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Abstract— We present a new algorithm for finding vertex-
magic total labelings of disjoint unions of triangles. Since
exaustive searches are infeasible for large graphs, we use a
specialized algorithm designed to find labelings with very
restrictive properties, and then attempt to generate other
labelings from these. We show constructively that there exists
a vertex-magic total labeling, VMTL, for each of the feasible
values of 7C3, 9C3 and 11C3.
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1. Introduction
Let G be a simple graph with vertex set V and edge set E.

A total labeling of a graph is a bijective map f : V ∪E −→
{1, 2, . . . , |V |+ |E|}. The weight of a vertex v incident with
edges e1, . . . , et is wtf (v) = f(v)+f(e1)+ · · ·+f(et). The
total labeling f is a vertex-magic total labeling, or VMTL,
if the weight of each vertex is a constant. In this case, the
constant is called the magic constant of the VMTL. If a
graph G has a VMTL, then G is called a vertex-magic graph.

Given a VMTL f of a graph G with degree ∆, there is a
dual VMTL f∗ of G in which f∗(x) = |V |+ |E|+1−f(x)
for each x ∈ V ∪ E. If the magic constant of f is h, then
the magic constant of f∗ is (∆ + 1)(|V |+ |E|+ 1)− h.

The range of possible magic constants for a graph is called
the spectrum of the graph. Assume that G is a 2-regular
graph. Suppose further that G has a VMTL with magic
constant h and with n = |V | = |E|. Then

5n+ 3

2
≤ h ≤ 7n+ 3

2
. (1)

The integral values in this range are the feasible values for
the 2-regular graph G. (See [24] and [34] for a more general
discussion.) For a 2-regular graph, the dual of a VMTL with
magic constant h is a VMTL with magic constant 6n+3−h.

Problem 1.1: The VMTL problem: given a feasible magic
constant h, does there exist a VMTL with magic constant
h?

There have been many exciting general VMTL construc-
tions in recent years, such as [15], [11], and [22]. Some
other important papers for labeling regular graphs include
[21], [5], [13], [31], [2], [3] and [23]. For 2-regular graphs,
Wallis proved in [33] that, for a vertex-magic regular graph
G, the multiple graph sG is also vertex-magic provided that
s is odd or the degree of G is odd. Gray gave VMTLs of
C3 ∪C2n, n ≥ 3 and C4 ∪C2n−1, n ≥ 3 in [14]. In [27], it

was shown that, for every s ≥ 4 even, sC3 is vertex-magic.
For every s ≥ 6 even, sC3 has VMTLs with at least 2s− 2
different magic constants. For every s odd, VMTLs for sC3

with s+ 1 different magic constants were also provided. In
this paper, we are interested in algorithms that can be used
to construct VMTLs in sC3.

One approach to Problem 1.1 is to design an algorithm to
construct VMTLs for certain special types of graphs. This
is a part of our strategy as our algorithm is specifically
designed for sC3. An algorithm could be designed in an effi-
cient way using properties of those graph types. For example,
in [4], algorithms were designed specifically for finding all
VMTLs on cycles and wheels. They provide a table giving
the total number of VMTLs on cycles C3 through C18.
Moreover, they give the number of VMTLs for these for a
given magic constant. They give a table giving the number of
VMTLs for wheel graphs W3, . . . ,W10. Moreover, they give
the number of VMTLs for these for given magic constants.
(They also give the number of VMTLs for some of the
feasible magic constants for W11.)

A second strategy for approaching this problem is to
convert it into another well-studied problem. This approach
is taken in [20], where they convert an instance of the
VMTL problem into an instance of the satisfiability of
boolean expressions problem. The SAT problem was the
first NP-complete problem ([7]) and is fundamental to com-
puter science. Variants of the Davis-Putnam algorithm ([9]),
BDD’s ([6]), and BED’s ([1]) are the three main complete
algorithms for the SAT problem. There are also many
incomplete local search algorithms. GSAT, WalkSAT ([32]),
and UnitWalk ([17]) were three of the early local search
algorithms. There is a yearly competition to find an efficient
SAT solver as part of the annual SAT conference [19]. Given
the amount of research that has been done on this problem,
it is natural to consider converting an instance of a problem
into an instance of the SAT problem.

A third strategy, which is the approach taken here, is
to combine mathematical intuition for finding new VMTLs
in certain graphs with very focused, specific algorithms to
generate labelings with certain properties. With this strategy,
labelings might be found that other more general algorithms
could not find in a reasonable amount of time. Such labelings
might then be used to construct other labelings. This strategy
was used in [27] and [18].

As mentioned above, tables are provided in [4] that give
the number of VMTLs for C3 through C18. (They note
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that of those, C11 through C18 had not previously been
enumerated.) For sC3, there appears to be fewer magic
labelings than cycles of the same size. There are only 32
non-isomorphic magic labelings in 3C3 ([27]) even though
C9 has 1540 non-isomorphic magic labelings ([13]). This
suggests that it will be difficult to write computer programs
to generate VMTLs (in a reasonable amount of time) for
sC3 when s is big.

In the very important paper [16], a computer search was
done in an attempt to find a VMTL with the biggest labels
on the vertices (strong VMTL) for each 2-regular graph of
order 7, 11, 13, 15. Based on their observations, they made
the following conjecture:

Conjecture 1.1 ([16] Conjecture 1): A 2-regular graph of
odd order possesses a strong VMTL if and only if it is not
of the form (2t− 1)C3 ∪ C4 or (2t)C3 ∪ C5.

They also found by computer search, strong VMTLs for
all 2-regular graphs of order 17 except C5∪4C3. It turns out
that C5∪4C3 does possess a strong VMTL [18], disproving
part of the conjecture. This suggests that 2-regular graphs
with many triangles require special attention, and special
algorithms for efficient computer searches.

MacDougall’s conjecture states that every regular graph
of degree at least 2 is vertex-magic except for 2C3. This
remains an open problem.

The rest of this paper is organized as follows. In Section 2,
we explain the importance of common differences of com-
ponents and as well as searching for specialized labelings in
the design of efficient algorithms for solving Problem 1.1. In
Section 3, we give a new algorithm for generating VMTLs
for sC3. In Section 4, we answer Problem 1.1 in the
affirmative for each feasible magic constant in each of 7C3,
9C3 and 11C3. These three graphs have 21, 27 and 33
vertices respectively; we give a VMTL for each feasible
value for each of these graphs.

2. The common difference of a compo-
nent of sC3

For the remainder of this paper, we restrict ourselves to
the problem of finding VMTLs in sC3.

Notation 2.1: Denote by [x1, x2, x3, x4, x5, x6] the labels
of one component of sC3 written in the order vertex-edge-
vertex-edge-vertex-edge. (So, x1 is the vertex label of a
vertex with weight x1 + x2 + x6.)

Lemma 2.1 ([27] Lemma 2): Given a VMTL of sC3 with
a component labeled [a1, b3, a2, b1, a3, b2], then b1 − a1 =
b2 − a2 = b3 − a3.

Consider a VMTL of sC3. Suppose that one of its
components is labeled [a1, b3, a2, b1, a3, b2]. The common
difference of this component is defined to be d = b1− a1 =
b2 − a2 = b3 − a3 ([27]). This concept is a key ingredient
in our algorithm. Lemma 2.2 follows immediately from
Lemma 2.1. We use it to make our algorithm more efficient.

Lemma 2.2: Suppose that we have a VMTL of sC3

with magic constant h, and that a component has common
difference d and labels [a1, b3, a2, b1, a3, b2]. Then
(i) bi = ai + d, i = 1, 2, 3;

(ii) the weight of each vertex in that component is h =
a1 + (a2 + d) + (a3 + d) = a1 + a2 + a3 + 2d;

(iii) the vertex sum of that component is h− 2d;
(iv) d = (h− (a1 + a2 + a3))/2; and
(v) h− (a1 + a2 + a3) is an even integer.

Proof: All of these follow immediately from Lem-
ma 2.1.

While it is trivial to rearrange any of (ii)-(iv) to obtain
the others in Lemma 2.2, we prefer to state all of (i)-(v)
so that we can refer to them individually. In an algorithm,
when presented with three integers as possible labels for the
vertices of one component, we can remove that triple from
any further consideration if h minus the sum of the three
numbers is not even by Lemma 2.2 part (v). If we wanted a
component to have a specific common difference, we could
also remove a triple from contention for vertex labels of a
component if any of a1 +d, a2 +d, a3 +d had already been
assigned to other components by Lemma 2.2 part (i). We
use techniques such as these in our algorithm.

Because exhaustive computer searches are only feasible
for small s, we chose to write computer programs that are
specifically designed to look for VMTLs with very restrictive
properties. Such a strategy might not lead to any examples
of VMTLs, or perhaps it might lead to just a few sporadic
examples. On the other hand, it might lead to some important
examples that could be used to generate others. For example,
consider the following special case of Problem 1.1.

Problem 2.1: Given a feasible magic constant h of sC3,
does there exist a VMTL with magic constant h such that
the labels 1, 2, . . . , s0 are on vertices of different compents,
s0 ≤ s, and such that the common difference on each of
these s0 components is 3s?

This seems like quite a restictive problem, but an efficient
algorithm can be tailor-made for this problem, and any
solution is very valuable when combined with the following
lemma, as it could be used to generate many solutions to
Problem 1.1, especially if s0 is close to s.

Lemma 2.3 ([27] Lemma 3): Let s be a positive integer
and let λ0 be a VMTL of sC3 with a magic constant of h.
Assume that one of the components has a vertex labeled 1
and a common difference of 3s. Then there exists another
VMTL λ1 of sC3 with a magic constant of h− 3.

We gave some solutions to Problem 2.1 in [27, Theorem
4] for s odd, s0 = s, and [27, Theorem 6] for s ≥ 6 even,
s0 = s− 2.

3. A magic labeling algorithm for sC3.
In this section, we present an algorithm for generating

VMTLs in sC3. We will use the following proposition to
make our algorithm more efficient.

4 Int'l Conf. Foundations of Computer Science |  FCS'12  |



Proposition 3.1: A VMTL of sC3 with a magic constant
of h has sum of all vertex labels equal to 3s[2(6s+ 1)−h].

Proof: Let SV denote the sum of all the vertex labels,
and let SE denote the sum of all the edge labels. Let n = |V |
and let m = |E|. It is easy to check that SV +SE = 1+2+
· · ·+(n+m) = (n+m)(n+m+1)/2 and SV +2SE = nh.
(For proofs of these, see [27].) Here, n = m = 3s. Solving
for SV yields the desired equality.

In Algorithm 3.1 below, we assign labels to some com-
ponents and then attempt to extend that to a VMTL. Our
algorithm has a heavy emphasis on finding labels of vertices
in individual components. We make sure that the appropriate
and necessary edge labels are available at the same time.
Here, we use Lemmas 2.1 and 2.2. If we know the vertex
labels and the common differences of some components of
a VMTL, we know the edge labels of those components.

For convenience, we use the following term in this situa-
tion to refer to the labels assigned to some but not necessarily
all of the components. An injective vertex magic labeling,
IVML, of sC3 is an injective map f from a subset A of
V ∪E into {1, 2, . . . , |V |+ |E|} such that A consists of zero
or more components of sC3, and the weight of each vertex
in A is a constant. Given a VMTL, erasing the vertex and
edge labels from one or more components gives an IVML.
We are hoping to go in the other direction. We are hoping
to extend some IVMLs to VMTLs. Note that Lemma 2.1
applies to IVMLs as well as VMTLs.

Algorithm 3.1: A VMTL algorithm for sC3:

Input:
(a) the value of s that you want to find VMTLs for.
(b) if you are only interested in VMTLs for a particular

magic constant h, then that value of h is taken as input
as well.

(c) any information about restrictions there are on any of
the labels that can be used to make the program run
faster.

Output: all VMTLs that satisfy the given restrictions.

Our algorithm uses the following procedures:
1. main( )

If a particular value for the magic constant h was not
given as input, then we can use a loop to look for
VMTLs for all feasible values of h. Equation (1) gives
the range of feasible values. If we denote by hmax and
hmin the upper and lower bounds in this inequality
respectively, then let hmid = d(hmin+hmax)/2e. Then
the loop could go from hmax down to hmid. By duality,
the VMTLs for the other values of h can be generated
later from those. (Note that the algorithm could look
for VMTLs for different values of h in parallel.)
For each value of h, calculate the sum k that the
vertex labels of any VMTL must have according
to Proposition 3.1. The main should then call the

procedure whichLabelsAreForV ertices by a call
such as whichLabelsAreForV ertices(s, h, {1, . . . ,
6s}, 3s, k, 0, 0, 0, null); described below.
Note: Three of the arguments for this call are s, h and
k. The argument {1, . . . , 6s} represents the set of all
possible labels, and the argument 3s represents the size
of a set of labels for the vertices. Other arguments are
used for the recursive nature of that procedure. They
are described in that procedure.

2. procedure whichLabelsAreForV ertices(int s, int h,
int[ ] theNumbersForLabels, int desiredSize, int
desiredSum, int sizeSoFar, int sumSoFar, int
currentIndexOfNumbersForLabels, int[ ] soFar-
ForV ertices);
This recursive procedure attempts to grow the empty
set to sets each having size desiredSize and sum
desiredSum. For each such set that is found, the
procedure lookForVMTLsUsingIt is called in the
hope that it can be used to label the vertices of sC3 as
part of VMTLs with magic constant h and vertex sum
desiredSum.
To grow the empty set to such a set of size desiredSize
and sum desiredSum, we have parameters to keep
track of the set of elements we have chosen so far,
soFarForV ertices (initially null), as well as its size,
sizeSoFar (initially 0), and its sum, sumSoFar (ini-
tially 0). The parameter currentIndexOfNumbers-
ForLabels (initially 0) keeps track of what element of
theNumbersForLabels that we are currently consid-
ering to include from soFarForV ertices.
This recursive procedure could have multiple base
cases. To make this procedure more efficient, one base
case could simply return if

length(theNumbersForLabels)
−currentIndexOfNumbersForLabels

< (desiredSize− sizeSoFar).

In such a case, there is no hope of extending so-
FarForV ertices to a desired set because there aren’t
enough numbers left to consider in theNumbersFor-
Labels to extend soFarForV ertices to a set of size
desiredSize.
Another base case could simply return if sumSo-
Far > desiredSum, as there is no hope of extending
soFarForV ertices to a desired set because we’ve
already exceeded the desired sum.
Another base case could simply return if

currentIndexOfNumbersForLabels
≥ length(theNumbersForLabels)

as we’ve reached the end of the elements being consid-
ered in numbersForLabels in this case.
This recursive procedure should have a base case corre-
sponding to the successful generation of a set with the
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properties mentioned. In this case it calls the procedure
lookForVMTLsUsingIt,

lookForVMTLsUsingIt(s, h, theNumbersFor-
Labels, soFarForV ertices);
To complete this procedure, we need two recursive
calls, one of which attempts to use the current element
of theNumbersForLabels to make a desired set of
vertex labels, and the other of which attempts to make a
desired set of vertex labels without the current element.
The first corresponds to using the current element of
theNumbersForLabels,

theNumbersForLabels[currentIndexOfChoices].

We recurse with that together with the information in
the parameter soFarForV ertices for the last argu-
ment. (We also have to use the appropriate updated val-
ues for the sixth and seventh arguments corresponding
to size and sum and the eighth argument corresponding
to the element of theNumbersForLabels that should
be considered next.)
The second recursive call corresponds to us not select-
ing the current element of theNumbersForLabels.
For this recursive call, no new information is be-
ing added to the information in soFarForV ertices.
The eighth argument corresponding to the element of
theNumbersForLabels needs to be updated.

3. procedure lookForVMTLsUsingIt(int s, int h, int[ ]
theNumbersForLabels, int[ ] theNumbersForV er-
tices);
Since we have a specific subset of all possible labels to
use for the vertices, the remaining labels must be for
the edges. Store these in int[ ] theNumbersForEdges.
Next, call the recursive procedure generateVMTLs,
with a call such as
generateVMTLs(theNumbersForV ertices, the-
NumbersForEdges, h, s, {false, . . . , false}, null,
−1);
This procedure will attempt to generate VMTLs using
these.

4. procedure generateVMTLs(int[ ] theNumbersFor-
V ertices, int[ ] remainingNumbersForEdges, int
h, int s, boolean[ ] usedV ertexIndex, int[ ][ ] ivml-
Indices, int[ ] commonDifferences, int currentIndex-
OfIVML);
This procedure tries to find VMTLs by labeling one
component at a time. The first parameter, theNum-
bersForV erices, gives the set of numbers that is to
be used for labeling all the vertices. The parameters
ivmlIndices and commonDifferences keep track
of an IVML that we are trying to grow. The pa-
rameter ivmlIndices keeps track of triples of indices
in theNumbersForV ertices. One triple corresponds
to one component, so if we ever get s triples we
have our vertex labels. From such a triple, the corre-

sponding three elements in theNumbersForV ertices
are currently being used as the vertex labels for one
component. The common difference for that com-
ponent can be found in the appropriate element in
commonDifferences. From these pieces of informa-
tion, we have the edge labels for that component.
As we grow an IVML, some labels are used for edges.
The second parameter keeps track of the edge labels
that have not as yet been used. The first parameter,
theNumbersForV ertices, is the set of all of the
labels for the vertices, and the usedV ertexIndex
parameter keeps track of those that have been used so
far.
This procedure has a base case corresponding to finding
a solution. If the parameter ivmlIndices has length
s, then it corresponds to a VMTL, in which case that
information is outputted, and the procedure returns.
This procedure has a loop to continually look for all
possible labelings of one component that could be
used to augment the information in ivmlIndices and
commonDifferences, to give a bigger IVML. The
corresponding edge labels need to be available. (Recall
that Lemma 2.2 part (i) gives us these values.) If they
are, then we can recurse on this bigger IVML with all
parameters except the first updated. When the loop is
finished, this procedure returns.
It is important to note that we have several filters in
place in the loop above so that (a) we ignore labels of
a component that won’t lead to a solution, and (b) so
that we ignore labels of a component that won’t lead
to a specific type of solution that we are after. Filters
of type (a) are used for the purposes of making the
algorithm faster. If we exclude filters of the type (b),
then our algorithm will find all possible VMTLs for the
specified values of s and h. If we include filter of type
(b), we will only be looking for VMTLs with certain
properties. We often use filters of both types in order to
find certain solutions quickly. We will discuss the use
of filters further shortly.

Finally, we can generate other VMTLs from the output of
generateVMTLs using Lemma 2.3. This can be done by
hand (or by another procedure).

Algorithm 3.1 uses several tools so that it is efficient:
(i) In the main, our loop considered roughly half of the

feasible magic constants. Duality can be used for the
others. Parallelism can also be used here.

(ii) In the second procedure, whichLabelsAreForV er-
tices, we used the results of Proposition 3.1 to restrict
the possibilities for sets of numbers to be considered as
vertex labels.

(iii) In generateVMTLs( ), when we looked for a triple
to label the vertices of one component, we eliminated
possibilities that did not satisfy Lemma 2.2 part (v).
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(iv) We were able to focus on labeling the vertices because
of Lemma 2.2 part (iv). We just needed to make sure
that the corresponding edge labels were available when
we had labels that we liked for the vertices of a
component.
Sometimes, we are interested in finding only labellings
in which some components have specific common dif-
ferences. In this case, Lemma 2.2 part (iv) helps us
reduce the number of triples that we need to consider
as possible labels for the vertices of a component. In
generateVMTLs( ), when we looked for a triple to
label the vertices of one component, we eliminated
possibilities that did not satisfy Lemma 2.2 part (iv)
in this situation.

(v) Use Lemma 2.3 to generate many other VMTLs.

In Algorithm 3.1, we use several filters.

In generateVMTLs, when we have an IVML with some
components labeled, we try to extend it to VMTLs by
labeling an additional component (recursively). Sometimes,
a potential labeling of a “next” component can be removed
from consideration (“filtered”) because we can tell that it
will never lead to a VMTL, or because it will not lead to a
specific type of VMTL that we are interested in finding.

If we are given the common differences of any of the
components as input, then some triples can be immediately
eliminated from consideration as possible vertex labels for
a component because of Lemma 2.2 part (iv). If restrictions
are given, such as the common difference restiction of
Problem 2.1, we might be able to eliminate triples here or
at some other point in the algorithm.

4. VMTLs for 7C3, 9C3, and 11C3.
Using Algorithm 3.1, we now answer Problem 1.1 in

the affirmative for 7C3, 9C3, and 11C3 for each of their
respective feasible magic constants. In order to do so, we
answer Problem 2.1 in the affirmative for certain values of
h and s0 for 7C3, 9C3, and 11C3. Then, we use Lemma 2.3.

Theorem 4.1: There exists VMTLs for all of the feasible
values of 7C3.

Proof: Consider the VMTL with components labeled

[1, 37, 15, 22, 16, 36], [2, 39, 12, 23, 18, 33],
[3, 42, 8, 24, 21, 29], [4, 40, 9, 25, 19, 30],
[5, 38, 10, 26, 17, 31], [6, 41, 20, 13, 34, 27],
and [7, 35, 11, 28, 14, 32].

This VMTL has a magic constant of 74. The first three
components have common differences of 3s. Therefore, by
using Lemma 2.3 three times, we have VMTLs of 7C3 with
magic constants 71, 68, 65. By duality, there exist VMTLs
with magic constants of 55, 58, 61 and 64.

Next, consider the VMTL with components labeled

[1, 37, 14, 22, 16, 35], [2, 38, 12, 23, 17, 33],
[3, 42, 20, 11, 34, 28], [4, 40, 15, 18, 26, 29],
[5, 36, 6, 31, 10, 32], [7, 39, 9, 25, 21, 27],
and [8, 41, 13, 19, 30, 24].

This VMTL has a magic constant of 73. The first two compo-
nents have common differences of 3s. By using Lemma 2.3
twice, there exist VMTLs of 7C3 with magic constants 70
and 67. By duality, there exist VMTLs with magic constants
of 56, 59 and 62.

Finally, in [27] it was shown that there exist VMTLs of
7C3 with magic constants with values 75, 72, 69, 66, 63, 60,
57, 54.

Theorem 4.2: There exists VMTLs for all of the feasible
values of 9C3.

Proof: Consider the VMTL with components labeled

[1, 46, 18, 28, 19, 45], [2, 52, 11, 29, 25, 38],
[3, 49, 13, 30, 22, 40], [4, 54, 12, 26, 32, 34],
[5, 44, 9, 39, 10, 43], [6, 53, 16, 23, 36, 33],
[7, 50, 27, 15, 42, 35], [8, 47, 31, 14, 41, 37],
and [17, 51, 21, 20, 48, 24].

This VMTL has a magic constant of 92. The first three
components have common differences of 3s. Therefore, by
using Lemma 2.3 three times, we have VMTLs of 9C3

with magic constants 89, 86, and 83. By duality, there exist
VMTLs with magic constants of 73, 76, 79, and 82.

Next, consider the VMTL with components labeled

[1, 47, 19, 28, 20, 46], [2, 50, 15, 29, 23, 42],
[3, 51, 13, 30, 24, 40], [4, 49, 9, 36, 17, 41],
[5, 52, 16, 26, 31, 37], [6, 45, 10, 39, 12, 43],
[7, 53, 14, 27, 33, 34], [8, 54, 22, 18, 44, 32],
and [11, 48, 25, 21, 38, 35].

This VMTL has a magic constant of 94. The first three
components have common differences of 3s. By using
Lemma 2.3 thrice, there exist VMTLs of 9C3 with magic
constants of 91, 88 and 85. By duality, there exist VMTLs
with magic constants of 71, 74, 77, and 80.

Next, consider the VMTL with components labeled

[1, 50, 17, 28, 23, 44], [2, 47, 19, 29, 20, 46],
[3, 51, 14, 30, 24, 41], [4, 54, 16, 25, 33, 37],
[5, 48, 12, 35, 18, 42], [6, 53, 10, 32, 27, 36],
[7, 45, 11, 39, 13, 43], [8, 49, 15, 31, 26, 38],
and [9, 52, 22, 21, 40, 34].

This VMTL has a magic constant of 95. By duality, there
exists a VMTL with a magic constant of 70.

Finally, in [27] it was shown that there exist VMTLs of
9C3 with magic constants with values 96, 93, 90, 87, 84, 81,
78, 75, 72 and 69.

Theorem 4.3: There exists VMTLs for all of the feasible
values of 11C3.
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Proof: Consider the VMTL with components labeled

[1, 62, 20, 34, 29, 53], [2, 65, 16, 35, 32, 49],
[3, 61, 19, 36, 28, 52], [4, 57, 22, 37, 24, 55],
[5, 60, 18, 38, 27, 51], [6, 56, 10, 50, 12, 54],
[7, 66, 17, 33, 40, 43], [8, 63, 23, 30, 41, 45],
[9, 59, 15, 42, 26, 48], [11, 58, 14, 44, 25, 47],
and [13, 64, 21, 31, 46, 39].

This VMTL has a magic constant of 116. The first five
components have common differences of 3s. Therefore, by
using Lemma 2.3 five times, we have VMTLs of 119C3 with
magic constants 113, 110, 107, 104 and 101. By duality, there
exist VMTLs with magic constants of 85, 88, 91, 94, 97, and
100.

Next, consider the VMTL with components labeled

[1, 59, 22, 34, 26, 55], [2, 60, 20, 35, 27, 53],
[3, 66, 13, 36, 33, 46], [4, 63, 15, 37, 30, 48],
[5, 56, 10, 49, 12, 54], [6, 58, 17, 40, 24, 51],
[7, 65, 19, 31, 41, 43], [8, 57, 11, 47, 18, 50],
[9, 64, 23, 28, 45, 42], [14, 62, 21, 32, 44, 39],
and [16, 61, 29, 25, 52, 38].

This VMTL has a magic constant of 115. The first four
components have common differences of 3s. By using
Lemma 2.3 four times, there exist VMTLs of 11C3 with
magic constants of 112, 109, 106 and 103. By duality, there
exist VMTLs with magic constants of 86, 89, 92, 95, and 98.

Finally, in [27] it was shown that there exist VMTLs of
11C3 with magic constants with values 117, 114, 111, 108,
105, 102, 99, 96, 93, 90, 87 and 84.
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Assortativity of links in directed networks
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Abstract— Assortativity is the tendency in networks where
nodes connect with other nodes similar to themselves. De-
gree assortativity can be quantified as a Pearson correlation.
However, it is insufficient to explain assortative or disassor-
tative tendencies of individual links, which may be contrary
to the overall tendency in the network. In this paper we
define and analyse link assortativity in the context of directed
networks. Using synthesised and real world networks, we
show that the overall assortativity of a network may be due
to the number of assortative or disassortative links it has,
the strength of such links, or a combination of both factors,
which may be reinforcing or opposing each other. We also
show that in some directed networks, link assortativity can
be used to highlight subnetworks which have vastly different
topological structures. The quantity we propose is limited
to directed networks and complements the earlier proposed
metric of node assortativity.

Keywords: Complex networks, graph theory, assortativity, social
networks, biological networks

1. Introduction
In the last few decades, network approaches have been

widely used to analyze complex systems in a number of
domains, including technical, biological, social and physical
domains [1], [2]. Assortativity is a much studied concept in
the topological analysis of complex networks [3], [4], [5],
[6]. Assortativity has been defined to quantify the tendency
in networks where individual nodes connect with other nodes
which are similar to themselves [3]. Thus, a social network
of people tends to be assortative, since people often prefer to
be friends with, or have links to, other people who are like
them. A food web could be argued as disassortative, because
predator and prey are unlikely to be similar in many respects.
However, it is clear that the assortativity of a network needs
to be defined in terms of a particular attribute of nodes in
that network. A social network could be assortative when
the considered attribute is the age of people, because people
tend to be friends with other people similar to their age:
however, the same network could be disassortative, when
the gender of individuals is the considered attribute. Degree
assortativity is the most common form of assortativity used
in network analysis, whereby similarity between nodes is
defined in terms of the number of connections the nodes
have. Degree assortativity can be defined and quantified
as a Pearson correlation [3], [7]. It has been shown that

many technological and biological networks are slightly
disassortative, while most social networks, predictably, tend
to be assortative in terms of degrees [3], [5]. Recent work
defined degree assortativity for directed networks in terms
of in-degrees and out-degrees, and showed that an ensemble
of definitions are possible in this case [6], [7].

It could be argued, however, that the overall assortativity
tendency of a network may not be reflected by individual
links of the network. For example, it is possible that in a
social network, which is overall assortative, some people
may maintain their ‘fan-clubs’. In this situation, people who
have a great number of friends may be connected to people
who are less famous, or even loners. If there is a link which
connects such a popular person with a loner, that link cannot
be called an assortative link, even though the network is
overall assortative. Similarly, in a network which is overall
disassortative many links could arguably be assortative. A
good example for this is the so-called rich club scenario
in internet AS networks [8]. Even though these networks
display overall disassortativity, it has been shown that the
hubs among them are strongly connected to each other,
forming a ‘rich-club’. The links that connect these hubs,
therefore should be considered assortative in nature. These
examples highlight that the ‘local assortativity’ of links is a
quantity, which, if defined, can throw light on the topological
structure of networks. In directed networks, this can be
defined separately for out-degree based mixing patterns and
in-degree based mixing patterns.

Indeed, decomposing the assortativity coefficient of a
network into values for network components has already
been attempted, and the metric of ‘local assortativity’ has
been defined and analysed in detail [4], [6]. However, this
decomposition has been done in terms of network nodes,
rather than network links. In this work however, we propose
to analyze the ‘local assortativity’ of individual links, and
will demonstrate that this approach has its advantages,
particularly for defining the assortativity of sub networks
or regions. We limit our analysis to directed networks.

Analyzing the ‘local assortativity’ of links can give us
a number of insights about networks. We will be able to
identify ‘positive’ and ‘negative’ links in the network in
terms of assortativity, and based on these we can see which
links help, or hinder, the overall assortative tendency in
networks. We can identify if assortativity of a network is
primarily determined by the number of a particular type
of links, or rather by the strength of such links. If the
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‘strength’ of a minority of links is the primary reason for
a network’s assortativity, then we could predict that, if the
network evolves, its assortativity may change rapidly. Link
assortativity can be an indicator of the importance of links in
the network, particularly if the links are highly assortative.
Furthermore, profiles of link assortativity will provide us
with yet another tool to classify networks.

Our paper is structured as follows: in the next section,
we will introduce the concept of link assortativity for di-
rected networks. We will use the definition of assortativity
described in [7] to establish this concept, since this form of
definition is most conducive for link-based decomposition.
Then we will analyze the link-based assortativity profiles of
a number of synthesized and real world directed networks.
These include citation networks, Gene regulatory networks,
transcription networks, foodwebs and neural networks. We
will draw observations from this analysis, showing that a
network could be either assortative, disassortative or non-
assortative, due to a number of combinations between the
ratio of ‘positive’ and ‘negative’ links, and the average
strength of such links. We will also look at link-assortativity
distributions of a number of networks, and discuss what
insights can be gained from these about the evolution and
functionality of these networks. Finally we will present our
summary and conclusions.

2. Link assortativity of directed net-
works

Degree assortativity has been defined by Newman, as a
Pearson correlation between the ‘expected degree’ distri-
bution qk, and the ‘joint degree’ distribution ej,k [3]. The
expected degree distribution is the probability distribution of
traversing the links of the network, and finding nodes with
degree k at the end of the links. Similarly, the ‘joint degree’
distribution is the probability distribution of an link having
degree j on one end and degree k on the other end. In the
undirected case, the normalized Pearson coefficient of ej,k
and qk gives us the assortativity coefficient of the network,
r.

If a network has perfect assortativity (r = 1), then all
nodes connect only with nodes with the same degree. For
example, the joint distribution ej,k = qkδj,k where δj,k is
the Kronecker delta function, produces a perfectly assortative
network. If the network has no assortativity (r = 0), then any
node can randomly connect to any other node. A sufficiency
condition for a non-assortative network is ej,k = qjqk. If
a network is perfectly disassortative (r = −1), all nodes
will have to connect to nodes with different degrees. A star
network is an example of a perfectly disassortative network,
and complex networks with star ‘motifs’ in them tend to be
disassortative.

In the case of directed networks, the definition is a
bit more involved due to the existence of in-degrees and

out-degrees. Therefore, we must consider the probability
distribution of links going out of source nodes with j out-
degrees, denoted as qoutj , and the probability distribution of
links going into target nodes with k in-degrees, denoted qink .
In addition, we may consider the probability distribution of
links going into target nodes with k out-degrees, denoted
q̆outk , and the probability distribution of links going out of
source nodes with j in-degrees, denoted q̆inj . In general,
qoutk ̸= q̆outk and qinj ̸= q̆inj [6].

We can also consider distribution eout,outj,k , abbreviated as
eoutj,k , as the joint probability distribution of links going into
target nodes with k out-degrees, and out of source nodes of
j out-degrees (i.e., the joint distribution in terms of out-
degrees). Similarly, einj,k = ein,inj,k is the joint probability
distribution of links going into target nodes of k in-degrees,
and out of source nodes of j in-degrees (i.e., the joint
distribution of in-degrees).

we can therefore define the out-assortativity of directed
networks, as the tendency of nodes with similar out-degrees
to connect to each other. Using the above distributions, out-
assortativity is formally defined, for out-degrees j and k, by
Piraveenan et al [6] as

rout =
1

σout
q σout

q̆

∑
jk

jkeoutj,k

− µout
q µout

q̆

 (1)

where µout
q is the mean of qoutk , µq̆ is the mean of q̆outk , σout

q

is the standard deviation of qoutk , and σout
q̆ is the standard

deviation of q̆outk .
Similarly, Piraveenan et al. [6] defined in-assortativity as

the tendency in a network for nodes with similar in-degrees
to connect to each other, and this was formally specified as:

rin =
1

σin
q σin

q̆

∑
jk

jkeinj,k

− µin
q µin

q̆

 (2)

where µin
q is the mean of qink , µin

q̆ is the mean of q̆ink , σin
q is

the standard deviation of qink , σin
q̆ is the standard deviation

of q̆ink .
Meanwhile, Foster et al. [7] also defined assortativity of

directed networks in terms of the above distributions. While
they used a different set of notations, using our notation their
definition for out-assortativity can be written as

rout =
M−1

σout
q σout

q̆

[∑
i

(jouti − µout
q )(kouti − µout

q̆ )

]
(3)

where M is the number of links. Similarly, the definition of
Foster et al. for in-assortativity can be written as

rin =
M−1

σin
q σin

q̆

[∑
i

(jini − µin
q )(kini − µin

q̆ )

]
(4)
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It can be analytically proven that the definitions of Foster
et al. for out-assortativity and in-assortativity are equivalent
to the definitions of Piraveenan et al. for the same quantities
respectively. That is, R.H.S of Eq. 1 = R.H.S of Eq. 3 and
R.H.S of Eq. 2 = R.H.S of Eq. 4. Such a proof is given
in our recent work [9] and it is beyond the scope of this
paper to repeat it here. However, the key difference of the
equivalent definitions is in the way the sums are obtained.
While in the definitions of Piraveenan et al. the summations
are obtained by traversing over degrees, in Foster et al. the
summations are obtained by traversing over links.

Indeed, from Eq. 3 it is apparent that the out-assortativity
of a network can be decomposed into individual contribu-
tions of links in that network. the summation of the contri-
bution, in turn, gives the overall network out-assortativity.
Therefore, we can write that

rout =
∑
i

ρoute (5)

where ρoute is the individual contribution of a given link i to
the out-assortativity of the network, and is given by

ρoute =
M−1

σout
q σout

q̆

[
(jouti − µout

q )(kouti − µout
q̆ )

]
(6)

Similarly, the contribution of an individual link to the
overall in-assortativity of a network is given by

ρine =
M−1

σin
q σin

q̆

[
(jini − µin

q )(kini − µin
q̆ )

]
(7)

The definitions ρoute and ρine indicate that, individual links
can be classified as ‘assortative’ or ‘disassortative’ in the
context of out-degree and in-degree mixing respectively, by
considering the sign of these quantities.

We also observe that in most networks, there will be a
correlation between the sign of link assortativity of a link,
and the degrees of nodes it connects. Intuitively, a link
that connects a smaller-degreed node with a larger-degreed
node will be disassortative, while an link which connects
two similar degreed nodes will be assortative. We found
evidence of this in both synthetic and real world networks.
For example, in Fig. 1 we show the average link-assortativity
against the differences in degrees at either end of links, for
a simulated Erdos - Renyi random network. On the x-axis is
shown the absolute difference between degrees of two nodes
that are at the ends of an link. On y-axis, we calculate and
show the average of link assortativity values for all links
that have such a degree-difference. The figure clearly shows
that, as the difference between the degrees increase, the
links become more and more disassortative, as expected. We
obtained similar results for a range of simulated scale-free
networks.

Fig. 2 demonstrates the same concept in a different
manner. In this figure, the sum of degrees at either end of

an link are shown, rather than the difference. If the sum is
very high, it means that both ends of a link have high-valued
degrees, where as if the sum is low, it means that both ends
of a link have low-valued degrees. In both cases, we see
that, on average, the links are assortative. If the sum is in
the middle ranges however, it typically may mean that one
end of the link has a high degree and the other end has a
lower degree. Only a minority of links will have exactly the
same middle-valued degrees on both ends. Here, predictably,
most links are disassortative.
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Fig. 1: Average link assortativity vs degree. The x-axis shows
the difference between degrees at either end for a given
link. The y-axis shows the average link assortativity of all
links corresponding to the given x-value. As the difference
between degrees increases, links on average become more
disassortative.
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Fig. 2: Average link assortativity vs degree. The x-axis
shows the sum of degrees at either end for a given link.
The y-axis shows the average link assortativity of all links
corresponding to the given x-value. It could be seen that, as
the sum of degrees increases, links on average first become
more disassortative and then more assortative.
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3. Link assortativity of real world net-
works

We analyzed link assortativity patterns of a number of
real world networks, including Gene regulatory networks,
transcription networks, cortical networks, neural networks,
food webs, and citation networks. An explanation is neces-
sary to some of these types of networks, since the usage
of names can be ambiguous. In our transcription networks,
nodes are regulatory genes and regulated proteins, and the
links are the interactions between them [1]. These are
bipartite and directed networks. On the other hand, by gene
regulatory networks we mean networks where nodes are
genes, and the links are the inhibitory or inducing effects of
one gene on the expression of another gene [10]. Note the
subtlety that unlike transcription networks, only genes are
considered as nodes in these directed networks. Similarly, by
cortical networks we denote the networks of dependencies
between various regions of the cerebral cortical (in a set of
primates)[11]. The nodes are regions in the cortical, and the
links are functional dependencies. Note that the nodes are
not individual neurons. On the other hand, neural networks
are networks where nodes are individual neurons belonging
to an organism’s neural system and links are anatomical con-
nections between neurons [1]. In citation networks, nodes are
research papers (or other citable documents) and links denote
citations between these documents. In food webs, nodes are
organisms in an ecosystem and the links represent predator-
prey relationships between them [5]. These networks can
be considered undirected or directed (prey to predator). A
list of real world networks that we have studied is shown in
Table 1, along with their out-assortativity and in-assortativity
values. This is the same set studied in [6].

Table 2 shows the number of assortative and disassortative
links in each network ( Mal and Mdl), as well as the
average strength of assortative and disassortative links in
these networks ( < S >al and < S >dl). The average
strength is calculated by summing the local link assortativity
values of all links which are assortative or disassortative,
and dividing it by their count. This is done for both out-
assortativity and in-assortativity. It is apparent from the
table that the assortativity coefficient of a network can be
determined by (a) the numerical superiority of one type of
links over the other (b) the strength superiority, on average,
of one type of links over the other (c) a combination of these
two factors, mutually reinforcing or otherwise. Specifically,
we can observe the following scenarios.

In terms of out-assortatativity:
1) A Network can be assortative because a) it has more

assortative links than disassortative links [such as C.
elegans neural network, Human GRN, Chesapeake
lower foodweb, E. coli and C. glutamicum transcrip-
tion, Sci met, small World and Zewail citation net-
works, and human cortical] ) The assortative links are,

on average, stronger than disassortative links [No real
world example] c) a combination of these two reasons
[The GRNs of C. elegans, A. thaliana, R. norvegicus
and M. musculus]

2) A network can be disassortative because a) it has more
disassortative links than assortative links [transcription
networks of C. jeikeium and C. efficiens] b) disassor-
tative links are, on average, stronger than assortative
links [No real world example] c) a combination of
these two reasons [no real world example]

3) A network can be nearly non-assortative because a)
It has almost equal assortative and disassortative links
with equal strength on average [The food webs of Bay
dry, chrystal D, chrystal C, Chessapeake upper, Bay
wet, and the cortical networks of cat and macaque] b)
It has more assortative links, but disassortative links
are on average stronger [Lederburg, self organizing
maps, and smart Grid citation networks] c) It has more
disassortative links, but assortative links are on average
stronger [No real world example]

The statement ‘no real world example’ is of course
limited to the directed networks we have studied. As more
directed networks are analysed, it is our hope that real world
examples will turn up to illustrate the relevant scenarios.

A number of interesting contrasts can be made from
these observations. For example, most foodwebs are non-
assortative simply because there are equal number of as-
sortative and disassortative links, with equal strength on
average. However, many citation networks are also nearly
non-assortative, for a very different reason. They all have
more assortative links, but their disassortative links are
much stronger! For example, the Lederburg citation network
has 26730 assortative links to 14872 disassortative links,
but its disassortative links are almost doubly stronger on
average, making it overall rather non-assortative (r = 0.06).
Similarly, while most assortative networks are assortative
simply because they have more assortative links, and the
average link strength is more or less equal for both types of
links, this is not the case for most Gene Regulatory networks.
They achieve such high assortativity values because not only
they have a majority of assortative links, but also because
some of these links are really strong. For example, the rat
GRN has 12509 assortative links and 4147 disassortative
links, but its assortative links are, one average, three times
stronger compared to its disassortative links. These examples
demonstrate that networks which appear to have similar
assortativity values overall still may have very different
topological designs. This was also highlighted by [4] in their
derivation of node-based local assortativity.

We may do a similar analysis for in-assortativity of
networks. Again, we may state that, In terms of in-
assortatativity:

1) A Network can be assortative because a) it has more
assortative links than disassortative links [such as
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Network Size N rout rin
Neural networks
C. elegans 297 0.1 -0.09
GRNs
rat (R. norvegicus) 819 0.64 0.59
human (H. sapiens) 1452 0.2 -0.01
mouse (M. musculus) 981 0.53 0.49
C. elegans 581 0.36 0.01
A. thaliana 395 0.16 0.03
Transcription networks
E. coli 1147 0.17 0.03
C. glutamicum 539 0.09 -0.01
C. jeikeium 52 -1 -1
C. efficiens 50 -1 -1
Cortical networks
human 994 0.17 0.17
Macaque monkey 71 0.06 -0.01
Cat cortical 65 -0.03 0.09
Food webs
Chesapeake Lower 37 0.21 -0.06
Chesapeake Upper 37 0.1 -0.12
Crystal river C 24 0.08 -0.14
Crystal river D 24 0.06 -0.18
Bay wet 128 0.02 0.24
Bay dry 128 0.03 0.25
Citation networks
Self organizing Maps 3772 0.21 -0.06
Small world 233 0.1 -0.12
Smart Grids 1024 0.08 -0.14
Lederberg 8324 0.06 -0.18
Zewail 6651 0.02 0.24
Sci met 2729 0.03 0.25

Table 1: Assortativity in real world directed networks. The table shows out-assortativity and in-assortativity coefficients. The
source data for the networks is obtained from [12],[13],[14],[15],[16].

human cortical, baywet and baydry foodweb, Lderberg
and Zewail citation networks] b) The assortative links
are, on average, stronger than disassortative links [No
real world example] c) a combination of these two
reasons [The GRNs of R. norvegicus and M. musculus,
and small world citation network]

2) A network can be disassortative because a) it has more
disassortative links than assortative links [transcription
network of C. jeikeium] b) disassortative links are,
on average, stronger than assortative links [C. elegans
neural network where this is the case even though there
are more assortative links, and foodwebs of chrystal
C and Chessapeake upper] c) a combination of these
two reasons [Chrystal D foodweb]

3) A network can be nearly non-assortative because a)
It has almost equal assortative and disassortative links

with equal strength on average [cat cortical, macaque
cortical and Chessapeake lower foodweb] b) It has
more assortative links, but disassortative links are on
average stronger [ GRNs of A. Thaliana H. sapiens,
C. elegans, transcription networks of E. coli and C.
glutamicum, smart grid, sci met and self organising
map citation networks] c) It has more disassortative
links, but assortative links are on average stronger [No
real world example]

Again, we may observe a number of interesting sce-
narios. For example, some disassortative networks can be
disassortative on the strength of disassortative links, even
while most links are in fact assortative, such as C. elegans
neural network. Similarly, many networks are nearly non-
assortative, because a majority of links are assortative while
the disassortative links are on average stronger. These two
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In-In Distributions Out-Out Distributions
Network Mal Mdl < S >al < S >dl Mal Mdl < S >al < S >dl

Neural networks
C. elegans 1251 877 1.69E-04 1.69E-04 1317 1028 0.00027 -2.55E-04
GRNS
rat (R. norvegicus) 12169 4487 5.66E-05 -2.29E-05 12509 4147 5.85E-05 -2.13E-05
human (H. sapiens) 10037 6150 1.77E-05 -3.04E-05 10969 5218 3.69E-05 -3.95E-05
mouse (M. musculus) 10937 5200 5.71E-05 -2.54E-05 11386 4751 5.65E-05 -2.34E-05
C. elegans 1341 1004 1.14E-04 -2.44E-04 1436 692 0.000369 -2.40E-04
A. thaliana 1096 542 1.97E-04 -3.34E-04 1089 549 0.000215 -0.0001
Transcription nets
E. coli 1430 733 7.38E-05 -1.08E-04 1269 894 0.00031 -0.00025
C. glutamicum 372 310 2.98E-04 -4.04E-04 376 306 0.00110 -0.00104
C. jeikeium 0 51 N.A -0.01961 0 51 N.A -0.01961
C. efficiens 45 0 0 N.A 0 45 N.A -0.02222
Cortex networks
human 15764 11276 2.64E-05 -2.15E-05 15764 11276 2.63E-05 -2.15E-05
Macaque monkey 375 371 8.35E-04 -8.63E-04 381 365 0.00097 -0.0008
Cat cortical 622 516 6.47E-04 -5.99E-04 579 559 0.00048 -0.00055
Food webs
Chesapeake Lower 85 92 0.0028 -0.00325 107 70 0.00421 -0.00342
Chesapeake Upper 116 98 0.00185 -0.00339 124 90 0.00327 -0.00334
Crystal river C 66 59 0.0044 -0.00739 77 48 0.00492 -0.00617
Crystal river D 41 58 0.0056 -0.00700 57 42 0.00563 -0.00622
Bay wet 1398 708 2.75E-04 -2.07E-04 1041 1065 3.07E-04 -2.79E-04
Bay dry 1415 722 2.81E-04 -2.02E-04 1087 1050 0.00030 -0.00028
Citation networks
Self organizing Maps 7065 5664 3.78E-05 -4.25E-05 9042 3687 9.48E-06 -1.95E-05
Small world 1324 664 2.96E-04 -1.49E-04 1246 742 0.00025 -0.00026
Smart Grids 3088 1833 4.63E-05 -6.36E-05 3090 1831 8.02E-05 -0.00010
Lederberg 25316 16286 9.25E-06 -7.74E-06 26730 14872 3.60E-06 -6.73E-06
Zewail 33314 20938 6.42E-06 -6.95E-06 34548 19704 9.11E-06 -7.72E-06
Sci met 6485 3930 1.72E-05 -2.77E-05 6522 3893 4.07E-05 -4.04E-05

Table 2: The table shows the number of assortative links Mal, and disassortative links Mdl, as well as the average strength
of assortative links < S >al and disassortative links < S >dl respectively, for a number of real world networks, in the
context of in-degree and out-degree mixing.

effects cancel each other out. Therefore, the interplay be-
tween the count of assortative and disassortative links, and
the strength of such links, can give rise to a vast array of
topologies, whose intricacies cannot be explained by a single
Pearson coefficient.

4. Using link assortativity to calculate as-
sortativity coefficient of subnetworks

Since link assortativity is a measure of individual links,
it can be summed over a subset of links in a network. This
could be used as a measure of assortativity for individual sub
networks, where sub graphs show marked topological differ-
ences. While this would not be case in scale-free networks,
which by definition show similar topological characteristics

at all levels, there are many real world networks whose
topological characteristics do not scale. This is particularly
the case for man-made networks which have not evolved
much.

One well known example is in the case of software net-
works, where individual classes or modules of software form
nodes, and links are inter dependencies of such modules.
An example of such a network is shown in Fig. 8 of [5],
where it could be seen that the network consists of a distinct
star and a chain-like structure. Here we analyse another
such network of a Java software package, described in [17],
where nodes are classes and links are strong dependencies
(such as inheritance). As such, the network is directed. The
considered network is shown in Fig. 3. It could be seen
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that the network has a dominant star structure and a chain
structure.

Fig. 3: Software network with classes as nodes and strong
dependencies as links. It could be observed that two sub-
networks are visible, where the topological patterns are very
different to each other. These sub networks are shown by
green and red nodes, respectively. The links which do not
belong to either network are highlighted in blue.

The overall in-assortativity of this network is rin =
−0.557. However, it could be seen that the network is
disassortative mainly because of the star structure. If the
network is considered as the union of two sub networks
(shown by the red nodes and the green nodes in Fig. 3) then
we may see that the assortativity tendencies of each sub
network are different. The sum of link assortativity values
(for in-degrees) for the subnetwork in red are −0.314, while
the same of link assortativities for the subnetwork in green
are −0.235. Furthermore, if we look at the average strength
of links, the subnetwork in red has an average strength of
−0.0078, while the subnetwork in green has the average
strength of −0.0039. The strength of the disassortative links
in the red subgraph is double of those in the green subgraph.
Therefore, it could be seen that the primary disassortative
character from the overall network comes from the red
subgraph. This is because of the presence of the star motif in
the red subgraph, which by itself is perfectly disassortative.
Analysing the out-assortativity of this network, we obtained
similar results. This example demonstrates that the quantity
of link-assortativity can be used to analyze, in a principled
manner, assortative tendencies of subgraphs without break-
ing a network into components, which may itself change the
assortative tendencies.

5. Conclusions
In this paper, we analyzed the local assortativity of links in

directed networks. After establishing the expressions for link
assortativity, we applied them to a number of synthetic and
real world networks. We showed that the overall assortative
tendency of a network is influenced by two factors (i) the
relative number of assortative / disassortative links (ii) the
relative strength of assortative / disassortative links - or
a combination of these factors. we demonstrated, using a

number of real world examples, that two directed networks
may have the same level of assortativity for different reasons,
influenced by the factors above. We also demonstrated that
link assortativity in directed networks can be a useful mea-
sure to analyse assortative tendencies of subgraphs without
breaking the original networks. Using a software network,
we showed that portions of network may have very different
assortative tendencies and link strengths. We also pointed
out that link assortativity distributions could be constructed
and used as a useful tool to understand network topology.

In conclusion, we believe that link-based local assortativ-
ity analysis demonstrates the duality of local assortativity
analysis, initially proposed as a node-based metric, and
together these measures will be used to understand the
structure and function of complex directed networks.
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Abstract—In this paper we present an analysis of the complex-
ity of a class of algorithms. These algorithms recursively explore
a binary tree and need to make two recursive calls for one of the
subtrees and only one for the other. We derive the complexity of
these algorithms in the worst and in the best case and show the
tree structures for which these cases happen.

I. I NTRODUCTION

Let us consider a traversal function for an arbitrary binary
tree. Most of these functions are recursive, although an itera-
tive version is not too difficult to implement with the use of a
stack [1]. The object of this paper, though, is those functions
that are recursive.

For the remainder of the paper we’ll consider the classic
C++ implementation of a tree node as follows:

template <class otype>
struct node {
otype datum;
node *left, *right;

};

When a recursive function makes asimple traversalof a
binary tree withn nodes, in which the body of the traversal
function contains exactly two recursive calls, one on the left
subtree and one on the right, and all other parts of each
call require Θ(1) time, then the execution time is roughly
proportional to the total number of calls (initial and recursive)
that are made. In this case that will be1 + 2n (the call on
the pointer to the root of the tree and one call on each of the
2n pointers in the tree), so the execution time isΘ(n). The
analysis would apply, for example, to the function below that
traverses the tree to calculate its height [2].

int height (node_ptr p) {
if (p == NULL)

return -1;
int left_height = height (p->left);
int right_height = height (p->right);
if (left_height <= right_height)

return 1 + right_height;
else

return 1 + left_height;
}

The next function,height1, is a differently coded version
of the functionheight. Note that this function looks simpler
than the first one. The code ofheight1, though, is not
a “simple traversal” of the kind described above. Here is

the reason: when recursive calls are made, exactly one of
the recursive calls isrepeated. Clearly, then the total number
of calls is not just2n + 1. We shall try to figure out the
total number of calls that could be made when the function
height1 is called on a treeT with n nodes.

int height1 (node_ptr p) {
if (p == NULL)

return -1;
if (height(p->left) <= height(p->right))

return 1 + height(p->right);
else

return 1 + height(p->left);
}

At first sight it would seem that this is not a very useful
problem to study because we can easily correct the fact that
this function performs two recursive calls on one of the
subtrees. We can store the result of the function in a local
variable and use it instead of the second recursive call, as
implemented in the first version of the function. Even if this is
the case indeed, it would still be useful to know just “how bad”
the complexity of the function can get from a simple change.
Although the problem might sound simple, the complexity
calculation requires a careful analysis of the tree structure and
reveals interesting tree properties related to the height of the
larger subtree.

The second motivation is that just as the functionheight

is representative of a whole class of traversal functions for
binary trees, the analysis for the functionheight1 can also
be applied to a whole class of functions. Some of these can
be optimized with the method used for the functionheight,
but some of them might require operations making the second
recursive call on the same subtree necessary.

An example of such a problem would be modifying the
datum in each of the nodes situated in the taller subtree of
any node. One traversal is necessary to determine the height
of the subtrees. A second traversal is necessary for the subtree
of larger height to increment its datum values.

The trees that we are studying here are somewhat related to
increasing trees that are also related to recursion [3]. Theorems
providing limits to sum of weights and the path length of such
trees can be found [4]. The problem is also related to binary
trees with choosable edge length and cryptography [5].

The idea of balancing the weights in a tree to optimize a
particular function is of a more general nature and is also
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related to binary search trees [6], B-trees [7], priority queues
[8], and mergeable trees [9]. These techniques have numerous
applications, as for example, cryptography [10].

II. COMPLEXITY FUNCTION

Let K(T ) denote the total number of calls (initial and
recursive) made when the second height function is called on
a binary treeT , and letLT andRT denote the left and right
subtrees ofT . Then we can write

K(T ) =















1 if T is empty
1 + K(LT ) + 2 K(RT ) if RT

is at least as tall asLT and T 6= φ
1 + 2 K(LT ) + K(RT ) otherwise

Theorem 2.1:For a tree withn nodes, the functionK has
complexityΘ(2n) in the worst case.
Proof. For non-empty trees withn nodes, we can maximize
the value ofK(T ) by making every node (except the root)
the right child of its parent. This results in a tree that has the
maximum possible heightn − 1. Let F (n) denoteK(T ) for
this kind of treeT with n nodes. Then we can write

F (0) = 1, F (n) = 1+F (0)+2F (n−1) = 2F (n−1)+2. (1)

This problem is easy to solve forF (n), and the solution
is Θ(2n). That is, the functionheight1 is exponential on
degenerate binary trees of maximal height. This is the worst
possible case for that algorithm.�

Having identified the worst case forK(T ), let’s now try to
find the best case.

Definition 2.2: A K-optimal treeof sizen is a binary treeT
with n nodes that minimizes the value ofK among all trees
with n nodes.

Based on what we have just seen with trees that maximize
K(T ), it is reasonable to conjecture that the way to build a
K-optimal tree of size is to make it as short as possible.

Perhaps, one might guess, a binary tree isK-optimal if and
only if it is compact, meaning that all of its levels except for
the last one contain all the nodes that they can contain. As
it turns out, however, many compact trees are notK-optimal,
and manyK-optimal trees are not compact.

Definition 2.3: A right-heavytree is one in which every node
has a left subtree of height less than or equal to the height of
its right subtree.

Lemma 2.4:Let T be a binary tree. For any node inT, if
the left subtree is taller than the right subtree, then the two
subtrees can be interchanged without changing the value of
the functionK.
Proof. This is easy to see by examining the code in the second
height function. �

Lemma 2.4 allows us to simplify our search forK-optimal
binary trees by restricting it to right-heavy trees.

For convenience, let’s label each nodeN in a tree with the
number of calls to the functionheight1 that will be made
on the pointer toN, and label each empty subtreeE with the
number of calls on the corresponding null pointer. Note that
these labels will always be powers of 2. Figure 1 shows a tree

labeled using this system. TheK value of this tree is obtained
by adding up all the numeric labels in the tree (118 in this
example). We will also refer to the sum of the labels in a
subtree as theweightof the subtree. Because the tree in Figure
1 is right heavy, for each nodeN in the tree, the left child of
N always has the same label asN, while the right child always
has a label that’s twice the label onN.

Fig. 1. An example of right-heavy tree with labeled nodes. The dashed lines
indicate null pointers.

SupposeA and n are nodes in a binary tree; ifA is an
ancestor ofn, and if n is reached fromA by following only
right pointers, thenn is a “right descendant” ofA, andA is a
“right ancestor” ofn.

Lemma 2.5:Let T be a right-heavy binary tree, and letL
be a leaf ofT. ThenL can be removed without changing the
label of any other node if and only ifL satisfies one of the
following conditions:
a) L is the only node inT;
b) L is a left child of its parent;
c) L is a right child of its parent, and for each right ancestor
A of L, the left subtree ofA is strictly shorter than its right
subtree. (Figure 2 shows an example of a right leaf, in solid
black color, that can be removed without changing the label
on any other node in the tree.)

Fig. 2. A right leaf that can be removed without changing the labels in the
tree

Proof. A simple observation tells us that the leafL can be
removed fromT without changing the label of any other node
in T if and only if the remaining tree is right-heavy afterL is
removed. Thus, to prove the Lemma, we’ll prove that each
of the three conditions (a), (b), and (c) separately implies
that whenL is removed fromT the remaining tree is right-
heavy; then we’ll prove that if all three conditions are false,
the remaining tree is not right-heavy afterT is removed from
T.
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First, suppose the leafL is the only node inT. Then
removingL from T leaves the empty tree, which is vacuously
right-heavy.

Second, suppose the leafL is the left child of some nodeP.
SinceT is right-heavy,P must have a non-empty right subtree.
It is now easy to see that ifL is removed fromT the remaining
tree is right-heavy.

Now suppose the leafL is the right child of some nodeP,
and that for each right ancestorA of L, the left subtree ofA is
strictly shorter than its right subtree. Thus, by removing this
node, each of these left subtrees will now have a height at
most equal to their right counterparts. Then after the first left
ancestor ofL, if there is one, by removingL we reduce the
height of a left subtree, and thus the tree remains right-heavy.

Finally, suppose that all three conditions (a), (b), and (c)
of the Lemma are false, which means that the leafL is the
right child of some node inT and at least one right ancestor
of L has left and right subtrees of equal height (the left can’t
be strictly taller becauseT is right-heavy). In this case, by
removingL, we make the left subtree that had a height equal
to its right sibling, now higher than it, so the tree would not
be right-heavy anymore. �

This proof is provided in more detail in [11].
Corollary 2.6: Let T be a right-heavy binary tree. We can

add a new leafL to the tree without changing the label of any
other node if and only ifL andT satisfy one of the following
conditions:
a) T is empty before insertingL;
b) L is added as a left child of any node that has a right child;
c) L is added as the right-most leaf in the tree or in a place
such that the first ancestor ofL that is not a right ancestor has
a right subtree of height strictly greater than the height of the
left subtree before addingL.
Proof. This is a direct consequence of Lemma 2.5.�

Theorem 2.7:The K function is strictly monotone over the
number of nodes on the set ofK-optimal trees. In other words,
if Tm andTn are twoK-optimal trees with number of nodes
equal tom andn respectively, wherem < n, thenK(Tm) <
K(Tn).
Proof. It suffices to prove the statement in the theorem for
m = n− 1. Let Tn be aK-optimal tree withn nodes. Without
loss of generality, we can assume thatTn is right-heavy.

Let us locate the left-most leaf, call itL. There are 3 possible
situations that we need to consider, as shown in Figure 3
(shown without the labels of the empty subtrees for better
clarity).

Fig. 3. Possible placement of the left-most leaf, denoted byL

SupposeL, is at the end of a left branch (left-most case in
Figure 3). SinceTn is right-heavy, Lemma 2.5, case (b), tells
us that we can removeL from Tn without changing any of the
labels on the other internal nodes of the tree. This produces a
right-heavy tree withn−1 nodes and strictly smallerK value.
This smaller tree may not be optimal among all binary trees
with n− 1 nodes, in which case there is someK-optimal tree
Tn−1 with even smallerK value. Thus aK-optimal tree with
n − 1 nodes has a smallerK-value thanK(Tn).

Now suppose the leafL is a right child. LetA be its highest
right ancestor inTn. In the most extreme case,A is the root
of Tn andL is the only leaf inTn, as shown in the right-most
case in Figure 3. Then each of the right ancestors ofL must
have an empty left subtree, otherwiseL would not be the left-
most leaf. By Lemma 2.5 we can removeL without changing
any of the other labels inTn, leaving a right-heavy tree with
smaller K-value. As in the preceding paragraph, this proves
that K-optimal trees withn − 1 nodes have smallerK-value
thanK(Tn). �

III. T WO SPECIAL CASES

Definition 3.1: A perfect binary treeis one where all the
levels contain all the nodes that they can hold.

A perfect tree of heighth has a number of nodesn = 2h+1−
1. We can reverse this to expressh = lg(n+1)−1 = Θ(lg(n)).

Theorem 3.2:The functionK has a complexity ofΘ(nlg(3))
on perfect trees, wheren is the number of nodes in the tree.
Proof. For a perfect tree of heighth ≥ 0, the two subtrees are
perfect trees of heighth − 1. If we denote byκ the value of
the functionK on a perfect tree of heighth, we can write the
sum of labels on these trees as

κ(h) = 1 + 3κ(h − 1), κ(0) = 4.

We can solve this recurrence relation by following the standard
procedure and obtain the solution

κ(h) =
9

2
3h − 1

2
= Θ(3h).

Let us denote byPn a perfect binary tree withn nodes. Using
the relationship betweenn andh, we can now express the same
sum of labels as a function of the number of nodes, getting
us back to the functionK itself:

K(Pn) = Θ(3lg(n)) = Θ(nlg(3)).

Even though most perfect trees turn out not to beK-optimal,
knowing what their sum of labels is and knowing that theK-
optimal function is monotone gives us an upper bound for the
minimal complexity for a given number of nodes.�

Corollary 3.3: The height of aK-optimal tree withn nodes
cannot be larger thanc + lg(3) lg(n), wherec is a constant.
Proof. A K-optimal tree withn nodes and heighth must have
one longest path where the label of every node is an increasing
power of 2, going from 1 for the root to2h for the leaf, plus
the empty subtrees of the leaf, of labels2h and 2h+1. The
sum of the labels is2h+2 − 1 + 2h. This sum is less than
or equal to theK-value of thisK-optimal tree withn nodes,
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which, by monotonicity, is less than or equal to theK-value
of the smallest perfect tree of a number of nodesm ≥ n. If g
is the height of this perfect tree, then its number of nodes is
m = 2g+1 − 1. If we choose the smallest of these trees, then
2g − 1 < n ≤ 2g+1 − 1, which impliesg = ⌊lg(n)⌋.

Thus, the height of this perfect tree is equal to⌊lg(n)⌋ and
its number of nodes ism = 2⌊lg(n)⌋+1 − 1 ≤ 2n − 1. By
Theorem 3.2, this implies that,

2h+2 − 1 + 2h ≤ amlg(3) ≤ a(2n − 1)lg(3) < a(2n)lg(3)

= 3 anlg(3)

for some constanta. From this we can write

5 2h ≤ 3anlg(3) ⇒ h ≤ lg(3a/5) + lg(3) lg(n)

and the quantitylg(3a/5) is the constantc in the corollary.
�

Lemma 3.4:The sum of labels on levelk of a perfect binary
tree is equal to3k.
Proof. This Lemma is easily proved by induction, using the
fact that every non-leaf node has two children nodes with a
sum of labels equal to 3 times its own label.�

Lemma 3.5:The number of nodes on levelk of a perfect
binary tree that have labels equal to2j , where0 ≤ j ≤ k,
is equal to C(k, j), where C(k,j) denotes the number of
combinations of k things taken j at a time.
Proof. We will prove this lemma by induction overk using the
following property of the combinations function:

C(m, p) = C(m − 1, p) + C(m − 1, p − 1).

Let us denote byCt(k, j) the count of nodes with label
equal to2j on level k. We’ll prove thatCt is identical with
the functionC.
Base case.For k = 0 we only have one node, soCt(0, 0) =
1 = C(0, 0).
Inductive step.For an arbitraryk andj, there are two types of
nodes with label2j on levelk. The first type are left children
of their parents and their labels are identical to those of their
parents. The count of such nodes isCt(k − 1, j) = C(k −
1, j) by the inductive step. The second type of nodes are right
children of their parents. These nodes have labels that are the
double of the labels of their parents, so they come from nodes
of label 2j−1 on level k − 1. Thus, the count of such nodes
on levelk is equal toCt(k − 1, j − 1) = C(k − 1, j − 1) (by
the inductive step).

By summing up the count of nodes that are left children
and those that are right children, we have that

Ct(k, j) = C(k − 1, j) + C(k − 1, j − 1) = C(k, j). �

Theorem 3.6:A perfect binary tree of heighth ≥ 16 is not
K-optimal.

Proof. Let T be a perfect binary tree of heighth ≥ 16. Our
strategy will be to show that we can find another binary tree,
say T ′, with the same number of nodes asT but a smaller
K-value. This will prove thatT is not K-optimal. T ′ will be

constructed by removingh + 2 of the leaves ofT and re-
attaching them elsewhere, as shown in Figure 4. Now let’s
look at how to do the removals.

Fig. 4. Tree of smaller weight built from a perfect tree

The next-to-last level (levelh − 1) of our perfect treeT
contains2h−1 nodes, each with a label that’s a power of 2.
By Lemma 3.5, there areC(h − 1, h − 2) labels of the form
2h−2. Note thatC(h − 1, h − 2) = h − 1. By Lemma 2.5,
the left child of each of theseh − 1 nodes can be removed
from T without changing any of the labels on the remaining
nodes. For each of these nodes, we remove two empty subtrees
of labels2h−2 and2h−1, and replace the leaf with an empty
subtree of the same label. The net effect, then, is to decrease
the sum of labels inT by 2h−2 + 2h−1 = 3 ∗ 2h−2. When we
do this for allh − 1 of these left leaves with label2h−2, we
have decreased the total weight (i.e., sum of labels) ofT by
3(h − 1)2h−2.

Then we are going to select 3 out of theC(h − 1, h − 3)
(> 3 for h ≥ 6) leaves on levelh−1 of label2h−3 and remove
their left children. Each child removed reduces the weight of
the tree by3 ∗ 2h−3 by the same reasoning as we used in the
preceding paragraph. Thus the total decrease in the weight of
the tree is9 ∗ 2h−3 when these 3 nodes are removed. Thus,
we’ve removedh + 2 nodes fromT with a total decrease in
weight of 3 ∗ (h − 2)2h−2 + 9 ∗ 2h−3.

We are going to re-attach them as shown in Figure 5: one
of them will become the root of a new treeT ′, and all the
others will be placed on a path going straight to the right. The
labels in the original tree do not change. The nodes on the
new path have labels1, 2, 22, . . ., 2h+1, while their empty
subtrees have labels2, 22, 23, . . ., 2h+2. The total weight that
has been added by the re-attachment of the nodes is therefore
3(2h+2 − 1).

Fig. 5. Labels on the added path

Now we need to prove that the weight we subtracted is
greater than the weight we added. That is, we need to verify
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that
3(h − 1)2h−2 + 9 ∗ 2h−3 > 3(2h+2 − 1).

Solving this inequation results in

2(h − 1) + 3 ≥ 32,

which, sinceh is an integer, simplifies toh ≥ 16. �

Note. A slightly more complex proof allows us to lower the
threshold in Theorem 3.6 to 12.

Definition 3.7: A binary tree T with n nodes is asize-
balanced tree if and only if its left and right subtrees contain
exactly⌊(n − 1)/2⌋ and⌈(n − 1)/2⌉ nodes respectively, and
a similar partition of the descendents occurs at every node in
the tree.

Theorem 3.8:The functionK on a size-balanced tree with
n nodes has a complexity that isΘ(nlg(3)).
Proof. Let S(n) denote the value ofK(T ) whenT is the size-
balanced tree containingn nodes.

It is easy to prove by induction that size-balanced trees are
right-heavy. Theheight1 function will then make one call on
the pointer to the left subtree and two calls on the pointer to
the right subtree. Thus, we can write the following recurrence
relation forS(n):

S(n) = 1 + S

(⌊

n − 1

2

⌋)

+ 2S

(⌈

n − 1

2

⌉)

,

which is valid for alln ≥ 1, with the initial value isS(0) =
1. This is a difficult recurrence relation to solve exactly, but
instead, we can use the recurrence relation and induction to
prove the inequalities

S(n) ≤ 3⌊lg(n)⌋+2 − 1

2
and S(n) ≥ 3⌊lg(n+1)⌋+1 − 1

2
,

which imply thatS(n) = Θ(nlg(3)). Since lg(3) ≈ 1.585, it
follows that the growth rate ofS(n) is only a little greater
thanΘ(n

√
n). Finally, remember that size-balanced trees are

not necessarilyK-optimal trees, and thus aK-optimal treeT
with n nodes will satisfyK(T ) ≤ S(n). From this it follows
thatK(T ) = O(nlg(3)), wheren denotes the number of nodes
in T. �

Theorem 3.8 now gives us an example of a class of trees
where the functionK has a complexity that isΘ(nlg(3)) for
any arbitrary number of nodesn.

IV. B EST CASE COMPLEXITY

Theorem 4.1:For K-optimal binary treesTn with n nodes,
K(Tn) = Θ

(

nlg(3)
)

.
Suppose we want to build aK-optimal binary tree with a

prescribed number of nodesn. We shall show how the majority
of the nodes must be inserted so as to minimize the sum of
labels. This will allow us to show that theK-optimal n-node
tree we are building must have a sum of labels that’s at least
A(nlg(3)) for some numberA independent ofn. Since Theorem
3.8 implies that the sum of labels in aK-optimal tree withn
nodes can be at mostB(nlg(3)) for some constantB, we will
have proved Theorem 4.1.

So suppose we are given some positive integern. In building
a K-optimal n-node tree, we can without loss of generality
require that it be right-heavy (see Lemma 2.4). Then the
longest branch in the tree will be the one that extends along
the right edge of the tree. Its lowest node will be at levelh,
whereh is the height of the tree. By Corollary 3.3,h will have
to satisfy⌊lg(n)⌋ ≤ h ≤ c+lg(3) lg(n) for a constantc. Thus
h is Θ(log(n)). We can start withh = ⌊lg(n)⌋, then attach
additional nodes to this longest branch if they are needed late
in the construction. Whenn is large, we will have used only
a small fraction of the prescribedn nodes during construction
of this right-most branch. We will still have many nodes left
over to insert into the optimal tree we are building. Finally,
note that the longest branch will haveh+1 nodes, with labels
20, 21, 22, . . ., 2h. Their sum is2h+1 − 1.

Let us add nodes to this branch in the order of labels,
following Corollary 2.6. Note that it is not always possible
to add the node of lowest label, and oftentimes we need to
add a right leaf of higher label before we can add a left one
of lower label.

The first node that we can add is the left child of the root,
of label 1, as shown in Figure 6 left. Then we can add all 3
nodes in the empty spots on level 2 of the tree, as shown in
the second tree in Figure 6. At this point, there are 3 spots
available for nodes of label 4, and that is the lowest label
that can be added, as shown in the third tree in Figure 6. The
left-most node of label 4 would allow us to add 3 nodes of
labels lower than 4. The one to its right would allow only the
addition of one node of label 2. The right-most node of label
4 does not open any other spots on the same level.

Fig. 6. Incremental level addition in aK-optimal tree

It stands to reason that we should insert the left-most label
4 first, as shown in the right-most tree in Figure 6. After this
insertion there are two spots at which a label 2 can be added.
The left-most one allows us to add a node of label 1, while
the other one doesn’t. Thus we would insert the left-most 2,
followed by a 1. Then we can insert the other 2 into level 3,
as shown in Figure 7.

Fig. 7. Nodes that the addition of the one labeled 4 allows in the tree

Continuing a few more steps the same way, we notice that
a structure emerges from the process, shown in Figure 8. We
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shall call it theskeleton structure. At every step in a new level,
these nodes represent the ones that would open the most spots
of lower labels out of all available spots of optimal label. This
figure does not show all the nodes added on a level before the
next one is started, but rather the initial structure that the rest
of the nodes are added on. In fact, the first few levels in the
tree are filled up completely by the procedure. At some point
it can become less expensive to start adding nodes on the next
level down rather than continuing to complete all the upper
levels. Theorem 3.6 indicates the level where this situation
occurs.

The skeleton structure of theK-optimal tree we will con-
struct will consist of the right-most branch of heighth, the
right-most branch of the left subtree, the right-most branch of
the left subtree of the left subtree, and so on down the tree.
Let’s useg to denote the height of the left subtree, so that
g ≤ h − 1. It follows that g = O(log(n)).

Note that the skeleton structure without the longest branch
contains the first new nodes added to every new level. By
trimming the whole tree at the levelg, we only cut offh − g
number of nodes on the right-most branch, and their number
is at mosth = Θ(log(n)). Thus, this subtree of heightg
will contain at leastn − h + g nodes, and this number is
asymptotic ton. Thus,g ≥ ⌊lg(n)⌋ for n large enough. In
general,g = Θ(log(n)). For the remaining of the proof, let us
consider the skeleton structure to be trimmed at the levelg.

Fig. 8. The skeleton structure for a tree of height 4

Let us now examine the contribution of the skeleton struc-
ture trimmed to levelg in terms of number of nodes and sum
of labels. Thenumber of nodesin this structure is calculated by
noting that it is composed ofg + 1 paths, starting from one
composed ofg + 1 nodes and decreasing by 1 every time. So
we have

g
∑

i=0

i =
(g + 1)(g + 2)

2
= Θ((log(n))2).

The sum of labels can be computed by observing that on
each of these paths, we start with a label equal to 1, and then
continue by incremental powers of 2 up to the length of the
path. The sum of the labels on a path of lengthi is computed
just like we did for the right-most branch, and is equal to
2i+1 − 1. Thus, we can compute the totalsum of labelsas

g
∑

i=0

(2i+1 − 1) = 2g+2 − 2− (g + 1) = 2g+2 − g − 3 = Θ(n).

TABLE I
NODES OF LOWEST WEIGHT THAT CAN BE ADDED TO THE SKELETON

STRUCTURE

Iteration # Nodes Weight
i = 1 g − 1 2(g − 1) = 21 · 30(g − 1)
i = 2 g − 2 4(g − 2) = 22 · 30(g − 2)

2(g − 2) 6(g − 2) = 21 · 31(g − 2)
i = 3 20(g − 3) 8(g − 3) = 23 · 30(g − 3)

21(g − 3) 22 · 31(g − 3)
22(g − 3) 21 · 32(g − 3)

We can see that this skeleton structure contributes onlyΘ(n)
to the sum of labels in the tree, which will not change its
overall complexity, but it also uses onlyΘ((log(n))2) of the
n nodes.

Minimal Node Placement.For the next part of the proof,
we shall place the remainder of the nodes in this structure in
order starting from the empty places of lowest possible label
going up. These nodes are naturally placed in the tree while
the skeleton structure is being built up, but for the purpose of
the calculation, it is easier to consider them separately.

A simple observation is that the empty spots of lowest labels
available right now are the left children of all the nodes labeled
2. For all of them, a branch on the right side is present, so we
can add them without any changes to the labels in the tree.
There areg − 1 such empty spots available, because the first
of them is on level 2, as shown in Figure 9 left.

Next, by the same reasoning, we can addg−2 left children
of label 4. At the same time, we can add a right child of label
4 to every node added at the previous step with label 2, except
for the lowest one. That is, we can addg − 2 right children,
each having label 4, as shown in thei = 2 column of Figure
9. In addition, we can also add theg − 2 left children of the
same parents. None of these additions causes any changes in
the labels of the original nodes in Figure 8.

We can thus proceed in several steps, at each iteration
adding nodes with labels going from 2 up to a power of 2
incrementing at every step. Let us examine one more step
before we draw a general conclusion.

For the third step, we can addg − 3 nodes of label8 = 23.
Next to this, we can add a complete third level tog−3 perfect
subtrees added at the very first step, that have a root labeled
2, and a second complete level tog − 3 perfect subtrees of
root labeled 4. This continues to grow the perfect subtrees
started at the previous levels. The sum of labels on a level of
a perfect tree is equal to a power of 3, but this quantity must
also be multiplied by the label of the root in our case. Table
I summarizes the nodes we have added and their total weight
for the 3 steps we’ve examined so far. Figure 9 also illustrates
this explanation.

From this table we can generalize that for the iteration
numberi we will have groups of nodes that can be added, with
a count ofg − i groups in each category. For each category
we will be adding the levelk of a perfect tree that has a root
labeled2i−k. The number of nodes in each such group is2k.
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The weight of each group is2i−k · 3k.

Fig. 9. Nodes added to the skeleton structure in 3 steps for a tree of height
5

Let us assume that to fill up the tree with the remainder
of the nodes up ton, we needm such operations, and maybe
another incomplete step after that. We can ignore that step for
now, since it will not change the overall complexity. To find
out what the total sum of labels is, we need to find a way to
expressm as a function ofg or n.

The total number of nodes added at stepi is
i−1
∑

k=0

2k(g−i) =

(g− i)(2i −1). If we addm such steps, then the total number

of nodes that we’ve added is
m

∑

i=1

(g − i)(2i − 1). We need to

find m such that this sum is approximately equal to2g − (g +
1)(g + 2)/2, which is n from which we subtract the nodes in
the skeleton structure. This is assuming thatg ≈ lg(n) and
later we will address the case whereg is approximately equal
to a constant timeslg(n), constant less than or equal tolg(3).

The total weight added in the step numberi is

i−1
∑

k=0

(g − i)2i−k3k = 2(g − i)

i−1
∑

k=0

2(i−1)−k3k =

2(g − i)2i−1
i−1
∑

k=0

3k

2k
= 2i(g − i)

i−1
∑

k=0

(

3

2

)k

We can use the formula
∑i−1

k=0 xk = xi−1
x−1 to compute the sum

as

2i(g−i)
(3/2)i − 1

(3/2) − 1
= 2i(g−i)

3i − 2i

2i

2

3 − 2
= 2(g−i)(3i−2i)

To compute the number of nodes, we will need the following
known sum, valid for all positive integersp and real numbers
t 6= 1,

1+2t+3t2+. . .+ptp−1 =

p
∑

i=1

iti−1 =
1 + ptp+1 − (p + 1)tp

(t − 1)2

We can rewrite our sum as
m

∑

i=1

(g − i)(2i − 1) = 2g
m

∑

i=1

(g − i)
1

2g−i+1
−

m
∑

i=1

(g − i) .

By making the change of variable in both sumsj = g− i, we
have

2g

g−1
∑

j=g−m

j
1

2j+1
−

g−1
∑

j=g−m

j =

2g−2

g−1
∑

j=g−m

j
1

2j−1
− (m − 1)(2g − m − 1)

2

Let us compute the sum in the last expression separately.

g−1
∑

j=g−m

j
1

2j−1
=

g−1
∑

j=1

j
1

2j−1
−

g−m−1
∑

j=1

j
1

2j−1
=

1 + (g − 1)(1/2)g − g(1/2)g−1

(1/2 − 1)2
−

1 + (g − m − 1)(1/2)g−m − (g − m)(1/2)g−m−1

(1/2 − 1)2

The two fractions have common denominator 1/4, so we
combine the numerators. The leading 1s cancel each other.
We can factor out1/2g from the remaining terms to obtain

4

2g
((g − 1) − 2g − (g − m − 1)2m + (g − m)2m+1)

1

2g−2
((g − 1) − 2g − (g − m − 1)2m + (g − m)2m+1)

=
1

2g−2
(2m(g − m + 1) − g − 1).

By replacing it back into the original formula, the number of
nodes is equal to

2m(g−m+1)−g−1− (m − 1)(2g − m − 1)

2
= Θ(2m(g−m)).

Given the similarity between the two sums, we obtain that the
total weight of the nodes in the tree is

Θ((3m − 2m)(g − m)) = Θ(3m(g − m)).

Coming back to the question of expressingm as a function
of g, if we write

(g − m + 1)2m = 2g ⇔ g − m + 1 = 2g−m

and then introducer = g−m, we have the equationr+1 = 2r

which has the solutionsr = 0 and r = 1. Figure 10 shows
the graph of the function2x − x in the interval[−1, 3].

The first solution would mean that the tree is almost perfect,
and we have proved before that perfect trees are notK-optimal.
So we can conclude thatm = g− 1. Considering that the last
level of the skeleton structure itself may be incomplete, this
means that forg large enough, only 1 or 2 levels beyond the
last may not be complete in the tree trimmed at the levelg.

To examine the relationship betweenm andg further, let us
assume thatg ≈ d lg(n), where1 ≤ d ≤ lg(3) ≈ 1.585. Then
we can writen ≈ 2g/d. Going back to the formula computing
the number of nodes in the tree, we have

2m(g − m + 1) ≈ 2g/d
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Fig. 10. The graph of the function2x
− x

from which we can write

g − m + 1 ≈ 2g/d−m = 2g−m+(g/d)−g =
2g−m

2g(d−1)/d
.

Again, making the substitutionx = g − m, we get

2g(d−1)/d ≈ 2x

x + 1
.

Remembering thatg ≈ d lg(n), we can write

nd(d−1)/d = nd−1 ≈ 2x

x + 1
or n ≈

(

2x

x + 1

)1/(d−1)

,

where0 ≤ d − 1 ≤ 0.585.
Let us writef(y) = 2y

y+1 and start with the observation that
this function is monotone ascending fory ≥ 1. Let us examine
the hypothesis thatf(b lg(n)) > f(x) for some constantb to
be defined later. The hypothesis is true if and only if

f(b lg(n)) =
2b lg(n)

b lg(n) + 1
=

nb

b lg(n) + 1
> f(x) ≈ nd−1

which is equivalent to

nb

b lg(n) + 1
> nd−1 ⇔ nb−d+1 > b lg(n) + 1.

Since a positive power ofn grows faster than the logarithm in
any base ofn, we can say that the inequality above is true for
any constantb > d−1. So we can choose a constantb, d−1 <
b < d, such thatf(x) < f(b lg(n)). By the monotonicity of
the function, this implies thatx < b lg(n), which means that
g − m < b lg(n), and considering thatg ≈ d lg(n), we can
say that(d− b) lg(n) < m ≤ lg(3) lg(n), from which we can
conclude thatm = Θ(log(n)).

Coming back to the formula computing the weight as
Θ(3m(g − m)), based on the result thatm = Θ(log(n)), we
can conclude that the complexity of the function is minimal in
the case where the value ofg −m is a constant, and that this
complexity is indeedΘ(nlg(3)) in this case. While this does
not necessarily mean thatg − m = 1, the difference between
the two numbers must be a constant.

Now we can examine how many nodes we can have on the
longest branch in the tree beyond the level of the skeleton
structure. One node can be expected, for example in those
cases where a perfect tree isK-optimal for small values of

n, and a new node is added to it. If more nodes are present
on the same branch, those node will have labels incrementing
exponentially and larger than any empty spots still available
on lower levels. They can easily be moved higher in the tree
to decrease the total weight. Thus, we can deduce thatg = h
or g = h − 1.

The weight of the tree, and thus the complexity of theK
function, is the order ofΘ(3h) = Θ(3lg(n)) = Θ(nlg(3)). �

It is interesting to note that this is also the order of
complexity of the functionK on perfect trees and on size-
balanced trees, even though neither of them isK-optimal in
general.

V. CONCLUSION

In this paper we have studied the complexity of a special
class of recursive functions traversing binary trees. We started
with a recurrence relation describing this complexity in the
general case. We continued with a simple analysis of the worst
case complexity, which turned out to be exponential. Next, we
showed two particular types of trees that give us a complexity
of Θ(nlg(3)).

Finally, after discussing a few more properties of theK-
optimal trees that minimize the complexity function over the
trees with a given number of nodes, we showed a constructive
method to build these trees. In the process we have also shown
that the complexity of the function on these trees is also
Θ(nlg(3)), which concludes the study of this function.

We can conclude from this analysis that any method that
allows us to avoid repeating recursive calls will significantly
improve the complexity of a function in all the cases.
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Abstract - The minimum Steiner tree problem, a classical 
combinatorial optimization problem with a long history, is a 
NP-complete problem. Due to its wide application, study of 
heuristic algorithm about Steiner tree problem has important 
practical and theoretical significance. In this paper we first 
review one of the existing algorithms for solving the Steiner 
problem in graphs, Minimum Spanning Tree Heuristic 
algorithm, then presenting a new heuristic algorithm IMSTH 
to improve it. We describe our algorithm and its 
computational results. It is shown that our algorithm can 
effectively improve the performance on MSTH.  

    Keywords: Steiner Tree problem, Heuristic Algorithm,  
Minimum Spanning Tree Heuristic Algorithm  

 

1 Introduction 

        A great number of the recent applications often require 
the underlying network to provide multicasting capabilities. 
Multicast refers to the delivery of packets from a single 
source to multiple destinations. At the routing level, a 
multicast routing scheme is responsible for determining the 
packet delivery path from the source to all destinations, 
typically a multicast tree [1]. Generation and minimization 
of the cost of such tree have been traditionally formulated as 
the Steiner Tree Problem. The Steiner Tree Problem 
involves constructing the least cost tree that spans a given 
set of points. In addition to multicast routing in 
communication networks, the Steiner tree problem has 
numerous applications especially in the area of 
telecommunication, distribution and transportation systems. 
The computation of phylogenetic trees in biology and the 
routing phase in VLSI design are real life problems that 
have been modeled as the Steiner tree problem [2]. Another 
interesting application is in the billing strategies of large 
telecommunications network service providers. The bill 
isn’t based on the actual number of circuits provided, which 
may change over time, but on a simple formula calculated 
for an ideal network which will provide all the facilities at 
minimum cost. Several other network design problems can 
be formulated as generalizations of the Steiner tree problem. 
Steiner tree problem or so called Steiner Problem in Graphs 
(SPG) is a classic combinatorial optimization problem. Karp 

showed that its decision version is NP - complete [3], 
although some well known special cases of the SPG can be 
solved in polynomial time. When |ܰ| = 2 the problem 
reduces to the shortest path problem while when ܰ= ܸ the 
problem reduces to the minimum panning tree problem. 
Both these problems can be solved in polynomial time. On 
the other hand, the Steiner tree problem is NP-hard when 
the graph ݒ	is a chordal graph, a bipartite graph or a 
complete graph with edge weights either 1 or 2. Thus in the 
general case the problem is an NP-hard problem. In this 
paper, a novel solution based on MST to the construction of 
Steiner tree is presented. The rest of this paper is organized 
as follows: Section 2 review the definition of the problem 
and section 3 present a survey of proposed algorithms for 
the Steiner problem in graphs. Section 4 gives the 
description of MSTH algorithm. The proposed algorithm is 
presented in section 5. Section 6 describes experimental 
results and   performance evaluation. Finally Section 7 
draws a conclusion and makes suggestion for future works.  

                   

2   Basic definitions 
   Let ܩ	 =  be a connected undirected graph, where (ܧ,ܸ)	

ܸ is the set of nodes and ܧ denote the set of edges. Given a 
non-negative weight function :ݓ	ܧ → 	ܴ + associated with 
graph edges and a subset ܰ ⊆ ܸ of terminal nodes, the Steiner 
Problem in Graphs, SPG (ܸ,ݓ,ܧ,ܰ), consists of finding a 
minimum weighted connected sub tree of G spanning all 
terminal nodes in ܰ. The solution of SPG (ܸ,ݓ,ܧ,ܰ) is 
Steiner minimum tree. The non-terminal nodes that end up in 
the Steiner minimum tree are called Steiner nodes. Terminal 
Steiner Tree Problem is a variation in which all the terminal 
nodes must appear at leaves of the tree. This problem that is 
also proved to be NP-complete has been matter of concern 
because it has direct application in VLSI design [5]. In 
Complete Steiner Problem the input graph is assumed to be 
complete. Another variation is the Complete Steiner (1, 2) in 
which the input is a complete graph with edge weights 1 or 2. 
All of these variations are NP-complete [6]. SPG – or its 
terminal version – are sometimes said to be metric, i.e. the 
triangle inequality holds for edge weights in the input graph. 
This imposes no limitation on the Steiner problem itself, since 
we can replace any edge with the shortest path connecting its 
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ends [7, 8]. The Steiner Network Problem generalizes the 
metric Steiner tree problem to higher connectivity 
requirements: Given a graph ܩ	 =  a cost function on ,(ܧ,ܸ)	
edges, and a function ݎ mapping unordered pairs of vertices to 
ܼ +, find a minimum cost graph that has ݑ)ݎ,  edge disjoint (ݒ
paths for each pair of vertices ݑ and [8] ݒ. The issue of 
multipoint routing for multimedia traffic has led to emergence 
of Constrained Steiner Tree Problem, in which the problem is 
to find a minimum cost tree such that the delay – delay 
variation or both between the source and each of the 
destinations is bounded. The Dynamic Steiner Tree Problem is 
another generalization of the problem, in which the set of 
destination nodes changes over time by receiving join or 
delete requests from nodes, and problem asks for a sequence 
of optimal trees [9]. 

       
3 Related Work 
       As SPG is NP-complete, there is little hope to find a 
polynomial time solution for it. All the work done to find a 
solution so far falls into three categories: Exact Algorithms, 
Approximation Algorithms and Meta heuristics. Two popular 
exact algorithms, the Spanning Tree Enumeration Algorithm 
(STEA) which enumerates all possible combinations of 
Steiner nodes, and the Dynamic Programming Algorithm 
(DPA), present time complexities of ܱ(		ଶ2(ି	) 	+ 	݊	ଷ) and 
ܱ(3	݊	 + 	2		݊	ଶ + 	 ݊ଷ	) respectively, where n is the number 
of nodes in the network and p is the number of multicast 
members [9]. These algorithms require long computation time 
or huge computational power for solving bigger problems, 
like the branch and bound algorithm proposed in [10], that 
makes use of computational grids. In [11], the author offers an 
approximation algorithm with performance ratio 5/3 based on 
finding a minimum spanning tree in 3-uniform hyper graphs 
that finds the solution with probability at least 1/2 and claims 
that the algorithm runs in O(lg2 n) time, using O(n3 ) 
processors. The best approximation algorithm known so far is 
due to Robins and Zelikovsky whose performance ratio is 
about 1.55 and even better for special cases such as quasi-
bipartite and complete(1-2) graphs [7]. Among several 
heuristics proposed to find an Approximate solution, 
Traveling Salesman Problem Heuristic (TSPH), Average 
Distance Heuristic (ADH) have Performance ratio of 2. TSPH 
is a heuristic based on the traveling salesman problem (TSP) 
and involves finding a tour for the graph induced by the 
network followed by removing the most expensive link. 
Shortest path heuristic (SPH) computes the tree by connecting 
all the terminals to an arbitrary root through their shortest 
paths and then finding the minimum spanning tree of the 
graph induced by the union of these paths, repeatedly 
removing the non-terminal leaves. The algorithm presented in 
[10] is a distributed algorithm based on an improved version 
of the ADH heuristic, known as ADH with Full connection 
(ADHF). [9] Also provides an efficient approach that supports 
dynamic multicast membership, by means of periodic 
improvement of locally inefficient sub-trees. In [12] the 
author introduces a new algorithm using the Random Neural 

Networks to find potential Steiner vertices that are not already 
in the solution returned by the MSTH or ADH, starting with 
the solution of the MSTH or ADH. The first approximation 
algorithm for SPG having an approximation ratio constant 
lower than 2 was due to Zelikovsky [13] with performance 
ratio 11/6. Then he repeatedly improved this ratio to currently 
best known performance ratio: 1.55. The heuristics proposed 
to find the Steiner tree for routing applications are either 
centralized or distributed. In the centralized approach, a 
central node that is aware of the state of the whole network 
computes the tree. The computation is generally easy and fast. 
But impractical for large networks where the overhead of 
maintaining, in a single node, coherent information about the 
state of the entire network may be prohibitive. In a distributed 
approach, on the other hand, each node of the network 
actively contributes to the algorithm computation. Distributed 
routing algorithms can be slower and more complex than the 
centralized ones, but they become indispensable when the 
network nodes can't reach a complete knowledge of the 
topology and of the state of the network [9]. Some meta-
heuristics are proposed as the solution for the Steiner problem 
in graphs too. Among the most efficient ones, it is found 
implementations of metaheuristics such as genetic algorithms, 
tabu search, Grasp and simulated annealing [14, 3]. Esbensen 
and Mazumder [15] proposed a genetic algorithm and discuss 
its application in global routing of VLSI layouts. The 
algorithm’s encoding is based on the use of the Distance 
Network Heuristic (DNH) which is a deterministic heuristic 
for the SPG. The performance of algorithm is compared to 
that of two heuristics from the literature and it has been shown 
that the algorithm is superior. Di Fatta, Lo Presti, and Lo Re 
proposed a parallel genetic algorithm for the Steiner problem 
in networks. When solving Beasley’s OR Library standard test 
problems, they obtain promising speedup values. Tabu Search 
was introduced by Glover in 1986. TS is an extension of 
classical local search methods typically used to find 
approximate solutions to difficult combinatorial optimization 
problems [16]. Ribeiro and Souza [14] proposed an improved 
tabu search for the Steiner problem in graphs. The important 
feature of the algorithm is that move estimations, elimination 
tests, and neighborhood reduction techniques are used to 
speed up the local search and lead to a much faster algorithm 
with similar performance in terms of solution quality. In the 
context of parallel tabu search for the Steiner problem in 
graphs, Bastos and Ribeiro [17] describe a two phase 
algorithm: in their approach, a parallel multi-thread reactive 
TS phase is followed by a distributed Path Relinking (PR) 
phase, i.e., all processes switch from TS to PR simultaneously. 
Martins, Ribeiro and Souza [14], proposed a parallel grasp for 
the Steiner problem in graphs. A Greedy Randomized 
Adaptive Search Procedure (GRASP) is a meta-heuristic for 
combinatorial optimization. A GRASP is an iterative process, 
where each of iteration consists of two phases: construction 
and local search. The construction phase of the algorithm is 
based on a version of distance network heuristic which is 
improved by Mehlhorn. Some heuristics are used in order to 
speed up the local search. For parallelization of GRASP, each 
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slave processor performs a fixed number of GRASP iterations. 
Once all processors have finished their computations, the best 
solution is collected by the master processor. The results of 
computational experiments illustrate the effectiveness of the 
proposed parallel GRASP procedure for the Steiner problem 
in graphs. Verhoeven and Severens proposed sequential and 
parallel local search methods for the Steiner tree problem 
based on a novel neighborhood. They claimed their approach 
is “better" than those known in the literature. Computational 
results indicated that good speedups could be obtained without 
loss in solution quality [18]. 

 

4   Minimum Spanning Tree Heuristic 
Algorithm    

          In the minimum spanning tree heuristic (MSTH) 
suggested by Takahashi and Matsuyama [19], the solution 
ெܶௌ்ு  is obtained by deleting from the minimum spanning 

tree for ܩ non-terminals of degree 1 (one at a time). The 
worst-case time complexity of the minimum spanning tree 
heuristic is ܱ	(	݁	 +  The worst-case error ratio .(ݒ	݈݃	ݒ	
| ெܶௌ்ு| |ܶீ (ܰ)|	⁄ is tightly bounded by	ݒ	 − 	݊ + 	1. Hence, 
the minimum spanning tree heuristic can be considered as 
inferior to the shortest paths heuristic in the worst-case sense. 
It also performs poorly on average. The proposed heuristic 
algorithm in this paper consists of eight steps. In the first step, 
after assuming that	 ூܶெௌ்ு is equal with null, we 
obtained	 ெܶௌ்ு  by graph	ܩ.  

 
5   Improve Minimum Spanning Tree 

Heuristic Algorithm 

5.1 Description of the IMSTH Algorithm 
          The proposed heuristic algorithm in this paper consists 
of eight steps. In the first step, after assuming that	 ூܶெௌ்ு is 
equal with null, we obtained	 ெܶௌ்ு  by graph	ܩ.  
   In the second step of algorithm, we assume two divisions of 
edges and paths between two terminals in	 ெܶௌ்ு : 

 Existence direct edge in ெܶௌ்ு 
 Not existence direct edge in ெܶௌ்ு  and existence 

direct edge   in graph.   
      In the third step, for the first category, select the direct 
edges of two terminals which obtained by ெܶௌ்ு  and add into 
ூܶெௌ்ு .	in the fourth step, for the second category, make 

compare between paths and direct edges of two terminals: 
 If direct edge be shortest, add into	 ூܶெௌ்ு . 
 If path be shortest, add into	 ூܶெௌ்ு. 

    In the next step, we study	 ூܶெௌ்ு , to determine all disjoin 
terminals. In the sixth step obtained the shortest paths between 
disjoin terminal and other terminals in the graph with Dijkstra 
algorithm. Select shortest path between reached paths and add 
into	 ூܶெௌ்ு  . 
      In the next step, we study	 ூܶெௌ்ு , for connectivity. If we 
have forest, determine terminals with degree 1, then seek 

shortest path from this terminal to other terminals, and add it 
into	 ூܶெௌ்ு  . 
At the end, study ܶ for cycle. If we have cycle, delete cycle. 
Fig. 1 shows our suggested algorithm.  

 

Suggested algorithm:  (INPUT:	ܩ = (ܸ ܧ	:ݓ   where  (ܧ, → 	ܴ + , 
ܰ ⊆ ܸset of Terminals, OUTPUT: ூܶெௌ்ு approximate optimal tree) { 

Step 0: ூܶெௌ்ு → ∅ 
Step 1: Compute ெܶௌ்ு of the graph ܩ. 
Step 2: Assume two divisions of edges and paths, between two 
terminals in	 ெܶௌ்ு: 
   a) Existence direct edge in ெܶௌ்ு 
   b) Not existence direct edge in ெܶௌ்ு	and existence direct edge in 
graph  
Step 3: For the first category, select the direct edges of two terminals 
which obtained by ெܶௌ்ு  and add into ூܶெௌ்ு . 
Step 4: For the second category, make compare between paths and 
direct edges of two terminals: 
  a) If direct edge be shortest, add into	 ூܶெௌ்ு . 
  b) If path be shortest, add into	 ூܶெௌ்ு. 
Step 5: Study	 ூܶெௌ்ு, to determine all disjoin terminals. 
Step 6: Determine the shortest paths between disjoin terminal and other 
terminals in the ூܶெௌ்ு with Dijkstra algorithm. Select shortest path 
between reached paths and add into	 ூܶெௌ்ு  . 
Step7: Study	 ூܶெௌ்ு , for connectivity. If we have forest, determine 
terminals with degree 1, seek shortest path from this terminal to other 
terminals, and add it into the	 ூܶெௌ்ு . 
Step 8: Study ூܶெௌ்ு for cycle. If we have cycle, delete cycle.} 

Fig. 1: Suggested algorithm for SPG in graph 

 

5.2 Illustrative Example 
    In the example graph shown in Figure 2a, vertices	0ݒ	 
 are terminal vertices. We construct ெܶௌ்ு 8ݒ	 and 6ݒ	,4ݒ,	3ݒ,
by this graph (Fig. 2b). The cost of  ெܶௌ்ு  is equal with 808. 
It can be observed that between two terminals 6ݒ,3ݒ 
and	8ݒ,0ݒ exists a direct edge in	 ெܶௌ்ு , so the direct 
edges<	6ݒ,3ݒ> and <	8ݒ,0ݒ> is selected and add into	ܶܪܶܵܯܫ 
. at the other hand, between two terminals 3ݒ and	4ݒ a direct 
edge in graph exists that is shortest than the paths between this 
two terminals, so in the fourth step the direct edge <	4ݒ,3ݒ> 
is selected and add into the 	 ூܶெௌ்ு 	(Fig. 2c). In the next step, 
we study	 ூܶெௌ்ு  for disjoin terminals but don’t find any 
disjoin terminal. 
   Now Study	 ூܶெௌ்ு, for connectivity. It is observed that we 
have forest. so determine terminals with degree 1, seek 
shortest path from this terminal to other terminals, and add it 
into the	 ூܶெௌ்ு (Fig. 2d). At the end, the cost of ூܶெௌ்ு 	is 
equal with 738(Fig. 2e). Fig. 2 illustrates steps of our 
algorithm. 
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Fig. 2: Steiner tree that generated by our algorithm 

 

6 Experimental Results 

    We have implemented our algorithms in C# programming 
language. The experiments are based on the STPs in graph 
from category B in the OR-library. In this paper, the 
experiments are made to test the performance of IMSTH with 
respect to Minimum Spanning Tree Heuristic (MSTH), 
Directed Convergence Heuristic (DCH), Optimal Shortest 
Paths Heuristic (OSPH) and Average Distance Heuristic 
(ADH). Table 1, show it.  As illustrated in Table 1, our 
algorithms have achieved good results. Figure 3 show the 
performance of our suggested algorithm. 

 

TABLE 1: Our Algorithm in Compare of B Problems 

 ۶܂܁ۻ۷ ۶܂܁ۻ OPT DCH ADH |ࡰࢂ| |ࡳࡱ| |ࡳࢂ| ࡻࡺ
1 50 63 19 82 82 85 95 89 
2 50 63 13 83 86 83 119 86 
3 50 63 25 138 144 138 144 138 
4 50 100 9 59 84 62 86 68 
5 50 100 13 61 66 62 68 68 
6 50 100 25 122 138 127 136 126 
7 75 94 13 111 120 111 115 115 
8 75 94 19 104 107 104 120 108 
9 75 150 13 86 105 86 128 109 
10 75 150 19 88 92 90 141 92 
11 100 125 25 235 240 238 266 245 
12 100 200 25 131 140 132 139 139 

 

 
Fig. 3: Performance of our Algorithm 

  

7 Conclusions 
        In this paper, we concern with the problem of finding 
minimum steiner tree in graph, which is a NP-complete 
problem. This paper presents a heuristic Steiner tree algorithm 
IMSTH. Experiment results show that IMSTH can effectively 
reduce the cost of Steiner tree by MSTH. This is a substantial 
improvement over previous improved works. The 
performance of our suggested algorithm was compared with 
Minimum Spanning Tree Heuristic (MSTH) Directed 
Convergence Heuristic (DCH), Optimal Shortest Paths 
Heuristic (OSPH) and Average Distance Heuristic (ADH). 
Experiment results show that our suggested algorithm 
produces good results and is comparable with other existing 
solutions. 
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Abstract - Steiner tree problem on the graph is an NP-

Complete problem and has no exact solution in polynomial 

time. Since this problem is practically useful, there are more 

attentions to heuristic and approximation approaches rather 

than exact ones. By using heuristic algorithms, the near 

optimum answers are obtained in polynomial time that this 

is faster than exact approaches. The goal of Steiner Tree 

problem is to find a minimum cost tree from the main graph 

that connects a subset of nodes called terminals. In this 

article, we have proposed a heuristic algorithm that solves 

Steiner Tree Problem. It has time complexity of �(�(� + � 

log �))  that � is the number of nodes and � is the number 

of edges. This algorithm finds the near optimum answer and 

according to the experimental results and the comparisons, 

it has an appropriate rate in a reasonable time. 

Keywords: Steiner Tree on the Graph, NP-Complete 

problems, Heuristic Algorithms. 

1 Introduction 

The Steiner tree problem (STP) is a well-known issue 

that is used in many fields, like cabling design, canalization, 

VLSI design, routing, urban road design and also 

multicasting in computer networks. According to the 

different usages of this problem, some various definitions 

are exist for it: Euclidean STP which finds Steiner tree on 

the set of points in the plane; Rectilinear STP which finds 

Steiner tree in Manhattan space; Generalized STP which 

finds Steiner tree on an undirected, weighted graph; and 

Directed STP which finds Steiner tree on a directed, 

weighted graph. 

In this article, the Steiner tree has been considered on 

an undirected, weighted graph  � = (
, �, ) , which 

includes of a set of vertices (
), a set of edges (�) and a set 

of weights of edges (). The graph � is one of the inputs of 

STP and it has no negative weight. The other input of this 

problem is a subset of nodes in 
, which called Terminals 

(�). Steiner tree problem must find a sub graph of � that has 

the minimum summation of weights and connects all 

terminals. According to the following proof [1], the Steiner 

sub graph (�) must be a tree, because there is no negative 

weight. The proof says that if � isn’t a tree, then it should 

have at least one cycle. Hence, there are two different paths 

that connect some terminal nodes to the other. So it is 

feasible to omit some edges from one of these paths, without 

losing the connectivity of � . This omission causes a 

reduction of cost of � and shows that � isn’t the minimum 

possible answer. 

In 1972 it was proved that STP is an NP-Complete 

problem [2], therefore there is no polynomial time approach 

to compute the exact answer. So far some exponential time 

approaches have been proposed for this problem that they 

find the optimum answer and called Exact Algorithms. But 

these algorithms aren’t suitable for large networks with lots 

of nodes and edges, because of their low-speed execution. In 

this reason Heuristic and Approximation algorithms are 

widely used for solving STP, despite their near optimum 

answers. These approaches have near optimum answers in 

polynomial time and their evaluation measure is the ratio 

between their answer and the optimum answer. 

In this article, a heuristic algorithm with polynomial 

time complexity is proposed that can compute Steiner tree 

on large graphs. This article is organized as follows: In the 

next Section, pervious works are reviewed. In Section3, our 

new algorithm and its time complexity are explained. In 

Section4, the experimental results are presented and finally 

in Section5 there are the conclusions. 

2 Pervious Works 

All the searching problems that have polynomial time 

solutions are in the P category, and all the other problems 

are NP . Because there are some problems that have no 

polynomial time solutions therefore P ≠ NP [3]. Since STP 
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is in the NP category, it has no polynomial time solution, 

until it will be proved that P = NP.  

For solving STP on the graph, there are some exact 

approaches that one of them is Hakimi’s algorithm with 

time complexity of  O(��2�)  [4]. This algorithm for any 

subset �  of � − 2  terminals or less finds the Minimum 

Spanning Tree (MST) of  � ∪ �  and then it selects the 

minimum result as Steiner tree. The other famous exact 

algorithm for finding Steiner tree on the graph is Dreyfus 

and Wagner’s algorithm that has O(�3� + ��2� + ��) time 

complexity and it has used dynamic programming [1].  

Because of low-speed of exact approaches, they are 

not practically useful, therefore a lot of heuristic algorithms 

have been suggested for solving this problem. Those 

heuristic algorithms that have higher speeds and lower error 

percentages are better used. Some of these approaches are as 

follows: MST based algorithms like algorithms of 

Takahashi et al. [5] and Wong et al. [6] that for finding 

Steiner tree, they add an edge at each time until all terminals 

connect together; Node-based local search algorithms like 

Dolagh et al. [7] that find Steiner tree with using local 

search and identifying proper neighbors; Greedy 

Randomized Search algorithms [8] that have three phases: a 

construction phase, a local search phase and if necessary an 

updating phase. In each iteration of construction phase, a 

probable answer is created by selecting an element from a 

sorted list of candidate elements. This list is sorted based on 

greedy function, but the first element of the list is not 

always the best one, hence at the end of construction phase a 

local search is used for improving the answer and if 

necessary an updating phase is applied. There are also a lot 

of Meta heuristic algorithms for finding Steiner tree, like 

Ant colony approach [9, 10] and PSO [11]. Furthermore still 

the researches are done for finding algorithms for solving 

STP in better rates and shorter times.   

3 The Proposed Algorithm 

The algorithm that is suggested in this article that 

called MSTG, finds Steiner tree on an undirected and 

weighted graph � = (
, �, ) . In this graph �  is the 

number of vertices in 
, � is the number of edges in � and 

� is the number of terminal nodes in �. The set �  that is 

defined as � = 
\� , contains Steiner nodes. 

The inputs of this algorithm are the graph � and the 

set � and also there is an assumption that says there is no 

isolated terminal in � .This means that from each terminal, 

there are some edges to the other terminals. This algorithm 

consists of three phases: the preprocessing phase, the first 

phase and the second phase. Finally, the outputs of this 

algorithm are the Steiner tree and its cost. 

3.1 Preprocessing Phase 

The goal of this phase is the reduction of the counts of 

nodes and edges in the given graph. The Steiner nodes that 

have less than two edges (Deg < 2) and their connected 

edges are those ones that aren’t necessary in Steiner tree 

computation; therefore, in this phase, they are omitted. The 

resulted graph of this phase is called �’  and the related 

pseudo code is Fig. 1. 

 

 

3.2 First Phase 

In this phase of the algorithm, the shortest path 

between each terminal to one of the other terminals, which 

is the closest, is computed. The inputs of this phase are 

graph �’ and the set � and the outputs are the set of edges 

(�) and the set of nodes ( ) from the obtained paths. Fig. 2 

is the pseudo code of this phase.  

Definition: “ShrtTree (!, ")” is a procedure that its 

output is a set of shortest paths from node ! to each node in 

the set " . These paths are obtained by computing the 

shortest tree that rooted in ! and its leaves are the nodes in 

the set ". This procedure uses Dijkstra’s algorithm. 

The first loop (lines 1-5) of this pseudo code is 

executed for each terminal (#$), and it obtains a shortest path 

tree from #$  to other terminals by using Dijkstra’s algorithm. 

Afterward, among all these paths in the tree, the shortest 

path from #$ to another terminal is selected and added to the 

i
th

 cell in the array %. Then its edges are added to �, and its 

nodes are added to  .  

The second loop (lines 6-20) is repeated for & times or 

until no changes occur in the �. This loop is exactly like the 

previous loop, but it obtains a shortest path tree from #$ to 

other nodes in  . If the weight of this shortest path is less 

than the weight of the previous path for #$ in % and it has no 

repeated edge with the previous path, then its edges and 

nodes are exchanged with the previous ones in � and  . The 

number of the variable & , according to the experimental 

results has been determined three, and it’s sufficient. At the 

Fig.1: Pseudo code of Preprocessing Phase 

Algorithm MSTG// Preprocessing Phase 

Input: �, � =  (
, �, ')  

Output: �’ =  (
’, �’, ') 

// � = 
\� 

1  for each ($ ∈ � do 

2      if  Deg(($) < 2  then   

3            Remove ($  from 
 and its edge from �; 

4      end if 

5 end for 
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end of this phase there is an omission of repeated nodes in 

  and repeated edges in �  (lines 21, 22). 

 

 

3.3 Second Phase 

In this phase after examination of the connectivity 

status of the terminals, if there are any isolated trees they 

should be connected. For this reason, all the edges in � that 

connected together are put in the same groups. Afterward if 

the number of groups be greater than one, three loops are 

executed. Fig. 3 is the pseudo code of this phase. 

In the first loop (lines 3-6), the shortest paths from 

each node in   to other nodes of it that they are not in the 

same groups, are computed. Afterward, the resulted paths 

will be added to *.  

In the second loop (lines 7-15), until all the separated 

trees are not joined together, a path with lowest-cost that 

connects two trees is selected from the *. The edges and 

nodes of the selected path are respectively added to � and   

and also if there is any Steiner node in this path, it is added 

to set , . In this situation, the connectivity status of the 

groups and the number of isolated groups are updated. 

 

 

In the third loop (lines 16-22), if there are any Steiner 

nodes in the set , , for each of them, the shortest path is 

computed. If this path has lower cost than the previous one, 

and also it has the connection conditions, it is replaced with 

the previous path and the related edges and nodes in � and 

  are exchanged. In this algorithm, the path that has the 

connection condition doesn’t make a cycle or it doesn’t 

make terminals to be isolated. 

Fig.3: Pseudo code of Second Phase 

Algorithm MSTG// Second Phase 

Input: �, �’ =  (
’, �’, '), �,   
Output: Steiner tree path, Steiner tree Cost 

Initialization: * = φ , , = φ. 
//C is a set of founded paths; H is a set of selected Steiner 

//nodes. 

1 Put all -$. ∈ � which are connected together, in the 

   same groups; 

2  if groups number > 1 then 

3    for each �$ ∈   do 

4     �-�1 ←all nodes in   with different groups from �$  

5     * ← * + ShrtTree(�$ , �-�1); 

6     end for 

7   while groups number> 1 do  

8      Temp← Min{*} which is not added yet; 

9      if Temp connects two groups then 

10            � ← � + Temp.edges; 

11            ←  + Temp.nodes; 

12           , ← , + Temp.Steiner nodes; 

13           Update groups number; 

14      end if 

15   end while  

16   for each ℎ$ ∈ , do 

17        if ℎ$  has a shorter path to any �$ ∈   then 

18          if this shorter path has the conditions then 

19            Replace it with the previous one and update 

                �and  ; 

20          end if 

21        end if 

22   end for  

23   Delete all repeated edges in �; 

24   Delete all repeated nodes in  ; 

25 end if 

26 for each ($ ∈   do 

27     if  Deg(($)  < 2 then  

28             Remove ($ from   and its edge from �;  

29     end if 

30 end for 

31 Compute the summation of costs of all -$. ∈ �. 

 

Fig.2: Pseudo code of First Phase 

Algorithm MSTG// First Phase 

Input: �, �’ =  (
’, �’, ') 

Output: �,   

Initialization: � = φ,  = φ, % = φ,  & =3. 
//P is a set of edges; N is a set of nodes; % is an array of size r; 

//J is a counter. 

1  for each #$ ∈ � do  

2      %$ ← Min{ShrtTree(#$ , �)}; 

3      � ← � + %$.edges; 

4       ←  + %$ .nodes; 

5  end for 

6  repeat   

7     flag ← true; 

8      &←&-1; 

9      for each #$ ∈ � do 

10      Temp ← Min{ShrtTree(#$ ,  )};  

11      if Temp < %$ and Temp.edges ≠%$.edges then  

12           � ← �\%$ .edges; 

13            ←  \%$ .nodes; 

14           %$ ←  Temp; 

15           � ← � + %$ .edges; 

16            ←  + %$ .nodes; 

17          flag ← false; 

18      end if 

19    end for 

20 until flag=true or &=0. 

21 Remove all repeated edges in �; 

22 Remove all repeated nodes in  ; 
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At the end of this phase (lines 23

omissions of repeated edges of �, and repeated nodes of 

Moreover, Steiner nodes with the deg less than 2 are also 

omitted from  , and their edges from 

edges in the set � are the edges of the Steiner tree

summation of their weights is the cost of the Steiner tree. 

3.4 Time Complexity Analysis 

In MSTG algorithm, the most time complexity belongs 

to the computations using Dijkstra’s algorithm

Fibonacci-Heap for implementing Dijkstra’s algorithm, it 

has O�� � � log�� time complexity [3].

In the preprocessing phase of the 

Dijkstra’s algorithm hasn’t been used. In the first 

Dijkstra’s algorithm has been used for 

second phase, at the worst condition it has been used for 

times; therefore because � ≤ �, the time complexity of our 

algorithm is O���� � � log��. 

4 Experimental Results 

The implementation of the proposed algorithm that 

called MSTG has been done by Visual C#

examined on some well-known data sets like the Beasley

data set [12].  The configuration of the system that has been 

used for this examination was a 2.50 GHz CPU and a 3 GB 

RAM. The results of running the MSTG algorithm on the 

sets B, C and D of Beasley’s data set are respectively in 

tables 1, 2 and 3. The rate of this algorithm 

from the ratio of the cost of MSTG to the optimum cost and 

also the time of execution has been show

second: mille second”.  

Table 1: The results of MSTG algorithm on the set B

Rate 

(Opt/MSTG

 MSTG 

Result

Optimum 

 Cost

Terminals 

Count

Edges 

Count

Nodes 

Count

Graph 

Number

8282963501 B

83831363502 B

1381382563503 B

59599100504 B

616113100505 B

12212225100506 B

1111111394757 B

1041041994758 B

2202203894759 B

8686131507510 B

1.0459288191507511 B

174174381507512 B

1.031701651712510013 B

2352352512510014 B

1.0093213185012510015 B

1.0391321271720010016 B

1311312520010017 B

2182185020010018 B

(lines 23- 30), there are 

and repeated nodes of  . 

less than 2 are also 

, and their edges from � . Finally, all the 

are the edges of the Steiner tree, and the 

summation of their weights is the cost of the Steiner tree.  

 

algorithm, the most time complexity belongs 

Dijkstra’s algorithm. By using 

Heap for implementing Dijkstra’s algorithm, it 

[3].  

of the MSTG algorithm, 

. In the first phase, 

Dijkstra’s algorithm has been used for � times and in the 

the worst condition it has been used for � 

the time complexity of our 

The implementation of the proposed algorithm that 

called MSTG has been done by Visual C#, and it has been 

sets like the Beasley’s 

configuration of the system that has been 

used for this examination was a 2.50 GHz CPU and a 3 GB 

The results of running the MSTG algorithm on the 

data set are respectively in 

The rate of this algorithm is computed 

of the cost of MSTG to the optimum cost and 

also the time of execution has been shown in “hour: minute: 

algorithm on the set B 

 

Table 2: The results of MSTG

Table 3: The results of MSTG

In Fig. 4, there are two samples of obtained Steiner 

trees from MSTG algorithm on graphs B

been drawn with random vertices.

Time  

(h:m:s:ms)

Rate 

Opt/MSTG)

 0: 0: 0: 101

 0: 0: 0: 161

0: 0: 0: 331

 0: 0: 0: 151

0: 0: 0: 201

0: 0: 0: 501

0: 0: 0: 281

0: 0: 0: 371

 0: 0: 0: 1011

0: 0: 0: 541

0: 0: 0: 661.045

 0: 0: 0: 1311

0: 0: 0: 691.03

0: 0: 0: 1231

 0: 0: 0: 2201.009

0: 0: 0: 1251.039

0: 0: 0: 1681

0: 0: 0:3501

Optimum 

 Cost

Terminals 

Count

Edges 

Count

Nodes 

Count

Graph 

Number

8556255001 C

144106255002 C

754836255003 C

10791256255004 C

15792506255005 C

55510005006 C

1021010005007 C

5098310005008 C

70712510005009 C

1093250100050010 C

325250050011 C

4610250050012 C

25883250050013 C

323125250050014 C

556250250050015 C

1151250050016 C

18101250050017 C

113831250050018 C

1461251250050019 C

2672501250050020 C

Optimum 

 Cost

Terminals 

Count

Edges 

Count

Nodes 

Count

Graph 

Number

106 5 1250 10001 D

220 10 1250 10002 D

1565 167 1250 10003 D

1935 250 1250 10004 D

3250 500 1250 10005 D

67 5 2000 10006 D

103 10 2000 10007 D

1072 167 2000 10008 D

1448 250 2000 10009 D

2110 500 2000 100010 D

29 5 5000 100011 D

42 10 5000 100012 D

500 167 5000 100013 D

667 250 5000 100014 D

1116 500 5000 100015 D

13 5 25000 100016 D

23 10 25000 100017 D

223 167 25000 100018 D

310 250 25000 100019 D

537 500 25000 100020 D

Fig.4: Two samples of MSTG algorithm on

B1 (a) and  graph 

(a) 

MSTG algorithm on the set C 

 

MSTG algorithm on the set D 

 

there are two samples of obtained Steiner 

trees from MSTG algorithm on graphs B1 and  C15 that has 

been drawn with random vertices. 

 

 

Time  

(h:m:s:ms)

Rate 

(Opt/MSTG)

 MSTG 

Result

Optimum 

 Cost

0: 0: 0: 547185

 0: 0: 1: 3061144144

0: 0: 4: 2031.008760754

 0: 0: 7: 5781.0110901079

0: 0: 17: 4091.00115811579

0: 0: 0: 969155

0: 0: 1: 2811102102

 0: 0: 7: 6401.019519509

0: 0: 10: 6251.018720707

0: 0: 22: 1101.00611001093

0: 0: 1: 2651.03133

 0: 0: 1: 5791.06549

 0: 0: 7: 5471.015262258

0: 0: 11: 5001.021330323

0: 0: 25: 6561.009561556

 0: 0: 1: 9011.0912

0: 0: 2: 8911.11120

 0: 0: 6: 9371.0531119113

 0: 0: 9: 3121.041152146

 0: 0: 37: 161.003268267

Time  

(h:m:s:ms)

Rate 

(Opt/MSTG)

 MSTG 

Result

Optimum 

 Cost

0: 0: 2: 8901.009107106 

0: 0: 4: 471220220 

 0: 0: 42: 5151.00815781565 

0: 0: 52: 0161.00819511935 

0: 4: 4: 4841.00432653250 

0: 0: 5: 7821.097367 

0: 0: 7: 7191.019105103 

 0: 0: 50: 9071.02310971072 

0: 1: 23: 5781.01514701448 

0: 5: 9: 6311.00521202110 

0: 0: 6: 73412929 

 0: 0: 7: 37514242 

0: 0: 55: 941.034517500 

 0: 1: 24: 3751.013676667 

0: 5: 27: 7621.01211291116 

 0: 0: 28: 6901.1541513 

0: 0: 30: 3361.0432423 

0: 1: 47: 3011.063237223 

 0: 2: 38: 9311.058328310 

0: 4: 56: 3881.009542537 

Fig.4: Two samples of MSTG algorithm on graph 

graph C15 (b) 

(b) 
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According to the results of the MSTG algorithm that 

are shown in the tables, this algorithm can find near 

optimum answers of Steiner tree with a good rate in the 

polynomial time. Moreover, all the observed rates of this 

algorithm were below 1.5. 

5 Conclusions 

The Steiner tree problem is a well-known issue that is 

used in many fields. In this article, we proposed a heuristic 

algorithm to find Steiner tree on an undirected and weighted 

graph. This algorithm finds the near optimum answer in 

polynomial time, and the complexity of it is O9��� �
� log��:. Since this algorithm had reasonable running times 

on the large graphs, it can be used for finding Steiner tree on 

the huge networks like Urban Transportation Network. 

Moreover, all the observed rates of this algorithm were 

below 1.5; So in the future works, we will try to proof the 

rate of this algorithm which it implies an approximation 

algorithm. 

References 

Dreyfus S. E., Wagner R. A., “The Steiner Problem 

in Graphs”, Networks, Vol. 1, pp. 195-207, 1972. 
[1] 

Karp R.M., “Reducibility among combinatorial 

problems”, Complexity of Computer 

Communications, Plenum Press, New York, pp. 

85–103, 1972. 

[2] 

Dasgupta S., Papadimitriou C. H., Vazirani U. V., 

“Algorithms”, 2006. 

[3] 

Hakimi S. L., “Steiner's problem in graphs and its 

implications”, Networks, Vol. 1, pp. 113-133, 

1972. 

[4] 

Takahashi H., Matsuyama A., “An approximate 

solution for the Steiner problem in graphs”, Math. 

Jpn., No.  24, pp. 573–577, 1980. 

[5] 

Wu Y. F., Widmayer P., Wong C. K., “A faster 

approximation algorithm for the Steiner problem in 

graphs”, Acta. Info. No. 23, pp. 223–229, 1986. 

[6] 

Dolagh S. V., Moazzami D., “New Approximation 

Algorithm for Minimum Steiner Tree Problem”, 

International Mathematical Forum, Vol. 6, No. 53, 

pp. 2625 - 2636, 2011. 

[7] 

Martins S. L., Pardalos P. M., Resende M. G.C., 

Ribeiro C. C., “Greedy Randomized Adaptive 

Search Procedures For The Steiner Problem In 

Graphs”, AT&T Labs Research Technical Report,  

[8] 

1998. 

Tashakkori M., Adibi P., Jahanian A., Nourollah 

A., "Ant colony solution dynamic Steiner tree 

problem", Proceedings of 9th Annual Computer 

Society of Iran Computer Conference, pp. 465-471, 

2003. 

[9] 

Luyet L., Varone S., Zuerey N., “An Ant 

Algorithm for the Steiner Tree Problem in Graphs”, 

Springer EvoWorkshops, pp. 42–51, 2007.  

[10] 

Consoli S., Moreno-Perez J. A., Darby-Dowman 

K., Mladenovic N., “Discrete Particle Swarm 

Optimization for the minimum labelling Steiner 

tree problem”, Springer Nat Compute, pp. 29-46, 

2010. 

[11] 

Beasley J.E., “OR-Library: Distributing Test 

Problems by Electronic Mail”, Operational 

Research. Soc., Vol. 41, No. 11, pp. 1069-1072, 

1990. 

[12] 

 

Int'l Conf. Foundations of Computer Science |  FCS'12  | 33



The Parameterized Complexity of Perfect Code in Graphs without
Small Cycles

Yong Zhang
Department of Computer Science, Kutztown University of Pennsylvania, Kutztown, PA 19530

Abstract— We study the parameterized complexity ofk-
PERFECT CODE in graphs without small cycles. We show
that k-PERFECTCODE is W[1]-hard in bipartite graphs and
thus in graphs with girth 4. On the other hand, we show that
k-PERFECT CODE admits ak2 + k kernel in graphs with
girth ≥ 5.

Keywords: parameterized complexity, perfect code

1. Introduction
Parameterized complexity is a powerful framework that

deals with hard computational problems. Aparameterized
problem is a set of instances of the form(x, k), wherex
is the input instance andk is a nonnegative integer called
the parameter. A parameterized problem is said to befixed
parameter tractableif there is an algorithm that solves
the problem in timef(k)|x|O(1), wheref is a computable
function solely dependent onk, and |x| is the size of the
input instance. Thekernelizationof a parameterized problem
is a reduction to aproblem kernel, that is, to apply a
polynomial-time algorithm to transform any input instance
(x, k) to an equivalent reduced instance(x′, k′) with k′ ≤ k
and |x′| ≤ g(k) for some functiong solely dependent on
k . A parameterized problem is fixed parameter tractable
if and only if it is kernelizable. On the other hand, many
fixed parameter intractable problems can be classified in
a hierarchy of complexity classes W[1]⊆ W[2] . . . ⊆
W[t]. For example,k-INDEPENDENT SET and k-CLIQUE

are known to be W[1]-complete andk-DOMINATING SET

is known to be W[2]-complete. We refer the readers to [1],
[2] for more details.

Let G = (V,E) be an undirected graph. For a vertex
v ∈ V , let N(v) andN [v] be the open neighborhood and
closed neighborhood ofv, respectively. Aperfect codein G
is a subset of verticesD ⊆ V such that for every vertex
v ∈ V , there is exactly one vertex inN [v] ∩D.

Definition 1.1: Given an input graphG and a positive
integer k, the k-PERFECT CODE problem is to determine
whetherG has a perfect code of size at mostk.

In the literaturesk-PERFECTCODE is also known as EF-
FICIENT DOMINATING SET, PERFECT DOMINATING SET,
and INDEPENDENT PERFECT DOMINATING SET. It is a
well-known NP-complete problem. Its computational com-
plexity in various classes of graphs has been extensively

studied. See Lu and Tang [3] for an overview. In terms
of parameterized complexity,k-PERFECT CODE is known
to be W[1]-complete [4], [5] in general graphs. Guo and
Niedermeier [6] showed thatk-PERFECT CODE is fixed
parameter tractable in planar graphs by giving a84k kernel.
Dawar and Kreutzer [7] showed that it is fixed parameter
tractable in effectively nowhere-dense classes of graphs.

The girth of a graph is the length of the shortest cycle
contained in the graph. In this paper we study the param-
eterized complexity ofk-PERFECT CODE in graphs with
certain girths, i.e., graphs without small cycles. The param-
eterized complexity of several related problems, including
k-DOMINATING SET andk-INDEPENDENTSET [8], andk-
CONNECTEDDOMINATING SET [9] in graphs without small
cycles has been studied. In this paper we show thatk-
PERFECTCODE is W[1]-hard in bipartite graphs, and thus
in triangle-free graphs or graphs with girth 4. Then we show
thatk-PERFECTCODE admits ak2+k kernel in graphs with
girth ≥ 5 and is therefore fixed parameter tractable.

2. Main results

2.1 Bipartite Graphs

To show the W[1]-hardness ofk-PERFECT CODE in
bipartite graphs, we give a reduction from the problemk-
MULTICOLORED CLIQUE: Given a graphG = (V,E) and
a vertex-coloringκ : V → {1, 2, . . . , k}, decide whether
G has a clique ofk vertices containing exactly one vertex
of each color.k-MULTICOLORED CLIQUE is shown to be
W[1]-complete by Fellows et al. [10].

Theorem 2.1:k-PERFECTCODE is W[1]-complete in bi-
partite graphs.

Proof: Let (G = (V,E), κ) be an input instance of
k-MULTICOLORED CLIQUE. For each colori, 1 ≤ i ≤ k,
let Vi be the set of vertices inG with color i. Let ni be
the number of vertices inVi. Without loss of generality, we
assume thatni > 1 for all i. We fixed an ordering of the
vertices in eachVi. To simplify the presentation, we abuse
notations here: for two verticesu, v ∈ Vi, u > v meansu is
in front of v with respect to the fixed ordering. Without loss
of generality, we also assume that no edge inG connects
two vertices of the same color. For any two colorsi andj,
1 ≤ i < j ≤ k, let Eij be the set of edges inG that connect
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vertices inVi and Vj . Let mij be the number of edges in
Eij .

We construct a graphG′ = (V ′, E′). The vertex setV ′ is
a union of the following sets of vertices:

S1 = {a[i, v], b[i, v] | 1 ≤ i ≤ k, v ∈ Vi}

∪{x[i] | 1 ≤ i ≤ k}

S2 = {c[i, j, e], d[i, j, e] | 1 ≤ i < j ≤ k, e ∈ Eij}

∪{y[i, j] | 1 ≤ i < j ≤ k}

S3 = {f [i, j, v] | 1 ≤ i < j ≤ k, v ∈ Vi}

S4 = {g[i, j, v] | 1 ≤ i < j ≤ k, v ∈ Vj}

The edge setE′ is a union of the following set of edges:

E1 = {(a[i, v1], b[i, v2]) | 1 ≤ i ≤ k, v1, v2 ∈ Vi

andv1 6= v2}

E2 = {(x[i], b[i, v]) | 1 ≤ i ≤ k, v ∈ Vi}

E3 = {(c[i, j, e1], d[i, j, e2]) | 1 ≤ i < j ≤ k,

e1, e2 ∈ Eij ande1 6= e2}

E4 = {(y[i, j], c[i, j, e]) | 1 ≤ i < j ≤ k, e ∈ Eij}

E5 = {(b[i, v1], f [i, j, v2]) | 1 ≤ i < j ≤ k,

v1, v2 ∈ Vi andv1 ≥ v2}

E5 = {(b[j, v1], g[i, j, v2]) | 1 ≤ i < j ≤ k,

v1, v2 ∈ Vj andv1 ≥ v2}

E6 = {(c[i, j, e], f [i, j, v]) | 1 ≤ i < j ≤ k,

e = (v1, v2) ∈ Eij , v, v1 ∈ Vi andv1 < v}

E7 = {(c[i, j, e], g[i, j, v]) | 1 ≤ i < j ≤ k,

e = (v1, v2) ∈ Eij , v, v2 ∈ Vj andv2 < v}

Informally speaking, for eachVi, 1 ≤ i ≤ k, we construct
a vertex selection gadget that contains2ni + 1 vertices. For
eachv ∈ Vi, there are two verticesa[i, v] andb[i, v]. For two
verticesa[i, v1] andb[i, v2], v1, v2 ∈ Vi, they are adjacent if
and only if v1 6= v2. There is a dummy vertexx[i] which
is adjacent to all vertices{b[i, v] | v ∈ Vi} and none of
the vertices{a[i, v] | v ∈ Vi}. Then, for each edge setEij ,
1 ≤ i < j ≤ k, we construct an edge selection gadget that
contains2mij + 1. For each edgee ∈ Eij , there are two
verticesc[i, j, e] andd[i, j, e]. There is also a dummy vertex
y[i, j]. They are connected in a similar fashion as in the
vertex selection gadget. Finally, for each pair of colorsi and
j with 1 ≤ i < j ≤ k, we also construct a validation gadget
that containsni + nj vertices, namely{f [i, j, v] | v ∈ Vi}
and{g[i, j, v] | v ∈ Vj}. The vertices in the validation gadget
are not adjacent to each other, instead they are adjacent to
vertices in the vertex selection gadgets forVi andVj , and
the edge selection gadget forEij . For a vertexv1 ∈ Vi,
the corresponding vertexb[i, v1] is adjacent tof [i, j, v2] for
all v2 ∈ Vi such thatv1 ≥ v2 with respect to the fixed
vertex ordering ofVi. Similarly, for a vertexv1 ∈ Vj , the
corresponding vertexb[j, v1] is adjacent tog[i, j, v2] for all

v2 ∈ Vj such thatv1 ≥ v2 with respect to the fixed vertex
ordering ofVj . On the other hand, for an edgee = (v1, v2) ∈
Eij with v1 ∈ Vi and v2 ∈ Vj , the corresponding vertex
c[i, j, e] in the edge selection gadget is adjacent tof [i, j, v]
for all v ∈ Vj such thatv > v1, and to g[i, j, v] for all
v ∈ Vj such thatv > v2. See Figure 1 for an illustration of
the construction. ClearlyG′ is a bipartite graph.

a[i, v1]

a[i, v2]

a[i, v3]

x[i]

b[i, v1]

b[i, v3]

a[j, w1]

a[j, w2]

x[j]

b[j, w1]

b[j, w2]

d[i, j, e1]

d[i, j, e2]

d[i, j, e3]

d[i, j, e4]

y[i, j]

c[i, j, e1]

c[i, j, e4]

f [i, j, v1]

f [i, j, v3]

g[i, j, w1]

g[i, j, w2]

Fig. 1: A partial illustration of the construction ofG′.
Let Vi = {v1, v2, v3} and Vj = {w1, w2}. Let Eij =
{e1, e2, e3, e4} where e1 = (v1, w1), e2 = (v1, w2), e3 =
(v2, w1), e4 = (v3, w2). The figure shows how the vertex
selection gadgets forVi and Vj (left), the edge selection
gadgetEij (right), and the validation gadgets (middle) are
constructed.

Lemma 2.2:G has ak-multicolored clique if and only if
G′ has a perfect code of sizek′ = 2k + 2

(

k
2

)

.
Proof: For the direct implication, supposeG = (V,E)

has ak-multicolored cliqueK ⊆ V such thatK = {vi | 1 ≤
i ≤ k, vi ∈ Vi}, then it is easy to verify that the following
setD of vertices inV ′ is a perfect code of sizek′ for G′:

D = {a[i, vi], b[i, vi] | vi ∈ K} ∪ {c[i, j, e], d[i, j, e] |

1 ≤ i < j ≤ k, e = (vi, vj) andvi, vj ∈ K}.

For the reverse implication, supposeD is a perfect code
of sizek′ for G′. First observe that the dummy vertexx[i]
in the vertex selection gadget forVi cannot be inD since
otherwise vertices{a[i, v] | v ∈ Vi} cannot be dominated.
To dominatex[i], D must contain exactly one vertex from
the set{b[i, v] | v ∈ Vi}. Let b[i, vs] be such a vertex,b[i, vs]
dominates all vertices{a[i, v] | v ∈ Vi} excepta[i, vs], this
implies thata[i, vs] must also be inD. By this argument,
we see thatD must contain exactly two vertices from each
vertex selection gadget and each edge selection gadget. In
another word, the following2k + 2

(

k

2

)

vertices must be in
D:

{a[i, vi], b[i, vi] | 1 ≤ i ≤ k, vi ∈ Vi}∪

{c[i, j, eij], d[i, j, eij ] | 1 ≤ i < j ≤ k, eij ∈ Eij}.
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So no vertex from the validation gadgets will be inD.
Let b[i, vi] and b[j, vj ] be the two vertices inD. We see

that b[i, vi] dominates verticesf [i, j, v] for all v ≤ vi in
Vi and b[j, vj ] dominates verticesg[i, j, v] for all v ≤ vj
in Vj . By the construction ofG′, to perfectly dominate the
rest of the validation vertices,f [i, j, v] for all v > vi and
g[i, j, v] for all v > vj , the vertexc[i, j, e] must be inD
wheree = (vi, vj) ∈ Eij . Conversely, ifc[i, j, e] with e =
(vi, vj) ∈ Eij is a vertex inD, c[i, j, e] dominatesf [i, j, v]
for all v < vi in Vi and g[i, j, v] for all v < vj in Vj , to
perfectly dominate the rest of validation vertices,b[i, vi] and
b[j, vj ] must be inD. Therefore the set{vi | b[i, vi] ∈ D}
is a k-multicolored clique inG.

2.2 Graphs with girth ≥ 5

Let G = (V,E) be a graph with girth≥ 5. To obtain a
k2 + k kernel, we only need the following simple reduction
rule.

Reduction Rule 1: If a vertexv ∈ V has degree> k, then
removev and all vertices adjacent tov from G and decrease
k by 1.

Lemma 2.3:Reduction Rule 1 is correct.
Proof: Let v ∈ G be a vertex with degree> k. We

claim that if G has a setS which is a perfect code of size
at mostk, thenv must be inS. Suppose this is not true and
v /∈ S. Let w1, w2, . . . , wl be the neighbors ofv with l > k.
Sincev is not inS, exactly one ofv’s neighbors must be in
S. Without loss of generality, letw1 be the vertex that is in
S. w1 is not adjacent to anywi for 1 < i ≤ l, since otherwise
v, w1, wi forms a triangle inG. Thereforew2, . . . , wl have
to be dominated by vertices inS other thanw1. We claim
that any vertexs ∈ S with s 6= w1 can be adjacent to
only onewi. Suppose this is not true, i.e., there is a vertex
s ∈ S such that(s, wi), (s, wj) ∈ E for 1 < i, j ≤ l, then
v, wi, s, wj forms a 4-cycle, contradicting thatG has girth
≥ 5. ThereforeS containsw1 and l − 1 more vertices, one
for dominating eachwi (1 < i ≤ l), this makes|S| ≥ l,
contradicting the assumption that|S| ≤ k.

Let G′ be the reduced graph after Reduction Rule 1.
Clearly any vertex inG′ has degree at mostk. Suppose
G′ has a perfect codeS of sizek, any vertex inG′ is either
in S or dominated by a vertex inS. Since each vertex in
S can dominate at mostk other vertices inG′, the size of
G′−S is at mostk2 and thusG′ has at mostk2+k vertices.

Theorem 2.4:k-PERFECTCODE admits ak2 + k kernel
in graphs with girth≥ 5.
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Abstract – R-Tree being a multi-dimensional version of B-

Tree is being used in various applications including 

geographic information systems, computer aided designing 

systems, spatial databases etc. Efficient searching of this 

tree is always a challenge to the research community and 

several methods have been proposed for this purpose. In 

this paper, we propose a new splitting algorithm to help 

efficient retrieval by reducing chances of overlap. 

Keywords: Spatial Database, Multi-Dimensional 

Indexing, R-Tree, Node Splitting Algorithm. 

1 Introduction 

 An R-Tree [2] [4] [7-8] is a height-balanced tree. The 

index records in its leaf nodes contain pointers to data 

objects. It is the multidimensional extension of B-tree. 

Nodes correspond to disk pages. The structure is designed 

in such a manner that a spatial search requires visiting only 

a small number of nodes. The index is dynamic in nature. 

Insertions and deletions can be intermixed with searches 

and no periodic reorganization is required. 

2 Spatial Database and R-Tree 

A spatial database [1] [5-6] [9] [10] consists of a 

collection of tuples representing spatial objects, and each 

tuple has a unique identifier which can be used to retrieve 

it. Leaf nodes in an R-Tree contain index record entries of 

the form 

(I, tuple_identifier) 

 Where, tuple_identifier refers to a tuple in the database and 

I is an n-dimensional rectangle which is the minimum 

bounding rectangle (MBR) of the spatial object indexed. 

Non-leaf nodes contain entries of the form 

(I, child_pointer) 

Where, child_pointer is the address of a lower node in the 

R-Tree and I covers all internal minimum bounding 

rectangles (iMBR) in the lower node‟s entries. Fig. 1 shows 

the index structure of R-Tree. 

 
Fig. 1 Index Structure of R-Tree 

Let, M is the maximum number of entries that will fit in 

one node and let m ≤ 
 

 
 be a parameter specifying the 

minimum number of entries in a node. An R-Tree [2] 

satisfies the following properties 

(1) Every leaf node contains between m and M index 

records unless it is the root. 

(2) For each index record (I, tuple_identifier) in a leaf node, 

I is the smallest rectangle that spatially contains the n-

dimensional data object represented by the indicated tuple. 

(3) Every non-leaf node has between m and M children 

unless it is the root. 

(4) For each entry (I, child_pointer) in a non-leaf node, I is 

the smallest rectangle that spatially contains the rectangles 

in the child node. 

(5) The root node has at least two children unless it is a 

leaf. 

(6) All leaves appear on the same level. 

3 Node Splitting Algorithms 

 In R-Tree, when we need to insert a data to any node 

and the node is full, then, we need to split that node to 

make room for the newly inserted records. There have been 

several R-Tree node splitting algorithms developed since 

R-Tree was introduced. Among them, Guttman‟s 

Quadratic-Cost Algorithm [2], the Optimal node splitting 

algorithm [11], the Linear node splitting algorithm [12] and 

Basic node splitting with bipartition [3] are most popular. 

One important area of concern is the overlapping area. As 

in region data types zero overlapping is not possible, so a 

good node splitting algorithm should confirm the minimum 

overlapping area among the minimum bounding rectangles. 

3.1 Guttman’s node splitting algorithms 

 These algorithms were proposed when R-Tree was 

introduced for the first time. In that work there were three 

node splitting algorithms, namely the Exhaustive 

algorithm, A Quadratic-Cost Algorithm and A Linear-Cost 

Algorithm. 

3.1.1 Exhaustive algorithm 

In this algorithm the author finds the most straight 

forward way to find the minimum area node split is to 

generate all possible groupings and choose the best 

grouping. However the number of possibilities is 
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approximately 2
M-1 

for M number of MBRs. So, the number 

of possible splits is very large.  

3.1.2 Quadratic-Cost algorithm 

The mostly used one among the three algorithms is the 

quadratic method. This node splitting algorithm first picks 

two records that may cause the worst split if put into the 

same node. These two records are used as seeds and the 

algorithm repetitively finds a record that may affect the 

splitting quality the most and assigns it to the appropriate 

node until all records are assigned. If there are just enough 

records left unassigned that can make one of the two newly 

generated nodes to satisfy the lower bound of the number of 

records, then, the rest of records will be assigned to that 

node directly. 

3.1.3 Linear-Cost algorithm 

This algorithm is identical to Quadratic Split but uses 

a different way to choose the seeds. It finds the iMBRs 

which have highest low side and the lowest high side along 

any dimension. According to that it finds the seeds for the 

splitting. The rest of the iMBRs are simply chosen at 

random. 

3.3  The optimal node splitting algorithm 

 Here two algorithms were proposed. The first one is a 

basic node splitting algorithm which partitions a full node 

into two. It is like the exhaustive method but has a time 

complexity of O(Nd) instead of O(2N), where d is the 

dimension of data. The second algorithm is called SHIFT 

method. It first executes a pre-processing to get 

complementary MBRs with respect to all records. Then it 

tests each possible bipartition which is O(Nd), and find the 

one with the best metric. Here area and perimeter are two 

metrics used to gain a high occupancy of disk pages.  

3.4  A linear node splitting algorithm 

 The algorithm partitions the records into two groups 

along each axis according to the distance between a 

record‟s MBR and the minimum and maximum coordinates 

on the axis. It then chooses a split axis by examining the 

number of records in each group. Then the partition along 

the selected axis will be the final splitting result. The 

algorithm‟s time complexity is O(N), where N is the 

number of records in a node. The algorithm does not 

consider the overlapping between the nodes. 

3.5  Basic node splitting with bipartition 

 This algorithm first decides the splitting axis using 

some parameter. Taking the ratio of the two axis it decides 

the splitting dimension and if not possible then counting 

the maximum numbers of iMBR stretched along a 

particular axis. As this algorithm is not concerned about the 

internal organization of the iMBRs therefore, sometimes 

splitting from other dimension can give better result and 

less overlapping. 

4 Scope of Work 

 There are three parameters for R-Tree node splitting. 

Area is one of them. Smaller node‟s area gives lower 

probability of the node being accessed. Some of the 

algorithms [2-3] [11-13] which are already available are 

only concerned about area increasing while choosing a leaf 

for new data and splitting a full node. Another parameter is 

the perimeter. Perimeter is responsible for the shape of the 

node‟s MBR. For a particular area, smaller perimeter 

conforms to more square shape of the MBR. 

 Overlap area is the third area of concern. Overlap 

between nodes causes multiple nodes to be accessed when 

a query object falls into that particular region. So it is one 

important parameter and needs to be dealt properly while 

designing R-Tree constructing algorithms. The algorithms 

which are already available [2] [11-13] are less concerned 

about the overlapping area during the time to decide the 

splitting axis. As attaining zero overlapping is practically 

impossible for region data types, so, a new node splitting 

algorithm, which can check the overlapping before 

deciding the splitting axis is proposed here. Two case study 

shows that, it can give a satisfactory performance by 

ensuring to minimize the total overlapping area. 

5 Our Proposed Node Splitting 

Algorithms 

Here in the algorithm, length-of-X is the length of the 

MBR along the X axis and length-of-Y is the length of the 

MBR along the Y axis. X-length-count is the summation of 

the lengths of all the iMBRs along the X axis and Y-length-

count is the summation of the lengths of all the iMBRs 

along the Y axis. TOR-of-X is the total overlapping region 

if splitted along the X axis and TOR-of-Y is the total 

overlapping region if splitted along Y axis. If a node in a R-

Tree can contain M number of data then the lower 

bound(m) is ⌈
 

 
⌉. Overflown MBR is the MBR which 

contains more number of iMBRs than M. 

 

Algorithm SplitNode: 
 

Input: iMBR of a data 

Output: two new nodes 
 

Step 1: The algorithm „SplitNode’ first invokes 

„FindSplitDim’ to decide the splitting dimension 

for that particular node. 

Step 2: When the splitting axis is determined, then, the 

algorithm divides the MBR in the middle of the 

axis. 

Step 3: Now for each iMBR it checks which iMBR is 
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fully contained by which MBR. Then it assigns 

that iMBR to that new node. 

Step 4: If any iMBR is not fully contained by any of the 

MBR alone then fitting it into which MBR gives 

less area increase gets the priority. 

Step 5: Breaks ties by assigning it to the one which will 

produce less overlapping area. 

Step 6: Now the two new nodes are checked for the 

lowerbound condition. If passes then these nodes 

are the final nodes. 

Step 7: If any MBR fails then the splitting dimension is 

changed and the same procedure is applied again. 

Step 8: If it is also not able to produce satisfactory rasult 

then for the underflowing MBR, the nearest 

iMBR, which produce less area increase, is 

inserted. 

Step 9: Step 8 continues until the underflowing MBR 

gets sufficient iMBR to overcome the 

lowerbound criteria. 

 

Algorithm FindSplitDim: 
 

Input: Over flown MBR 

Output: Splitting axis 
 

Step 1: ‘FindSplitDim’ first checks the length of the 

MBR in X & Y dimension and takes the longest 

axis as the initial splitting axis. 

Step 2: If it is an square MBR then it checks the 

summation of the iMBRs in X & Y dimension. 

If the X-length-count is greater than Y-length-

count then it takes Y as the initial splitting axis 

and vice-versa. 

Step 3: If these two are equeal then it arbitrarily 

chooses the initial splitting axis. 

Step 4: Now it checks which iMBRs are left aligned. 

There must be atleast one. 

Step 5: After getting the iMBR then sets the value of 

the variable Z as the value of x2 of that iMBR. 

Step 6: Now the algorithm finds the iMBR whose 

smaller value of x axis is lesser than variable Z 

and the bigger value x of that iMBR is greater 

than that of Z. 

Step 7: If there is  such an iMBR then the value of Z 

gets updated by the value of x2. 

Step 8: When there is no such iMBR which has the 

same criteria and Z is equal to the bigger value 

of the minimum bounding rectangle then non-

overlapping is not possible for that MBR along 

the X axis. 

Step 9: So the algorithm checks the Y axis in the same 

manner. If a non-overlapping region is found 

then the final value of Z must be lesser than the 

bigger value of that axis. 

Step 10: When non-overlapping split is not possible 

along any of the two dimensions then the 

algorithm invokes the 

„FindTotalOverlappingRegion’. 

Step 11: After getting the values of the two variables 

(TOR-of-X & TOR-of-Y), now the 

„FindSplitDim’ algorithm decides the final 

splitting dimension. 

Step 12: Dimension with less overlapping area is the key 

criteria for selecting the splitting dimension. If a 

tie occurs then it arbitrarily decides the splitting 

axis and returns the value. 
 

Algorithm FindTotalOverlappingRegion: 
 

Input: Over flown MBR whose non overlapping 

splitting is not possible 

Output: TOR-of-X & TOR-of-Y 
 

Step 1: A new variable P is initialised with the length of 

that particular axis. 

Step 2: The algorithm starts in the same manner as 

FindSplitDim and when there is an iMBR which 

passes that particular criteria then the algorithm 

finds the minimum length of small value of that 

iMBR along X axis to Z and Z to the larger value 

of that iMBR along X axis. 

Step 3: If this minimum value is less than the present 

value of P then P gets updated with it. 

Step 4: When Z = X2 then the value of P is taken into 

account and multiplied with the length of the 

MBR along the other axis and value is stored in 

TOR-of-X variable. 

Step 5: In the same way the TOR-of-Y is also calculated 

and the values are returned. 
 

6 Step-by-step Operations 

We have taken two examples to check the step-by-step 

operations of our algorithm and compare the output of our 

node splitting algorithm with basic node splitting with 

bipartition. Here, 4 numbers of data can be put into one 

node at maximum i.e. an MBR can contain maximum 4 

numbers of iMBRs. The MBRs which have more than 4 

numbers of iMBRs are taken as over flown MBRs. 

Case study I:  

In Fig. 2.a we have taken an over flown MBR. For the 

MBR X1 = 0, X2 = 36, Y1 = 0, Y2 = 21. There are five 

iMBRs, r1, r2, r3, r4, r5. Table 1 shows the specifications 

of these iMBRs 
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Table 1: Specifications of the iMBRs 

iMBR x1 x2 y1 y2 

r1 0 12 11 21 

r2 24 36 11 21 

r3 0 6 0 10 

r4 30 36 0 10 

r5 9 27 0 10 

Step 1: The algorithm first checks for the length of the 

MBR along X & Y dimension. 

Step 2: The larger one decides the initial splitting axis. 

Here X is the initial splitting axis. 

Step 3: Now the algorithm checks whether in X 

dimension, there is any overlapping or not. 

Step 4: For that it first checks which iMBR has x1 

equals to X1. There must be at least one iMBR 

satisfying this criterion. Here is r1 & r3. Our 

algorithm takes r1 arbitrarily. 

Step 5: Then for that iMBR (r1) it updates the value of 

Z variable with the value of x2(here it becomes 

Z = 12). 

Step 6: Now the algorithm continues with for loop and 

checks which iMBR has (x1 < Z) & (x2 > Z). 

Here it finds that r5 satisfies that criterion. So 

the Z now becomes 27. 

Step 7: Again in next step it gets r2 and the Z becomes 

36. Now (Z = X2). So, in X dimension non-

overlapping splitting is not possible. 

Step 8: Now the algorithm changes the dimension and 

does the same. Here it finds that in Y 

dimension non-overlapping splitting is possible. 

Step 9: It takes Y as the final splitting dimension and 

starts to split. 

Step 10: The splitting is done in the middle of the 

splitting axis and the iMBRs which are fully 

contained by any of the two MBRs are assigned 

to them. Here r1 & r2 are fully contained by 

R1and r3, r5, r4 are fully contained by R2. So, 

these are assigned accordingly. 

 Fig. 2.c shows the result of splitting using our 

proposed algorithm. The corresponding R-Tree is shown in 

Fig. 2.e. 

 Fig. 2.b shows the result of splitting using the 

algorithm basic node splitting using bipartition. This 

algorithm first check whether the given rectangle is j-long 

or not; i.e. the ratio between the length of X & Y axis is 

greater than Θ or not (Where Θ > 0). If it is a square MBR 

then it checks whether the number of iMBRs whose length 

along X axis is greater than the same of Y axis. Thus it 

decides the splitting axis and assigns the iMBR 

accordingly. There is no way to check whether the splitting 

generates a huge overlapping area. Here the splitting 

produces an overlapping area whether non-overlapping 

splitting is possible. Fig. 2.d shows the R-Tree constructed 

form the result of that splitting. 

 
Fig. 2.a The Over flown MBR 

 
Fig. 2.b Result of the Basic Node Splitting with Bipartition 

 
Fig. 2.c Result of our proposed Node Splitting 

 
Fig. 2.d R-Tree constructed by basic node splitting with 

bipartition 

 
Fig. 2.e R-Tree constructed by our proposed node splitting 

algorithm 

Case study II: Here we have taken another example. In 

Fig. 3.a we have taken an over flown MBR. For the MBR 

X1 = 0, X2 = 36, Y1 = 0, Y2 = 21. There are five iMBRs, 

r1, r2, r3, r4, r5. Table 1 shows the specifications of these 

iMBRs. 
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Table 2: Specifications of the iMBRs 

iMBR x1 x2 y1 y2 

r1 0 18 11 21 

r2 19 36 15 21 

r3 0 6 0 10 

r4 30 36 0 14 

r5 10 28 0 10 

Step 1: The algorithm starts by finding the iMBRs 

which have (x1 = X1). Here, r1 & r3. 

Step 2: It continues by updating the value of Z after 

satisfying the criterion of (x1 < Z) & (x2 > Z). 

Step 3: Finally for X dimension Z becomes X2 i.e. 

non-overlapping splitting is not possible in the 

X dimension. 

Step 4: In the same way it checks in Y dimension and 

finds that in this case also non-overlapping 

splitting is not possible. 

Step 5: Now, ‘FindTotalOverlappingRegion’ is 

invoked. 

Step 6: As the same way it first checks for the iMBR 

having (x1 = X1). When it finds one, it 

updates the value of Z. 

Step 7: Now here a new variable P is introduced and 

initialized with the length of the MBR along 

that axis. 

Step 8: For rest of the iMBRs it checks if, (x1 < Z) & 

(x2 > Z).Now it finds the minimum of (Z-x1) 

& (x2-Z).  

Step 9: If P > MIN{(Z-x1), (x2-Z)} then it updates 

the value of P with MIN{(Z-x1), (x2-Z)}. 

Finally P becomes 8 for X dimension. 

Step 10: Finally when (Z = X2) then it multiplies P 

with the length along the other axis and stores 

the area in a variable as the total overlapping 

region along X axis. TOR-of-X is now (8 * 

21) i.e. 168 units. 

Step 11: In the same way it finds the total overlapping 

area for Y axis and returns the values. TOR-

of-Y = 4 * 36 = 144 units. 

Step 12: Then algorithm ‘FindSplitDim’ compares 

these values and decides the final splitting 

axis and returns the splitting dimension. 

Step 13: Now the algorithm ‘SplitNode’ splits the node 

in Y dimension. 

Step 14: r2 is assigned to R1 and r3 & r5 are assigned 

to R2 as they are fully contained by these 

MBRs. 

Step 15: Now, r1 is assigned to R1 and r4 is assigned 

to R2 as they give less increase in the area. 

 Here in Fig. 3.b we can see the total overlapping 

region for X axis. It is also the result of the node splitting 

by the basic node splitting with bipartition. Fig. 3.d shows 

the R-Tree constructed by basic node splitting with 

bipartition.  

 The algorithm decides Y as the final splitting 

dimension for this MBR and Fig. 3.c shows total 

overlapping region along Y axis. It is the result of the node 

splitting using our proposed node splitting algorithm which 

significantly have less overlapping area. Fig. 3.e shows the 

R-Tree constructed by our proposed node splitting 

algorithm. 

 
Fig. 3.a The Over flown MBR 

 
Fig. 3.b Result of the Basic Node Splitting with Bipartition 

 
Fig.3.c Result of our proposed Node Splitting 

 
Fig. 3.d R-Tree constructed by basic node splitting with 

bipartition 

 
Fig. 3.e R-Tree constructed by our proposed node splitting 

algorithm 

 After splitting the MBR using our proposed 

algorithm, if any underflow condition occurs then the 
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algorithm changes its splitting dimension and splits again. 

If it can‟t satisfy the result then the under flown node 

includes the iMBR from the other which calls for a less 

area increase. This process continues until both the nodes 

passes the underflow condition. 

7 Conclusions 

In this paper, we have proposed a new algorithm to identify 

the best possible splitting axis to minimize overlapping.  

Minimization of overlapping in turn yields better result of 

searching. It goes without say, that in some cases, 

overlapping cannot be avoided, however our algorithm 

ensures minimum overlapping in such cases. We also 

compared our output with basic node splitting with 

bipartition and it has been shown that our splitting 

algorithm produces better result. 
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Abstract: In this paper, we introduce formaliza-
tion of well-known number theoretic algorithms on the
Mizar proof checking system. We formalized the Eu-
clidean algorithm, the extended Euclidean algorithm
and the algorithm computing the solution of the Chi-
nese reminder theorem based on the source code of
NZMATH which is a Python based number theory ori-
ented calculation system. We prove the accuracy of
our formalization using the Mizar proof checking sys-
tem as a formal verification tool.

Keywords: Formal Verification, Mizar, Number theo-
retic algorithm

1 Introduction

Mizar[1, 2] is a project that formalizes mathematics
with a computer-aided proving technique. Number
theoretic algorithms play an important role in infor-
mation society. For example, number theoretic algo-
rithms are essential to cryptology and code theory be-
cause they provide secure and high-speed communica-
tions. However, there is no evidence that the calcu-
lated value producted by an algorithm is accurate, al-
though the algorithm has a processing nature. There-
fore, when we propose an algorithm, we have to prove
the accuracy of the algorithm.

On the other hand, a developed program for an al-
gorithm is not necessary to calculate a precise value
although the accuracy of the algorithm was proven.
This is because it is difficult to develop a program
which functions exactly like the algorithm. We have
to verify that the algorithm is accurately encoded into
a programing language.

The objective of this study is to prove the accuracy
of the algorithms, encoded in a programing language,
using the Mizar proof checker. To achieve this, first,
we formalized algorithms in the Mizar language to con-
firm that the formalization agrees with our aim. This
is because there are several methods how to formalize
algorithms.

In this paper, we introduce formalization of well-
known number theoretic algorithms on the Mizar

proof checking system. We formalized the Euclidean
algorithm, the extended Euclidean algorithm and
the algorithm computing the solution of the Chi-
nese reminder theorem based on the source code of
NZMATH[3], which is a Python based number theory
oriented calculation system. Then we verified the ac-
curacy of the formalized algorithms using the Mizar
proof checker.

The remainder of the study is organized as follows.
We briefly introduce the Mizar project in Section 2 and
NZMATH in Section 3. In Section 4, we discuss our
strategy for formalizing algorithms in Mizar, followed
by Section 5 where propose a formalization of the Eu-
clidean algorithm. In Section 6, we propose the for-
malization of the extended Euclidean algorithm, and
in Section 7, we propose a formalization of the algo-
rithm, computing the solution of the Chinese reminder
theorem. We conclude our discussions in Section 8.
The definitions and theorems in this study have been
verified for accuracy using the Mizar proof checker.

2 Mizar

Mizar [1, 2] is an advanced project of the Mizar Soci-
ety led by Andrzej Trybulec. It formalizes mathemat-
icals with a computer-aided proving technique. The
Mizar project describes mathematical proofs in the
Mizar-language, which is created to describe mathe-
matics formally. The Mizar proof checker operates in
both Windows and UNIX environments and registers
proven definitions and theorems in the Mizar Mathe-
matical Library (MML).

Furthermore, the objective of the Mizar project is
to create a checking system for mathematical theses.
An “article” formalizes and describes mathematical
proofs by Mizar. When an article is newly described,
it is possible to advance it by referring to articles reg-
istered in MML, which have already been inspected as
proofs. Similarly, other articles can refer to an arti-
cle after it is registered in MML. Although the Mizar
language is based on the description method for gen-
eral mathematical proofs, the reader should consult
the references for grammatical details, because Mizar
uses a specific, unique notation[1, 2].
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3 NZMATH

NZMATH[3] is a number theory oriented calculation
system mainly developed by the Nakamula laboratory
at Tokyo Metropolitan University. Number theoretic
algorithms are implemented as Python functions on
NZMATH, which is freely available and distributed
under the BSD license. NZMATH is at an early stage
of development and is currently being developed.

4 Strategy of Formalizing Algo-
rithms in Mizar

In Mizar, there are several methods to define computa-
tional routines, representing algorithms. One method
is to define a routine as a program for SCM. SCM is a
general model of a stack machine defined in the Mizar
system. In principle, we may formalize arbitrary pro-
grams in SCM. However, this approach may not be
suitable to prove the accuracy of algorithms encoded
in a high level programing language, because we have
to define an algorithm as the machine code of SCM.
For example, the Euclidean Algorithm has been for-
malized in SCM[4] (Definition A.1).

Another method is to define a routine as a functor or
a Function. A functor is a relation between input and
output of the routine in Mizar. It is easy to write and
understand the formalization of a routine as functor
because the format of a functor in Mizar is similar to
that of a function in programming languages. Thus,
in this paper, we formalize an algorithm as a functor.

A Function is a map from the input space onto the
output space. We can handle a Function as an ele-
ment of the set of Functions. Note that both functor
and Function can use a Function as their substitutable
subroutine. For example, we formalized the algorithm
of DES cipher as a functor, which uses substitution
subroutines defined as Functions[5, 6].

4.1 Formalizing Loop Structure in Mizar

In this section, we propose an approach to describe
programs with a loop structure. Particularly, we elu-
cidate the method to formalize programs with a non-
nested loop structure1. This suggests that it is possi-
ble to formalize a program with looped structures by
nesting single loop structures recursively.

A loop is a sequence of statements. In a computer
implementation, variables that are allocated memory
segments, are assigned destructively according to the
given recursion formula in each iteration.

To describe the loop structure in the Mizar lan-
guage, we consider that there are sequences of vari-
ables to capture the repetition of operations. For ex-
ample, let a be the sequence of variables such that ai,
the ith member of a, represents the temporary value
assigned as a in the ith iteration of the loop structure.
Note that we can describe the control condition of the

1Note that all algorithms, which were formalized in this pa-
per, do not have nested loops.

iteration using the index number of the sequences of
variables.

We can employ the inductive method to prove
the property of the variables using such sequences.
The Mizar system has a mechanism, called “scheme”,
which enables us to prove propositions using the in-
ductive method. We will show an example of a proof
using “scheme” in Section 5.

5 Formalization of the Euclidean
Algorithm

In this section we introduce our formalization of the
Euclidean algorithm.

The Euclidean algorithm is a the method that com-
putes the greatest common divisor of two given inte-
gers. This algorithm is implemented in NZMATH as
follows:

Code 5.1 (Euclidean algorithm in NZMATH)

def gcd(a, b):
a, b = abs(a), abs(b)
while b:

a, b = b, a % b
return a

We formalize this algorithm as the following functor
in the Mizar language:

Definition 5.1 (Euclidean Algorithm in Mizar)

let a,b be Element of INT;
func ALGO_GCD(a,b)

-> Element of NAT
means
ex A,B be sequence of NAT
st
A.0 = abs(a) & B.0 = abs(b) &
(for i be Element of NAT holds
A.(i+1) = B.i &
B.(i+1) = A.i mod B.i) &
it = A.(min*{i where i is Nat: B.i = 0});

Here the symbol ‘it’ denotes the value returned by
the functor. min* is the definition of the minimum
member of a given set in Mizar (Definition A.2). A
and B are infinite sequences of N such that

A = {a0, a1, . . . , ai, ai+1, . . .},
B = {b0, b1, . . . , bi, bi+1, . . .},

a0 = a, b0 = b,

ai+1 = bi, bi+1 = ai mod bi.

Note that ai, bi are the values of a, b in the ith itera-
tion, respectively.
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5.1 Accuracy of ALGO GCD

In this section we prove the accuracy of our formaliza-
tion that the functor ALGO GCD returns the greatest
common divisor of a given two integers.

We will prove the following theorem:

Theorem 5.1 (Accuracy of ALGO GCD)

for a,b be Element of INT
holds
ALGO_GCD(a,b) = a gcd b

Here gcd is the conceptual definition of the greatest
common divisor in Mizar as follows:

Definition 5.2 (gcd of Mizar)

let a,b be Integer;
func a gcd b -> Nat means
it divides a
& it divides b
& for m being Integer st m divides a
& m divides b holds m divides it;

We proved Theorem. 5.1 using the following lemma:

Lemma 5.1 for i be Element of NAT
st B.i <> 0
holds
A.0 gcd B.0 = A.i gcd B.i

In the rest of this section, we show a schematic proof
for Lemma. 5.1. First, we defined the following pred-
icate

defpred P[Nat] means
B.$1 <> 0 implies
A.0 gcd B.0 = A.$1 gcd B.$1;

Here, the symbol ‘$1’ denotes the argument of P2.
Therefore, P[0] is evidently true. Next, we prove

that P[i+ 1] is true if P[i] is true as follows:

for i being Element of NAT
st P[i] holds P[i+1];

Finally, we can prove Lemma 5.1 with the following
mathematical induction scheme that had been defined
in the Mizar system:

Scheme 5.1 (Mathematical Induction scheme)

Ind{ P1[ Nat] } :
for k being Nat holds P1[k]
provided
P1[ 0 ] and
for k being Nat st P1[k] holds
P1[k + 1]

It should be noted that we are allowed to create new
schemes.

2If the predicate P uses two natural numbers, we can define it
as “defpred P[Nat,Nat] means,...,” and the symbol ‘$n’ denotes
the nth argument of P.

6 Formalization of the Extended
Euclidean Algorithm

In this section we formalize the extended Euclidean
algorithm. The extended Euclidean algorithm can
compute a, b and g for given integers x, y such that
ax+ by = g(g is the greatest common divisor of x, y).
This algorithm is implemented in NZMATH as follows:

Code 6.1 (The extended Eucliean algorithm in NZ-
MATH)

def extgcd(x,y):
a,b,g,u,v,w = 1,0,x,0,1,y
while w:

q,t = divmod(g,w)
a,b,g,u,v,w = u,v,w,a-q*u,b-q*v,t

if g >= 0:
return (a,b,g)

else:
return (-a,-b,-g)

We formalize this algorithm as the following functor
in the Mizar language:

Definition 6.1 (The extended Euclidean algorithm
in Mizar)

let x,y be Element of INT;
func ALGO_EXGCD(x,y)

-> Element of [:INT,INT,INT:]
means
ex g,w,q,t be sequence of INT,
a,b,v,u be sequence of INT,
istop be Element of NAT
st
a.0 = 1 & b.0 = 0 & g.0 = x & q.0 =0
& u.0 = 0 & v.0 = 1 & w.0 = y & t.0 =0
&
(for i be Element of NAT
holds
q.(i+1) = g.i div w.i
& t.(i+1) = g.i mod w.i
& a.(i+1) = u.i & b.(i+1) = v.i
& g.(i+1) = w.i
& u.(i+1) = a.i - q.(i+1)*u.i
& v.(i+1) = b.i - q.(i+1)*v.i
& w.(i+1) = t.(i+1))
&
istop =

min*{i where i is Nat: w.i = 0}
&
(0 <= g.istop implies
it =[a.istop,b.istop,g.istop])
&
(g.istop < 0 implies
it =[-(a.istop),-(b.istop),-(g.istop)]);

Note that ALGO EXGCD(x,y) returns the 3-tuple
(a, b, g) such that ax + by = g and g is the greatest
common divisor of x and y.
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6.1 Accuracy of ALGO EXGCD

In this section we prove the accuracy of our formaliza-
tion that the functor ALGO EXGCD returns a, b and
g for given integers x and y such that ax + by = g(g
is the greatest common divisor of x and y).

We can prove the following theorem in a similarly
for proving Theorem 6.1:

Theorem 6.1 (Accuracy of ALGO EXGCD)

for x,y be Element of INT
holds
ALGO_EXGCD(x,y)‘3 = x gcd y
&
ALGO_EXGCD(x,y)‘1 * x
+ ALGO_EXGCD(x,y)‘2 * y
= x gcd y,

where ALGO EXGCD(x,y)‘n denotes the nth member
of ALGO EXGCD(x,y). Thus we proved the accuracy
of our formalization of extended Euclidean algorithm.

6.2 Multiplicative Inverse

Then, we define the functor that computes the mul-
tiplicative inverse over a residue class ring using the
ALGO EXGCD as follows:

Definition 6.2 (Inverse)

let x,p be Element of INT;
func ALGO_INVERSE(x,p) -> Element of INT
means
for y be Element of INT
st y = (x mod p)
holds
(ALGO_EXGCD(p,y)‘3 = 1 implies
((ALGO_EXGCD(p,y)‘2 < 0) implies
(ex z be Element of INT
st z = ALGO_EXGCD(p,y)‘2
& it = p + z ))
& ( (0 <= ALGO_EXGCD(p,y)‘2)

implies it = ALGO_EXGCD(p,y)‘2) )
&( ALGO_EXGCD(p,y)‘3 <> 1 implies it = {} );

We will define another algorithm with this functor in
Section 7.

7 Formalization of the Algorithm
Computing the Solution of the
Chinese Reminder Theorem

In this section we formalize the algorithm computing
the solution of the Chinese reminder theorem.

7.1 The Chinese Reminder Theorem

First, we review the Chinese reminder theorem briefly.

Theorem 7.1 (Chinese Reminder Theorem) Let
m1,m2, · · · ,mr be relatively prime. For any integer
a1, a2, · · · , ar, there exists the unique solution x ∈
Z/(m1 ·m2 · · ·mr)Z such that

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ar mod mr.

We can compute such a solution x by the following
steps:
First, we solve

x ≡ a1 mod m1

x ≡ a2 mod m2
(1)

by
x0 = a1 + (a2 − a1)(m

−1
1 mod m2)m1. (2)

Then:

x0 mod m1 = a1
x0 mod m2 = a1 + (a2 − a1)

= a2

Thus, x0 is the solution of (1).
Next, we solve the congruencies:

x ≡ x0 mod m1m2

x ≡ a3 mod m3
(3)

Then we solve the next congruent expression and the
solution of (3) sequentially. Finally, we can solve (1).

7.2 Formalization of the Algorithm Com-
puting the Solution of the Chinese Re-
minder Theorem

In this paper, let us term the algorithm mentioned in
Sec. 7.1 as “CRT algorithm”. The CRT algorithm is
implemented in NZMATH as follows:

Code 7.1 (CRT in NZMATH)

def CRT(nlist):
r = len(nlist)
if r == 1 :

return nlist[0][0]

product = []
prodinv = []
m = 1
for i in range(1, r):

m = m*nlist[i-1][1]
c = inverse(m, nlist[i][1])
product.append(m)
prodinv.append(c)

M = product[r-2]*nlist[r-1][1]
n = nlist[0][0]
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for i in range(1, r):
u = ((nlist[i][0]-n)*prodinv[i-1])

% nlist[i][1]
n += u*product[i-1]

return n % M

Here nlist denotes the given congruencies. For ex-
ample, if the given congruencies are

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7

then nlist is as follows:

nlist = [ (2,3), (3,5), (2,7) ]

We then formalize the algorithm as the following
functor in the Mizar language:

Definition 7.1 (CRT in Mizar)

let nlist be
non empty FinSequence
of [:INT,INT:];

func ALGO_CRT(nlist)->Element of INT
means
(

len nlist=1 implies it=(nlist.1)‘1
)
&
(

len nlist <> 1 implies
ex m,n,prodc,prodi
be FinSequence of INT,
M0,M be Element of INT

st len m = len nlist
& len n = len nlist
& len prodc = len nlist - 1
& len prodi = len nlist - 1
& m.1 = 1
&
(
for i be Nat

st 1<=i & i<=(len m) - 1
holds
ex d,x,y be Element of INT
st x = (nlist.i)‘2
& m.(i+1) = m.i * x
& y = m.(i+1)
& d = (nlist.(i+1))‘2
& prodi.i = ALGO_INVERSE(y,d)
& prodc.i = y

)

& M0 = (nlist.(len m))‘2
& M = (prodc.((len m)-1))*M0
& n.1 = (nlist.1)‘1
&
(
for i be Nat

st 1<=i & i<=len m - 1
holds

ex u,u0,u1 be Element of INT
st u0 = (nlist.(i+1))‘1
& u1 = (nlist.(i+1))‘2
& u = ((u0-n.i) * (prodi.i))

mod u1
& n.(i+1) = n.i + u*(prodc.i)

)
& it = n.(len m) mod M

);

Here, m, prod, prodi, M and n are finite sequences
of N such that

prodc = {prodc1, prodc2, . . . , prodci,
prodci+1, . . . , prodcr},

prodi = {prodi1, prodi2, . . . , prodii,
prodii+1, . . . , prodir},

m = {m1,m1, . . . ,mi,mi+1, . . . ,mr},
n = {n1, n2, . . . , ni, ni+1, . . . , nr},

m1 = 1, n1 = nlist[1][1],

mi+1 = mi ∗ nlist[i][2],
prodci = m−1

i+1 mod nlist[i+ 1][2]

prodii = mi+1

ni+1 = ni + u ∗ prodci,

Note that prodci, prodii,mi and ni are the value of
product, prodinv, m and n in the ith iteration respec-
tively. Additionally, we do not use infinite sequences
but finite sequences for this algorithm because the
count of the iteration is predetermined.

We then prove the following theorem:

Theorem 7.2 (Accuracy of ALGO CRT)

for nlist be non empty FinSequence
of [:INT,INT:],

a,b be non empty FinSequence of INT,
x,y be Element of INT
st len a = len b
& len a = len nlist
& (for i be Nat

st i in Seg (len nlist)
holds
b.i <> 0 )

& (for i be Nat
st i in Seg (len nlist)

holds
(nlist.i)‘1 = a.i
& (nlist.i)‘2 =b.i )

& (for i,j be Nat
st i in Seg (len nlist)
& j in Seg (len nlist)
& i <> j

holds
b.i,b.j are_relative_prime )

& (for i be Nat
st i in Seg (len nlist)

holds
x mod b.i = a.i mod b.i )

Int'l Conf. Foundations of Computer Science |  FCS'12  | 49



& y = Product b
holds
ALGO_CRT(nlist) mod y = x mod y

Here are_relative_prime and Product denote the
definition in Mizar (Definitions A.3 and A.4). Thus,
we proved the accuracy of our formalization of the
CRT algorithm.

8 Conclusions

In this study, we introduced our formalization of the
Euclidean algorithm, the extended Euclidean algo-
rithm, and the CRT algorithm based on the source
code of NZMATH. Moreover, we proved the accuracy
of our formalization using the Mizar proof checking
system as a formal verification tool. Therefore, we can
conclude that our approach can formalize algorithms
with a single loop structure precisely. Currently, we
are attempting to develop methods to convert the en-
coded algorithms from NZMATH into Mizar automat-
ically 3.
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A Related Definitions of Functors
in Mizar

Definition A.1 (Euclidean Algorithm in SCM)

func GCD-Algorithm -> Program of SCMPDS
equals
(((GBP:=0) ’;’ (SBP := 7) ’;’
saveIC(SBP,RetIC) ’;’ goto 2 ’;’
halt SCMPDS ) ’;’ (SBP,3)<=0_goto 9 ’;’
((SBP,6):=(SBP,3)) ’;’
Divide(SBP,2,SBP,3) ’;’
((SBP,7):=(SBP,3)) ’;’
((SBP,4+RetSP):=(GBP,1))) ’;’
AddTo(GBP,1,4) ’;’ saveIC(SBP,RetIC) ’;’
(goto -7) ’;’ ((SBP,2):=(SBP,6)) ’;’
return SBP;

Definition A.2 (Minimum Member)

let A be set ;
func min* A -> Element of NAT means
(

it in A
& ( for k being Nat

st k in A holds it <= k )
)
if A is non empty Subset of NAT
otherwise it = 0 ;

Definition A.3 (Relatively Prime)

let a, b be Ordinal;
pred a,b are_relative_prime means
for c, d1, d2 being Ordinal
st a = c *^ d1 & b = c *^ d2
holds c = 1;

Definition A.4 (Product)

func product f -> set means
for x being set
holds
( x in it iff ex g being Function
st
( x = g & dom g = dom f
& ( for y being set st y in dom f
holds g . y in f . y ) ) );
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ABSTRACT
Conways’s Game-of-Life (GoL) is one of a family of spa-
tial cellular automata rule sets that employ the Moore
neighbourhood on a rectilinear lattice of cells. GoL gen-
eralises to set of other automata using different neighbour-
numbers that lead to birth and survival. These models ex-
hibit different static properties and also different long term
dynamical equilibrium points. We define some quantifi-
able metrics and explore how some well known GoL vari-
ants can be categorised into groupings, categorised by their
static properties and dynamical equilibria. We also explore
effects due to differing initial crowding levels of the live
seed cell population, and how this affects the categories.

KEY WORDS
statistical mechanics; Game of Life; generalised rules; cel-
lular automata; complex system.

1 Introduction
Cellular Automata (CA) models [1, 13, 28] have long
played an important role in exploring and understanding
of the fundamentals of complex systems [17, 33, 34].

Studies of many CA systems are reported in the litera-
ture and for many complex systems applications includ-
ing: damage spreading [21]; network analysis [38]; food
chain systems [16]; lattice gases [37]; and fluid flow [7].
Two fundamental and classic CAs that provide a basis for
much other work are the Wolfram’s one dimensional au-
tomaton [36], and Conway’s Game of Life [14]. The Wol-
fram system is especially useful because of it conciseness
and the fact that the whole automaton rule state space is
easily described as a family of bit valued cell-wise truth ta-
bles and can be systematically explored. Two dimensional
automata can be also be formulated using the Wolfram ap-
proach [26]. Conway’s Game of Life (GoL) however, also

Figure 1: Coral and Diamoeba Automata.

has a concise specification, but it is formulated in terms of
counts of live neighbouring cells rather than specific pat-
terns.

There is a space of similarly formulated automaton rules
[24] in the same family as GoL [22]. Like the Wolfram
automata not all the rules in the GoL family are “interest-
ing” or can be classified as complex. The Conway precise
specification turns out to be special in the rule set space
of the family, but there are some other related automata
in the family that do have interesting properties and which
have been given names. Figure 1 shows snapshots from
two such GoL family members - known as “Coral” and
“diamoeba.”

There are a number of other variants of cellular automata
including: the game of death [12], with an extra zombie
state added; ratchet automata [15]; and other variants of
GoL such as hyperbolic life [27]. GoL and its variants have
also also been studied: on other non-square geometries [5];
on Penrose tilings [25]; on hexagonal lattices [4]; and on
generalised networks [9]. Work has also been reported on
three dimensional GoL variants [2, 3].

This present article reports work exploring some of the
transient and long term dynamical properties of the GoL
family of automata in two dimensions and on a square, pe-
riodic lattice. In particular a preliminary attempt is made
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to see how this GoL family can be categorised according
to some quantitative metrics that can be obtained from nu-
merical experiments. Attempts to automatically classify
automata by their behaviours have been reported [19], al-
though here we discuss a set of manually carried out ex-
periments.

Much work has been done on studying the coherent struc-
tures that occur in GoL and its variants [11]. It is possi-
ble to implant specific patterns such as gliders, glider guns
and so forth to obtain specific sequences of GoL automata
configurations. However, in this present paper we investi-
gate GoL automata systems that have been randomly ini-
tialised with an initial fraction of live cells. Providing we
simulate a large enough sample of large enough automata
systems, many different individual patterns can occur by
chance, will interact and the system will eventually arrive
a static or dynamical equilibrium. This approach supports
study of the statistical mechanical properties [31] of the
automata systems and the identification of which automata
have stable points [6] or not, as well as a framework to
study universality properties [32] in cellular automata the-
ory [35].

Although stochastic thermal or random effects [18, 20]
have been introduced into cellular automata to study such
properties, in this present work we restrict ourselves to en-
tirely deterministic automata. We avoid asynchronous au-
tomaton [8, 23, 29, 30] effects by using a two phase syn-
chronous update implementation of the automata reported
here. The only randomness or ambiguity introduced is in
the initial random pattern of live cells seeded.

The article is structured as follows: In Section 2 we de-
scribe the notation for the GoL family of automata and the
statistical metrics that can be applied to study them numer-
ically. In Section 3 we present some results for some of
the automata in the family. We discuss the implications in
Section 4 and summarise some conclusions and areas for
further work in Section 5.

2 Automata Notation & Metrics
The game of Live and its family of variant automata are
implemented using the Moore neighbourhood on a d = 2
dimensional array of cells, where the number of (Moore)
Neighbouring sites NM = 8, for d = 2 as shown in Fig-
ure 2. We define the (square) lattice Length as L and hence
the number of sites N , typically N = Ld. We define
the number of live sites NL, and so the metric fraction
fl = NL/N and similarly the number of dead sites ND,
and fraction fD = ND/N .

The GoL community has developed various gener-
alised notations for a GoL-like automata [1, 24]. We

8

1 2 3

4 5

6 7

Figure 2: Moore neighbourhood of 8 sites in 2-D.

elaborate these and use the more verbose form of
Bn1,n2, .../Sm1,m2, .... This notation specifies the
rules that area applied to each site exactly once at each
time step. The notation gives a comma-separated-list of
the allowable numbers ni of live neighbours which give
rise to Birth of a live site from a dead site before the slash,
and likewise another comma-separated list of the allowable
number mi of live neighbours that are necessary for a live
site to survive.

Algorithm 1 Synchronous automaton update cells algo-
rithm.

for all i, j in (L,L) do
gather Moore Neighbour-hoodMi,j

apply rule b[i][j]← {s[i][j],Mi,j}
end for
for all i, j in (L,L) do

copy b[i][j]→ s[i][j]
end for

Algorithm 2 CA Experimental procedure
declare s[L][L]; b[L][L]
for r = 0 to runs do

initialise s, st nL = pN live, rest dead
for t = 0 to te do

automaton update cells
end for
for t = te to tm do

automaton update cells
make measurements

end for
end for
normalise averages

The rules thus support death both from “overcrowding”
and also from “lack of parents.” The classic Conway game
of life is thus specified by the notation B3/S2,3. We use
this notation to specify explicitly the 26 GoL variants we
experiment with below. Although GoL automata are well
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studied, for completeness and to avoid ambiguity, we give
the algorithm for implementing these e automata.

Algorithm 2 shows the experimental procedure we deploy,
based upon the automata update rule procedure specified in
Algorithm alg:synch-update. We use a two-phase update
algorithm and so each rule is applied to change the site at
time t + 1 based on its state and that of its neighbouring
sites at time t.

The following metrics are used to study the automata ex-
perimentally:

• the 1-step time correlation function C1 =
1
N

∑
i,j s(i, j, t).s(i, j, t− 1)

• the fraction of neighbours that are the same as the site
they surround. This is essentially a count of the like-
like bonds, normalised by divining by (N.NM )

• likewise, the fraction of neighbours that are different
from the site they surround

• the number of monomers is the number of live sites
that are completely surrounded by dead sites.

• the number of dimers is the number of connected-
pairs of live sites that are each otherwise surrounded
by dead sites.

The number of arbitrary sized cluster components of live
sites is expensive to compute and we do not use it in this
study.

3 Experimental Results
The GoL family of automata were investigated numeri-
cally. The reported experiments are based on averages over
100 independently randomly initialised runs of a periodic
2562 cell system, equilibrated for 512 time steps and then
run with measured metrics recorded and averaged over a
subsequent 512 steps.

Table 1 shows 26 members of the GoL family of automata
simulated for the specified times t on a 2562 periodic lat-
tice, with random initial fractions of live sites of the speci-
fied fractions p.

Figure 3 shows some of the metrics described in Section 2
applied to the family of automata. The plots are of the
1-step correlation function; the fraction of live and Va-
cant(=dead) cells and the fraction of neighbour links that
have the same (live-live or dead-dead) cell on them. The
plots are sorted according to rank and the labelled points
indicate the automata model. Note that the plot lines natu-
rally group onto plateaux with sharp cliffs separating them.
Automata of similar properties thus group together.

Figure 3: 1-Step Correlation and static fractional metrics.

Figure 4: Monomer and Dimer counts.

Figure 4 shows the number of monomers and dimers of
live cells for the different GoL automata with a starting
initialisation fraction of p = 0.5. The curves are again
ranked and points labelled by automata models. As can be
seen most models do not lead to large numbers of dimers or
monomers, but a small number do exhibit large numbers.
The grouping is split by a relatively sharp shoulder in the
curves.

Figure 5 shows a scatter-plot of the 1-step correlation met-
ric plotted against the fraction of live sites. There are clear
and obvious groupings with some annotations drawn (in
red, online version) indicating which automata behave sim-
ilarly.

The plotted metrics are shown with error bars based on the
estimated experimental standard deviations. These them-
selves give some interesting insights into the behaviours
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Rule Common t=128 t=256 t=128 t=256 t=128 t=256
(B/S) Name
format for Rule p=0.5 p=0.5 p=0.3 p=0.3 p=0.1 p=0.1

B1/S1 Gnarl

B1,3,5,7/S1,3,5,7 Replicator

B1,3,5,7/S0,2,4,6,8 Fredkin

B2/S Seeds

B2/S0 Live Free/Die

B2,3,4/S Serviettes

B3/S0,1,2,3,4,5,6,7,8 Life w/o Death

B3/S1,2,3,4 Mazectric

B3/S1,2,3,4,5 Maze

B3/S2,3 Conway

B3/S4,5,6,7,8 Coral

B3,4/S3,4 34 Life

B3,4,5/S4,5,6,7 Assimilation

B3,4,5/S5 Long Life

B3,5,6,7,8/S5,6,7,8 Diamoeba

B3,5,7/S1,3,5,8 Amoeba

B3,5,7/S2,3,8 Pseudo Life

B3,6/S1,2,5 2x2

B3,6/S2,3 HighLife

B3,6,8/S2,4,5 Move

B3,6,7,8/S2,3,56,7,8 Stains

B3,6,7,8/S3,4,6,7,8 Day & Night

B3,7,8/S2,3,5,6,7,8 Coagulations

B4,6,7,8/S2,3,4,5 Walled Cities

B4,6,7,8/S3,5,6,7,8 Vote4/5/Annl

B5,6,7,8/S4,5,6,7,8 Majority

Table 1: 2562 Automata for different rules at times 128 and 256, for p = 0.5, 0.3, 0.1.
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Figure 5: Scatter-plot of fCorr vs fLive, with annotated groupings in red (colour, online).

of the different automata. Models like “coagulation” and
“anneal” have the highest fluctuations - due to the slowly
but continually varying spatial pattern observed in those
automata over the time frame of the measurements.

4 Discussion
One long term goal of this approach is to identify the dy-
namical growth and equilibria properties of the different
automata [10]. To this end it is useful to attempt a group-
ing of classification based on temporal as well s spatial be-
haviour. The experimental data gathered indicates that the
GoL automata studied fall into one of the following cate-
gories:

1. rapidly reach a single saturated state of almost all
dead or live with at most minor fluctuations

2. steady growth in a complex structural pattern that then

subsequently reaches a saturated state

3. a dynamic equilibrium of structures that fluctuate and
gives rise to a permanently changing pattern - these
refine into a) those with large scale structures and b)
those that only exhibit short scale fluctuations

Table 2 was originally constructed somewhat subjectively
after examination of the time sequences of patterns ob-
tained from the 26 automata. The method involved eye-
balling the models as movies trying to describe some com-
mon words from the observations. Somewhat amazingly,
these however do appear to agree with the clusters found
upon examination of Figure 5. The category 3a - “dynamic
equilibrium with long and multi-scale structures” cluster
together at the top left of the scatter plot.

The category 3b - “ dynamic equilibrium but with short
length scale structures” cluster in a larger area at the lower
left. The other two groups are at the top right area with
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Category Game-of-Live Family Examples - Categorised by Subjective Observation
1 Assimilation; Diamoeba; Live w/o Death; Replicator
2 Coagulations; Coral; Day+Night; Majority; Maze; Mazectric; Move; Anneal
3 a 2x2; Conway; Highlife; Pseudo Life
3 b 34-Life; Amoeba; Fredkin; Gnarl; Live Free or Die; Long Life; Seeds; Serviettes; Stains; Walled Cities

Table 2: Categorisation of GoL Automata for p = 0.5

some differentiation between fast and slow equilibration at
the far right and middle right respectively.

The single exception to this grouping is the “replicator”
automata. It exhibits the strange behaviour of remaining
in fluctuation for a long time then suddenly saturating to a
single dead state, and this may be due to finite size effects
of the simulations.

In Figure 4 the monomers and dimer curves are less ob-
vious discriminators by themselves. The category 3a au-
tomata do however group closely on the mid or upper
shoulder of the monomer and dimer curves, respectively.

Similarly, in Figure 3 the single metric averages do not pro-
vide good discriminators individually, although there are
obvious groupings of the 3a automata appearing together,
and the category 1 also tend to be close together.

We might expect that a caveat of this analysis is that when
the system is not sufficiently “thermodynamically large
enough” then:

• the pattern might otherwise continue to grow if it did
not reach the periodic boundaries

• the particular set of structural patterns that might lead
to categories 3a or 3b cannot arise simply by chance
on a finite sized system.

Nevertheless the classification clustering pattern from ex-
amining the 1-step time correlation function scatter-plotted
against the fraction of live cells does seem to give a good
combined discriminator and grouping that matches obser-
vation.

The fraction of initial live cells can be varied and a variant
of figure 5 interpreted. We do not include these due to
lack of space, but the effect is that if p is too low many of
the automata patterns do not have enough material to form
and so they die out with no live cells and 100% correlation
forever.

Likewise if p is too large then overcrowding also prevents
the complex patterns from forming. The structure shown
in Figure 5 is largely stable and unchanged if the stability
condition 0.3 < p <= 0.5 is satisfied.

5 Conclusions
We have shown how a family of Game-of-Life-like Cellu-
lar Automata can be formulated in terms of a common and
extensible notation and systematically studied. We have
shown that some simple metrics help make preliminary at-
tempts to categorise this family of automata into groups.

We have postulated four categories – originally conceived
in terms of a mix of temporal and spatial structural ob-
servations. These map quite closely to the groupings that
emerge from a scatter plot of the long term averaged values
of the fraction of live cells and the 1-step time correlation
function.

There are interesting features in all the GoL automata stud-
ied - this is no doubt why the community (See http:
//www.conwaylife.com/wiki) has troubled to give
these models specific names. However, perhaps the “most
interesting” ones are those that seem to exhibit the high-
est degree of complexity and not-coincidentally have been
given the names with the word “life” in their names. These
category 3a automata stabilise to a dynamic equilibria of a
relatively low fraction of live cells, with a high degree of
time correlation between their states.

There is scope for further work in examining time-
correlations longer than a single time-step and also com-
ponent sizes larger than dimers. It seems likely that some
more discriminating combinations of static and temporal
metric can further refine the behaviours observed in cate-
gory 3b.

In this work we have limited the study to known named au-
tomata in the GoL family. There is scope to conduct a more
systematic search using the metrics discussed here to look
for other category 3a automata. These criteria might also
be usefully applied to higher dimensional GoL type mod-
els where it is considerably harder to visualise the patterns
and behaviours.
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Abstract— In the present pater, we consider the asyn-
chronous parallelism on the SN P system, which is a repre-
sentative of natural computing, and propose asynchronous
SN P systems that perform logical and arithmetic operations.
We first propose SN P systems that compute logical

operations, which are NOT, OR, AND and EX-OR. The SN
P systems work in O(1) sequential and parallel steps using
O(1) neurons. We next propose a SN P system that computes
addition of k binary numbers of m bits. The SN P system
works in O(km) sequential steps or O(m) parallel steps
using O(m) neurons. Finally, we propose a SN P system that
computes multiplication of two binary numbers of m bits,
and show that the SN P system works in O(m2) sequential
steps or O(m) parallel steps using O(m2) neurons.

Keywords: asynchronous SN P system, logical and arithmetic
operations

1. Introduction
The Spiking neural P system [3] (in short, SN P system)

is a representative of natural computing, and is a computing
device such that neurons communicate using electrical im-
pulses (a.k.a. spikes). The SN P system is proved to be able
to simulate Turing machines [2], [3], and the fact means the
computation model has enough computational power.
The SN P system consists of a set of neurons and synapses

that connect two neurons. The contents of each neuron
consist of a number of copies of a single object type, called
the spike. In addition, firing rules are assigned to each
neuron, and the firing rules allow a neuron to send spikes
to other neurons as messages. The application of the rules
depends on the contents of the neuron; in the general case,
applicability is determined by checking the contents of the
neuron against a regular set associated with the rule.
Several SN P systems have been proposed for numerical

NP problems [4], [5], [6], [7]. For example, Leporati et al.
[1] proposed four SN P systems for the following arith-
metic operations: addition, multiple addition, comparison,
and multiplication with a fixed factor. All numbers given as
inputs to the systems are expressed in encoded binary form
using a spike train, in which the presence of a spike denotes
1, and the absence of a spike denotes 0. The outputs of the
computation are also expressed in the same form, and are
sent out to the environment. All of the four SN P systems
work in O(m) steps for binary numbers of m bits, because
the systems output the result sequentially.

However, synchronous application of firing rules is as-
sumed on the above SN P systems. The synchronous appli-
cation means that all applicable firing rules in all neurons
are applied synchronously.

On the other hand, there is obvious asynchronous paral-
lelism on the biological background of neurons that send
electrical impulses along axons to other neurons. The asyn-
chronous parallelism means that all neurons may indepen-
dently react on firing rules with different timing. Since
all neurons basically works in asynchronous manner, the
asynchronous parallelism must be considered to make SN
P system more realistic computational model.

In the present paper, we propose SN P systems with fully
asynchronous parallelism. The fully asynchronous paral-
lelism means that any number of applicable firing rules may
be applied in one steps on the SN P system. As complexity
of the asynchronous SN P system, we consider two kinds
of numbers, which are a number of sequential steps and a
number of parallel steps. The number of sequential steps is a
number of executed steps in case that firing rules are applied
sequentially, and the number of parallel steps is a number of
executed steps with synchronous application of firing rules.

Using the fully asynchronous parallelism, We propose
SN P systems for logical and arithmetic operations. We
first propose SN P systems that compute logical operations,
which are NOT, 2-input logical operation, and k-input log-
ical operation. We show all SN P systems for the logical
operations work in O(1) sequential and parallel steps using
O(1) neurons.

We next propose two asynchronous SN P systems that
compute addition. The first SN P system computes addition
for two binary numbers of m bits, and the second SN P
system computes addition for k binary numbers of m bits.
We show that both SN P systems work in O(m) sequential
and parallel steps using O(m) neurons.

Finally, we propose a SN P system for multiplication of
two binary numbers of m bits. The SN P system contains
sub-systems that compute logical AND operation and addi-
tion for k binary numbers, which are given above. We show
that the SN P system works in O(m2) sequential steps or
O(m) parallel steps using O(m2) neurons.
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Figure 1: An example of neural circuits.

2. Preliminaries
2.1 Neural cells and spikes
We first describe neural cells and spikes, which are

conceptual bases of the SN P system. The neural cells
communicate by transmitting electric pulses between cells.
The pulse is usually called a spike, or action potential.
Figure 1 shows an example such that a neural action

potential is given altogether with the main parts of a neuron
– the cell itself (soma), the axon, the dendrites.
The neuronal signals consist of short electrical pulses, and

the signals are propagated along the axon. The contact of
the axon of a neuron with the dendrites of another neuron
is called a synapse. When an action potential arrives at
a synapse, the arrival triggers an electrical response in a
received neuron.

2.2 Standard SN P systems
Using the concept of the above neurons, spiking neural P

systems (SN P systems, in short) were proposed in [3]. The
basic idea of the SN P system is based on a concept of cells
related by synapses and behavior according to the states.
Formally, a spiking neural P system is defined as follows.

Π = (O, σ1, σ2, · · · , σm, syn, in, out)

• O ={a} is the singleton alphabet (a is called spike).
• σ1, σ2, · · · , σm are neurons such that,

σi = (ni, Ri), 1 ≤ i ≤ m

– ni (≥ 0) is an initial number of spikes contained
in the neuron σi.

– Ri is a finite set of rules of the following two
forms:

(1) E/ac → a; d
E is a regular expression over a, and c ≥
1, d ≥ 0 are integer numbers; if E = ac,
then it is usually written in the following
simplified form: ac → a; d.

(2) as → λ
s ≥ 1 is an integer, and as �∈ L(E), where
L(E) denotes the regular language defined

by E, and E is a regular expression defined
in (1) in the same neuron.

• syn ⊆ {1, 2, · · · , m}×{1, 2, · · · , m}, with (i,i) �∈ syn
for 1 ≤ i ≤ m. (The syn denotes synapses between
neurons.)

• in, out ∈ {1, 2, · · · , m} indicate the input and output
neurons of Π.

The rules of type (1) are called firing rules, and the rules
are applied as follows. If neuron σi contains k ≥ c spikes,
and ak ∈ L(E), then the rule can be applied. The execution
of the rule removes c spikes from neuron σi (thus leaving
k − c spikes), and prepares one spike to be delivered to all
neurons σj such that (i, j) ∈ syn. In case of d = 0, the spike
is immediately emitted, otherwise the spike is emitted after
d computation steps of the system. (As usually happens in
membrane computing, a global clock is assumed, marking
the time for the whole system, hence the functioning of the
system is synchronized.) If the rule is used in step t and d ≥
1, then the neuron is closed in steps t, t+1, t+2, · · · , t+d−1.
The closed neuron cannot fire according to the rule, and
cannot receive any spike. (All spikes that are sent to the
closed neuron are lost.) In step t + d, the neuron becomes
open, so that the neuron can receive spikes and select rules
to be fired.
Rules of type (2) are called forgetting rules, and are

applied as follows. In case that neuron σi contains exactly
s spikes, the rule is applied, and all s spikes are removed
from the neuron σi. Note that, by definition, if a firing rule
is applicable to the neuron, no forgetting rule is applicable
in the neuron.
In each time unit in computation on the SN P system,

if at least one of the rules are applicable in a neuron σi,
then a rule in Ri must be applied. Since two firing rules,
E1 : ac1 → a; d1 and E2 : ac2 → a; d2, may be L(E1) ∪
L(E2) �= φ, it is possible that two or more rules can be
applied in a neuron. In such a case, only one of the rules is
chosen non-deterministically.
The initial configuration of the system is described by

the numbers n1, n2, · · · , nm of spikes in neurons, with all
neurons being open. During the computation, a configuration
is defined by the numbers of spikes in neurons and states of
the neurons, which can be expressed as the number of steps
to count down until it becomes open. (The number is zero if
the neuron is open). A computation in a SN P system starts
in the initial configuration. In each step of computation, all
spikes and neurons can be transformed in parallel according
to applicable rules. If no rule is applicable for all neurons,
the system ceases computation.
We now show an example of the standard SN P system

in Figure 2. The SN P system in Figure 2 is given below.

Π = (O, σ1, σ2, syn, 2)

• O = {a}
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Figure 2: An example of a standard SN P system.

• σ1 = (1, {a → a})
• σ2 = (1, {a → a})
• syn = {(1, 2), (2, 1)}
The example has two neurons, σ1 and σ2; neuron σ2 is the

output neuron. Both neurons have one rule. In the first step,
neuron σ1 and neuron σ2 send one spike to each neurons,
and neuron σ2 sends one spike to the environment. In the
next step, the same rule is applied in both neurons as step
1. Therefore, the SN P system outputs a spike forever in
synchronous manner.

2.3 Asynchronous SN P systems

In this section, we explain the difference between a
standard SN P system and an asynchronous SN P system,
which is considered in the present paper.
On the standard SN P system, all of the rules are applied in

a non-deterministic maximally parallel manner (synchronous
manner). In one step of the standard SN P system, one of
applicable rules is applied in each neuron. (In case there
are several possibilities, one of the applicable rules is non-
deterministically chosen.) All neurons, for which no rule
is applicable, remain unchanged to the next step. In other
words, all applicable rules are applied in parallel in each
step of computation.
On the other hand, we assume that rules are applied

in fully asynchronous manner in the asynchronous SN P
system, and any number of applicable rules is applied in
each step of computation. In other words, the asynchronous
SN P system can be executed sequentially, and also can be
executed in maximal parallel manner.
Note that delay d and states of neurons, which are

defined in a standard SN P system, cannot be defined in
the asynchronous SN P system, because global clock cannot
be assumed in the asynchronous computation. Therefore,
each firing rule forms E/ac → a in the asynchronous SN P
system.
We consider an execution in case that SN P system Π

in Figure 2 is executed in asynchronous manner. There are
applicable firing rules in neuron σ1 and neuron σ2 in the
initial state of the system. If these rules are applied in
parallel, the system Π output a spike forever. However, if
a firing rule is applied in one of neurons, the system stops
computation because the other neuron contains two spikes
and no rule can be applied in the system. The example

implies that the asynchronous SN P system performs several
computations.
We now describe complexity of the asynchronous SN

P system. We consider two kinds of complexities on the
asynchronous SN P system, which are the number of se-
quential steps and the number of parallel steps. The number
of sequential steps is the number of executed steps in case
that the SN P system is executed sequentially. Since various
sequential executions can be considered on the asynchronous
SN P system, we define that the worst number of sequentially
executed steps is the number of sequential steps. On the
other hand, The number of parallel steps is defined to be the
number of executed steps in case that the SN P system is
executed in maximal parallel manner.

3. Logical operation
In this section, we propose asynchronous SN P systems

that compute logical operations. We first describe the input
and output of the logical operations. Then, we next propose
the asynchronous SN P systems that compute NOT, 2-input
logical operations, and k-input logical operations. We finally
show complexity of the proposed SN P systems.

3.1 Input and output
Boolean values, 0 and 1, are inputs and outputs of the

logical function. We assume that the two values, 0 and 1,
are denoted by spikes a and ak+1, where k is a constant
that is equal to the number of Boolean inputs of the logical
operation. (In case of 2-input logical function, a3 denotes
Boolean value 1. )

3.2 NOT
The asynchronous SN P system that executes NOT is

given as follows.

ΠNOT = ({a}, σ1, σ2, syn, 2)

• σ1 = (k + 1, {ak+2 → ak+1, a2(k+1)/a2k+1 → a})
• σ2 = (0, {a → a, ak+1 → ak+1})
• syn = {(1, 2), (2, 1)}
Figure 3 illustrates the SN P system ΠNOT for k = 1.

First, an instance, a or a2, is inputted in neuron σ1. In case
that the instance is 0, a firing rule a3 → a2 is applied, and
spike a2 is sent to neuron σ2. Since a firing rules a2 → a2 is
applied in neuron σ2, a2 is sent out as output. On the other
hand, in case that the instance is 1, a firing rule a4/a3 → a2

is applied in neuron σ1, spike a is sent to neuron σ2, and
spike a is sent out from neuron σ2 as output. In both cases,
spike a2 is re-stored in neuron σ1 for another computation.

3.3 2-input logical operations
In case of 2-input logical operations, two inputs are given

in parallel to the SN P system. Since we assume that 0 and
1 are denoted a and ak+1 in the SN P system, instances 00,
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Figure 3: The asynchronous SN P system that executes
NOT .

Table 1: A truth table for 2- input logical operation.
instance OR AND EX-OR

α 00 = a2 0 = a 0 = a 0 = a
β 01(10) = ak+2 1 = ak+1 0 = a 1 = ak+1

γ 11 = a2(k+1) 1 = ak+1 1 = ak+1 0 = a

01, 10, and 11 are denoted using spikes a2, ak+2, ak+2 and
a2(k+1), respectively. Then, we can define appropriate output
values for the above spikes. Table 1 shows an example of
output patterns for the inputs.
We must assume that one of the inputs is given to the

SN P system because the SN P system is asynchronous. In
such case, spikes in the system is a or ak+1, and no firing
rule can be applied. Then, we can distinguish the number of
values given to the system.
The asynchronous SN P system Π2-LO that compute 2-

input logical operation is given as follows. (α, β, and γ are
Boolean values in Table 1. )

Π2-LO = ({a}, σ1, syn, 1)

• σ1 = (0, {a2 → α, ak+2 → β, a2(k+1) → γ})
• syn = φ

Figure 4 illustrates the SN P system Π2-LO .

3.4 k-input logical operation
In this section, we propose the SN P system that computes

k-input logical operation. Since the proposed SN P system
is asynchronous, we must assume that some of the inputs
are given to the SN P system. We first describe how to
distinguish the number of given inputs using the number
of spikes in the neuron.
Let N(σi) be the number of spikes in neuron σi. Since the

Boolean values, 0 and 1, are denoted using a and ak+1 for
the k-input operation,N(σi) satisfies the following condition
in case that j1 and j2 are the numbers of 0 and 1 that are
given to the neuron.

N(σi) = j1 + (k + 1)j2

= kj2 + (j1 + j2)

We now consider the above condition in two cases. If all
inputs are given to σi, i.e. j1 + j2 = k, N(σi) is a multiple
of k. On the other hand, N(σi) is not a multiple of k in
case that some of input values are not given to the neuron
because j1 + j2 < k.

a2 α
ak+2 β
a2(k+1) γ�

1�

Output�Input�

Figure 4: The asynchronous SN P system that executes 2-
input logical operation.

Table 2: A truth table for k-input logical operation (k = 4).
instance OR AND EX-OR

α0 a4 0 = a 0 = a 0 = a
α1 a8 1 = a3 0 = a 1 = a3

α2 a12 1 = a3 0 = a 0 = a
α3 a16 1 = a3 0 = a 1 = a3

α4 a20 1 = a3 1 = a3 0 = a

Therefore, we can distinguish the number of given inputs
by the above condition, i.e, the number of spikes is a multiple
of k if and only if all k input values are given to the neuron.
Using the condition, we can proposed the asynchronous SN
P system Πk-LO using firing rules defined only for cases that
the number of spikes is a multiple of k.

Πk-LO = ({a}, σ1, syn, 1)

• σ1 = (0, {ak(j+1) → αj | 0 ≤ j ≤ k})
• syn = φ

Figure 5 illustrates the SN P system Πk-LO , and Table 2
shows examples of the above αj for k-input OR, AND, and
EX-OR for k = 4.

3.5 Complexity
We consider complexity of proposed SN P systems

ΠNOT , Π2-LO, and , Πk-LO . All of the SN P systems consist
of 1 neuron, and work in 1 step if all input values are given
to the system. Therefore, we obtain the following theorem.
Thorem 1: The asynchronous SN P systems, ΠNOT ,

Π2-LO , and, Πk-LO , work in O(1) sequential and parallel
steps using O(1) neurons. �

4. Addition
In this section, we propose asynchronous SN P systems

for addition. We first propose a SN P system that computes
addition of two binary numbers of m bits. We next propose
a SN P system that computes addition of k binary numbers
of m bits.

4.1 Addition of two binary numbers
An idea of the SN P system for addition of two binary

numbers is based on a logic circuit for addition. As described
in Section III, we assume that the two Boolean values, 0 and
1, are denoted by spikes a and ak+1.
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Figure 5: Asynchronous SN P system that executes k-input
logical operation.
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Figure 6: A SN P system ΠHA for the half adder.

We first introduce a half adder (HA), and propose a SN
P system whose input and output is the same as the half
adder. The half adder is a logic circuit that adds two Boolean
values, A and B, and output two Boolean values, S and C
such that the sum of A and B is 2C + S. In other words,
S and C are defined as S = A⊕ B and C = A ∧ B. Since
we can compute the logical operations using SN P systems
described in Section III, we obtain an asynchronous SN P
system ΠHA, which is illustrated in Figure 6, for the half
adder.
We next introduce a full adder (FA), and propose a SN

P system for the full adder. The full adder is a logic circuit
that adds three Boolean values, A, B and Cin, and output
two Boolean values, S and Cout such that the sum of A,
B and Cin is 2Cout + S. Since it is well known that the
full adder can be constructed from two half adder and one
OR gate, we can obtain an asynchronous SN P system ΠFA,
which is illustrated in Figure 7, for the full adder.
Using the SN P system for the full adder, we can construct

a SN P system for addition of two binary numbers of m
bits. We assume that input of the addition is a pair of two
binary numbers A0, A1, · · · , Am−1 and B0, B1, · · · , Bm−1

that represent two numbers A and B such that A =
∑m−1

j=0 Aj ∗2j and B =
∑m−1

j=0 Bj ∗2j , and also assume that
a binary number S0, S1, · · ·Sm denote a sum of A and B.
Then, we obtain a SN P system Π2-ADD , which computes

A�

B�

π 2-LO 
for 
OR�

π HA�

Cin�
π HA�

S�

S�

C�

C�

S�

Cout

π FA�

Figure 7: A SN P system ΠFA for the full adder.
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Figure 8: A SN P system for addition of two binary numbers.

addition of two binary numbers of m bits, in Figure 8.
Finally, we consider complexity of the proposed SN P

systems. Since complexity of ΠHA or ΠFA is O(1) parallel
and sequential steps, we obtain the following theorem for
ΠADD.
Thorem 2: The asynchronous SN P system Π2-ADD

works in O(m) sequential and parallel steps using O(m)
neurons. �

4.2 Addition for k binary numbers
In this section, we propose an asynchronous SN P system

that computes addition for k binary numbers for k >
2. Although we can easily obtain the SN P system that
computes the addition using the SN P system proposed in
the previous section, the SN P system needs O(m2) neurons
and O(km) parallel and sequential steps. In the following,
we propose the SN P system that works in O(m) sequential
and parallel steps using O(m) neurons.
We first consider input and output for the addition. We

assume that the input of the addition is k binary numbers,
X0, X1, · · · , Xk−1, such that Xi ==

∑m−1
j=0 Xi,j ∗ 2j for

m Boolean values, Xi,0, Xi,1, ·Xi,m−1. The output of the
addition is a binary number S0, S1, · · ·Sm, which denote a
sum of the binary numbers. (We assume the sum dose not
overflow in m + 1-th bit to simplify the description. )
We next proposed a multi-input full adder (MFA), which

computes a sum and a carry for k inputs. The input and
output of MFA are defined as follows.

Input: k Boolean values, X0,j , X1,j, · · · , Xk−1,j , and an
integer Cin such that Cin ≤ k.
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Figure 9: A SN P system for addition of k binary numbers.

Output: A sum S and a carry Cout, which are defined
as follows. (S is a Boolean value, and Cout is an
integer.)

S =

⎧

⎨

⎩

0 (If Cin +
∑k−1

i=0 Xi,j is even)

1 (Otherwise)

C =

⌊

Cin +
∑k−1

i=0 Xi,j

2

⌋

Since 0 and 1 are denoted by spikes a or ak+1 in the
SN P systems, we assume that an integer c is denoted by
a spike ac(k+1)+(k−c), which means (k − c) 0s and c 1s.
(As we discussed in Section III, the spikes are distinct for
0 ≤ c ≤ k.)
If we obtain ΠMFA, which is a SN P system for the

multi-input full adder, Πk-ADD , which is a SN P system
for addition of k binary numbers of m bits, can be easily
constructed as shown in Figure 9.
We now describe details of a SN P system ΠMFA, which

is illustrated in Figure 10. In Figure 10, σCP is a neuron
that copies input spikes and output the spikes to two other
neurons. One of the copied spikes are sent to Πk-LO for EX-
OR, and then, the output is sent to P2-LO , which are SN P
systems described in Section III. EX-OR of the input values
is computed in the SN P systems, and the result of EX-OR
is outputted as S.
The other copied spikes are sent to a neuron CP−1, in

which the number of spikes is decremented by one for barrier
synchronization in the next neuron σCC . Then, the number
of spikes are halved in σCC , and the spikes are outputted as
Cout.
Finally, we consider complexity of the proposed SN P

system Πk-ADD . Since ΠMFA works O(1) parallel and se-
quential steps, we obtain the following theorem for Πk-ADD .
Thorem 3: Asynchronous SN P system Πk-ADD works in

O(m) sequential and parallel steps using O(m) neurons. �

5. Multiplication
In this section, we propose an asynchronous SN P system

that computes multiplication of two binary numbers of m

πMFA

{ak(j+1) ak(j+1) 
  | 0 ≤ j ≤ k }�

X0,j�
CP�

X1,j�

Xk-1,j�

Cin�

S�

CC�

{ak(2j+1)-2 akj,

  ak(2j)-2 akj 
  | 1 ≤ j ≤ k }�

CP�

{ak(j+1) ak(j+1) 
  | 0 ≤ j ≤ k }�

π 2-LO �

for EX-OR�

π k-LO for EX-OR�

{ak(j+1) ak(j+1)-1 
  | 0 ≤ j ≤ k }�

CP-1�

π k-LO for EX-OR�

{ak(j+1) ak(j+1)-1 
  | 0 ≤ j ≤ k }�

CP-1�
Cout

Figure 10: A SN P system for the multi-input full adder
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0
00

0 0

Figure 11: An example of the multiplication of the binary
numbers for m = 3.

bits. We assume that input for the multiplication is the same
as input for the addition of two binary numbers A and B,
which are A0, A1, · · · , Am−1 and B0, B1, · · · , Bm−1 such
that A =

∑m−1
i=0 Ai ∗ 2i and B =

∑m−1
j=0 Bj ∗ 2j , and

also assume a binary number P0, P1, · · ·P2m−1 is an output
binary number of the multiplication A×B. The two Boolean
values, 0 and 1, are denoted by spikes a and ak+1 such that
k ≥ m, respectively.
We now explain an outline of the proposed SN P system

for the multiplication. (Due to space limitation, we omit
details of the SN P system.) The SN P system computes
the multiplication using the following 2 steps.

Step 1: Compute AND operation between
A0, A1, · · · , Am−1 and each bit Bj for
0 ≤ j ≤ m − 1, then store the result in
Xj,0, Xj,1, · · · , Xj,2m−2 as a j-bit left-shifted
binary number.

Step 2: Compute addition of X0, X1, · · · , Xm−1, which
are the results of Step 1, using the SN P system
Πk-ADD , which is described in Section III.

Figure 11 illustrates an idea of the multiplication in case
of m = 3. The AiBj (0 ≤ i ≤ 2, 0 ≤ j ≤ 2) represent the
result of Ai ∧ Bj , and 0s are added to the value for j-bit
shift. Then, the system executes addition of the values, and
we obtain the the multiplication of A and B.
We now show a SN P system ΠMUL for the multiplication

in Figure 12. A SN P system ΠMUL contains a set of
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Figure 12: An SN P system ΠMUL
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Figure 13: An SN P system ΠAND

membranes σCOPY , ΠAND, Πk-ADD , and a membrane
σDUMMY as sub-systems. We explain each of the sub-
systems in the following.

• σCOPY is a membrane that copies each input value,
and output m copies of the input value to ΠAND.

• ΠAND is a SN P system that consists of m2 sub-
systems, Π2-LO . Each Π2-LO executes AND operation
of Ai and Bj , and outputs the result to Πk-ADD as
Xj,i+j . Figure 13 illustrates the SN P system ΠAND .

• σDUMMY is a membrane that send a dummy value
0 to Πk-ADD . The dummy values is used for creating
left-shifted values.

• Πk-ADD is a SN P system that executes addition for
X0, X1, · · · , Xm−1. As output of the system, we obtain
P0, P1, · · · , P2m−2, which is the multiplication of A
and B.

Finally, we consider complexity of proposed SN P system
ΠMUL. Since ΠAND works in O(m2) sequential steps and
O(m) parallel steps in ΠMUL, we obtain the following
theorem for ΠMUL.
Thorem 4: The asynchronous SN P system ΠMUL works

in O(m2) sequential steps or O(m) parallel steps using
O(m2) neurons. �

6. Conclusion and Future Work
In the present paper, we have proposed asynchronous SN

P systems that compute logical operations, addition and
multiplication. We first proposed the SN P systems for
logical operations works in O(1) sequential and parallel
steps using O(1) neurons. We next proposed two SN P
systems that computes addition of binary numbers of m bits,
and show that the SN P systems work in O(m) sequential
and parallel steps using O(m) neurons. We finally proposed
a SN P system for multiplication of two binary numbers ofm
bits, and show that the SN P system works in O(m) parallel
steps or O(m2) sequential steps using O(m2) neurons.
In the future research, we will propose another asyn-

chronous SN P systems that deal with computationally hard
numerical problems, such as the subset sum problem or the
knapsack problem.
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Abstract - This article reviews cell decomposition as a 

method of motion planning. To analyse test case algorithm, 

use a polygon with some holes as routing space and contain 

of some obstacles. In order the original polygon triangulation 

or pseudo-triangulation, use the sweep-line algorithm to 

divide the original polygon into multiple polygons without 

holes. Then each monotone polygons triangulates and using 

triangles center and the edges center, roadmap graph will be 

constructed. 

Origin and destination points is located within a separate 

triangle. Routing from origin triangle to destination triangle 

using Dijkstra algorithm will be done and the shortest path 

can be obtained without collision with obstacles. The new 

innovative algorithm pseudo triangulates the Monotone 

polygons instead of triangulation and center of the pseudo 

triangles are obtained with this method. Pseudo-triangulation 

makes shorter path from origin to destination. The sweep line 

algorithm order is O(nlogn) and the pseudo triangulation 

algorithm order is O(nlogn). 

Keywords: Cell decomposition, Pseudo triangle, Sweep-line, 

Monotone polygon, Motion planning  

 

1 Introduction 

One of the major challenges in controlling the robot is 

motion planning. Motion planning problem is used to run the 

software in various environments, designing surgeon robotic 

arm, mapping unknown environments, controlling the variable 

environments and designing structure of the chemical material 

[2]. 

Motion planning algorithms include methods based on 

Sampling and Combinatorial. Methods based on sampling do 

the routing with getting a new random point from the 

movement environment at each stage. All combinatorial 

motion planning methods, jointly build a Roadmap [5]. Path is 

a graph which is located within the routing environment and 

crosses between obstacles. It can search the shortest path from 

origin to destination. 

Cell decomposition is one of the combinatorial motion 

planning methods. Cell decomposition using different methods 

such as the trapezoidal, vertical, cylindrical, rectangular, 

polytopal, and triangular divides polygon including obstacles 

to number of cells [5, 7]. In this research using triangulation 

and pseudo triangulation methods, cell decomposition can be 

studied. 

In section 2 will be familiar with the concepts of cell 

decomposition. In section 3, using the sweep line algorithm, 

original polygon divides into multiple monotone polygons. In 

section 4 with the help of triangulation and pseudo 

triangulation algorithms, each monotone polygon divides into 

number of cells. Also in section 5 roadmap graph is created 

using pseudo triangles and triangles, weighted graph search 

algorithm will search the roadmap to find the shortest path 

from origin to destination. In section 6 cell decomposition 

using triangulation and pseudo triangulation methods are 

compared and the research results are described. 

 

2 Cell decomposition 

Combinatorial motion planning methods search paths 

using continuous configuration space and unlike sampling 

methods don't use approximate methods. In fact, these 

methods use an exact algorithm. These methods are in 

contrary motion planning methods based on sampling.  

Combinatorial method algorithm is Perfect, This means 

that finds the answer to the problem or correctly reports that 

there is no answer. In some cases the sampling algorithms are 

unable to determine whether problem has answer or not. Also 

in cell decomposition methods, algorithms can be found that 

solve the problem in time O(n), but the probability that they 

can be implemented is very low. Consequently, all 

combinatorial method issues cannot be implemented. 

 

2.1 Polygonal obstacles 

In this method, we assume that robots are point and if 

robots were not point, Minkowski Difference should be 

calculated for them. In Fig. 1, you can see the two obstacles 

within the routing space. In fact we have a polygon with two 

holes. If there's a hole in the obstacle, be ignored.  
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Fig. 1. Polygon with holes 

 

The cell decomposition method includes three types of 

data structure: The first type is Vertices, Each vertex v 

contains a pointer to the point (x, y) ∈ C = R2 and contains 

another pointer to some half-edge that their source is v. The 

second type is Area; each area has some pointers to 

surrounding half-edges that they are on area borders. If the 

edge is out of the last border point, the pointer value is null. 

Area includes a list of pointers for each component (hole) that 

located within area. 

The third type is Edge, edges are directed, usually as a 

circular chain are around an area. Each edge is stored as a 

pointer to its inner area, In Fig. 1; these three types are 

observed [5]. 

 

2.2 Cell decomposition method 

For the original polygon triangulation or pseudo 

triangulation, primarily using a sweep line algorithm divide 

the original polygon into multiple polygons without holes and 

then these monotone polygons triangulate and pseudo 

triangulate, sweep line algorithm will be described in the next 

section. 

 

3 Sweep line and monotone polygon 

Primarily using a horizontal line the original polygon is 

swept along the y-axis. Using the sweep line, original polygon 

vertices and obstacles vertices are arranged in order of y. The 

vertices have identical y, are arranged based on x. A list of all 

the vertices is produced that are arranged respectively on y 

and then x. 

 

3.1 Identify the type of vertices 

Now vertices according to the order in the list are 

examined. Based on the position of the vertex vi in adjacent of 

previous neighbor vertex vi-1 and next neighbor vertex vi+1, 

type of vertex is specified. 

1) If the vertex vi-1 and vi+1 in terms of height (y 

component) to be respectively the one above and one 

below the vertex vi, vi is a Regular vertex. 

2) If any two vertices vi-1 and vi+1 to be the vertices of 

the lower altitude, this is a Start vertex or Split. To 

determine that being faced with what type of vertices 

must draw a horizontal line from this point on the 

entire original polygon. If the number of points on 

the original polygon and the obstacles, of dealing 

with this line, separately right and left this vertex was 

odd, vertex is "Split" and if it was even, vertex is 

"Start".  

Only an issue that should be noted, Vertices that are 

located on the horizontal line and both neighbor 

vertices are above or below, these points are not 

counted. Because this is a tangent point and not 

intersection. This is the horizontal line method 

concept that if the top of the vertex was outside the 

original polygon, this is a Start vertex. If the top of 

the vertex was inside the original polygon, this is a 

Split vertex (Fig. 2).  

 

 
Fig. 2. Split and merge vertex 

 

3) If any two vertices vi-1 and vi+1 to be the vertices of 

the higher altitude, this is an End vertex or Merge. To 

determine that being faced with what type of vertices 

must draw a horizontal line from this point on the 

entire original polygon. If the number of points on 

the original polygon and the obstacles, of dealing 

with this line, separately right and left this vertex was 

odd, vertex is "Merge" and if it was even, vertex is 

"End" [2].  

 

After identifying the type of vertices, to derive the 

monotone polygons from within original polygons, do the 

below operations on "Split" and "Merge" vertices: 

1) Each "split" vertex is connected to vertex that is 

located above it and the connected vertex must be 

closest vertex of height and visible. 

2) Each "merge" vertex is connected to vertex that is 

located below it and the connected vertex must be 

closest vertex of height and visible. 

 

In Fig. 3, a polygon with an obstacle is observed; 

Respectively "split" and "merge" vertices are connected to the 

nearest vertex of their top and bottom. Drawing diameters 

divide the original polygon into smaller monotone polygons. 

The sweep line algorithm order for obtain monotone polygons 

is O(nlogn). 
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Fig. 3. The internal diameters between "Split" and "Merge" 

vertices 

 
Monotone polygon is a simple polygon that is no 

obstacle in it and excluding the highest and lowest vertex of y, 

the rest are regular type. After drawing internal diameters 

should obtain a list of generated monotone polygons. To do 

this, as in Fig. 3 you can see, original polygon vertices in 

clockwise direction and obstacles polygons vertices in anti 

clockwise direction will be stored. 

Make a list named "total" that includes all the vertices of 

the original polygon and obstacles. On one of the original 

polygon vertices, starting to move in order polygons were 

stored. Always must move on the original polygon in the 

clockwise order and on the obstacles polygons in the anti 

clockwise order. When we got to the vertex that it's degree 

was more than 2, means that it was attached to one or several  

internal diameter, CCW angle between previous surveyed 

vertex vi-1 and the current vertex vi and the next vertices which 

were connected to vertex vi by edges, is obtained. 

The next vertex must make the least CCW angle with the 

vertex vi and vertex vi-1. Then, most likely the next vertex will 

be located on vertices of the obstacles polygons. This process 

continues until we reach the first traversed vertex, a monotone 

polygon is extracted. All these polygon vertices are removed 

from the "total" list and now again, start to traverse from a 

vertex on the original polygon, this is repeated until all 

monotone polygons are extracted and "total" list is empty [3]. 

In the next section using triangulation and pseudo 

triangulation algorithms, each monotone polygon will be 

divided into several cells. 

 

4 Triangulation and pseudo triangulation 

In this section, using monotone triangulation and 

incremental pseudo triangulation, the cells within each 

monotone polygon are obtained. Triangulation algorithm has 

linear time O(n) and pseudo triangulation algorithm order is 

O(nlogn). 

 

4.1 Triangulation algorithm 

In Fig. 3 , created monotone polygons are triangulated 

using the monotone triangulation method and the triangulation 

result is observed in Fig. 4. Monotone triangulation algorithm 

is described in Fig. 5. This method arranges vertices in order 

of y. The vertices have identical y, are arranged based on x. 

Then compare the two consecutive edges on left and right 

chains of monotone polygon and draw the required diameters 

for the triangulation [2].  

 

 
Fig. 4. Monotone polygon triangulation 

 

Algorithm TRIANGULATEMONOTONE(P) 

Input. A strictly y-monotone polygon P stored in a doubly-

connected edge list D. 

Output. A triangulation of P stored in the doubly-

connected edge list D. 

1.  Merge the vertices on the left chain and the vertices on 

the right chain of P into one sequence, sorted on 

decreasing y-coordinate. If two vertices have the same   

y-coordinate, then the leftmost one comes first. Let u1, 

…, un denote the sorted sequence. 

2. Initialize an empty stack S, and push u1 and u2 onto it. 

3. for j←3 to n−1 

4.            do if uj and the vertex on top of S are on               

.                  different chains 

5.                   then Pop all vertices from S. 

6.                            Insert into D a diagonal from uj to         

.                         each                                                         

.                         popped vertex, except the last one. 

7.                           Push uj−1 and uj onto S. 

8.                   else Pop one vertex from S. 

9.                           Pop the other vertices from S as long      

.                        as the  diagonals from uj to them are       

.                        inside P Insert these diagonals into D     

.                        Push the last vertex that has been            

.                        popped back onto S. 

10.                         Push uj onto S. 

11. Add diagonals from un to all stack vertices except the 

first and the last one. 

 
Fig. 5. Monotone triangulation algorithm 

 

4.2 Pseudo triangulation algorithm 

Pseudo triangle is said to polygon that exactly has three 

convex interior angles and the rest of the interior angles are 

concave. This polygon is shaped like a triangle. Pseudo 

triangulated polygon for n vertices has at least 2n-3 edges. 

Pointed pseudo triangulated polygon for n vertices exactly has 

2n-3 edges [1]. 

Cell decomposition method using pseudo triangulation 

divides the area including obstacles into number of pseudo 

triangles. Incremental pseudo triangulation algorithm is 
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described in Fig. 6. In this method, traversing is started from a 

vertex on polygon convex hull and makes a triangle with two 

initial edges.  

At each step a new vertex is added, as regards 

pointedness or planarity is violated, pseudo triangles creation 

begins. At some stage split the existing edges into two parts 

and use the new edge as a diameter [4, 6]. 

 

Algorithm INCREMENTAL PSEUDO-TRIANGULATION(P) 

Input. A simple polygon P given by its point set, in ccw order 

around its boundary. 

Output. A pointed pseudo-triangulation of P 

1. Start from a vertex on the convex hull of the polygon and 

the first two edges to obtain a triangle. 

 

2. Add the vertices one at a time, together with a new polygon 

edge. 

 

3. If pointedness is violated, split the existing edges incident 

to the last vertex into two parts, using the new edge as a 

divider. Move half of them (the part containing only added 

edges, not the other polygon edge incident to the vertex) to the 

new endpoint. Recourse, to maintain planarity and 

pointedness. 

 

4. If planarity is violated, it is because the new edge is cutting 

through several added edges. Subdivide these crossed edges 

into two, and recourse to maintain planarity and pointedness 

on each half. Some of these new edges will coincide. 

 
Fig. 6. Pseudo monotone triangulation algorithm 

 
For example, in Fig. 7 (d) there is a polygon with holes 

that is pseudo triangulated. Fig. 7 shows the output of 

implemented software with this research. In part (a) a polygon 

with holes is observed, Obstacles within the polygon was 

generated using an innovative technique that developed by the 

author and Its description is beyond the scope of this article. 

In part (b) using sweep line method, the original polygon 

is divided into several monotone polygons. In part (c) Each 

monotone polygon is divided into the number of cells using 

triangulation method. In part (d) cells are obtained using 

incremental pseudo triangulation. In the next section, roadmap 

generation and searching algorithm will be described. 

 

5 Roadmap and searching  weighted  

graph  

5.1 Maximum-clearance roadmaps 

In Fig. 8, when a roadmap is creating, maximum distance 

from obstacles must be kept. Moving in space while 

maintaining a maximum distance of obstacles is ensured that 

probability of collision reduces. In Fig. 8, part of the roadmap 

passes the inside corridor in an equal distance from obstacles 

[5]. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 7. (a) Polygon with holes. (b) The original polygon is divided 

into monotone polygons. (c) Monotone polygons are triangulated. 

(d) Monotone polygons are pseudo triangulated. 
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Fig. 8. Maximum-clearance roadmaps 

 
To generate roadmap in triangulation and pseudo 

triangulation cell decomposition method, triangles and pseudo 

triangles centers must be achieved. Roadmap graph is 

generated through connecting the center of triangles, pseudo 

triangles and middle of edges. To find the triangle center 

obtains triangle gravity point, it means average coordinates of 

triangle is obtained. In the next section, innovative approach 

to find pseudo triangle center will be provided. 

 

5.2 Pseudo triangle center 

Pseudo triangle center is the point that all three convex 

vertices be able to see that. Three convex vertex of pseudo 

triangle are connected through a direct line Li (i=1,2,3). 

Middle point of each three lines find and is called Mi. A 

perpendicular line from Mi is drawn to the chain of the edges 

between two head of the line Li and the collision place with 

chain of the edges is called Ti. Gravity center of the points Ti 

is pseudo triangle center. In Fig. 9, pseudo triangle center 

finding method is observed. 

 

 
Fig. 9. Finding pseudo triangle center 

 

5.3 Weighted search graph 

Each of routing origin and destination points are located 

within one of the triangles or pseudo triangles. The origin 

point is connected to nearest vertex of the roadmap graph and 

this vertex is called Start Vs, the destination point is connected 

to nearest vertex of the roadmap graph and this vertex is called 

Start VQ 

If the above cases be adhered, motion planning problem 

can be reduced to a graph search problem. Constructed 

roadmap graph in cell decomposition method is observed in 

Fig. 10. This is a weighted graph, because the goal is finding 

the shortest path from origin to destination without collision 

with obstacles. The length of each edge is considered as its 

weight. Weighted graph searching algorithms is used for 

searching graph. For example, the Dijkstra basic algorithm is 

used for weighted graph searching, this algorithm acquires the 

shortest path from one vertex to all vertices of the graph. The 

shortest path from vertex Vs to vertex VQ is acquired by this 

algorithm.  

 

 
 

Fig. 10. The triangular cell decomposition roadmap 

 

6 Conclusions 

In this paper, the triangular cell decomposition algorithm 

was evaluated. Then a new idea of the pseudo triangulation 

was considered instead of triangulation. If the cell 

decomposition performs using a pseudo triangulation, the 

number of cells is smaller and more efficient than the number 

of cells that are created from the triangulation. 

Sweep line algorithm was used to create monotone 

polygons, with the order O(nlogn). Monotone triangulation 

has linear time O(n) and pseudo triangulation did with order 

O(nlogn). The proposed new algorithm is an optimal 

algorithm. The cell decomposition method is a combinatorial 

method and it is used in offline robot motion planning.  
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Abstract 
 

   Software estimation is a pivotal activity in the 

software engineering lifecycle. Indeed, software 

project planning, including scheduling and resource 

management are all predicated on the computation of 

realistic estimates. This paper reports on a case study 

to evaluate the use of estimation in the model-based 

development of clipboard management software 

called ClipBits. Multiple techniques are available for 

performing software estimation. In this project, three 

estimation techniques were used: function point 

estimation, the COCOMO II model and a lines-of-

code approach. Our analysis of the results revealed 

that estimation produced reasonable results. We 

provide some foresight as to larger variability from 

actual data for some estimates. In addition, the 

duration and scheduling predictions proved useful as 

an aid to help keep the team true to its deadlines. 

Overall, the results support the fact that software 

estimation can greatly improve the successful 

completion of software engineering projects. 

 

Keywords: software engineering, software 

estimation, planning, scheduling, clipboard.   

 

1. Introduction 
 

Software engineering [1] is a task that requires a lot 

of preparation and planning. With proper planning, all 

stakeholders, including investors, project managers, 

and programmers can have a solid basis for project 

execution and greater assurance that the project will 

succeed. While it is hard to accurately predict the 

software duration, schedule and cost before starting a 

software project, proper early software project 

estimation [2, 3] provides goals and milestones for the 

development team, and enables the allocation and 

management of human and other resources in a 

systematic and predictable manner. Estimation is 

beneficial because it is essential that room be allowed 

in the development process, for the many unforeseen 

circumstances that typically accompany complex 

projects.  

Some of the areas involved in software project 

planning include the schedule the software 

development team will follow; the project duration, the 

project size, required human resources, specialized 

skills and an assessment of risks. Schedule estimation 

includes such tasks as determining when a requirement 

of the software should be completed, and how long it is 

expected to take. Several techniques are available for 

software sizing including techniques based on the 

projected lines of code, techniques based on the 

functionality of the software, and empirical models [3]. 

Significant project anomalies are typically forecasted 

and addressed through systematic and continuous risk 

assessment. While some of the risks might never occur, 

it is good to plan for them regardless of the outcome. 

Lastly, the software development team needs to set 

forth an understanding of what each member’s tasks 

are going to be throughout the project. This may be 

done using a tool such as a responsibility matrix. All of 

these areas need to be accounted for during the 

software project planning. Needless to say, that while 

software project planning begins at project inception, 

project planning is an ongoing activity throughout the 

life of the project.  

This paper reports on a case study designed to 

assess the importance of effective software project 

planning for successful software development. By 

analyzing the estimates with actual data, we will be 

able to see how accurate our estimates were in the end, 

and what can be done to improve this process. The 

software that was developed in this case study 

improved upon the functionality of the system 

clipboard [4 – 8, 14 – 16] to allow users to increase 

their work efficiency and productivity [9]. The 

application, called ClipBits, enables users to store past 

clipboard data as ClipButtons, and save multiple 

ClipButtons in ButtonSets locally to be used at any 

time. This is all done using an unobtrusive user 

interface that is intuitive and easy to use. Our main 
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focus was on determining the facets of software project 

planning that were most helpful for developers, what 

areas were or were not estimated accurately, and the 

quality [10, 11] of the resulting application. 

The rest of the paper is organized as follows: 

project planning and estimation is presented in Section 

2, software design in Section 3, the results and lessons 

learned in Section 4, and lastly, Section 5 will present 

the discussion and conclusion.  

 

2. Project Planning and Estimation 
 

 
Figure 1. ClipBits Use Case Diagram 

 

   The above Use Case Diagram (Figure 1) 

demonstrates typical actor interaction with the ClipBits 

software. Actors include the end user and the operating 

system clipboard, both of which interact with the 

application. However, the methods through which they 

interact are slightly different. The end user interacts 

with ClipBits through the use of clip buttons and UI 

components, whereas the OS clipboard interacts with 

the application via Windows messaging. Figure 1 is a 

context model for the application, and therefore 

understanding this context model during the software 

planning phase will allow each of the developers to 

relate their specific development task to the actor(s) for 

whom the feature is required.  

The many vital roles necessary to the completion of the 

ClipBits software were assigned as illustrated by the 

responsibility matrix shown in Table 1. The table 

shows the lead software engineer for each task. The 

tasks were well-distributed according to the various 

areas of expertise present within the group for the 

purposes of increasing efficiency while mitigating the 

risk associated with learning curves (see Table 3). 

Throughout the development process, each member 

will be able to refer back to this table if there is every 

any task in question regarding who is responsible.  

 
 Thomas 

Lovette 

Yuli 

Bonner 

Michelle 

Willcox 

Project 

Management 

x   

Requirements 

Engineering 

 x  

Software Design  x x x 

Quality 

Assurance 

  x 

Data 

Storage/Retrieva

l Mechanism 

x   

ButtonSet 

Design/Impleme

ntation 

x   

Clipboard 

Management 

 x  

ClipButton 

Development 

 x  

UI 

Design/Develop

ment 

  x 

Cross-Tier 

Integration 

x x x 

Product Testing   x 

Project Proposal x   

Requirements 

Engineering 

Document 

 x  

Software Design 

Document 

x   

Implementation/

Testing 

Document 

  x 

Table 1. ClipBits Responsibility Matrix 

 

The overall estimation process for development of the 

ClipBits application began with the development of the 

work items in the work breakdown structure shown in 

Figure 2. Broad task categories include Planning and 

Research, Modeling and Design, Construction, and 

Deployment. Each category contains multiple sub-

tasks, each with unique requirements and deadlines. 

However, the work items have been structured in such 

a way that the main categories can fall one after 

another, with Planning and Research directly preceding 

Modeling and Design, etc. Some tasks- such as 

research and integration- are carried out irrespective of 

hierarchical patterns, as their success impacts every 

area of the development process. It is evident that 

much is to be determined in the Planning and Research 

phases because these activities greatly influence the 

Modeling and Design, Construction, and Deployment 

phases. 

ClipBits

<<Software>>

OS Clipboard

User

Rename 

ClipButton

Use ClipButton

Create

Button Sets

Use Button

Sets
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Figure 2. ClipBits Work Breakdown Structure (WBS) 

 

 

Lines of Code Estimation  

 
Table 1. ClipBits Cost Estimation using Lines of 

Code Model 

 

 

Function 

Optimistic 

LOC 

Estimate 

Average 

LOC 
Estimate 

Pessimistic 

LOC 

Estimate 

Estimated 

LOC 

User 

Interface 

1,550 3,000 4,500 3,000 

Clipboard 

Monitor 

100 500 1,000 516 

Clip 

Buttons 

200 800 2,000 900 

Data 

Read/ 

Write 

250 600 1,500 691 

Button 

Set 

100 300 500 300 

    5,407 

 

   Table 1 shows the basic data used to compute the 

software estimates using the lines of code (LOC) 

approach. The computation is done by finding the 

mean of the optimistic, likely, and pessimistic LOC 

estimates following a beta distribution [12], for the five 

broad categories of the application. Each item in The 

“Estimated LOC” column is calculated using the 

formula: 

 

 

 

The total estimated Lines of Code for the application is 

then simply the sum of the entries in the “Estimated 

LOC” column. If an organizational average 

productivity rate of 620 LOC/person-month is assumed 

along with a burdened labor rate of $8,000.00/month 

[pressman], then the average cost per line of code is 

approximately $12.90. Given this information, the total 

estimated cost of building this application is: 

  

 

 

Likewise, the estimated effort required to build this 

application is: 

 

 
    

These lines of code estimations allow the developers to 

visualize how much work each function will require, 

and can be used to further predict how long the 

implementation process will take.  

 

Function Points Estimation 

 

   The Function Points estimate [13] for an application 

can be calculated using data as shown in Table 2. The 

computation consists of two components: an 

information domain value and a value adjustment 

factor. The information domain value (IDV) is 

computed in three steps. In the first step an estimate for 

five information domain factors such as “External 

Input” is computed. This is typically done following a 

beta distribution scheme as was outlined above, by 

computing the mean of optimistic, average and 

pessimistic values. In the second step the mean is 

multiplied by a weighting factor to get the total 

estimate for that information domain element. For 

example, in Table 2 the mean for “External Input”, 10, 

is multiplied by the weighting factor, 4, to get a total of 

40. Weighting is typically done based on the estimated 

complexity of the software as shown in Table 3 [17]. In 

the third step, a value adjustment factor (VAF) is 

computed by estimating the importance of fourteen 

factors to the overall project. These factors include 

such element as “backup and recovery”, “distributed 

processing” and “code designed for reuse”. In step 4, 

the number of function points for the project is 

computed using the formula: 
 

    

 

ClipBits 
Development

Planning/ 
Research

Determine 
Software 
Concept

Designate 
specific roles 

and 
responsibilities 

Complete 
project 

schedule

Research 
required 

technology

Define 
requirements

Construct 
diagrams 
relating 

software 
processes and 
functionality

Modeling/
Design

High-level 
UI design

Develop 
full-

featured 
model of 
software

Define test 
cases

Construction

Implement 
software 

components

Integrate 
components

Test the 
software

Deployment

Deploy 
application

Post-
mortem 
analysis
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Table 2. ClipBits Function Points IDV Computation 

 

Function 

Count Weighting 

Factor 

 

External 

Input 

10 4 40 

External 

Output 

5 5 25 

External 

Inquiries 

0 4 0 

Internal 

Logical 

Files 

3 10 30 

External 

Interface 

Files 

1 7 7 

Count 

total 

  102 

 
Table 3. Weighting Factors in IDV Computation 

 Weighting Factor 

 Simple Average Complex 

External 

Input 

3 4 6 

External 

Output 

4 5 7 

External 

Inquiries 

3 4 6 

Internal 

Logical 

Files 

7 10 15 

External 

Interface 

Files 

5 7 10 

 

   The function points analysis has proven to be a 

reliable estimation method that helps express the 

software functionality more from the user’s 

prospective than from the developers’ perspective.  

 

PERT Chart 

   The PERT Chart (Figure 3) demonstrates directed, 

parallel paths from the start of the project to 

deployment. Many of the preliminary items were 

simpler, whereas many of the later tasks are predicted 

to require several weeks. However, most tasks can 

occur concurrently, implying that, whereas there are 

many tasks to complete, the overall amount of time 

spent is well-distributed among various branches, and 

no one branch dominates the others in terms of effort 

and manpower. The time (in days) estimates are based 

upon how complex the developers predicted each task 

to be in the development phase.  

 

 
Figure 3. PERT Chart 

 

Risk Plan 

 
Table 3. ClipBits Risk Assessment and Mitigation 

Plan 

Risks Cat Prob Imp RMMM 

Unable to 

meet 

established 

deadlines  

BU 40% 1 Set up meetings 

multiple times per 

week in order to 

monitor progress. 

Allow team member 

input in order to make 

realistic deadline 

decisions. 

Compartme

ntalization 

overlaps 

and slows 

momentum 

down 

PS 20% 2 Equally divide tasks 

among team members 

and increase the 

amount of 

communication. 

Slower 

performanc

e with 

larger data 

TE 60% 3 Create a file size limit 

in order to prevent 

users from slowing 

down the software’s 

execution time. 

Performanc

e impact of 

using a 

database 

versus 

serialization 

TE 50% 3 Research each method 

in depth in order to 

decide which method 

is more efficient. 

Standard 

library is 

not 

sufficient 

for our 

needs 

TE 75% 2 Examine other 

libraries that have the 

functionality that will 

benefit our 

requirements. 

Staff is 

unable to 

learn 

necessary 

skills/ 

technology 

ST 30% 1 Assist team members 

in the learning process 

by pointing them to 

useful resources that 

will allow them to 

acquire the necessary 

skillset. 
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Key (Cat=Category, Imp=impact, Prob=probability) 

Category Impact 

BU- Business Risk 1- Catastrophic 

PS- Project Risk 2- Critical 

TE- Technical Risk 3- Marginal 

ST- Staff Risk 4- Negligible 

 

   There are numerous possible risks associated with 

the development of ClipBits. The table above (Table 3) 

lists several categories of risks, along with the 

development team’s planned methods of mitigation. 

Through wise delegation of responsibility, proper 

research methods, and effective advance prototyping, 

many of the listed risks were effectively eliminated. 

 

3. Software Design & Implementation 
   

  Figure 4 shows the state diagram for the ClipBits 

software. The application responds to the system 

clipboard events by creating ClipButtons and storing 

them in a stack. Of note are the starting and ending 

states: the application starts with an initialization of the  

Figure 4. ClipBits State Diagram 

 

ClipButton Stack and ends with its disposal. Since the 

application is largely UI-driven, it is to be expected 

that many of the states consist of windows opening and 

closing, with processing occurring within. 

   A screen shot of the resulting UI for the ClipBits 

software is shown in Figure 5. The figure shows the 

Main Window, the Add-All-Buttons-t-ButtonSet 

Window, the Button Set Menu Window, and finally the 

individual Button Set window displaying the 

ClipButtons contained in the Button Set. This design 

went through multiple alterations in order to satisfy the 

requirements that were set forth in the planning phase. 

 

 
Figure 5. User Interface Design 

 

 

4. Results and Lessons Learned 
 

   The original cost and effort estimates 

for ClipBits were misjudged. Original 

estimates called for 5,407 lines of code, 

but the final product contained far less: 

approximately 2,000. This is due largely 

to uncertainty about the extent to which 

Windows Presentation Foundation 

(WPF) would be used in development. 

With WPF’s declarative syntax, it ended 

up being ideal for data-binding scenarios. 

Thus, operations that would have taken 

many lines of code to implement (such as 

UI updates) were relegated to the 

framework, drastically reducing the 

amount of necessary coding. In the future, more 

research on WPF’s syntax, specifically for the UI, 

would allow us to predict our lines of code estimation 

better. 

   In the requirements phase of our work, we 

established a list of non-functional requirements that 

we strived to meet: 

 Users have easy access to Button Sets in the 

current session and in later sessions because a 

Button Sets folder is stored locally on the user’s 

hard drive.  

 UI is user friendly and unobtrusive. 

 UI docks to both the top and left sides of the 

screen. 
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 User documentation such as a manual or other 

help feature should are included when the user 

clicks the help button. 

 The interface includes a significant level of 

customization options in terms of size, shape, 

and/or orientation.  

 The program is lightweight in terms of 

performance so that it does not impede the 

performance of any other applications with which 

it is being used.   

 

Overall, we drafted these requirements with the user’s 

experience in mind, we wanted to minimize the 

learning curve for ClipBits so that anyone could easily 

use it for their benefit. The serialization of Button Sets 

is a key feature that enables users to refer back to data 

that they created or used in the past. This was made 

possible by serializing the ButtonSet data into a file 

that was automatically stored in the user’s Documents 

folder. As such, any future time when a user browses 

their Button Sets, the file is read and the Button Set 

data is accessible and may be copied right back to the 

system clipboard.  

   The realization of non-functional requirements was a 

significant element of the user interface design. By 

creating simple icons for each button, and making the 

windows semi-transparent we were able to make the 

application easy to use and unobtrusive. In addition, 

the main window is easily positioned by the click of a 

button to either the top of the screen horizontally or to 

the left side vertically. Therefore, the windows would 

stay out of the way from other applications. The user 

also has the choice to hide the windows all together, 

and move it manually to another position on the screen.  

   Not only does the application not visually other 

applications, but performance-wise, the application 

doesn’t slow down the computer’s other processes 

because it is a lightweight design.  The only thing the 

application is constantly monitoring is the system 

clipboard, and when it recognizes that something has 

been copied, it generates Clip Button data and displays 

it in the window.  

   Lastly, if the user is ever confused or in need of help 

while using the application, then they can easily access 

the user manual from the help button on the main 

window. The user manual features a description of 

each UI element and explains how each element is 

utilized.  

   In the end, our group was able to stay very close to 

our estimated schedule and designated tasks, even 

though we ran into multiple small issues. What really 

helped us stay on that schedule was our meetings twice 

a week where we would go over what we had been 

working on during our own time, reviewing what 

deadlines were coming up, discussing what needed to 

be done, and designating tasks. We also made it a point 

to communicate constantly via email or at meetings so 

that even if we were not designated a specific a task, 

we were involved to some degree that would allow us 

to understand where the project stood in relation to our 

overall schedule.  

 

5. Discussion and Conclusion 
 

   Now that the project has come to completion, it is 

evident that an emphasis on comprehensive software 

estimation techniques can only be a benefit to the 

software developers throughout the whole project. 

Even if there are some inaccurate predictions, they will 

still assist in the goals and visualization of the 

software’s end product. In addition, estimation is a 

learnt discipline predicated on the availability of 

historical data. As such this project has taught us not 

only valuable lessons, but given us some basic data to 

assist in the next estimation project. A lot of software 

estimation and planning diagrams and tables were 

used; and our team was able to supplement that data 

with frequently collaborations and reacting in an agile 

manner to issues as they arose. Without that, then our 

team would not be able to help each other out when 

these problems surfaced, and our estimated project 

schedule would have been thrown way off. Luckily, 

with the help of effective software estimation, we were 

able to keep on track all of our deadlines relatively 

well and successfully implement all of our non-

functional, and functional requirements. 

   In the future, our team will most likely be involved in 

developing other projects. As a whole, we all learned a 

great deal about the significance of software planning 

and estimation and we will be able to take this 

knowledge and apply it to any future software projects 

we may come across. 
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Abstract— In this paper, we introduce our formalization of
the Advanced Encryption Standard (AES) algorithm. AES,
which is the most widely used symmetric cryptosystem in the
world, is a block cipher that was selected by the National
Institute of Standards and Technology (NIST) as an official
Federal Information Processing Standard for the United
States in 2001. We prove the correctness of our formalization
using the Mizar proof checking system as a formal verifi-
cation tool. Mizar is a project that formalizes mathematics
with a computer-aided proving technique and is a universally
accepted proof checking system. The main objective of this
work is to prove the security of cryptographic systems using
the Mizar proof checker.

Keywords: Formal Verification, Mizar, Cryptology, Advanced
Encryption Standard (AES)

1. Introduction
Mizar[1] is a project that formalizes mathematics with

a computer-aided proving technique. The objective of this
study is to prove the security of cryptographic systems using
the Mizar proof checker. To achieve this study, we intend to
formalize several topics concerning cryptology. As a part
of this effort, we introduced our formalization of the Data
Encryption Standard (DES)[2] at the FCS’11[3].

In this paper, we introduce our formalization of the
Advanced Encryption Standard (AES). AES, which is the
most widely used symmetric cryptosystem in the world, is
a block cipher that was selected by the National Institute
of Standards and Technology (NIST) as an official Federal
Information Processing Standard for the United States in
2001[4]. AES is the successor to DES, which was formerly
the most widely used symmetric cryptosystem in the world.
However, DES is now considered insecure and has been
replaced by AES[5]. We formalized the AES algorithm as
shown in FIPS 197[4] in the Mizar language. We then
verified the correctness of the formalized algorithm that the
ciphertext encoded by the AES algorithm can be decoded
uniquely by the same key using the Mizar proof checker.

The remainder of this paper is organized as follows.
In Section 2, we briefly introduce the Mizar project. In
Section 3, we briefly introduce the Advanced Encryption
Standard (AES). In Section 4, we discuss our strategy for
formalizing AES in Mizar. In Sections 5 and 6, we propose a
formalization of AES. We conclude our discussion in Section

7. The definitions and theorems in this paper have been
verified for correctness using the Mizar proof checker.

2. Mizar
Mizar[1] is an advanced project of the Mizar Society

led by A.Trybulec which formalizes mathematics with a
computer-aided proving technique. The Mizar project de-
scribes mathematical proofs in the Mizar language, which is
created to formally describe mathematics. The Mizar proof
checker operates in both Windows and UNIX environments,
and registers the proven definitions and theorems in the
Mizar Mathematical Library (MML).

What formalizes the proof of mathematics by Mizar and
describes it is called “article”. When an article is newly
described, it is possible to advance it by referring to articles
registered in the MML that have already been inspected
as proof. Although the Mizar language is based on the
description method for general mathematical proofs, the
reader should consult the references for its grammatical
details, because Mizar uses a specific, unique notation[6],
[7], [8], [9].

3. Advanced Encryption Standard
In this section, we review the outline of the AES algo-

rithm, which is a variant of Rijndael algorithm[10]. The
AES algorithm can process 128–bit data blocks using secret
keys of lengths 128, 192, or 256 bits. Decryption must be
performed using the same key as that used for encryption.
However, the decryption algorithm is different from the
encryption algorithm. Depending on the key lengths, AES
is referred to as AES–128, AES–192, or AES–256.

AES is a type of iterated block cipher that has a Sub-
stitution Permutation Network (SPN) structure. The SPN
structure alternately performs substitution and permutation
operations. The encryption and decryption of the SPN
structure involve different processes. The AES algorithm is
composed of the SPN structure and a key scheduling. In the
SPN structure of AES, there are 10, 12, and 14 rounds of
processing iterations. The number of rounds to be performed
during the execution of the AES algorithm is dependent on
the key lengths. In AES algorithm, the key length, block
size, and number of rounds are represented by Nk, Nb, and
Nr, respectively. The Nk–Nb–Nr combinations are shown
in Figure 1.
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Figure 1: Nk–Nb–Nr combinations

The AES algorithm is performed on a two-dimensional
array of bytes called the “State”. Before the main iterations,
the plaintext block is copied into the State array. After an
initial round key addition, the State array is transformed by
performing a round process Nr times. However, only the
final round is different. Finally, the final State is copied to
the ciphertext block. The round process is composed of the
“SubBytes”, “ShiftRows”, “MixColumns”, and “AddRound-
Key” transformations. The final round does not include the
MixColumns transformation. The round key is yielded by
the key scheduling from the given secret key and is added
to the State array using the AddRoundKey transformation.
Figure 2 shows the pseudo code for the encryption algorithm
of AES.

Figure 2: Pseudo code for the encryption algorithm

In decryption, the round process is composed of
the “InvSubBytes”, “InvShiftRows”, “InvMixColumns”,
and AddRoundKey transformations. The InvSubBytes, In-
vShiftRows, and InvMixColumns are the inverse of the
SubBytes, ShiftRows, and MixColumns transformations, re-
spectively. In decryption, each transformation is performed
in the reverse order of encryption and the round keys are
used in the reverse order of encryption.

4. Strategy for Formalizing AES
In Mizar, there are two ways to define computational

routines in an algorithmic sense. One way is by defining
a routine as a “Function”. A Function is a map from the
space of the input onto that of the output. We can handle a
Function as an element of the set of Functions.

The other way is by defining a routine as a “functor”. A
functor is a relation between the input and output of a routine
in Mizar. It is easy to write and understand the formalization
of a routine as a functor, because the format of a functor in
Mizar is similar to that of a function in certain programming
languages. Note that both functor and Function can take a
Function as their substitutable subroutines.

In Section 5, we will formalize the subroutines, that
is, the primitives of AES, according to FIPS 197[4]. In
Section 6, we first formalize the algorithm of generalized
AES as a functor that takes substitutional subroutines. This
generalized definition of AES is easily reusable for the
formalization of different key lengths of AES. We will then
formalize the AES algorithm using the formalization of the
primitives in Section 5 and the generalized definition in
Section 6.1.

5. Formalization of AES Primitives
In this section, we formalize the AES primitives according

to FIPS 197[4].

5.1 State array
Figure 3 shows a sketch of the State array.

Figure 3: State array

The State array consists of 4 rows of bytes, each of which
contains Nb bytes.

We formalize the State array as the following functor in
the Mizar language:

Definition 5.1: (State array)
func AES-Statearray ->

Function of 128-tuples_on BOOLEAN,
4-tuples_on (4-tuples_on (8-tuples_on
BOOLEAN))

means
for input be Element of 128-tuples_on

BOOLEAN
for i,j be Nat st i in Seg 4 & j in Seg 4
holds
((it.input).i).j = mid(input,1+(i-’1)*8+

(j-’1)*32,1+(i-’1)*8+(j-’1)*32+7);

¤
Here, mid is a function that extracts a subsequence
(finite sequence) and * is multiplication. For example,
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mid(input,9,16) is a finite sequence (input.9,......,input.16) of
length 8. Note that the index of the finite sequence starts
from 1 in the Mizar language.

We similarly defined the functor of the inverse of the State
array as AES-Statearray".

5.2 SubBytes
Figure 4 shows a sketch of the SubBytes transformation.

Figure 4: SubBytes

The SubBytes transformation is a nonlinear byte sub-
stitution that independently operates on each byte of the
State array using a 1-byte substitution table. The substi-
tution table is called the “S-Box”. The S-Box, which is
invertible, is constructed by composing two transformations.
Two transformations are composed of the calculation of the
multiplicative inverse in the finite field GF(28) and the affine
transformation over GF(2). Figure 5 shows a sketch of the
S-Box.

Figure 5: S-Box (in hexadecimal form)

We formalize the SubBytes transformation as the follow-
ing functor in the Mizar language:

Definition 5.2: (SubBytes)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
func SubBytes(SBT) ->

Function of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means
for input be Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
holds

(for i,j be Nat st i in Seg 4 & j in Seg 4
holds
ex inputij be Element of 8-tuples_on

BOOLEAN
st inputij = (input.i).j &
((it.input).i).j = SBT.(inputij));

¤
Please note the following points about this formalization.
This functor can specify an arbitrary Permutation of 8-
tuples_on BOOLEAN because it takes SBT as an argument.
In this formalization, so as not to lose generality, we
describe this functor as the SubBytes transformation. The
actual SubBytes transformation uses the S-Box, as shown in
Figure 5. However, the formal description of this S-Box is
not significant. Therefore, we described this functor as the
SubBytes transformation.

We similarly defined the functor of the InvSubBytes
transformation (Definition A. 1).

5.3 ShiftRows
Figure 6 shows a sketch of the ShiftRows transformation.

Figure 6: ShiftRows

The ShiftRows transformation operates the State array by
cyclically shifting the last three rows of the State array by
different offsets (numbers of bytes). Note that the first row
is not shifted.

We formalize the ShiftRows transformation as the follow-
ing functor in the Mizar language:

Definition 5.3: (ShiftRows)
func ShiftRows ->

Function of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means
for input be Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
holds
(for i be Nat st i in Seg 4
holds
ex xi be Element of 4-tuples_on

(8-tuples_on BOOLEAN)
st xi = input.i &
(it.input).i = Op-Shift(xi,5-i));

¤
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Here, Op-Shift is a cyclically left shift function.
We similarly defined the functor of the InvShiftRows

transformation (Definition A. 2).

5.4 MixColumns
Figure 7 shows a sketch of the MixColumns transforma-

tion.

Figure 7: MixColumns

In the MixColumns transformation, the 4 bytes of each
column of the State array are mixed using an invertible linear
transformation. The columns are considered as polynomials
over GF(28) and multiplied modulo x4+1 with a fixed poly-
nomial a(x), given by a(x) = {03}x3 + {01}x2 + {01}x +
{02}. As a result of the above mentioned multiplication, the
4 bytes in a column are replaced by the following:

s′
0,c

= ({02} • s0,c) ⊕ ({03} • s1,c) ⊕ s2,c ⊕ s3,c ,

s′
1,c

= s0,c ⊕ ({02} • s1,c) ⊕ ({03} • s2,c) ⊕ s3,c ,

s′
2,c

= s0,c ⊕ s1,c ⊕ ({02} • s2,c) ⊕ ({03} • s3,c),

s′
3,c

= ({03} • s0,c) ⊕ s1,c ⊕ s2,c ⊕ ({02} • s3,c).

Note that {01}, {02}, and {03} are hexadecimal notations
and • is a multiplication in GF(28).

We formalize the MixColumns transformation as the fol-
lowing functor in the Mizar language:

Definition 5.4: (MixColumns)
func MixColumns ->

Function of 4-tuples_on(4-tuples_on
(8-tuples_on BOOLEAN)),4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means
for input be Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
holds
ex x,y being Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
st x = input & y = it.input &
for i be Element of NAT st i in Seg 4
holds
ex x1,x2,x3,x4 be Element of

8-tuples_on BOOLEAN
st x1 = (x.i).1 & x2 = (x.i).2 &
x3 = (x.i).3 & x4 = (x.i).4 &
(y.1).i = Op-XOR(Op-XOR(Op-XOR(2 ’gf’ x1,

3 ’gf’ x2),1 ’gf’ x3),1 ’gf’ x4) &
(y.2).i = Op-XOR(Op-XOR(Op-XOR(1 ’gf’ x1,

2 ’gf’ x2),3 ’gf’ x3),1 ’gf’ x4) &
(y.3).i = Op-XOR(Op-XOR(Op-XOR(1 ’gf’ x1,

1 ’gf’ x2),2 ’gf’ x3),3 ’gf’ x4) &

(y.4).i = Op-XOR(Op-XOR(Op-XOR(3 ’gf’ x1,
1 ’gf’ x2),1 ’gf’ x3),2 ’gf’ x4);

¤
Here, Op-XOR is a bitwise XOR (exclusive OR) function
and ’gf’ is a multiplication in GF(28).

We similarly defined the functor of the InvMixColumns
transformation (Definition A. 3).

5.5 AddRoundKey
Figure 8 shows a sketch of the AddRoundKey transfor-

mation. Here, wl+c are the key scheduling words and round

Figure 8: AddRoundKey

is a value in the range 0 ≤ round ≤ Nr.
The AddRoundKey transformation adds a Round Key and

the State array using a bitwise XOR.
We formalize the AddRoundKey transformation as the

following functor in the Mizar language:

Definition 5.5: (AddRoundKey)
func AddRoundKey ->

Function of [:4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN)):],
4-tuples_on (4-tuples_on (8-tuples_on
BOOLEAN))

means
for text,key be Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
holds
for i,j be Nat st i in Seg 4 & j in Seg 4
holds
ex textij,keyij be Element of

8-tuples_on BOOLEAN
st textij = (text.i).j & keyij = (key.i).j
& ((it.(text,key)).i).j =

Op-XOR(textij,keyij);

¤

5.6 Key Expansion
The AES algorithm takes the secret key and performs a

Key Expansion process to generate the key scheduling. The
resulting key scheduling consists of a linear array of 4-byte
words, denoted as wi, with i being in the range 0 ≤ i ≤
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Nb(Nr+1). Figure 9 shows the pseudo code for the Key
Expansion.

Figure 9: Pseudo code for the Key Expansion

SubWord is a function that takes an input word of 4 bytes
and applies the S-Box to each of the 4 bytes to produce an
output word.

We formalize SubWord as the following functor in the
Mizar language:

Definition 5.6: (SubWord)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
let x be Element of 4-tuples_on

(8-tuples_on BOOLEAN);
func SubWord(SBT,x) ->

Element of 4-tuples_on (8-tuples_on
BOOLEAN)

means
for i be Element of Seg 4
holds
it.i = SBT.(x.i);

¤
RotWord is a function that takes a word [b0, b1, b2, b3] as

the input, performs a cyclically left shift, and returns the
word [b1, b2, b3, b0].

We formalize RotWord as the following functor:

Definition 5.7: (RotWord)
let x be Element of 4-tuples_on

(8-tuples_on BOOLEAN);
func RotWord(x) ->

Element of 4-tuples_on (8-tuples_on
BOOLEAN)

equals
Op-LeftShift(x);

¤
Here, Op-LeftShift is a cyclically 1 byte left shift function.

The round constant word array, Rcon, is a constant
that is different for each round. Rcon[i] is defined as[
xi−1, {00}, {00}, {00}

]
. Here, xi−1 are powers of x(=

{02}) in the field GF(28). Note that i starts from 1.

We formalize Rcon as the following functor:

Definition 5.8: (Rcon)
func Rcon ->

Element of 10-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN))

means
it.1 = <* <*0,0,0,0*>^<*0,0,0,1*>,

<*0,0,0,0*>^<*0,0,0,0*>,
<*0,0,0,0*>^<*0,0,0,0*>,
<*0,0,0,0*>^<*0,0,0,0*> *> &

:
(omitted)

:
it.10 = <* <*0,0,1,1*>^<*0,1,1,0*>,

<*0,0,0,0*>^<*0,0,0,0*>,
<*0,0,0,0*>^<*0,0,0,0*>,
<*0,0,0,0*>^<*0,0,0,0*> *>;

¤
Here, ˆ is concatenation. For example, 〈∗0, 0, 1, 1∗〉ˆ〈∗0, 1,
1, 0∗〉 = {36}.

Next, to formalize the Key Expansion, we formalize the
KeyExTemp and KeyExMain as the following functors.

Definition 5.9: (KeyExTemp)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
let m,i be Nat,
w be Element of (4-tuples_on (8-tuples_on

BOOLEAN));
assume (m = 4 or m = 6 or m = 8) &
i < 4*(7+m) & m <= i;
func KeyExTemp(SBT,m,i,w) ->

Element of (4-tuples_on (8-tuples_on
BOOLEAN))

means
(ex T3 be Element of (4-tuples_on

(8-tuples_on BOOLEAN))
st T3 = Rcon.(i/m) &
it = Op-WXOR(SubWord(SBT,RotWord(w)),T3))
if ((i mod m) = 0),(it = SubWord(SBT,w))
if (m = 8 & (i mod 8) = 4) otherwise

it = w;

¤
Definition 5.10: (KeyExMain)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
let m be Nat;
assume m = 4 or m = 6 or m = 8;
func KeyExMain(SBT,m) ->

Function of m-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),(4*(7+m))-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means
for Key be Element of m-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
holds
(for i be Element of NAT st i < m

holds (it.Key).(i+1) = Key.(i+1)) &
(for i be Element of NAT st m <= i &

i < 4*(7+m)
holds ex P be Element of (4-tuples_on

(8-tuples_on BOOLEAN)),Q be Element of
4-tuples_on (8-tuples_on BOOLEAN)
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st P = (it.Key).((i-m)+1) &
Q = (it.Key).i & (it.Key).(i+1) =

Op-WXOR(P,KeyExTemp(SBT,m,i,Q)));

¤
Finally, we formalize the Key Expansion as the following

functor.

Definition 5.11: (Key Expansion)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
let m be Nat;
assume m = 4 or m = 6 or m = 8;
func KeyExpansion(SBT,m) ->

Function of m-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),(7+m)-tuples_on
(4-tuples_on (4-tuples_on (8-tuples_on
BOOLEAN)))

means
for Key be Element of m-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
holds
ex w be Element of (4*(7+m))-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
st w = (KeyExMain(SBT,m)).Key &
for i be Nat st i < 7+m
holds
(it.Key).(i+1) = <*w.(4*i+1),w.(4*i+2),

w.(4*i+3),w.(4*i+4)*>;

¤

6. Formalization of AES
In this section, we formalize the AES algorithm according

to FIPS 197[4] in the Mizar language. First, we formalize
and prove the correctness of the generalized AES algorithm.
Next, we formalize and prove the correctness of the AES
algorithm.

6.1 Formalization of Generalized AES
The generalized AES algorithm is easily reusable for the

formalization of different key lengths of AES.
We formalize the encryption algorithm of generalized

AES as a functor in the Mizar language as follows:

Definition 6.1: (Generalized AES encryption algorithm)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
let MCFunc be Permutation of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN));
let m be Nat;
let text be Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN));
let Key be Element of m-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN));
assume 4 <= m;
func AES-ENC(SBT,MCFunc,text,Key) ->

Element of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN))

means
ex seq be FinSequence of (4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN)))
st len seq = 7+m-1 &
(ex Keyi1 be Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
st Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1
& seq.1 = AddRoundKey.(text,Keyi1)) &

(for i be Nat st 1 <= i & i < 7+m-1
holds
ex Keyi be Element of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN))
st Keyi = ((KeyExpansion(SBT,m)).(Key)).

(i+1) & seq.(i+1) = AddRoundKey.
((MCFunc*ShiftRows*SubBytes(SBT)).
(seq.i),Keyi)) &

ex KeyNr be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

st KeyNr = ((KeyExpansion(SBT,m)).(Key)).
(7+m) & it = AddRoundKey.((ShiftRows*
SubBytes(SBT)).(seq.(7+m-1)),KeyNr);

¤
Here, * is composition. Note that the composition of the
function is described in the reverse order of the actual
processing.

We similarly defined the functor of the decryption algo-
rithm of generalized AES as AES-DEC (Definition A. 4).

We then prove the following theorem:

Theorem 6.1: (Correctness of generalized AES)
for SBT be Permutation of (8-tuples_on

BOOLEAN),
MCFunc be Permutation of 4-tuples_on

(4-tuples_on (8-tuples_on BOOLEAN)),
m be Nat,
text be Element of 4-tuples_on (4-tuples_on

(8-tuples_on BOOLEAN)),
Key be Element of m-tuples_on (4-tuples_on

(8-tuples_on BOOLEAN))
st 4 <= m
holds
AES-DEC(SBT,MCFunc,AES-ENC(SBT,MCFunc,text,

Key),Key) = text

¤
Thus, we proved in the Mizar system that the ciphertext
encoded by the generalized AES algorithm can be decoded
uniquely with the same secret key that was used in encryp-
tion.

6.2 AES Algorithm
In this section, we formalize the AES algorithm in the

Mizar language using our formalization of the AES prim-
itives in Section 5 and the generalized AES algorithm in
Section 6.1.

First, we formalize the encryption algorithm of AES–128
as a functor in the Mizar language as follows:

Definition 6.2: (AES–128 encryption algorithm)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
let message be Element of 128-tuples_on

BOOLEAN;
let Key be Element of 128-tuples_on

BOOLEAN;
func AES128-ENC(SBT,message,Key) ->

Element of 128-tuples_on BOOLEAN
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equals
(AES-Statearray").(AES-ENC(SBT,MixColumns,

AES-Statearray.message,AES-Statearray.
Key));

¤
Here, AES-Statearray" is the inverse of AES-Statearray.

Next, we formalize the decryption algorithm of AES–128
as a functor in the Mizar language as follows:

Definition 6.3: (AES–128 decryption algorithm)
let SBT be Permutation of (8-tuples_on

BOOLEAN);
let cipher be Element of 128-tuples_on

BOOLEAN;
let Key be Element of 128-tuples_on

BOOLEAN;
func AES128-DEC(SBT,cipher,Key) ->

Element of 128-tuples_on BOOLEAN
equals
(AES-Statearray").(AES-DEC(SBT,MixColumns,

AES-Statearray.cipher,AES-Statearray.
Key));

¤
Finally, we then prove the following theorem:

Theorem 6.2: (Correctness of AES–128)
for SBT be Permutation of (8-tuples_on

BOOLEAN),
message,Key be Element of 128-tuples_on

BOOLEAN
holds
AES128-DEC(SBT,AES128-ENC(SBT,message,Key),

Key) = message

¤
We similarly formalized AES–192 and AES–256 using

our formalization of the AES primitives and the generalized
AES algorithm.

Thus, we proved using the Mizar system that the cipher-
text encoded by the AES algorithm can be decoded uniquely
with the same secret key that was used in encryption.

7. Conclusion
In this paper, we introduced our formalization of the AES

algorithm in Mizar. We also proved the correctness of the
AES algorithm using the Mizar proof checking system as
a formal verification tool. Currently, we are analyzing the
cryptographic systems using our formalization in order to
achieve the security proof of cryptographic systems.
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Appendix
Definition A. 1: (InvSubBytes)
let SBT be Permutation of (8-tuples_on BOOLEAN);
func InvSubBytes(SBT) ->

Function of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)),
4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))

means
for input be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
holds
for i,j be Nat st i in Seg 4 & j in Seg 4
holds
ex inputij be Element of 8-tuples_on BOOLEAN
st inputij = (input.i).j & ((it.input).i).j = (SBT").(inputij);

¤Definition A. 2: (InvShiftRows)
func InvShiftRows ->

Function of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)),
4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))

means
for input be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
holds
(for i be Nat st i in Seg 4 holds ex xi be Element of 4-tuples_on

(8-tuples_on BOOLEAN) st xi = input.i & (it.input).i = Op-Shift(xi,i-1));

¤Definition A. 3: (InvMixColumns)
func InvMixColumns ->

Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)),
4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))

means
for input be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
holds
ex x,y being Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
st x = input & y = it.input & for i be Element of NAT st i in Seg 4
holds
ex x1,x2,x3,x4 be Element of 8-tuples_on BOOLEAN
st x1 = (x.i).1 & x2 = (x.i).2 & x3 = (x.i).3 & x4 = (x.i).4 &
(y.1).i = Op-XOR(Op-XOR(Op-XOR(14 ’gf’ x1,11 ’gf’ x2),13 ’gf’ x3),9 ’gf’ x4) &
(y.2).i = Op-XOR(Op-XOR(Op-XOR(9 ’gf’ x1,14 ’gf’ x2),11 ’gf’ x3),13 ’gf’ x4) &
(y.3).i = Op-XOR(Op-XOR(Op-XOR(13 ’gf’ x1,9 ’gf’ x2),14 ’gf’ x3),11 ’gf’ x4) &
(y.4).i = Op-XOR(Op-XOR(Op-XOR(11 ’gf’ x1,13 ’gf’ x2),9 ’gf’ x3),14 ’gf’ x4);

¤Definition A. 4: (AES-DEC)
let SBT be Permutation of (8-tuples_on BOOLEAN);
let MCFunc be Permutation of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN));
let m be Nat;
let text be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN));
let Key be Element of m-tuples_on (4-tuples_on (8-tuples_on BOOLEAN));
assume 4 <= m;
func AES-DEC(SBT,MCFunc,text,Key) ->

Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
means
ex seq be FinSequence of (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))
st len seq = 7+m-1 & (ex Keyi1 be Element of 4-tuples_on (4-tuples_on

(8-tuples_on BOOLEAN)) st Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 &
seq.1 = (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(text,Keyi1))) &

(for i be Nat st 1 <= i & i < 7+m-1 holds
ex Keyi be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) &
seq.(i+1) = (InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.
(seq.i,Keyi))) &

ex KeyNr be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
st KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) &
it = AddRoundKey.(seq.(7+m-1),KeyNr);

¤
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Abstract – This paper presents mathematical solutions for 

computing whether or not fundamental objects in game 

development collide with each other. In game development, 

detection of collision of two or more objects is often brought 

up. By categorizing most fundamental boundaries in game 

object, this paper will provide some mathematical 

fundamental methods for detection of collisions between 

objects identified. The approached methods provide more 

precise and efficient solutions to detect collisions between 

most game objects with mathematical formula proposed. 

Keywords: Collision detection, algorithm, sprite, game 

object, game development. 

 

1 Introduction 

The goal of collision detection is to automatically report a 

geometric contact when it is about to occur or has actually 

occurred. It is very common in game development that objects 

in the game science controlled by game player might collide 

each other. Collision detection is an essential component in 

video game implementation because it delivers events in the 

game world and drives game moving though game paths 

designed.  

 

In most game developing environment, game developers 

relies on written APIs to detect collisions in the game, for 

example, XNA Game Studio from Microsoft, Cocoa from 

Apple, and some other software packages developed by other 

parties.  Most open source or proprietary game engines 

supports collision detection, such Unreal, C4, Havok, Unity 

etc. However, a primary limitation of game development kits 

or game engines is the precision is too low, and the collision 

detection approaches are limited in the package. 

 

Since the advent of computer games, programmers have 

continually devised ways to simulate the world more 

precisely.  It’s very often that programmers need to develop 

their own collision detection algorithms for a higher precision 

and performance. 

 

The most basic approach is collision detection of the sprite or 

boundary class which represents an object in the game scenes 

and is often rectangle, sphere, or cube.   This approach works 

well if the object that is represented by is a simple shape and 

there is almost no blank space between object and the image.  

Otherwise, a lot of false alarm will be introduced in collision 

detection as show in Figure 1, where two objects, one circle 

and one pentagon, are not collided at all even the represented 

sprites collide each other. 

  

Figure 1. Collision detection based on Boundary  

 

 

(a)                                 (b) 

Figure 2. Per-Pixel based collision detection 

 

Per-pixel collision detection is a relic from the past. It uses 

bit-masks to determine whether two objects collide. The 

biggest advantages of using this detection method are that it 

also checks the empty space within the objects boundaries, 

and collision is detected with high precision as pixel-perfect 

and fair, there are no false positives nor false negatives as 

shown in Figure 2, where (a) shows the improved per-pixel 

detection, and (b) shows correct collision happed when two 

object contacting each other. The main disadvantage is that 

it’s expensive to compute, and is extremely slow compared to 

bounding boxes and it won't work if you do any 

transformations on the target objects such as rotating, or 

resizing.  For example, if viewable sprites are 32x32 pixels. In 

order to check collision, the program needs to check 

32X32x32x32 pixels with each pass to find out if a single 

pixel of a 32x32 frame of the sprite sheet has collided with 
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another image. Therefore per-pixel collision checks are rarely 

used, especially because object visible shape and collision 

shape are usually different.  

 

In computational geometry, there is a point-in-polygon (PIP) 

problem that asks whether a given point in the plane lies 

inside, outside, or on the boundary of a polygon. It is a special 

case of point location problems and finds applications in areas 

that deal with processing geometrical data, such as computer 

graphics, computer vision, geographical information systems 

(GIS), motion planning, and CAD.  The Ray Casting method 

is one simple way of finding whether the point is inside or 

outside a simple polygon by testing how many times a ray, 

starting from the point and going any fixed direction, 

intersects the edges of the polygon. If the point in question is 

not on the boundary of the polygon, the number of 

intersections is an even number; if the point is outside, and it 

is odd if inside (see [1] to [12]).  

 

However, the detection of collision problem is different from 

the PIP problem.  We are not interested in whether a point     

inside or outside of a polygon.  We are just interested in a 

collision occurs or not.  Therefore, it is not good idea to use 

the Ray Casting method in our collision detection problem.  

 

There are a lot of work have been done to improve collision 

detection For example to solve the performance issues with 

per-pixel algorithm, space partition algorithms has been used, 

such as Quadtree or Octree.  Reference [13] to [23] has listed 

a spectrum of researches in collision detection.   

 

In this paper, we proposed mathematic solutions for collision 

of each fundamental game object shape identified.  The 

approach is not based on the bounding of the sprite, but the 

collision detection is based on the bounding shape which 

represents the game object with minimum empty space 

between the object and bounding shape.  The approach works 

as follows. For each object that in the game scene, define a 

fundamental geometric shape or combination of fundamental 

geometric shaped that encloses its texture. The fundamental 

shapes that are identified in the research including: point, 

segment, squares, rectangles, triangles or circles. The 

following figure shows some example of bounding shapes for 

some sprites for example. 

   

 

Figure 3. Bounding Shape of Circle, Triangle, and Rectangle 

in Game. 

 

By defining the bounding shape for a game object, once we 

have mathematical solution for collision detection of 

bounding shape, it should be easily accommodate sizing and 

rotating, it also provides better accuracy of collision detection 

without performance sacrificing of check each pixel. We 

believe that our method for detection of collision between two 

triangles is easier to implement than some of existing 

methods.  To represent a complicated visual object, a different 

combination of fundamental bounding shapes can be used 

together. 

 

2 Collision detection of bounding shapes 

Here upon, we will refer our defined bounding shape of a 

visible object as an object.  Let us consider collision between 

an object in motion and another object in still.   

2.1 Between two points  

Let P be fixed with coordinates         and Q be point in 

motion.  If the motion of Q is given in u = u(t), v = v(t), and w 

= w(t), then P and Q will be collided if and only if there exists 

a real number t such that  

 

                          
 

2.2 Between a line segment and a point in a plane 

Let L be a fixed line segment with end points A and B and Q 

be the point in motion as shown in Figure 4.  Let 

                    be coordinates of A and B, respectively. 

If the motion of Q is given by u = u(t), v = v(t), and the line 

segment L is given by            then Q will collide 

with L if and only if there exists a real number t such that  

                
And  

√       
         

  

 ∑ √         
           

 
 

   
 

 

 
Figure 4 

2.3 Between a circle and a point in a plane 

As indicated in Figure 5, let’s consider a circle ʘC with center 

C      and radius of r.  Let Q be the point in motion.  Then Q 

will collide with the circle if and only if there exists a real 

number t, such that 

                                           
 

 
Figure 5 
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We can generalize it to three dimensional case: if Q is the 

point in motion in space, let Q be given by (u(t), v(t), w(t)) 

and a sphere with center at (a, b, c) and radius of r as shown in 

Figure 6. Then Q will collide with the sphere if and only if 

there exists a real number t such that 

 

                                 
 

 
Figure 6 

 

2.4 Between a triangle and a point 

Let us consider a triangle with the set of vertices  

                  as shown in Figure 7. 

 

Assume Q is the point in motion with coordinates             
Then point Q will collide with the triangle if and only if 

 

∑ |(        )                             |
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Where h(k) = k+1 if k =1, 2; 1 if k=3. 

 
Figure 7 

2.5 Between a polygon and a point 

Let us consider a rectangle                     
and Q as point in motion.  Then point Q(u, v) will collide with 

the rectangle if and only if there exists a real number t such 

that 

                     . 

 

If the rectangle does not have sides that are parallel to the 

axes, then the above detection will not work.  In this case, we 

can use the following criteria. Assume the rectangle has area 

T with consecutive vertices                     Then Q will 

collide with the rectangle if and only if there exists a real 

number t such that 

 

∑ ||

         
     

           
||    

 

   
 

 

This is based on the fact that the total area formed by Q with 

any two consecutive vertices of the rectangle equals to the 

area of the rectangle.  Where h(k) = k + 1 if k =1, 2, 3; 1 if 

k=4. 

 

As we can see that the problem of detection of collision is 

different from the PIP that is to determine whether a point is 

inside a polygon (PIP).  Therefore, it is not a good idea to use 

the method of Ray Casting (see [1] and [2], [12]) because it 

needs to find number of intersections with the boundary of the 

polygon, which will be time-consuming. 

 

2.6 Between a set of polygon and a point 

If an object is consisting of a set of non-overlapping polygons 

as shown in Figure 8, then we can use the method given in 

previous section to check each of polygons involved. If an 

object is consisting of a large polygon and some small 

polygons that are contained in the large polygon as shown in 

Figure 9, then we can use the above method to check the large 

polygon if we just need to determine whether the point Q will 

collide the object.  If we need determine whether the point 

will collide with small polygons, then we can apply the 

method  to check the small polygons. 

       
     Figure 8                              Figure 9 

   

2.7 Between two line segments 

Let us consider two line segments          as shown in 

Figure 10.  It is easy to verify that these two segments 

intersect if and only if   |
          

  
    

   
    

 |    and 

              ̅             and       
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   Where the intersection point 

  ̅  ̅  can be found by Cramer’s rule, in fact,  ̅  
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If      it means these two line segments are parallel.  If any 

three end points of them form a triangle with non-zero area, 

then they don’t collide.  Otherwise, they collide. That is, if 

          
 

|

     

  
   

  
     

|    

Then they collide. 
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Figure 10 

2.8 Between one triangle and a line segment 

Consider a triangle with the set of vertices               
   and a line segment L with end points A and B as shown in 

Figure 11.   To check for any collision between the line 

segment and the triangle, we can perform a loop for each side 

of the triangle and the segment L by applying the method 

given in section 2.7.    If the line segment does not intersect 

any side of the triangle, we just need check whether it lies 

entirely inside the triangle by checking one of the end points 

of L by using the method given in section 2.4 above. 

 
Figure 11 

2.9 Between two triangles both in motion 

Consider triangles            with the sets of vertices 

   {(  
    

 )      }         as shown in Figure 12.  

To check for any collision between these two triangles, we 

can perform a loop for each side of   and consider that side 

and the triangle    by applying the method given in section 

2.8. 

 
Figure 12 

2.10 Between two line segments in space 

Consider two line segments in space as shown in Figure 10. 

                               [   ]        
It is well known that  
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|           [   ] such that 

              

              

              

 

Therefore, we can detect whether two line segments collide as 

follows. 

(1) Check to see if two line segments are parallel.  If 

they are parallel, then check  ⃗    , where              

 ⃗              and                                            

                      . If   ⃗      ⃗ , 
then the line segments collide. Otherwise, they don’t 

collide. 

(2) If  they are not parallel, then check the determinant  

If |

               
      
      

|     then find the 

value of t.  If   [   ], then they intersect.  

Otherwise, they don’t intersect. 

 
Figure 13 

2.11 Between a triangle and a line segment in space 

Consider a triangle and a line segment L.   To check for any 

collision between the line segment and the triangle, we can 

perform a loop for each side of the triangle and the segment L 

by applying the method given in section 2.10.  If L does not 

collide with any side of the triangle, we need check whether it 

lies entirely inside triangle by applying the method given in 

section 2.4 or it might penetrate the surface of the triangle by 

checking the signs of  ⃗    ⃗⃗⃗⃗         ⃗    ⃗⃗⃗⃗  , where  ⃗  is the 

normal vector of the triangle surface,   ⃗⃗⃗⃗           are vectors 

with one of the end points of L as an initial point and the point 

P as the terminal point, where the point  P is defined as 

  (
 

 
∑   

 
    

 

 
∑   

 
    

 

 
∑   

 
   )  which lies on the 

surface of the triangle with vertices                If the 

signs of  ⃗    ⃗⃗⃗⃗         ⃗    ⃗⃗⃗⃗   are different, then we need check 

to see if the distance from the point   to L is less than the 

                       If it is true, then L penetrates the 

surface of the triangle, otherwise, it does not penetrate.   

 

2.12 Between two triangles in space 

Consider triangles           .  To check for any collision 

between these two triangles, we can perform a loop for each 

side of   and consider that side and the triangle    by 

applying the method given in section 2.11. 
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3 Conclusions and Future Work 

This paper has presented some mathematical solution for 

some fundamental bounding shape in game collision 

detection in 2D and 3D. Our method is easy to implement 

without a lot of performance issues in per-pixel based 

algorithm, but the accuracy and precision improved greatly 

compared with pixel based collision detection mechanism. 

 

In the future, collision between combination of different 

fundamental bounding shape and their represented visual 

object will be studied. 
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Abstract - In the OOP era of the present times, it tends to 
be forgotten sometimes that the design of rather complex 
algorithms may be ahead of us at the end of object analysis. 
Several graphical languages are available for their 
representation. Kopenograms are one of the clearest ways 
how to represent structured algorithms. They are an apt 
supplement of UML diagrams used to show algorithmic 
structures, and they have proven themselves as a very 
effective tool in programming classes.
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1 Introduction
Kopenograms are one of graphical ways of represent-

ing algorithms and data. The acronym KOPENOGRAM 
expresses the fundamental idea of this graphical represen-
tation: Keep Our Program in Embedded Noted Oblongs 
for Graphical Representation of Algorithmic Modules.

The original idea of graphical representation of al-
gorithms emerged in the 80ies of the past century, in a 
discussion of three programmers (Kofránek, Novák, 
Pecinovský), as a reaction to the defects of existing ways 
of structured representation of algorithms and data struc-
tures (such as flowcharts [1], Jackson diagrams [2, 3], 
Nassi-Schneiderman diagrams [4] etc.). However, it be-
came apparent soon that the chosen notation can also be 
used for visually clear demonstration of algorithm and 
data structuring in teaching. Named kopenograms (origi-
nally a temporary name composed of the surnames of the 
authors) [5] in the then Czechoslovakia and later in the 
Czech and Slovak Republics, these diagrams started to be 
used as a teaching aid both for the teaching of program-
ming essentials, e.g. using the programming language 
Karel [6, 8], and also for the teaching of more advanced 
programming methods (8-15).

Block is a basic term in any kopenogram, and it means 
a certain part of the program. A block may be data dec-
laration, class, procedure, function, statement, etc. Every 
block is shown as a rectangle.

The graphical language of kopenograms includes ex-
pression means for writing algorithmic structures as well 
as data structures. However, UML is now used as standard 

for writing data structures. Therefore in our contribution, 
we shall focus only on describing how those algorithmic 
structures are written for which no diagram is offered by 
UML that could display them, without “seducing“ the de-
veloper to using non-structured statements.

2 Algorithmic Structure Blocks
Some blocks exhibit more complex inner structure.:

•	 Header is the upper part of the block divided 
from the rest of the block using a single or double 
line. If divided using a double line, it contains the 
name of the block; if divided using a single line, it 
contains the input condition of the block.

•	 Footer is the lower part of the block divided using 
a single line in algorithmic blocks. The footer de-
notes the end of the body of the cycle and contains 
the so called output condition of the cycle.

•	 Qualification is the left part of the block, sepa-
rated using a single vertical line in algorithmic 
blocks; this part contains access operation for the 
components of a structured constant or variable.

•	 Body of the block is the remaining part of the 
block between any header and footer, right of any 
qualification.

•	 Dividing bar is a special part within the body of 
the block; this part may contain a condition caus-
ing leaving the body of the block prematurely.

•	 Compound block has a body with embedded 
blocks.

•	 Block with several bodies is a compound block 
that incorporates several bodies, immediately ad-
jacent horizontally, and separated by single verti-
cal lines.

2.1  Colors
Initially, kopenograms were designed so that the col-

or provides additional information, similarly as colored 
highlighting of the syntax started to be used later. Colors 
were assigned to individual types of the blocks and their 
parts as follows:

• Yellow color is used to fill headers of procedures, 
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functions and methods. Yellow is also used to 
highlight recursive calls.

• Red color is used to fill blocks with actions with 
the exception of recursive calls, in which case yel-
low is used as mentioned above.

• Green color is used to fill headers, footers and di-
viding bars of cycles.

• Blue color is used to fill headers with conditions 
in conditional statements and switches. It is also 
used in dividing bars of blocks not used to repre-
sent cycles.

• Block qualifications are filled identically as state-
ments, i.e. using red color.

In order to enhance clear arrangement, a lighter shade 
of the header color is used to fill also the inner area of the 
given block.

2.2  Comments
Any text written outside a simple block or outside the 

header, footer and qualification of compound blocks, re-
spectively, is a comment. Connecting dashed lines may be 
used to express relationships of comments to appropriate 
blocks.

Arrows are a special type of comments; they repre-
sent input and output statements. The fact that any data 
should be input or output, respectively, can be represented 
by adding an arrow to the right side of a simple block, ori-
ented to the right for the output or to the left for the input, 
respectively. Then it only remains to write in the block the 
list of data to be transferred. If the type of the used input/
output device or file is to be emphasized, an appropriate 
schematic mark or name of the file can be drawn to the 

right of the arrow.

2.3  Compound Blocks
Embedded blocks in the body of a compound block 

are ordered from the top downward, which illustrates their 
sequential execution (see Fig. 1).

In compound blocks, the program “grows“ toward 
the inside, thereby naturally limiting the size of defined 
subprograms. This urges the developer to design simple 
subprograms.

If any developer feels limited by this characteristic, 
an analogue of a connector in flowcharts may be used. 
An empty block can be used as such a connector, with 
its name put inside. The contents of such a block may be 
expanded on in another picture. However, in interactive 
electronic charts, the structure of such an empty block is 
expanded automatically upon clicking the empty block.

Attaching a qualification from the left to the block and 
inserting an identifier of any structured variable in the 
qualification, access operation to appropriate components 
of the variable can be expressed. These components then 
become immediately accessible from within the body of 
the block and all embedded blocks with no need of explic-
it qualification (analogue of the structure with in Algol, 
Pascal, Visual Basic, …).

Conditions that affect the run of the program are en-
tered in the header, footer and dividing bars.

Compound conditional block of the type if … then 
… else can be expressed using a block with one header 
and two bodies where the condition in the header of the 
right body will always be true – see Fig. 2. Analogically, 
a general conditional statement can be represented using a 
block with several bodies – see Fig. 3.

Switch or case is a special case of the general condi-
tional statement. Reduced notation according to Fig. 4 is 
established to eliminate the necessity of writing all condi-

Figure 1: Evaluation flow in kopenogram. Evaluation is 
started from the upper left corner of the block. If the con-
dition is true, the program continues downward; if false, 

the program continues to the right.

Block 1 

Block 2 

Block 3 

true false Condition 

Figure 2: Block of simple alternative “if..then..else”.

▼  Condition 

Block 1 Block 2 

Figure 3: Block of general conditional statement.

Condition 1 Condition 2  

Block 1 Block 2 

Condition 3  

Block 3 
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tions in the header as “variable=value“.

In some cases, all parts of a block with several bodies 
may not fit next to each other. If this is the case, individual 
parts of the block may be placed below each other and 
connected – see Fig. 5.

2.4  Evaluating Conditions
Headers, footers and dividing bars contain conditions 

that affect further evaluation procedure of the algorithm. 
The following general rule applies to evaluation of con-
ditions: If the condition is true, the program continues 
downward; if false, the program continues to the right.

The header contains a condition that determines 
whether the body of the block will be entered. If true, the 
program continues downward to the body; if false, the 
program continues to the right by evaluating the next con-
dition, and in the last condition on the right, by leaving the 
block and continuing with the subsequent block.

If the body of the block is divided using a dividing bar 
(see Fig. 6), its condition is evaluated identically. If true, 

the program continues downward and executes the body 
of the block; if false, the program continues to the right 
and if it is the last condition, the block is left.

Blocks representing a cycle contain, besides a header, 
also a footer. In order to evaluate a condition in the foot-
er, the cycle block can be understood as wound up on a 
roller. When the footer condition is true, the program does 
continue downward; however, continuing downward on a 
roller means evaluating the header again. If the condition 
is false, the program continues to the right, and if the last 
condition on the right is false, the cycle block is left (see 
Fig. 7).

Any condition that is always true should be marked 
using an arrow oriented downward. However, in the footer 
such a condition may also be marked using an upward ar-
row to make the arrangement clearer, given that it returns 
the program to the beginning of the cycle, thus to the point 
of header evaluation (see Fig. 8).

This simple way can be used to clearly express how 
various types of cycles are executed – see Fig. 9.

By dividing the block in several bodies, cycles with 
several bodies can be easily expressed, which are known 
from some programming languages. (see Fig. 10) 

Figure 4: Block of switch statement.

Variable 
 

Block 1 Block 2 Block 3 

▼ Value 1 Value 2 Value 3 Value 4 

Figure 5: Order individual parts of the block when lack of 
space.

Variable
Value 1 Value 2 Value 3 Value 4 Value 5

Block 1 Block 2 Block 3

▼▼Value 6 Value 7

Block 3 Block 4

Figure 6: Dividing bar in the block. Algorithms written in 
blocks A and B are equivalent.

Block A Block B

▼Condition 1 ▼Condition 1

Block 1 Block 3 Block 1 Block 3Block 1

Condition 2

Block 3 Block 1

Condition 2

Block 3

Block 2 Block 2

Figure 7: Evaluation flow in the cycle with condition in the 
footer.

▼ 

Condition   

Block  

false

tru
e

Figure 8: Evaluation flow in the cycle with condition in the 
header.

Condition 

▲   

Block  

false

tru
e
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Input conditions in the header are evaluated identically 
as in a single-body cycle, i.e. the header is always evalu-
ated from the upper left corner, irrespective of which of 
the bodies was gone through before. However, output con-
ditions in the footer are evaluated only in the part adjacent 
to the given body (see Fig. 10). If several bodies share one 
output condition, such a condition can be represented as 
their shared footer – see Fig. 11.

In addition, upon adding embedded headers to a 
multiple-body block, a powerful algorithmic structure is 
achieved, which makes it possible to arrive at a simple and 
well-arranged representation of a number of algorithms 
structured only with difficulty before – see Fig. 21.

2.5  Compound Conditions
Conditions expressed in the header, footer and dividing 

bar can also exhibit complex structures. A structured 
condition can be represented as a table whose cells include 
the tested conditions (see Figs. 12 – 14). These conditions 
are evaluated based on the following rules:

• Evaluation is started from the upper left corner.

• If the condition is true, the program continues 
downward.

• If the condition is false, the program continues to 
the right.

• An empty condition (empty rectangle) is run in 
the direction in which it was entered (if entered 
from the left, the rectangle will be left to the left; 
if entered from above, the rectangle will be left in 
the downward direction).

• A condition always true is represented using a 
downward arrow; in the footer, it may also be rep-
resented using an upward arrow to enhance the 
clarity of visual arrangement.

• A condition always false is represented using an 
arrow to the right.

• If any header or footer is left to the right due to 
evaluation of the conditions, it means that the 
whole block is left, as well, and program control 
is passed on to the next part of the program.

• If a header is left in the downward direction, the 
body is executed. If a footer is left in the down-
ward direction, evaluation of the header will be 
the next step (see the analogy with a roller cycle 
described above).

• If the cycle block is divided in several parts, this 
division logically continues also in the footer, and 
evaluation of the footer starts from the upper left 
corner below the appropriate body. The program 
returns to the start of the block if the footer is left 
in the downward direction. The cycle is left if the 
footer is left to the right or if a bar is encountered 
while evaluating the conditions, which divides the 
cycle to individual parts corresponding to differ-
ent bodies – see Figures 10 and 20.

• Evaluation of the footer in cycles with several 
bodies is started in the upper left corner again. 

Figure 9: Basic types of cycles.

Condition 1  

Condition 2  

Block  

▼ 

▲ 

Block  

Condition   

▲ 

Block  

▼ 

Condition   

Block  

Condition 1 Condition 2

Block 2 Block 3Block 2  Block 3 

Condition 3 Condition 4

falseCondition 1 Condition 2

true

l k l k
true

Block 2  Block 3 

Condition 3 Condition 4false false

truetrue

Figure 10: Cycle with several bodies.

Figure 11: Cycle with several bodies with shared output 
footer

Condition 1  

▲ 

Block 1 

Condition 2 

Condition 4 

Block 2  

Condition 3 

Block 3  

false false falsefalse false false

true true true

Condition 1 Condition 2 Condition 3

Block 1 Block 2 Block 3

falsetrue Condition 4
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The cycle is left only if, upon evaluating the con-
ditions, the footer (and thus the whole cycle) is 
left to the right. If the program falls through the 
footer in the downward direction, the cycle is not 
left, and thus the cycle keeps running and the pro-
gram continues by evaluating the conditions in the 
header (see Figures 10 and 21).

2.6  Non-Structured Statements
In theory, a structured algorithm is defined as one that 

observes the following rules:

• Algorithm is formed by a linear sequence of 
blocks where each has only one input and one 
output.

• Where a decision is to be made in the program, an 
equivalent of the block if … then … else is used.

• Where a part of the code is to be repeated, one of 
the cycles while or repeat … until is used.

Figure 13: Intricately structured condition in header.

p2 

A B 

P1 ▼ 

p3 

p4  
p1 

p2 

p3 p4 

true 

true 

 true true 

false 

false 

false 

A B 

Figure 14: The algorithm evaluation of implication p → q 
using compound structured conditions.

▼  
q 

true false 

p ▼ p 

q 

true 

true 

true false 

false 

false 

Figure 15: Dividing bar in the cycle. 

Condition 1 

falseCondition 1

trueBlock 1 
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falseCondition 2 
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l k
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Block 3 
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▲

Condition 1

Condition 2
▼

Condition 2

Condition 3

Condition 4

Block

Condition 1 falsefalseCondition 1

Condition 2
▼falsefalse
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truetrue

Always trueAlways true
falsefalse

Condition 3

Condition 4
truetrue

truetrue

Empty conditionEmpty condition

falsefalse

falsefalseCondition 4
truetrue

p yp y falsefalse

BlockBlock

Condition 1 Condition 2

Condition 3 Condition 4

Block

Condition 1 Condition 2 Empty conditionEmpty condition
truetrue

falsefalsefalsefalse

Condition 3 Condition 4▼ Always falseAlways false
truetrue

truetrue truetrue
falsefalse falsefalse

Block

Figure 12: Evaluation flow in structured conditional 
blocks. Evaluation is started from the upper left corner of 
the blocks. If the condition is true, the program continues 
downward; if false, the program continues to the right. 
A condition always true is represented using a downward 
arrow; a condition always false is represented using an ar-
row to the right. An empty condition (empty rectangle) is 
run in the direction in which it was entered - if empty rect-
angle entered from the left, the rectangle will be left to the 
left; if entered from above, the rectangle will be left in the 

downward direction.
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While it can be proven that every algorithm can 
be written observing the rules above, in some cases 
its structure may be easier to understand if some of the 
rules is violated. Therefore the majority of programming 
languages offer syntactic structures for such operations.

That is why kopenograms allow for representing 
typical statements that violate the purity of its structure 
for the sake of its clear arrangement.

2.6.1  Break

Premature leaving of a block can be represented using 
a dividing bar (Fig. 6 and 15). However, if multiple blocks 
are to be left at the same time, the graphical representation 
in Figs. 16 and 17 can be used.

2.6.2  Continue

Continue is shown as a classic statement whose name 
is represented by an upward arrow (Fig. 18). The program 
then continues by evaluating the header of the innermost 
cycle.

2.6.2  Return

The statement of premature termination of a 
subprogram can be represented similarly as break, and/or 
as a classic statement named return.

2.6.2  Exceptions

In order to represent a block with an expected 
exception and also a block that is used to handle such a 
raised exception, only color is used (see Fig. 19):

• The header of the block with an expected 
exception and also of the subsequent block to 
handle the exception is filled using white color.

• The body of the block with an expected exception 
is filled using violet color.

• The body of the block where such a raised 
exception is handled is filled using orange 
color, similarly as any body of a block executed 
irrespective of whether an exception was or was 
not raised (the block finally).

2.6.2  Goto

The general statement goto represents considerable 
violation of the structure, and therefore it is also strongly 

 Figure 19: Throwing an handling the exceptions. 

Exception

►►►
▲ Exception 1

►►►

ActionAction

▲ Exception 1▲ Exception 1 

Exception 1 

Exception
handlingg

Figure 16: Early exit cycle (using the “break”). However, 
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highlighted. This statement is shown as an arrow orient-
ed from the point of the jump to the right, outside of the 
block, and then up or down and finally to the left of the 
block with the target label (Fig. 20).

3 Conclusion
Kopenograms are a handy tool for clear graphical rep-

resentation of the structure of algorithms, and they have 
found long-term application particularly in teaching pro-
gramming classes. 

These are a convenient supplement of UML diagrams 
used to represent algorithmic structures.

Kopenogram specification is published on [16].
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Figure 21: The general algorithmic block with embed-
ded headers and multiple bodies. This block performs the 

same algorithm as a block in Figure 20.
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Abstract- Nath et al recently developed encryption method 
called UES version-I where they have 3 distinct encryption 
methods such as Modified generalized Vernam Cipher 
method using feedback, multiple round transposition 
method and permutation method have been amalgamated. 
A new combined cryptographic method called UES 
Version-II has been introduced here as the extension of 
UES version-I.  Nath et al. have already developed several 
symmetric key methods such as MSA, DJSA, NJJSAA, 
TTJSA, TTSJA, DJMNA, DJJSA, UES-I etc. In the present 
work multiple methods such as generalized modified 
vernam Cipher method Permutation method, Columnar 
transposition method and TTJSA have been implemented. 
UES-I has been extended to UES-II by adding one 
encryption module called TTJSA to make the encryption 
standard harder than UES-I. An encryption key pad in 
Vernam Cipher Method and also the feedback used in this 
method is considered to make the encryption process 
stronger. UES-II incorporates multiple encryption and 
decryption to defeat common cryptography attack such as 
differential attack or simple plain text attack. 
Keywords: encryption, decryption, feedback, cycling, 
randomized Vernam key, TTJSA. 

I. INTRODUCTION  
In the current communication network it is a real challenge 
us to send confidential data/information from one computer 
to another computer.  When a sender is sending some 
confidential data, there may be a middle man attack and the 
data may be intercepted and diverted to different places. 
The confidentiality and security of data has now become a 
big challenge in data communication network. Due to 
network facility the access of data is now very easy and the 
hackers are always try to hack data from the network.  The 
trainers and the teachers must be careful to send question 
papers or marks sheet through e-mail as there is no 
guarantee that it will not be intercepted by someone. In 
banking and corporate sectors the finance or management  
data must be secured if by chance the data goes to the 
hacker then the entire service will be collapsed. Password 
breaking is now not a problem. Many public software are 

available to decode password of some unknown e-mail. 
Under no circumstances the confidential data should be 
intercepted by any intruder while transmitting from client 
machine to server or to another client machine. Due this 
intrusion problem now the network security and 
cryptography is an emerging research area where the people 
are trying to develop some good encryption algorithm so 
that no intruder can intercept the encrypted message. Nath 
et al. had developed some advanced symmetric key 
algorithm [1-8]. In the present work we are proposing a 
symmetric key method called UES version-II which is a 
combination of 4 distinct cryptographic methods, namely, 
(i) Generalized Modified Vernam Cipher Method, (ii) 
Permutation method (iii)Columnar transposition method 
and (iv) TTJSA modules. We have tested this method on 
various types of known text files and we have found that, 
even if there is repetition in the input file, the encrypted file 
contains no repetition of patterns. The real challenge in the 
UES version-II algorithm was to ensure the effective 
integration of the four levels of encryption to produce 
strong encryption with the features such a multiple 
encryption, randomized key generation and a new method 
i.e. TTJSA.  

II. UES VERSION-II  ALGORITHM  
ENCRYPTION PROCESS 

In UES-II we have  four distinct levels of encryption such 
as Modified Vernam Cipher with feedback, Columnar 
Transposition,  Randomization Encryption Process and 
finally TTJSA[ref-no]. The first three levels of encryption 
are performed in blocks of 900 bytes. The residual bytes (of 
size less than 900 bytes) are encrypted with the Modified 
Vernam Cipher Encryption Method.  The output is 
encrypted further by TTJSA method. TTJSA method 
comprises of 3 distinct encryption methods namely (i) MSA 
method[Ref-no], (ii) NJJSAA methd [Ref-no], 
(iii)Generalized modified vernam cipher method with 
feedback. The randomized vernam key is generated in 
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every iteration from a mathematical calculation from the  
user given password which can be 64-byte long. While 
doing columnar transposition method the sequence of the 
column extraction  is also decided internally from the  
password entered by the user. The password will also 
decide the number of times encryption is to be performed.  

Integration and key generation algorithm 
Step 1:   Start 
Step 2:   Input the plain text file name in 'plain[]' (The plain 
file may be of any format). 
Step 3:   Input the cipher text file name in 'cipher[]' 
Step4:    The extracts the first byte in the file and stores it in 
'ch' and it extracts the last byte of the file and stores in 'cha'. 
It replaces the first byte of the file with character with 
ASCII (ch+cha)%256. 
Step 5:   The user enters a 64 byte encryption-key that is 
stored in 'key[]'. 
Step 6:    Now the algorithm computes the 'cod' value equal 
to Σ key[i]*(i+1) where i represents the position of every 
character in the key. 

Step 7:    The encryption number (enc)  is computed by 
calculating the cod modulus 17. If enc <0 then enc=7 

Step 8:    Take the input file pointer to the end of the input 
file, such that the size of the input file can be computed. 
(The size of the input file is stored in long integer variable 
'n'.) 

Step 9:   Declare a variable 'n1' of long int datatype where 
n1 will store the number of iterations. Each iteration will 
process a 30 X 30 bytes block in every iteration of 
encryption. 
Step 10:   Introduce a variable p=0. 
Step 11:   Compute cod=cod modulus 256 
Step 12:   If p is greater than or equal to enc then GOTO  
step 29. 
Step 13:   Increment cod and perform cod=cod%256; 
Step 14:   Now create a key file by printing the characters 
with ASCII values of 0-255 in rotation. The first character 
is however the character with ASCII ‘cod’. This key file 
serves as the input for the Modified Vernam Cipher with 
feedback. 
Step 15:   This key is further randomized using 
randomization module and stored in the file ‘file1.c’. 
Step 16:   Initialize integer variable count to 0.  
Step 17:   If count greater than or equal to n1 then Goto 25  
Step 18:   Define the intermediate file which will open, 
extract and process the first 900 bytes of the plain file. 
Step 19:   The 900 bytes that have been extracted  now is  
encrypted with the Modified Vernam Encryption process 
with Feedback  
Step 20:   The output from the modified vernam cipher 
encryption process is fed as input to the columnar 
transposition encryption process. 
Step 21:   The output from the columnar encryption method 

will now undergo randomization/permutation encryption 
method. 
Step 22:   The output file from the randomization process 
holds the encrypted 900 bytes.  
Step 23:   The 900 bytes is written to the cipher file name 
provided by the user. 
Step 24:   The value of ‘count’ is incremented by 1. Goto 
17. 
Step 25:   Once the control breaks from the loop, the 
program is left to process the residual bytes from the input 
file.  
Step 26:   The residual bytes are processed by the modified 
vernam cipher encryption technique. The encrypted bits are 
again written into the cipher file which serves as the input 
for the next iterations of encryption. 
Step 27:   Increment p 
Step 28:   Goto step-12 
Step 29:   When the control reaches this encryption the 
Modified Vernam Cipher, Columnar Transposition, and 
Randomization modules are complete. The file is further 
fed as input to the TTJSA module. 
Step 30:   The output is again written back to the cipher file 
whose name is provided by the user. 
Step 31:   End 
  

Algorithm for the first level of encryption – 
modified vernam cipher encryption method 

with feedback. 
Step 1: Start 
Step 2: The plain text serves as the input file for the 
program. 
Step 3: Create a dictionary of characters in the character 
array where position i will be the ASCII value for the 
character placed in the i-th location of the array.   
Step 4: Define the encryption key which must be same as 
the key provided during decryption. 
Step 5: Start processing the characters in the input file. 
Define a integer variable ‘feed’ and initialize it with 0. 
Step 6: Extract a character in the input file and store in ch1. 
If ch1is NULL, goto 12 
Step 7: Extract a single character from the key file. 
Step 8: Compute m,n from the arrays arr[] where m and n 
are the ASCII values for the first characters of the input file 
and key files. 
Step  9: Perform addition m=m+n+feed. Then calculate 
n=m modulus 256.The value of n is called the ‘Feedback’ 
which allows the program to encrypt the characters in the 
plain file. 
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Table 1: Modified Vernam Cipher  
Key: abc 
aaa  ���� ┬àI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 10: Write the contents of the array in the intermediate 
output file one by one, where the array in the n-th place of 
the array is the encrypted character.  
Step 11: Goto 7. 
Step 12: Once the control comes out of the loop, the 
encryption process is complete. 
Step 13: END 
Algorithm for the second level of encryption- 

Columnar Transposition Method 
Step 1:   Start 
Step 2:   Now the algorithm extracts the first character of 
the 'file1.c' in 'cha' and computes 'od'=cha modulus 6. The 
value of od determines the sequence of columns everytime 
the columnar module is invoked.   
Step 3:   Now we compute the array 'arra[]' where the first 
entry is od. Then 'od' is subsequentely decremented. If the 
value of od becomes 0 then it is replaced by 5. This array 
decided the definite order of the sequence of columns 
extracted.  
Step 4:    The 900 bytes of output from the Modified 
Vernam Method serves as the input file for Columnar 
Transposition Method. 
Step 5:    Initialize the variable n to an arbitrary integer 
value which represents the number of columns of the 
columnar transposition array in which the plain file 
characters will be stored. Typically n may have any value. 
Step 6 :   Initialize both integer variables 'row' and 'col' to 0 
Step 7 :   Initialize all the elements in the specified array 
arr[][] to NULL('\0') 
Step 8 :   Store the plain text file byte by byte in the array 
arr[][] where the row and column positions are determined 
by 'row' and 'col'. 
Step 9:   Increment column index by 1 once a byte is read 
and placed in the array 

Step 10: If  col is equal to n then increment row by 1 and 
intialize col variable to 0 to keep a check on the row and 
column parameters. 
Step 11:  Goto 9 until the storing of the intermediate plain 
text in the array is complete. 
Step 12.  If col==0 then we decrement the row index by 1 
to ensure that the character array arr[] does not produce an 
extra row.This happens when a character is placed at the 
last column of a particular row. 
Step 13: Initialize both variables 'count' and 'index' to 0. 
Step 14: If(count>=n) goto 17 
            Table 2(a), (b): Columnar Transposition 

 
Table 2(a): Plain text: letsallgonow 
The plain text is placed in array ‘arr’. 

 
   

            

 

 

Table-2(b): Cipher Text:lwaosntoegll 

 

 

 

 

arra[]={5,4,3,2,1,0} (assume) 

p=arra[index](where index=0 and subsequently 
index=index+1) 

p=5, 4, 3,2,1,0 respectively where p stands for the extracted 
column. 

Step 15 : Count is incremented by 1 
Step 16 : Initialize variable p to arra[index]. Here the 'arra[]' 
stores the order in which the columns will be transported to 
the same columnar transposition array arr[] to implement 
the columnar transposition encryption method. The variable 
'index' is subsequently incremented to transport the rest of 
the columns of the columnar transposition array 
Step 17:  End 

 
 
 
 

Plain text: A A A 

Plain Index(m): 97 97 97 

Key text: a B C 

Key Index(n): 97 98 99 

Feedback (feed): 0 194 133 

m=m+n+feed 194 389 329 

n=m%256 194 133 73 

Cipher text: ┬ À I 

0 1 2 3 4 5 

L E T s a L 

L G O n o w 

0 1 2 3 4 5 

l w A o S n 

t o E g L l 
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Algorithm for Randomization/Permutation 
Encryption Method 

 Step 1: Start 
 Step 2: The output from the columnar transpositionmethod 
serves as the input for the randomization/permutation 
process. 
Step 3: Define integer arrays 'arr' that will store the 
randomization key. Define 2-d character arrays 
'chararr[][]to store all the 900 bytes in the file and 
chararr2[][] to store the randomized characters. 
Step 4: Initialize all the elements in the character 
arrayschararr[][] and chararr2[][] to 'null'. 
Step 5: Initialize m to 30 and n to 1. 'm' holds the numberof 
rows and columns in the square matrix of 
chararr[][],chararr2[][], arr[][]. 

Step 6: Input the numbers 1,2,3...,900 to the integer array 
arr[][] by incrementing the value of n. The characters in the 

input file are copied to the character array 'chararr[]'. 
Step 7: Now randomize the numbers in the integer array 
with the help of the functions defined in the program. 

Step 8: The program invokes function 'leftshift()' which 
shifts every column in the integer array to one place left 
thus the first column is displaced to the position of the last 
column. 
Step 9: Invoke function 'topshift() which shifts very row to 
the row above. Therefore the elements in first row is 
displaced in the corresponding position of the last row. 
Step 10: Subsequently perform cycling operation on the 
integer array 'arr[][]' . Intialize i to 1. 
Step 11: If i is greater than m/2 goto 15. 
Step 12: If i is odd, perform clockwise cycling of the i-th 
cycle of the character array. Invoke functions 
rights(),downs(), lefts(),tops() to implement the clockwise 
displacement of the elements in arr[][]. 
Step 13: If i is even, perform anti-clockwise cycling of the 
i-th cycle of the character array.  
Invoke functions ac_rights(),ac_downs(), 
ac_lefts(),ac_tops() to implement the anti-clockwise 
displacement of the elements in arr[][]. Therefore the 
integer array arr[][] is alternately randomized in clockwise 
and anit-clockwise cycles. 
Step 14: Increment i. Goto 11. 
Step 15: The program invokes function 'rightshift()' which 
shifts every column in the integer array to one place right 
thus the last column is displaced to the position of the first 
column. 
Step 16: Invoke function 'downshift() which shifts very row 
to the row below. Therefore the elements last row is 
displaced in the corresponding position of the first row. 
Step 17: Invoke the function 'leftdiagonal()' that performs 
downshift on the elements in the left diagonal such that the 
lowermost element is displaced to the position of the 
topmost element in the left diagonal. 
Step 18: Invoke the function 'rightdiagonal()' that performs 
downshift on the elements in the right diagonal such that 

the lowermost element is displaced to the position of the 
topmost element in the right diagonal. 
Step 19: To arrange the elements in the character array 
chararr[][] according to the randomized integer array 
arr[][]. Initialize i to 1. 
Step 20: Store element arr[i][j] in z.  
Step 21: Compute the row and column position pointed by 
the element z which is stored in 'k','l' respectively. 
Step 22: Place chararr[k][l] in auxiliary character array 
chararr2[][] in positions chararr2[i][j]. 
Step 23: Increment j. 
Step 24: If j<=m goto 20 
Step 25: Increment i 
Step 26: If j<=m goto 20 
Step 27: Write the randomized elements in character array 
chararr2 [i][j] to the intermediate output file. 
Step 28:.End. 
 
DECRYPTION PROCESS: 
 

The decryption algorithm follows the reverse process of the 
four levels of encryption that have been implemented. 
TTJSA is the first method to be implemented. The three 
decryption processes employed are Randomization 
Decryption Method, Columnar Transposition Decryption 
Method, and Modified Vernam Cipher Decryption with 
feedback (in the specified order). Again, the algorithm 
repeatedly performs the decryption by the last three 
methods in blocks of 900 bytes and the residual bytes of the 
cipher file (size less than 900 bytes) are processed with the 
Modified Vernam Decryption Method with feedback. The 
decryption number is again generated according to the same 
64 byte user password 
 

TTJSA Algorithm: 
Now here we will describe TTJSA algorithm 

A. Algorithm for ENCRYPTION 

 

Step 1 : Start 
Step 2 : Initialize the matrix  mat[16][16]  with 

numbers  0 to 255  in row major wise. 
Step 3 : call keygen() to calculate randomization 

number(=times), encryption 
                      number(=secure) 
Step 4 : call randomization() function to 

generate to make the content of  
mat[16][16] 

                      Randomized.  
Step 5 : set times2=times 
Step 6 : copy file f1 into file2 
Step 7 : set k=1 
Step 8 : if k>secure go to Step 15 
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Step 9 : p=k%6 
Step 10 : if   p=0 

call vernamenc(file2,outf1) 
set times=times2 
call njjsaa(outf1,outf2) 
call msa_encryption(outf2,file1)  
else if p=1 
call vernamenc(file2,outf1) 
set times=times2 
call msa_encryption(outf1,file1) 
call file_rev(file1,outf1) 
call njjsaa(outf1,file2) 
call msa_encryption(file2,outf1) 
call vernamenc(outf1,file1) 
set times=times2 
else if p=2 
call msa_encryption(file2,outf1) 
call vernamenc(outf1,outf2) 
set times=times2 
call njjsaa(outf2,file1) 
else if p=3 
call msa_encryption(file2,outf1) 
call njjsaa(outf1,outf2) 
call vernamenc(outf2,file1) 
set times=times2 
else if p=4 
call njjsaa(file2,outf1) 
call vernamenc(outf1,outf2) 
set times=times2 
call msa_encryption(outf2,file1) 
else if p=5 
call njjsaa(file2,outf1) 
call msa_encryption(outf1,outf2) 
call vernamenc(outf2,file1) 
set times=times2 

Step 11 : call function file_rev(file1,outf1) 
Step 12 : copy file outf1  into file2 
Step 13 : k=k+1  
Step 14 : goto Step 8 
Step 15 :End 
 

1) Algorithm of vernamenc(f1,f2) 

Step 1 : Start vernamenc() function 
Step 2 : Initialize matrix mat[16][16] is 

initialized with numbers 0-255 in row 
major wise 

Step 3 : call function randomization() to make 
the content of mat[16][16] random 

Step 4 : Copy the elements of random matrix  
mat[16][16] into key[256] (row major 
wise) 

Step 5 : set pass=1 , times3=1 , ch1=0 

Step 6 : Read a  block from the input file f1 
where number of characters in the 
block≤256  

                     characters 
Step 7 : If block size < 256 then  goto Step 15 
Step 8 : copy all characters of the block iinto an 

array str[256] 
Step 9 : call function  encryption() where  str[] is 

passed as parameter along with the size  
                      of the current block 
Step 10 :  if pass=1 

set times=(times+times3*11)%64 
set pass=pass+1 
 else if pass=2 

  set times=(times+times3*3)%64 
set pass=pass+1 
else if pass=3 
set times=(times+times3*7)%64 
set pass=pass+1 
else if pass=4 
set times=(times+times3*13)%64 
set pass=pass+1 
else if pass=5 
set times=(times+times3*times3)%64 
set pass=pass+1 
else if pass=6 
set 
times=(times+times3*times3*times3)%6
4 
set pass=1 

Step 11 : call function randomization() with 
current value of times 

Step 12 : copy the elements  of mat[16][16]  into 
key[256] 

Step 13 : read the next block   
Step 14  : goto Step 7 
Step 15 : copy the last block (residual characters , 

if any) into str[] 
Step 16 : call function encryption()  using str[] 

and the no. of residual characters 
Step 17 : Return 
 

2) Algorithm of function encryption(str[],n) 
Step 1 : Start encryption() function 
Step 2 : set ch1=0 

: calculate ch=(str[0]+key[0]+ch1)%256 
Step 3 : write ch  into output file 
Step 4 : set ch1=ch 
Step 5 : set i=1 
Step 6 : if i≥n  then  goto Step 13 
Step 7 : ch=(str[i]+key[i]+ch1)%256 
Step 8 : write ch  into the output file 
Step 9 : ch1=ch 
Step 10 : i=i+1   
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Step 11 : goto Step 7 
Step 12 : Return 

 

B. Algorithm for DECRYPTION 
Step 1 : Start 
Step 2 : initialize mat[16][16]  with 0-255 in row 

major wise 
Step 3 : call function keygen() to generate times 

and secure 
Step 4  : call function randomization() 
Step 5 : set times2=times 
Step 6 : call file_rev(f1,outf1) 
Step 7 : set k=secure 
Step 8 : if k<1 go to Step 15 
Step 9 : call function file_rev(outf1,file2) 
Step 10 : set p=k%6 
Step 11 : if  p=0 

 call msa_decryption(file2,outf1) 
 call njjsaa(outf1,outf2) 
 call vernamdec(outf2,file2) 
 set times=times2 
 else if   p=1 

call function vernamdec(file2,outf1) 
 set times=times2 

call function msa_decryption(outf1,outf2) 
 call fumction njjsaa(outf2,file2) 
 call function file_rev(file2,outf2) 

call function msa_decryption(outf2,outf1) 
call function vernamdec(outf1,file2) 

 set times=times2 
 else if  p=2 
 call njjsaa(file2,outf1) 
 call vernamdec(outf1,outf2) 
 set times=times2 
 call msa_decryption(outf2,file2) 
 else if   p=3 
 call vernamdec(file2,outf1) 
 set times=times2 
 call njjsaa(outf1,outf2) 
 call msa_decryption(outf2,file2) 
 else if   p=4 
 call msa_decryption(file2,outf1) 
 call vernamdec(outf1,outf2) 
 set times=times2 
 call njjsaa(outf2,file2) 
 else if  p=5 
 call vernamdec(file2,outf1) 
 set times=times2 
 call msa_decryption(outf1,outf2) 
 call njjsaa(outf2,file2) 
  

Step 12 : copy the content of file2  to outf1 

Step 13 : set k=k-1  
Step 14 : Goto Step 8 
Step 15 : End 

 

1) Algorithm of function vernamdec(f1,f2) 
The algorithm of  vernamdec() function is same as  
vernamenc() function. Here the only difference is that 
decryption() function is called instead of encryption() 
function. 

 

2) Algorithm of decryption(str[],n) 
Step 1 : Start 
Step 2 : ch1=0 
Step 3 : ch=(256+str[0]-key[0]-ch1)%256 
Step 4 : write ch  into the output file 
Step 5 : i=1 
Step 6 : if i≥n then goto Step 12 

: ch=(256+str[i]-key[i]-str[i-1]) %256 
Step 7 : write ch  into the output file 
Step 8 : i=i+1  
Step 9 : goto Step 6 
Step 10 : ch1=str[n-1] 
Step 11 : Return 
 

C. Algorithm of function file_rev(f1,f2) :  
 
Step 1 : Start 
Step 2 : open the file f1 in input mode 
Step 3 : open  the file f2 in output mode 
Step 4 : calculate n=sizeof(file f1) 
Step 5 : move file pointer to n 
Step 6 : read one byte 
Step 7 :write the byte on f2 
Step 8 : n=n-1 
Step 9 : if n>=1 then goto step-6 
Step 10 :close file f1,f2 
Step 11 :return 
 

Now we will describe how we calculate 
randomization number(=times) and encryption 
number(=secure). The present method is fully 
dependent on the text-key which is any string of 
maximum length 16 characters long. From the text-key 
we calculate two important parameters (i) 
Randomization number and (ii) Encryption number. To 
calculate this two parameters we use the method 
developed by Nath et al(1).  
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NJJSAA Algorithm: 
Nath et al.[2] proposed a method which is basically a bit 
manipulation method to encrypt or to decrypt any file.Step-
1 :  Read 32 bytes at a time from the input file.  
Step-2 : Convert 32 bytes into 256 bits and   store in some 1-
dimensional array. 
 Step-3:  Choose the first bit from the bit stream  and also 
the corresponding number(n)  from the key matrix.  
Interchange the 1st bit and the n-th bit  of the bit stream.  
 Step-4:   Repeat step-3 for 2nd bit,3rd bit,…256-th bit of 
the bit stream 
 Step-5:   Perform right shift by one bit. 
 Step-6:   Perform bit(1) XOR bit(2), bit(3) XOR   
bit(4),….bit(255) XOR bit(256) 
 Step-7:   Repeat step-5 with 2 bit right, 3 bit right,….n bit 
right shift followed by  step-6 after each completion of  right 
bit shift.  

MSA (Meheboob, Saima, Asoke) Encryption 
and Decryption algorithm: 

Nath et al.(1) proposed  a symmetric key method where 
they have used a random key generator for generating the 
initial key and that key is used for encrypting the given 
source file. MSA method is basically a substitution method 
where we take 2 characters from any input file and then 
search the corresponding characters from the random key 
matrix and store the encrypted data in another file. MSA 
method provide us multiple encryption and multiple 
decryption. The key matrix (16x16) is formed from all 
characters (ASCII code 0 to 255) in a random order.  

The randomization of key matrix is done using the 
following function calls: 
Step-1: call Function cycling() 
Step-2: call Function upshift() 
Step-3: call Function downshift() 
Step-4: call Function leftshift() 
Step-5: call Function rightshift() 
 
For detail randomization methods we refer to the done by 
Nath et al(1).Now we will describe how we perform the 
encryption process using MSA algorithm (1): We choose a 
4X4 simple key matrix: 

                 TABLE -3: K EY M ATRIX (4X4) 

A B C D 

E F G H 

I J K L 

M N O P 

 

Case-I: Suppose we want to encrypt FF then it will take as 
GG which is just one character after F in the same row. 
Case –II: Suppose we want to encrypt FK where F and K 
appears in two different rows and two different columns. 
FK will be encrypted to KH (FK�GJ�HK�KH). 
Case-III: Suppose we want to encrypt EF where EF occurs 
in the same row. Here EF will be converted to HG. 
After encrypting 2 bytes we write the encrypted bytes on a 
new output file.  The entire encryption method we apply 
multiple times and the encryption number will be 
determined by the process we have described in table-1. 
 
Decryption Method: The decryption method will be the 

just the reverse process of encryption method as mentioned 
above. 

III. FIG-1: Block Diagram of Ultra 
Encryption Standard Version-II 

 

IV. TEST RESULTS: 

In the present paper we have used multiple cryptography 
algorithms. We have applied our method on some known 
text where the same character repeats for a number of times 
and we have found that after encryption there is no 
repetition of pattern in the output file. We have made series 
of experiments on various known text files and have found 
the result is satisfactory. In Vernam cipher method we have 
used the feedback to ensure the same pattern should not be 
repeated in the encrypted text. The sequence of columns in 
the columnar method is also derived from the password. 

The TTJSA module has been incorporated to strengthen the 
encryption process even further. The merit of this method is 
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that it is almost impossible to break the encryption 
algorithm without knowing the exact key.  
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Abstract— The current trend in high performance comput-
ing (HPC) is to find clusters composed of multicore nodes.
These nodes use a hierarchical communication architecture,
which has to be handled carefully by students when they want
to improve the parallel performance metrics. For this reason,
we have proposed a teaching methodology for students in
computational sciences with the aim of developing their
SPMD (Single Program Multiple Data) parallel applica-
tions efficiently based on theoretical and practical sections.
This novel methodology for teaching parallel programming
is centered on improving parallel applications written by
students through their experiences obtained during classes.
Students achieved these improvements in their applications
through applying novel strategies in order to manage the
imbalances issues generated by the hierarchical communi-
cation architecture of multicore clusters. Also, this method-
ology allows students to discover how to improve their
applications using characterization, mapping and scheduling
strategies. Finally, the SPMD applications are selected be-
cause they can present imbalance issues due to the different
communication links included on multicore clusters and
these issues may create an interesting challenges for students
when they wish to enhance the performance metrics. In
conclusion, applying our teaching methodology, students
obtained a significant learning skill designing their SPMD
parallel applications.

Keywords: Performance Metrics, Multicore, Teaching Models,
Methodology for efficient execution, SPMD.

1. Introduccion
The inclusion of parallel processing in undergraduate

degree has been widely justified and it has been integrated
into the curriculum when it has become much easier to
use and much more widely available the parallel resources
[1][2]. Currently the trend in high performance computing
(HPC) is to find clusters composed of multicore node, and
the learning process has to be updated to use this new trends.
Also, the multicore nodes add heterogeneity levels inside

* This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974.

*Contact Autor: R. Muresano, rmuresano@caos.uab.es
†This paper is addressed to the FECS conference.

parallel environments and these heterogeneities have to be
handled by students carefully when they wish to improve
the performance metrics. Such computation and commu-
nication heterogeneities in the nodes generate interesting
challenges that students of parallel programming courses
must be prepared to deal with, when they want to enhance
the application performance.

Also, the integration of multicore nodes in High Per-
formance Computing (HPC) has allowed the inclusion of
more parallelism within nodes. However, this parallelism
must deal with some troubles present in multicore environ-
ments [3]. Problems such as: number of cores per chip,
data locality, shared cache, bus interconnection, memory
bandwidth, etc., are becoming more important in order to
manage the parallel execution efficiently. The increasing
use of multicore in HPC can be evidenced in the top500
1 list in which most of the today cluster are set up with
multicore nodes. For this reason, students have to learn new
parallel programming strategies with the aim of enhancing
the performance metrics in these environments. Indeed, the
need for students to learn parallel application topics and tools
is growing [4]. In fact, parallel application development has
been included in different areas such as: biology, physics,
engineering, etc [5] . and these inclusions have created
the needs to incorporate this important topic in computer
science curriculum. Including the efficient management of
multicore environment topic into the parallel programming
course content is very important because the current trend
in computational science is to use parallel computing.

However to achieve an efficient execution, the instructor
has to manage some issues that student can present when
they design their parallel applications [6] [7]. One of the
difficulties for students is to change their previous program-
ming knowledge, which is focused on designing sequential
applications. This focus is totally different when parallel
applications are programmed and even more when these
applications have to be designed for a multicore cluster.
In these order, tasks divisions between cores and the hier-
archical communication architecture included on multicore
clusters are topics that students have to consider when

1TOP500 is a list which provides a rank of the parallel machines used
for high performance computing www.top500.org

Int'l Conf. Foundations of Computer Science |  FCS'12  | 105



Fig. 1: SPMD and communications patterns.

they want to design their applications efficiently. Another
issues presented by students are related to mapping and
scheduling strategies, which have to be included in order
to develop suitable strategies with the aim of managing the
inefficiencies generated by communication heterogeneities.

Given the above, parallel programming courses have to
incorporate teaching strategies that allow students to solve
their programming issues on multicore environments apply-
ing real parallel processing experiences. These strategies
have to be focused on executing parallel application effi-
ciently. The main goal of our methodology is to obtain
a constructivism learning process of parallel computing,
where students can design their applications considering
performance metrics such as: execution time, speedup and
efficiency. Also, our methodology includes the consideration
of how students can improve their application with the aim of
executing their applications on multicore clusters efficiently.
For this reason, this work is focused on creating a significant
learning process for student of parallel programming with
the objective of adapting them to the new technologies of
multicore and also with the aim of developing a learning en-
vironments that permit students to improve the performance
on multicore clusters.

To design our teaching methodology, our course was
mainly focused on one of the most widely used parallel
paradigm in computational science SPMD (Single Program
Multiple Data) [8]. This paradigm has been selected due
its behavior, which is to execute the same program in all
processes but with a different set of tiles [9]. The tiles of
this parallel paradigm have to exchange their information
between iterations and these exchanging can become in
a huge issue when the communication is performed by
different communication links with different speeds and
latencies. In this sense, students have to work with different
communication behaviors and they have to consider these
behaviors when they wish to achieve an improvement in
parallel performance metrics (Fig. 1). As is shown in figure
1, the communication pattern can vary according to the
objective of the application and these patterns are defined
in the beginning of the SPMD application.

Taking advantage of the problems presented by students
related to: designing parallel applications, programming the
communication pattern of SPMD applications and managing

of the hierarchical communication architecture of multi-
core clusters. Our methodology includes strategies, which
allow them to design their applications using an active
learning process. This process enables students a constant
class participation, in which parallel application issues are
discussed and improved with the instructor. Our teaching
method has been designed to change the traditional lecture
method applied in computational classes. We mainly take
into consideration the student interactions and their parallel
designed contributions. Our methodology is integrated by
four phases: an application and multicore architecture anal-
ysis, an application performance evaluation, a methodology
for improving efficiency and speedup of SPMD applica-
tions on multicore clusters and finally a parallel application
improvements. These phases allow student to design their
SPMD applications on multicore clusters efficiently.

The objective of the first phase is to permit students
to create different point of views of the SPMD parallel
applications and its communication pattern behavior. Also,
this phase describes how to study the multicore architecture
(different cache levels, interconnections network on chip
(NOC), etc.) and which are the main factors that can affect
the performance metrics in parallel applications. This phase
allow students to design a first version of their SPMD
applications and they can analyze the behavior on these
multicore environments.

The application performance analysis phase is focused on
determining the issues of students designing their applica-
tions. In this phase, students have to consider the efficiency,
speedup and execution time as performance evaluation met-
rics. Next, students analyze their results obtained and they
propose the performance improvement which will be applied
in the last version together with proposes changes that
instructor will give them in next phase.

The following phase is the application by students of a
strategy for improving the efficiency and speedup of SPMD
applications on multicore clusters [10]. This strategy is
organized in four phases: characterization (the application
and the environment), tiles distribution (maximum number
of tile that each core has to execute), mapping strategy
(distribution of the SPMD application tile over the cores),
and scheduling policy (execution order of the assigned tile).
These phases simultaneously with the student considerations
obtained allow students to design their SPMD application
efficiently.

The last phase of our teaching methodology is the parallel
application improvement. This phase enables students to
apply their proposed enhances, and then, they have to
expose their final results. Also, this phase includes solutions,
which permit them to solve and improve their last parallel
applications version. Students make a final comparison in
which the first and the last versions are evaluated in order
to determine if the new proposed changes have improved the
parallel execution.
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Fig. 2: SPMD applications and multicore cluster

The main approach of this teaching methodology is to
allow students to create new parallel applications focusing
on the new computational architectures. This methodology
is based on creating a significant learning process in which
students can identify new point of view and learn how
to apply new strategies for improving performance metrics
that can be applied with other parallel technologies such
as, grid computing, multicluster, cloud etc. Finally, this
methodology has been applied in the 2010-2011 period in
computer engineering classes to students of the Autonomous
University of Barcelona.

This paper is structured as follows: the issues of SPMD
applications on multicore clusters is described in section 2,
Then, section 3 presents the teaching methodology. Section
4 explains how the methodology has been included into the
computer sciences curriculum and gives details about the
experiences obtained. Finally, the conclusion are given in
section 5.

2. SPMD applications and multicore
clusters

The hierarchical communication architecture present on
multicore clusters can create imbalance issues between pro-
cesses and these issues have to be considered by students
when they design their parallel applications. These issues
can increase when a pure MPI (Message Passing Interface)
applications with high communication volume as an SPMD
application wants to communicate through different commu-
nication links. The figure 2 shows an example of executing
an SPMD application over a multicore cluster where tiles are
computed in a similar time due the homogeneity of the core
but the communications are performed by different links.
Each link can include up to one and a half order of magni-
tude of difference in latency for the same communication
volume. These differences are translated into inefficiency
and they may decrease the application performance. For
this reason, students have to apply strategies using mapping
and scheduling policies with the aim of improving the
performance metrics in their applications.

The SPMD paradigm shows more frequent design prob-
lems related to the communications imbalance factors due
to the great communications number between neighbors and

Fig. 3: Teaching methodology phases

the students have to manage when a heterogeneous commu-
nication environments as multicore are used. The diversities
of these parallel paradigms make their issues and advantages
more interesting and challenging when these paradigms are
taught to students. For this reason, students have to be
focused on learning how to improve the performance metrics
in these environments.

From the above, the main objective of our teaching
methodology is to allow students through their own experi-
ences (active learning process) to apply techniques, which
allow them to solve their computational challenges focusing
on optimizing the computational resources. The students
have to understand that parallel programming is acquiring
an ever increasing acceptance and it is applied to solve high
computational performance scientific problems in diverse
fields. The trend of using parallel programming is thanks
to its achieving more accurate results, highest performance,
lowest cost, and lowest execution time and these concept
have to be correctly applied by students.

3. Teaching Methodology
The objective of this methodology is that students can

learn how to distribute or design their SPMD applications.
The issues presented on multicore environments could gen-
erate confusion in students when they wish to enhance
the performance metrics. However, our methodology is
focused on creating a transformation in students through
their experiences acquired in the classroom. To achieve
these experiences, we have included in our teaching process
an strategy for improving SPMD applications on multicore
clusters [10]. This strategy is based on creating a balance
between the workload tile distribution and the latency of
the different communication links. Also, this method is
focused on obtaining the maximum speedup of parallel
application while the efficiency is defined over a threshold.
This kind of strategy has been interesting to include in the
teaching process for student because it allows us to explain
students how to improve the performance metrics of SPMD
applications on multicore clusters.

The phases of our teaching methodology are shown in
figure 3 and are divided as follow: an application and
multicore architecture analysis phase, an application perfor-
mance evaluation, a methodology for improving efficiency
and speedup of SPMD applications on multicore clusters and
finally a parallel application improvements. These phases
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are the focus of our methodology and these allow students
through active learning to design their parallel applications
with the concepts taught in theoretical classes. The teaching
methodology can be considered successful, when students
propose and apply the strategies, which allow them to
enhance the performance metrics. The evaluation process
is made through programming assignments, which students
have to present at the end of the course. Hence, these phases
allow us to have an active interactions with students, which
permit them to develop different point of views and create
some criteria about how to apply strategies for improving
performance and how students can use their own experiences
obtained during the classes in their applications.

3.1 Applications and multicore architecture
analysis phase

This phase permits students to learn what can be the
problematic issues of their parallel applications into a hi-
erarchical communication environment and how they could
apply strategies in order to enhance the performance metric.
The applications and multicore architecture analysis phase is
divided in two directions. The first one is focused on finding
the application factors that can affect the performance. In this
sense, students have to identify the application communica-
tion patterns, the communication volumes, the computational
complexity, etc. Next, these factors have to be analyzed
using the computational architecture with the objective of
obtaining the weak point of the application.

Once students have analyzed the applications, the in-
structor has to explain the following topics that can have
influences in the performance: the effects of the different
communication links presented on multicore clusters, the
cache size and level, the interconnections between cores
(communication busses), etc. The considerations have to be
handled carefully by students when they wish to improve
the performance metrics.

Using the instructor considerations, students have to de-
sign their SPMD applications using the consideration learned
in this phase. To develop these applications, students have
to apply the concepts learned in theoretical classes. After
that, students and instructor have interactions with students,
where the issues obtained are discussed and instructor pro-
pose some modifications with the aim of improving the
performance.

3.2 Application performance evaluation
This evaluation is performed with the aim of checking the

hypothesis established in last phase about the effects of dif-
ferent communication links on multicore. The performance
evaluation allows students to discover their own error and
how these can affect the efficiency and speedup.

In this phase are performed different analyses for the
SPMD applications. One of them is focused on the effi-
ciency, in which students have to identify the time that

Fig. 4: Application analysis

communications are carried out for the total execution. Also,
they have to determine if there are imbalance elements due
to the effects of the different communications latencies and
speeds and how these elements may affect the efficiency.
The next analysis is based on the computational of each
tiles and students have to determine the relationship between
computational and communication of a tile in SPMD appli-
cation. After these analyses, students have to discover if they
can propose some suitable alternatives in order to improve
the performance. The figure 4 illustrates a characterization
example of the performance evaluation, where tile communi-
cation has different order of magnitude in latency according
to the link used to perform the communication. This issues
can compromise the parallel application performance and the
students have to identify these design problems.

Finally, the instructor and students have interactions in
which the performance metrics are discussed and analyzed
by them. Thus, in this phase students have to explain their
applications and their errors. The first presentations are
centered on evaluating the issues of all students and the
instructor can determine if the problems for example are
related to mapping, load balancing, imbalanced communi-
cations, etc. This active learning process permits students to
be connected with the parallel programming topics and also
creates a learning environment where students opinions are
very important for their learning development.

3.3 Methodology for improving the perfor-
mance of SPMD applications on multicore.

Once the students have understood which are the problems
that affect the efficiency and speedup of SPMD applications
on multicore environments. They have to apply strategies
with the aim of improving the performance metrics. In
this sense, we have included one method that allow to
design SPMD applications with the objective of reaching the
maximum speedup while the efficiency is maintained over
a defined threshold by the programmer. The main objective
of this mehtod is to find the maximum number of cores
that permits us to maintain a relationship between both
efficiency and speedup with a specific problem size [10].
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Fig. 5: Method for efficient execution of SPMD applications
on multicore Clusters

This method allows students to apply the knowledge learned
during the two last phases, in which the computational
and communication patterns have been identified and the
issues which affect the performance of SPMD applications
are discovered. Then, we established a question about how
can this performance method be integrated with our teach-
ing methodology in order to obtain a significant learning
process?. The answer is focused on creating a learning
environment, where the stages of this method are included
in our teaching program progressively verifying the learning
success of this integration.

The first stage is the characterization process. This stage is
responsible for gathering the necessary parameters of SPMD
applications and environment in order to calculate the tile
distribution model. Students have to run this characterization
process in a controlled and monitored manner with the
objective of extracting the parameters according to the tile
distribution model needs. The characterization parameters
are classified in three groups: the application parameters,
parallel environment characteristics and the defined effi-
ciency. This characterization enables students to determine
the number of communication links, communication vol-
umen of a tile, computation time, etc. In this point, the
instructor can reinforce the parameters learned about the
multicore architecture and these allow students to create and
understand the weak point of SPMD applications.

The second stage (tile distribution model) is based on
calculating the ideal number of tiles that must be assigned
to each core and the number of core needs with the aim
of obtaining the maximum speedup while the efficiency is
over a defined threshold. To calculate this model, students
have to use the parameters obtained in characterization phase
and they have to use an analytical model which was defined
in [10]. The objective of this model is to create a set of
tiles called Supertile (ST) where a ST is divided in two
types internal and edge tiles. The aim of this division is to
allow the application executing first the edge tiles and then,
to overlap the edge communications with the internal tiles

execution.
The following stage is to make use of the mapping

strategy. This mapping purpose is to allocate the ST among
the cores with the aim of maintaining the desired efficiency.
These assignations are made applying a core affinity to
assign the set of tiles according to the policy of minimizing
the communications latencies. Another element included in
the mapping module is the logical distribution of the pro-
cesses. This distribution process is done through a cartesian
topology of the processes. This is a logical process in
which students can identify through MPI commands the
location of each process. Then with this topology, each
process has two coordinates, which enables us to identify
the communications neighbors. Also, these two coordinates
identify the cores and where it has to be allocated.

Finally, students have to apply the scheduling stage. The
objective is to coordinate the execution order of each tile
within the core. The scheduling is divided into two main
parts: the first one is to develop an execution priority
which determines how tiles will be executed inside the
core and the second part which is focused on applying
an overlapping strategy between internal computation and
edge communication tiles. Each tile has an execution priority
where the highest priorities are established for tiles, which
have communications through slower paths.

The integration of this method to our teaching method-
ology has allowed us to create interactive classes, where
students can apply their learning with the aim of obtaining an
efficient parallel execution. Also, students can propose new
suitable strategies for improving the SPMD applications.
This performance method has been applied during all the
semester and students have included this method to design
their new versions and compare the result obtained.

3.4 Parallel application improvements
The objective of this phase is to analyze the improvements

applied to each SPMD applications by students. These
improvements are achieved through the union of the instruc-
tor and students considerations, and the application of the
performance method explained before. The applications are
tuned using the characteristics of the clusters and employing
mapping and scheduling strategies.

The students have to perform a new performance evalua-
tion with the aim of evaluating the improvements achieved.
This evaluation permits students to analyze the relevance
of the performance method and the influences of the mul-
ticore architecture into the SPMD applications. In addition,
students have to evaluate if they in fact have achieved an
improvement in the parallel application metrics and how
this improvements have been reached. Students have to
evaluate if the concept learned in theoretical classes and
the practical method used in labs have allowed them to
obtain better efficiency and speedup levels. The interactions
between instructor and students allow us to have a feedback
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Fig. 6: Latencies of different communication links

with student, these important iteration have been done in the
final assignment, where students have to expose their works.

Finally, our teaching methodology gives students strate-
gies to solve their parallel problem efficiently. An important
key of our teaching methodology is that it allows students to
learn through their own mistakes and experiences and learn
how to solve them efficiently.

4. Methodology results and experiences
obtained

Our teaching methodology tries to create innovative learn-
ing sceneries, where students can construct new points of
views when they design parallel applications. This new
teaching methodology has been applied in the period 2010-
2011 in the parallel programming course of computer engi-
neering and the modelling and simulation of the master in
computer science at the Autonoma of Barcelona University.
We applied our teaching methodology to 38 students. These
students evaluated a set of scientific SPMD applications
according to the communication patterns. The applications
analyzed were the heat transfer applications, wave equation
and the Nbody, each of these applications have their own
communication pattern that could be considered as an inter-

Fig. 7: First draft efficiency average obtained by students

Fig. 8: Execution Trace of Heat Transfer App.

esting challenge for students. Also, the students experiments
were conducted on a DELL multicore cluster with 8 nodes,
each node has 2 Quadcore Intel Xeon E5430 of 2.66 Ghz
processors, and 6 MB of cache L2 shared by each two core
and RAM memory of 12 GB by blade.

Under this interesting scenario, we have assigned stu-
dents the applications mentioned before, where they design
their first parallel applications. This process was carried
out using our teaching methodology, in which instructor
and students interact with the first phase (application and
multicore architecture analysis) of our methodology. The
most important result of this phase can be observed in
figure 6, where were identified the different communication
levels on multicore clusters. Also, this process of analysis
allowed the instructor to establish the necessaries conditions
to answer the multiple numbers of questions of students that
arising from the problems visualization of this phase. These
interesting exchanges of knowledge between instructor and
students permitted the class to be a learning space, where the
fundamental key was to create a significant learning process.

Once students have obtained their first draft of their appli-
cations, they have to evaluate the performance. The figure
7 shows an example of the first draft, where is evaluated
the application efficiency. These applications were designed
in groups formed by 3 students and the performance results

Fig. 9: Heat transfer application efficiency improvements
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were acquired by students. Then, they analyzed the effect
that can affect the performance on multicore. After this,
the instructor reinforces the theoretical concepts and gave
examples that student can associate with the issues founded
in their parallel versions. In this phase, the most common
problems observed were related to workload division, local-
ity, tiles division, few overlap strategies, wrong mapping and
scheduling strategy etc. These errors were detected through
the interactions between instructor and students.

The next step is to teach the student a strategy for improv-
ing the performance metrics. As mentioned before, we used
a methodology defined for SPMD applications, where the
main objective is to find the number of tiles necessaries in
order to achieve the maximum speedup while the efficiency
is maintained over a defined threshold. In this order, students
applied the stages of this method and they observed the
influences that hierarchical communication architecture can
have over SPMD applications. The instructor can explain the
stage of the method and students applied to their code with
the aim of improving efficiency and speedup.

The figure 8 shows an example of student execution trace
of heat transfer application, where we can observe how
the edge tiles was executed first and then is observed the
overlapping process between internal computation tile and
edge communication tiles. This strategy has allowed students
to improve their SPMD applications because the inefficiency
factors have been controlled.

The integration of this performance method with our
teaching methodology permit students to develop new skills
that allows them to apply their work in the parallel comput-
ing field. Finally, the last evaluation is about the effectiveness
of this integration. Students have to redesign their appli-
cation with the consideration and the performance method
strategies. In this sense, students can apply the knowledge
obtained during the semester into their applications. Finally,
students have to design a second version of their application.
An example of one student is shown in figure 9, where we
can observe the improvements obtained in efficiency and
speedup which is around 40% between the firts and the
second draft.

The most important element that we have observed dur-
ing this teaching period was related to students’ skills in
designing SPMD applications. The experiences and the new
concepts developed by students through this learning process
have allowed that this teaching methodology can be applied
with other parallel paradigm. Only, we have to change the
performance method that allows us to execute and to evaluate
efficiently the parallel paradigm. Finally, the main key of a
significant learning process is to consider the students point
of views as a helpful and powerful learning tool.

5. Conclusion and futures works
This article has presented a teaching methodology that

allows student through an active learning process to design

their parallel applications efficiently on multicore cluster. To
obtain this, we have included in the teaching process an
efficient method for efficient execution of SPMD applica-
tions on multicore clusters using a load balancing, mapping
strategy and a scheduling policy. The most important result
obtained with our teaching methodology was the reflected
motivation found in students when they design their parallel
applications efficiently. Students have shown a considerable
improvement in their parallel application design skills. These
students skills have been improved due to the combination
of a teaching methodology with a performance strategy
and both elements have created a learning environment
where the discussion about how to improve the applications
performance has been the most powerful learning strategy.

Also, our teaching methodology allowed students to solve
the issues of their parallel applications and students demon-
strated how they can apply a methodology for improving
SPMD applications on multicore clusters. The results ob-
tained of the students’ applications have been successfully,
where the best cases they obtained an improvement around
40% over the first draft. This methodology has been taught
in the period of 2010-2011 for computer engeniering and
computer science master students at University Autonoma
of Barcelona. Future works are focused on including other
parallel paradigms such as Marter/Worker, pipeline, etc. All
these paradigms will be included in our teaching methodol-
ogy using multicore clusters under the focus of creating an
active learning process in students.
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Abstract – In this paper the authors present a new 
combined symmetric-key cryptographic method, named 
STJA, which is basically based on modified Caesar 
Cipher, generalized modified Vernam Cipher, MSA and 
NJJSA. The cryptanalysis shows that TTJSA and TTSJA 
are free from standard cryptographic attacks such as 
differential attack, plain text attack or any brute force 
attack. In the present method the authors have used 
generalized modified Caesar Cipher method, where the 
authors have modified the standard Caesar Cipher 
method and then they applied TTJSA method to make the 
entire crypto system very hard to break. TTJSA is also a 
combined symmetric key cryptographic method. In 
modern world keeping the data safe online is most 
important and of highest concern. For this reason, this 
combined cryptographic method, STJA is used, so that it 
is almost difficult for cryptographic hackers to break the 
cryptography method. This method has been tested on 
different plain text, consisting of different ASCII values 
(even with ASCII value 1,2,3 and so on) and the spectral 
analysis of the plain text and the encrypted is also been 
shown. The spectral analysis shows that the present 
cryptography method, STJA can not be broken with any 
kind of standard cryptography attack. 
 
Keywords:  Caesar Cipher; TTJSA; MSA; NJJSA; UES; 
DJMNA; Cryptography; 

1. Introduction 
In modern world, security is a big issue and securing 

important data is very essential, so that the data can not 
be intercepted or misused for illegal purposes. For 
example we can assume the situation where a bank 
manager is instructing his subordinates to credit an 
account, but in the mean while a hacker interpret the 
message and he uses the information to debit the account 
instead of crediting it. Or we can assume the situation 
where a military commander is instructing his fellow 
comrades about an attack and the strategies used  for the 
attack, but while the instructions are sent to the 
destination, the instructions get intercepted by enemy 
soldiers and they use the information for a counter-attack. 
This can be highly fatal and can cause too much 

destruction. So, different cryptographic methods are used 
by different organizations and government institutions to 
protect their data online. But, cryptography hackers are 
always trying to break the cryptographic methods or 
retrieve keys by different means. For this reason 
cryptographers are always trying to invent different new 
cryptographic method to keep the data safe as far as 
possible.  

The modern day cryptographic methods are of two 
types: (i) symmetric key cryptography, where the same 
key is used for encryption and for decryption purpose. (ii) 
Public key cryptography, where we use one key for 
encryption and one key for decryption purpose. 

 Symmetric key algorithms are well accepted in the 
modern communication network. The main advantage of 
symmetric key cryptography is that the key management 
is very simple. Only one key is used for both encryption 
as well as for decryption purpose. There are many 
methods of implementing symmetric key. In case of 
symmetric key method, the key should never be revealed 
/ disclosed to the outside world or to other user and 
should be kept secure. The key should be known to 
sender and the receiver only and no one else. 

 Our present work, STJA is also symmetric key 
cryptographic method, which is basically based on 
generalized modified Caesar Cipher method [1] and 
TTJSA [2], which itself is based on generalized modified 
Vernam Cipher [2], MSA [3] and NJJSA [4]. Depending 
on the key entered by the user the functions of 
generalized modified Caesar Cipher and TTJSA are 
called randomly and then executed. The present method 
uses multiple times encryption to encrypt the plain text 
data. 
 

 
2. Method Used In The Present Work: 

 
In this method the authors apply a modified form of 

advanced Caesar Cipher [1] cryptographic method. In 
cryptography, a Caesar cipher, also known as a Caesar's 
cipher or the shift cipher or Caesar's code or Caesar shift, 
is one of the simplest and basic known encryption 
techniques. It is a type of replacement cipher in which 
each letter in the plaintext is replaced by a letter with a 
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fixed position separated by a numerical value used as a 
"key". But, in this method, STJA, any character (ASCII 
value 0-255) are not separated by a fixed numerical value, 
in fact it is a variable numerical value, which is dependent 
on a non-linear polynomial function. 

This present method is achieved by executing 
following two methods  in random: 

(i) Encrypt the data using generalized modified 
Caesar Cipher method  

(ii) Encrypt data using TTJSA method  
 
In this present method, STJA, the user enters a secret 

key called as password and from that key we generate 
unique codes, which are successively used to encrypt the 
message. For decryption purpose we use just reverse 
process to get back the original plain text. During 
decryption the user has to enter the same secret key 
otherwise the decryption will not be successful. Now we 
will describe in detail the encryption procedure. 

2.1.Encryption of data using modified Caesar 
Cipher: 

 

2.1.1 Generation of Code and power_ex from the 
Secret Key 

The key is provided by the user in a string format and 
let the string be ‘pwd[]’. From the  
given key we generate two numbers:  
‘code’ and ‘power_ex’, which will be used for encrypting 
the message. First we generate the ‘code’ from the pass 
key. 
Generation of code is as follows: 

To generate the code, the ASCII value of each 
character of the key is multiplied with the string-length of 
the key and with 2i, where ‘i’ is the position of the 
character in the key, starting from position ‘0’ as the 
starting position. Then we sum up the resultant values of 
each character, which we got from multiplying, and then 
each digit of the resultant sum are added to form the 
‘pseudo_code’. Then we generate the code from the 
pseudo_code by doing modular operation of pseudo_code 
by 16, i.e.  

code = Mod(pseudo_code,  16). 
If code=0, then we set code =pseudo_code 
 
The Algorithm for this is as follows: 
Let us assume, pwd[] = key inserted by user 
pp= 2i , i=0,1,2,……..n; n ∈ N. 

Note: i can be treated as the position of each character of 
the key. 
Step-1 : p[] = pwd[] 
Step-2 : pp = 2i 
Step-3 : i=0 
Step-4 : p[i] = pwd[i]; 
Step-5 : p[i] = p[i] * strlen(pwd) * pp; 
Step-6: csum = csum + p[i]; 
Step-7: i=i+1 
Step-8: if i < length(pwd) then go to step-4 
Step-9: if csum  ≠  0 then go to Step-10 otherwise  

go to Step-14 

Step-10:  c = Mod(csum , 10) 
Step-11:  pseudo_code=pseudo_code +c; 
Step-12:  csum = Int(csum / 10) 
Step-13: Go to step-9 
Step-14:  code =Mod (pseudo_code, 16) 
Step-15:  End 
Note: length(pwd)= number of characters of the secret 
key  pwd[]. 
 
The  ‘power_ex’ is calculated as follows: 
We generate power_ex from the pseudo_code generated 
from the above method. We add all the digits of the 
pseudo_code and assign it as temporary_power_ex. Then 
we do modular operation on temporary_power_ex with 
code and save the resultant as power_ex. 
i.e. 
 
power_ex =Mod (temporary_power_ex, code)  
 
If power_ex = 0 OR power_ex = 1, then we set power_ex 
= code. 
 

For example, if we choose the password, i.e. the key 
to be ‘hello world’. Then, 
Length of pwd = 11 
code = 10 
power_ex = 4 
 

Thus, we generate code and power_ex from the key 
provided by the user.  

 

2.1.2 Encrypting the Message using code and 
power_ex 

Now we use the code and power_ex, generated from 
the key, to encrypt the main text (message). We extract 
the ASCII value of each character of the text (message to 
be encrypted) and add the code with the ASCII value of 
each character. Then with the resultant value of each 
character we add the (power_ex)^i, where i is the position 
of each character in the string, starting from ‘0’ as the 
starting position and goes up to n, where n=position of 
end character of the message to be encrypted, and if 
position = 0, then (power_ex)^i = 0.  

It can be given by the formula: 

text[i] = text[i] + code + (power_ex)i 

If text[i] > 255  then text[i] = Mod(text[i],256) : ‘i’ is the 
position of each character in the text and text[] is the 
message to be encrypted, where text[i] denotes each 
character of the text[] at position ‘i’. 

For example, if the text to be encrypted is ‘aaaa’ and 
key=hello world, i.e. text[]=aaaa and pwd=hello world, 
then 

a0 ->97+10+0 =107->k 

a1 ->97+10+4 =111->o 
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a2 ->97+10+16=123->{ 

a3 ->97+10+64=171->« 

where 0-3 are the positions of ‘a’ in text[](as per formula 
given above). The text ‘aaaa’ becomes ‘ko{«’ after 
execution of the above method. 

Since, the value of (power_ex)i  increases with the 
increasing number of character (byte) i.e. with the 
increasing number of string length, so we have applied 
the method of Modular Reduction [11][12] to reduce the 
large integral value to a smaller integral value. 

To apply Modular Reduction we apply the following 
algorithm: 
 
Step 1: n = power_ex * code * 10  ;generate a random 
number ‘n’ from code and power_ex 
Step 2: calculate nth prime number 
Step 3:i=0 
Step 4: (power_ex)i = Mod((power_ex)i ,(nth prime 
number)) 
Step 5: i=i+1 
Step 6: if i<length(text) then go to step-4 
Step-7: End 
Following the above step, we can reduce the value of 
(power_ex)i to a significantly smaller usable number.   

2.1.3   Algorithm for Decryption (Modified Caesar 
Cipher) 
For this step we basically reverse the process of 

encryption technique used in the modified Caesar Cipher. 
And use the following formula: 

 
text[i] = text[i] - code - (power_ex)i 

Note: If, ASCII value of text[i] < 0, then set text[i] =Mod 
(text[i], 256); ‘i’ is the position of each character in the 
text and text[] is the message to be encrypted, where 
text[i] denotes each character of the text[] at position ‘i’. 

 

2.2 Encrypt the data using TTJSA: 
 

TTJSA method is a combination of 3 distinct 
cryptographic methods, namely, (i) Generalized Modified 
Vernam Cipher Method, (ii) MSA method and (iii) 
NJJSA method. To begin the method a user has to enter a 
text-key, which may be at most 16 characters in length. 
From the text-key the randomization number and the 
encryption number is calculated using a method proposed 
by Nath et al. A minor change in the text-key will change 
the randomization number and the encryption number 
quite a lot. The method have also been tested on various 
types of known text files and have been found that, even 
if there is repetition in the input file, the encrypted file 
contains no repetition of patterns. 

2.2.1   Algorithm of TTJSA (Encryption) 
Step 1: Start 
Step 2: Initialize the matrix mat[16][16] with numbers 0 
to 255 in row major wise. 
Step 3: call keygen() to calculate randomization number 
(=times), encryption number (=secure) 
Step 4: call randomization() function to randomize the 
contents of mat[16][16]. 
Step 5:  times2=times 
Step 6: copy file f1 into file2 
Step 7:  k=1 
Step 8: if k>secure go to Step 15 
Step 9: p=k%6 
Step 10: if p=0 then 
               call vernamenc(file2,outf1) 
               times=times2 
               call njjsaa(outf1,outf2) 
               call msa_encryption(outf2,file1) 
     else if p=1 then 
               call vernamenc(file2,outf1) 
               times=times2 

call msa_encryption(outf1,file1)  
call file_rev(file1,outf1) 
call njjsaa(outf1,file2) 
call msa_encryption(file2,outf1)  
call vernamenc(outf1,file1)  
 times=times2 

      else if p=2 then 
call msa_encryption(file2,outf1)  
call vernamenc(outf1,outf2)  
set times=times2 
call njjsaa(outf2,file1) 

else if p=3 then 
 call msa_encryption(file2,outf1)  
 call njjsaa(outf1,outf2) 
 call vernamenc(outf2,file1)  
 times=times2 
else if p=4 then 
 call njjsaa(file2,outf1) 
 call vernamenc(outf1,outf2) 
 times=times2 
 call msa_encryption(outf2,file1) 
else if p=5 then 
 call njjsaa(file2,outf1) 
 call msa_encryption(outf1,outf2) 
 call vernamenc(outf2,file1) 
 times=times2 
Step 11: call function file_rev(file1,outf1)  
Step 12: copy file outf1 into file2 
Step 13: k=k+1 
Step 14: goto Step 8 
Step 15: End 
 

2.2.2   Algorithm of vernamenc(f1,f2) 
Step 1: Start vernamenc() function 
Step 2: The matrix mat[16][16] is initialized with 
numbers 0-255 in row major wise order 
Step 3: call function randomization() to 
            randomize the contents of mat[16][16]. 
Step 4: Copy the elements of random matrix 
            mat[16][16] into key[256] (row major  
                                                        wise)  
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Step 5:  pass=1, times3=1, ch1=0 
Step 6: Read a block from the input file f1 where number 
of characters in the block 256 characters 
Step 7: If block size < 256 then goto Step 15 
Step 8: copy all the characters of the block into an array 
str[256] 
Step 9: call function encryption where str[] is passed as 
parameter along with the size of the current block 
Step 10: if pass=1 then 
  times=(times+times3*11)%64 
  pass=pass+1  
else if pass=2 then 
  times=(times+times3*3)%64 
  pass=pass+1  
else if pass=3 then 
  times=(times+times3*7)%64 
  pass=pass+1  
else if pass=4 then 
  times=(times+times3*13)%64 
  pass=pass+1  
else if pass=5 then 
  times=(times+times3*times3)%64 
  pass=pass+1  
else if pass=6 then 
        times=(times+times3*times3*times3)%64  
  pass=1 
Step 11: call function randomization() with 
  current value of times 
Step 12: copy the elements of mat[16][16] into  
 key[256]  
Step 13: read the next block 
Step 14: goto Step 7 
Step 15: copy the last block (residual characters,  
 if any) into str[] 
Step 16: call function encryption() using str[] and  
 the no. of residual characters 
Step 17: Return 
 

2.2.3   Algorithm of function encryption(str[],n) 
Step 1: Start encryption() function 
Step2:  ch1=0 
Step 3: calculate ch=(str[0]+key[0]+ch1)%256  
Step 4: write ch into output file 
Step 5:  ch1=ch 
Step 6:  i=1 
Step 7: if in then goto Step 13 
Step 8: ch=(str[i]+key[i]+ch1)%256 
Step 9: write ch into the output file 
Step 10: ch1=ch 
Step 11: i=i+1 
Step 12: goto Step 7 
Step 13: Return 
 

2.2.4    Algorithm for Decryption 
Step 1: Start 
Step 2: initialize mat[16][16] with 0-255 in row  
 major wise  
Step 3: call function keygen() to generate times  
            and secure  
Step 4: call function randomization() 
Step 5: set times2=times 

Step 6: call file_rev(f1,outf1) 
Step 7: set k=secure 
Step 8: if k<1 go to Step 15 
Step 9: call function file_rev(outf1,file2) 
Step 10: set p=k%6 
Step 11: if p=0 then 
 call msa_decryption(file2,outf1) 
 call njjsaa(outf1,outf2)  
 call vernamdec(outf2,file2)  
  times=times2 
else if p=1 then 
 call function vernamdec(file2,outf1) 
 set times=times2 
            call function msa_decryption(outf1,outf2)  
 call fumction njjsaa(outf2,file2) 
 call function file_rev(file2,outf2) 
            call function msa_decryption(outf2,outf1)  
 call function vernamdec(outf1,file2) 
  times=times2 
else if p=2 then 
 call njjsaa(file2,outf1) 
 call vernamdec(outf1,outf2) 
  times=times2 
 call msa_decryption(outf2,file2) 
else if p=3 then 
 call vernamdec(file2,outf1) 
 times=times2 
 call njjsaa(outf1,outf2) 
 call msa_decryption(outf2,file2) 
else if p=4 then 
 call msa_decryption(file2,outf1)  
 call vernamdec(outf1,outf2) 
 times=times2 
 call njjsaa(outf2,file2) 
else if p=5 then 
 call vernamdec(file2,outf1) 
  times=times2 
 call msa_decryption(outf1,outf2)  
 call njjsaa(outf2,file2) 
Step 12: copy the content of file2 to outf1  
Step 13: set k=k-1 
Step 14: Goto Step 8 
Step 15: End 
 

2.2.5    Algorithm of function vernamdec(f1,f2) 
The algorithm of vernamdec() function is same as 
vernamenc() function. Here the only difference is that 
decryption() function is called instead of encryption() 
function. 
 

2.2.6    Algorithm of decryption(str[],n) 
Step 1: Start 
Step 2: ch1=0 
Step 3: ch=(256+str[0]-key[0]-ch1)%256 
Step 4: write ch into the output file 
Step 5: i=1 
Step 6: if in then goto Step 12 
Step 7: ch=(256+str[i]-key[i]-str[i-1]) %256  
Step 8: write ch into the output file 
Step 9: i=i+1 
Step 10: goto Step 6 
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Step 11: ch1=str[n-1] 
Step 12: Return 
 

2.2.7    Algorithm of function file_rev(f1,f2) 
Step 1: Start 
Step 2: open the file f1 in input mode  
Step 3: open the file f2 in output mode  
Step 4: calculate n=sizeof(file f1) 
Step 5: move file pointer to n 
Step 6: read one byte 
Step 7: write the byte on f2 
Step 8: n=n-1 
Step 9: if n>=1 then goto step-6 
Step 10: close file f1, f2 
Step 11: Return 
 

2.3    NJJSAA ALGORITHM 
Nath et al. [2] proposed a method which is basically a 

bit manipulation method to encrypt or to decrypt any file. 

The encryption number (=secure) and randomization 
number (=times) is calculated according to the method 
mentioned in MSA algorithm [1]. 
Step 1: Read 32 bytes at a time from the input file. 
Step 2: Convert 32 bytes into 256 bits and store in some 
1- dimensional array. 
Step 3: Choose the first bit from the bit stream and also 
the corresponding number(n) from the key matrix. 
Interchange the 1st bit and the n-th bit of the bit stream. 
Step 4: Repeat step-3 for 2nd bit, 3rd bit...256-th bit of 
the bit stream 
Step 5: Perform right shift by one bit. 
Step 6: Perform bit(1) XOR bit(2), bit(3) XOR 
bit(4),...,bit(255) XOR bit(256) 
Step 7: Repeat Step 5 with 2 bit right, 3 bit right,...,n bit 
right shift followed by Step 6 after each completion of 
right bit shift. 
 

2.4    MSA (MEHEBOOB, SAIMA, ASOKE) 
ENCRYPTION AND DECRYPTION ALGORITHM 

Nath et al. (1) proposed a symmetric key method 
where they have used a random key generator for 
generating the initial key and that key is used for 
encrypting the given source file. MSA method is basically 
a substitution method where we take 2 characters from 
any input file and then search the corresponding 
characters from the random key matrix and store the 
encrypted data in another file. MSA method provides us 
multiple encryptions and multiple decryptions. The key 
matrix (16x16) is formed from all characters (ASCII code 
0 to 255) in a random order. 

The randomization of key matrix is done using the 
following function calls: 

Step-1: call Function cycling()  
Step-2: call Function upshift()  
Step-3: call Function downshift()  
Step-4: call Function leftshift()  
Step-5: call Function rightshift() 

N.B: Cycling, upshift, downshift, leftshift, rightshift are 
matrix operations performed (applied) on the matrix, 
formed from the key. 
 

3. Results And Discussions 
This method, STJA is used to encrypt different types of 
data and few results are given below: 
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4. Spectral Analysis And Cryptanalysis 
	  

One of the classical cryptanalysis method used is by 
detecting the frequency of characters in the encrypted text 
(message). So to test the effectiveness of STJA method, 
spectral analysis of the frequency of characters are 
closely observed. Using this method, STJA, we ran many 
analysis and tested different strings as input and used 
various methods of cryptanalysis. To show the usefulness 
and integrity of this cryptographic module, we used 
spectral analysis of the frequency of characters. 

First, as a test case we chose, a file which contained 
1024 ASCII value (1) and used this method to encrypt the 

data. Fig 1.1 shows the spectral analysis of frequency of 
characters of 1024 ASCII value (1) and Fig 1.2 shows the 
spectral analysis of frequency of characters of the 
encrypted data. 

 

 
Fig 1.1: Spectral Analysis of Frequency of 
Characters of 1024 ASCII Value(1) 

 
 

 
Fig 1.2: Spectral Analysis of Frequency of 

Characters of Encrypted data of 1024 ASCII value (1) 
 
 

As 2nd Test case we chose a random text file. The 
spectral analysis of the frequency of characters of the text 
file is shown in Fig 2.1 and Fig 2.2 shows the spectral 
analysis of frequency of characters of encrypted text. 

 

 
Fig 2.1: Spectral Analysis of frequency of characters 

of an ordinary text file 
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Fig 2.2: Spectral Analysis of frequency of characters 

of the encrypted text file  
 
 

Thus from the above spectral analysis it is evident 
that the method, STJA, used here is very effective and 
there is no trace of any pattern in the encryption 
technique. 
 

Since this cryptographic technique uses multiple bit 
and byte level encryption multiple times, for this reason, 
the method used here is unique and almost unbreakable 
because there is no trace of any pattern. And this method 
is also effective against both Differential Cryptanalysis 
(Differential Attack) and Brute-Force Attack. 

5. Conclusion and Future Scope 
In the present work we use three different 

algorithms to make the encryption process unbreakable 
from standard cryptographic attack. That is evident from 
our results. We have applied our method on some known 
text where the same character repeats for a number of 
times and we have found that after encryption there is no 
repetition of pattern in the output file. We have tested this 
feature closely and have found satisfactory result in 
almost all cases. This has been possible as we have used 
modified Caesar Cipher method with polynomial 
function, modified Vernam Cipher method with feedback 
mechanism and also NJJSAA and MSA methods, where 
we use mainly the bit manipulation. We propose that this 
encryption method can be applied for data encryption and 
decryption in banks, defense, mobile networks, ATM 
networks, government sectors, etc. for sending 
confidential data. The above method, STJA, may be 
further strengthened using additional bit manipulation 
method and we have already started to work on it. 
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A BSTRACT 

Down the past years, the number of computer and Internet 
users has been constantly increasing in several countries 
and today, more and more youngsters are starting to use 
computers at an earlier age be it at home or in educational 
institutions. In many countries around the world, computer 
literacy among youngsters is being promoted since a very 
young age where computer studies are being taught in 
schools. However, this increase in the computer usage has 
led to an increase in power consumption which adversely 
affects the environment mainly due to the non-renewable 
power production techniques currently being employed.  

Computer Power Management (CPM) interacts with every 
part of the computer system including the operating system, 
software, Central Processing Unit, peripheral devices, etc, 
and is present in most modern operating systems. Different 
techniques are available today to save power while using 
computers. Since computers are now being used at an 
earlier age and are intensively being used by youngsters, an 
understanding on how the different power saving techniques 
being employed is very important.   

This paper attempts to provide an insight on CPM from 
youngsters, following a survey carried out where 300 
youngsters aged between 19 and 24 were interviewed. The 
study aimed to find out whether youngsters today are aware 
of the different CPM strategies, the motivation behind using 
these strategies and the application of these strategies by 
youngsters today. This paper also discusses on the method 
and results of the study conducted, to give an insight on 
CPM from youngsters and also make recommendations on 
how CPM techniques can be better promoted to be adopted 
by youngsters of tomorrow.   

KEYWORDS 

Computer Power Management, Green IT, Sustainability, 
Energy Efficiency, Youngsters 

INTRODUCTION 

Computers were first used for military purposes but since 
their commercialization, computers have been ever-growing 
and are invading human life. An increasing number of 
people are using the computer today because of the various 
benefits and facilities it provides. But as it grew famous, and 
as the activities and facilities it provides kept on increasing, 
the age at which people started using the personal computer 
has decreased proportionally. Studies have shown that the 
use of computers and the Internet by youngsters has been 
rapidly increasing in recent years (US DoC, 2002; ONS, 
2010) and that computer and Internet use is more widespread 
among youngsters aged between 19 and 24 than among 
adults (DeBell and Chapman, 2003).  

Today, youngsters are dominating the Internet population 
(Canadian News, 2010) and statistics (ONS, 2010) are 
showing that people are starting to use computers at an 
earlier age. Kids between the ages of 2 and 12 years old 
spend more than a quarter of their leisure time on the 
computer and in that amount of time, 3 to 7 minutes is spent 
on watching online video (Nielsen Company, 2009). In 
terms of computer usage, usually boys spend most of this 
time playing game while girls check their mails, chat or 
spend time on social networks. The increase in computer and 
Internet usage by youngsters is due to the fact that 
computers and Internet are easily accessible at home, in 
schools and even in public places.   

However, studies have shown that personal computers are 
not being actively used during most of the time they are 
switched on (Miller, 2008). At home, much power is 
consumed when computers are left on especially during 
computer downloading from the Internet which is mostly 
practiced by youngsters. Even in the working environment, 
it is estimated that in a normal working day at the office, 
computers are in use for around 4 hours and idle for another 
5.5 hours in average (Miller, 2008). This massively growing 
use of computer today also has its adverse economical, 
environmental and social impacts (Hirsch, 2004). 
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Unsustainable Computer Power Usage 
Unsustainable computer power consumption has a direct 
impact on the environment as well as the global economy, 
triggering a snowball effect affecting the society and 
different cultures. It has been estimated that global carbon 
emissions from information and communication 
technologies are roughly equal to that of the airline industry 
(Laing & Scheid, 2010) and this is mainly because of the 
massive amount of electricity needed in order to operate 
computers and associated peripheral devices. Similarly, a 
desktop computer normally has a 200-watt power supply and 
if 100 million of these machines are turned on at once 
worldwide, together they would use approximately 20,000 
megawatts of electricity which is the total output of 20 
average-sized nuclear power plants (Tanenbaum, 2001). On 
top of that, it is a fact that computers tend to heat-up the 
environment in its surroundings though it might not be 
apparent to the user.  

As a major negative impact on the environment, high rates 
of carbon dioxide are released in the air due to increased 
production of electricity, leading to an increase in the 
atmosphere s temperature thus accelerating the effects of 
global warming (International Socialist Group, 2006). 
Consequently, extreme weather events such as category five 
cyclones, droughts, rising sea levels and decreased snow 
cover are already being faced almost everywhere around the 
world (IPCC, 2007) which drastically affect the lifestyle of 
species living in these regions while also endangering the 
fauna. Reducing energy consumption not only makes sense 
from the environmental perspective but it is also an 
increasingly economical concern. Energy prices are 
constantly rising similar to government-imposed levies on 
carbon production which has an impact on the cost of doing 
business, thus making many current business practices 
economically unsustainable. At home, the rising energy 
costs translate into higher energy bills which in turn affect 
the lifestyle of people in a society.  

Taking cognizance of the environmental and economical 
impacts caused by the massively growing use of computers 
today, it is becoming more and more important for home 
computer users and businesses to act in an environmentally 
responsible manner. Different measures are already being 
taken by businesses and also researchers in order to promote 
greenness. Businesses are applying existing best practices 
for promoting greenness during their day to day operations 
and are also providing training to their staffs so that they are 
aware of the current problems being faced by the 
environment along with how they can help in improving the 
situation. Researchers, in turn are focusing on different ways 
which can be employed in order to improve energy 
efficiency during all aspects of computer usage. As such, 
one of the areas of focus by researchers has been Computer 
Power Management (CPM) techniques which has been 

constantly evolving down the years and are now available on 
all latest operating systems (Nordman et al, 1997).  

Computer Power Management (CPM) 
The computer power management technology was 
introduced in order to reduce energy consumption for 
computers that are not in active use. Power management 
interacts with every part of the computer including the 
operating system, software, CPU, peripheral devices, etc. 
This technology is beneficial to the environment in the way 
that a reduction in power consumption mainly means a 
reduction in the overall need for the amount of power 
harnessed and if non-renewable sources are being used to 
generate electricity, this implies lesser pollution and also 
lesser adverse impacts on the environment and climate.   

Power-management does not reduce the performance of a 
computer, but simply adds features to reduce their power 
consumption when not in use (Nordman et al, 2007). Most 
power management savings come from reducing power 
when the machine is not fully active by adding low-power or 
"sleep" modes that kick in when idle. But there are many 
more techniques that can be used to save energy 
consumption from computers. Some of the common 
practices adopted today in order to reduce power 
consumption from computer usage include: 

 

Using built-in power saving features  
Most operating systems today come with power saving 
features that turn hardware including hard drives or the 
computer monitor into sleep mode when inactive for a 
particular period of time set by the user. Under this 
mode, power consumption can be reduced by 20 to 50 
times (Maurya, 2010).  

 

Turning off computer while not in use 
Completely turning off computers while not in use saves 
a good amount of electricity since standby or 'phantom' 
power load can range from a few watts to as much as 20 
or even 40 watts depending on equipment (EnergyStar, 
2009).  

 

Purchasing energy efficient products 
Using energy efficient products is considered as a good 
way to save energy and customers may look for logos 
like the Energy Star (EnergyStar, 2009) to buy 
computer hardware that offers good energy efficiency. 
Also, experts estimate that using such products can save 
around 30 to 40 percent on utility bills (Utility Bill 
Assistance, 2010).  

 

Disable devices that are not in use 
Desktop computers and laptops come with different 
devices that a user might not need and if connected, it 
means power is being consumed. For example, a laptop 
user who is using a built-in network adapter and a cable 
to connect to the Internet would probably not need Wi-
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Fi, the built-in modem, Bluetooth or infrared and 
disabling these devices would save power.  

 
Reducing screen brightness 

A good amount of power can be saved in the long run of 
computer usage by reducing brightness of computer 
monitors.  

 

Share hardware where appropriate 
Hardware like printers and scanners that are connected 
to a computer system is also using power can be saved 
by sharing these devices.  

 

Using efficient power supply units 
The power supply unit basically distributes the power to 
the various computer components by converting AC 
power from electric utilities into DC power. Now, the 
80 Plus initiative (Plug Load Solutions, 2011) certifies 
power supply units with an energy efficiency of 80% or 
more and a true power factor of 0.9 and more, meaning 
that power supply units need less energy to supply the 
computer system with the same power.  

 

Upgrading screen and peripheral devices 
Power consumption can be reduced by upgrading to 
more efficient devices. For example, when upgrading 
CRT monitors to flat panel LCD monitors of the same 
size, power consumption can be reduced to 1/3 (UCLA 
Ergonomics, 2009).   

Though different techniques to reduce power consumption 
from computer usage are already available today, the big 
question that arises is that whether computer users are aware 
of these techniques. If yes, which of the techniques are they 
adopting and what are their motivations behind using/not 
using currently available CPM techniques. This paper 
presents a study made to answer these different questions in 
the area of CPM by targeting youngsters in Mauritius aged 
between 19 and 24, who dominate the Internet users and also 
represent the future. 

RELATED WORK 

Different studies in CPM and awareness have been 
conducted in the past to reduce power consumption in 
personal computers and servers where most concentrated on 
improving battery life in portable computers. Today, due to 
visible climate variability in the world, researchers are 
focusing more and more on how to reduce energy 
consumption in all aspect of computer usage.  

In the area of household power management, Dillahunt et al 
(2009) studied to elicit viewpoints and practices surrounding 
household energy management where 26 low income 
households from two very different locations were 
considered. Through photo-elicitation and directed 
interviews, the relationship between energy saving 
behaviours, external factors and users intrinsic values and 

beliefs were explored. The study showed that most of the 
participants were saving energy because they wished to save 
money. The other reasons why the household owners were 
saving energy were because some wanted to comply with a 
moral and spiritual aversion to waste and the rest were 
environmentally motivated. Similarly, Chetty et al (2009) 
studied 20 households about how people use power 
management strategies on their home computers. With the 
help of a logging software installed on the computers, the 
power state (on, off, standby, etc) as well as basic computer 
usage, e.g. frequently used applications and their duration of 
use, were tracked. The results of the experiment after 14 
days of study showed that 47% of the total computers had no 
power management settings turned on. However, the major 
constraint of this research was that most of the household 
were in a medium or high income bracket where only 3 
among the 20 participants were earning below $.50K 
annually. As such, most people would not be motivated to 
reduce power consumption bearing in mind the different 
reasons why power management strategies are not used.  

Also, different power meters and home energy monitoring 
kits are now available on the market which better help to 
measure and monitor energy consumed in households. The 
best way to reduce power consumption in a house is by 
adopting a two-pronged approach (PowerMeterStore, 2011) 
which involves firstly to measure and monitor the total 
power consumption in the house and secondly, to measure 
and monitor power consumption of individual electronics 
(including computers and associated peripheral devices) and 
electric appliances. Common devices for power 
measurement and monitoring power of individual electronics 
include Kill A Watt (P3 International Corporation, 2008) 
and Watts Up Pro (Watts-Up, 2011) and these devices can 
tell users how much energy is being used for a particular 
instant or period of time by appliances and electronics 
plugged to the device. For measuring and monitoring total 
power consumption, common home energy monitoring kits 
including Cent-a-Meter (Cent-a-meter, 2011) and Power 
Cost Monitor (PowerCostMonitor.com, 2011) are now 
increasingly being used.   

Much power is being consumed when computers are left 
switched on at night by youngsters for downloading online 
materials. As a solution, Agarwal et al (2008) developed an 
architecture named Somniloquy that aims to augment 
network interfaces to allow computers in sleep mode to be 
responsive to network traffic. As part of the experiment, a 
small USB connected hardware and software plug-in system 
was built which allows a PC to remain in sleep mode while 
continuing to maintain network presence and run well-
defined application functions (e.g. VoIP, web downloads, 
file sharing, etc). By using this implementation, a great 
amount of power could be saved.  

Increasing people awareness is one of the key steps towards 
promoting Green IT and increasing utilisation of CPM 
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techniques. Youngsters need to understand the impacts of 
the growing IT industry on the climate and environment 
today, and also what techniques are current available that 
they can adopt in order to reduce power consumption during 
their normal computer usage. To promote awareness in 
going green, many training institutions are now providing 
courses on promoting sustainable development in different 
areas thus making the participants Green Literate . Even in 
universities, courses on climate change are available as well 
as modules related to sustainable development are being 
integrated in different programmes (Talebi, 2009) so that 
new graduates from the university can apply their academic 
skills in the area in their working life and promote 
greenness.  

METHOD 

This study builds on the previous studies conducted in Green 
IT and CPM awareness but focuses on youngsters between 
19 and 24 years. In order to understand on whether 
youngsters today are acquainted with computer power 
management, their motivations behind computer power 
management and what are the different techniques they are 
currently employing, a group of youngsters aged between 19 
and 24 were interviewed.   

For the case study, students enrolled in tertiary institutions 
for undergraduate/postgraduate studies were considered and 
the study started with a national search for the number of 
students enrolled in the different tertiary institutions in 
Mauritius. According to the Tertiary Education Commission 
(2011), around 30,000 students were found taking courses 
between this age range. From a statistical perspective, 
considering  a confidence level of 95% and a marginal level 
of 5.5%, 300 students were interviewed at different tertiary 
institutions in Mauritius. As such, students with different 
profiles took part of the study with varying family income, 
years of computer usage and field of study.  

During the interview, youngsters were asked different 
questions and a survey form was filled. Questions asked 
were related to climate change issues, CPM awareness, 
motivations behind using CPM, reasons for not using CPM 
techniques, and interest in sustainability issues.  

Respondents Profile 
Among the 300 interviewees, there were 176 males and 124 
females; and all were computer literate. The respondents 
were from different fields and levels of 
undergraduate/postgraduate study, where 96.3% of the 
respondents were using computer on a daily basis and the 
remaining 3.7% on a weekly basis. The age distribution of 
the respondents is shown in Figure 1. 

   

 

Figure 1- Respondents Age           Figure 2- Respondents Family Income     

In terms of computer usage experience distribution, 80% of 
the respondents have been using computers for more than 5 
years, 16.3% between 1 and 5 years and 3.7% for less than a 
year. Also, for the survey, the students had a varying family 
background where most of them were from medium monthly 
income between Rs.15,000 and 25,000. Figure 2 shows the 
percentage of the respondents and their family income.  

RESULTS & DISCUSSION 

From the  general questions asked regarding climate change, 
results showed that 89.3% of the interviewed youngsters 
highly agree that the nature is fragile and that people should 
be careful about not to harm or disrupt it. The same group of 
respondents also agree that several countries around the 
world, including Mauritius, are currently facing the effects 
of climate change and say that it is very important to 
preserve the environment for future generations. Among the 
remaining 32 youngsters (representing 10.7%) who disagree 
that the nature is fragile, 62.2% of the interviewees were 
students of Human Resources or Management courses.  
These students are however following non-environmentally 
linked programmes at the university and are less conscious 
of environmental threats and their causes. Also, the results 
showed that 6.7% of the total 300 students coming from the 
high family (above Rs. 40,000 as monthly salary) disagree to 
the same fact as compared to 3.0% of participants ranging 
from low family income.   

However, regarding the climate change problems being 
faced throughout the world, only 40.3% of the youngsters 
say that they have been paying close attention to the 
problems. In this group of youngsters, only 16.2% come 
from high income family, that is, a monthly salary of above 
Rs 40,000. Also, among all the youngsters, only 22.7 % of 
youngsters claimed that they are making some efforts to 
contribute to a greener environment by using common 
techniques including recycling, power saving and waste 
reduction. The rest who claim to make no contribution to a 
greener environment include 30 females (24.2%) as 
compared to 61 males (35.4%), thus implying that female 
youngsters are more environment conscious than males as 
discussed by Hampel et al (1996).  
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In terms of computer usage, 21 interviewees claim to rarely 
(weekly or monthly basis) or never switch off computers and 
the most common reasons for not doing so are as follows:  

1. Computer is always in use (66.8%) 
The computers of this small group of youngsters are 
always in use because of the main reasons including 
downloading files from the internet, gaming, video 
streaming or spending time on social networks.  

2. Long booting-up times (25.4%)  
This group of youngsters prefer to leave computers in 
stand-by mode or screen-saver mode because their 
computers take quite long to boot-up.  

3. Computer will get damaged (7.8%) 
A few youngsters still think that their computers will get 
damaged while constantly switching on and off their 
computers and prefer to use stand-by or hibernate mode 
if they will not be using their computers for long hours.  

Power monitoring at home, which is one of the practices 
towards saving electricity is still not practiced by a group of 
youngsters. Around 60.7% of youngsters monitor electricity 
usage at home though only 19% are familiar to commercial 
devices such as Kill a Watt or Power Monitor. During the 
interviews, youngsters were also asked on their different 
motivations behind using CPM techniques. The results are 
shown in Figure 3 where the count and percentage of 
youngsters opting for the different motivations (out of 300) 
are labelled on the different bars.   

 

Figure 3 - Motivations behind using CPM techniques  

From Figure 3, reduction of electricity bills is found to be 
the main motivation behind using CPM techniques 
irrespective of age, sex and family income. However, it has 
been observed that as the family income rises, reduction of 
electricity bills becomes less of a motivation to the 
youngsters. For youngsters hailing from medium to high 
family income, prolonging battery life is the second main 
motivation behind using CPM techniques followed by 
promoting a greener environment. Also, a small percentage 
of the interviewees say that their parents ask to employ 

techniques to better save power/energy via computer usage. 
This group of youngsters hail mostly from low to medium 
family income earners, similar to the study by Dillahunts et 

al (2009), and again this reason becomes less as a motivation 
again as family income increases.  

A big part of the survey was to find out on the different 
techniques being employed by youngsters in order to save 
power/energy while using computers. The results obtained 
are shown in Table 1 arranged in descending order on 
youngsters count. 
No CPM Technique Count Percentage 

1. turn off monitor instead of using 
screen saver 

161 54.60% 

2. turn off computer instead of using 
standby mode 

160 54.20% 

3. built-in power saving features on 
computer 

142 48.10% 

4. turn down screen brightness 124 42.00% 
5. disable devices not in use 84 28.50% 

6. using laptop instead of desktop 
computers 

75 25.40% 

7. using more efficient computer parts 62 21.00% 

8. power saving for USB devices 61 20.70% 

9. upgrade devices  53 18.00% 

10. share hardware where appropriate 39 13.20% 
Table 1 

 

CPM Techniques adopted by youngsters  

From the results obtained, techniques involving turning off 
the devices that is not being used (including monitor, 
printers, among others), are the most popular techniques. 
Using energy efficient materials, which is a good technique 
to save energy, is not much adopted since it involves the cost 
of upgrading/changing the appropriate devices, where many 
youngsters are quite reluctant for initial investment. 
Similarly, the reason for using laptops instead of desktop 
computers hasn t been for cost saving among many 
youngsters, but rather because of portability reasons. Also, 
the power saving feature for USB devices is not that familiar 
where a big percentage of the interviewees did not know on 
how to activate this feature on their computers. Another 
observation is that hardware sharing is very less used, and is 
even the last on the list in Table 1, though a big amount of 
energy can be saved while adopting this technique. The main 
reason behind this is at home, many students do not have a 
small Personal Area Network or Local Area Network, where 
they can share devices being used (most commonly the 
printer or multifunctional devices).  

In terms of barriers of CPM usage, the youngsters think that 
the main barrier is that CPM techniques haven t been much 
promoted and that nobody really talks about it. Awareness in 
application of CPM techniques is another barrier where 
techniques like power saving for USB devices or hardware 
sharing are not very common. One of the common reasons 
for the awareness problem is that in many courses, 
sustainability issues are not given much importance. Among 
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the interviewed youngsters, only 23.3% remember of having 
done lectures/modules related to sustainability issues. 
However, 85.7% of the interviewees claim to be interested if 
sustainability or energy efficiency based modules are 
integrated in their course.  

RECOMMENDATIONS 

During the survey, youngsters have also been proposing 
different recommendations in order to increase awareness 
and promote CPM techniques. These are as follows:  

1. Early awareness on CPM techniques 
One of the first steps towards increasing CPM 
techniques utilisation is to increase user awareness in 
the area. Since today more and more people are starting 
to use computers at an earlier age, improving awareness 
in the subject area at an earlier age would make CPM 
techniques utilisation a habit to computer users, 
including youngsters.  

2. Regular campaigns 
Promoting CPM and Green ICT techniques by using 
different means of advertisement and at a regular basis 
would better promote the subjects to youngsters while at 
the same time targeting a wider range of computer 
users. Youngsters should better understand the current 
climate change problems being faced around the world 
and what the different solutions are to this problem.   

3. Default CPM techniques set by vendors 
Computer vendors should set default power saving 
options on new computers and laptops if they are not 
already practising this. A big amount of energy can be 
saved from computers being utilised by youngsters who 
are not familiar to CPM and Green ICT techniques.  

4. Sustainability courses at all levels 
So as computer users to be aware of the evolving CPM 
and Green ICT techniques, courses in the same subject 
areas should be promoted at all levels of education, 
namely in schools, colleges and universities.   

5. Supporting research and innovation in green 
technologies 

Promoting research and innovation in the green 
technologies can help in attracting more youngsters into 
this area, in the common forms of scholarships and 
prizes through competitions. Research and innovation 
would also be beneficial in the way that innovative and 
optimised CPM techniques can be developed to better 
save energy while computer and associated peripherals 
usage.    

CONCLUSION 

This paper presented an insight from youngsters in the area 
of computer power management. As part of the study, 300 
youngsters aged between 19 and 24 were interviewed so as 
to understand which CPM techniques they are aware of, 
their motivations behind using these techniques and the 
barriers behind adoption of CPM techniques. Turning off or 
disabling devices while not in use is still the most common 
techniques to save power while using computers and 
youngsters think that the main barrier to CPM usage is that 
CPM techniques haven t been much promoted. A set of 
recommendations to promote and increase awareness on 
CPM techniques have also been discussed including early 
awareness on CPM techniques, regular campaigns and 
supporting research and innovation in green technologies.  
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Abstract - Various mathematical concepts and models are 

used as foundations for different Computer Science areas. 

One of them is a concept of function. There is almost no a 

Computer Science problem where we do not use a concept of 

function and some of its properties. In this paper we focus on 

one of these fundamental properties, one-to-one property. 

We study a sum of a one-to-one function and hash function 

and explore possible cases for the result function to be one-

to-one.  
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1. Introduction 

Functions are one of the fundamental concepts in 

Mathematics and Computer Science. We hardly can take a 

few steps in science fields without running into one. The 

concept of function was developed over a period of several 

centuries. Various definitions were given.  In an ordinary 

language by “function” we usually mean a relationship 

between two sets of objects. One of the formal definitions 

frequently used by mathematicians as well as by computer 

scientists was first formulated for sets of numbers by the 

German mathematician Lejeune Dirichlet in 1837.  

Definition 1.1: A function F from a set X to a set Y, denoted 

F : X → Y , is a relation from X, the domain, to Y , the co- 

domain, that satisfies two properties:  

1. every element in X is related to some element in Y  

2. no element in X is related to more than one element 

in Y . [1] 

In this paper we focus on one of the important properties that 

functions may satisfy: the property of being one- to- one. 

One-to-one property is one of two requirements for a 

function for being a one- to- one correspondence and having 

an inverse function. We may consider a one- to- one 

correspondence between two sets of objects as a perfect 

mapping of these two sets, domain and co-domain.               

A mapping represents an operation on the domain objects 

with the operation result in the co-domain. The existence of 

an inverse function corresponds to the existence of “undo” 

operation for the given one.  In a variety of applications we 

need the existence not only of a particular mapping, 

operation, but we would like to be able to have a way to go 

back and undo the first one. The formal definition of one-to-

one property is given by the following definition: 

Definition 1.2: Let F be a function from a set X to a set Y. F 

is one- to- one if, and only if, for all elements x1 and x2 in X, 

if F(x1) = F(x2), then x1 = x2, or, equivalently, if x1 ≠ x2, then 

F(x1) ≠ F(x2). [1] 

In this paper we study a combination of a one-to-one and not 

one-to-one function. We focus on a sum of two functions and 

explore its one-to-one property. We ask the question: What 

do we know about the one-to-one property even for a sum of 

a simplest one-to-one and a hash function?  Hash functions 

are very well known examples of not one-to-one functions 

used in a variety of computer science applications.  

Definition 1.3: A function F from a set X to a set Y,  where 

the size of X is larger than the size of Y and size of Y is a 

fixed number, is called a hash function. [1] 

In the rest of our discussion we focus on the function  

F(n) = n mod d + n,   where n is a positive integer, d is a 

fixed positive integer and mod function is defined as  

n mod d = the remainder when n is divided by d.  

mod function is probably one of the most frequently used 

hash functions in a variety of computer science areas such as 

databases, data structures, conflict resolution protocols, 

computer security methods and many other applications [2], 

[3], [4]. 

2. Basic Results 

In this section we prove a few properties for a sum of the 

identity function,  f(n) = n, and a mod function. The identity 

function is known to be one-to-one. We consider  

F(n) = n mod d + n, where d is a fixed positive integer. In 

our proofs we use basic facts from the Number Theory such 

as the divisibility concept, divisibility properties, and The 

Quotient-Remainder Theorem.  

Definition 2.1: If n and d are integers and d ≠ 0 then n is 

divisible by d if, and only if, n equals d times some integer  

( n = dk,  k Z ). [1] 

The Quotient-Remainder Theorem: Given any integer n and 

positive integer d, there exist unique integers q and r such 

that n = dq + r and 0  r   d - 1. [1] 

Exploring F(n) = n mod d + n for having one-to-one 

property we have proven the following two properties. 
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Property 2.1: For every even positive integer d function  

F(n) = n mod d + n is not one-to-one. 

Proof: Let n1 and n2 be positive integers, such that  

F(n1) = F(n2).     (1) 

This gives us: 

n1 + n1 mod d = n2 + n2 mod d                       (2) 

Using The Quotient-Remainder Theorem we have  

n1 = q1d + r1 and n2 = q2d + r2,  

where q1, q2 are the quotients, r1, r2 are the remainders, when 

n1 and n2 are divided by d respectively.  

So, (2) can be written as 

q1d + r1 + r1 = q2d + r2 + r2   

q1d + 2r1 = q2d + 2r2   

d(q1 – q2) = 2(r2 – r1)     (3) 

From (3) we have  

(q1 – q2) = 2(r2 – r1)/d   

or   

(q1 – q2) = (r2 – r1)/k,    (4) 

where d = 2k, k is a positive integer, q1 – q2 and r2 – r1 are 

integers and  – (2k – 1)  r2 – r1  2k – 1.  

To prove F(n) is not one-to-one we have to find at least one 

solution for the equation (4) that has q1 ≠ q2 , r1 ≠ r2 . It is not 

difficult to see that all (q1, q2, r1, r2) which satisfy conditions  

 r2 – r1 = k = d/2  and  q1 – q2=1  (5)  

are solutions of (4). So, we have shown that for any n1 and 

n2, such that n1 = q1d + r1 , n2 = q2d + r2 and q1, q2, r1, r2 , 

that satisfy conditions (5), we have that n1 ≠ n2, but  

F(n1) = F(n2). Hence, F(n) is not one-to-one.  

The next statement describes the case of an odd d. 

Property 2.2: For every odd positive integer d function  

F(n) = n mod d + n is one-to-one. 

Proof: We are going to prove the statement by contradiction 

using the same reasoning as in Property 2.1. Let us assume 

that there are two positive integers n1 and n2, such that  

n1 ≠ n2 and F(n1) = F(n2). In the same way as in Property 2.1 

we get  

n1 + n1 mod d = n2 + n2 mod d   (2) 

Using The Quotient-Remainder Theorem n1 and n2 can be 

written as n1 = q1d + r1 and n2 = q2d + r2, where q1, q2 are 

the quotients, r1, r2 are the remainders, when n1 and n2 are 

divided by d respectively.  (2) is equivalent to the equation   

d(q1 – q2) = 2(r2 – r1)     (3)  

That means that both sides of equation (3) are integers 

divisible by the same integer divisors. d is odd, so q1 – q2 

must be divisible by 2. This implies that A = (q2 – q1)/2 is an 

integer and we can write (3) as  

dA = r2 – r1      (6) 

where 0  |r2 – r1|  d – 1 and |A|  1. That is a contradiction, 

since |dA| > |r2 – r1|. Hence, the initial assumption is false 

and we have proven that F(n) is one-to-one. 

3. Conclusion and future work 

In this paper, we explore one-to-one property of a sum 

of the identity function and a mod function. We consider two 

possible cases for a mod function and prove or disprove the 

one-to-one property for each of the cases. A mod function is 

one of the most frequently used hash functions in Computer 

Science. Sum of two functions is one of the simplest 

combinations. Similar questions could be asked exploring 

other type combinations of two functions as well as including 

broader classes of one-to-one and hash functions.  
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Abstract 

 

Measurements for network monitoring and IP traffic analysis is a complex research field 

whose results can be exploited for several purposes such as usage based Billing, Quality 

of Service, Traffic Engineering, Service Level Management, Security etc. In this paper, 

we propose a measurement framework for monitoring IP networks that includes both 

active and passive measurement methodologies. Our proposed framework integrates the 

mechanisms to do an end-to-end measurement using active probes and also explicitly 

describe complex traffic mixes using traffic meters. It uses the active measurement 

components to study various properties of the network while the passive measurement 

components measure the user traffic, and finally to correlate the findings to derive a 

global picture of the measured network. This paper also describes various traffic metrics 

that can be measured using this framework. Our system will provide valuable insights 

regarding the performance, quality, and traffic dynamics of the network under study. 

 

Keywords: Network Measurements, Passive Monitoring, Active Monitoring, IP Traffic 

Analysis, Flow Monitoring 

 

 

I.  Introduction 
 

The measurement and monitoring of IP networks has become essential and challenging 

due to the rapidly growing requirements from various levels of technology, applications, 

and user 

requirements. A contemporary IP network has three significant characteristics: (1) they 

provide real-time services, (2) they have become mission critical, and (3) their operating 

environments are very dynamic[16]. Measuring the networks and understanding data 

traffic is essential for ensuring the reliable operation and smooth growth of computer 

networks.  

 

At the most basic level, an IP network could be represented conceptually as a dynamical 

system consisting of (1) a set of interconnected resources which provide transport 
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services for IP traffic subject to certain constraints, (2) a demand system representing the 

offered load to be transported through the network, and (3) a response system consisting 

of network processes, protocols, and related mechanisms which facilitate the movement 

of  traffic through the network [16]. This paper is focused at (1) and (2),  to measure and 

monitor IP networks at traffic and resource levels. Traffic oriented measurements include 

delay, delay variation, packet loss, and throughput. While Resource level monitoring 

addresses the availability, reliability, and optimal utilization of internet work resources.  

 

Traffic measurement is not driven by a single concrete goal. There are large numbers of 

systems that perform traffic measurement to answer a wide variety of questions. These 

measurement initiatives implement one of the two measurement methodologies via active 

measurement techniques or passive measurement techniques. The active measurement 

techniques send out probe packets and measure how they reply, and/or traverse the 

network [1] [2] [3]. These techniques typically measure the end-to-end properties of the 

network. Unlike active measurement, passive measurement measures the production 

traffic [4] [5]. They capture the packets with their corresponding timestamps and give 

detailed flow level information. Some passive techniques like SNMP gives device level 

information of the intermediary networking devices. It should be noted that each 

measurement methodologies have inherent limitations and drawbacks. In this paper we 

propose a framework which will eliminate the limitations of the above mentioned 

measurement techniques. This proposal is novel and loaded with wide scope of 

application in future as our framework helps in analyzing the network to ensure that the 

performance characteristics that are pertinent to a specified service class is guaranteed. It 

also analyses the network in terms of spatial aspect (eg: flow aggregation by src, dst IP 

address or AS number) which shows the traffic flow pattern relative to network topology, 

temporal aspect which shows the stochastic behavior of traffic flow (eg: Packet or byte 

per hour, day, week, month) and composition aspects which describes breakdown of 

traffic according to the contents, application, packet length and flow duration.  

 

We also discuss here about the metrics expected to be derived from this measurement 

framework. The measurement provides raw data concerning state parameters and metrics 

of monitored network and network elements. These raw data have to be evaluated 

effectively to make inferences regarding the monitored system.  
 
The remainder of this paper is organized as follows: 

Section II brings some of the related works in the same domain. Section III details the 

architecture of the proposed framework. Section IV discusses the general considerations 

on implementing the proposed framework. Section V describes the traffic metrics 

measured using this framework. Finally, in Section VI we provide a conclusive summary 

and suggest future directions. 
 
II. Related Work 

 

There are a wide range of initiatives for network measurement and monitoring. One 

important architecture for flow based monitoring has been developed by the IETF RTFM 

working group (Real Time Traffic Flow Measurement) [7]. The architecture of this group 
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is composed of the 3 modules: manager, meter and meter reader. Another interesting 

architecture proposed by IETF working group is IPFIX (IP Flow Information export) [8]. 

Its goal is to define a common architecture and protocol to let different monitoring 

applications communicate to each other. The proposed architecture of this group  consists 

of two modules: the IPFIX device and the collector. The IETF IP Performance Metrics 

(IPPM) working group has been developing a set of standard metrics that can be used to 

monitor the quality, performance, and reliability of Internet services [9]. Some other 

relevant related works in this field are: RIPE NCC Test Traffic Measurements [10], NIMI 

[11], Surveyor [12], Flow Scan [13], and Net Flow [14].  

 

III. Proposed Framework for Measurement  

 

The proposed framework is shown in Figure.1 below. The components and the sub 

divisions of this measurement framework are detailed below: 

 

1. Active Data Measurement Components (ADMC) 

 

This Component implements active measurement procedures to inject measurement 

probes into the network. It sends out probe packets and measures how they, and/or their 

replies traverse the network. Active measurement is typically used to measure properties 

of the network viz, packet delays, packet loss rates, jitter, bandwidth, symmetry, stability, 

and topology. This Component includes the following daemons: 

 

a) ICMP Probe Daemon 

The ICMP probe daemon sends ICMP packets (probes) to a designated host and wait for 

the host to respond back to the sender to collect end-to-end measurements of the network.  

 

b) TCP/UDP Probe Daemon 

The TCP/UDP probe daemon sends TCP and UDP packets (probes) into the network to 

collect end-to-end performance metrics of the network.  

 

c) Application specific Probe Daemon 
The Application specific probe daemon emulates application specific traffic to measure 

the perceived application-quality over the network. These include real-time applications 

like multimedia applications and peer to peer applications.  

 

2. Passive Data Measurement Components (PDMC) 

 

Passive measurement is a means of tracking the performance and behavior of packet 

streams by monitoring the traffic without creating or modifying it. Passive measurement 

can be implemented by incorporating some additional intelligence into network devices 

to enable them to identify and record the characteristics and quantity of the packets that 

flow through them. Packet statistics can then be collected without the addition of any new 

traffic. The techniques used are SNMP, RMON and Net flow. This component also 

includes the flow analysis of the raw packets captured through packet sniffers or splitters. 

The quantum of  information collected depends on the network metrics of interest, how 
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the metrics are being processed and the volume of traffic passing through the monitor 

device.  

 
      Figure 1. Measurement Framework  

 

The types of information obtained include Bit or packet rates,  Packet timing / inter-

arrival timing,  Queue levels in buffers (which can be used as indicators of packet loss 

and delay), Traffic/protocol mixes. 

 

a) SNMP/RMON Agents 

The SNMP/RMON agents have to be enabled in the intermediary devices (managed 

entity) for which this framework acts as the management station. These agents gather 
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traffic and device statistics from the Managed Devices. There are many approaches for 

reconstructing the traffic matrix based on SNMP counters and network topology and they 

are collectively known as network tomography. One disadvantage of these methods is 

that they can only give approximate traffic matrices. 

 

b) Flow Data Probes 

Flow level measurement provides traffic information in more detail. Flows define a 

communication between two endpoints and are identified by certain values for 5 specific 

fields in the headers of the packets that make up the flow. The five fields are: source IP 

address, destination IP address, protocol number, source port and destination port. The 

last three fields indicate which application generated the flow (web, email, etc.). Besides 

these fields, a flow record contains counters for the number of packets and bytes in the 

flow, timestamps for when the first and last packets were received, information about 

protocol flags and a few other details. The flow has to be enabled at transit network on 

the device that supports Netflow/sFlow and using packet capture mechanisms at edge 

networks depending on the measurement required.   

 

3. Active Data Collector Component (ADCC) 

 

This component collects the data generated by each active probing mechanisms specified 

in (2). 

These data are categorically stored in the temporary data store (TDC). This collector 

component can be tuned as per the requirement and interest, from the user interface. 

 

4. Passive Data Collector Component (PDCC) 

 

This component collects the raw data sent from various passive agents deployed in the 

network. The data are categorically stored in the temporary data store (TDC). This 

collector component can be (re)defined as per the granularity needed, from the user 

interface.  

 

5. Active Data Analyzer Component (ADAC) 
 

This component analyses the data collected and stored through active measurement 

techniques. 

It retrieves data from temporary data store (TDS) and permanent data store (PDS). This 

analyzer component can be configured from the user interface. It gives the result from the 

perspective in evaluating the end-to-end performance of a network path.  

 

6. Passive Data Analyzer Component (PDAC) 

 

This component analyses the passive data collected and stored through passive 

measurement techniques. It retrieves data from the temporary data store (TDS) and 

permanent data store (PDS) based on the analysis to be done. This component can be 

configured from the user interface. This analysis component gives device level 

information and also deep insight into IP traffic characteristics and traffic behavior. 
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7. Data Aggregation Component (DAC) 
 

This component is very crucial as the amount of  the expected data is enormous.  

This component applies conditional filters and policy based aggregations on the data 

stored temporarily in TDS. The consolidated data is permanently stored in PDS for 

further and future evaluations. 

 

8. Report Aggregation Component (RAC) 

 

This component pays attention to the usefulness of the information provided by this 

framework. This module generates structured and user configurable custom reports based 

on the analysis records generated by the active and passive analyzer components. 

 

9. Data Store (permanent/temporary) 

 

This is an essential component from the perspective of this system, as a huge amount of 

data are expected to be handled. The Data Store can be broadly classified into two: 1. 

Temporary Data Store (TDS) and 2. Permanent Data Store (PDS). As the name explains 

(1) acts as an intermediary store for the real time-series data which can be used for real 

time analysis and reporting, while (2) stores the consolidated data for further analysis and 

long term use. As the expected quantity of data is very high, following storage 

considerations are to be made for storage optimization. 

(a) The aggregated data could be made available using the  Mean, Max, or Min entries 

and saved for historical purposes. (b) Use a time-based algorithm that aggregates data 

over a specific period of time within a component data, thus requiring fewer entries, to 

reduce storage space requirements. (c)Periodically delete historical data in accordance 

with an administrative policy.  These considerations are to be made later on operational 

concern. 

 

10. Web-based User Interface 

 

A web-based user interface is an essential component for such a complex system so that 

it could be accessed from anywhere using HTTP protocol. It  provides a brief/detailed 

view of the real time and long term data analysis. The self explanatory graphs will aid as 

a quick and easy reference to entire traffic monitoring. 

 

IV. General Considerations 

 

Following are the general considerations made on this measurement framework:  

Active measurement based: (a) intrusiveness must be minimized (b) selective probing 

schedules; random, periodic, bursty (c) active probes should be indistinguishable from 

ordinary traffic (d) authorization to restrict the active probing traffic. 

Passive measurement based: (a) calibration of memory and processor requirements (b) 

minimizing the bandwidth consumed  (c) ensuring secure transactions 

Storage based: device proper policy for data consolidation. 
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V. Derived Health Metrics of the Network  

 

The following are the metrics collected and analyzed by this framework: 

a) Route Changes: This is one of the important metric and an anomaly observed in the 

production network. Route changes happen due to “route flapping”, which are caused by 

the abnormal routing protocol behavior, network infrastructure failures, reconfiguration 

of the networks or load balancing strategies used for network performance improvement. 

 

b) Delay: This metric includes the one-way or two-way delay of a packet transmission 

between a pair of measurement end points. One-way packet delay is the time elapsed 

from the start of transmission of the first bit of the packet by a source node until the 

reception of the last bit of that packet by the destination node. Two-way packet delay is 

the time elapsed from the start of transmission of the first bit of the packet by a source 

node until the reception of the last bit of the loop-backed packet by the same source node, 

when the loop back is performed at the packet’s destination node. 

 

c) Bandwidth: This metric shows the capacity of the channel by reflecting the congestion 

levels caused by the network dynamics in the path. The bandwidth characteristics of the 

path significantly influence the other performance metrics. 

 

d) Jitter: This metric represents the variation in the network delay. This metric also 

reflects the network dynamics along the measured path. 

 

e) Loss: This metric measures the packet loss ratio between a pair of measurement end 

points. Packet loss ratio is the ratio of the user-plane packets not delivered to the total 

number of user-plane packets transmitted during a defined time interval. The number of 

user-plane packets not delivered is the difference between the number of user-plane 

packets transmitted by the source node and the number of user-plane packets received at 

the destination node. 

 

f) Stability: This metric reflects the operational state in which a network does not 

oscillate in a disruptive manner from one mode to another mode. This metric could be a 

derived from other measured metrics based on the context specific requirements. 

 

g) Availability: This metric reflects the uptime or downtime of a network device or a 

service. It excludes the scheduled outages which may be to device or service shutdown 

for maintenance purposes. 

 

h) Discards and Errors: The discard metric indicates the number of packets discarded 

on a particular network interface, while error metric indicates the number of corrupted 

packets received on a network interface. These metrics are indicators of excessive 

network congestion experienced on the link at that point of time. 

 

I) Utilization: This metric will be measured on the edge network(s) or/and on the link(s) 

along the network path. It compares the amount of inbound and outbound traffic versus 
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the bandwidth provisioned on the network segment or/and on the network link in a 

network path.  

 

j) Flow Information: This includes a series of metrics measured on the basis of flow 

definition made as per the requirement. This includes various categories including flow 

size, flow duration, packet and size distribution, flash flows, volume pattern, flow 

occurrence period, port number and protocol based distribution. It mainly depicts the 

characterization of IP traffic over time. 

 

VI. Conclusions and Future Work 

 

Our proposed measurement framework for network monitoring and IP traffic analysis 

integrates the advantages and eliminates the limitations of traditional active and passive 

measurement methodologies. Passive measurements are accurate, scalable and have low 

overheads but it needs access to the network under study. On the other hand, active 

measurements do not require owning the network, but   they are intrusive in nature by 

actively injecting packets which may adversely affect the production traffic on the 

network. But we observe that both measurements are essential to define and maintain the 

state of the network. The strategy that we adopted in this proposed framework is aimed at 

unifying the tasks involved in active and passive measurement methodologies.  

 

Finally, we believe that our approach will lead to a solution for an important issue of 

extending the measurements to higher protocol layers, as well as a combination of edge-

to-edge network measurements and end-to-end application measurements for next 

generation high speed networks. The generic structure of this framework will help to 

focus the network under study at its horizontal and vertical levels. In future, we plan to 

carry forward with prototyping this framework for further experiments, evidences and 

advancement. 
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Abstract— We apply a quantum process calculus to an
equivalence proof of quantum key distribution protocols.
Whether in classical or quantum cryptography, it is recog-
nized that security proofs tend to be complex and difficult
to verify. The use of formal methods is a way to tame such
complexity. Quantum process calculi have already been used
to model quite simple quantum protocols but not applied to
security proofs of practical ones. In this paper, we study a
security proof of BB84 in a quantum process calculus qCCS.
Shor and Preskill have shown that BB84 can be transformed
to an equivalent EDP-based protocol and the latter is
secure. We formalize this equivalence of the protocols as the
bisimulation of processes. For the formalization, we present
a general technique to describe quantum measurements in
qCCS. Congruence of bisimulation is useful to show that the
two protocols are bisimilar even if they run in parallel.

Keywords: quantum protocols, BB84, process calculi, bisimula-
tion, formal methods

1. Introduction
Security proofs of cryptographic protocols tend to be

complex and difficult to verify. This fact has been recognized
in the classical cryptography. Security proofs are also com-
plex in the quantum cryptography, where we must consider
attacks using entanglements. The first security proof of BB84
quantum key distribution (QKD) protocol by Mayers [1] is
about 50 pages long. After that paper, researchers have been
seeking simpler proofs [2], [3].

Since by-hand proofs are prone to human error and time
consumption, the efforts have been put into automating
the proofs and verification in the classical cryptography
[4]. For instance, 11 security properties of Kerberos [5],
a commercial authentication protocol, is guaranteed by a
mechanized proof [6] in CryptoVerif [4], a software tool
based on a process calculus.

To automate a proof, a target system must be formalized in
a certain formal framework that a tool supports. Formaliza-
tion itself is useful besides automation; we write targets in a
formal language and deduce security properties using some
rules that the framework provides. These make description
of targets precise and all deduction steps explicit.

There are several formal frameworks for quantum systems
such as quantum process algebra (QPAlg) [7], communicat-
ing quantum processes (CQP) [8] and quantum CCS (qCCS)
[9]. In CQP, quantum teleportation protocol and a quantum
error correcting code are formally verified [10] using bisim-
ulation. In process calculi, bisimulation relation is a key
notion denoting behavioural equivalence of processes. An
important property of bisimulation is congruence, that is,
the relation is closed by parallel composition. Bisimulation
has been used for specification and verification of protocols.
We write protocols as processes and prove them bisimilar.
Weak bisimulation relation is defined in qCCS. Weakly
bisimilar processes can perform identical transitions up to
actions which are invisible from the outside. As applications
of qCCS [9], quantum teleportation and superdense coding
protocols are formally verified. Specification of BB84 has
been also verified [11] but it is not a security proof.

Quantum process calculi are used for verification of vari-
ous systems but they have not yet applied to security proofs.
In this paper, we apply qCCS to Shor and Preskill’s security
proof of BB84. In Shor and Preskill’s security proof, security
of BB84 is proven to be equivalent to that of another protocol
based on an entanglement distillation protocol (EDP), and
then the latter is proven to be secure.

Our contributions are mainly two. First, we present a
general technique to describe quantum measurements. There
are two different ways to formalize quantum measurements
in qCCS. Quantum measurements provided in the syntax
evoke probabilistic branches in the transition system. On the
other hand, we can formalize quantum measurement as a
quantum operation, which does not cause branches. In fact,
the processes with different formalization of a measurement
are generally not bisimilar. In Our investigation, the two
kinds of processes behave differently from the view of an
adversary. The former is observed by an adversary and the
latter is not. To make sense, a measurement should be for-
malized in the former way if the result of the measurement
can be recognized by an adversary. Otherwise, it should be
formalized in the latter way. Shor and Preskill’s security
proof is a typical case to apply our formalization technique
for quantum measurements.

The second contribution is that we have formalized the
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equivalence of BB84 and the EDP-based protocol as the
bisimulation. Thanks to congruence property of bisimulation,
it is naturally proved that multiple instances of BB84 running
in parallel are bisimilar to multiple instances of the EDP-
based protocol.

The remainder of this paper is organized as follows. In
the next section, we introduce BB84 and the EDP-based
protocol that we formalize in this paper. In Section 3, we
introduce qCCS framework, namely, the definition of syntax,
the operational semantics and bisimulation. In Section 4, we
discuss techniques for formalization and formalize the two
protocols introduced in Section 2. In Section 5, we prove
bisimulation between the two protocols. In Section 6, we
draw a brief comparison with related works and conclude
the paper.

2. QKD protocols
The word BB84 does not mean one unique protocol,

because there are choices to error correction and privacy
amplification steps. In this paper, since our target is Shor
and Preskill’s proof, the implementation of BB84 follows
[2]. It employs two classical linear codes C1, C2 that satisfy
{~0} ⊂ C2 ⊂ C1 ⊂ {0, 1}n, where n is the length of
codewords in C1 and C2. In this paper, the protocol is
slightly modified for simplicity: Alice only generates 2n
qubits. This modification causes Bob to store qubits in his
side, but does not affect the security at all.

2.1 BB84 (slightly modified)
1) Alice generates two random 2n-bit strings

dA,1, ..., dA,2n and bA,1, ..., bA,2n.
2) Alice creates a 2n-qubit string qB,1, ..., qB,2n accord-

ing to the randomness: for each qB,i(1 ≤ i ≤ 2n),
Alice generates |0〉 if dA,i = 0, bA,i = 0, |1〉 if
dA,i = 1, bA,i = 0, |+〉 if dA,i = 0, bA,i = 1, |−〉
if dA,i = 1, bA,i = 1.

3) Alice sends qB,i’s to Bob via the quantum channel.
4) Bob receives qBi’s and announces Alice that fact.
5) Alice announces bA,i’s via the classical channel.
6) Bob measures qBi’s in {|0〉, |1〉} basis if bA,i = 0 or in

{|+〉, |−〉} basis if bA,i = 1. Alice randomly chooses
n bits from them as check bits and then tells Bob
which are check bits.

7) Alice and Bob announce the values of their check
bits to each other. If the error rate is higher than the
threshold, they abort the protocol.

8) Alice chooses a codeword ~uA ∈ C1 randomly, and
announces ~uA + ~xA, where ~xA is the remaining non-
check bits.

9) (Error correction) Bob calculates ~u′
B from announced

~uA + ~xA and his own non-check bits ~xB . Because
~xB may include some errors, Bob obtains ~uB by
correction of the errors. If this error correction works
well, ~uB is almost equal to ~uA.

10) (Privacy amplification) Alice and Bob determine secret
keys ~kA,~kB from the cosets of ~uA + C2, ~uB + C2.

BB84 is transformed into the following EDP-based pro-
tocol, which is a modification of the protocol in [3]. This
protocol employs a CSS quantum error correcting code [12]
that is constructed from two linear codes C1, C2 satisfying
{~0} ⊂ C2 ⊂ C1 ⊂ {0, 1}n. A CSS code can take bit and
phase parameters u, v ∈ {0, 1}n.

2.2 the EDP-based protocol
1) Alice generates 2n EPR pairs ~q = ( |00〉+|11〉√

2
)⊗2n and

2n-bit string bA,1, ..., bA,2n.
2) According to bA,i’s, Alice executes Hadamard trans-

formations on halves of ~q sent to Bob in the next step.
3) Alice sends the halves of ~q to Bob via the quantum

channel.
4) Bob receives his halves, and announces it to Alice.
5) Alice announces bA,i’s via the classical channel and

Bob executes Hadamard transformations according to
bA,i’s.

6) Alice and Bob measure their halves of the check bits
by the {|0〉, |1〉} basis, and share the results. If the
error rate is higher than the threshold, they abort the
protocol.

7) Alice calculates the parameters of the related CSS
code and sends them to Bob. Bob then calculates the
syndrome and corrects errors using the parameters.
Alice and Bob next decode their qubit strings as the
CSS code.

8) Alice and Bob measure their qubits in {|0〉, |1〉} basis
to obtain shared secret keys ~kA,~kB .

3. Formal framework
In this section, the syntax, semantics and the definition of

bisimulation of qCCS [9] are introduced. We only present
main rules and definitions here (See [9] for complete ones).
We use a sublanguage of qCCS for our formal verification.

3.1 Syntax
Definition 1: the syntax of qCCS process is given as

follows.

Proc 3 P ::= nil | c?x.P | c!e.P | c?q.P | c!q.P
| if b then P | op[q̃].P | M [q̃;x].P | P ||P | P\L

where c, x, e, c, q are a classical channel name, a classical
variable, a real expression, a quantum channel name and a
quantum variable respectively. b, op, q̃,M,L are a condition,
a symbol of a super-operator (we may say quantum opera-
tor), a sequence of quantum variable, an Hermitian operator
and a set of channel names respectively.

Let cVar , qVar , cChan and qChan be the set of all
classical variables, the set of all quantum variables, the set
of all classical channel names and the set of all quantum
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〈c?q.P, ρ〉 c?r−−→ 〈P{r/q}, ρ〉 〈c!q.P, ρ〉 c!q−−→ 〈P, ρ〉

〈P1, ρ〉
c?r−−→ 〈P ′

1, ρ〉 〈P2, ρ〉
c!r−−→ 〈P ′

2, ρ〉
〈P1||P2, ρ〉 τ−→ 〈P ′

1||P ′
2, ρ〉

〈P1, ρ〉
α−→ µ [[b]] = true

〈if b then P, ρ〉 α−→ µ

〈op[r̃].P, ρ〉 τ−→ 〈P, Eop
r̃ (ρ)〉

〈P1, ρ〉
c?r−−→ 〈P ′

1, ρ〉 r /∈ qv(P2)

〈P1||P2, ρ〉
c?r−−→ 〈P ′

1||P2, ρ〉

〈M [r̃;x].P, ρ〉 τ−→
∑

i pi〈P{λi/x}, Ei
r̃ρE

i
r̃/pi〉

where M has the spectrum decomposition

M =
∑
i

λiE
i, and pi = tr(Ei

r̃ρ)/tr(ρ)

Fig. 1: Labelled Transition Rule

channel names. The set of quantum variables occurring in
a process P is denoted by qv(P ) ⊆ qVar . P ||Q ∈ Proc if
and only if qv(P ) ∩ qv(Q) = ∅ and c!q.P ∈ Proc if and
only if q /∈ qv(P ).

3.2 Labelled Transition System
We assume the supports of probabilistic distributions are

finite. The support of a probabilistic distribution µ is denoted
by supp(µ). With a family of distributions {µi}i∈I , the
joint distribution

∑
i∈I piµi is defined as (

∑
i∈I piµi)(C) =∑

i∈I pi(µi(C)) for all C, where p′is are probability. If
supp(µ) = {C}, µ is simply written C.

For each q ∈ qVar , there is a corresponding two dimen-
sional Hilbert space Hq that denotes the state space of q.
Let H =

⊗
q∈qVar Hq and let D(H), ranged over by ρ,

be the set of all density operators on H. A configuration is
an element of Proc × D(H). The set of all configurations,
ranged over by C,D, ..., is denoted Con . The set of all
finite support probabilistic distribution on Con is denoted
D(Con). Act is the set of actions, namely,

Act ={τ} ∪ {c!x, c?v | c ∈ cChan, x ∈ cVar , v ∈ Real}
∪ {c!q, c?q | c ∈ qChan, q ∈ qVar}.

A labelled transition relation is a relation on Con × Act ×
D(Con). [[b]] denotes evaluation of condition b. Labelled
transition rules in qCCS are presented in figure 1. A tran-
sition relation is lift to that on D(Con) × Act ×D(Con).
Let µ, ν ∈ D(Con). µ α−→ ν if and only if Ci

α−→ νi for all
Ci ∈ supp(µ) , there exists νi such that ν =

∑
i µ(Ci)νi.

3.3 Bisimulation
In non-probabilistic process calculus, silent actions are

reflexive and transitive closure of τ−→. They are lifted to those
in distributions and denoted by ⇒. Relations on Con are also

lifted to those on D(Con). The weak bisimulation relation
is behavioural equivalence up to silent actions.

Definition 2: A relation R ⊆ Con×Con is a bisimulation
if 〈P, ρ〉R〈Q, σ〉 implies qv(P ) = qv(Q), trqv(P )(ρ) =
trqv(Q)(σ) and

1) whenever 〈P, ρ〉 τ−→ µ there exists ν such that
〈Q, σ〉 ⇒ ν and µRν,

2) whenever 〈P, ρ〉 c?q−−→ µ there exists ν such that
〈Q, σ〉 ⇒ c?q−−→ ν and E(µ)RE(ν) for all quantum
operator E acting on H

qv(µ)−{q},
3) whenever 〈P, ρ〉 α−→ µ and α is neither a quantum input

nor τ , there exists ν such that 〈Q, σ〉 ⇒ α−→⇒ ν and
µRν,

and their symmetric conditions named 4), 5), 6) are satisfied.
The relation ≈ is defined as

⋃
R:bisimulation R.

The followings are useful proof techniques.
Proposition 3: ≈ is an equivalence relation.
Theorem 4: 〈P, ρ〉 ≈ 〈Q, σ〉 if and only if qv(P ) =

qv(Q), trqv(P )(ρ) = trqv(Q)(σ) and

1) whenever 〈P, ρ〉 τ−→ µ there exists ν such that
〈Q, σ〉 ⇒ ν and µ ≈ ν,

2) whenever 〈P, ρ〉 c?q−−→ µ there exists ν such that
〈Q, σ〉 ⇒ c?q−−→ ν and E(µ) ≈ E(ν) for all quantum
operator E acting on H

qv(µ)−{q},
3) whenever 〈P, ρ〉 α−→ µ and α is neither a quantum input

nor τ , there exists ν such that 〈Q, σ〉 ⇒ α−→⇒ ν and
µ ≈ ν,

and their symmetric conditions named 4), 5), 6) are satisfied.
To prove 〈P, ρ〉 ≈ 〈Q, σ〉, we do not construct a certain
bisimulation relation R. Instead, we check the conditions of
theorem 4. We recursively check the conditions of the sets
of quantum variables and partial traces, and correspondence
of transitions up to silent ones. We then construct a weight
function. The theorem below is useful to show bisimulation
between protocols in parallel execution.

Theorem 5 (Congruence): If 〈P, ρ〉 ≈ 〈Q, σ〉 and
(qv(P )∪ qv(Q))∩ qv(R) = ∅, then 〈P ||R, ρ〉 ≈ 〈Q||R, σ〉.

4. Formalization in qCCS
4.1 On Measurement

qCCS has the syntax of quantum operators op[q̃] as well
as measurements M [q̃, x]. Since quantum operator includes
quantum measurements, there are two ways to formalize
quantum measurements. As a simple example, projective
measurement of state |+〉〈+| in {|0〉, |1〉} basis is formalized
in the following two ways and the transitions are different.

〈M [q;x].nil, |+〉〈+|q〉
τ−→

∑
i∈{0,1}

1/2〈nil, |i〉〈i|q〉

〈measure[q].nil, |+〉〈+|q〉
τ−→ 〈nil, 1/2(|0〉〈0|+ |1〉〈1|)q〉,
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where M has the spectrum decomposition M = 0|0〉〈0| +
1|1〉〈1| and the quantum operator Emeasure

q (ρ) that corre-
sponds to measure[q] is defined |0〉〈0|ρ|0〉〈0|+|1〉〈1|ρ|1〉〈1|.
It is easy to check they are not bisimilar though the two
processes apparently denote the same thing. Indeed, the
way to formalize quantum measurement is significant in the
security proof.

In Shor and Preskill’s proof, the EDP-based protocol is
transformed to the next protocol based on the fact that no-
body outside cannot distinguish the following two processes:

1) Alice measures a half of an EPR pair and then sends
the other half.

2) Alice sends a half of an EPR pair and then measures
the other half.

There are two possible formalizations. The first is as fol-
lows, where measurement is formalized with the constructor
M [q̃;x] that provided by the syntax.

1) 〈c!qB .M [qA;x].nil,EPRqA,qB ⊗ ρE〉
2) 〈M [qA;x].c!qB .nil,EPRqA,qB ⊗ ρE〉

where EPR = 1/2(|00〉〈00|+|11〉〈00|+|00〉〈11|+|11〉〈11|),
ρE is an arbitrary density operator representing adversary’s
state. The two processes above are not bisimilar.

On the other hand, measurement can be formalized as
an instance of quantum operation op[q̃]. We use a quantum
operator Emeasure

qA denoting measurement of qA. For all ρ ∈
D(HqA ⊗HqB ), let

Emeasure
qA (ρ) := (|0〉〈0|⊗I)ρ(|0〉〈0|⊗I)+(|1〉〈1|⊗I)ρ(|1〉〈1|⊗I).

The two processes are then formalized as follows and they
are bisimilar.

1) 〈c!qB .measure[qA].nil,EPRqA,qB ⊗ ρE〉
2) 〈measure[qA].c!qB .nil,EPRqA,qB ⊗ ρE〉

In this formalization, qA is treated as a classical bit after
the measurement and the resulting state is 1/2(|00〉〈00| +
|11〉〈11|)qA,qB . Similarly, when the result of measurement of
a qubit q is 0 with probability p and 1 with 1− p for some
p ∈ [0, 1], the resulting state is (p|0〉〈0|+ (1− p)|1〉〈1|)q.

The two different formalization of a measurement are
different from the view of an adversary. Branches evoked by
M [q̃;x] are distinguished in bisimilarity meaning. Therefore,
M [q̃;x] should be used when a transition with a differ-
ent visible label occurs after the measurement. Otherwise,
measurement should be formalized with quantum operator
measure[q̃]. Therefore, we conclude the second formaliza-
tion is feasible to denote the above case. In fact, all of
measurements in the target protocols should be formulated
in the second way except the error-rate checking phase.

4.2 On Channels
We do not implement some classical communication as

classical channels in qCCS because the classical data prevent
a process from dealing with superposition of mixed states
correctly. A classical channel is formalized as a quantum

channel through which only restricted data are transferred.
This situation has essentially the same reason as a physical
measurement is represented by not a syntactic measurement
but a quantum operation.

In general QKD protocols, three kinds of channels are
used: public quantum channels, private classical channels
and public no-interpolate classical channels. Since the syntax
has channel restriction, formalization of private channels
is straightforward. Public no-interpolate channels are real-
ized by copying the data. If classical data v is sent via
a public no-interpolate channel c, this is formalized as
...c!v.d!v...\{..., c, ...}. If quantum variable q representing
classical bit (i.e. the state of q is p|0〉〈0|+ (1− p)|1〉〈1| for
some p ∈ [0, 1]) is sent via a public no-interpolate channel c,
it is formalized as ...copy(q,Q).c!q.d!Q...\{..., c, ...}. The
body of the quantum operator copy is easily implemented
using cnot.

4.3 Formalization of the EDP-based protocol
Figure 2 is the definition of the configuration

EDPbasedn,e
C1,C2

denoting the EDP-based protocol. It
depends on parameters n and e which determine the length
of secret keys and error-threshold. It employs the CSS code
constructed from appropriate two linear codes C1 and C2.
A and B are Alice’s and Bob’s processes and the protocol
is formalized as the parallel composition of them. As they
use private channels {c1, c2, c2, ..., c6}, they are restricted
by ′\′. Density operators ρA, ρB and ρE denote states of
qubits that Alice, Bob and Eve have respectively. ρA and
ρB are given concretely but ρE is an arbitrary density
operator. We may omit scalar multiplication if it is trivial.

For readability, quantum variables in Alice’s and Bob’s
processes are superscribed by A and B. The length of each
bit/qubit is fixed by given n, and we may simply write
x instead of x1, ..., xm for bit/qubit sequences where m
is the length of the sequence x. We also write c!x for
c1!x1...cm!xm.

We faithfully formalized the protocol introduced in Sec-
tion 2. The process EDPbasedn,e

C1,C2
goes as follows. Alice

initially has 2n EPR pairs. qA1 , ..., q
A
2n are Alice’s halves and

q′A1 , ..., q′A2n are supposed to be sent to Bob. First n pairs
are for check qubits and the last n pairs are for secret
keys. Alice randomly performs Hadamard transformation
hadamards[q′A, rA] to q′A according to the randomness rA

with length 2n. Here, rA is represented as quantum data in
state (|0〉〈0| + |1〉〈1|)⊗2n, that is, they are in the uniform
distribution. Alice then shuffles q′A according to the ran-
domness sA with sufficient length N by shuffle[q′A, sA].
Alice next sends q′A to Bob via a quantum public channel
c1, and then tells rA, sA via a public no-interpolate channel
realized with c2, c3,d1 and d2. Bob receives q′A, rA and
sA into the quantum variables qB , rB and sB respectively.
By this communication, Alice tells Bob which qubits Alice
has performed Hadamards and which qubits are for error-rate
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check. Bob then recovers the initial order of qubits. using
unshuffle[qB , sB ]. He also inverses Hadamards transfor-
mations by hadamards[qB , rB ].

Alice and Bob next measure her and his check qubits
by measure[qA1 , ..., q

A
n ] and measure[qB1 , ..., qBn ]. Bob sends

Alice his measurement results qB1 , ..., qBn via a public no-
interpolate channel. After receiving Bob’s result into the
quantum variable tA, Alice calculates the error rate and
determines whether to abort the protocol by the operator
abort_alice[qA1 , ..., q

A
n , t

A, bA]. This operator depends on
the given error threshold e and the quantum variable bA

receives the result. The resulting state of bA will be of the
form p|0〉〈0|+(1−p)|1〉〈1| if the abort probability is p. bA is
then measured by M [bA; yA], causing probabilistic branch.
They abort the protocol if and only if yA is equal to 0.

If the protocol does not abort, Alice and Bob goes to the
error correction and privacy amplification steps. The quan-
tum operator css_projection[qAn+1, ..., q

A
2n, u

A, vA] maps
Alice’s halves qAn+1, ..., q

A
2n to a random CSS codeword.

The projection results, which are the bit and phase param-
eters of CSS code, are stored in uA and vA. Alice then
decodes her codeword and completes her secret key by
css_decode[qAn+1, ..., q

A
2n, u

A, vA]. Alice then tells Bob the
CSS parameters uA and vA via public no-interpolate and
private classical channels. After receiving, Bob calculates
the error syndrome of qBn+1, ..., q

B
2n by css_syndrome, cor-

rects errors by css_correct, decodes CSS codeword by
css_decode and finally completes his secret key. Note that
the bodies of the quantum operators related to CSS code
are given just as they realize the algorithms of CSS code
[12]. The processes A and B end with A2 and B2, which
are Alice’s and Bob’s processes after sharing the secret key.
They may communicate using the shared secret key. To show
bisimilarity, A2 and B2 are assumed to behave the same with
an identical secret key and to keep quantum variables that
have not been sent to the outside.

4.4 Formalization of BB84
Figure 3 is the definition of the configuration BB84n,e

C1,C2
.

In BB84, instead of EPR pairs, Alice initially prepares
a random |0〉, |1〉 qubit-string with length 2n, memorizes
the bit pattern, and sends the string to Bob after the
random Hadamard transformation. Since a density operator
represents probabilistic distribution, the initial state is rep-
resented with Alice’s and Bob’s data qA and q′A in state
(|00〉〈00|+ |11〉〈11|)⊗2n

qA,q′A
. Alice then performs Hadamard

transformation to q′A according to the randomness rA, and
then shuffles qA according to the randomness sA.

After error-rate checking phase, Alice prepares a ran-
dom codeword uA in C1. The state of uA is denoted∑

u∈C1
|u〉〈u|. Alice then performs cnot to uA with control

qubits qAn+1, ..., q
A
2n and sends it to Bob via a public no-

interpolate channel realized with c5 and d3. Alice then
performs cnot and copy. The bitstring qAn+1, ..., q

A
2n is

EDPbased ≡ 〈A||B\{c1, c2, c2, c3, c4, c5, c6}, ρA ⊗ ρB ⊗ ρE〉
A ≡ hadamards[q′A, rA].shuffle[q′A, sA].

c1!q
′A.c1?x

A.copy[rA, RA].c2!r
A.d1!R

A.

copy[sA, SA].c3!s
A.d2!S

A.measure[qA1 , ..., q
A
n ].

c4?t
A.abort_alice[qA1 , ..., q

A
n , t

A, bA]

M [bA; yA].c2!y
A.d1!y

A.if yA = 0 then

css_projection[qAn+1, ..., q
A
2n, u

A, vA].

css_decode[qAn+1, ..., q
A
2n, u

A, vA].

copy[uA, UA].c5!u
A.d3!U

A.copy[vA, V A].c6!v
A.A2

ρA ≡ (|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)⊗2n
qA,q′A⊗

(|0〉〈0|+ |1〉〈1|)⊗2n
rA

⊗ (|0〉〈0|+ |1〉〈1|)⊗N
sA

⊗
(|0〉〈0|)⊗2n

RA ⊗ (|0〉〈0|)⊗N
SA ⊗ |0〉〈0|bA⊗

(|0〉〈0|)⊗n
uA ⊗ (|0〉〈0|)⊗n

vA ⊗ (|0〉〈0|)⊗n
UA ⊗ (|0〉〈0|)⊗n

V A

B ≡ c1?q
B
1 , ..., qB2n.c1!0.d2!0.

c2?r
B .unshuffle[qB , rB ].c3?s

B .hadamards[qB , sB ].

measure[qB1 , ..., qBn ].copy[qB1 , ..., qBn , QB
1 , ..., Q

B
n ]

c4!q
B
1 , ..., qBn .d5!Q

B
1 , ..., Q

B
n .

c2?y
B .if yB = 0 then c5?u

B .c6?v
B .

css_syndrome[qBn+1, ..., q
B
2n, u

B , vB , sxB , szB ].

css_correct[qBn+1, ..., q
B
2n, sx

B , szB ].

css_decode[qBn+1, ..., q
B
2n, u

B , vB ].B2

ρB ≡ (|0〉〈0|)⊗n
QB ⊗ (|0〉〈0|)⊗n

sxB ⊗ (|0〉〈0|)⊗n
szB

Fig. 2: the EDP-based protocol

uniformly random in C1. Alice finally calculates the coset
of qAn+1, ..., q

A
2n in C2 by key[qAn+1, ..., q

A
2n] and obtains her

secret key.
After Bob performs cnot and copy, the bitstring

qBn+1, ..., q
B
2n is same as uA. As it may contain

some errors (it depends on how Eve has interfered),
Bob calculates the syndrome and corrects the er-
rors in code C1 by syndrome[qBn+1, ..., q

B
2n, sx

B ] and
correct[qBn+1, ..., q

B
2n, sx

B ] where sxB is stored the value
of the syndrome. Bob finally calculates the coset of
qBn+1, ..., q

B
2n in C2 by key[qBn+1, ..., q

B
2n] and obtains his

secret key.

5. Proof of Bisimulation
5.1 On equivalence of the EDP-based protocol
and BB84

Theorem 6: For any classical linear codes C1, C2 that sat-
isfy the condition of CSS code, there exist quantum operators
corresponding quantum operator symbols in processes, and
for any e ∈ [0, 1], EDPbasedn,e

C1,C2
≈ BB84n,e

C1,C2
.

Proof 7: The both protocols end up with the pro-
cess A2||B2 after the execution. If the two states σEDP
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BB84 ≡〈A||B\{c1, c2, c2, c3, c4, c5}, ρA ⊗ ρB ⊗ ρE〉
A ≡ hadamards[q′A, rA].shuffle[q′A, rA].

c1!q
′A.c1?x

A.copy[rA, RA].c2!r
A.d1!R

A.

copy[sA, SA].c3!s
A.d2!S

A.

c4?t
A.abort_alice[qA1 , ..., q

A
n , t

A, bA].

M [bA; yA].c2!y
A.d1!y

A.if yA = 0 then

cnot[uA, qAn+1, ..., q
A
2n].copy[u

A, UA].c5!u
A.d3!U

A.

cnot[uA, qAn+1, ..., q
A
2n].copy[u

A, qAn+1, ..., q
A
2n].

key[qAn+1, ..., q
A
2n].A2

ρA ≡ (|00〉〈00|+ |11〉〈11|)⊗2n
qA,q′A ⊗ (|0〉〈0|+ |1〉〈1|)⊗2n

rA
⊗

(|0〉〈0|+ |1〉〈1|)⊗N
sA

⊗ (|0〉〈0|)⊗2n
RA ⊗ (|0〉〈0|)⊗N

SA ⊗

|0〉〈0|bA ⊗ (
∑
u∈C1

|u〉〈u|)uA ⊗⊗(|0〉〈0|)⊗n
vA ⊗

(|0〉〈0|)⊗n
UA ⊗ (|0〉〈0|)⊗n

V A

B ≡ c1?q
B
1 , ..., qB2n.c1!0.d2!0.

c2?r
B .unshuffle[qB , rB ].c3?s

B .hadamards[qB , sB ].

measure[qB1 , ..., qBn ].copy[qB1 , ..., qBn , QB
1 , ..., Q

B
n ].

c4!q
B
1 , ..., qBn .d5!Q

B
1 , ..., Q

B
n .

c2?y
B .if yB = 0 then c5?u

B .

cnot[uB , qBn+1, ..., q
B
2n].copy[u

B , qBn+1, ..., q
B
2n].

syndrome[qBn+1, ..., q
B
2n, sx

B ].

correct[qBn+1, ..., q
B
2n, sx

B ].key[qBn+1, ..., q
B
2n].B2

ρB ≡ (|0〉〈0|)⊗n
QB ⊗ (|0〉〈0|)⊗n

sxB ⊗ (|0〉〈0|)⊗n
szB

Fig. 3: BB84 (slightly modified)

and σBB84 have the same secret key and partial trace
in Eve’s view, the configurations 〈A2||B2, σEDP 〉 and
〈A2||B2, σBB84 〉 are trivially bisimilar. By Theorem 4,
we can find the bisimilar configurations which reach
A2||B2 by a single transition in execution paths. Repeating
such calculation by going back transition paths, we have
EDPbasedn,e

C1,C2
≈ BB84n,e

C1,C2
at the starting point. This is

the outline of the proof.
Since for τ -transitions by operators, if and communica-

tion in restricted channels, a configuration before a transition
is bisimilar to the configuration after the transition, it is
enough to consider other cases.

If a transition of input or output other than c1 exists in a
execution path from EDPbasedn,e

C1,C2
to a configuration, we

can find the same transition in a path from BB84n,e
C1,C2

to a
bisimilar configuration, and vice versa. We can choose pairs
of configurations before a transition so that their states of the
output variable coincide. For such pair of configurations, it
is easy to see that the conditions on variables for Theorem 4
hold automatically. Since the concerned transition is parallel
to other transitions, we can see the two configurations are
bisimilar by Theorem 4.

The case of a transition of measurement is similar to
the above case, but we have to calculate the partial trace
condition carefully. Because the transition does not preserve
partial traces, a pair of bisimilar configurations before the
transition satisfies a stronger condition than the usual trace
condition.

The last step is about transitions with the channel c1. In
this case, we have to consider the nondeterministic branching
of transitions. Theorem 4 can be applied to the internal
communication case after Theorem 4 is applied to the input
and output cases.

The proof is completed by showing that EDPbasedn,e
C1,C2

and BB84n,e
C1,C2

satisfy the above calculated relation.
Though Alice and Bob’s starting states in the two protocols
are different, we can see that they have the same partial trace.
For other conditions, in fact, we can prove by calculation of
states in every execution. Especially, the value of the secret
key, the traced values of output variables and the probability
of the measurement are important.

The value of the secret key is identical because operations
in the both protocols related to error correcting codes work
equivalently.

The initial states of qA and q′A are different but Alice
sends only q′A via c1. Even if q′Aj is sent to the outside,
the following calculation shows that the partial trace is the
same: tr{qAj }(1/2|00〉〈00| + 1/2|00〉〈11| + 1/2|11〉〈00| +
1/2|11〉〈11|) = tr{qAj }(1/2|00〉〈00| + 1/2|11〉〈11|) =

1/2|0〉〈0| + 1/2|1〉〈1|. As for other quantum variables, the
conditions are checked by examining the related operators.

When abort_alice[qA1 , ..., q
A
n , s

A, bA] is operated, the
states of the inputs correspond. This follows the resulting
state of bA, and then the weight of the probability branch and
partial traces after the measurement M [bA; yA] correspond.

5.2 On multiple session
From theorem 5, the fact is immediately obtained that the

EDP-based protocol and BB84 cannot be distinguished from
the outside even if they run in parallel. We first introduce
the following lemma.

Lemma 8: If 〈P1, ρ1 ⊗ ρE1 〉 ≈ 〈Q1, σ1 ⊗ ρE1 〉, 〈P2, ρ2 ⊗
ρE2 〉 ≈ 〈Q2, σ2 ⊗ ρE2 〉 and qv(P1) ∩ qv(P2) = qv(P1) ∩
qv(Q2) = qv(Q1) ∩ qv(P2) = qv(Q1) ∩ qv(Q2) = ∅ hold
for all ρE1 , ρ

E
2 , then 〈P1||P2, ρ1⊗ρ2⊗ρE〉 ≈ 〈Q1||Q2, σ1⊗

σ2 ⊗ ρE〉 holds for all ρE .
Proof 9: From the premise, we have 〈P1, ρ1 ⊗ ρ2 ⊗

ρE〉 ≈ 〈Q1, σ1 ⊗ ρ2 ⊗ ρE〉. From theorem 5, we next have
〈P1||P2, ρ1⊗ρ2⊗ρE〉 ≈ 〈Q1||P2, σ1⊗ρ2⊗ρE〉. Similarly,
we have 〈Q1||P2, σ1 ⊗ ρ2 ⊗ ρE〉 ≈ 〈Q1||Q2, σ1 ⊗σ2 ⊗ ρE〉.
By the transitivity of ≈, we obtain the conclusion.

Let s be a natural number and let AEDP,1, ..., AEDP,s

be Alice’s process executing the EDP-based protocol that
are obtained replacing channel names so that they can
appropriately communicate, and replacing quantum variables
in AEDP,i so that qv(AEDP,1) ∩ ... ∩ qv(AEDP,s) = ∅.
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Let L1, ..., Ls be the sets of channels that are restricted
in each session and let the corresponding density operators
be ρAEDP,1, ..., ρ

A
EDP,s. Let Bob’s process in the EDP-based

protocol, the corresponding states and BB84’s counterparts
be defined in the same way. We define s session execution
of the EDP-based protocol EDPbasedn,e

C1 ,C2
(s) and of BB84

BB84n,e
C1 ,C2

(s) as follows.

EDPbasedn,e
C1 ,C2

(s)

≡ 〈(AEDP,1||BEDP,1\L1)||...||(AEDP,s||BEDP,s\Ls),

ρAEDP,1 ⊗ ρBEDP,1 ⊗ ...⊗ ρAEDP,s ⊗ ρBEDP,s ⊗ ρE〉
BB84n,e

C1 ,C2
(s)

≡ 〈(ABB84 ,1||BBB84 ,1\L1)||...||(ABB84 ,s||BBB84 ,s\Ls),

ρABB84 ,1 ⊗ ρBBB84 ,1 ⊗ ...⊗ ρABB84 ,s ⊗ ρBBB84 ,s ⊗ ρE〉

Corollary 10: For all natural number s, sufficiently large
natural number n and classical linear codes C1, C2 that
satisfy the condition of CSS code, there exists quantum oper-
ators corresponding quantum operator symbols in processes,
for any e ∈ [0, 1], EDPbasedn,e

C1,C2
(s) ≈ BB84n,e

C1,C2
(s).

Proof 11: By Theorem 5, we have
〈AEDP,i||BEDP,i\Li, ρ

A
EDP,i ⊗ ρBEDP,i ⊗ ρE,i〉 ≈

〈AEDP,i||BEDP,i\Li, ρ
A
BB84 ,i ⊗ ρBBB84 ,i ⊗ ρE,i〉 for

all i and ρE,i. Next, by induction of the number of the
sessions s, we apply Lemma 8.

6. Conclusion
In this paper, we applied a quantum process calculus

qCCS [9] to a security proof of BB84 QKD protocol
presented by Shor end Preskill [2]. We presented a general
technique to describe quantum measurements. A probabilis-
tic branch in the transition system evoked by a quantum
measurement M [q̃;x] is visible from an adversary. It should
be used if the process performs different visible actions (e.g.
to abort or to continue a protocol) from outside according to
the measurement results. Otherwise, quantum measurement
should be formalized as a quantum operator measure[q̃].
We formalized BB84 and the EDP-based protocol as qCCS
processes and then proved they are bisimilar, which means
the two protocols behave same from an adversary. The
security equivalence of BB84 and the EDP-based protocol
under concurrent execution is immediately obtained from the
congruence property of bisimulation.

The result of this paper directly shows the feasibility of
process calculi for analyses of security equivalence of QKD
protocols. Since cryptographic proofs often discuss equiv-
alence of protocols [2], [13], bisimulation will be versatile
way for formal verification of the proofs. Quantum process
calculi have been used for analyses of quantum protocols.
Davidson et al. formally verified a quantum error correcting
code [10] using CQP’s bisimulation. As case studies, qCCS
developers have applied it to specification and verification of
quantum teleportation and superdense coding protocols [9].

It has also been applied to specification of simplified BB84
[11] but this is not a security proof. Since adversary’s view
is important in cryptography, treatment of branches evoked
by quantum measurements is significant for proving security
equivalence of protocols.

Future work In this paper, we proposed a technique to
formalize quantum measurement. We expect the existence
of an algorithm to determine which formulation of a mea-
surement should be used.

If two processes are bisimilar in qCCS’s sense, an adver-
sary observes the same behavior with the identical proba-
bility up to invisible actions. However, cryptographic proofs
often discuss indistinguishability up to some negligible prob-
ability. The notion of probabilistic bisimulation is useful for
such arguments. It will enable us to realize full formalization
of security proofs.

Bisimulation is feasible for automatic verification [14].
As for qCCS’s bisimulation, theorem 4 suggests that bisim-
ulation is checked by exhausting the non-deterministic ex-
ecution paths if each path is finite. If we mainly target
cryptographic protocols, it is possibly the case. For example,
the processes in this paper do not have an infinite path.
Automation would truly help formal verification.
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.    Because the propositions  of a QL are 

not in general commutative,  quantum logicians have paid much attention  to "quasi"-commutative 

theorems,  one of the better known of which is the symmetry of commutativity theorem (SoCT), which states 

that commutativity is symmetric in an orthomodular lattice.   Here I provide automated deductions showing 

that  the SoCT and the OMA, in the context of a QL, are equivalent. The proofs appear  to be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, commutativity, Hilbert space 

 

 

1.0  Introduction 
 

 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”) and is isomorphic to a 

Boolean lattice ([10], [11], [19]), so also the 

algebra, C(H), of the closed linear subspaces 

of  (equivalently, the system of linear 

operators on (observables in))  a Hilbert 

space H ([1], [4], [6], [9], [13]) is a logic of 

the descriptions of the behavior of quantum 

mechanical systems (e.g., “the 

measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [8]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [7], [8]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 
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claim proper to physics has proven problematic ([13], Section 5-6), 

 

______________________________________________________________________________ 

 
Lattice axioms 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom (aka Orthomodularity Law) 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

where  

      x, y are variables ranging over lattice nodes 

      ^ is lattice meet  

      v is lattice join 

      c(x) is the orthocomplement of x 

      =  is equivalence ([12])  

      1 is the maximum lattice element (= x v c(x)) 

      0 is the minimum lattice element (= c(1)) 

 

       Figure 1.  Lattice, ortholattice, and  orthomodularity axioms. 

 

______________________________________________________________________________ 

 

 

 

 

Because of the fundamental role that non-

commutativity plays in QL, quantum 

logicians have paid much attention  to 

"quasi"-commutative theorems, which help 

to ground a large class of equivalence 

representations in quantum logic, and are 

thus of potential interest in optimizing 

quantum compiler and circuit design.  

Among the better known of the quasi-

commutative theorems is the symmetry of 

commutativity theorem (SoCT; [7],[8])  

shown is in Figure 2 

 

 
_________________________________________________________________ 

 

   If x and y are elements of an orthomodular lattice, 

 

           xCy  <->  yCx 

 
 

    where xCy means "x commutes with y", defined as 
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            xCy <-> (x = ((x ^ y) v (x ^ c(y)))), and 

 

            <-> means "if and only if"  

 

                                             Figure 2.  The SoCT ([7],[8]). 

  

______________________________________________________________________________ 

 

 

Informally stated, the SoCT  says that 

commutativity is symmetric in an 

orthomodular lattice.  It turns out, as 

subsequent sections of this paper show, that 

the SoCT is equivalent to the OMA, in the 

sense that the axioms of an ortholattice, 

together with the SoCT,  imply the OMA, 

and the axioms of an orthomodular lattice 

imply the SoCT. 

 

 

2.0  Method 
 

The OML and OL axiomatizations of 

Megill, Pavičić, and Horner ([5], [14], [15], 

[16], [21], [22]) were implemented in a 

prover9 ([2]) scripts ([3]) configured to 

derive the equivalence of the SoCT and the 

OMA, then executed in that framework  on a  
Dell Inspiron 545 with an  Intel Core2 Quad 

CPU Q8200 (clocked @ 2.33 GHz) and 8.00 

GB RAM, running under the Windows Vista 

Home Premium (SP2)/Cygwin operating 

environment. 
 

 

3.0  Results 

 
To prove the equivalence of the symmetry 

of commutativity with the Orthomodular 

Law, it suffices to prove the propositions 

shown in Sections 3.1, 3.2, and 3.3.   

 

 

3.1  Proof of 'xCy  yCx' in an 

orthomodular lattice 

 
Figure 3.1.1 shows the proof of proposition 

'xCy  yCx' produced by [3] on the 

platform described in Section 2.0. 

 

 

_________________________________________________________________________________________ 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 65.32 (+ 1.47) seconds: "Commutativity is symmetric in an orthomodular 

lattice". 

% Length of proof is 87. 

% Level of proof is 23. 

 

2 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df: commutes") # label(non_clause).  

[assumption]. 

3 C(x,y) -> C(y,x) # label("Commutativity is symmetric in an orthomodular lattice") # 

label(non_clause) # label(goal).  [goal]. 

6 x = c(c(x)) # label("AxL1").  [assumption]. 

7 c(c(x)) = x.  [copy(6),flip(a)]. 

8 x v y = y v x # label("AxL2").  [assumption]. 

9 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

11 x v (x ^ y) = x # label("AxL5").  [assumption]. 

12 x ^ (x v y) = x # label("AxL6").  [assumption]. 

13 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

14 c(x) v x = 1 # label("AxOL2").  [assumption]. 

15 x v c(x) = 1.  [copy(14),rewrite([8(2)])]. 

16 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

17 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

18 x v c(x v c(y v x)) = y v x.  [copy(17),rewrite([16(3),7(2)])]. 

30 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df: commutes").  [clausify(2)]. 
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31 -C(x,y) | c(c(x) v y) v c(c(x) v c(y)) = x.  

[copy(30),rewrite([16(2),16(7),7(8),8(9)])]. 

32 C(x,y) | (x ^ y) v (x ^ c(y)) != x # label("Df: commutes").  [clausify(2)]. 

33 C(x,y) | c(c(x) v y) v c(c(x) v c(y)) != x.  

[copy(32),rewrite([16(2),16(7),7(8),8(9)])]. 

34 C(c1,c2) # label("Commutativity is symmetric in an orthomodular lattice").  [deny(3)]. 

35 -C(c2,c1) # label("Commutativity is symmetric in an orthomodular lattice") # 

answer("Commutativity is symmetric in an orthomodular lattice").  [deny(3)]. 

36 c(1) = 0.  [back_rewrite(13),rewrite([16(2),7(2),15(2)])]. 

37 c(c(x) v c(x v y)) = x.  [back_rewrite(12),rewrite([16(2)])]. 

38 x v c(c(x) v c(y)) = x.  [back_rewrite(11),rewrite([16(1)])]. 

40 x v (y v z) = y v (x v z).  [para(8(a,1),9(a,1,1)),rewrite([9(2)])]. 

42 x v (c(x) v y) = 1 v y.  [para(15(a,1),9(a,1,1)),flip(a)]. 

43 x v (y v c(x v y)) = 1.  [para(15(a,1),9(a,1)),flip(a)]. 

44 x v c(x v c(x v y)) = y v x.  [para(8(a,1),18(a,1,2,1,2,1))]. 

45 x v (c(x v c(y v x)) v z) = y v (x v z).  

[para(18(a,1),9(a,1,1)),rewrite([9(2)]),flip(a)]. 

47 x v c(x v c(y v (z v x))) = y v (z v x).  

[para(9(a,1),18(a,1,2,1,2,1)),rewrite([9(8)])]. 

50 C(c(x),y) | c(x v y) v c(x v c(y)) != c(x).  

[para(7(a,1),33(b,1,1,1,1)),rewrite([7(6)])]. 

53 C(x,y) | c(c(x) v y) v c(c(y) v c(x)) != x.  [para(8(a,1),33(b,1,2,1))]. 

58 c(c2 v c(c1)) v c(c(c1) v c(c2)) = c1.  [hyper(31,a,34,a),rewrite([8(4)])]. 

59 c(c1 v c(c2)) v c(c(c1) v c(c2)) != c2 # answer("Commutativity is symmetric in an 

orthomodular lattice").  [ur(33,a,35,a),rewrite([8(4),8(10)])]. 

63 C(x,1) | c(0 v c(x)) v c(1 v c(x)) != x.  

[para(36(a,1),33(b,1,2,1,2)),rewrite([8(5),8(9),8(11)])]. 

64 c(x) v c(x v y) = c(x).  [para(37(a,1),7(a,1,1)),flip(a)]. 

68 c(0 v c(x)) = x.  [para(15(a,1),37(a,1,1,2,1)),rewrite([36(3),8(3)])]. 

69 c(x v y) v c(x v c(x v y)) = c(x).  

[para(37(a,1),18(a,1,2,1,2)),rewrite([8(5),64(11)])]. 

71 C(x,x v y) | c(1 v y) v x != x.  [para(37(a,1),33(b,1,2)),rewrite([40(5),42(5)])]. 

72 1 v x = 1.  [para(36(a,1),37(a,1,1,1)),rewrite([68(6)])]. 

74 C(x,1) | x v 0 != x.  [back_rewrite(63),rewrite([68(6),72(5),36(4)])]. 

76 C(x,x v y) | 0 v x != x.  [back_rewrite(71),rewrite([72(4),36(4)])]. 

81 x v c(c(x) v y) = x.  [para(7(a,1),38(a,1,2,1,2))]. 

85 x v 0 = x.  [para(15(a,1),38(a,1,2,1)),rewrite([36(2)])]. 

86 x v c(y v c(x)) = x.  [para(18(a,1),38(a,1,2,1))]. 

88 x v x = x.  [para(36(a,1),38(a,1,2,1,2)),rewrite([8(3),68(4)])]. 

90 C(x,1).  [back_rewrite(74),rewrite([85(4)]),xx(b)]. 

93 x v (y v c(x v c(z v x))) = y v (z v x).  [para(18(a,1),40(a,1,2)),flip(a)]. 

95 0 v x = x.  [hyper(31,a,90,a),rewrite([8(3),72(3),36(2),36(4),8(4),68(5)])]. 

98 C(x,x v y).  [back_rewrite(76),rewrite([95(4)]),xx(b)]. 

112 x v (x v y) = x v y.  [para(88(a,1),9(a,1,1)),flip(a)]. 

114 x v (y v x) = y v x.  [para(88(a,1),9(a,2,2)),rewrite([8(2)])]. 

125 C(x v y,x v (y v z)).  [para(9(a,1),98(a,2))]. 

219 x v (c(c(x) v y) v z) = x v z.  [para(81(a,1),9(a,1,1)),flip(a)]. 

298 c(x) v c(y v x) = c(x).  [para(7(a,1),86(a,1,2,1,2))]. 

317 C(c(x),x v y).  [para(112(a,1),50(b,1,1,1)),rewrite([69(10)]),xx(b)]. 

328 C(c(x),y v x).  [para(8(a,1),317(a,2))]. 

337 c(x v y) v c(y v c(x v y)) = c(y).  [hyper(31,a,328,a),rewrite([7(2),114(2),7(4)])]. 

364 C(x v y,y).  

[para(86(a,1),53(b,1,2,1)),rewrite([7(2),7(4),8(5),7(8),8(7),18(7),7(5)]),xx(b)]. 

368 C(x v (y v z),x v z).  [para(40(a,1),364(a,1))]. 

392 c(c(c1) v c(c2)) v (x v c(c2 v c(c1))) = x v c1.  

[para(58(a,1),45(a,2,2)),rewrite([8(26),93(27)])]. 

406 c(x) v (c(x v y) v z) = c(x) v z.  [para(64(a,1),9(a,1,1)),flip(a)]. 

414 c(x v y) v c(c(x v y) v c(z v c(x))) = z v c(x).  

[para(64(a,1),47(a,1,2,1,2,1,2)),rewrite([64(14)])]. 

617 C(x v y,y v (x v z)).  [para(8(a,1),125(a,1))]. 

618 C(x v y,y v (z v x)).  [para(8(a,1),125(a,2)),rewrite([9(3)])]. 

733 C(x v (y v z),z v x).  [para(8(a,1),368(a,2))]. 

855 C(c(x v y) v z,z v c(x)).  [para(69(a,1),617(a,2,2))]. 

1079 C(x v c(y),c(y v z) v x).  [para(64(a,1),733(a,1,2))]. 

1859 C(c(x v y) v z,z v c(y)).  [para(298(a,1),618(a,2,2))]. 

1862 C(x v c(y),c(z v y) v x).  [para(298(a,1),733(a,1,2))]. 

7402 C(c1,c(c2) v c(c(c1) v c(c2))).  [para(58(a,1),855(a,1)),rewrite([8(10)])]. 

8031 C(c(c2) v c(c(c1) v c(c2)),c1).  [para(58(a,1),1079(a,2)),rewrite([8(9)])]. 

10398 c(c(c1) v c(c(c2) v c(c(c1) v c(c2)))) = c1.  

[hyper(31,a,7402,a),rewrite([43(12),36(2),95(16)])]. 
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11360 c1 v c(c1 v c(c(c2) v c(c(c1) v c(c2)))) = c(c2) v c(c(c1) v c(c2)).  

[hyper(31,a,8031,a),rewrite([8(12),8(26),10398(27),8(15)])]. 

19020 x v c(y v c(c(x) v y)) = x v c(y).  [para(337(a,1),219(a,1,2)),flip(a)]. 

19087 c(c2) v c(c(c1) v c(c2)) = c1 v c(c1 v c2).  

[back_rewrite(11360),rewrite([19020(13),7(5)]),flip(a)]. 

21129 c1 v c(c1 v c2) = c1 v c(c2).  

[para(64(a,1),392(a,1,2)),rewrite([8(9),19087(9),8(10)])]. 

21175 c(c2) v c(c(c1) v c(c2)) = c1 v c(c2).  [back_rewrite(19087),rewrite([21129(15)])]. 

21178 c1 v c(c1 v c(c2)) = c1 v c2.  [para(21129(a,1),44(a,1,2,1)),rewrite([8(10)])]. 

21180 c(c1 v c2) v c(c1 v c(c2)) = c(c1).  

[para(21129(a,1),69(a,1,1,1)),rewrite([21129(12),21178(12),8(10)])]. 

21882 c(x) v c(y v c(x v y)) = c(x) v c(y).  [para(337(a,1),406(a,1,2)),flip(a)]. 

22893 c(c1) v c(c2 v c(c1)) = c(c1) v c(c2).  

[para(58(a,1),414(a,1,2,1)),rewrite([8(8)])]. 

35649 C(c(c1),c(c2) v c(c1 v c(c2))).  [para(21180(a,1),1859(a,1)),rewrite([8(10)])]. 

35650 C(c(c2) v c(c1 v c(c2)),c(c1)).  [para(21180(a,1),1862(a,2)),rewrite([8(8)])]. 

35718 c(c1 v c(c(c2) v c(c1 v c(c2)))) = c(c1).  

[hyper(31,a,35649,a),rewrite([7(3),43(10),36(2),7(4),95(14)])]. 

35719 c(c2) v c(c1 v c(c2)) = c(c1) v c(c2).  

[hyper(31,a,35650,a),rewrite([8(12),21882(12),7(5),8(4),7(17),8(16),35718(17),8(8),22893(

8)]),flip(a)]. 

70001 c(c1 v c(c2)) v c(c(c1) v c(c2)) = c2.  

[para(21175(a,1),69(a,1,1,1)),rewrite([21175(16),35719(13),7(15)])]. 

70002 $F # answer("Commutativity is symmetric in an orthomodular lattice").  

[resolve(70001,a,59,a)]. 

 

============================== end of proof ========================== 

 
 

Figure 3.1.1.  Summary of a prover9 ([2]) proof of the proposition 'xCy   yCx'  ([7]) in an 

orthomodular lattice.  The proof assumes the inference rules of prover9. The general form of 

a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique 

identifier of a line in the proof, and conclusion is the result of applying the prover9 inference 

rules (such as paramodulation, copying, and rewriting), noted in square brackets (denoting 

the derivation), to the lines cited in those brackets.  Note that some of “logical” proof lines in 

the above have been transformed to two text lines, with the derivation appearing on a text 

line following a text line containing the first part of that logical line. The detailed syntax and 

semantics of these notations can be found in [2].  All prover9 proofs are by default proofs by 

contradiction.   
 

______________________________________________________________________________________ 

 

 

3.2  Proof of  'yCx   xCy'  in an orthomodular lattice 
 

Substitute x for y and y for x in Figure 3.1.1. 

 

3.3  Proof of  '(xCy  yCx)     Orthomodular Law (OMA)' in an ortholattice 

 
______________________________________________________________________________ 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 0.01 (+ 0.03) seconds: "Symmetry of commutativity implies OMA". 

% Length of proof is 39. 

% Level of proof is 11. 

 

2 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df: commutes") # label(non_clause).  

[assumption]. 
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3 C(y,x) <-> C(x,y) # label("Commutativity is symmetric") # label(non_clause).  

[assumption]. 

4 y v (c(y) ^ (x v y)) = x v y # label("Symmetry of commutativity implies OMA") # 

label(non_clause) # label(goal).  [goal]. 

7 x = c(c(x)) # label("AxL1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxL2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

12 x v (x ^ y) = x # label("AxL5").  [assumption]. 

13 x ^ (x v y) = x # label("AxL6").  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 

16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

29 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df: commutes").  [clausify(2)]. 

30 -C(x,y) | c(c(x) v y) v c(c(x) v c(y)) = x.  

[copy(29),rewrite([17(2),17(7),8(8),9(9)])]. 

31 C(x,y) | (x ^ y) v (x ^ c(y)) != x # label("Df: commutes").  [clausify(2)]. 

32 C(x,y) | c(c(x) v y) v c(c(x) v c(y)) != x.  

[copy(31),rewrite([17(2),17(7),8(8),9(9)])]. 

33 -C(x,y) | C(y,x) # label("Commutativity is symmetric").  [clausify(3)]. 

34 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("Symmetry of commutativity implies OMA") # 

answer("Symmetry of commutatativity implies OMA").  [deny(4)]. 

35 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("Symmetry of commutativity implies OMA").  

[copy(34),rewrite([9(6),17(7),8(4),9(12)])]. 

36 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

37 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

38 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

40 x v (y v z) = y v (x v z).  [para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

42 x v (c(x) v y) = 1 v y.  [para(16(a,1),10(a,1,1)),flip(a)]. 

53 C(x,1) | c(0 v c(x)) v c(1 v c(x)) != x.  

[para(36(a,1),32(b,1,2,1,2)),rewrite([9(5),9(9),9(11)])]. 

54 c(x) v c(x v y) = c(x).  [para(37(a,1),8(a,1,1)),flip(a)]. 

58 c(0 v c(x)) = x.  [para(16(a,1),37(a,1,1,2,1)),rewrite([36(3),9(3)])]. 

60 C(x,x v y) | c(1 v y) v x != x.  [para(37(a,1),32(b,1,2)),rewrite([40(5),42(5)])]. 

61 1 v x = 1.  [para(36(a,1),37(a,1,1,1)),rewrite([58(6)])]. 

63 C(x,1) | x v 0 != x.  [back_rewrite(53),rewrite([58(6),61(5),36(4)])]. 

65 C(x,x v y) | 0 v x != x.  [back_rewrite(60),rewrite([61(4),36(4)])]. 

74 x v 0 = x.  [para(16(a,1),38(a,1,2,1)),rewrite([36(2)])]. 

78 C(x,1).  [back_rewrite(63),rewrite([74(4)]),xx(b)]. 

82 0 v x = x.  [hyper(30,a,78,a),rewrite([9(3),61(3),36(2),36(4),9(4),58(5)])]. 

85 C(x,x v y).  [back_rewrite(65),rewrite([82(4)]),xx(b)]. 

107 C(x v y,x).  [hyper(33,a,85,a)]. 

111 x v c(x v c(x v y)) = x v y.  

[hyper(30,a,107,a),rewrite([9(3),9(8),54(8),8(6),9(5)])]. 

112 $F # answer("Symmetry of commutativity implies OMA").  [resolve(111,a,35,a)]. 

 

============================== end of proof ========================== 

 

Figure 3.3.1.  Summary of a prover9 ([2]) proof of the proposition '(xCy  yCx)   OMA in 

an ortholattice.   

 

_____________________________________________________________ 

 

 

4.0  Conclusions and discussion 
 
The results in Section 3 motivate several 

observations:  

 

 1.  The combination of the proofs in 

Sections 3.1 and 3.2 constitutes a proof of 

the SoCT in an orthomodular lattice. 

 

 2.  The proof in Section 3.3 shows 

that symmetry of commutativity in an 

ortholattice implies the OMA. 

 

 3.  Sections 3.1, 3.2, and 3.3 

collectively show that the axioms of an 

ortholattice, together with the SoCT, implies 

the OMA, and the axioms of an 
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orthomodular lattice imply the SoCT.  This 

result is equivalent to one of the two 

principal propositions of the Foulis-Holland 

Theorem ([7], [8]).  In this sense, the SoCT 

is equivalent to the OMA. 

 

 4.  The proofs in Section 3 appear to 

be novel. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL) In BL, there is only one implication 

connection; in QL, there are five, none of which are identical to implication in a BL.   Here I present 

automated deductions showing that  relevance implication is equal to less than (in the sense of the lattice 

partial ordering)  Sasaki and Dishkant implication in a QL. The proofs may be novel, and both proofs, 

surprisingly, use the definition of implication in a BL.  

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either order, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA).   These 

axioms, and various definitions, are shown 

in Figure 1. 
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____________________________________________________________________ 

 

 
% Miscellaneous definitions 

   1 = x v c(x)                              # label("df-t"). 

   0 = c(1)                                  # label("df-f"). 

   (x ^ y) = c( c(x) v c(y))                 # label("df-a"). 

   le(x,y) <-> ( (x v y) = y )               # label("df: x less than y"). 

   id(x,y) = (c(c(x) v c(y)) v c(x v y))   # label("df-b"). 

   C(x,y) <-> ( x = (  (x ^ y) v ( x ^ c(y))  ) )   

                                             # label("x commutes with y"). 

 

 

% Definitions of implications 

   i0(x,y) = (c(x) v y)                      # label("df-i0 Boolean"). 

 

   i1(x,y) = ( c(x) v (x ^ y)  )             # label("df-i1 Sasaki"). 

 

   i2(x,y) = ( y v (c(x) ^ c(y))  )          # label("df-i2 Dishkant"). 

 

   i3(x,y) = (((c(x) ^ y) v (c(x) ^ c(y))) v (x ^ (c(x) v y))) 

                                             # label("df-i3 Kalmbach"). 

 

   i4(x,y) =  (((x ^ y) v (c(x) ^ y)) v ((c(x) v y) ^ c(y))) 

                                             # label("df-i4 non-tollens"). 

 

   i5(x,y) = (((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y))) 

                                             # label("df-i5 relevance"). 

 

 

% Ortholattice axioms 

x = c(c(x))                                  # label("ax-a1"). 

(x v y) = (y v x)                            # label("ax-a2"). 

((x v y) v z) = (x v (y v z))                # label("ax-a3"). 

(x v (y v c(y))) = (y v c(y))                # label("ax-a4"). 

(x v c((c(x) v y))) = x                      # label("ax-a5"). 

(x = y) -> (y = x)                           # label("ax-r1"). 

((x = y) & (y = z)) -> (x = z)               # label("ax-r2"). 

(x = y) -> (c(x) = c(y))                     # label("ax-r4"). 

(x = y) -> ((x v z) = (y v z))               # label("ax-r5"). 

 

% Orthomodular axiom 

(  (z v c(z)) = (c(c(x) v c(y)) v c(x v y) )  )   -> (x = y) 

                                             # label("ax-r3").         

 
 

where  

   x, y, z are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   le(x,y) means x ≤ y 

   id(x,y) means x is quantum-logic identical to y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

______________________________________________________________________________ 

 

The six implications shown in Figure 1 each satisfy the Birkhoff-von Neuman condition 

 

       ((x i y) = 1) <->   le(x,y)            (CBvN) 
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where i = 0,1,2,3,4,5. 

 
CBvN  can be regarded a generalization of 

the BL definition of implication, sometimes 

denoted 0.  CBvN maps implication 

onto  the lattice partial-order. 

 

 

2.0  Method 
 

The QL  axiomatizations of Megill, Pavičić, 

and Horner ([5], [14], [15], [16], [21], [22]) 

were implemented in a prover9 ([2]) script 

([3]) configured to show that relevance 

implication is less than or equal to (in the 

sense of the lattice partial ordering; [11], 

p.4) Sasaki ([8]) and Dishkant ([9]) 

implication, then executed in that framework  

on a  Dell Inspiron 545 with an  Intel Core2 

Quad CPU Q8200 (clocked @ 2.33 GHz) 

and 8.00 GB RAM, running under the 

Windows Vista Home Premium /Cygwin 

operating environment. 
 

 

3.0  Results 

 
Figure 2 shows the proofs, generated by [3] 

on the platform described in Section 2.0, 

that relevance implication is equal to or less 

than Sasaki and Dishkant  implication.  

 

 
_________________________________________________________________________________________ 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 0.05 (+ 0.03) seconds: "i5lei1: Relevance implication l.e. Sasaki 

implication". 

% Length of proof is 24. 

% Level of proof is 5. 

% Maximum clause weight is 30. 

% Given clauses 25. 

 

1 le(x,y) <-> x v y = y # label("df: x less than y") # label(non_clause).  [assumption]. 

5 x = y & y = z -> x = z # label("ax-r2") # label(non_clause).  [assumption]. 

9 le(i5(x,y),i1(x,y)) # label("i5lei1: Relevance implication l.e. Sasaki implication") # 

label(non_clause) # label(goal).  [goal]. 

16 x ^ y = c(c(x) v c(y)) # label("df-a").  [assumption]. 

18 le(x,y) | x v y != y # label("df: x less than y").  [clausify(1)]. 

20 i0(x,y) = c(x) v y # label("df-i0 Boolean").  [assumption]. 

21 i1(x,y) = c(x) v (x ^ y) # label("df-i1 Sasaki").  [assumption]. 

22 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(21),rewrite([16(3)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("df-i5 relevance").  

[assumption]. 

30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x)) v c(c(y))).  

[copy(29),rewrite([16(2),16(7),16(14)])]. 

31 x = c(c(x)) # label("ax-a1").  [assumption]. 

32 c(c(x)) = x.  [copy(31),flip(a)]. 

33 x v y = y v x # label("ax-a2").  [assumption]. 

34 (x v y) v z = x v (y v z) # label("ax-a3").  [assumption]. 

37 x v c(c(x) v y) = x # label("ax-a5").  [assumption]. 

38 x != y | z != x | z = y # label("ax-r2").  [clausify(5)]. 

43 -le(i5(c1,c2),i1(c1,c2)) # label("i5lei1: Relevance implication l.e. Sasaki 

implication") # answer("i5lei1: Relevance implication l.e. Sasaki implication").  

[deny(9)]. 

44 -le(c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))),c(c1) v c(c(c1) v c(c2))) # 

answer("i5lei1: Relevance implication l.e. Sasaki implication").  

[copy(43),rewrite([30(3),32(9),33(12),32(15),32(16),33(17),22(20)])]. 

58 x v (y v z) = y v (x v z).  [para(33(a,1),34(a,1,1)),rewrite([34(2)])]. 

66 c(x) v c(x v y) = c(x).  [para(37(a,1),20(a,2)),rewrite([32(2),20(3)])]. 

70 x v x = x.  [para(37(a,1),37(a,1,2,1)),rewrite([32(2)])]. 

81 c(c1) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) != c(c1) v c(c(c1) v c(c2)) 

# answer("i5lei1: Relevance implication l.e. Sasaki implication").  

[ur(18,a,44,a),rewrite([33(27),58(27),58(26),33(25),58(25),70(24),58(19),58(20)])]. 
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85 c(c1) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) != c(c1) v c(c(c1) v c(c2)) # 

answer("i5lei1: Relevance implication l.e. Sasaki implication").  

[ur(38,b,34,a(flip),c,81,a),rewrite([66(7)])]. 

87 $F # answer("i5lei1: Relevance implication l.e. Sasaki implication").  

[ur(38,b,34,a(flip),c,85,a),rewrite([66(8)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 0.08 (+ 0.05) seconds: "i5lei2: Relevance implication l.e. Dishkant 

implication". 

% Length of proof is 34. 

% Level of proof is 7. 

% Maximum clause weight is 69. 

% Given clauses 65. 

 

1 le(x,y) <-> x v y = y # label("df: x less than y") # label(non_clause).  [assumption]. 

8 z v c(z) = c(c(x) v c(y)) v c(x v y) -> x = y # label("ax-r3") # label(non_clause).  

[assumption]. 

9 le(i5(x,y),i2(x,y)) # label("i5lei2: Relevance implication l.e. Dishkant implication") 

# label(non_clause) # label(goal).  [goal]. 

12 1 = x v c(x) # label("df-t").  [assumption]. 

13 x v c(x) = 1.  [copy(12),flip(a)]. 

16 x ^ y = c(c(x) v c(y)) # label("df-a").  [assumption]. 

18 le(x,y) | x v y != y # label("df: x less than y").  [clausify(1)]. 

20 i0(x,y) = c(x) v y # label("df-i0 Boolean").  [assumption]. 

23 i2(x,y) = y v (c(x) ^ c(y)) # label("df-i2 Dishkant").  [assumption]. 

24 i2(x,y) = y v c(c(c(x)) v c(c(y))).  [copy(23),rewrite([16(4)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("df-i5 relevance").  

[assumption]. 

30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x)) v c(c(y))).  

[copy(29),rewrite([16(2),16(7),16(14)])]. 

31 x = c(c(x)) # label("ax-a1").  [assumption]. 

32 c(c(x)) = x.  [copy(31),flip(a)]. 

33 x v y = y v x # label("ax-a2").  [assumption]. 

34 (x v y) v z = x v (y v z) # label("ax-a3").  [assumption]. 

37 x v c(c(x) v y) = x # label("ax-a5").  [assumption]. 

41 c(c(x) v c(y)) v c(x v y) != z v c(z) | y = x # label("ax-r3").  [clausify(8)]. 

42 c(x v y) v c(c(x) v c(y)) != 1 | y = x.  [copy(41),rewrite([33(7),13(9)])]. 

43 -le(i5(c1,c2),i2(c1,c2)) # label("i5lei2: Relevance implication l.e. Dishkant 

implication") # answer("i5lei2: Relevance implication l.e. Dishkant implication").  

[deny(9)]. 

44 -le(c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))),c2 v c(c1 v c2)) # answer("i5lei2: 

Relevance implication l.e. Dishkant implication").  

[copy(43),rewrite([30(3),32(9),33(12),32(15),32(16),33(17),24(20),32(21),32(22)])]. 

54 x v (y v c(x v y)) = 1.  [para(34(a,1),13(a,1))]. 

58 x v (y v z) = y v (x v z).  [para(33(a,1),34(a,1,1)),rewrite([34(2)])]. 

66 c(x) v c(x v y) = c(x).  [para(37(a,1),20(a,2)),rewrite([32(2),20(3)])]. 

67 x v c(y v c(x)) = x.  [para(33(a,1),37(a,1,2,1))]. 

70 x v x = x.  [para(37(a,1),37(a,1,2,1)),rewrite([32(2)])]. 

81 c2 v (c(c1 v c2) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))))) != c2 v c(c1 v 

c2) # answer("i5lei2: Relevance implication l.e. Dishkant implication").  

[ur(18,a,44,a),rewrite([33(24),58(24),34(23),58(24)])]. 

84 c(c2 v (c2 v (c(c1 v c2) v (c(c1 v c2) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v 

c(c2)))))))) v c(c(c2 v c(c1 v c2)) v c(c2 v (c(c1 v c2) v (c(c1 v c2) v (c(c1 v c(c2)) v 

c(c(c1) v c(c2))))))) != 1 # answer("i5lei2: Relevance implication l.e. Dishkant 

implication").  [ur(42,b,81,a),rewrite([58(31),58(30),58(29),34(28),58(29),58(30)])]. 

111 x v (x v y) = x v y.  [para(70(a,1),34(a,1,1)),flip(a)]. 

113 c(c2 v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))))) v c(c(c2 v c(c1 v c2)) v 

c(c2 v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))))) != 1 # answer("i5lei2: 

Relevance implication l.e. Dishkant implication").  

[back_rewrite(84),rewrite([111(28),111(24),111(21),111(50)])]. 

197 x v (y v c(z v c(x))) = y v x.  [para(67(a,1),58(a,1,2)),flip(a)]. 

202 c(x v y) v c(x v (y v z)) = c(x v y).  [para(34(a,1),66(a,1,2,1))]. 

208 c2 v (c(c1 v c2) v c(c2 v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))))) != 1 # 

answer("i5lei2: Relevance implication l.e. Dishkant implication").  

[back_rewrite(113),rewrite([202(48),32(28),33(27),34(27)])]. 

209 $F # answer("i5lei2: Relevance implication l.e. Dishkant implication").  

[para(58(a,1),208(a,1,2,2,1)),rewrite([197(23),33(16),67(16),33(11),54(14)]),xx(a)]. 
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============================== end of proof ========================== 

 

 

 
Figure 2.  Summary of a prover9 ([2]) proofs showing that relevance implication is less than or equal 

to Sasaki and Dishkant implication.  The proofs assume the default  inference rules of prover9. The 

general form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a 

unique identifier of a line in the proof, and conclusion is the result of applying the prover9 inference 

rules (such as paramodulation, copying, and rewriting), noted in square brackets (denoting the 

derivation), to the lines cited in those brackets.  Note that some of “logical” proof lines in the above 

have been transformed to two text lines, with the derivation appearing on a text line following a text 

line containing the first part of that logical line. The detailed syntax and semantics of these notations 

can be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

______________________________________________________________________________________ 

 

The total time to produce the proofs in 

Figure 2 on the platform described in 

Section 2.0 was approximately 0.2 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate at least 

two observations: 

 

 1.  Relevance implication is less 

than or equal to (in the sense of the lattice 

partial order) Sasaki and Dishkant 

implication. 

 

 2.  Surprisingly, both the "Sasaki-, 

and Dishkant-, implication" proofs use the 

definition of implication in a Boolean logic. 

 

 3.  The proofs do not use the 

orthomodularity axiom ("ax-r3" in Figure 1), 

demonstrating that the strength ordering 

shown in Figure 2 also holds in an 

ortholattice. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL) In BL, there is only one implication 

connection; in QL, there are five, none of which are identical to implication in a BL.   Here I present 

automated deductions showing that  relevance implication is equal to less than (in the sense of the lattice 

partial order)  Kalmbach and non-tollens implication in a QL. The proofs may be novel, and one of the 

proofs, surprisingly, uses the definition of implication in a BL.  

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either order, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA).   These 

axioms, and various definitions, are shown 

in Figure 1. 
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____________________________________________________________________ 

 

 
% Miscellaneous definitions 

   1 = x v c(x)                              # label("df-t"). 

   0 = c(1)                                  # label("df-f"). 

   (x ^ y) = c( c(x) v c(y))                 # label("df-a"). 

   le(x,y) <-> ( (x v y) = y )               # label("df: x less than y"). 

   id(x,y) = (c(c(x) v c(y)) v c(x v y))   # label("df-b"). 

   C(x,y) <-> ( x = (  (x ^ y) v ( x ^ c(y))  ) )   

                                             # label("x commutes with y"). 

 

 

% Definitions of implications 

   i0(x,y) = (c(x) v y)                      # label("df-i0 Boolean"). 

 

   i1(x,y) = ( c(x) v (x ^ y)  )             # label("df-i1 Sasaki"). 

 

   i2(x,y) = ( y v (c(x) ^ c(y))  )          # label("df-i2 Dishkant"). 

 

   i3(x,y) = (((c(x) ^ y) v (c(x) ^ c(y))) v (x ^ (c(x) v y))) 

                                             # label("df-i3 Kalmbach"). 

 

   i4(x,y) =  (((x ^ y) v (c(x) ^ y)) v ((c(x) v y) ^ c(y))) 

                                             # label("df-i4 non-tollens"). 

 

   i5(x,y) = (((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y))) 

                                             # label("df-i5 relevance"). 

 

 

% Ortholattice axioms 

x = c(c(x))                                  # label("ax-a1"). 

(x v y) = (y v x)                            # label("ax-a2"). 

((x v y) v z) = (x v (y v z))                # label("ax-a3"). 

(x v (y v c(y))) = (y v c(y))                # label("ax-a4"). 

(x v c((c(x) v y))) = x                      # label("ax-a5"). 

(x = y) -> (y = x)                           # label("ax-r1"). 

((x = y) & (y = z)) -> (x = z)               # label("ax-r2"). 

(x = y) -> (c(x) = c(y))                     # label("ax-r4"). 

(x = y) -> ((x v z) = (y v z))               # label("ax-r5"). 

 

% Orthomodular axiom 

(  (z v c(z)) = (c(c(x) v c(y)) v c(x v y) )  )   -> (x = y) 

                                             # label("ax-r3").         

 
 

where  

   x, y, z are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   le(x,y) means x ≤ y 

   id(x,y) means x is quantum-logic identical to y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

______________________________________________________________________________ 

 

The six implications shown in Figure 1 each satisfy the Birkhoff-von Neumann condition 

 

 ((x i y) = 1)     <->   le(x,y)            (CBvN) 
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where i = 0,1,2,3,4,5. 

 
CBvN  is a generalization of the BL 

definition of implication, sometimes denoted 

0. CBvN maps implication onto the lattice 

partial ordering. 

 

 

2.0  Method 
 

The QL axiomatizations of Megill, Pavičić, 

and Horner ([5], [14], [15], [16], [21], [22]) 

were implemented in a prover9 ([2]) script 

([3]) configured to show that relevance 

implication is less than or equal to (in the 

sense of the lattice partial ordering;  [11]. p. 

4) Kalmbach ([8]) and non-tollens ([9], p. 3) 

implication, then executed in that framework  

on a  Dell Inspiron 545 with an  Intel Core2 

Quad CPU Q8200 (clocked @ 2.33 GHz) 

and 8.00 GB RAM, running under the 

Windows Vista Home Premium /Cygwin 

operating environment. 
 

 

3.0  Results 

 
Figure 2 shows the proofs, generated by [3] 

on the platform described in Section 2.0, 

that relevance implication is equal to or less 

than Kalmbach and non-tollens  implication.  

 

 

 

 

_________________________________________________________________________________________ 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 5.74 (+ 0.09) seconds: "i5lei3: Relevance implication l.e. Kalmbach 

implication". 

% Length of proof is 40. 

 

1 le(x,y) <-> x v y = y # label("df: x less than y") # label(non_clause).  [assumption]. 

5 x = y & y = z -> x = z # label("ax-r2") # label(non_clause).  [assumption]. 

9 le(i5(x,y),i3(x,y)) # label("i5lei3: Relevance implication l.e. Kalmbach implication") 

# label(non_clause) # label(goal).  [goal]. 

16 x ^ y = c(c(x) v c(y)) # label("df-a").  [assumption]. 

17 -le(x,y) | x v y = y # label("df: x less than y").  [clausify(1)]. 

18 le(x,y) | x v y != y # label("df: x less than y").  [clausify(1)]. 

20 i0(x,y) = c(x) v y # label("df-i0 Boolean").  [assumption]. 

25 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (x ^ (c(x) v y)) # label("df-i3 Kalmbach").  

[assumption]. 

26 i3(x,y) = (c(c(c(x)) v c(y)) v c(c(c(x)) v c(c(y)))) v c(c(x) v c(c(x) v y)).  

[copy(25),rewrite([16(3),16(9),16(16)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("df-i5 relevance").  

[assumption]. 

30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x)) v c(c(y))).  

[copy(29),rewrite([16(2),16(7),16(14)])]. 

31 x = c(c(x)) # label("ax-a1").  [assumption]. 

32 c(c(x)) = x.  [copy(31),flip(a)]. 

33 x v y = y v x # label("ax-a2").  [assumption]. 

34 (x v y) v z = x v (y v z) # label("ax-a3").  [assumption]. 

37 x v c(c(x) v y) = x # label("ax-a5").  [assumption]. 

38 x != y | z != x | z = y # label("ax-r2").  [clausify(5)]. 

43 -le(i5(c1,c2),i3(c1,c2)) # label("i5lei3: Relevance implication l.e. Kalmbach 

implication") # answer("i5lei3: Relevance implication l.e. Kalmbach implication").  

[deny(9)]. 

44 -le(c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))),c(c1 v c2) v (c(c1 v c(c2)) v 

c(c(c1) v c(c2 v c(c1))))) # answer("i5lei3: Relevance implication l.e. Kalmbach 

implication").  

[copy(43),rewrite([30(3),32(9),33(12),32(15),32(16),33(17),26(20),32(20),32(25),32(26),33

(27),33(33),34(37)])]. 

53 le(x,y) | y v x != y.  [para(33(a,1),18(b,1))]. 

58 x v (y v z) = y v (x v z).  [para(33(a,1),34(a,1,1)),rewrite([34(2)])]. 

66 c(x) v c(x v y) = c(x).  [para(37(a,1),20(a,2)),rewrite([32(2),20(3)])]. 
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68 x v (c(c(x) v y) v z) = x v z.  [para(37(a,1),34(a,1,1)),flip(a)]. 

70 x v x = x.  [para(37(a,1),37(a,1,2,1)),rewrite([32(2)])]. 

81 c(c1 v c2) v (c(c1 v c2) v (c(c1 v c(c2)) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v 

c(c(c1) v c(c2 v c(c1))))))) != c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2 v c(c1)))) # 

answer("i5lei3: Relevance implication l.e. Kalmbach implication").  

[ur(18,a,44,a),rewrite([58(38),58(37),34(36),34(35),58(37)])]. 

84 c(c1 v c2) v (c(c1 v c(c2)) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c(c1) v c(c2 v 

c(c1)))))) != c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2 v c(c1)))) # answer("i5lei3: 

Relevance implication l.e. Kalmbach implication").  

[ur(38,b,34,a(flip),c,81,a),rewrite([70(9)])]. 

103 le(c(c(x) v y),x).  [hyper(53,b,37,a)]. 

108 x v (x v y) = x v y.  [para(70(a,1),34(a,1,1)),flip(a)]. 

110 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c(c1) v c(c2 v c(c1))))) != c(c1 

v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2 v c(c1)))) # answer("i5lei3: Relevance 

implication l.e. Kalmbach implication").  [back_rewrite(84),rewrite([108(32)])]. 

129 le(c(x v y),c(x)).  [para(32(a,1),103(a,1,1,1))]. 

131 le(c(x v y),c(y)).  [para(33(a,1),129(a,1,1))]. 

146 c(x) v c(y v x) = c(x).  [hyper(17,a,131,a),rewrite([33(4)])]. 

202 c(x) v (y v c(x v z)) = y v c(x).  [para(66(a,1),58(a,1,2)),flip(a)]. 

220 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c(c1) v c(c2 v c(c1))))) != c(c1 

v c2) v (c(c1 v (c2 v x)) v (c(c1 v c(c2)) v c(c(c1) v c(c2 v c(c1))))) # answer("i5lei3: 

Relevance implication l.e. Kalmbach implication").  

[ur(38,a,68,a,c,110,a),rewrite([32(36),34(35)])]. 

236 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c(c1) v c(c2 v c(c1))))) != c(c1 

v c2) v (c(c1 v (x v c2)) v (c(c1 v c(c2)) v c(c(c1) v c(c2 v c(c1))))) # answer("i5lei3: 

Relevance implication l.e. Kalmbach implication").  [para(33(a,1),220(a,2,2,1,1,2))]. 

247 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2 v c(c1))) v c(c1 v (x v c2)))) != c(c1 

v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c(c1) v c(c2 v c(c1))))) # answer("i5lei3: 

Relevance implication l.e. Kalmbach implication").  

[para(33(a,1),236(a,2,2)),rewrite([34(52)]),flip(a)]. 

360 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2 v c(c1))) v c(x v (c1 v c2)))) != c(c1 

v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c(c1) v c(c2 v c(c1))))) # answer("i5lei3: 

Relevance implication l.e. Kalmbach implication").  [para(58(a,1),247(a,1,2,2,2,1))]. 

423 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2 v c(c1))) v c(x v (y v (c1 v c2))))) != 

c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c(c1) v c(c2 v c(c1))))) # 

answer("i5lei3: Relevance implication l.e. Kalmbach implication").  

[para(34(a,1),360(a,1,2,2,2,1))]. 

3874 c(x v c(y)) v c(x v c(y v z)) = c(x v c(y v z)).  

[para(202(a,1),146(a,1,2,1)),rewrite([33(8)])]. 

3877 $F # answer("i5lei3: Relevance implication l.e. Kalmbach implication").  

[para(202(a,1),423(a,1,2)),rewrite([33(19),3874(45)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 14.10 (+ 0.11) seconds: "i5lei4: Relevance implication l.e. non-tollens 

implication". 

% Length of proof is 51. 

 

1 le(x,y) <-> x v y = y # label("df: x less than y") # label(non_clause).  [assumption]. 

5 x = y & y = z -> x = z # label("ax-r2") # label(non_clause).  [assumption]. 

9 le(i5(x,y),i4(x,y)) # label("i5lei4: Relevance implication l.e. non-tollens 

implication") # label(non_clause) # label(goal).  [goal]. 

12 1 = x v c(x) # label("df-t").  [assumption]. 

13 x v c(x) = 1.  [copy(12),flip(a)]. 

14 0 = c(1) # label("df-f").  [assumption]. 

15 c(1) = 0.  [copy(14),flip(a)]. 

16 x ^ y = c(c(x) v c(y)) # label("df-a").  [assumption]. 

17 -le(x,y) | x v y = y # label("df: x less than y").  [clausify(1)]. 

18 le(x,y) | x v y != y # label("df: x less than y").  [clausify(1)]. 

27 i4(x,y) = ((x ^ y) v (c(x) ^ y)) v ((c(x) v y) ^ c(y)) # label("df-i4 non-tollens").  

[assumption]. 

28 i4(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x) v y) v c(c(y))).  

[copy(27),rewrite([16(2),16(7),16(15)])]. 

29 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("df-i5 relevance").  

[assumption]. 

30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x)) v c(c(y))).  

[copy(29),rewrite([16(2),16(7),16(14)])]. 

31 x = c(c(x)) # label("ax-a1").  [assumption]. 
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32 c(c(x)) = x.  [copy(31),flip(a)]. 

33 x v y = y v x # label("ax-a2").  [assumption]. 

34 (x v y) v z = x v (y v z) # label("ax-a3").  [assumption]. 

35 x v (y v c(y)) = y v c(y) # label("ax-a4").  [assumption]. 

36 x v 1 = 1.  [copy(35),rewrite([13(2),13(4)])]. 

37 x v c(c(x) v y) = x # label("ax-a5").  [assumption]. 

38 x != y | z != x | z = y # label("ax-r2").  [clausify(5)]. 

43 -le(i5(c1,c2),i4(c1,c2)) # label("i5lei4: Relevance implication l.e. non-tollens 

implication") # answer("i5lei4: Relevance implication l.e. non-tollens implication").  

[deny(9)]. 

44 -le(c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))),c(c1 v c(c2)) v (c(c(c1) v c(c2)) 

v c(c2 v c(c2 v c(c1))))) # answer("i5lei4: Relevance implication l.e. non-tollens 

implication").  

[copy(43),rewrite([30(3),32(9),33(12),32(15),32(16),33(17),28(20),32(26),33(29),33(33),32

(37),33(36),34(38)])]. 

53 le(x,y) | y v x != y.  [para(33(a,1),18(b,1))]. 

58 x v (y v z) = y v (x v z).  [para(33(a,1),34(a,1,1)),rewrite([34(2)])]. 

61 1 v x = 1.  [para(36(a,1),33(a,1)),flip(a)]. 

63 x v 0 = x.  [para(13(a,1),37(a,1,2,1)),rewrite([15(2)])]. 

67 x v c(y v c(x)) = x.  [para(33(a,1),37(a,1,2,1))]. 

68 x v (c(c(x) v y) v z) = x v z.  [para(37(a,1),34(a,1,1)),flip(a)]. 

69 x v (y v c(c(x v y) v z)) = x v y.  [para(37(a,1),34(a,1)),flip(a)]. 

70 x v x = x.  [para(37(a,1),37(a,1,2,1)),rewrite([32(2)])]. 

81 c(c1 v c2) v (c(c1 v c(c2)) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v (c(c(c1) v c(c2)) v 

c(c2 v c(c2 v c(c1))))))) != c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v c(c1)))) # 

answer("i5lei4: Relevance implication l.e. non-tollens implication").  

[ur(18,a,44,a),rewrite([58(39),58(38),34(37),34(36),58(38),58(37),58(39)])]. 

97 0 v x = x.  [hyper(38,a,63,a,b,33,a)]. 

102 le(c(c(x) v y),x).  [hyper(53,b,37,a)]. 

107 x v (x v y) = x v y.  [para(70(a,1),34(a,1,1)),flip(a)]. 

109 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v c(c1))))) != c(c1 v 

c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v c(c1)))) # answer("i5lei4: Relevance 

implication l.e. non-tollens implication").  

[back_rewrite(81),rewrite([107(36),107(31)])]. 

129 le(c(x v y),c(x)).  [para(32(a,1),102(a,1,1,1))]. 

131 le(c(x v y),c(y)).  [para(33(a,1),129(a,1,1))]. 

148 le(c(x v (y v z)),c(x v z)).  [para(58(a,1),131(a,1,1))]. 

190 x v (c(y v c(x)) v z) = x v z.  [para(67(a,1),34(a,1,1)),flip(a)]. 

223 c(c1 v c2) v (c(c1 v (c2 v x)) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v 

c(c1)))))) != c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v c(c1)))) # 

answer("i5lei4: Relevance implication l.e. non-tollens implication").  

[ur(38,a,68,a,c,109,a(flip)),rewrite([32(30),34(29)]),flip(a)]. 

239 c(c1 v c2) v (c(c1 v (x v c2)) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v 

c(c1)))))) != c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v c(c1)))) # 

answer("i5lei4: Relevance implication l.e. non-tollens implication").  

[para(33(a,1),223(a,1,2,1,1,2))]. 

246 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v (c(c2 v c(c2 v c(c1))) v c(c1 v (x 

v c2))))) != c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v c(c1)))) # answer("i5lei4: 

Relevance implication l.e. non-tollens implication").  

[para(33(a,1),239(a,1,2)),rewrite([34(31),34(30)])]. 

274 x v (y v (z v c(c(x v (y v z)) v u))) = y v (x v z).  

[hyper(38,a,58,a,b,69,a),rewrite([34(7)])]. 

295 c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v (c(c2 v c(c2 v c(c1))) v (c(c1 v (x 

v c2)) v c(c(c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v (c(c2 v c(c2 v c(c1))) v 

c(c1 v (x v c2)))))) v y))))) != c(c1 v c(c2)) v (c(c(c1) v c(c2)) v c(c2 v c(c2 v 

c(c1)))) # answer("i5lei4: Relevance implication l.e. non-tollens implication").  

[ur(38,b,69,a(flip),c,246,a),rewrite([34(67),34(66),34(65)])]. 

799 le(c(x v (y v z)),c(z v y)).  [para(33(a,1),148(a,1,1)),rewrite([34(2)])]. 

2406 le(c(x v y),c(y v c(z v c(x)))).  [para(190(a,1),799(a,1,1))]. 

6267 x v (y v (z v (u v c(c(x v (y v (z v u))) v w)))) = y v (z v (x v u)).  

[hyper(38,a,34,a,b,274,a),rewrite([34(3),34(9)])]. 

9918 c(x v y) v c(y v c(z v c(x))) = c(y v c(z v c(x))).  [hyper(17,a,2406,a)]. 

9952 $F # answer("i5lei4: Relevance implication l.e. non-tollens implication").  

[para(61(a,1),295(a,1,2,2,2,2,1,1,2)),rewrite([33(26),61(26),15(25),61(51),33(50),61(50),

15(49),33(49),97(49),97(54),6267(56),9918(24)]),xx(a)]. 

 

============================== end of proof ========================== 
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Figure 2.  Summary of a prover9 ([2]) proofs showing that relevance implication is less than or equal 

to Kalmbach and non-tollens implication.  The proofs assume the default  inference rules of prover9. 

The general form of a line in this proof is “line_number conclusion [derivation]”, where line_number 

is a unique identifier of a line in the proof, and conclusion is the result of applying the prover9 

inference rules (such as paramodulation, copying, and rewriting), noted in square brackets (denoting 

the derivation), to the lines cited in those brackets.  Note that some of “logical” proof lines in the 

above have been transformed to two text lines, with the derivation appearing on a text line following a 

text line containing the first part of that logical line. The detailed syntax and semantics of these 

notations can be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

______________________________________________________________________________________ 

 

 

The total time to produce the proofs in 

Figure 2 on the platform described in 

Section 2.0 was approximately 6 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate at least 

three observations: 

 

 1.  Relevance implication is equal to 

or less than (in the sense of the lattice partial 

order) Kalmbach and non-tollens 

implication. 

 

 2.  Somewhat unexpectedly, the 

"Kalmbach-implication" proof uses the 

definition of implication in a Boolean logic. 

 

 3.  The proofs do not use the 

orthomodularity axiom ("ax-r3" in Figure 1), 

demonstrating that the implicational strength 

relations shown in Figure 2 also hold in an 

ortholattice. 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.   Here I provide automated deductions of 

the OMA from  three quantum-implication-based equivalents of the OMA.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either order, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.   The OMA, it turns out, has strong 
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connections to implication in QL, as demonstrated in the following. 

 

______________________________________________________________________________ 

 
Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

______________________________________________________________________________ 

 

Consider the proposition shown in Figure 2.   

 

______________________________________________________________________________ 

 

 ((x i y) = 1)     <->   le(x,y) 

 

where i = 1,2,3,4,5. 
 

                                         Figure 2.  Proposition 2.10 

 

_____________________________________________________________ 

Int'l Conf. Foundations of Computer Science |  FCS'12  | 169



Note that there are five QL implications.  

Proposition 2.10  is a generalization of the 

BL definition of implication, sometimes 

denoted 0. 

 

2.0  Method 
 

The OML axiomatizations of Megill, 

Pavičić, and Horner ([5], [14], [15], [16], 

[21], [22]) were implemented in a prover9 

([2]) script ([3]) configured to derive OMA 

from Proposition 2.10i, for each of  i = 1, 2, 

3 together with ortholattice theory 

(orthomodular lattice theory, without the 

OMA), then executed in that framework  on 

a  Dell Inspiron 545 with an  Intel Core2 

Quad CPU Q8200 (clocked @ 2.33 GHz) 

and 8.00 GB RAM, running under the 

Windows Vista Home Premium /Cygwin 

operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] 

on the platform described in Section 2.0, 

that Proposition 2.10i (for each of i = 1,2, 3), 

together with ortholattice theory, imply the 

OMA.  

 

 

_________________________________________________________________________________________ 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 32.98 (+ 0.64) seconds: "OMA". 

% Length of proof is 34. 

% Level of proof is 10. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i1(x,y) = 1 <-> le(x,y) # label("Hypothesis for Proposition 2.10i1") # 

label(non_clause).  [assumption]. 

4 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

6 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

7 i1(x,y) != 1 | le(x,y) # label("Hypothesis for Proposition 2.10i1").  [clausify(3)]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

23 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

24 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(23),rewrite([21(3)])]. 

33 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(4)]. 

34 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(33),rewrite([13(6),21(7),12(4),13(12)])]. 

35 i1(x,y) != 1 | x ^ y = x.  [resolve(7,b,6,a)]. 

36 c(x) v c(c(x) v c(y)) != 1 | c(c(x) v c(y)) = x.  [copy(35),rewrite([24(1),21(9)])]. 

41 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

43 x v (y v z) = y v (x v z).  [para(13(a,1),14(a,1,1)),rewrite([14(2)])]. 

46 x v (y v c(x v y)) = 1.  [para(20(a,1),14(a,1)),flip(a)]. 

48 c(x) v c(c(x) v y) != 1 | c(c(x) v y) = x.  

[para(12(a,1),36(a,1,2,1,2)),rewrite([12(10)])]. 

65 x v c(c(x) v y) = x.  [para(12(a,1),41(a,1,2,1,2))]. 

81 x v (y v c(y v x)) = 1.  [para(13(a,1),46(a,1,2,2,1))]. 

96 x v c(y v c(x)) = x.  [para(13(a,1),65(a,1,2,1))]. 

98 x v (y v c(c(x v y) v z)) = x v y.  [para(65(a,1),14(a,1)),flip(a)]. 

105 c(x) v c(y v x) = c(x).  [para(12(a,1),96(a,1,2,1,2))]. 

110 c(x) v c(y v c(x)) != 1 | c(c(x) v y) = x.  [para(13(a,1),48(a,1,2,1))]. 

400 x v c(y v x) != 1 | y v x = x.  

[para(105(a,1),110(a,1,2,1)),rewrite([12(4),13(3),13(9),105(9),12(7)]),flip(b)]. 

417 x v (c(y v x) v c(c(y v x) v z)) != 1 | x v c(c(y v x) v z) = y v x.  

[para(98(a,1),400(a,1,2,1)),rewrite([13(8),43(8),98(16)]),flip(b)]. 

18101 x v c(x v c(y v x)) = y v x.  [hyper(417,a,81,a),rewrite([13(3)])]. 

18102 x v c(x v c(x v y)) = y v x.  [para(13(a,1),18101(a,1,2,1,2,1))]. 
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18181 $F # answer("OMA").  [back_rewrite(34),rewrite([18102(9),13(3)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 148.81 (+ 2.84) seconds: "OMA". 

% Length of proof is 51. 

% Level of proof is 14. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i2(x,y) = 1 <-> le(x,y) # label("Hypothesis for Proposition 2.10i2") # 

label(non_clause).  [assumption]. 

4 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

6 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

7 i2(x,y) != 1 | le(x,y) # label("Hypothesis for Proposition 2.10i2").  [clausify(3)]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

17 x ^ (x v y) = x # label("AxL6").  [assumption]. 

18 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

25 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

26 i2(x,y) = y v c(y v x).  [copy(25),rewrite([12(3),21(4),12(3),12(3)])]. 

33 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(4)]. 

34 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(33),rewrite([13(6),21(7),12(4),13(12)])]. 

35 i2(x,y) != 1 | x ^ y = x.  [resolve(7,b,6,a)]. 

36 x v c(x v y) != 1 | c(c(y) v c(x)) = y.  [copy(35),rewrite([26(1),21(6)])]. 

39 c(1) = 0.  [back_rewrite(18),rewrite([21(2),12(2),20(2)])]. 

40 c(c(x) v c(x v y)) = x.  [back_rewrite(17),rewrite([21(2)])]. 

41 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

43 x v (y v z) = y v (x v z).  [para(13(a,1),14(a,1,1)),rewrite([14(2)])]. 

46 x v (y v c(x v y)) = 1.  [para(20(a,1),14(a,1)),flip(a)]. 

59 c(x) v c(x v y) = c(x).  [para(40(a,1),12(a,1,1)),flip(a)]. 

63 c(0 v c(x)) = x.  [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)])]. 

65 1 v x = 1.  [para(39(a,1),40(a,1,1,1)),rewrite([63(6)])]. 

69 x v c(c(x) v y) = x.  [para(12(a,1),41(a,1,2,1,2))]. 

74 x v x = x.  [para(39(a,1),41(a,1,2,1,2)),rewrite([13(3),63(4)])]. 

77 x v c(y v (x v z)) != 1 | c(c(y v z) v c(x)) = y v z.  [para(43(a,1),36(a,1,2,1))]. 

79 x v 1 = 1.  [para(65(a,1),13(a,1)),flip(a)]. 

83 x v (x v y) = x v y.  [para(74(a,1),14(a,1,1)),flip(a)]. 

110 x v c(y v c(x)) = x.  [para(13(a,1),69(a,1,2,1))]. 

113 x v (y v c(c(x) v z)) = y v x.  [para(69(a,1),43(a,1,2)),flip(a)]. 

122 c(x) v c(y v x) = c(x).  [para(12(a,1),110(a,1,2,1,2))]. 

123 x v (c(y v c(x)) v z) = x v z.  [para(110(a,1),14(a,1,1)),flip(a)]. 

144 c(x) v (y v c(x v z)) = y v c(x).  [para(59(a,1),43(a,1,2)),flip(a)]. 

185 c(x) v (c(y v x) v z) = c(x) v z.  [para(122(a,1),14(a,1,1)),flip(a)]. 

431 c(x v y) v c(x v c(c(y) v z)) = c(x v c(c(y) v z)).  

[para(113(a,1),122(a,1,2,1)),rewrite([13(8)])]. 

471 x v (y v c(c(z v c(x)) v y)) = 1.  

[para(46(a,1),123(a,1,2)),rewrite([79(2)]),flip(a)]. 

693 x v c(x v c(y)) != 1 | c(y v c(x)) = c(y).  

[para(144(a,1),77(a,1,2,1)),rewrite([59(10),12(8),59(13)])]. 

1959 c(x) v c(c(y v x) v c(z v x)) = 1.  

[para(471(a,1),185(a,1)),rewrite([12(4)]),flip(a)]. 

3444 x v (y v c(x v c(z v c(x v y)))) = 1.  

[para(59(a,1),1959(a,1,2,1,1,1)),rewrite([12(3),12(3),14(8)])]. 

21441 x v c(x v c(c(y) v c(x v c(x v y)))) = 1.  [para(431(a,1),3444(a,1,2))]. 

30946 c(c(x) v c(y v c(y v x))) = c(c(x) v c(y)).  

[hyper(693,a,21441,a),rewrite([13(8),144(8)]),flip(a)]. 

31457 c(c(x v y) v c(x v c(x v y))) = x.  

[para(83(a,1),30946(a,1,1,2,1,2,1)),rewrite([13(12),59(12),12(10)])]. 

31474 c(x v y) v c(x v c(x v y)) = c(x).  [para(31457(a,1),12(a,1,1)),flip(a)]. 
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31586 x v c(x v c(x v y)) = x v y.  

[para(31474(a,1),31474(a,1,1,1)),rewrite([12(2),31474(9),12(4),13(3),12(8)])]. 

31587 $F # answer("OMA").  [resolve(31586,a,34,a)]. 

 

============================== end of proof ========================== 

 
 

============================== PROOF ================================= 

 

% Proof 1 at 25.35 (+ 0.36) seconds: "OMA". 

% Length of proof is 45. 

% Level of proof is 10. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i3(x,y) = 1 <-> le(x,y) # label("Hypothesis for Proposition 2.10i3") # 

label(non_clause).  [assumption]. 

4 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

6 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

7 i3(x,y) != 1 | le(x,y) # label("Hypothesis for Proposition 2.10i3").  [clausify(3)]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

17 x ^ (x v y) = x # label("AxL6").  [assumption]. 

18 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

27 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

28 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(27),rewrite([21(3),12(3),21(7),12(6),12(6),13(7),21(9),14(14)])]. 

33 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(4)]. 

34 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(33),rewrite([13(6),21(7),12(4),13(12)])]. 

35 i3(x,y) != 1 | x ^ y = x.  [resolve(7,b,6,a)]. 

36 c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))) != 1 | c(c(x) v c(y)) = x.  

[copy(35),rewrite([28(1),21(16)])]. 

39 c(1) = 0.  [back_rewrite(18),rewrite([21(2),12(2),20(2)])]. 

40 c(c(x) v c(x v y)) = x.  [back_rewrite(17),rewrite([21(2)])]. 

41 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

43 x v (y v z) = y v (x v z).  [para(13(a,1),14(a,1,1)),rewrite([14(2)])]. 

45 c(x) v (c(x v y) v (c(x v c(y)) v c(c(x) v c(y)))) != 1 | c(c(x) v c(y)) = x.  

[back_rewrite(36),rewrite([43(12),43(13)])]. 

48 x v (y v c(x v y)) = 1.  [para(20(a,1),14(a,1)),flip(a)]. 

55 c(0 v c(x)) = x.  [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)])]. 

56 1 v x = 1.  [para(39(a,1),40(a,1,1,1)),rewrite([55(6)])]. 

59 x v c(c(x) v y) = x.  [para(12(a,1),41(a,1,2,1,2))]. 

63 x v 0 = x.  [para(20(a,1),41(a,1,2,1)),rewrite([39(2)])]. 

64 x v x = x.  [para(39(a,1),41(a,1,2,1,2)),rewrite([13(3),55(4)])]. 

66 x v 1 = 1.  [para(56(a,1),13(a,1)),flip(a)]. 

68 0 v x = x.  [para(63(a,1),13(a,1)),flip(a)]. 

71 x v (y v x) = y v x.  [para(64(a,1),14(a,2,2)),rewrite([13(2)])]. 

83 c(x v y) v (c(x v (y v z)) v (c(x v (y v c(z))) v c(c(x v y) v c(z)))) != 1 | c(c(x v 

y) v c(z)) = x v y.  [para(14(a,1),45(a,1,2,1,1)),rewrite([14(8)])]. 

96 x v c(y v c(x)) = x.  [para(13(a,1),59(a,1,2,1))]. 

98 x v (y v c(c(x v y) v z)) = x v y.  [para(59(a,1),14(a,1)),flip(a)]. 

108 c(x) v c(y v x) = c(x).  [para(12(a,1),96(a,1,2,1,2))]. 

114 x v (y v c(y v x)) = 1.  [para(13(a,1),48(a,1,2,2,1))]. 

162 x v c(y v x) != 1 | y v x = x.  

[para(20(a,1),83(a,1,2,2,1,1,2)),rewrite([64(3),66(6),39(6),13(9),108(9),12(7),68(6),13(5

),71(6),13(9),108(9),12(7)]),flip(b)]. 

420 x v (c(y v x) v c(c(y v x) v z)) != 1 | x v c(c(y v x) v z) = y v x.  

[para(98(a,1),162(a,1,2,1)),rewrite([13(8),43(8),98(16)]),flip(b)]. 

18945 x v c(x v c(y v x)) = y v x.  [hyper(420,a,114,a),rewrite([13(3)])]. 

18946 x v c(x v c(x v y)) = y v x.  [para(13(a,1),18945(a,1,2,1,2,1))]. 

19025 $F # answer("OMA").  [back_rewrite(34),rewrite([18946(9),13(3)]),xx(a)]. 

 

============================== end of proof ========================== 

172 Int'l Conf. Foundations of Computer Science |  FCS'12  |



 

 

 

Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.10, for each of i = 1,2,3.  The proofs 

assume the default  inference rules of prover9. The general form of a line in this proof is 

“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, 

and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, 

and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.   

 

______________________________________________________________________________________ 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 200 

seconds. 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  The proofs in Figure 3 have 

distinct derivational dependencies.  In 

particular, the proof for i = 1 uses axioms 

L1, L2, L3, L5, OL2, and OL3.  The proof 

for i =2 uses L1, L2, L5, L6, OL1, OL2, and 

OL3.  The proof for i = 3 uses L1, L2, L3, 

L5, L6, OL1, OL2, and OL3.  These results 

suggest (but do not prove) that distinct types 

of quantum implication have their "roots" in 

distinct axiomatic bases.  Future work will 

explore this hypothesis. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 4, 5, and for the proposition 

that orthomodular lattice theory implies 

Propositions 2.10i, i = 1,2,3,4,5 ([23]). 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL. The OMA, it turns out, has strong 

connections to implication in QL.    Here I provide  automated deductions of the OMA from two quantum-

implication-based equivalents of the OMA.  The proofs may be novel. 
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1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either order, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  
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logic. The OMA, it turns out, has strong 

connections to implication in QL, as 

demonstrated in the following. 

 

______________________________________________________________________________ 

 
Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

______________________________________________________________________________ 

 

Consider the proposition shown in Figure 2. 

 

______________________________________________________________________________ 

 ((x i y) = 1)     <->   le(x,y) 

 

where i = 1,2,3,4,5. 
 

                                         Figure 2.  Proposition 2.10 

_____________________________________________________________ 
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Note that there are five implications in QL 

(BL has only one).  Proposition 2.10 is a 

generalization of the BL definition of 

implication, sometimes denoted  0. 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, 

Pavičić, and Horner ([5], [14], [15], [16], 

[21], [22]) were implemented in a prover9 

([2]) script ([3]) configured to derive OMA 

from Proposition 2.10i, for each of  i = 4,5 

together with ortholattice theory 

(orthomodular lattice theory, without the 

OMA), then executed in that framework  on 

a  Dell Inspiron 545 with an  Intel Core2 

Quad CPU Q8200 (clocked @ 2.33 GHz) 

and 8.00 GB RAM, running under the 

Windows Vista Home Premium /Cygwin 

operating environment. 
 

 

3.0  Results 

 
Figure 3 shows the proofs, generated by [3] 

on the platform described in Section 2.0, 

that Proposition 2.10i  (for each of i = 4,5), 

together with ortholattice theory, imply the 

OMA.  

 
_________________________________________________________________________________________ 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 164.91 (+ 2.98) seconds: "OMA". 

% Length of proof is 57. 

% Level of proof is 13. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i4(x,y) = 1 <-> le(x,y) # label("Hypothesis for formula 2.10i4") # label(non_clause).  

[assumption]. 

4 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

5 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

6 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

7 i4(x,y) != 1 | le(x,y) # label("Hypothesis for formula 2.10i4").  [clausify(3)]. 

8 i4(x,y) = 1 | -le(x,y) # label("Hypothesis for formula 2.10i4").  [clausify(3)]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

17 x ^ (x v y) = x # label("AxL6").  [assumption]. 

18 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

29 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ c(x))) # 

label("Df: i4").  [assumption]. 

30 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(29),rewrite([12(3),21(3),12(4),12(6),12(6),21(5),12(11),21(12),12(11),12(11),13(13)

,14(13)])]. 

33 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(4)]. 

34 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(33),rewrite([13(6),21(7),12(4),13(12)])]. 

35 i4(x,y) != 1 | x ^ y = x.  [resolve(7,b,6,a)]. 

36 x v (c(x v y) v (c(c(x) v y) v c(c(x) v c(y)))) != 1 | c(c(y) v c(x)) = y.  

[copy(35),rewrite([30(1),21(15)])]. 

37 i4(x,y) = 1 | x ^ y != x.  [resolve(8,b,5,a)]. 

38 x v (c(x v y) v (c(c(x) v y) v c(c(x) v c(y)))) = 1 | c(c(y) v c(x)) != y.  

[copy(37),rewrite([30(1),21(15)])]. 

39 c(1) = 0.  [back_rewrite(18),rewrite([21(2),12(2),20(2)])]. 

40 c(c(x) v c(x v y)) = x.  [back_rewrite(17),rewrite([21(2)])]. 

41 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

43 x v (y v z) = y v (x v z).  [para(13(a,1),14(a,1,1)),rewrite([14(2)])]. 

46 x v (y v c(x v y)) = 1.  [para(20(a,1),14(a,1)),flip(a)]. 
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48 x v (c(x v c(y)) v (c(c(x) v y) v c(c(x) v c(y)))) != 1 | c(y v c(x)) = c(y).  

[para(12(a,1),36(a,1,2,2,2,1,2)),rewrite([13(11),12(17)])]. 

59 c(0) = 1.  [para(39(a,1),12(a,1,1))]. 

66 c(x) v c(x v y) = c(x).  [para(40(a,1),12(a,1,1)),flip(a)]. 

70 c(0 v c(x)) = x.  [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)])]. 

74 1 v x = 1.  [para(39(a,1),40(a,1,1,1)),rewrite([70(6)])]. 

86 x v c(c(x) v y) = x.  [para(12(a,1),41(a,1,2,1,2))]. 

90 x v 0 = x.  [para(20(a,1),41(a,1,2,1)),rewrite([39(2)])]. 

92 x v x = x.  [para(39(a,1),41(a,1,2,1,2)),rewrite([13(3),70(4)])]. 

100 x v 1 = 1.  

[para(59(a,1),38(b,1,1,1)),rewrite([90(2),13(4),70(5),59(4),13(4),74(4),39(3),90(3),13(2)

,20(2),74(7),39(6)]),xx(b)]. 

112 x v (x v y) = x v y.  [para(92(a,1),14(a,1,1)),flip(a)]. 

148 x v c(y v c(x)) = x.  [para(13(a,1),86(a,1,2,1))]. 

149 x v (c(c(x) v y) v z) = x v z.  [para(86(a,1),14(a,1,1)),flip(a)]. 

151 x v (y v c(c(x) v z)) = y v x.  [para(86(a,1),43(a,1,2)),flip(a)]. 

162 c(x) v c(y v x) = c(x).  [para(12(a,1),148(a,1,2,1,2))]. 

163 x v (c(y v c(x)) v z) = x v z.  [para(148(a,1),14(a,1,1)),flip(a)]. 

175 c(x) v (c(x v y) v z) = c(x) v z.  [para(66(a,1),14(a,1,1)),flip(a)]. 

234 c(x) v (c(y v x) v z) = c(x) v z.  [para(162(a,1),14(a,1,1)),flip(a)]. 

525 x v c(x v c(c(x v y) v z)) != 1 | c(c(x v y) v z) = c(c(x) v z).  

[para(149(a,1),48(a,1,2,2,1,1)),rewrite([12(2),12(12),43(18),149(19),151(15),13(7),12(11)

,13(14),175(14),12(14)]),flip(b)]. 

621 c(x v y) v c(x v c(c(y) v z)) = c(x v c(c(y) v z)).  

[para(151(a,1),162(a,1,2,1)),rewrite([13(8)])]. 

675 x v (y v c(c(z v c(x)) v y)) = 1.  

[para(46(a,1),163(a,1,2)),rewrite([100(2)]),flip(a)]. 

1924 c(x) v c(c(y v x) v c(z v x)) = 1.  

[para(675(a,1),234(a,1)),rewrite([12(4)]),flip(a)]. 

2974 x v (y v c(x v c(z v c(x v y)))) = 1.  

[para(66(a,1),1924(a,1,2,1,1,1)),rewrite([12(3),12(3),14(8)])]. 

23541 x v c(x v c(c(y) v c(x v c(x v y)))) = 1.  [para(621(a,1),2974(a,1,2))]. 

35630 c(c(x v y) v c(x v c(x v y))) = x.  

[hyper(525,a,23541,a),rewrite([112(4),112(11),66(14),12(10)])]. 

35641 c(x v y) v c(x v c(x v y)) = c(x).  [para(35630(a,1),12(a,1,1)),flip(a)]. 

35817 x v c(x v c(x v y)) = x v y.  

[para(35641(a,1),35641(a,1,1,1)),rewrite([12(2),35641(9),12(4),13(3),12(8)])]. 

35818 $F # answer("OMA").  [resolve(35817,a,34,a)]. 

 

============================== end of proof ========================== 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 215.39 (+ 3.15) seconds: "OMA". 

% Length of proof is 61. 

% Level of proof is 13. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i5(x,y) = 1 <-> le(x,y) # label("Hypothesis for formula 2.10i5") # label(non_clause).  

[assumption]. 

4 y v (c(y) ^ (x v y)) = x v y # label("OMA") # label(non_clause) # label(goal).  [goal]. 

6 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

7 i5(x,y) != 1 | le(x,y) # label("Hypothesis for formula 2.10i5").  [clausify(3)]. 

11 x = c(c(x)) # label("AxL1").  [assumption]. 

12 c(c(x)) = x.  [copy(11),flip(a)]. 

13 x v y = y v x # label("AxL2").  [assumption]. 

14 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

16 x v (x ^ y) = x # label("AxL5").  [assumption]. 

17 x ^ (x v y) = x # label("AxL6").  [assumption]. 

18 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

19 c(x) v x = 1 # label("AxOL2").  [assumption]. 

20 x v c(x) = 1.  [copy(19),rewrite([13(2)])]. 

21 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

31 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

32 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(31),rewrite([21(2),21(7),12(7),13(9),21(12),12(11),12(11),13(12)])]. 

33 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("OMA") # answer("OMA").  [deny(4)]. 

34 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("OMA").  

[copy(33),rewrite([13(6),21(7),12(4),13(12)])]. 

35 i5(x,y) != 1 | x ^ y = x.  [resolve(7,b,6,a)]. 
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36 c(x v y) v (c(x v c(y)) v c(c(x) v c(y))) != 1 | c(c(x) v c(y)) = x.  

[copy(35),rewrite([32(1),21(14)])]. 

39 c(1) = 0.  [back_rewrite(18),rewrite([21(2),12(2),20(2)])]. 

40 c(c(x) v c(x v y)) = x.  [back_rewrite(17),rewrite([21(2)])]. 

41 x v c(c(x) v c(y)) = x.  [back_rewrite(16),rewrite([21(1)])]. 

43 x v (y v z) = y v (x v z).  [para(13(a,1),14(a,1,1)),rewrite([14(2)])]. 

46 x v (y v c(x v y)) = 1.  [para(20(a,1),14(a,1)),flip(a)]. 

49 c(x v y) v (c(y v c(x)) v c(c(y) v c(x))) != 1 | c(c(y) v c(x)) = y.  

[para(13(a,1),36(a,1,1,1))]. 

52 c(x v (y v z)) v (c(x v (y v c(z))) v c(c(x v y) v c(z))) != 1 | c(c(x v y) v c(z)) = 

x v y.  [para(14(a,1),36(a,1,1,1)),rewrite([14(6)])]. 

66 c(x) v c(x v y) = c(x).  [para(40(a,1),12(a,1,1)),flip(a)]. 

70 c(0 v c(x)) = x.  [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)])]. 

73 1 v x = 1.  [para(39(a,1),40(a,1,1,1)),rewrite([70(6)])]. 

83 x v c(c(x) v y) = x.  [para(12(a,1),41(a,1,2,1,2))]. 

87 x v 0 = x.  [para(20(a,1),41(a,1,2,1)),rewrite([39(2)])]. 

90 x v x = x.  [para(39(a,1),41(a,1,2,1,2)),rewrite([13(3),70(4)])]. 

96 x v 1 = 1.  [para(73(a,1),13(a,1)),flip(a)]. 

98 0 v x = x.  [para(87(a,1),13(a,1)),flip(a)]. 

105 x v (x v y) = x v y.  [para(90(a,1),14(a,1,1)),flip(a)]. 

107 x v (y v x) = y v x.  [para(90(a,1),14(a,2,2)),rewrite([13(2)])]. 

111 x v (y v c(y v x)) = 1.  [para(13(a,1),46(a,1,2,2,1))]. 

140 x v c(y v c(x)) = x.  [para(13(a,1),83(a,1,2,1))]. 

143 x v (y v c(c(x) v z)) = y v x.  [para(83(a,1),43(a,1,2)),flip(a)]. 

148 x v (y v (x v z)) = y v (x v z).  [para(105(a,1),14(a,2,2)),rewrite([43(3),14(2)])]. 

151 c(x) v c(y v x) = c(x).  [para(12(a,1),140(a,1,2,1,2))]. 

152 x v (c(y v c(x)) v z) = x v z.  [para(140(a,1),14(a,1,1)),flip(a)]. 

153 x v (y v c(z v c(x v y))) = x v y.  [para(140(a,1),14(a,1)),flip(a)]. 

197 x v c(y v x) != 1 | y v x = x.  

[para(107(a,1),49(a,1,1,1)),rewrite([14(5),20(4),96(4),39(4),13(7),151(7),12(5),98(4),13(

3),13(9),151(9),12(7)]),flip(b)]. 

205 c(x) v (c(y v x) v z) = c(x) v z.  [para(151(a,1),14(a,1,1)),flip(a)]. 

208 c(x v y) v c(x v (z v y)) = c(x v y).  [para(43(a,1),151(a,1,2,1))]. 

483 c(x v y) v c(x v c(c(y) v z)) = c(x v c(c(y) v z)).  

[para(143(a,1),151(a,1,2,1)),rewrite([13(8)])]. 

502 c(x v (y v z)) v (c(y v (x v c(y v z))) v c(c(y v x) v c(y v z))) != 1 | c(c(y v x) v 

c(y v z)) = y v x.  [para(148(a,1),52(a,1,1,1))]. 

528 x v (y v c(c(z v c(x)) v y)) = 1.  

[para(46(a,1),152(a,1,2)),rewrite([96(2)]),flip(a)]. 

620 x v c(x v y) != 1 | y v x = x.  [para(13(a,1),197(a,1,2,1))]. 

2363 c(x) v c(c(y v x) v c(z v x)) = 1.  

[para(528(a,1),205(a,1)),rewrite([12(4)]),flip(a)]. 

2583 x v (y v c(z v c(y v x))) = x v y.  [para(13(a,1),153(a,1,2,2,1,2,1))]. 

3525 x v (y v c(x v c(z v c(x v y)))) = 1.  

[para(66(a,1),2363(a,1,2,1,1,1)),rewrite([12(3),12(3),14(8)])]. 

3984 c(x v y) v c(x v c(z v c(x v y))) = c(x v c(z v c(x v y))).  

[para(153(a,1),208(a,1,2,1)),rewrite([13(9)])]. 

24616 x v c(x v c(c(y) v c(x v c(x v y)))) = 1.  [para(483(a,1),3525(a,1,2))]. 

35661 x v c(c(y) v c(x v c(x v y))) = x.  [hyper(620,a,24616,a),rewrite([13(8)])]. 

35666 x v c(y v c(x v c(x v c(y)))) = x.  [para(12(a,1),35661(a,1,2,1,1))]. 

35725 x v c(x v c(x v y)) = x v y.  

[para(35666(a,1),502(a,1,2,2,1)),rewrite([13(6),66(6),12(4),13(3),2583(6),13(8),66(8),12(

6),13(5),3525(10),39(4),12(6),98(5),13(4),14(4),111(4),13(11),66(11),12(9),13(8),3984(12)

,12(10)]),xx(a)]. 

35726 $F # answer("OMA").  [resolve(35725,a,34,a)]. 

 

============================== end of proof ========================== 

 

 

 
Figure 3.  Summary of a prover9 ([2]) proof of the OMA from Proposition 2.10, for each of i = 4,5.  

The proofs assume the default  inference rules of prover9. The general form of a line in this proof is 

“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, 

and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, 

and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 
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The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.   

 

______________________________________________________________________________________ 

 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 380 

seconds. 

 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  The proofs in Figure 3 are 

symmetric in their dependencies on the 

axioms of QL.  This suggests (but does not 

prove) that the implications determined by i 

= 4, 5 have common "roots" in the axioms. 

Future work will explore this hypothesis. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 1,2,3, and for orthomodular 

lattice theory implies Propositions 2.10i, i = 

1,2,3,4,5 ([23]). 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL. The OMA, it turns out, has strong 

connections to implication in QL.   Here I provide an automated deduction of three implication-based 

equivalents of the OMA from orthomodular lattice theory.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

 The optimization of quantum 

computing circuitry and compilers at some 

level must be expressed in terms of the 

description of quantum-mechanical 

behaviors ([1], [17], [18], [20]).  In much the 

same way that conventional propositional 

(Boolean) logic (BL,[12]) is the logical 

structure of description of the behavior of 

classical physical systems (e.g. “the 

measurements of the position and 

momentum of particle P are commutative”, 

i.e., can be measured in either order, 

yielding the same results) and is isomorphic 

to a Boolean lattice ([10], [11], [19]), so also 

the algebra, C(H), of the closed linear 

subspaces of  (equivalently, the system of 

linear operators on (observables in))  a 

Hilbert space H ([1], [4], [6], [9], [13]) is a 

logic of the descriptions of the behavior of 

quantum mechanical systems (e.g., “the 

measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  The OMA, it turns out, has strong 
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connections to implication in QL, as demonstrated in the following. 

 

______________________________________________________________________________ 

 
Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

 

______________________________________________________________________________ 

 

Consider the following proposition. 

______________________________________________________________________________ 

 

 ((x i y) = 1)     <->   le(x,y) 

 

where i = 1,2,3,4,5. 
 

                                         Figure 2.  Proposition 2.10 

 

_____________________________________________________________ 

Int'l Conf. Foundations of Computer Science |  FCS'12  | 183



 Note that there are five implications 

in QL  (BL has only one).  Proposition 2.10 

is a generalization of the BL definition of 

implication, sometimes denoted 0. 

 

2.0  Method 
 

 The OML axiomatizations of 

Megill, Pavičić, and Horner ([5], [14], [15], 

[16], [21], [22]) were implemented in a 

prover9 ([2]) script ([3]) configured to 

derive Proposition 2.10i, for each of  i = 1, 

2, 3 from orthomodular lattice theory, then 

executed in that framework  on a  Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium /Cygwin operating 

environment. 
 

3.0  Results 

 
 Figure 3 shows the proofs, 

generated by [3] on the platform described 

in Section 2.0, that orthomodular lattice 

theory implies Proposition 2.10i, for each of 

i=1,2,3.  

 

 

_________________________________________________________________________________________ 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 0.08 (+ 0.03) seconds. 

% Length of proof is 44. 

% Level of proof is 8. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i1(x,y) = 1 <-> le(x,y) # label("Proposition 2.10i1") # label(non_clause) # 

label(goal).  [goal]. 

6 x = c(c(x)) # label("AxL1").  [assumption]. 

7 c(c(x)) = x.  [copy(6),flip(a)]. 

8 x v y = y v x # label("AxL2").  [assumption]. 

9 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

11 x v (x ^ y) = x # label("AxL5").  [assumption]. 

12 x ^ (x v y) = x # label("AxL6").  [assumption]. 

13 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

14 c(x) v x = 1 # label("AxOL2").  [assumption]. 

15 x v c(x) = 1.  [copy(14),rewrite([8(2)])]. 

16 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

17 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

18 x v c(x v c(y v x)) = y v x.  [copy(17),rewrite([16(3),7(2)])]. 

20 i1(x,y) = c(x) v (x ^ y) # label("Df: i1").  [assumption]. 

21 i1(x,y) = c(x) v c(c(x) v c(y)).  [copy(20),rewrite([16(3)])]. 

28 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

29 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(28),rewrite([16(2),16(7),7(7),8(9),16(12),7(11),7(11),8(12)])]. 

30 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

31 -le(x,y) | c(c(x) v c(y)) = x.  [copy(30),rewrite([16(2)])]. 

32 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

33 le(x,y) | c(c(x) v c(y)) != x.  [copy(32),rewrite([16(2)])]. 

34 i1(c1,c2) = 1 | le(c1,c2) # label("Proposition 2.10i1").  [deny(3)]. 

35 c(c1) v c(c(c1) v c(c2)) = 1 | le(c1,c2).  [copy(34),rewrite([21(3)])]. 

36 i1(c1,c2) != 1 | -le(c1,c2) # label("Proposition 2.101").  [deny(3)]. 

37 c(c1) v c(c(c1) v c(c2)) != 1 | -le(c1,c2).  [copy(36),rewrite([21(3)])]. 

38 c(1) = 0.  [back_rewrite(13),rewrite([16(2),7(2),15(2)])]. 

39 c(c(x) v c(x v y)) = x.  [back_rewrite(12),rewrite([16(2)])]. 

40 x v c(c(x) v c(y)) = x.  [back_rewrite(11),rewrite([16(1)])]. 

44 x v (c(x) v y) = 1 v y.  [para(15(a,1),9(a,1,1)),flip(a)]. 

54 le(x,y) | c(c(y) v c(x)) != x.  [para(8(a,1),33(b,1,1))]. 

57 c(c1) v c(c(c1) v c(c2)) = 1 | c(c(c1) v c(c2)) = c1.  [resolve(35,b,31,a)]. 

63 c(x) v c(x v y) = c(x).  [para(39(a,1),7(a,1,1)),flip(a)]. 

67 c(0 v c(x)) = x.  [para(15(a,1),39(a,1,1,2,1)),rewrite([38(3),8(3)])]. 

68 c(x v y) v c(x v c(x v y)) = c(x).  

[para(39(a,1),18(a,1,2,1,2)),rewrite([8(5),63(11)])]. 

69 1 v x = 1.  [para(38(a,1),39(a,1,1,1)),rewrite([67(6)])]. 
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73 x v (c(x) v y) = 1.  [back_rewrite(44),rewrite([69(5)])]. 

78 x v 0 = x.  [para(15(a,1),40(a,1,2,1)),rewrite([38(2)])]. 

80 x v x = x.  [para(38(a,1),40(a,1,2,1,2)),rewrite([8(3),67(4)])]. 

91 0 v x = x.  [para(78(a,1),8(a,1)),flip(a)]. 

93 x v (x v y) = x v y.  [para(80(a,1),9(a,1,1)),flip(a)]. 

338 c(c(c1) v c(c2)) = c1.  

[para(57(a,1),29(a,2,1,1)),rewrite([29(17),7(27),93(26),7(27),7(32),73(31),38(26),8(26),9

1(26),8(25),68(25),7(11),38(11),7(19),93(18),7(19),7(24),73(23),38(18),8(18),91(18),91(17

)]),flip(b),merge(b)]. 

339 -le(c1,c2).  [back_rewrite(37),rewrite([338(8),8(4),15(4)]),xx(a)]. 

340 $F.  [ur(54,a,339,a),rewrite([8(5),338(6)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 2.32 (+ 0.08) seconds. 

% Length of proof is 35. 

% Level of proof is 8. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i2(x,y) = 1 <-> le(x,y) # label("Proposition 2.10i2") # label(non_clause) # 

label(goal).  [goal]. 

6 x = c(c(x)) # label("AxL1").  [assumption]. 

7 c(c(x)) = x.  [copy(6),flip(a)]. 

8 x v y = y v x # label("AxL2").  [assumption]. 

11 x v (x ^ y) = x # label("AxL5").  [assumption]. 

12 x ^ (x v y) = x # label("AxL6").  [assumption]. 

13 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

14 c(x) v x = 1 # label("AxOL2").  [assumption]. 

15 x v c(x) = 1.  [copy(14),rewrite([8(2)])]. 

16 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

17 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

18 x v c(x v c(y v x)) = y v x.  [copy(17),rewrite([16(3),7(2)])]. 

22 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

23 i2(x,y) = y v c(y v x).  [copy(22),rewrite([7(3),16(4),7(3),7(3)])]. 

30 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

31 -le(x,y) | c(c(x) v c(y)) = x.  [copy(30),rewrite([16(2)])]. 

32 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

33 le(x,y) | c(c(x) v c(y)) != x.  [copy(32),rewrite([16(2)])]. 

34 i2(c1,c2) = 1 | le(c1,c2) # label("Proposition 2.10i2").  [deny(3)]. 

35 c2 v c(c1 v c2) = 1 | le(c1,c2).  [copy(34),rewrite([23(3),8(4)])]. 

36 i2(c1,c2) != 1 | -le(c1,c2) # label("Proposition 2.10i2").  [deny(3)]. 

37 c2 v c(c1 v c2) != 1 | -le(c1,c2).  [copy(36),rewrite([23(3),8(4)])]. 

38 c(1) = 0.  [back_rewrite(13),rewrite([16(2),7(2),15(2)])]. 

39 c(c(x) v c(x v y)) = x.  [back_rewrite(12),rewrite([16(2)])]. 

40 x v c(c(x) v c(y)) = x.  [back_rewrite(11),rewrite([16(1)])]. 

57 c2 v c(c1 v c2) = 1 | c(c(c1) v c(c2)) = c1.  [resolve(35,b,31,a)]. 

62 le(x,x v y).  [resolve(39,a,33,b)]. 

78 x v 0 = x.  [para(15(a,1),40(a,1,2,1)),rewrite([38(2)])]. 

79 x v c(y v c(x)) = x.  [para(18(a,1),40(a,1,2,1))]. 

91 0 v x = x.  [para(78(a,1),8(a,1)),flip(a)]. 

362 c2 v c(c1 v c2) = 1 | c1 v c2 = c2.  [para(57(b,1),79(a,1,2)),rewrite([8(11)])]. 

6823 c1 v c2 = c2.  

[para(362(a,1),18(a,1,2,1)),rewrite([38(8),8(8),91(8)]),flip(b),merge(b)]. 

6824 -le(c1,c2).  [back_rewrite(37),rewrite([6823(4),15(4)]),xx(a)]. 

6828 $F.  [para(6823(a,1),62(a,2)),unit_del(a,6824)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 8.81 (+ 0.12) seconds. 

% Length of proof is 50. 

% Level of proof is 9. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  [assumption]. 

3 i3(x,y) = 1 <-> le(x,y) # label("Proposition 2.10i3") # label(non_clause) # 

label(goal).  [goal]. 
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6 x = c(c(x)) # label("AxL1").  [assumption]. 

7 c(c(x)) = x.  [copy(6),flip(a)]. 

8 x v y = y v x # label("AxL2").  [assumption]. 

9 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

11 x v (x ^ y) = x # label("AxL5").  [assumption]. 

12 x ^ (x v y) = x # label("AxL6").  [assumption]. 

13 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

14 c(x) v x = 1 # label("AxOL2").  [assumption]. 

15 x v c(x) = 1.  [copy(14),rewrite([8(2)])]. 

16 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

17 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

18 x v c(x v c(y v x)) = y v x.  [copy(17),rewrite([16(3),7(2)])]. 

24 i3(x,y) = ((c(x) ^ y) v (c(x) ^ c(y))) v (c(x) v (x ^ y)) # label("Df: i3").  

[assumption]. 

25 i3(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).  

[copy(24),rewrite([16(3),7(3),16(7),7(6),7(6),8(7),16(9),9(14)])]. 

28 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  [assumption]. 

29 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(28),rewrite([16(2),16(7),7(7),8(9),16(12),7(11),7(11),8(12)])]. 

30 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

31 -le(x,y) | c(c(x) v c(y)) = x.  [copy(30),rewrite([16(2)])]. 

32 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

33 le(x,y) | c(c(x) v c(y)) != x.  [copy(32),rewrite([16(2)])]. 

34 i3(c1,c2) = 1 | le(c1,c2) # label("Proposition 2.10i3").  [deny(3)]. 

35 c(c1 v c2) v (c(c1 v c(c2)) v (c(c1) v c(c(c1) v c(c2)))) = 1 | le(c1,c2).  

[copy(34),rewrite([25(3)])]. 

36 i3(c1,c2) != 1 | -le(c1,c2) # label("Proposition 2.10i3").  [deny(3)]. 

37 c(c1 v c2) v (c(c1 v c(c2)) v (c(c1) v c(c(c1) v c(c2)))) != 1 | -le(c1,c2).  

[copy(36),rewrite([25(3)])]. 

38 c(1) = 0.  [back_rewrite(13),rewrite([16(2),7(2),15(2)])]. 

39 c(c(x) v c(x v y)) = x.  [back_rewrite(12),rewrite([16(2)])]. 

40 x v c(c(x) v c(y)) = x.  [back_rewrite(11),rewrite([16(1)])]. 

42 x v (y v z) = y v (x v z).  [para(8(a,1),9(a,1,1)),rewrite([9(2)])]. 

43 c(c1) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) != 1 | -le(c1,c2).  

[back_rewrite(37),rewrite([42(19),42(20)])]. 

44 c(c1) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | le(c1,c2).  

[back_rewrite(35),rewrite([42(19),42(20)])]. 

46 x v (c(x) v y) = 1 v y.  [para(15(a,1),9(a,1,1)),flip(a)]. 

56 le(x,y) | c(c(y) v c(x)) != x.  [para(8(a,1),33(b,1,1))]. 

64 c(x) v c(x v y) = c(x).  [para(39(a,1),7(a,1,1)),flip(a)]. 

68 c(0 v c(x)) = x.  [para(15(a,1),39(a,1,1,2,1)),rewrite([38(3),8(3)])]. 

69 c(x v y) v c(x v c(x v y)) = c(x).  

[para(39(a,1),18(a,1,2,1,2)),rewrite([8(5),64(11)])]. 

70 1 v x = 1.  [para(38(a,1),39(a,1,1,1)),rewrite([68(6)])]. 

74 x v (c(x) v y) = 1.  [back_rewrite(46),rewrite([70(5)])]. 

79 x v 0 = x.  [para(15(a,1),40(a,1,2,1)),rewrite([38(2)])]. 

81 x v x = x.  [para(38(a,1),40(a,1,2,1,2)),rewrite([8(3),68(4)])]. 

90 c(c1) v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | c(c(c1) v c(c2)) = c1.  

[resolve(44,b,31,a)]. 

93 0 v x = x.  [para(79(a,1),8(a,1)),flip(a)]. 

95 x v (x v y) = x v y.  [para(81(a,1),9(a,1,1)),flip(a)]. 

336 c(x) v (c(x v y) v z) = c(x) v z.  [para(64(a,1),9(a,1,1)),flip(a)]. 

347 c(c1) v c(c(c1) v c(c2)) = 1 | c(c(c1) v c(c2)) = c1.  

[back_rewrite(90),rewrite([336(20),336(15)])]. 

350 c(c1) v c(c(c1) v c(c2)) != 1 | -le(c1,c2).  

[back_rewrite(43),rewrite([336(20),336(15)])]. 

20075 c(c(c1) v c(c2)) = c1.  

[para(347(a,1),29(a,2,1,1)),rewrite([29(17),7(27),95(26),7(27),7(32),74(31),38(26),8(26),

93(26),8(25),69(25),7(11),38(11),7(19),95(18),7(19),7(24),74(23),38(18),8(18),93(18),93(1

7)]),flip(b),merge(b)]. 

20076 -le(c1,c2).  [back_rewrite(350),rewrite([20075(8),8(4),15(4)]),xx(a)]. 

20077 $F.  [ur(56,a,20076,a),rewrite([8(5),20075(6)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

 

Figure 3.  Summary of a prover9 ([2]) proof of Proposition 2.10i, for each of i = 1,2,3 from 

orthomodular lattice theory.  The proofs assume the default  inference rules of prover9. The general 
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form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique 

identifier of a line in the proof, and conclusion is the result of applying the prover9 inference rules 

(such as paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), 

to the lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

______________________________________________________________________________________ 

 

The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 11 

seconds. 

 

 

4.0  Discussion 
 

 The results of Section 3.0  motivate 

several observations: 

 

 1.  The proofs in Figure 3 for i=1 

and i=3 use L1, L2, L3, L5, L6, OL1, OL2, 

and OL3.  In contrast, the proof for i=2 uses 

L1, L2, L5, L6, OL1, OL2, and OL3.    This 

suggests (but does not prove)  that 

Proposition 2.10, for i = 1,2,  may have 

axiomatic bases that are more closely related 

to each other than they are to the axiomatic 

basis for i = 3.  Future work will explore this 

hypothesis. 

 

 2.  The proofs in Section 3.0 may be 

novel. 

 

 3.  Companion papers provide 

proofs for i = 4, 5, and for Propositions 

2.10i, i = 1,2,3,4,5, imply the OMA ([23]). 
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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA 

as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its 

equivalents are required in an adequate characterization of QL.  The OMA, it turns out, has strong 

connections to implication in QL.   Here I provide automated deductions  of two quantum-implication-

based equivalents of the OMA from orthomodular lattice theory.  The proofs may be novel. 

 

Keywords:  automated deduction, quantum computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

 The optimization of quantum 

computing circuitry and compilers at some 

level must be expressed in terms of the 

description of quantum-mechanical 

behaviors ([1], [17], [18], [20]).  In much the 

same way that conventional propositional 

(Boolean) logic (BL,[12]) is the logical 

structure of description of the behavior of 

classical physical systems (e.g. “the 

measurements of the position and 

momentum of particle P are commutative”, 

i.e., can be measured in either order, 

yielding the same results) and is isomorphic 

to a Boolean lattice ([10], [11], [19]), so also 

the algebra, C(H), of the closed linear 

subspaces of  (equivalently, the system of 

linear operators on (observables in))  a 

Hilbert space H ([1], [4], [6], [9], [13]) is a 

logic of the descriptions of the behavior of 

quantum mechanical systems (e.g., “the 

measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [4], [7]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.  The OMA, it turns out, has strong 
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connections to implication in QL, as demonstrated in the following. 

 

______________________________________________________________________________ 

 
Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (OMA)  

 

Definitions of implications and partial order 

   i1(x,y) = c(x) v (x ^ y). 

   i2(x,y) = i1(c(y), c(x). 

   i3(x,y) = (c(x) ^ y) v (c(x) ^ c(y)) v i1(x,y). 

   i4(x,y) = i3(c(y), c(x)). 

   i5(x,y) = (x ^ y) v (c(x) ^ y) v (c(x) ^ c(y)).                  

   le(x,y) = (x = (x ^ y)). 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   i1(x,y) means x 1 y (Sasaki implication) 

   i2(x,y) means x 2 y (Dishkant implication) 

   i3(x,y) means x 3 y (Kalmbach implication) 

   i4(x,y) means x 4 y (non-tollens implication) 

   i5(x,y) means x 5 y (relevance implication) 

   le(x,y) means x ≤ y 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  orthomodularity axioms, and some definitions. 

______________________________________________________________________________ 

 

Consider the proposition shown in Figure 2: 

 

______________________________________________________________________________ 

 ((x i y) = 1)     <->   le(x,y) 

 

where i = 1,2,3,4,5. 
 

                                         Figure 2.  Proposition 2.10 

______________________________________________________________________________ 

 
Note that there are five implications in QL (there is only one in BL).  Proposition 2.10 can be 

regarded as a generalization of the BL definition of implication, sometimes denoted 0. 
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2.0  Method 
 

 The OML axiomatizations of 

Megill, Pavičić, and Horner ([5], [14], [15], 

[16], [21], [22]) were implemented in a 

prover9 ([2]) script ([3]) configured to 

derive Proposition 2.10i, for each of  i = 4,5  

from  orthomodular lattice theory ,then 

executed in that framework  on a  Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium /Cygwin operating 

environment. 
 

3.0  Results 

 
 Figure 3 shows the proofs, 

generated by [3] on the platform described 

in Section 2.0, that orthomodular lattice 

theory implies Proposition 2.10i, for each of 

i=4,5.  

 
============================== PROOF ================================= 

 

% Proof 1 at 6.52 (+ 0.22) seconds. 

% Length of proof is 43. 

% Level of proof is 9. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  

[assumption]. 

3 i4(x,y) = 1 <-> le(x,y) # label("Proposition 2.10i4") # label(non_clause) # 

label(goal).  [goal]. 

6 x = c(c(x)) # label("AxL1").  [assumption]. 

7 c(c(x)) = x.  [copy(6),flip(a)]. 

8 x v y = y v x # label("AxL2").  [assumption]. 

9 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

11 x v (x ^ y) = x # label("AxL5").  [assumption]. 

12 x ^ (x v y) = x # label("AxL6").  [assumption]. 

13 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

14 c(x) v x = 1 # label("AxOL2").  [assumption]. 

15 x v c(x) = 1.  [copy(14),rewrite([8(2)])]. 

16 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

17 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

18 x v c(x v c(y v x)) = y v x.  [copy(17),rewrite([16(3),7(2)])]. 

22 i2(x,y) = c(c(y)) v (c(y) ^ c(x)) # label("Df: i2").  [assumption]. 

23 i2(x,y) = y v c(y v x).  [copy(22),rewrite([7(3),16(4),7(3),7(3)])]. 

26 i4(x,y) = ((c(c(y)) ^ c(x)) v (c(c(y)) ^ c(c(x)))) v (c(c(y)) v (c(y) ^ 

c(x))) # label("Df: i4").  [assumption]. 

27 i4(x,y) = y v (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).  

[copy(26),rewrite([7(3),16(3),7(4),7(6),7(6),16(5),7(11),16(12),7(11),7(11),8(1

3),9(13)])]. 

30 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

31 -le(x,y) | c(c(x) v c(y)) = x.  [copy(30),rewrite([16(2)])]. 

32 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

33 le(x,y) | c(c(x) v c(y)) != x.  [copy(32),rewrite([16(2)])]. 

34 i4(c1,c2) = 1 | le(c1,c2) # label("Proposition 2.10i4").  [deny(3)]. 

35 c2 v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | le(c1,c2).  

[copy(34),rewrite([27(3),8(4),8(9),8(15)])]. 

36 i4(c1,c2) != 1 | -le(c1,c2) # label("Proposition 2.10i4").  [deny(3)]. 

37 c2 v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) != 1 | -le(c1,c2).  

[copy(36),rewrite([27(3),8(4),8(9),8(15)])]. 

38 c(1) = 0.  [back_rewrite(13),rewrite([16(2),7(2),15(2)])]. 

39 c(c(x) v c(x v y)) = x.  [back_rewrite(12),rewrite([16(2)])]. 

40 x v c(c(x) v c(y)) = x.  [back_rewrite(11),rewrite([16(1)])]. 

42 x v (y v z) = y v (x v z).  [para(8(a,1),9(a,1,1)),rewrite([9(2)])]. 
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57 c2 v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2)))) = 1 | c(c(c1) v 

c(c2)) = c1.  [resolve(35,b,31,a)]. 

62 le(x,x v y).  [resolve(39,a,33,b)]. 

78 x v 0 = x.  [para(15(a,1),40(a,1,2,1)),rewrite([38(2)])]. 

79 x v c(y v c(x)) = x.  [para(18(a,1),40(a,1,2,1))]. 

91 0 v x = x.  [para(78(a,1),8(a,1)),flip(a)]. 

196 x v (c(y v c(x)) v z) = x v z.  [para(79(a,1),9(a,1,1)),flip(a)]. 

336 c(c(c1) v c(c2)) = c1 | c2 v c(c2 v (c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) 

v c(c2))))) = c2.  

[para(57(a,1),23(a,2,2,1)),rewrite([23(27),38(33),8(33),91(33)])]. 

4403 x v (y v (c(z v c(x)) v u)) = y v (x v u).  

[para(196(a,1),42(a,1,2)),flip(a)]. 

4550 c(c(c1) v c(c2)) = c1 | c1 v c2 = c2.  

[back_rewrite(336),rewrite([4403(28),79(21),8(15),18(17)])]. 

4552 c2 v c(c1 v c2) != 1 | -le(c1,c2).  

[back_rewrite(37),rewrite([4403(19),79(12),8(6)])]. 

16868 c1 v c2 = c2.  [para(4550(a,1),79(a,1,2)),rewrite([8(8)]),merge(b)]. 

16869 -le(c1,c2).  [back_rewrite(4552),rewrite([16868(4),15(4)]),xx(a)]. 

16876 $F.  [para(16868(a,1),62(a,2)),unit_del(a,16869)]. 

 

============================== end of proof ========================== 

 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 95.86 (+ 1.70) seconds. 

% Length of proof is 50. 

% Level of proof is 10. 

 

1 le(x,y) <-> x = x ^ y # label("Df: less than") # label(non_clause).  

[assumption]. 

3 i5(x,y) = 1 <-> le(x,y) # label("Proposition 2.10i5") # label(non_clause) # 

label(goal).  [goal]. 

6 x = c(c(x)) # label("AxL1").  [assumption]. 

7 c(c(x)) = x.  [copy(6),flip(a)]. 

8 x v y = y v x # label("AxL2").  [assumption]. 

9 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

11 x v (x ^ y) = x # label("AxL5").  [assumption]. 

12 x ^ (x v y) = x # label("AxL6").  [assumption]. 

13 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

14 c(x) v x = 1 # label("AxOL2").  [assumption]. 

15 x v c(x) = 1.  [copy(14),rewrite([8(2)])]. 

16 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

17 x v (c(x) ^ (y v x)) = y v x # label("OMA").  [assumption]. 

18 x v c(x v c(y v x)) = y v x.  [copy(17),rewrite([16(3),7(2)])]. 

28 i5(x,y) = ((x ^ y) v (c(x) ^ y)) v (c(x) ^ c(y)) # label("Df: i5").  

[assumption]. 

29 i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).  

[copy(28),rewrite([16(2),16(7),7(7),8(9),16(12),7(11),7(11),8(12)])]. 

30 -le(x,y) | x ^ y = x # label("Df: less than").  [clausify(1)]. 

31 -le(x,y) | c(c(x) v c(y)) = x.  [copy(30),rewrite([16(2)])]. 

32 le(x,y) | x ^ y != x # label("Df: less than").  [clausify(1)]. 

33 le(x,y) | c(c(x) v c(y)) != x.  [copy(32),rewrite([16(2)])]. 

34 i5(c1,c2) = 1 | le(c1,c2) # label("Proposition 2.10i5").  [deny(3)]. 

35 c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) = 1 | le(c1,c2).  

[copy(34),rewrite([29(3)])]. 

36 i5(c1,c2) != 1 | -le(c1,c2) # label("Proposition 2.10i5").  [deny(3)]. 

37 c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) != 1 | -le(c1,c2).  

[copy(36),rewrite([29(3)])]. 

38 c(1) = 0.  [back_rewrite(13),rewrite([16(2),7(2),15(2)])]. 

39 c(c(x) v c(x v y)) = x.  [back_rewrite(12),rewrite([16(2)])]. 

40 x v c(c(x) v c(y)) = x.  [back_rewrite(11),rewrite([16(1)])]. 
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42 x v (y v z) = y v (x v z).  [para(8(a,1),9(a,1,1)),rewrite([9(2)])]. 

46 x v c(x v c(x v y)) = y v x.  [para(8(a,1),18(a,1,2,1,2,1))]. 

48 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).  

[para(18(a,1),9(a,1)),rewrite([9(7)]),flip(a)]. 

57 c(c1 v c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) = 1 | c(c(c1) v c(c2)) = c1.  

[resolve(35,b,31,a)]. 

62 le(x,x v y).  [resolve(39,a,33,b)]. 

63 c(x) v c(x v y) = c(x).  [para(39(a,1),7(a,1,1)),flip(a)]. 

67 c(0 v c(x)) = x.  [para(15(a,1),39(a,1,1,2,1)),rewrite([38(3),8(3)])]. 

69 1 v x = 1.  [para(38(a,1),39(a,1,1,1)),rewrite([67(6)])]. 

78 x v 0 = x.  [para(15(a,1),40(a,1,2,1)),rewrite([38(2)])]. 

79 x v c(y v c(x)) = x.  [para(18(a,1),40(a,1,2,1))]. 

83 x v (y v c(x v c(z v x))) = y v (z v x).  [para(18(a,1),42(a,1,2)),flip(a)]. 

91 0 v x = x.  [para(78(a,1),8(a,1)),flip(a)]. 

196 x v (c(y v c(x)) v z) = x v z.  [para(79(a,1),9(a,1,1)),flip(a)]. 

204 c(x v c(y)) v (z v y) = z v y.  

[para(79(a,1),48(a,1,2,2,1,2,2,1,2)),rewrite([196(10),83(9),79(9)])]. 

334 c(c(c1) v c(c2)) = c1 | c(c1 v c2) v (c(c1 v c(c2)) v (c(c(c1) v c(c2)) v 

x)) = 1.  [para(57(a,1),9(a,1,1)),rewrite([69(10),9(26)]),flip(b)]. 

18704 c(c(c1) v c(c2)) = c1 | c2 v c(c1 v c2) = 1.  

[para(204(a,1),334(b,1,2)),rewrite([8(20),79(20),8(14)])]. 

75845 c2 v c(c1 v c2) = 1 | c1 v c2 = c2.  

[para(18704(a,1),79(a,1,2)),rewrite([8(11)])]. 

76052 c1 v c2 = c2.  

[para(75845(a,1),18(a,1,2,1)),rewrite([38(8),8(8),91(8)]),flip(b),merge(b)]. 

76053 c(c2) v (c(c1 v c(c2)) v c(c(c1) v c(c2))) != 1 | -le(c1,c2).  

[back_rewrite(37),rewrite([76052(3)])]. 

76058 le(c1,c2).  [para(76052(a,1),62(a,2))]. 

76059 c1 v c(c1 v c(c2)) = c2.  

[para(76052(a,1),46(a,1,2,1,2,1)),rewrite([8(10),76052(10)])]. 

76068 c(c1) v c(c2) = c(c1).  [para(76052(a,1),63(a,1,2,1))]. 

76662 $F.  

[back_unit_del(76053),rewrite([76068(12),7(10),8(9),76059(9),8(4),15(4)]),xx(a)

,unit_del(a,76058)]. 

 

============================== end of proof ========================== 

 

 

Figure 3.  Summary of a prover9 ([2]) derivations of Proposition 2.10i for each i = 4,5, from 

orthomodular lattice theory.  The proofs assume the default  inference rules of prover9. The general 

form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique 

identifier of a line in the proof, and conclusion is the result of applying the prover9 inference rules 

(such as paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation), 

to the lines cited in those brackets.  Note that some of “logical” proof lines in the above have been 

transformed to two text lines, with the derivation appearing on a text line following a text line 

containing the first part of that logical line. The detailed syntax and semantics of these notations can 

be found in [2].  All prover9 proofs are by default proofs by contradiction.   

 

______________________________________________________________________________________ 

 

 

 The total time to produce the 

proofs in Figure 3 on the platform 

described in Section 2.0 was 

approximately 110 seconds. 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

 1.  Both proofs in Figure 3 use L1, 

L2, L3, L5, L6, OL1, OL2, and OL3.    This 

suggests (but does not prove) that the 

implications defined by i = 4, 5 share an 
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axiomatic basis.  Future work will 

investigate this suggestion. 

 2.  The proofs in Section 3.0 may be 

novel. 

 3.  Companion papers provide 

proofs for i = 1,2,3, and for the claim that 

"Propositions 2.10i, i = 1,2,3,4,5, imply the 

OMA" ([23]). 
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Abstract - This paper augments the Language of Effective 

Definitions (LED) with a static type system, supporting prenex 

polymorphism, but not user-defined types. The semantics of 

LED are recast in the framework of small-step reduction rule 

semantics to facilitate the type safety argument. The main 

theorem of this paper is type safety for the augmented system. 
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Language 

 

1 Introduction 

  The Language of Effective Definitions (LED) was 

introduced in [1], as a formal language for defining 

computable functions and predicates. The objectives of the 

language are (1) that it be definable in just a few pages, (2) 

that it have precise formal semantics, and (3) that its 

definitions resemble informal mathematical definitions as 

closely as possible.  

 A type system has been introduced for LED which 

permits function overloading, together with and an algorithm 

for certifying that overloading does not introduce ambiguities 

[2]. We conjectured that the algorithm is sound in the sense it 

never certifies a program in which ambiguities actually occur, 

and complete in the sense that if the algorithm fails then 

ambiguities do exist in the program; but we have only proven 

the algorithm to be sound.  

 In this paper we present a type system for LED that is 

safe, meaning that well typed programs cannot encounter type 

errors during execution. In order to use the standard method 

for establishing this, known as the syntactic approach[3], the 

semantics of LED are recast here in the form of a small-step 

reduction system. The reduction rules may be applied 

nondeterministically, and so the same safety theorem already 

applies when using a variety of optimized algorithms for 

evaluation (optimized, in particular, by making clever choices 

of how to resolve the nondeterminism). The paper is 

organized as follows: Section 2 defines syntax, Section 3 

gives semantics, Section 4 gives the type system, section 5 is 

the type safety argument. 

  

2 Abstract Syntax 

A symbol is a string of non-white-space characters not 

beginning with a digit and not containing parentheses or single 

quotes (‘). 

 

A reserved symbol is any of the following identifiers: def 
lambda branch if set tuple error.  

 

A built-in function symbol is any of the following:  ^ * / 
mod + - = < > <= >= in and intersect or 

union \ card. 

 

A digit string is a string of one or more digits. 

 

A numeral is either a digit string or a digit string preceded by 

a minus sign (–).  

 

An atom is an arbitrary sequence of printable characters 

enclosed by double quotes (‘).  

 

A constant is a built-in function symbol, a numeral, or an 

atom. 

 

The expressions of LED have the following (abstract) syntax: 

 

 e ::=  c 

  |  a 

  |  (e1 … en)  

  |  (set e … e)  

       |  (tuple e … e) 

  |  (lambda (a… a)  e) 

  |  (branch  (if e e) … (if e e)) 

  |  error 

 

where c and a are non-terminals representing arbitrary 

constants, and symbols respectively. 

 

 A lambda abstraction is an expression of the form  

(lambda (x1 … xn)  e), where x1 … xn are symbols, and e is 

an expression.  The symbols x1 … xn are the parameters of  

(lambda (x1 … xn) e), and are bound in (lambda (x1 … xn) 

e).  A symbol that is not bound is free.  FV(e) is the set of 

symbols that occur free in expression e.  An expression with 

no free variables is closed.  The abstraction (lambda (x1 … 

xn) e) is well-formed if the symbols x1…xn are pairwise 
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distinct.  We restrict our attention to expression containing 

only well-formed lambda abstractions. 

 

 A function definition is an expression of the form, (def 

(f x1…xn) e) where n  0, f is a symbol, x1…xn are symbols, 

and e is an expression.  The symbol f is the defined function 

symbol of the function definition, and e is called the body of 

the function definition.  The symbols x1…xn are its parameters 

and bound within the function definition.  A symbol definition 

is an expression of the form, (def g e) where n  0, g is a 

symbol, x1…xn are symbols, and e is an expression.  The 

symbol g is the defined symbol of the symbol definition. The 

expression e is called the body of the symbol definition.  A 

program is a set of definitions, and a definition which is an 

element of program P is called a definition of P.  The defined 

function symbols of P and the defined symbols of P may be 

called, collectively, the defined symbols of P.  Given a 

program P, an expression e is P-closed if FV(e) contains only 

defined symbols of P.  A program is well-formed if  no 

defined symbol of P occurs as a parameter in P, and every 

body of every definition is P-closed. 

  

  

 

3 Semantics 

 

 Before the reduction rules are detailed, some preliminary 

definitions must be given.  A set literal is an expression of the 

form (set v1 … vn) where v1 … vn are values.  A tuple literal 

takes the form (tuple v1 … vn) where n>1 and v1 … vn are 

values.  A value is a constant, symbol, set literal, tuple literal, 

or lambda abstraction.  An answer is either a value or the 

reserved symbol error.  Given a program P, a P-value is a 

value or defined function symbol of P.  For the remainder of 

this paper let P be a fixed program. The meta-variables 

e,e1,e2,… will vary over expressions; v,v1,v2,… will vary over 

values; x,x1,… will vary over symbols; n,n1,n2,… will vary 

over numerals; s,s1,s2,… will vary over set literals, and Op will 

vary over built-in function symbols. 

 

 A substitution is a finite set of pairs (x, e) where x is a 

variable symbol and e is an expression, such that no variable 

occurs as the first coordinate of more than one such pair. If e 

is an expression and S is a substitution, then e[S] denotes the 

expression obtained from e by replacing all free occurrences 

of x with g whenever (x,g)  S. The substitution of e for x in p 

is safe if no free occurrence of a variable in e becomes bound 

when it is substituted for x in p. All substitutions described in 

the semantics are presumed to be safe, by renaming variables 

whenever necessary.  The capture avoiding substitution of P-

closed expression e1 for P-closed expression e2 in expression 

e is written e[e1:=e2] is defined similar to the ‘regular’ 

substitution used to replace free variables with values.  

 

  

 The semantics below are based upon an operational 

formulation of the language’s semantics by term rewriting,. 

The reduction relation is a binary relation over closed 

expressions e1 and e2, written e1⇒e2.  We say “e1 reduces to 

e2” if e1⇒e2 is the conclusion of a deduction constructed 

according to the inference rules below. Let ⇒* be the 

reflexive and transitive closure of ⇒.  For each program P, the 

partial function evalP is defined from closed expressions to 

values so that the following holds:  

(eval)                          evalP(e) = v iff e⇒*v 

 The relationship between the semantics given in the 

section and the semantics given in [1] described by the 

following conjecture.  

 

Soundness:  Given well-formed program P,   

 if evalP(e)=v then e denotes v under P. 

 

Where the precise meaning of “denotes under P” is given in 

[1].  It is straightforward to see the definition of value given 

earlier in the section corresponds to the definition of  datum in 

[1], ie. each builtin function symbol, numeral, atom, set 

literal, and tuple literal corresponds to a datum. 

 As in [1], builtin function symbols are only meaningful if 

applied to appropriate arguments, ie. (/ 1 0) is application of 

‘/’ to erroneous arguments.  The denotation rules in [1], place 

these restrictions in each semantic rule. Here we specify the 

relation Defined((Op v1 … vn)), which essentially collects all 

of the conditions under which an application of a built-in 

function symbol to values v1,…,vn is meaningful. 

 

 Defined((Op n1 n2)  if  Op ∊ {+,-,*+, -, *, ^, < >, <=, >=} 

 Defined((^ n1 n2)) if n1 is zero implies n2 is nonnegative 

 Defined((Op n1 n2)) if Op in {/,mod} and n is not 0  

 Defined((Op v1 v2)) if Op in {and, or} and v1,v2 in {true, 

false} 

 Defined((not v1)) if v1 in {true,false} 

 Defined((in v1 s2)) 

 Defined((Op s1 s2)) if Op in {union, intersect, setminus}, 

 Defined((card s1)) 

 Defined((= v v2)) 

 

 A built-in redex is an application of a built-in function 

symbol to a sequence of values, eg. (+ 1 2), and (not false), 

and (union (set 1 2) (set 3)). The partial function δ from built-

in redexes to values, and Defined must satisfy the following 

correctness condition: 

 If Defined((Op v1 …vn)) then there is some value v such 

that  δ( (Op v1 …vn) ) = v and "(Op v1 ..vn) denotes v"  
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Reduction rules 

[Delta] 

(Op v1 … vn) ⇒ δ(Op v1 … vn)   if Defined(Op, v1, …, vn) 

(Op v1 … vn) ⇒ error             otherwise 

Data Structures.  

[set]   (set e1 … en) ⇒ (set e1 … en)[ei:=e]         (for 

expressions e e1 ... en  where some 1≤i≤n ei⇒e) 

[tuple]   (tuple e1 … en) ⇒ (tuple e1 … en)[ei:=e]     (for 

expressions e e1 ... en  where some 1≤i≤n ei⇒e ) 

 

Application 

[app]        (e1 … en) ⇒ (e1 … en) [ei:=e]  if ei ⇒ e      (for 

expressions e1 ... en  where some 1≤i≤n ei⇒e) 

 

Beta reduction 

[β]  ((lambda (x1 … xn) e) v1 … vn) ⇒ e[{(x1,v1),…, (xn,vn)}]    

(for symbols x1 … xn, and  expressions e, values v1 … vn ) 

 

Defined function 

[deffun]   (a v2…vn) ⇒ e[{(x2,v2),…,(xn,vn)}]        (for 

(def  (a  x2…xn)  e) in P and values v2… vn)  

[defsym]   a ⇒ e         (for (def  a e) in P) 

 

Branch 

[branchT]  (branch (if v1 e1)…(if vn en)) ⇒ ei     (for values 

v1… vn, expression e1 … en such that some 1≤i≤n gi=true) 

[branchF]  (branch  (if false e1)…(if false en)) ⇒ error (for 

expressions e1…en)   

[branchG] (branch  (if g1 e1)…(if gn en))  ⇒ (branch (if g1 

e1)…(if gn en))[gi:=g]  (for expressions g1…gn and e1… en 

where some 1≤i≤n  gi⇒g)    

 

Error propagation 

(a1 … an) ⇒  error  (for answers a1 … an where some 1≤i≤n 

ai=error) 

(branch (if g1 e1)…(if gn en))  ⇒  error       (for 

expressions g1…gn and e1… en where some 1≤i≤n gi=error) 

(tuple e1 … en )  ⇒  error (for expressions e1… en where 

some 1≤i≤n  ei=error) 

(set  e1 … en )  ⇒  error  (for expressions e1… en where 

some 1≤i≤n  ei=error) 

  

4 Type System 

 

 Before introducing the inference system that assigns an 

expression a particular type, we must define the type language. 

Each sort of value has a different type, so the type language 

has simple types as well as compound types.  For example, the 

type of the successor function (lambda (x).x+1) is 

int→int. In the same way the identity function (lambda 

(x).x)  for integers has type int→int, but for booleans it 

has type bool→bool. It is clear that the identity function 

may be defined without taking into account the type of its 

parameter. To express this abstraction of the type of the 

parameter, the type variable α, is bound by a quantifier, so the 

type of the polymorphic identity function is all α.α→α.  

Similarly, the types of (set 1 2) and (tuple 1 2) are 

{int} and int×int, respectively. 

 

The type language contains two syntactic categories, types and 

type schemas. 

 

Types:  a type τ is either 

 1. one of the scalar types: int, bool, atom,              

  2. a type variable α, 

  3. a function type, τ1→τ2, where τ1 and τ2 are types, 

  4. a tuple type, τ1×…×τn, where n>1 and each τi is a      

type, 

  5. a set type, {τ}, where τ is a type. 

   

Type schemas: a type scheme σ is either 

 1.  a type τ, 

 2.  a polymorphic type σ = all α1…αn.τ  where τ is a 

type, and α1…αn are distinct type variables. 

 

 Type variables α1…αn are bound in (all α1…αn.τ), 

variables that are not bound are free.  We will write FTV(σ) 

and BTV(σ) for the sets of free and bound variables of a type 

scheme σ.  A type schema σ1 is called an instance of a type 

scheme σ2, if there exists a substitution S of types for free type 

variables such that σ1 = σ2[S].  Instantiation acts on free 

variables: if S is written [αi↦τi] with αi∊ FTV(σ) then σ[S] is 

obtained by replacing every free occurrence of αi with τi 

(renaming the bound variable in σ if necessary). The domain 

of S is written domain(S).  

 

 The type scheme σ1 has a generic instance σ2, written σ 1 

≻ σ2, if  there exists substitution S such that τ2= τ1[S]  where 

domain(S) ⊆ {α1,...,αn}, and {β1,...,βm } ∩ FTV(σ1) = ∅  

when σ1= (all α1...αn.τ1) , and σ2= (all β1...βm.τ2), and 

 τ1 = τ2 when σ1 and σ2 are types instead of polymorphic types. 
 

Examples of generic instance. 

 α ≻ α 
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 int×bool  ≻ int×bool 

 all α.α→α  ≻ int→int  
 all α1 α2.α1→α2 ≻ int→bool 
 all α.α→α ≻ α1→α1 

 all α1 α2.α1→α2 ≻ all β.β→α 

 

 Intuitively, the type of an expression containing  

symbols, either defined or variable, depends on context in 

which the expression appears. This contextual information is 

represented in the type environment, Г.  A type environment is 

a finite mapping from symbols to type schemes, written 

{x1↦σ1,…,xn↦σn}.  Given symbol x type scheme σ and type 

environment Г, the update of Г with x↦σ, written x↦σ ∙Г,  is a 

type environment gotten by updating Г to now associate x with 

σ, so that Г(x)=σ .  The free type variables, written FTV(Г), of 

a type environment Г are the free type variables of the type 

schemas in its range. 

 

 To make the presentation of the type rules more clear, 

the types of constants are represented by the definition of the 

TypeOf function.  TypeOf  is a total function from constants to 

type schemas, defined below. 

 

TypeOf (n) = int           (for numeral n) 

TypeOf(a) = atom        (for atom a)   

TypeOf (true)=bool    

TypeOf (false)=bool    

TypeOf (c) = int×int→int   (for c in {+,-,*,/,^,mod}) 

TypeOf (c) = int×int→bool    (for c in {<,>,<=,>=} ) 

TypeOf (c) = all α .({α},{α})→{α}    (for c in {union, 

intersect, setminus}) 

TypeOf (card) = all α .{α}→int   

TypeOf (c) = bool×bool→bool        (for c in {and, or}) 

TypeOf (not) = bool→bool  

TypeOf (in) =  all α .α×{α}→bool 

TypeOf (=) = all α .α×α→bool      

TypeOf ((set)) = {α}                    (for type variable α) 

 

Type rules  

 

Constants 

(Tconst)   Г⊢ c:τ   (for constant c and type τ such that 

TypeOf(c) ≻ τ)  

(Terror)  Г⊢ error:τ            (for any type τ) 

 

Application 

(Tabs)       Г⊢ (lambda (x1 … xn) e):τ1×… ×τn→τ2   if 

 x1↦τ1∙…∙xn↦τn∙Г ⊢ e:τ2             

     

(Tapp)       Г⊢ (e1 e2 … en):τ2   if  Г⊢ e2:τ2 and … and Г⊢ en:τn 

and Г⊢e1: τ2×… ×τn→τ 

 

 

Data 

(Ttuple)     Г⊢ (tuple e1 … en):τ1×… ×τn   if  Г⊢e1:τ1 and … 

and  Г⊢en:τn 

  

(Tset)         Г⊢ (set e1 … en):{τ}   if  Г⊢e1:τ  and  Г⊢ (set 

e2 … en) : {τ} 

     

(Tsym)    Г⊢ a:τ  (for symbol a and type τ such that  Г(x) ≻τ) 

 

Conditional 

(Tbranch)      Г⊢ (branch (if g1 e1)… (if gn en)):τ    if  

 for every 1≤i≤n  Г⊢gi:bool and Г⊢ei:τ 

 

The expression e has type τ under type environment Г, Г⊢e:τ, 

is a type judgment, if it a conclusion of a deduction 

constructed according to the type rules.  An expression is well-

typed if for some type τ and type environment Г, Г⊢e:τ is a 

type judgment.  

A definition (def (a x1 … xn) e)  is well-typed by Г if   

 Г(a)≻τ1×… ×τn →τ, and  

 a↦(τ1×… ×τn →τ2)∙x1↦τ1∙…∙xn↦τn∙Г ⊢ e:τ, and 

 Г(a)= Close(τ1×… ×τn →τ, Г). 

where Close(τ, Г) = all α1… αn . τ’  where {α1… 

αn} = FTV(τ)\FTV(Г)       

A definition (def a e)  is well-typed by Г if   

 Г(a)=τ and Г ⊢ e:τ. 

A well-formed program is well-typed by type environment Г if 

every definition is well typed by Г.  

 

5 Type Safety 

A static type system attempts to prevent the occurrence of type 

errors during execution.  Intuitively, a type error is the 

application of a function to erroneous arguments, or the 

attempted application of a non-function.  A static type system 

is safe if well-typed programs and expressions cannot cause 

type error. Below, we utilize a variation of syntactic 

approach[3] due to Harper[4], which proves safety by proving 

Progress and Preservation lemmas. The progress lemma 

ensures that well-typed expressions are either values or can be 

further reduced. The preservation lemma says that reduction 

preserve typing.  Before we move onto the lemmas, note that 

the following condition is true of the builtins. It’s proof is 

obvious upon examination of the reduction rules, and the 

definition of TypeOf, while paying special attention to the 

[divZero] reduction rule, and (Terror) type rule. 

 

Lemma [δ-typability] 

For every constant values v2,…,vn, 
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(δ–typability)  if TypeOf(c) ≻ (τ2×… ×τn → τ) and ⊢ v2:τ2 and 

… ⊢ vn:τn then  δ(c,v2,…,vn) is defined and  δ(c,v2,…,vn): τ 

 

 

Theorem:[Progress] 

For program P, well-typed by Г, and P-Closed expression e,: 
 if  Г⊢e:τ then one of the following must be true  

  1. e is a P-value  

  2. e is error 

  3. there is some e’ such that e ⇒ e’ 

 

Sketch of proof  by rule induction over Г⊢e:τ.  Each case, one 
for each type rule, generally takes the following form.  
First, the Inversion lemma, discussed below, is applied to 
the last step in the type judgment of Г⊢e:τ, yielding the 
type judgments of the immediate subexpressions of e.  
Next, the induction hypothesis is applied to these 
subderivations.  Lastly by applying the Canonical Forms 
lemma, or by appealing the reduction rules an expression 

e’ is constructed such that e ⇒ e’.   

 

Lemma:[Preservation] 

For program P, well-typed by Г, and P-Closed expression e, 

       if Г⊢e: τ and e⇒e’ then Γ⊢ e’: τ      

 

Proof by rule induction over e⇒e’ relation. Each case, one for 
each reduction rule, generally takes the following form.  
First, the reduction rule is examined to determine the 
relationship between subexpressions of e and the 
subexpressions of e’. Next, the inversion lemma is applied 
to the last step in the type judgment of Г⊢e:τ, yielding the 
type judgments of the immediate subexpressions of e.  
Then, the induction hypothesis is applied to these 
subexpressions, yielding type judgments for the 
subexpressions of e.  Lastly, the Substitution lemma, 
and/or the type rules are used to construct the type 
judgment Γ⊢ e’: τ.   
 

Lemma [Inversion]: 

Given type program P, well-typed by environment Г, type τ, 

P-closed expression e, 

  

(Tconst)   if  Г⊢ c:τ  then TypeOf(c) ≻ τ 

 

(Tsym)      if  Г⊢ a:τ  then Г(a) ≻τ 

 

(Tabs)       if  Г⊢ (lambda (x1 … xn) e): τ1×… ×τn → τ, then  

 x1↦τ1∙…∙xn↦τn∙Г ⊢ e:τ 

 

(Tapp)     if  Г⊢ (e1 e2 … en):τ, then  Г⊢ e2:τ2 and … and Г⊢ 

en:τn and Г⊢e1: τ2×… ×τn → τ 

 

(Ttuple)   if  Г⊢ (tuple e1 … en):τ1×… ×τn, then  Г⊢e1:τ1 

and … and  Г⊢en:τn 

 

(Tset)     if  Г⊢ (set e1 … en) : {τ}, then Г⊢e1:τ and … 

and  Г⊢en:τ 

 

(Tbranch)  if  Г⊢ (branch (if g1 e2)… (if gn en)):τ, then 

 Г⊢g1: bool and … and Г⊢gn:bool and  Г⊢e1: τ and … and 

Г⊢en: τ  

 

Proof: is straightforward upon examination of type rules, and 

definition of type judgment. 

 

Lemma [Canonical Forms]:              

Suppose P is a program well-typed by Г, 
(int)    if v is a value of type int, then v is a numeral. 

 

(bool)        if v is a value of type bool, then v is either true 

or false. 

 

(tuple)     if v is a value of type (τ1,…,τn), then  v is of the 

form (tuple v1 … vn) and v1:τ1 and ... and vn:τn.  

 

(set)       if v is a value of type {τ}, then  v is of the 

form(set v1 … vn) and v1:τ and … and vn:τ.  
 

(abs)       if v is a value of type τ1×… ×τn → τ, then v is fo the 

form (lambda (x1…xn) e)and x1↦τ1∙…∙xn↦τn∙Г ⊢ e:τ, or v 

is defined function symbol of P 

 

Lemma:[Substitution] 

For program P, well-typed by Г, and P-Closed expressions 

e,e’, variable x, and types τ, τ’ 

     if  {x↦ τ}∙Γ⊢ e’:τ’ and  Γ⊢ e: τ  then Γ⊢e’[{(x,e)}]: τ’ 

 

Proof: by rule induction over {x↦ τ}∙Γ⊢ e’:τ’       
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Abstract - Nowadays, routing standards are governed by the 

Internet, and the state-of-the-art is link-state routing.  These 

types of algorithms adapt well to network topology changes, 

but respond poorly in high-traffic environment, where the 

network load changes dynamically. Very often the 

shortcomings of these algorithms are not apparent, because 

their poor performance is compensated for by powerful 

routers and high-bandwidth links.  In this paper, Ant Net, a 

novel routing approach based on research done mostly in 

reinforcement learning and swarm intelligence was explored. 

A Software router using Ant Net algorithm to route IP packets 

between Ethernet networks was implemented.  CNET, a 

network simulator was used to test the routing algorithm.  The 

simulations done were used create network environment so as 

to test all aspects of the routing algorithm.  Besides these 

simulations, the software router was tested on a test-router, 

constructed using a Pentium-4 PC, equipped with 3 PCI 

Ethernet Network Interface Cards, and running a Linux 

distribution.  Using this test-router, the forwarding 

mechanisms of the algorithm were tested on real Ethernet 

hardware. 

Keywords: Ant Net, Algorithms, CNET, Ethernet, topology, 

router  

 

1 Introduction 

        Today, computer networks are the core of modern 

communication.  For a computer to send data to another 

computer found in its own LAN, communication is 

straightforward (e.g., broadcasting on Ethernets).  But when it 

comes to inter-connecting different networks together, a whole 

new layer of protocols needs to be introduced. A router is a 

device dedicated to the task of routing data from one network 

to another and every router maintains a routing table.  A 

hardware router has several ports to connect to different 

network and also has processing power and memory.  Routers 

are generally expensive devices and their maintenance and 

reparation costs in case of failure are also very high.  

Moreover, modern routing algorithms implemented by 

hardware routers have some shortcomings that make them 

unsuitable in certain situations.  Hence a software router with 

same capabilities as a hardware router can be a way to reduce 

cost and efficiently route packets. The paper consists of 

designing and implementing a software router that will help 

network administrators in experimenting with routing, without 

actually requiring a specialized hardware router.  The router 

will run as a software application on a computer.  It will 

provide the routing functionality of a real (physical) router 

efficiently, so that it can be used as a viable alternative by 

network designers. The paper focuses mainly on routers for 

connectionless networks; more specifically, the focus is on 

IPv4 routers.  Since the objective is to find a useful, efficient 

and inexpensive solution to routing, only the routing and 

forwarding functionalities of a router are considered, while 

specialized hardware routers may provide a variety of other 

functions, aside from routing, such as NAT, firewall, DHCP 

among others.  Static routing is not implemented in the 

software router, as the aim is to design a software router to 

work in dynamic environment. 

 

2 Swarm Intelligence in networking 

        Swarm intelligence is the collective constructive 

behaviour that is observed when many individuals work 

independently, and coordinates by interacting amongst each 

other or with their direct environment [1]. 

2.1 Ant Net Algorithm 

        Ant Net [2,3]  is a new type of routing algorithm, 

inspired from work done in the fields of ant colony 

optimization, where the natural characteristics of biological 

swarms (e.g., ants) are studied to solve optimization problems.  

Ant Net has been implemented and tested on simulation 

networks and real networks.  The results and conclusions from 

Di Caro and Dorigo’s[4] original paper show that the 

algorithm is superior to all its competitors that were also 

subjected to the same tests.  The competing algorithms 

included OSPF. Ant Net makes use of mobile agents, known 

as agents or ants.  The agents are data units, generated, 

received and processed by the routers.  The purpose of the 

agents is to explore the network and to exchange collected 

information.  The marked difference here between Ant Net 

and other protocols, like OSPF, is that the agents 

communicate indirectly [4].  In OSPF, each router explicitly 

sends protocol packets to other routers, but in Ant Net, the 

agents just travel around the network, modifying routing tables 
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of routers accordingly.  This type of communication that 

happens through the environment and not directly between 

agents is called stigmergy; a concept inspired from social 

insects [5]. Ant Net uses two types of mobile agents: forward 

ants and backward ants [4].  Forward ants are launched at 

intervals by each router.  The forward ant moves step-by-step 

towards the destination, and at each intermediate node it 

collects information as to how much time it took for the trip.  

On reaching the destination, the forward ant becomes a 

backward ant, with all the collected information [6].  The 

backward ant visits the same nodes as the forward ant, but in 

reverse, and updates routing data structures at each node. Each 

router keeps two data structures [4]: Fig. 1 shows the data 

structures required by Ant Net. 

 

 

 
Fig. 1: data structures required by Ant Net[4] 

 

 

The Ant Net algorithm is robust, scalable with respect to 

network growth, highly traffic adaptive and provides inherent 

load balancing [7]. However, if topology is large, routing 

protocol traffic increases with ant stack size [8]. 

2.2 Modified Ant Net algorithm  

        A simplified version of the Ant Net algorithm will be 

implemented.  The changes made to the algorithm, and the 

rationale behind will be discussed. The main change that will 

be done is that a constant reinforcement factor will be used to 

update routing table probabilities.  Normally, in the original 

algorithm, the rfactor is calculated from the trip times of ants 

[4].  There is a practical difficulty in calculating packet trip 

times, since the clocks of all routers must be synchronized.  

Using a constant rfactor eliminates the need to use trip times 

and thus there is also no need for the statistical models: only 

the routing table is required.  The probability values are then 

affected only by the arrival rates of ants [2].  Newly generated 

forward ants are forwarded on all router-router links. The 

changes mentioned will desirably have the following effects: 

Much lower protocol traffic, since ant stacks no longer contain 

trip times and considerable reduction of router processing 

loads.  Calculation of the reinforcement factor repeatedly, and 

working with trip times, in the original algorithm, required lots 

of floating-point operations.   

 

3 Proposed System 

         The software router will be used in packet-switched 

networks and will run on a computer that will need some 

additional hardware configuration.  The machine to be used 

for routing will need to have more than one network interface 

card, else it will have the capacity to act only as a standalone 

host.  The software will support only Ethernet NICs.  The 

number of NICs installed will effectively determine the 

number of links that the router will have, and directly affect 

the number of networks that can be connected to it.  Hosts on 

connected networks will not require any special 

configurations; they are configured normally for IP 

communication. A router may connect to another router, to a 

single host, or to a LAN.  LANs may connect to the router via 

a switch, as in switched Ethernet.  Fig. 2 illustrates the 

possible connections. 

 

 

 

 

 

 

 

 
Fig. 2: Topology of proposed system 

 

The sets of all the routers will form the backbone.  Some 

routers in the backbone may not connect to any network, but 

only provide routing.  These may be used on sites where data 

traffic between networks is very high, and will effectively tend 

to improve performance as they provide additional routes for 

packets to travel. The software router will implement the 

modified Ant Net algorithm as its adaptive routing algorithm. 

A router distinguishes between two types of packets: data 

packets and routing protocol packets.  Any other packet not 

forming part of the routing protocol will be treated as plain 

data, and forwarded using information from the routing table.  

The routing packets will be packets generated, decoded and 

processed by the routers to construct the routing table.  The 

router will work directly at layer 3 of the TCP/IP stack; 

routing protocol packets will have the IPv4 header as the last 

encapsulation. The router will not use any transport 

mechanism to ensure routing packets get delivered.  This is 

also applied to data packets. As Ant Net protocol is designed 

for best-effort packet-switched networks, the routers will not 

be responsible for any data loss.  For reliability, hosts will 

need to implement TCP.  If the routers have to be configured 

for dynamic routing, then some configurations will be needed 

initially.  Each router should know all reachable networks and 

its neighbors.  This information will be available in 

configuration files. 
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4 System Architecture 

4.1 Design 

        The software router will be implemented and tested on a 

network simulator first, and then if the algorithm works, the 

code will be tested on a Linux machine.  Due to peculiarities 

with how network simulators work, there will be architectural 

differences in the implementations of the two versions. The 

core router architecture should be independent of platform 

specific details.  The core architecture comprises of the 

routing and forwarding mechanisms, and platform refers to the 

environment in which the router will be implemented and 

tested; that is, on the network simulator or on a real physical 

setup.  This prevents tying the core design with the intricacies 

of the simulation tool.  It will also be easier to change the 

software later to use the libpcap API [9]. The performance of 

router should also be considered.  A router is a complex real-

time processing system, with hard deadlines. If it is poorly 

design, this will result in an excessive loss of packets.  

 

4.2 Architectural Design 

        Most networking software is written with a layered 

design.  The interfaces of the router need to be managed at a 

very low level; network traffic should be handled as soon as 

they enter an interface.  This will allow link statistics to be 

maintained, and most importantly, allow the flexibility to 

queue up packets based on their incoming/outgoing interface.  

Thus, a proper architecture operating at the link layer needs to 

be designed.  The way the Ant Net algorithm is defined 

requires a lot of book-keeping at the link level [5]. Hence it is 

important to decide when to process inbound and outbound 

packets.  One possibility with inbound packets is to start 

processing them immediately as soon as they have been stored 

by the interface hardware (i.e., Ethernet card).  Similarly, 

outbound packets are sent to the hardware for transmission as 

soon as they have been processed. However, this scheme has 

inherent problems: 

 Inefficient processing/scheduling.  The operating 

system will have a limited buffer for incoming 

packets.  Processing packets one by one as soon as 

they come will mean that the OS buffer will tend to 

fill up, resulting in loss of packets. 

 It is difficult to build up data-structures (queues) that 

are required for statistical data collection. 

The solution that was chosen is to defer the processing of 

incoming packets. Packets are stored for later processing or 

transmission.  As soon as a packet comes, it is buffered in a 

queue.  Each interface on the router has a corresponding queue 

to store incoming packets.  Packets are then dequeued from 

the queues and processed.  Similarly, when packets have been 

processed, they are queued in the outgoing queue for the 

appropriate link.  Later on, the queues will be emptied and the 

packets will be transmitted on the network card. Fig. 3 depicts 

this architecture. 

 
Fig  3: Efficient queuing and processing of incoming packets: The 

link queues will actually hold Ethernet frames. 

At the network layer, the modified Ant Net algorithm is used.  

This layer determines how to process packets received from 

the link layer, and after processing, packets are sent again to 

the link layer, to be queued. A suitable format for an ant 

packet will be designed.  This layer is best described by means 

of the data-structures and algorithms. The link layer and 

network layer have to exchange messages.  One possibility is 

to copy the protocol data units from layer-to-layer.  But, there 

will be too much processor time wasted in copying data 

around. Instead, a different design is used, but it blurs to some 

extent the separating line between both layers. When a frame 

comes in, the link layer allocates memory needed to store it in 

the queue. When the network layer requests a packet, instead 

of copying the packet in the frame, the memory reference of 

the frame itself is passed.  All processing will happen on this 

memory, and it is this memory itself that will be queued on an 

outgoing link queue.  Hence, only memory addresses, and not 

whole memory buffers will be passed back and forth.  Fig. 4 

illustrates this concept. 

  Fig  4: Communication between network and link layers 
 

A radically different approach will be used for the link queues: 

the length of a queue will have no limit.  Dedicated hardware 

routers have limited memory; hence they use fixed-length 

queues and perform load-shedding if there is no more room.  

The software router will run on a Linux PC, and Linux 

provides a virtual address space of 4 GB, irrespective of 

physical RAM installed.  When a new frame comes in, the 

Operating System will be requested for memory to store the 

frame.  If the request is unsuccessful, only then the frame is 

discarded. Queues will be serviced in a round-robin manner. 

The design of the router is inherently multi-threaded.  The 

multi-threading API of Linux will be used. All the threads will 

have simultaneous access to shared data segments, like the 
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routing table.  Mutexes will be used to provide mutual 

exclusion between threads, for variables that can change 

values during program execution.  Locks will be applied 

whenever shared memory needs to be read or written.  

The frame queues will be constructed using linked lists.  

Frame queues are lists of ether_frame structures, logically 

maintained as FIFO data-structures (queues).  Each link on the 

router will have its own incoming and outgoing queue.  

Moreover, there is a priority queue for holding backward ant 

packets, since these have to be processed very fast.  All the 

queues are implemented in the same way; a queue is accessed 

using a global variable, which is an array of pointers to the 

queue heads.  The queue heads are ether_frames.  

 

4.3 Simulation Plan 

        The simulations will be carried out on topologies that 

consist only of routers and LANs.  A LAN will have a network 

id and a subnet mask.  A LAN will be represented by a single 

host workstation with an IP address.  The LANs in the 

simulation are hereafter referred to as hosts.  Different 

simulation topologies consisting of different numbers of 

routers and hosts will be created, and the routing algorithm 

will be tested on them.  Fig.5 illustrates a simple topology. 

 

 
 

Fig 5: Sample simulation topology 

 

Each node in the simulation, router or host, will have a log file 

to which it will dump information about its operations.  These 

log files will provide the basis for the simulation analysis.  

Modification made to the routing tables can be verified by 

analysing these files. 

 

5 Implementation and testing 

        The software router was first simulated using the CNET 

simulator. Fig. 6 shows a simulation window, with the network 

shown graphically. The simulation consists of five hosts each 

on a different network and six routers to route data on the 

network. 

 
 

Fig 6: CNET Simulation shown graphically 

5.1 Testing 

        Using simulator CNet, performance testing was done. 

The variables that were tested were packet delay, packet size 

packet loss, data rate.  

 
Fig 7: graph for delays for packets in 3 specific flows 

.  
Fig  8:graph for packet delay variation with packet size. 

 

Fig  9: Graph for packet delay variation with time, given one particular flow 

is made to generate data at a fast rate. 
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Fig  10: Variation of the number of packets lost with data rate along a 

particular flow, when a router in the best path along that flow fails. 

 

Fig  11: the variation pheromone values of a router 

According to results obtained it can be deduced that on 

average the packet delay does not increase considerably as 

number of packets increases. As packet size increases, there is 

a slight increase in the packet delay.  If a given flow is made 

to generate data at a faster rate, it can be observed that the 

packet delay increases considerably at first but it then 

stabilises as number of packets increases. If a particular 

routing node has failed then according to its data rate, 

variation of the packet loss was measured and results 

concluded that as number of packets lost increases, the time 

between generations of new packets decreases. Finally the 

variation pheromone values of a router were tested. This test 

helps to analyze the changes in routing table during load-

balancing. Result shows that the best path is through link 4 in 

Fig. 11, and is used initially.  But soon, due to a fast data rate 

towards a host, this best path suffers some delays. Hence, an 

alternate path, through link 3 is then chosen. However after 

some time, the performance of the alternate path starts 

degrading due to congestion and gradually, the router starts 

switching packets on link 4 again. 

To fully test its operations, the software router has to be tested 

in real life situation but the main limitation was the 

unavailability of a real network to perform the testing. Hence, 

to counterbalance this limitation, the software router has been 

tested on a PC with three LAN cards to verify if it is operating 

correctly. It was observed that the software router was indeed 

forwarding data to the hosts. However to create a topology for 

testing, several PCs with more NICs were required.  

 

6 Conclusion 

        The software router understands only IP at the 

internetwork layer of TCP/IP.  There is no support for 

additional protocols like ICMP, IGMP, IP multicasting, IPsec.  

Support for these protocols can be added by extending the 

router code base to distinguish special IP packets from normal 

data packets. Furthermore, the software router also 

understands only IPv4. To support IPv6, a redesign of the 

routing table and other major data structures will be needed. 

At the link layer, the router simply broadcasts packets on 

destination LANs, and the network layer on hosts’ filters them 

based on IP address.  This can be avoided by implementing 

ARP and maintaining an ARP cache on the router. Also, the 

router can be made to detect neighbors and networks by 

implementing hello and flooding mechanisms similar to 

OSPF.  The flooding will only aid in discovering new 

networks being added, and the hello packets will query 

neighbors. However, these mechanisms will be done less 

frequently than in OSPF, since here they do not form integral 

part of the routing algorithm.  
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Abstract- This paper is devoted to quantum error cor-
rection for secret sharing with a �ve qubits graph state
through �ve noisy channels. The correction procedure is
described for the �ve, seven and nine qubits codes. These
three codes are similar if one among the sent qubits is
infected by an error in the transmission channel. How-
ever, If two qubits are infected, then the correction re-
sult changes from one code to another. The three codes
are compared in this work by computing the average �-
delity which is the distance between the sent secret and
that measured by the receivers. To reduce the complexity
of the problem, we will treat the case where, at most, two
qubits are disturbed in each depolarizing channels.

Keywords: Quantum Correction, Quantum communi-
cation, Graph State, Quantum Secret Sharing, Feynman
Program.

1 Introduction

The graph state can be very useful for several quan-
tum protocols as secret sharing, measurement-based com-
putation, error correction, teleportation and quantum
communications. Then, it would be in the future a good
way to unify these topics in one formalism. The quantum
secret sharing with graph state is very well described in
[1], particularly the �ve qubits graph state. In this work,
we investigate the e¤ects of the �ve, seven and nine qubits
codes used to protect a �ve qubits graph state contain-
ing a secret and sent by a dealer to �ve players. Some
of the results have been obtained using a simulator called
"Feynman Program", witch is a set of procedures sup-
porting the de�nition and manipulation of an n-qubits
system and the unitary gates acting on them. This pro-
gram is described in details in [2][3][4][5] and obtainable
from [6]:

2 Quantum secret Sharing

Quantum secret sharing (QSS) is a quantum crypto-
graphic protocol wherein a dealer shares private or pub-
lic quantum channels with each player, while the players
share private quantum or classical channels between each

other. The dealer prepares an encoded version of the se-
cret using a qubits string which he transmits to n players,
only a subset k of them can collaborates to reconstruct the
secret. We call a (k,n) threshold secret sharing a protocol
where each player receives one equal share of the encoded
secret and a threshold of any k players can access the se-
cret. This scheme is a primitive protocol by which any
other secret sharing is achieved. In this work, we treated
the case (k,n)=(3,5) where the dealer sends through �ve
depolarizing channels, a quantum secret encoded in a �ve
qubits graph state [1].

3.1 Five qubits graph state

Graph states are a an e¢ cient tool for multipartite
quantum information processing task like secret shar-
ing. Also, they have a graphical representation witch of-
fers an intuitive picture of information �ow. The graph
state j	Gi given by equation (2) and containing the
quantum secret j	si = � j0i + � j1i = cos(�=2) j0i +
ei�sin(�=2) j1i, should be transmitted by a dealer to �ve
players through �ve di¤erent channels. First, he con-
structs the state jGi from an initial �ve qubits state
j	0i = j00000i ; then applies the Hadamard gate H
on each qubit and the controlled-Z gate CZ on qubits
[1; 2]; [2; 3]; [3; 4]; [4; 5]; [5; 1] :

jGi =
Q

1�i�4
CZ[i;i+1] j+i
5 (1)

The dealer intricates an additional qubit called D with
each of the �ve qubits and add to the obtained system the
secret qubit S in the state j	si = � j0i+ � j1i : Then, he
performs a Bell measurement on qubits D and S and ob-
tains �nally [1] :

j	Gi = � jGi+�[
Q

1�i�5
Zi] jGi (2)

3.2 Perfect channel

We describe below the procedure allowing players to
access the secret. The secret should be accessible only
for player 1, 2 and 3, players 4 and 5 being considered as
eavesdroppers. Players 1 and 3 measure their qubits in
the Bell basis and transmit the result to player 2 which
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applies on its qubit the suitable recovering gate RG given
in table 1 to access the secret state [1]:

The graph state j	Gi can be decomposed in terms of
Bell states jBiji13 and jBiji45 [1] :

j	Gi= ( 12 )f jB00i13 [� j+i+ � j�i]2 jB01i45+ jB01i13
[� j+i � � j�i]2 jB10i45+ jB10i13 [� j�i � � j+i]2
jB00i45+ jB11i13 [� j�i+ � j+i]2 jB11i45 )g (3)

Equation (3) can be written :

j	Gi = jB00i13 (j	ia)245 + jB01i13 (j	ib)245 +
jB10i13 (j	ic)245+ jB11i13 (j	id)245 (4)

Measurement in the Bell base fjBiji13g gives only one
term in (4); then the density matrix :

�
1::5

= (14 )(�ij )13(�x)245 ( x = a; b; c or d) (5)

The partial trace over qubits (4; 5) gives the density
matrix of qubit 2 :

�
0

2
=
���	0

2

ED
	

0

2

��� = Ptr[(�x)245 ]4;5 (6)

Then the secret state :

�
2
= R�g�

0

2
Rg or j	2i = Rg

���	0

2

E
(7)

jBiji13 B00 B01 B10 B11
Rg H ZH ZXH XH

Table 1 : Secret recovering gate Rg used by player 2
versus the Bell state jBiji13 measured by players 1 and 3.

3.3 Fidelity

The sent qubits can be a¤ected by error X, Z or Y rep-

resented respectively by the Pauli matrix X =

�
0 1
1 0

�
,

Z =

�
1 0
0 �1

�
and Y = �iXZ = i

�
0 �1
1 0

�
correspond-

ing to rotation � around ox or oz or both in the block
sphere: The �delity is one of the mathematical quantities
which permits to know how close are two quantum states
represented by the density matrix � and � by measuring
a distance between them [7] :

F (�; �) =
���Tr(pp��p�)���2 (8)

In the case of a pure state � = j	i h	j and an arbi-
trary state �, the �delity is the overlap of the two states
[7] :

F (j	i ; �) = h	j � j	i (9)

In this work we measure the overlap between the
correct secret state �s = j	si h	sj and the qubit state
�2 = j	2i h	2j measured by player 2 to access the secret.
Then, the �delity is function of the angles (�; �) in the
Block sphere and the average �delity is :

Fa = (1=4�)
R �
0

R 2�
0

F (�; �)sin(�)d�d� (10)

We will describe below the procedure giving the �-
delity. If any Pauli errors a¤ects the state j	Gi then
equation (4) becomes :��	EG� = ( 12 )fjB00i13

��	Ea �245 + jB01i13
��	Eb �245 +

jB10i13
��	Ec �245 + jB11i13 ��	Ed �245g (11)���	Ea;b;c;dE

245
are the states of qubits (2; 4; 5) modi�ed

by the channel errors:

After measuring on the Bell states of qubits (1; 3) only
one term will remain in (11) :

��	EG�0 = (12 ) jBiji13 ��	Ex �245 (12)

The corresponding a¤ected density matrix is :

�E
1::5

= (14 )(�ij )13(�
E
x )245 (13)

The partial trace over qubits (4; 5) gives the measured
density matrix of qubit 2 :

�0E2 =
��	0E2 � 
	0E2 �� = Ptr[(�Ex )245 ]4;5 (14)

Then the a¤ected secret state measured by player two
:

�E2 = R
�
G�

0E
2 RG =

��	E2 � 
	E2 �� (15)

We multiply by the secret state j	si = � j0i+� j1i to
obtain the �delity :

F (�; �) = h	sj �E2 j	si (16)

Table 2 gives the �delity F (�; �) calculated for all er-
rors on qubits i = 1; 2 or 3.

Error j	i2 F (�; �) Fa
"a � j1i � � j0i jsin(�)sin�j2 1=3
"b � j0i � � j1i cos2(�) 1=3

"c � j1i+ � j0i jsin(�)cos�j2 1=3
"d � j0i+ � j1i 1 1

Table 2 : Fidelity and measured state j	2i versus
di¤erent errors groups "x on qubits i = 1; 2; 3:
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3.4 Depolarizing channel

The depolarizing channel is a particular model for the
noise on quantum systems. In this process, the global
density matrix � is replaced by a mixed one �(P ) function
of the probability P that a Pauli error Eij = (�1j = �xj ,
�2j = �yj or �3j = �zj) a¤ects any qubit "j" in the n-
qubits system. The matrix density is given by (17a) for
one-qubit system[2] and can be generalized by (17b) for
the n-qubits system :

�1(P ) = (1 � P )� + P
3 [X�X + Y �Y + Z�Z] (17a)

�n(P ) = (1�P )n�+::+Pk

3k
(1�P )n�k[

P1�jl�n

1�i�3
(�

1�l�k
��ijl)]

�(�
1�l�k

�ijl)+::.+
Pn

3n [
P1�jl�n

1�i�3
(�

1�l�n
��ijl)]�(�1�l�n

�ijl)

(17b)

Consider now the case where the �ve qubits are sent
by the dealer through �ve depolarizing channels. Sup-
pose the probability P that any single error occurs on
any qubit is the same in the �ve channels. Then we can
use equation (19) as if the dealer send the �ve qubits
through only one depolarized channel. We describe be-
low the procedure to obtain the average �delity Fa(P );
considering all the possible errors in the �ve transmitting
noisy channels. We begin by writing the a¤ected density
matrix �E

1::5
(P ) received by the �ve players :

�E
1::5
(P ) = (1� P )5�

1::5
+ P

3 (1� P )
4[ �E1

1::5
+ �E2

1::5
+

�E3
1::5
+ �E4

1::5
+ �E5

1::5
]+ P 2

9 (1�P )
3[�E1E2

1::5
+ �E1E3

1::5
+ �E1E4

1::5
+

�E1E5
1::5

+ �E2E3
1::5

+ �E2E4
1::5

+ �E2E5
1::5

+ �E3E4
1::5

+ �E3E5
1::5

+

�E4E5
1::5

] + P 3

27 (1 � P )2[�E1E2E3
1::5

+ �E1E2E4
1::5

+ �E1E2E5
1::5

+

�E1E3E4
1::5

+ �E1E3E5
1::5

+ �E1E4E5
1::5

+ �E2E3E4
1::5

+ �E2E3E5
1::5

+

�E2E4E5
1::5

+�E3E4E5
1::5

]+ P 4

81 (1�P )[�
E1E2E3E4
1::5

+�E1E2E3E5
1::5

+

�E1E2E4E5
2

+ �E1E3E4E5
1::5

+ �E2E3E4E5
1::5

] + P 5

243�
E1E2E3E4E5
1::5

(18)

With �Ei
1::5

the density matrix a¤ected by errors on
qubit "i" :

�Ei
1::5

= Xi�
1::5
Xi + Yi�

1::5
Yi + Zi�

1::5
Zi (19)

The density matrix �EiEj
1::5

, �EiEjEk
1::5

; �EiEjEkEl
1::5

and

�EiEjEkElEm
1::5

are summation of respectively 9; 27; 81 and
243 terms and represent the density matrix a¤ected by
error on two, three, four and �ve qubits.

After measuring on the Bell states of qubits (1; 3);
tracing over qubits (4; 5);multiplying by the recovering

gate Rg; we multiply by the secret state and integrate
over (�; �) to obtain the average �delity :

h	sj �E2 j	si = (1 � P )5 + P
3 (1 � P )

4[ FE1a + FE2a +

FE3a +FE4a +FE5a ]+ P 2

9 (1�P )
3[FE1E2a +FE1E3a +FE1E4a +

FE1E5a + FE2E3a + FE2E4a + FE2E5a + FE3E4a + FE3E5a +

FE4E5a ] + P 3

27 (1 � P )
2[FE1E2E3a + FE1E2E4a + FE1E2E5a +

FE1E3E4a + FE1E3E5a + FE1E4E5a + FE2E3E4a + FE2E3E5a +

FE2E4E5a +FE3E4E5a ]+P 4

81 (1�P )[F
E1E2E3E4
a +FE1E2E3E5a +

FE1E2E4E5a +FE1E3E4E5a +FE2E3E4E5a ]+ P 5

243F
E1E3E4E5E5
a

(20)

h	sj �2 j	si = 1 ; F
E
a = h	sj �E2 j	si (21)

We deduce from tables 2 the values of FEa and obtain
the average �delity :

Fa(P ) = 1�2P + 8
3P

2� 32
27P

3 (22)

4 The �ve-qubits code

This code is described in [7][8] and uses �ve qubits to
protect one of them in a superposed state from any error
X, Y or Z. The dealer protects each of the three qubits
(1; 2; 3) with four ancillas as showed in �gure 4 and send
them through three noisy channel which introduce a bit
or phase �ip or both with probability P = 1.

Figure 1 : Transmission of �ve protected qubits
through �ve channels.

The graph state (3) can be written as follow :

j	Gi = (
p
2=8)f[� j0i + � j1i]

i
j	ai

jklm
+ [� j0i �

� j1i]
i
j	bi

jklm
+ [� j0i + � j1i]

i
j	cijklm +[� j0i �

� j1i]
i
j	dijklm ] (23)

[i = 1; ( j; k; l;m) = 2; 3; 4; 5]; [i = 2; (j; k; l;m) =
1; 3; 4; 5][i = 3; (j; k; l;m) = 1; 2; 4; 5] (24)

After coding , syndrome measurement, correction and
decoding, the players suppress the ancillas. If the qubit
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"i" is a¤ected by error Ei = Xi, Yi or Zi then the graph
state becomes :���	EiG E = Ei j	Gi = (

p
2
8 )fEi[� j0i + � j1i]i j	aijklm +

Ei[� j0i � � j1i]
i
j	bi

jklm
+ Ei[� j0i + � j1i]

i
j	cijklm +

Ei[� j0i�� j1i]i j	dijklm g (25)

Table 3 gives the error Ei a¤ecting the to be protected
physical qubit "i" after correcting double input errors as
the single error having same syndrome. The ancillas are
designed by "aj" and the to be protected qubit by "i"
with i = 1; 2; 3 and j = 1; 2; 3; 4:

Error Ei
Xi; (Za2Za3

); (Xa3
Za4

; Za1Xa2
) Ii; (Xi); (Zi)

Xa1 ; (Za3Za4
); (ZiXa4

; Za2Xa3
) Ii; (Xi); (Zi)

Xa2 ; (ZiZa4
); (XiZa1

; Za3Xa4
) Ii; (Xi); (Zi)

Xa3 ; (ZiZa1); (XiZa4 ; Xa1Za2) Ii; (Xi); (Zi)
Xa4 ; (Za1Za2

); (Xa2
Z
a3
; ZiXa1) Ii; (Xi); (Zi)

Zi; (Xa1
X

a4
); (Xa2

Z
a4
; Za1Xa3

) Ii; (Xi); (Zi)

Za1 ; (XiXa2); (ZiXa3 ; Za2Xa4
) Ii; (Xi); (Zi)

Za2 ; (Xa1
X

a3
); (XiZa3

; Za1Xa4
) Ii; (Xi); (Zi)

Za3 ; (Xa2
X

a4
); (XiZa2 ; Xa1Za4

) Ii; (Xi); (Zi)

Za4 ; (XiXa3
); (Xa1

Z
a3
; ZiXa2

) Ii; (Xi); (Zi)

Yi; (Xa2
X

a3
; Za1Za4

) Ii; (Y i)

Ya1 ; (Xa3
Xa4

; ZiZa2) Ii; (Y i)

Ya2 ; (XiXa4 ; Za1Za3
) Ii; (Y i)

Ya3 ; (XiXa1 ; Za2Za4
) Ii; (Y i)

Ya4 ; (Xa1
X

a2
; ZiZa3

) Ii; (Y i)

Table 3 : Error Ei on the physical qubit "i" versus errors
on the logical qubit "i".

Consider three double errors EkEl, EmEn and EoEp
occurring respectively in depolarizing channels "1", "2"
and "3" on any qubits (k,l,m,n,o,p) and corrected as the
three single error with similar syndrome. The qubits (4; 5)
can be a¤ected by any error X; Y or Z. If the probability
that channel error occurs on one qubit is equal to P; then
the density matrix received by the �ve players is :

�E
(123a)(45)

= (1� P )8�
(123a)(45)

+ P
3 (1� P )

7[
P
�Ex
(123a)(45)

]

+P 2

32 (1�P )
6[
P
�ExEy
(123a)(45)

]+ P 3

33 (1�P )
5[
P
�ExEyEz
(123a)(45)

]+

P 4

34 (1�P )
4[
P
�ExEyEzEu
(123a)(45)

]+ P 5

35 (1�P )
3[
P
�ExEyEzEuEv
(123a)(45)

]+

P 6

36 (1�P )
2[
P
�ExEyEzEuEvEw
(123a)(45)

]+ P 7

37 (1�P )[
P
�Ex:::::Es
(123a)(45)

]+

P 8

38 [
P
�EkElEmEnEoEpE4E5
(123a)(45)

] (26)

The notation (123a) represents the logical qubits 1,2
and 3, each one protected by four ancillas and :P

�Ex
(123a)(45)

= �Ek
(123a)(45)

+ �El
(123a)(45)

+ �Em
(123a)(45)

+

�En
(123a)(45)

+ �Eo
(123a)(45)

+ �Ep
(123a)(45)

+ �E4
(123a)(45)

+ �E5
(123a)(45)

is the error Ei a¤ecting after decoding the to be protected
physical qubit "i". (27a)

�Ek
(123a)(45)

= �Xk

(123a)(45)
+ �Yk

(123a)(45)
+ �Zk

(123a)(45)
; �Xk

(123a)(45)
=

X�
k�

(123a)(45)
Xk,... (27b)

The summations
P
�Ex
(123a)(45)

;
P
�ExEy
(123a)(45)

;P
�ExEyEz
(123a)(45)

;
P
�ExEyEzEu
(123a)(45)

;
P
�ExEyEzEuEv
(123a)(45)

;
P
�ExEyEzEuEvEw
(123a)(45)

and
P
�ExEyEzEuEvEwEs
(123a)(45)

contains respectively 8X3,

28X32, 56X33;70X34; 56X35; 28X36 and 8X37 terms.
The expression �EkElEmEnEoEpE4E5

(123a)(45)
is the summation of

38 terms. After decoding, measuring on the Bell states
of qubits (1; 3); tracing over qubits (4; 5), multiplying by
the recovering gate and the secret state and integrating,
we obtain the average �delity :

Fa(P ) = (1 � P )8 + 8P (1 � P )7 + 26P 2(1 � P )6 +
44P 3(1 � P )5 + 128

3 P
4(1 � P )4 + 80

3 P
5(1 � P )3 +

346
27 P

6(1 � P )2 + 116
27 P

7(1 � P ) + 13
27P

8 (28)

5 Comparison among the three codes

The Steane and Shor codes described respectively in
[9] and [7], use respectively seven and nine qubits to pro-
tect one of them in a superposed state from any error
X, Y or Z. The procedure giving the average �delity de-
scribed in section 4 for the �ve qubit code is the same for
the seven and nine qubits codes. The di¤erence comes
from the number n of double channel errors on logical
qubit which let the protected qubit "i" free of error. The
simulation with Feynman Program gives for respectively
the �ve, seven and nine qubits codes :

n5
N5
= 0; n7N7

= 39
81 ;

n9
N9
= 108

144 (29)

With N5=40 N7=81 and N9=144 the total number
of double errors for the three codes. Then we can deduce
the average �delity for the seven and nine qubits codes
by changing the value Fa = 1

3 in table 2 by an average
value fn and obtain for each code :

f5 =
1
3 ; f7 =

(n7�1+(N7�n7)� 1
3

81 = 53
81 ;

f9 =
(n9�1+(N9�n9)� 1

3

144 = 5
6 (30)

The average �delity is then for any code :
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Fa(P ) = (1�P )8+8P (1�P )7+(3fn+25)P 2(1�P )6+
(18fn+38)P

3(1�P )5+(41fn+29)P 4(1�P )4+(44fn+
12)P 5(1� P )3 + ( 205fn+479 )P 6(1� P )2+
( 50fn+229 )P 7(1�P )+ 13

27P
8 (31)

6 Summary

The results are summarized on table 4 where the sym-
bols C0 and Cn correspond respectively for no correction
and the n-qubits code. The �gure 2 compares the varia-
tion of average �delity without and with correction by the
three codes. The �gure 1 shows logically that the average
�delity is decreasing with P without and with correction
by any code. The values of �delity are always better and
the decrease is slower when using codes. The best average
�delity is given by the nine qubits code, followed by the
seven qubits code then the �ve qubits code. The reason is
that for the �ve qubits code all the double input errors let
the protected qubits a¤ected, while some of them could be
covered when using the two other codes. We considered
in this work that triple input errors and more are very
unlikely, so that syndrome measurement allows (in seven
and nine qubits code) recovering errors. We note that if
P=1, then the average �delity Fa(P = 1) = 13

27 = 0:4815
is the same regardless the used code.

Code F a(P )
C0 1� 2P + 8

3P
2 � 32

27P
3

Cn (1� P )8+8P (1� P )7+(3fn+25)
P 2(1� P )6+(18fn+38)P

3
(1� P )5+

(41fn+29)P
4
(1� P )4+(44fn+12)

P 5(1� P )3+( 205fn+479 )P
6
(1� P )2

+( 50fn+229 )P
7
(1� P )+ 13

27P
8

C5 (1� P )8+8P (1� P )7+26P 2(1� P )6+
44P 3(1� P )5+ 128

3 P
4(1� P )4

80
3 P

5(1� P )3+ 346
27 P

6(1� P )2+
116
27 P

7(1� P )+ 1 3

27P
8+

C7 (1� P )8+8P (1� P )7+ 728
27 P

2(1� P )6+
448
9 P

3(1� P )5+ 4522
81 P

4(1� P )4
3 3 0 4

81 P
5(1� P )3+ 14672

729 P
6(1� P )2+

4432
729 P

7(1� P )+ 13
27P

8

C9 (1� P )8+8P (1� P )7+ 55
2 P

2(1� P )6+
53P 3(1� P )5+ 379

6 P
4(1� P )4

146
3 P

5(1� P )3+ 1307
54 P

6(1� P )2+
191
27 P

7(1� P )+ 13
27P

8

Table 4 : Expressions of �delity without and with
correction by the �ve, seven and nine qubits codes.

Figure 2 : Fidelity without and with correction.

7 Conclusion

This work was devoted to error correction for quan-
tum secret sharing. The results show that the nine qubits
code gives the best �delity, followed by the seven, then
the �ve qubits code, regardless the depolarizing channel
error probability P . This conclusion seems to con�rm
the simulation work done in [11]; where errors were in-
troduced by the correction process itself. We conclude
that higher is the ancillas number better is the �delity.
The reason is that the nine qubits code allows the recov-
ering of a higher fraction of double channel input errors.
In fact, as only single and double errors have been con-
sidered, this code gives a speci�c syndrome for a higher
number of double errors, then allowing their recovery and
leading to �delity equal to one. We have supposed that
triple errors and more are very unlikely and then with
negligible e¤ect on the obtained results.
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