4. The metrics

used to measure the real time performance of different

scheduling algorithms are explained in section 5 .Conclusion

is given in section 6.

1.1 Instructions for authors

 An electronic copy of your full camera-ready paper

must be uploaded (in PDF format) to Publication Web site

before the announced deadline. Please follow the submission

instructions shown on the web site. The URL to the website is

included in the notification of acceptance that has been

emailed to you by Prof. Arabnia.

2 Tasks and System Assumption

 The model of the investigated system used by different

algorithms and the assumptions are as follow:

System model: a cluster consists of a head node, denoted

by 0p , and connected via a switch to n processing nodes,

denoted by 1 2 3, , ,..... np p p p . And assuming that all

processing nodes have the same computational power and all

links from the switch to the processing nodes have the same

bandwidth. The system model assumes a typical cluster

environment in which the head node does not participate in

computation. The role of the head node is to accept or reject

incoming tasks, execute the scheduling algorithm, divide the

workload and distribute data chunks to processing nodes.

Since different nodes process different data chunks, the head

node sequentially sends every data chunk to its corresponding

processing node via the switch. And data transmission does

not happen in parallel, although it is straightforward to

generalize this model and include the case where some

pipelining of communication may occur. There is an

assumption for the divisible loads that is task and subtasks are

independent. Therefore, there is no need for processing nodes

to communicate with each other.

 According to divisible load theory, linear models are used to

represent processing and transmission times [10]. In the

simplest scenario, the computation time of a load  is

calculated by a cost function   pscp c  , where psc

represents the time to compute a unit of workload on a single

processing node. The transmission time of a load  is

calculated by a cost function   mscm c  , where msc is

the time to transmit a unit of workload from the head node to a

processing node.

Tasks Assumption: Assuming that a real time aperiodic task

model in which each a periodic task Ti consists of a single

invocation specified by the tuple  , ,i i iA D , where

iA ≥ 0 is the arrival time of the task, i > 0 is the total

data size of the task, and iD > 0 is its relative deadline. The

absolute deadline of the task is given by iA + iD . Task

execution time is dynamically computed based on total data

size i , resources allocated (i.e., processing nodes and

bandwidth) and the partitioning method applied to parallelize

the computation.

3 Scheduling Policies
There are three scheduling policies to determine the

execution order of tasks that are investigated in different

algorithms: FIFO, EDF (earliest deadline first) and MWF

(Maximum Workload derivative First)[1,2,9,10,12,20]. The

FIFO scheduling algorithm executes tasks following their

order of arrival. EDF, a well-known real-time scheduling

algorithm, orders tasks by their absolute deadlines. MWF is a

real-time scheduling algorithm for divisible tasks. The main

rules of MWF are:

1) A task with the highest workload derivative (iDC) is

scheduled first.

 2) The number of nodes allocated to a task is kept as small

as possible (
min

in) without violating its deadline. Here, we

review how MWF determines task execution order and define

the workload derivative metric, iDC , where  iW n is used

to represent the workload (cost) of a task iT when n

processing nodes are assigned to it.

 iDC =    min min1i i i iW n W n  (1)

That is,    ,i iW n n n   , where  ,i n  denotes

the task’s execution time. Therefore, iDC is the derivative of

the task workload  iW n at
min

in (the minimum number of

nodes needed by Ti to meet its deadline).

4 Real time divisible algorithms
 Different algorithms that investigate the real time divisible

load are studied during the past few years. OPR which

searches optimally to find the minimum number of processing

nodes that satisfies the real time requirement of the load that is

proposed in [1, 2, 9, 10, 20]. Another way to solve this

problem follows the idea of equally portioning the load among

the processing nodes that presented in [1, 2, 9, 10]. Task

Waiting Queue (TWQ) algorithms are divisible load

64 Int'l Conf. Grid Computing and Applications | GCA'12 |

scheduling algorithms [3, 4, 5, 6, 7], that perform the schedule

ability test. The admission controller generates a new schedule

for the newly arrived task and all tasks waiting in TWQ, this

decision module is referred to as the admission controller.

When processing nodes become available, the dispatcher

module partitions each task and dispatches subtasks to execute

on processing nodes. And finally there are algorithms depend

on the time which processing nodes are available at it. There

are two algorithms of this idea first when processing nodes

have equal ready and when processing nodes have different

ready time, these algorithms presented in [7,14, 15]. In the

following subsections a brief details of these algorithms are

presented.

4.1 Optimal Partitioning Rule (OPR) Algorithm
 Divisible load theory states that optimal execution time is

obtained for a divisible load if all processing nodes allocated

to the task complete their computation at the same time instant

[11]. This is called the Optimal Partitioning Rule (OPR). In

divisible load theory, normally all n nodes of a cluster are

allocated to a task. Then, following the OPR, the task load is

partitioned such that all nodes finish processing at the same

time. In contrast to this approach, first computing the

minimum number of processing nodes needed to meet the

task’s deadline given its schedule, and then partition the task

following the OPR (using at least the minimum number of

nodes required to meet the deadline). The execution time of a

task is then trivially computed as the difference between its

completion and start times. The following notations, partially

adopted from [11], are used in these computations.

 •  , ,T A D : A divisible task, where A is the

arrival time, is the data size, and D is the relative

deadline.

 •  1 2, ,....., n    : Data distribution vector,

where n is the number of processing nodes allocated to

the task,
j is the data fraction allocated to the

thj

node, i.e.,
j  , is the amount of data that is to be

transmitted to the
thj node for processing, 0 1j 

and
1

1
n

j

j




 .

 • msc : Cost of transmitting a unit workload.

 • psc : Cost of processing a unit workload.

 The following cost functions describe that: the data

transmission time on the
thj link is  m j j msc c   

and the data processing time on the
thj node is

 p j j psc c    .

 Figure 1 shows an example task execution time diagram

following OPR when n nodes are allocated to process the task.

Let  denote Task Execution Time, which is a function of 

and n.

Figure 1: Time Diagram for OPR-Based Partitioning.

By analyzing the diagram, we have

  1 1, ms psn c c       (2)

 =  1 2 2ms psc c      (3)

 =  1 2 3 3ms psc c        (4)

 . . .

 =  1 2 3 n ms n psc c           . (5)

To specify the minimum number
minn of nodes that required

to meet a task’s deadline, assuming that the task

 , ,T A D has a start time s, then the task completion time

is C (n) = s +  , n  , which must satisfy the constraint that

C(n) ≤ A + D. Lin et al. [14, 15, 16] derived the task

execution time function  , n  and the minimum number

minn of nodes that the task needs at time s to meet its

deadline are

    
1

,
1

ms psn
n c c


  




 


 (6)

min ln

ln
n





 
  
 

 (7)

 where

psms

ps

cc

c


 and 1 msc

A D s


  

 
.

4.2 Equal Partitioning Rule (EPR) Algorithm
 Equal Partitioning Rule (EPR) is based on a common

practice of dividing a task into n equal-sized subtasks when

the task is to be processed by n nodes. An example task

execution time diagram following the EPR is shown in figure

2. By analyzing the diagram, we have

  ,
ps

ms

c
n c

n


    . (8)

Int'l Conf. Grid Computing and Applications | GCA'12 | 65

Similar to the analysis for DLT-based OPR, Lin et al. [1, 2 ,9,

10] derived the minimum number
minn for EPR. The

minimum number of processing nodes that the task needs at

time s to complete before its deadline is

min ps

ms

c
n

A D s c





 
  

  

Figure 2: Time Diagram for EPR-Based Partitioning.

4.3 Task waiting queue (TWQ) algorithms

 In these algorithms [10] Mamat, Ying Lu, Jitender

Deogun and Steve Goddard, when a task arrives, the

scheduler determines if it is feasible to schedule the new task

without compromising the guarantees for previously admitted

tasks. Only those tasks that pass this schedule ability test are

allowed to enter the task waiting queue (TWQ). This decision

module is referred to as the admission controller. When

processing nodes become available, the dispatcher module

partitions each task and dispatches subtasks to execute on

processing nodes. In the Modules, admission controller and

dispatcher, run on the head node. For existing divisible load

scheduling algorithms [3, 4, 5, 6, 7], in order to perform the

schedule ability test, the admission controller generates a new

schedule for the newly arrived task and all tasks waiting in

TWQ. If the schedule is feasible, the new task is accepted;

otherwise, it is rejected. For these algorithms, the dispatcher

acts as an execution agent, which simply implements the

feasible schedule developed by the admission controller.

 There are two factors that contribute to large overheads of

these algorithms. First, to make an admission control decision,

they reschedule tasks in TWQ. Second, they calculate in the

admission controller the minimum number
minn of nodes

required to meet a task’s deadline so that it guarantees enough

resources for each task. The later a task starts, the more nodes

are needed to complete it before its deadline. Therefore, if a

task is rescheduled to start at a different time, the
minn of the

task may change and needs to be recomputed. This process of

rescheduling and re-computing
minn of waiting tasks

introduces a big overhead.

 The dispatching algorithm [10] is rather straightforward.

When a processing node and the head node become available,

the dispatcher takes the first task τ (A, σ, D) in TWQ,

partitions the task and sends a subtask of size ˆσ to the node,

where ˆ min ,
ms ps

A D CurrentTime

c c
 

  
    

. The

remaining portion of the task τ (A, σ-̂ ,D) is left in TWQ.

The dispatcher chooses a proper size ̂ to guarantee that the

dispatched subtask completes no later than the task’s absolute

deadline A + D. Following the algorithm, all subtasks of a

given task complete at the task absolute deadline, except for

the last one, which may not be big enough to occupy the node

until the task deadline. By dispatching the task as soon as the

resources become available and letting the task occupy the

node until the task deadline, the dispatcher allocates the

minimum number of nodes to each task.

4.4 Case of Processor Ready Times
 These algorithms can solve the real time divisible load by

depending on the time which processing nodes are ready at it.

This approach contains two kinds algorithms, algorithms when

the processing nodes are equal ready time and algorithms

when different ready time. The following subsections describe

briefly the ideas of these algorithms.

4.4.1 Processors with Equal Ready Times

 In [14, 15, 18], it is assumed that all the processors,

upon which a particular job will be distributed by the head

node, are available for that job over the entire time-interval

between the instant that the head-node initiates data transfer to

any one of these nodes, and the instant that it completes

execution upon all the nodes. Under this model of processor

availability, it is known that the completion time of a job on a

given set of processing nodes is minimized if all the

processing nodes complete their execution of the job at the

same instant. This makes intuitive sense – if some processing

node completes before the others for a given distribution of

the job’s workload, then a different distribution of the

workload that transfers some of the assigned work from the

remaining processing node to this one would have an earlier

completion time. Figure 6 depicts the data transmission and

execution time diagram when processors have equal ready

times.

Figure 6: Data transmission and execution time diagram

when processor have equal ready times

66 Int'l Conf. Grid Computing and Applications | GCA'12 |

For a given job (A, σ ,D) and a given number of processing

nodes n, let i ×α denote the amount of the load of the job

that is assigned to the
thj processing node, 1≤ j ≤ n . Since

data-transmission occurs sequentially, the node i P can only

receive data after the previous (i − 1) nodes have completed

receiving their data. Hence, each ip receives its data

over the interval
1

1 1

,
i i

m j m i

j j

c c   


 

 


 
 

And therefore completes execution at time-instant

1

i

m j p i

j

c c   


 Then time execution time is

assignment by equation (6) and to determine a minimum

number of processors needed is computed from equation (6)

by setting this completion time to the job’s deadline (A+ D)

in Equation (6), and making “n” — the number of processors

— the variable. (Since the number of processors is necessary

integral, it is actually the ceiling of this value that is the

minimum number of processors.)

4.4.2 Processors with Different Ready Times Algorithm

 In [16, 17], Lin et al. allow for the possibility that all the

processors are not immediately available. To determine the

completion time of a job upon a given number of processors in

this more general setting, Lin et al.[16, 17, 21] adopt a

heuristic approach that aims to partition a job so that the

allocated processors could start at different times but finish

computation (almost) simultaneously.

To achieve this, they first map the given homogenous cluster

with different processor available times 1 2, ,.... nr r r (with

1i ir r  ) into a heterogeneous model where all n assigned

nodes become available simultaneously at the time-instant nr ,

but different processors may have different computing

capacities. Intuitively speaking, the
thi processor has its

computing capacity inflated to account for the reality that it is

able to execute over the interval  ,i nr r as well. Figure 7

depicts the data transmission and execution time diagram

when processors have different ready times.

Figure 7: Data transmission and execution time diagram when

processors have different ready times

In Lin et al [16, 17] , this heterogeneity is modeled by

associating a different constant
ipsc with each processor ip ,

with the interpretation that it takes
ipsc time to complete one

unit of work on the processor ip . The formula for

determining
ipsc , as given in Lin et al [16, 17] , is

n

 (, n)

 (, n) +rips

i

c
r

 

 



 (11)

Where ξ (σ , n) denotes the completion time if all

processors are immediately available in the original

(homogenous) cluster these
ipsc values are used to derive

formulas for computing the fractions of the workload that are

to be allocated to each heterogeneous processor such that all

processors complete at approximately the same time, and for

computing this completion-time.

 4.5 Least Cost Methods
 G.K.Kamalam and Dr.V.Murali Bhaskaran [25]

introduce a decentralized job scheduling algorithms which

performs intra cluster and inter cluster (grid) job scheduling.

They apply Divisible Load Theory (DLT) and Least Cost

Method (LCM) to model the grid scheduling problem

involving multiple resources within an intra cluster and inter

cluster grid environment. The LCM method, the jobs are

allocated to the resource with the least allocation cost [26].

The algorithm reduces the total processing time and the total

cost and the resource utilization is more and the load is

balanced across the grid environment.

 Xin Liu et al [23,24] proposed another algorithm in which

they tried to obtain minimum cost by perturbing the schedule

of some tasks from minimum time solution. They proposed

min-time algorithm to find the minimum completion time and

the min-cost algorithm to find the minimum cost without

considering the deadline constraint. Their proposed algorithm

is a hybrid scheduling algorithm to minimize some of the tasks

lying to the first of the list follow min time and the remaining

tasks in the list follow min cost algorithm. This is called as

perturbation degree. Their proposed algorithm stated that the

task from the list is allowed to evaluate the minimum

completion time and if it is greater than the deadline, then

there is no possibility of getting feasible solution, if the

minimum completion time is less than the deadline then binary

search is used recursively for largest perturbation degree, such

that the current or the next perturbation degree is smaller than

the deadline. Now the cost and perturbation degree is obtained

and returned as schedule with minimum cost and finished

before deadline.

Int'l Conf. Grid Computing and Applications | GCA'12 | 67

5 Metrics of real time divisible load for

cluster scheduling
 To measure the performance and distinguish between

algorithms, different metrics are used. These metrics are used

to measure the effects of parameters on these algorithms and it

also merits between them.

The DC Ratio, task reject ratio, processing speed and number

of nodes are the main performance metrics used by OPR, EPR

and ready time processor algorithms. While task reject ratio,

system utilization and scheduling overhead are used by TQW

algorithms to measure their performance. The following

subsections give brief descriptions of these metrics.

5.1 Effect of Task Reject Ratio

 There is new metric Task Reject Ratio can use it to specify

the real-time scheduling algorithm is better or not , which is

define as the ratio of the number of tasks rejected by a real-

time scheduling algorithm to the total number of tasks arriving

at the cluster The smaller the Task Reject Ratio, the better the

real-time scheduling algorithm. The Task Reject Ratio of the

four algorithms: EDF-OPR-MN, EDF-EPR-MN, EDF-OPR-

AN, and EDF-EPR-AN. Observe that EDF-OPR-MN always

leads to a lower Task Reject Ratio than EDF-EPR-MN.

Similarly, observe that EDF-OPR-AN always achieves a lower

Task Reject Ratio than EDF-EPR-AN. These simulation

results confirm the hypothesis [10] that it is advantageous to

apply DLT in real-time, cluster-based scheduling algorithms.

DLT provides an optimal task partitioning, which leads to

minimum task execution times, and as a result the cluster can

satisfy a larger number of task deadlines.

5.2 Effects of DCRatio
 [1,2] There are another metric that effect on the real time

algorithms that is DCRatio which is defined as the ratio of

mean deadline to mean minimum execution time (cost), that

is
 

AvgD

Avg ,N 
, where  Avg ,N  is the task

execution time computed with Eq (6) assuming the task has an

average data size Avg and runs on all N processing nodes.

To study the effects of the DCRatio, on the real time

algorithms of divisible load, observe that by increasing

DCRatio, the performance of EDF-EPR-AN becomes closer to

that of EDF-OPR-AN. This is because the higher the DCRatio,

the looser the task relative deadlines are. Consequently, the

worse execution times caused by a non-optimal partition, like

EPR, will have less impact on the algorithms’ performance. In

particular, when DCRatio is extremely high (100), the two

algorithms perform almost the same.

5.3 Effects of Processing Speed
 By studying effects of processing speed, the algorithm with

OPR [9,10] partitioning (EDF-OPR-MN) still outperforms the

algorithm with EPR partitioning (EDF-EPR-MN). However,

as the processing speed decreases, i.e., psc increases, the

difference between the two algorithms becomes less and less

significant. In particular, when the computation is extremely

slow (
psc = 10000), the curves for the two algorithms are

almost overlapped, indicating non-differentiable Task Reject

Ratios. Therefore, OPR and EPR will perform the same in this

case. From the aforementioned intensive experiments, then the

conclusion is no matter what the system parameters are, the

algorithms with DLT-based partitioning (OPR) always

perform better than the ones with the equal-sized partitioning

heuristic (EPR). This shows that it is beneficial to apply

divisible load theory in real-time, cluster-based scheduling.

5.4 All nodes N versus
minn Nodes

 The performance of real time divisible load algorithm

[9,10,20] difference in algorithms assigning all N nodes to

every task (ALG-AN) v.s. those assigning the minimum

number
minn of nodes needed to meet a task’s deadline

(ALG-MN). Where the relative performance of EDF-OPR-

MN v.s. EDF-OPR-AN is noteworthy that in contrast to the

results in [12] comparing MWF (-MN) and FIXED (-AN)

algorithms, the initial data seem to indicate that EDF-OPR-AN

outperforms EDF-OPR-MN most of the time. To gain insight

into the performance results, Carry out rigorous analysis of a

simplified scenario where a scheduling algorithm always

assigns K nodes (K < N) to a periodic divisible task. This

analysis sheds new light on possible scenarios where

algorithms assigning
minn nodes (ALG-MN) perform better

than those assigning all N nodes (ALG-AN).

5.5 Scheduling Overhead and cost

 This metrics investigate the effect of scheduling overheads

and deadline constrain. Theses algorithms try to minimize the

overhead affected by the scheduling algorithms and meet the

deadline constrain.

6. Conclusion
 In this paper, the real-time divisible load distribution

problem in computational grid is investigated. We try to

present the progress and developing efforts to determine the

best mechanisms, policies and analysis to use in these systems.

Different matrices and constrains can be compromised by

building systems using approaches that lack the necessary

theoretical underpinnings. Ultimately, computational grid will

be used in high integrity real-time systems, and consequently,

timing failures could affect safety. The paper study different

scheduling algorithms; scheduling policies, and hybrid

algorithms. Comparisons of fewer algorithms with various

factors influencing Grid system are explained. An

investigation on various factors that influence the scheduling

in grid has been made and shown in this paper. This is an

effort made to find the silver lining in the dark clouds which

could paint an idea about the scheduling policies applied to

the real-time divisible load problem in computational

environment.

References
[1] Suriayati bt chuprat," The deadline-based scheduling of

Divisible Real-Time Workloads on Multiprocessor

68 Int'l Conf. Grid Computing and Applications | GCA'12 |

Platforms", PHD degree of Doctor of Philosophy

(Mathematics), Faculty of science, university technology

Malaysia 2009.

[2] Computer Science and Engineering, Department of

Computer Science and Engineering: "Real-Time Divisible

Load Scheduling For Cluster Computing", Theses

Dissertations, and Student Research University of Nebraska -

Lincoln Year 2011.

[3] S. Chuprat and S. Baruah. " Scheduling divisible real-time

loads on clusters with varying processor start times" In 14th

IEEE International Conference on Embedded and Real-Time

 Computing Systems and Applications (RTCSA ’08),pages

15–24, Aug 2008.

[4] S. Chuprat, S. Salleh, and S. Baruah. "Evaluation of a

linear programming approach towards scheduling divisible

real-time Loads", In International Symposium on Information

Technology, pages 1–8, Aug 2008.

[5] W. Y. Lee, S. J. Hong, and J. Kim., "On-line scheduling of

scalable real-time tasks on multiprocessor systems" , Journal

of Parallel and Distributed Computing 63(12):1315–1324,

2003.

 [6] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Real-time

divisible load scheduling with different processor available

times", In Proceedings of the 2007 International Conference

on Parallel Processing (ICPP 2007).

[7] X. Lin, Y. Lu, J. Deogun, and S. Goddard.," Real-time

divisible load scheduling for cluster computing" In

Proceedings of the 13th IEEE Real-Time and Embedded

Technology and Application Symposium pages 303–314,

Bellevue, WA, April 2007.

[8] A. Mamat, Y. Lu, J. Deogun, and S. Goddard,"Real-time

divisible load scheduling with advance reservations", In 20th

Euromicro Conference on Real-Time Systems pages 37–46,

July 2008.

[9] Anwar Mamat, Ying Lu, Jitender Deogun, Steve Goddard,

"An Efficient Algorithm for Real-Time Divisible Load

Scheduling", Department of Computer Science and

Engineering University of Nebraska – Lincoln Lincoln NE

68588 {anwar, ylu, deogun, goddard}@cse.unl.edu

[10] B. Veeravalli, D. Ghose, and T. G. Robertazzi.,

"Divisible load theory: A new paradigm for load scheduling in

distributed systems Cluster Computing", 6(1):7–17, 2003.

[11] D. Swanson. Personal communication. Director, UNL

Research Computing Facility (RCF) and

 UNL CMS Tier-2 Site, August 2005.

[12] D. Isovic and G. Fohler. "Efficient scheduling of sporadic

periodic, and periodic tasks with complex constraints", In

Proc. of 21st IEEE Real-Time Systems Symposium,pages

207–216, Orlando, FL, November 2000.

[13] B. Veeravalli, D. Ghose, and T. G. Robertazzi, "Divisible

load theory: A new paradigm for load scheduling in

distributed systems Cluster Computing", 6(1):7–17, 2003.

[14] Lin, X., Lu, Y., Deogun, J. and Goddard, S., " Real-time

divisible load scheduling for cluster computing", Technical

Report UNL-CSE-2006-0016 (2006a), Department of

Computer Science and Engineering, The University of

Nebraska at Lincoln.

 [15] Lin, X., Lu, Y., Deogun, J. and Goddard, S., "Real-time

divisible load scheduling for clusters. Proceedings of the Real-

Time Systems Symposium",(2006b).– Work-In-Progress

Session pages 9–12, Rio de Janerio, December.

[16] Lin, X., Lu, Y., Deogun, J. and Goddard, S., " Real-Time

Divisible Load Scheduling with

 Different Processor Available Times", Proceedings of

International Conference on Parallel Processing (ICPP),

(2007b), Xian, China, September.

[17] Lin, X., Lu, Y., Deogun, J. and Goddard, S., " Enhanced

Real-Time Divisible Load Scheduling with Different

Processor Available Times", Proceedings of 14th International

Conference On High Performance Computing (HiPC),

(2007c) Goa, India, December.

[18] Compact Muon Solenoid (CMS) Experiment for the

Large Hadron Col-lider at CERN (European Lab for Particle

Physics), Cms web page,

http://cmsinfo.cern.ch/Welcome.html/.

[19] ATLAS (A Toroidal LHC Apparatus) Experiment,

CERN (European Lab for Particle Physics), Atlas web page,

http://atlas.ch/.

[20] Xuan Lin, Anwar Mamat, Ying Lu_, Jitender Deogun,

Steve Goddard,” Real-time scheduling of divisible loads in

cluster computing environments” , J. Parallel Distrib. Comput.

70 (2010) 296_308

[21] Kijeung Choi 1, Thomas G. Robertazzi , “An Exhaustive

Approach to Release Time Aware Divisible Load

Scheduling”, (IJIDCS) International Journal on Internet

and Distributed Computing Systems. Vol: 1 No: 2,

2011.

[22] G. Murugesan and C. Chellappan, “An Economic

Allocation of Resources for Divisible Workloads in Grid

Computing Paradigm”, European Journal of Scientific

Research, ISSN 1450-216X Vol.65 No.3 (2011), pp.

434-443 © EuroJournals Publishing, Inc. 2011

[23] Xin Liu, Chunming Qiao, Wei Wei, Xiang Yu,Ting

Wang, Weisheng Hu, Wei Guo, and Min-You

 Wu, “Task Scheduling and Lightpath Establishment in

Optical Grids”, Journal Of Light Wave Technology,

2009, p 1796-1805.

[24] Dr. D.I. George Amalarethinam1, P. Muthulakshmi ,

“An Overview of the Scheduling Policies and

Algorithms in Grid Computing” , International Journal

of Research and Reviews in Computer Science

(IJRRCS) Vol. 2, No. 2, April 2011.

[25] Syed Nasir Mehmood Shah, Ahmad Kamil Bin

Mahmood, and Alan Oxley 2010, “Hybrid Resource

Allocation for Grid Comp uting”, in Proceed in gs of the

IEEE Second International Conference on Computer

Research and Development, 426 – 431.

[26] G.K.Kamalam,and Dr.V.Murali Bhaskaran, “An

Effective Approach to Job Scheduling in Decentralized Grid

Environment”, International Journal of Computer Applications

(0975 – 8887) Volume 24– No.1, June 2011.

Int'l Conf. Grid Computing and Applications | GCA'12 | 69

mailto:goddard%7D@cse.unl.edu

Proactive Economical Task Scheduling Algorithm for

Grid

 Piyush Chauhan, Nitin, Rashmi Sharma and Ved Prakash Bhardwaj

Department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology, P.O. Waknaghat,

Solan-173234, Himachal Pradesh, India

Abstract—Task Duplication technique can reduce the makespan

of any application designed for the decentralized grid. In this

paper, we have presented an algorithm called Proactive

Economical Task Scheduling Algorithm; it can decrease

computations in Economical Task Scheduling Algorithm for Grid

(EDS-G). It works proactively for a grid. In this approach, each

node proactively keeps a hierarchical ordered list of the chosen

computation resources. The resources are selected randomly.

These resources have specific optimization criteria. It is based on

their computation capability and communication cost.

Keywords-scheduling algorithms; Decentralized Grid; Task

Duplication heuristics; Directed Acyclic Graphs;

I. INTRODUCTION AND MOTIVATION

Latest generation of grids, consist of multiple
heterogeneous and minute size clusters. Sometimes a grid has
only single machine at one physical location. In case of huge
grids composed of plentiful minute clusters, relying on Meta
scheduler or single central scheduler is not practical.
Scheduling jobs on such grids straddling across multiple
organizations becomes vital. Many researchers projected peer-
to-peer solution in their algorithms for the grid scheduling
problem. Finding best possible schedule for multiprocessor
scheduling [1], [2], [3] problem is NP complete problem
[4].Unlike existing peer-to-peer scheduling algorithms [5],[6],
[7], [8], our approaches do the proactive future allocation of
computational resources even before task is generated at any
grid node. Before the generation of tasks resources are
allocated. The allocated resources are arranged in decreasing
order, based on optimization criteria.

An optimization criterion depends upon computation
capability and bandwidth constraints related to the node.
CYCLON protocol [9], [10] is used to establish superior
version of shuffling. We add features of hierarchically
arranging nodes, which are shuffled by CYCLON protocol.
These nodes are arranged in non-increasing order of their
computation capability and bandwidth. Weighted directed
acyclic task graph are often used to represent a distributed and
parallel applications [11], [12], [13]. In DAG node symbolizes
application task. Edges of DAG stand for data dependencies
between various application tasks of DAG. Here ordered list of
allocated computational nodes tend to be useful in reducing
assessment for best fit node for tasks of DAG. Duplication
based scheduling [4], [14], [15], [16] is one of classification of

task scheduling heuristic [17], [18], [20],[12] for DAG
application. Predecessor task node for any task node is taken
into consideration. Now makespan of an application is reduced
by duplicating in ideal time slots between two already
scheduled tasks the predecessor task.

In Grid computing environment duplication based
scheduling give excellent results. Down side of duplication
based scheduling is excessive duplication. This excessive
duplication yield extra using up of nodes (computation
resources) in grid. Duplication based scheduling is more useful
for fine grain task graphs [4], [14]. In addition, duplication
based scheduling is very useful for grids with higher CCRs
(CCR means Ratio of average communication cost to average
computation cost on selected Grid.).Efficiency of scheduling
algorithms has a great tendency to decrease with rise in
heterogeneity of grid computational resources. By duplicating
only important tasks, we prevented some extent of degradation
of scheduling algorithms for grid caused by heterogeneity.
Task duplication decreases task finish time on computation
resources of grid. EDS-G [9] algorithm investigates effect of
duplicated tasks over makespan. This way EDS-G algorithm
improves schedule by eliminating unproductive duplicated
tasks whose removal does not affect the makespan. EDS-G
algorithm compares all computational resources for each
application task of DAG.

EDS-G finds out which duplicated parent task can be
removed from computational nodes of grid such that makespan
will not get affected. In proactive economical task scheduling
algorithm, we arrange the nodes hierarchically of a grid
obtained by running CYCLON protocol. Ordering of grid
nodes is done before task is generated at grid node. Shuffling is
done as it is explained in CYCLON Protocol. These nodes are
arranged in non increasing order, based on optimization
criteria. Ordered list is called Empty processor list (EPL).The
advantage of hierarchical arrangement of grid computation
resources is that we do not need to do task node’s comparison
with all shortlisted nodes of grid. First task node of DAG will
be assigned to first Processor from ordered list. Next task node
will be assigned to either second processor from EPL list or to
first processor. Out of these two processors, processor capable
of finishing second task node fastest will be chosen. Instead of
comparing with all shortlisted grid resources here, we
compared only two processors for task assignment. Thus, less

70 Int'l Conf. Grid Computing and Applications | GCA'12 |

time was consumed to assign task. Similarly, rest of task nodes
will be assigned to best suited grid resources.

A lot of researchers have proposed task duplication based
scheduling technique for computational grid system. But they
compare entire shortlisted subset of grid nodes for each task
node such that best fit grid node is obtained for each task node.
In our research we have reduced the number of comparisons by
ordering grid resources proactively. Rest of paper is structured
as follows. Section II, explores the preliminaries and
background. Section III, explains proposed Proactive
economical task scheduling algorithm for grid in two parts. Part
A mention modified version of CYCLON and part B explain
Proactive Economical Task Scheduling Algorithm for Grid.
Section IV, gives conclusion and future scope of work.

II. RELATED WORK

Many researchers have recognized need of efficient task
scheduling algorithm [15] for decentralized grid’s
computational resources. One example of using duplication
technique to have efficient scheduling algorithm for
heterogeneous computational system is explained in
[11].Authors of [11] introduced Heterogeneous Limited
Duplication (HLD) scheduling algorithm for heterogeneous
computing environment.HLD schedules tasks, based on their
precedence constraints. HLD [11] avoid redundant replication
by confining duplication to most essential immediate
predecessor tasks. HLD is modification of Selective
Duplication (SD) Algorithm [12] for heterogeneous
computational systems. Selective duplication algorithm is quite
effective for homogeneous computing systems. SD [12]
algorithm completes in triple phases. Firstly, we arrange task
sequence using critical path based priority. Secondary phase is
used to select set of candidate processors for candidate task.
Last phase of SD algorithm apply candidate task to processor
which apply it at earliest, by means of insertion based
duplication approach.

One of latest scheduling algorithm for decentralized grid
computing system is EDS-G [4].As explained in HLD
algorithm EDS-G algorithm also generates priority-based task
sequence. Task sequence is generated by arranging tasks in
decreasing order of their communication and computation cost
along longest directed path from the concerned task to the exit
task in directed acyclic graph. Now, initial unscheduled task in
the task sequence is chosen and scheduled on a grid computing
resource that can end its computation at the earliest by means
of duplication approach. This algorithm place the task in a
former most idle period amid two already scheduled tasks on
the decentralized grid’s computational resource. Task �� on
computational grid start working once data arrived from all
parent nodes of task node��.Hence, grid resource may remain
idle yielding scheduling holes. When start time of task ��on
grid resource is restricted by data arrival from its most
important immediate parent (Most important immediate parent
of task ��is its ancestor whose data arrive last of all parents of
task �� .) scheduling hole is generated. This scheduling hole
may be exploited to duplicate tasks to minimize data arrival
time. Start time and finish time of task �� and all tasks is
calculated which help in obtaining makespan. Now two lists A
&B are created having record of original task with links to

dependent tasks and record of duplicated tasks in non-
increasing order of earliest start time respectively. List B is
modified if removal of duplicated task from list B does not
affect makespan. In addition, list A removes those tasks, which
have already been duplicated and hence are not providing any
output to any immediate descendant task. Our algorithm
Proactive Economical Duplication for Decentralized Grid uses
partially similar algorithm but need less number of
comparisons to assign tasks to best fit corresponding nodes.
This becomes possible due to proactively arranging grid
resources in hierarchy of performance. Out of list of �
resources, we can choose random � resources (� < �).

This selection is done with help of CYCLON [5] protocol.
CYCLON is gossip based protocol [6], [19]. In CYCLON,
each peer knows small constantly changing set of other peers.
All peers in grid occasionally contacts neighbor peer to shuffle
caches and this neighbor peer is chosen whose information was
the earliest one to have been injected in the grid.

III. PROPOSED PROACTIVE ECONOMICAL DUPLICATION

SCHEDULING ALGORITHM FOR GRID

In this section, we will present our proposed algorithm in a
structured manner. In first step, we will focus how the
resources can be ordered in a proper manner. In next step, it
will be illustrated that how we can improve the quality of
schedule and get scheduling process better than EDS-G.

A. Proactive Ordering of Selected Neighbour Nodes in a Grid

Proactive ordering of resources is done by modified version
of CYCLON [9],[10].Overlay is formed and connected by
means of epidemic algorithm [10], [7]. Each node knows a
petite set of neighbor nodes, which are continuously changing.
This node occasionally contacts a neighboring node whose
information was the first one to have been injected in the
network and exchanges some of their neighbors. Each node
maintains a neighbor list in a small, fixed size cache of 	
entries. Neighboring node’s computation capability,
communication cost, IP and port address are kept in Cache
entry. Nodes start neighbor swap periodically, however not
synchronized, at a fixed time period∆�. Hence, other than step
of ordering neighbors, rest of steps are like CYCLON [9]
protocol. The ordering and shuffling [5] of computational
resources is done when initiating peer� carry out following
steps: Select a random subset of
 neighbors (Length of list

is �(1 ≤ � ≤ �)) from a set of neighbors of � (initiating peer).

1. In LIST
 Increment by 1 the age of all neighbors.

2. Select neighbor � havingmaximum age among all
neighbors in list
, and� − 1 other random neighbors.

3. Replace�’s entries with entry of age zero (i.e. new
one) and with address of �.

4. Sent updated subset to �node.

5. Receive from � a subset of no more than �of its own
entries.

6. Discard entries pointing at � and entries already
contained in �’s cache.

Int'l Conf. Grid Computing and Applications | GCA'12 | 71

7. Update �’s cache to include all remaining entries, by
utilizing initially empty slots in cache (if any),and
secondly substitute entries among the ones sent to �.

8. List EPL is formed by arranging neighbors in
 in a
non increasing order of their computation capability
and communication cost.

Node �answers by sending back a random subset of at
most� of its neighbors, and renew its own cache to house all
received entries. However, it does not increase any entry’s age
until its own turn comes to run above stated protocol. This
hierarchical ordering of neighboring nodes in grid helps us in
reducing computations involved in Task Scheduling algorithms
like EDS-G for grid.

B. Proactive EDS-G Algorithm

This section of the paper represents Proactive Economical
Task Duplication based Scheduling Algorithm. This algorithm
is split into two parts. Our work is modification of [4].In
proactive EDS-G algorithms, first part gives a method for
scheduling based on technique of insertion based task
duplication. Second part of algorithm removes tasks whose
termination does not have an effect on makespan. The
algorithm’s pseudo code is shown in figure1.Once we have
orderly placed computational resources before task is
generated, we can use it when task is generated at any grid
node. When task is generated at grid node, we split it into
interdependent sub-tasks and use DAG to show their
interdependence. Grid computing system can be characterized
as � = (�, �) where �(��, ��, �� … �� , �� �, … �!) are grid’s
computing resources. Grid’s resources are connected by
various communication channels B. Because grid’s resources
are of heterogeneous nature, hence same task’s computing cost
on different processing nodes will be different. The nature of
communication channel between nodes of grid is also
heterogeneous type.

Here DAG’s tasks are of non-preemptive nature. Along
with communication computation happen in parallel, (This is
possible because each node of grid contain co-processor for
communication.).If any two tasks are scheduled on same grid
node, we consider communication cost between these two tasks
to be negligible. On finishing of task in any grid node, that
node sends data in parallel to all child tasks. Weighted DAG is
used to represent application of grid. " = ("#, $, �, %) here
task node gets symbolized by "# . � is a computation cost
matrix [14]. A��& ∈ � represent expected time to execute task

of DAG "#� on grid node�&.$ is set of communication edges.

% is communication cost matrix.Expected time to communicate
data from task "#� to "#& represented by(�&) % . Task"#�′+

Mean computation cost represented by ��[1],[5] is calculated as
follows:

�� =
∑ -./

0
/12

!
 for all 1 ≤ 3 ≤ # (1)

Mean communication cost (�&[11], [14] between task "#�and

task "#&is calculated as follows:

(�& =
(�&

4$5#65�5 transport >5�$?@$> entire �3#C+?DE>36

 ∀1 ≤ 3 ≠ H ≤ # (2)

Priority based task sequence is generated by ordering task in

decreasing order of their computation and communication cost

which is obtained via computing mean cost parameter(MCP)

recursively as follows:

I%�� = �� + I5�[I%�& + (�&]∀"#& ∈ +M(($++?> ("#�) (3)

Successor("#�) denote set of immediate child nodes in DAG

of task "#&.Task sequence’s first unscheduled task is selected

and scheduled on a grid’s computational resource which finish

it first using task duplication approach. Now node of grid,

which is first in EPL list, will be chosen and added to UP list.

We will add processor in UP list from EPL list only if no fresh

processor is available in UP list. It implies that addition of new

processor/node for next task is done to UP list because all

existing processors in UP list are having some task to execute.

Next task from priority based task sequence will be chosen.

Now we check out on which processor of UP list minimum

makespan is possible using task duplication approach.

Makespan is calculated as:

I5C$+�5# = 45�34M4[N��] (4)

N��[14] is finish time of task "#�on resourse ��.

N�� = O �� + ��� (5)

(O�� is start time of task 3 on grid resource ��).Formula to

compute O��[4], [14] is as follows:

O�� = 45�34M4["�(I� , ��), 43#34M4[��
P , �Q

R]] (6)

In above formula ��
P stands for ready time of processor ��. �Q

R

is start time of first suitable and available time slot �Qthat can

accommodate task "#� on resource ��,if it exist then only we

calculate N�� . "�(I� , ��) [4] is data arrival time for most

important immediate parentI� of task "#� on �� . Formula to

calculate "�(I� , ��)is given by:

"�(I� , ��)=45�34M4 [43#34M4[N&� , N’&� + (&�]] (7)

Proactive EDS-G Algorithm

Begin

1: Sort nodes in non increasing order of performance of

 processors. EMPTY PROCESSOR LIST (EPL);

2: Construct a priority based task sequenceT;

3: Make a empty list of used Processors (UP);

4: do {

72 Int'l Conf. Grid Computing and Applications | GCA'12 |

5: Select the first unscheduled task "#�in the task sequenceT.

6: if (no fresh Processor in UP list)

7: add 1
st
 processor from EPL to UP list & remove it from

 EPL list;

8: for (all VWprocessors in list UP)

{

9: Sort the list of immediate parents of XYZin non-increasing

 order of data arrival time;

10: for all immediate parents, select the first immediate parent

 XY[from the list at step 9

{

11: if duplication ofXY[can reduce finish time \Z]of

 XYZ on ^WDuplicate XY[;

12 :}

13: Compute earliest finish time\ZW of XYZon^W

 using eq. (5);

14: }

15: Find the minimum earliest finish time of XYZ;

16: Assign"#�on resource ^W with minimum \ZWin schedule

 _;

17 :} while (there are unscheduled tasks in task sequence ββββ);

18: Maintain a list A of origin tasks which have been

duplicated later with their successor links to other tasks

and list B of duplicated tasks in non-increasing order of

their earliest start time;

19: for (each duplicated taskXYZ in list B)

{

20: if (no change in makespan of schedule _ after

 Removing duplicated task XYZ)

21: Remove this duplicated task "#� from the schedule

 _and update list A;

22: }

23: for (each task XYZin list A)

{

24: if (taskXYZhas no dependent task in schedule_due to

 its duplication later on different processors)

25: remove this taskXYZfrom the schedule _;

26: }

End

Fig.1. Pseudo Code of Proactive economical task scheduling algorithm for

grid.

Once schedule is obtained from above shown algorithm,
List A and B are maintained. Like EDS-G algorithm list A has
record of original tasks and links of these tasks to their
corresponding dependent tasks. Duplicated task are stored in
decreasing order of earliest start time in list B. This Schedule
will be modified if there is no change in makespan on removal
of duplicated task from list B. From list A, tasks which do not
provide results to immediate successor because of their
duplication elsewhere are also erased. This updated schedule
will not only contain optimum number of duplications like
EDS-G algorithms but also it obtains this optimum schedule in
less number of comparisons of best fit processors for task
nodes using task duplication approach.

IV CONCLUSION AND FUTURE WORK

To improve the performance of distributed and grid systems
duplication based strategy is widely used. This limited
duplication based approach helps in improving performance of
the grid computing system in economical way. Scheduling
algorithms for the grid computing system have high
communication cost. Previously, existing EDS-G algorithm
improves makespan of the Task graph with precedence
constraints. Our approach simply reduces computations
involved in EDS-G. In Proactive economical task scheduling
algorithm for computational grid system reduced computation
and comparison is achieved to duplicate task on best fit grid
resource. This deduction in the computation of best grid node
for any given task node is due to proactively making EPL
list.EPL list contain detail of the chosen grid nodes in non
increasing order of their performance. Obviously, in our
algorithm we need not compare task node with all chosen
nodes of grid like in EDS-G. Instead, task node is simply
assigned or duplicated to fresh node or any other node in UP
list. Number of grid nodes in UP list is always less than random
number of grid nodes chosen in EDS-G. Hence Proactive
economical task scheduling algorithm for grid will not only
give better results in terms of time but also in terms of
computation and communication cost. This new approach can
be further enhanced to include multiple bags of task
applications.

REFERENCES

[1] J. Liou and M. Palis, A Comparison of General Approaches to
Multiprocessor Scheduling, Proceedings of the 11th International
Parallel Processing Symposium, pp. 152–156, 1997.

[2] A.A. Khan, C. McCreary and M.S. Jones, A Comparison of
Multiprocessor Scheduling Heuristics, ICPP, pp. 243–250,1994.

[3] B. Olivier, B.Vincent and R. Yves, The Iso–level Scheduling Heuristic
for Heterogeneous Processors, Proceedings of 10th Euromicro workshop
on Parallel, Distributed and Network Based Processing, pp.335–342,
2002.

[4] A. Agarwal and P. Kumar, Economical Task Scheduling Algorithm for
Grid Computing Systems, Global Journal of Computer Science and
Technology10(11), pp. 48–53, 2010.

[5] A. Stavrou, D. Rubenstein, and S. Sahu, A Lightweight, Robust P2P
System to Handle Flash Crowds, IEEE Journal on Selected Areas in
Communications22(1), pp. 6–17, 2004.

[6] A. Ganesh, A.M. Kermarrec, and L. Massouli´e, Peer–to–Peer
Membership Management for Gossip–based Protocols, IEEE
Transaction on Computers52(2),pp. 139–149, 2003.

[7] S. Voulgaris and M. van Steen, An Epidemic Protocol for Managing
Routing Tables in Very Large Peer–to–Peer Networks, In 14th

Int'l Conf. Grid Computing and Applications | GCA'12 | 73

IFIP/IEEEWorkshop on Distributed Systems: Operations and
Management, Heidelberg, Germany, 2003.

[8] J. Risson and T. Moors, Survey of Research towards Robust Peer–to–
Peer Networks: Search Methods, Technical Report UNSW–EE–P2P–1–
1, University of New South Wales, Sydney, Australia, 2004.

[9] S. Voulgaris, D. Gavidia, and M. van Steen, CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays, Journal of
Network and Systems Management 13(2), 2005.

[10] Amit Agarwal and Padam Kumar, Economiacal Duplication based Task
Scheduling for Hetrogeneous and Homogeneous Computing systems,
IEEE International AdvanceComputing Conference, pp.87–93, 2009.

[11] Savina Bansal, Padam Kumar and Kuldip Singh, Dealing with
Heterogeneity Through Limited Duplication for Scheduling Precedence
Constrained Task Graphs, Journal of Parallel and Distributed
Computing65(4), pp. 479–491, 2005.

[12] Savina Bansal, Padam Kumar and Kuldip Singh, An Improved
Duplication Strategy for Scheduling Precedence Constrained Graphs in
Multiprocessor Systems, IEEE Transaction on Parallel and Distributed
Systems14(6),pp.533–544, 2003.

[13] Y.K. Kwok and I. Ahmed, Benchmarking the Task Graph Scheduling
Algorithms, IPPS/SPDP, pp. 531–537, 1998.

[14] A. Agarwal and P. Kumar, Economiacal Duplication based Task
Scheduling for Hetrogeneous and Homogeneous Computing systems,
IEEE International Advance Computing Conference, pp.87–93, 2009.

[15] F. Dong and S.G. Akl, Scheduling Algorithms for Grid Computing:
State of the Art and Open Problems, Technical Report No. 2006–504,
School of Computing, Queen's University, Kingston, Ontario, 2006.

[16] K.C. Lai and C.T. Yang, A Dominant Predecessor Duplication
Scheduling Algorithm for Heterogeneous Systems, Journal of
Supercomputing44(2), pp. 126–145, 2008.

[17] H. Topcuoglu, S. Hariri and M.Y. Wu, Performance–Effective and
Low–Complexity Task Scheduling for Heterogeneous Computing, IEEE
Transaction on Parallel and Distributed Systems13(3), pp. 260–274,
2002.

[18] C. Ernemann, V. Hamscher, and R.Yahyapour, Economic Scheduling in
Grid Computing, Proceedings of the 8th Workshop on Job Scheduling
Strategies for Parallel Processingof Lecture Notes in Computer Science
2537, Springer Verlag, pp. 128–152, 2002.

[19] M. Jelasity and O. Babaoglu, T–Man: Fast Gossip–based Construction
of Large–scale Overlay Topologies, Technical Report UBLCS–2004–7,
University of Bologna, Department of Computer Science, Bologna,
Italy, 2004.

[20] A.A. Khan, C. McCreary and M.S. Jones, A Comparison of
Multiprocessor Scheduling Heuristics, ICPP, pp. 243–250, 1994.

74 Int'l Conf. Grid Computing and Applications | GCA'12 |

Evaluation of Electric-Grids Performance Using

Robust Estimators

Ibrahim Habiballah, EE Dept., King Fahd University of Petroleum & Minerals, Saudi Arabia

Abstract

This paper evaluates the performance of electric-grids due

to imperfect prediction of the state variables of these grids.

Currently, system control centers are supported by

supervisory control and data acquisition (SCADA) systems

that report the status of circuit breakers as well as voltage,

current, and power levels. This paper presents different

types of robust state estimators in order to predict the best

status of the grid. Different set up of bad measurements

and bad leverage measurements are introduced to

evaluate the performance of these estimators. Independent

and confirming bad measurements are considered. The

performance of the different estimators is evaluated by

comparing the summation of the absolute residuals

between the estimated and the actual values. The IEEE 14-

bus DC example is used to illustrate the properties of these

estimators.

Keywords: Robust Estimators, Electric Grid, Bad

Measurements.

1. Introduction

Opportunities for improving the functioning and reliability

of electric-grids arise from technological developments in

sensing, communications, control, and power electronics.

These technologies can enhance efficiency and reliability,

increase capacity utilization, enable more rapid response to

remediate contingencies, and increase flexibility in

controlling power flows on transmission lines. If properly

deployed and accompanied by appropriate policies, they

can facilitate the integration of large volumes of renewable

and distributed generation, provide greater visibility of the

instantaneous state of the grids, and make possible the

engagement of demand as a resource [1].

Power systems require a level of centralized planning and

operation to ensure system reliability. System operators at

control centers carry out many of these centralized

functions in support of operations, including short-term

monitoring, analysis, and control. System operators use

various displays and alarms to develop awareness of the

state of the system. Raw data reported to control centers,

such as SCADA, are analyzed using computer tools, e.g.,

state estimators that can give insight to the current and

future state of the grid. This suite of tools is collectively

known as an energy management system.

Estimators are used when unknown states in a given

mathematical model must be determined from available

measurements. Usually, there are more measurements than

are strictly needed to define the unknowns and the

problem is called over-determined. This type of problem is

variously referred to as state estimation, parameter

estimation, multivariate regression, and curve fitting. All

these terms essentially describe the same computational

process.

Various robust estimators have been proposed, which try

to combat these problems by processing the measurements

so that the outliers have little or no effect on the estimated

states [9-13]. Specialised algorithms have generally been

developed to solve robust estimation problems. However,

it has been found that all the robust estimators considered

in this paper can be solved using standard mathematical

programming algorithms. Some of these formulations are

original and can provide accurate solutions with good

computational efficiency.

This paper evaluates the performance of some robust state

estimation methods using general-purpose mathematical

programming algorithms. IEEE 14-bus DC example is

used to illustrate the properties of these methods.

By looking at the IEEE 14-bus DC example, it is possible

to see how these estimators work, and perhaps more

importantly understand conditions where some algorithms

may produce unexpected results. The detection of outliers

and the elimination of their effects on the estimates can

provide measurement fault detection and measurement

fault tolerance. The presented estimators are evaluated by

comparing the summation of the absolute errors between

the actual and estimated values, i.e., the summation of the

residuals.

2. Mathematical Formulation of

Different Estimators

2.1 Least Squares (LS) Estimator

Assume a multivariate linear model:

Ax = b (1)

where A is a known (m x n) matrix

 x is an unknown state vector (n x 1), and

 b is an (m x 1) vector of values which

can be measured

Int'l Conf. Grid Computing and Applications | GCA'12 | 75

Normally their are more measurements than states, so m >

n, and it is expected that each measurement will include

some unknown error:

 Ax = b + e (2)

 where b is a vector of known measurements

 e is a vector of unknown measurement

errors

The well known least squares estimate can be formulates

as

 Min e
T
e (3)

 x, e

 Subject to the equality constraint of equation (2)

Equations (2) and (3) can readily be solved as a linearly

constrained quadratic program [7].

2.2. Least Absolute Values (LAV) Estimator

The existence of unexpectedly large residuals is associated

with the presence of outliers in the measurement set. The

least squares principle could be said to give outliers

excessive weight by squaring the value of the residual. An

alternative approach is to minimise the sum of absolute

values of residuals. By taking the absolute value (or

modulus) of the residual, the effect of outliers on the

estimate is reduced. A property of Least Absolute Value

(LAV) estimates is that at least ‘n’ of the measurements

will be fitted exactly (with zero residuals) [7].

An efficient algorithm for LAV estimation is via the

solution of the following linear program:

 Min  (ei

+ fi) (4)

 x, e, f

 Subject to: Ax - e + f = b (5)

 e > 0 , f > 0 (6)

 where e and f are non-negative vectors of

unknown measurement errors

2.3. Least Median of Squares (LMS)

Estimator

Rousseeuw [3] introduced a new robust estimation

principle referred to as Least Median of Squares (LMS).

This is a generalisation of the idea that the median of a set

of real values is a more robust estimate than the mean.

This idea is generalised to the multivariate estimator

problem by finding an estimate that minimises the median

of the squared residuals. Roughly speaking, the median is

unaffected even if up to half of the residuals are very high

[7]. (When larger problems with more than two state

variables are considered, it is customary to minimise the

(n+m+1)/2 ordered squared residual, since non-zero

residuals only exist for m > n.) [4]. A characterisation of

an LMS estimate is that it seeks a regression that

minimises the value of a tolerance ‘t’ whereby the

majority of the measurements fall within tolerance. This

interpretation motivates an original implementation of an

LMS estimator via a mixed integer program, formulated as

follows:

 Min t (7)

 x, k, t

 Subject to: b - t - M k < Ax < b + t + M k (8)

 k1 + k2 + . . . + km < K (9)

 where

 k is an unknown binary integer vector

 (each element is either 0 or 1)

 t is an unknown scalar tolerance

 M is a specified arbitrary large positive scalar

 K is specified as m/2 (if m is even)

 (m-1)/2 (if m is odd)

In the above mixed integer linear program, the binary

integer variables k allow some of the measurements to be

‘switched off’ or ‘rejected’ (in other words to be outside

the tolerance ‘t’). The value of ‘M’ is chosen to be large

enough so that when a measurement is switched off (by ki

being 1) the expanded tolerance ‘t + M k’ is large enough

to avoid that measurement having any effect on the

estimate x. The specification of K, together with

constraint (9), is such that a majority of the measurements

cannot be switched off.

2.4. Least Trimmed Squares (LTS) Estimator

The principle of Least Trimmed Squares (LTS), also

proposed by Rousseeuw [3], is to consider the sum of

squared errors for the (m-K) smallest residuals only.

Equivalently, the K largest residuals are rejected and the

remaining residuals are considered in a least squares

objective. An original mathematical programming

formulation for LTS is as follows:

 Min e
T
e (10)

 x, e, k

 Subject to: b - M k < Ax - e < b + M k (11)

 k1 + k2 + . . . + km < K (12)

 where

 k is an unknown binary integer vector

 (each element is either 0 or 1)

 M is a specified arbitrary large positive scalar

 K is a specified number of measurements

 that may be rejected

e is a vector of unknown measurement errors

In this formulation, the binary vector k allows up to K of

the measurements to be switched off. At the solution, any

measurement that is switched off (ki being 1) will have its

associated ei at zero (and not contributing to the objective

function) [7]. This formulation is a Mixed Integer

Nonlinear Program, which can be efficiently solved via the

76 Int'l Conf. Grid Computing and Applications | GCA'12 |

NEOS server, using the MINLP algorithm of Fletcher and

Leyffer [5].

2.5. Least Measurements Rejected (LMR)

Estimator

Whereas the LMS method pre-determines the number of

measurements to reject and then seeks a regression that

minimises the tolerance on the retained measurements, a

new approach has been proposed by M. Irving [7], which

follows the converse principle. This has been implemented

using a genetic algorithm in reference [6] and as a

mathematical program in. This approach requires the user

to pre-specify a tolerance for each measurement and then

seeks a regression that minimises the number of

measurements unable to satisfy their tolerance. The

tolerance value of each measurement should be chosen

according to the range of error within which the

measurement can still be regarded as ‘good’. For example,

a temperature measurement of 12.5
o
C might have a

tolerance of + 1.0
o
C. This is compatible with the usual

engineering approach for specifying transducer accuracy.

The new approach is referred to as Least Measurements

Rejected (LMR) [7].

The mathematical programming formulation for LMR is

as follows:

 Min ki (13)

 x, k

Subject to: b - M k - t < Ax < b + M k + t (14)

 where

 k is an unknown binary integer vector

 (each element is either 0 or 1)

 M is a specified arbitrary large positive scalar

 t is a specified vector of tolerances on

 measurement errors

As before, the binary vector k allows some measurements

to be ‘switched off’, but in this case the solution will be a

regression which maximises the number of measurements

that are within tolerance (i.e. minimises the number of

measurements which need to be switched off with ki = 1).

This formulation is a Mixed Integer Linear Program,

which can be efficiently solved via the NEOS server, using

the MINTO algorithm.

3. IEEE 14-Bus DC Example

To illustrate and evaluate the solutions of the above five

estimators, the IEEE 14-bus DC example illustrated in [8]

is considered with some modification on the values of

generating units, the loads, and the measured meters. The

actual values of all power injections and line flows as

obtained from a load flow solution are given in Table 1.

This will be used as a benchmark for comparison with the

five estimators. The selected measurement meters with

their values are shown in Table 2. Normal Gaussian noises

are introduced to these measurements. The redundancy of

the selected measurements is 2.1.

Six linear regression cases have been considered; a

summary of which is shown in Table 3. The cases are

selected to evaluate the performance of the estimators for

different scenario of bad measurements and bad leverage

measurements (i.e., bad measurements on leverage points).

The solutions have been obtained using the general-

purpose non-linear programming package MINOS by

Murtagh and Saunders, available via the NEOS public-

domain web-service [3].

The measurements in Cases 1-3 are similar to the ones

given in Table 2 with the introduction of negative reading

(due to improper switching connection) on some of the

meters associated to a leverage point: bus 4. Case 1 is an

independent meter: P4 (power-injection on bus 4). Case 2

assumes three confirming bad-data: power-injection P4,

line-flows P3-4 and P4-7. Case 3 assumes five confirming

bad-data: power-injections P3, P4 and P5, line-flows P3-4

and P4-7.

The measurements in Cases 4-6 are similar to the ones

given in Table 2 with the introduction of negative reading

on some of the meters that are not associated to a leverage

point: bus 14. Case 4 is an independent meter: P14

(power-injection on bus 14). Case 5 assumes two

confirming bad-data: power-injection P14, and line-flow

P13-14. Case 6 assumes three confirming bad-data: power-

injections P13 and P14, and line-flow P13-14.

The estimated power-injections and line-flows for Case 1

are presented in Table 4 for the five estimators. Table 4

shows the actual values of the power-injections and line-

flows as well as the summation of the absolute residuals.

The location of the meters is highlighted on the first

column of the table. It can be observed that all the

measurements can be fitted reasonably well by all

estimators, except the LS. The LAV, LMS, and LMR

estimators performed better than the other estimators. The

LS estimator could not reject the bad-measurement, while

the others have successfully rejected the introduced bad-

measurement.

The estimated power-injections and line-flows for Case 2

are presented in Table 5 for the five estimators. It can be

observed that all the measurements can be fitted

reasonably well by all estimators, except the LS, and LAV.

The LMR estimator performed better than the LAV, LMS

estimators. The LS, and LAV estimators could not reject

the introduced multiple confirmed bad-measurements,

while the others have successfully rejected these bad-

measurements.

The estimated power-injections and line-flows for Case 3

are presented in Table 6 for the five estimators. It can be

observed that measurements are not fitted well by all

estimators. The five estimators could not reject the

introduced multiple confirmed bad-measurements. This is

Int'l Conf. Grid Computing and Applications | GCA'12 | 77

a breakdown case were the number of the introduced

multiple confirmed bad-measurements become the number

of critical measurements (a critical measurement is defined

as the measurement which if removed then the system

become unobservable).

The estimated power-injections and line-flows for Case 4

are presented in Table 7 for the five estimators. It can be

observed that all the measurements can be fitted

reasonably well by all estimators, except the LS. The

LMS, and LMR estimators performed better than the other

estimators. The LS estimator could not reject the bad-

measurement, while the others have successfully rejected

the introduced bad-measurement.

The estimated power-injections and line-flows for Case 5

are presented in Table 8 for the five estimators. It can be

observed that all the measurements can be fitted

reasonably well by all estimators, except the LS. The LMR

estimator performed the best among the other estimators.

The LS, estimator could not reject the introduced multiple

confirmed bad-measurements, while the others have

successfully rejected these bad-measurements.

The estimated power-injections and line-flows for Case 6

are presented in Table 9 for the five estimators. It can be

observed that measurements are not fitted well by all

estimators. The five estimators could not reject the

introduced multiple confirmed bad-measurements. This is

a breakdown case were the number of the introduced

multiple confirmed bad-measurements become the number

of critical measurements.

It can also be observed that the availability of multiple

confirmed bad-measurements may introduce bad estimate

to the power-injections and/or power-flows of meters with

good readings. For example, in case 2, bus 9 which has a

good meter reading, has a bad estimate with the LAV

estimator. This could be attributed to the fact that bus 9 is

directly connected to bus 4. Another interesting

observation is that, in general, estimators perform better

when bad-measurements are associated with locations that

are not leverage points.

Table 10 presents a summary of the five estimator

performance for all cases. For example, the LAV estimator

performs better in rejecting bad-measurements associated

with locations that are not leverage points. Table 11 shows

which estimator has successfully rejected the bad-

measurements. It can be observed that the LS estimator

takes into account all the measurements regardless of their

status, and need bad-data identification step in order to

reject the bad-measurements.

In summary, it can be observed, without loss of generality,

that the LMR estimator has the best performance among

the other estimators. It can also be observed that the LS

and LTS estimators minimize the square of the residuals

and need non-linear programming packages. Their

performance is relatively lower than the remaining

estimators when bad leverage measurements are

introduced. On the other hand, the LMS, LTS, and LMR

estimators have successfully rejected the introduced bad-

data measurements for most of the cases as shown in Table

11. The LS estimator has failed to reject all the introduced

bad-data measurements in all cases.

4. Conclusions

This paper presented different robust power system state

estimators. It introduced the original formulations that

allow solutions to be obtained using general-purpose

mathematical programming algorithms. The IEEE 14-bus

DC example was used to illustrate the properties of these

estimators. Different set up of bad-data measurements

were introduced to evaluate the performance of the

estimators. The LMR estimator is among the best

estimator in terms of the estimated values. The LMS, LTS,

and LMR estimators are among the best in term of

rejecting bad-data measurements.

Acknowledgments

The authors acknowledge the support of the EE Department,

King Fahd University of Petroleum & Minerals, Saudi Arabia

under the project number IN101032.

References

[1] MIT Study Report, “The Future of the Electric Grid”,

http://web.mit.edu/mitei/research/studies/the-electric-

grid-2011.shtml, 2011.

 [2] A. Abur and A. G. Exposito, Power System State

Estimation Theory and Implementation, Marcel

Dekker, ISBN 0-8247-5570-7, 2004.

[3] P.J. Rousseeuw, “Least median of squares”, Jnl. of

American Statistical Association, 79, pp 871-880,

1984

[4] A. Monticelli, State Estimation in Electric Power

Systems A Generalized Approach, Kluwer, ISBN 0-

7923-8519-5, 1999

[5] NEOS, “NEOS sever for optimisation”,

http://neos.mcs.anl.gov/neos, Feb. 2008

[6] A. K. Al-Othman and M. R. Irving, “Robust state

estimator based on maximum constraints satisfaction

of uncertain measurements”, Measurement, Vol. 40,

pp. 347 - 359, 2007

[7] M. R. Irving, “Robust state estimation using mixed

integer programming”, IEEE trans. Power Systems,

23, 3, pp 1519-1520, August 2008

[8] G.N. Korres, “A New Method for Treatment of

Equality Constraints in Power System State

Estimation”, Proceeding PSCC Conference, Glasgow,

UK, paper no. 107, July 2008

[9] E. Handschin, M. Langer, and E. Kliokys, “An interior

point method for state estimation with current

magnitude measurements and inequality constraints”,

IEEE Power Industry Computer Application Conf.,

pp. 385–391, 1995

78 Int'l Conf. Grid Computing and Applications | GCA'12 |

http://web.mit.edu/mitei/

[10] R.A. Jabr, “Power system Huber M-estimation with

equality and inequality constraints”, Elec. Power Syst.

Res., 74, (2), pp. 239–246, 2005

[11] R.A. Jabr and B.C. Pal, “AC network state estimation

using linear measurement functions”, The Institution

of Engineering and Technology, IET Gener. Transm.

Distrib., 2, (1), pp. 1–6, June 2008

[12] H. Singh F.L. Alvarado, “Fast Approximations to

LAV Solutions for State Estimation of Power

Systems”, Proceedings of PSCC Avignon France

Aug. 30-Sep 3, 1993

[13] T. Dhadbanjan, and S. S. K. Vanjari, “Linear

Programming Approach for Power System State

Estimation Using Upper Bound Optimization

Techniques”, International Journal of Emerging

Electric Power Systems, Volume 11, Issue 3, Article

2, 2010

Table 1: Load Flow’s Power-Injections and Line-Flows

P1 0.2500 P13 -0.0900 P6-11 0.0368

P2 0.1500 P14 -0.1250 P6-12 0.0688

P3 0.0750 P1-2 0.0669 P6-13 0.0676

P4 0.0600 P1-5 0.1831 P7-8 -0.0950

P5 -0.0750 P2-3 0.0086 P7-9 0.1239

P6 -0.0750 P2-4 0.0922 P9-10 0.0982

P7 -0.0150 P2-5 0.1162 P9-14 0.1486

P8 0.0950 P3-4 0.0836 P10-11 0.0432

P9 -0.0450 P4-5 0.0240 P12-13 -0.0012

P10 -0.0550 P4-7 0.0439 P13-14 -0.0236

P11 -0.0800 P4-9 0.1678

P12 -0.0700 P5-6 0.2483

Table 2: Normal Noise Measurements on Selected

Locations

P1 0.23920 P10 -0.05583 P4-7 0.04411

P2 0.14832 P11 -0.07976 P5-6 0.25197

P3 0.07552 P12 -0.07003 P6-12 0.06885

P4 0.05994 P13 -0.09086 P7-8 -0.09538

P5 -0.07506 P14 -0.12273 P7-9 0.12364

P6 -0.07442 P1-2 0.06582 P9-10 0.09872

P7 -0.01475 P1-5 0.18324 P10-11 0.04351

P8 0.09544 P2-3 0.00864 P12-13 -0.00119

P9 -0.04521 P3-4 0.08235 P13-14 -0.02321

Table 3: Summary of the Considered Cases

Case

Meter Location Measurements

1 P4 -0.05994

2 P4, P3-4, P4-7 -0.05994, -0.08235, -0.04411

3 P3, P4, P3-4, P4-

7

-0.0750, -0.05994, -0.08235, -

0.04411

4 P14 0.12273

5 P14, P13-14 0.12273, 0.02321

6 P13, P14, P13-14 0.09086, 0.12273, 0.02321

Table 4: Estimated Power-Injections and Line-Flows for

Case 1

 Actual LS LAV LMS LTS LMR

P1 0.2500 0.2535 0.2482 0.2491 0.2431 0.2489

P2 0.1500 0.1643 0.1522 0.1490 0.1493 0.1488

P3 0.0750 0.0869 0.0755 0.0748 0.0746 0.0750

P4 0.0600 -0.0401 0.0573 0.0632 0.0700 0.0646

P5 -0.0750 -0.0580 -0.0751 -0.0758 -0.0742 -0.0756

P6 -0.0750 -0.0703 -0.0744 -0.0743 -0.0754 -0.0749

P7 -0.0150 -0.0063 -0.0148 -0.0155 -0.0152 -0.0153

P8 0.0950 0.0997 0.0954 0.0947 0.0952 0.0949

P9 -0.0450 -0.0342 -0.0452 -0.0459 -0.0456 -0.0453

P10 -0.0550 -0.0510 -0.0558 -0.0560 -0.0559 -0.0559

P11 -0.0800 -0.0770 -0.0798 -0.0805 -0.0803 -0.0803

P12 -0.0700 -0.0670 -0.0700 -0.0693 -0.0705 -0.0705

P13 -0.0900 -0.0860 -0.0909 -0.0902 -0.0912 -0.0914

P14 -0.1250 -0.1144 -0.1227 -0.1234 -0.1240 -0.1232

P1-2 0.0669 0.0708 0.0658 0.0665 0.0634 0.0663

P1-5 0.1831 0.1827 0.1824 0.1825 0.1797 0.1826

P2-3 0.0086 0.0121 0.0086 0.0082 0.0073 0.0079

P2-4 0.0922 0.1110 0.0928 0.0913 0.0892 0.0909

P2-5 0.1162 0.1120 0.1166 0.1160 0.1162 0.1163

P3-4 0.0836 0.0990 0.0842 0.0831 0.0819 0.0830

P4-5 0.0240 0.0009 0.0238 0.0247 0.0271 0.0254

P4-7 0.0439 0.0252 0.0433 0.0445 0.0447 0.0445

P4-9 0.1678 0.1438 0.1672 0.1683 0.1694 0.1686

P5-6 0.2483 0.2376 0.2477 0.2475 0.2488 0.2487

P6-11 0.0368 0.0367 0.0370 0.0377 0.0367 0.0370

P6-12 0.0688 0.0659 0.0688 0.0683 0.0691 0.0691

P6-13 0.0676 0.0647 0.0675 0.0673 0.0676 0.0677

P7-8 -0.0950 -0.0997 -0.0954 -0.0947 -0.0952 -0.0949

P7-9 0.1239 0.1186 0.1239 0.1238 0.1247 0.1241

P9-10 0.0982 0.0913 0.0986 0.0988 0.0995 0.0992

P9-14 0.1486 0.1369 0.1473 0.1473 0.1490 0.1483

P10-11 0.0432 0.0402 0.0428 0.0428 0.0436 0.0433

P12-13 -0.0012 -0.0012 -0.0012 -0.0010 -0.0014 -0.0014

P13-14 -0.0236 -0.0225 -0.0246 -0.0239 -0.0250 -0.0250

Sum of

Residuals
0.3612 0.0222 0.0224 0.0482 0.0238

Table 5: Estimated Power-Injections and Line-Flows for

Case 2

 Actual LS LAV LMS LTS LMR

P1 0.2500 0.2459 0.2409 0.2506 0.2430 0.2482

P2 0.1500 0.1450 0.1483 0.1495 0.1492 0.1488

P3 0.0750 0.0282 0.0755 0.0767 0.0751 0.0751

P4 0.0600 -0.0321 -0.0599 0.0641 0.0706 0.0610

P5 -0.0750 -0.0615 -0.0751 -0.0739 -0.0743 -0.0746

P6 -0.0750 -0.0732 -0.0744 -0.0756 -0.0754 -0.0739

P7 -0.0150 0.0259 0.0369 -0.0159 -0.0155 -0.0153

P8 0.0950 0.1157 0.0954 0.0943 0.0950 0.0949

P9 -0.0450 -0.0181 0.0143 -0.0464 -0.0457 -0.0457

P10 -0.0550 -0.0439 -0.0552 -0.0569 -0.0560 -0.0553

Int'l Conf. Grid Computing and Applications | GCA'12 | 79

P11 -0.0800 -0.0717 -0.0631 -0.0809 -0.0803 -0.0803

P12 -0.0700 -0.0673 -0.0700 -0.0712 -0.0705 -0.0695

P13 -0.0900 -0.0838 -0.0909 -0.0904 -0.0913 -0.0904

P14 -0.1250 -0.1091 -0.1227 -0.1239 -0.1241 -0.1232

P1-2 0.0669 0.0735 0.0658 0.0670 0.0634 0.0663

P1-5 0.1831 0.1724 0.1751 0.1836 0.1797 0.1819

P2-3 0.0086 0.0305 0.0098 0.0077 0.0070 0.0081

P2-4 0.0922 0.0891 0.0951 0.0922 0.0892 0.0914

P2-5 0.1162 0.0989 0.1093 0.1166 0.1163 0.1156

P3-4 0.0836 0.0587 0.0853 0.0844 0.0822 0.0833

P4-5 0.0240 0.0097 0.0142 0.0244 0.0272 0.0242

P4-7 0.0439 -0.0118 -0.0087 0.0460 0.0451 0.0439

P4-9 0.1678 0.1179 0.1150 0.1703 0.1697 0.1676

P5-6 0.2483 0.2194 0.2234 0.2508 0.2489 0.2472

P6-11 0.0368 0.0254 0.0196 0.0380 0.0367 0.0373

P6-12 0.0688 0.0627 0.0665 0.0695 0.0691 0.0685

P6-13 0.0676 0.0582 0.0630 0.0678 0.0677 0.0674

P7-8 -0.0950 -0.1157 -0.0954 -0.0943 -0.0950 -0.0949

P7-9 0.1239 0.1297 0.1236 0.1243 0.1246 0.1236

P9-10 0.0982 0.0903 0.0987 0.0999 0.0995 0.0982

P9-14 0.1486 0.1393 0.1542 0.1483 0.1491 0.1472

P10-11 0.0432 0.0464 0.0435 0.0430 0.0436 0.0429

P12-13 -0.0012 -0.0045 -0.0035 -0.0017 -0.0014 -0.0011

P13-14 -0.0236 -0.0302 -0.0314 -0.0244 -0.0250 -0.0240

Sum of

Residuals
0.6133 0.4675 0.0341 0.0500 0.0189

Table 6: Estimated Power-Injections and Line-Flows for

Case 3

 Actual LS LAV LMS LTS LMR

P1 0.2500 0.2394 0.2392 -0.2152 0.2392 0.2397

P2 0.1500 0.1411 0.1483 0.1483 0.1483 0.1488

P3 0.0750 -0.0755 -0.0755 -0.0755 -0.0755 -0.0750

P4 0.0600 -0.0372 -0.0599 -0.0599 -0.0599 -0.0594

P5 -0.0750 0.0729 0.0751 0.0751 0.0751 0.0756

P6 -0.0750 -0.0745 -0.0744 -0.0744 -0.0744 -0.0739

P7 -0.0150 0.0238 0.0493 -0.0148 0.1163 0.0484

P8 0.0950 0.1147 0.0954 0.0954 0.0954 0.0959

P9 -0.0450 -0.0203 0.0206 -0.0452 -0.0452 0.0170

P10 -0.0550 -0.0462 -0.0552 -0.0558 -0.0558 -0.0553

P11 -0.0800 -0.0765 -0.0792 -0.0798 -0.0798 -0.0794

P12 -0.0700 -0.0683 -0.0700 0.1247 -0.0700 -0.0697

P13 -0.0900 -0.0855 -0.0909 0.2999 -0.0909 -0.0904

P14 -0.1250 -0.1078 -0.1227 -0.1227 -0.1227 -0.1222

P1-2 0.0669 0.0916 0.0904 -0.1018 0.0895 0.0906

P1-5 0.1831 0.1478 0.1488 -0.1135 0.1497 0.1491

P2-3 0.0086 0.0840 0.0853 0.0446 0.0844 0.0853

P2-4 0.0922 0.0925 0.0950 0.0137 0.0932 0.0957

P2-5 0.1162 0.0562 0.0584 -0.0117 0.0602 0.0584

P3-4 0.0836 0.0085 0.0098 -0.0309 0.0089 0.0103

P4-5 0.0240 -0.0363 -0.0366 -0.0254 -0.0330 -0.0372

P4-7 0.0439 -0.0127 -0.0211 -0.0441 -0.0455 -0.0202

P4-9 0.1678 0.1129 0.1025 -0.0076 0.1207 0.1040

P5-6 0.2483 0.2406 0.2457 -0.0756 0.2520 0.2458

P6-11 0.0368 0.0360 0.0357 0.1029 0.0390 0.0365

P6-12 0.0688 0.0661 0.0685 -0.1259 0.0695 0.0684

P6-13 0.0676 0.0640 0.0670 -0.1271 0.0690 0.0670

P7-8 -0.0950 -0.1147 -0.0954 -0.0954 -0.0954 -0.0959

P7-9 0.1239 0.1257 0.1236 0.0365 0.1662 0.1241

P9-10 0.0982 0.0868 0.0987 0.0326 0.0966 0.0982

P9-14 0.1486 0.1316 0.1481 -0.0489 0.1451 0.1469

P10-11 0.0432 0.0405 0.0435 -0.0232 0.0408 0.0429

P12-13 -0.0012 -0.0022 -0.0015 -0.0012 -0.0005 -0.0013

P13-14 -0.0236 -0.0237 -0.0254 0.1717 -0.0223 -0.0247

Sum of

Residuals
1.0457 1.0368 4.0037 1.0870 1.0297

Table 7: Estimated Power-Injections and Line-Flows for

Case 4

 Actual LS LAV LMS LTS LMR

P1 0.2500 0.2377 0.2472 0.2491 0.2436 0.2500

P2 0.1500 0.1395 0.1483 0.1490 0.1500 0.1478

P3 0.0750 0.0664 0.0755 0.0748 0.0759 0.0750

P4 0.0600 0.0433 0.0599 0.0607 0.0611 0.0604

P5 -0.0750 -0.0807 -0.0751 -0.0758 -0.0735 -0.0750

P6 -0.0750 -0.0879 -0.0744 -0.0751 -0.0752 -0.0739

P7 -0.0150 -0.0311 -0.0147 -0.0150 -0.0147 -0.0152

P8 0.0950 0.0873 0.0954 0.0953 0.0954 0.0954

P9 -0.0450 -0.0845 -0.0452 -0.0445 -0.0330 -0.0447

P10 -0.0550 -0.0742 -0.0558 -0.0551 -0.0552 -0.0553

P11 -0.0800 -0.0961 -0.0798 -0.0790 -0.0798 -0.0803

P12 -0.0700 -0.0782 -0.0700 -0.0699 -0.0704 -0.0695

P13 -0.0900 -0.1019 -0.0909 -0.0901 -0.0912 -0.0904

P14 -0.1250 0.0603 -0.1204 -0.1244 -0.1329 -0.1243

P1-2 0.0669 0.0646 0.0658 0.0665 0.0636 0.0673

P1-5 0.1831 0.1731 0.1814 0.1825 0.1800 0.1827

P2-3 0.0086 0.0097 0.0077 0.0083 0.0071 0.0082

P2-4 0.0922 0.0858 0.0909 0.0914 0.0901 0.0914

P2-5 0.1162 0.1086 0.1156 0.1160 0.1163 0.1155

P3-4 0.0836 0.0761 0.0832 0.0831 0.0830 0.0832

P4-5 0.0240 0.0227 0.0247 0.0246 0.0262 0.0241

P4-7 0.0439 0.0421 0.0429 0.0434 0.0424 0.0436

P4-9 0.1678 0.1404 0.1665 0.1671 0.1656 0.1673

P5-6 0.2483 0.2238 0.2466 0.2473 0.2490 0.2473

P6-11 0.0368 0.0534 0.0369 0.0361 0.0351 0.0372

P6-12 0.0688 0.0536 0.0684 0.0686 0.0697 0.0686

P6-13 0.0676 0.0289 0.0669 0.0674 0.0690 0.0676

P7-8 -0.0950 -0.0873 -0.0954 -0.0953 -0.0954 -0.0954

P7-9 0.1239 0.0983 0.1235 0.1237 0.1231 0.1237

P9-10 0.0982 0.1169 0.0987 0.0980 0.1000 0.0983

P9-14 0.1486 0.0373 0.1460 0.1483 0.1557 0.1480

P10-11 0.0432 0.0427 0.0429 0.0429 0.0447 0.0430

P12-13 -0.0012 -0.0247 -0.0016 -0.0012 -0.0007 -0.0010

P13-14 -0.0236 -0.0977 -0.0256 -0.0239 -0.0229 -0.0237

Sum of

Residuals
0.7924 0.0314 0.0148 0.0668 0.0139

80 Int'l Conf. Grid Computing and Applications | GCA'12 |

Table 8: Estimated Power-Injections and Line-Flows for

Case 5

 Actual LS LAV LMS LTS LMR

P1 0.2500 0.2384 0.2472 0.2506 0.2431 0.2495

P2 0.1500 0.1399 0.1483 0.1496 0.1507 0.1488

P3 0.0750 0.0663 0.0755 0.0753 0.0762 0.0750

P4 0.0600 0.0424 0.0599 0.0612 0.0615 0.0604

P5 -0.0750 -0.0788 -0.0751 -0.0738 -0.0732 -0.0756

P6 -0.0750 -0.0839 -0.0744 -0.0757 -0.0753 -0.0749

P7 -0.0150 -0.0324 -0.0147 -0.0153 -0.0144 -0.0153

P8 0.0950 0.0866 0.0954 0.0966 0.0956 0.0949

P9 -0.0450 -0.0882 -0.0452 -0.0440 -0.0446 -0.0447

P10 -0.0550 -0.0755 -0.0558 -0.0546 -0.0555 -0.0553

P11 -0.0800 -0.0965 -0.0798 -0.0810 -0.0800 -0.0803

P12 -0.0700 -0.0734 -0.0700 -0.0713 -0.0705 -0.0705

P13 -0.0900 -0.0914 -0.0909 -0.0921 -0.0915 -0.0914

P14 -0.1250 0.0466 -0.1204 -0.1255 -0.1220 -0.1208

P1-2 0.0669 0.0657 0.0658 0.0671 0.0635 0.0668

P1-5 0.1831 0.1728 0.1814 0.1835 0.1796 0.1827

P2-3 0.0086 0.0107 0.0077 0.0083 0.0072 0.0082

P2-4 0.0922 0.0877 0.0909 0.0919 0.0907 0.0914

P2-5 0.1162 0.1071 0.1156 0.1165 0.1162 0.1160

P3-4 0.0836 0.0770 0.0832 0.0836 0.0835 0.0832

P4-5 0.0240 0.0194 0.0247 0.0246 0.0254 0.0246

P4-7 0.0439 0.0445 0.0429 0.0436 0.0431 0.0436

P4-9 0.1678 0.1433 0.1665 0.1685 0.1673 0.1669

P5-6 0.2483 0.2204 0.2466 0.2507 0.2480 0.2477

P6-11 0.0368 0.0574 0.0369 0.0366 0.0365 0.0368

P6-12 0.0688 0.0508 0.0684 0.0699 0.0689 0.0688

P6-13 0.0676 0.0283 0.0669 0.0685 0.0673 0.0672

P7-8 -0.0950 -0.0866 -0.0954 -0.0966 -0.0956 -0.0949

P7-9 0.1239 0.0987 0.1235 0.1249 0.1242 0.1233

P9-10 0.0982 0.1147 0.0987 0.0990 0.0991 0.0988

P9-14 0.1486 0.0391 0.1460 0.1504 0.1478 0.1467

P10-11 0.0432 0.0392 0.0429 0.0444 0.0436 0.0435

P12-13 -0.0012 -0.0225 -0.0016 -0.0014 -0.0016 -0.0017

P13-14 -0.0236 -0.0856 -0.0256 -0.0249 -0.0258 -0.0259

Sum of

Residuals
0.7596 0.0314 0.0284 0.0387 0.0214

Table 9: Estimated Power-Injections and Line-Flows for

Case 6

 Actual LS LAV LMS LTS LMR

P1 0.2500 0.2343 0.2392 0.2502 0.2436 0.2491

P2 0.1500 0.1341 0.1483 0.1493 0.1500 0.1488

P3 0.0750 0.0619 0.0742 0.0752 0.0759 0.0749

P4 0.0600 0.0350 0.0599 0.0610 0.0611 0.0640

P5 -0.0750 -0.0854 -0.0751 -0.0740 -0.0735 -0.0756

P6 -0.0750 -0.1095 -0.0744 -0.0754 -0.0750 -0.0749

P7 -0.0150 -0.0378 -0.0148 -0.0148 -0.0147 -0.0150

P8 0.0950 0.0839 0.0954 0.0963 0.0954 0.0953

P9 -0.0450 -0.0997 -0.0452 0.1469 0.1510 -0.1664

P10 -0.0550 -0.0859 -0.0558 -0.0552 -0.0552 -0.0553

P11 -0.0800 -0.1162 -0.1008 -0.0805 -0.0797 -0.0802

P12 -0.0700 -0.0973 -0.0700 -0.0700 -0.0702 -0.0700

P13 -0.0900 0.0442 -0.0072 0.0919 0.0909 -0.2169

P14 -0.1250 0.0384 -0.1738 -0.5008 -0.4994 0.1223

P1-2 0.0669 0.0664 0.0637 0.0668 0.0636 0.0663

P1-5 0.1831 0.1679 0.1755 0.1834 0.1800 0.1827

P2-3 0.0086 0.0124 0.0086 0.0081 0.0071 0.0079

P2-4 0.0922 0.0867 0.0915 0.0915 0.0901 0.0908

P2-5 0.1162 0.1014 0.1119 0.1166 0.1164 0.1164

P3-4 0.0836 0.0743 0.0828 0.0834 0.0830 0.0829

P4-5 0.0240 0.0147 0.0204 0.0251 0.0263 0.0256

P4-7 0.0439 0.0450 0.0444 0.0431 0.0424 0.0439

P4-9 0.1678 0.1362 0.1694 0.1677 0.1655 0.1681

P5-6 0.2483 0.1986 0.2328 0.2510 0.2492 0.2492

P6-11 0.0368 0.0804 0.0579 0.0359 0.0349 0.0363

P6-12 0.0688 0.0353 0.0568 0.0699 0.0699 0.0694

P6-13 0.0676 -0.0267 0.0436 0.0697 0.0695 0.0687

P7-8 -0.0950 -0.0839 -0.0954 -0.0963 -0.0954 -0.0953

P7-9 0.1239 0.0912 0.1250 0.1246 0.1231 0.1241

P9-10 0.0982 0.1217 0.0987 0.0997 0.1000 0.0992

P9-14 0.1486 0.0060 0.1505 0.3394 0.3395 0.0266

P10-11 0.0432 0.0358 0.0429 0.0445 0.0449 0.0439

P12-13 -0.0012 -0.0620 -0.0132 -0.0002 -0.0004 -0.0007

P13-14 -0.0236 -0.0444 0.0232 0.1614 0.1599 -0.1489

Sum of

Residuals
1.2062 0.3261 1.1477 1.1654 0.7622

Table 10: Performance of the Five Estimators for All

Cases

Case # LS LAV LMS LTS LMR

1 0.3612 0.0222 0.0224 0.0482 0.0238

2 0.6133 0.4675 0.0341 0.0500 0.0189

3 1.0457 1.0368 4.0037 1.0870 1.0297

4 0.7924 0.0314 0.0148 0.0668 0.0139

5 0.7596 0.0314 0.0284 0.0387 0.0214

6 1.2062 0.3261 1.1477 1.1654 0.7622

Table 11: The Best Estimators that Rejected Bad-Data

Case

LS LAV LMS LTS LMR

1 NOT Rejected Rejected Rejected Rejected

2 NOT NOT Rejected Rejected Rejected

3 NOT NOT NOT NOT NOT

4 NOT Rejected Rejected Rejected Rejected

5 NOT Rejected Rejected Rejected Rejected

6 NOT NOT NOT NOT NOT

Int'l Conf. Grid Computing and Applications | GCA'12 | 81

82 Int'l Conf. Grid Computing and Applications | GCA'12 |

