Int'l Conf. Foundations of Computer Science | FCS'12 |

SESSION
GRAPH BASED AND TREE METHODS +
RELATED ISSUES
Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'12 |

Int'l Conf. Foundations of Computer Science | FCS'12 |

Algorithms for Finding Magic Labelings of Triangles

James M. McQuillan' and Dan McQuillan®
1School of Computer Sciences, Western Illinois University, Macomb, 1L, USA
2Depalrtment of Mathematics, Norwich University, Northfield, Vermont, USA

Abstract— We present a new algorithm for finding vertex-
magic total labelings of disjoint unions of triangles. Since
exaustive searches are infeasible for large graphs, we use a
specialized algorithm designed to find labelings with very
restrictive properties, and then attempt to generate other
labelings from these. We show constructively that there exists
a vertex-magic total labeling, VMTL, for each of the feasible
values of 7C3, 9C5 and 11Cs.

Keywords: graph labeling, algorithm, vertex-magic

1. Introduction

Let G be a simple graph with vertex set V' and edge set F.
A total labeling of a graph is a bijective map f: VUE —
{1,2,...,|V|+]|E|}. The weight of a vertex v incident with
edges e1, ..., e is wip(v) = f(v)+ f(e1)+- -+ f(es). The
total labeling f is a vertex-magic total labeling, or VMTL,
if the weight of each vertex is a constant. In this case, the
constant is called the magic constant of the VMTL. If a
graph G has a VMTL, then G is called a vertex-magic graph.

Given a VMTL f of a graph G with degree A, there is a
dual VMTL f* of G in which f*(x) = |V|+|E|+1— f(x)
for each x € V U E. If the magic constant of f is h, then
the magic constant of f* is (A+ 1)(|V|+|E|+1) — h.

The range of possible magic constants for a graph is called
the spectrum of the graph. Assume that GG is a 2-regular
graph. Suppose further that G has a VMTL with magic
constant i and with n = |V| = |E|. Then

5+ 3 <h< 7n+3.

5 5 (1)
The integral values in this range are the feasible values for
the 2-regular graph G. (See [24] and [34] for a more general
discussion.) For a 2-regular graph, the dual of a VMTL with
magic constant i is a VMTL with magic constant 6n+3—h.

Problem 1.1: The VMTL problem: given a feasible magic
constant h, does there exist a VMTL with magic constant
h?

There have been many exciting general VMTL construc-
tions in recent years, such as [15], [11], and [22]. Some
other important papers for labeling regular graphs include
[21], [5], [13], [31], [2], [3] and [23]. For 2-regular graphs,
Wallis proved in [33] that, for a vertex-magic regular graph
G, the multiple graph sG is also vertex-magic provided that
s is odd or the degree of G is odd. Gray gave VMTLs of
C3UCoy, n >3 and CyUCo,—1, n > 3 in [14]. In [27], it

was shown that, for every s > 4 even, sC3 is vertex-magic.
For every s > 6 even, sC3 has VMTLs with at least 2s — 2
different magic constants. For every s odd, VMTLs for sCj
with s + 1 different magic constants were also provided. In
this paper, we are interested in algorithms that can be used
to construct VMTLs in sCs.

One approach to Problem 1.1 is to design an algorithm to
construct VMTLs for certain special types of graphs. This
is a part of our strategy as our algorithm is specifically
designed for sCs3. An algorithm could be designed in an effi-
cient way using properties of those graph types. For example,
in [4], algorithms were designed specifically for finding all
VMTLs on cycles and wheels. They provide a table giving
the total number of VMTLs on cycles Cs through Cis.
Moreover, they give the number of VMTLs for these for a
given magic constant. They give a table giving the number of
VMTLs for wheel graphs W3, ..., Wio. Moreover, they give
the number of VMTLs for these for given magic constants.
(They also give the number of VMTLs for some of the
feasible magic constants for W7i;.)

A second strategy for approaching this problem is to
convert it into another well-studied problem. This approach
is taken in [20], where they convert an instance of the
VMTL problem into an instance of the satisfiability of
boolean expressions problem. The SAT problem was the
first NP-complete problem ([7]) and is fundamental to com-
puter science. Variants of the Davis-Putnam algorithm ([9]),
BDD’s ([6]), and BED’s ([1]) are the three main complete
algorithms for the SAT problem. There are also many
incomplete local search algorithms. GSAT, WalkSAT ([32]),
and UnitWalk ([17]) were three of the early local search
algorithms. There is a yearly competition to find an efficient
SAT solver as part of the annual SAT conference [19]. Given
the amount of research that has been done on this problem,
it is natural to consider converting an instance of a problem
into an instance of the SAT problem.

A third strategy, which is the approach taken here, is
to combine mathematical intuition for finding new VMTLs
in certain graphs with very focused, specific algorithms to
generate labelings with certain properties. With this strategy,
labelings might be found that other more general algorithms
could not find in a reasonable amount of time. Such labelings
might then be used to construct other labelings. This strategy
was used in [27] and [18].

As mentioned above, tables are provided in [4] that give
the number of VMTLs for C3 through Cig. (They note

that of those, C'1; through Cig had not previously been
enumerated.) For sCs, there appears to be fewer magic
labelings than cycles of the same size. There are only 32
non-isomorphic magic labelings in 3C3 ([27]) even though
Cy has 1540 non-isomorphic magic labelings ([13]). This
suggests that it will be difficult to write computer programs
to generate VMTLs (in a reasonable amount of time) for
sC5 when s is big.

In the very important paper [16], a computer search was
done in an attempt to find a VMTL with the biggest labels
on the vertices (strong VMTL) for each 2-regular graph of
order 7, 11, 13, 15. Based on their observations, they made
the following conjecture:

Conjecture 1.1 ([16] Conjecture 1): A 2-regular graph of
odd order possesses a strong VMTL if and only if it is not
of the form (2t — 1)C3 U Cy or (2t)C5 U Cs.

They also found by computer search, strong VMTLs for
all 2-regular graphs of order 17 except Cs U4Cs. It turns out
that C's U4C's does possess a strong VMTL [18], disproving
part of the conjecture. This suggests that 2-regular graphs
with many triangles require special attention, and special
algorithms for efficient computer searches.

MacDougall’s conjecture states that every regular graph
of degree at least 2 is vertex-magic except for 2C5. This
remains an open problem.

The rest of this paper is organized as follows. In Section 2,
we explain the importance of common differences of com-
ponents and as well as searching for specialized labelings in
the design of efficient algorithms for solving Problem 1.1. In
Section 3, we give a new algorithm for generating VMTLs
for sC5. In Section 4, we answer Problem 1.1 in the
affirmative for each feasible magic constant in each of 7Cj,
9C3 and 11Cs5. These three graphs have 21, 27 and 33
vertices respectively; we give a VMTL for each feasible
value for each of these graphs.

2. The common difference of a compo-
nent of sC;

For the remainder of this paper, we restrict ourselves to
the problem of finding VMTLs in sCj.

Notation 2.1: Denote by [x1,za, 23, T4, T5, T¢] the labels
of one component of sC5 written in the order vertex-edge-
vertex-edge-vertex-edge. (So, x1 is the vertex label of a
vertex with weight x1 4+ x2 + x¢.)

Lemma 2.1 ([27] Lemma 2): Given a VMTL of sC3 with
a component labeled [a1, b3, as, b1, as, bs), then by — ay =
bg—agzbg—a?,.

Consider a VMTL of sCs. Suppose that one of its
components is labeled [aq,bs, as, b1, as, bs]. The common
difference of this component is defined to be d = b; —a; =
by — as = bs — ag ([27]). This concept is a key ingredient
in our algorithm. Lemma 2.2 follows immediately from
Lemma 2.1. We use it to make our algorithm more efficient.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Lemma 2.2: Suppose that we have a VMTL of sCj
with magic constant h, and that a component has common
difference d and labels [a1, b3, a2, b1, as, ba]. Then

@ bi=a;,+d, i=1,2,3;

(ii) the weight of each vertex in that component is h =
a1 + (az +d) + (a3 + d) = a1 + az + a3 + 2d;

(iii) the vertex sum of that component is h — 2d;

(iv) d=(h— (a1 +az +a3))/2; and

(v) h — (a1 + a2 + as) is an even integer.
Proof: All of these follow immediately from Lem-

ma 2.1. |

While it is trivial to rearrange any of (ii)-(iv) to obtain
the others in Lemma 2.2, we prefer to state all of (i)-(v)
so that we can refer to them individually. In an algorithm,
when presented with three integers as possible labels for the
vertices of one component, we can remove that triple from
any further consideration if A minus the sum of the three
numbers is not even by Lemma 2.2 part (v). If we wanted a
component to have a specific common difference, we could
also remove a triple from contention for vertex labels of a
component if any of a1 +d, as +d, az + d had already been
assigned to other components by Lemma 2.2 part (i). We
use techniques such as these in our algorithm.

Because exhaustive computer searches are only feasible
for small s, we chose to write computer programs that are
specifically designed to look for VMTLs with very restrictive
properties. Such a strategy might not lead to any examples
of VMTLs, or perhaps it might lead to just a few sporadic
examples. On the other hand, it might lead to some important
examples that could be used to generate others. For example,
consider the following special case of Problem 1.1.

Problem 2.1: Given a feasible magic constant h of sCs,
does there exist a VMTL with magic constant h such that
the labels 1,2,...,sg are on vertices of different compents,
sg < s, and such that the common difference on each of
these so components is 3s?

This seems like quite a restictive problem, but an efficient
algorithm can be tailor-made for this problem, and any
solution is very valuable when combined with the following
lemma, as it could be used to generate many solutions to
Problem 1.1, especially if s is close to s.

Lemma 2.3 ([27] Lemma 3): Let s be a positive integer
and let Ay be a VMTL of sC's with a magic constant of h.
Assume that one of the components has a vertex labeled 1
and a common difference of 3s. Then there exists another
VMTL \; of sC3 with a magic constant of h — 3.

We gave some solutions to Problem 2.1 in [27, Theorem
4] for s odd, sg = s, and [27, Theorem 6] for s > 6 even,
Sg=8—2.

3. A magic labeling algorithm for sC’.

In this section, we present an algorithm for generating
VMTLs in sC3. We will use the following proposition to
make our algorithm more efficient.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Proposition 3.1: A VMTL of sCs with a magic constant
of h has sum of all vertex labels equal to 3s[2(6s+ 1) — hl.
Proof: Let Sy denote the sum of all the vertex labels,

and let S denote the sum of all the edge labels. Let n = |V
and let m = |E|. It is easy to check that Sy +Sg = 1+2+
-+ (n+m) = (n+m)(n+m+1)/2 and Sy +2Sg = nh.
(For proofs of these, see [27].) Here, n = m = 3s. Solving

for Sy yields the desired equality.

In Algorithm 3.1 below, we assign labels to some com-
ponents and then attempt to extend that to a VMTL. Our
algorithm has a heavy emphasis on finding labels of vertices
in individual components. We make sure that the appropriate
and necessary edge labels are available at the same time.
Here, we use Lemmas 2.1 and 2.2. If we know the vertex
labels and the common differences of some components of
a VMTL, we know the edge labels of those components.

For convenience, we use the following term in this situa-
tion to refer to the labels assigned to some but not necessarily
all of the components. An injective vertex magic labeling,
IVML, of sC3 is an injective map f from a subset A of
VUE into {1,2,...,|V|+|E|} such that A consists of zero
or more components of sC5, and the weight of each vertex
in A is a constant. Given a VMTL, erasing the vertex and
edge labels from one or more components gives an IVML.
We are hoping to go in the other direction. We are hoping
to extend some IVMLs to VMTLs. Note that Lemma 2.1

applies to IVMLs as well as VMTLs.
Algorithm 3.1: A VMTL algorithm for sCj:

Input:
(a) the value of s that you want to find VMTLs for.

(b) if you are only interested in VMTLs for a particular
magic constant h, then that value of h is taken as input

as well.

(c) any information about restrictions there are on any of
the labels that can be used to make the program run

faster.
Output: all VMTLs that satisfy the given restrictions.

Our algorithm uses the following procedures:
1. main()

If a particular value for the magic constant & was not
given as input, then we can use a loop to look for
VMTLs for all feasible values of h. Equation (1) gives
the range of feasible values. If we denote by h,,,, and
hmin the upper and lower bounds in this inequality
respectively, then let Apig = [(Rmin + Pmaz)/2]. Then
the loop could go from Ay, down to h,,;4. By duality,
the VMTLs for the other values of i can be generated
later from those. (Note that the algorithm could look

for VMTLs for different values of h in parallel.)

For each value of h, calculate the sum k that the
vertex labels of any VMTL must have according
to Proposition 3.1. The main should then call the

procedure whichLabelsAreForVertices by a call
such as whichLabelsAreForVertices(s,h,{1,...,
6s},3s,k,0,0,0,null); described below.

Note: Three of the arguments for this call are s, h and
k. The argument {1,...,6s} represents the set of all
possible labels, and the argument 3s represents the size
of a set of labels for the vertices. Other arguments are
used for the recursive nature of that procedure. They
are described in that procedure.

. procedure whichLabelsAreForVertices(int s, int h,

int[] theNumbersForLabels, int desiredSize, int
desiredSum, int sizeSoFar, int sumSoFar, int
currentIndexO f NumbersFor Labels, int[] soFar-
ForVertices);,

This recursive procedure attempts to grow the empty
set to sets each having size desiredSize and sum
desiredSum. For each such set that is found, the
procedure lookForV MTLsUsinglt is called in the
hope that it can be used to label the vertices of sC'3 as
part of VMTLs with magic constant & and vertex sum
desiredSum.

To grow the empty set to such a set of size desiredSize
and sum desiredSum, we have parameters to keep
track of the set of elements we have chosen so far,
soFarForVertices (initially null), as well as its size,
sizeSoFar (initially 0), and its sum, sumSoFar (ini-
tially 0). The parameter currentIndexO f Numbers-
ForLabels (initially 0) keeps track of what element of
theNumbersForLabels that we are currently consid-
ering to include from soF'arForVertices.

This recursive procedure could have multiple base
cases. To make this procedure more efficient, one base
case could simply return if

length(the NumbersFor Labels)
—currentIndexO f NumbersFor Labels
< (desiredSize — sizeSoFar).

In such a case, there is no hope of extending so-
FarForVertices to a desired set because there aren’t
enough numbers left to consider in the NumbersFor-
Labels to extend soF'arForVertices to a set of size
desiredSize.

Another base case could simply return if sumSo-
Far > desiredSwm, as there is no hope of extending
soFarForVertices to a desired set because we’ve
already exceeded the desired sum.

Another base case could simply return if

currentIndexO f NumbersFor Labels
> length(the NumbersFor Labels)

as we’ve reached the end of the elements being consid-
ered in numbersForLabels in this case.

This recursive procedure should have a base case corre-
sponding to the successful generation of a set with the

properties mentioned. In this case it calls the procedure
lookForV MTLsUsinglt,

lookForV MTLsUsingIt(s, h,the NumbersF or-
Labels, soFarForVertices),
To complete this procedure, we need two recursive
calls, one of which attempts to use the current element
of theNumbersForLabels to make a desired set of
vertex labels, and the other of which attempts to make a
desired set of vertex labels without the current element.
The first corresponds to using the current element of
the NumbersFor Labels,

theNumbersFor Labels|currentIndexO fChoices].

We recurse with that together with the information in
the parameter soF'arForVertices for the last argu-
ment. (We also have to use the appropriate updated val-
ues for the sixth and seventh arguments corresponding
to size and sum and the eighth argument corresponding
to the element of the NumbersFor Labels that should
be considered next.)

The second recursive call corresponds to us not select-
ing the current element of the NumbersForLabels.
For this recursive call, no new information is be-
ing added to the information in soFarForVertices.
The eighth argument corresponding to the element of
theNumbersForLabels needs to be updated.

. procedure lookForV MT LsU singlt(int s, int h, int[]
theNumbersFor Labels, int[| the NumbersForV er-
tices);

Since we have a specific subset of all possible labels to
use for the vertices, the remaining labels must be for
the edges. Store these in int[] the NumbersFor Edges.
Next, call the recursive procedure generateV MT Ls,
with a call such as

generateV MT Ls(theNumbersForVertices, the-
NumbersForEdges, h,s,{false,..., false},null,
—1);

This procedure will attempt to generate VMTLs using
these.

. procedure generateVMT Ls(int[] the NumbersFor-
Vertices, int[] remainingNumbersForFEdges, int
h, int s, boolean[] usedVertexIndex, int[][] ivml-
Indices, int[] commonDifferences, int currentIndez-
OfIVML);

This procedure tries to find VMTLs by labeling one
component at a time. The first parameter, the Num-
bersForVerices, gives the set of numbers that is to
be used for labeling all the vertices. The parameters
wmlIndices and commonDif ferences keep track
of an IVML that we are trying to grow. The pa-
rameter ivmlIndices keeps track of triples of indices
in theNumbersForVertices. One triple corresponds
to one component, so if we ever get s triples we
have our vertex labels. From such a triple, the corre-

Int'l Conf. Foundations of Computer Science | FCS'12 |

sponding three elements in the NumbersForVertices
are currently being used as the vertex labels for one
component. The common difference for that com-
ponent can be found in the appropriate element in
commonDi f ferences. From these pieces of informa-
tion, we have the edge labels for that component.

As we grow an IVML, some labels are used for edges.
The second parameter keeps track of the edge labels
that have not as yet been used. The first parameter,
theNumbersForVertices, is the set of all of the
labels for the vertices, and the wusedVertexIndex
parameter keeps track of those that have been used so
far.

This procedure has a base case corresponding to finding
a solution. If the parameter ivmlIndices has length
s, then it corresponds to a VMTL, in which case that
information is outputted, and the procedure returns.
This procedure has a loop to continually look for all
possible labelings of one component that could be
used to augment the information in ivmlIndices and
commonDif ferences, to give a bigger IVML. The
corresponding edge labels need to be available. (Recall
that Lemma 2.2 part (i) gives us these values.) If they
are, then we can recurse on this bigger IVML with all
parameters except the first updated. When the loop is
finished, this procedure returns.

It is important to note that we have several filters in
place in the loop above so that (a) we ignore labels of
a component that won’t lead to a solution, and (b) so
that we ignore labels of a component that won’t lead
to a specific type of solution that we are after. Filters
of type (a) are used for the purposes of making the
algorithm faster. If we exclude filters of the type (b),
then our algorithm will find all possible VMTLs for the
specified values of s and h. If we include filter of type
(b), we will only be looking for VMTLs with certain
properties. We often use filters of both types in order to
find certain solutions quickly. We will discuss the use
of filters further shortly.

Finally, we can generate other VMTLs from the output of
generateV MT Ls using Lemma 2.3. This can be done by
hand (or by another procedure).

Algorithm 3.1 uses several tools so that it is efficient:

®

(i)

(iii)

In the main, our loop considered roughly half of the
feasible magic constants. Duality can be used for the
others. Parallelism can also be used here.

In the second procedure, whichLabelsAreForVer-
tices, we used the results of Proposition 3.1 to restrict
the possibilities for sets of numbers to be considered as
vertex labels.

In generateVMTLs(), when we looked for a triple
to label the vertices of one component, we eliminated
possibilities that did not satisfy Lemma 2.2 part (v).

Int'l Conf. Foundations of Computer Science | FCS'12 |

(iv) We were able to focus on labeling the vertices because
of Lemma 2.2 part (iv). We just needed to make sure
that the corresponding edge labels were available when
we had labels that we liked for the vertices of a

component.

Sometimes, we are interested in finding only labellings
in which some components have specific common dif-
ferences. In this case, Lemma 2.2 part (iv) helps us
reduce the number of triples that we need to consider
as possible labels for the vertices of a component. In
generateVMTLs(), when we looked for a triple to
label the vertices of one component, we eliminated
possibilities that did not satisfy Lemma 2.2 part (iv)

in this situation.
(v) Use Lemma 2.3 to generate many other VMTLs.

In Algorithm 3.1, we use several filters.

In generateV MTLs, when we have an IVML with some
components labeled, we try to extend it to VMTLs by
labeling an additional component (recursively). Sometimes,
a potential labeling of a “next” component can be removed
from consideration (“filtered”) because we can tell that it
will never lead to a VMTL, or because it will not lead to a

specific type of VMTL that we are interested in finding.

If we are given the common differences of any of the
components as input, then some triples can be immediately
eliminated from consideration as possible vertex labels for
a component because of Lemma 2.2 part (iv). If restrictions
are given, such as the common difference restiction of
Problem 2.1, we might be able to eliminate triples here or

at some other point in the algorithm.

4. VMTLs for 7C5, 9C'5, and 11C5.

Using Algorithm 3.1, we now answer Problem 1.1 in
the affirmative for 7C'3, 9C3, and 11C3 for each of their
respective feasible magic constants. In order to do so, we
answer Problem 2.1 in the affirmative for certain values of
h and sq for 7C3, 9C3, and 11C'3. Then, we use Lemma 2.3.

Theorem 4.1: There exists VMTLs for all of the feasible

values of 7C5.

Proof: Consider the VMTL with components labeled

[1,37,15,22,16,36], [2,39,12,23,18,33),
[3,42,8,24,21,29], [4,40,9,25,19, 30,
[5,38,10,26,17,31], [6,41,20,13,34,27],
and [7,35, 11,28, 14, 32].

This VMTL has a magic constant of 74. The first three
components have common differences of 3s. Therefore, by
using Lemma 2.3 three times, we have VMTLs of 7C3 with
magic constants 71,68, 65. By duality, there exist VMTLs

with magic constants of 55,58,61 and 64.

Next, consider the VMTL with components labeled

[1,37,14,22,16,35], [2,38,12,23,17,33],
[3,42,20,11,34, 28], [4,40,15,18,26,29],
[5,36,6,31,10,32], [7,39,9,25,21,27],
and [8,41,13,19, 30, 24].

This VMTL has a magic constant of 73. The first two compo-
nents have common differences of 3s. By using Lemma 2.3
twice, there exist VMTLs of 7C3 with magic constants 70
and 67. By duality, there exist VMTLs with magic constants
of 56,59 and 62.

Finally, in [27] it was shown that there exist VMTLs of
7C5 with magic constants with values 75, 72,69, 66, 63, 60,
57, 54.]

Theorem 4.2: There exists VMTLs for all of the feasible
values of 9C5.

Proof: Consider the VMTL with components labeled

[1,46,18,28,19,45], [2,52,11,29,25,38],
3,49, 13, 30,22, 40], [4,54,12,26,32,34],
[5,44,9,39,10,43], [6,53, 16,23, 36,33],
[7,50,27, 15,42, 35], [8,47,31,14,41,37],
and [17,51,21, 20,48, 24].

This VMTL has a magic constant of 92. The first three
components have common differences of 3s. Therefore, by
using Lemma 2.3 three times, we have VMTLs of 9Cj5
with magic constants 89, 86, and 83. By duality, there exist
VMTLs with magic constants of 73, 76,79, and 82.

Next, consider the VMTL with components labeled

[1,47,19, 28,20, 46], [2,50,15,29,23,42],
[3,51,13,30,24,40], [4,49,9,36,17,41],
5,52, 16,26,31,37], [6,45,10,39,12,43],
[7,53,14,27,33,34], [8,54,22,18,44,32],
and [11,48, 25,21, 38, 35].

This VMTL has a magic constant of 94. The first three
components have common differences of 3s. By using
Lemma 2.3 thrice, there exist VMTLs of 9C'5 with magic
constants of 91,88 and 85. By duality, there exist VMTLs
with magic constants of 71,74,77, and 80.

Next, consider the VMTL with components labeled

[1,50,17,28,23,44], [2,47,19, 29,20, 46,
3,51,14, 30,24, 41], [4,54, 16, 25,33, 37,
[5,48,12, 35, 18,42], [6,53, 10,32, 27, 36],
[7,45,11,39,13,43], [8,49,15,31,26,38],
and [9,52, 22, 21,40, 34].

4
6
8

This VMTL has a magic constant of 95. By duality, there
exists a VMTL with a magic constant of 70.

Finally, in [27] it was shown that there exist VMTLs of
9C53 with magic constants with values 96,93, 90, 87,84, 81,
78,75,72 and 69. [|

Theorem 4.3: There exists VMTLs for all of the feasible
values of 11C%.

Proof: Consider the VMTL with components labeled

[1,62,20,34,29,53], [2,65,16,35,32,49],
[3,61,19,36,28,52], [4,57,22,37,24,55],
[5,60, 18,38, 27,51], [6,56, 10,50, 12, 54],
[7,66,17,33,40,43], [8,63,23,30,41,45],
[9,59, 15,42, 26, 48], [11,58, 14, 44,25, 47],
and [13, 64,21, 31, 46, 39).

This VMTL has a magic constant of 116. The first five
components have common differences of 3s. Therefore, by
using Lemma 2.3 five times, we have VMTLs of 119C3 with
magic constants 113,110, 107,104 and 101. By duality, there
exist VMTLs with magic constants of 85, 88,91,94,97, and
100.

Next, consider the VMTL with components labeled

1,59, 22, 34, 26,55], [2,60,20,35,27,53],
3,66, 13,36, 33,46], [4,63,15,37,30,48],
[5,56,10,49,12,54], [6,58, 17,40, 24, 51],
[7,65,19,31,41,43], [8,57,11,47,18,50],
[9,64, 23, 28,45, 42], [14,62,21,32, 44, 39],
and [16,61,29, 25, 52, 38].

This VMTL has a magic constant of 115. The first four
components have common differences of 3s. By using
Lemma 2.3 four times, there exist VMTLs of 11C5 with
magic constants of 112,109,106 and 103. By duality, there
exist VMTLs with magic constants of 86, 89,92, 95, and 98.

Finally, in [27] it was shown that there exist VMTLs of
11C5 with magic constants with values 117,114,111, 108,
105,102, 99, 96, 93,90, 87 and 84.]

References

[1] H.R. Andersen and H. Hulgaard, “Boolean Expression Diagrams,”
Information and Computation, vol. 179, pp. 194-212, 2002.

[2] M. Baca, M. Miller and J.A. MacDougall, “Vertex-magic total label-
ings of generalized Peterson graphs and convex polytopes,” J. Combin.
Math. Combin. Comput., vol. 59, pp. 89-99, 2006.

[3] M. Baca, M. Miller and Slamin, “Every generalized Peterson graph
has a vertex-magic total labeling,” Int. J. Comp. Math., vol. 79, pp.
1259-1263, 2002.

[4] A. Baker and J. Sawada, “Magic Labelings on Cycles and Wheels,”
in 2nd Annual International Conference on Combinatorial Optimiza-
tion and Applications (COCOA ’08), Lecture Notes in Mathematics,
vol. 5165, pp. 361-373, 2008.

[5] O. Berkman, M. Parnas and Y. Roditty, “All cycles are edge-magic,”
Ars Combin., vol. 59, pp. 145-151, 2001.

[6] R.E. Bryant, “Symbolic Boolean Expression Manipulation with Or-
dered Binary Decision Diagrams,” ACM Computing Surveys, Vol. 24,
No. 3, pp. 294-318, 1992.

[71 S.A. Cook, “The complexity of theorem-proving procedures,” in
Proceedings of the third annual ACM symposium on the Theory of
computing, ACM, NY, 1971, pp. 151-158.

Int'l Conf. Foundations of Computer Science | FCS'12 |

(8]
(91

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]

[31]

[33]

[34]
[35]

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

M. Davis, G. Logemann, and D. Loveland, “A Machine Program for
Theorem Proving,” Communications of the ACM, vol. 3, pp. 394-397,
1962.

G. Exo0o0, A.C.H. Ling, J.P. McSorley, N.C.K. Phillips, W.D. Wallis,
“Totally magic graphs,” Discrete Math., vol. 254, pp. 103-113, 2002.
D. Froncek, P. Kovar and T. Kovarova, “Vertex magic total labeling
of products of cycles,” Australas J. Combin., vol. 33, pp. 169-181,
2005.

J.A. Gallian, “A dynamic survey of graph labeling,” Electronic J.
Combin., vol. 17, #DS6, 2010.

R.D. Godbold and P.J. Slater, “All cycles are edge-magic,” Bull. Inst.
Combin. Appl., vol. 22, pp. 93-97, 1998.

I. Gray, “New construction methods for vertex-magic total labelings
of graphs,” Ph.D. thesis, University of Newcastle, 2006.

1. Gray, “Vertex-magic total labellings of regular graphs,” SIAM J.
Discrete Math., vol. 21, Issue 1, pp. 170-177, 2007.

ID. Gray and J.A. MacDougall, “Vertex-magic labelings of regular
graphs I1.,” Discrete Math., vol. 309, pp. 5986-5999, 2009.

E.A. Hirsch, and A. Kojevnikov, “UnitWalk: A new SAT solver
that uses local search guided by unit clause elimination,” Annals of
Mathematics and Artificial Intelligence, vol. 43, pp. 91-111, 2005.

J. Holden, D. McQuillan, and J.M. McQuillan, “A conjecture on strong
magic labelings of 2-regular graphs,” Discrete Mathematics, vol. 309,
pp. 4130-4136, 2009.

The International Conferences on Theory and Applications of Satisfia-
bility Testing (SAT). [Online]. Available: http://www.satisfiability.org
G. Jdger, “An effective SAT encoding for magic labeling,” in Pro-
ceedings of the 9th Cologne Twente Workshop on Graphs and Com-
binatorial Optimization (CTW 2010), 2010, pp. 97-100.

A. Kotzig and A. Rosa, “Magic valuations of finite graphs,” Canad.
Math. Bull., vol. 13, pp. 451-461, 1970.

P. Kovar, “Vertex magic total labeling of products of regular VMT
graphs and regular supermagic graphs,” J. Combin. Math. Combin.
Comput., vol. 54, pp. 21-31, 2005.

Y. Lin and M. Miller, “Vertex-magic total labelings of complete
graphs,” Bull. Inst. Combin. Appl., vol. 33, pp. 68-76, 2001.

J.A. MacDougall, M. Miller, Slamin, and W.D. Wallis, “Vertex-magic
total labelings of graphs,” Utilitas Mathematica, vol. 61, pp. 3-21,
2002.

D. McQuillan, “Edge-magic and vertex-magic total labelings of cer-
tain cycles,” Ars Combin., vol. 91, pp. 257-266, 2009.

D. McQuillan, “A technique for constructing magic labelings of
2—regular graphs,” JCMCC, vol. 75, pp. 129-135, 2010.

D. McQuillan and J.M. McQuillan, “Magic Labelings of Triangles,”
Discrete Mathematics, vol. 309, pp. 2755-2762, 2009.

D. McQuillan and K. Smith, “Vertex-magic total labeling of multiple
complete graphs,” Congr. Numer., vol. 180, pp. 201-205, 2006.

D. McQuillan and K. Smith, “Vertex-magic total labeling of odd
complete graphs,” Discrete Math., vol. 305, pp. 240-249, 2005.

J.P. McSorley and W.D. Wallis, “On the spectra of totally magic
labelings,” Bull. Inst. Combin. Appl., vol. 37, pp. 58-62, 2003.

Y. Roditty and T. Bachar, “A note on edge-magic cycles,” Bull. Inst.
Combin. Appl. vol. 29, pp. 94-96, 2000.

B. Selman, H. Kautz, and B. Cohen, “Local Search Strategies for
Satisfiability Testing,” in Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, October 11-13, 1993.

W.D. Wallis, “Vertex magic labelings of multiple graphs,” Congr.
Numer., vol. 152, pp. 81-83, 2001.

W.D. Wallis, Magic Graphs. Boston, MA: Birkhauser, 2001.
W.D. Wallis, “Two results of Kotzig on magic labelings,” Bull. Inst.
Combin. Appl., vol. 36, pp. 23-28, 2002.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Assortativity of links in directed networks

Mahendra Piraveenan', Kon Shing Kenneth Chung'!, and Shahadat Uddin'
!Centre for Complex Systems Research, Faculty of Engineering and IT,
The University of Sydney, NSW 2006, Australia

Abstract— Assortativity is the tendency in networks where
nodes connect with other nodes similar to themselves. De-
gree assortativity can be quantified as a Pearson correlation.
However, it is insufficient to explain assortative or disassor-
tative tendencies of individual links, which may be contrary
to the overall tendency in the network. In this paper we
define and analyse link assortativity in the context of directed
networks. Using synthesised and real world networks, we
show that the overall assortativity of a network may be due
to the number of assortative or disassortative links it has,
the strength of such links, or a combination of both factors,
which may be reinforcing or opposing each other. We also
show that in some directed networks, link assortativity can
be used to highlight subnetworks which have vastly different
topological structures. The quantity we propose is limited
to directed networks and complements the earlier proposed
metric of node assortativity.

Keywords: Complex networks, graph theory, assortativity, social
networks, biological networks

1. Introduction

In the last few decades, network approaches have been
widely used to analyze complex systems in a number of
domains, including technical, biological, social and physical
domains [1], [2]. Assortativity is a much studied concept in
the topological analysis of complex networks [3], [4], [5],
[6]. Assortativity has been defined to quantify the tendency
in networks where individual nodes connect with other nodes
which are similar to themselves [3]. Thus, a social network
of people tends to be assortative, since people often prefer to
be friends with, or have links to, other people who are like
them. A food web could be argued as disassortative, because
predator and prey are unlikely to be similar in many respects.
However, it is clear that the assortativity of a network needs
to be defined in terms of a particular attribute of nodes in
that network. A social network could be assortative when
the considered attribute is the age of people, because people
tend to be friends with other people similar to their age:
however, the same network could be disassortative, when
the gender of individuals is the considered attribute. Degree
assortativity is the most common form of assortativity used
in network analysis, whereby similarity between nodes is
defined in terms of the number of connections the nodes
have. Degree assortativity can be defined and quantified
as a Pearson correlation [3], [7]. It has been shown that

many technological and biological networks are slightly
disassortative, while most social networks, predictably, tend
to be assortative in terms of degrees [3], [5]. Recent work
defined degree assortativity for directed networks in terms
of in-degrees and out-degrees, and showed that an ensemble
of definitions are possible in this case [6], [7].

It could be argued, however, that the overall assortativity
tendency of a network may not be reflected by individual
links of the network. For example, it is possible that in a
social network, which is overall assortative, some people
may maintain their ‘fan-clubs’. In this situation, people who
have a great number of friends may be connected to people
who are less famous, or even loners. If there is a link which
connects such a popular person with a loner, that link cannot
be called an assortative link, even though the network is
overall assortative. Similarly, in a network which is overall
disassortative many links could arguably be assortative. A
good example for this is the so-called rich club scenario
in internet AS networks [8]. Even though these networks
display overall disassortativity, it has been shown that the
hubs among them are strongly connected to each other,
forming a ‘rich-club’. The links that connect these hubs,
therefore should be considered assortative in nature. These
examples highlight that the ‘local assortativity’ of links is a
quantity, which, if defined, can throw light on the topological
structure of networks. In directed networks, this can be
defined separately for out-degree based mixing patterns and
in-degree based mixing patterns.

Indeed, decomposing the assortativity coefficient of a
network into values for network components has already
been attempted, and the metric of ‘local assortativity’ has
been defined and analysed in detail [4], [6]. However, this
decomposition has been done in terms of network nodes,
rather than network links. In this work however, we propose
to analyze the ‘local assortativity’ of individual links, and
will demonstrate that this approach has its advantages,
particularly for defining the assortativity of sub networks
or regions. We limit our analysis to directed networks.

Analyzing the ‘local assortativity’ of links can give us
a number of insights about networks. We will be able to
identify ‘positive’ and ‘negative’ links in the network in
terms of assortativity, and based on these we can see which
links help, or hinder, the overall assortative tendency in
networks. We can identify if assortativity of a network is
primarily determined by the number of a particular type
of links, or rather by the strength of such links. If the

10

‘strength’ of a minority of links is the primary reason for
a network’s assortativity, then we could predict that, if the
network evolves, its assortativity may change rapidly. Link
assortativity can be an indicator of the importance of links in
the network, particularly if the links are highly assortative.
Furthermore, profiles of link assortativity will provide us
with yet another tool to classify networks.

Our paper is structured as follows: in the next section,
we will introduce the concept of link assortativity for di-
rected networks. We will use the definition of assortativity
described in [7] to establish this concept, since this form of
definition is most conducive for link-based decomposition.
Then we will analyze the link-based assortativity profiles of
a number of synthesized and real world directed networks.
These include citation networks, Gene regulatory networks,
transcription networks, foodwebs and neural networks. We
will draw observations from this analysis, showing that a
network could be either assortative, disassortative or non-
assortative, due to a number of combinations between the
ratio of ‘positive’ and ‘negative’ links, and the average
strength of such links. We will also look at link-assortativity
distributions of a number of networks, and discuss what
insights can be gained from these about the evolution and
functionality of these networks. Finally we will present our
summary and conclusions.

2. Link assortativity of directed net-
works

Degree assortativity has been defined by Newman, as a
Pearson correlation between the ‘expected degree’ distri-
bution g, and the ‘joint degree’ distribution e;; [3]. The
expected degree distribution is the probability distribution of
traversing the links of the network, and finding nodes with
degree k at the end of the links. Similarly, the ‘joint degree’
distribution is the probability distribution of an link having
degree 7 on one end and degree k on the other end. In the
undirected case, the normalized Pearson coefficient of e; j
and ¢ gives us the assortativity coefficient of the network,
T.

If a network has perfect assortativity (r = 1), then all
nodes connect only with nodes with the same degree. For
example, the joint distribution e, = g0, where §; is
the Kronecker delta function, produces a perfectly assortative
network. If the network has no assortativity (r = 0), then any
node can randomly connect to any other node. A sufficiency
condition for a non-assortative network is e; . = q;qr. If
a network is perfectly disassortative (r = —1), all nodes
will have to connect to nodes with different degrees. A star
network is an example of a perfectly disassortative network,
and complex networks with star ‘motifs’ in them tend to be
disassortative.

In the case of directed networks, the definition is a
bit more involved due to the existence of in-degrees and

Int'l Conf. Foundations of Computer Science | FCS'12 |

out-degrees. Therefore, we must consider the probability
distribution of links going out of source nodes with j out-
degrees, denoted as q"“t and the probability distribution of
links going into target nodes with k in-degrees, denoted ¢i".
In addition, we may consider the probability distribution of
links going into target nodes with k out-degrees, denoted
got, and the probability distribution of links going out of
source nodes with j in-degrees, denoted qm In general,
out sout Sin
and q 7& q] [6 out,out

We can also consider distribution e~ abbreviated as
emﬁ, as the joint probability dlstrlbunon of links going into
target nodes with k ouz-degrees, and out of source nodes of
J out-degrees (i.e., the joint distribution in terms of out-
degrees). Similarly, e, = e; " is the joint probability
distribution of links going into target nodes of k in-degrees,
and out of source nodes of j in-degrees (i.e., the joint
distribution of in-degrees).

we can therefore define the out-assortativity of directed
networks, as the tendency of nodes with similar out-degrees
to connect to each other. Using the above distributions, out-
assortativity is formally defined, for out-degrees j and k, by

Piraveenan et al [6] as

1
— Z]keouf M;utugut (1)

out
Oq 04

Tout =

where 19" is the mean of ¢, pi4 is the mean of ¢**, o0"
is the standard deviation of ¢{“*, and Uf;“t is the standard
deviation of g2"*.

Similarly, Piraveenan et al. [6] defined in-assortativity as
the tendency in a network for nodes with similar in-degrees

to connect to each other, and this was formally specified as:

1 .
_ $1.,0m
Tin = gingin Z‘]ke.%k
q %q ik

mn, in
— Hq Kq 2
where 4" is the mean of qin pg is the mean of ¢;”, o™ is
the standard deviation of g, au is the standard dev1at10n
Of V771.

Meanwhile, Foster et al. [7] also defined assortativity of
directed networks in terms of the above distributions. While
they used a different set of notations, using our notation their
definition for out-assortativity can be written as

Tout =

M—l
— [Z (qut out)(kout Mgut)‘| (3)

out
Gq 94 i

where M is the number of links. Similarly, the definition of
Foster et al. for in-assortativity can be written as

M1

Pin = e | S0 -
O.zno.’”l
q

7

7/7L)(kln /qun)‘| (4)

Int'l Conf. Foundations of Computer Science | FCS'12 |

It can be analytically proven that the definitions of Foster
et al. for out-assortativity and in-assortativity are equivalent
to the definitions of Piraveenan et al. for the same quantities
respectively. That is, R.H.S of Eq. 1 = R.H.S of Eq. 3 and
R.H.S of Eq. 2 = R.H.S of Eq. 4. Such a proof is given
in our recent work [9] and it is beyond the scope of this
paper to repeat it here. However, the key difference of the
equivalent definitions is in the way the sums are obtained.
While in the definitions of Piraveenan et al. the summations
are obtained by traversing over degrees, in Foster et al. the
summations are obtained by traversing over links.

Indeed, from Eq. 3 it is apparent that the out-assortativity
of a network can be decomposed into individual contribu-
tions of links in that network. the summation of the contri-
bution, in turn, gives the overall network out-assortativity.
Therefore, we can write that

Tout = Y po" (5)

where p°“ is the individual contribution of a given link 4 to

the out-assortativity of the network, and is given by

M1 _
P = i [= R =)]
O'q 0-(\11

Similarly, the contribution of an individual link to the
overall in-assortativity of a network is given by

plt = ——— (5" — pi) (k" —)] @)

omglit
q

The definitions p2“* and pi™ indicate that, individual links

can be classified as ‘assortative’ or ‘disassortative’ in the
context of out-degree and in-degree mixing respectively, by
considering the sign of these quantities.

We also observe that in most networks, there will be a
correlation between the sign of link assortativity of a link,
and the degrees of nodes it connects. Intuitively, a link
that connects a smaller-degreed node with a larger-degreed
node will be disassortative, while an link which connects
two similar degreed nodes will be assortative. We found
evidence of this in both synthetic and real world networks.
For example, in Fig. 1 we show the average link-assortativity
against the differences in degrees at either end of links, for
a simulated Erdos - Renyi random network. On the x-axis is
shown the absolute difference between degrees of two nodes
that are at the ends of an link. On y-axis, we calculate and
show the average of link assortativity values for all links
that have such a degree-difference. The figure clearly shows
that, as the difference between the degrees increase, the
links become more and more disassortative, as expected. We
obtained similar results for a range of simulated scale-free
networks.

Fig. 2 demonstrates the same concept in a different
manner. In this figure, the sum of degrees at either end of

an link are shown, rather than the difference. If the sum is
very high, it means that both ends of a link have high-valued
degrees, where as if the sum is low, it means that both ends
of a link have low-valued degrees. In both cases, we see
that, on average, the links are assortative. If the sum is in
the middle ranges however, it typically may mean that one
end of the link has a high degree and the other end has a
lower degree. Only a minority of links will have exactly the
same middle-valued degrees on both ends. Here, predictably,
most links are disassortative.

0.0002

2 of ,

= .

ﬁ +

% -0.0002 | .]

£ -00004 | :]

$ -0.0006 . 1

o

(<2 +

& -00008 | :
-0.001

2 4 6 8 10 12 14

difference of degrees of links
Fig. 1: Average link assortativity vs degree. The x-axis shows
the difference between degrees at either end for a given
link. The y-axis shows the average link assortativity of all
links corresponding to the given x-value. As the difference
between degrees increases, links on average become more
disassortative.

0.0012

0.001 e
0.0008 | o
00006 |]
00004 | ‘]
oooo2 | - * r 4]

average link assortativity

M

-0.0002

5 10 15 20 25
sum of degrees of links

Fig. 2: Average link assortativity vs degree. The x-axis
shows the sum of degrees at either end for a given link.
The y-axis shows the average link assortativity of all links
corresponding to the given x-value. It could be seen that, as
the sum of degrees increases, links on average first become
more disassortative and then more assortative.

11

12

3. Link assortativity of real world net-
works

We analyzed link assortativity patterns of a number of
real world networks, including Gene regulatory networks,
transcription networks, cortical networks, neural networks,
food webs, and citation networks. An explanation is neces-
sary to some of these types of networks, since the usage
of names can be ambiguous. In our transcription networks,
nodes are regulatory genes and regulated proteins, and the
links are the interactions between them [1]. These are
bipartite and directed networks. On the other hand, by gene
regulatory networks we mean networks where nodes are
genes, and the links are the inhibitory or inducing effects of
one gene on the expression of another gene [10]. Note the
subtlety that unlike transcription networks, only genes are
considered as nodes in these directed networks. Similarly, by
cortical networks we denote the networks of dependencies
between various regions of the cerebral cortical (in a set of
primates)[11]. The nodes are regions in the cortical, and the
links are functional dependencies. Note that the nodes are
not individual neurons. On the other hand, neural networks
are networks where nodes are individual neurons belonging
to an organism’s neural system and links are anatomical con-
nections between neurons [1]. In citation networks, nodes are
research papers (or other citable documents) and links denote
citations between these documents. In food webs, nodes are
organisms in an ecosystem and the links represent predator-
prey relationships between them [5]. These networks can
be considered undirected or directed (prey to predator). A
list of real world networks that we have studied is shown in
Table 1, along with their out-assortativity and in-assortativity
values. This is the same set studied in [6].

Table 2 shows the number of assortative and disassortative
links in each network (M, and M), as well as the
average strength of assortative and disassortative links in
these networks (< S >, and < S >g). The average
strength is calculated by summing the local link assortativity
values of all links which are assortative or disassortative,
and dividing it by their count. This is done for both out-
assortativity and in-assortativity. It is apparent from the
table that the assortativity coefficient of a network can be
determined by (a) the numerical superiority of one type of
links over the other (b) the strength superiority, on average,
of one type of links over the other (c) a combination of these
two factors, mutually reinforcing or otherwise. Specifically,
we can observe the following scenarios.

In terms of out-assortatativity:

1) A Network can be assortative because a) it has more
assortative links than disassortative links [such as C.
elegans neural network, Human GRN, Chesapeake
lower foodweb, E. coli and C. glutamicum transcrip-
tion, Sci met, small World and Zewail citation net-
works, and human cortical]) The assortative links are,

Int'l Conf. Foundations of Computer Science | FCS'12 |

on average, stronger than disassortative links [No real
world example] c) a combination of these two reasons
[The GRNs of C. elegans, A. thaliana, R. norvegicus
and M. musculus]

2) A network can be disassortative because a) it has more
disassortative links than assortative links [transcription
networks of C. jeikeium and C. efficiens] b) disassor-
tative links are, on average, stronger than assortative
links [No real world example] c¢) a combination of
these two reasons [no real world example]

3) A network can be nearly non-assortative because a)
It has almost equal assortative and disassortative links
with equal strength on average [The food webs of Bay
dry, chrystal D, chrystal C, Chessapeake upper, Bay
wet, and the cortical networks of cat and macaque] b)
It has more assortative links, but disassortative links
are on average stronger [Lederburg, self organizing
maps, and smart Grid citation networks] c¢) It has more
disassortative links, but assortative links are on average
stronger [No real world example]

The statement ‘no real world example’ is of course
limited to the directed networks we have studied. As more
directed networks are analysed, it is our hope that real world
examples will turn up to illustrate the relevant scenarios.

A number of interesting contrasts can be made from
these observations. For example, most foodwebs are non-
assortative simply because there are equal number of as-
sortative and disassortative links, with equal strength on
average. However, many citation networks are also nearly
non-assortative, for a very different reason. They all have
more assortative links, but their disassortative links are
much stronger! For example, the Lederburg citation network
has 26730 assortative links to 14872 disassortative links,
but its disassortative links are almost doubly stronger on
average, making it overall rather non-assortative (r = 0.06).
Similarly, while most assortative networks are assortative
simply because they have more assortative links, and the
average link strength is more or less equal for both types of
links, this is not the case for most Gene Regulatory networks.
They achieve such high assortativity values because not only
they have a majority of assortative links, but also because
some of these links are really strong. For example, the rat
GRN has 12509 assortative links and 4147 disassortative
links, but its assortative links are, one average, three times
stronger compared to its disassortative links. These examples
demonstrate that networks which appear to have similar
assortativity values overall still may have very different
topological designs. This was also highlighted by [4] in their
derivation of node-based local assortativity.

We may do a similar analysis for in-assortativity of
networks. Again, we may state that, In terms of in-
assortatativity:

1) A Network can be assortative because a) it has more

assortative links than disassortative links [such as

Int'l Conf. Foundations of Computer Science | FCS'12 |

Network Size N | Tout Tin
Neural networks

C. elegans 297 0.1 -0.09
GRNs

rat (R. norvegicus)

819 0.64 | 0.59

human (H. sapiens)

1452 0.2 -0.01

mouse (M. musculus) 981 0.53 | 049
C. elegans 581 0.36 | 0.01
A. thaliana 395 0.16 | 0.03
Transcription networks

E. coli 1147 0.17 | 0.03
C. glutamicum 539 0.09 | -0.01
C. jeikeium 52 -1 -1
C. efficiens 50 -1 -1
Cortical networks

human 994 0.17 | 0.17

Macaque monkey 71 0.06 | -0.01
Cat cortical 65 -0.03 | 0.09
Food webs

Chesapeake Lower 37 0.21 | -0.06
Chesapeake Upper 37 0.1 -0.12
Crystal river C 24 0.08 | -0.14
Crystal river D 24 0.06 | -0.18
Bay wet 128 0.02 | 0.24
Bay dry 128 0.03 | 0.25

Citation networks

Self organizing Maps

3772 0.21 | -0.06

Small world

233 0.1 -0.12

Smart Grids

1024 0.08 | -0.14

Lederberg 8324 0.06 | -0.18
Zewail 6651 0.02 | 0.24
Sci met 2729 0.03 | 0.25

Table 1: Assortativity in real world directed networks. The table shows out-assortativity and in-assortativity coefficients. The
source data for the networks is obtained from [12],[13],[14],[15],[16].

2)

3)

human cortical, baywet and baydry foodweb, Lderberg
and Zewalil citation networks] b) The assortative links
are, on average, stronger than disassortative links [No
real world example] c) a combination of these two
reasons [The GRNs of R. norvegicus and M. musculus,
and small world citation network]

A network can be disassortative because a) it has more
disassortative links than assortative links [transcription
network of C. jeikeium] b) disassortative links are,
on average, stronger than assortative links [C. elegans
neural network where this is the case even though there
are more assortative links, and foodwebs of chrystal
C and Chessapeake upper] c) a combination of these
two reasons [Chrystal D foodweb]

A network can be nearly non-assortative because a)
It has almost equal assortative and disassortative links

with equal strength on average [cat cortical, macaque
cortical and Chessapeake lower foodweb] b) It has
more assortative links, but disassortative links are on
average stronger [GRNs of A. Thaliana H. sapiens,
C. elegans, transcription networks of E. coli and C.
glutamicum, smart grid, sci met and self organising
map citation networks] c) It has more disassortative
links, but assortative links are on average stronger [No
real world example]

Again, we may observe a number of interesting sce-
narios. For example, some disassortative networks can be
disassortative on the strength of disassortative links, even
while most links are in fact assortative, such as C. elegans
neural network. Similarly, many networks are nearly non-
assortative, because a majority of links are assortative while
the disassortative links are on average stronger. These two

13

Int'l Conf. Foundations of Computer Science | FCS'12 |

In-In Distributions Out-Out Distributions
Network M. Ma <S>a <S>a M. Ma <S>a <S>a
Neural networks
C. elegans 1251 877 1.69E-04 | 1.69E-04 1317 1028 | 0.00027 -2.55E-04
GRNS
rat (R. norvegicus) 12169 | 4487 | 5.66E-05 | -2.29E-05 | 12509 | 4147 | 5.85E-05 | -2.13E-05
human (H. sapiens) 10037 | 6150 | 1.77E-05 | -3.04E-05 | 10969 | 5218 | 3.69E-05 | -3.95E-05
mouse (M. musculus) | 10937 | 5200 | 5.71E-05 | -2.54E-05 | 11386 | 4751 | 5.65E-05 | -2.34E-05
C. elegans 1341 1004 | 1.14E-04 | -2.44E-04 | 1436 692 0.000369 | -2.40E-04
A. thaliana 1096 542 1.97E-04 | -3.34E-04 | 1089 549 0.000215 | -0.0001
Transcription nets
E. coli 1430 733 7.38E-05 | -1.08E-04 | 1269 894 0.00031 -0.00025
C. glutamicum 372 310 2.98E-04 | -4.04E-04 | 376 306 0.00110 -0.00104
C. jeikeium 0 51 N.A -0.01961 0 51 N.A -0.01961
C. efficiens 45 0 0 N.A 0 45 N.A -0.02222
Cortex networks
human 15764 | 11276 | 2.64E-05 | -2.15E-05 | 15764 | 11276 | 2.63E-05 | -2.15E-05
Macaque monkey 375 371 8.35E-04 | -8.63E-04 | 381 365 0.00097 -0.0008
Cat cortical 622 516 6.47E-04 | -5.99E-04 | 579 559 0.00048 -0.00055
Food webs
Chesapeake Lower 85 92 0.0028 -0.00325 107 70 0.00421 -0.00342
Chesapeake Upper 116 98 0.00185 -0.00339 124 90 0.00327 -0.00334
Crystal river C 66 59 0.0044 -0.00739 77 48 0.00492 -0.00617
Crystal river D 41 58 0.0056 -0.00700 57 42 0.00563 -0.00622
Bay wet 1398 708 2.75E-04 | -2.07E-04 | 1041 1065 | 3.07E-04 | -2.79E-04
Bay dry 1415 722 2.81E-04 | -2.02E-04 | 1087 1050 | 0.00030 -0.00028
Citation networks
Self organizing Maps | 7065 5664 | 3.78E-05 | -4.25E-05 | 9042 3687 | 9.48E-06 | -1.95E-05
Small world 1324 664 2.96E-04 | -1.49E-04 | 1246 742 0.00025 -0.00026
Smart Grids 3088 1833 | 4.63E-05 | -6.36E-05 | 3090 1831 | 8.02E-05 | -0.00010
Lederberg 25316 | 16286 | 9.25E-06 | -7.74E-06 | 26730 | 14872 | 3.60E-06 | -6.73E-06
Zewail 33314 | 20938 | 6.42E-06 | -6.95E-06 | 34548 | 19704 | 9.11E-06 | -7.72E-06
Sci met 6485 3930 | 1.72E-05 | -2.77E-05 | 6522 3893 | 4.07E-05 | -4.04E-05

Table 2: The table shows the number of assortative links M,;, and disassortative links Mg, as well as the average strength
of assortative links < S >,; and disassortative links < S >, respectively, for a number of real world networks, in the
context of in-degree and out-degree mixing.

effects cancel each other out. Therefore, the interplay be-
tween the count of assortative and disassortative links, and
the strength of such links, can give rise to a vast array of
topologies, whose intricacies cannot be explained by a single
Pearson coefficient.

4. Using link assortativity to calculate as-
sortativity coefficient of subnetworks

Since link assortativity is a measure of individual links,
it can be summed over a subset of links in a network. This
could be used as a measure of assortativity for individual sub
networks, where sub graphs show marked topological differ-
ences. While this would not be case in scale-free networks,
which by definition show similar topological characteristics

at all levels, there are many real world networks whose
topological characteristics do not scale. This is particularly
the case for man-made networks which have not evolved
much.

One well known example is in the case of software net-
works, where individual classes or modules of software form
nodes, and links are inter dependencies of such modules.
An example of such a network is shown in Fig. 8 of [5],
where it could be seen that the network consists of a distinct
star and a chain-like structure. Here we analyse another
such network of a Java software package, described in [17],
where nodes are classes and links are strong dependencies
(such as inheritance). As such, the network is directed. The
considered network is shown in Fig. 3. It could be seen

Int'l Conf. Foundations of Computer Science | FCS'12 |

that the network has a dominant star structure and a chain
structure.

Fig. 3: Software network with classes as nodes and strong
dependencies as links. It could be observed that two sub-
networks are visible, where the topological patterns are very
different to each other. These sub networks are shown by
green and red nodes, respectively. The links which do not
belong to either network are highlighted in blue.

The overall in-assortativity of this network is 7, =
—0.557. However, it could be seen that the network is
disassortative mainly because of the star structure. If the
network is considered as the union of two sub networks
(shown by the red nodes and the green nodes in Fig. 3) then
we may see that the assortativity tendencies of each sub
network are different. The sum of link assortativity values
(for in-degrees) for the subnetwork in red are —0.314, while
the same of link assortativities for the subnetwork in green
are —0.235. Furthermore, if we look at the average strength
of links, the subnetwork in red has an average strength of
—0.0078, while the subnetwork in green has the average
strength of —0.0039. The strength of the disassortative links
in the red subgraph is double of those in the green subgraph.
Therefore, it could be seen that the primary disassortative
character from the overall network comes from the red
subgraph. This is because of the presence of the star motif in
the red subgraph, which by itself is perfectly disassortative.
Analysing the out-assortativity of this network, we obtained
similar results. This example demonstrates that the quantity
of link-assortativity can be used to analyze, in a principled
manner, assortative tendencies of subgraphs without break-
ing a network into components, which may itself change the
assortative tendencies.

5. Conclusions

In this paper, we analyzed the local assortativity of links in
directed networks. After establishing the expressions for link
assortativity, we applied them to a number of synthetic and
real world networks. We showed that the overall assortative
tendency of a network is influenced by two factors (i) the
relative number of assortative / disassortative links (ii) the
relative strength of assortative / disassortative links - or
a combination of these factors. we demonstrated, using a

number of real world examples, that two directed networks
may have the same level of assortativity for different reasons,
influenced by the factors above. We also demonstrated that
link assortativity in directed networks can be a useful mea-
sure to analyse assortative tendencies of subgraphs without
breaking the original networks. Using a software network,
we showed that portions of network may have very different
assortative tendencies and link strengths. We also pointed
out that link assortativity distributions could be constructed
and used as a useful tool to understand network topology.
In conclusion, we believe that link-based local assortativ-
ity analysis demonstrates the duality of local assortativity
analysis, initially proposed as a node-based metric, and
together these measures will be used to understand the
structure and function of complex directed networks.

References

[1] F. Kepes (Ed), Biological Networks.
2007.

[2] S. N. Dorogovtsev and J. F. E. Mendes, Evolution of Networks: From
Biological Nets to the Internet and WWW. Oxford: Oxford University
Press, January 2003.

[3] M. E. J. Newman, “Assortative mixing in networks,” Physical Review
Letters, vol. 89, no. 20, p. 208701, 2002.

[4] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Local assorta-
tiveness in scale-free networks,” Europhysics Letters, vol. 84, no. 2,
p. 28002, 2008.

[5] R. V. Solé and S. Valverde, “Information theory of complex networks:
on evolution and architectural constraints,” in Complex Networks,
ser. Lecture Notes in Physics, E. Ben-Naim, H. Frauenfelder, and
Z. Toroczkai, Eds. Springer, 2004, vol. 650.

[6] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Assortative
mixing in directed biological networks,” IEEE/ACM Transactions on
computational biology and bioinformatics, vol. 9(1), pp. 66-78, 2012.

[7]1 J. G. Foster, D. V. Foster, P. Grassberger, and M. Paczuski, “Edge
direction and the structure of networks,” Proceedings of the National
Academy of Sciences, vol. 107, no. 24, pp. 10815-10820, June
2010. [Online]. Available: http://dx.doi.org/10.1073/pnas.0912671107

[8] V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani, “Detect-
ing rich-club ordering in complex networks,” Nature Physics, vol. 2,
pp. 110-115, 2006.

[9] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “On the equiva-

lence of two definitions for directed assortativity in networks,” Under

review, 2012.

P. Fernandez and R. V. Solé, “The role of computation in complex

regulatory networks,” in Scale-free Networks and Genome Biology,

E. V. Koonin, Y. I. Wolf, and G. P. Karev, Eds. Georgetown, TX:

Landes Bioscience, 2006, pp. 206-225.

A. Tang, C. Honey, J. Hobbs, A. Sher, A. Litke, O. Sporns, and

J. Beggs, “Information flow in local cortical networks is not demo-

cratic,” BMC Neuroscience, vol. 9, no. Suppl 1, p. O3, 2008.

(2009) Collations of connectivity data on the Macaque brain.

[Online]. Available: www.cocomac.org/

J. Baumbach, “Coryneregnet 4.0 - a reference database for corynebac-

terial gene regulatory networks,” BMC Bioinformatics, vol. 8, 2007.

(2008) Michigan Molecular Interaction Database, University of

Michigan. [Online]. Available: http://mimi.ncibi.org/MimiWeb/main-

page.jsp

D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world

networks,” Nature, vol. 393, no. 6684, pp. 440-442, June 1998.

[Online]. Available: http://dx.doi.org/10.1038/30918

(2007) Pajek datasets. [Online]. Available: http://vlado.fmf.uni-

1j.si/pub/networks/data

M. Piraveenan, “A software network based on network analysis

software,” Under review, 2012.

Singapore: World Scientific,

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

15

Int'l Conf. Foundations of Computer Science | FCS'12 |

On the Optimality of a Family of Binary Trees

Dana Vrajitoru William Knight
Computer and Information Sciences Department Computer and Information Sciences Department
Indiana University South Bend Indiana University South Bend
South Bend, IN 46645 South Bend, IN 46645
Email: danav@cs.iusb.edu Email: wknight@iusb.edu

Abstract—In this paper we present an analysis of the complex- the reason: when recursive calls are made, exactly one of
ity of a class of algorithms. These algorithms recursively explore the recursive calls igepeated. Clearly, then the total number
a binary tree and need to make two recursive calls for one of the of calls is not just2n + 1. We shall try to figure out the

subtrees and only one for the other. We derive the complexity of .
these algorithms in the worst and in the best case and show the total number of calls that could be made when the function

tree structures for which these cases happen. hei ght 1 is called on a treg with n nodes.

I. INTRODUCTION int heightl (node_ptr p) {
. . . . if (p == NULL)
Let us consider a traversal function for an arbitrary binary = [&t yrn -1

tree. Most of these functions are recursive, although an itera- f (hej ght (p->left) <= hei ght (p->right))
tive version is not too difficult to implement with the use of a return 1 + height(p->right);
stack [1]. The object of this paper, though, is those functions €l s)
that are recursive. return 1 + height(p->left);
For the remainder of the paper we’ll consider the class%c
C++ implementation of a tree node as follows: At first sight it would seem that this is not a very useful
problem to study because we can easily correct the fact that
struct node { this function performs two recursive calls on one of the
otype datum subtrees. We can store the result of the function in a local
node *left, =right; variable and use it instead of the second recursive call, as
b implemented in the first version of the function. Even if this is
When a recursive function makes simple traversalof a the case indeed, it would still be useful to know just “how bad”

binary tree withn nodes, in which the body of the traversaf® complexity of the function can get from a simple change.
function contains exactly two recursive calls, one on the lefthough the problem might sound simple, the complexity
subtree and one on the right, and all other parts of eagflculation requires a careful analysis of the tree structure and
call require ©(1) time, then the execution time is rough|yreveals interesting tree properties related to the height of the

proportional to the total number of calls (initial and recursivefrger subtree. _ _
that are made. In this case that will her 2n (the call on The second motivation is that just as the functtan ght

the pointer to the root of the tree and one call on each of ifse representative of a whole class of traversal functions for
2n pointers in the tree), so the execution timei¢n). The binary trees, the analysis for the fun.ctimai ght 1 can also
analysis would apply, for example, to the function below th&€ applied to a whole class of functions. Some of these can

tenpl ate <cl ass otype>

traverses the tree to calculate its height [2]. be optimized with the method used for the functiosi ght,
but some of them might require operations making the second
int height (node ptr p) { recursive call on the same subtree necessary.
if (p == NULL) An example of such a problem would be modifying the
return -1; datumin each of the nodes situated in the taller subtree of

int |eft_height hei ght (p->left);
int right_height = height (p->right);
if (left_height <= right_height)

any node. One traversal is necessary to determine the height
of the subtrees. A second traversal is necessary for the subtree

return 1 + right_hei ght; of larger height to increment its datum values.
el se The trees that we are studying here are somewhat related to
return 1 + |eft_height; increasing trees that are also related to recursion [3]. Theorems
} providing limits to sum of weights and the path length of such

The next functionhei ght 1, is a differently coded version trees can be found [4]. The problem is also related to binary
of the functionhei ght . Note that this function looks simplertrees with choosable edge length and cryptography [5].
than the first one. The code dfei ght 1, though, isnot The idea of balancing the weights in a tree to optimize a
a “simple traversal” of the kind described above. Here jgarticular function is of a more general nature and is also

Int'l Conf. Foundations of Computer Science | FCS'12 | 17

related to binary search trees [6], B-trees [7], priority wgpe labeled using this system. Tlkevalue of this tree is obtained
[8], and mergeable trees [9]. These techniques have numerbysadding up all the numeric labels in the tree (118 in this
applications, as for example, cryptography [10]. example). We will also refer to the sum of the labels in a
subtree as theeightof the subtree. Because the tree in Figure
1 is right heavy, for each node in the tree, the left child of

Let K(T) denote the total number of calls (initial andy ajways has the same label swhile the right child always
recursive) made when the second height function is called gRs 3 label that's twice the label oh

a binary treel’, and letL; and R denote the left and right
subtrees ofl’. Then we can write

II. COMPLEXITY FUNCTION

1 if T is empty
1+ K(Ly)+2K(Ry) if Ry

is at least as tall ad. and T # ¢
1+2K(Lt)+ K(Rr) otherwise

Theorem 2.1:For a tree withn nodes, the functioiX has VAN
complexity ©(2™) in the worst case. % %
Proof. For non-empty trees witlh nodes, we can maximize _ _ _ ,
the value OfK(T) by making every node (except the VOOtﬂg{c;'te ﬁﬂlle;gmgfs?f right-heavy tree with labeled nodes. Tashed lines
the right child of its parent. This results in a tree that has the
maximum possible height — 1. Let F'(n) denote&(T) for gypnosea and n are nodes in a binary tree; & is an
this kind of treeT with n nodes. Then we can write ancestor ofn, and ifn is reached froma by following only
F(0) =1, F(n) = 1+F(0)+2F(n—1) = 2F(n—1)+2. (1) "ght pointers, them is a “right descendant” oA, andA is a
“right ancestor” ofn.
This problem is easy to solve fdf(n), and the solution | emma 2.5:Let T be a right-heavy binary tree, and let
is ©(2"). That is, the functiorhei ght 1 is exponential on pe a leaf ofT. ThenL can be removed without changing the
degenerate binary trees of maximal height. This is the wolgbel of any other node if and only If satisfies one of the

K(T)

possible case for that algorithm. B following conditions:
Having identified the worst case fdt (T), let's now try to &) L IS the only node inr;
find the best case. b) L is a left child of its parent;

Definition 2.2: A K-optimal tree of sizen is a binary treer c) L is a right child of its pa_rent, .and for each righF anr_:estor
with n nodes that minimizes the value &f among all trees A of L, the_left subtree ofA is strictly shorter_ than its _rlght _
with n nodes. subtree. (Figure 2 shows an example of a right leaf, in solid

Based on what we have just seen with trees that maximi2ick color, that can be removed without changing the label
K(T), it is reasonable to conjecture that the way to build @ @ny other node in the tree.)

K-optimal tree of size is to make it as short as possible.

Perhaps, one might guess, a binary treg-igptimal if and
only if it is compact, meaning that all of its levels except for
the last one contain all the nodes that they can contain. As
it turns out, however, many compact trees are Kwaiptimal,
and manyK-optimal trees are not compact.

Definition 2.3: A right-heavytree is one in which every node
has a left subtree of height less than or equal to the height of
its right subtree.

Lemma 2.4:Let T be a binary tree. For any node 1 if
tSTJitlg;s%k:;eselslr]t?; :‘z;;hnzg;hv?” trfll?)ﬁtt SCL;]t;tr::?r;gthtﬁz t/k:u;tr%é 2. Aright leaf that can be removed without changing thesliglin the
the functionk.

Proof. This is easy to see by examining the code in the secoRdof. A simple observation tells us that the leafcan be

height function. W removed fromT without changing the label of any other node
Lemma 2.4 allows us to simplify our search fieroptimal in T if and only if the remaining tree is right-heavy afteiis
binary trees by restricting it to right-heavy trees. removed. Thus, to prove the Lemma, we’'ll prove that each

For convenience, let's label each noden a tree with the of the three conditions (a), (b), and (c) separately implies
number of calls to the functiohei ght 1 that will be made that whenL is removed fromT the remaining tree is right-
on the pointer taN, and label each empty subtréewith the heavy; then we’ll prove that if all three conditions are false,
number of calls on the corresponding null pointer. Note th#fte remaining tree is not right-heavy afteis removed from
these labels will always be powers of 2. Figure 1 shows a trée

18

Int'l Conf. Foundations of Computer Science | FCS'12 |

First, suppose the leaf is the only node inT. Then SupposeL, is at the end of a left branch (left-most case in
removingL from T leaves the empty tree, which is vacuouslyigure 3). Sincerl,, is right-heavy, Lemma 2.5, case (b), tells
right-heavy. us that we can remowvefrom T,, without changing any of the

Second, suppose the ldafs the left child of some node. labels on the other internal nodes of the tree. This produces a
SinceT is right-heavyP must have a non-empty right subtreeflight-heavy tree withn — 1 nodes and strictly smalles value.

It is now easy to see thatlifis removed fronT the remaining This smaller tree may not be optimal among all binary trees
tree is right-heavy. with n — 1 nodes, in which case there is soie@ptimal tree

Now suppose the ledf is the right child of some node, In-1 with even smalleK value. Thus &-optimal tree with
and that for each right ancestarof L, the left subtree oA is 7 — 1 nodes has a smalléet-value thank (T),).
strictly shorter than its right subtree. Thus, by removing this NOw suppose the leafis a right child. LetA be its highest
node, each of these left subtrees will now have a height fght ancestor irll’,. In the most extreme cass, is the root
most equal to their right counterparts. Then after the first | 7 andL is the only leaf inT’,, as shown in the right-most
ancestor ofL, if there is one, by removing we reduce the case in Figure 3. Then each of the right ancestors pfust
height of a left subtree, and thus the tree remains right-hea}fivé an empty left subtree, otherwisevould not be the left-

Finally, suppose that all three conditions (a), (b), and (&0St leaf. By Lemma 2.5 we can remolevithout changing
of the Lemma are false, which means that the lea$ the 2any of the other Iab(_als i, Ieavmg a right-heavy trt_ae with
right child of some node T and at least one right ancestosMallerk-value. As in the preceding paragraph, this proves
of L has left and right subtrees of equal height (the left carffat K-optimal trees withn — 1 nodes have smallek-value
be strictly taller becaus& is right-heavy). In this case, by "an&(Z,). ®
removingL, we make the left subtree that had a height equal

to its right sibling, now higher than it, so the tree would not o)
be right-heavy anymore. B Definition 3.1: A perfect binary treeis one where all the

levels contain all the nodes that they can hold.

A perfect tree of height has a number of nodes= 2"+1 —
We can reverse this to exprdss= Ig(n+1)—1 = ©(lg(n)).
Theorem 3.2:The functionk has a complexity 08 (n'e(3))
on perfect trees, wheneis the number of nodes in the tree.
Proof. For a perfect tree of heiglit > 0, the two subtrees are

b) L is added as a left child of any node that has a right chil erfect tr_ees of height — 1. If we der_10te bys the va_lue of
c) L is added as the right-most leaf in the tree or in a placee functionk on a perfect tree of heigfit, we can write the
such that the first ancestor bfthat is not a right ancestor has "™ of labels on these trees as

a right subtree of height strictly greater than the height of the k(h)=1+3k(h—1), £(0)=4.

left subtree before addinig

Proof. This is a direct consequence of Lemma 2.9

Theorem 2.7:The K function is strictly monotone over the
number of nodes on the setifoptimal trees. In other words, K(h) = ggh _ L
if 7,, andT,, are twoK-optimal trees with number of nodes 2 2
equal tom andn respectively, wheren < n, then K (T;,,) < Let us denote by, a perfect binary tree with nodes. Using
K(T,). the relationship betweenandh, we can now express the same
Proof. It suffices to prove the statement in the theorem f&um of labels as a function of the number of nodes, getting
m =n— 1. LetT, be aK-optimal tree withn nodes. Without Us back to the functiok itself:
loss of generality, we can assume tlgtis right-heavy. K(P,) = @(Slg(n)) _ @(nlg(B)).

Let us locate the left-most leaf, calllit There are 3 possible
situations that we need to consider, as shown in Figure 3Even though most perfect trees turn out not takeeptimal,

(shown without the labels of the empty subtrees for bettkhowing what their sum of labels is and knowing that the
clarity). optimal function is monotone gives us an upper bound for the

minimal complexity for a given number of nodes.li

104 Corollary 3.3: The height of ek-optimal tree withn nodes

N cannot be larger than+ 1g(3) 1g(n), wherec is a constant.

. AN Proof. A K-optimal tree withn nodes and height must have

2 2dA s, one longest path where the label of every node is an increasing

N . .. power of 2, going from 1 for the root t?" for the leaf, plus

24g 2m [leam g Y the empty subtrees of the leaf, of labé&s and 2"*!. The
sum of the labels i2"*2 — 1 + 2", This sum is less than

Fig. 3. Possible placement of the left-most leaf, denoted. by or equal to thek-value of thisk-optimal tree withn nodes,

IIl. Two SPECIAL CASES

This proof is provided in more detail in [11].
Corollary 2.6: Let T be a right-heavy binary tree. We can
add a new leat to the tree without changing the label of any”
other node if and only it. and T satisfy one of the following
conditions:
a) T is empty before inserting;

We can solve this recurrence relation by following the standard
procedure and obtain the solution

=0(3").

Int'l Conf. Foundations of Computer Science | FCS'12 | 19

which, by monotonicity, is less than or equal to tkiesalue constructed by removing + 2 of the leaves ofT and re-
of the smallest perfect tree of a number of node$ n. If ¢ attaching them elsewhere, as shown in Figure 4. Now let's
is the height of this perfect tree, then its number of nodesl@ok at how to do the removals.
m = 29t! — 1. If we choose the smallest of these trees, then
29 — 1 <n <2971 — 1, which impliesg = |lg(n)].

Thus, the height of this perfect tree is equaltg(n) | and
its number of nodes isn = 2Us(]+1 _ 1 < 2p — 1. By
Theorem 3.2, this implies that,

2h+2 142k <am'®® < qa(2n — 1)) < q(2n)8®)

= 3an's® fissing h+2 nodes

for some constant. From this we can write Fig. 4. Tree of smaller weight built from a perfect tree

h 1g(3) <
52" < 3an = h<lg(3a/5) +1g(3)la(n) The next-to-last level (leveh — 1) of our perfect treeT

and the quantitylg(3a/5) is the constant in the corollary. contains2"~! nodes, each with a label that's a power of 2.

[| By Lemma 3.5, there ar€'(h — 1, h — 2) labels of the form
Lemma 3.4:The sum of labels on levéi of a perfect binary 2"~2. Note thatC(h — 1,h — 2) = h — 1. By Lemma 2.5,
tree is equal ta*. the left child of each of thesé — 1 nodes can be removed

Proof. This Lemma is easily proved by induction, using th&om T without changing any of the labels on the remaining

fact that every non-leaf node has two children nodes withr@des. For each of these nodes, we remove two empty subtrees

sum of labels equal to 3 times its own label® of labels2"~2 and2"~!, and replace the leaf with an empty
Lemma 3.5:The number of nodes on levél of a perfect Subtree of the same label. The net effect, then, is to decrease

binary tree that have labels equal 26, where0 < j < k, the sum of labels irT by 2"~2 + 2"~! = 3% 2"~2. When we

is equal to C(k,j), where C(k,j) denotes the number odo this for allh — 1 of these left leaves with lab&*—2, we

combinations of k things taken j at a time. have decreased the total weight (i.e., sum of labels} by
Proof. We will prove this lemma by induction ovérusing the 3(h —1)2"72. _
following property of the combinations function: Then we are going to select 3 out of th&h — 1,4 — 3)
(> 3 for h > 6) leaves on leveh—1 of label2"~3 and remove
C(m,p)=C(m—1,p)+C(m —1,p—1). their left children. Each child removed reduces the weight of

Let us denote byC,(k, j) the count of nodes with label the tree by3 x 2"~3 by the same reasoning as we used in the

equal to2’ on level k. We'll prove thatC; is identical with preceding paragraph. Thus the total decrease in the weight of
the functionC. the tree is9 * 23 when these 3 nodes are removed. Thus,

Base caseFor k — 0 we only have one node, s6;(0,0) — we.ve removedh + 2 }?92des frOTL,W'th a total decrease in
1= C(0,0). weight of 3 x (h — 2)2" 72 4+ 9 % 275,

' We are going to re-attach them as shown in Figure 5: one
of them will become the root of a new tré€, and all the

of their parents and their labels are identical to those of th P‘ers Wi” be p'?‘c.ed on a path going straight to the right. The
abels in the original tree do not change. The nodes on the

parents. The count of such nodess(h 1) = CUk — . pew path have labels, 2, 22, ..., 21+, while their empty
1, 7) by the inductive step. The second type of nodes are ri P '
) by P b dh ptrees have labets 22, 2%, ..., 2h+2_ The total weight that

children of their parents. These nodes have labels that are H :
double of the labels of their parents, so they come from noo% s been added by the re-attachment of the nodes is therefore

Inductive stepFor an arbitraryk and j, there are two types of
nodes with labeR? on level k. The first type are left children

. h+2 _
of label 27~! on level k — 1. Thus, the count of such nodes D).
on levelk is equal toCy(k — 1,5 — 1) =C(k—1,5—1) (by
the inductive step). 1 5
By summing up the count of nodes that are left children AW
and those that are right children, we have that Ll
. . . . a7 g
Ct(ka]):C(k_17])+c(k_17]_1):C(kaj) u \thn
Theorem 3.6:A perfect binary tree of height > 16 is not g \‘g he2
K-optimal.
Proof. Let T be a perfect binary tree of height> 16. Our Fig. 5. Labels on the added path

strategy will be to show that we can find another binary tree,
say 7", with the same number of nodes @sbut a smaller Now we need to prove that the weight we subtracted is
K-value. This will prove thafr is not K-optimal. 77 will be greater than the weight we added. That is, we need to verify

20

Int'l Conf. Foundations of Computer Science | FCS'12 |

that S0 suppose we are given some positive integém building
3(h —1)2""2 4 9% 2h=3 > 3(2h*2 —1). a K-optimal n-node tree, we can without loss of generality
require that it be right-heavy (see Lemma 2.4). Then the

Solving this inequation results in longest branch in the tree will be the one that extends along

2(h —1) + 3> 32, the right edge of the tree. Its lowest node will be at lekel
))) . N whereh is the height of the tree. By Corollary 3.8 will have
which, sinceh is an integer, simplifies ta > 16. H to satisfy|lg(n)| < h < c+1g(3)1g(n) for a constant. Thus

Note. A sli_ghtly more complex proof allows us to lower the, ;g O(log(n)). We can start withh = |lg(n)], then attach
threshold in Theorem 3.6 to 12. __ additional nodes to this longest branch if they are needed late
Definition 37 A b'”af}’ tree T with n nodes is asize- _in the construction. When is large, we will have used only
balancedtree if and only if its left and right subtrees contain, gmaj| fraction of the prescribednodes during construction
exactly |(n —1)/2] and [(n —1)/2] nodes respectively, and ot this right-most branch. We will still have many nodes left
a similar partition of the descendents occurs at every nodedfer to insert into the optimal tree we are building. Finally,

the tree. _ _ _ _ note that the longest branch will haker 1 nodes, with labels
Theorem 3.8:The functionK on a size-balanced tree Wlth207 9l 92 oh Their sum is2"+! — 1.

n nodes has a complexity that &(n's). Let us add nodes to this branch in the order of labels,

Proof. Let 5(n) denote the value ok (T') whenT is the size- {o|10ing Corollary 2.6. Note that it is not always possible
balanced tree containingnodes. to add the node of lowest label, and oftentimes we need to

It is easy to prove by induction that size-balanced trees alg right leaf of higher label before we can add a left one
right-heavy. Thehei ght 1 function will then make one call on ¢ |ower label.

the pointer to the left subtree and two calls on the pointer t0he first node that we can add is the left child of the root

the right subtree. Thus, we can write the following recurrengg el 1, as shown in Figure 6 left. Then we can add all 3

relation for 5(n): nodes in the empty spots on level 2 of the tree, as shown in

n—1 n—1 the second tree in Figure 6. At this point, there are 3 spots

S(n)=1+35 Q 2 J) +25 d D ’ available for nodes of label 4, and that is the lowest label

_ . . o) that can be added, as shown in the third tree in Figure 6. The
which is valid for alln > 1, with the initial value isS(0) =

. e . left-most node of label 4 would allow us to add 3 nodes of
1. This is a difficult recurrence relation to solve exactly, bqhbels lower than 4. The one to its right would allow only the

instead, we can use the recurrence refation and inductiony{@iion of one node of label 2. The right-most node of label

prove the inequalities 4 does not open any other spots on the same level.
3llg(n)]+2 _ 1 3llg(n+1)]+1 _ 1
S(n) < — and S(n) > — 1
i 2
which imply thatS(n) = ©(n'#®). Sincelg(3) ~ 1.585, it 4
follows that the growth rate of(n) is only a little greater 316
than ©(n+/n). Finally, remember that size-balanced trees @ 'ongestbranch %,
not necessaril\K-optimal trees, and thus lg-optimal treeT
with n nodes will satisfyK (T") < S(n). From this it follows
that K (T) = O(n'8(®)), wheren denotes the number of nodes
inT. W

Fig. 6. Incremental level addition in l-optimal tree

It stands to reason that we should insert the left-most label
4 first, as shown in the right-most tree in Figure 6. After this
Theorem 3.8 now gives us an example of a class of trei@sertion there are two spots at which a label 2 can be added.
where the functiork has a complexity that i®(n's(®)) for The left-most one allows us to add a node of label 1, while
any arbitrary number of nodes the other one doesn’t. Thus we would insert the left-most 2,
followed by a 1. Then we can insert the other 2 into level 3,

IV. BESTCASE COMPLEXITY as shown in Figure 7.

Theorem 4.1:For K-optimal binary treeq’;, with n nodes,
K(T,) =0 (nlg<3>).

Suppose we want to build &-optimal binary tree with a
prescribed number of nodesWe shall show how the majority
of the nodes must be inserted so as to minimize the sum of
labels. This will allow us to show that th€-optimal n-node
tree we are building must have a sum of labels that’s at least
A(n's()) for some numbea independent ofi. Since Theorem Fig. 7. Nodes that the addition of the one labeled 4 allows énttee
3.8 implies that the sum of labels inkaoptimal tree withn
nodes can be at mo&(n's(®)) for some constari, we will Continuing a few more steps the same way, we notice that
have proved Theorem 4.1. a structure emerges from the process, shown in Figure 8. We

Int'l Conf. Foundations of Computer Science | FCS'12 | 21

. . TABLE |
shall call it theskeleton structure. At every step in a new level, Nopes oF LOWEST WEIGHT THAT CAN BE ADDED TO THE SKELETON

these nodes represent the ones that would open the most spots STRUCTURE
of lower labels out of all available spots of optimal label. This i i
figure does not show all the nodes added on a level before the _!tération # Nodes Weight

next one is started, but rather the initial structure that the rest _¢ =1 g-1 2(g—1)=2'-3%g 1)
of the nodes are added on. In fact, the first few levels in the =2 g—2 Alg—-2)=27-3%g—2)
tree are filled up completely by the procedure. At some point 2(9-2) 6(g—2)=2"-3"(g-2)
it can become less expensive to start adding nodes on the next ¢ =3 2(g-3) 8(9—3)=2°-3"(g—3)
level down rather than continuing to complete all the upper 2'(g—3) 2*-3'(9-3)

levels. Theorem 3.6 indicates the level where this situation 2°(g—3) 2'-3%(9—-3)

occurs.

The skeleton structure of thi€-optimal tree we will con-
struct will consist of the right-most branch of height the ~ We can see that this skeleton structure contributes ©iihy)
right-most branch of the left subtree, the right-most branch & the sum of labels in the tree, which will not change its
the left subtree of the left subtree, and so on down the tréwerall complexity, but it also uses onfy((log(n))?) of the
Let's useg to denote the height of the left subtree, so thatnodes.
g < h— 1. It follows thatg = O(log(n)). Minimal Node Placement.For the next part of the proof,
Note that the skeleton structure without the longest branét¢ shall place the remainder of the nodes in this structure in
contains the first new nodes added to every new level. Byder starting from the empty places of lowest possible label
trimming the whole tree at the level we only cut offh — g going up. These nodes are naturally placed in the tree while
number of nodes on the right-most branch, and their numbBgg skeleton structure is being built up, but for the purpose of
is at mosth = O(log(n)). Thus, this subtree of height the calculation, it is easier to consider them separately.
will contain at leastn — h 4+ g nodes, and this number is A simple observation is that the empty spots of lowest labels
asymptotic ton. Thus,g > |lg(n)] for n large enough. In available right now are the left children of all the nodes labeled
general,g = ©(log(n)). For the remaining of the proof, let us2. For all of them, a branch on the right side is present, so we
consider the skeleton structure to be trimmed at the lgvel can add them without any changes to the labels in the tree.
There areg — 1 such empty spots available, because the first
of them is on level 2, as shown in Figure 9 left.
Next, by the same reasoning, we can gdd?2 left children
of label 4. At the same time, we can add a right child of label
4 to every node added at the previous step with label 2, except
for the lowest one. That is, we can agd- 2 right children,
each having label 4, as shown in the- 2 column of Figure
9. In addition, we can also add tle— 2 left children of the
same parents. None of these additions causes any changes in
the labels of the original nodes in Figure 8.
Fig. 8. The skeleton structure for a tree of height 4 We can thus proceed in several steps, at each iteration
adding nodes with labels going from 2 up to a power of 2
Let us now examine the contribution of the skeleton struircrementing at every step. Let us examine one more step
ture trimmed to level in terms of number of nodes and sunbefore we draw a general conclusion.
of labels. Thenumber of nodeén this structure is calculated by For the third step, we can add- 3 nodes of labeB = 23.
noting that it is composed aof + 1 paths, starting from one Next to this, we can add a complete third levelte 3 perfect
composed ofy + 1 nodes and decreasing by 1 every time. Seubtrees added at the very first step, that have a root labeled

we have 2, and a second complete level go— 3 perfect subtrees of
9. (g+1)(g+2) , root labeled 4. This continues to grow the perfect subtrees
> i= 5 = 6((log(n))7). started at the previous levels. The sum of labels on a level of
i=0 a perfect tree is equal to a power of 3, but this quantity must

The sum of labels can be computed by observing that aiso be multiplied by the label of the root in our case. Table
each of these paths, we start with a label equal to 1, and tHesimmarizes the nodes we have added and their total weight
continue by incremental powers of 2 up to the length of tHer the 3 steps we've examined so far. Figure 9 also illustrates
path. The sum of the labels on a path of length computed this explanation.
just like we did for the right-most branch, and is equal to From this table we can generalize that for the iteration
2¢+1 _ 1. Thus, we can compute the totalm of labelsas number; we will have groups of nodes that can be added, with

9 a count ofg — i groups in each category. For each category
Z(2i+l —1) =292 2 (g+1)=29t2_g_3=0(n). We Wil be adding the levek of a perfect tree that has a root
= labeled2'—*. The number of nodes in each such group’is

22

Int'l Conf. Foundations of Computer Science | FCS'12 |
The weight of each group &'~ . 3%, By making the change of variable in both sughs g — i, we
have
g—1 1 g—1
2 Z Toi+1 Z 7=
Jj=g—m Jj=g—m

g—1
_ 1 (m—1)(2g—m—1)
9—2 —
272) g)

j=g—m

Let us compute the sum in the last expression separately.

g—1 1 g—1 1 g—m—1 1
Z ij—l :ngj—l - Z j2j71 =
j=g—m Jj=1 j=1
L+ (9= D(1/2)? —9(1/2)7"
Fig. 9. Nodes added to the skeleton structure in 3 steps faeadif height (1/2 - 1)2
° L+ (g —m = 1)(1/2)~" — (g — m)(1/2)7~""!
Let us assume that to fill up the tree with the remainder (1/2-1)2

of the nodes up ta, we needn such operations, and mayberpe two fractions have common denominator 1/4, so we
another incomplete step after that. We can ignore that step ffmbine the numerators. The leading 1s cancel each other.

now, since it will not change the overall complexity. To findpe can factor outl /2¢9 from the remaining terms to obtain
out what the total sum of labels is, we need to find a way to

f t- . _ _ _ _ _ _ m _ m—+1
expressm as a function ofy or n - 5 (g—1) =29 — (g —m—1)2" + (g —m)2™+1)
The total number of nodes added at stép)y 2% (g—i) = 1
_ kzzo 5oz ((9=1) =29 = (g —m—1)2" + (g — m)2"*")
(g—1)(2"—1). If we addm such steps, then the total number 1
of nodes that we've added 5 (g — i)(2 — 1). We need to =22 @"(g-—m+1) —g-1).

By replacing it back into the original formula, the number of

. . . 2:1 .
find m such that this sum is approximately equabto— (g + nodes is equal to

1)(g + 2)/2, which isn from which we subtract the nodes in
the skeleton structure. This is assuming that 1g(n) and (m—1)(2g—m—1) m

. ; . = O(2™(g—m)).
later we will address the case wherdés approximately equal 2

to a constant timeks(n), constant less than or equalltg(3). Given the similarity between the two sums, we obtain that the

2™ (g—m+1)—g—1—

The total weight added in the step numlés total weight of the nodes in the tree is
1—1 1—1
Slg— 275 = 2(g —)y 20k O((3" = 2")(g = m)) = OE" (g~ m).
k=0 k=0 Coming back to the question of expressimgas a function
i1 gk =1 g\ k of g, if we write
Noi—1 Y ol i et
2(9 —1)2 Z2k_2(g Z)Z<2) (g-m+1)2" =2 g-—m+1=2""

k=0 k=0
We can use the formulbri—t 2% — =1 to compute the sum anc_zl then introduce =g—m, we have the eq_uati0n+1 =2
as B0 ® el P which has the solutions = 0 andr = 1. Figure 10 shows
, , 4 the graph of the functio?” — z in the interval[—1, 3].
(3/2)i —1 3t—20 2

2 (g—i)m = 21(g—i) 53 5= 2(g—i)(3'=2%) The first solution would mean that the tree is almost perfect,
/2) - B and we have proved before that perfect trees aré&+agitimal.
To compute the number of nodes, we will need the followingo we can conclude that = g — 1. Considering that the last

known sum, valid for all positive integegsand real numbers |evel of the skeleton structure itself may be incomplete, this

t#1, means that fog large enough, only 1 or 2 levels beyond the
P il last may not be complete in the tree trimmed at the Igvel
_ o 1+ ptPTh — (p+ 1)tP
2 1 _ 1 _ . . .
14264387+ Apt?™" = Z e = (t—1)2 To examine the relationship betweenandg further, let us
_ =1 assume thay ~ dlg(n), wherel < d < 1g(3) ~ 1.585. Then
We can rewrite our sum as we can writen ~ 29/, Going back to the formula computing

m 1 m the number of nodes in the tree, we have

Z(g —9)(2'=1) =29 ;(9 —1) 29—it+1 Z(g - 2™ (g —m + 1) ~ 29/4

=1 i=1

Int'l Conf. Foundations of Computer Science | FCS'12 |

2%x

o X
-0.4 o 0.4 08 1 12 16 2 24 28 3

Fig. 10. The graph of the functio2® — =

from which we can write

29— m
_ ~ 99/d—m _ 9g—m+(g/d)—g _
g—m+1=2 =2 = Se@D/d’
Again, making the substitutiom = g — m, we get
27)
99(d-1)/d)
z+1

Remembering thag ~ dlg(n), we can write

or n%<

2£E
r+1
where0 < d — 1 < 0.585.

21
r+1

pdld=1)/d _ pd—1

n

>1/<d1>

23

n, and a new node is added to it. If more nodes are present
on the same branch, those node will have labels incrementing
exponentially and larger than any empty spots still available
on lower levels. They can easily be moved higher in the tree
to decrease the total weight. Thus, we can deducegthat,
org=h-—1.

The weight of the tree, and thus the complexity of the
function, is the order 0B(3") = ©(3'8(") = O(n's®). M

It is interesting to note that this is also the order of
complexity of the functionK on perfect trees and on size-
balanced trees, even though neither of thenk-gptimal in
general.

V. CONCLUSION

In this paper we have studied the complexity of a special
class of recursive functions traversing binary trees. We started
with a recurrence relation describing this complexity in the
general case. We continued with a simple analysis of the worst
case complexity, which turned out to be exponential. Next, we
showed two particular types of trees that give us a complexity
of ©(n's®).

Finally, after discussing a few more properties of tie
optimal trees that minimize the complexity function over the
trees with a given number of nodes, we showed a constructive
method to build these trees. In the process we have also shown
that the complexity of the function on these trees is also

Let us write f(y) = -%7 and start with the observation that© (n'¢*)), which concludes the study of this function.

this function is monotone ascending fpe> 1. Let us examine
the hypothesis thaf (blg(n)) > f(z) for some constank to
be defined later. The hypothesis is true if and only if

nb

J(blg(n)) = blg(n) +1 - blg(n)+1
which is equivalent to

9blg(n) B
~ pd-1

> f(z)

nh

blg(n) +1
Since a positive power of grows faster than the logarithm in

>nd ™l o pb=dH S plg(n) + 1.

any base oh, we can say that the inequality above is true for[5]

any constanb > d—1. So we can choose a constant—1 <

b < d, such thatf(z) < f(blg(n)). By the monotonicity of
the function, this implies that < blg(n), which means that
g —m < blg(n), and considering thag ~ dlg(n), we can
say that(d — b) lg(n) < m <1g(3)1g(n), from which we can
conclude thatn = ©(log(n)).

We can conclude from this analysis that any method that
allows us to avoid repeating recursive calls will significantly
improve the complexity of a function in all the cases.

REFERENCES
(1]

(2]
K]

D. E. Knuth, The Art Of Computer Programming, Volume 1: Funda-
mental Algorithms3rd ed. Addison-Wesley, 1997.

R. Sedgewick Algorithms in C++, 3rd ed. Addison-Wesley, 2001.

M. Kuba and A. Panholzer, “The left-right-imbalance of binary search
trees,” Theoretical Computer Science, vol. 370, no. 1-3, pp. 265-278,
2007, elsevier Science Publishers.

R. Neininger and L. Rachendorf, “A general limit theorem for recur-
sive algorithms and combinatorial structure$fie Annals of Applied
Probability, vol. 14, no. 1, pp. 378418, 2004.

J. Masberg and D. Rautenbach, “Binary trees with choosable edge
lengths,” Infomation Processing Lettervol. 109, no. 18, pp. 1087—
1092, 2009.

N. Askitis and J. Zobel, “Redesigning the string hash table, burst trie,
and bst to exploit cache ACM Journal of Experimental Algorithmics
vol. 15, no. 1, p. 7, January 2011.

M. Bender, M. F.-C. dand J. Fineman, Y. Fogel, B. Kuszmaul, and
J. Nelson, “Cache-oblivious streaming b-trees,”Hroceedings of the
ACM Symposium on Parallelism in Algorithms and Architectufgsn

(4

(6]

(7]

Coming back to the formula computing the weight as
O(3™(g —m)), based on the result that = O(log(n)), we [&l
can conclude that the complexity of the function is minimal in
the case where the value gf- m is a constant, and that this
complexity is indeedd(n'¢(®) in this case. While this does [°]
not necessarily mean that— m = 1, the difference between
the two numbers must be a constant. [10]

Now we can examine how many nodes we can have on the
longest branch in the tree beyond the level of the skeleton
structure. One node can be expected, for example in thgsg
cases where a perfect tree Ksoptimal for small values of

Diego, CA, June 9-11 2007, pp. 81-92.

L. Arge, M. Bender, and E. Demaine, “Cache-oblivious priority queue
and graph algorithm applications,” iroceedings of the ACM Sympo-
sium on Theory of Computing, Montreal, Quebec, Canada, May19-21
2002, pp. 268-276.

L. Georgiadis, H. Kaplan, N. Shafrir, R. E. Tarjan, and R. F. Werneck,
“Data structures for mergeable tree8CM Transactions on Algorithms
vol. 7, no. 2, p. 14, 2011.

N. Talukder and S. |. Ahamed, “Preventing multi-query attack in
location-based services,” iRroceedings of the ACM Conference on
Security and Privacy in Wireless and Mobile Network®boken, New
Jersey, March 22-24 2010, pp. 25-35.

D. Vrajitoru and W. Knight, “On the k-optimality of a family of binary
trees,” Indiana University South Bend, Tech. Rep., 2011.

24

Int'l Conf. Foundations of Computer Science | FCS'12 |

Improved Minimum Spanning Tree Heuristics for
Steiner Tree problem in graph

Ali Nourollah™?, Elnaz Pashaei', and Mohammad Reza Meybodi®
! Department of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin, Iran
“Department of Electrical and Computer Engineering of Shahid Rajaee Teacher Training University, Tehran,
Iran
*Department of Computer & IT Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract - The minimum Steiner tree problem, a classical
combinatorial optimization problem with a long history, is a
NP-complete problem. Due to its wide application, study of
heuristic algorithm about Steiner tree problem has important
practical and theoretical significance. In this paper we first
review one of the existing algorithms for solving the Steiner
problem in graphs, Minimum Spanning Tree Heuristic
algorithm, then presenting a new heuristic algorithm IMSTH
to improve it. We describe our algorithm and its
computational results. It is shown that our algorithm can
effectively improve the performance on MSTH.

Keywords: Steiner Tree problem, Heuristic Algorithm,
Minimum Spanning Tree Heuristic Algorithm

1 Introduction

A great number of the recent applications often require
the underlying network to provide multicasting capabilities.
Multicast refers to the delivery of packets from a single
source to multiple destinations. At the routing level, a
multicast routing scheme is responsible for determining the
packet delivery path from the source to all destinations,
typically a multicast tree [1]. Generation and minimization
of the cost of such tree have been traditionally formulated as
the Steiner Tree Problem. The Steiner Tree Problem
involves constructing the least cost tree that spans a given
set of points. In addition to multicast routing in
communication networks, the Steiner tree problem has
numerous applications especially in the area of
telecommunication, distribution and transportation systems.
The computation of phylogenetic trees in biology and the
routing phase in VLSI design are real life problems that
have been modeled as the Steiner tree problem [2]. Another
interesting application is in the billing strategies of large
telecommunications network service providers. The bill
isn’t based on the actual number of circuits provided, which
may change over time, but on a simple formula calculated
for an ideal network which will provide all the facilities at
minimum cost. Several other network design problems can
be formulated as generalizations of the Steiner tree problem.
Steiner tree problem or so called Steiner Problem in Graphs
(SPG) is a classic combinatorial optimization problem. Karp

showed that its decision version is NP - complete [3],
although some well known special cases of the SPG can be
solved in polynomial time. When |[N| =2 the problem
reduces to the shortest path problem while when N=V the
problem reduces to the minimum panning tree problem.
Both these problems can be solved in polynomial time. On
the other hand, the Steiner tree problem is NP-hard when
the graph vis a chordal graph, a bipartite graph or a
complete graph with edge weights either 1 or 2. Thus in the
general case the problem is an NP-hard problem. In this
paper, a novel solution based on MST to the construction of
Steiner tree is presented. The rest of this paper is organized
as follows: Section 2 review the definition of the problem
and section 3 present a survey of proposed algorithms for
the Steiner problem in graphs. Section 4 gives the
description of MSTH algorithm. The proposed algorithm is
presented in section 5. Section 6 describes experimental
results and performance evaluation. Finally Section 7
draws a conclusion and makes suggestion for future works.

2 Basic definitions

Let G = (V,E) be a connected undirected graph, where
V is the set of nodes and E denote the set of edges. Given a
non-negative weight function w: E - R + associated with
graph edges and a subset N < V of terminal nodes, the Steiner
Problem in Graphs, SPG (V,E,w,N), consists of finding a
minimum weighted connected sub tree of G spanning all
terminal nodes in N. The solution of SPG (V,E,w,N) is
Steiner minimum tree. The non-terminal nodes that end up in
the Steiner minimum tree are called Steiner nodes. Terminal
Steiner Tree Problem is a variation in which all the terminal
nodes must appear at leaves of the tree. This problem that is
also proved to be NP-complete has been matter of concern
because it has direct application in VLSI design [5]. In
Complete Steiner Problem the input graph is assumed to be
complete. Another variation is the Complete Steiner (1, 2) in
which the input is a complete graph with edge weights 1 or 2.
All of these variations are NP-complete [6]. SPG - or its
terminal version — are sometimes said to be metric, i.e. the
triangle inequality holds for edge weights in the input graph.
This imposes no limitation on the Steiner problem itself, since
we can replace any edge with the shortest path connecting its

Int'l Conf. Foundations of Computer Science | FCS'12 |

ends [7, 8]. The Steiner Network Problem generalizes the
metric Steiner tree problem to higher connectivity
requirements: Given a graph G = (V,E), a cost function on
edges, and a function » mapping unordered pairs of vertices to
Z +, find a minimum cost graph that has r(u, v) edge disjoint
paths for each pair of vertices u and v [8]. The issue of
multipoint routing for multimedia traffic has led to emergence
of Constrained Steiner Tree Problem, in which the problem is
to find a minimum cost tree such that the delay — delay
variation or both between the source and each of the
destinations is bounded. The Dynamic Steiner Tree Problem is
another generalization of the problem, in which the set of
destination nodes changes over time by receiving join or
delete requests from nodes, and problem asks for a sequence
of optimal trees [9].

3 Related Work

As SPG is NP-complete, there is little hope to find a
polynomial time solution for it. All the work done to find a
solution so far falls into three categories: Exact Algorithms,
Approximation Algorithms and Meta heuristics. Two popular
exact algorithms, the Spanning Tree Enumeration Algorithm
(STEA) which enumerates all possible combinations of
Steiner nodes, and the Dynamic Programming Algorithm
(DPA), present time complexities of 0(p 22~ ?) + n3) and
0(3?n + 2Pn %+ n?) respectively, where n is the number
of nodes in the network and p is the number of multicast
members [9]. These algorithms require long computation time
or huge computational power for solving bigger problems,
like the branch and bound algorithm proposed in [10], that
makes use of computational grids. In [11], the author offers an
approximation algorithm with performance ratio 5/3 based on
finding a minimum spanning tree in 3-uniform hyper graphs
that finds the solution with probability at least 1/2 and claims
that the algorithm runs in O(lg2 n) time, using O(n3)
processors. The best approximation algorithm known so far is
due to Robins and Zelikovsky whose performance ratio is
about 1.55 and even better for special cases such as quasi-
bipartite and complete(1-2) graphs [7]. Among several
heuristics proposed to find an Approximate solution,
Traveling Salesman Problem Heuristic (TSPH), Average
Distance Heuristic (ADH) have Performance ratio of 2. TSPH
is a heuristic based on the traveling salesman problem (TSP)
and involves finding a tour for the graph induced by the
network followed by removing the most expensive link.
Shortest path heuristic (SPH) computes the tree by connecting
all the terminals to an arbitrary root through their shortest
paths and then finding the minimum spanning tree of the
graph induced by the union of these paths, repeatedly
removing the non-terminal leaves. The algorithm presented in
[10] is a distributed algorithm based on an improved version
of the ADH heuristic, known as ADH with Full connection
(ADHF). [9] Also provides an efficient approach that supports
dynamic multicast membership, by means of periodic
improvement of locally inefficient sub-trees. In [12] the
author introduces a new algorithm using the Random Neural

25

Networks to find potential Steiner vertices that are not already
in the solution returned by the MSTH or ADH, starting with
the solution of the MSTH or ADH. The first approximation
algorithm for SPG having an approximation ratio constant
lower than 2 was due to Zelikovsky [13] with performance
ratio 11/6. Then he repeatedly improved this ratio to currently
best known performance ratio: 1.55. The heuristics proposed
to find the Steiner tree for routing applications are either
centralized or distributed. In the centralized approach, a
central node that is aware of the state of the whole network
computes the tree. The computation is generally easy and fast.
But impractical for large networks where the overhead of
maintaining, in a single node, coherent information about the
state of the entire network may be prohibitive. In a distributed
approach, on the other hand, each node of the network
actively contributes to the algorithm computation. Distributed
routing algorithms can be slower and more complex than the
centralized ones, but they become indispensable when the
network nodes can't reach a complete knowledge of the
topology and of the state of the network [9]. Some meta-
heuristics are proposed as the solution for the Steiner problem
in graphs too. Among the most efficient ones, it is found
implementations of metaheuristics such as genetic algorithms,
tabu search, Grasp and simulated annealing [14, 3]. Esbensen
and Mazumder [15] proposed a genetic algorithm and discuss
its application in global routing of VLSI layouts. The
algorithm’s encoding is based on the use of the Distance
Network Heuristic (DNH) which is a deterministic heuristic
for the SPG. The performance of algorithm is compared to
that of two heuristics from the literature and it has been shown
that the algorithm is superior. Di Fatta, Lo Presti, and Lo Re
proposed a parallel genetic algorithm for the Steiner problem
in networks. When solving Beasley’s OR Library standard test
problems, they obtain promising speedup values. Tabu Search
was introduced by Glover in 1986. TS is an extension of
classical local search methods typically used to find
approximate solutions to difficult combinatorial optimization
problems [16]. Ribeiro and Souza [14] proposed an improved
tabu search for the Steiner problem in graphs. The important
feature of the algorithm is that move estimations, elimination
tests, and neighborhood reduction techniques are used to
speed up the local search and lead to a much faster algorithm
with similar performance in terms of solution quality. In the
context of parallel tabu search for the Steiner problem in
graphs, Bastos and Ribeiro [17] describe a two phase
algorithm: in their approach, a parallel multi-thread reactive
TS phase is followed by a distributed Path Relinking (PR)
phase, i.e., all processes switch from TS to PR simultaneously.
Martins, Ribeiro and Souza [14], proposed a parallel grasp for
the Steiner problem in graphs. A Greedy Randomized
Adaptive Search Procedure (GRASP) is a meta-heuristic for
combinatorial optimization. A GRASP is an iterative process,
where each of iteration consists of two phases: construction
and local search. The construction phase of the algorithm is
based on a version of distance network heuristic which is
improved by Mehlhorn. Some heuristics are used in order to
speed up the local search. For parallelization of GRASP, each

26

slave processor performs a fixed number of GRASP iterations.
Once all processors have finished their computations, the best
solution is collected by the master processor. The results of
computational experiments illustrate the effectiveness of the
proposed parallel GRASP procedure for the Steiner problem
in graphs. Verhoeven and Severens proposed sequential and
parallel local search methods for the Steiner tree problem
based on a novel neighborhood. They claimed their approach
is “better” than those known in the literature. Computational
results indicated that good speedups could be obtained without
loss in solution quality [18].

4 Minimum Spanning Tree Heuristic
Algorithm

In the minimum spanning tree heuristic (MSTH)
suggested by Takahashi and Matsuyama [19], the solution
Tusry 1S Obtained by deleting from the minimum spanning
tree for G non-terminals of degree 1 (one at a time). The
worst-case time complexity of the minimum spanning tree
heuristic is 0 (e + vilogv). The worst-case error ratio
|Tysrul /1T (N)] is tightly bounded byv — n+ 1. Hence,
the minimum spanning tree heuristic can be considered as
inferior to the shortest paths heuristic in the worst-case sense.
It also performs poorly on average. The proposed heuristic
algorithm in this paper consists of eight steps. In the first step,
after assuming thatT,ysry IS equal with null, we
obtained Tysry by graph G.

5 Improve Minimum Spanning Tree
Heuristic Algorithm

5.1 Description of the IMSTH Algorithm

The proposed heuristic algorithm in this paper consists
of eight steps. In the first step, after assuming that T;y, sy iS
equal with null, we obtained Ty 57y by graph G.

In the second step of algorithm, we assume two divisions of
edges and paths between two terminals in Tygry:

o Existence direct edge in Tysry

e Not existence direct edge in Tyery and existence

direct edge in graph.

In the third step, for the first category, select the direct
edges of two terminals which obtained by T,,¢r, and add into
Timstr- In the fourth step, for the second category, make
compare between paths and direct edges of two terminals:

e If direct edge be shortest, add into T}y s7x-

o If path be shortest, add into T;psry-

In the next step, we study Ty sry, to determine all disjoin
terminals. In the sixth step obtained the shortest paths between
disjoin terminal and other terminals in the graph with Dijkstra
algorithm. Select shortest path between reached paths and add
into Tyysry -

In the next step, we study T;ysry, TOr connectivity. If we
have forest, determine terminals with degree 1, then seek

Int'l Conf. Foundations of Computer Science | FCS'12 |

shortest path from this terminal to other terminals, and add it
into Typysry -

At the end, study T for cycle. If we have cycle, delete cycle.
Fig. 1 shows our suggested algorithm.

Suggested algorithm: (INPUT: G = (V,E) where w:E > R+,
N < Vset of Terminals, OUTPUT: Ty, sr, approximate optimal tree) {
Step 0: Tiysry = @
Step 1: Compute Ty, sy Of the graph G.
Step 2: Assume two divisions of edges and paths, between two
terminals in Tysry:
a) Existence direct edge in Ty sy
b) Not existence direct edge in Tygry and existence direct edge in
graph
Step 3: For the first category, select the direct edges of two terminals
which obtained by Ty¢ry and add into Tyysry -
Step 4: For the second category, make compare between paths and
direct edges of two terminals:
a) If direct edge be shortest, add into T;psry -
b) If path be shortest, add into Tpysry-
Step 5: Study Tyysra, to determine all disjoin terminals.
Step 6: Determine the shortest paths between disjoin terminal and other
terminals in the Tjysry With Dijkstra algorithm. Select shortest path
between reached paths and add into T;ygry -
Step7: Study Tyysry, for connectivity. If we have forest, determine
terminals with degree 1, seek shortest path from this terminal to other
terminals, and add it into the T;psry -
Step 8: Study T;ysry for cycle. If we have cycle, delete cycle.}

Fig. 1: Suggested algorithm for SPG in graph

5.2 lustrative Example

In the example graph shown in Figure 2a, vertices vO
,v3,v4, v6 and v8 are terminal vertices. We construct Ty sty
by this graph (Fig. 2b). The cost of Ty IS equal with 808.
It can be observed that between two terminals v3,v6
and v0,v8 exists a direct edge inTygey, SO the direct
edges< v3,v6> and < v0, v8> is selected and add into Ty ery
. at the other hand, between two terminals v3 and v4 a direct
edge in graph exists that is shortest than the paths between this
two terminals, so in the fourth step the direct edge < v3,v4>
is selected and add into the Tjyery (Fig. 2¢). In the next step,
we study Tyysry for disjoin terminals but don’t find any
disjoin terminal.

Now Study T,y sy, fOr connectivity. It is observed that we
have forest. so determine terminals with degree 1, seek
shortest path from this terminal to other terminals, and add it
into the Ty sry (Fig. 2d). At the end, the cost of Ty iS
equal with 738(Fig. 2e). Fig. 2 illustrates steps of our
algorithm.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Fig. 2: Steiner tree that generated by our algorithm

6 Experimental Results

27

We have implemented our algorithms in C# programming
language. The experiments are based on the STPs in graph
from category B in the OR-library. In this paper, the
experiments are made to test the performance of IMSTH with
respect to Minimum Spanning Tree Heuristic (MSTH),
Directed Convergence Heuristic (DCH), Optimal Shortest
Paths Heuristic (OSPH) and Average Distance Heuristic
(ADH). Table 1, show it. As illustrated in Table 1, our
algorithms have achieved good results. Figure 3 show the
performance of our suggested algorithm.

TABLE 1: Our Algorithm in Compare of B Problems

NO | Vgl | IEgl vyl | OPT | DCH ADH | MSTH]| IMSTH
1 50 63 19 82 82 85 95 89
2 50 63 13 83 86 83 119 | 86
3 50 63 25 138 144 138 144 | 138
4 50 100 9 59 84 62 86 68
5 50 100 13 61 66 62 68 68
6 50 100 25 122 138 127 136 | 126
7 75 94 13 111 120 111 115 | 115
8 75 %4 19 104 107 104 120 | 108
9 75 150 13 86 105 86 128 | 109
10 | 75 150 19 88 92 90 141 | 92
11 | 100 | 125 25 235 240 238 266 | 245
12 | 100 | 200 25 131 140 132 139 | 139

300 m IMSTH

250 - OPT

200 - MSTH

150 -

costof tree

ST

1 2 3 45 6 7 8 9 101112

numberof group

Fig. 3: Performance of our Algorithm

7 Conclusions

In this paper, we concern with the problem of finding
minimum steiner tree in graph, which is a NP-complete
problem. This paper presents a heuristic Steiner tree algorithm
IMSTH. Experiment results show that IMSTH can effectively
reduce the cost of Steiner tree by MSTH. This is a substantial
improvement over previous improved works. The
performance of our suggested algorithm was compared with
Minimum Spanning Tree Heuristic (MSTH) Directed
Convergence Heuristic (DCH), Optimal Shortest Paths
Heuristic (OSPH) and Average Distance Heuristic (ADH).
Experiment results show that our suggested algorithm
produces good results and is comparable with other existing
solutions.

28

8 References

(1

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Z. Kun, W. Heng, and L. Feng-Yu, "Distributed multicast
routing for delay and delay variation-bounded Steiner tree
using simulated annealing”, Computer Communications,
vol.28, Issue 11, 5 July 2005, pp. 1356-1370.

G. Kulkarni, "A Tabu Search Algorithm for the Steiner Tree
Problem"”, M.Sc. Thesis, North Carolina State uiversity,
2000.

C. C. Ribeiro and M. C. De Souza, "Improved Tabu Search
for the Steiner Problem in Graphs”, Working paper,
Catholic University of Rio de Janeiro, Department of
Computer Science, 1997.

S.M. Wang, "A multiple source algorithm for suboptimum
Steiner trees in graphs”,Workshop on Graph-Theoretic
Concepts, Depatment of Computer Science, 1985, pp. 387-
396.

D. E. Drake and S. Hougardy, On Approximation
Algorithms for the Terminal Steiner Tree Problem",
Information Processing Letters, vol. 89, Number 1, January
2004, pp. 15-18.

M. Demange, J. Monnot, and V. Th. Paschos, "Differential
Approximation Results for the Steiner Tree Problem",
Applied Mathematics Letters, vol. 16, Issue 5, July 2003,
pp. 733-739.

G. Robins and A. Zelikovsky, "Improved Steiner Tree
Approximation in Graphs", In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, San
Francisco, California, United States, 2000, pp. 770-779.

V. V. Vazirani, "Recent results on approximating the Steiner
tree problem and its generalizations", Theoretical Computer
Science, vol. 235, Issue 1, 17 March 2000, pp. 205- 216.

L. Gatani, G. Lo Re, and S. Gaglio, "An efficient distributed
algorithm for generating and updating multicast trees”,
Parallel Computing, vol. 32, Issues 11-12, December 2006,
pp. 777-793.

URL:http://www.sciencedirect.com.

L. M. A. Drummond, E. Uchoa, A. D. Goncalves, J.
M.N.Silva, M. C.P. Santos, and M. C. S. de Castro, "A grid-
enabled distributed branch-and-bound algorithm with
application on the Steiner Problem in graphs”, Parallel
Computing, vol. 32, Issue 9, October 2006, pp. 629-642.
URL:http://www.sciencedirect.com/.

H.J. Promel and A. Steger, “A New Approximation
Algorithm for the Steiner Tree Problem with Performance
Ratio 5/3", Journal of Algorithms, vol. 36, Issue 1, July
2000, pp. 89-101. URL:http://www.sciencedirect.com.

A. Ghanwani, "Neural and delay based heuristics for the
Steiner problem in networks”, European Journal of
Operational Research, vol. 108, Issue 2, 16 July 1998, pp.
241-265.

URL:http://www.sciencedirect.com/

P. Guitart, "A Faster Implementation of Zelikovsky's 11/6-
Approximation Algorithm for the Steiner Problem in
Graphs", Electronic Notes in Discrete Mathematics, vol. 10,
November 2001, pp. 133-136.
URL:http://www.sciencedirect.com.
S. L. Martins, C. C. Ribeiro, and M. C. Souza, "A Parallel
GRASP for the Steiner Problem in Graphs”, Lecture Notes
In Computer Science; vol. 1457, 1998, pp. 285-297.
URL:http://citeseer.ist.psu.edu/martins98parallel.html.

H. Esbensen and P. Mazumder, "A Genetic Algorithm for

the Steiner Problem in a graph”, In Proceedings of the

European Design and Test Conference, 1994, pp. 402-406.
URL:http://citeseer.ist.psu.edu/185181.html.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[16]

[17]

[18]

[19]

T. G. Crainic, M. Gendreau, and J. Potvin, "Parallel Tabu

Search”, Parallel Metaheuristics, E. Alba (Ed.), John Wiley

& Sons, 2005.

URL:http://www.iro.umontreal.ca/~gendron/Pisa/Reference
Meta/Crainic05c.pdf.

M. P. Bastos and C. C. Ribeiro, "Reactive Tabu Search with
Path Relinking for the Steiner Problem in Graphs®, In
Proceedings of the Third Metaheuristics International
Conference, 1999, pp. 31-36.
URL:http://citeseer.ist.psu.edu/bastos99reactive.html.

T. G. Crainic and N. Hail, "Parallel Meta-heuristics
Applications”, Parallel Metaheuristics, E. Alba (Ed.), John
Wiley \& Sons, 2005.
URL:http://www.iro.umontreal.ca/~gendron/Pisa/Reference
Meta/Crainic05b.pdf.

H. Takahashi and A.Matsuyama, “An approximate solution
for the Steiner problem in Graphs”, Mach. Jap. 24, 1980,
pp. 573-577.

Int'l Conf. Foundations of Computer Science | FCS'12 |

A Heuristic Algorithm for Solving Steiner Tree Problem
on the Graph

F. Ghadimi', A. Nourollah’, M. Keyvanpour’
'Department of Electrical & Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
* Department of Electrical & Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran and
Department of Electrical & Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
*Department of Computer Engineering, Alzahra University, Tehran, Iran

Abstract - Steiner tree problem on the graph is an NP-
Complete problem and has no exact solution in polynomial
time. Since this problem is practically useful, there are more
attentions to heuristic and approximation approaches rather
than exact ones. By using heuristic algorithms, the near
optimum answers are obtained in polynomial time that this
is faster than exact approaches. The goal of Steiner Tree
problem is to find a minimum cost tree from the main graph
that connects a subset of nodes called terminals. In this
article, we have proposed a heuristic algorithm that solves
Steiner Tree Problem. It has time complexity of O(n(m +n
log 1)) that n is the number of nodes and m is the number
of edges. This algorithm finds the near optimum answer and
according to the experimental results and the comparisons,
it has an appropriate rate in a reasonable time.

Keywords: Steiner Tree on the Graph, NP-Complete
problems, Heuristic Algorithms.

1 Introduction

The Steiner tree problem (STP) is a well-known issue
that is used in many fields, like cabling design, canalization,
VLSI design, routing, urban road design and also
multicasting in computer networks. According to the
different usages of this problem, some various definitions
are exist for it: Euclidean STP which finds Steiner tree on
the set of points in the plane; Rectilinear STP which finds
Steiner tree in Manhattan space; Generalized STP which
finds Steiner tree on an undirected, weighted graph; and
Directed STP which finds Steiner tree on a directed,
weighted graph.

In this article, the Steiner tree has been considered on
an undirected, weighted graph G = (V,E,W) , which
includes of a set of vertices (V), a set of edges (E) and a set
of weights of edges (W). The graph G is one of the inputs of
STP and it has no negative weight. The other input of this
problem is a subset of nodes in V, which called Terminals

(T). Steiner tree problem must find a sub graph of G that has
the minimum summation of weights and connects all
terminals. According to the following proof [1], the Steiner
sub graph (S) must be a tree, because there is no negative
weight. The proof says that if S isn’t a tree, then it should
have at least one cycle. Hence, there are two different paths
that connect some terminal nodes to the other. So it is
feasible to omit some edges from one of these paths, without
losing the connectivity of S . This omission causes a
reduction of cost of S and shows that S isn’t the minimum
possible answer.

In 1972 it was proved that STP is an NP-Complete
problem [2], therefore there is no polynomial time approach
to compute the exact answer. So far some exponential time
approaches have been proposed for this problem that they
find the optimum answer and called Exact Algorithms. But
these algorithms aren’t suitable for large networks with lots
of nodes and edges, because of their low-speed execution. In
this reason Heuristic and Approximation algorithms are
widely used for solving STP, despite their near optimum
answers. These approaches have near optimum answers in
polynomial time and their evaluation measure is the ratio
between their answer and the optimum answer.

In this article, a heuristic algorithm with polynomial
time complexity is proposed that can compute Steiner tree
on large graphs. This article is organized as follows: In the
next Section, pervious works are reviewed. In Section3, our
new algorithm and its time complexity are explained. In
Section4, the experimental results are presented and finally
in Section5 there are the conclusions.

2 Pervious Works

All the searching problems that have polynomial time
solutions are in the P category, and all the other problems
are NP. Because there are some problems that have no
polynomial time solutions therefore P # NP [3]. Since STP

29

30

is in the NP category, it has no polynomial time solution,
until it will be proved that P = NP.

For solving STP on the graph, there are some exact
approaches that one of them is Hakimi’s algorithm with
time complexity of 0(n?2¥) [4]. This algorithm for any
subset S of n — 2 terminals or less finds the Minimum
Spanning Tree (MST) of T US and then it selects the
minimum result as Steiner tree. The other famous exact
algorithm for finding Steiner tree on the graph is Dreyfus
and Wagner’s algorithm that has O(n3* + n22* + n3) time
complexity and it has used dynamic programming [1].

Because of low-speed of exact approaches, they are
not practically useful, therefore a lot of heuristic algorithms
have been suggested for solving this problem. Those
heuristic algorithms that have higher speeds and lower error
percentages are better used. Some of these approaches are as
follows: MST based algorithms like algorithms of
Takahashi et al. [5] and Wong et al. [6] that for finding
Steiner tree, they add an edge at each time until all terminals
connect together; Node-based local search algorithms like
Dolagh et al. [7] that find Steiner tree with using local
search and identifying proper neighbors; Greedy
Randomized Search algorithms [8] that have three phases: a
construction phase, a local search phase and if necessary an
updating phase. In each iteration of construction phase, a
probable answer is created by selecting an element from a
sorted list of candidate elements. This list is sorted based on
greedy function, but the first element of the list is not
always the best one, hence at the end of construction phase a
local search is used for improving the answer and if
necessary an updating phase is applied. There are also a lot
of Meta heuristic algorithms for finding Steiner tree, like
Ant colony approach [9, 10] and PSO [11]. Furthermore still
the researches are done for finding algorithms for solving
STP in better rates and shorter times.

3 The Proposed Algorithm

The algorithm that is suggested in this article that
called MSTG, finds Steiner tree on an undirected and
weighted graph G = (V,E,W) . In this graph n is the
number of vertices in I/, m is the number of edges in E and
r is the number of terminal nodes in T. The set S that is
defined as S = V\T , contains Steiner nodes.

The inputs of this algorithm are the graph G and the
set T and also there is an assumption that says there is no
isolated terminal in G .This means that from each terminal,
there are some edges to the other terminals. This algorithm
consists of three phases: the preprocessing phase, the first
phase and the second phase. Finally, the outputs of this
algorithm are the Steiner tree and its cost.

Int'l Conf. Foundations of Computer Science | FCS'12 |

3.1 Preprocessing Phase

The goal of this phase is the reduction of the counts of
nodes and edges in the given graph. The Steiner nodes that
have less than two edges (Deg < 2) and their connected
edges are those ones that aren’t necessary in Steiner tree
computation; therefore, in this phase, they are omitted. The
resulted graph of this phase is called G’ and the related
pseudo code is Fig. 1.

Algorithm MSTG// Preprocessing Phase
Input:T,G = (V,E,w)

Output: G’ = (V',E’,w)

/1S =V\T

1 for eachs; € S do

2 if Deg(s;) <2 then

3 Remove s; from V and its edge from E;
4 endif
5 end for

Fig.1: Pseudo code of Preprocessing Phase

3.2 First Phase

In this phase of the algorithm, the shortest path
between each terminal to one of the other terminals, which
is the closest, is computed. The inputs of this phase are
graph G’ and the set T and the outputs are the set of edges
(P) and the set of nodes (N) from the obtained paths. Fig. 2
is the pseudo code of this phase.

Definition: “ShrtTree (x,A)” is a procedure that its
output is a set of shortest paths from node x to each node in
the set A. These paths are obtained by computing the
shortest tree that rooted in x and its leaves are the nodes in
the set A. This procedure uses Dijkstra’s algorithm.

The first loop (lines 1-5) of this pseudo code is
executed for each terminal (t;), and it obtains a shortest path
tree from t; to other terminals by using Dijkstra’s algorithm.
Afterward, among all these paths in the tree, the shortest
path from ¢; to another terminal is selected and added to the
i" cell in the array D. Then its edges are added to P, and its
nodes are added to N.

The second loop (lines 6-20) is repeated for J times or
until no changes occur in the P. This loop is exactly like the
previous loop, but it obtains a shortest path tree from ¢; to
other nodes in N. If the weight of this shortest path is less
than the weight of the previous path for t; in D and it has no
repeated edge with the previous path, then its edges and
nodes are exchanged with the previous ones in P and N. The
number of the variable J, according to the experimental
results has been determined three, and it’s sufficient. At the

Int'l Conf. Foundations of Computer Science | FCS'12 |

end of this phase there is an omission of repeated nodes in
N and repeated edges in P (lines 21, 22).

Algorithm MSTG// First Phase

Input: T, = (V',E',w)

Output: P, N

Initialization: P = ¢, N = ¢,D = ¢,] =3.

//P is a set of edges; N is a set of nodes; D is an array of size r;
//] is a counter.

1 foreacht; € T do

2 D; «Min{ShrtTree(t;, T)};

3 P < P+ Dj.edges;

4 N « N + D;.nodes;

5 end for

6 repeat

7 flag < true;

8 J—J-L

9 foreacht; €T do

10 Temp < Min{ShrtTree(t;, N)};

11 if Temp < D; and Temp.edges #D;.edges then

12 P « P\D,.edges;
13 N « N\D;.nodes;
14 D; « Temp;

15 P « P + D;.edges;
16 N « N + D;.nodes;
17 flag < false;

18 endif

19 end for

20 until flag=true or J=0.
21 Remove all repeated edges in P;
22 Remove all repeated nodes in N;

to set H. In this situation, the connectivity status of the
groups and the number of isolated groups are updated.

Algorithm MSTG// Second Phase

Fig.2: Pseudo code of First Phase

3.3 Second Phase

In this phase after examination of the connectivity
status of the terminals, if there are any isolated trees they
should be connected. For this reason, all the edges in P that
connected together are put in the same groups. Afterward if
the number of groups be greater than one, three loops are
executed. Fig. 3 is the pseudo code of this phase.

In the first loop (lines 3-6), the shortest paths from
each node in N to other nodes of it that they are not in the
same groups, are computed. Afterward, the resulted paths
will be added to C.

In the second loop (lines 7-15), until all the separated
trees are not joined together, a path with lowest-cost that
connects two trees is selected from the C. The edges and
nodes of the selected path are respectively added to P and N
and also if there is any Steiner node in this path, it is added

Inpur.T,G’ = (V’,E’,w),P,N
Output: Steiner tree path, Steiner tree Cost

Initialization: C = ¢, H = ¢.
/C is a set of founded paths; H is a set of selected Steiner
//nodes.
1 Putall e;; € P which are connected together, in the
same groups;
2 if groups number > 1 then
for eachn; € N do
Temp «all nodes in N with different groups from n;
C « C + ShrtTree(n;, Temp);
end for
while groups number> 1 do
Temp<— Min{C} which is not added yet;
if Temp connects two groups then
10 P « P + Temp.edges;
11 N < N + Temp.nodes;
12 H « H + Temp.Steiner nodes;
13 Update groups number;
14 endif
15 end while
16 for each h; € H do
17 if h; has a shorter path to any n; € N then

O 00NN kAW

18 if this shorter path has the conditions then

19 Replace it with the previous one and update
Pand N;

20 end if

21 end if

22 end for

23 Delete all repeated edges in P;
24 Delete all repeated nodes in N;
25 end if

26 for each s; € N do

27 if Deg(s;) < 2then

28 Remove s; from N and its edge from P;
29 endif
30 end for

31 Compute the summation of costs of all ¢;; € P.

Fig.3: Pseudo code of Second Phase

In the third loop (lines 16-22), if there are any Steiner
nodes in the set H, for each of them, the shortest path is
computed. If this path has lower cost than the previous one,
and also it has the connection conditions, it is replaced with
the previous path and the related edges and nodes in P and
N are exchanged. In this algorithm, the path that has the
connection condition doesn’t make a cycle or it doesn’t
make terminals to be isolated.

31

32

At the end of this phase (lines 23- 30), there are
omissions of repeated edges of P, and repeated nodes of N.
Moreover, Steiner nodes with the deg less than 2 are also
omitted from N, and their edges from P. Finally, all the
edges in the set P are the edges of the Steiner tree, and the
summation of their weights is the cost of the Steiner tree.

3.4 Time Complexity Analysis

In MSTG algorithm, the most time complexity belongs
to the computations using Dijkstra’s algorithm. By using
Fibonacci-Heap for implementing Dijkstra’s algorithm, it
has O(m + nlogn) time complexity [3].

In the preprocessing phase of the MSTG algorithm,
Dijkstra’s algorithm hasn’t been used. In the first phase,
Dijkstra’s algorithm has been used for r times and in the
second phase, at the worst condition it has been used for n
times; therefore because r <n, the time complexity of our
algorithm is O(n(m + nlogn).

4 Experimental Results

The implementation of the proposed algorithm that
called MSTG has been done by Visual C#, and it has been
examined on some well-known data sets like the Beasley’s
data set [12]. The configuration of the system that has been
used for this examination was a 2.50 GHz CPU and a 3 GB
RAM. The results of running the MSTG algorithm on the
sets B, C and D of Beasley’s data set are respectively in
tables 1, 2 and 3. The rate of this algorithm is computed
from the ratio of the cost of MSTG to the optimum cost and
also the time of execution has been shown in “hour: minute:
second: mille second”.

Table 1: The results of MSTG algorithm on the set B

Graph [Nodes |Edges |Terminals |Optimum | MSTG Rate Time
Number | Count | Count | Count Cost Result | (0pyMSTG) | (h:m:s:ms)
1B 50 63 9 82 82 1 0:0: 0: 10
2B 50 63 13 83 83 1 0:0:0: 16
3B 50 63 25 138 138 1 0:0:0: 33
4B 50 100 9 59 59 1 0:0:0: 15
5B 50 100 13 61 61 1 0:0: 0: 20
6B 50 100 25 122 122 1 0:0: 0: 50
7B 75 94 13 111 111 1 0:0:0: 28
8B 75 94 19 104 104 1 0:0: 0: 37
9B 75 94 38 220 220 1 0:0: 0: 101
10B 75 150 13 86 86 1 0:0: 0: 54
11B 75 150 19 88 92 1.045 0: 0: 0: 66
12B 75 150 38 174 174 1 0:0:0: 131
13B 100 125 17 165 170 1.03 0:0: 0: 69
14B 100 125 25 235 235 1 0:0:0: 123
15B 100 125 50 318 321 1.009 0: 0: 0: 220
16 B 100 | 200 17 127 132 1.039 0:0:0: 125
17B 100 | 200 25 131 131 1 0: 0: 0: 168
18 B 100 | 200 50 218 218 1 0: 0: 0:350

Int'l Conf. Foundations of Computer Science | FCS'12 |

Table 2: The results of MSTG algorithm on the set C

Graph |Nodes [Edges [Terminals [Optimum| MSTG Rate Time

Number | Count | Count | Count Cost Result | (opyMsTG) | (h:m:s:ms)
1c 500 625 5 85 85 1 0: 0: 0: 547
2C 500 625 10 144 144 1 0: 0: 1: 306
3cC 500 625 83 754 760 1.008 0: 0: 4: 203
4cC 500 625 125 1079 1090 1.01 0:0: 7: 578
5¢C 500 625 250 1579 1581 1.001 [0:0: 17: 409
6C 500 [1000 5 55 55 1 0: 0: 0: 969
7C 500 | 1000 10 102 102 1 0: 0: 1: 281
8C 500 | 1000 83 509 519 1.019 0: 640
9C 500 | 1000 125 707 720 1.018 [0:0: 10: 625
10C 500 | 1000 250 1093 1100 1.006 [0:0:22: 110
11c 500 [2500 5 32 33 1.031 0:0: 1: 265
12¢C 500 | 2500 10 46 49 1.065 0: 579
13¢C 500 | 2500 83 258 262 1.015 0: 0: 7: 547
14 cC 500 | 2500 125 323 330 1.021 _ [0:0: 11: 500
15¢ 500 | 2500 250 556 561 1.009 _ [0: 0: 25: 656
16 C 500 12500 5 11 12 1.09 0: 0: 1: 901
17¢ 500 [12500 10 18 20 1.111 0: 0: 2: 891
18 C 500 [12500 83 113 119 1.0531 :
19¢ 500 [12500 125 146 152 1.041
20C 500 [12500 250 267 268 1.003 0:0:37: 16

Table 3: The results of MSTG algorithm on the set D

Graph |Nodes [Edges |Terminals [Optimum| MSTG Rate Time

Number | Count | Count | Count Cost Result | (opyMmsTG) | (h:m:s:ms)
1D 1000 | 1250 5 106 107 1.009 0: 0: 2: 890
2D 1000 | 1250 10 220 220 1 0: 0: 4: 47
3D 1000 | 1250 167 1565 1578 1.008 [0:0:42: 515
4D 1000 | 1250 250 1935 1951 1.008 [0:0:52: 016
5D 1000 | 1250 500 3250 3265 1.004 0:4: 4: 484
6D 1000 _{ 2000 5 67 73 1.09 0:0: 5: 782
7D 1000 _| 2000 10 103 105 1.019 0:0:7: 719
8D 1000 _| 2000 167 1072 1097 1.023 [0: 0: 50: 907
9D 1000_| 2000 250 1448 1470 1.015 [0:1:23:578
10D | 1000 [2000 500 2110 2120 1.005 0:5: 9: 631
11D | 1000 {5000 5 29 29 1 0:0: 6: 734
12D | 1000 [5000 10 42 42 1 0: 0: 7: 375
13D | 1000 [5000 167 500 517 1.034 0: 0: 55: 94
14D | 1000 [5000 250 667 676 1.013 [0:1:24:375
15D | 1000 {5000 500 1116 1129 1.012 [0:5:27:762
16D | 1000 [25000 5 13 15 1.154 [0:0: 28: 690
17D | 1000 {25000 10 23 24 1.043 [0:0:30: 336
18D | 1000 {25000 167 223 237 1.063 [0: 1:47: 301
19D | 1000 {25000 250 310 328 1.058 [0:2:38:931
20D | 1000 {25000 500 537 542 1.009 [0:4: 56: 388

In Fig. 4, there are two samples of obtained Steiner
trees from MSTG algorithm on graphs B1 and C15 that has
been drawn with random vertices.

(@) (b)
Fig.4: Two samples of MSTG algorithm on graph
B1 (a) and graph C15 (b)

Int'l Conf. Foundations of Computer Science | FCS'12 |

According to the results of the MSTG algorithm that
are shown in the tables, this algorithm can find near
optimum answers of Steiner tree with a good rate in the
polynomial time. Moreover, all the observed rates of this
algorithm were below 1.5.

5 Conclusions

The Steiner tree problem is a well-known issue that is
used in many fields. In this article, we proposed a heuristic
algorithm to find Steiner tree on an undirected and weighted
graph. This algorithm finds the near optimum answer in
polynomial time, and the complexity of it is O(n(m +
nlog n)). Since this algorithm had reasonable running times
on the large graphs, it can be used for finding Steiner tree on
the huge networks like Urban Transportation Network.
Moreover, all the observed rates of this algorithm were
below 1.5; So in the future works, we will try to proof the
rate of this algorithm which it implies an approximation
algorithm.

References

[1] Dreyfus S. E., Wagner R. A., “The Steiner Problem
in Graphs”, Networks, Vol. 1, pp. 195-207, 1972.

[2] Karp R.M., “Reducibility among combinatorial
problems”, Complexity of Computer
Communications, Plenum Press, New York, pp.
85-103, 1972.

[3] Dasgupta S., Papadimitriou C. H., Vazirani U. V.,
“Algorithms”, 2006.

[4] Hakimi S. L., “Steiner's problem in graphs and its
implications”, Networks, Vol. 1, pp. 113-133,
1972.

[5] Takahashi H., Matsuyama A., “An approximate
solution for the Steiner problem in graphs”, Math.
Jpn., No. 24, pp. 573-577, 1980.

[6] Wu Y. F., Widmayer P., Wong C. K., “A faster
approximation algorithm for the Steiner problem in
graphs”, Acta. Info. No. 23, pp. 223-229, 1986.

[7] Dolagh S. V., Moazzami D., “New Approximation
Algorithm for Minimum Steiner Tree Problem”,
International Mathematical Forum, Vol. 6, No. 53,
pp. 2625 - 2636, 2011.

[8] Martins S. L., Pardalos P. M., Resende M. G.C.,
Ribeiro C. C., “Greedy Randomized Adaptive
Search Procedures For The Steiner Problem In
Graphs”, AT&T Labs Research Technical Report,

[10]

(11]

(12]

1998.

Tashakkori M., Adibi P., Jahanian A., Nourollah
A., "Ant colony solution dynamic Steiner tree
problem", Proceedings of 9th Annual Computer
Society of Iran Computer Conference, pp. 465-471,
2003.

Luyet L., Varone S., Zuerey N., “An Ant
Algorithm for the Steiner Tree Problem in Graphs”,
Springer EvoWorkshops, pp. 42-51, 2007.

Consoli S., Moreno-Perez J. A., Darby-Dowman
K., Mladenovic N., “Discrete Particle Swarm
Optimization for the minimum labelling Steiner
tree problem”, Springer Nat Compute, pp. 29-46,
2010.

Beasley J.E., “OR-Library: Distributing Test
Problems by Electronic Mail”, Operational
Research. Soc., Vol. 41, No. 11, pp. 1069-1072,
1990.

33

34

The Parameterized Complexity of

Int'l Conf. Foundations of Computer Science | FCS'12 |

Perfect Code in Graphs without

Small Cycles

Yong Zhang
Department of Computer Science, Kutztown University of Pennsylvania, Kutztown, PA 19530

Abstract—We study the parameterized complexity /of

studied. See Lu and Tang [3] for an overview. In terms

PERFECT CODE in graphs without small cycles. We show of parameterized complexity;-PERFECT CODE is known

that k-PERFECTCODE is W[1]-hard in bipartite graphs and

to be WJ[1]-complete [4], [5] in general graphs. Guo and

thus in graphs with girth 4. On the other hand, we show thalNiedermeier [6] showed thak-PERFECT CODE is fixed

k-PERFECT CODE admits ak? + k kernel in graphs with
girth > 5.

Keywords: parameterized complexity, perfect code

1. Introduction

parameter tractable in planar graphs by givingjia kernel.
Dawar and Kreutzer [7] showed that it is fixed parameter
tractable in effectively nowhere-dense classes of graphs.
The girth of a graph is the length of the shortest cycle
contained in the graph. In this paper we study the param-
eterized complexity ofk-PERFECT CODE in graphs with

Parameterized complexity is a powerful framework thatcertain girths, i.e., graphs without small cycles. The param-

deals with hard computational problems. parameterized
problemis a set of instances of the forifx, k), wherex

is the input instance and is a nonnegative integer called
the parameter A parameterized problem is said to fieed
parameter tractableif there is an algorithm that solves
the problem in timef(k)|z|°("), where f is a computable
function solely dependent ok, and |x| is the size of the
input instance. Thiernelizationof a parameterized problem
is a reduction to aproblem kernel that is, to apply a

polynomial-time algorithm to transform any input instance

(z, k) to an equivalent reduced instang€, k') with &’ < k

eterized complexity of several related problems, including
k-DOMINATING SET andk-INDEPENDENTSET [8], and k-
CONNECTEDDOMINATING SET [9] in graphs without small
cycles has been studied. In this paper we show that
PERFECTCODE is W[1]-hard in bipartite graphs, and thus
in triangle-free graphs or graphs with girth 4. Then we show
thatk-PERFECTCODE admits ak?+k kernel in graphs with
girth > 5 and is therefore fixed parameter tractable.

2. Main results

and |z'| < g(k) fpr some functiong_ solely dependent on 5 q Bipartite Graphs

k . A parameterized problem is fixed parameter tractable _

if and only if it is kernelizable. On the other hand, many To show the W[1]-hardness of-PERFECT CODE in
fixed parameter intractable problems can be classified iRipartite graphs, we give a reduction from the problem

a hierarchy of complexity classes W[X] WI[2] ... C
WIt]. For example,k-INDEPENDENT SET and k-CLIQUE
are known to be W[1]-complete andDOMINATING SET

MuLTICOLORED CLIQUE: Given a graphG = (V, E) and
a vertex-colorings : V. — {1,2,...,k}, decide whether
G has a clique oft vertices containing exactly one vertex

is known to be W[2]-complete. We refer the readers to [1],0f each colork-MULTICOLORED CLIQUE is shown to be

[2] for more details.

WI[1]-complete by Fellows et al. [10].

Let G = (V,E) be an undirected graph. For a vertex Theorem 2.1:k-PERFECTCODE is W[1]-complete in bi-
v € V, let N(v) and N[v] be the open neighborhood and partite graphs.

closed neighborhood af, respectively. Aperfect coden G
is a subset of vertice® C V such that for every vertex
v € V, there is exactly one vertex iV[v] N D.

Definition 1.1: Given an input graphz and a positive
integer k, the k-PERFECT CODE problem is to determine
whetherG has a perfect code of size at mdst

In the literatures:-PERFECTCODE is also known as E
FICIENT DOMINATING SET, PERFECT DOMINATING SET,
and INDEPENDENT PERFECT DOMINATING SET. It is a

Proof: Let (G = (V,E),x) be an input instance of
k-MULTICOLORED CLIQUE. For each coloi, 1 < ¢ < k,
let V; be the set of vertices id’ with color ¢. Let n; be
the number of vertices iY;. Without loss of generality, we
assume that; > 1 for all i. We fixed an ordering of the
vertices in each/;. To simplify the presentation, we abuse
notations here: for two verticag v € V;, u > v meansu is
in front of v with respect to the fixed ordering. Without loss
of generality, we also assume that no edge&irconnects

well-known NP-complete problem. Its computational com-two vertices of the same color. For any two colérand j,
plexity in various classes of graphs has been extensively < i < j < k, let £;; be the set of edges ii that connect

Int'l Conf. Foundations of Computer Science | FCS'12 | 35

vertices inV; and V;. Let m;; be the number of edges in v, € V; such thatv; > v, with respect to the fixed vertex

E;;. ordering ofV;. On the other hand, for an edge= (v1,v2) €
We construct a grapty’ = (V', E’). The vertex seV’ is E;; with v; € V; and vy € Vj, the corresponding vertex
a union of the following sets of vertices: cli, 3, e] in the edge selection gadget is adjacenftq j, v]
_ _ _ for all v € V; such thatv > v, and togli, j,v] for all
S1 = Aali, 0], bfi, 0] [1<i < kveVi} v € V; such thatv > v,. See Figure 1 for an illustration of
Uf{z[i] |1 <<k} the construction. Clearly=’ is a bipartite graph.
52 = {C[iajve]ad[iajve]|1§7;<j§kae€Eij}
Ulyli,jl [1 <i<j <k}
S3 = {f[lajvv]|1§2<]§kav€‘/l}
Se = {gli,j,v]|1<i<j<kveV;}

The edge set’ is a union of the following set of edges:

By = {(a[i,v1],0[i,v2]) [1 < i < K v1,v9 €V,
anduv; }é 1)2}
Ey = {([i],bi,v]) |1 <i < k,veVi}
By = {(cfi,j,er],dli,j,ea]) [1 <0< j <K,
e1,€2 € Eij ande; }é 82}
Ey = {(li,j).clije])|1<i<j<kecEy;} Fig. 1: A partial illustration of the construction ofy.
E o {(b[l U] f[Z -]) | 1<i<i<k Let V; = {’Ul,’UQ,’Ug} and ‘/j = {wl,wg}. Let Eij =
o Y L), 02 =tsIEE {e1,e2,e3,e4} Wheree, = (vi,wi),e2 = (vi,w2),e3 =
v1,v2 € Vi anduy > vp} (va,w1),es = (v3,wz). The figure shows how the vertex
Es = {([j,n],9li,j,v]) |1 <i<j<k, selection gadgets foV; and V; (left), the edge selection
v1,v5 € Vj anduy > vy} gadgetE;; (right), and the validation gadgets (middle) are
. o . constructed.
Eg = {(c[i,j,e], fli,j,v]) |1 <i<j <k,
e = (v1,v2) € Ejj,0,01 € V; anduy < v} Lemma 2.2:(¢ has ak-multicolored clique if and only if
Er = {(c[i,j,el,gli,g,v]) |1 <i<j <k, G' has a perfect code of sizé = 2k +2(5).
e = (v1,v2) € Eij,v,v2 € V; andwy < v} Proof: For the direct implication, suppose = (V, E)

has ak-multicolored cliqueK” C V such that = {v; | 1 <

Informally speaking, for each;, 1 <i < k, we construct < k,v; € V;}, then it is easy to verify that the following
a vertex selection gadget that contaig + 1 vertices. For setD of vertices inV”’ is a perfect code of sizk’ for G':
eachv € V,, there are two vertices]i, v] andbl[i, v]. For two
verticesali, v1] andbli, va], v1,v2 € V;, they are adjacent if , , o o
and only ifv; # vy. There is a dummy vertex[i] which = Aali, vil, bli, vi] [vi € K} UA{cli, j,e],d[i, j, e] |
is adjacent to all verticegb[i,v] | v € V;} and none of 1<i<j<ke=(viv;) andv;,v; € K}.
the vertices{ali,v] | v € V;}. Then, for each edge sé;;,
1 <i< j <k, we construct an edge selection gadget thaE)f
contains2m,; + 1. For each edge < E;;, there are two
verticescli, j,] andd[i, j, e]. There is also a dummy vertex
yli,j]. They are connected in a similar fashion as in th
vertex selection gadget. Finally, for each pair of coloasnd
jwith 1 <i < j <k, we also construct a validation gadget
that containsy; + n; vertices, namely{ f[i,j,v] | v € V;}
and{g[i, j,v] | v € V;}. The vertices in the validation gadget

For the reverse implication, suppogeis a perfect code
size k' for G'. First observe that the dummy vertek]

in the vertex selection gadget féf cannot be inD since
otherwise verticeqa[i,v] | v € V;} cannot be dominated.
ro dominatez[i], D must contain exactly one vertex from
the set{b[i,v] | v € V;}. Letb[i, vs] be such a vertex|i, vg]
dominates all verticega[i,v] | v € V;} exceptali, vs], this
implies thata[i, vs] must also be infD. By this argument,

. . . we see thath must contain exactly two vertices from each
are not adjacent to each other, instead they are adjacent tg . .
vertex selection gadget and each edge selection gadget. In

vertices in the vertex selection gadgets igrand V;, and another word, the followin@k + 2(’2“) vertices must be in
the edge selection gadget fdf;;. For a vertexv; € V;, D

the corresponding verteXi, v;] is adjacent tof [, j, vo] for
all vo € V; such thatv; > vy with respect to the fixed
vertex ordering ofV;. Similarly, for a vertexv; € Vj, the
corresponding vertek(j, v1] is adjacent tqy[i, j, vo] for all {c[i, g, ei;],d[i, j,ei;] | 1 <i<j<k,e € E;}.

{a[i,v;], bli,v;] | 1 <@ < k,v; € V;}U

So no vertex from the validation gadgets will be7n
Let bji,v;] andb[j, v;] be the two vertices irD. We see
that b[¢, v;] dominates verticeg i, j,v] for all v < wv; in
Vi and b[j, v;] dominates verticegli, j,v] for all v < v,
in V;. By the construction ofy’, to perfectly dominate the
rest of the validation verticesf[i, j,v] for all v > v; and
gli, j,v] for all v > v;, the vertexcs, j, e] must be inD
wheree = (v;,v;) € E;;. Conversely, ifc[i, 7, e] with e =
(vi,v;) € E;j is a vertex inD, cli, j, e] dominatesf|i, j, v]
for all v < v; in V; and g[i, j,v] for all v < v; in Vj, to
perfectly dominate the rest of validation verticég, v;] and
b[j,v;] must be inD. Therefore the sefv; | bji,v;] € D}
is a k-multicolored clique inG.
[
[

2.2 Graphs with girth > 5

Let G = (V, E) be a graph with girth> 5. To obtain a
k2 + k kernel, we only need the following simple reduction
rule.

Int'l Conf. Foundations of Computer Science | FCS'12 |

(2]
3]

(5]
(6]

(8]

9]

(10]

Reduction Rule 1: If a vertexv € V' has degree- k, then
removev and all vertices adjacent tofrom G and decrease
k by 1.

Lemma 2.3:Reduction Rule 1 is correct.

Proof: Let v € G be a vertex with degree k. We
claim that if G has a setS which is a perfect code of size
at mostk, thenv must be inS. Suppose this is not true and
v ¢ S. Letws,ws,...,w; be the neighbors of with | > k.
Sincew is not in S, exactly one ofv’s neighbors must be in
S. Without loss of generality, lei; be the vertex that is in
S.w; is not adjacent to any; for 1 < ¢ < [, since otherwise
v, wy,w; forms a triangle inG. Thereforews, ..., w; have
to be dominated by vertices ifi other thanmw;. We claim
that any vertexs € S with s # w; can be adjacent to
only onew;. Suppose this is not true, i.e., there is a vertex
s € S such that(s, w;), (s,w;) € E for 1 < 4,j </, then
v, w;, s, w; forms a 4-cycle, contradicting that has girth
> 5. ThereforeS containsw; and! — 1 more vertices, one
for dominating eachw; (1 < i < I), this makes|S| > I,
contradicting the assumption thgg| < k.

]
Let G’ be the reduced graph after Reduction Rule 1.
Clearly any vertex inG’ has degree at mogt. Suppose
G’ has a perfect cod§ of sizek, any vertex inG’ is either
in S or dominated by a vertex i¥. Since each vertex in
S can dominate at most other vertices inG’, the size of
G’ — S is at mostk? and thusi’ has at mosk? + k vertices.
Theorem 2.4:k-PERFECTCODE admits ak? + k kernel
in graphs with girth> 5.

References

[1] R. G. Downey and M. R. FellowsParameterized Complexity
Springer-Verlag, 1999.

J. Guo and R. Niedermeier, “Invitation to data reduction and problem
kernelization,” SIGACT Newsvol. 38, no. 1, pp. 31-45, 2007.

C. L. Lu and C. Y. Tang, “Weighted efficient domination problem
on some perfect graphdiscrete Applied Mathematicsol. 117, no.

1-3, pp. 163-182, 2002.

R. G. Downey and M. R. Fellows, “Fixed-parameter tractability and
completeness Il: on completeness for W[ITheoretical Computer
Sciencevol. 141, pp. 109-131, 1995.

M. Cesati, “Perfect Code is W[1]-completdfiformation Processing
Letters vol. 81, pp. 163-168, 2002.

J. Guo and R. Niedermeier, “Linear problem kernels for NP-hard
problems on planar graphs,” Iroceedings of the 34th International
Colloguium on Automata, Languages and Programmif@07, pp.
375-386.

A. Dawar and S. Kreutzer, “Domination problems in nowhere-dense
classes,” inProceedings of the IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Sgience
2009, pp. 157-168.

V. Raman and S. Saurabh, “Short cycles make W-hard problems hard:
FPT algorithms for W-hard problems in graphs with no short cycles,”
Algorithmicg vol. 52, no. 2, pp. 203-225, 2008.

N. Misra, G. Philip, V. Raman, and S. Saurabh, “The effect of girth
on the kernelization complexity of connected dominating set,” in
Proceedings of the IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Scie@€40, pp.
96-107.

M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette, “On
the parameterized complexity of multiple-interval graph problems,”
Theoretical Computer Scienceol. 410, pp. 53-61, 2009.

Int'l Conf. Foundations of Computer Science | FCS'12 |

A New Node Splitting Algorithm for R-Tree

Chandan Garai' and Ranjan Dasgupta®
! Student, Dept. of Computer Science & Engineering, National Institute of Technical Teachers’ Training And
Research, Kolkata, West Bengal, India
2 Dept. of Computer Science & Engineering, National Institute of Technical Teachers’ Training And
Research, Kolkata, West Bengal, India

Abstract — R-Tree being a multi-dimensional version of B-
Tree is being used in various applications including
geographic information systems, computer aided designing
systems, spatial databases etc. Efficient searching of this
tree is always a challenge to the research community and
several methods have been proposed for this purpose. In
this paper, we propose a new splitting algorithm to help
efficient retrieval by reducing chances of overlap.

Keywords: Spatial ~ Database, Multi-Dimensional
Indexing, R-Tree, Node Splitting Algorithm.

1 Introduction

An R-Tree [2] [4] [7-8] is a height-balanced tree. The
index records in its leaf nodes contain pointers to data
objects. It is the multidimensional extension of B-tree.
Nodes correspond to disk pages. The structure is designed
in such a manner that a spatial search requires visiting only
a small number of nodes. The index is dynamic in nature.
Insertions and deletions can be intermixed with searches
and no periodic reorganization is required.

2 Spatial Database and R-Tree

A spatial database [1] [5-6] [9] [10] consists of a
collection of tuples representing spatial objects, and each
tuple has a unique identifier which can be used to retrieve
it. Leaf nodes in an R-Tree contain index record entries of
the form

(1, tuple_identifier)
Where, tuple_identifier refers to a tuple in the database and
| is an n-dimensional rectangle which is the minimum
bounding rectangle (MBR) of the spatial object indexed.
Non-leaf nodes contain entries of the form
(1, child_pointer)

Where, child_pointer is the address of a lower node in the
R-Tree and | covers all internal minimum bounding
rectangles (iMBR) in the lower node’s entries. Fig. 1 shows
the index structure of R-Tree.

| Root |

/

| I. child_ pointer |

/

I. tuple_ identifier |

Fig. 1 Index Structure of R-Tree

Let, M is the maximum number of entries that will fit in
one node and let m < % be a parameter specifying the

minimum number of entries in a node. An R-Tree [2]
satisfies the following properties

(1) Every leaf node contains between m and M index
records unless it is the root.

(2) For each index record (I, tuple_identifier) in a leaf node,
I is the smallest rectangle that spatially contains the n-
dimensional data object represented by the indicated tuple.
(3) Every non-leaf node has between m and M children
unless it is the root.

(4) For each entry (I, child_pointer) in a non-leaf node, | is
the smallest rectangle that spatially contains the rectangles
in the child node.

(5) The root node has at least two children unless it is a
leaf.

(6) All leaves appear on the same level.

3 Node Splitting Algorithms

In R-Tree, when we need to insert a data to any node
and the node is full, then, we need to split that node to
make room for the newly inserted records. There have been
several R-Tree node splitting algorithms developed since
R-Tree was introduced. Among them, Guttman’s
Quadratic-Cost Algorithm [2], the Optimal node splitting
algorithm [11], the Linear node splitting algorithm [12] and
Basic node splitting with bipartition [3] are most popular.
One important area of concern is the overlapping area. As
in region data types zero overlapping is not possible, so a
good node splitting algorithm should confirm the minimum
overlapping area among the minimum bounding rectangles.

3.1 Guttman’s node splitting algorithms

These algorithms were proposed when R-Tree was
introduced for the first time. In that work there were three
node splitting algorithms, namely the Exhaustive
algorithm, A Quadratic-Cost Algorithm and A Linear-Cost
Algorithm.

3.1.1 Exhaustive algorithm

In this algorithm the author finds the most straight
forward way to find the minimum area node split is to
generate all possible groupings and choose the best
grouping. However the number of possibilities is

37

38

approximately 2"* for M number of MBRs. So, the number
of possible splits is very large.

3.1.2 Quadratic-Cost algorithm

The mostly used one among the three algorithms is the
quadratic method. This node splitting algorithm first picks
two records that may cause the worst split if put into the
same node. These two records are used as seeds and the
algorithm repetitively finds a record that may affect the
splitting quality the most and assigns it to the appropriate
node until all records are assigned. If there are just enough
records left unassigned that can make one of the two newly
generated nodes to satisfy the lower bound of the number of
records, then, the rest of records will be assigned to that
node directly.

3.1.3 Linear-Cost algorithm

This algorithm is identical to Quadratic Split but uses
a different way to choose the seeds. It finds the iIMBRs
which have highest low side and the lowest high side along
any dimension. According to that it finds the seeds for the
splitting. The rest of the iIMBRs are simply chosen at
random.

3.3 The optimal node splitting algorithm

Here two algorithms were proposed. The first one is a
basic node splitting algorithm which partitions a full node
into two. It is like the exhaustive method but has a time
complexity of O(Nd) instead of O(2N), where d is the
dimension of data. The second algorithm is called SHIFT
method. It first executes a pre-processing to get
complementary MBRs with respect to all records. Then it
tests each possible bipartition which is O(Nd), and find the
one with the best metric. Here area and perimeter are two
metrics used to gain a high occupancy of disk pages.

3.4 A linear node splitting algorithm

The algorithm partitions the records into two groups
along each axis according to the distance between a
record’s MBR and the minimum and maximum coordinates
on the axis. It then chooses a split axis by examining the
number of records in each group. Then the partition along
the selected axis will be the final splitting result. The
algorithm’s time complexity is O(N), where N is the
number of records in a node. The algorithm does not
consider the overlapping between the nodes.

3.5 Basic node splitting with bipartition

This algorithm first decides the splitting axis using
some parameter. Taking the ratio of the two axis it decides
the splitting dimension and if not possible then counting
the maximum numbers of iIMBR stretched along a
particular axis. As this algorithm is not concerned about the
internal organization of the iIMBRs therefore, sometimes

Int'l Conf. Foundations of Computer Science | FCS'12 |

splitting from other dimension can give better result and
less overlapping.

4 Scope of Work

There are three parameters for R-Tree node splitting.
Area is one of them. Smaller node’s area gives lower
probability of the node being accessed. Some of the
algorithms [2-3] [11-13] which are already available are
only concerned about area increasing while choosing a leaf
for new data and splitting a full node. Another parameter is
the perimeter. Perimeter is responsible for the shape of the
node’s MBR. For a particular area, smaller perimeter
conforms to more square shape of the MBR.

Overlap area is the third area of concern. Overlap
between nodes causes multiple nodes to be accessed when
a query object falls into that particular region. So it is one
important parameter and needs to be dealt properly while
designing R-Tree constructing algorithms. The algorithms
which are already available [2] [11-13] are less concerned
about the overlapping area during the time to decide the
splitting axis. As attaining zero overlapping is practically
impossible for region data types, so, a new node splitting
algorithm, which can check the overlapping before
deciding the splitting axis is proposed here. Two case study
shows that, it can give a satisfactory performance by
ensuring to minimize the total overlapping area.

5 Our Proposed Node

Algorithms

Here in the algorithm, length-of-X is the length of the
MBR along the X axis and length-of-Y is the length of the
MBR along the Y axis. X-length-count is the summation of
the lengths of all the iIMBRs along the X axis and Y -length-
count is the summation of the lengths of all the iIMBRs
along the Y axis. TOR-of-X is the total overlapping region
if splitted along the X axis and TOR-of-Y is the total
overlapping region if splitted along Y axis. If a node in a R-
Tree can contain M number of data then the lower

bound(m) is [%] Overflown MBR is the MBR which
contains more number of iMBRs than M.

Splitting

Algorithm SplitNode:

Input: iIMBR of a data

Output: two new nodes

Step1: The algorithm ‘SplitNode’ first invokes
‘FindSplitDim’ to decide the splitting dimension
for that particular node.

Step 2: When the splitting axis is determined, then, the

algorithm divides the MBR in the middle of the
axis.

Step 3: Now for each iIMBR it checks which iMBR is

Int'l Conf. Foundations of Computer Science | FCS'12 |

Step 4.

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

fully contained by which MBR. Then it assigns
that iMBR to that new node.

If any iIMBR is not fully contained by any of the
MBR alone then fitting it into which MBR gives
less area increase gets the priority.

Breaks ties by assigning it to the one which will
produce less overlapping area.

Now the two new nodes are checked for the
lowerbound condition. If passes then these nodes
are the final nodes.

If any MBR fails then the splitting dimension is
changed and the same procedure is applied again.

If it is also not able to produce satisfactory rasult
then for the underflowing MBR, the nearest
iIMBR, which produce less area increase, is
inserted.

Step 8 continues until the underflowing MBR
gets sufficient iIMBR to overcome the
lowerbound criteria.

Algorithm FindSplitDim:

Input:

Output:

Step 1.

Step 2:

Step 3:

Step 4.

Step 5:

Step 6:

Step 7:

Step 8:

Over flown MBR
Splitting axis

‘FindSplitDim” first checks the length of the
MBR in X & Y dimension and takes the longest
axis as the initial splitting axis.

If it is an square MBR then it checks the
summation of the iIMBRs in X & Y dimension.
If the X-length-count is greater than Y-length-
count then it takes Y as the initial splitting axis
and vice-versa.

If these two are equeal then it arbitrarily
chooses the initial splitting axis.

Now it checks which iMBRs are left aligned.
There must be atleast one.

After getting the iIMBR then sets the value of
the variable Z as the value of x2 of that iMBR.

Now the algorithm finds the iIMBR whose
smaller value of x axis is lesser than variable Z
and the bigger value x of that iMBR is greater
than that of Z.

If there is such an iIMBR then the value of Z
gets updated by the value of x2.

When there is no such iMBR which has the
same criteria and Z is equal to the bigger value
of the minimum bounding rectangle then non-
overlapping is not possible for that MBR along
the X axis.

Step 9: So the algorithm checks the Y axis in the same
manner. If a non-overlapping region is found
then the final value of Z must be lesser than the

bigger value of that axis.

Step 10: When non-overlapping split is not possible
along any of the two dimensions then the
algorithm invokes the

‘FindTotalOverlappingRegion .

Step 11: After getting the values of the two variables
(TOR-of-X & TOR-of-Y), now the
‘FindSplitDim” algorithm decides the final

splitting dimension.

Step 12: Dimension with less overlapping area is the key
criteria for selecting the splitting dimension. If a
tie occurs then it arbitrarily decides the splitting

axis and returns the value.
Algorithm FindTotalOverlappingRegion:
Input: Over flown MBR whose non overlapping
splitting is not possible

Output: TOR-of-X & TOR-of-Y

Step 1: A new variable P is initialised with the length of

that particular axis.

The algorithm starts in the same manner as
FindSplitDim and when there is an iIMBR which
passes that particular criteria then the algorithm
finds the minimum length of small value of that
iIMBR along X axis to Z and Z to the larger value
of that iMBR along X axis.

If this minimum value is less than the present
value of P then P gets updated with it.

When Z = X2 then the value of P is taken into
account and multiplied with the length of the
MBR along the other axis and value is stored in
TOR-of-X variable.

In the same way the TOR-of-Y is also calculated
and the values are returned.

Step 2:

Step 3:

Step 4:

Step 5:

6 Step-by-step Operations

We have taken two examples to check the step-by-step
operations of our algorithm and compare the output of our
node splitting algorithm with basic node splitting with
bipartition. Here, 4 numbers of data can be put into one
node at maximum i.e. an MBR can contain maximum 4
numbers of iIMBRs. The MBRs which have more than 4
numbers of iIMBRs are taken as over flown MBRs.

Case study I:

In Fig. 2.a we have taken an over flown MBR. For the
MBR X1 =0, X2 =36, Y1 =0, Y2 =21. There are five
iMBRs, r1, r2, r3, r4, r5. Table 1 shows the specifications
of these IMBRs

39

40

Table 1: Specifications of the iIMBRs

iMBR x1 X2 yl y2
rl 0 12 11 21
r2 24 36 11 21
r3 0 6 0 10
r4 30 36 0 10
r5 9 27 0 10
Step 1: The algorithm first checks for the length of the

MBR along X & Y dimension.

The larger one decides the initial splitting axis.
Here X is the initial splitting axis.

Now the algorithm checks whether in X
dimension, there is any overlapping or not.

For that it first checks which iMBR has x1
equals to X1. There must be at least one iMBR
satisfying this criterion. Here is rl & r3. Our
algorithm takes r1 arbitrarily.

Then for that IMBR (rl) it updates the value of
Z variable with the value of x2(here it becomes
Z=12).

Now the algorithm continues with for loop and
checks which iIMBR has (x1 < Z) & (x2 > 2).
Here it finds that r5 satisfies that criterion. So
the Z now becomes 27.

Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Again in next step it gets r2 and the Z becomes
36. Now (Z = X2). So, in X dimension non-
overlapping splitting is not possible.

Now the algorithm changes the dimension and
does the same. Here it finds that in Y
dimension non-overlapping splitting is possible.

Step 7:

Step 8:

It takes Y as the final splitting dimension and
starts to split.

Step 9:

Step 10: The splitting is done in the middle of the
splitting axis and the iIMBRs which are fully
contained by any of the two MBRs are assigned
to them. Here rl & r2 are fully contained by
Rland r3, r5, r4 are fully contained by R2. So,

these are assigned accordingly.

Fig. 2.c shows the result of splitting using our
proposed algorithm. The corresponding R-Tree is shown in
Fig. 2.e.

Fig. 2.b shows the result of splitting using the
algorithm basic node splitting using bipartition. This
algorithm first check whether the given rectangle is j-long
or not; i.e. the ratio between the length of X & Y axis is
greater than ® or not (Where ® > 0). If it is a square MBR
then it checks whether the number of iIMBRs whose length
along X axis is greater than the same of Y axis. Thus it
decides the splitting axis and assigns the iIMBR
accordingly. There is no way to check whether the splitting
generates a huge overlapping area. Here the splitting
produces an overlapping area whether non-overlapping

Int'l Conf. Foundations of Computer Science | FCS'12 |

splitting is possible. Fig. 2.d shows the R-Tree constructed
form the result of that splitting.

(12, 21} (36, 21)
rl r2
(0, 11) (24, 11)
(6, 10) (27, 10) (36, 10)
r3 rS r4
{0, O} {9, 0} {30, 0)
Fig. 2.a The Over flown MBR
R1 :
1
1
rl =2
1
1
1
I
1
r3 rS + R2 4
!
Fig. 2.b Result of the @axsi_c 1\|9(1e_s_pﬂtting with Bipartition
R1
ri r2
R 2
s r5 r4

Fig. 2_.c_ResuIt of our proposed Node S_pTitting

[Rifre] [|

rl | 2 | | |

13 | 1'4| 1'5| |

Fig. 2.d R-Tree constructed by basic node splitting with
bipartition

R1 | R2

rl 3 | 15 12 4

Fig. 2.e R-Tree constructed by our proposed node splitting
algorithm

Case study I1: Here we have taken another example. In
Fig. 3.a we have taken an over flown MBR. For the MBR
X1=0,X2=36,Y1=0, Y2=21 There are five iMBRs,
rl, r2, r3, r4, r5. Table 1 shows the specifications of these
iMBRs.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Table 2: Specifications of the iIMBRs

iMBR x1 X2 yl y2
rl 0 18 11 21
r2 19 36 15 21
r3 0 6 0 10
r4 30 36 0 14
r5 10 28 0 10

Step 1: The algorithm starts by finding the iIMBRs
which have (x1 = X1). Here, r1 & r3.

Step 2: It continues by updating the value of Z after
satisfying the criterion of (x1 < Z) & (x2 > Z).

Step 3: Finally for X dimension Z becomes X2 i.e.
non-overlapping splitting is not possible in the
X dimension.

Step 4: In the same way it checks in Y dimension and
finds that in this case also non-overlapping
splitting is not possible.

Step 5: Now, ‘FindTotalOverlappingRegion’ is
invoked.

Step 6: As the same way it first checks for the iIMBR
having (x1 = X1). When it finds one, it
updates the value of Z.

Step 7: Now here a new variable P is introduced and
initialized with the length of the MBR along
that axis.

Step 8: For rest of the iIMBRs it checks if, (x1 < Z) &
(x2 > Z).Now it finds the minimum of (Z-x1)
& (x2-2).

Step 9: If P > MIN{(Z-x1), (x2-Z)} then it updates
the value of P with MIN{(Z-x1), (x2-2)}.
Finally P becomes 8 for X dimension.

Step 10: Finally when (Z = X2) then it multiplies P
with the length along the other axis and stores
the area in a variable as the total overlapping
region along X axis. TOR-of-X is now (8 *
21) i.e. 168 units.

Step 11: In the same way it finds the total overlapping
area for Y axis and returns the values. TOR-
of-Y =4 * 36 = 144 units.

Step 12: Then algorithm ‘FindSplitDim’ compares
these values and decides the final splitting
axis and returns the splitting dimension.

Step 13: Now the algorithm ‘SplitNode’ splits the node
in Y dimension.

Step 14: r2 is assigned to R1 and r3 & r5 are assigned
to R2 as they are fully contained by these
MBRs.

Step 15: Now, rl is assigned to R1 and r4 is assigned

to R2 as they give less increase in the area.

Here in Fig. 3.b we can see the total overlapping
region for X axis. It is also the result of the node splitting
by the basic node splitting with bipartition. Fig. 3.d shows
the R-Tree constructed by basic node splitting with
bipartition.

The algorithm decides Y as the final splitting
dimension for this MBR and Fig. 3.c shows total

overlapping region along Y axis. It is the result of the node
splitting using our proposed node splitting algorithm which
significantly have less overlapping area. Fig. 3.e shows the
R-Tree constructed by our proposed node splitting

algorithm.
(18, 21) (36, 21)
r2
r 1 (19, 15}
(36, 14)
(0, 11)
(6, 10) (28, 10)
r4
r3 5
(0, O} (10, O) (30, 0)
Fig. 3.a The Over flown MBR
1
| r2
|
ril
| R2
|
i
: r4
r3 |R1 :r5
— L
Fig. 3.b Result of the Basic Node Splitting with Bipartition
R1 r2
EgSEE o Chmenis o Mesee—
R2 r4
r3 r5
Fig.SZResult of our proposed Node Splitting
Rl | R2
rl 13 12) 4

Fig. 3.d R-Tree constructed by basic node splitting with
bipartition

Rife] [|

rl 2 13 5 4

Fig. 3.e R-Tree constructed by our proposed node splitting
algorithm

After splitting the MBR using our proposed
algorithm, if any underflow condition occurs then the

41

42

algorithm changes its splitting dimension and splits again.
If it can’t satisfy the result then the under flown node
includes the iIMBR from the other which calls for a less
area increase. This process continues until both the nodes
passes the underflow condition.

7 Conclusions

In this paper, we have proposed a new algorithm to identify
the best possible splitting axis to minimize overlapping.
Minimization of overlapping in turn yields better result of
searching. It goes without say, that in some cases,
overlapping cannot be avoided, however our algorithm
ensures minimum overlapping in such cases. We also
compared our output with basic node splitting with
bipartition and it has been shown that our splitting
algorithm produces better result.

8 References

[1] Ralf Hartmut Giiting, “An Introduction to Spatial
Database Systems”, Invited Contribution to a Special Issue
on Spatial Database Systems of the VLDB Journal (Vol. 3,
No. 4, October 1994), September 1994.

[2] A. Guttman, “R-Trees: a dynamic index structure for
spatial searching,” in SIGMOD ’84: Proceedings of the
1984 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM, 1984,
pp. 47-57.

[3] Yan Liu, Jinyun Fang, Chengde Han, “A New R-Tree
Node Splitting Algorithm Using MBR Partition Policy,” in
IEEE 20009.

[4] Hui Li, Shiguang Ju, Weihe Chen,” Design and
Implementation of Generalized R-Tree”, in 2008 IEEE DOI
10.1109/ISCSCT.2008.317

[5] Jia Bei, Wang Changming, Liu Chen and Sun Wei
wei, “Design and Implementation of Object-Oriented
Spatial Database of Coalfield Geological Hazards -Based
on object-oriented data model”, 2010 International
Conference on Computer Application and System
Modeling (ICCASM 2010).

[6] Kian-Lee Tan, Beng Chin Ooi, and David J. Abel,
“Exploiting Spatial Indexes for Semijoin-Based Join
Processing in Distributed Spatial Databases”, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, VOL. 12, NO. 6,
NOVEMBER/DECEMBER 2000.

[71 I. Kamel, C. Faloutsos, “On Packing R-Trees”, In
Proceedings of the 2nd International Conference on
Information and Knowledge Management (CIKM),
November 1993.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[8] I. Kamel, C. Faloutsos, “Hilbert R-Tree: An
Improved R-Tree Using Fractals”, In Proceedings of the
20th International Conference on Very Large Data Bases
(VLDB), September 1994,

[9] Shashi Shekhar, Siva Ravada, and Xuan Liu, “Spatial
Databases- Acomplishments and Research needs”, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, VOL. 11, NO. 1,
JANUARY/FEBRUARY 1999.

[10] Gang Liu, Qing Zhu, Zhenwen He, Yeting Zhang,
Chonglong Wu, Xiaoming Li, Zhengping Weng, “3D GIS
Database Model for Efficient Management of Large Scale
Underground Spatial Data”.

[11] Y. J. Garc'ia, M. A. Lopez, and S. T. Leutenegger,
“On optimal node splitting for R-Trees,” in VLDB ’98:
Proceedings of the 24rd International Conference on Very
Large Data Bases. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, pp. 334-344.

[12] C.-H. Ang and T. C. Tan,”New linear node splitting
algorithm for R-Trees”, in SSD ’97: Proceedings of the 5™
International Symposium on Advances in Spatial
Databases. London, UK: Springer-Verlag, 1997, pp. 339-
349.

[13] Liang Wang; Songnian Yu; Feng Chen,”A new
solution of node splitting to the R-Tree algorithm”,
International Conference on Intelligent Control and
Information Processing (ICICIP), 13-15 August, 2010, pp.
611-614.

Int'l Conf. Foundations of Computer Science | FCS'12 |

SESSION
ALGORITHMS AND APPLICATIONS + FORMAL
VERIFICATION
Chair(s)

TBA

43

44

Int'l Conf. Foundations of Computer Science | FCS'12 |

Int'l Conf. Foundations of Computer Science | FCS'12 |

45

Formalization and Verification of Number Theoretic Algorithms Using the
Mizar Proof Checker

Hiroyuki Okazaki®,Yoshiki Aoki' and Yasunari Shidama'
TShinshu University
4-17-1 Wakasato Nagano-city, Nagano 380-8553 Japan

okazaki@cs.shinshu-u.ac.jp,11tab01a@shinshu-u.ac.jp, shidama@shinshu-u.ac.jp
Tel:+81(26)269-5503 Fax:481(26)269-5503

Abstract: In this paper, we introduce formaliza-
tion of well-known number theoretic algorithms on the
Mizar proof checking system. We formalized the Eu-
clidean algorithm, the extended Fuclidean algorithm
and the algorithm computing the solution of the Chi-
nese reminder theorem based on the source code of
NZMATH which is a Python based number theory ori-
ented calculation system. We prove the accuracy of
our formalization using the Mizar proof checking sys-
tem as a formal verification tool.

Keywords: Formal Verification, Mizar, Number theo-
retic algorithm

1 Introduction

Mizar[l, 2] is a project that formalizes mathematics
with a computer-aided proving technique. Number
theoretic algorithms play an important role in infor-
mation society. For example, number theoretic algo-
rithms are essential to cryptology and code theory be-
cause they provide secure and high-speed communica-
tions. However, there is no evidence that the calcu-
lated value producted by an algorithm is accurate, al-
though the algorithm has a processing nature. There-
fore, when we propose an algorithm, we have to prove
the accuracy of the algorithm.

On the other hand, a developed program for an al-
gorithm is not necessary to calculate a precise value
although the accuracy of the algorithm was proven.
This is because it is difficult to develop a program
which functions exactly like the algorithm. We have
to verify that the algorithm is accurately encoded into
a programing language.

The objective of this study is to prove the accuracy
of the algorithms, encoded in a programing language,
using the Mizar proof checker. To achieve this, first,
we formalized algorithms in the Mizar language to con-
firm that the formalization agrees with our aim. This
is because there are several methods how to formalize
algorithms.

In this paper, we introduce formalization of well-
known number theoretic algorithms on the Mizar

proof checking system. We formalized the Euclidean
algorithm, the extended Euclidean algorithm and
the algorithm computing the solution of the Chi-
nese reminder theorem based on the source code of
NZMATH]3|, which is a Python based number theory
oriented calculation system. Then we verified the ac-
curacy of the formalized algorithms using the Mizar
proof checker.

The remainder of the study is organized as follows.
We briefly introduce the Mizar project in Section 2 and
NZMATH in Section 3. In Section 4, we discuss our
strategy for formalizing algorithms in Mizar, followed
by Section 5 where propose a formalization of the Fu-
clidean algorithm. In Section 6, we propose the for-
malization of the extended Euclidean algorithm, and
in Section 7, we propose a formalization of the algo-
rithm, computing the solution of the Chinese reminder
theorem. We conclude our discussions in Section 8.
The definitions and theorems in this study have been
verified for accuracy using the Mizar proof checker.

2 Mizar

Mizar [1, 2] is an advanced project of the Mizar Soci-
ety led by Andrzej Trybulec. It formalizes mathemat-
icals with a computer-aided proving technique. The
Mizar project describes mathematical proofs in the
Mizar-language, which is created to describe mathe-
matics formally. The Mizar proof checker operates in
both Windows and UNIX environments and registers
proven definitions and theorems in the Mizar Mathe-
matical Library (MML).

Furthermore, the objective of the Mizar project is
to create a checking system for mathematical theses.
An “article” formalizes and describes mathematical
proofs by Mizar. When an article is newly described,
it is possible to advance it by referring to articles reg-
istered in MML, which have already been inspected as
proofs. Similarly, other articles can refer to an arti-
cle after it is registered in MML. Although the Mizar
language is based on the description method for gen-
eral mathematical proofs, the reader should consult
the references for grammatical details, because Mizar
uses a specific, unique notation[1, 2].

46

3 NZMATH

NZMATH][3] is a number theory oriented calculation
system mainly developed by the Nakamula laboratory
at Tokyo Metropolitan University. Number theoretic
algorithms are implemented as Python functions on
NZMATH, which is freely available and distributed
under the BSD license. NZMATH is at an early stage
of development and is currently being developed.

4 Strategy of Formalizing Algo-

rithms in Mizar

In Mizar, there are several methods to define computa-
tional routines, representing algorithms. One method
is to define a routine as a program for SCM. SCM is a
general model of a stack machine defined in the Mizar
system. In principle, we may formalize arbitrary pro-
grams in SCM. However, this approach may not be
suitable to prove the accuracy of algorithms encoded
in a high level programing language, because we have
to define an algorithm as the machine code of SCM.
For example, the Euclidean Algorithm has been for-
malized in SCMI[4] (Definition A.1).

Another method is to define a routine as a functor or
a Function. A functor is a relation between input and
output of the routine in Mizar. It is easy to write and
understand the formalization of a routine as functor
because the format of a functor in Mizar is similar to
that of a function in programming languages. Thus,
in this paper, we formalize an algorithm as a functor.

A Function is a map from the input space onto the
output space. We can handle a Function as an ele-
ment of the set of Functions. Note that both functor
and Function can use a Function as their substitutable
subroutine. For example, we formalized the algorithm
of DES cipher as a functor, which uses substitution
subroutines defined as Functions[5, 6].

4.1 Formalizing Loop Structure in Mizar

In this section, we propose an approach to describe
programs with a loop structure. Particularly, we elu-
cidate the method to formalize programs with a non-
nested loop structure!. This suggests that it is possi-
ble to formalize a program with looped structures by
nesting single loop structures recursively.

A loop is a sequence of statements. In a computer
implementation, variables that are allocated memory
segments, are assigned destructively according to the
given recursion formula in each iteration.

To describe the loop structure in the Mizar lan-
guage, we consider that there are sequences of vari-
ables to capture the repetition of operations. For ex-
ample, let a be the sequence of variables such that a;,
the ith member of a, represents the temporary value
assigned as a in the ith iteration of the loop structure.
Note that we can describe the control condition of the

!Note that all algorithms, which were formalized in this pa-
per, do not have nested loops.

Int'l Conf. Foundations of Computer Science | FCS'12 |

iteration using the index number of the sequences of
variables.

We can employ the inductive method to prove
the property of the variables using such sequences.
The Mizar system has a mechanism, called “scheme”,
which enables us to prove propositions using the in-
ductive method. We will show an example of a proof
using “scheme” in Section 5.

5 Formalization of the Euclidean
Algorithm

In this section we introduce our formalization of the
Euclidean algorithm.

The Euclidean algorithm is a the method that com-
putes the greatest common divisor of two given inte-
gers. This algorithm is implemented in NZMATH as
follows:

Code 5.1 (Euclidean algorithm in NZMATH)

def gcd(a, b):
a, b = abs(a), abs(b)
while b:
a, b=Db, a¥%b
return a

We formalize this algorithm as the following functor
in the Mizar language:

Definition 5.1 (Euclidean Algorithm in Mizar)

let a,b be Element of INT;
func ALGO_GCD(a,b)
-> Element of NAT
means
ex A,B be sequence of NAT
st
A.0 = abs(a) & B.0 = abs(b) &
(for i be Element of NAT holds
A.(i+1) = B.i &
B.(i+1) = A.i mod B.i) &
it = A.(min*{i where i is Nat: B.i = 0});

Here the symbol ‘it” denotes the value returned by
the functor. min* is the definition of the minimum
member of a given set in Mizar (Definition A.2). A
and B are infinite sequences of N such that

A =
B =

{a07a1)-"aai7ai+lu"°}7
{bo, b1, ., biy big1, .-},

ap = a, b() = b,

Aj+1 = bi, bi+1 = a; mod bz‘.

Note that a;, b; are the values of a, b in the ith itera-
tion, respectively.

Int'l Conf. Foundations of Computer Science | FCS'12 |

5.1 Accuracy of ALGO_GCD

In this section we prove the accuracy of our formaliza-
tion that the functor ALGO_GCD returns the greatest
common divisor of a given two integers.

We will prove the following theorem:

Theorem 5.1 (Accuracy of ALGO_GCD)

for a,b be Element of INT
holds
ALGO_GCD(a,b) = a gcd b

Here gcd is the conceptual definition of the greatest
common divisor in Mizar as follows:

Definition 5.2 (ged of Mizar)

let a,b be Integer;

func a gcd b -> Nat means

it divides a

& it divides b

& for m being Integer st m divides a
& m divides b holds m divides it;

We proved Theorem. 5.1 using the following lemma:

Lemma 5.1 for i be Element of NAT
st B.i <> 0
holds

A.0 gcd B.O = A.i gcd B.i

In the rest of this section, we show a schematic proof
for Lemma. 5.1. First, we defined the following pred-
icate

defpred P[Nat] means
B.$1 <> 0 implies
A.0 gcd B.O = A.$1 gcd B.$1;

Here, the symbol ‘1’ denotes the argument of P2,
Therefore, P[0] is evidently ¢true. Next, we prove
that P[i 4 1] is true if P[i] is true as follows:

for i being Element of NAT
st P[i] holds P[i+1];

Finally, we can prove Lemma 5.1 with the following
mathematical induction scheme that had been defined
in the Mizar system:

Scheme 5.1 (Mathematical Induction scheme)

Ind{ P1[Nat] } :

for k being Nat holds P1[k]
provided

P1[0] and

for k being Nat st P1[k] holds
P1[k + 1]

It should be noted that we are allowed to create new
schemes.

21f the predicate P uses two natural numbers, we can define it
as “defpred P[Nat,Nat] means,...,” and the symbol ‘$n’ denotes
the nth argument of P.

47

6 Formalization of the Extended
Euclidean Algorithm

In this section we formalize the extended Euclidean
algorithm. The extended Euclidean algorithm can
compute a,b and g for given integers x,y such that
az + by = g(g is the greatest common divisor of z,y).
This algorithm is implemented in NZMATH as follows:

Code 6.1 (The extended Eucliean algorithm in NZ-
MATH)

def extgcd(x,y):

a,b,g,u,v,w =
while w:

q,t = divmod(g,w)

a,b,g,u,v,w = u,v,w,a-q*u,b-q*v,t
if g >= 0:

return (a,b,g)
else:

return (-a,-b,-g)

1,0,x,0,1,y

We formalize this algorithm as the following functor
in the Mizar language

Definition 6.1 (The extended Euclidean algorithm
in Mizar)

let x,y be Element of INT;
func ALGO_EXGCD(x,y)

-> Element of [:INT,INT,INT:]
means
ex g,w,q,t be sequence of INT,
a,b,v,u be sequence of INT,
istop be Element of NAT

st
a.0=1&b.0=0&g.0=x2&q.0=0
&u.0=0&v.0=1&w.0=y & t.0=0
&

(for i be Element of NAT

holds

q.(i+1) = g.i div w.1i

& t.(i+1) = g.i mod w.1i

& a.(i+1) = u.i & b.(i+1) = v.1i

& g.(i+1) = w.i

& u.(i+1) = a.i - q.(i+1)*u.i

& v.(i+1) = b.i - q.(i+1)*v.1i

& w.(i+1) = t.(i+1))

&

istop =

min*{i where i is Nat: w.i = 0}

(0 <= g.istop implies

it =[a.istop,b.istop,g.istop])

&

(g.istop < O implies

it =[-(a.istop),-(b.istop),-(g.istop)1);

Note that ALGO_EXGCD(x,y) returns the 3-tuple
(a,b,g) such that ax + by = g and g is the greatest
common divisor of z and y.

48

6.1 Accuracy of ALGO_EXGCD

In this section we prove the accuracy of our formaliza-
tion that the functor ALGO_EXGCD returns a, b and
g for given integers x and y such that az + by = g(g
is the greatest common divisor of z and y).

We can prove the following theorem in a similarly
for proving Theorem 6.1:

Theorem 6.1 (Accuracy of ALGO_EXGCD)

for x,y be Element of INT
holds

ALGO_EXGCD(x,y) ‘3 = x gcd y
&

ALGO_EXGCD(x,y) ‘1 * x

+ ALGO_EXGCD(x,y) ‘2 * y

= x gcd y,

where ALGO_EXGCD(x,y)‘n denotes the nth member
of ALGO_EXGCD(x,y). Thus we proved the accuracy
of our formalization of extended Euclidean algorithm.

6.2 Multiplicative Inverse

Then, we define the functor that computes the mul-
tiplicative inverse over a residue class ring using the
ALGO_EXGCD as follows:

Definition 6.2 (Inverse)

let x,p be Element of INT;
func ALGO_INVERSE(x,p) -> Element of INT
means
for y be Element of INT
st y = (x mod p)
holds
(ALGO_EXGCD(p,y) ‘3 = 1 implies
((ALGO_EXGCD(p,y) ‘2 < 0) implies
(ex z be Element of INT
st z = ALGO_EXGCD(p,y) ‘2
it =p+z))
& ((0 <= ALGO_EXGCD(p,y) ‘2)

implies it = ALGO_EXGCD(p,y)‘2))
&(ALGO_EXGCD(p,y) ‘3 <> 1 implies it = {});
We will define another algorithm with this functor in
Section 7.

7 Formalization of the Algorithm
Computing the Solution of the
Chinese Reminder Theorem

In this section we formalize the algorithm computing
the solution of the Chinese reminder theorem.

7.1 The Chinese Reminder Theorem

First, we review the Chinese reminder theorem briefly.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Theorem 7.1 (Chinese Reminder Theorem) Let
my, mo,- -+ ,m, be relatively prime. For any integer
ai,as,- - ,ar, there exists the unique solution x €
Z/(my-mg---my)Z such that

r = a; modmy
T = ag mod mo
r = a modm,.

We can compute such a solution z by the following
steps:
First, we solve

T = a1 mod my (1)
T = ag mod mo
by
zo = ai + (ag — a1)(m; " mod ma)m;. (2)
Then:
zomodm; = a
xomodms = a1+ (a2 —aq)
a2

Thus, x¢ is the solution of (1).
Next, we solve the congruencies:

xo mod mims
ag mod ms

T
€T

(3)

Then we solve the next congruent expression and the
solution of (3) sequentially. Finally, we can solve (1).

7.2 Formalization of the Algorithm Com-
puting the Solution of the Chinese Re-
minder Theorem

In this paper, let us term the algorithm mentioned in
Sec. 7.1 as “CRT algorithm”. The CRT algorithm is
implemented in NZMATH as follows:

Code 7.1 (CRT in NZMATH)

def CRT(nlist):
r = len(nlist)
if r ==
return nlist[0] [0]

product = []
prodinv = []
m=1
for i in range(l, r):
m = mxnlist[i-1] [1]
¢ = inverse(m, nlist[i][1])

product . append (m)
prodinv.append(c)

=

= product [r-2]*nlist [r-1] [1]
nlist [0] [0]

=]
I

Int'l Conf. Foundations of Computer Science | FCS'12 |

for i in range(l, 1):
u = ((nlist[i] [0]-n)*prodinv[i-1])
% nlist[i][1]
n += uxproduct[i-1]
return n % M

Here nlist denotes the given congruencies. For ex-
ample, if the given congruencies are

z =2mod 3
z =3 mod 5
r=2mod?7

then nlist is as follows:
nlist = [(2,3), (3,5, (2,7) 1]

We then formalize the algorithm as the following
functor in the Mizar language:

Definition 7.1 (CRT in Mizar)

let nlist be
non empty FinSequence
of [:INT,INT:];
func ALGO_CRT(nlist)->Element of INT
means
(
len nlist=1 implies it=(nlist.1) ‘1
)
&
(
len nlist <> 1 implies
ex m,n,prodc,prodi
be FinSequence of INT,
MO,M be Element of INT

st len m = len nlist

& len n = len nlist

& len prodc = len nlist - 1
& len prodi = len nlist - 1
&m1l=1

&

(

for i be Nat

st 1<=1 & i<=(len m) - 1
holds
ex d,x,y be Element of INT
st x = (nlist.i) ‘2
& m.(i+1) = m.i * x
& y = m.(i+1)
& d = (nlist.(i+1))‘2
& prodi.i = ALGO_INVERSE(y,d)
& p

rodc.i =y
)
& MO = (nlist.(len m)) ‘2
& M = (prodc.((len m)-1))*MO
& n.1 = (nlist.1)‘1
&
(

for i be Nat
st 1<=1 & i<=len m - 1
holds

49

ex u,ul0,ul be Element of INT
st u0 = (nlist.(i+1))‘1
& ul = (nlist.(i+1))‘2
& u = ((u0-n.i) * (prodi.i))

mod ul
& n.(i+1) = n.i + ux(prodc.i)
)
& it = n.(len m) mod M

)

Here, m, prod, prodi, M and n are finite sequences
of N such that

prodc = {prodey,prodes,...,prode;,
prodciii, ..., prode,},
prodi = {prodiy,prodis,...,prodi;,
prodijyi,...,prodi,},
m = {mi,mi,..., M Mig1,..., My},
n {ni,ne,...,ni,Nit1,..., 0},

m1 =1, ny = nlist[1][1],

mi+1 = m; x nlist|i][2],

prode; = miy mod nlist[i + 1][2]
prodi; = miqq

Nni41 = N; + u * prode;,

Note that prodc;, prodi;, m; and n; are the value of
product, prodinv, m and n in the ith iteration respec-
tively. Additionally, we do not use infinite sequences
but finite sequences for this algorithm because the
count of the iteration is predetermined.

We then prove the following theorem:

Theorem 7.2 (Accuracy of ALGO_CRT)

for nlist be non empty FinSequence
of [:INT,INT:],
a,b be non empty FinSequence of INT,
X,y be Element of INT
st len a = len b
& len a = len nlist
& (for i be Nat
st i in Seg (len nlist)
holds
b.i <> 0)
& (for i be Nat
st i in Seg (len nlist)
holds
(nlist.i)‘1 = a.i
& (nlist.i)‘2 =b.i)
& (for i,j be Nat
st i in Seg (len nlist)
& j in Seg (len nlist)
& i <> j
holds
b.i,b.j are_relative_prime)
& (for i be Nat
st i in Seg (len nlist)
holds
x mod b.i = a.i mod b.i)

50

& y = Product b
holds
ALGO_CRT(nlist) mod y = x mod y

Here are_relative_prime and Product denote the
definition in Mizar (Definitions A.3 and A.4). Thus,
we proved the accuracy of our formalization of the
CRT algorithm.

8 Conclusions

In this study, we introduced our formalization of the
Euclidean algorithm, the extended Euclidean algo-
rithm, and the CRT algorithm based on the source
code of NZMATH. Moreover, we proved the accuracy
of our formalization using the Mizar proof checking
system as a formal verification tool. Therefore, we can
conclude that our approach can formalize algorithms
with a single loop structure precisely. Currently, we
are attempting to develop methods to convert the en-
coded algorithms from NZMATH into Mizar automat-
ically 3.

Acknowledgments

This work was supported by JSPS KAKENHI
21240001 and 22300285.

References

[1] Mizar Proof Checker, Available athttp://mizar.
org/.

[2] E.Bonarska, An Introduction to PC' Mizar, Mizar
Users Group, Fondation Philippe le Hodey, Brus-
sels, 1990.

[3] NZMATH, Available at http://tnt.math.se.
tmu.ac. jp/nzmath/index.html.

[4] J.-C.Chen, ‘Recursive Euclide Algorithm, Formal-
ized Mathematics, Vol. 9, No. 1, pp. 1-4, 2001.

[5] H.Okazaki, K.Arai, and Y.Shidama, Formal Ver-
ification of DES Using the Mizar Proof Checker,
in Proc. FCS’11, pp. 63-68, 2011.

[6] H.Okazaki, K.Arai, and Y.Shidama, Formaliza-
tion of the Data Encryption Standard, Available
at http://www.mizar.org/version/current/
abstr/descip_1.abs.

[7] R.Kwiatek and G.Zwara, The Divisibility of In-
tegers and Integer Relative Primes, Formalized
Mathematics, Vol. 1, No. 5, pp. 829-832, 1990.

[8] G.Bancerek, The Fundamental Properties of Nat-
ural Numbers, Formalized Mathematics, Vol. 1,
No. 1, pp. 41-46, 1990.

3We have already been able to convert Python programs with
a single loop structure.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[9] G.Bancerek, Arithmetic of Non-Negative Ratio-
nal Numbers, Journal of Formalized Mathematics,
Addenda, 1998.

[10] G.Bancerek, Kdnig’s Theorem, Formalized Math-
ematics, Vol. 1, No. 3, pp. 589-593, 1990.

A Related Definitions of Functors
in Mizar
Definition A.1 (Euclidean Algorithm in SCM)

func GCD-Algorithm -> Program of SCMPDS
equals

(((GBP:=0) ’;’ (SBP :=7) 73’
saveIC(SBP,RetIC) ’;’ goto 2 ’;’

halt SCMPDS) ’;’ (SBP,3)<=0_goto 9 ’;’
((8BP,6) :=(SBP,3)) ’;’
Divide(SBP,2,SBP,3) ’;’
((SBP,7):=(SBP,3)) ’;°

((SBP,4+RetSP) :=(GBP,1))) ’;’
AddTo(GBP,1,4) ’;’ saveIC(SBP,RetIC) ’;’
(goto -7) ’;’ ((SBP,2):=(SBP,6)) ’;’
return SBP;

Definition A.2 (Minimum Member)

let A be set ;
func min* A -> Element of NAT means
(

it in A

& (for k being Nat

st k in A holds it <=k)

)
if A is non empty Subset of NAT
otherwise it = 0 ;

Definition A.3 (Relatively Prime)

let a, b be Ordinal;

pred a,b are_relative_prime means
for c, d1, d2 being Ordinal

st a=cx*”dl &b =c *~ d2
holds ¢ = 1;

Definition A.4 (Product)

func product f -> set means

for x being set

holds

(x in it iff ex g being Function
st

(x=g&domg = dom £

& (for y being set st y in dom f
holds g . yin f . y)));

Int'l Conf. Foundations of Computer Science | FCS'12 |

Static and Dynamical Equilibrium Properties to Categorise Generalised
Game-of-Life Related Cellular Automata

K.A. Hawick
Computer Science, Institute for Information and Mathematical Sciences,
Massey University, North Shore 102-904, Auckland, New Zealand
email: k.a.hawick@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2012

ABSTRACT

Conways’s Game-of-Life (GoL) is one of a family of spa-
tial cellular automata rule sets that employ the Moore
neighbourhood on a rectilinear lattice of cells. GoL gen-
eralises to set of other automata using different neighbour-
numbers that lead to birth and survival. These models ex-
hibit different static properties and also different long term
dynamical equilibrium points. We define some quantifi-
able metrics and explore how some well known GoL vari-
ants can be categorised into groupings, categorised by their
static properties and dynamical equilibria. We also explore
effects due to differing initial crowding levels of the live
seed cell population, and how this affects the categories.

KEY WORDS
statistical mechanics; Game of Life; generalised rules; cel-
lular automata; complex system.

1 Introduction

Cellular Automata (CA) models [1, 13, 28] have long
played an important role in exploring and understanding
of the fundamentals of complex systems [17,33,34].

Studies of many CA systems are reported in the litera-
ture and for many complex systems applications includ-
ing: damage spreading [21]; network analysis [38]; food
chain systems [16]; lattice gases [37]; and fluid flow [7].
Two fundamental and classic CAs that provide a basis for
much other work are the Wolfram’s one dimensional au-
tomaton [36], and Conway’s Game of Life [14]. The Wol-
fram system is especially useful because of it conciseness
and the fact that the whole automaton rule state space is
easily described as a family of bit valued cell-wise truth ta-
bles and can be systematically explored. Two dimensional
automata can be also be formulated using the Wolfram ap-
proach [26]. Conway’s Game of Life (GoL) however, also

Figure 1: Coral and Diamoeba Automata.

has a concise specification, but it is formulated in terms of
counts of live neighbouring cells rather than specific pat-
terns.

There is a space of similarly formulated automaton rules
[24] in the same family as GoL [22]. Like the Wolfram
automata not all the rules in the GoL family are “interest-
ing” or can be classified as complex. The Conway precise
specification turns out to be special in the rule set space
of the family, but there are some other related automata
in the family that do have interesting properties and which
have been given names. Figure 1 shows snapshots from
two such GoL family members - known as “Coral” and
“diamoeba.”

There are a number of other variants of cellular automata
including: the game of death [12], with an extra zombie
state added; ratchet automata [15]; and other variants of
GoL such as hyperbolic life [27]. GoL and its variants have
also also been studied: on other non-square geometries [5];
on Penrose tilings [25]; on hexagonal lattices [4]; and on
generalised networks [9]. Work has also been reported on
three dimensional GoL variants [2, 3].

This present article reports work exploring some of the
transient and long term dynamical properties of the GoL
family of automata in two dimensions and on a square, pe-
riodic lattice. In particular a preliminary attempt is made

51

52

to see how this GoL family can be categorised according
to some quantitative metrics that can be obtained from nu-
merical experiments. Attempts to automatically classify
automata by their behaviours have been reported [19], al-
though here we discuss a set of manually carried out ex-
periments.

Much work has been done on studying the coherent struc-
tures that occur in GoL and its variants [11]. It is possi-
ble to implant specific patterns such as gliders, glider guns
and so forth to obtain specific sequences of GoL automata
configurations. However, in this present paper we investi-
gate GoL automata systems that have been randomly ini-
tialised with an initial fraction of live cells. Providing we
simulate a large enough sample of large enough automata
systems, many different individual patterns can occur by
chance, will interact and the system will eventually arrive
a static or dynamical equilibrium. This approach supports
study of the statistical mechanical properties [31] of the
automata systems and the identification of which automata
have stable points [6] or not, as well as a framework to
study universality properties [32] in cellular automata the-
ory [35].

Although stochastic thermal or random effects [18, 20]
have been introduced into cellular automata to study such
properties, in this present work we restrict ourselves to en-
tirely deterministic automata. We avoid asynchronous au-
tomaton [8, 23, 29, 30] effects by using a two phase syn-
chronous update implementation of the automata reported
here. The only randomness or ambiguity introduced is in
the initial random pattern of live cells seeded.

The article is structured as follows: In Section 2 we de-
scribe the notation for the GoL family of automata and the
statistical metrics that can be applied to study them numer-
ically. In Section 3 we present some results for some of
the automata in the family. We discuss the implications in
Section 4 and summarise some conclusions and areas for
further work in Section 5.

2 Automata Notation & Metrics

The game of Live and its family of variant automata are
implemented using the Moore neighbourhood on a d = 2
dimensional array of cells, where the number of (Moore)
Neighbouring sites Ny; = 8, for d = 2 as shown in Fig-
ure 2. We define the (square) lattice Length as L and hence
the number of sites N, typically N = L? We define
the number of live sites N, and so the metric fraction
fi = Np/N and similarly the number of dead sites Np,
and fraction fp = Np/N.

The GoL community has developed various gener-
alised notations for a GoL-like automata [1, 24]. We

Int'l Conf. Foundations of Computer Science | FCS'12 |

1 21 3
4 5
6 71 8

Figure 2: Moore neighbourhood of 8 sites in 2-D.

elaborate these and use the more verbose form of
Bni,ns,.../Smy, my,.... This notation specifies the
rules that area applied to each site exactly once at each
time step. The notation gives a comma-separated-list of
the allowable numbers n; of live neighbours which give
rise to Birth of a live site from a dead site before the slash,
and likewise another comma-separated list of the allowable
number m; of live neighbours that are necessary for a live
site to survive.

Algorithm 1 Synchronous automaton update cells algo-
rithm.
foralli,jin (L,L)do
gather Moore Neighbour-hood M; ;
apply rule bli][j] < {s[i][j], M ;}
end for
foralli,jin (L,L) do
copy bli][j] — sillJ]
end for

Algorithm 2 CA Experimental procedure
declare s[L][L]; b[L][L]
for » = 0 toruns do
initialise s, st n;, = pN live, rest dead
for t =0tot. do
automaton update cells
end for
for ¢t =t.tot,, do
automaton update cells
make measurements
end for
end for
normalise averages

The rules thus support death both from “overcrowding”
and also from “lack of parents.” The classic Conway game
of life is thus specified by the notation B3/S2,3. We use
this notation to specify explicitly the 26 GoL variants we
experiment with below. Although GoL automata are well

Int'l Conf. Foundations of Computer Science | FCS'12 |

studied, for completeness and to avoid ambiguity, we give
the algorithm for implementing these e automata.

Algorithm 2 shows the experimental procedure we deploy,
based upon the automata update rule procedure specified in
Algorithm alg:synch-update. We use a two-phase update
algorithm and so each rule is applied to change the site at
time ¢ 4+ 1 based on its state and that of its neighbouring
sites at time ¢.

The following metrics are used to study the automata ex-
perimentally:

e the I1-step time correlation function C; =
% Zi,j 8(i7j7 t).S(i,j,t - 1)

o the fraction of neighbours that are the same as the site
they surround. This is essentially a count of the like-
like bonds, normalised by divining by (IN.Njs)

e likewise, the fraction of neighbours that are different
from the site they surround

o the number of monomers is the number of live sites
that are completely surrounded by dead sites.

e the number of dimers is the number of connected-
pairs of live sites that are each otherwise surrounded
by dead sites.

The number of arbitrary sized cluster components of live
sites is expensive to compute and we do not use it in this
study.

3 Experimental Results

The GoL family of automata were investigated numeri-
cally. The reported experiments are based on averages over
100 independently randomly initialised runs of a periodic
2562 cell system, equilibrated for 512 time steps and then
run with measured metrics recorded and averaged over a
subsequent 512 steps.

Table 1 shows 26 members of the GoL family of automata
simulated for the specified times ¢ on a 2562 periodic lat-
tice, with random initial fractions of live sites of the speci-
fied fractions p.

Figure 3 shows some of the metrics described in Section 2
applied to the family of automata. The plots are of the
1-step correlation function; the fraction of live and Va-
cant(=dead) cells and the fraction of neighbour links that
have the same (live-live or dead-dead) cell on them. The
plots are sorted according to rank and the labelled points
indicate the automata model. Note that the plot lines natu-
rally group onto plateaux with sharp cliffs separating them.
Automata of similar properties thus group together.

0.8 [

0.7 Walleg/ Cities

0.6 [

fCorr = -
fLive 4 1
fSame ¢ 7]
fVacant ®

0.5

04

oS\ |eUONORIS

03[
[Ser

0.0 PP ife-| ike CA Rules; 25672; 512 Equil; 512 Measure]

04 L . L
. 11 13 15 17 19 21 23 25 27
Sorted Rank

Figure 3: 1-Step Correlation and static fractional metrics.

05 TS

o14t 256”72; 512 Equil; 512 Measurements onf/tie
013 |
012 F
011 |
010 F
0.09 |
0.08 |

fDimer ® -
fMonomer ¥ }

0.07 |
0.06 [

0.05 |

S8)IS oA jouonoeld

0.04 |
0.03 |
0.02 |
0.01 |

0.00 [soitRagi

001 L ! L ! ! ! . L
RS 1 1

Figure 4: Monomer and Dimer counts.

Figure 4 shows the number of monomers and dimers of
live cells for the different GoL automata with a starting
initialisation fraction of p = 0.5. The curves are again
ranked and points labelled by automata models. As can be
seen most models do not lead to large numbers of dimers or
monomers, but a small number do exhibit large numbers.
The grouping is split by a relatively sharp shoulder in the
curves.

Figure 5 shows a scatter-plot of the 1-step correlation met-
ric plotted against the fraction of live sites. There are clear
and obvious groupings with some annotations drawn (in
red, online version) indicating which automata behave sim-
ilarly.

The plotted metrics are shown with error bars based on the
estimated experimental standard deviations. These them-
selves give some interesting insights into the behaviours

53

54

Int'l Conf. Foundations of Computer Science | FCS'12 |

Rule Common t=128 | t=256 || t=128 | t=256 || t=128 | t=256
(B/S) Name

format for Rule p=0.1 | p=0.1
B1/S1 Gnarl

B1,3,5,7/S1,3,5,7 Replicator

B1,3,5,7/S0,2,4,6,8 Fredkin

B2/S Seeds

B2/S0 Live Free/Die

B2,3,4/S Serviettes

B3/50,1,2,3,4,5,6,7,8 | Life w/o Death

B3/51,2,3,4 Mazectric

B3/S1,2,3,4,5 Maze

B3/S2,3 Conway

B3/54,5,6,7.8 Coral

B3,4/S3.,4 34 Life

B3,4,5/54,5,6,7 Assimilation

B3,4,5/S5 Long Life

B3,5,6,7,8/55,6,7,8 Diamoeba

B3,5,7/S1,3,5,8 Amoeba

B3,5,7/S2,3,8 Pseudo Life

B3,6/51,2,5 2x2

B3,6/52,3 HighLife

B3,6,8/S2,4,5 Move)
B3,6,7,8/52,3,56,7,8 | Stains e
B3,6,7,8/S3,4,6,7,8 Day & Night . .
B3,7,8/S2,3,5,6,7,8 Coagulations . .
B4.6.7.8/S2.34,5 | Walled Cities a |
B4,6,7,8/S3,5,6,7,8 Vote4/5/Annl AL . .
B5,6,7,8/S4,5,6,7,8 Majority g@ . .

Table 1: 2562 Automata for different rules at times 128 and 256, for p = 0.5,0.3,0.1.

Int'l Conf. Foundations of Computer Science | FCS'12 |

1.05

0.95

0.85

0.75

0.65

0.55

0.45

0.35 Long Life

Seryjettes,

Walleg Cities

Diargoeba |

uone|a.1ion

2 ' '
0 §0.1 0.0 01 02

0.3—0.4—05

06 07 08 09 10 1.1

fraction Live

Figure 5: Scatter-plot of fCorr vs fLive, with annotated groupings in red (colour, online).

of the different automata. Models like “coagulation” and
“anneal” have the highest fluctuations - due to the slowly
but continually varying spatial pattern observed in those
automata over the time frame of the measurements.

4 Discussion

One long term goal of this approach is to identify the dy-
namical growth and equilibria properties of the different
automata [10]. To this end it is useful to attempt a group-
ing of classification based on temporal as well s spatial be-
haviour. The experimental data gathered indicates that the
GoL automata studied fall into one of the following cate-
gories:

1. rapidly reach a single saturated state of almost all
dead or live with at most minor fluctuations

2. steady growth in a complex structural pattern that then

subsequently reaches a saturated state

3. a dynamic equilibrium of structures that fluctuate and
gives rise to a permanently changing pattern - these
refine into a) those with large scale structures and b)
those that only exhibit short scale fluctuations

Table 2 was originally constructed somewhat subjectively
after examination of the time sequences of patterns ob-
tained from the 26 automata. The method involved eye-
balling the models as movies trying to describe some com-
mon words from the observations. Somewhat amazingly,
these however do appear to agree with the clusters found
upon examination of Figure 5. The category 3a - “dynamic
equilibrium with long and multi-scale structures” cluster
together at the top left of the scatter plot.

The category 3b - “ dynamic equilibrium but with short
length scale structures” cluster in a larger area at the lower
left. The other two groups are at the top right area with

55

56

Int'l Conf. Foundations of Computer Science | FCS'12 |

Category | Game-of-Live Family Examples - Categorised by Subjective Observation

1 Assimilation; Diamoeba; Live w/o Death; Replicator

2 Coagulations; Coral; Day+Night; Majority; Maze; Mazectric; Move; Anneal

3a 2x2; Conway; Highlife; Pseudo Life

3b 34-Life; Amoeba; Fredkin; Gnarl; Live Free or Die; Long Life; Seeds; Serviettes; Stains; Walled Cities

Table 2: Categorisation of GoL Automata for p = 0.5

some differentiation between fast and slow equilibration at
the far right and middle right respectively.

The single exception to this grouping is the “replicator”
automata. It exhibits the strange behaviour of remaining
in fluctuation for a long time then suddenly saturating to a
single dead state, and this may be due to finite size effects
of the simulations.

In Figure 4 the monomers and dimer curves are less ob-
vious discriminators by themselves. The category 3a au-
tomata do however group closely on the mid or upper
shoulder of the monomer and dimer curves, respectively.

Similarly, in Figure 3 the single metric averages do not pro-
vide good discriminators individually, although there are
obvious groupings of the 3a automata appearing together,
and the category 1 also tend to be close together.

We might expect that a caveat of this analysis is that when
the system is not sufficiently “thermodynamically large
enough” then:

e the pattern might otherwise continue to grow if it did
not reach the periodic boundaries

e the particular set of structural patterns that might lead
to categories 3a or 3b cannot arise simply by chance
on a finite sized system.

Nevertheless the classification clustering pattern from ex-
amining the 1-step time correlation function scatter-plotted
against the fraction of live cells does seem to give a good
combined discriminator and grouping that matches obser-
vation.

The fraction of initial live cells can be varied and a variant
of figure 5 interpreted. We do not include these due to
lack of space, but the effect is that if p is too low many of
the automata patterns do not have enough material to form
and so they die out with no live cells and 100% correlation
forever.

Likewise if p is too large then overcrowding also prevents
the complex patterns from forming. The structure shown
in Figure 5 is largely stable and unchanged if the stability
condition 0.3 < p <= 0.5 is satisfied.

5 Conclusions

We have shown how a family of Game-of-Life-like Cellu-
lar Automata can be formulated in terms of a common and
extensible notation and systematically studied. We have
shown that some simple metrics help make preliminary at-
tempts to categorise this family of automata into groups.

We have postulated four categories — originally conceived
in terms of a mix of temporal and spatial structural ob-
servations. These map quite closely to the groupings that
emerge from a scatter plot of the long term averaged values
of the fraction of live cells and the 1-step time correlation
function.

There are interesting features in all the GoL automata stud-
ied - this is no doubt why the community (See http:
//www.conwaylife.com/wiki) has troubled to give
these models specific names. However, perhaps the “most
interesting” ones are those that seem to exhibit the high-
est degree of complexity and not-coincidentally have been
given the names with the word “life” in their names. These
category 3a automata stabilise to a dynamic equilibria of a
relatively low fraction of live cells, with a high degree of
time correlation between their states.

There is scope for further work in examining time-
correlations longer than a single time-step and also com-
ponent sizes larger than dimers. It seems likely that some
more discriminating combinations of static and temporal
metric can further refine the behaviours observed in cate-
gory 3b.

In this work we have limited the study to known named au-
tomata in the GoL family. There is scope to conduct a more
systematic search using the metrics discussed here to look
for other category 3a automata. These criteria might also
be usefully applied to higher dimensional GoL type mod-
els where it is considerably harder to visualise the patterns
and behaviours.

References

[1] Adamatzky, A. (ed.): Game of Life Cellular Automata. No.
ISBN 978-1-84996-216-2, Springer (2010)
[2] Bays, C.: Candidates for the game of life in three dimen-

Int'l Conf. Foundations of Computer Science | FCS'12 |

(3]
(4]

(5]

(6]

(71

(8]

(91

(10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

sions. Complex Systems 1, 373-400 (1987)

Bays, C.: A new candidate rule for the game of three-
dimensional life. Complex Sytems 6, 433-441 (1992)
Bays, C.: A note on the game of life in hexagonal and pen-
tagonal tesellations. Complex Systems 15, 245-252 (2005)
Bays, C.: Game of Life Cellular Automata, chap. The
Game of Life in Non-Square Environments, pp. 319-329.
Springer (2010)

Binder, PM.: (anti-) stable points and the dynamics of ex-
tended systems. Physics Letters A 187, 167-170 (1994)
Boghosian, B.M., Rothman, D.H., W.Taylor: A Cellular
Automata Simulation of Two-Phase Flow on the CM-2
Connection Machine Computer (Mar 1988), private Com-
munication

Capcarrere, M.S.: Evolution of asynchronous cellular au-
tomata. In: Parallel Problem Solving from Nature Proc.
PPSN VIL. vol. 2439 (2002)

Darabos, C., Giacobini, M., Tomassini, M.: Scale-free au-
tomata networks are not robust in a collective computational
task. In: et al., E.Y.S. (ed.) Proc. Cellular Automata: 5th In-
ternational Conference on Cellular Automata for Research
and Industry. vol. LNCS 4173. Springer (2006)

Eppstein, D.: Game of Life Cellular Automata, chap.
Growth and Decay in Life-Like Cellular Automata, pp. 71—
98. Springer (2010)

Evans, K.M.: Larger than life: threshold-range scaling of
life?s coherent structures. Physica D 183, 45-67 (2003)
Evans, M.S.: Cellular Automata - Brian’s Brain
(2002), http://www.msevans.com/automata/
briansbrain.html, department of Neurology, South-
ern [llinois University School of Medicine

Ganguly, N., Sikdar, B.K., Deutsch, A., Canright, G.,
Chaudhuri, PP.: A survey on cellular automata. Tech. rep.,
Dresden University of Technology (2003)

Gardner, M.: Mathematical Games: The fantastic combina-
tions of John Conway’s new solitaire game “Life”. Scien-
tific American 223, 120-123 (October 1970)

Hastings, M.B., Reichhardt, C.J.O., Reichhardt, C.: Ratchet
cellular automata. Phys. Rev. Lett. 90, 247004 (2003)
Hawick, K.A., Scogings, C.J.: A minimal spatial cellu-
lar automata for hierarchical predator-prey simulation of
food chains. In: International Conference on Scientific
Computing (CSC’10). pp. 75-80. WorldComp, Las Vegas,
USA (July 2010), www.massey.ac.nz/~kahawick/
cstn/040

Hernandez-Montoya, A.R., Coronel-Brizio, H., Rodriguez-
Achach, M.: Game of Life Cellular Automata, chap.
Macroscopic Spatial Complexity of teh Game of Life Cel-
lular Automaton: A sSimple Data Analysis, pp. 437-450.
Springer (2010)

Kaneko, K., Akutsu, Y.: Phase Transitions in two-
dimensional stochastic cellular automata. J.Phys.A. Letters
19, 69-75 (1986)

Kunkle, D.R.: Automatic Classification of One-
Dimensional Cellular Automata. Master’s thesis, Rochester
Institute of Technology (2003)

Lynch, J.F.: On the threshold of chaos in random boolean
cellular automata. Random Structures & Algorithms 6(2-3),
239-260 (March-May 1995)

(21]

(22]

(23]

(24]

[25]

[26]
(27]
(28]

[29]

(30]

(31]
(32]
[33]

[34]

[35]

(36]

(37]

(38]

Martin, B.: Damage spreading and mu-sensitivity on cel-
lular automata. Ergod. Th. and Dynam. Sys. 27, 545-565
(2007)

Martinez, G., Adamatzky, A., Morita, K., Margenstern, M.:
Game of Life Cellular Automata, chap. Computation with
Competing patterns in Life-Like Automaton, pp. 547-572.
Springer (2010)

Nehaniv, C.L.: Evolution in asynchronous cellular au-
tomata. In: Proc ICAL 2003 - Eighth Int. Conf. on Artificial
Life. pp. 65-73. MIT Press (2003)

de Oliveira, G.M.B., Siqueira, S.R.C.: Parameter charac-
terization of two-dimensional cellular automata rule space.
Physica D: Nonlinear Phenomena 217, 1-6 (2006)

Owens, N., Stepney, S.: Investigations of game of life cellu-
lar automata rules on penrose tilings: lifetime and ash statis-
tics. Journal of Cellular Automata 5, 207-225 (2010)
Packard, N., Wolfram, S.: Two-dimensional cellular au-
tomata. J. Stat. Phys. 38, 901-946 (1985)

Reiter, C.A.: The game of life on a hyperbolic domain.
Comput. & Graphics 21(5), 673-683 (1997)

Sarkar, P.: A brief history of cellular automata. ACM Com-
puting Surveys 32, 80-107 (2000)

Sipper, M., Tomassini, M., Capcarrere, M.S.: Evolving
asynchronous and scalable non-uniform cellular automata.
In: In Proceedings of International Conference on Artificial
Neural Networks and Genetic Algorithms (ICANNGA97.
pp- 67-71. Springer-Verlag (1997)

Suzudo, T.: Spatial pattern formation in asynchronous cel-
lular automata with mass conservation. Physica A: Stat.
Mech. and Applications 343, 185-200 (November 2004)
Wolfram, S.: Statistical Mechanics of Cellular Automata.
Rev.Mod.Phys 55(3), 601-644 (1983)

Wolfram, S.: Universality and complexity in cellular au-
tomata. Physica D 10, 1-35 (1985)

Wolfram, S.: Cellular Automata as models of complexity.
Nature 311, 419-424 (Oct 1984)

Wolfram, S.: Complex systems theory. Tech. rep., Institute
for Advanced Study, Princton, NJ 08540 (6-7 October 1984
1985), presented at Santa Fe Workshop on ”A response to
the challenge of emerging synthesis in science”

Wolfram, S.: Twenty problems in the theory of cellular au-
tomata. Physica Scripta T9, 170-183 (1985)

Wolfram, S.: Theory and Applications of Cellular Au-
tomata. World Scientific (1986)

Wylie, B.J.: Application of Two-Dimensional Cellular Au-
tomaton Lattice-Gas Models to the Simulation of Hydrody-
namics. Ph.D. thesis, Physics Department, Edinburgh Uni-
versity (1990)

Yey, W.C., Lin, Y.C., Chung, Y.Y.: Performance analysis of
cellular automata monte carlo simulation for estimating net-
work reliability. Expert Systems with Applications 36(5),
3537-3544 (2009)

57

58

Int'l Conf. Foundations of Computer Science | FCS'12 |

Asynchronous SN P systems for logical and arithmetic operations

Ryoma Hamabe and Akihiro Fujiwara
Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology
lizuka, Fukuoka, 820-8502, Japan

Abstract— In the present pater, we consider the asyn-
chronous parallelism on the SN P system, which is a repre-
sentative of natural computing, and propose asynchronous
SN P systems that perform logical and arithmetic operations.

We first propose SN P systems that compute logical
operations, which are NOT, OR, AND and EX-OR. The SN
P systems work in O(1) sequential and parallel steps using
O(1) neurons. We next propose a SN P system that computes
addition of k binary numbers of m bits. The SN P system
works in O(km) sequential steps or O(m) parallel steps
using O(m) neurons. Finally, we propose a SN P system that
computes multiplication of two binary numbers of m bits,
and show that the SN P system works in O(m?) sequential
steps or O(m) parallel steps using O(m?) neurons.

Keywords: asynchronous SN P system, logical and arithmetic
operations

1. Introduction

The Spiking neural P system [3] (in short, SN P system)
is a representative of natural computing, and is a computing
device such that neurons communicate using electrical im-
pulses (a.k.a. spikes). The SN P system is proved to be able
to simulate Turing machines [2], [3], and the fact means the
computation model has enough computational power.

The SN P system consists of a set of neurons and synapses
that connect two neurons. The contents of each neuron
consist of a number of copies of a single object type, called
the spike. In addition, firing rules are assigned to each
neuron, and the firing rules allow a neuron to send spikes
to other neurons as messages. The application of the rules
depends on the contents of the neuron; in the general case,
applicability is determined by checking the contents of the
neuron against a regular set associated with the rule.

Several SN P systems have been proposed for numerical
NP problems [4], [5], [6], [7]. For example, Leporati et al.
[1] proposed four SN P systems for the following arith-
metic operations: addition, multiple addition, comparison,
and multiplication with a fixed factor. All numbers given as
inputs to the systems are expressed in encoded binary form
using a spike train, in which the presence of a spike denotes
1, and the absence of a spike denotes 0. The outputs of the
computation are also expressed in the same form, and are
sent out to the environment. All of the four SN P systems
work in O(m) steps for binary numbers of m bits, because
the systems output the result sequentially.

However, synchronous application of firing rules is as-
sumed on the above SN P systems. The synchronous appli-
cation means that all applicable firing rules in all neurons
are applied synchronously.

On the other hand, there is obvious asynchronous paral-
lelism on the biological background of neurons that send
electrical impulses along axons to other neurons. The asyn-
chronous parallelism means that all neurons may indepen-
dently react on firing rules with different timing. Since
all neurons basically works in asynchronous manner, the
asynchronous parallelism must be considered to make SN
P system more realistic computational model.

In the present paper, we propose SN P systems with fully
asynchronous parallelism. The fully asynchronous paral-
lelism means that any number of applicable firing rules may
be applied in one steps on the SN P system. As complexity
of the asynchronous SN P system, we consider two kinds
of numbers, which are a number of sequential steps and a
number of parallel steps. The number of sequential steps is a
number of executed steps in case that firing rules are applied
sequentially, and the number of parallel steps is a number of
executed steps with synchronous application of firing rules.

Using the fully asynchronous parallelism, We propose
SN P systems for logical and arithmetic operations. We
first propose SN P systems that compute logical operations,
which are NOT, 2-input logical operation, and k-input log-
ical operation. We show all SN P systems for the logical
operations work in O(1) sequential and parallel steps using
O(1) neurons.

We next propose two asynchronous SN P systems that
compute addition. The first SN P system computes addition
for two binary numbers of m bits, and the second SN P
system computes addition for k£ binary numbers of m bits.
We show that both SN P systems work in O(m) sequential
and parallel steps using O(m) neurons.

Finally, we propose a SN P system for multiplication of
two binary numbers of m bits. The SN P system contains
sub-systems that compute logical AND operation and addi-
tion for k£ binary numbers, which are given above. We show
that the SN P system works in O(m?) sequential steps or
O(m) parallel steps using O(m?) neurons.

Int'l Conf. Foundations of Computer Science | FCS'12 |

nucleus

dendrites

Figure 1: An example of neural circuits.

2. Preliminaries
2.1 Neural cells and spikes

We first describe neural cells and spikes, which are
conceptual bases of the SN P system. The neural cells
communicate by transmitting electric pulses between cells.
The pulse is usually called a spike, or action potential.

Figure 1 shows an example such that a neural action
potential is given altogether with the main parts of a neuron
— the cell itself (soma), the axon, the dendrites.

The neuronal signals consist of short electrical pulses, and
the signals are propagated along the axon. The contact of
the axon of a neuron with the dendrites of another neuron
is called a synapse. When an action potential arrives at
a synapse, the arrival triggers an electrical response in a
received neuron.

2.2 Standard SN P systems

Using the concept of the above neurons, spiking neural P
systems (SN P systems, in short) were proposed in [3]. The
basic idea of the SN P system is based on a concept of cells
related by synapses and behavior according to the states.

Formally, a spiking neural P system is defined as follows.

II= (0701;027 5, Om;, syn,in,out)

o O ={a} is the singleton alphabet (a is called spike).
e 01,09, -+ ,0p, are neurons such that,

o=, Ri),1<i<m

— n; (> 0) is an initial number of spikes contained
in the neuron o;.
— R; is a finite set of rules of the following two
forms:
() E/a®— a;d
E is a regular expression over a, and ¢ >
1, d > 0 are integer numbers; if £ = a°,
then it is usually written in the following
simplified form: a® — a;d.
2 a®— A
s > 1 is an integer, and o® ¢ L(FE), where
L(E) denotes the regular language defined

59

by F, and E is a regular expression defined
in (1) in the same neuron.

e syn C{1,2,--- ,m} x{1,2,--- ;m}, with (4,i) & syn
for 1 < i < m. (The syn denotes synapses between
neurons.)

e in,out € {1,2,--- ,m} indicate the input and output
neurons of II.

The rules of type (1) are called firing rules, and the rules
are applied as follows. If neuron o; contains k > ¢ spikes,
and a* € L(E), then the rule can be applied. The execution
of the rule removes ¢ spikes from neuron o; (thus leaving
k — c spikes), and prepares one spike to be delivered to all
neurons o; such that (7, j) € syn.In case of d = 0, the spike
is immediately emitted, otherwise the spike is emitted after
d computation steps of the system. (As usually happens in
membrane computing, a global clock is assumed, marking
the time for the whole system, hence the functioning of the
system is synchronized.) If the rule is used in step ¢ and d >
1, then the neuron is closed in steps ¢, t+1,t+2, - - - | t+d—1.
The closed neuron cannot fire according to the rule, and
cannot receive any spike. (All spikes that are sent to the
closed neuron are lost.) In step ¢ + d, the neuron becomes
open, so that the neuron can receive spikes and select rules
to be fired.

Rules of type (2) are called forgetting rules, and are
applied as follows. In case that neuron o; contains exactly
s spikes, the rule is applied, and all s spikes are removed
from the neuron o;. Note that, by definition, if a firing rule
is applicable to the neuron, no forgetting rule is applicable
in the neuron.

In each time unit in computation on the SN P system,
if at least one of the rules are applicable in a neuron o;,
then a rule in R; must be applied. Since two firing rules,
E; : a® — a;d; and Es : a®> — a;dy, may be L(Fp) U
L(E3) # ¢, it is possible that two or more rules can be
applied in a neuron. In such a case, only one of the rules is
chosen non-deterministically.

The initial configuration of the system is described by
the numbers ni,no, - - ,n,, of spikes in neurons, with all
neurons being open. During the computation, a configuration
is defined by the numbers of spikes in neurons and states of
the neurons, which can be expressed as the number of steps
to count down until it becomes open. (The number is zero if
the neuron is open). A computation in a SN P system starts
in the initial configuration. In each step of computation, all
spikes and neurons can be transformed in parallel according
to applicable rules. If no rule is applicable for all neurons,
the system ceases computation.

We now show an example of the standard SN P system
in Figure 2. The SN P system in Figure 2 is given below.

II= (050'170-2; syn, 2)
« O= {a}

Output

a—a

Figure 2: An example of a standard SN P system.

e 01 =(1,{a —a})

e 02 =(1,{a —a})

o syn=1{(1,2),(2,1)}

The example has two neurons, o; and o2; neuron o is the
output neuron. Both neurons have one rule. In the first step,
neuron o1 and neuron oy send one spike to each neurons,
and neuron o, sends one spike to the environment. In the
next step, the same rule is applied in both neurons as step
1. Therefore, the SN P system outputs a spike forever in
synchronous manner.

2.3 Asynchronous SN P systems

In this section, we explain the difference between a
standard SN P system and an asynchronous SN P system,
which is considered in the present paper.

On the standard SN P system, all of the rules are applied in
a non-deterministic maximally parallel manner (synchronous
manner). In one step of the standard SN P system, one of
applicable rules is applied in each neuron. (In case there
are several possibilities, one of the applicable rules is non-
deterministically chosen.) All neurons, for which no rule
is applicable, remain unchanged to the next step. In other
words, all applicable rules are applied in parallel in each
step of computation.

On the other hand, we assume that rules are applied
in fully asynchronous manner in the asynchronous SN P
system, and any number of applicable rules is applied in
each step of computation. In other words, the asynchronous
SN P system can be executed sequentially, and also can be
executed in maximal parallel manner.

Note that delay d and states of neurons, which are
defined in a standard SN P system, cannot be defined in
the asynchronous SN P system, because global clock cannot
be assumed in the asynchronous computation. Therefore,
each firing rule forms E/a® — a in the asynchronous SN P
system.

We consider an execution in case that SN P system II
in Figure 2 is executed in asynchronous manner. There are
applicable firing rules in neuron o7 and neuron os in the
initial state of the system. If these rules are applied in
parallel, the system II output a spike forever. However, if
a firing rule is applied in one of neurons, the system stops
computation because the other neuron contains two spikes
and no rule can be applied in the system. The example

Int'l Conf. Foundations of Computer Science | FCS'12 |

implies that the asynchronous SN P system performs several
computations.

We now describe complexity of the asynchronous SN
P system. We consider two kinds of complexities on the
asynchronous SN P system, which are the number of se-
quential steps and the number of parallel steps. The number
of sequential steps is the number of executed steps in case
that the SN P system is executed sequentially. Since various
sequential executions can be considered on the asynchronous
SN P system, we define that the worst number of sequentially
executed steps is the number of sequential steps. On the
other hand, The number of parallel steps is defined to be the
number of executed steps in case that the SN P system is
executed in maximal parallel manner.

3. Logical operation

In this section, we propose asynchronous SN P systems
that compute logical operations. We first describe the input
and output of the logical operations. Then, we next propose
the asynchronous SN P systems that compute NOT, 2-input
logical operations, and k-input logical operations. We finally
show complexity of the proposed SN P systems.

3.1 Input and output

Boolean values, 0 and 1, are inputs and outputs of the
logical function. We assume that the two values, 0 and 1,
are denoted by spikes a and a**!, where k is a constant
that is equal to the number of Boolean inputs of the logical
operation. (In case of 2-input logical function, a® denotes
Boolean value 1.)

3.2 NOT

The asynchronous SN P system that executes NOT is
given as follows.

HNOT = ({a}a 01,02,8Yyn, 2)

o« 01 = (k 4 17 {ak+2 _ ak+17a2(k+1)/a2k+1 N a})

o g3 =(0,{a — a,a"*t! — aF*1})

« syn={(1,2),(2,1)}

Figure 3 illustrates the SN P system Ilyor for £ = 1.
First, an instance, a or a?, is inputted in neuron o;. In case
that the instance is 0, a firing rule a® — a? is applied, and
spike a? is sent to neuron . Since a firing rules a? — a? is
applied in neuron o, a? is sent out as output. On the other
hand, in case that the instance is 1, a firing rule a* / a® — a2
is applied in neuron o1, spike a is sent to neuron o2, and
spike a is sent out from neuron oo as output. In both cases,
spike a? is re-stored in neuron o for another computation.

3.3 2-input logical operations

In case of 2-input logical operations, two inputs are given
in parallel to the SN P system. Since we assume that 0 and
1 are denoted @ and a**! in the SN P system, instances 00,

Int'l Conf. Foundations of Computer Science | FCS'12 |

Input Output

a—a
aZ—a?

Figure 3: The asynchronous SN P system that executes
NOT.

Table 1: A truth table for 2- input logical operation.

instance OR AND EX-OR
a 00 = a? O=a O=a 0O=a
B || 01(10) = a**+2 | 1 =aF*! 0=a 1=aPFt!
o 11 = g2(k+1) 1=aktl | 1 =qgkt! 0O=a

01, 10, and 11 are denoted using spikes a2, a**2, a*+2 and
a?F+1) respectively. Then, we can define appropriate output
values for the above spikes. Table 1 shows an example of
output patterns for the inputs.

We must assume that one of the inputs is given to the
SN P system because the SN P system is asynchronous. In
such case, spikes in the system is a or a**!, and no firing
rule can be applied. Then, we can distinguish the number of
values given to the system.

The asynchronous SN P system Il5.1o that compute 2-
input logical operation is given as follows. («, 3, and ~y are
Boolean values in Table 1.)

Iy 10 = ({a’}7 01, SYn, 1)
e 01 = (Oa {a2 - &, abt? — 6; a2(k+1) - 7})

e SYN =20
Figure 4 illustrates the SN P system Il 10.

3.4 k-input logical operation

In this section, we propose the SN P system that computes
k-input logical operation. Since the proposed SN P system
is asynchronous, we must assume that some of the inputs
are given to the SN P system. We first describe how to
distinguish the number of given inputs using the number
of spikes in the neuron.

Let N(o;) be the number of spikes in neuron o;. Since the
Boolean values, 0 and 1, are denoted using a and ak*1 for
the k-input operation, N (o;) satisfies the following condition
in case that j; and jo are the numbers of O and 1 that are
given to the neuron.

N(oi) = g1+ (k+1)j2

= kj2+ (j1 +J2)
We now consider the above condition in two cases. If all
inputs are given to oy, i.e. j1 + j2 = k, N(o;) is a multiple
of k. On the other hand, N(o;) is not a multiple of & in

case that some of input values are not given to the neuron
because j; + jo < k.

61

a2y

Figure 4: The asynchronous SN P system that executes 2-
input logical operation.

Table 2: A truth table for k-input logical operation (k = 4).

instance OR AND EX-OR
g at 0=a 0=a 0=a
(e %1 a8 1=a3 O0=a 1=a3
a9 al? 1=a3 0O=a 0=a
as alb 1=a3 0=a 1=a3
oy a?0 1=a3 1=a3 0=a

Therefore, we can distinguish the number of given inputs
by the above condition, i.e, the number of spikes is a multiple
of k if and only if all k£ input values are given to the neuron.
Using the condition, we can proposed the asynchronous SN
P system Il 0 using firing rules defined only for cases that
the number of spikes is a multiple of k.

Mi-ro = ({a}, 01, syn, 1)

o 01=(0,{a"UT) - q; [0<j <k}
o SYNn = ¢
Figure 5 illustrates the SN P system Il 10, and Table 2

shows examples of the above o for k-input OR, AND, and
EX-OR for k£ = 4.

3.5 Complexity

We consider complexity of proposed SN P systems
nyor, oo, and , I po. All of the SN P systems consist
of 1 neuron, and work in 1 step if all input values are given
to the system. Therefore, we obtain the following theorem.

Thorem 1: The asynchronous SN P systems, Iyor,
Mo 10, and, Mk 1o, work in O(1) sequential and parallel
steps using O(1) neurons. O

4. Addition

In this section, we propose asynchronous SN P systems
for addition. We first propose a SN P system that computes
addition of two binary numbers of m bits. We next propose
a SN P system that computes addition of £ binary numbers
of m bits.

4.1 Addition of two binary numbers

An idea of the SN P system for addition of two binary
numbers is based on a logic circuit for addition. As described
in Section III, we assume that the two Boolean values, 0 and
1, are denoted by spikes a and a**1.

62

)
1
ak—aq,
Input 0 Output
a*—q
—] C o
alrDk— gy
—/

Figure 5: Asynchronous SN P system that executes k-input
logical operation.

T HA
oo
for > S
1 EX-OR
A a?—a?
a.k+2_,ak+2
B aZk—s g2k
oo
for > C
AND

Figure 6: A SN P system Il 4 for the half adder.

We first introduce a half adder (HA), and propose a SN
P system whose input and output is the same as the half
adder. The half adder is a logic circuit that adds two Boolean
values, A and B, and output two Boolean values, S and C
such that the sum of A and B is 2C + S. In other words,
S and C' are defined as S = A@® B and C' = A A B. Since
we can compute the logical operations using SN P systems
described in Section III, we obtain an asynchronous SN P
system Ilzr 4, which is illustrated in Figure 6, for the half
adder.

We next introduce a full adder (FA), and propose a SN
P system for the full adder. The full adder is a logic circuit
that adds three Boolean values, A, B and Cj,, and output
two Boolean values, S and C,,; such that the sum of A,
B and Cj, is 2C,,; + S. Since it is well known that the
full adder can be constructed from two half adder and one
OR gate, we can obtain an asynchronous SN P system Iy 4,
which is illustrated in Figure 7, for the full adder.

Using the SN P system for the full adder, we can construct
a SN P system for addition of two binary numbers of m
bits. We assume that input of the addition is a pair of two
binary numbers Ag, Ay, -+, A;p—1 and By, By, -+, Bi—1
that represent two numbers A and B such that A =
Z;n:*ol Ajx27 and B = Z;’:OI B; %27, and also assume that
a binary number Sy, S1, - - S, denote a sum of A and B.
Then, we obtain a SN P system Ils_4pp, which computes

Int'l Conf. Foundations of Computer Science | FCS'12 |

T EA
S
Ci, > > S
T ya
S C
A > —
T A nf2-L0
or > C,,
B > c » OR "
Figure 7: A SN P system IIr4 for the full adder.
A, B, VN : TR A, B,
T 5.ADD v
Tua |C LT S st TRA Ci, S
S S S
\4 v v
S, T S,

Figure 8: A SN P system for addition of two binary numbers.

addition of two binary numbers of m bits, in Figure 8.

Finally, we consider complexity of the proposed SN P
systems. Since complexity of [Ty 4 or IIg4 is O(1) parallel
and sequential steps, we obtain the following theorem for
Mapp.

Thorem 2: The asynchronous SN P system Ils_app
works in O(m) sequential and parallel steps using O(m)
neurons. O

4.2 Addition for £ binary numbers

In this section, we propose an asynchronous SN P system
that computes addition for &k binary numbers for £ >
2. Although we can easily obtain the SN P system that
computes the addition using the SN P system proposed in
the previous section, the SN P system needs O(m?) neurons
and O(km) parallel and sequential steps. In the following,
we propose the SN P system that works in O(m) sequential
and parallel steps using O(m) neurons.

We first consider input and output for the addition. We
assume that the input of the addition is k& binary numbers,
Xo, X1, , Xk_1, such that X; == Z;n:*ol X * 27 for
m Boolean values, X; o, X; 1,-X;m—1. The output of the
addition is a binary number Sy, S, - - - Sy, Which denote a
sum of the binary numbers. (We assume the sum dose not
overflow in m + 1-th bit to simplify the description.)

We next proposed a multi-input full adder (MFA), which
computes a sum and a carry for k inputs. The input and
output of MFA are defined as follows.

Input: k Boolean values, Xg ;, X1,

integer Cj, such that C;, < k.

-, Xk_1,,and an

Int'l Conf. Foundations of Computer Science | FCS'12 |

Xo0 X]\,o """)/(k—l.() Xo.1 X]\,] """ DR X m-le,lm-i"" Xt
T2 ADD \4 l / \< L ---- J \ l ---- v/
aky mea {C ELIV I ST oot S s,
S S S
v v v
S, S, S

Figure 9: A SN P system for addition of £ binary numbers.

Output: A sum S and a carry Cly¢, Which are defined
as follows. (S is a Boolean value, and C,,; is an
integer.)

0 (If Ci+ Zi:ol X, ; is even)
S =
1 (Otherwise)

k—
C = \‘Cin + Zi:()l leJJ

2

Since 0 and 1 are denoted by spikes a or a**! in the

SN P systems, we assume that an integer ¢ is denoted by
a spike a®*+t1)+(*=¢) \which means (k — ¢) Os and ¢ 1s.
(As we discussed in Section III, the spikes are distinct for
0<c<k)

If we obtain IIp;r4, which is a SN P system for the
multi-input full adder, II;_4pp, which is a SN P system
for addition of k£ binary numbers of m bits, can be easily
constructed as shown in Figure 9.

We now describe details of a SN P system Il 4, which
is illustrated in Figure 10. In Figure 10, ocp is a neuron
that copies input spikes and output the spikes to two other
neurons. One of the copied spikes are sent to 11;_;o for EX-
OR, and then, the output is sent to P> 1o, which are SN P
systems described in Section III. EX-OR of the input values
is computed in the SN P systems, and the result of EX-OR
is outputted as .S.

The other copied spikes are sent to a neuron C'P_1, in
which the number of spikes is decremented by one for barrier
synchronization in the next neuron occ. Then, the number
of spikes are halved in oc¢, and the spikes are outputted as
Cout'

Finally, we consider complexity of the proposed SN P
system IIx_app. Since IIpspa4 works O(1) parallel and se-
quential steps, we obtain the following theorem for Il;_4pp.

Thorem 3: Asynchronous SN P system II;_4pp works in
O(m) sequential and parallel steps using O(m) neurons. [J

5. Multiplication

In this section, we propose an asynchronous SN P system
that computes multiplication of two binary numbers of m

63

ToFA
AR 1
X5 | P = Tiofor EXOR i
X1 (o) Tsi0
{akG+D— gki+D) -1 ; »S
Xeidy| 10sjsk} [{a@h—aont for EX-OR
- l0<j<k}
A i i R
CP 1t x, forEX-OR {\(oe)
1 T kLo O BAT CcC
C,,— {akG+D—gkGeD) CP, {ak(z{”)'z_’?kj'
10=j<k} | (@omoaanr | 32—l > Cou
l0=<j=<k} I=j<k}
J
~— J

Figure 10: A SN P system for the multi-input full adder

AZAl AO
x) B,B, By
0 0 AZBO AlBO AOBO
0 AB, AB,AB, O
+) AB; AB; AB, 0 0
P, P, P, P,P,
Figure 11: An example of the multiplication of the binary
numbers for m = 3.

bits. We assume that input for the multiplication is the same
as input for the addition of two binary numbers A and B,
which are Ag, Ay, - ,Am_1 and By, By, , B,,_1 such
that A = Y701 A; %20 and B = Y7 " B; + 27, and
also assume a binary number Py, Py, - - - Ps,,—1 iS an output
binary number of the multiplication A x B. The two Boolean
values, 0 and 1, are denoted by spikes a and a**! such that
k > m, respectively.

We now explain an outline of the proposed SN P system
for the multiplication. (Due to space limitation, we omit
details of the SN P system.) The SN P system computes
the multiplication using the following 2 steps.

Step 1: Compute AND operation between
Ao, A1, ,Ap—1 and each bit B; for
0 < 45 < m — 1, then store the result in

X0, Xj1,0
binary number.
Step 2: Compute addition of Xg, X1, -, X,,—1, which
are the results of Step 1, using the SN P system
IIx.app, which is described in Section III.

,Xj2m—2 as a j-bit left-shifted

Figure 11 illustrates an idea of the multiplication in case
of m = 3. The 4,B; (0 <1i<2,0<j<2) represent the
result of A; A B; , and Os are added to the value for j-bit
shift. Then, the system executes addition of the values, and
we obtain the the multiplication of A and B.

We now show a SN P system 1177, for the multiplication
in Figure 12. A SN P system Il;y; contains a set of

T
A X
coPY ,_, o0 00 L » P
a—a Ay, X 0
Ay 1, - 0.1 L, p
. SN |
aktHl— gkt § Ao i 1
XO.m 1
SR S i X T ADD
N COPY . 11
1 —b >
! Kbl — g1 i T AND Py
a a
COPY
a—a
B, i
ak+l_>ak+1
e Py
COPY
B a—a
R
ak+1_>ak+]

Figure 12: An SN P system Il

TAND

A
B° T 510 for AND »Xo0

0
A.
B‘ 7T, o for AND > Xj,iﬂ'

i
A,
B l‘ 7T 50 for AND > Xt 2m2

Figure 13: An SN P system Ilanp

membranes ccopy, anp, Hr.app, and a membrane
opumMmy as sub-systems. We explain each of the sub-
systems in the following.

e Ocopy 1S a membrane that copies each input value,
and output m copies of the input value to ITgnp.

e ITynyp is a SN P system that consists of m? sub-
systems, 1I5_ 1 0. Each 1510 executes AND operation
of A; and Bj, and outputs the result to I 4app as
X it;. Figure 13 illustrates the SN P system IIanp.

e OpuMMYy 1S a membrane that send a dummy value
0 to IIx_app. The dummy values is used for creating
left-shifted values.

e Il app is a SN P system that executes addition for

Xo, X1, -+, X;m—1. As output of the system, we obtain
Py, P1,- -+, Poyy—o, which is the multiplication of A
and B.

Finally, we consider complexity of proposed SN P system
I Since 114y p works in O(mQ) sequential steps and
O(m) parallel steps in IIp;77,, we obtain the following
theorem for Il /0r,.

Thorem 4: The asynchronous SN P system II,/r7;, works
in O(m?) sequential steps or O(m) parallel steps using
O(m?) neurons. O

Int'l Conf. Foundations of Computer Science | FCS'12 |

6. Conclusion and Future Work

In the present paper, we have proposed asynchronous SN
P systems that compute logical operations, addition and
multiplication. We first proposed the SN P systems for
logical operations works in O(1) sequential and parallel
steps using O(1) neurons. We next proposed two SN P
systems that computes addition of binary numbers of m bits,
and show that the SN P systems work in O(m) sequential
and parallel steps using O(m) neurons. We finally proposed
a SN P system for multiplication of two binary numbers of m
bits, and show that the SN P system works in O(m) parallel
steps or O(m?) sequential steps using O(m?) neurons.

In the future research, we will propose another asyn-
chronous SN P systems that deal with computationally hard
numerical problems, such as the subset sum problem or the
knapsack problem.

References

[1] M. A. Gutiérrez-Naranjo and A. Leporati. First steps towards a CPU
made of spiking neural P systems. International Journal of Computers,
Communications and Control, 1V:244-252, 2009.

[2] M. Ionescu, Gh. Paun, M. Cavaliere, O. H. Ibarra, O. Egecioglu, and
S. Woodworth. Asynchronous spiking neural P systems. Theoretical
Computer Science, vol 410,No. 24-25, pages 2352-2364, 2009.

[3] M. Ionescu, Gh. Paun, and T. Yokomori. Spiking neural P systems.
Fundamenta Informaticae, 71:279-308, 2006.

[4] T.O. Ishdorj, A. Leporati, L. Pan, and J. Wang. Solving NP-Complete
Problems by Spiking Neural P Systems with Budding Rules. Workshop
on Membrane Computing,(LNCS5957), pages 335-353, 2010.

[5] T.O.Ishdorj, A. Leporati, L. Pan, X. Zeng, and X. Zhang. Deterministic
solutions to QSAT and Q3SAT by spiking neural P systems with pre-
computed resources. Theoretical Computer Science, 411(25):2345—
2358, 2010.

[6] A. Leporati, G. Mauri, C. Zandron, G. Paun, and M.J. Pérez-Jiménez.
Uniform solutions to sat and subset sum by spiking neural p systems.
Natural Computing, 8(4):681-702, 2009.

[7]1 A. Leporati, C. Zandron, C. Ferretti, and G. Mauri. Solving numerical
NP-complete problems with spiking neural P systems. Membrane Com-
puting, International Workshop, WMCS, Selected and Invited Papers,
LNCS 4860, pages 336-352, 2007.

Int'l Conf. Foundations of Computer Science | FCS'12 |

65

Cell Decomposition Algorithm Using
Pseudo Triangulation

Ali Nourollah'?, Saeed Bazzaz’, and Mohammad Reza Meybodi*®
'Electrical and Computer Engineering Department,
Shahid Rajaee Teacher Training University, Tehran, Iran
?Electrical and Computer Engineering Department,
Qagzvin Islamic Azad University, Qazvin, Iran
3 Computer Engineering and Information Technology Department,
Amirkabir University of Technology, Tehran, Iran

Abstract - This article reviews cell decomposition as a
method of motion planning. To analyse test case algorithm,
use a polygon with some holes as routing space and contain
of some obstacles. In order the original polygon triangulation
or pseudo-triangulation, use the sweep-line algorithm to
divide the original polygon into multiple polygons without
holes. Then each monotone polygons triangulates and using
triangles center and the edges center, roadmap graph will be
constructed.

Origin and destination points is located within a separate
triangle. Routing from origin triangle to destination triangle
using Dijkstra algorithm will be done and the shortest path
can be obtained without collision with obstacles. The new
innovative algorithm pseudo triangulates the Monotone
polygons instead of triangulation and center of the pseudo
triangles are obtained with this method. Pseudo-triangulation
makes shorter path from origin to destination. The sweep line
algorithm order is O(nlogn) and the pseudo triangulation
algorithm order is O(nlogn).

Keywords: Cell decomposition, Pseudo triangle, Sweep-line,
Monotone polygon, Motion planning

1 Introduction

One of the major challenges in controlling the robot is
motion planning. Motion planning problem is used to run the
software in various environments, designing surgeon robotic
arm, mapping unknown environments, controlling the variable
environments and designing structure of the chemical material
[2].

Motion planning algorithms include methods based on
Sampling and Combinatorial. Methods based on sampling do
the routing with getting a new random point from the
movement environment at each stage. All combinatorial
motion planning methods, jointly build a Roadmap [5]. Path is
a graph which is located within the routing environment and
crosses between obstacles. It can search the shortest path from
origin to destination.

Cell decomposition is one of the combinatorial motion
planning methods. Cell decomposition using different methods

such as the trapezoidal, vertical, cylindrical, rectangular,
polytopal, and triangular divides polygon including obstacles
to number of cells [5, 7]. In this research using triangulation
and pseudo triangulation methods, cell decomposition can be
studied.

In section 2 will be familiar with the concepts of cell
decomposition. In section 3, using the sweep line algorithm,
original polygon divides into multiple monotone polygons. In
section 4 with the help of triangulation and pseudo
triangulation algorithms, each monotone polygon divides into
number of cells. Also in section 5 roadmap graph is created
using pseudo triangles and triangles, weighted graph search
algorithm will search the roadmap to find the shortest path
from origin to destination. In section 6 cell decomposition
using triangulation and pseudo triangulation methods are
compared and the research results are described.

2 Cell decomposition

Combinatorial motion planning methods search paths
using continuous configuration space and unlike sampling
methods don't use approximate methods. In fact, these
methods use an exact algorithm. These methods are in
contrary motion planning methods based on sampling.

Combinatorial method algorithm is Perfect, This means
that finds the answer to the problem or correctly reports that
there is no answer. In some cases the sampling algorithms are
unable to determine whether problem has answer or not. Also
in cell decomposition methods, algorithms can be found that
solve the problem in time O(n), but the probability that they
can be implemented is very low. Consequently, all
combinatorial method issues cannot be implemented.

2.1 Polygonal obstacles

In this method, we assume that robots are point and if
robots were not point, Minkowski Difference should be
calculated for them. In Fig. 1, you can see the two obstacles
within the routing space. In fact we have a polygon with two
holes. If there's a hole in the obstacle, be ignored.

66

Fig. 1. Polygon with holes

The cell decomposition method includes three types of
data structure: The first type is Vertices, Each vertex v
contains a pointer to the point (x, y) € C = R2 and contains
another pointer to some half-edge that their source is v. The
second type is Area; each area has some pointers to
surrounding half-edges that they are on area borders. If the
edge is out of the last border point, the pointer value is null.
Area includes a list of pointers for each component (hole) that
located within area.

The third type is Edge, edges are directed, usually as a
circular chain are around an area. Each edge is stored as a
pointer to its inner area, In Fig. 1; these three types are
observed [5].

2.2 Cell decomposition method

For the original polygon triangulation or pseudo
triangulation, primarily using a sweep line algorithm divide
the original polygon into multiple polygons without holes and
then these monotone polygons triangulate and pseudo
triangulate, sweep line algorithm will be described in the next
section.

3 Sweep line and monotone polygon

Primarily using a horizontal line the original polygon is
swept along the y-axis. Using the sweep line, original polygon
vertices and obstacles vertices are arranged in order of y. The
vertices have identical y, are arranged based on x. A list of all
the vertices is produced that are arranged respectively on y
and then x.

3.1 Identify the type of vertices

Now vertices according to the order in the list are
examined. Based on the position of the vertex v; in adjacent of
previous neighbor vertex vi; and next neighbor vertex Vi,
type of vertex is specified.

1) If the vertex vi; and vj; in terms of height (y

component) to be respectively the one above and one
below the vertex vi, vi is a Regular vertex.

Int'l Conf. Foundations of Computer Science | FCS'12 |

2) If any two vertices v and v,; to be the vertices of
the lower altitude, this is a Start vertex or Split. To
determine that being faced with what type of vertices
must draw a horizontal line from this point on the
entire original polygon. If the number of points on
the original polygon and the obstacles, of dealing
with this line, separately right and left this vertex was
odd, vertex is "Split" and if it was even, vertex is
"Start".

Only an issue that should be noted, Vertices that are
located on the horizontal line and both neighbor
vertices are above or below, these points are not
counted. Because this is a tangent point and not
intersection. This is the horizontal line method
concept that if the top of the vertex was outside the
original polygon, this is a Start vertex. If the top of
the vertex was inside the original polygon, this is a
Split vertex (Fig. 2).

(a) & split vertex
~

eroe vertex - -
merge vertex —_ e

Fig. 2. Split and merge vertex
3) If any two vertices v;4 and vj.; to be the vertices of
the higher altitude, this is an End vertex or Merge. To
determine that being faced with what type of vertices
must draw a horizontal line from this point on the
entire original polygon. If the number of points on
the original polygon and the obstacles, of dealing
with this line, separately right and left this vertex was
odd, vertex is "Merge" and if it was even, vertex is
"End" [2].

After identifying the type of vertices, to derive the
monotone polygons from within original polygons, do the
below operations on "Split" and "Merge" vertices:

1) Each "split" vertex is connected to vertex that is
located above it and the connected vertex must be
closest vertex of height and visible.

2) Each "merge" vertex is connected to vertex that is
located below it and the connected vertex must be
closest vertex of height and visible.

In Fig. 3, a polygon with an obstacle is observed;
Respectively "split" and "merge" vertices are connected to the
nearest vertex of their top and bottom. Drawing diameters
divide the original polygon into smaller monotone polygons.
The sweep line algorithm order for obtain monotone polygons
is O(nlogn).

Int'l Conf. Foundations of Computer Science | FCS'12 |

Fig. 3. The internal diameters between "Split" and "Merge"
vertices

Monotone polygon is a simple polygon that is no
obstacle in it and excluding the highest and lowest vertex of y,
the rest are regular type. After drawing internal diameters
should obtain a list of generated monotone polygons. To do
this, as in Fig. 3 you can see, original polygon vertices in
clockwise direction and obstacles polygons vertices in anti
clockwise direction will be stored.

Make a list named "total" that includes all the vertices of
the original polygon and obstacles. On one of the original
polygon vertices, starting to move in order polygons were
stored. Always must move on the original polygon in the
clockwise order and on the obstacles polygons in the anti
clockwise order. When we got to the vertex that it's degree
was more than 2, means that it was attached to one or several
internal diameter, CCW angle between previous surveyed
vertex vi_; and the current vertex v; and the next vertices which
were connected to vertex v; by edges, is obtained.

The next vertex must make the least CCW angle with the
vertex v; and vertex v;.;. Then, most likely the next vertex will
be located on vertices of the obstacles polygons. This process
continues until we reach the first traversed vertex, a monotone
polygon is extracted. All these polygon vertices are removed
from the "total" list and now again, start to traverse from a
vertex on the original polygon, this is repeated until all
monotone polygons are extracted and "total" list is empty [3].

In the next section using triangulation and pseudo
triangulation algorithms, each monotone polygon will be
divided into several cells.

4 Triangulation and pseudo triangulation

In this section, using monotone triangulation and
incremental pseudo triangulation, the cells within each
monotone polygon are obtained. Triangulation algorithm has
linear time O(n) and pseudo triangulation algorithm order is
O(nlogn).

4.1 Triangulation algorithm

In Fig. 3 , created monotone polygons are triangulated
using the monotone triangulation method and the triangulation
result is observed in Fig. 4. Monotone triangulation algorithm
is described in Fig. 5. This method arranges vertices in order
of y. The vertices have identical y, are arranged based on x.

67

Then compare the two consecutive edges on left and right
chains of monotone polygon and draw the required diameters
for the triangulation [2].

Fig. 4. Monotone polygon triangulation

Algorithm TRIANGULATEMONOTONE(P)

Input. A strictly y-monotone polygon P stored in a doubly-
connected edge list D.

Output. A triangulation of P stored in the doubly-
connected edge list D.

1. Merge the vertices on the left chain and the vertices on
the right chain of P into one sequence, sorted on
decreasing y-coordinate. If two vertices have the same
y-coordinate, then the leftmost one comes first. Let uz,
..., undenote the sorted sequence.

2. Initialize an empty stack S, and push u1 and uz onto it.

3. forj—3ton—1

4, do if ujand the vertex on top of S are on
different chains

5. then Pop all vertices from S.

6. Insert into D a diagonal from uj to
each
popped vertex, except the last one.

7. Push uj-7 and ujonto S.

8. else Pop one vertex from S.

9. Pop the other vertices from S as long
as the diagonals from uj to them are
inside P Insert these diagonals into D
Push the last vertex that has been
popped back onto S.

10. Push ujonto S.

11. Add diagonals from un to all stack vertices except the
first and the last one.

Fig. 5. Monotone triangulation algorithm

4.2 Pseudo triangulation algorithm

Pseudo triangle is said to polygon that exactly has three
convex interior angles and the rest of the interior angles are
concave. This polygon is shaped like a triangle. Pseudo
triangulated polygon for n vertices has at least 2n-3 edges.
Pointed pseudo triangulated polygon for n vertices exactly has
2n-3 edges [1].

Cell decomposition method using pseudo triangulation
divides the area including obstacles into number of pseudo
triangles. Incremental pseudo triangulation algorithm is

described in Fig. 6. In this method, traversing is started from a
vertex on polygon convex hull and makes a triangle with two
initial edges.

At each step a new vertex is added, as regards
pointedness or planarity is violated, pseudo triangles creation
begins. At some stage split the existing edges into two parts
and use the new edge as a diameter [4, 6].

Algorithm INCREMENTAL PSEUDO-TRIANGULATION(P)

Input. A simple polygon P given by its point set, in ccw order
around its boundary.

Output. A pointed pseudo-triangulation of P

1. Start from a vertex on the convex hull of the polygon and

the first two edges to obtain a triangle.

2. Add the vertices one at a time, together with a new polygon
edge.

3. If pointedness is violated, split the existing edges incident
to the last vertex into two parts, using the new edge as a
divider. Move half of them (the part containing only added
edges, not the other polygon edge incident to the vertex) to the
new endpoint. Recourse, to maintain planarity and
pointedness.

4. If planarity is violated, it is because the new edge is cutting
through several added edges. Subdivide these crossed edges
into two, and recourse to maintain planarity and pointedness
on each half. Some of these new edges will coincide.

Fig. 6. Pseudo monotone triangulation algorithm

For example, in Fig. 7 (d) there is a polygon with holes
that is pseudo triangulated. Fig. 7 shows the output of
implemented software with this research. In part (a) a polygon
with holes is observed, Obstacles within the polygon was
generated using an innovative technique that developed by the
author and Its description is beyond the scope of this article.

In part (b) using sweep line method, the original polygon
is divided into several monotone polygons. In part (c) Each
monotone polygon is divided into the number of cells using
triangulation method. In part (d) cells are obtained using
incremental pseudo triangulation. In the next section, roadmap
generation and searching algorithm will be described.

5 Roadmap and searching weighted
graph

5.1 Maximum-clearance roadmaps

In Fig. 8, when a roadmap is creating, maximum distance
from obstacles must be kept. Moving in space while
maintaining a maximum distance of obstacles is ensured that
probability of collision reduces. In Fig. 8, part of the roadmap
passes the inside corridor in an equal distance from obstacles

[5].

Int'l Conf. Foundations of Computer Science | FCS'12 |

hR
»

(@)

(b)

(©

(d)

Fig. 7. (a) Polygon with holes. (b) The original polygon is divided
into monotone polygons. (c) Monotone polygons are triangulated.
(d) Monotone polygons are pseudo triangulated.

Int'l Conf. Foundations of Computer Science | FCS'12 |

One closest
point

Two closest
points

One closest
point

Fig. 8. Maximum-clearance roadmaps

To generate roadmap in triangulation and pseudo
triangulation cell decomposition method, triangles and pseudo
triangles centers must be achieved. Roadmap graph is
generated through connecting the center of triangles, pseudo
triangles and middle of edges. To find the triangle center
obtains triangle gravity point, it means average coordinates of
triangle is obtained. In the next section, innovative approach
to find pseudo triangle center will be provided.

5.2 Pseudo triangle center

Pseudo triangle center is the point that all three convex
vertices be able to see that. Three convex vertex of pseudo
triangle are connected through a direct line L; (i=1,2,3).
Middle point of each three lines find and is called M;. A
perpendicular line from M; is drawn to the chain of the edges
between two head of the line L; and the collision place with
chain of the edges is called T;. Gravity center of the points T;
is pseudo triangle center. In Fig. 9, pseudo triangle center
finding method is observed.

Fig. 9. Finding pseudo triangle center

5.3 Weighted search graph

Each of routing origin and destination points are located
within one of the triangles or pseudo triangles. The origin
point is connected to nearest vertex of the roadmap graph and
this vertex is called Start V,, the destination point is connected
to nearest vertex of the roadmap graph and this vertex is called
Start Vg

If the above cases be adhered, motion planning problem
can be reduced to a graph search problem. Constructed
roadmap graph in cell decomposition method is observed in
Fig. 10. This is a weighted graph, because the goal is finding
the shortest path from origin to destination without collision
with obstacles. The length of each edge is considered as its
weight. Weighted graph searching algorithms is used for

searching graph. For example, the Dijkstra basic algorithm is
used for weighted graph searching, this algorithm acquires the
shortest path from one vertex to all vertices of the graph. The
shortest path from vertex V; to vertex Vg is acquired by this
algorithm.

Fig. 10. The triangular cell decomposition roadmap

6 Conclusions

In this paper, the triangular cell decomposition algorithm
was evaluated. Then a new idea of the pseudo triangulation
was considered instead of triangulation. If the cell
decomposition performs using a pseudo triangulation, the
number of cells is smaller and more efficient than the number
of cells that are created from the triangulation.

Sweep line algorithm was used to create monotone
polygons, with the order O(nlogn). Monotone triangulation
has linear time O(n) and pseudo triangulation did with order
O(nlogn). The proposed new algorithm is an optimal
algorithm. The cell decomposition method is a combinatorial
method and it is used in offline robot motion planning.

References
[1] Joachim Gudmundsson, and Christos Levcopoulos.
“Minimum weight pseudo-triangulations”. 2007

Elsevier, Computational Geometry 38, 139-153.
[2] Mark de Berg, Otfried Cheong, Marc van Kreveld, and
Mark Overmars. “Computational Geometry -
Algorithms and Applications”. Springer 2008.
[3] Wu Liang, “Poly2Tri: Fast and Robust Simple Polygon
Triangulation With/Without Holes by Sweep Line
Algorithm”. Centre for Systems Engineering and Applied
Mechanics (CESAME) 2005, University Catholique de
Louvain , http://sites-final.uclouvain.be/mema/Poly2Tri/.

[4] lleana Streinu. “Pseudo-Triangulations, Rigidity and
Motion Planning”. Department of Computer Science,

Smith College, Northampton, MA 01063, USA.

69

http://sites-final.uclouvain.be/mema/Poly2Tri/

70

[5]

[6]

[7]

Steven M. Lavelle. “Planning Algorithms”. Cambridge
University 2006.

Gunter Rote, Francisco Santos, and lleana Streinu,
“Pseudo-Triangulations - a Survey”. 2007 Mathematics
Subject Classification.

Marius Kloetzer, and Narcis Ghita, “Software Tool for
Constructing Cell Decompositions”. 2011 IEEE
International Conference on Automation Science and
Engineering, Trieste, Italy.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Int'l Conf. Foundations of Computer Science | FCS'12 |

A Case Study in Software Project Estimation

Michelle A. Willcox, Devon M. Simmonds, Thomas D. Lovette, Yuli Bonner
University of North Carolina Wilmington
601 South College Road, Wilmington, NC 28403
{ maw3067, simmondsd, tdI6020, myb7721 }@uncw.edu

Abstract

Software estimation is a pivotal activity in the
software engineering lifecycle. Indeed, software
project planning, including scheduling and resource
management are all predicated on the computation of
realistic estimates. This paper reports on a case study
to evaluate the use of estimation in the model-based
development of clipboard management software
called ClipBits. Multiple techniques are available for
performing software estimation. In this project, three
estimation techniques were used: function point
estimation, the COCOMO II model and a lines-of-
code approach. Our analysis of the results revealed
that estimation produced reasonable results. We
provide some foresight as to larger variability from
actual data for some estimates. In addition, the
duration and scheduling predictions proved useful as
an aid to help keep the team true to its deadlines.
Overall, the results support the fact that software
estimation can greatly improve the successful
completion of software engineering projects.
Keywords: software engineering, software
estimation, planning, scheduling, clipboard.

1. Introduction

Software engineering [1] is a task that requires a lot
of preparation and planning. With proper planning, all
stakeholders, including investors, project managers,
and programmers can have a solid basis for project
execution and greater assurance that the project will
succeed. While it is hard to accurately predict the
software duration, schedule and cost before starting a
software project, proper early software project
estimation [2, 3] provides goals and milestones for the
development team, and enables the allocation and
management of human and other resources in a
systematic and predictable manner. Estimation is
beneficial because it is essential that room be allowed

in the development process, for the many unforeseen
circumstances that typically accompany complex
projects.

Some of the areas involved in software project
planning include the schedule the software
development team will follow; the project duration, the
project size, required human resources, specialized
skills and an assessment of risks. Schedule estimation
includes such tasks as determining when a requirement
of the software should be completed, and how long it is
expected to take. Several techniques are available for
software sizing including techniques based on the
projected lines of code, techniques based on the
functionality of the software, and empirical models [3].
Significant project anomalies are typically forecasted
and addressed through systematic and continuous risk
assessment. While some of the risks might never occur,
it is good to plan for them regardless of the outcome.
Lastly, the software development team needs to set
forth an understanding of what each member’s tasks
are going to be throughout the project. This may be
done using a tool such as a responsibility matrix. All of
these areas need to be accounted for during the
software project planning. Needless to say, that while
software project planning begins at project inception,
project planning is an ongoing activity throughout the
life of the project.

This paper reports on a case study designed to
assess the importance of effective software project
planning for successful software development. By
analyzing the estimates with actual data, we will be
able to see how accurate our estimates were in the end,
and what can be done to improve this process. The
software that was developed in this case study
improved upon the functionality of the system
clipboard [4 — 8, 14 — 16] to allow users to increase
their work efficiency and productivity [9]. The
application, called ClipBits, enables users to store past
clipboard data as ClipButtons, and save multiple
ClipButtons in ButtonSets locally to be used at any
time. This is all done using an unobtrusive user
interface that is intuitive and easy to use. Our main

71

72

focus was on determining the facets of software project
planning that were most helpful for developers, what
areas were or were not estimated accurately, and the
quality [10, 11] of the resulting application.

The rest of the paper is organized as follows:
project planning and estimation is presented in Section
2, software design in Section 3, the results and lessons
learned in Section 4, and lastly, Section 5 will present
the discussion and conclusion.

2. Project Planning and Estimation

ClipBits

Use ClipButton

Rename
ClipButton

Create
Button Sets
Use Button

Sets

Figure 1. ClipBits Use Case Diagram

<<Software>>
OS Clipboard

User

The above Use Case Diagram (Figure 1)

demonstrates typical actor interaction with the ClipBits
software. Actors include the end user and the operating
system clipboard, both of which interact with the
application. However, the methods through which they
interact are slightly different. The end user interacts
with ClipBits through the use of clip buttons and UI
components, whereas the OS clipboard interacts with
the application via Windows messaging. Figure 1 is a
context model for the application, and therefore
understanding this context model during the software
planning phase will allow each of the developers to
relate their specific development task to the actor(s) for
whom the feature is required.
The many vital roles necessary to the completion of the
ClipBits software were assigned as illustrated by the
responsibility matrix shown in Table 1. The table
shows the lead software engineer for each task. The
tasks were well-distributed according to the various
areas of expertise present within the group for the
purposes of increasing efficiency while mitigating the
risk associated with learning curves (see Table 3).
Throughout the development process, each member
will be able to refer back to this table if there is every
any task in question regarding who is responsible.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Thomas
Lovette

Yuli
Bonner

Michelle
Willcox

Project

X

Management
Requirements X
Engineering
Software Design | x X X

Quality X
Assurance
Data X
Storage/Retrieva
1 Mechanism
ButtonSet X
Design/Impleme
ntation
Clipboard X
Management

ClipButton X
Development
Ul X
Design/Develop
ment

Cross-Tier X X X
Integration
Product Testing X

Project Proposal | x

Requirements X
Engineering
Document
Software Design | x
Document
Implementation/ X
Testing
Document
Table 1. ClipBits Responsibility Matrix

The overall estimation process for development of the
ClipBits application began with the development of the
work items in the work breakdown structure shown in
Figure 2. Broad task categories include Planning and
Research, Modeling and Design, Construction, and
Deployment. Each category contains multiple sub-
tasks, each with unique requirements and deadlines.
However, the work items have been structured in such
a way that the main categories can fall one after
another, with Planning and Research directly preceding
Modeling and Design, etc. Some tasks- such as
research and integration- are carried out irrespective of
hierarchical patterns, as their success impacts every
area of the development process. It is evident that
much is to be determined in the Planning and Research
phases because these activities greatly influence the
Modeling and Design, Construction, and Deployment
phases.

Int'l Conf. Foundations of Computer Science | FCS'12 |

ClipBits
Development
Plannin Modelin
8/ A g/ Construction Deployment
Research Design
Determine High-level Implement Deploy
Software «— | y| design software [«— |application
Concept components
- Devel
Designate efﬁ.op Post-
specific roles Integrate mortem
featured |« N
and components analysis
. model of
responsibilities software
Test the
Complete .
. Define test
project [«— . software
schedule
Research
required |«
technology

Define
requirements

Construct
diagrams
relating
software
processes and
functionality

Figure 2. ClipBits Work Breakdown Structure (WBS)

Lines of Code Estimation

Table 1. ClipBits Cost Estimation using Lines of

Code Model

Optimistic | Average | Pessimistic | Estimated

LOC LOC LOC LOC
Function | Estimate | Estimate | Estimate
User 1,550 3,000 4,500 3,000
Interface
Clipboard | 100 500 1,000 516
Monitor
Clip 200 800 2,000 900
Buttons
Data 250 600 1,500 691
Read/
Write
Button 100 300 500 300
Set

5,407

Table 1 shows the basic data used to compute the
software estimates using the lines of code (LOC)
approach. The computation is done by finding the
mean of the optimistic, likely, and pessimistic LOC
estimates following a beta distribution [12], for the five
broad categories of the application. Each item in The
“Estimated LOC” column is calculated using the
formula:

Estimated LOC
_ Optimistic + (4 X Average) + Pessimistic
B 6

The total estimated Lines of Code for the application is
then simply the sum of the entries in the “Estimated
LOC” column. If an organizational average
productivity rate of 620 LOC/person-month is assumed
along with a burdened labor rate of $8,000.00/month
[pressman], then the average cost per line of code is
approximately $12.90. Given this information, the total
estimated cost of building this application is:

$12.90/LOC x 5,407 LOC = $69,750.30

Likewise, the estimated effort required to build this
application is:

$69,750.30 + $8,000 per mmonth
= 8.72 person months

These lines of code estimations allow the developers to
visualize how much work each function will require,
and can be used to further predict how long the
implementation process will take.

Function Points Estimation

The Function Points estimate [13] for an application
can be calculated using data as shown in Table 2. The
computation consists of two components: an
information domain value and a value adjustment
factor. The information domain value (IDV) is
computed in three steps. In the first step an estimate for
five information domain factors such as “External
Input” is computed. This is typically done following a
beta distribution scheme as was outlined above, by
computing the mean of optimistic, average and
pessimistic values. In the second step the mean is
multiplied by a weighting factor to get the total
estimate for that information domain element. For
example, in Table 2 the mean for “External Input”, 10,
is multiplied by the weighting factor, 4, to get a total of
40. Weighting is typically done based on the estimated
complexity of the software as shown in Table 3 [17]. In
the third step, a value adjustment factor (VAF) is
computed by estimating the importance of fourteen
factors to the overall project. These factors include
such element as “backup and recovery”, “distributed
processing” and “code designed for reuse”. In step 4,
the number of function points for the project is
computed using the formula:

Function Points = IDV % [0.65 + (.01 X VAF)]
=102 X [0.65 + (.01 x 46)] = 113.22

73

Int'l Conf. Foundations of Computer Science | FCS'12 |

Create detailed

models mplementation
Table 2. ClipBits Function Points IDV Computation -
Count | Weighting) 21d| —
. /1d
e e
InplIt \ Determine software
External 5 5 25 context :
Olltpllt 74 1ad ' @
External 0 4 0
14d
E;‘e‘;';;s 3 T 0 Figure 3. PERT Chart
Logical
Files Risk Plan
External 1 7 7
Interface Table 3. ClipBits Risk Assessment and Mitigation
Files Plan
Count 102 Risks Cat | Prob | Imp RMMM
total Unable to | BU | 40% 1 Set up meetings
meet multiple times per
Table 3. Weighting Factors in IDV Computation ZStaé)ll_iShed Weel?t in order to
Y eadlines monitor rogress.
Weighting Factor Allow team pmegmber
Simple Average Complex input in order to make
External 3 4 6 realistic deadline
decisions.
E;(I;::nal 4 5 7 Compartme | PS 20% | 2 Equally divide tasks
o ntalization among team members
utput .
overlaps and increase the
External 3 4 6 and slows amount of
Inquiries momentum communication.
Internal 7 10 15 down
Logical Slower TE | 60% |3 Create a file size limit
Files performanc in order to prevent
External 5 7 10 e with users from slowing
Interface larger data down the software’s
Files execution time.
Performanc | TE 50% | 3 Research each method
. . . e impact of in depth in order to
The function points analysis has proven to be a using a decide which method
reliable estimation method that helps express the database is more efficient.
software functionality more from the wuser’s versus
prospective than from the developers’ perspective. serialization
Standard TE 75% | 2 Examine other
PERT Chart library s libraries that have the
The PERT Chart (Figure 3) demonstrates directed, not functionality that will
parallel paths from the start of the project to sufficient benefit our
.. . for our requirements.
deployment. Many of the preliminary items were needs
simpler,' whereas many of the later tasks are predicted Staff S 1ST 130% 11 Assist team mombors
to require several weeks. However, most tasks can unable to in the learning process
occur concurrently, implying that, whereas there are learn by pointing them to
many tasks to complete, the overall amount of time necessary useful resources that
spent is well-distributed among various branches, and skills/ will allow them to
no one branch dominates the others in terms of effort technology acquire the necessary
and manpower. The time (in days) estimates are based skillset.

upon how complex the developers predicted each task
to be in the development phase.

Int'l Conf. Foundations of Computer Science | FCS'12 |

el o o
Key (Cat=Category, Imp=impact, Prob=probability) l;IL :.,,ww —
Category Impact Q‘ s
BU- Business Risk | 1- Catastrophic B=
PS- Project Risk 2- Critical I E—
TE- Technical Risk | 3- Marginal ‘
ST- Staff Risk 4- Negligible

There are numerous possible risks associated with
the development of ClipBits. The table above (Table 3)
lists several categories of risks, along with the
development team’s planned methods of mitigation.
Through wise delegation of responsibility, proper
research methods, and effective advance prototyping,
many of the listed risks were effectively eliminated.

3. Software Design & Implementation

Figure 4 shows the state diagram for the ClipBits
software. The application responds to the system Figure 5. User Interface Design
clipboard events by creating ClipButtons and storing
them in a stack. Of note are the starting and ending
states: the application starts with an initialization of the 4. Results and Lessons Learned

exit/Close Window

ClipButton Event/

i butento srack viewuiton set The original cost and effort estimates
;‘%Jﬁ r Showing SetMenu] for ClipBits were misjudged. Original
ClipBoard Stack Loaded Window estimates called for 5,407 lines of code,
entry/Load Application . entry/Retrieve ButtonSets . .
Do/Update Ul Components [q;?;::r::z?;j Do/Update ButtonSet List but the final prOdHCt contained far less:

exit/Discard all Companents Rahtcickeg| "o peced | \@dt/Close Window approximately 2,000. This is due largely
to uncertainty about the extent to which
Showing Help

Windows Presentation Foundation
Showing ClipButton s

Viewer | o |— (WPF) would be used in development.

entry/Load Help File

exit/Close Window Option selected

[option=add]

With WPF’s declarative syntax, it ended
up being ideal for data-binding scenarios.
Showing AddButton to
ButtonSet Window

Thus, operations that would have taken
Lentrw’Get ButtonSets J

exit

Help button
clicked

exit/clase
help viewer

Close Button,
Close Windi

ButtonSet
selecter

Showing ButtonSet
Window

entry/Load ButtonSet Data
exit/Save changes
Close Window

Jupdate lists

many lines of code to implement (such as

Remove ClipButtan/
gt/ Get Buttons e O scwser | UL updates) were relegated to the
Add Bution 10 Stack framework, drastically reducing the
amount of necessary coding. In the future, more
research on WPF’s syntax, specifically for the UlI,

. S . would allow us to predict our lines of code estimation
ClipButton Stack and ends with its disposal. Since the better.

Figure 4. ClipBits State Diagram

application is largely Ul-driven, it is to be expected In the requirements phase of our work, we
that many of the states consist of windows opening and established a list of non-functional requirements that
closing, with processing occurring within. we strived to meet:

A screen shot of the resulting Ul for the ClipBits o Users have easy access to Bution Ses in the
soﬁware i? shown in Figure 5. The figure shows the current session and in later sessions because a
Main Window, the Add'Al.l -Buttons-t-ButtonSet Button Sets folder is stored locally on the user’s
Window, the Button Set Menu Window, and finally the hard drive

individual Button Set window displaying the :
ClipButtons contained in the Button Set. This design
went through multiple alterations in order to satisfy the

requirements that were set forth in the planning phase.

e Ul is user friendly and unobtrusive.
e UI docks to both the top and left sides of the
screen.

76

e User documentation such as a manual or other
help feature should are included when the user
clicks the help button.

e The interface includes a significant level of
customization options in terms of size, shape,
and/or orientation.

e The program is lightweight in terms of
performance so that it does not impede the
performance of any other applications with which
it is being used.

Overall, we drafted these requirements with the user’s
experience in mind, we wanted to minimize the
learning curve for ClipBits so that anyone could easily
use it for their benefit. The serialization of Button Sets
is a key feature that enables users to refer back to data
that they created or used in the past. This was made
possible by serializing the ButtonSet data into a file
that was automatically stored in the user’s Documents
folder. As such, any future time when a user browses
their Button Sets, the file is read and the Button Set
data is accessible and may be copied right back to the
system clipboard.

The realization of non-functional requirements was a
significant element of the user interface design. By
creating simple icons for each button, and making the
windows semi-transparent we were able to make the
application easy to use and unobtrusive. In addition,
the main window is easily positioned by the click of a
button to either the top of the screen horizontally or to
the left side vertically. Therefore, the windows would
stay out of the way from other applications. The user
also has the choice to hide the windows all together,
and move it manually to another position on the screen.

Not only does the application not visually other
applications, but performance-wise, the application
doesn’t slow down the computer’s other processes
because it is a lightweight design. The only thing the
application is constantly monitoring is the system
clipboard, and when it recognizes that something has
been copied, it generates Clip Button data and displays
it in the window.

Lastly, if the user is ever confused or in need of help
while using the application, then they can easily access
the user manual from the help button on the main
window. The user manual features a description of
each Ul element and explains how each element is
utilized.

In the end, our group was able to stay very close to
our estimated schedule and designated tasks, even
though we ran into multiple small issues. What really
helped us stay on that schedule was our meetings twice
a week where we would go over what we had been
working on during our own time, reviewing what

Int'l Conf. Foundations of Computer Science | FCS'12 |

deadlines were coming up, discussing what needed to
be done, and designating tasks. We also made it a point
to communicate constantly via email or at meetings so
that even if we were not designated a specific a task,
we were involved to some degree that would allow us
to understand where the project stood in relation to our
overall schedule.

5. Discussion and Conclusion

Now that the project has come to completion, it is
evident that an emphasis on comprehensive software
estimation techniques can only be a benefit to the
software developers throughout the whole project.
Even if there are some inaccurate predictions, they will
still assist in the goals and visualization of the
software’s end product. In addition, estimation is a
learnt discipline predicated on the availability of
historical data. As such this project has taught us not
only valuable lessons, but given us some basic data to
assist in the next estimation project. A lot of software
estimation and planning diagrams and tables were
used; and our team was able to supplement that data
with frequently collaborations and reacting in an agile
manner to issues as they arose. Without that, then our
team would not be able to help each other out when
these problems surfaced, and our estimated project
schedule would have been thrown way off. Luckily,
with the help of effective software estimation, we were
able to keep on track all of our deadlines relatively
well and successfully implement all of our non-
functional, and functional requirements.

In the future, our team will most likely be involved in
developing other projects. As a whole, we all learned a
great deal about the significance of software planning
and estimation and we will be able to take this
knowledge and apply it to any future software projects
We may come across.

References

[1] Pressman, Roger. Software Engineering: A
Practitioner’s Approach. New York: McGraw Hill.,
2010. Print.

[2] [30] Roger S. Pressman. Estimating Software
Projects, Chapter 26 of Software Engineering: A
Practitioner’s Approach, McGraw-Hill 2010.

[3] Violeta Bozhikova and Mariana Stoeva. 2010. An
approach for software cost estimation. In
Proceedings of the 11th International Conference on
Computer Systems and Technologies and Workshop

Int'l Conf. Foundations of Computer Science | FCS'12 |

for PhD Students in Computing on International
Conference on Computer Systems and Technologies
(CompSysTech '10), Boris Rachev and Angel
Smrikarov (Eds.). ACM, New York, NY, USA, 119-
124. DOI=10.1145/1839379.1839401 http://0-
doi.acm.org.uncclc.coast.uncwil.edu/10.1145/18393
79.1839401

[4] Frakes, Dan. ”Clipboard Managers." MacWorld 7
Nov. 2010: 36-37. Print.

[5] Frakes, Dan. “Clipboard Managers.” Macworld
27.7 (July 2010): 36-37. Academic Search Premier.
Web.

[6] Stone, David “The Office Clipboard.” PC Magazine
21, Dec. 2001: 83-86. Print.

[7] Zardetto, Sharon. “Two Quick Copy and Paste
Tricks.” Macworld 27.4 (April 2010): 53. Academic
Search Premier. Web.

[8] xNeat.com. xNeat. 2011. Web. 5 Nov. 2011.

[9] Champy, James. “Productivity Promise.”
Financial Executive. Oct. 2003: 35. Print.

[10] D. Milicic, Software quality models and
philosophies, in Software quality attributes and
trade-offs, eds L. Lundberg, M. Mattson, C. Wohlin
(2008),
http://www.bth.se/tek/besq.nsf/%28WebFiles%29/C
F1C3230DB425EDCC125706900317C44/$FILE/ch
apter_1.pdf

[11] B. Zeiss et al, Applying the ISO 9126 quality
model to test specifications — exemplified for
TTCN-3 Test Specifications (Bonn, 2007), Software
Engineering Conference 2007, Lecture Notes in
Informatics (LNI) 105.

[12] Roger S. Pressman. Software Engineering: A
Practitioner’s Approach 7" Ed. Page 700, McGraw-
Hill 2010.

[13] Vipin Saxena and Manish Shrivastava. 2009.
Performance of function point analysis through
UML modeling. SIGSOFT Softw. Eng. Notes 34, 2
(February 2009).

[14] Li, Shaobo, Lv, Shulin, Jia, Xiaohui, and Shao,
Zhisheng. “Application of Clipboard Monitoring
Technology in Graphic and Document Information
Security Protection System.” Intelligent Information
Technology and Security Informatics (April
2010):423-6. [EEE. Web.

[15] Pomeroy, Bryony and Wiseman, Simon. “Private
Desktops and Shared Store.” Computer Security
Applications Conference, Annual (December 1998):
190-200. IEEE. Web.

[16] Birss, Edward W.. “The Integrated Software and
User Interface of Apple’s Lisa.” National Computer
Conference (1984):319-28. IEEE. Web.

[17] Roger S. Pressman. Figure 23.1: Computing
Function Points in Software Engineering: A
Practitioner’s Approach, McGraw-Hill 2010, page
621.

77

78

Int'l Conf. Foundations of Computer Science | FCS'12 |

Formal Verification of AES Using the Mizar Proof Checker

Hiroyuki Okazaki'!, Kenichi Arai?, and Yasunari Shidama'
IShinshu University, 4-17-1 Wakasato Nagano-city, Nagano 380-8553, Japan
2Tokyo University of Science, 2641 Yamazaki Noda-City, Chiba 278-8510, Japan

Abstract— In this paper, we introduce our formalization of
the Advanced Encryption Standard (AES) algorithm. AES,
which is the most widely used symmetric cryptosystem in the
world, is a block cipher that was selected by the National
Institute of Standards and Technology (NIST) as an official
Federal Information Processing Standard for the United
States in 2001. We prove the correctness of our formalization
using the Mizar proof checking system as a formal verifi-
cation tool. Mizar is a project that formalizes mathematics
with a computer-aided proving technique and is a universally
accepted proof checking system. The main objective of this
work is to prove the security of cryptographic systems using
the Mizar proof checker.

Keywords: Formal Verification, Mizar, Cryptology, Advanced
Encryption Standard (AES)

1. Introduction

Mizar[1] is a project that formalizes mathematics with
a computer-aided proving technique. The objective of this
study is to prove the security of cryptographic systems using
the Mizar proof checker. To achieve this study, we intend to
formalize several topics concerning cryptology. As a part
of this effort, we introduced our formalization of the Data
Encryption Standard (DES)[2] at the FCS’11[3].

In this paper, we introduce our formalization of the
Advanced Encryption Standard (AES). AES, which is the
most widely used symmetric cryptosystem in the world, is
a block cipher that was selected by the National Institute
of Standards and Technology (NIST) as an official Federal
Information Processing Standard for the United States in
2001[4]. AES is the successor to DES, which was formerly
the most widely used symmetric cryptosystem in the world.
However, DES is now considered insecure and has been
replaced by AES[5]. We formalized the AES algorithm as
shown in FIPS 197[4] in the Mizar language. We then
verified the correctness of the formalized algorithm that the
ciphertext encoded by the AES algorithm can be decoded
uniquely by the same key using the Mizar proof checker.

The remainder of this paper is organized as follows.
In Section 2, we briefly introduce the Mizar project. In
Section 3, we briefly introduce the Advanced Encryption
Standard (AES). In Section 4, we discuss our strategy for
formalizing AES in Mizar. In Sections 5 and 6, we propose a
formalization of AES. We conclude our discussion in Section

7. The definitions and theorems in this paper have been
verified for correctness using the Mizar proof checker.

2. Mizar

Mizar[1] is an advanced project of the Mizar Society
led by A.Trybulec which formalizes mathematics with a
computer-aided proving technique. The Mizar project de-
scribes mathematical proofs in the Mizar language, which is
created to formally describe mathematics. The Mizar proof
checker operates in both Windows and UNIX environments,
and registers the proven definitions and theorems in the
Mizar Mathematical Library (MML).

What formalizes the proof of mathematics by Mizar and
describes it is called “article”. When an article is newly
described, it is possible to advance it by referring to articles
registered in the MML that have already been inspected
as proof. Although the Mizar language is based on the
description method for general mathematical proofs, the
reader should consult the references for its grammatical
details, because Mizar uses a specific, unique notation[6],

(71, (81, [9].

3. Advanced Encryption Standard

In this section, we review the outline of the AES algo-
rithm, which is a variant of Rijndael algorithm[10]. The
AES algorithm can process 128-bit data blocks using secret
keys of lengths 128, 192, or 256 bits. Decryption must be
performed using the same key as that used for encryption.
However, the decryption algorithm is different from the
encryption algorithm. Depending on the key lengths, AES
is referred to as AES—128, AES-192, or AES-256.

AES is a type of iterated block cipher that has a Sub-
stitution Permutation Network (SPN) structure. The SPN
structure alternately performs substitution and permutation
operations. The encryption and decryption of the SPN
structure involve different processes. The AES algorithm is
composed of the SPN structure and a key scheduling. In the
SPN structure of AES, there are 10, 12, and 14 rounds of
processing iterations. The number of rounds to be performed
during the execution of the AES algorithm is dependent on
the key lengths. In AES algorithm, the key length, block
size, and number of rounds are represented by Nk, Nb, and
Nr, respectively. The Nk—Nb—Nr combinations are shown
in Figure 1.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Key Length | Block Size | Number of
(Nk words) | (Nb words) | Rounds(Nr)

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

1 word = 4 bytes = 32 bits
Figure 1: Nk—Nb-Nr combinations

The AES algorithm is performed on a two-dimensional
array of bytes called the “State”. Before the main iterations,
the plaintext block is copied into the State array. After an
initial round key addition, the State array is transformed by
performing a round process N7 times. However, only the
final round is different. Finally, the final State is copied to
the ciphertext block. The round process is composed of the
“SubBytes”, “ShiftRows”, “MixColumns”, and “AddRound-
Key” transformations. The final round does not include the
MixColumns transformation. The round key is yielded by
the key scheduling from the given secret key and is added
to the State array using the AddRoundKey transformation.
Figure 2 shows the pseudo code for the encryption algorithm
of AES.

AES-ENC(byte input[4*Nb], byte output[4%Nb], word w[Nb (Nr+1)])
begin e
byte state[4, Nb] B |

state = input R
: WO w1]:wi2]: w3}
AddRoundKey(state, w[0, Nb-1]) A
for round =1 step 1 to Nr-1
SubBytes(state) : Sy -
ShiftRows(state) Im“(zjzl 55’5%‘2)"“

MixColumns(state)
AddRoundKey(state, w[round *Nb, (round+1)*Nb-1])
end for

SubBytes(state)

ShiftRows(state) ‘_ ! Final round '

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) | ==~ 7"~
output = state

end

Figure 2: Pseudo code for the encryption algorithm

In decryption, the round process is composed of
the “InvSubBytes”, “InvShiftRows”, “InvMixColumns”,
and AddRoundKey transformations. The InvSubBytes, In-
vShiftRows, and InvMixColumns are the inverse of the
SubBytes, ShiftRows, and MixColumns transformations, re-
spectively. In decryption, each transformation is performed
in the reverse order of encryption and the round keys are
used in the reverse order of encryption.

4. Strategy for Formalizing AES

In Mizar, there are two ways to define computational
routines in an algorithmic sense. One way is by defining
a routine as a “Function”. A Function is a map from the
space of the input onto that of the output. We can handle a
Function as an element of the set of Functions.

79

The other way is by defining a routine as a “functor”. A
functor is a relation between the input and output of a routine
in Mizar. It is easy to write and understand the formalization
of a routine as a functor, because the format of a functor in
Mizar is similar to that of a function in certain programming
languages. Note that both functor and Function can take a
Function as their substitutable subroutines.

In Section 5, we will formalize the subroutines, that
is, the primitives of AES, according to FIPS 197[4]. In
Section 6, we first formalize the algorithm of generalized
AES as a functor that takes substitutional subroutines. This
generalized definition of AES is easily reusable for the
formalization of different key lengths of AES. We will then
formalize the AES algorithm using the formalization of the
primitives in Section 5 and the generalized definition in
Section 6.1.

5. Formalization of AES Primitives

In this section, we formalize the AES primitives according
to FIPS 197[4].

5.1 State array
Figure 3 shows a sketch of the State array.

Input (128 bits)
ino| in, | in2| """ |in13| in14| in15|

\—'—d
1 byte

ine | ins | ing | ins, So0|So.1]|So02] Sos
in, | ins|ine |inss Sio|S11]S12]S13
. . . . —

1Ny | INg | IN4o} IN44 S20|S21]S22]S23
ins | in, | iny:in:s S30|S31]S32]S33

Input bytes State array

Figure 3: State array

The State array consists of 4 rows of bytes, each of which
contains Nb bytes.

We formalize the State array as the following functor in
the Mizar language:

Definition 5.1: (State array)
func AES-Statearray —>
Function of 128-tuples_on BOOLEAN,
4-tuples_on (4-tuples_on (8-tuples_on
BOOLEAN))
means
for input be Element of 128-tuples_on
BOOLEAN
for i,j be Nat st 1 in Seg 4 & j in Seg 4
holds
((it.input).i).3j = mid(input, 1+ (i-"1) %x8+
(3J="1)%32,1+(1-"1) %8+ (j="1)*32+7);
O
Here, mid is a function that extracts a subsequence

(finite sequence) and * is multiplication. For example,

80

mid(input,9,16) is a finite sequence (input.9,......,input.16) of
length 8. Note that the index of the finite sequence starts
from 1 in the Mizar language.

We similarly defined the functor of the inverse of the State
array as AES-Statearray".

5.2 SubBytes

Figure 4 shows a sketch of the SubBytes transformation.

S0l S%.|S%2) S
s s—=| s
skt st

S0 S| 82| S5

So1 Sos

(7]
p

S

)y
S-Box
1.

23

Sz S3s

Figure 4: SubBytes

The SubBytes transformation is a nonlinear byte sub-
stitution that independently operates on each byte of the
State array using a 1-byte substitution table. The substi-
tution table is called the “S-Box”. The S-Box, which is
invertible, is constructed by composing two transformations.
Two transformations are composed of the calculation of the
multiplicative inverse in the finite field GF(2%) and the affine
transformation over GF(2). Figure 5 shows a sketch of the
S-Box.

Least Significant 4 bits of S,

4)15]6|7]18]9)Jalbjcldje]f

32]3a0a 4906 |24 5c[c2|d3[ac |62 o1]05]ea

79
[ca[57 J6afed[as Tac [a0Toc 5614 [ea 65 [7a [ac fos]
8

7825 [2e[1c|a6 [bac6]es|dd[74 1f [4b|bd|8b]sa
[3e|bs]e6]a8]o3 [6 Joe[61]35]57 bo 86 |c1]1d]o
f8 J98]11]69]do [se o4 on]1e[87|eo] ce |55 |28]df |
a1]89 Jod]bf [e6 [42]68 [41]99]2d]of [bo]54]bb]16

Most Significant 4 bits of S, ¢

Figure 5: S-Box (in hexadecimal form)

We formalize the SubBytes transformation as the follow-
ing functor in the Mizar language:

Definition 5.2: (SubBytes)

let SBT be Permutation of
BOOLEAN) ;

func SubBytes (SBT) —->
Function of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means

for input be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

holds

(8-tuples_on

Int'l Conf. Foundations of Computer Science | FCS'12 |

(for 1,j be Nat st i in Seg 4 & J in Seg 4

holds

ex inputij be Element of 8-tuples_on
BOOLEAN

st inputij =

((it.input) .i).j =

(input.i) .]j &
SBT. (inputij));
O

Please note the following points about this formalization.
This functor can specify an arbitrary Permutation of 8-
tuples_on BOOLEAN because it takes SBT as an argument.
In this formalization, so as not to lose generality, we
describe this functor as the SubBytes transformation. The
actual SubBytes transformation uses the S-Box, as shown in
Figure 5. However, the formal description of this S-Box is
not significant. Therefore, we described this functor as the
SubBytes transformation.

We similarly defined the functor of the InvSubBytes
transformation (Definition A. 1).

5.3 ShiftRows

Figure 6 shows a sketch of the ShiftRows transformation.

| Sro | Si1 | Sz |s,,3 ||j5hiftR°ws$| s',‘o| S’ | s’ | s',,3|

Figure 6: ShiftRows

The ShiftRows transformation operates the State array by
cyclically shifting the last three rows of the State array by
different offsets (numbers of bytes). Note that the first row
is not shifted.

We formalize the ShiftRows transformation as the follow-
ing functor in the Mizar language:

Definition 5.3: (ShiftRows)

func ShiftRows ->
Function of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)) ,4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means

for input be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

holds

(for 1 be Nat st i in Seg 4

holds

ex xi be Element of 4-tuples_on
(8-tuples_on BOOLEAN)

st xi = input.i &

(it.input).i = Op-Shift (xi,5-1));

Int'l Conf. Foundations of Computer Science | FCS'12 |

Here, Op-Shift is a cyclically left shift function.
We similarly defined the functor of the InvShiftRows
transformation (Definition A.2).

5.4 MixColumns

Figure 7 shows a sketch of the MixColumns transforma-

tion.
r
Soo | S Soc 2| Sos S'ol 9 So,o“ S's
S —d s’ '
sl Ste 10
S S IMixCqumns 28—1‘2 Sha
B b oy P BN 3
S20|S] 7%} S2s 20| | 2°22| S 2.5
S30|S Sae 2| Sas 8'3,0 8|S e 32| S'a‘a
L |

Figure 7: MixColumns

In the MixColumns transformation, the 4 bytes of each
column of the State array are mixed using an invertible linear
transformation. The columns are considered as polynomials
over GF(2®) and multiplied modulo x*+ 1 with a fixed poly-
nomial a(x), given by a(x) = {03}z3 + {01}22 + {01}z +
{02}. As a result of the above mentioned multiplication, the
4 bytes in a column are replaced by the following:

s, = ({02} es,) @ ({03} o5,) @5, Bs,.,

s =5, ©({02}es,)@ ({03} es,,)Ds,,,

s, =5,.®s,, ©({02}es,)@ ({03}es,),
!

8, = ({03} es,.)@s, Ds, ®({02}es,,)

3,c
Note that {01}, {02}, and {03} are hexadecimal notations
and e is a multiplication in GF(2%).
We formalize the MixColumns transformation as the fol-
lowing functor in the Mizar language:

Definition 5.4: (MixColumns)

func MixColumns ->
Function of 4-tuples_on(4-tuples_on
(8—tuples_on BOOLEAN)),4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means

for input be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

holds

ex x,y being Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

st x = input & y = it.input &

for i be Element of NAT st i in Seg 4

holds

ex x1,x2,x3,x4 be Element of
8-tuples_on BOOLEAN

st x1 = (x.1).1 & x2 = (x.1).2 &

x3 = (x.1).3 & x4 = (x.1i) .4 &

(y.1) .1 = Op—XOR (Op—XOR (Op—XOR (2 ’'gf’ x1,
3 'gf’ x2),1 "gf’ x3),1 "gf’ x4) &

(y.2) .1 = Op—XOR (Op—XOR (Op—XOR (1 ’'gf’ x1,
2 'gf’ x2),3 "gf’ x3),1 "gf’ x4) &

(y.3).1 = Op—XOR (Op—XOR (Op-XOR (1 ’'gf’ x1,
1 "gf’ x2),2 'gf’ x3),3 'gf’ x4) &

81

(y.4) .1 = Op—XOR (Op—-XOR (Op-XOR (3 'gf’ x1,
1 "gf’ x2),1 "gf’ x3),2 'gf’ x4);
O
Here, Op-XOR is a bitwise XOR (exclusive OR) function
and *gf’ is a multiplication in GF(2%).
We similarly defined the functor of the InvMixColumns
transformation (Definition A. 3).

5.5 AddRoundKey

Figure 8 shows a sketch of the AddRoundKey transfor-
mation. Here, w;. are the key scheduling words and round

Soo | Si Soe 2| So3 | :-|AddRoundkey} -
] H W,
Sio]S SLD_‘I < | } Wi I | Wi
S20]S Sz 2[S2:] : '
S30]S Sse 2|Sss :""ﬂ """
L
~ ——

S S ol s's (A Round Key)

I = round * Nb

S|
R EE A
9
S

r
S2e S%as

'
S 2,0

r
S I '
33| S3 3

’
S 3,0
—

Figure 8: AddRoundKey

is a value in the range 0 < round < Nr.

The AddRoundKey transformation adds a Round Key and
the State array using a bitwise XOR.

We formalize the AddRoundKey transformation as the
following functor in the Mizar language:

Definition 5.5: (AddRoundKey)

func AddRoundKey ->
Function of [:4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN)):],
4-tuples_on (4-tuples_on (8-tuples_on
BOOLEAN))

means

for text,key be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

holds

for i,j be Nat st 1 in Seg 4 & j in Seg 4

holds

ex textij,keyij be Element of
8-tuples_on BOOLEAN

st textij = (text.i).j & keyij = (key.1).7
& ((it. (text,key)).i).j =
Op—XOR (textij, keyij);
[

5.6 Key Expansion

The AES algorithm takes the secret key and performs a
Key Expansion process to generate the key scheduling. The
resulting key scheduling consists of a linear array of 4-byte
words, denoted as w;, with ¢ being in the range 0 < 7 <

82

Nb(Nr+1). Figure 9 shows the pseudo code for the Key
Expansion.

KeyExpansion(byte skey[4*Nk], word w[Nbx*(Nr+1)], Nk)

begin
word temp
i=0
while(i < Nk)
wli] = word(skey[4 xi], skey[4 xi+1], skey[4*i+2], skey[4*i+3])
i=i+
end while ¢ Roon[1] = [(01},00}{00}{00}]
! Reon[2] = [{02},{00},{00}.{00}] |
i=Nk : Reon[3] = [{04},{00},{00}.{00}] |
© Reon(8] = [{80},{00}.{00}.{00}]
while(i < Nb*(Nr+1)) Reon(9] = [{1b},{00}{00}.{00} :
temp = wli-1] ‘. Reon[10] = [{36},{00},{00}.{00}]
if(i mod Nk = 0) LI

temp = SubWord(RotWord(temp)) xor Rconl[i/NK]
else if(Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)
end if
w[i] = wl[i-Nk] xor temp
i=i+1
end while
end

Figure 9: Pseudo code for the Key Expansion

SubWord is a function that takes an input word of 4 bytes
and applies the S-Box to each of the 4 bytes to produce an
output word.

We formalize SubWord as the following functor in the
Mizar language:

Definition 5.6: (SubWord)
let SBT be Permutation of (8-tuples_on
BOOLEAN) ;
let x be Element of 4-tuples_on
(8-tuples_on BOOLEAN) ;
func SubWord (SBT,x) —>
Element of 4-tuples_on (8-tuples_on
BOOLEAN)
means
for 1 be Element of Seg 4
holds
it.i = SBT. (x.1);
O
RotWord is a function that takes a word [bg, b1, b, b3] as
the input, performs a cyclically left shift, and returns the
word [b17 bg, bg, bo]
We formalize RotWord as the following functor:

Definition 5.7: (RotWord)
let x be Element of 4-tuples_on
(8-tuples_on BOOLEAN) ;
func RotWord(x) ->
Element of 4-tuples_on (8-tuples_on
BOOLEAN)
equals
Op-LeftShift (x);
O
Here, Op-LeftShift is a cyclically 1 byte left shift function.
The round constant word array, Rcon, is a constant
that is different for each round. Rcon[i] is defined as
=1 {00}, {00}, {00} . Here, x'~! are powers of z(=
{02}) in the field GF(2®). Note that i starts from 1.

Int'l Conf. Foundations of Computer Science | FCS'12 |

We formalize Rcon as the following functor:

Definition 5.8: (Rcon)

func Rcon —>
Element of 10-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN))

means

it.1 = <% <%x0,0,0,0%>"<%x0,0,0,1%>,
<x0,0,0,0%>"<x0,0,0,0%>,
<x0,0,0,0%>"<x0,0,0,0%>,
<x0,0,0,0%>"<x0,0,0,0*> x> &

(omitted)

it.10 = <x <x0,0,1,1x>"<%x0,1,1,0%>,
<%x0,0,0,0%x>"<x0,0,0,0%x>,
<x0,0,0,0%>"<x0,0,0,0%>,
<x0,0,0,0x>"<%0,0,0,0%> *>;

d

Here, " is concatenation. For example, (x0,0,1, 1x) " (x0, 1,
1,0«) = {36}.

Next, to formalize the Key Expansion, we formalize the

KeyExTemp and KeyExMain as the following functors.

Definition 5.9: (KeyExTemp)

let SBT be Permutation of (8-tuples_on
BOOLEAN) ;

let m,i be Nat,

w be Element of (4-tuples_on (8-tuples_on
BOOLEAN)) ;

assume (m = 4 or m = 6 or m = 8) &

1 < 4x(74+m) & m <= 1;

func KeyExTemp (SBT,m,i,w) ->
Element of (4-tuples_on (8-tuples_on
BOOLEAN))

means

(ex T3 be Element of (4-tuples_on
(8-—tuples_on BOOLEAN))

st T3 = Rcon. (i/m) &

it = Op-WXOR (SubWord (SBT, RotWord (w)),T3))

if ((i mod m) = 0), (it = SubWord (SBT,w))
if (m =8 & (1 mod 8) = 4) otherwise
it = w;

Definition 5.10: (KeyExMain)

let SBT be Permutation of (8-tuples_on
BOOLEAN) ;

let m be Nat;

assume m = 4 or m = 6 or m = 8;

func KeyExMain (SBT,m) ->
Function of m-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)), (4% (7+m))-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

means

for Key be Element of m-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

holds

(for 1 be Element of NAT st 1 < m
holds (it.Key). (i+1l) = Key. (i+l)) &

(for 1 be Element of NAT st m <= i &
1 < 4% (7+m)

holds ex P be Element of (4-tuples_on
(8—tuples_on BOOLEAN)),Q be Element of
4-tuples_on (8-tuples_on BOOLEAN)

Int'l Conf. Foundations of Computer Science | FCS'12 |

st P = (it.Key). ((i-m)+1) &
Q0 = (it.Key).i & (it.Key). (i+l) =
Op-WXOR (P, KeyExTemp (SBT,m, 1,Q))) ;
O
Finally, we formalize the Key Expansion as the following
functor.
Definition 5.11: (Key Expansion)
let SBT be Permutation of (8-tuples_on
BOOLEAN) ;
let m be Nat;
assume m = 4 or m = 6 or m = 8;
func KeyExpansion (SBT,m) ->
Function of m-tuples_on (4-tuples_on
(8—tuples_on BOOLEAN)), (7+m)-tuples_on
(4-tuples_on (4-tuples_on (8-tuples_on
BOOLEAN)))
means
for Key be Element of m-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))
holds
ex w be Element of (4x(7+m))-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))
st w = (KeyExMain (SBT,m)) .Key &
for 1 be Nat st 1 < 7+m
holds
(it.Key) . (i+1l) = <*w. (4xi+1),w. (4x1i+2),
W. (4%1i+3) ,w. (4%1+4) *>;
O

6. Formalization of AES

In this section, we formalize the AES algorithm according
to FIPS 197[4] in the Mizar language. First, we formalize
and prove the correctness of the generalized AES algorithm.
Next, we formalize and prove the correctness of the AES
algorithm.

6.1 Formalization of Generalized AES

The generalized AES algorithm is easily reusable for the
formalization of different key lengths of AES.

We formalize the encryption algorithm of generalized
AES as a functor in the Mizar language as follows:

Definition 6.1: (Generalized AES encryption algorithm)

let SBT be Permutation of (8-tuples_on
BOOLEAN) ;

let MCFunc be Permutation of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN)) ;

let m be Nat;

let text be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN));

let Key be Element of m-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN));

assume 4 <= m;

func AES-ENC (SBT,MCFunc, text,Key) ->
Element of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN))

means

ex seq be FinSequence of (4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN)))

st len seq = 7+m-1 &

(ex Keyil be Element of 4-tuples_on

83

(4-tuples_on (8-tuples_on BOOLEAN))
st Keyil = ((KeyExpansion (SBT,m)) . (Key)).1
& seqg.l = AddRoundKey. (text,Keyil)) &
(for 1 be Nat st 1 <=1 & i < 74+m-1
holds
ex Keyi be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))
st Keyi = ((KeyExpansion (SBT,m)) . (Key)) .
(i+1) & seq. (i+l) = AddRoundKey.
((MCFunc*ShiftRows*SubBytes (SBT)) .
(seq.1),Keyi)) &
ex KeyNr be Element of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN))

st KeyNr = ((KeyExpansion (SBT,m)) . (Key)).
(74m) & it = AddRoundKey. ((ShiftRowsx*
SubBytes (SBT)) . (seq. (7+m-1)) ,KeyNr) ;

]
Here, * is composition. Note that the composition of the
function is described in the reverse order of the actual
processing.
We similarly defined the functor of the decryption algo-
rithm of generalized AES as AES-DEC (Definition A.4).
We then prove the following theorem:

Theorem 6.1: (Correctness of generalized AES)

for SBT be Permutation of (8-tuples_on
BOOLEAN) ,

MCFunc be Permutation of 4-tuples_on
(4-tuples_on (8-tuples_on BOOLEAN)),

m be Nat,

text be Element of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)),

Key be Element of m-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN))

st 4 <=m

holds
AES-DEC (SBT,MCFunc, AES-ENC (SBT, MCFunc, text,
Key) ,Key) = text

O
Thus, we proved in the Mizar system that the ciphertext
encoded by the generalized AES algorithm can be decoded
uniquely with the same secret key that was used in encryp-
tion.

6.2 AES Algorithm

In this section, we formalize the AES algorithm in the
Mizar language using our formalization of the AES prim-
itives in Section 5 and the generalized AES algorithm in
Section 6.1.

First, we formalize the encryption algorithm of AES-128
as a functor in the Mizar language as follows:

Definition 6.2: (AES-128 encryption algorithm)
let SBT be Permutation of (8-tuples_on

BOOLEAN) ;

let message be Element of 128-tuples_on
BOOLEAN;

let Key be Element of 128-tuples_on
BOOLEAN;

func AES128-ENC (SBT,message,Key) ->
Element of 128-tuples_on BOOLEAN

84

equals
(AES-Statearray") . (AES-ENC (SBT, MixColumns,
AES-Statearray.message, AES-Statearray.
Key)) i
(]
Here, AES-Statearray" is the inverse of AES-Statearray.
Next, we formalize the decryption algorithm of AES-128
as a functor in the Mizar language as follows:

Definition 6.3: (AES-128 decryption algorithm)

let SBT be Permutation of (8-tuples_on
BOOLEAN) ;

let cipher be Element of 128-tuples_on
BOOLEAN;

let Key be Element of 128-tuples_on
BOOLEAN;

func AES128-DEC(SBT, cipher, Key) —>
Element of 128-tuples_on BOOLEAN

equals

(AES-Statearray") . (AES-DEC (SBT, MixColumns,
AES-Statearray.cipher, AES-Statearray.

Key));
O
Finally, we then prove the following theorem:
Theorem 6.2: (Correctness of AES—128)
for SBT be Permutation of (8-tuples_on
BOOLEAN) ,
message, Key be Element of 128-tuples_on
BOOLEAN
holds
AES128-DEC (SBT,AES128-ENC (SBT, message, Key) ,
Key) = message
O

We similarly formalized AES-192 and AES-256 using
our formalization of the AES primitives and the generalized
AES algorithm.

Thus, we proved using the Mizar system that the cipher-
text encoded by the AES algorithm can be decoded uniquely
with the same secret key that was used in encryption.

7. Conclusion

In this paper, we introduced our formalization of the AES
algorithm in Mizar. We also proved the correctness of the
AES algorithm using the Mizar proof checking system as
a formal verification tool. Currently, we are analyzing the
cryptographic systems using our formalization in order to
achieve the security proof of cryptographic systems.

Acknowledgments

This work was supported by JSPS KAKENHI 21240001
and 22300285. We sincerely thank Prof. Kaneko at the Tokyo
University of Science for his helpful discussions about AES.

References

[1]1 Mizar Proof Checker. Available at http://mizar.org/.

[2] U.S. Department of Commerce/National Institute of Standards and
Technology, FIPS PUB 46-3, DATA ENCRYPTION STANDARD (DES),
Federal Information Processing Standars Publication, 1999. Available
at http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[3]

[4]

[5]

[6]

[7]

[8]

[9]

H.Okazaki, K.Arai, and Y.Shidama, Formal Verification of DES Us-
ing the Mizar Proof Checker, Proceedings of the 2011 International
Conference on Foundations of Computer Science (FCS’11), pp.63—68,
2011.

U.S. Department of Commerce/National Institute of Standards and
Technology, FIPS PUB 197, Advanced Encryption Standard (AES),
Federal Information Processing Standars Publication, 2001. Available
at http://csre.nist.gov/publications/fips/fips197/fips-197.pdf.

NIST Special Publication 800-67 Version 1.1, Recommendation for
the Triple Data Encryption Algorithm (TDEA) Block Cipher, Na-
tional Institute of Standards and Technology, 2008. Available at
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf.
E.Bonarska, An Introduction to PC Mizar, Mizar Users Group, Fonda-
tion Philippe le Hodey, Brussels, 1990.

M.Muzalewski, An Outline of PC Mizar, Fondation Philippe le Hodey,
Brussels, 1993.

Y.Nakamura, T.Watanabe, Y.Tanaka, and P.Kawamoto, Mizar Lecture
Notes (4th Edition), Shinshu University, Nagano, 2001. Available at
http://markun.cs.shinshu-u.ac.jp/kiso/projects/proofchecker/mizar/index-
e.html.

A.Grabowski, A.Kornilowicz, and A.Naumowicz, Mizar in a Nutshell,
Journal of Formalized Reasoning 3(2), pp.153-245, 2010.

[10] J.Daemen and V. Rijmen, The block cipher Rijndael, Smart Card

research and Applications, LNCS 1820, Springer-Verlag, pp.288-296,
2000.

Appendix

Definition A.1: (InvSubBytes)
let SBT be Permutation of (8-tuples_on BOOLEAN);
func InvSubBytes (SBT) ->
Function of 4-tuples_on (4-tuples_on
4-tuples_on
neans
for input be Element of 4-tuples_on

(8-tuples_on BOOLEAN)),

(4-tuples_on (8-tuples_on BOOLEAN))

(4-tuples_on (8-tuples_on BOOLEAN))

holds
for i,j be Nat st i in Seg 4 & j in Seg 4
holds
ex inputij be Element of 8-tuples_on BOOLEAN
st inputij = (input.i).j & ((it.input).i).3j = (SBT"). (inputij);
g . O
Definition A.2: (InvShiftRows)
func InvShiftRows ->
Function of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)),
4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
means
for input be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)
holds
(for 1 be Nat st i in Seg 4 holds ex xi be Element of 4-tuples_on
(8-tuples_on BOOLEAN) st xi = input.i & (it.input).i = Op-Shift(xi,i-1));
oge . O
Definition A.3: (InvMixColumns)
func InvMixColumns —>
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)),
4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
means
for input be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
holds
ex x,y being Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
st x = input & y = it.input & for i be Element of NAT st i in Seg 4
holds
ex x1,x2,x3,x4 be Element of 8-tuples_on BOOLEAN
st x1 = (x.i).1 & x2 = (x.1).2 & x3 = (x.1).3 & x4 = (x.i).4 &
(y.1).i = Op-XOR(Op-XOR (Op-XOR (14 ‘gf’ x1,11 ‘gf’ x2),13 'gf’ x3),9 'gf’ x4) &
(y.2).i = Op-XOR(Op-XOR(Op-XOR (9 ’gf’ x1,14 ’gf’ x2),11 'gf’ x3),13 'gf’ x4) &
(y.3) .1 = Op-XOR (Op-XOR (Op-XOR (13 "gf’ x1,9 ’"gf’ x2),14 "gf’ x3),11 'gf’ x4) &
(y.4) .1 = Op-XOR(Op-XOR (Op-XOR (11 "gf’ x1,13 ’gf’ x2),9 'gf’ x3),14 'gf’ x4);
sge O
Definition A.4: (AES-DEC)
let SBT be Permutation of (8-tuples_on BOOLEAN) ;
let MCFunc be Permutation of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN));
let m be Nat;
let text be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN));
let Key be Element of m-tuples_on (4-tuples_on (8-tuples_on BOOLEAN));
assume 4 <= m;
func AES-DEC (SBT,MCFunc, text,Key) ->
Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
means
ex seq be FinSequence of (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))
st len seq = 7+m-1 & (ex Keyil be Element of 4-tuples_on (4-tuples_on
(8-tuples_on BOOLEAN)) st Keyil = (Rev((KeyExpansion(SBT,m)). (Key))).l &
seq.1l = (InvSubBytes (SBT)*InvShiftRows) . (AddRoundKey. (text,Keyil))) &
(for i be Nat st 1 <= i & i < 7+m-1 holds
ex Keyi be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
st Keyi = (Rev((KeyExpansion(SBT,m)). (Key))).(i+1) &
seq. (i+1) = (InvSubBytes (SBT)*InvShiftRowsx (MCFunc")) . (AddRoundKey.
(seq.i,Keyi))) &
ex KeyNr be Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))
st KeyNr = (Rev((KeyExpansion (SBT,m)) . (Key))). (7+m) &
it = AddRoundKey. (seq. (7+m-1),KeyNr) ; O

Int'l Conf. Foundations of Computer Science | FCS'12 |

85

Mathematical Approaches for Collision Detection in
Fundamental Game Objects

Weihu Hong' , Junfeng Qu?, Mingshen Wu?
! Department of Mathematics, Clayton State University, Morrow, GA, 30260
2 Department of Information Technology, Clayton State University, Morrow, GA, 30260
3Department of Mathematics, Statistics, and Computer Science, University of Wisconsin-Stout, Menomonie, W1 54751

Abstract — This paper presents mathematical solutions for
computing whether or not fundamental objects in game
development collide with each other. In game development,
detection of collision of two or more objects is often brought
up. By categorizing most fundamental boundaries in game
object, this paper will provide some mathematical
fundamental methods for detection of collisions between
objects identified. The approached methods provide more
precise and efficient solutions to detect collisions between
most game objects with mathematical formula proposed.

Keywords: Collision detection, algorithm, sprite, game
object, game development.

1 Introduction

The goal of collision detection is to automatically report a
geometric contact when it is about to occur or has actually
occurred. It is very common in game development that objects
in the game science controlled by game player might collide
each other. Collision detection is an essential component in
video game implementation because it delivers events in the
game world and drives game moving though game paths
designed.

In most game developing environment, game developers
relies on written APIs to detect collisions in the game, for
example, XNA Game Studio from Microsoft, Cocoa from
Apple, and some other software packages developed by other
parties. Most open source or proprietary game engines
supports collision detection, such Unreal, C4, Havok, Unity
etc. However, a primary limitation of game development kits
or game engines is the precision is too low, and the collision
detection approaches are limited in the package.

Since the advent of computer games, programmers have
continually devised ways to simulate the world more
precisely. It’s very often that programmers need to develop
their own collision detection algorithms for a higher precision
and performance.

The most basic approach is collision detection of the sprite or
boundary class which represents an object in the game scenes
and is often rectangle, sphere, or cube. This approach works
well if the object that is represented by is a simple shape and
there is almost no blank space between object and the image.

Otherwise, a lot of false alarm will be introduced in collision
detection as show in Figure 1, where two objects, one circle
and one pentagon, are not collided at all even the represented
sprites collide each other.

Figure 1. Collision detection based on Boundary

(@) (b)

Figure 2. Per-Pixel based collision detection

Per-pixel collision detection is a relic from the past. It uses
bit-masks to determine whether two objects collide. The
biggest advantages of using this detection method are that it
also checks the empty space within the objects boundaries,
and collision is detected with high precision as pixel-perfect
and fair, there are no false positives nor false negatives as
shown in Figure 2, where (a) shows the improved per-pixel
detection, and (b) shows correct collision happed when two
object contacting each other. The main disadvantage is that
it’s expensive to compute, and is extremely slow compared to
bounding boxes and it won't work if you do any
transformations on the target objects such as rotating, or
resizing. For example, if viewable sprites are 32x32 pixels. In
order to check collision, the program needs to check
32X32x32x32 pixels with each pass to find out if a single
pixel of a 32x32 frame of the sprite sheet has collided with

86

another image. Therefore per-pixel collision checks are rarely
used, especially because object visible shape and collision
shape are usually different.

In computational geometry, there is a point-in-polygon (PIP)
problem that asks whether a given point in the plane lies
inside, outside, or on the boundary of a polygon. It is a special
case of point location problems and finds applications in areas
that deal with processing geometrical data, such as computer
graphics, computer vision, geographical information systems
(GIS), motion planning, and CAD. The Ray Casting method
is one simple way of finding whether the point is inside or
outside a simple polygon by testing how many times a ray,
starting from the point and going any fixed direction,
intersects the edges of the polygon. If the point in question is
not on the boundary of the polygon, the number of
intersections is an even number; if the point is outside, and it
is odd if inside (see [1] to [12]).

However, the detection of collision problem is different from
the PIP problem. We are not interested in whether a point
inside or outside of a polygon. We are just interested in a
collision occurs or not. Therefore, it is not good idea to use
the Ray Casting method in our collision detection problem.

There are a lot of work have been done to improve collision
detection For example to solve the performance issues with
per-pixel algorithm, space partition algorithms has been used,
such as Quadtree or Octree. Reference [13] to [23] has listed
a spectrum of researches in collision detection.

In this paper, we proposed mathematic solutions for collision
of each fundamental game object shape identified. The
approach is not based on the bounding of the sprite, but the
collision detection is based on the bounding shape which
represents the game object with minimum empty space
between the object and bounding shape. The approach works
as follows. For each object that in the game scene, define a
fundamental geometric shape or combination of fundamental
geometric shaped that encloses its texture. The fundamental
shapes that are identified in the research including: point,
segment, squares, rectangles, triangles or circles. The
following figure shows some example of bounding shapes for
some sprites for example.

Figure 3. Bounding Shape of Circle, Triangle, and Rectangle
in Game.

By defining the bounding shape for a game object, once we
have mathematical solution for collision detection of
bounding shape, it should be easily accommodate sizing and

Int'l Conf. Foundations of Computer Science | FCS'12 |

rotating, it also provides better accuracy of collision detection
without performance sacrificing of check each pixel. We
believe that our method for detection of collision between two
triangles is easier to implement than some of existing
methods. To represent a complicated visual object, a different
combination of fundamental bounding shapes can be used
together.

2 Collision detection of bounding shapes

Here upon, we will refer our defined bounding shape of a
visible object as an object. Let us consider collision between
an object in motion and another object in still.

2.1 Between two points

Let P be fixed with coordinates (x,y,z) and Q be point in
motion. If the motion of Q is given in u = u(t), v = v(t), and w
= w(t), then P and Q will be collided if and only if there exists
a real number t such that

u(t) =x,v(t) =y, and w(t) = z

2.2

Let L be a fixed line segment with end points A and B and Q

be the point in motion as shown in Figure 4. Let

(%0, Vo) and (x,,y;,) be coordinates of A and B, respectively.

If the motion of Q is given by u = u(t), v = v(t), and the line

segment L is given by px + qy + ¢ = 0, then Q will collide

with L if and only if there exists a real number t such that
pu(t) +qut)+c=0

Between a line segment and a point in a plane

And
\/(x1 —x0)%+ (1 —¥0)?
1
DR (CGEEAECIORENE
/'%”[xw ¥y
B I:xl}-ll‘!l * Q
Figure 4

2.3 Between acircle and a point in a plane

As indicated in Figure 5, let’s consider a circle ©C with center
C(a, b) and radius of r. Let Q be the point in motion. Then Q
will collide with the circle if and only if there exists a real
number t, such that

(u() —a)® + (v(t) — b)? =r?

Figure 5

Int'l Conf. Foundations of Computer Science | FCS'12 |

We can generalize it to three dimensional case: if Q is the
point in motion in space, let Q be given by (u(t), v(t), w(t))
and a sphere with center at (a, b, ¢) and radius of r as shown in
Figure 6. Then Q will collide with the sphere if and only if
there exists a real number t such that

() —a)* + (w(t) — b)* + W(t) —c)* =12

Figure 6

2.4 Between a triangle and a point
Let us consider a triangle with the set of vertices
{(x, yi): k = 1,2,3} as shown in Figure 7.

Assume Q is the point in motion with coordinates (u(t), v(t))
Then point Q will collide with the triangle if and only if

3
D [= 5O = 30 = Oy = 30(® x|

% Y1 1
X, Yo 1
X3 y3 1
Where h(k) = k+1 if k =1, 2; 1 if k=3.
(5. %)

[:xl: }‘1}
Figure 7
2.5 Between a polygon and a point

Let us consider a rectangle {(x,y):a <x < b,c <y <d}
and Q as point in motion. Then point Q(u, v) will collide with
the rectangle if and only if there exists a real number t such
that

a<u(t)<bandc<v(t) <d.

If the rectangle does not have sides that are parallel to the
axes, then the above detection will not work. In this case, we
can use the following criteria. Assume the rectangle has area
T with consecutive vertices (xi, vi), k = 1,2,3,4. Then Q will
collide with the rectangle if and only if there exists a real
number t such that

87

4 u(t) wv() 1
Z X ye 1Yf=2T
=Xhay Yo 1

This is based on the fact that the total area formed by Q with
any two consecutive vertices of the rectangle equals to the
area of the rectangle. Where h(k) =k +1ifk =1, 2, 3; 1if
k=4.

As we can see that the problem of detection of collision is
different from the PIP that is to determine whether a point is
inside a polygon (PIP). Therefore, it is not a good idea to use
the method of Ray Casting (see [1] and [2], [12]) because it
needs to find number of intersections with the boundary of the
polygon, which will be time-consuming.

2.6 Between a set of polygon and a point

If an object is consisting of a set of non-overlapping polygons
as shown in Figure 8, then we can use the method given in
previous section to check each of polygons involved. If an
object is consisting of a large polygon and some small
polygons that are contained in the large polygon as shown in
Figure 9, then we can use the above method to check the large
polygon if we just need to determine whether the point Q will
collide the object. If we need determine whether the point
will collide with small polygons, then we can apply the
method to check the small polygons.

Figure 8 Figure 9

2.7 Between two line segments

Let us consider two line segments Ly, k = 1,2 as shown in

Figure 10. It is easy to verify that these two segments
X1 =X Yo~ N1

X =% yh—y *0an

min{xg, x;} < ¥ < max{xy,x;} and min{x},x} <x <

max{xg, x1} and min{y,, vy} <y < max{y,, y,} and

min{yg, y1} < ¥ < max{y{, y:}.Where the intersection point

intersect if and only if d = |

(x,y) can be found by Cramer’s rule, in fact, X =
|x1—x0 YoX1—Y1Xo YoX1—Y1X0o Yo~—V1

! ! I r._! r. ! ! ! !

X1—X, X1—YV1X _ X1—Y1X -

1~X0 YoX1~YV1 °,andy=y°1y1d° Yo Y1.

If d = 0, it means these two line segments are parallel. If any
three end points of them form a triangle with non-zero area,
then they don’t collide. Otherwise, they collide. That is, if

d=0and
Xo Yo 1
xo Yo 1]=0
x 1

Then they collide.

. ¥.)

¥

j/
) \

Figure 10

X r
(%p .Y

2.8 Between one triangle and a line segment

Consider a triangle with the set of vertices {(x,v,):1 <k <
3} and a line segment L with end points A and B as shown in
Figure 11. To check for any collision between the line
segment and the triangle, we can perform a loop for each side
of the triangle and the segment L by applying the method
given in section 2.7. If the line segment does not intersect
any side of the triangle, we just need check whether it lies
entirely inside the triangle by checking one of the end points
of L by using the method given in section 2.4 above.

& }-‘2}

(5 %))

Figure 11
2.9 Between two triangles both in motion

Consider triangles T, (k = 1,2) with the sets of vertices
Se ={(xf,¥f):1 < j <3},(k = 1,2) as shown in Figure 12.
To check for any collision between these two triangles, we
can perform a loop for each side of T;and consider that side
and the triangle T, by applying the method given in section
2.8.

1 2 2
(;i (). %)
2202
(5. %)
_1 1 -1 .-1 2 7
by ERe (1. %)
Figure 12

2.10 Between two line segments in space

Consider two line segments in space as shown in Figure 10.

Lk(t) = (xk,yk,Zk) +t< pk’ qk,Tk >,t € [0,1],k = 1,2
It is well known that

. .P1_ 41

Li||Ly if and only if —=—=—

v ! b2 4z T2

And

Int'l Conf. Foundations of Computer Science | FCS'12 |

If L, and L, are not parallel, then
they intersect if and only if
Xo=X1 Y2=01 Z2— 7
P1 q1 1
P2 q: 2
(P — Pt =% —x;
(@2 —qt=y1 -,
(p,—rlt=2z—12
Therefore, we can detect whether two line segments collide as
follows.
(1) Check to see if two line segments are parallel. If
they are parallel, then check 1 x ¥, where
U =<py,q,m > and
B=<2x,— X,V — V1,2, — 2, > If Ux B =0,
then the line segments collide. Otherwise, they don’t
collide.
(2) If they are not parallel, then check the determinant
Xo=X1 Y2=1 Z2— 7
If| D1 a1 n

|%) q2)
value of t. If t € [0,1], then they intersect.

Otherwise, they don’t intersect.

= 0 and 3t € [0,1] such that

= 0, then find the

(x4 Pyt Qa2 +11)

(XL,)-]_,ZL)
(x40, + g2 . 2 + 1)

Figure 13
2.11 Between a triangle and a line segment in space

Consider a triangle and a line segment L. To check for any
collision between the line segment and the triangle, we can
perform a loop for each side of the triangle and the segment L
by applying the method given in section 2.10. If L does not
collide with any side of the triangle, we need check whether it
lies entirely inside triangle by applying the method given in
section 2.4 or it might penetrate the surface of the triangle by
checking the signs of #-u; and 7-u, , where # is the
normal vector of the triangle surface, u; (k = 1,2) are vectors
with one of the end points of L as an initial point and the point
P as the terminal point, where the point P is defined as
P= Gzi:lxk,%fj:l J’k%Zi:ﬂk); which lies on the
surface of the triangle with vertices V,, (k = 1,2,3). If the
signs of i - u; and #i-u, are different, then we need check
to see if the distance from the point P to L is less than the
min{d(P,V},): k = 1,2,3}. If it is true, then L penetrates the
surface of the triangle, otherwise, it does not penetrate.

2.12 Between two triangles in space

Consider triangles T, (k = 1,2). To check for any collision
between these two triangles, we can perform a loop for each
side of T, and consider that side and the triangle T, by
applying the method given in section 2.11.

Int'l Conf. Foundations of Computer Science | FCS'12 |

3 Conclusions and Future Work

This paper has presented some mathematical solution for
some fundamental bounding shape in game collision
detection in 2D and 3D. Our method is easy to implement
without a lot of performance issues in per-pixel based
algorithm, but the accuracy and precision improved greatly
compared with pixel based collision detection mechanism.

In the future, collision between combination of different
fundamental bounding shape and their represented visual
object will be studied.

4 References

[1] Ivan Sutherland et al.,"A Characterization of Ten
Hidden-Surface Algorithms" 1974, ACM
Computing Surveys vol. 6 no. 1.

[2] "Point in Polygon, One More Time..."
(http://jedi.ks.uiuc.edu/~johns/raytracer/rtn

/rtnv3n4.html#art22), Ray Tracing News, vol. 3
no. 4, October 1, 1990.

[3] C code to determine if a point is in a polygon

http://www.ecse.rpi.edu/Homepages/wrf
[research/geom/pnpoly.html)

[4] C code for an algorithm using integers and no divides
(http://www.visibone.com/inpoly/)

[5] Google Maps Point in Polygon JavaScript extension
(http://appdelegateinc.com/blog/2010/05/16/point-in-

polygon-checking)

[6] Geometry Engine Open Source (GEOS)
(http://trac.osgeo.org/geos/) based on Java Topology
Suite (JTS)

[7] Python Shapely package
(http://pypi.python.org/pypi/Shapely) based on GEOS

[8] GeoDjango geographic web framework plugin
(http://geodjango.org/) for the Django web framework

[9] SQL code to determine if a point is in a polygon
(http://www.sql-statements.com/point-inpolygon.html)

[10] Pascal code to verify if a point is inside a polygon

(http://wiki.lazarus.freepascal.org/Geometry in_Pascal
#Checking_if_a_point_is_inside_a_poly

[11] Fortran implementation of an improved version of the
Nordbeck and Rystedt algorithm
(http://www.newcastle.edu.au/Resources
/Research%20Centres/lCGMM/Publications/Scott%
20Sloan/A%20point%20in%20polygon
%20program.pdf)

[12] Point in polygon - Wikipedia, the free encyclopedia
Page 1 of 3, http://en.wikipedia.org/wiki/

[13]. Barequet G, Chazelle B, Guibas LJ, Mitchell J, Tal A.
BOXTREE: a hierarchical representation for surfaces in

3D. In Proceedings of Eurographics, 1996; pp. 387-396.

[14]. Cohen J, Lin M, Manocha D, Ponamgi K. I-COLLIDE:
An interactive and exact collision detection system for
Largescaled environments. In Proceedings of the 1995
Symposium on Interactive 3D graphics; pp. 189-196.

89

[15]. Dobkin DP, Kirkpatrick DG. Fast detection of
Polyhedral intersection. Theoretical Computer Science,
1983; 27: 241-253.

[16]. Gottschalk S, Lin MC, Manocha D. OBBTree: a
Hierarchical structure for rapid interference detection.
SIGGRAPH’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive
techniques ACM SIGGRAPH 1996; 30: 171-180.

[17]. Klosowski JT, Held M, Mitchell JSB. Evaluation of
Collision detection methods for virtual reality fly-
throughs. The 7" Canad. Conf. Computat. Geometry
1995; 14: 36-43(2): 205-210.

[18]. Gottschalk S, Lin M. Collision detection between
Geometric models: a survey. In Proceedings of IMA
Conference on Mathematics of Surfaces 1998; pp. 3-15.

[19]. Floriani De L, Puppo E, Magillo P. Applications of
Computational Geometry to Geographic Information
Systems, chapter 7, Elsevier Science & Technology:
1999; 333-388.

[20]. Mo ller T. A fast triangle-triangle intersection test.
Journal of Graphics Tools, 1997; 2(2): 25-30.

[21]. Held M. ERIT a collection of efficient and reliable

Intersection tests. Journal of Graphics Tools 1997,
2(4): 25-44.

[22]. Guigue P, Devillers O. Fast and robust triangle-triangle
overlap test using orientation predicates. Journal of Graphics
Tools 2003; 8(1): 25-42.

[23]. Devillers O, Guigue P. Faster triangle-triangle
Intersection tests. Technical Report 4488, INRIA, 2002.

[24]. Shen H, Heng PA, Tang Z. A fast triangle-triangle
Overlap test using signed distances. Journal of Graphics
Tools 2003; 8(1): 3-15.

[25]. http://www.cs.unc.edu/?geom/obb/obbt.html.

http://www.ecse.rpi.edu/Homepages/wrf
http://appdelegateinc.com/blog/2010/05/16/point-in-
http://wiki.lazarus.freepascal.org/Geometry_in_Pascal
http://www.newcastle.edu.au/Resources

90

Int'l Conf. Foundations of Computer Science | FCS'12 |

Kopenograms — Graphical Language for Structured
Algorithms

Jifi Kofranek', Rudolf Pecinovsky?, Petr Novak®
'Charles University in Prague, Laboratory of Biocybernetics, Prague, Czech Republic
*University of Economics, Dept. of Information Technologies, Prague, Czech Republic
*HID Global, Prague, Czech Republic

Abstract - In the OOP era of the present times, it tends to
be forgotten sometimes that the design of rather complex
algorithms may be ahead of us at the end of object analysis.
Several graphical languages are available for their
representation. Kopenograms are one of the clearest ways
how to represent structured algorithms. They are an apt
supplement of UML diagrams used to show algorithmic
structures, and they have proven themselves as a very
effective tool in programming classes.

Keywords: Education, Graphical language, Algorithms,
Programmiong methodology, UML

1 Introduction

Kopenograms are one of graphical ways of represent-
ing algorithms and data. The acronym KOPENOGRAM
expresses the fundamental idea of this graphical represen-
tation: Keep Our Program in Embedded Noted Oblongs
for Graphical Representation of Algorithmic Modules.

The original idea of graphical representation of al-
gorithms emerged in the 80ies of the past century, in a
discussion of three programmers (Kofranek, Novak,
Pecinovsky), as a reaction to the defects of existing ways
of structured representation of algorithms and data struc-
tures (such as flowcharts [1], Jackson diagrams [2, 3],
Nassi-Schneiderman diagrams [4] etc.). However, it be-
came apparent soon that the chosen notation can also be
used for visually clear demonstration of algorithm and
data structuring in teaching. Named kopenograms (origi-
nally a temporary name composed of the surnames of the
authors) [5] in the then Czechoslovakia and later in the
Czech and Slovak Republics, these diagrams started to be
used as a teaching aid both for the teaching of program-
ming essentials, e.g. using the programming language
Karel [6, 8], and also for the teaching of more advanced
programming methods (8-15).

Block is a basic term in any kopenogram, and it means
a certain part of the program. A block may be data dec-
laration, class, procedure, function, statement, etc. Every
block is shown as a rectangle.

The graphical language of kopenograms includes ex-
pression means for writing algorithmic structures as well
as data structures. However, UML is now used as standard

for writing data structures. Therefore in our contribution,
we shall focus only on describing how those algorithmic
structures are written for which no diagram is offered by
UML that could display them, without “seducing* the de-
veloper to using non-structured statements.

2 Algorithmic Structure Blocks
Some blocks exhibit more complex inner structure.:

e Header is the upper part of the block divided
from the rest of the block using a single or double
line. If divided using a double line, it contains the
name of the block; if divided using a single line, it
contains the input condition of the block.

* Footer is the lower part of the block divided using
a single line in algorithmic blocks. The footer de-
notes the end of the body of the cycle and contains
the so called output condition of the cycle.

* Qualification is the left part of the block, sepa-
rated using a single vertical line in algorithmic
blocks; this part contains access operation for the
components of a structured constant or variable.

¢ Body of the block is the remaining part of the
block between any header and footer, right of any
qualification.

e Dividing bar is a special part within the body of
the block; this part may contain a condition caus-
ing leaving the body of the block prematurely.

e Compound block has a body with embedded
blocks.

¢ Block with several bodies is a compound block
that incorporates several bodies, immediately ad-
jacent horizontally, and separated by single verti-
cal lines.

2.1 Colors

Initially, kopenograms were designed so that the col-
or provides additional information, similarly as colored
highlighting of the syntax started to be used later. Colors
were assigned to individual types of the blocks and their
parts as follows:

* Yellow color is used to fill headers of procedures,

Int'l Conf. Foundations of Computer Science | FCS'12 |

!

¥

Figure 1: Evaluation flow in kopenogram. Evaluation is
started from the upper left corner of the block. If the con-
dition is true, the program continues downward; if false,
the program continues to the right.
functions and methods. Yellow is also used to
highlight recursive calls.

¢ Red color is used to fill blocks with actions with
the exception of recursive calls, in which case yel-
low is used as mentioned above.

e Green color is used to fill headers, footers and di-
viding bars of cycles.

e Blue color is used to fill headers with conditions
in conditional statements and switches. It is also
used in dividing bars of blocks not used to repre-
sent cycles.

* Block qualifications are filled identically as state-
ments, i.e. using red color.

In order to enhance clear arrangement, a lighter shade
of the header color is used to fill also the inner area of the
given block.

2.2 Comments

Any text written outside a simple block or outside the
header, footer and qualification of compound blocks, re-
spectively, is a comment. Connecting dashed lines may be
used to express relationships of comments to appropriate
blocks.

Arrows are a special type of comments; they repre-
sent input and output statements. The fact that any data
should be input or output, respectively, can be represented
by adding an arrow to the right side of a simple block, ori-
ented to the right for the output or to the left for the input,
respectively. Then it only remains to write in the block the
list of data to be transferred. If the type of the used input/
output device or file is to be emphasized, an appropriate
schematic mark or name of the file can be drawn to the

Figure 2: Block of simple alternative “if..then..else”.

right of the arrow.

2.3 Compound Blocks

Embedded blocks in the body of a compound block
are ordered from the top downward, which illustrates their
sequential execution (see Fig. 1).

In compound blocks, the program “grows™ toward
the inside, thereby naturally limiting the size of defined
subprograms. This urges the developer to design simple
subprograms.

If any developer feels limited by this characteristic,
an analogue of a connector in flowcharts may be used.
An empty block can be used as such a connector, with
its name put inside. The contents of such a block may be
expanded on in another picture. However, in interactive
electronic charts, the structure of such an empty block is
expanded automatically upon clicking the empty block.

Attaching a qualification from the left to the block and
inserting an identifier of any structured variable in the
qualification, access operation to appropriate components
of the variable can be expressed. These components then
become immediately accessible from within the body of
the block and all embedded blocks with no need of explic-
it qualification (analogue of the structure with in Algol,
Pascal, Visual Basic, ...).

Conditions that affect the run of the program are en-
tered in the header, footer and dividing bars.

Compound conditional block of the type if ... then

.. else can be expressed using a block with one header

and two bodies where the condition in the header of the

right body will always be true — see Fig. 2. Analogically,

a general conditional statement can be represented using a
block with several bodies — see Fig. 3.

Figure 3: Block of general conditional statement.

Switch or case is a special case of the general condi-
tional statement. Reduced notation according to Fig. 4 is
established to eliminate the necessity of writing all condi-

91

92

Figure 4: Block of switch statement.

tions in the header as “variable=value*.

In some cases, all parts of a block with several bodies
may not fit next to each other. If this is the case, individual
parts of the block may be placed below each other and
connected — see Fig. 5.

T

Figure 5: Order individual parts of the block when lack of
space.

2.4 Evaluating Conditions

Headers, footers and dividing bars contain conditions
that affect further evaluation procedure of the algorithm.
The following general rule applies to evaluation of con-
ditions: If the condition is true, the program continues
downward; if false, the program continues to the right.

The header contains a condition that determines
whether the body of the block will be entered. If true, the
program continues downward to the body; if false, the
program continues to the right by evaluating the next con-
dition, and in the last condition on the right, by leaving the
block and continuing with the subsequent block.

If the body of the block is divided using a dividing bar
(see Fig. 6), its condition is evaluated identically. If true,

Block A Block B

Figure 6: Dividing bar in the block. Algorithms written in
blocks A and B are equivalent.

Int'l Conf. Foundations of Computer Science | FCS'12 |

the program continues downward and executes the body
of the block; if false, the program continues to the right
and if it is the last condition, the block is left.

Blocks representing a cycle contain, besides a header,
also a footer. In order to evaluate a condition in the foot-
er, the cycle block can be understood as wound up on a
roller. When the footer condition is true, the program does
continue downward; however, continuing downward on a
roller means evaluating the header again. If the condition
is false, the program continues to the right, and if the last
condition on the right is false, the cycle block is left (see
Fig. 7).

Figure 7: Evaluation flow in the cycle with condition in the
footer.

Any condition that is always true should be marked
using an arrow oriented downward. However, in the footer
such a condition may also be marked using an upward ar-
row to make the arrangement clearer, given that it returns
the program to the beginning of the cycle, thus to the point
of header evaluation (see Fig. 8).

Figure 8: Evaluation flow in the cycle with condition in the
header.

This simple way can be used to clearly express how
various types of cycles are executed — see Fig. 9.

By dividing the block in several bodies, cycles with
several bodies can be easily expressed, which are known
from some programming languages. (see Fig. 10)

Int'l Conf. Foundations of Computer Science | FCS'12 |

Figure 9: Basic types of cycles.

Input conditions in the header are evaluated identically
as in a single-body cycle, i.e. the header is always evalu-
ated from the upper left corner, irrespective of which of
the bodies was gone through before. However, output con-
ditions in the footer are evaluated only in the part adjacent
to the given body (see Fig. 10). If several bodies share one

output condition, such a condition can be represented as
their shared footer — see Fig. 11.

In addition, upon adding embedded headers to a
multiple-body block, a powerful algorithmic structure is
achieved, which makes it possible to arrive at a simple and
well-arranged representation of a number of algorithms
structured only with difficulty before — see Fig. 21.

Figure 10: Cycle with several bodies.

2.5 Compound Conditions

Conditions expressed in the header, footer and dividing
bar can also exhibit complex structures. A structured
condition can be represented as a table whose cells include
the tested conditions (see Figs. 12 — 14). These conditions
are evaluated based on the following rules:

Figure 11: Cycle with several bodies with shared output
footer

* Evaluation is started from the upper left corner.

e If the condition is true, the program continues
downward.

» If the condition is false, the program continues to
the right.

* An empty condition (empty rectangle) is run in
the direction in which it was entered (if entered
from the left, the rectangle will be left to the left;
if entered from above, the rectangle will be left in
the downward direction).

* A condition always true is represented using a
downward arrow; in the footer, it may also be rep-
resented using an upward arrow to enhance the
clarity of visual arrangement.

* A condition always false is represented using an
arrow to the right.

» If any header or footer is left to the right due to
evaluation of the conditions, it means that the
whole block is left, as well, and program control
is passed on to the next part of the program.

e If a header is left in the downward direction, the
body is executed. If a footer is left in the down-
ward direction, evaluation of the header will be
the next step (see the analogy with a roller cycle
described above).

« If the cycle block is divided in several parts, this
division logically continues also in the footer, and
evaluation of the footer starts from the upper left
corner below the appropriate body. The program
returns to the start of the block if the footer is left
in the downward direction. The cycle is left if the
footer is left to the right or if a bar is encountered
while evaluating the conditions, which divides the
cycle to individual parts corresponding to differ-
ent bodies — see Figures 10 and 20.

* Evaluation of the footer in cycles with several
bodies is started in the upper left corner again.

93

94

\

true

true

Empty condition

false Empty condition

Always false

Figure 12: Evaluation flow in structured conditional
blocks. Evaluation is started from the upper left corner of
the blocks. If the condition is true, the program continues
downward; if false, the program continues to the right.
A condition always true is represented using a downward
arrow; a condition always false is represented using an ar-
row to the right. An empty condition (empty rectangle) is
run in the direction in which it was entered - if empty rect-
angle entered from the left, the rectangle will be left to the
left; if entered from above, the rectangle will be left in the
downward direction.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Figure 14: The algorithm evaluation of implication p = q
using compound structured conditions.

The cycle is left only if, upon evaluating the con-
ditions, the footer (and thus the whole cycle) is
left to the right. If the program falls through the
footer in the downward direction, the cycle is not
left, and thus the cycle keeps running and the pro-
gram continues by evaluating the conditions in the
header (see Figures 10 and 21).

2.6 Non-Structured Statements

In theory, a structured algorithm is defined as one that
observes the following rules:

* Algorithm is formed by a linear sequence of
blocks where each has only one input and one
output.

* Where a decision is to be made in the program, an
equivalent of the block if ... then ... else is used.

* Where a part of the code is to be repeated, one of
the cycles while or repeat ... until is used.

Figure 15: Dividing bar in the cycle.

Int'l Conf. Foundations of Computer Science | FCS'12 |

While it can be proven that every algorithm can
be written observing the rules above, in some cases
its structure may be easier to understand if some of the
rules is violated. Therefore the majority of programming
languages offer syntactic structures for such operations.

That is why kopenograms allow for representing
typical statements that violate the purity of its structure
for the sake of its clear arrangement.

2.6.1 Break

Premature leaving of a block can be represented using
a dividing bar (Fig. 6 and 15). However, if multiple blocks
are to be left at the same time, the graphical representation
in Figs. 16 and 17 can be used.

(I
1]

Figure 16: Early exit cycle (using the “break”). However,
the use of dividing bar and inversion condition is clearer.

=

Figure 17: Two equivalent forms of graphical representa-
tion of leaving inner block.

2.6.2 Continue

Continue is shown as a classic statement whose name
is represented by an upward arrow (Fig. 18). The program
then continues by evaluating the header of the innermost
cycle.

2.6.2 Return

The statement of premature termination of a
subprogram can be represented similarly as break, and/or
as a classic statement named return.

=

Figure 18: The “Continue” statement in the cycle.

2.6.2 Exceptions

In order to represent a block with an expected
exception and also a block that is used to handle such a
raised exception, only color is used (see Fig. 19):

* The header of the block with an expected
exception and also of the subsequent block to
handle the exception is filled using white color.

e The body of the block with an expected exception
is filled using violet color.

* The body of the block where such a raised
exception is handled is filled using orange
color, similarly as any body of a block executed
irrespective of whether an exception was or was
not raised (the block finally).

Exception

> > >

Exception 1

Figure 19: Throwing an handling the exceptions.

2.6.2 Goto

The general statement goto represents considerable
violation of the structure, and therefore it is also strongly

95

96

true false

Block with Goto statement
| GO_TO_HERE I‘

=T

Figure 20: Goto statement in kopenogram.

Figure 21: The general algorithmic block with embed-
ded headers and multiple bodies. This block performs the
same algorithm as a block in Figure 20.

highlighted. This statement is shown as an arrow orient-
ed from the point of the jump to the right, outside of the
block, and then up or down and finally to the left of the
block with the target label (Fig. 20).

3 Conclusion

Kopenograms are a handy tool for clear graphical rep-
resentation of the structure of algorithms, and they have
found long-term application particularly in teaching pro-
gramming classes.

These are a convenient supplement of UML diagrams
used to represent algorithmic structures.

Kopenogram specification is published on [16].

Int'l Conf. Foundations of Computer Science | FCS'12 |

4 Acknowledgement

This paper describes the outcome of research that has
been accomplished as part of research program funded by
GrantAgency of the Czech Republic Grant No. GACR
P403-10-0092 and by the grant FR—TI3/869.

5 References

[1] ISO (1985). Information processing -- Documenta-
tion symbols and conventions for data, program and
system flowcharts, program network charts and sys-
tem resources charts. International Organization for
Standardization. ISO 5807:1985.

[2] Jackson, M. A.: Principles of Program design. Aca-
demic Press, 197

[3] (Jackson, M. A.: System Development. Prentince
Hall, 1983

[4] Nassi, 1., Schneiderman, B.: Flowchart techniques
for structured programming, ACM SIGPLAN No-
tices, Vol. 8 Issue 8, August 1973. ACM, ISSN: 0362
1340

[5] Kofranek, J.; Novak, P.: Kopenograms - graphical
method of representation of programs (in Czech)
Kopenogramy — zplsob grafické reprezentace
programd. In Moderni programovani — Vinné 1987,
Diaim techniky CSVTS, dil 4, Zilina, str. 11-161.
1987.

[6] Pattis, R. E., Karel The Robot: A Gentle Introduc-
tion to the Art of Programming.John Wiley & Sons,
1981. ISBN 0471597252

[7] PC-Karel : interpret of KAREL language for PC
[online]. ¢2004 [cit. 2012-04-12]. Available from:
<http://pckarel.sweb.cz/pckarel.html>.

[8] Pecinovsky, R.: Fundamentals of Algorithmics I (in
Czech) 602 ZO Svazarmu, 1985.

[9] Pecinovsky, R.: Fundamentals of Algorithmics II (in
Czech) 602 ZO Svazarmu, 1985.

[10] Pecinovsky, R., Kofranek, J.: Simple data types (in
Czech) 602 ZO Svazarmu, 1985.

[11] Pecinovsky, R., Kofranek, J..: Structured data types
(in Czech) 602 ZO Svazarmu, 1986.

[12] Pecinovsky, R., Kofranek, J..: Searching and sorting
(in Czech), 602 ZO Svazarmu, 1986.

[13] Pecinovsky, R., Kofranek, J.: Dynamic data struc-
tures (in Czech), 602 ZO Svazarmu, 1986.

[14] Pecinovsky, R., Kofranek, J.: Modular programming
(in Czech) Modularni programovani, 602 ZO Svaz-
armu, 1987.

[15] Pecinovsky R., Ryant I.: Programming of of parallel
processes (in Czech) 602 ZO Svazarmu, 1987.

[16] www.kopenogram.org

Email to corresponding author: kofranek@gmail.com

Int'l Conf. Foundations of Computer Science | FCS'12 |

97

Ultra Encryption Standard (UES) Version-Il:
Symmetric key Cryptosystem using generalized modified
Vernam Cipher method, Permutation method, Columnar

Transposition method and TTJSA method.

A. Satyaki Roy, B. Navajit Maitrd, C. Joyshree NathD. Shalabh Agarwabnd E. Asoke Nath

Department of Computer Science, St. Xavier's College (Autonomous), Kolkata; fritifa

A.K.Chaudhuri School of IT, Raja Bazar Science College, Calcutta University, Kolkat&, India

Abstract- Nath et al recently developed encryption method
called UES version-1 where they have 3 distinct encryption
methods such as Modified generalized Vernam Cipher
method using feedback, multiple round transposition
method and permutation method have been amalgamated.
A new combined cryptographic method called UES
Version-1l has been introduced here as the extension of
UES version-I. Nath et al. have already developed several
symmetric key methods such as MSA, DJSA, NJJSAA,
TTJISA, TTSIA, DIMNA, DJJSA, UES' etc. In the present
work multiple methods such as generalized modified
vernam Cipher method Permutation method, Columnar
transposition method and TTJSA have been implemented.
UES| has been extended to UESII by adding one
encryption module called TTJSA to make the encryption
standard harder than UES. An encryption key pad in
Vernam Cipher Method and also the feedback used in this
method is considered to make the encryption process
stronger. UESII incorporates multiple encryption and
decryption to defeat common cryptography attack such as
differential attack or simple plain text attack.

available to decode password of some unknown e-mail.
Under no circumstances the confidential data should be
intercepted by any intruder while transmitting from client
machine to server or to another client machine. Due this
intrusion problem now the network security and
cryptography is an emerging research area where the people
are trying to develop some good encryption algorithm so
that no intruder can intercept the encrypted message. Nath
et al. had developed some advanced symmetric key
algorithm [1-8]. In the present work we are proposing a
symmetric key method called UES version-Il which is a
combination of 4 distinct cryptographic methods, namely,
(i) Generalized Modified Vernam Cipher Method, (ii)
Permutation method (iii)Columnar transposition method
and (iv) TTJSA modules. We have tested this method on
various types of known text files and we have found that,
even if there is repetition in the input file, the encrypted file
contains no repetition of patterns. The real challenge in the
UES version-Il algorithm was to ensure the effective
integration of the four levels of encryption to produce
strong encryption with the features such a multiple
encryption, randomized key generation and a new method

Keywords: encryption, decryption, feedback, cycling, i.€. TTISA.

randomized Vernam key, TTJSA.

I. INTRODUCTION

[I. UES VERSION-II ALGORITHM
ENCRYPTION PROCESS

In the current communication network it is a real challenge

us to send confidential data/information from one computel, UES-II we have four distinct levels of encryption such

to a_nothgr computer. When a sgnder is sending SO Modified Vernam Cipher with feedback, Columnar
confidential data, there may be a middle man attack and t . o .
ransposition, Randomization Encryption Process and

data may be intercepted and diverted to different places. .)
The confidentiality and security of data has now become #nally TTISA[ref-no]. The first three levels of encryption
big challeng_e in data communicgtion network. Due tare performed in blocks of 900 bytes. The residual bytes (of
network facility the access of data is now very easy and thgze |ess than 900 bytes) are encrypted with the Modified
ha<_:kers are always try to hack data from the network. Th ernam Cipher Encryption Method. The output is
trainers and the teachers must be careful to send question
papers or marks sheet through e-mail as there is rfJiCrypted further by TTJSA method. TTJSA method
guarantee that it will not be intercepted by someone. lgomprises of 3 distinct encryption methods namely (i) MSA
banking and corporate sectors the finance or managemanethod[Ref-no], (i) NJJSAA methd [Ref-no],

data must be secured if by chance the data goes to th®Generalized modified vernam cipher method with
hacker then the entire service will be collapsed. Passwotd

breaking is now not a problem. Many public software ar eedback. The randomized vernam key is generated in

98

Int'l Conf. Foundations of Computer Science | FCS'12 |

every iteration from a mathematical calculation from thewill now undergo randomization/permutation encryption
user given password which can be 64-byte long. Whilðod.

doing columnar transposition method the sequence of thef€P 22: The output file from the randomization process

: . . : holds the encrypted 900 bytes.
column extraction is also decided internally from theStep 23: The 900 bytes is written to the cipher file name
password entered by the user. The password will alsﬁrovided by the user.

decide the number of times encryption is to be performed. Step 24: The value of ‘count’ is incremented by 1. Goto

17.

Integration and key generation algorithm Step 25: Once the control breaks from the loop, the
Step 1: Start program is left to process the residual bytes from the input
Step 2: Input the plain text file name in ‘plain[]' (The plairfile.
file may be of any format). Step 26: The residual bytes are processed by the modified
Step 3: Input the cipher text file name in ‘cipher(]’ vernam cipher encryption technique. The encrypted bits are

Step4: The extracts the first byte in the file and stores it iagain written into the cipher file which serves as the input
‘ch' and it extracts the last byte of the file and stores in ‘chdor the next iterations of encryption.
It replaces the first byte of the file with character withStep 27: Increment p

ASCII (ch+cha)%256. Step 28: Goto step-12
Step 5: The user enters a 64 byte encryption-key that &ep 29: When the control reaches this encryption the
stored in 'key]]'. Modified Vernam Cipher, Columnar Transposition, and

Step 6: Now the algorithm computes the ‘cod' value equRandomization modules are complete. The file is further
to X key[i]*(i+1) where i represents the position of everyfed as input to the TTJISA module.

character in the key. Step 30: The output is again written back to the cipher file
Step 7: The encryption number (enc) is computed byy10Se name is provided by the user.
calculating the cod modulus 17. If enc <0 then enc=7 tep 31: End

Step 8: Take the input file pointer to the end of the input ; : SRS
file, such that the size of the input file can be computed. Algorithm for the first level of encryption

(The size of the input file is stored in long integer variable Modified vernam cipher encryption method

'n") with feedback.
; 't . tep 1: Start
Step 9: Declare a variable 'n1' of long int datatype wher, : . :)
nl will store the number of iterations. Each iteration will :ggriﬁ;rhe plain text serves as the input file for the

process a 30 X 30 bytes block in every iteration o
encryption.

Step 10: Introduce a variable p=0.

Step 11: Compute cod=cod modulus 256

Step 12: If p is greater than or equal to enc then GOT
step 29.

tep 3: Create a dictionary of characters in the character
array where position i will be the ASCII value for the
character placed in the i-th location of the array.

tep 4: Define the encryption key which must be same as

e key provided during decryption.

Step 13: Increment cod and perform cod=cod%256:; Step 5: Start processing the characters in the input file.

Step 14: Now create a key file by printing the charactergeﬁne a integer variable ‘feed’ and initialize it with O.
with ASCII values of 0-255 in rotation. The first character tep 6: Extract a character in the input file and store in ch1.

. . o . . If chlis NULL, goto 12
is however the character with ASCII ‘cod’. This key file Step 7: Extract a single character from the key file.

serves as the input for the Modified Vernam Cipher witt’étep 8: Compute m,n from the arrays arr[] where m and n

feedback.) - !
Step 15: This key is further randomized usingare the ASCII values for the first characters of the input file

N . D ; and key files.
randoml.zatu.)r) m"d.”'e and stqred in the file ‘filel.c. Step 9: Perform addition m=m+n+feed. Then calculate
Step 16: Initialize integer variable count to 0.

Step 17: If count greater than or equal to n1 then Goto ZSCVT]righm;%\ﬂ;Stﬁ:G'r-gh?a\ﬁl;fg; IS tﬁ'fgﬁggﬁ;?ﬂ the
Step 18: Define the intermediate file which will open, prog yp

extract and process the first 900 bytes of the plain file. plain file.
Step 19: The 900 bytes that have been extracted now is
encrypted with the Modified Vernam Encryption process

with Feedback

Step 20: The output from the modified vernam cipher
encryption process is fed as input to the columnar
transposition encryption process.

Step 21: The output from the columnar encryption method

Int'l Conf. Foundations of Computer Science | FCS'12 | 99

Table 1: Modified Vernam Cipher Step 10: If colis equal to n then increment row by 1 and
Key: abc intialize col variable to 0 to keep a check on the row and
aaa > Tl column parameters.
Step 11: Goto 9 until the storing of the intermediate plain
Plain text: A A A text in the array is complete.
' Step 12. If col==0 then we decrement the row index by 1
Plain Index(m): 97 197 | 97 to ensure tha}t the character array arr][] doe; not produce an
extra row.This happens when a character is placed at the
: last column of a particular row.
Key text: a B ¢ Step 13: Initialize both variables ‘count’ and 'index' to 0.
: >=
Key Index(n): 97 98 | 99 Step 14: If(count>=n) goto 17

Table 2(a), (b): Columnar Transposition

Feedback (feed): | O 194 133)
Table 2(a): Plain text: letsallgonow

m=m-+n+feed 194 | 389| 329 The plain text is placed in array ‘arr’.
n=m%?256 194| 133| 73 0 |1 2 3 4 5
Cipher text: T |[A |1 L [E |T |s a |L

L G O n o] w

Step 10: Write the contents of the array in the intermediate
output file one by one, where the array in the n-th place of
the array is the encrypted character.

Step 11: Goto 7. Table-2(b): Cipher Text:lwaosntoegll
Step 12: Once the control comes out of the loop, the

encryption process is complete.

Algorithm for the second level of encryption-
Columnar Transposition Method I | w | A | o S n
Step 1. Start
Step 2: Now the algorithm extracts the first character of t o} E g L I
the "filel.c' in ‘cha’ and computes 'od'=cha modulus 6. The

value of od determines the sequence of columns everytime

the columnar module is invoked. arra[]={5,4,3,2,1,0} (assume)

Step 3: Now we compute the array 'arra[]' where the first

entry is od. Then 'od' is subsequentely decremented. If the p=arra[index](where index=0 and subsequently

value of od becomes 0 then it is replaced by 5. This array index=index+1)

decided the definite order of the sequence of columns

extracted. p=5, 4, 3,2,1,0 respectively where p stands for the extracted
Step 4: The 900 bytes of output from the Modified column.

Vernam Method serves as the input file for Columnar

Transposition Method. Step 15 : Count is incremented by 1

Step 5: Initialize the variable n to an arbitrary integer Step 16 : Initialize variable p to arra[index]. Here the 'arra[]'
value which represents the number of columns of the stores the order in which the columns will be transported to
columnar transposition array in which the plain file the same columnar transposition array arr[] to implement

characters will be stored. Typically n may have any value. the columnar transposition encryption method. The variable
Step 6 : Initialize both integer variables 'row' and 'col' to O'index' is subsequently incremented to transport the rest of
Step 7 : Initialize all the elements in the specified array the columns of the columnar transposition array

arr][] to NULL(\O") Step 17: End

Step 8: Store the plain text file byte by byte in the array

arr[][] where the row and column positions are determined

by 'row' and ‘col'.

Step 9: Increment column index by 1 once a byte is read

and placed in the array

100

Algorithm for Randomization/Permutation

Encryption Method
Step 1: Start
Step 2: The output from the columnar transpositionmetho
serves as the input for the randomization/permutation
process.
Step 3: Define integer arrays 'arr' that will store the
randomization key. Define 2-d character arrays
‘chararr[][]to store all the 900 bytes in the file and
chararr2[][] to store the randomized characters.
Step 4: Initialize all the elements in the character
arrayschararr[][] and chararr2[][] to 'null'.

Step 5: Initialize m to 30 and n to 1. 'm' holds the numbero

rows and columns in the square matrix of
chararr[][],chararr2[][], arr[][].

Step 6: Input the numbers 1,2,3...,900 to the integer arraf
arr[][] by incrementing the value of n. The characters in theS

input file are copied to the character array ‘chararr[]'.

Int'l Conf. Foundations of Computer Science | FCS'12 |

the lowermost element is displaced to the position of the
topmost element in the right diagonal.
Step 19: To arrange the elements in the character array

&hararr[][] according to the randomized integer array

arr[][]. Initialize i to 1.

Step 20: Store element arr[i][j] in z.

Step 21: Compute the row and column position pointed by
the element z which is stored in 'k','I' respectively.

Step 22: Place chararr[K][l] in auxiliary character array
chararr2[][] in positions chararr2[i][j].

Step 23: Increment j.

Step 24: If j<=m goto 20

Step 25: Increment i

Step 26: If j<=m goto 20

Step 27: Write the randomized elements in character array
hararr2 [i][j] to the intermediate output file.

tep 28:.End.

Step 7: Now randomize the numbers in the integer array DECRYPTION PROCESS:

with the help of the functions defined in the program.
Step 8: The program invokes function 'leftshift()' which
shifts every column in the integer array to one place left

The decryption algorithm follows the reverse process of the
four levels of encryption that have been implemented.

thus the first column is displaced to the position of the last TTISA is the first method to be implemented. The three

column.

Step 9: Invoke function 'topshift() which shifts very row to
the row above. Therefore the elements in first row is
displaced in the corresponding position of the last row.
Step 10: Subsequently perform cycling operation on the
integer array ‘arr[][]' . Intialize i to 1.

Step 11: If i is greater than m/2 goto 15.

Step 12: If i is odd, perform clockwise cycling of the i-th
cycle of the character array. Invoke functions
rights(),downs(), lefts(),tops() to implement the clockwise
displacement of the elements in arr[][].

Step 13: If i is even, perform anti-clockwise cycling of the
i-th cycle of the character array.

Invoke functions ac_rights(),ac_downs(),
ac_lefts(),ac_tops() to implement the anti-clockwise
displacement of the elements in arr[][]. Therefore the
integer array arr[][] is alternately randomized in clockwise
and anit-clockwise cycles.

Step 14: Increment i. Goto 11.

Step 15: The program invokes function 'rightshift()' which
shifts every column in the integer array to one place right

thus the last column is displaced to the position of the first

column.

Step 16: Invoke function ‘downshift() which shifts very row

to the row below. Therefore the elements last row is
displaced in the corresponding position of the first row.
Step 17: Invoke the function 'leftdiagonal()' that performs

downshift on the elements in the left diagonal such that the

lowermost element is displaced to the position of the
topmost element in the left diagonal.

Step 18: Invoke the function 'rightdiagonal()' that performs

downshift on the elements in the right diagonal such that

decryption processes employed are Randomization
Decryption Method, Columnar Transposition Decryption
Method, and Modified Vernam Cipher Decryption with
feedback (in the specified order). Again, the algorithm
repeatedly performs the decryption by the last three
methods in blocks of 900 bytes and the residual bytes of the
cipher file (size less than 900 bytes) are processed with the
Modified Vernam Decryption Method with feedback. The
decryption number is again generated according to the same
64 byte user password

TTJISA Algorithm:

Now here we will describe TTJSA algorithm

A. Algorithm for ENCRYPTION

Step 1 : Start

Step 2 . Initialize the matrix mat[16][16] with
numbers 0 to 255 in row major wise.

Step 3 . call keygen() to calculate randomization
number(=times), encryption

number(=secure)

Step 4 : call randomization() function to
generate to make the content of
mat[16][16]

Randomized.

Step 5 : set times2=times

Step 6 : copy file f1 into file2

Step 7 :set k=1

Step 8 . if k>secure go to Step 15

Int'l Conf. Foundations of Computer Science | FCS'12 |

Step 9
Step 10

Step 11
Step 12
Step 13
Step 14
Step 15

: p=k%6

if p=0

call vernamenc(file2,outfl)

set times=times2

call njjsaa(outfl,outf2)

call msa_encryption(outf2,filel)
else if p=1

call vernamenc(file2,outfl)

set times=times2

call msa_encryption(outfl,filel)
call file_rev(filel,outfl)

call njjsaa(outfl,file2)

call msa_encryption(file2,outfl)
call vernamenc(outfl,filel)

set times=times2

else if p=2

call msa_encryption(file2,outf1)
call vernamenc(outfl,outf2)

set times=times2

call njjsaa(outf2,filel)

else if p=3

call msa_encryption(file2,outfl)
call njjsaa(outfl,outf2)

call vernamenc(outf2,filel)

set times=times2

else if p=4

call njjsaa(file2,outf1)

call vernamenc(outfl,outf2)

set times=times2

call msa_encryption(outf2,filel)
else if p=5

call njjsaa(file2,outfl)

call msa_encryption(outfl,outf2)
call vernamenc(outf2,filel)

set times=times2

. call function file_rev(filel,outfl)
: copy file outfl into file2
 k=k+1

: goto Step 8

:End

1) Algorithm of vernamenc(f1,f2)

Step 1
Step 2

Step 3

Step 4

Step 5

. Start vernamenc() function
. Initialize matrix mat[16][16] is

initialized with numbers 0-255 in row

major wise

. call function randomization() to make
the content of mat[16][16] random

: Copy the elements of random matrix
mat[16][16] into key[256] (row major

wise)
: set pass=1, times3=1, ch1=0

Step 6

Step 7
Step 8

Step 9

Step 10

Step 11
Step 12
Step 13
Step 14
Step 15
Step 16

Step 17

101

: Read a block from the input file f1
where number of characters in the
block<256
characters
. If block size < 256 then goto Step 15
: copy all characters of the block iinto an
array str[256]
. call function encryption() where str[] is
passed as parameter along with the size
of the current block
. if pass=1
set times=(times+times3*11)%64
set pass=pass+1
else if pass=2
set times=(times+times3*3)%64
set pass=pass+1
else if pass=3
set times=(times+times3*7)%64
set pass=pass+1
else if pass=4
set times=(times+times3*13)%64
set pass=pass+1
else if pass=5
set times=(times+times3*times3)%64
set pass=pass+1
else if pass=6
set
times=(times+times3*times3*times3)%6
4
set pass=1
. call function randomization() with
current value of times
: copy the elements of mat[16][16] into
key[256]
: read the next block
: goto Step 7
: copy the last block (residual characters ,
if any) into str[]
. call function encryption() using str[]
and the no. of residual characters
: Return

2) Algorithm of function encryption(str[],n)

Step 1
Step 2

Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10

: Start encryption() function
: set chl=0

: calculate ch=(str[0]+key[0]+ch1)%256
: write ch into output file

: set chl=ch

tseti=1

ifi>n then goto Step 13

. ch=(str[i]+key[i]+ch1)%256
: write ch into the output file
: chl=ch

D=+l

102

B.

Step 11
Step 12

. goto Step 7
: Return

Algorithm for DECRYPTION

Step 1 : Start

Step 2 :initialize mat[16][16] with 0-255 in row
major wise

. call function keygen() to generate times
and secure

: call function randomization()

: set times2=times

. call file_rev(fl,outfl)

: set k=secure

. if k<1 go to Step 15

. call function file_rev(outfl,file2)

: set p=k%6

:if p=0

call msa_decryption(file2,outfl)
call njjsaa(outfl,outf2)

call vernamdec(outf2,file2)

set times=times2

elseif p=1

call function vernamdec(file2,outf1)
set times=times2

call function msa_decryption(outfl,outf2)
call fumction njjsaa(outf2,file2)

call function file_rev(file2,outf2)
call function msa_decryption(outf2,outfl)
call function vernamdec(outfl,file2)
set times=times2

else if p=2

call njjsaa(file2,outfl)

call vernamdec(outfl,outf2)

set times=times2

call msa_decryption(outf2,file2)
elseif p=3

call vernamdec(file2,outfl)

set times=times2

call njjsaa(outfl,outf2)

call msa_decryption(outf2,file2)
elseif p=4

call msa_decryption(file2,outfl)
call vernamdec(outfl,outf2)

set times=times2

call njjsaa(outf2,file2)

else if p=5

call vernamdec(file2,outfl)

set times=times2

call msa_decryption(outfl,outf2)
call njjsaa(outf2,file2)

Step 3

Step 4
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10
Step 11

Step 12 : copy the content of file2 to outfl

Int'l Conf. Foundations of Computer Science | FCS'12 |

Step 13 . set k=k-1
Step 14 : Goto Step 8
Step 15 - End

1) Algorithm of function vernamdec(f1,f2)

The algorithm of vernamdec() function is same as
vernamenc() function. Here the only difference is that
decryption() function is called instead of encryption()
function.

2) Algorithm of decryption(str[],n)

Step 1 : Start
Step 2 : chl=0
Step 3 : ch=(256+str[0]-key[0]-ch1)%256
Step 4 : write ch into the output file
Step 5 D=l
Step 6 :if i=n then goto Step 12
: ch=(256+str]i]-key[i]-stri-1]) %256
Step 7 : write ch into the output file
Step 8 Disi+l
Step 9 : goto Step 6
Step 10 : chl=str[n-1]
Step 11 : Return

Algorithm of function file_rev(f1,f2) :

Step 1 : Start

Step 2 : open the file f1 in input mode
Step 3 : open the file f2 in output mode
Step 4 : calculate n=sizeoff(file f1)
Step 5 : move file pointer to n

Step 6 : read one byte

Step 7 :write the byte on f2

Step 8 :n=n-1

Step 9 . if n>=1 then goto step-6
Step 10 :close file f1,f2

Step 11 return

Now we will describe how we calculate
randomization number(=times) and encryption
number(=secure). The present method is fully
dependent on the text-key which is any string of
maximum length 16 characters long. From the text-key
we calculate two important parameters (i)
Randomization number and (ii) Encryption number. To
calculate this two parameters we use the method
developed by Nath et al(1).

Int'l Conf. Foundations of Computer Science | FCS'12 | 103

) Case-l: Suppose we want to encrypt FF then it will take as
NJJSAA Algorithm: GG which is just one character after F in the same row.

Nath et al.[2] proposed a method which is basically a bit Case —II: Suppose we want to encrypt FK where F and K
manipulation method to encrypt or to decrypt any file.Step-2Ppears in two different rows and two different columns.
1: Read 32 bytes at a time from the input file. FK will be encrypted to KH (FI© GI>HK>KH).

Step-2 : Convert 32 bytes into 256 bits and store in some §ase-lll: Suppose we want to encrypt EF where EF occurs
dimensional array. in the same row. Here EF will be converted to HG.

Step-3: Choose the first bit from the bit stream and also After encrypting 2 bytes we write the encrypted bytes on a
the corresponding number(n) from the key matrix. new output file. The entire encryption method we apply
Interchange the 1st bit and the n-th bit of the bit stream. Multiple times and the encryption number will be

Step-4: Repeat step-3 for 2nd bit,3rd bit,...256-th bit of ~determined by the process we have described in table-1.
the bit stream

Step-5: Perform right shift by one bit. Decryption Method: The decryption method will be the
Step-6: Perform bit(1) XOR bit(2), bit(3) XOR just the reverse process of encryption method as mentioned
bit(4).....bit(255) XOR bit(256) Above.

Step-7: Repeat step-5 with 2 bit right, 3 bit right,....n bit
right shift followed by step-6 after each completion of right|||. FIG-1: Block Diagram of Ultra

bit shift. Encryption Standard Version-I|
MSA (Meheboob, Saima, Asoke) Encryption plain
and Decryption algorithm: -
Nath et al.(1) proposed a symmetric key method where 155
they have used a random key generator for generating the SheBion,
initial key and that key is used for encrypting the given B
source file. MSA method is basically a substitution method
where we take 2 characters from any input file and then /J' N | rmea
search the corresponding characters from the random key QL)‘; Eppfion
matrix and store the encrypted data in another file. MSA Comorate
method provide us multiple encryption and multiple 18V am
decryption. The key matrix (16x16) is formed from all Bt input
. Y
characters (ASCII code 0 to 255) in a random order. e wm

Columnar
a Transposition

The randomization of key matrix is done using the
following function calls:

Step-1: call Function cycling()

Step-2: call Function upshift()

Step-3: call Function downshift()
Step-4: call Function leftshift()
Step-5: call Function rightshift()

I Randomization |
-
Write the encrypted
900 bytes intoc &ipher file
| euse

Increment p

Encrypt residual byte
by vernam cipher

IV. TEST RESULTS:

For detail randomization methods we refer to the done by

Nath et al(1).Now we will describe how we performthe In the present paper we have used multiple cryptography
encryption process using MSA algorithm (1): We choose aalgorithms. We have applied our method on some known

4X4 simple key matrix: text where the same character repeats for a number of times
and we have found that after encryption there is no
TABLE-3: KEY MATRIX (4x4) repetition of pattern in the output file. We have made series
of experiments on various known text files and have found
A|BJC|D the result is satisfactory. In Vernam cipher method we have
ETFI G R used the feedback to ensure the same pattern should not be
repeated in the encrypted text. The sequence of columns in
I 13K L the columnar method is also derived from the password.
MINITO P The TTJSA module has been incorporated to strengthen the
encryption process even further. The merit of this method is

104

Int'l Conf. Foundations of Computer Science | FCS'12 |

that it is almost impossible to break the encryption
algorithm without knowing the exact key.

Plain Text Cipher Text
he is good BueEtd wA
seis good T|-Ra¢’s_"kPu
ie is great _+bT_V'I®>
The Indian Higher educatiop ,~'AVZEPqAd &»aedcewY —

System has established itself

one of the largest in the world i
terms of the number and diversi
of institutions and studen
enrolment. However the nature
demand for higher education

the 2F' century is undoubtedly
influenced by macro-economi
trends like the changin
composition and preferences

students, an increasin
willingness to spend more o
quality education, a greatg

afe+nTd5@«_...E[~ees/EAED]
hAmMIW;21«H€20% Y,cOTA
tyrw;z;Ay_L’Jéoapn1| T3 "hd {FI
. _aHelze [FE%0ai @UEGR
L £8_&U)u"o™|0,8 T(y_EOY
Um_13AN %002*[UH_taU
My vipAW _i{_4_asQ2¥éyZ >
_aAaqUA2...f 6Z12LB'al=
C,X€o_OjjuW\$R!GBfi(@©(
g _E°U >, 17" ¢ox,” NtPr<!i
oft/ayCik_°al -HrJ° ug X_|
g%|qu:6F1°6rOw/72"@:u1'3/§a'¢,’
ngQ_’\(+O7é¢kéeu?UZ¢/YOE
(@ YUMBp£ajt I_AmR|
E__te'd G4l “3K$Vy

demand for global educatiom,_&rP:m 9€iKE JKiyZzo X

employability linked education

' &Ny 6 6 ®ip«E_JB!V4z,3

rapid privatization and sxsR<Sg’ul/Yjtle_G4-lua/uz

globalization. 19D_UU.[EANEL1DIST_Yad
UU";Cé°ErjE§*¢y£ce_Cl _¢é
pba_ O™éBif |A Ke

AAA A-yoe

ABA °$

A ¥oP

B z°

ACKNOWLEDGEMENT

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

We are very much grateful to Department of Computer
Science to give us opportunity to work on symmetric key
Cryptography. One of the authors (AN) sincerely expresses
his gratitude to Fr. Dr. Felix Raj and Fr. Jimmy Keepuram
for giving constant inspiration to carry out research work.

AN is grateful to the University Grants Commission for

giving financial assistance through Minor Research Project.
JN expresses her gratitude to A.K.School of IT for allowing
us to work in research project at St. Xavier's College. SR,

NM, TC, SA and AN are also thankful to all 3rd year

Computer Science Hons. Students (2011-2012 batch) for

their constant encouragemen

t to finish this work.

[10] Symmetric ke

REFERENCES

Symmetric Kez Cryﬂtography using Random Key
generator: Asoke Nath, Saima Ghosh, Meheboob Alam
Mallik: “Proceedings of International conference on
security and management(SAM’10” held at Las Vegas,
USA Jull 12-15, 2010), P-Vol-2, 239-244(2010).

A new Symmetric key Cra/ptography Algorithm using
extended MSA method :DJSA symmetric key
algorithm, Dripto Chatterjee, Joyshree Nath, Suvadeep
Da?\%gpta and Asoke Nath Proceedings of IEEE
CSNT-2011 held at SMvDU(Jammu) 3-5 June,2011,
Page-89-94.

New Symmetric key Cryptographic algorithm using
combined bit manipulat¥on and MSA encryption
algorithm: NJJSAA symmetric key algorithm: Neeraj
Khanna,Joel James,Joyshree ath, Sayantan
Chakraborty, Amlan Chakrabarti and Asoke Nath :
Proceedings of |IEEE CSNT-2011 held at
SMVDU(Jammu) 03-06 June 2011, Page 125-130.

Advanced Symmetric key Cryptography using
extended MSA method: DJSSA symmetric key
algorithm: Dripto Chatterjee, Joyshree Nath, Soumitra
Mondal, Suvadeep Dasgupta and Asoke Nath, Jounal
of Computing, Vol3, issue-2, Page 66-71,Feb(2011).
Advanced Steganography Algorithm using encrypted
secret message : Joyshree Nath and Asoke Nath,
International Journal of Advanced Computer Science
and Agfllcatlons, Vol-2, No-3, Page-19-24,
March(2011).
Symmetric key Cryptography usin% modified DJSSA
symmetric key algorithm, Dripto Chatterjee, Joyshree
ath, Sankar Das, Shalabh Agarwal and Asoke nath,
Proceedings of International conference Worldcom
2011 held at Las Vegas, USA, July 18-21, Page 312-
318, Vol-1(2011).
Cryf)to raphy and Network, Willian Stallings, Prentice

Hall of India.
Ultra Encryption Standard(UES) Version-I
Symmetric Key Cryptosystem using generalized

modified Vernam Cipher method, Permutation method
and Columnar Transposition method, Satyaki Roy,
Navajit Maitra, Shalabh Agarwal and Asoke Nath,

Proceedings of RACCCT 2012, held at Surat , Mar 29-
30, Page-81-88(2012)

An Integrated symmetric key cryptography algorithm

using generalized vernam cipher method and DJSA
method: DJMNA symmetric key algorithm, Debanjan

Das, Joyshree Nath, Megholova Mukherjee, Neha
Chaudhury and Asoke Nath, Proceedings of IEEE
conference WICT-2011 held at Mumbai University

Dec 11-14,2011

t cryptosystem using combined
cryptographic algorithms-generalized modified
vernam cipher method, MSA method and NJJSAA
method: TTJSA algorithm, Trisha Chatterjee,
Tamodeep Das, Joyshree Nath, Shyan dey and asoke
Nath, Proceedings of IEEE conference WICT-2011
held at Mumbai University Dec 11-14,2011.

Int'l Conf. Foundations of Computer Science | FCS'12 |

A case of study for learning to design SPMD applications efficiently
on multicore cluster*

Ronal Muresano, Dolores Rexachs and Emilio Luque
Computer Architecture and Operating System Department (CAOS)
Universitat Autonoma de Barcelona, Barcelona, SPAIN
rmuresano @caos.uab.es, dolores.rexachs@uab.es, emilio.luque @uab.es

Abstract— The current trend in high performance comput-
ing (HPC) is to find clusters composed of multicore nodes.
These nodes use a hierarchical communication architecture,
which has to be handled carefully by students when they want
to improve the parallel performance metrics. For this reason,
we have proposed a teaching methodology for students in
computational sciences with the aim of developing their
SPMD (Single Program Multiple Data) parallel applica-
tions efficiently based on theoretical and practical sections.
This novel methodology for teaching parallel programming
is centered on improving parallel applications written by
students through their experiences obtained during classes.
Students achieved these improvements in their applications
through applying novel strategies in order to manage the
imbalances issues generated by the hierarchical communi-
cation architecture of multicore clusters. Also, this method-
ology allows students to discover how to improve their
applications using characterization, mapping and scheduling
strategies. Finally, the SPMD applications are selected be-
cause they can present imbalance issues due to the different
communication links included on multicore clusters and
these issues may create an interesting challenges for students
when they wish to enhance the performance metrics. In
conclusion, applying our teaching methodology, students
obtained a significant learning skill designing their SPMD

parallel applications.

Keywords: Performance Metrics, Multicore, Teaching Models,

Methodology for efficient execution, SPMD.

1. Introduccion

The inclusion of parallel processing in undergraduate
degree has been widely justified and it has been integrated
into the curriculum when it has become much easier to
use and much more widely available the parallel resources
[1]1[2]. Currently the trend in high performance computing
(HPC) is to find clusters composed of multicore node, and
the learning process has to be updated to use this new trends.
Also, the multicore nodes add heterogeneity levels inside

* This research has been supported by the MEC-MICINN Spain under

contract TIN2007-64974.
*Contact Autor: R. Muresano, rmuresano @ caos.uab.es
This paper is addressed to the FECS conference.

parallel environments and these heterogeneities have to be
handled by students carefully when they wish to improve
the performance metrics. Such computation and commu-
nication heterogeneities in the nodes generate interesting
challenges that students of parallel programming courses
must be prepared to deal with, when they want to enhance
the application performance.

Also, the integration of multicore nodes in High Per-
formance Computing (HPC) has allowed the inclusion of
more parallelism within nodes. However, this parallelism
must deal with some troubles present in multicore environ-
ments [3]. Problems such as: number of cores per chip,
data locality, shared cache, bus interconnection, memory
bandwidth, etc., are becoming more important in order to
manage the parallel execution efficiently. The increasing
use of multicore in HPC can be evidenced in the top500
! list in which most of the today cluster are set up with
multicore nodes. For this reason, students have to learn new
parallel programming strategies with the aim of enhancing
the performance metrics in these environments. Indeed, the
need for students to learn parallel application topics and tools
is growing [4]. In fact, parallel application development has
been included in different areas such as: biology, physics,
engineering, etc [5] . and these inclusions have created
the needs to incorporate this important topic in computer
science curriculum. Including the efficient management of
multicore environment topic into the parallel programming
course content is very important because the current trend
in computational science is to use parallel computing.

However to achieve an efficient execution, the instructor
has to manage some issues that student can present when
they design their parallel applications [6] [7]. One of the
difficulties for students is to change their previous program-
ming knowledge, which is focused on designing sequential
applications. This focus is totally different when parallel
applications are programmed and even more when these
applications have to be designed for a multicore cluster.
In these order, tasks divisions between cores and the hier-
archical communication architecture included on multicore
clusters are topics that students have to consider when

'TOP500 is a list which provides a rank of the parallel machines used
for high performance computing www.topS00.org

105

‘Wave mediation Heat Transfer Fluid dynamics

&4
s Z0

Communication Patterns

SPMD Examples SPMD Applications ««-« SPMD app.
d Issues on Multicore
,./)J\

Problem Size ----

O =
=E = ﬂ\\ﬂ/}@
== H—B-E _______

7 /"/ l‘Q‘ Other
.-E-n B IE‘ Communication

2Communication | 4Communication | 8Communication Pattems
pertile pertile pertile

Leaming a new Methodology for
f

improving the performance of
SPNID applications on Multicore

Fig. 1: SPMD and communications patterns.

they want to design their applications efficiently. Another
issues presented by students are related to mapping and
scheduling strategies, which have to be included in order
to develop suitable strategies with the aim of managing the
inefficiencies generated by communication heterogeneities.

Given the above, parallel programming courses have to
incorporate teaching strategies that allow students to solve
their programming issues on multicore environments apply-
ing real parallel processing experiences. These strategies
have to be focused on executing parallel application effi-
ciently. The main goal of our methodology is to obtain
a constructivism learning process of parallel computing,
where students can design their applications considering
performance metrics such as: execution time, speedup and
efficiency. Also, our methodology includes the consideration
of how students can improve their application with the aim of
executing their applications on multicore clusters efficiently.
For this reason, this work is focused on creating a significant
learning process for student of parallel programming with
the objective of adapting them to the new technologies of
multicore and also with the aim of developing a learning en-
vironments that permit students to improve the performance
on multicore clusters.

To design our teaching methodology, our course was
mainly focused on one of the most widely used parallel
paradigm in computational science SPMD (Single Program
Multiple Data) [8]. This paradigm has been selected due
its behavior, which is to execute the same program in all
processes but with a different set of tiles [9]. The tiles of
this parallel paradigm have to exchange their information
between iterations and these exchanging can become in
a huge issue when the communication is performed by
different communication links with different speeds and
latencies. In this sense, students have to work with different
communication behaviors and they have to consider these
behaviors when they wish to achieve an improvement in
parallel performance metrics (Fig. 1). As is shown in figure
1, the communication pattern can vary according to the
objective of the application and these patterns are defined
in the beginning of the SPMD application.

Taking advantage of the problems presented by students
related to: designing parallel applications, programming the
communication pattern of SPMD applications and managing

Int'l Conf. Foundations of Computer Science | FCS'12 |

of the hierarchical communication architecture of multi-
core clusters. Our methodology includes strategies, which
allow them to design their applications using an active
learning process. This process enables students a constant
class participation, in which parallel application issues are
discussed and improved with the instructor. Our teaching
method has been designed to change the traditional lecture
method applied in computational classes. We mainly take
into consideration the student interactions and their parallel
designed contributions. Our methodology is integrated by
four phases: an application and multicore architecture anal-
ysis, an application performance evaluation, a methodology
for improving efficiency and speedup of SPMD applica-
tions on multicore clusters and finally a parallel application
improvements. These phases allow student to design their
SPMD applications on multicore clusters efficiently.

The objective of the first phase is to permit students
to create different point of views of the SPMD parallel
applications and its communication pattern behavior. Also,
this phase describes how to study the multicore architecture
(different cache levels, interconnections network on chip
(NOC), etc.) and which are the main factors that can affect
the performance metrics in parallel applications. This phase
allow students to design a first version of their SPMD
applications and they can analyze the behavior on these
multicore environments.

The application performance analysis phase is focused on
determining the issues of students designing their applica-
tions. In this phase, students have to consider the efficiency,
speedup and execution time as performance evaluation met-
rics. Next, students analyze their results obtained and they
propose the performance improvement which will be applied
in the last version together with proposes changes that
instructor will give them in next phase.

The following phase is the application by students of a
strategy for improving the efficiency and speedup of SPMD
applications on multicore clusters [10]. This strategy is
organized in four phases: characterization (the application
and the environment), tiles distribution (maximum number
of tile that each core has to execute), mapping strategy
(distribution of the SPMD application tile over the cores),
and scheduling policy (execution order of the assigned tile).
These phases simultaneously with the student considerations
obtained allow students to design their SPMD application
efficiently.

The last phase of our teaching methodology is the parallel
application improvement. This phase enables students to
apply their proposed enhances, and then, they have to
expose their final results. Also, this phase includes solutions,
which permit them to solve and improve their last parallel
applications version. Students make a final comparison in
which the first and the last versions are evaluated in order
to determine if the new proposed changes have improved the
parallel execution.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Node 1 SPMD App o >
[] []

50| [550| | e o (R
_A:M '_AA_W :HIH:Hﬂ -Hj:wji Aj'[:.(:J|
= =S| e s O
£ P i i
__T¢ s

Intercore (link A}

Interchip (link B
(Shared cache memory) nterchip (link B)

-Commumcat\on
D Tile execution

<-> ldletime

Intercore (link A1)

(No Shared Cache memory) Internode {link C}

Fig. 2: SPMD applications and multicore cluster

The main approach of this teaching methodology is to
allow students to create new parallel applications focusing
on the new computational architectures. This methodology
is based on creating a significant learning process in which
students can identify new point of view and learn how
to apply new strategies for improving performance metrics
that can be applied with other parallel technologies such
as, grid computing, multicluster, cloud etc. Finally, this
methodology has been applied in the 2010-2011 period in
computer engineering classes to students of the Autonomous
University of Barcelona.

This paper is structured as follows: the issues of SPMD
applications on multicore clusters is described in section 2,
Then, section 3 presents the teaching methodology. Section
4 explains how the methodology has been included into the
computer sciences curriculum and gives details about the
experiences obtained. Finally, the conclusion are given in
section 5.

2. SPMD applications and multicore
clusters

The hierarchical communication architecture present on
multicore clusters can create imbalance issues between pro-
cesses and these issues have to be considered by students
when they design their parallel applications. These issues
can increase when a pure MPI (Message Passing Interface)
applications with high communication volume as an SPMD
application wants to communicate through different commu-
nication links. The figure 2 shows an example of executing
an SPMD application over a multicore cluster where tiles are
computed in a similar time due the homogeneity of the core
but the communications are performed by different links.
Each link can include up to one and a half order of magni-
tude of difference in latency for the same communication
volume. These differences are translated into inefficiency
and they may decrease the application performance. For
this reason, students have to apply strategies using mapping
and scheduling policies with the aim of improving the
performance metrics in their applications.

The SPMD paradigm shows more frequent design prob-
lems related to the communications imbalance factors due
to the great communications number between neighbors and

Phase 4

« Application and * Methodology for

Viliiitzee - Application JIBLSYI « Parallel
architecture performance Efﬁc'zncy ?”d application
analysis i speedup of i

y: evaluation SPMD app. improvements

Fig. 3: Teaching methodology phases

the students have to manage when a heterogeneous commu-
nication environments as multicore are used. The diversities
of these parallel paradigms make their issues and advantages
more interesting and challenging when these paradigms are
taught to students. For this reason, students have to be
focused on learning how to improve the performance metrics
in these environments.

From the above, the main objective of our teaching
methodology is to allow students through their own experi-
ences (active learning process) to apply techniques, which
allow them to solve their computational challenges focusing
on optimizing the computational resources. The students
have to understand that parallel programming is acquiring
an ever increasing acceptance and it is applied to solve high
computational performance scientific problems in diverse
fields. The trend of using parallel programming is thanks
to its achieving more accurate results, highest performance,
lowest cost, and lowest execution time and these concept
have to be correctly applied by students.

3. Teaching Methodology

The objective of this methodology is that students can
learn how to distribute or design their SPMD applications.
The issues presented on multicore environments could gen-
erate confusion in students when they wish to enhance
the performance metrics. However, our methodology is
focused on creating a transformation in students through
their experiences acquired in the classroom. To achieve
these experiences, we have included in our teaching process
an strategy for improving SPMD applications on multicore
clusters [10]. This strategy is based on creating a balance
between the workload tile distribution and the latency of
the different communication links. Also, this method is
focused on obtaining the maximum speedup of parallel
application while the efficiency is defined over a threshold.
This kind of strategy has been interesting to include in the
teaching process for student because it allows us to explain
students how to improve the performance metrics of SPMD
applications on multicore clusters.

The phases of our teaching methodology are shown in
figure 3 and are divided as follow: an application and
multicore architecture analysis phase, an application perfor-
mance evaluation, a methodology for improving efficiency
and speedup of SPMD applications on multicore clusters and
finally a parallel application improvements. These phases

107

108

are the focus of our methodology and these allow students
through active learning to design their parallel applications
with the concepts taught in theoretical classes. The teaching
methodology can be considered successful, when students
propose and apply the strategies, which allow them to
enhance the performance metrics. The evaluation process
is made through programming assignments, which students
have to present at the end of the course. Hence, these phases
allow us to have an active interactions with students, which
permit them to develop different point of views and create
some criteria about how to apply strategies for improving
performance and how students can use their own experiences
obtained during the classes in their applications.

3.1 Applications and multicore architecture
analysis phase

This phase permits students to learn what can be the
problematic issues of their parallel applications into a hi-
erarchical communication environment and how they could
apply strategies in order to enhance the performance metric.
The applications and multicore architecture analysis phase is
divided in two directions. The first one is focused on finding
the application factors that can affect the performance. In this
sense, students have to identify the application communica-
tion patterns, the communication volumes, the computational
complexity, etc. Next, these factors have to be analyzed
using the computational architecture with the objective of
obtaining the weak point of the application.

Once students have analyzed the applications, the in-
structor has to explain the following topics that can have
influences in the performance: the effects of the different
communication links presented on multicore clusters, the
cache size and level, the interconnections between cores
(communication busses), etc. The considerations have to be
handled carefully by students when they wish to improve
the performance metrics.

Using the instructor considerations, students have to de-
sign their SPMD applications using the consideration learned
in this phase. To develop these applications, students have
to apply the concepts learned in theoretical classes. After
that, students and instructor have interactions with students,
where the issues obtained are discussed and instructor pro-
pose some modifications with the aim of improving the
performance.

3.2 Application performance evaluation

This evaluation is performed with the aim of checking the
hypothesis established in last phase about the effects of dif-
ferent communication links on multicore. The performance
evaluation allows students to discover their own error and
how these can affect the efficiency and speedup.

In this phase are performed different analyses for the
SPMD applications. One of them is focused on the effi-
ciency, in which students have to identify the time that

Int'l Conf. Foundations of Computer Science | FCS'12 |

Intercore

Intercore
No Cache

InterChip

InterNode

I Communication

Computation

Fig. 4: Application analysis

communications are carried out for the total execution. Also,
they have to determine if there are imbalance elements due
to the effects of the different communications latencies and
speeds and how these elements may affect the efficiency.
The next analysis is based on the computational of each
tiles and students have to determine the relationship between
computational and communication of a tile in SPMD appli-
cation. After these analyses, students have to discover if they
can propose some suitable alternatives in order to improve
the performance. The figure 4 illustrates a characterization
example of the performance evaluation, where tile communi-
cation has different order of magnitude in latency according
to the link used to perform the communication. This issues
can compromise the parallel application performance and the
students have to identify these design problems.

Finally, the instructor and students have interactions in
which the performance metrics are discussed and analyzed
by them. Thus, in this phase students have to explain their
applications and their errors. The first presentations are
centered on evaluating the issues of all students and the
instructor can determine if the problems for example are
related to mapping, load balancing, imbalanced communi-
cations, etc. This active learning process permits students to
be connected with the parallel programming topics and also
creates a learning environment where students opinions are
very important for their learning development.

3.3 Methodology for improving the perfor-
mance of SPMD applications on multicore.

Once the students have understood which are the problems
that affect the efficiency and speedup of SPMD applications
on multicore environments. They have to apply strategies
with the aim of improving the performance metrics. In
this sense, we have included one method that allow to
design SPMD applications with the objective of reaching the
maximum speedup while the efficiency is maintained over
a defined threshold by the programmer. The main objective
of this mehtod is to find the maximum number of cores
that permits us to maintain a relationship between both
efficiency and speedup with a specific problem size [10].

Int'l Conf. Foundations of Computer Science | FCS'12 |

Characterization

Efficient Execution on
Multicore Environments

§ e

Efficiency overa
Threshold

Number of Core to
obtain the maximum
strong scalability

Mapping

Fig. 5: Method for efficient execution of SPMD applications
on multicore Clusters

\ J

Maximum
Speedup

This method allows students to apply the knowledge learned
during the two last phases, in which the computational
and communication patterns have been identified and the
issues which affect the performance of SPMD applications
are discovered. Then, we established a question about how
can this performance method be integrated with our teach-
ing methodology in order to obtain a significant learning
process?. The answer is focused on creating a learning
environment, where the stages of this method are included
in our teaching program progressively verifying the learning
success of this integration.

The first stage is the characterization process. This stage is
responsible for gathering the necessary parameters of SPMD
applications and environment in order to calculate the tile
distribution model. Students have to run this characterization
process in a controlled and monitored manner with the
objective of extracting the parameters according to the tile
distribution model needs. The characterization parameters
are classified in three groups: the application parameters,
parallel environment characteristics and the defined effi-
ciency. This characterization enables students to determine
the number of communication links, communication vol-
umen of a tile, computation time, etc. In this point, the
instructor can reinforce the parameters learned about the
multicore architecture and these allow students to create and
understand the weak point of SPMD applications.

The second stage (tile distribution model) is based on
calculating the ideal number of tiles that must be assigned
to each core and the number of core needs with the aim
of obtaining the maximum speedup while the efficiency is
over a defined threshold. To calculate this model, students
have to use the parameters obtained in characterization phase
and they have to use an analytical model which was defined
in [10]. The objective of this model is to create a set of
tiles called Supertile (ST) where a ST is divided in two
types internal and edge tiles. The aim of this division is to
allow the application executing first the edge tiles and then,
to overlap the edge communications with the internal tiles

execution.

The following stage is to make use of the mapping
strategy. This mapping purpose is to allocate the ST among
the cores with the aim of maintaining the desired efficiency.
These assignations are made applying a core affinity to
assign the set of tiles according to the policy of minimizing
the communications latencies. Another element included in
the mapping module is the logical distribution of the pro-
cesses. This distribution process is done through a cartesian
topology of the processes. This is a logical process in
which students can identify through MPI commands the
location of each process. Then with this topology, each
process has two coordinates, which enables us to identify
the communications neighbors. Also, these two coordinates
identify the cores and where it has to be allocated.

Finally, students have to apply the scheduling stage. The
objective is to coordinate the execution order of each tile
within the core. The scheduling is divided into two main
parts: the first one is to develop an execution priority
which determines how tiles will be executed inside the
core and the second part which is focused on applying
an overlapping strategy between internal computation and
edge communication tiles. Each tile has an execution priority
where the highest priorities are established for tiles, which
have communications through slower paths.

The integration of this method to our teaching method-
ology has allowed us to create interactive classes, where
students can apply their learning with the aim of obtaining an
efficient parallel execution. Also, students can propose new
suitable strategies for improving the SPMD applications.
This performance method has been applied during all the
semester and students have included this method to design
their new versions and compare the result obtained.

3.4 Parallel application improvements

The objective of this phase is to analyze the improvements
applied to each SPMD applications by students. These
improvements are achieved through the union of the instruc-
tor and students considerations, and the application of the
performance method explained before. The applications are
tuned using the characteristics of the clusters and employing
mapping and scheduling strategies.

The students have to perform a new performance evalua-
tion with the aim of evaluating the improvements achieved.
This evaluation permits students to analyze the relevance
of the performance method and the influences of the mul-
ticore architecture into the SPMD applications. In addition,
students have to evaluate if they in fact have achieved an
improvement in the parallel application metrics and how
this improvements have been reached. Students have to
evaluate if the concept learned in theoretical classes and
the practical method used in labs have allowed them to
obtain better efficiency and speedup levels. The interactions
between instructor and students allow us to have a feedback

109

110

1,00E+00

1,00E-01

1,00E-02

1,00E-03

Communication Time SegLog(10)

1,00E-04

1,00E-05

Packet Size (KB)
#nterCore Cachel2 M Intercore nosharedcache L2 Winterchip Internode

Fig. 6: Latencies of different communication links

with student, these important iteration have been done in the
final assignment, where students have to expose their works.

Finally, our teaching methodology gives students strate-
gies to solve their parallel problem efficiently. An important
key of our teaching methodology is that it allows students to
learn through their own mistakes and experiences and learn
how to solve them efficiently.

4. Methodology results and experiences
obtained

Our teaching methodology tries to create innovative learn-
ing sceneries, where students can construct new points of
views when they design parallel applications. This new
teaching methodology has been applied in the period 2010-
2011 in the parallel programming course of computer engi-
neering and the modelling and simulation of the master in
computer science at the Autonoma of Barcelona University.
We applied our teaching methodology to 38 students. These
students evaluated a set of scientific SPMD applications
according to the communication patterns. The applications
analyzed were the heat transfer applications, wave equation
and the Nbody, each of these applications have their own
communication pattern that could be considered as an inter-

100 7

90+~

80+
70 7

60+

50 17

% efficiency

40 7
30

20+

2 4 8 18 32 64
N° Cores
® Heat Transfer App (10000x6000)

m\Wave Equation (18000) Nbody (1000000}

Fig. 7: First draft efficiency average obtained by students

Int'l Conf. Foundations of Computer Science | FCS'12 |

=| MPIMessage |:|| Edge Computation
|:|I Internal C -I C

Fig. 8: Execution Trace of Heat Transfer App.

esting challenge for students. Also, the students experiments
were conducted on a DELL multicore cluster with 8 nodes,
each node has 2 Quadcore Intel Xeon E5430 of 2.66 Ghz
processors, and 6 MB of cache L2 shared by each two core
and RAM memory of 12 GB by blade.

Under this interesting scenario, we have assigned stu-
dents the applications mentioned before, where they design
their first parallel applications. This process was carried
out using our teaching methodology, in which instructor
and students interact with the first phase (application and
multicore architecture analysis) of our methodology. The
most important result of this phase can be observed in
figure 6, where were identified the different communication
levels on multicore clusters. Also, this process of analysis
allowed the instructor to establish the necessaries conditions
to answer the multiple numbers of questions of students that
arising from the problems visualization of this phase. These
interesting exchanges of knowledge between instructor and
students permitted the class to be a learning space, where the
fundamental key was to create a significant learning process.

Once students have obtained their first draft of their appli-
cations, they have to evaluate the performance. The figure
7 shows an example of the first draft, where is evaluated
the application efficiency. These applications were designed
in groups formed by 3 students and the performance results

100% 1,45
90% e . 1
80% - h(

1,35
70%
L 5

2 60% - 130 8

g

& 's0% | T 125 §

8 2

£ 40% - | 3

g f120 &
30% -

L1415
20% -
10% - | 1,10
0% - ‘ ‘ : 1,05
2 4 8 16 32

Core Number

=21 draft student efficiency
—o-—Efficiency Desired

=Efficiency Applying the Methodology
& Speedup Improvement

Fig. 9: Heat transfer application efficiency improvements

Int'l Conf. Foundations of Computer Science | FCS'12 |

were acquired by students. Then, they analyzed the effect
that can affect the performance on multicore. After this,
the instructor reinforces the theoretical concepts and gave
examples that student can associate with the issues founded
in their parallel versions. In this phase, the most common
problems observed were related to workload division, local-
ity, tiles division, few overlap strategies, wrong mapping and
scheduling strategy etc. These errors were detected through
the interactions between instructor and students.

The next step is to teach the student a strategy for improv-
ing the performance metrics. As mentioned before, we used
a methodology defined for SPMD applications, where the
main objective is to find the number of tiles necessaries in
order to achieve the maximum speedup while the efficiency
is maintained over a defined threshold. In this order, students
applied the stages of this method and they observed the
influences that hierarchical communication architecture can
have over SPMD applications. The instructor can explain the
stage of the method and students applied to their code with
the aim of improving efficiency and speedup.

The figure 8 shows an example of student execution trace
of heat transfer application, where we can observe how
the edge tiles was executed first and then is observed the
overlapping process between internal computation tile and
edge communication tiles. This strategy has allowed students
to improve their SPMD applications because the inefficiency
factors have been controlled.

The integration of this performance method with our
teaching methodology permit students to develop new skills
that allows them to apply their work in the parallel comput-
ing field. Finally, the last evaluation is about the effectiveness
of this integration. Students have to redesign their appli-
cation with the consideration and the performance method
strategies. In this sense, students can apply the knowledge
obtained during the semester into their applications. Finally,
students have to design a second version of their application.
An example of one student is shown in figure 9, where we
can observe the improvements obtained in efficiency and
speedup which is around 40% between the firts and the
second draft.

The most important element that we have observed dur-
ing this teaching period was related to students’ skills in
designing SPMD applications. The experiences and the new
concepts developed by students through this learning process
have allowed that this teaching methodology can be applied
with other parallel paradigm. Only, we have to change the
performance method that allows us to execute and to evaluate
efficiently the parallel paradigm. Finally, the main key of a
significant learning process is to consider the students point
of views as a helpful and powerful learning tool.

5. Conclusion and futures works

This article has presented a teaching methodology that
allows student through an active learning process to design

their parallel applications efficiently on multicore cluster. To
obtain this, we have included in the teaching process an
efficient method for efficient execution of SPMD applica-
tions on multicore clusters using a load balancing, mapping
strategy and a scheduling policy. The most important result
obtained with our teaching methodology was the reflected
motivation found in students when they design their parallel
applications efficiently. Students have shown a considerable
improvement in their parallel application design skills. These
students skills have been improved due to the combination
of a teaching methodology with a performance strategy
and both elements have created a learning environment
where the discussion about how to improve the applications
performance has been the most powerful learning strategy.

Also, our teaching methodology allowed students to solve
the issues of their parallel applications and students demon-
strated how they can apply a methodology for improving
SPMD applications on multicore clusters. The results ob-
tained of the students’ applications have been successfully,
where the best cases they obtained an improvement around
40% over the first draft. This methodology has been taught
in the period of 2010-2011 for computer engeniering and
computer science master students at University Autonoma
of Barcelona. Future works are focused on including other
parallel paradigms such as Marter/Worker, pipeline, etc. All
these paradigms will be included in our teaching methodol-
ogy using multicore clusters under the focus of creating an
active learning process in students.

References

[1] C. Nevison, “Parallel computing in the undergraduate curriculum,”
IEEE Computer, vol. 28 issue 12, pp. 51-56, 1995.

[2] J. Adam, C. Nevison, and N. Schaller, “Parallel computing to start
the millennium,” Thirty first ACM Technical Symposium on Computer
Science Education, pp. 65-69, 2000.

[3] 1. M. B. Nielsen and C. L. Janssen, “Multicore challenges and benefits
for high performance scientific computing,” Sci. Program., vol. 16, pp.
277-285, December 2008.

[4] L.R.S. A. Clark and B. Bagheri, “Education and research challenges
in parallel computing:,” International Conference on Computational
Science ICCS 2005, pp. 44-51, 2005.

[5S] R. Guha and J. Hartman, “Teaching parallel processing: Where
architecture and language meet,” Frontiers in Education, 1992. Pro-
ceedings. Twenty-Second Annual conference, pp. 475479, 1992.

[6] T. Chen, Q. Shi, J. Wang, and N. Bao, “Multicore challenge in
pervasive computing education,” pp. 310 =315, 2008.

[71 R. Muresano, D. Rexachs, and E. Luque, “Learning parallel pro-
gramming: a challenge for university students,” Procedia Computer
Science, 10 International Conference on Computational Science 2010,
vol. 1, no. 1, pp. 875 — 883, 2010.

[8] R. Buyya, High Performance Cluster Computing: Architectures and
Systems, P. Hall, Ed. Prentice Hall PTR Upper Saddle River, NJ,
USA, 1999.

[9] F. Darema, “The spmd model: Past, present and future,” Proceedings

of the 8th European PVM/MPI, p. 1, 2001.

R. Muresano, D. Rexachs, and E. Luque., “Methodology for effi-

cient execution of spmd applications on multicore clusters,” 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing (CCGRID), IEEE Computer Society, pp. 185-195, (2010).

[10]

111

112

Int'l Conf. Foundations of Computer Science | FCS'12 |

Modified Caesar Cipher method applied on
Generalized Modified Vernam Cipher method with
feedback, MSA method and NJJSA method: STJA

Algorithm

A. Somdip Dey', B. Joyshree Nath” and C. Asoke Nath®
"“Department of Computer Science
St. Xavier’s College [Autonomous]
Kolkata, India.
A .K.Chaudhuri School of IT, Calcutta University, Kolkata, India
Email: 1somdip007@hotmail.com, 3joyshreenath@gmail.com 4asokejoyl@gmail.com

Abstract — In this paper the authors present a new
combined symmetric-key cryptographic method, named
STJA, which is basically based on modified Caesar
Cipher, generalized modified Vernam Cipher, MSA and
NJJSA. The cryptanalysis shows that TTJSA and TTSJA
are free from standard cryptographic attacks such as
differential attack, plain text attack or any brute force
attack. In the present method the authors have used
generalized modified Caesar Cipher method, where the
authors have modified the standard Caesar Cipher
method and then they applied TTJSA method to make the
entire crypto system very hard to break. TTJSA is also a
combined symmetric key cryptographic method. In
modern world keeping the data safe online is most
important and of highest concern. For this reason, this
combined cryptographic method, STJA is used, so that it
is almost difficult for cryptographic hackers to break the
cryptography method. This method has been tested on
different plain text, consisting of different ASCII values
(even with ASCII value 1,2,3 and so on) and the spectral
analysis of the plain text and the encrypted is also been
shown. The spectral analysis shows that the present
cryptography method, STJA can not be broken with any
kind of standard cryptography attack.

Keywords: Caesar Cipher; TTISA; MSA; NJISA; UES;
DIMNA; Cryptography;

1. Introduction

In modern world, security is a big issue and securing
important data is very essential, so that the data can not
be intercepted or misused for illegal purposes. For
example we can assume the situation where a bank
manager is instructing his subordinates to credit an
account, but in the mean while a hacker interpret the
message and he uses the information to debit the account
instead of crediting it. Or we can assume the situation
where a military commander is instructing his fellow
comrades about an attack and the strategies used for the
attack, but while the instructions are sent to the
destination, the instructions get intercepted by enemy
soldiers and they use the information for a counter-attack.
This can be highly fatal and can cause too much

destruction. So, different cryptographic methods are used
by different organizations and government institutions to
protect their data online. But, cryptography hackers are
always trying to break the cryptographic methods or
retrieve keys by different means. For this reason
cryptographers are always trying to invent different new
cryptographic method to keep the data safe as far as
possible.

The modern day cryptographic methods are of two
types: (i) symmetric key cryptography, where the same
key is used for encryption and for decryption purpose. (ii)
Public key cryptography, where we use one key for
encryption and one key for decryption purpose.

Symmetric key algorithms are well accepted in the
modern communication network. The main advantage of
symmetric key cryptography is that the key management
is very simple. Only one key is used for both encryption
as well as for decryption purpose. There are many
methods of implementing symmetric key. In case of
symmetric key method, the key should never be revealed
/ disclosed to the outside world or to other user and
should be kept secure. The key should be known to
sender and the receiver only and no one else.

Our present work, STJA is also symmetric key
cryptographic method, which is basically based on
generalized modified Caesar Cipher method [1] and
TTISA [2], which itself is based on generalized modified
Vernam Cipher [2], MSA [3] and NJJSA [4]. Depending
on the key entered by the user the functions of
generalized modified Caesar Cipher and TTJSA are
called randomly and then executed. The present method
uses multiple times encryption to encrypt the plain text
data.

2. Method Used In The Present Work:

In this method the authors apply a modified form of
advanced Caesar Cipher [1] cryptographic method. In
cryptography, a Caesar cipher, also known as a Caesar's
cipher or the shift cipher or Caesar's code or Caesar shift,
is one of the simplest and basic known encryption
techniques. It is a type of replacement cipher in which
each letter in the plaintext is replaced by a letter with a

Int'l Conf. Foundations of Computer Science | FCS'12 |

fixed position separated by a numerical value used as a
"key". But, in this method, STJA, any character (ASCII
value 0-255) are not separated by a fixed numerical value,
in fact it is a variable numerical value, which is dependent
on a non-linear polynomial function.
This present method is achieved by executing
following two methods in random:
(1) Encrypt the data using generalized modified
Caesar Cipher method
(i1) Encrypt data using TTISA method

In this present method, STJA, the user enters a secret
key called as password and from that key we generate
unique codes, which are successively used to encrypt the
message. For decryption purpose we use just reverse
process to get back the original plain text. During
decryption the user has to enter the same secret key
otherwise the decryption will not be successful. Now we
will describe in detail the encryption procedure.

2.1.Encryption of data using modified Caesar
Cipher:

2.1.1 Generation of Code and power_ex from the
Secret Key

The key is provided by the user in a string format and
let the string be ‘pwd[]’. From the
given key we generate two numbers:

‘code’ and ‘power_ex’, which will be used for encrypting
the message. First we generate the ‘code’ from the pass
key.

Generation of code is as follows:

To generate the code, the ASCII value of each
character of the key is multiplied with the string-length of
the key and with 2', where ‘i’ is the position of the
character in the key, starting from position ‘0’ as the
starting position. Then we sum up the resultant values of
each character, which we got from multiplying, and then
each digit of the resultant sum are added to form the
‘pseudo_code’. Then we generate the code from the
pseudo_code by doing modular operation of pseudo _code
by 16, i.e.

code = Mod(pseudo_code, 16).

If code=0, then we set code =pseudo_code

The Algorithm for this is as follows:
Let us assume, pwd[] = key inserted by user

pp=2',i=0,1,2,........ n;n €N.

Note: i can be treated as the position of each character of

the key.

Step-1 : p[] = pwd[]

Step-2 : pp=2"

Step-3 : i=0

Step-4 : p[i] = pwd[i];

Step-5 : p[i] = p[i] * strlen(pwd) * pp;

Step-6: csum = csum + p[i];

Step-7: i=i+1

Step-8: if i < length(pwd) then go to step-4
Step-9: if csum #* 0 then go to Step-10 otherwise

go to Step-14

Step-10: ¢ =Mod(csum , 10)

Step-11: pseudo_code=pseudo_code +c;

Step-12: csum = Int(csum / 10)

Step-13: Go to step-9

Step-14: code =Mod (pseudo_code, 16)

Step-15: End

Note: length(pwd)= number of characters of the secret
key pwd[].

The ‘power ex’ is calculated as follows:

We generate power_ex from the pseudo_code generated
from the above method. We add all the digits of the
pseudo_code and assign it as temporary_power_ex. Then
we do modular operation on temporary power ex with
code and save the resultant as power ex.

ie.

power_ex =Mod (temporary power_ex, code)

If power_ex = 0 OR power_ex = 1, then we set power_ex
= code.

For example, if we choose the password, i.e. the key
to be ‘hello world’. Then,
Length of pwd =11
code =10
power_ex =4

Thus, we generate code and power ex from the key
provided by the user.

2.1.2 Encrypting the Message using code and
power_ex

Now we use the code and power_ex, generated from
the key, to encrypt the main text (message). We extract
the ASCII value of each character of the text (message to
be encrypted) and add the code with the ASCII value of
each character. Then with the resultant value of each
character we add the (power_ex)"i, where i is the position
of each character in the string, starting from ‘0’ as the
starting position and goes up to n, where n=position of
end character of the message to be encrypted, and if
position = 0, then (power_ex)"i = 0.

It can be given by the formula:

text[i] = text[i] + code + (power_ex)’

If text[i] > 255 then text[i] = Mod(text[i],256) : ‘i’ is the
position of each character in the text and text[] is the
message to be encrypted, where text[i] denotes each
character of the text[] at position ‘i’.

For example, if the text to be encrypted is ‘aaaa’ and
key=hello world, i.e. text[]=aaaa and pwd=hello world,
then

a” >97+10+0 =107->k

al >97+10+4 =111->0

113

114

a’ ->97+10+16=123->{
a’ ->97+10+64=171->«

where 0-3 are the positions of ‘a’ in text[](as per formula
given above). The text ‘aaaa’ becomes ‘ko{«’ after
execution of the above method.

Since, the value of (power_ex)l increases with the
increasing number of character (byte) ie. with the
increasing number of string length, so we have applied
the method of Modular Reduction [11][12] to reduce the
large integral value to a smaller integral value.

To apply Modular Reduction we apply the following
algorithm:

Step 1: n = power_ex * code * 10 ;generate a random
number ‘n’ from code and power_ex

Step 2: calculate n® prime number

Step 3:1=0 ' '

Step 4: (power ex)' = Mod((power ex)' ,(n"™ prime
number))

Step 5: i=i+1

Step 6: if i<length(text) then go to step-4

Step-7: End

Following the above step, we can reduce the value of
(power_ex)' to a significantly smaller usable number.

2.1.3 Algorithm for Decryption (Modified Caesar
Cipher)
For this step we basically reverse the process of
encryption technique used in the modified Caesar Cipher.
And use the following formula:

text|[i] = text[i] - code - (power_ex)i

Note: If, ASCII value of text[i] < 0, then set text[i] =Mod
(text[i], 256); ‘i’ is the position of each character in the
text and text[] is the message to be encrypted, where
text[i] denotes each character of the text[] at position ‘i’.

2.2 Encrypt the data using TTJSA:

TTJSA method is a combination of 3 distinct
cryptographic methods, namely, (i) Generalized Modified
Vernam Cipher Method, (ii)) MSA method and (iii)
NJJSA method. To begin the method a user has to enter a
text-key, which may be at most 16 characters in length.
From the text-key the randomization number and the
encryption number is calculated using a method proposed
by Nath et al. A minor change in the text-key will change
the randomization number and the encryption number
quite a lot. The method have also been tested on various
types of known text files and have been found that, even
if there is repetition in the input file, the encrypted file
contains no repetition of patterns.

Int'l Conf. Foundations of Computer Science | FCS'12 |

2.2.1 Algorithm of TTJSA (Encryption)
Step 1: Start
Step 2: Initialize the matrix mat[16][16] with numbers 0
to 255 in row major wise.
Step 3: call keygen() to calculate randomization number
(=times), encryption number (=secure)
Step 4: call randomization() function to randomize the
contents of mat[16][16].
Step 5: times2=times
Step 6: copy file f1 into file2
Step 7: k=1
Step 8: if k>secure go to Step 15
Step 9: p=k%6
Step 10: if p=0 then
call vernamenc(file2,outfl)
times=times2
call njjsaa(outfl,outf2)
call msa_encryption(outf2,filel)
else if p=1 then
call vernamenc(file2,outfl)
times=times2
call msa_encryption(outfl,filel)
call file rev(filel,outfl)
call njjsaa(outfl,file2)
call msa_encryption(file2,outfl)
call vernamenc(outfl,filel)
times=times2
else if p=2 then
call msa_encryption(file2,outfl)
call vernamenc(outfl,outf2)
set times=times2
call njjsaa(outf2,filel)
else if p=3 then
call msa_encryption(file2,outfl)
call njjsaa(outfl,outf2)
call vernamenc(outf2,filel)
times=times2
else if p=4 then
call njjsaa(file2,outfl)
call vernamenc(outf1,outf2)
times=times2
call msa_encryption(outf2,filel)
else if p=5 then
call njjsaa(file2,outfl)
call msa_encryption(outf1,outf2)
call vernamenc(outf2,filel)
times=times2
Step 11: call function file rev(filel,outfl)
Step 12: copy file outfl into file2
Step 13: k=k+1
Step 14: goto Step 8
Step 15: End

2.2.2 Algorithm of vernamenc(f1,{2)
Step 1: Start vernamenc() function
Step 2: The matrix mat[16][16] is initialized with
numbers 0-255 in row major wise order
Step 3: call function randomization() to

randomize the contents of mat[16][16].
Step 4: Copy the elements of random matrix

mat[16][16] into key[256] (row major

wise)

Int'l Conf. Foundations of Computer Science | FCS'12 |

Step 5: pass=1, times3=1, ch1=0

Step 6: Read a block from the input file f1 where number

of characters in the block 256 characters

Step 7: If block size < 256 then goto Step 15

Step 8: copy all the characters of the block into an array

str[256]

Step 9: call function encryption where str[] is passed as

parameter along with the size of the current block

Step 10: if pass=1 then
times=(times+times3*11)%64
pass=pass+1

else if pass=2 then
times=(times+times3*3)%64
pass=pass+1

else if pass=3 then
times=(times+times3*7)%64
pass=pass+1

else if pass=4 then
times=(times+times3*13)%64
pass=pass+1

else if pass=5 then
times=(times+times3*times3)%64
pass=pass+1

else if pass=6 then

times=(times+times3*times3*times3)%64

pass=1

Step 11: call function randomization() with
current value of times

Step 12: copy the elements of mat[16][16] into
key[256]

Step 13: read the next block

Step 14: goto Step 7

Step 15: copy the last block (residual characters,
if any) into str[]

Step 16: call function encryption() using str[] and
the no. of residual characters

Step 17: Return

2.2.3 Algorithm of function encryption(str[],n)
Step 1: Start encryption() function

Step2: ch1=0

Step 3: calculate ch=(str[0]+key[0]+ch1)%256
Step 4: write ch into output file

Step 5: chl=ch

Step 6: i=1

Step 7: if in then goto Step 13

Step 8: ch=(str[i]+key[i]+ch1)%256

Step 9: write ch into the output file

Step 10: chl=ch

Step 11: i=i+1

Step 12: goto Step 7

Step 13: Return

2.2.4 Algorithm for Decryption

Step 1: Start

Step 2: initialize mat[16][16] with 0-255 in row

major wise

Step 3: call function keygen() to generate times
and secure

Step 4: call function randomization()

Step 5: set times2=times

Step 6: call file_rev(fl,outfl)
Step 7: set k=secure
Step 8: if k<1 go to Step 15
Step 9: call function file rev(outfl,file2)
Step 10: set p=k%6
Step 11: if p=0 then
call msa_decryption(file2,outf1)
call njjsaa(outfl,outf2)
call vernamdec(outf2,file2)
times=times2
else if p=1 then
call function vernamdec(file2,outf1)
set times=times2
call function msa_decryption(outfl,outf2)
call fumction njjsaa(outf2,file2)
call function file rev(file2,outf2)
call function msa_decryption(outf2,outfl)
call function vernamdec(outfl,file2)
times=times2
else if p=2 then
call njjsaa(file2,outfl)
call vernamdec(outfl,outf2)
times=times2
call msa_decryption(outf2,file2)
else if p=3 then
call vernamdec(file2,outf1)
times=times2
call njjsaa(outfl,outf2)
call msa_decryption(outf2,file2)
else if p=4 then
call msa_decryption(file2,outfl)
call vernamdec(outfl,outf2)
times=times2
call njjsaa(outf2,file2)
else if p=5 then
call vernamdec(file2,outfl)
times=times2
call msa_decryption(outfl,outf2)
call njjsaa(outf2,file2)
Step 12: copy the content of file2 to outfl
Step 13: set k=k-1
Step 14: Goto Step 8
Step 15: End

2.2.5 Algorithm of function vernamdec(f1,f2)

The algorithm of vernamdec() function is same as
vernamenc() function. Here the only difference is that
decryption() function is called instead of encryption()
function.

2.2.6 Algorithm of decryption(str[],n)
Step 1: Start

Step 2: ch1=0

Step 3: ch=(256+str[0]-key[0]-ch1)%256
Step 4: write ch into the output file

Step 5: i=1

Step 6: if in then goto Step 12

Step 7: ch=(256+str[i]-key[i]-str[i-1]) %256
Step 8: write ch into the output file

Step 9: i=i+1

Step 10: goto Step 6

115

116 Int'l Conf. Foundations of Computer Science | FCS'12 |

Step 11: chl=str[n-1]
Step 12: Return

N.B: Cycling, upshift, downshift, leftshift, rightshift are
matrix operations performed (applied) on the matrix,

2.2.7 Algorithm of function file_rev(f1,f2)
Step 1: Start

Step 2: open the file f1 in input mode
Step 3: open the file f2 in output mode
Step 4: calculate n=sizeof(file f1)

Step 5: move file pointer to n

Step 6: read one byte

Step 7: write the byte on f2

Step 8: n=n-1

Step 9: if n>=1 then goto step-6

Step 10: close file f1, f2

Step 11: Return

2.3 NJJSAA ALGORITHM
Nath et al. [2] proposed a method which is basically a
bit manipulation method to encrypt or to decrypt any file.

The encryption number (=secure) and randomization
number (=times) is calculated according to the method
mentioned in MSA algorithm [1].

Step 1: Read 32 bytes at a time from the input file.

Step 2: Convert 32 bytes into 256 bits and store in some
1- dimensional array.

Step 3: Choose the first bit from the bit stream and also
the corresponding number(n) from the key matrix.
Interchange the 1st bit and the n-th bit of the bit stream.
Step 4: Repeat step-3 for 2nd bit, 3rd bit...256-th bit of
the bit stream

Step 5: Perform right shift by one bit.

Step 6: Perform bit(1) XOR bit(2), bit(3) XOR
bit(4),...,bit(255) XOR bit(256)

Step 7: Repeat Step 5 with 2 bit right, 3 bit right,...,n bit
right shift followed by Step 6 after each completion of
right bit shift.

24 MSA (MEHEBOOB, SAIMA, ASOKE)
ENCRYPTION AND DECRYPTION ALGORITHM

Nath et al. (1) proposed a symmetric key method
where they have used a random key generator for
generating the initial key and that key is used for
encrypting the given source file. MSA method is basically
a substitution method where we take 2 characters from
any input file and then search the corresponding
characters from the random key matrix and store the
encrypted data in another file. MSA method provides us
multiple encryptions and multiple decryptions. The key
matrix (16x16) is formed from all characters (ASCII code
0 to 255) in a random order.

The randomization of key matrix is done using the
following function calls:

Step-1: call Function cycling()

Step-2: call Function upshift()

Step-3: call Function downshift()

Step-4: call Function leftshift()

Step-5: call Function rightshift()

formed from the key.

3. Results And Discussions
This method, STJA is used to encrypt different types of
data and few results are given below:

aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
daaaaaaaaaaaaaaaaaaaa

Message Encrypted Message
aaaaaaaaaaaaaaaaaaa | H«Gé
aaaaaaaaaaaaaaaaaab .¢i7é2‘S£X]O [,"11aoia,2d
bbbbbbbbbbbbbbbbb | e[Na4UaWYAEf"N;
bbbbbbbbbbbbbbcee | [13:
ccceeecccceeecceeee | ™—%o, A+EVSOx(0;%0U
ccceeccceeecceeeece | @A8AL LybyJFu,qLdL@,
ccddddddddddddddd | Se¢6£[1FDda+d;«°bllaam]J
ddddddddddddddddd | JnO-
ddd =94S”[R £loeePO%RqOr
B3¢+ AN—[|—
ababababababababab | C[1iI"O™[1VE {fEbP—Ug**
ababababababababab | [1x>I($O"r[1E1” é{&"6Uq>
ababababababababab | ;
abababababababacdc | oUw 80~Eaa“2ek¢ YT
dedededededededede | Z@2¢6 MYk =O£UP[1P>2
dcdededededededede | exb«10R21§CA+\vnF 301
ded ix[1[1o¢eXDBIE“ZaU
A
aaaaaaaaaaaaaaaaaaaaa | [<v» “g'O'F

>cO,10&#}aPE: [,
U”I-Aby*aAcEEo% At:g
+HO7Bf%0“FLI8 1 1W#
Dal0EU«+0b3
ICV10e|0&0+aS: 1!’
"10,35A,J0H0Y* A i?7Liv
U

O]Bair Gj33L LDIAEA LY
LSY°P:

6> [»j30°>00,0¢/AYia
ULR*W?B1Lqx‘6Z[18qG
Ji"O~&wapee! 1 {IABoll¢
YX76G[1 K-a<™f°]-
T{,™MBZLUi»-

0%00:

EGEji 0STO0«0
?SH'16hN}ATOusOXI
$Y 0’ Ow:qll-

ra6aW 1OOL;a005vaUuy”
ON>HO] UqUAOT—
0Y]o o2
SH'T1éhN} ATOu sOXI$z
Y0 Daew:qll-

ra6aW 10012 005vaUuy”
ONbHO] UqUAOT—
Y0 ALAND

O]Bair Gj33 L DIAGALY
[§Y°P:

6> _[»j30°>00,0¢/AYia

Int'l Conf. Foundations of Computer Science | FCS'12 |

aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
a (1024 a)

Uf°W?BLgx‘6ZSqG
Ji"O~&napee! O {IABoll¢
YX76G 1 K-a<™f°]-
T{,™BZLUi»-
Ai?L/v01Bair Gj351 0D
14E LY EYP:

6> [»j30°>00,0¢/AYia
UDf°W?BLgx‘6Z18qG
i O ~&opee!' [{iAB161l¢
YX76G K-&<™f°]-
T{,™MBZLUi»-
<AB1“&[)
Ol0u;UiY61unUAI D68
"d0eY YAC“Op+SINL
SH“0¢1 <A1“&[]
Ol0u;UiY61unUAI D68
3l [1§¥A6aC“OpS!]
NOSH“0O0¢0

The Xaverian

vision education
encompasses a
sensitive understanding
of the realities defining
our existence. It is our
committed mission to
incorporate in the
minds of our students
an awareness of this
social vision so that
they can be better
equipped to take up the
larger responsibilities
in every sphere of life.

nladyiqye 0 15Z 0« an
ior]

Az el U} {«zew Dt 0
%00*onmk~syx
oxmywzk}}olk}o

X }s~s[]oxno|}~xnsxq*yp*
~1r0*|okvs~ so”&noylo[],s
} Smyws~ ~onws } ~0
*SX~r OWSXn }ypy|}~
§U[0nox~}*

kx*kk|oxo} }yp~rs}}ym
SU skv¥s}syx*}y~rk~~
roffm

kx*18[1 [Jo*lo~~o0|*0{szzo
n~y*~ kuoz~ro*vk|qo|
lo}zyx}sl

svs~so} *sxoo|f}zro|S[1o
*yp*vspo8

4. Spectral Analysis And Cryptanalysis

One of the classical cryptanalysis method used is by
detecting the frequency of characters in the encrypted text
(message). So to test the effectiveness of STJA method,
spectral analysis of the frequency of characters are
closely observed. Using this method, STJA, we ran many
analysis and tested different strings as input and used
various methods of cryptanalysis. To show the usefulness
and integrity of this cryptographic module, we used
spectral analysis of the frequency of characters.

First, as a test case we chose, a file which contained
1024 ASCII value (1) and used this method to encrypt the

117

data. Fig 1.1 shows the spectral analysis of frequency of
characters of 1024 ASCII value (1) and Fig 1.2 shows the
spectral analysis of frequency of characters of the
encrypted data.

1200
1000

800

ASCIl Value 1
Fig 1.1: Spectral Analysis of Frequency of
Characters of 1024 ASCII Value(1)

Fig 1.2: Spectral Analysis of Frequency of
Characters of Encrypted data of 1024 ASCII value (1)

As 2™ Test case we chose a random text file. The
spectral analysis of the frequency of characters of the text
file is shown in Fig 2.1 and Fig 2.2 shows the spectral
analysis of frequency of characters of encrypted text.

350
300
250
200
150
100

50

0
R R R R R E R R ~
AMmmT e AnEdRE®an S g ~

104

~
>
-

109

- 0 ®0
o N
-

vy
4 v)
- E

226

Fig 2.1: Spectral Analysis of frequency of characters
of an ordinary text file

118

E D T ANQ A DT ANOCEOHNLMAaO Mo ~on
.n<_’>-ceanmé3.<r\nm-rm\::\::r~u:a» -
v < - - ~

233

@ -
-] < <
~ NN

Fig 2.2: Spectral Analysis of frequency of characters
of the encrypted text file

Thus from the above spectral analysis it is evident
that the method, STJA, used here is very effective and
there is no trace of any pattern in the encryption
technique.

Since this cryptographic technique uses multiple bit
and byte level encryption multiple times, for this reason,
the method used here is unique and almost unbreakable
because there is no trace of any pattern. And this method
is also effective against both Differential Cryptanalysis
(Differential Attack) and Brute-Force Attack.

7. References
[17 http://www.purdue.edu/discoverypark/gk12 /
downloads/Cryptography.pdf

[2] Symmetric key cryptosystem using combined
cryptographic algorithms - Generalized modified
Vernam Cipher method, MSA method and NJJSAA
method: TTJSA algorithm Proceedings of
Information and Communication Technologies
(WICT), 2011 held at Mumbai, 11" — 14™ Dec,
2011, Pages:1175-1180

13

[3] Symmetric Key Cryptography using Random Key
generator: Asoke Nath, Saima Ghosh, Meheboob Alam
Mallik: “Proceedings of International conference on
security and management(SAM’10” held at Las Vegas,
USA Jull 12-15, 2010), P-Vol-2, 239-244(2010).

[4] New Symmetric key Cryptographic algorithm
using combined bit manipulation and MSA encryption
algorithm: NJJSAA symmetric key algorithm: Neeraj
Khanna,Joel =~ James,Joyshree = Nath, Sayantan
Chakraborty, Amlan Chakrabarti and Asoke Nath :
Proceedings of IEEE CSNT-2011 held at
SMVDU(Jammu) 03-06 June 2011, Page 125-130.

[5] Advanced Symmetric key Cryptography using
extended MSA method: DIJSSA symmetric key
algorithm: Dripto Chatterjee, Joyshree Nath, Soumitra

Int'l Conf. Foundations of Computer Science | FCS'12 |

5. Conclusion and Future Scope

In the present work we use three different
algorithms to make the encryption process unbreakable
from standard cryptographic attack. That is evident from
our results. We have applied our method on some known
text where the same character repeats for a number of
times and we have found that after encryption there is no
repetition of pattern in the output file. We have tested this
feature closely and have found satisfactory result in
almost all cases. This has been possible as we have used
modified Caesar Cipher method with polynomial
function, modified Vernam Cipher method with feedback
mechanism and also NJISAA and MSA methods, where
we use mainly the bit manipulation. We propose that this
encryption method can be applied for data encryption and
decryption in banks, defense, mobile networks, ATM
networks, government sectors, etc. for sending
confidential data. The above method, STJA, may be
further strengthened using additional bit manipulation
method and we have already started to work on it.

6. Acknowledgment

Somdip Dey (SD) expresses his gratitude to all his
fellow students and faculty members of the Computer
Science Department of St. Xavier’s College
[Autonomous], Kolkata, India, for their support and
enthusiasm. AN is grateful to Dr. Fr. Felix Raj, Principal
St. Xavier’s College, Kolkata for giving opportunity to
work in the field of data hiding and retrieval.

Mondal, Suvadeep Dasgupta and Asoke Nath, Jounal
of Computing, Vol3, issue-2, Page 66-71,Feb(2011)

[6] A new Symmetric key Cryptography Algorithm
using extended MSA method :DJSA symmetric key
algorithm, Dripto Chatterjee, Joyshree Nath, Suvadeep
Dasgupta and Asoke Nath : Proceedings of IEEE
CSNT-2011 held at SMVDU(Jammu) 3-5 June,2011,
Page-89-94(2011).

[71 Symmetric key Cryptography using modified
DJSSA symmetric key algorithm, Dripto Chatterjee,
Joyshree Nath, Sankar Das, Shalabh Agarwal and
Asoke Nath, Proceedings of International conference
Worldcomp 2011 held at LasVegas 18-21 July 2011,
Page-306-311, Vol-1(2011).

[8] An Integrated symmetric key cryptography
algorithm using generalized vernam cipher method and
DJSA method: DIMNA symmetric key algorithm :
Debanjan Das, Joyshree Nath, Megholova Mukherjee,
Neha Chaudhury and Asoke Nath: Proceedings of
IEEE International conference World Congress
WICT-2011 to be held at Mumbai University 11-14
Dec, 2011, Page No.1203-1208(2011). .

[9] Symmetric key Cryptography using two-way
updated — Generalized Vernam Cipher method: TTSJA
algorithm, Trisha Chatterjee, Tamodeep Das, Shayan
dey, Joyshree Nath, Asoke Nath , International Journal

Int'l Conf. Foundations of Computer Science | FCS'12 | 119

of Computer Applications(IJCA, USA), Vol 42, No.l,
March, Pg: 34 -39(2012).

[10] Ultra Encryption Standard(UES) Version-I:
Symmetric Key Cryptosystem using generalized
modified Vernam Cipher method,
Permutation method and Columnar Transposition
method,
Satyaki Roy, Navajit Maitra, Joyshree Nath,Shalabh
Agarwal and Asoke Nath, Proceedings of IEEE
sponsored National Conference on Recent Advances
in Communication, Control and Computing
Technology-RACCCT 2012, 29-30 March held at
Surat, Page 81-88(2012).

[11] Peter Montgomery, “Modular Multiplication
Without Trial Division,” Math. Computation, Vol. 44,
pp- 519-521, 1985.

[12] W. Hasenplaugh, G. Gaubatz, and V. Gopal, “Fast
Integer Reduction,” 18th [EEE Symposium on
Computer Arithmetic (ARITH ’07), pp. 225- 229,
2007.

120

Int'l Conf. Foundations of Computer Science | FCS'12 |

Computer Power Management Awareness — An Insight from
Youngsters in Mauritius

G.Bekaroo’, S.Akhal?, D.L.Padaruth?, C.Bokhoree’ & C.Pattinson?

T School of Sustainable Development and Tourism,
University of Technology, Mauritius

iFacuIty of Arts, Environment & Technology,
Leeds Metropolitan University
Leeds, UK

A BSTRACT

Down the past years, the number of computer and Internet
users has been constantly increasing in several countries
and today, more and more youngsters are starting to use
computers at an earlier age be it at home or in educational
institutions. In many countries around the world, computer
literacy among youngsters is being promoted since a very
young age where computer studies are being taught in
schools. However, this increase in the computer usage has
led to an increase in power consumption which adversely
affects the environment mainly due to the non-renewable
power production techniques currently being employed.

Computer Power Management (CPM) interacts with every
part of the computer system including the operating system,
software, Central Processing Unit, peripheral devices, etc,
and is present in most modern operating systems. Different
techniques are available today to save power while using
computers. Snce computers are now being used at an
earlier age and are intensively being used by youngsters, an
understanding on how the different power saving techniques
being employed is very important.

This paper attempts to provide an insight on CPM from
youngsters, following a survey carried out where 300
youngsters aged between 19 and 24 were interviewed. The
study aimed to find out whether youngsters today are aware
of the different CPM strategies, the motivation behind using
these strategies and the application of these strategies by
youngsters today. This paper also discusses on the method
and results of the study conducted, to give an insight on
CPM from youngsters and also make recommendations on
how CPM techniques can be better promoted to be adopted
by youngsters of tomorrow.

KEYWORDS

Computer Power Management, Green IT, Sustainability,
Energy Efficiency, Youngsters

'NTRODUCTION

Computers were first used for military purposes but since
their commercialization, computers have been ever-growing
and are invading human life. An increasing number of
people are using the computer today because of the various
benefits and facilities it provides. But as it grew famous, and
as the activities and facilities it provides kept on increasing,
the age at which people started using the personal computer
has decreased proportionally. Studies have shown that the
use of computers and the Internet by youngsters has been
rapidly increasing in recent years (US DoC, 2002; ONS,
2010) and that computer and Internet use is more widespread
among youngsters aged between 19 and 24 than among
adults (DeBell and Chapman, 2003).

Today, youngsters are dominating the Internet population
(Canadian News, 2010) and statistics (ONS, 2010) are
showing that people are starting to use computers at an
earlier age. Kids between the ages of 2 and 12 years old
spend more than a quarter of their leisure time on the
computer and in that amount of time, 3 to 7 minutes is spent
on watching online video (Nielsen Company, 2009). In
terms of computer usage, usually boys spend most of this
time playing game while girls check their mails, chat or
spend time on socia networks. The increase in computer and
Internet usage by youngsters is due to the fact that
computers and Internet are easily accessible at home, in
schools and even in public places.

However, studies have shown that personal computers are
not being actively used during most of the time they are
switched on (Miller, 2008). At home, much power is
consumed when computers are left on especialy during
computer downloading from the Internet which is mostly
practiced by youngsters. Even in the working environment,
it is estimated that in a normal working day at the office,
computers are in use for around 4 hours and idle for another
5.5 hours in average (Miller, 2008). This massively growing
use of computer today also has its adverse economical,
environmental and socia impacts (Hirsch, 2004).

Int'l Conf. Foundations of Computer Science | FCS'12 |

Unsustainable Computer Power Usage

Unsustainable computer power consumption has a direct
impact on the environment as well as the global economy,
triggering a snowball effect affecting the society and
different cultures. It has been estimated that global carbon
emissions from information and communication
technologies are roughly equal to that of the airline industry
(Laing & Scheid, 2010) and this is mainly because of the
massive amount of electricity needed in order to operate
computers and associated peripheral devices. Similarly, a
desktop computer normally has a 200-watt power supply and
if 100 million of these machines are turned on a once
worldwide, together they would use approximately 20,000
megawatts of electricity which is the total output of 20
average-sized nuclear power plants (Tanenbaum, 2001). On
top of that, it is a fact that computers tend to heat-up the
environment in its surroundings though it might not be
apparent to the user.

As a mgjor negative impact on the environment, high rates
of carbon dioxide are released in the air due to increased

production of electricity, leading to an increase in the
atmosphere’s temperature thus accelerating the effects of

global warming (International Socidist Group, 2006).
Consequently, extreme weather events such as category five
cyclones, droughts, rising sea levels and decreased snow
cover are aready being faced amost everywhere around the
world (IPCC, 2007) which drastically affect the lifestyle of
species living in these regions while also endangering the
fauna. Reducing energy consumption not only makes sense
from the environmental perspective but it is also an
increasingly economical concern. Energy prices are
constantly rising similar to government-imposed levies on
carbon production which has an impact on the cost of doing
business, thus making many current business practices
economically unsustainable. At home, the rising energy
costs trandlate into higher energy bills which in turn affect
the lifestyle of peoplein asociety.

Taking cognizance of the environmental and economical
impacts caused by the massively growing use of computers
today, it is becoming more and more important for home
computer users and businesses to act in an environmentally
responsible manner. Different measures are already being
taken by businesses and also researchers in order to promote
greenness. Businesses are applying existing best practices
for promoting greenness during their day to day operations
and are also providing training to their staffs so that they are
aware of the current problems being faced by the
environment along with how they can help in improving the
situation. Researchers, in turn are focusing on different ways
which can be employed in order to improve energy
efficiency during all aspects of computer usage. As such,
one of the areas of focus by researchers has been Computer
Power Management (CPM) techniques which has been

121

constantly evolving down the years and are now available on
all latest operating systems (Nordman et al, 1997).

Computer Power Management (CPM)

The computer power management technology was
introduced in order to reduce energy consumption for
computers that are not in active use. Power management
interacts with every part of the computer including the
operating system, software, CPU, peripheral devices, etc.
This technology is beneficia to the environment in the way
that a reduction in power consumption mainly means a
reduction in the overall need for the amount of power
harnessed and if non-renewable sources are being used to
generate electricity, this implies lesser pollution and also
lesser adverse impacts on the environment and climate.

Power-management does not reduce the performance of a
computer, but simply adds features to reduce their power
consumption when not in use (Nordman et &, 2007). Most
power management savings come from reducing power
when the machine is not fully active by adding low-power or
"sleep" modes that kick in when idle. But there are many
more techniques that can be used to save energy
consumption from computers. Some of the common
practices adopted today in order to reduce power
consumption from computer usage include:
e Using built-in power saving features
Most operating systems today come with power saving
features that turn hardware including hard drives or the
computer monitor into sleep mode when inactive for a
particular period of time set by the user. Under this
mode, power consumption can be reduced by 20 to 50
times (Maurya, 2010).

« Turning off computer while not in use

Completely turning off computers while not in use saves
a good amount of electricity since standby or ‘phantom’
power load can range from a few watts to as much as 20
or even 40 watts depending on equipment (EnergyStar,
2009).

« Purchasing energy efficient products

Using energy efficient products is considered as a good
way to save energy and customers may look for logos
like the Energy Star (EnergyStar, 2009) to buy
computer hardware that offers good energy efficiency.
Also, experts estimate that using such products can save
around 30 to 40 percent on utility hills (Utility Bill
Assistance, 2010).

+ Disabledevicesthat arenot in use

Desktop computers and laptops come with different
devices that a user might not need and if connected, it
means power is being consumed. For example, a laptop
user who is using a built-in network adapter and a cable
to connect to the Internet would probably not need Wi-

122

Fi, the built-in modem, Bluetooth or infrared and
disabling these devices would save power.

« Reducing screen brightness

A good amount of power can be saved in the long run of
computer usage by reducing brightness of computer
monitors.

« Share hardware where appropriate

Hardware like printers and scanners that are connected
to a computer system is also using power can be saved
by sharing these devices.

« Using efficient power supply units

The power supply unit basically distributes the power to
the various computer components by converting AC
power from electric utilities into DC power. Now, the
80 Plus initiative (Plug Load Solutions, 2011) certifies
power supply units with an energy efficiency of 80% or
more and a true power factor of 0.9 and more, meaning
that power supply units need less energy to supply the
computer system with the same power.

« Upgrading screen and peripheral devices

Power consumption can be reduced by upgrading to
more efficient devices. For example, when upgrading
CRT monitors to flat panel LCD monitors of the same
size, power consumption can be reduced to 1/3 (UCLA
Ergonomics, 2009).

Though different techniques to reduce power consumption
from computer usage are aready available today, the big
question that arises is that whether computer users are aware
of these techniques. If yes, which of the techniques are they
adopting and what are their motivations behind using/not
using currently available CPM techniques. This paper
presents a study made to answer these different questions in
the area of CPM by targeting youngsters in Mauritius aged
between 19 and 24, who dominate the Internet users and also
represent the future.

RELATED WORK

Different studies in CPM and awareness have been
conducted in the past to reduce power consumption in
persona computers and servers where most concentrated on
improving battery life in portable computers. Today, due to
visible climate variability in the world, researchers are
focusing more and more on how to reduce energy
consumption in all aspect of computer usage.

In the area of household power management, Dillahunt et al
(2009) studied to dlicit viewpoints and practices surrounding
household energy management where 26 low income
households from two very different locations were
considered. Through photo-€licitation and directed
interviews, the relationship between energy saving
behaviours, external factors and users intrinsic values and

Int'l Conf. Foundations of Computer Science | FCS'12 |

beliefs were explored. The study showed that most of the
participants were saving energy because they wished to save
money. The other reasons why the household owners were
saving energy were because some wanted to comply with a
moral and spiritual aversion to waste and the rest were
environmentally motivated. Similarly, Chetty et a (2009)
studied 20 households about how people use power
management strategies on their home computers. With the
help of a logging software installed on the computers, the
power state (on, off, standby, etc) as well as basic computer
usage, e.g. frequently used applications and their duration of
use, were tracked. The results of the experiment after 14
days of study showed that 47% of the total computers had no
power management settings turned on. However, the major
congtraint of this research was that most of the household
were in a medium or high income bracket where only 3
among the 20 participants were earning below $.50K
annually. As such, most people would not be motivated to
reduce power consumption bearing in mind the different
reasons why power management strategies are not used.

Also, different power meters and home energy monitoring
kits are now available on the market which better help to
measure and monitor energy consumed in households. The
best way to reduce power consumption in a house is by
adopting a two-pronged approach (PowerMeterStore, 2011)
which involves firstly to measure and monitor the total
power consumption in the house and secondly, to measure
and monitor power consumption of individual electronics
(including computers and associated peripheral devices) and
electric appliances. Common devices for power
measurement and monitoring power of individual electronics
include Kill A Watt (P3 International Corporation, 2008)
and Watts Up Pro (Watts-Up, 2011) and these devices can
tell users how much energy is being used for a particular
instant or period of time by appliances and electronics
plugged to the device. For measuring and monitoring total
power consumption, common home energy monitoring kits
including Cent-a-Meter (Cent-a-meter, 2011) and Power
Cost Monitor (PowerCostMonitor.com, 2011) are now
increasingly being used.

Much power is being consumed when computers are |eft
switched on at night by youngsters for downloading online
materials. As a solution, Agarwal et a (2008) developed an
architecture named Somniloquy that aims to augment
network interfaces to allow computers in sleep mode to be
responsive to network traffic. As part of the experiment, a
small USB connected hardware and software plug-in system
was built which alows a PC to remain in sleep mode while
continuing to maintain network presence and run well-
defined application functions (e.g. VolP, web downloads,
file sharing, etc). By using this implementation, a great
amount of power could be saved.

Increasing people awareness is one of the key steps towards
promoting Green IT and increasing utilisation of CPM

Int'l Conf. Foundations of Computer Science | FCS'12 |

techniques. Youngsters need to understand the impacts of
the growing IT industry on the climate and environment
today, and also what techniques are current available that
they can adopt in order to reduce power consumption during
their normal computer usage. To promote awareness in
going green, many training institutions are now providing
courses on promoting sustainable development in different
areas thus making the participants ‘Green Literate’. Even in
universities, courses on climate change are available as well
as modules related to sustainable development are being
integrated in different programmes (Taebi, 2009) so that
new graduates from the university can apply their academic
skills in the area in their working life and promote
greenness.

M ETHOD

This study builds on the previous studies conducted in Green
IT and CPM awareness but focuses on youngsters between
19 and 24 years. In order to understand on whether
youngsters today are acquainted with computer power
management, their motivations behind computer power
management and what are the different techniques they are
currently employing, a group of youngsters aged between 19
and 24 were interviewed.

For the case study, students enrolled in tertiary institutions
for undergraduate/postgraduate studies were considered and
the study started with a nationa search for the number of
students enrolled in the different tertiary ingtitutions in
Mauritius. According to the Tertiary Education Commission
(2011), around 30,000 students were found taking courses
between this age range. From a dtatistical perspective,
considering a confidence level of 95% and a marginal level
of 5.5%, 300 students were interviewed at different tertiary
institutions in Mauritius. As such, students with different
profiles took part of the study with varying family income,
years of computer usage and field of study.

During the interview, youngsters were asked different
questions and a survey form was filled. Questions asked
were related to climate change issues, CPM awareness,
motivations behind using CPM, reasons for not using CPM
techniques, and interest in sustainability issues.

Respondents Profile

Among the 300 interviewees, there were 176 males and 124
females, and al were computer literate. The respondents
were from different fields and levels of
undergraduate/postgraduate study, where 96.3% of the
respondents were using computer on a daily basis and the
remaining 3.7% on a weekly basis. The age distribution of
the respondentsis shown in Figure 1.

123

20.0%

Family Income (Rs)

/,, Mo- 5000
53% | Wiy M2

I 5000- 15000
Hao O3 15000 - 25000
O W2 I 25000 - 40000

Dlabove 40000

Figure 1- Respondents Age Figure 2- Respondents Family Income
In terms of computer usage experience distribution, 80% of
the respondents have been using computers for more than 5
years, 16.3% between 1 and 5 years and 3.7% for less than a
year. Also, for the survey, the students had a varying family
background where most of them were from medium monthly
income between Rs.15,000 and 25,000. Figure 2 shows the
percentage of the respondents and their family income.

RESULTS & DiSscussIiON

From the general questions asked regarding climate change,
results showed that 89.3% of the interviewed youngsters
highly agree that the nature is fragile and that people should
be careful about not to harm or disrupt it. The same group of
respondents also agree that several countries around the
world, including Mauritius, are currently facing the effects
of climate change and say that it is very important to
preserve the environment for future generations. Among the
remaining 32 youngsters (representing 10.7%) who disagree
that the nature is fragile, 62.2% of the interviewees were
students of Human Resources or Management courses.
These students are however following non-environmentally
linked programmes at the university and are less conscious
of environmental threats and their causes. Also, the results
showed that 6.7% of the total 300 students coming from the
high family (above Rs. 40,000 as monthly salary) disagreeto
the same fact as compared to 3.0% of participants ranging
from low family income.

However, regarding the climate change problems being
faced throughout the world, only 40.3% of the youngsters
say that they have been paying close attention to the
problems. In this group of youngsters, only 16.2% come
from high income family, that is, a monthly salary of above
Rs 40,000. Also, among all the youngsters, only 22.7 % of
youngsters claimed that they are making some efforts to
contribute to a greener environment by using common
techniques including recycling, power saving and waste
reduction. The rest who claim to make no contribution to a
greener environment include 30 females (24.2%) as
compared to 61 males (35.4%), thus implying that female
youngsters are more environment conscious than males as
discussed by Hampel et a (1996).

In terms of computer usage, 21 interviewees claim to rarely
(weekly or monthly basis) or never switch off computers and
the most common reasons for not doing so are as follows:

1. Computer isalwaysin use (66.8%)

The computers of this small group of youngsters are
always in use because of the main reasons including
downloading files from the internet, gaming, video
streaming or spending time on socia networks.

2. Long booting-up times (25.4%)

This group of youngsters prefer to leave computers in
stand-by mode or screen-saver mode because their
computers take quite long to boot-up.

3. Computer will get damaged (7.8%)

A few youngsters still think that their computers will get
damaged while constantly switching on and off their
computers and prefer to use stand-by or hibernate mode
if they will not be using their computers for long hours.

Power monitoring a home, which is one of the practices
towards saving electricity is still not practiced by a group of
youngsters. Around 60.7% of youngsters monitor electricity
usage at home though only 19% are familiar to commercial
devices such as Kill a Watt or Power Monitor. During the
interviews, youngsters were also asked on their different
motivations behind using CPM techniques. The results are
shown in Figure 3 where the count and percentage of
youngsters opting for the different motivations (out of 300)
are labelled on the different bars.

3

Number of youngsters
=
i

o
=]
1

reduce electricity promote greener prolong battery life reduce cooling parents/family ask reduce noise
hills enviranment needs 50

Motivations

Figure 3 - Motivations behind using CPM techniques

From Figure 3, reduction of electricity bills is found to be
the main motivation behind using CPM techniques
irrespective of age, sex and family income. However, it has
been observed that as the family income rises, reduction of
electricity bills becomes less of a motivation to the
youngsters. For youngsters hailing from medium to high
family income, prolonging battery life is the second main
motivation behind using CPM techniques followed by
promoting a greener environment. Also, a small percentage
of the interviewees say that their parents ask to employ

Int'l Conf. Foundations of Computer Science | FCS'12 |

techniques to better save power/energy via computer usage.
This group of youngsters hail mostly from low to medium
family income earners, similar to the study by DiIIahun,tS et

a (2009), and again this reason becomes less as a motivation
again as family income increases.

A big part of the survey was to find out on the different
techniques being employed by youngsters in order to save
power/energy while using computers. The results obtained
are shown in Table 1 arranged in descending order on

youngsters count.

No CPM Technique Count | Percentage

1. turn off monitor instead of using | 161 54.60%
screen saver

2. turn off computer instead of using | 160 54.20%
standby mode

3. built-in power saving features on | 142 48.10%
computer

4. turn down screen brightness 124 42.00%

5. disable devices not in use 84 28.50%

6. using laptop instead of desktop | 75 25.40%
computers

7. using more efficient computer parts | 62 21.00%
power saving for USB devices 61 20.70%

9. upgrade devices 53 18.00%

10. share hardware where appropriate 39 13.20%

Table 1- CPM Techniques adopted by youngsters

From the results obtained, techniques involving turning off
the devices that is not being used (including monitor,
printers, among others), are the most popular techniques.
Using energy efficient materials, which is a good technique
to save energy, is not much adopted since it involves the cost
of upgrading/changing the appropriate devices, where many
youngsters are quite reluctant for initial investment.
Similarly, the reason for using laptops instead of desktop
computers hasn't been for cost saving among many
youngsters, but rather because of portability reasons. Also,
the power saving feature for USB devicesis not that familiar
where a big percentage of the interviewees did not know on
how to activate this feature on their computers. Another
observation is that hardware sharing is very less used, and is
even the last on the list in Table 1, though a big amount of
energy can be saved while adopting this technique. The main
reason behind this is a home, many students do not have a
small Personal Area Network or Local Area Network, where
they can share devices being used (most commonly the
printer or multifunctional devices).

In terms of barriers of CPM usage, the youngsters think that
the main barrier is that CPM techniques haven't been much
promoted and that nobody really talks about it. Awarenessin
application of CPM techniques is another barrier where
techniques like power saving for USB devices or hardware
sharing are not very common. One of the common reasons
for the awareness problem is that in many courses,
sustainability issues are not given much importance. Among

Int'l Conf. Foundations of Computer Science | FCS'12 |

the interviewed youngsters, only 23.3% remember of having
done lecturesmodules related to sustainability issues.
However, 85.7% of the interviewees claim to be interested if
sustainability or energy efficiency based modules are
integrated in their course.

RECOMMENDATIONS

During the survey, youngsters have also been proposing
different recommendations in order to increase awareness
and promote CPM techniques. These are as follows:
1. Early awareness on CPM techniques
One of the first steps towards increasing CPM
techniques utilisation is to increase user awareness in
the area. Since today more and more people are starting
to use computers at an earlier age, improving awareness
in the subject area at an earlier age would make CPM
techniques utilisation a habit to computer users,
including youngsters.

2. Regular campaigns

Promoting CPM and Green ICT techniques by using
different means of advertisement and at a regular basis
would better promote the subjects to youngsters while at
the same time targeting a wider range of computer
users. Youngsters should better understand the current
climate change problems being faced around the world
and what the different solutions are to this problem.

3. Default CPM techniques set by vendors

Computer vendors should set default power saving
options on new computers and laptops if they are not
aready practising this. A big amount of energy can be
saved from computers being utilised by youngsters who
are not familiar to CPM and Green ICT techniques.

4, SQustainability courses at all levels

So as computer users to be aware of the evolving CPM
and Green ICT techniques, courses in the same subject
areas should be promoted at all levels of education,
namely in schools, colleges and universities.

5. Supporting research and innovation in green
technologies
Promoting research and innovation in the green
technologies can help in attracting more youngsters into
this area, in the common forms of scholarships and
prizes through competitions. Research and innovation
would also be beneficia in the way that innovative and
optimised CPM techniques can be developed to better
save energy while computer and associated peripherals

usage.

125

NCLUSION

This paper presented an insight from youngsters in the area
of computer power management. As part of the study, 300
youngsters aged between 19 and 24 were interviewed so as
to understand which CPM techniques they are aware of,
their motivations behind using these techniques and the
barriers behind adoption of CPM techniques. Turning off or
disabling devices while not in use is still the most common
techniques to save power while using computers and
youngsters think that the main barrier to CPM usage is that
CPM techniques haven't been much promoted. A set of
recommendations to promote and increase awareness on
CPM techniques have also been discussed including early
awareness on CPM techniques, regular campaigns and
supporting research and innovation in green technol ogies.

REFERENCES

AGARWAL, Y., HODGES, S,, SCOTT, J,, CHANDRA, R,
BAHL, V.; GUPTA, R. (2008), Somniloquy: Maintaining
network connectivity while your computer sleeps [onling].
Microsoft Research. Accessed on: 01 Nov 2009, Available
at:

Canadian News (2010), Youthsrule Internet, but elderly
making gains: study [online], Accessed on: 12 Dec 2010,
Available at:

Jan 2011, Available at:thttp//maww.centameter.com.al/

CHETTY, M.; BRUSH, B.A.J., MEYERS, B.R., JOHNS, P.
(2009), It's Not Easy Being Green: Understanding Home
Computer Power Management, Conference on Human
Factors in Computing Systems archive, Proceedings of the
27th international conference on Human factorsin
computing systems, ISBN: 978-1-60558-246-7

DeBéell, M.; Chapman, C. (2003), Computer and Internet
Use by Children and Adolescents in the United States,
National Center for Education Statistics

DILLAHUNT, T.; MANKOFF, J; PAULOS, E.; FUSSELL,
S. (2009), 1t's Not All About “Green”: Energy Usein Low-
Income Communities. Proceedings of the 11th international
conference on Ubiquitous computing, p.255-264, |SBN:
978-1-60558-431-7

Energy Star (2009), How the rating system works [online],
Accessed on: 10 Jan 2011, Available at:

ce.pt_neprs learn

http://research.microsoft.com/research/pubs/view.aspx?type
=Technical%20Report&id=1458
http://www.canada.com/topics/technology/story.html?id=12
http://www.centameter.com.au/
http://www.energystar.gov/index.cfm?c=evaluate_performan
ce.pt_neprs_learn

126

HAMPEL, B; BOLDERQO, J.; HOLDSWORTH, R. (1996),
Gender patternsin environmental consciousness among
adolescents, Journal of Sociology March 1996, vol. 32 (no.
1), p.59

HIRSCH, T. (2004), Computers 'must be greener' [onlin€],
BBC News, Accessed on: 10 Feb 2012, Available at:

International Socialist Group (2006), Climate Change- The
biggest challenge facing humanity [online], Accessed on: 02
Qct 09, Availableat: - ___________

IUCN; UNEP; WWF (1991), Caring for the Earth, IUCN
Gland, Switzerland.

IPCC (2007), Climate Change 2007: Working Group I: The
Physical Science Basis [onling], IPCC Fourth Assessment
Report: Climate Change 2007, Intergovernmental Panel on

http:/voaw

1pm-direct-observations html

KORN, D.; HUANG, R.; BOLIOLI, T.; WALKER, M.
(2006), Computer Power Management for Enterprises- A
Practical Guide for Saving up to $100 per Seat Annually in
Electricity, Proceedings of the 2006 | EEE | nternational
Symposium on Electronics and the Environment, p. 161-
166, ISSN: 1095-2020

LAING, F.; SCHEID, J. (2010), An Introduction to Green
Computing and Sustainable Development [online], Accessed

thitpz/ ey b gbthuib. conalenyd ronment/green-
‘computinglarti cles/74469.aspx

LENHART, A; HITLIN, P.; MADDEN, M. (2005), Teens
and Technology - Youth are the leading the transition to a
fully wired and mobile nation, PEW Internet & Americal
Life Project, Washington, D.C.

MAURYA, R.R. (2010),Tips to Save PC Energy [online],
Globa Review Channel, Accessed on: 19 Feb 2011,
Availableats - - - - - oo
thttp:H A, gHobal reviewchannet. camiresodrces 25 76- Fips-

Save-PE-Energy-aspx

MILLER (2008), Computer power management [onling],
Information Technology, MILLER School of Medicine
University of Miami, Aceessed on: 5 Jan 2010, Available at:
http:#/H-meckmiami edu/x 594l

Nielsen Company (2009), How Teens Use Media [onling],
Accessed on: 22 Feb 2011, Available at:

Int'l Conf. Foundations of Computer Science | FCS'12 |

NORDMAN, B.; PIETTE, M.A.; KINNEY K.; WEBBER,
C. (1997), User Guide to Power Management for PCs and
Monitors, Environmental Energy Technologies Division,
Lawrence Berkeley National Laboratory

ONS (2010), Internet Access 60% of adults access Internet
every day in 2010, Office of National Statistics, Accessed
on: 22 Feb 2011, Available at:

P3 International Corporation (2008), Kill A Watt [onling],
. Accessed on: 04 Dec 2010, Avallableat: _ __________

chitpy/bwww.p3international.conyproducts/special/P4400/P44
00-CE.html

Plug Load Solutions (2011), 80 PLUS Certified Power

Supplies and Manufacturers [online], Accessed on: 17 Feb
*http:/www.plugl aadsal iti ans.com/80PlusPowerSLipplies.agp

X

PowerMeterStore (2011), Home Energy Monitor Kits

[online], Optimum Energy Products Ltd, Accessed on: 20
,Jan2011, Avalableat: . _ ...
chitp:/Aww. powermeterstore.cam/c628/home. energy marlit

or_kits.php

PowerCostMonitor.com (2011), Power Cost Monitor Home
qur.gyM&er.[.onLi nel,.Accessed on. 21 Jan 2011, Available
athitp:/ dvww powercostmonitor.conm/

TANENBAUM, A.S. (2001), Modern Operating Systems,
2nd Edition, Published by: Prentice Hall, ISBN: 0130313580

Tertiary Education Commission, Review of the Tertiary
Education Sector 2009/201Q [anline], Accessed an: 20 Feb
2011, Available at:http:/ites.rtnet. multesm Tvw-pHp

UCLA Ergonomics (2009), Choosing a computer screen;
LCD o CRT? [online], Accessed.on. 18 Fel 2011, Available
athttp:/Avww-ergonemicsucka-edularticl esl-GDvGRT pdf

US DoC (2002), A Nation Online: How Americans Are
Expanding Their Use of the Internet, U.S. Department of
Commerce, Washington, DC.

Utility Bill Assistance (2010), Use Energy Efficient
Appliances to Help Reduce your Utility Bills[onling],
-Aecessed-on- 17 Jan-2011 -Availableati - - - - - - - - - - - - -
=hitps/Avww ittt Fassi sterce-convhtmtenergy efficient-a
“pptiances -sa-html

http://news.bbc.co.uk/2/hi/technology/3541623.stm
http://www.isg-fi.org.uk/spip.php?article303
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmss
pm-direct-observations.html
http://www.brighthub.com/environment/green-
computing/articles/74469.aspx
http://www.globalreviewchannel.com/resources/2576-Tips-
Save-PC-Energy.aspx
http://it.med.miami.edu/x1159.xml
http://blog.nielsen.com/nielsenwire/reports/nielsen_howteen
susemedia_june09.pdf
http://www.statistics.gov.uk/cci/nugget.asp?id=8
http://www.p3international.com/products/special/P4400/P44
http://www.plugloadsolutions.com/80PlusPowerSupplies.asp
http://www.powermeterstore.com/c628/home_energy_monit
http://www.powercostmonitor.com/
http://tec.intnet.mu/tesm_rvw.php
http://www.ergonomics.ucla.edu/articles/LCDvCRT.pdf
http://www.utilitybillassistance.com/html/energy_efficient_a
ppliances_sa.html

Int'l Conf. Foundations of Computer Science | FCS'12 |

127

Adding a one-to-one and hash function - is the result a one-
to-one function?

Elena Braynova® and Michael Simmarano®
! Department of Computer Science, Worcester State University Worcester, MA 01602, USA

Abstract - Various mathematical concepts and models are
used as foundations for different Computer Science areas.
One of them is a concept of function. There is almost no a
Computer Science problem where we do not use a concept of
function and some of its properties. In this paper we focus on
one of these fundamental properties, one-to-one property.
We study a sum of a one-to-one function and hash function
and explore possible cases for the result function to be one-
to-one.

Keywords: function, one-to-one property, sum combination,
hash function, mod function.

1. Introduction

Functions are one of the fundamental concepts in
Mathematics and Computer Science. We hardly can take a
few steps in science fields without running into one. The
concept of function was developed over a period of several
centuries. Various definitions were given. In an ordinary
language by “function” we usually mean a relationship
between two sets of objects. One of the formal definitions
frequently used by mathematicians as well as by computer
scientists was first formulated for sets of numbers by the
German mathematician Lejeune Dirichlet in 1837.

Definition 1.1: A function F from a set X to a set Y, denoted
F : X — Y, isarelation from X, the domain, to Y , the co-
domain, that satisfies two properties:

1. everyelementin X is related to some element in Y
2. noelementin X is related to more than one element
inY.[1]

In this paper we focus on one of the important properties that
functions may satisfy: the property of being one- to- one.
One-to-one property is one of two requirements for a
function for being a one- to- one correspondence and having
an inverse function. We may consider a one- to- one
correspondence between two sets of objects as a perfect
mapping of these two sets, domain and co-domain.

A mapping represents an operation on the domain objects
with the operation result in the co-domain. The existence of
an inverse function corresponds to the existence of “undo”
operation for the given one. In a variety of applications we
need the existence not only of a particular mapping,
operation, but we would like to be able to have a way to go

back and undo the first one. The formal definition of one-to-
one property is given by the following definition:

Definition 1.2: Let F be a function fromaset XtoasetY. F
is one- to- one if, and only if, for all elements x; and x; in X,
if F(x1) = F(X2), then Xy = X,, or, equivalently, if X; # X,, then
F(xy # F(x2). [1]

In this paper we study a combination of a one-to-one and not
one-to-one function. We focus on a sum of two functions and
explore its one-to-one property. We ask the question: What
do we know about the one-to-one property even for a sum of
a simplest one-to-one and a hash function? Hash functions
are very well known examples of not one-to-one functions
used in a variety of computer science applications.

Definition 1.3: A function F from a set X to a set Y, where
the size of X is larger than the size of Y and size of Y is a
fixed number, is called a hash function. [1]

In the rest of our discussion we focus on the function
F(n)=nmodd + n, where nis a positive integer, d is a
fixed positive integer and mod function is defined as

n mod d = the remainder when n is divided by d.

mod function is probably one of the most frequently used
hash functions in a variety of computer science areas such as
databases, data structures, conflict resolution protocols,
computer security methods and many other applications [2],

[31, [4].
2. Basic Results

In this section we prove a few properties for a sum of the
identity function, f(n) = n, and a mod function. The identity
function is known to be one-to-one. We consider
F(n) =nmod d + n, where d is a fixed positive integer. In
our proofs we use basic facts from the Number Theory such
as the divisibility concept, divisibility properties, and The
Quotient-Remainder Theorem.

Definition 2.1: If n and d are integers and d # 0 then n is
divisible by d if, and only if, n equals d times some integer
(n=dk, ke z).[1]

The Quotient-Remainder Theorem: Given any integer n and
positive integer d, there exist unique integers q and r such
thatn=dg+rand 0 <r <d-1.[1]

Exploring F(n) = n mod d + n for having one-to-one
property we have proven the following two properties.

128

Property 2.1: For every even positive integer d function
F(n) =nmod d + n is not one-to-one.

Proof: Let n; and n, be positive integers, such that
F(ny) = F(ny). 1)
This gives us:
n, +n; mod d =ny, + n, mod d 2
Using The Quotient-Remainder Theorem we have
Ny =qd +ryand n; =qg,d + 1y,

where q;, g, are the quotients, ry, r, are the remainders, when
n, and n, are divided by d respectively.

So, (2) can be written as

qd+r+n=qd+n+rn <

qud +2r;=qd +2r, <

d(g: —d2) = 2(rz — 1) 3)
From (3) we have

(91— d2) = 2(rz - ry)/d

(01— q2) = (r2 — ry)/k, (4)

where d = 2k, k is a positive integer, q; — g.and r, — ry are
integersand — (2k—-1)<r,—r <2k -1.

or

To prove F(n) is not one-to-one we have to find at least one

solution for the equation (4) that has g, # gy ry # 7, . Itis not

difficult to see that all (g1, 0, r1, r,) which satisfy conditions
r,—rp=k=d/2 and g — =1 (5)

are solutions of (4). So, we have shown that for any n; and
Ny, such thatn, =qud +ry, Ny =qpd + rpand qg, gp, 11, 12,
that satisfy conditions (5), we have that n; # n,, but

F(n,y) = F(n,). Hence, F(n) is not one-to-one.

The next statement describes the case of an odd d.

Property 2.2: For every odd positive integer d function
F(n) = nmod d + n is one-to-one.

Proof: We are going to prove the statement by contradiction
using the same reasoning as in Property 2.1. Let us assume
that there are two positive integers n; and n,, such that
n; # npand F(ny) = F(ny). In the same way as in Property 2.1
we get

n, +n; mod d =ny, + n, mod d 2

Using The Quotient-Remainder Theorem n; and n, can be
written as n; = g;d + ry and n, = g.d + r,, where gy, g, are
the quotients, ry, r, are the remainders, when n; and n, are
divided by d respectively. (2) is equivalent to the equation

d(0: —g2) =2(r2— 1) 3)

That means that both sides of equation (3) are integers
divisible by the same integer divisors. d is odd, so q; — q»
must be divisible by 2. This implies that A = (g, — q1)/2 is an
integer and we can write (3) as

dA = rr—rny (6)

Int'l Conf. Foundations of Computer Science | FCS'12 |

where 0 <|r, — r;| <d —1and |A] >1. That is a contradiction,
since |dA| > |r, — r4]. Hence, the initial assumption is false
and we have proven that F(n) is one-to-one.

3. Conclusion and future work

In this paper, we explore one-to-one property of a sum
of the identity function and a mod function. We consider two
possible cases for a mod function and prove or disprove the
one-to-one property for each of the cases. A mod function is
one of the most frequently used hash functions in Computer
Science. Sum of two functions is one of the simplest
combinations. Similar questions could be asked exploring
other type combinations of two functions as well as including
broader classes of one-to-one and hash functions.

4. References

[1] S. Susanna, “Discrete Mathematics with Applications”,
Thomson Course Technology, 4-rd edition.

[2] Bakhtiari, S.; Safavi-Naini, R.; and Pieprzyk, J.
“Cryptographic Hash Functions: A Survey”. Technical
Report 95-09, Department of Computer Science, University
of Wollongong, July 1995.

[3] Russell, A. “Necessary and Sufficient Conditions for
Collision-Free Hashing”, in Abstracts of Crypto 92, 1992.

[4] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and
Vetterling, W. T. “Cyclic Redundancy and Other
Checksums, in Numerical Recipes in FORTRAN: The Art of
Scientific Computing”, Cambridge University Press, 1992.

Int'l Conf. Foundations of Computer Science | FCS'12 | 129

An Integrated Measurement Framework for Monitoring IP
Networks

Nasreddin B. El-Zoghbi nzoghobi@yahoo.com

Shahid Shamsudeen kbsshan @ gmail.com

FACULTY OF INFORMATION TECHNOLOGY
TRIPOLI UNIVERSITY, Tripoli, Libya.

Abstract

Measurements for network monitoring and IP traffic analysis is a complex research field
whose results can be exploited for several purposes such as usage based Billing, Quality
of Service, Traffic Engineering, Service Level Management, Security etc. In this paper,
we propose a measurement framework for monitoring IP networks that includes both
active and passive measurement methodologies. Our proposed framework integrates the
mechanisms to do an end-to-end measurement using active probes and also explicitly
describe complex traffic mixes using traffic meters. It uses the active measurement
components to study various properties of the network while the passive measurement
components measure the user traffic, and finally to correlate the findings to derive a
global picture of the measured network. This paper also describes various traffic metrics
that can be measured using this framework. Our system will provide valuable insights
regarding the performance, quality, and traffic dynamics of the network under study.

Keywords: Network Measurements, Passive Monitoring, Active Monitoring, IP Traffic
Analysis, Flow Monitoring

I. Introduction

The measurement and monitoring of IP networks has become essential and challenging
due to the rapidly growing requirements from various levels of technology, applications,
and user

requirements. A contemporary IP network has three significant characteristics: (1) they
provide real-time services, (2) they have become mission critical, and (3) their operating
environments are very dynamic[16]. Measuring the networks and understanding data
traffic is essential for ensuring the reliable operation and smooth growth of computer
networks.

At the most basic level, an IP network could be represented conceptually as a dynamical
system consisting of (1) a set of interconnected resources which provide transport

130 Int'l Conf. Foundations of Computer Science | FCS'12 |

services for IP traffic subject to certain constraints, (2) a demand system representing the
offered load to be transported through the network, and (3) a response system consisting
of network processes, protocols, and related mechanisms which facilitate the movement
of traffic through the network [16]. This paper is focused at (1) and (2), to measure and
monitor IP networks at traffic and resource levels. Traffic oriented measurements include
delay, delay variation, packet loss, and throughput. While Resource level monitoring
addresses the availability, reliability, and optimal utilization of internet work resources.

Traffic measurement is not driven by a single concrete goal. There are large numbers of
systems that perform traffic measurement to answer a wide variety of questions. These
measurement initiatives implement one of the two measurement methodologies via active
measurement techniques or passive measurement techniques. The active measurement
techniques send out probe packets and measure how they reply, and/or traverse the
network [1] [2] [3]. These techniques typically measure the end-to-end properties of the
network. Unlike active measurement, passive measurement measures the production
traffic [4] [5]. They capture the packets with their corresponding timestamps and give
detailed flow level information. Some passive techniques like SNMP gives device level
information of the intermediary networking devices. It should be noted that each
measurement methodologies have inherent limitations and drawbacks. In this paper we
propose a framework which will eliminate the limitations of the above mentioned
measurement techniques. This proposal is novel and loaded with wide scope of
application in future as our framework helps in analyzing the network to ensure that the
performance characteristics that are pertinent to a specified service class is guaranteed. It
also analyses the network in terms of spatial aspect (eg: flow aggregation by src, dst IP
address or AS number) which shows the traffic flow pattern relative to network topology,
temporal aspect which shows the stochastic behavior of traffic flow (eg: Packet or byte
per hour, day, week, month) and composition aspects which describes breakdown of
traffic according to the contents, application, packet length and flow duration.

We also discuss here about the metrics expected to be derived from this measurement
framework. The measurement provides raw data concerning state parameters and metrics
of monitored network and network elements. These raw data have to be evaluated
effectively to make inferences regarding the monitored system.

The remainder of this paper is organized as follows:

Section II brings some of the related works in the same domain. Section III details the
architecture of the proposed framework. Section IV discusses the general considerations
on implementing the proposed framework. Section V describes the traffic metrics
measured using this framework. Finally, in Section VI we provide a conclusive summary
and suggest future directions.

II. Related Work

There are a wide range of initiatives for network measurement and monitoring. One
important architecture for flow based monitoring has been developed by the IETF RTFM
working group (Real Time Traffic Flow Measurement) [7]. The architecture of this group

Int'l Conf. Foundations of Computer Science | FCS'12 | 131

is composed of the 3 modules: manager, meter and meter reader. Another interesting
architecture proposed by IETF working group is IPFIX (IP Flow Information export) [8].
Its goal is to define a common architecture and protocol to let different monitoring
applications communicate to each other. The proposed architecture of this group consists
of two modules: the IPFIX device and the collector. The IETF IP Performance Metrics
(IPPM) working group has been developing a set of standard metrics that can be used to
monitor the quality, performance, and reliability of Internet services [9]. Some other
relevant related works in this field are: RIPE NCC Test Traffic Measurements [10], NIMI
[11], Surveyor [12], Flow Scan [13], and Net Flow [14].

I11. Proposed Framework for Measurement

The proposed framework is shown in Figure.l below. The components and the sub
divisions of this measurement framework are detailed below:

1. Active Data Measurement Components (ADMC)

This Component implements active measurement procedures to inject measurement
probes into the network. It sends out probe packets and measures how they, and/or their
replies traverse the network. Active measurement is typically used to measure properties
of the network viz, packet delays, packet loss rates, jitter, bandwidth, symmetry, stability,
and topology. This Component includes the following daemons:

a) ICMP Probe Daemon
The ICMP probe daemon sends ICMP packets (probes) to a designated host and wait for
the host to respond back to the sender to collect end-to-end measurements of the network.

b) TCP/UDP Probe Daemon
The TCP/UDP probe daemon sends TCP and UDP packets (probes) into the network to
collect end-to-end performance metrics of the network.

¢) Application specific Probe Daemon

The Application specific probe daemon emulates application specific traffic to measure
the perceived application-quality over the network. These include real-time applications
like multimedia applications and peer to peer applications.

2. Passive Data Measurement Components (PDMC)

Passive measurement is a means of tracking the performance and behavior of packet
streams by monitoring the traffic without creating or modifying it. Passive measurement
can be implemented by incorporating some additional intelligence into network devices
to enable them to identify and record the characteristics and quantity of the packets that
flow through them. Packet statistics can then be collected without the addition of any new
traffic. The techniques used are SNMP, RMON and Net flow. This component also
includes the flow analysis of the raw packets captured through packet sniffers or splitters.
The quantum of information collected depends on the network metrics of interest, how

132

Int'l Conf. Foundations of Computer Science | FCS'12 |

the metrics are being processed and the volume of traffic passing through the monitor
device.

re User inter ince
n
]
: ¥
L] Web Sencer
]
]
; s
n
:--l» RAC
]
]
n
]
l\l-—l) L]
‘:___,.r "‘"---...‘_
L}
| R
—
e e p—— -
]
O —
"
]
L]
r ADCC PDLCC
]
|]
L] '
n
n
]
n
L
+ ADMC PDMC
ADMC - Active Data Measurement Component
PDMC - Passive Data Measurement Component
ADCC - Active Data Collector Component
PDCC - Passive Data Collector Component
DAC - Data Aggregation Component
ADAC - Active Data Analyzer Component
PDAC - Passive Data Analyzer Component
RAC - Report Aggregation Component
PLDS - Permanent Data S tore
TDS — Temporary Data Store
—l—- - Data Flow
- - - Control Flow

Figure 1. Measurement Framework

The types of information obtained include Bit or packet rates, Packet timing / inter-
arrival timing, Queue levels in buffers (which can be used as indicators of packet loss
and delay), Traffic/protocol mixes.

a) SNMP/RMON Agents
The SNMP/RMON agents have to be enabled in the intermediary devices (managed
entity) for which this framework acts as the management station. These agents gather

Int'l Conf. Foundations of Computer Science | FCS'12 | 133

traffic and device statistics from the Managed Devices. There are many approaches for
reconstructing the traffic matrix based on SNMP counters and network topology and they
are collectively known as network tomography. One disadvantage of these methods is
that they can only give approximate traffic matrices.

b) Flow Data Probes

Flow level measurement provides traffic information in more detail. Flows define a
communication between two endpoints and are identified by certain values for 5 specific
fields in the headers of the packets that make up the flow. The five fields are: source IP
address, destination IP address, protocol number, source port and destination port. The
last three fields indicate which application generated the flow (web, email, etc.). Besides
these fields, a flow record contains counters for the number of packets and bytes in the
flow, timestamps for when the first and last packets were received, information about
protocol flags and a few other details. The flow has to be enabled at transit network on
the device that supports Netflow/sFlow and using packet capture mechanisms at edge
networks depending on the measurement required.

3. Active Data Collector Component (ADCC)

This component collects the data generated by each active probing mechanisms specified
in (2).

These data are categorically stored in the temporary data store (TDC). This collector
component can be tuned as per the requirement and interest, from the user interface.

4. Passive Data Collector Component (PDCC)

This component collects the raw data sent from various passive agents deployed in the
network. The data are categorically stored in the temporary data store (TDC). This
collector component can be (re)defined as per the granularity needed, from the user
interface.

5. Active Data Analyzer Component (ADAC)

This component analyses the data collected and stored through active measurement
techniques.

It retrieves data from temporary data store (TDS) and permanent data store (PDS). This
analyzer component can be configured from the user interface. It gives the result from the
perspective in evaluating the end-to-end performance of a network path.

6. Passive Data Analyzer Component (PDAC)

This component analyses the passive data collected and stored through passive
measurement techniques. It retrieves data from the temporary data store (TDS) and
permanent data store (PDS) based on the analysis to be done. This component can be
configured from the user interface. This analysis component gives device level
information and also deep insight into IP traffic characteristics and traffic behavior.

134 Int'l Conf. Foundations of Computer Science | FCS'12 |

7. Data Aggregation Component (DAC)

This component is very crucial as the amount of the expected data is enormous.

This component applies conditional filters and policy based aggregations on the data
stored temporarily in TDS. The consolidated data is permanently stored in PDS for
further and future evaluations.

8. Report Aggregation Component (RAC)

This component pays attention to the usefulness of the information provided by this
framework. This module generates structured and user configurable custom reports based
on the analysis records generated by the active and passive analyzer components.

9. Data Store (permanent/temporary)

This is an essential component from the perspective of this system, as a huge amount of
data are expected to be handled. The Data Store can be broadly classified into two: 1.
Temporary Data Store (TDS) and 2. Permanent Data Store (PDS). As the name explains
(1) acts as an intermediary store for the real time-series data which can be used for real
time analysis and reporting, while (2) stores the consolidated data for further analysis and
long term use. As the expected quantity of data is very high, following storage
considerations are to be made for storage optimization.

(a) The aggregated data could be made available using the Mean, Max, or Min entries
and saved for historical purposes. (b) Use a time-based algorithm that aggregates data
over a specific period of time within a component data, thus requiring fewer entries, to
reduce storage space requirements. (c)Periodically delete historical data in accordance
with an administrative policy. These considerations are to be made later on operational
concern.

10. Web-based User Interface

A web-based user interface is an essential component for such a complex system so that
it could be accessed from anywhere using HTTP protocol. It provides a brief/detailed
view of the real time and long term data analysis. The self explanatory graphs will aid as
a quick and easy reference to entire traffic monitoring.

IV. General Considerations

Following are the general considerations made on this measurement framework:

Active measurement based: (a) intrusiveness must be minimized (b) selective probing
schedules; random, periodic, bursty (c) active probes should be indistinguishable from
ordinary traffic (d) authorization to restrict the active probing traffic.

Passive measurement based: (a) calibration of memory and processor requirements (b)
minimizing the bandwidth consumed (c) ensuring secure transactions

Storage based: device proper policy for data consolidation.

Int'l Conf. Foundations of Computer Science | FCS'12 | 135

V. Derived Health Metrics of the Network

The following are the metrics collected and analyzed by this framework:

a) Route Changes: This is one of the important metric and an anomaly observed in the
production network. Route changes happen due to “route flapping”, which are caused by
the abnormal routing protocol behavior, network infrastructure failures, reconfiguration
of the networks or load balancing strategies used for network performance improvement.

b) Delay: This metric includes the one-way or two-way delay of a packet transmission
between a pair of measurement end points. One-way packet delay is the time elapsed
from the start of transmission of the first bit of the packet by a source node until the
reception of the last bit of that packet by the destination node. Two-way packet delay is
the time elapsed from the start of transmission of the first bit of the packet by a source
node until the reception of the last bit of the loop-backed packet by the same source node,
when the loop back is performed at the packet’s destination node.

¢) Bandwidth: This metric shows the capacity of the channel by reflecting the congestion
levels caused by the network dynamics in the path. The bandwidth characteristics of the
path significantly influence the other performance metrics.

d) Jitter: This metric represents the variation in the network delay. This metric also
reflects the network dynamics along the measured path.

e) Loss: This metric measures the packet loss ratio between a pair of measurement end
points. Packet loss ratio is the ratio of the user-plane packets not delivered to the total
number of user-plane packets transmitted during a defined time interval. The number of
user-plane packets not delivered is the difference between the number of user-plane
packets transmitted by the source node and the number of user-plane packets received at
the destination node.

f) Stability: This metric reflects the operational state in which a network does not
oscillate in a disruptive manner from one mode to another mode. This metric could be a
derived from other measured metrics based on the context specific requirements.

g) Availability: This metric reflects the uptime or downtime of a network device or a
service. It excludes the scheduled outages which may be to device or service shutdown
for maintenance purposes.

h) Discards and Errors: The discard metric indicates the number of packets discarded
on a particular network interface, while error metric indicates the number of corrupted
packets received on a network interface. These metrics are indicators of excessive
network congestion experienced on the link at that point of time.

I) Utilization: This metric will be measured on the edge network(s) or/and on the link(s)
along the network path. It compares the amount of inbound and outbound traffic versus

136 Int'l Conf. Foundations of Computer Science | FCS'12 |

the bandwidth provisioned on the network segment or/and on the network link in a
network path.

j) Flow Information: This includes a series of metrics measured on the basis of flow
definition made as per the requirement. This includes various categories including flow
size, flow duration, packet and size distribution, flash flows, volume pattern, flow
occurrence period, port number and protocol based distribution. It mainly depicts the
characterization of IP traffic over time.

VI. Conclusions and Future Work

Our proposed measurement framework for network monitoring and IP traffic analysis
integrates the advantages and eliminates the limitations of traditional active and passive
measurement methodologies. Passive measurements are accurate, scalable and have low
overheads but it needs access to the network under study. On the other hand, active
measurements do not require owning the network, but they are intrusive in nature by
actively injecting packets which may adversely affect the production traffic on the
network. But we observe that both measurements are essential to define and maintain the
state of the network. The strategy that we adopted in this proposed framework is aimed at
unifying the tasks involved in active and passive measurement methodologies.

Finally, we believe that our approach will lead to a solution for an important issue of
extending the measurements to higher protocol layers, as well as a combination of edge-
to-edge network measurements and end-to-end application measurements for next
generation high speed networks. The generic structure of this framework will help to
focus the network under study at its horizontal and vertical levels. In future, we plan to
carry forward with prototyping this framework for further experiments, evidences and
advancement.

References

[1] S. Shalunov, B. Teittelbaum, "One-way Active Measurement Protocol (OWAMP)”, IETF RFC
3763, 2004

[2] NLANR Iperf - http://dast.nlanr.net/Projects/Iperf

[3] Pathchar - http://www.caida.org/tools/utilities/others/pathchar

[4] tcpdump/libpcap,. 2001, http://www.tcpdump.org/.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple network management protocol (SNMP).
IETF RFC 1157, 1990.

[6] S. Waldbusser, R. Cole, C. Kalbfleisch, D. Romascanu, “ Introduction to the Remote Monitoring
(RMON) Family of MIB ” IETF RFC 3577, 2003

[7] N. Brownlee, C. Mills, G. Ruth, “Traffic Flow Measurement: Architecture” IETF RFC 2722, 1999

[8] B. Claise, Ed.”Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange
of IP Traffic Flow Information” IETF RFC 5101, 2008

[9] E. Stephan, “ IP Performance Metrics (IPPM) Metrics Registry “ IETF RFC 4148, 2005

[10] http://www.ripe.net/pam2001/Abstracts/talk_06.html

[11] Paxson V., Adams A.K., Mathis M.: “Experiences with NIMI”, Proceedings of Passive and Active
Measurements (PAM) 2000, Hamilton, New Zealand, 2000.

[12] Kalidindi S., Zekauskas M.: “Surveyor: An Infrastructure for Internet Performance
Measurements”, INET’99, San Jose, June 1999.

Int'l Conf. Foundations of Computer Science | FCS'12 | 137

[13] Dave Plonka , “FlowScan: A Network Traffic Flow Reporting adn Visualization Tool”, University
of Wisconsin-Madison, 2000 LISA XIV, New Orleans, LA
[14] http://www.cisco.com/warp/public/732/Tech/netflow/netflow_techdoc.shtml
[15] http://www.netperf.org/netperf/NetperfPage.html
[16] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao: “Overview and Principles of Internet
Traffic Engineering” IETF RFC 3272, 2002
[17] Abilene. http://abilene.internet2.edu, 2009
[18] Georgatos F., Gruber F., Karrenberg D., Santcroos D., Susanj A., Uijterwaal H., Wilhelm R.:
“Providing Active Measurements as a Regular Service for ISP's”, Proceedings of Passive and
Active Measurements (PAM) 2001, Amsterdam, 23-24 April, 2001.
[19] Nordén P.: “Monitoring of Performance Parameters in IP Networks”,Degree project, KTH, 2001.
[20] J. Bolot. End-to-end packet delay and loss behavior in the Internet. In Proceedings of ACM
SIGCOMM °’93, San Francisco, 1993.
1] Nistnet home page: http://www.antd.nist.gov/itg/nistnet/.
2] NeTraMet home page: http://www?2.auckland.ac.nz/net/NeTraMet/
3] http://www.slac.stanford.edu/comp/net/wan-mon/iepm-cf.html
4] Micheel J., Donnelly S., Graham L.: “Precision Timestamping of Network Packets”, ACM
SIGCOMM Internet Measurement Workshop, San Francisco, USA, 2001.

138 Int'l Conf. Foundations of Computer Science | FCS'12 |

Int'l Conf. Foundations of Computer Science | FCS'12 | 139

SESSION
QUANTUM COMPUTING AND PROTOCOLS

Chair(s)

TBA

140 Int'l Conf. Foundations of Computer Science | FCS'12 |

Int'l Conf. Foundations of Computer Science | FCS'12 |

Application of a Process Calculus to
Security Proofs of Quantum Protocols

Takahiro Kubota', Yoshihiko Kakutani', Go Kato?, Yasuhito Kawano?, and Hideki Sakurada?
' Department of Computer Science, Graduate School of Information Science and Technology,
the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
NTT Communication Science Laboratories, NTT Corporation,
3-1, Morinosato, Wakamiya, Atsugi-shi, Kanagawa, Japan

Abstract— We apply a quantum process calculus to an
equivalence proof of quantum key distribution protocols.
Whether in classical or quantum cryptography, it is recog-
nized that security proofs tend to be complex and difficult
to verify. The use of formal methods is a way to tame such
complexity. Quantum process calculi have already been used
to model quite simple quantum protocols but not applied to
security proofs of practical ones. In this paper, we study a
security proof of BB84 in a quantum process calculus qCCS.
Shor and Preskill have shown that BB84 can be transformed
to an equivalent EDP-based protocol and the latter is
secure. We formalize this equivalence of the protocols as the
bisimulation of processes. For the formalization, we present
a general technique to describe quantum measurements in
qCCS. Congruence of bisimulation is useful to show that the

two protocols are bisimilar even if they run in parallel.

Keywords: quantum protocols, BB84, process calculi, bisimula-

tion, formal methods

1. Introduction

Security proofs of cryptographic protocols tend to be
complex and difficult to verify. This fact has been recognized
in the classical cryptography. Security proofs are also com-
plex in the quantum cryptography, where we must consider
attacks using entanglements. The first security proof of BB84
quantum key distribution (QKD) protocol by Mayers [1] is
about 50 pages long. After that paper, researchers have been

seeking simpler proofs [2], [3].

Since by-hand proofs are prone to human error and time
consumption, the efforts have been put into automating
the proofs and verification in the classical cryptography
[4]. For instance, 11 security properties of Kerberos [5],
a commercial authentication protocol, is guaranteed by a
mechanized proof [6] in CryptoVerif [4], a software tool

based on a process calculus.

To automate a proof, a target system must be formalized in
a certain formal framework that a tool supports. Formaliza-
tion itself is useful besides automation; we write targets in a
formal language and deduce security properties using some
rules that the framework provides. These make description

of targets precise and all deduction steps explicit.

There are several formal frameworks for quantum systems
such as quantum process algebra (QPAlg) [7], communicat-
ing quantum processes (CQP) [8] and quantum CCS (qCCS)
[9]. In CQP, quantum teleportation protocol and a quantum
error correcting code are formally verified [10] using bisim-
ulation. In process calculi, bisimulation relation is a key
notion denoting behavioural equivalence of processes. An
important property of bisimulation is congruence, that is,
the relation is closed by parallel composition. Bisimulation
has been used for specification and verification of protocols.
We write protocols as processes and prove them bisimilar.
Weak bisimulation relation is defined in qCCS. Weakly
bisimilar processes can perform identical transitions up to
actions which are invisible from the outside. As applications
of qCCS [9], quantum teleportation and superdense coding
protocols are formally verified. Specification of BB84 has
been also verified [11] but it is not a security proof.

Quantum process calculi are used for verification of vari-
ous systems but they have not yet applied to security proofs.
In this paper, we apply qCCS to Shor and Preskill’s security
proof of BB&4. In Shor and Preskill’s security proof, security
of BB84 is proven to be equivalent to that of another protocol
based on an entanglement distillation protocol (EDP), and
then the latter is proven to be secure.

Our contributions are mainly two. First, we present a
general technique to describe quantum measurements. There
are two different ways to formalize quantum measurements
in qCCS. Quantum measurements provided in the syntax
evoke probabilistic branches in the transition system. On the
other hand, we can formalize quantum measurement as a
quantum operation, which does not cause branches. In fact,
the processes with different formalization of a measurement
are generally not bisimilar. In Our investigation, the two
kinds of processes behave differently from the view of an
adversary. The former is observed by an adversary and the
latter is not. To make sense, a measurement should be for-
malized in the former way if the result of the measurement
can be recognized by an adversary. Otherwise, it should be
formalized in the latter way. Shor and Preskill’s security
proof is a typical case to apply our formalization technique
for quantum measurements.

The second contribution is that we have formalized the

141

142

equivalence of BB84 and the EDP-based protocol as the
bisimulation. Thanks to congruence property of bisimulation,
it is naturally proved that multiple instances of BB84 running
in parallel are bisimilar to multiple instances of the EDP-
based protocol.

The remainder of this paper is organized as follows. In
the next section, we introduce BB84 and the EDP-based
protocol that we formalize in this paper. In Section 3, we
introduce qCCS framework, namely, the definition of syntax,
the operational semantics and bisimulation. In Section 4, we
discuss techniques for formalization and formalize the two
protocols introduced in Section 2. In Section 5, we prove
bisimulation between the two protocols. In Section 6, we
draw a brief comparison with related works and conclude
the paper.

2. QKD protocols

The word BB84 does not mean one unique protocol,
because there are choices to error correction and privacy
amplification steps. In this paper, since our target is Shor
and Preskill’s proof, the implementation of BB84 follows
[2]. It employs two classical linear codes C7, Cy that satisfy
{0} ¢ C, c C; C {0,1}", where n is the length of
codewords in C; and Cs. In this paper, the protocol is
slightly modified for simplicity: Alice only generates 2n
qubits. This modification causes Bob to store qubits in his
side, but does not affect the security at all.

2.1 BB84 (slightly modified)

1) Alice generates random
dA,l; ceey dA,Qn and bA71, ceey bA,gn.

2) Alice creates a 2n-qubit string ¢ 1, ..., ¢B,2n accord-
ing to the randomness: for each ¢p;(1 < ¢ < 2n),
Alice generates [0) if da; = 0,ba; = 0, |1) if
da; = 1,ba; = 0, ‘+> if dai = 0,ba,; =1, ‘—>
ifda; =1,ba, =1

3) Alice sends ¢gp,;’s to Bob via the quantum channel.

4) Bob receives gp,’s and announces Alice that fact.

5) Alice announces b4 ;’s via the classical channel.

6) Bob measures ¢p,’s in {|0), |1)} basis if by ; = 0 or in
{|4+),|—)} basis if bs; = 1. Alice randomly chooses
n bits from them as check bits and then tells Bob
which are check bits.

7) Alice and Bob announce the values of their check
bits to each other. If the error rate is higher than the
threshold, they abort the protocol.

8) Alice chooses a codeword u4 € C; randomly, and
announces 44 + Z4, where Z 4 is the remaining non-
check bits.

9) (Error correction) Bob calculates @ from announced
s + ¥4 and his own non-check bits Zp. Because
Zp may include some errors, Bob obtains #p by
correction of the errors. If this error correction works
well, @p is almost equal to 4.

two 2n-bit strings

Int'l Conf. Foundations of Computer Science | FCS'12 |

10) (Privacy amplification) Alice and Bob determine secret
keys EA,EB from the cosets of 4 + Cs, up + Cs.

BB&84 is transformed into the following EDP-based pro-
tocol, which is a modification of the protocol in [3]. This
protocol employs a CSS quantum error correcting code [12]
that is constructed from two linear codes C1, Co satisfying
{0} ¢ Cy ¢ €y € {0,1}™. A CSS code can take bit and
phase parameters u,v € {0,1}".

2.2 the EDP-based protocol

1) Alice generates 2n EPR pairs § = (%)@’2” and
2n-bit string ba 1,...,04,2n.

2) According to by ;’s, Alice executes Hadamard trans-
formations on halves of ¢ sent to Bob in the next step.

3) Alice sends the halves of ¢ to Bob via the quantum
channel.

4) Bob receives his halves, and announces it to Alice.

5) Alice announces by ;’s via the classical channel and
Bob executes Hadamard transformations according to
b A,i’s-

6) Alice and Bob measure their halves of the check bits
by the {]|0),|1)} basis, and share the results. If the
error rate is higher than the threshold, they abort the
protocol.

7) Alice calculates the parameters of the related CSS
code and sends them to Bob. Bob then calculates the
syndrome and corrects errors using the parameters.
Alice and Bob next decode their qubit strings as the
CSS code.

8) Alice and Bob measure their qubits in {|0), |1)} basis
to obtain shared secret keys k A, EB.

3. Formal framework

In this section, the syntax, semantics and the definition of
bisimulation of qCCS [9] are introduced. We only present
main rules and definitions here (See [9] for complete ones).
We use a sublanguage of qCCS for our formal verification.

3.1 Syntax

Definition 1: the syntax of qCCS process is given as
follows.

Proc > P ::= nil | ¢?z.P | cle.P | c?q.P | clq.P
| if b then P | op[g].P | M|[g;x].P | P||P | P\L

where c,z,e,c,q are a classical channel name, a classical
variable, a real expression, a quantum channel name and a
quantum variable respectively. b, op, ¢, M, L are a condition,
a symbol of a super-operator (we may say quantum opera-
tor), a sequence of quantum variable, an Hermitian operator
and a set of channel names respectively.

Let cVar,qVar,cChan and qChan be the set of all
classical variables, the set of all quantum variables, the set
of all classical channel names and the set of all quantum

Int'l Conf. Foundations of Computer Science | FCS'12 |

(c2q.P,p) <5 (P{r/q}.p) (clq.P,p) % (P, p)

c?r clr @
(P1, p) = (P1,p) (P2, p) — (P3,p) (P1,p) = p [b] = true
(Pr||P2, p) = (P][|P3, p) (if b then P,p) = p

(P1,p) <5 (P, p) v ¢ qv(P2)
c?r
(Pr||Pa, p) <55 (P{|| P2, p)

(op[7].P, p) = (P, E7" (p))

(M[F;2].P,p) = 32, pi{P{Xi/}, ELpEL/p:)
where M has the spectrum decomposition

M =Y " \E', and p; = tr(Ezp) /tr(p)

Fig. 1: Labelled Transition Rule

channel names. The set of quantum variables occurring in
a process P is denoted by qv(P) C ¢Var. P||Q € Proc if
and only if qv(P) N qv(Q) = @ and ¢!q.P € Proc if and
only if g ¢ qv(P).

3.2 Labelled Transition System

We assume the supports of probabilistic distributions are
finite. The support of a probabilistic distribution y is denoted
by supp(u). With a family of distributions {p;}ier , the
joint distribution » _,_; pip; is defined as (3, ., pipi)(C) =
> icr Pi(pi(C)) for all C, where pjs are probability. If
supp(p) = {C}, p is simply written C.

For each g € qVar, there is a corresponding two dimen-
sional Hilbert space H, that denotes the state space of g.
Let H = @,c,var Hq and let D(H), ranged over by p,
be the set of all density operators on H. A configuration is
an element of Proc x D(H). The set of all configurations,
ranged over by C,D,..., is denoted Con. The set of all
finite support probabilistic distribution on Con is denoted
D(Con). Act is the set of actions, namely,

Act ={r}U{clz,c?v | ¢ € cChan,x € cVar,v € Real}
U{clg,c?q | c € qChan,q € qVar}.

A labelled transition relation is a relation on Con x Act X
D(Con). [b] denotes evaluation of condition b. Labelled
transition rules in qCCS are presented in figure 1. A tran-
sition relation is lift to that on D(Con) x Act x D(Con).
Let p,v € D(Con). = v if and only if C; = v; for all
C; € supp(p) , there exists v; such that v = ", u(C;)v;.

3.3 Bisimulation

In non-probabilistic process calculus, silent actions are
reflexive and transitive closure of —. They are lifted to those
in distributions and denoted by =>. Relations on Con are also

lifted to those on D(Con). The weak bisimulation relation
is behavioural equivalence up to silent actions.

Definition 2: A relation R C Conx Con is a bisimulation
if (P,p)R(Q,0) implies qv(P) = qv(Q), trev(p)(p) =
trqv(g)(o) and

1) whenever (P,p) = p there exists v such that
(Q,0) = v and uRv,

2) whenever (P, p) cre, u there exists v such that
(Q,0) = 1 and E(W)RE(v) for all quantum
operator £ acting on Hm,

3) whenever (P, p) < uand « is neither a quantum input
nor 7, there exists v such that (Q,0) == v and
wRv,

and their symmetric conditions named 4), 5), 6) are satisfied.
The relation ~ is defined as Uz pisimulation 7%
The followings are useful proof techniques.

Proposition 3: = is an equivalence relation.

Theorem 4: (P,p) =~ (Q,oc) if and only if qv(P) =
Qv(Q), trav(p)(p) = trqv(g)(c) and

1) whenever (P,p) = p there exists v such that
(Q,0) =vand p=~v,

2) whenever (P, p) cre, p there exists v such that
(Q,0) =" and E(u) =~ E(v) for all quantum
operator £ acting on Hm,

3) whenever (P, p) = 1 and « is neither a quantum input
nor 7, there exists v such that (Q, o) == v and
ISR

and their symmetric conditions named 4), 5), 6) are satisfied.
To prove (P,p) ~ (Q,o), we do not construct a certain
bisimulation relation R. Instead, we check the conditions of
theorem 4. We recursively check the conditions of the sets
of quantum variables and partial traces, and correspondence
of transitions up to silent ones. We then construct a weight
function. The theorem below is useful to show bisimulation
between protocols in parallel execution.

Theorem 5 (Congruence): If (P,p) =~ (Q,0) and
(av(P) Uav(Q)) Nav(R) = 0, then (P||R, p) ~ (QI| R, o).

4. Formalization in qCCS

4.1 On Measurement

qCCS has the syntax of quantum operators op[q] as well
as measurements Mg, x]. Since quantum operator includes
quantum measurements, there are two ways to formalize
quantum measurements. As a simple example, projective
measurement of state |+)(+| in {|0),|1)} basis is formalized
in the following two ways and the transitions are different.

(Mlg; 2]mil, [+)(+]g) & > 1/2(nil, [i)(il,)
1€{0,1}
(measureg]nil, [+)(+,) = (nil, 1/2(]0)(0] + [1)(1]),),

143

144

where M has the spectrum decomposition M = 0]0)(0] +
1[1)(1] and the quantum operator £7°*"*¢(p) that corre-
sponds to measure[q] is defined |0)(0]p|0) (O] +|1)(1|p|1){1].
It is easy to check they are not bisimilar though the two
processes apparently denote the same thing. Indeed, the
way to formalize quantum measurement is significant in the
security proof.

In Shor and Preskill’s proof, the EDP-based protocol is
transformed to the next protocol based on the fact that no-
body outside cannot distinguish the following two processes:

1) Alice measures a half of an EPR pair and then sends
the other half.

2) Alice sends a half of an EPR pair and then measures
the other half.

There are two possible formalizations. The first is as fol-
lows, where measurement is formalized with the constructor
M][g; x] that provided by the syntax.

1) (clgB.M[g*; z].nil, EPR 45 ® o)

2) (M[g*;z].clgP nil, EPR 4 5 ® pF)
where EPR = 1/2(]00)(00|+|11)(00|+|00)(11|+[11){11]),
p¥ is an arbitrary density operator representing adversary’s
state. The two processes above are not bisimilar.

On the other hand, measurement can be formalized as
an instance of quantum operation op[q]. We use a quantum
operator 5;“235““ denoting measurement of ¢*. For all p €
D(HqA & HqB), let

&g (p) == (10){(0]@D)p(|0)(0]D)+ (1) (1|@D)p(|1) (1[I).

The two processes are then formalized as follows and they
are bisimilar.

1) (cl¢g® measurel¢?].nil, EPR 4 .5 ® p¥)

2) (measure[¢g”].clg®.nil, EPR s ;5 ® p¥)
In this formalization, qA is treated as a classical bit after
the measurement and the resulting state is 1/2(|00)(00| +
|11)(11]),4 ,5. Similarly, when the result of measurement of
a qubit ¢ is 0 with probability p and 1 with 1 — p for some
p € [0, 1], the resulting state is (p|0)(0] + (1 — p)|1)(1]),.

The two different formalization of a measurement are
different from the view of an adversary. Branches evoked by
M]|q; x] are distinguished in bisimilarity meaning. Therefore,
M]|g; z] should be used when a transition with a differ-
ent visible label occurs after the measurement. Otherwise,
measurement should be formalized with quantum operator
measure[q]. Therefore, we conclude the second formaliza-
tion is feasible to denote the above case. In fact, all of
measurements in the target protocols should be formulated
in the second way except the error-rate checking phase.

4.2 On Channels

We do not implement some classical communication as
classical channels in qCCS because the classical data prevent
a process from dealing with superposition of mixed states
correctly. A classical channel is formalized as a quantum

Int'l Conf. Foundations of Computer Science | FCS'12 |

channel through which only restricted data are transferred.
This situation has essentially the same reason as a physical
measurement is represented by not a syntactic measurement
but a quantum operation.

In general QKD protocols, three kinds of channels are
used: public quantum channels, private classical channels
and public no-interpolate classical channels. Since the syntax
has channel restriction, formalization of private channels
is straightforward. Public no-interpolate channels are real-
ized by copying the data. If classical data v is sent via
a public no-interpolate channel ¢, this is formalized as
cdvdlv. \{...;¢, ...}. If quantum variable ¢ representing
classical bit (i.e. the state of g is p|0)(0] 4+ (1 — p)|1)(1] for
some p € [0, 1]) is sent via a public no-interpolate channel c,
it is formalized as ...copy(q, @).clq.d!@Q..\{...,c,...}. The
body of the quantum operator copy is easily implemented
using cnot.

4.3 Formalization of the EDP-based protocol

Figure 2 is the definition of the configuration
EDPbased(;’ ,, denoting the EDP-based protocol. It
depends on parameters n and e which determine the length
of secret keys and error-threshold. It employs the CSS code
constructed from appropriate two linear codes Cy and Cs.
A and B are Alice’s and Bob’s processes and the protocol
is formalized as the parallel composition of them. As they
use private channels {cj,ca,cCa,...,cq}, they are restricted
by ’\’. Density operators p“, p? and p¥ denote states of
qubits that Alice, Bob and Eve have respectively. p* and
pP are given concretely but p¥ is an arbitrary density
operator. We may omit scalar multiplication if it is trivial.

For readability, quantum variables in Alice’s and Bob’s
processes are superscribed by A and B. The length of each
bit/qubit is fixed by given n, and we may simply write
x instead of z1,...,x,, for bit/qubit sequences where m
is the length of the sequence x. We also write clx for
cilzi...cm!Tom.

We faithfully formalized the protocol introduced in Sec-
tion 2. The process EDPbased;’ -, goes as follows. Alice
initially has 2n EPR pairs. ¢{*, ..., g4, are Alice’s halves and
¢4, ..., g5} are supposed to be sent to Bob. First n pairs
are for check qubits and the last m pairs are for secret
keys. Alice randomly performs Hadamard transformation
hadamards[q’4, 4] to ¢4 according to the randomness 7
with length 2n. Here, 7 is represented as quantum data in
state (|0)(0| + |1)(1])®2", that is, they are in the uniform
distribution. Alice then shuffles ¢’4 according to the ran-
domness s with sufficient length N by shuffle[q'4, s4].
Alice next sends ¢’ to Bob via a quantum public channel
c1, and then tells 7#, s via a public no-interpolate channel
realized with co,cs,d; and da. Bob receives ¢’4, 74 and
s? into the quantum variables ¢, and s” respectively.
By this communication, Alice tells Bob which qubits Alice
has performed Hadamards and which qubits are for error-rate

Int'l Conf. Foundations of Computer Science | FCS'12 |

check. Bob then recovers the initial order of qubits. using
unshuffle[q?, s®]. He also inverses Hadamards transfor-
mations by hadamards|q?,r7].

Alice and Bob next measure her and his check qubits
by measure[qi}, ..., ¢] and measure[¢?, ..., ¢Z]. Bob sends
Alice his measurement results ¢7°, ..., qf via a public no-
interpolate channel. After receiving Bob’s result into the
quantum variable t4, Alice calculates the error rate and
determines whether to abort the protocol by the operator
abort_alice[q{,...,¢2, t*, b]. This operator depends on
the given error threshold e and the quantum variable b*
receives the result. The resulting state of b4 will be of the
form p|0)(0|+(1—p)|1)(1] if the abort probability is p. b* is
then measured by M[b4;y4], causing probabilistic branch.
They abort the protocol if and only if y“ is equal to 0.

If the protocol does not abort, Alice and Bob goes to the
error correction and privacy amplification steps. The quan-
tum operator css_projection[q;?H, oy @5 u v 4] maps
Alice’s halves qﬁ+1,...,q§4n to a random CSS codeword.
The projection results, which are the bit and phase param-
eters of CSS code, are stored in u“ and v#. Alice then
decodes her codeword and completes her secret key by
css_decode [q;?_,_l, ey @4 u v 4], Alice then tells Bob the
CSS parameters u* and v# via public no-interpolate and
private classical channels. After receiving, Bob calculates
the error syndrome of ¢2, ,, ..., ¢5, by css_syndrome, cor-
rects errors by css_correct, decodes CSS codeword by
css_decode and finally completes his secret key. Note that
the bodies of the quantum operators related to CSS code
are given just as they realize the algorithms of CSS code
[12]. The processes A and B end with As and By, which
are Alice’s and Bob’s processes after sharing the secret key.
They may communicate using the shared secret key. To show
bisimilarity, A5 and By are assumed to behave the same with
an identical secret key and to keep quantum variables that
have not been sent to the outside.

4.4 Formalization of BB84

Figure 3 is the definition of the configuration BB84 &' -, .
In BB84, instead of EPR pairs, Alice initially prepares
a random |0),|1) qubit-string with length 2n, memorizes
the bit pattern, and sends the string to Bob after the
random Hadamard transformation. Since a density operator
represents probabilistic distribution, the initial state is rep-
resented with Alice’s and Bob’s data ¢ and ¢’ in state
(|00y(00] + \11)(11|);®A22,A. Alice then performs Hadamard

transformation to ¢4 according to the randomness 74, and
then shuffles ¢ according to the randomness s*.

After error-rate checking phase, Alice prepares a ran-
dom codeword u® in Cj. The state of u“ is denoted
> wec, [u)(u|. Alice then performs cnot to u® with control
qubits g2, 1, ...,q4, and sends it to Bob via a public no-
interpolate channel realized with cs and ds. Alice then

performs cnot and copy. The bitstring qﬁH,...,qé“n is

145

EDPbased = (A||B\{c1, ¢c2,c2,c3,ca,cs5,C6}, pA ® pB ® pE>

A = hadamards[¢’?,r"].shuffle[q'?, s*].

c1!lqg.ci?z® copy[r?, R*].calr® .d1! R™.
c:opy[sA7 SA].03!sA.dg!SA.measure[in7 - q;ﬂ.
C4?tA.abort_a1ice[q{4, g A, bA]
M[b*;y?).caly™ dily™ if y* =0 then

C s A A A A
css_projection[gyy1, .-, Gan, ", 0"].

css_decode[q;?H, e g u, vA].

copy[uA, UA}.csluA.d:;!UA.copy[vA, VA].CGIUA‘AQ
100)(00] + [00) (11| + [11)(00] + [11)(11)ZF" 4 @
0){0] + [1) (17" @ (|0)(0] + [1) (1) ®
0)(0N5E" ® (10)(0))§A" © [0) (0],

0)(ODTA @ (10)(ON X @ (10)(0))g/a @ (10)(0])5A
B=c17¢", ..., q¢5,.c110.d20.

(
(
(
(

B B B B B B
c2?r” .unshuffle[q”,r |.cg?s” .hadamards[q ,s |
B B B B B B
measure[qy , ..., Gy |-COPY[q1 5 s @ s QL 5 s Q|
B B B B
c4!ql 5o Qn -d5!Ql PREEY) Qn .
cz?yB.if yB =0 then C5?uB.c6?vB.
B B B B . B .B
css_syndrome[q, 11, ..., an, U,V , ST, 8z]
B B _B . B
css_correct|[qy i1, ...y Gon, ST, 82" .
B B B B
css_decode[qy, y1, - Gan, U,V |.B2

p” = (10)(0D55 ® (10)(0NE @ (10)(0)2)5

Fig. 2: the EDP-based protocol

uniformly random in C;. Alice finally calculates the coset
of ¢/l 1,...,q3, in Co by key[gZ, ,,...,¢5,] and obtains her
secret key.

After Bob performs cnot and copy, the bitstring

qP 1, ..,qf, is same as u®. As it may contain
some errors (it depends on how Eve has interfered),
Bob calculates the syndrome and corrects the er-
rors in code C; by syndrome[q?, ,,...,q¢Z , sz®] and
correct[qﬁ_l, ey @5 52B] where sz
of the syndrome. Bob finally calculates the coset of
qB 1. ...,q8, in Cy by key[¢?,,...,¢4] and obtains his
secret key.

B is stored the value

5. Proof of Bisimulation

5.1 On equivalence of the EDP-based protocol
and BB84

Theorem 6: For any classical linear codes C', Cs that sat-

isfy the condition of CSS code, there exist quantum operators
corresponding quantum operator symbols in processes, and
for any e € [0, 1], EDPbased)’ o, = BB84 ¢\ o,

Proof 7: The both protocols end up with the pro-

cess As||By after the execution. If the two states ogpp

146

BB8/ = (A||B\{c1, 2, c2,¢3,¢ca,¢5}, p* @ p® @ p¥)
A = hadamards|q'®,7*].shuffle[q’*, 7).
copy[r®, R*].ca!r®.d1!R™.
A.da!S?.
C4?tA.abort_alice[qi4,
My .caly® dily™ =0 then
 qon].copy[u®, U*].cslu® ds!U.
7(I§4n]-C°PY[UA»q;?+17
key[gii1s s Gon]- Az
p™ = (100)(00] + [11)(11)FE" 4 © (0)(0] + L)1) @
(10)(0] + 1) (1) 22" ® (|0)(0D) 33" @ (10)(0]) 54’ @
0) (0,2 @ (D Ju)(ul)us @ ©(0)(0)SF®

c1 !q/A 1?7z
copy[s*, 5%].cals
S 4,07,
Aif y?
cnot[uA, q;?_H,

A A A
cnot[u”, gnt1, - s Qo]

ueCq
(10)(01) 72 @ (10)(01) 7%
B = Cl?Ch 7..‘,q2n.01!0.d210.

c2?7r® unshuffle [qB , TB] .c3?s”® hadamards [qB , SB} .

B B B B B B
measure[Ql y ooy Qn].COpy[ql seey Qn sy Ql 3 ey Qn]
B B B B
C4!q1 7"'7q7l 'd5!Q1 ""’Q'IL'
cz?yB.if yB =0 then C5?uB.
B B B B B B
CHOt[u ,Qn+1,-~-,Q2n]~C°PY[U 7qn+17~~'7q2n]'
B B B
syndrome[q, 1, ..., an, ST].
B B B B B
correct|qy 1 -y Gon, ST | KeY[Qri1, - s G2n)-B2

7= (10)(0Dg5 © (100D 55 @ (10025

Fig. 3: BB84 (slightly modified)

and opps; have the same secret key and partial trace
in Eve’s view, the configurations (As||B2,0ppp) and
(As||Bs,0psy) are trivially bisimilar. By Theorem 4,
we can find the bisimilar configurations which reach
As||Bs by a single transition in execution paths. Repeating
such calculation by going back transition paths, we have
EDPbased(; ¢, = BB84 (i ¢, at the starting point. This is
the outline of the proof.

Since for 7-transitions by operators, if and communica-
tion in restricted channels, a configuration before a transition
is bisimilar to the configuration after the transition, it is
enough to consider other cases.

If a transition of input or output other than c; exists in a
execution path from EDPbased C to a configuration, we
can find the same transition in a path from BB&4 gf c, 0a
bisimilar configuration, and vice versa. We can choose pairs
of configurations before a transition so that their states of the
output variable coincide. For such pair of configurations, it
is easy to see that the conditions on variables for Theorem 4
hold automatically. Since the concerned transition is parallel
to other transitions, we can see the two configurations are
bisimilar by Theorem 4.

Int'l Conf. Foundations of Computer Science | FCS'12 |

The case of a transition of measurement is similar to
the above case, but we have to calculate the partial trace
condition carefully. Because the transition does not preserve
partial traces, a pair of bisimilar configurations before the
transition satisfies a stronger condition than the usual trace
condition.

The last step is about transitions with the channel c;. In
this case, we have to consider the nondeterministic branching
of transitions. Theorem 4 can be applied to the internal
communication case after Theorem 4 is applied to the input
and output cases.

The proof is completed by showing that EDPbased)’ .,
and BB84(° ., satisfy the above calculated relation.
Though A11ce and Bob’s starting states in the two protocols
are different, we can see that they have the same partial trace.
For other conditions, in fact, we can prove by calculation of
states in every execution. Especially, the value of the secret
key, the traced values of output variables and the probability
of the measurement are important.

The value of the secret key is identical because operations
in the both protocols related to error correcting codes work
equivalently.

The initial states of ¢ and ¢’ are different but Alice
sends only ¢’4 via c;. Even if q;A is sent to the outside,
the following calculation shows that the partial trace is the
same: tr{q?}(1/2\00><00| + 1/2|00)(11] + 1/2|11)(00| +
1/2]11)(11]) = tr{q;;}(l/2|00><00| + 1/211)(11]) =
1/2]0)(0] 4+ 1/2]1)(1|. As for other quantum variables, the
conditions are checked by examining the related operators.

When abort_alice[qf,..., ¢, s, b4] is operated, the
states of the inputs correspond. This follows the resulting
state of b4, and then the weight of the probability branch and
partial traces after the measurement M [b*; y“] correspond.

5.2 On multiple session

From theorem 35, the fact is immediately obtained that the
EDP-based protocol and BB84 cannot be distinguished from
the outside even if they run in parallel. We first introduce
the following lemma.

Lemma 8: If (P, p1 ® p¥) = (Q1,01 ® p¥), (P, p2 ®
p3) = (Q2,00 ® py) and qv(Pr) Nqv(F) = qv(P1) N
qv(Q2) = qV(Q1) Nav(F2) = qv(Q1) N qv(Q2) = { hold
for all p¥, pZ, then (P1||Ps, p1 ® p2 ® pP) = (Q1]|Q2, 01 ®

oy @ p¥) holds for all p¥.

Proof 9: From the premise, we have (Pp,p; ® ps ®
pP) ~ (Q1,01 ® pa @ pF). From theorem 5, we next have
(Py||P2, pr ® p2 @ pP) = (Q1]| P2, 01 ® p2 @ p¥). Similarly,
we have (Q1|P2, 01 ® p2 ® p¥) = (Q1|Q2, 01 ® 72 @ p¥).
By the transitivity of ~, we obtain the conclusion.

Let s be a natural number and let Agpp 1,..., Agpp,s
be Alice’s process executing the EDP-based protocol that
are obtained replacing channel names so that they can
appropriately communicate, and replacing quantum variables
in AEDP,i so that qV(AE‘DP,l) n..nN qV(AEDP,s) = 0.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Let Lq,...,Ls be the sets of channels that are restricted
in each session and let the corresponding density operators
be pipp 15 - Pipp,s- Let Bob’s process in the EDP-based
protocol, the corresponding states and BB84’s counterparts
be defined in the same way. We define s session execution
of the EDP-based protocol EDPbased; ", (s) and of BB84
BB84° ¢, (s) as follows.

EDPbased;’ o, (s)
= ((Agpp,1||Beppi\L1)||...||(Aepp,s||Bepp,s\Ls),

A A
PEDP,1 ® pgDP,l & ... ® PEDP,s @ pgDP,S ® p")
BB84E 0, (s)

= ((ABBsy 1|1BBBsy 1 \L1)||--||(ABBss s||BeBss,s \Ls),
A B A B E
PBBss1 @ PBBssa @ @ PBEsy s @ PBEsys @ P)

Corollary 10: For all natural number s, sufficiently large
natural number n and classical linear codes C7,C5 that
satisfy the condition of CSS code, there exists quantum oper-
ators corresponding quantum operator symbols in processes,
for any e € [0, 1], EDPbased;’ ,(s) ~ BB84 (¢ ¢, ().

Proof 11: By Theorem 5, we have
(Apppil|Beppi\Lis ppp; © phpps ® pPF) =~
<AEDP7i||BEDP-,i\Liapr(%,i ® pr(%,i ® PE’Z> for
all i and p®'. Next, by induction of the number of the
sessions s, we apply Lemma 8.

6. Conclusion

In this paper, we applied a quantum process calculus
qCCS [9] to a security proof of BB84 QKD protocol
presented by Shor end Preskill [2]. We presented a general
technique to describe quantum measurements. A probabilis-
tic branch in the transition system evoked by a quantum
measurement M [g; x] is visible from an adversary. It should
be used if the process performs different visible actions (e.g.
to abort or to continue a protocol) from outside according to
the measurement results. Otherwise, quantum measurement
should be formalized as a quantum operator measurelq].
We formalized BB84 and the EDP-based protocol as qCCS
processes and then proved they are bisimilar, which means
the two protocols behave same from an adversary. The
security equivalence of BB84 and the EDP-based protocol
under concurrent execution is immediately obtained from the
congruence property of bisimulation.

The result of this paper directly shows the feasibility of
process calculi for analyses of security equivalence of QKD
protocols. Since cryptographic proofs often discuss equiv-
alence of protocols [2], [13], bisimulation will be versatile
way for formal verification of the proofs. Quantum process
calculi have been used for analyses of quantum protocols.
Davidson et al. formally verified a quantum error correcting
code [10] using CQP’s bisimulation. As case studies, qCCS
developers have applied it to specification and verification of
quantum teleportation and superdense coding protocols [9].

It has also been applied to specification of simplified BB84
[11] but this is not a security proof. Since adversary’s view
is important in cryptography, treatment of branches evoked
by quantum measurements is significant for proving security
equivalence of protocols.

Future work In this paper, we proposed a technique to
formalize quantum measurement. We expect the existence
of an algorithm to determine which formulation of a mea-
surement should be used.

If two processes are bisimilar in qCCS’s sense, an adver-
sary observes the same behavior with the identical proba-
bility up to invisible actions. However, cryptographic proofs
often discuss indistinguishability up to some negligible prob-
ability. The notion of probabilistic bisimulation is useful for
such arguments. It will enable us to realize full formalization
of security proofs.

Bisimulation is feasible for automatic verification [14].
As for qCCS’s bisimulation, theorem 4 suggests that bisim-
ulation is checked by exhausting the non-deterministic ex-
ecution paths if each path is finite. If we mainly target
cryptographic protocols, it is possibly the case. For example,
the processes in this paper do not have an infinite path.
Automation would truly help formal verification.

References

[1] D. Mayers. Unconditional security in quantum cryptography. J. ACM,
48:351-406, May 2001.

[2] P. W. Shor and J. Preskill. Simple proof of security of the bb84
quantum key distribution protocol. Phys. Rev. Lett., 85(2):441-444,
Jul 2000.

[3] H-K. Lo and H. F. Chau.
key distribution over arbitrarily long distances.
283(5410):2050-2056, Mar 1999.

[4] B. Blanchet. A computationally sound automatic prover for cryp-
tographic protocols. In Workshop on the link between formal and
computational models, Paris, France, June 2005.

[5] C.Neuman, T. Yu, S. Hatman, and K. Raeburn. The kerberos network
authentication service (v5). http://www.ietf.org/rfc/rfc4120, Jul 2005.

[6] B. Blanchet, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Computation-
ally sound mechanized proofs for basic and public-key kerberos. In
Proceedings of the 2008 ACM symposium on Information, computer
and communications security, ASIACCS ’08, pages 87-99, New York,
NY, USA, 2008. ACM.

[7] P. Jorrand and M. Lalire. From quantum physics to programming
languages: A process algebraic approach. In Unconventional Pro-
gramming Paradigms, Lecture Notes in Computer Science.

[8] S. J. Gay and R. Nagarajan. Communicating quantum processes.
SIGPLAN Not., 40:145-157, January 2005.

[9] Y. Feng, R. Duan, and M. Ying. Bisimulation for quantum processes.

SIGPLAN Not., 46(1):523-534, January 2011.

R.Nagarajan L.V. Puthoor T.A.S. Davidson, S.J.Gay. Analysis of

a quantum error correcting code using quantum process calculus.

Quantum Physics and Logics, 2011.

Y. Feng Y. Deng. Open bisimulation for quantum processes.

arXiv:1201.0416v1, 2012.

A. R. Calderbank and P. W. Shor. Good quantum error-correcting

codes exist. Phys. Rev. A, 54(2):1098-1105, Aug 1996.

K. Tamaki, M. Koashi, and N. Imoto. Unconditionally secure key

distribution based on two nonorthogonal states. Phys. Rev. Lett.,

90(16):167904, Apr 2003.

A. Tiu and J. Dawson. Automating open bisimulation checking for

the spi calculus. In Computer Security Foundations Symposium (CSF),

2010 23rd IEEE, pages 307 —321, july 2010.

Unconditional security of quantum
Phys. Rev. Lett.,

[10]

[11]
[12]

[13]

[14]

147

148 Int'l Conf. Foundations of Computer Science | FCS'12 |

An Automated Deduction of the Equivalence of
Symmetry of Commutativity and the
Orthomodular Law in
Quantum Logic

Jack K. Horner
P. O. Box 266
Los Alamos, New Mexico 87544 USA
email: jhorner@cybermesa.com

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of
qguantum-mechanical behaviors and operations. In much the same way that the structure of conventional
propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical
systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces
of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the
descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An
OL can thus be thought of as a kind of “quantum logic” (OL). C(H) is also a model of an orthomodular
lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA
as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its
equivalents are required in an adequate characterization of QL. Because the propositions of a QL are
not in general commutative, quantum logicians have paid much attention to "quasi*-commutative
theorems, one of the better known of which is the symmetry of commutativity theorem (SoCT), which states
that commutativity is symmetric in an orthomodular lattice. Here | provide automated deductions showing
that the SoCT and the OMA, in the context of a QL, are equivalent. The proofs appear to be novel.

Keywords: automated deduction, quantum computing, orthomodular lattice, commutativity, Hilbert space

of (equivalently, the system of linear
operators on (observables in)) a Hilbert
space H ([1], [4], [6], [9], [13]) is a logic of
the descriptions of the behavior of quantum
mechanical systems (e.g., “the
measurements of the position and

1.0 Introduction

The optimization of quantum computing
circuitry and compilers at some level must
be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],
[18], [20]). In much the same way that
conventional propositional (Boolean) logic
(BL,[12]) is the logical structure of
description of the behavior of classical
physical systems (e.g. “the measurements of
the position and momentum of particle P are
commutative”) and is isomorphic to a
Boolean lattice ([10], [11], [19]), so also the
algebra, C(H), of the closed linear subspaces

momentum of particle P are not
commutative”) and is a model ([10]) of an
ortholattice (OL; [8]). An OL can thus be
thought of as a kind of “quantum logic”
(QL; [19]). C(H) is also a model of (i.e.,
isomorphic to a set of sentences which hold
in) an orthomodular lattice (OML; [7], [8]),
which is an OL conjoined with the
orthomodularity axiom (OMA; see Figure
1). The rationalization of the OMA as a

Int'l Conf. Foundations of Computer Science | FCS'12 | 149

claim proper to physics has proven problematic ([13], Section 5-6),

Lattice axioms

x = c(c(x)) (AxLatl)
X VYy =YV X (AxLat2)
(x vy vz=xvVv(yvVvz (AxLat3)
(x ~y) " z=x"(y " z) (AxLatd)
X Vv (x N y) = x (AxLatbh)
Xx N (xVvy) =X (AxLato)
Ortholattice axioms
c(x) ~x =20 (AxOL1)
c(x) vx =1 (AxQOL2)
x Ny = c(c(x) v cl(y)) (AxOL3)

Orthomodularity axiom (aka Orthomodularity Law)
y v (cly) " xvy)) =xvVvy (OMA)

where
X, y are variables ranging over lattice nodes
~ is lattice meet
v is lattice join
c(x) 1is the orthocomplement of x
= 1s equivalence ([12])
1 is the maximum lattice element (= x
0 is the minimum lattice element (= c

Figure 1. Lattice, ortholattice, and orthomodularity axioms.

Because of the fundamental role that non- guantum compiler and circuit design.
commutativity plays in QL, quantum Among the better known of the quasi-
logicians have paid much attention to commutative theorems is the symmetry of
""guasi"-commutative theorems, which help commutativity theorem (SoCT; [7],[8])

to ground a large class of equivalence shown is in Figure 2

representations in quantum logic, and are
thus of potential interest in optimizing

If x and y are elements of an orthomodular lattice,

xCy <-> yCx

where xCy means "x commutes with y", defined as

150

xCy <-> (x = ((x " ¥y)

<-> means "if and only if"

Int'l Conf. Foundations of Computer Science | FCS'12 |

~ cl(y)))), and

Figure 2. The SoCT ([7].[8]).

Informally stated, the SOCT says that
commutativity is symmetric in an
orthomodular lattice. It turns out, as

GB RAM, running under the Windows Vista
Home Premium (SP2)/Cygwin operating
environment.

subsequent sections of this paper show, that
the SoCT is equivalent to the OMA, in the
sense that the axioms of an ortholattice,
together with the SoCT, imply the OMA,
and the axioms of an orthomodular lattice

3.0 Results

imply the SoCT. To prove the equivalence of the symmetry
of commutativity with the Orthomodular
Law, it suffices to prove the propositions
20 Method shown in Sections 3.1, 3.2, and 3.3.

The OML and OL axiomatizations of
Megill, Pavic¢i¢, and Horner ([5], [14], [15],
[16], [21], [22]) were implemented in a
prover9 ([2]) scripts ([3]) configured to
derive the equivalence of the SoCT and the
OMA, then executed in that framework on a
Dell Inspiron 545 with an Intel Core2 Quad
CPU Q8200 (clocked @ 2.33 GHz) and 8.00

3.1 Proof of 'xCy - yCx' in an
orthomodular lattice

Figure 3.1.1 shows the proof of proposition
'XCy — yCx' produced by [3] on the
platform described in Section 2.0.

PROOF
% Proof 1 at 65.32 (+ 1.47) seconds: "Commutativity is symmetric in an orthomodular
lattice".
% Length of proof is 87.
% Level of proof is 23.
2 C(x,y) <> x = (x " y) Vv (x " cly)) # label("Df: commutes") # label (non clause).
[assumption] .
3 C(x,y) -> C(y,x) # label("Commutativity is symmetric in an orthomodular lattice") #
label (non_clause) # label(goal). [goall].
6 x = c(c(x)) # label ("AxL1"). [assumption].
7 c(c(x)) = x. [copy(6),flip(a)].
8 x vy=yvVvx# label("AxL2"). [assumption].
9 (x vy) vz=xv (yvz) # label ("AxL3"). [assumption].
11 x v (x ~ y) = x # label ("AxL5"). [assumption].
12 x ~ (x vy) = x # label ("AxLo6"). [assumption].
13 c(x) ©~ x = 0 # label ("AxOL1"). [assumption].
14 c(x) v x = 1 # label ("AxOL2"). [assumption].
15 x v c(x) =1 [copy(14),rewrite([8(2)]1)1].
16 x ~ y = c(c(x) v c(y)) # label ("AxOL3"). [assumption] .
17 x v (c(x) ~ (y v X)) =y v x # label ("OMA") . [assumption].
18 x ve(xve(ly vx))=yV X. [copy(17),rewrite([16(3),7(2)1)1.
30 =C(x,y) | (x ~y) v (x ~ c(y)) = x # label ("Df: commutes"). [clausify(2)].

Int'l Conf. Foundations of Computer Science | FCS'12 | 151

31 -C(x,y) | c(c(x) v y) vc(c(x) vcly)) = x.

[copy (30),rewrite([16(2),16(7),7(8),8(9)1)1.

32 C(x,y) | (x ~y) v (x ~ c(y)) != x # label ("Df: commutes"). [clausify(2)].

33 C(x,y) | c(c(x) v y) Vv C(C(X) v C(y)) = x.

[copy (32) ,rewrite ([16(2),16(7),7(8),8(9)1)].

34 C(cl,c2) # label ("Commutativity is symmetric in an orthomodular lattice"). [deny (3)].
35 -C(c2,cl) # label ("Commutativity is symmetric in an orthomodular lattice") #

answer ("Commutativity is symmetric in an orthomodular lattice"). [deny (3)].

36 c(l) = 0. [back rewrite(13),rewrite([16(2),7(2),15(2)]1)].
37 c(c(x) v c(x v y)) = x. [back rewrite(1l2),rewrite([16(2)])].

38 x v c(c(x) v c(y)) = x. [back rewrite(ll),rewrite([16(1)])].

40 x v (yvz) =yvVv (XVvz). [para(8(a,1),9(a,1,1)),rewrite([9(2)])].
42 x v (c(x) vy =1vwvy. [para(l5(a,1),9(a,1,1)),flip(a)].

43 x v (y v c(x v y)) =1. [para(l5(a,1),9(a,1)),flip(a)].

44 x v c(x v c(x VVy)) =Yy V X. [para(8(a,l),18(a,1,2,1,2,1))].

45 x v (c(x v c(y v x)) vz =yvVv (XVvz).
[para(1l8(a,1),9(a,1,1)),rewrite([9(2)]),flip(a)l.

47 x v c(x vely v (zvx)))=yvVv (zVvXx).
[para(9(a,l),18(a,1,2,1,2,1)),rewrite([9(8)])].

50 C(c(x),y) | c(x vy) vc(xvc(ly)) I'=sc(x).

[para(7(a,l),33(b,l,l,l,l)),rewrite([7(6)])].

53 C(x,y) | clc(x) v y) v c(c(y) c(x)) !'= x. [para(8(a,1),33(b,1,2,1))].

58 c(c2 v c(cl)) v c(c(cl) v c(c2)) = cl. [hyper(31,a,34,a), rewrite([8(4)])].

59 c(cl v c(c2)) v c(c(cl) v c(c2)) != c2 # answer ("Commutativity is symmetric in an
orthomodular lattice"). [ur(33,a,35,a), rewrite([8(4),8(10)])].

63 C(x,1) | c(0 v c(x)) v c(l v c(x)) !'= x.
[para(36(a,1),33(b,1,2,1,2)),rewrite([8(5),8(9),8(11)1)1.

64 c(x) v c(x v y) = c(x). [para(37(a,1),7(a,1,1)),flip(a)].

68 c(0 v c(x)) = x. [para(l5(a,1),37(a,1,1,2,1)),rewrite([36(3),8(3)1)1.

69 c(x Vy) velixvelxvy))=c(x).
[para(37(a,1),18(a,1,2,1,2)),rewrite([8(5),64(11)])].

7L C(x,x vy) | c(l vy vx!=x. [para(37(a,1),33(b,1,2)),rewrite([40(5),42(5)1)1.
72 1 v x = 1. [para(36(a,1),37(a,1,1,1)),rewrite([68(6)]1)].

74 C(x,1) | x v 0 !'= x. [back rewrite(63),rewrite([68(6), 72(5) 36(4)1)1.

76 C(x,x vy) | 0vxl!l=x. [back rewrite(71),rewrite([72(4),36(4)]1)].

8l x v c(c(x) v y) =x. [para(7(a,1),38(a,1,2,1,2))].

85 x v 0 = x. [para(l5(a,1),38(a,1,2,1)),rewrite([36(2)])].

86 x v c(y v c(x)) = x. [para(1l8(a,1l),38(a,1,2,1))1.

88 x Vv X = X. [para(36(a,1),38(a,1,2,1,2)),rewrite([8(3),68(4)1)1.

90 C(x,1). [back rewrite(74),rewrite([85(4)]),xx(b)].

93 x v (yve(xve(zvx)) =yv (zvx). [para(1l8(a,1),40(a,1,2)),flip(a)].
95 0 v x = x. [hyper (31,a,90,a), rewrite ([8(3),72(3),36(2),36(4),8(4),68(5)1)1.
98 C(x,x V V). [back rewrite(76),rewrite([95(4)]),xx(b)].

112 x v (X Vy) =XV Y. [para(88(a,1),9(a,1,1)),flip(a)].

114 x v (y v x) =y v x. [para(88(a,1),9(a,2,2)),rewrite([8(2)])].

125 C(x v y,x v (y v z)). [para(9(a,1l),98(a,2))].

219 x v (c(c(x) v y) VvV z) =XV Z. [para(8l(a,1),9(a,1,1)),flip(a)].

298 c(x) v c(y v x) = c(x). [para(7(a,1),86(a,1,2,1,2))].

317 C(c(x),x Vv y). [para(ll2(a,1),50(b,1,1,1)),rewrite([69(10)]),xx(b)].

328 C(c(x),y v x). [para(8(a,1),317(a,2))].

337 c(x vy) vely velxvy))=cly). [hyper(31,a,328,a),rewrite([7(2),114(2),7(4)1)1.
364 C(x Vv v,Y) .
[para(86(a,1),53(b,1,2,1)),rewrite([7(2),7(4),8(5),7(8),8(7),18(7),7(5)1),xx(b)].
368 C(x v (y Vv 2),x V 2z). [para(40(a,1),364(a,1))1.

392 c(c(cl) v c(c2)) v (x v c(c2 v c(cl))) = x v cl.
[para(58(a,1l),45(a,2,2)),rewrite([8(26),93(27)1)1.

406 c(x) v (c(x v y) vz) =c(x) Vv z. [para(64(a,1),9(a,1,1)),flip(a)].

414 c(x vy) ve(c(xvy) ve(zve(x))) =z vc(x).
[para(c4(a,1),47(a,1,2,1,2,1,2)),rewrite([64(14)])].

]
617 C(x v y,y Vv (X Vv z)). [para(8(a,l),125(a,1))].
618 C(x v y,y Vv (z v x)). [para(8(a,l),125(a,2)),rewrite([9(3)]1) 1.
733 C(x v (y vV 2),2 V X). [para(8(a,l),368(a,2))1.
855 C(c(x vvy) vz,zvc(x)). [para(69(a,l), 617(a 2,2))1.
1079 C(x v c(y),c(y v z) v x). [para(64(a,l),733(a,1,2))].
1859 C(c(x v y) v z,z v c(y)). [para(298(a,1),618(a,2,2))1.
1862 C(x v c(y),c(z v y) VvV x). [para(298(a,1),733(a,1,2))1.
7402 C(cl,c(c2) v c(c(cl) v c(c2))). [para(58(a,1l),855(a,1l)),rewrite([8(10)])1.
8031 C(c(c2) v c(c(cl) v c(c2)),cl) [para(58(a,1),1079(a,2)),rewrite([8(9)1]1)1].
10398 c(c(cl) v c(c(c2) v c(c(cl) v c(c2)))) = cl.
[hyper (31,a,7402,a),rewrite([43(12),36(2),95(16)]1)1.

162 Int'l Conf. Foundations of Computer Science | FCS'12 |

11360 cl1 v c(cl v c(c(c2) v c(c(cl) v c(c2)))) = c(c2) v c(c(cl) v c(c2)).
[hyper(31,a,8031,a), rewrite([8(12),8(26),10398(27),8(15)1)1.

19020 x v c(y v c(c(x) v y)) =x v c(y). [para(337(a,1),219(a,1,2)),£flip(a)].

19087 c(c2) v c(c(cl) v c(c2)) =cl v c(cl v c2).

[back rewrite(11360),rewrite([19020(13),7(5)]),flip(a)].

21129 ¢l v c(cl v c2) = cl v c(c2).
[para(64(a,1),392(a,1,2)),rewrite([8(9),19087(9),8(10)]1)1.

21175 c(c2) v c(c(cl) v c(c2)) = cl v c(c2). [back rewrite(19087),rewrite([21129(15)])].
21178 ¢l v c(cl v c(c2)) = cl v c2. [para(21129(a,l),44(a,1,2,1)),rewrite([8(10)]1)1].
21180 c(cl v ¢c2) v c(cl v c(c2)) = c(cl).
[para(21129(a,1),69(a,1,1,1)),rewrite([21129(12),21178(12),8(10)]1)1].

21882 c(x) v c(y v c(x v y)) = c(x) v c(y). [para(337(a,l),406(a,1,2)),flip(a)].
22893 c(cl) v c(c2 v c(cl)) = c(cl) v c(c2).
[para(58(a,l),414(a,1,2,1)),rewrite([8(8)1)1.

35649 C(c(cl),c(c2) v c(cl v c(c2))). [para(21180(a,1),1859(a, 1)), rewrite([8(10)])].
35650 C(c(c2) v c(cl v c(c2)),c(cl)). [para(21180(a,1),1862(a,2)),rewrite([8(8)])].
35718 c(cl v c(c(c2) v c(cl v c(c2)))) = c(cl).

[hyper (31,a,35649,a),rewrite ([7(3),43(10),36(2),7(4),95(14)1)1.

35719 c(c2) v c(cl v c(c2)) =
[hyper (31,a,35650,a), rewrite ([
8)1),flip(a)l.

70001 c(cl v c(c2)) v c(c(cl) v c(c2)) = c2.
[para(21175(a,1),69(a,1,1,1)),rewrite([21175(16),35719(13),7(15)1)]1.

70002 $F # answer ("Commutativity is symmetric in an orthomodular lattice™).
[resolve (70001,a,59,a)].

7(
c(cl) v c(c2).
8(12),21882(12),7(5),8(4),7(17),8(16),35718(17),8(8),22893(

end of proof

Figure 3.1.1. Summary of a prover9 ([2]) proof of the proposition 'xCy —» yCx' ([7]) inan
orthomodular lattice. The proof assumes the inference rules of prover9. The general form of
a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique
identifier of a line in the proof, and conclusion is the result of applying the prover9 inference
rules (such as paramodulation, copying, and rewriting), noted in square brackets (denoting
the derivation), to the lines cited in those brackets. Note that some of “logical” proof lines in
the above have been transformed to two text lines, with the derivation appearing on a text
line following a text line containing the first part of that logical line. The detailed syntax and
semantics of these notations can be found in [2]. All prover9 proofs are by default proofs by
contradiction.

3.2 Proof of 'yCx —» XxCy" in an orthomodular lattice

Substitute x for y and y for x in Figure 3.1.1.

3.3 Proof of '(xCy & yCx) - Orthomodular Law (OMA)" in an ortholattice

PROOF

o°

Proof 1 at 0.01 (+ 0.03) seconds: "Symmetry of commutativity implies OMA".
Length of proof is 39.
Level of proof is 11.

o

o

2 C(x,y) <> x = (x ~vy) v (x
[assumption] .

~ c(y)) # label("Df: commutes") # label (non_clause).

Int'l Conf. Foundations of Computer Science | FCS'12 | 1563

3 C(y,x) <> C(x,y) # label("Commutativity is symmetric") # label (non_clause).
[assumption].

4 y v (c(ly) » (xvy)) =xvy# label("Symmetry of commutativity implies OMA") #
label (non clause) # label (goal). [goal].

7 x = c(c(x)) # label ("AxL1"). [assumption].

8 c(c(x)) = x. [copy(7),flip(a)].

9 xvy=yvx# label ("AxL2"). [assumption].

10 (x vy) vz=xv (yvz # label("AxL3"). [assumption].

~

12 x v (x y) x # label ("AxL5"). [assumption].

13 x * (xvy) =x # label ("AxLo6"). [assumption].

14 c(x) ~ x = 0 # label ("AxOL1"). [assumption].

15 c(x) v x = 1 # label ("AxOL2"). [assumption].

16 x v c(x) = 1. [copy (15),rewrite([9(2)]1)1].

17 x ~ y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].

29 -C(x,y) | (x ~y) v (x *~ c(y)) = x # label("Df: commutes"). [clausify(2)].

30 =C(x,y) | c(c(x) v y) v c(c(x) vcly)) = x.

[copy (29),rewrite ([17(2),17(7),8(8),9(9)1)1.

31 C(x,y) | (x " y) v (x "~ c(y)) !'= x # label ("Df: commutes"). [clausify(2)].

32 C(x,y) | clc(x) v y) v c(c(x) v c(y)) = x.
[copy(31),rewrite([17(2),17(7),8(8),9(9)1)1.

33 -C(x,y) | C(y,x) # label ("Commutativity is symmetric"). [clausify(3)].

34 ¢l v (c(cl) ~ (c2 v cl)) !'= c2 v cl # label ("Symmetry of commutativity implies OMA") #
answer ("Symmetry of commutatativity implies OMA"). [deny(4)].

35 ¢l v c(cl v c(cl v c2)) !=cl v c2 # answer ("Symmetry of commutativity implies OMA").

[copy (34) ,rewrite ([9(6),17(7),8(4),9(12)])].

36 c(l) = 0. [back rewrite(1l4),rewrite([17(2),8(2),16(2)]1)].

37 c(c(x) v c(x v y)) = x. [back rewrite(13),rewrite([17(2)])].

38 x v c(c(x) v c(y)) = x. [back rewrite(12),rewrite([17(1)])].

40 x v (y v.z) =y Vv (x Vv z). [para(9(a,1),10(a,1,1)),rewrite([10(2)]1)].

42 x v (c(x) vy =1vwvy. [para(l6(a,l),10(a,1,1)),flip(a)l.

53 C(x,1) | c(0 v c(x)) vc(l v c(x)) != x.
[para(36(a,1),32(b,1,2,1,2)),rewrite([9(5),9(9),9(11)1)1.

54 c(x) v c(x v y) = c(x). [para(37(a,1),8(a,1,1)),flip(a)].

58 c(0 v c(x)) = x. [para(l6(a,l),37(a,1,1,2,1)),rewrite([36(3),9(3)1)]1

60 C(x,x vy) | c(lvy)vzx!=x. [para(37(a,1),32(b,1,2)),rewrite([40(5),42(5)1)1.
61 1 v x = 1. [para(36(a,1),37(a,1,1,1)),rewrite([58(6)1)1].

63 C(x,1) | x v 0 !'= x. [back rewrite(53),rewrite([58(6),61(5),36(4)])].

65 C(x,x vy) | 0Ovzx!=x. [back rewrite(60),rewrite([61(4),36(4)]1)].

74 x v 0 = x. [para(l6(a,l),38(a,1,2,1)),rewrite([36(2)]1)1].

78 C(x,1). [back rewrite(63),rewrite([74(4)]),xx(b)].

82 0 v x = x. [hyper (30,a,78,a),rewrite([9(3),61(3),36(2),36(4),9(4),58(5)1)1.
85 C(x,x v V). [back rewrite(65),rewrite([82(4)]),xx(b)].

107 C(x Vv y,X) . [hyper (33,a,85,a)].

111l x vec(x ve(xvy) =xvVy.

[hyper (30,a,107,a),rewrite([9(3),9(8),54(8),8(6),9(5)1)1.

112 SF # answer ("Symmetry of commutativity implies OMA") . [resolve(11l1l,a,35,a)].

end of proof

Figure 3.3.1. Summary of a prover9 ([2]) proof of the proposition '(XCy « yCx) -» OMA in
an ortholattice.

4.0 Conclusions and discussion _ _
2. The proof in Section 3.3 shows

that symmetry of commutativity in an

The results in Section 3 motivate several TRy R
ortholattice implies the OMA.

observations:

3. Sections 3.1, 3.2, and 3.3
collectively show that the axioms of an
ortholattice, together with the SoCT, implies
the OMA, and the axioms of an

1. The combination of the proofs in
Sections 3.1 and 3.2 constitutes a proof of
the SoCT in an orthomodular lattice.

154

orthomodular lattice imply the SoCT. This
result is equivalent to one of the two
principal propositions of the Foulis-Holland
Theorem ([7], [8]). In this sense, the SoCT
is equivalent to the OMA.

4. The proofs in Section 3 appear to
be novel.

5.0 Acknowledgements

This work benefited from discussions with
Tom Oberdan, Frank Pecchioni, Tony
Pawlicki, and the late John K. Prentice,
whose passion for foundations of physics
inspired those of us privileged to have
known him. For any infelicities that remain,
I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical Foundations
of Quantum Mechanics. 1936. Translated by R.
T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4. URL
http://www.cs.unm.edu/~mccune/prover9/.
2009.

[3] Horner JK. SoCT prover9 scripts. 2011.
Available from the author on request.

[4] Dalla Chiara ML and Giuntini R. Quantum
Logics. URL http://xxx.lanl.gov/abs/quant-
ph/0101028. 2004.

[5] Megill ND and Pavi¢i¢ M. Orthomodular
lattices and quantum algebra. International
Journal of Theoretical Physics 40 (2001), pp.
1387-1410.

[6] Akhiezer NI and Glazman IM. Theory of
Linear Operators in Hilbert Space. Volume I.
Translated by M. Nestell. Frederick Ungar.
1961.

[7] Holland, Jr. SS Orthomodularity in infinite
dimensions: a theorem of M. Solér. Bulletin of
the American Mathematical Society 32 (1995),
pp. 205-234.

[8] Foulis DJ. A note on orthomodular lattices.
Portugaliae Mathematica 21(1962), 65-72.

[9] Knuth DE and Bendix PB. Simple word
problems in universal algebras. In J. Leech, ed.
Computational Problems in Abstract Algebra.
Pergamon Press. 1970. pp. 263-297.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[10] Chang CC and Keisler HJ. Model Theory.
North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third Edition.
American Mathematical Society. 1967.

[12] Church A. Introduction to Mathematical
Logic. Volume I. Princeton. 1956.

[13] Jauch J. Foundations of Quantum
Mechanics. Addison-Wesley. 1968.

[14] Meqill ND. Metamath. URL
http://us.metamath.org/qlegif/mmgl.html#unify.
2004.

[15] Horner JK. An automated deduction
system for orthomodular lattice theory.
Proceedings of the 2005 International
Conference on Artificial Intelligence. CSREA
Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational logic
deduction of join elimination in orthomodular
lattice theory. Proceedings of the 2007
International Conference on Artificial
Intelligence. CSREA Press. 2007. pp. 481-488.
[17] Messiah A. Quantum Mechanics. Dover.
1958.

[18] Horner JK. Using automated theorem-
provers to aid the design of efficient compilers
for quantum computing. Los Alamos National
Laboratory Quantum Institute Workshop.
December 9-10, 2002. URL
http://www.lanl.gov/science/centers/quantum/qls
_pdfs/horner.pdf.

[19] Birkhoff G and von NeumannJ. The
logic of quantum mechanics. Annals of
Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L. Quantum
Computation and Quantum Information.
Cambridge. 2000.

[21] Pavi¢i¢ M and Megill N. Quantum and
classical implicational algebras with primitive
implication. International Journal of Theoretical
Physics 37 (1998), 2091-2098.
ftp://m3k.grad.hr/pavicic/quantum-logic/1998-
int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of the
relative strength of orthomodular and weakly
orthomodular lattice theory. Proceedings of the
2009 International Conference on Atrtificial
Intelligence. CSREA Press. 2009. pp. 525-530.

Int'l Conf. Foundations of Computer Science | FCS'12 |

The Lattice-Order Strength of Relevance
Implication in Quantum Logic: Part 1

Jack K. Horner
P. O. Box 266
Los Alamos, New Mexico 87544 USA
email: jhorner@cybermesa.com

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of
quantum-mechanical behaviors and operations. In much the same way that the structure of conventional
propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical
systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces
of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the
descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An
OL can thus be thought of as a kind of “quantum logic” (QL) In BL, there is only one implication
connection; in QL, there are five, none of which are identical to implication in a BL. Here | present
automated deductions showing that relevance implication is equal to less than (in the sense of the lattice
partial ordering) Sasaki and Dishkant implication in a QL. The proofs may be novel, and both proofs,

surprisingly, use the definition of implication in a BL.

Keywords: automated deduction, quantum computing, orthomodular lattice, Hilbert space

1.0 Introduction

The optimization of quantum computing
circuitry and compilers at some level must
be expressed in terms of the description of
guantum-mechanical behaviors ([1], [17],
[18], [20]). In much the same way that
conventional propositional (Boolean) logic
(BL,[12]) is the logical structure of
description of the behavior of classical
physical systems (e.g. “the measurements of
the position and momentum of particle P are
commutative”, i.e., can be measured in
either order, yielding the same results) and is
isomorphic to a Boolean lattice ([10], [11],
[19]), so also the algebra, C(H), of the
closed linear subspaces of (equivalently, the

system of linear operators on (observables
in)) a Hilbert space H ([1], [4], [6], [9],
[13]) is a logic of the descriptions of the
behavior of quantum mechanical systems
(e.g., “the measurements of the position and
momentum of particle P are not
commutative”) and is a model ([10]) of an
ortholattice (OL; [4]). An OL can thus be
thought of as a kind of “quantum logic”
(QL; [19]). C(H) is also a model of (i.e.,
isomorphic to a set of sentences which hold
in) an orthomodular lattice (OML; [4], [7]),
which is an OL conjoined with the
orthomodularity axiom (OMA). These
axioms, and various definitions, are shown
in Figure 1.

155

156 Int'l Conf. Foundations of Computer Science | FCS'12 |

[

% Miscellaneous definitions

1 =xv c(x) # label ("df-t").
0 = c(1) # label ("df-£f").
(x ~y) = c(c(x) v c(y)) # label ("df-a").
le(x,y) <> ((xvy) =Yy) # label ("df: x less than y").
id(x,y) = (c(c(x) v c(y)) v c(x v vy)) # label ("df-b").
()

c
v (x % cly))))
label ("x commutes with y").

C(x,y) <=> x=((x"y

)

% Definitions of implications

i0(x,y) (c(x) v vy) # label ("df-i0 Boolean").
il(x,y) = (c(x) v (x "~ V)) # label ("df-il Sasaki™).
i2(x,vy) (y v (c(x) ~ c(y))) # label ("df-i2 Dishkant").
i3(x,y) = (((c(x) ~y) v (c(x) ~ c(y))) v (x " (c(x) v y)))

label ("df-i3 Kalmbach") .
i4(x,y) (((x ~y) v (c(x) ~y)) v ((c(x) vy "~ c(y)))

label ("df-i4 non-tollens").
i5(x,y) (((x ~y) v (c(x) ~y)) v (c(x) "~ c(y)))

label ("df-i5 relevance").

% Ortholattice axioms

x = c(c(x)) # label ("ax-al").
(x v y) = (y v X) # label ("ax-a2").
((x vy vz = (xv (yvz)) # label ("ax-a3").
(x v (y v.c(y))) = (y v c(y)) # label ("ax-a4d").
(x v c((c(x) vy))) =x # label ("ax-ab").
(x = y) => (y = %) # label ("ax-rl").
((x =y) & (y =2)) —> (x = 2) # label ("ax-r2").
(x = y) => (c(x) = c(y)) # label ("ax-rd").
(x =vy) => ((x v z) = (yVv z)) # label ("ax-r5").

% Orthomodular axiom
((zvec(z)) = (clc(x) vely)) velxvy)) -> (x = y)
label ("ax-r3") .

where
X, Y, z are variables ranging over lattice nodes
~ is lattice meet
v is lattice join
c(x) is the orthocomplement of x
le(x,y) means x <y
id(x,y) means x is quantum-logic identical to y
<-> means if and only if

= 1s equivalence ([12])
1 is the maximum lattice element (= x v c(x))
0 is the minimum lattice element (= c(1))

Figure 1. Lattice, ortholattice, orthomodularity axioms, and some definitions.

The six implications shown in Figure 1 each satisfy the Birkhoff-von Neuman condition

((x =1 yv) = 1) <> le(x,v) (CBVN)

Int'l Conf. Foundations of Computer Science | FCS'12 | 157

where 1 = 0,1,2,3,4,5.

CBvVN can be regarded a generalization of ona Dell Inspiron 545 with an Intel Core2
the BL definition of implication, sometimes Quad CPU Q8200 (clocked @ 2.33 GHz)
denoted —>,. CBVN maps implication and 8.00 GB RAM, running under the
onto the lattice partial-order. Windows Vista Home Premium /Cygwin

operating environment.

2.0 Method 3.0 Results

The QL axiomatizations of Megill, Pavici¢, i

and Horner ([5], [14], [15], [16], [21], [22]) Figure 2 shows the pr_oofs,_ genera_lted by [3]
were implemented in a prover9 ([2]) script on the platforrr_l des_crlb_ed in Section 2.0,
([3]) configured to show that relevance that relevar_lce |mp_I|cat|on is qual to or less
implication is less than or equal to (in the than Sasaki and Dishkant implication.

sense of the lattice partial ordering; [11],
p.4) Sasaki ([8]) and Dishkant ([9])
implication, then executed in that framework

PROOF
% Proof 1 at 0.05 (+ 0.03) seconds: "ibleil: Relevance implication l.e. Sasaki
implication".
% Length of proof is 24.
% Level of proof is 5.
% Maximum clause weight is 30.
% Given clauses 25.
1 le(x,y) <> x vy =y # label("df: x less than y") # label(non clause). [assumption] .
5x =y &y=2z->x =2z # label ("ax-r2") # label (non clause). [assumption].
9 le(i5(x,y),1il(x,y)) # label("i5leil: Relevance implication l.e. Sasaki implication") #
label (non clause) # label (goal). [goall].
16 x ~ y = c(c(x) v c(y)) # label("df-a"). [assumption].
18 le(x,y) | x vy != vy # label("df: x less than y"). [clausify(1l)].
20 i0(x,y) = c(x) v y # label("df-i0 Boolean"). [assumption].
21 1l1(x,y) = c(x) v (x ~ vy) # label("df-il Sasaki"). [assumption].
22 11(x,y) = c(x) v c(c(x) v c(y)). [copy(2l),rewrite([16(3)])].
29 i5(x,y) = ((x ~ y) v (c(x) ~ y)) v (c(x) ~ c(y)) # label("df-i5 relevance").
[assumption].
30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x)) v c(c(y)))-
[copy (29),rewrite([16(2),16(7),16(14)])].
31 x = c(c(x)) # label("ax-al"). [assumption].
32 c(c(x)) = x. [copy(31),flip(a)l.
33 x vy=yvx# label("ax-a2"). [assumption].
34 (x vy)vz=xv (yVvz) # label("ax-a3"). [assumption].
37 x v c(c(x) v y) = x # label("ax-ab"). [assumption].
38 x !=y | z !=x | z =y # label ("ax-r2"). [clausify(5)].
43 -le(i5(cl,c2),11l(cl,c2)) # label("i5leil: Relevance implication l.e. Sasaki
implication") # answer ("i5leil: Relevance implication l.e. Sasaki implication").
[deny (9)].
44 -le(c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))),c(cl) v c(c(cl) v c(c2))) #

answer ("i5leil: Relevance implication l.e. Sasaki implication").

[copy (43), rewrite ([30(3),32(9),33(12),32(15),32(16),33(17),22(20)1)1.

1)
58 x v (y vz) =y vV (XV 2zZ). [para(33(a,1),34(a,1,1)),rewrite([34(2)]1)].
66 c(x) v c(x v y) = c(x). [para(37(a,1),20(a,2)),rewrite([32(2),20(3)1)]1.
70 x Vv X = X. [para(37(a,1),37(a,1,2,1)),rewrite([32(2)]1)1].
81 c(cl) v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))) != c(cl) v c(c(cl) v c(c2))

answer ("i5leil: Relevance implication l.e. Sasaki implication™).
[ur(18,a,44,a), rewrite ([33(27),58(27),58(26),33(25),58(25),70(24),58(19),58(20)1)1.

158 Int'l Conf. Foundations of Computer Science | FCS'12 |

85 c(cl) v (c(cl v c(c2)) v c(c(cl) v c(c2))) !'= c(cl) v c(c(cl) v c(c2)) #
answer ("i5leil: Relevance implication l.e. Sasaki implication").
[ur(38,b,34,a(flip),c,81,a),rewrite([66(7)1)1].

87 SF # answer ("i5leil: Relevance implication l.e. Sasaki implication").
[ur(38,b,34,a(flip),c,85,a),rewrite([66(8)]),xx(a)].

end of proof

PROOF

% Proof 1 at 0.08 (+ 0.05) seconds: "i5lei2: Relevance implication 1l.e. Dishkant
implication".

Length of proof is 34.

Level of proof is 7.

Maximum clause weight is 69.

Given clauses 65.

o0 de oe

oo

1 le(x,y) <> x vy =y # label("df: x less than y") # label(non clause). [assumption].
8 z vc(z) =cl(c(x) veoly)) ve(xvy) ->x =y # label("ax-r3") # label(non clause).
[assumption].

9 le(i5(x,vy),12(x,y)) # label("i5lei2: Relevance implication l.e. Dishkant implication")
label (non _clause) # label(goal). [goall.

12 1 = x v c(x) # label("df-t"). [assumption].

13 x v c(x) = 1. [copy(1l2),flip(a)].

16 x ~ y = c(c(x) v c(y)) # label("df-a"). [assumption].

18 le(x,y) | x vy !=y # label("df: x less than y"). [clausify(1)].

20 i0(x,y) = c(x) v y # label("df-i0 Boolean"). [assumption].

23 1i2(x,y) =y v (c(x) ”~ c(y)) # label("df-i2 Dishkant"). [assumption].

24 12(x,y) =y v c(c(c(x)) v c(c(y))). [copy(23),rewrite([16(4)])].

29 i5(x,y) = ((x ~ y) v (c(x) ~ y)) v (c(x) ™~ c(y)) # label("df-i5 relevance").
[assumption].

30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x)) v c(c(y))).

[copy (29),rewrite([16(2),16(7),16(14)]1)].
31 x = c(c(x)) # label ("ax-al"). [assumption] .
32 c(c(x)) = x. [copy(31),flip(a)l.

33 x vy=yvVvzx# label("ax-a2"). [assumption].

34 (x vy)vz=xv (yVvz) # label("ax-a3"). [assumption].

37 x v c(c(x) v y) = x # label ("ax-ab"). [assumption] .

41 c(c(x) v c(y)) ve(lxvy) =2z vec(z) | y=x# label ("ax-r3"). [clausify(8)].
42 c(x vy) vc(c(x) vc(y)) !'=1 1] vy=x. [copy (41),rewrite ([33(7),13(9)1)1.

43 -le(i5(cl,c2),12(cl,c2)) # label("i5lei2: Relevance implication l.e. Dishkant
implication") # answer ("i5lei2: Relevance implication l.e. Dishkant implication").
[deny(9)].

44 -le(c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))),c2 v c(cl v c2)) # answer("iblei2:
Relevance implication l.e. Dishkant implication").

[copy (43),rewrite([30(3),32(9),33(12),32(15),32(16),33(17),24(20),32(21),32(22)1)1.

54 x v (yvelxvy))=1. [para(34(a,1),13(a,1))1.

58 x v (yvz)=yvVv (xvVvz). [para(33(a,1),34(a,1,1)),rewrite([34(2)]1)1].

66 c(x) v c(x vy) = c(x). [para(37(a,1),20(a,2)),rewrite([32(2),20(3)1)].

67 x v c(y v c(x)) = x. [para(33(a,1),37(a,1,2,1))1.

70 x v x = x. [para(37(a,l),37(a,1,2,1)),rewrite([32(2)]1)].

81 c2 v (c(cl v c2) v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))))) !'=c2 v c(cl v
c2) # answer ("i5lei2: Relevance implication l.e. Dishkant implication").
[ur(18,a,44,a), rewrite ([33(24),58(24),34(23),58(24)1)1.

84 c(c2 v (c2 v (c(cl v c2) v (c(cl v c2) v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v
c(c2)))))))) v c(c(c2 v c(cl v c2)) v c(c2 v (c(cl v c2) v (c(cl v c2) v (c(cl v c(c2)) v
c(c(cl) v c(c2))))))) !'= 1 # answer("i5lei2: Relevance implication l.e. Dishkant
implication"). [ur(42,b,81,a),rewrite([58(31),58(30),58(29),34(28),58(29),58(30)]1)1.

111 x v (x vy) =xvy. [para(70(a,l),34(a,1,1)),flip(a)l].
113 c(c2 v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))))) v
c(c2 v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))))) =1
Relevance implication l.e. Dishkant implication").

[back rewrite(84),rewrite([111(28),111(24),111(21),111(50)1)].
197 x v (y vc(z v c(x))) =y VvV x. [para(67(a,1l),58(a,1,2)),flip(a)].

202 c(xvy) velxv (yvz) =c(xvVvy). [para(34(a,l),66(a,1,2,1))].

208 c2 v (c(cl v c2) v c(c2 v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl)y v c(c2)))))) '= 1 #
answer ("i5lei2: Relevance implication l.e. Dishkant implication").

[back rewrite(113),rewrite([202(48),32(28),33(27),34(27)1)1.

209 SF # answer ("i5lei2: Relevance implication l.e. Dishkant implication").
[para(58(a,1),208(a,1,2,2,1)),rewrite([197(23),33(16),67(16),33(11),54(14)1),xx(a)].

c(c(c2 v c(cl v c2)) v
answer ("i5lei?2:

Int'l Conf. Foundations of Computer Science | FCS'12 |

end of proof

Figure 2. Summary of a prover9 ([2]) proofs showing that relevance implication is less than or equal
to Sasaki and Dishkant implication. The proofs assume the default inference rules of prover9. The
general form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a
unique identifier of a line in the proof, and conclusion is the result of applying the prover9 inference
rules (such as paramodulation, copying, and rewriting), noted in square brackets (denoting the
derivation), to the lines cited in those brackets. Note that some of “logical” proof lines in the above
have been transformed to two text lines, with the derivation appearing on a text line following a text
line containing the first part of that logical line. The detailed syntax and semantics of these notations
can be found in [2]. All prover9 proofs are by default proofs by contradiction.

The total time to produce the proofs in
Figure 2 on the platform described in
Section 2.0 was approximately 0.2
seconds.

4.0 Discussion

The results of Section 3.0 motivate at least
two observations:

1. Relevance implication is less
than or equal to (in the sense of the lattice
partial order) Sasaki and Dishkant
implication.

2. Surprisingly, both the "Sasaki-,
and Dishkant-, implication" proofs use the
definition of implication in a Boolean logic.

3. The proofs do not use the
orthomodularity axiom ("ax-r3" in Figure 1),
demonstrating that the strength ordering
shown in Figure 2 also holds in an
ortholattice.

5.0 Acknowledgements

This work benefited from discussions with
Tom Oberdan, Frank Pecchioni, Tony
Pawlicki, and the late John K. Prentice,
whose passion for foundations of physics
inspired those of us privileged to have

known him. For any infelicities that remain,
I am solely responsible.

6.0 References

[1] von NeumannJ. Mathematical
Foundations of Quantum Mechanics. 1936.
Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.
URL
http://www.cs.unm.edu/~mccune/prover9/.
2009.

[3] Horner JK. prover9 scripts for deriving
the strength of relevance implication. 2011.
Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.
Quantum Logics. URL
http://xxx.lanl.gov/abs/quant-ph/0101028.
2004.

[5] Megill ND and Pavigi¢ M.
Orthomodular lattices and quantum algebra.
International Journal of Theoretical Physics
40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory
of Linear Operators in Hilbert Space.
Volume I. Translated by M. Nestell.
Frederick Ungar. 1961.

159

160

[7] Holland, Jr. SS Orthomodularity in
infinite dimensions: a theorem of M. Solér.
Bulletin of the American Mathematical
Society 32 (1995), pp. 205-234.

[8] Dishkant H. The first order predicate
calculus based on the minimal logic of
guantum mechanics. Rep. Math. Logic 3
(1974), 9-18.

[9] Mittelstaedt P. Quantum Logic. Synthese
Library; Vol. 18. Reidel, London. 1978.

[10] Chang CC and Keisler HJ. Model
Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third
Edition. American Mathematical Society.
1967.

[12] Church A. Introduction to
Mathematical Logic. Volume I. Princeton.
1956.

[13] Jauch J. Foundations of Quantum
Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL
http://us.metamath.org/qglegif/mmgl.html#un
ify. 2004.

[15] Horner JK. An automated deduction
system for orthomodular lattice theory.
Proceedings of the 2005 International
Conference on Artificial Intelligence.
CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational
logic deduction of join elimination in
orthomodular lattice theory. Proceedings of
the 2007 International Conference on
Artificial Intelligence. CSREA Press. 2007.
pp. 481-488.

[17] Messiah A. Quantum Mechanics.
Dover. 1958.

[18] Horner JK. Using automated theorem-
provers to aid the design of efficient
compilers for quantum computing. Los
Alamos National Laboratory Quantum

Int'l Conf. Foundations of Computer Science | FCS'12 |

Institute Workshop. December 9-10, 2002.
URL
http://www.lanl.gov/science/centers/quantu
m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von NeumannJ. The
logic of quantum mechanics. Annals of
Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum
Computation and Quantum Information.
Cambridge. 2000.

[21] Pavi¢i¢ M and Megill N. Quantum and
classical implicational algebras with
primitive implication. International Journal
of Theoretical Physics 37 (1998), 2091-
2098. ftp://Im3k.grad.hr/pavicic/quantum-
logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of
the relative strength of orthomodular and
weakly orthomodular lattice theory.
Proceedings of the 2009 International
Conference on Artificial Intelligence.
CSREA Press. 2009. pp. 525-530.

http://www.lanl.gov/science/centers/quantum/qls_pdfs/horner.pdf
http://www.lanl.gov/science/centers/quantum/qls_pdfs/horner.pdf

Int'l Conf. Foundations of Computer Science | FCS'12 |

The Lattice-Order Strength of Relevance
Implication in Quantum Logic: Part 2

Jack K. Horner
P. O. Box 266
Los Alamos, New Mexico 87544 USA
email: jhorner@cybermesa.com

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of
quantum-mechanical behaviors and operations. In much the same way that the structure of conventional
propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical
systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces
of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the
descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An
OL can thus be thought of as a kind of “quantum logic” (QL) In BL, there is only one implication
connection; in QL, there are five, none of which are identical to implication in a BL. Here | present
automated deductions showing that relevance implication is equal to less than (in the sense of the lattice
partial order) Kalmbach and non-tollens implication in a QL. The proofs may be novel, and one of the
proofs, surprisingly, uses the definition of implication in a BL.

Keywords: automated deduction, quantum computing, orthomodular lattice, Hilbert space

1.0 Introduction

The optimization of quantum computing
circuitry and compilers at some level must
be expressed in terms of the description of
guantum-mechanical behaviors ([1], [17],
[18], [20]). In much the same way that
conventional propositional (Boolean) logic
(BL,[12]) is the logical structure of
description of the behavior of classical
physical systems (e.g. “the measurements of
the position and momentum of particle P are
commutative”, i.e., can be measured in
either order, yielding the same results) and is
isomorphic to a Boolean lattice ([10], [11],
[19]), so also the algebra, C(H), of the
closed linear subspaces of (equivalently, the

system of linear operators on (observables
in)) a Hilbert space H ([1], [4], [6], [9],
[13]) is a logic of the descriptions of the
behavior of quantum mechanical systems
(e.g., “the measurements of the position and
momentum of particle P are not
commutative”) and is a model ([10]) of an
ortholattice (OL; [4]). An OL can thus be
thought of as a kind of “quantum logic”
(QL; [19]). C(H) is also a model of (i.e.,
isomorphic to a set of sentences which hold
in) an orthomodular lattice (OML; [4], [7]),
which is an OL conjoined with the
orthomodularity axiom (OMA). These
axioms, and various definitions, are shown
in Figure 1.

161

162 Int'l Conf. Foundations of Computer Science | FCS'12 |

[

% Miscellaneous definitions

1 = x v c(x) # label ("df-t").

0 = c(l) # label ("df-f").

(x ~y) = c(c(x) v c(y)) # label ("df-a").

le(x,y) <> ((x vV y) =vY) # label ("df: x less than y").
id(x,y) = (c(c(x) v c(y)) Vv c(x Vv y)) # label ("df-b").

C(x,y) <> (x=((x"y)v (x"cly))))

label ("x commutes with y").

)

% Definitions of implications

10(x,y) = (c(x) v y) # label ("df-10 Boolean").
il(x,y) = (c(x) v (x ~y)) # label ("df-il Sasaki").
i2(x,y) = (y v (c(x) ~ c(y))) # label ("df-i2 Dishkant").
i3(x,y) = (((c(x) ~y) v (c(x) "~ c(y))) v (x " (c(x) v y)))

label ("df-i3 Kalmbach") .

id(x,y) = (((x " y) v (c(x) *y)) v ((c(x) vy " cly)))
label ("df-i4 non-tollens").

i5(x,y) = (((x ~y) v (c(x) ~y)) v (c(x) ~ c(y)))
label ("df-i5 relevance").

% Ortholattice axioms

x = c(c(x)) # label ("ax-al").
(x v y) = (y v X) # label ("ax-a2").
((x vy vz = (xv (yvz)) # label ("ax-a3").
(x v (y v.c(y))) = (y v c(y)) # label ("ax-a4d").
(x v c((c(x) v y))) x # label ("ax-ab").
(x =y) > (y = %) # label ("ax-rl").
((x =y) & (y =2)) —> (x = 2) # label ("ax-r2").
(x = y) => (c(x) = c(y)) # label ("ax-r4d").
(x = vy) => ((x v z) (y v z)) # label ("ax-r5").
% Orthomodular axiom

((zvec(z)) = (clc(x) vely)) velxvy)) -> (x = y)

label ("ax-r3") .

where
X, Yy, z are variables ranging over lattice nodes
~ is lattice meet
v is lattice join
c(x) is the orthocomplement of x
le(x,y) means x <y
id(x,y) means x is quantum-logic identical to y
<-> means if and only if
is equivalence ([12])
is the maximum lattice element (= x v c(Xx))

1
0 is the minimum lattice element (= c(1))

Figure 1. Lattice, ortholattice, orthomodularity axioms, and some definitions.

The six implications shown in Figure 1 each satisfy the Birkhoff-von Neumann condition

((x =1 v) = 1) <=> le(x,v) (CBVN)

Int'l Conf. Foundations of Computer Science | FCS'12 |

where 1 = 0,1,2,3,4,5.

CBvVN is a generalization of the BL
definition of implication, sometimes denoted

—. CBVN maps implication onto the lattice
partial ordering.

2.0 Method

The QL axiomatizations of Megill, Pavicic¢,
and Horner ([5], [14], [15], [16], [21], [22])
were implemented in a prover9 ([2]) script
([3]) configured to show that relevance
implication is less than or equal to (in the
sense of the lattice partial ordering; [11]. p.
4) Kalmbach ([8]) and non-tollens ([9], p. 3)
implication, then executed in that framework

163

ona Dell Inspiron 545 with an Intel Core2
Quad CPU Q8200 (clocked @ 2.33 GHz)
and 8.00 GB RAM, running under the
Windows Vista Home Premium /Cygwin
operating environment.

3.0 Results

Figure 2 shows the proofs, generated by [3]
on the platform described in Section 2.0,
that relevance implication is equal to or less
than Kalmbach and non-tollens implication.

PROOF

% Proof 1 at 5.74
implication".

o

% Length of proof is 40.

(+ 0.09) seconds:

"i5lei3:

Relevance implication l.e. Kalmbach

1 le(x,y) <> x vy =y # label("df: x less than y") # label(non clause). [assumption].
5x =y &y=2z->x=z % label("ax-r2") # label (non_clause). [assumption].

9 le(i5(x,vy),13(x,y)) # label("i51ei3: Relevance implication l.e. Kalmbach implication")
labe l(non clause) # label(goal). [goall.

16 x ~ y = c(c(x) v c(y)) # label("df-a"). [assumption].

17 -le(x,y) | x vy vy # label("df: x less than y"). [clausify(1l)].

18 le(x,y) | x vy != vy # label("df: x less than y"). [clausify(1l)].

20 i0(x,y) = c(x) v y # label("df-i0 Boolean"). [assumption].

25 13(x,y) = ((c(x) ~y) v (c(x) ~ c(y))) v (x * (c(x) v y)) # label("df-i3 Kalmbach").
[assumption] .

26 13(x,y) = (c(c(c(x)) v c(y)) v c(c(c(x)) v c(c(y)))) Vv c(c(x) v c(c(x) Vv y)).

[copy (25) ,rewrite([16(3),16(9),16(16)]1)].

29 i5(x,y) = ((x ~ y) v (c(x) ~ y)) v (c(x) ~ c(y)) # label("df-i5 relevance").
[assumption] .

30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x)) v c(c(y))).

[copy (29),rewrite([16(2),16(7),16(14)]1)].

31 x = c(c(x)) # label ("ax-al"). [assumption].

32 c(c(x)) = x. [copy(31),flip(a)l.

33 x vy=yvx# label("ax-a2"). [assumption].

34 (x vy)vz=xv (y vz # label("ax-a3"). [assumption].

37 x v c(c(x) v y) = x # label ("ax-a5"). [assumption].

38 x =y | z !=x | z =y # label ("ax-r2"). [clausify(5)1].

43 -le(i5(cl,c2),13(cl,c2)) # label("i5lei3: Relevance implication l.e. Kalmbach
implication") # answer("iSlei3: Relevance implication l.e. Kalmbach implication").
[deny(9)].

44 -le(c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))),c(cl v c2) v (c(cl v c(c2)) v
c(c(cl) v c(c2 v c(cl))))) # answer("i5lei3: Relevance implication l.e. Kalmbach
implication") .

[copy (43),rewrite([30(3),32(9),33(12),32(15),32(16),33(17),26(20),32(20),32(25),32(26),33
(277),33(33),34(37)1) 1.

53 le(x,y) | v v x !=vy. [para(33(a,1l),18(b,1))].

58 x v (y vz =yvVv(XV2zZ). [para(33(a,1),34(a,1,1)),rewrite([34(2)]1)].

66 c(x) v c(x v y) = c(x) [para(37(a,1),20(a,2)),rewrite([32(2),20(3)1)]1.

164 Int'l Conf. Foundations of Computer Science | FCS'12 |

68 x v (c(c(x) vy) Vv z) =XV zZ. [para(37(a,1),34(a,1,1)),flip(a)].
70 x v X = X. [para(37(a,1),37(a,1,2,1)),rewrite([32(2)]1)1].

8l c(cl v c2) v (c(cl v c2) v (c(cl v c(c2)) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v
c(c(cl) v c(c2 v c(cl))))))) !'= c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2 v c(cl)))) +#
answer ("i5lei3: Relevance implication l.e. Kalmbach implication").

[ur(l8,a,44,a),rewrite ([58(38),58(37),34(36),34(35),58(37)1)1.

84 c(cl v c2) v (c(cl v c(c2)) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c(cl) v c(c2 v
c(cl)))))) !'= c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2 v c(cl)))) # answer("ib5lei3:
Relevance implication l.e. Kalmbach implication").
[ur(38,b,34,a(flip),c,81,a),rewrite([70(9)1)1.

103 le(c(c(x) v y),x). [hyper (53,b,37,a)].

108 x v (X Vy) =XVYVY. [para(70(a,1l),34(a,1,1)),flip(a)].

110 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c(cl) v c(c2 v c(cl))))) !'= c(cl
v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2 v c(cl)))) # answer("i5lei3: Relevance
implication l.e. Kalmbach implication"). [back rewrite(84),rewrite([108(32)])].

129 le(c(x v y),c(x)). [para(32(a,1),103(a,1,1,1))].

131 le(c(x v y),c(y)). [para(33(a,1),129(a,1,1))1.

146 c(x) v c(y v x) = c(x). [hyper(17,a,131,a),rewrite([33(4)]1)1.

202 c(x) v (y ve(xvz)) =yvVvc(x). [para(66(a,l),58(a,1,2)),flip(a)].

220 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c(cl) v c(c2 v c(cl))))) != c(cl
v c2) v (c(cl v (c2 v x)) v (c(cl v c(c2)) v c(c(cl) v c(c2 v c(cl))))) # answer("iS5lei3:
Relevance implication l.e. Kalmbach implication").
[ur(38,a,68,a,c,110,a),rewrite([32(36),34(35)1)1.

236 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c(cl) v c(c2 v c(cl))))) != c(cl
v c2) v (c(cl v (x v c2)) v (c(cl v c(c2)) v c(c(cl) v c(c2 v c(cl))))) # answer("i5lei3:
Relevance implication l.e. Kalmbach implication"). [para(33(a,l),220(a,2,2,1,1,2))1.

247 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2 v c(cl))) v c(cl v (x v c2)))) !'= c(cl
v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c(cl) v c(c2 v c(cl))))) # answer("iS5lei3:
Relevance implication l.e. Kalmbach implication™).
[para(33(a,1),236(a,2,2)),rewrite([34(52)]1),flip(a)].

360 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2 v c(cl))) v c(x Vv (cl v c2)))) !'= c(cl
v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c(cl) v c(c2 v c(cl))))) # answer("i5lei3:
Relevance implication l.e. Kalmbach implication"). [para(58(a,1),247(a,1,2,2,2,1))1.

423 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2 v c(cl))) ve(x v (y v (cl vc2)))) !=
c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c(cl) v c(c2 v c(cl))))) #

answer ("i5lei3: Relevance implication l.e. Kalmbach implication").
[para(34(a,1),360(a,1,2,2,2,1))1.

3874 c(x v c(y)) vce(xvc(yvz)) =c(xvelyvz)).
[para(202(a,1l),146(a,1,2,1)),rewrite([33(8)1)].

3877 S$F # answer ("i5lei3: Relevance implication l.e. Kalmbach implication").
[para(202(a,1),423(a,1,2)),rewrite([33(19),3874(45)]),xx(a)l.

end of proof

PROOF
% Proof 1 at 14.10 (+ 0.11) seconds: "iblei4: Relevance implication l.e. non-tollens
implication™.
% Length of proof is 51.
1 le(x,y) <> x vy =y # label("df: x less than y") # label(non clause). [assumption] .
5x =y &y=2z->x =2z # label("ax-r2") # label(non clause). [assumption].

9 le(i5(x,y),1i4(x,y)) # label("i5leid: Relevance implication l.e. non-tollens

implication") # label (non clause) # label (goal). [goall].

12 1 = x v c(x) # label("df-t"). [assumption] .

13 x vc(x) = 1. [copy(12),flip(a)].

14 0 = ¢c(1) # label("df-f"). [assumption].

15 c(l) = 0. [copy(l4),flip(a)l.

16 x ~ y = c(c(x) v c(y)) # label("df-a"). [assumption]

17 -le(x,y) | x vy =y # label("df: x less than y"). [
[

clausify(1l)1].
clausify(1l)].
)

18 le(x,y) | x vy != vy # label ("df: x less than y").

27 14(x,y) = ((x ~y) v (c(x) ~ y)) v ((c(x) v y) ~ c(y)) # label("df-i4 non-tollens").
[assumption] .

28 14(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v c(c(c(x) v y) v clc(y))).

[copy (27),rewrite([16(2),16(7),16(15)1)].

29 15(x,y) = ((x ~ y) v (c(x) y)) v (c(x) " c(y)) # label("df-i5 relevance").

[assumption] .

30 i5(x,y) = (c(c(x) v c(y)) v c(c(c(x)) v c(y))) v clc(c(x)) v c(c(y))).
[copy (29),rewrite([16(2),16(7),16(14)]1)].

31 x = c(c(x)) # label ("ax-al"). [assumption] .

Int'l Conf. Foundations of Computer Science | FCS'12 | 165

32 c(c(x)) = x. [copy(31l),flip(a)].
33 x vy=yvx# label("ax-a2"). [assumption].
34 (x vy)vz=xv (yvz) # label("ax-a3"). [assumption].

35 x v (y v c(y)) =y v c(y) # label("ax-ad4"). [assumption].

36 x v 1=1. [copy (35),rewrite ([13(2),13(4)1)1.

37 x v c(c(x) vy) = x # label ("ax-ab"). [assumption].

38 x =y | z!=x | z =y # label ("ax-r2"). [clausify(5)].

43 -le(i5(cl,c2),14(cl,c2)) # label("i5leid: Relevance implication l.e. non-tollens
implication") # answer ("i5leid: Relevance implication l.e. non-tollens implication").
[deny(9) 1.

44 -le(c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))),c(cl v c(c2)) v (c(c(cl) v c(c2))
v c(c2 v c(c2 v c(cl))))) # answer("i5leid: Relevance implication l.e. non-tollens
implication").

[copy (43),rewrite([30(3),32(9),33(12),32(15),32(16),33(17),28(20),32(26),33(29),33(33),32
(37),33(36),34(38)1)1.

53 le(x,y) | y v x!=y. [para(33(a,1),18(b,1))].

58 x v (y vz =y Vv (XxV z). [para(33(a,1),34(a,1,1)),rewrite([34(2)]1)1.
61 1 vx=1. [para(36(a,1),33(a,1l)),flip(a)].

63 x v 0 = x. [para(13(a,l),37(a,1,2,1)),rewrite([15(2)])].

67 x v c(y v c(x)) = x. [para(33(a,l),37(a,1,2,1))1.

68 x v (c(c(x) vy) Vv z) =xV 2zZ. [para(37(a,1),34(a,1,1)),flip(a)l].

69 x v (y ve(c(xvy) viz) =xvVy. [para(37(a,1),34(a,l)),flip(a)].

70 x v X = X. [para(37(a,1),37(a,1,2,1)),rewrite([32(2)]1)].

8l c(cl v c2) v (c(cl v c(c2)) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v (c(c(cl) v c(c2)) v
c(c2 v c(c2 v c(cl))))))) !'= c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v c(cl)))) #
answer ("i5leid: Relevance implication l.e. non-tollens implication").

[ur(18,a,44,a), rewrite ([58(39),58(38),34(37),34(36),58(38),58(37),58(39)1)1.

97 0 v x = Xx. [hyper (38,a,63,a,b,33,a)].

102 le(c(c(x) Vv y),x). [hyper (53,b,37,a)1.

107 x v (X Vy) =xXVYVy. [para(70(a,1),34(a,1,1)),
109 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2))
c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v c(cl))))
implication l.e. non-tollens implication").

[back rewrite(81),rewrite([107(36),107(31)1)].

129 le(c(x v y),c(x)). [para(32(a,1),102(a,1,1,1))1.

131 le(c(x v y),c(y)). [para(33(a,1l),129(a,1,1))1.

148 le(c(x v (y v z)),c(x v z)). [para(58(a,1),131(a,1,1))1.

190 x v (c(y v c(x)) v z) = X V Z. [para(67(a,1),34(a,1,1)),flip(a)l.

223 c(cl v c2) v (c(cl v (c2 v x)) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v
c(cl)))))) '= c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v c(cl)))) #

answer ("i5leid4: Relevance implication l.e. non-tollens implication").
[ur(38,a,68,a,c,109,a(flip)),rewrite([32(30),34(29)]),flip(a)]l.

239 c(cl v c2) v (c(cl v (x v c2)) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v
c(cl)))))) !'= c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v c(cl)))) #

answer ("i5leid4: Relevance implication l.e. non-tollens implication").
[para(33(a,l),223(a,1,2,1,1,2))1.

246 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v (c(c2 v c(c2 v c(cl))) v c(cl v (x
v c2))))) !'= c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v c(cl)))) # answer("ibSleid:
Relevance implication l.e. non-tollens implication").
[para(33(a,1),239(a,1,2)),rewrite([34(31),34(30)1)1.

274 x v (y v (z vc(c(xv (yvz)) vu))) =y Vv (XV z).

[hyper (38,a,58,a,b,69,a),rewrite([34(7)]1)].

295 c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v (c(c2 v c(c2 v c(cl))) v (c(cl v (x
v c2)) v c(c(c(cl v c2) v (c(cl v c(c2)) v (c(c(cl) v c(c2)) v (c(c2 v c(c2 v c(cl))) v
c(cl v (x v.c2)))))) vy))))) !'=c(cl v c(c2)) v (c(c(cl) v c(c2)) v c(c2 v c(c2 v
c(cl)))) # answer("i5leid: Relevance implication l.e. non-tollens implication").
[ur(38,b,69,a(flip),c,246,a),rewrite([34(67),34(66),34(65)1)1.

799 le(c(x v (y v z)),c(z v y)). [para(33(a,1),148(a,1,1)),rewrite([34(2)]1)].

2406 le(c(x v y),c(y v c(z v c(x)))). [para(l90(a,1),799(a,1,1))1.

6267 x v (y v (z v (uvc(c(xv (yv (zvu))) vw))) =y Vv (zv (xvau)).
[hyper(38,a,34,a,b,274,a),rewrite([34(3),34(9)1)].

9918 c(x vy) vely vel(lzve(x) =clyvelzve(lx))). [hyper (17,a,2406,a)].

9952 S$F # answer ("ib5leid: Relevance implication l.e. non-tollens implication").
[para(6l(a,l),295(a,1,2,2,2,2,1,1,2)),rewrite([33(26),61(26),15(25),61(51),33(50),61(50),
15(49),33(49),97(49),97(54),6267(56),9918(24)1) ,xx(a)].

flip(a)l.
v c(c2 v c(c2 v c(cl))))) !'= c(cl v
answer ("i5leid: Relevance

end of proof

166

Int'l Conf. Foundations of Computer Science | FCS'12 |

Figure 2. Summary of a prover9 ([2]) proofs showing that relevance implication is less than or equal
to Kalmbach and non-tollens implication. The proofs assume the default inference rules of prover9.
The general form of a line in this proof is “line_number conclusion [derivation]”, where line_number
is a unique identifier of a line in the proof, and conclusion is the result of applying the prover9
inference rules (such as paramodulation, copying, and rewriting), noted in square brackets (denoting
the derivation), to the lines cited in those brackets. Note that some of “logical” proof lines in the
above have been transformed to two text lines, with the derivation appearing on a text line following a
text line containing the first part of that logical line. The detailed syntax and semantics of these
notations can be found in [2]. All prover9 proofs are by default proofs by contradiction.

The total time to produce the proofs in
Figure 2 on the platform described in
Section 2.0 was approximately 6
seconds.

4.0 Discussion

The results of Section 3.0 motivate at least
three observations:

1. Relevance implication is equal to
or less than (in the sense of the lattice partial
order) Kalmbach and non-tollens
implication.

2. Somewhat unexpectedly, the
"Kalmbach-implication" proof uses the
definition of implication in a Boolean logic.

3. The proofs do not use the
orthomodularity axiom ("ax-r3" in Figure 1),
demonstrating that the implicational strength
relations shown in Figure 2 also hold in an
ortholattice.

5.0 Acknowledgements

This work benefited from discussions with
Tom Oberdan, Frank Pecchioni, Tony
Pawlicki, and the late John K. Prentice,
whose passion for foundations of physics
inspired those of us privileged to have
known him. For any infelicities that remain,
I am solely responsible.

6.0 References

[1] von NeumannJ. Mathematical
Foundations of Quantum Mechanics. 1936.
Translated by R. T. Beyer. Princeton. 1983.
[2] McCune WW. prover9 and mace4.
URL
http://www.cs.unm.edu/~mccune/prover9/.
2009.

[3] Horner JK. prover9 scripts for deriving
the strength of relevance implication. 2011.
Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.
Quantum Logics. URL
http://xxx.lanl.gov/abs/quant-ph/0101028.
2004.

[5] Megill ND and Pavigi¢ M.
Orthomodular lattices and quantum algebra.
International Journal of Theoretical Physics
40 (2001), pp. 1387-1410.

[6] Akhiezer Nl and Glazman IM. Theory
of Linear Operators in Hilbert Space.
Volume I. Translated by M. Nestell.
Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in
infinite dimensions: a theorem of M. Soler.
Bulletin of the American Mathematical
Society 32 (1995), pp. 205-234.

[8] Kalmbach K. Orthomodular Lattices.
Academic Press, London. 1983.

[9] Pavici¢ M and Megill N. Is quantum
logic a logic? 2008.
http://arxiv.org/abs/0812.2698.

[10] Chang CC and Keisler HJ. Model
Theory. North-Holland. 1990. pp. 38-39.

Int'l Conf. Foundations of Computer Science | FCS'12 | 167

[11] Birkhoff G. Lattice Theory. Third
Edition. American Mathematical Society.
1967.

[12] Church A. Introduction to
Mathematical Logic. Volume I. Princeton.
1956.

[13] Jauch J. Foundations of Quantum
Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL
http://us.metamath.org/qglegif/mmgl.html#un
ify. 2004.

[15] Horner JK. An automated deduction
system for orthomodular lattice theory.
Proceedings of the 2005 International
Conference on Artificial Intelligence.
CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational
logic deduction of join elimination in
orthomodular lattice theory. Proceedings of
the 2007 International Conference on
Artificial Intelligence. CSREA Press. 2007.
pp. 481-488.

[17] Messiah A. Quantum Mechanics.
Dover. 1958.

[18] Horner JK. Using automated theorem-
provers to aid the design of efficient
compilers for quantum computing. Los
Alamos National Laboratory Quantum
Institute Workshop. December 9-10, 2002.
URL
http://www.lanl.gov/science/centers/quantu
m/qgls_pdfs/horner.pdf.

[19] Birkhoff G and von NeumannJ. The
logic of quantum mechanics. Annals of
Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum
Computation and Quantum Information.
Cambridge. 2000.

[21] Pavic¢i¢ M and Megill N. Quantum and
classical implicational algebras with
primitive implication. International Journal
of Theoretical Physics 37 (1998), 2091-
2098. ftp://m3k.grad.hr/pavicic/quantum-
logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of
the relative strength of orthomodular and
weakly orthomodular lattice theory.
Proceedings of the 2009 International
Conference on Artificial Intelligence.
CSREA Press. 2009. pp. 525-530.

http://www.lanl.gov/science/centers/quantum/qls_pdfs/horner.pdf
http://www.lanl.gov/science/centers/quantum/qls_pdfs/horner.pdf

168

Int'l Conf. Foundations of Computer Science | FCS'12 |

Quantum-Implication-Based Equivalents of the
Orthomodularity Law in Quantum Logic: Part 1

Jack K. Horner
P. O. Box 266
Los Alamos, New Mexico 87544 USA
email: jhorner@cybermesa.com

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of
qguantum-mechanical behaviors and operations. In much the same way that the structure of conventional
propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical
systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces
of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the
descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An
OL can thus be thought of as a kind of “quantum logic” (OL). C(H) is also a model of an orthomodular
lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA
as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its
equivalents are required in an adequate characterization of QL. Here | provide automated deductions of
the OMA from three quantum-implication-based equivalents of the OMA. The proofs may be novel.

Keywords: automated deduction, quantum computing, orthomodular lattice, Hilbert space

1.0 Introduction

The optimization of quantum computing
circuitry and compilers at some level must
be expressed in terms of the description of
guantum-mechanical behaviors ([1], [17],
[18], [20]). In much the same way that
conventional propositional (Boolean) logic
(BL,[12]) is the logical structure of
description of the behavior of classical
physical systems (e.g. “the measurements of
the position and momentum of particle P are
commutative”, i.e., can be measured in
either order, yielding the same results) and is
isomorphic to a Boolean lattice ([10], [11],
[19]), so also the algebra, C(H), of the
closed linear subspaces of (equivalently, the
system of linear operators on (observables
in)) a Hilbert space H ([1], [4], [6]. [9].
[13]) is a logic of the descriptions of the
behavior of quantum mechanical systems

(e.g., “the measurements of the position and
momentum of particle P are not
commutative”) and is a model ([10]) of an
ortholattice (OL; [4]). An OL can thus be
thought of as a kind of “quantum logic”
(QL; [19]). C(H) is also a model of (i.e.,
isomorphic to a set of sentences which hold
in) an orthomodular lattice (OML; [4], [7]),
which is an OL conjoined with the
orthomodularity axiom (OMA; see Figure
1). The rationalization of the OMA as a
claim proper to physics has proven
problematic ([13], Section 5-6), motivating
the question of whether the OMA is required
in an adequate characterization of QL. Thus
formulated, the question suggests that the
OMA and its equivalents are specific to an
OML, and that as a consequence, banning
the OMA from QL vyields a "truer" quantum
logic. The OMA, it turns out, has strong

Int'l Conf. Foundations of Computer Science | FCS'12 | 169

connections to implication in QL, as demonstrated in the following.

Lattice axioms

x = c(c(x)) (AxLatl)
X Vy=YyVX (AxLat2)
(x vy)vzs=xvVv (Vv z) (AxLat3)
(x ~y) Yz =x" (y ~ 2) (AxLat4)
X Vv (x Vy) =x (AxLath)
X N (xVvy) =x (AxLato)
Ortholattice axioms
c(x) " x =20 (AxXOL1)
c(x) v x =1 (AxOL2)
x Ny =c(c(x) v c(y)) (AxOL3)
Orthomodularity axiom
y v (cly) » (x vy)) =xvVvy (OMA)

Definitions of implications and partial order

~

il(x,y) = c(x) v (x y) .
i2(x,y) = il(c(y), c(x).
i3(x,y) = (c(x) ~y) v (c(x) * c(y)) v il(x,y) .
id(x,y) = i3(c(y), c(x)).
i5(x,y) = (x ~y) v (c(x) ~y) v (c(x) "~ c(y)).
le(x,y) = (x = (x ~vy)).

where

X, y are variables ranging over lattice nodes
~ is lattice meet

v is lattice join

c(x) is the orthocomplement of x

il(x,y) means x —; y (Sasaki implication)

12 (x,y) means x —, y (Dishkant implication)
i3(x,y) means x —3; y (Kalmbach implication)

X —; y (non-tollens implication)
i5(x,y) means x —s y (relevance implication)
le(x,y) means x <y
<-> means if and only if

i4(x,y) means

= 1s equivalence ([12])
1 is the maximum lattice element (= x v c(x))
0 is the minimum lattice element (= c(1))

Figure 1. Lattice, ortholattice, orthomodularity axioms, and some definitions.

Consider the proposition shown in Figure 2.

((X =3 y) = 1) <=> le(x,vy)
where 1 = 1,2,3,4,5.

Figure 2. Proposition 2.10

170

Int'l Conf. Foundations of Computer Science | FCS'12 |

Note that there are five QL implications. Quad CPU Q8200 (clocked @ 2.33 GHz)
Proposition 2.10 is a generalization of the and 8.00 GB RAM, running under the
BL definition of implication, sometimes Windows Vista Home Premium /Cygwin
denoted —»o. operating environment.
2.0 Method

3.0 Results
The OML axiomatizations of Megill,
Pavi¢i¢, and Horner ([5], [14], [15], [16], Figure 3 shows the proofs, generated by [3]
[21], [22]) were implemented in a prover9 on the platform described in Section 2.0,
([2]) script ([3]) configured to derive OMA that Proposition 2.10i (for each of i = 1,2, 3),
from Proposition 2.10i, for each of i=1, 2, together with ortholattice theory, imply the
3 together with ortholattice theory OMA.

(orthomodular lattice theory, without the
OMA), then executed in that framework on
a Dell Inspiron 545 with an Intel Core2

o

o°

PROOF

Proof 1 at 32.98 (+ 0.64) seconds: "OMA".
Length of proof is 34.

% Level of proof is 10.

1 le(x,y) <> x = x ~ y # label ("Df: less than") # label(non clause). [assumption].

3 il(x,y) = 1 <-> le(x,y) # label ("Hypothesis for Proposition 2.10il1") #

label (non clause) . [assumption].

4y v (cly) » (xvy)) ==xvy# label("OMA") # label (non clause) # label(goal). [goall].
6 -le(x,y) | x ~y = x # label("Df: less than"). [clausify(1)].

7 il(x,y) =1 | le(x,y) # label("Hypothesis for Proposition 2.10il"). [clausify(3)].
11 x = c(c(x)) # label ("AxL1"). [assumption].

12 c(c(x)) = x. [copy(11l),flip(a)].

13 x vy=yvx # label ("AxL2"). [assumption].

14 (x vy) vz=xv (yvz) # label("AxL3"). [assumption].

16 x v (x ~ y) = x # label ("AxL5"). [assumption].

19 c(x) v x = 1 # label ("AxOL2"). [assumption].

20 x v c(x) = 1. [copy(l9),rewrite([13(2)])].

21 x ~y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].

23 i1(x,y) = c(x) v (x ~ y) # label("Df: il"). [assumption].

24 11(x,y) = c(x) v c(c(x) v c(y)). [copy(23),rewrite([21(3)])].

33 ¢l v (c(cl) » (c2 v cl)) !'= c2 v cl # label ("OMA") # answer ("OMA") . [deny (4)].

34 ¢l v c(cl v c(cl v c2)) !=cl v c2 # answer ("OMA") .

[copy (33), rewrite ([13(6),21(7),12(4),13(12)1)1.

35 il(x,y) =1 | x ~y = x. [resolve (7,b,6,a)].

36 c(x) v c(c(x) (y)) '= 1 | c(c(x) v c(y)) = x. [copy(35),rewrite([24(1),21(9)1)].
41 x v c(c) = X. [back rewrite(16),rewrite([21(1)])].

c
)
43 x v (y v z) = v
46 x v (y v c(x Vv y)
c(x) v c(c(x) vy

1

)

48

[para(l2(a,l),36(a,

65
81

x v c(c

)
Xx v (yve(yvzx)=1. [para(l3(a,l),46(a,1,2,2
96 x v c(y v c(x)))

v
(x) v cly
y (x v z). [para(l3(a,1),14(a,1,1)),rewrite([14(2)])].
) = 1. [para(20(a,1),14(a,1)),flip(a)].
) =1 | c(c(x) vy = x.
,2,1,2)),rewrite([12(10)1)1].
(x) v y) X. [para(l2(a,l),41(a,1,2,1,2

)]
ST

X. para(l3(a,1),65(a,1,2,1))].
))

[
98 x v (y vc(c(xvy) Vvz)) =xVYy. [para(65(a,1l),14(a,l)),flip(a)].
105 c(x) v c(y v x) = c(x). [para(l2(a,1),96(a,1,2,1,2))1.
110 c(x) v c(y v c(x)) !'=1 | c(c(x) vy = x. [para(1l3(a,1),48(a,1,2,1))1].
400 x v c(y vx) !'=1]yvzx-=x.
[para(105(a,1),110(a,1,2,1)),rewrite([12(4),13(3),13(9),105(9),12(7)1),flip(b)].
417 x v (c(y v x) v c(c(y v x)vz))!=1]xvc(clyvx)vVvz) =yV X.
[para(98(a,1),400(a,1,2,1)),rewrite([13(8),43(8),98(1l6)1),flip(b)1].
18101 x v c(x v c(y VvV X)) =y V X. [hyper(417,a,81,a),rewrite ([13(3)]1)].
18102 x v c(x v Cc(x Vy)) =YV V X. [para(13(a,1l),18101(a,1,2,1,2,1))1.

Int'l Conf. Foundations of Computer Science | FCS'12 |

18181 SF # answer ("OMA") . [back rewrite(34),rewrite([18102(9),13(3)]),xx(a)].

end of proof

PROOF

oo

Proof 1 at 148.81 (+ 2.84) seconds: "OMA".
Length of proof is 51.
Level of proof is 14.

oo

o

1 le(x,y) <> x = x ~ y # label ("Df: less than") # label(non clause). [assumption].

3 i2(x,y) = 1 <-> le(x,y) # label ("Hypothesis for Proposition 2.10i2") #

label (non_clause) . [assumption].

4y v (cly) » (xvy)) =xvy# label("OMA") # label (non clause) # label(goal). [goal].
6 -le(x,y) | x ~ yv = x # label ("Df: less than"). [clausify(l)].

7 iZ(,v) =1 | le(x,y) # label ("Hypothesis for Proposition 2.10i2"). [clausify(3)].
11 x c(c(x)) # label ("AxL1"). [assumption].

12 c(c(x)) = X. [copy(11l),flip(a)].

13 x vy=yvx # label ("AxL2"). [assumption].

14 (x vy) vz=xv (yvz) # label ("AxL3"). [assumption].

16 x v (x ~y) = x # label ("AxL5"). [assumption] .

17 x ~ (x v y) = x # label ("AxL6"). [assumption].

18 c(x) ~ x 0 # label ("AxOLL1"). [assumption].

19 c(x) v x = 1 # label ("AxOL2"). [assumption].

20 x v c(x) = 1. [copy (19),rewrite ([13(2)]1)1].

21 x ~ y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].

25 i2(x,y) = c(c(y)) v (c(y) ”~ c(x)) # label("Df: i2"). [assumption].

26 12(x,y) =y v c(y v x). [copy (25) ,rewrite ([12(3),21(4),12(3),12(3)1)1.

33 ¢l v (c(cl) ® (c2 v cl)) !'=c2 v cl # label ("OMA") # answer ("OMA"). [deny (4)].
34 ¢l v c(cl v c(cl v c2)) !=cl v c2 # answer ("OMA").

[copy (33), rewrite ([13(6),21(7),12(4),13(12)1)1.

35 12(x,y) !'=1 | x ~y = x. [resolve (7,b,6,a)].

36 x ve(xvy) !I=1] clcly) vc(x)) =vy. [copy (35),rewrite([26(1),21(6)]1)1.

39 c(1) = 0. [back rewrite(18),rewrite([21(2),12(2),20(2)1)].

40 c(c(x) v c(x v y)) = x. [back rewrite(17),rewrite([21(2)])].

41 x v c(c(x) v c(y)) = x [back rewrite(16),rewrite([21(1)])].

43 x v (y v z) =y VvV (xV z). [para(1l3(a,1),14(a,1,1)),rewrite([14(2)]1)1].
46 x v (yve(lxvy)) =1 [para(20(a,1),14(a,1)),flip(a)].

59 ¢c(x) v c(x vy) =c(x). [para(40(a,1),12(a,1,1)),flip(a)].

63 c(0 v c(x)) = x. [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)1)]1.
65 1 v x=1. [para(39(a,1),40(a,1,1,1)),rewrite([63(6)]1)1].

69 x v c(c(x) v y) = x. [para(l2(a,l),41(a,1,2,1,2))].

74 x v x = X. [para(39(a,1),41(a,1,2,1,2)),rewrite([13(3),63(4)1)].

77 x v c(y v (x vz)!=1]c(clyvz velx)=yvVvz. [para(43(a,1),36(a,1,2,1))1.

79 x v 1 =1. [para(65(a,l),13(a,l)),flip(a)].

83 x v (x vy) =xvy. [para(74(a,l),14(a,1,1)),flip(a)l.

110 x v c(y v c(x)) = x. [para(1l3(a,1),69(a,1,2,1))]

113 x v (y v c(c(x) v z)) =y VvV X. [para(69(a,1),43(a,1,2)),flip(a)l.

122 c(x) v c(y v x) = c(x). [para(l2(a,1l),110(a,1,2,1,2))1.

123 x v (c(y v c(x)) v z) = x Vv z. [para(ll0(a,1l),14(a,1,1)),flip(a)l.

144 c(x) v (y ve(xvz)) =yvc(x). [para(59(a,1),43(a,1,2)),flip(a)].
)

= c(x) v z. [para(l22(a,1),14(a,1,1)),flip(a)].
y) v z)) = c(x v clcly) v z)).

1)), rewrite([13(8)1)].
) voy)) = 1.
|
)
c

(
z
)
185 c(x) v (c(y v x) v z
431 c(x v y) vVvc(x v c(c
[para(113(a,l),122(a,1,2
471 x v (y v c(c(z v c(x

)

1

(
)
)

[para(46(a,1),123(a,1,2 rewrite ([79(2)]1),flip(a)].
693 x v c(x v c(y)) != c(y v c(x)) = C(y)-
[para(l44(a,1),77(a,1,2,1 (10),12(8),59(13)1)1.

) ,rewrite ([
(z v x)) =

)
59
1959 c(x) v c(c(y v x) Vv 1.
[para(471(a,1),185(a,1l)),rewrite([12(4)
3444 x v (y vce(x ve(zvexvy)))) =
[para(59(a,1),1959(a,1,2,1,1,1)),rewrit [
21441 x v c(x v c(c(y) v c(x v c(x Vv V))
30946 c(c(x) v c(y v c(y v x))) = c(c(x) v
[hyper (693,a,21441,a),rewrite([13(8),144 (8
31457 c(c(x v y) vc(x v c(x Vv Vy))) = x.

[para(83(a,1),30946(a,1,1,2,1,2,1)),rewrite([13(12),59(12),12(10

)) =

)
31474 c(x vy) ve(xvelxvy c(x). [para (31457 (a,1),12(a,1l

]

3),12(3),14(8)1) 1.
1. [para(431(a,1),3444(a,1,2))].
y

~ @

, 7.
) ,1)),flip(a)].

171

172 Int'l Conf. Foundations of Computer Science | FCS'12 |

31586 x Vv c(X VvV C(X V Vy)) = X V y.
[para (31474 (a,1),31474(a,1,1,1)),rewrite([12(2),31474(9),12(4),13(3),12(8)1)1.
31587 SF # answer ("OMA"). [resolve (31586,a,34,a)].

end of proof

PROOF

oe

Proof 1 at 25.35 (+ 0.36) seconds: "OMA".
Length of proof is 45.
Level of proof is 10.

oe

oo

1 le(x,y) <> x = x ~ y # label ("Df: less than") # label(non clause). [assumption].

3 i3(x,y) = 1 <-> le(x,y) # label ("Hypothesis for Proposition 2.10i3") #

label (non_clause) . [assumption].

4y v (cly) " (xvy)) ==xvy# label("OMA") # label (non clause) # label (goal). [goall].
6 -le(x,y) | x ~ vy = x # label("Df: less than"). [clausify(1l)].

7 i3(x,y) != 1 | le(x,y) # label ("Hypothesis for Proposition 2.10i3"). [clausify (3)].
11 x = c(c(x)) # label ("AxL1"). [assumption].

12 c(c(x)) = x. [copy(1ll),flip(a)l].

13 x vy=yvx # label ("AxL2"). [assumption].

14 (x vy) vz=xv (yvz) # label("AxL3"). [assumption].

16 x v (x ~ y) = x # label ("AxL5"). [assumption].

17 x ~ (x vy) = x # label ("AxLo"). [assumption].

18 c(x) ©~ x 0 label ("AxXOL1") . [assumption].
19 c(x) v x =1 label ("AxOL2") . [assumption].
1
(
(

H= =

20 x v c(x) = [copy (19),rewrite([13(2)]1)].

21 x ~y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].

27 13(x,y) = ((c(x) ~y) v (c(x) "~ c(y))) v (c(x) v (x "~ vy)) # label("Df: i3").
[assumption].

28 13(x,y) = c(x v y) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).
[copy(27),rewrite([21(3),12(3),21(7),12(6),12(6),13(7),21(9),14(14)1)1.

33 ¢l v (c(cl) ® (c2 v cl)) !'=c2 v cl # label ("OMA") # answer ("OMA") . [deny (4)].
34 ¢l v c(cl v c(cl v c2)) !=cl v c2 # answer ("OMA").
[copy(33),rewrite([13(6),21(7),12(4),13(12)1)].

35 1i3(x,y) !'=1 | x ~y = x. [resolve (7,b,6,a)].

36 c(x vy) Vv (c(xvVvecly)) v (c(x) velc(x)ve(y))) I=1 1] clc(x) vcly)) = x.

[copy (35),rewrite ([28(1),21(16)]1)].

39 c(1) = 0. [back_rewrite(18),rewrite([21(2),12(2),20(2)]

40 c(c(x) v c(x v y)) = x. [back rewrite(17),rewrite([21(2 1.
) 1

)1
)]
)]
ri
|

)
41 x v c(c(x) c(y)) = x. [back rewrite(16),rewrite ([21()].
43 x v (y v z) =y Vv (xVv z). [para(l3(a,1),14(a,1,1)),rewrite([14(2)]1)1].
45 c(x) v (c(x v y) v (c(x v c(y)) vc(c(x) vc(y)))) =1 c(c(x) v cly)) = x.

[back rewrite(36),rewrite([43(12),43(13)])].
48 x v (y v c(x vy)) =1. [para(20(a,l),14(a,l)),flip(a)].
55 ¢(0 v ¢c(x)) = x. [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)1)].

56 1 vx=1. [para(39(a,1),40(a,1,1,1)),rewrite([55(6)1)1].

59 x v c(c(x) vy = x. [para(12(a,l),41(a,1,2,1,2))]

63 x v 0 = x. [para(20(a,l),41(a,1,2,1)),rewrite([39(2)1)1].

64 x v x = X [para(39(a,l),41(a,1,2,1,2)),rewrite([13(3),55(4)1)].

66 x v1 =1. [para(56(a,1),13(a,1)),flip(a)].

68 0 v x = x [para(63(a,1),13(a,1)),flip(a)].

71 x v (y v X) =y V X. [para(64(a,l),14(a,2,2)),rewrite([13(2)])1].

83 c(x vy) Vv (c(xv (yvz)) v (c(xv (yvec(z))) ve(cxvy)ve(z)))) !'=1]clc(xv
y) v .c(z)) = x Vv y. para(l4(a,1),45(a,1,2,1,1)),rewrite([14(8)1)].

96 x v c(y v c(x)) =
98 x v (y v c(c(x v y
108 c(x) v c(y v x) =
114 x v (y v c(y v %))

1

[para(1l3(a,1),59(a,1,2,1))1.
v z)) =xvy. [para(59(a,l),14(a,l)),flip(a)].
(

= % o—

c(x). [para(l2(a,1),96(a,1,2,1,2))1.
1. [para(l3(a,1),48(a,1,2,2,1))].

162 x v c(y v x) != | v v x = x.
[para(20(a,1),83(a,1,2,2,1,1,2)),rewrite([64(3),66(6),39(6),13(9),108(9),12(7),68(6),13(5
),71(6),13(9),108(9),12(7)]1),£flip(b)].

420 x v (c(y v x) vc(c(y vx)vz))!=1]xvc(clyvx)vVvz) =yVZX
[para(98(a,1l),162(a,1,2,1)),rewrite([13(8),43(8),98(1l6)1),flip(b)1].

18945 x v c(x v c(y Vv X)) =y V X. [hyper (420,a,114,a),rewrite([13(3)1]1)]

18946 x v c(x Vv c(x vV y)) =y V X. [para(1l3(a,1),18945(a,1,2,1,2,1))1

19025 S$F # answer ("OMA") . [back rewrite(34),rewrite([18946(9),13(3)]),xx(a)]

end of proof

Int'l Conf. Foundations of Computer Science | FCS'12 |

Figure 3. Summary of a prover9 ([2]) proof of Proposition 2.10, for each of i = 1,2,3. The proofs
assume the default inference rules of prover9. The general form of a line in this proof is
“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof,
and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying,
and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.
Note that some of “logical” proof lines in the above have been transformed to two text lines, with the
derivation appearing on a text line following a text line containing the first part of that logical line.
The detailed syntax and semantics of these notations can be found in [2]. All prover9 proofs are by

default proofs by contradiction.

The total time to produce the proofs in
Figure 3 on the platform described in
Section 2.0 was approximately 200
seconds.

4.0 Discussion

The results of Section 3.0 motivate several
observations:

1. The proofs in Figure 3 have
distinct derivational dependencies. In
particular, the proof for i = 1 uses axioms
L1, L2, L3, L5 0L2 and OL3. The proof
fori=2uses L1, L2, L5, L6, OL1, OL2, and
OL3. The proof fori=3uses L1, L2, L3,
L5, L6, OL1, OL2, and OL3. These results
suggest (but do not prove) that distinct types
of quantum implication have their "roots" in
distinct axiomatic bases. Future work will
explore this hypothesis.

2. The proofs in Section 3.0 may be
novel.

3. Companion papers provide
proofs for i = 4, 5, and for the proposition
that orthomodular lattice theory implies
Propositions 2.10i, i = 1,2,3,4,5 ([23]).

5.0 Acknowledgements

This work benefited from discussions with
Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,
whose passion for foundations of physics
inspired those of us privileged to have
known him. For any infelicities that remain,
I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical
Foundations of Quantum Mechanics. 1936.
Translated by R. T. Beyer. Princeton. 1983.
[2] McCune WW. prover9 and mace4.
URL
http://www.cs.unm.edu/~mccune/prover9/.
2009.

[3] Horner JK. prover9 scripts for
Proposition 2.10. 2011. Available from the
author on request.

[4] Dalla Chiara ML and Giuntini R.
Quantum Logics. URL
http://xxx.lanl.gov/abs/quant-ph/0101028.
2004.

[5] Megill ND and Pavigi¢ M.
Orthomodular lattices and quantum algebra.
International Journal of Theoretical Physics
40 (2001), pp. 1387-1410.

[6] Akhiezer Nl and Glazman IM. Theory
of Linear Operators in Hilbert Space.
Volume I. Translated by M. Nestell.
Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in
infinite dimensions: a theorem of M. Soler.
Bulletin of the American Mathematical
Society 32 (1995), pp. 205-234.

173

174

[8] Marsden EL and Herman LM. A
condition for distribution in orthomodular
lattices.

Kansas State University Technical Report
#40. 1974.

[9] Knuth DE and Bendix PB. Simple word
problems in universal algebras. In J. Leech,
ed. Computational Problems in Abstract
Algebra. Pergamon Press. 1970. pp. 263-
297.

[10] Chang CC and Keisler HJ. Model
Theory. North-Holland. 1990. pp. 38-39.
[11] Birkhoff G. Lattice Theory. Third
Edition. American Mathematical Society.
1967.

[12] Church A. Introduction to
Mathematical Logic. Volume I. Princeton.
1956.

[13] Jauch J. Foundations of Quantum
Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL
http://us.metamath.org/glegif/mmgl.html#un
ify. 2004.

[15] Horner JK. An automated deduction
system for orthomodular lattice theory.
Proceedings of the 2005 International
Conference on Artificial Intelligence.
CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational
logic deduction of join elimination in
orthomodular lattice theory. Proceedings of
the 2007 International Conference on
Artificial Intelligence. CSREA Press. 2007.
pp. 481-488.

[17] Messiah A. Quantum Mechanics.
Dover. 1958.

[18] Horner JK. Using automated theorem-
provers to aid the design of efficient
compilers for quantum computing. Los
Alamos National Laboratory Quantum
Institute Workshop. December 9-10, 2002.
URL
http://www.lanl.gov/science/centers/quantu
m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von NeumannJ. The
logic of quantum mechanics. Annals of
Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum
Computation and Quantum Information.
Cambridge. 2000.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[21] Pavi¢i¢ M and Megill N. Quantum and
classical implicational algebras with
primitive implication. International Journal
of Theoretical Physics 37 (1998), 2091-
2098. ftp://m3k.grad.hr/pavicic/quantum-
logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of
the relative strength of orthomodular and
weakly orthomodular lattice theory.
Proceedings of the 2009 International
Conference on Artificial Intelligence.
CSREA Press. 2009. pp. 525-530.

[23] Horner JK. Quantum-implication-
based equivalents of the Orthomodularity
Law in quantum logic: Parts 2-4. Submitted
to the 2012 International Conference on
Foundations of Computer Science.

Int'l Conf. Foundations of Computer Science | FCS'12 |

175

Quantum-Implication-Based Equivalents of the
Orthomodularity Law in Quantum Logic: Part 2

Jack K. Horner
P. O. Box 266
Los Alamos, New Mexico 87544 USA
email: jhorner@cybermesa.com

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of
quantum-mechanical behaviors and operations. In much the same way that the structure of conventional
propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical
systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces
of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the
descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An
OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular
lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA
as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its
equivalents are required in an adequate characterization of QL. The OMA, it turns out, has strong
connections to implication in QL. Here I provide automated deductions of the OMA from two quantum-
implication-based equivalents of the OMA. The proofs may be novel.

Keywords: automated deduction, quantum computing, orthomodular lattice, Hilbert space

1.0 Introduction

The optimization of quantum computing
circuitry and compilers at some level must
be expressed in terms of the description of
guantum-mechanical behaviors ([1], [17],
[18], [20]). In much the same way that
conventional propositional (Boolean) logic
(BL,[12]) is the logical structure of
description of the behavior of classical
physical systems (e.g. “the measurements of
the position and momentum of particle P are
commutative”, i.e., can be measured in
either order, yielding the same results) and is
isomorphic to a Boolean lattice ([10], [11],
[19]), so also the algebra, C(H), of the
closed linear subspaces of (equivalently, the
system of linear operators on (observables
in)) a Hilbert space H ([1], [4], [6]. [9].
[13]) is a logic of the descriptions of the

behavior of quantum mechanical systems
(e.g., “the measurements of the position and
momentum of particle P are not
commutative”) and is a model ([10]) of an
ortholattice (OL; [4]). An OL can thus be
thought of as a kind of “quantum logic”
(QL; [19]). C(H) is also a model of (i.e.,
isomorphic to a set of sentences which hold
in) an orthomodular lattice (OML; [4], [7]),
which is an OL conjoined with the
orthomodularity axiom (OMA; see Figure
1). The rationalization of the OMA as a
claim proper to physics has proven
problematic ([13], Section 5-6), motivating
the question of whether the OMA is required
in an adequate characterization of QL. Thus
formulated, the question suggests that the
OMA and its equivalents are specific to an
OML, and that as a consequence, banning
the OMA from QL yields a "truer" quantum

176

logic. The OMA, it turns out, has strong
connections to implication in QL, as

Int'l Conf. Foundations of Computer Science | FCS'12 |

demonstrated in the following.

Lattice axioms

x = c(c(x))

X Vy=YyVX

(x vy)vz=xv (yVvz)
(x ~y) ~z=x" (y " z)
X Vv (x My =x

X N (xVvy) =x

Ortholattice axioms
c(x) " x =0
c(x) vxx=1
x ~y =clc(x) v cly))

Orthomodularity axiom
y v (cly) * (xvy)) =xvy

(AxLatl)
(AxLat2)
(AxLat3)
(AxLat4)
(AxLath)
(AxLato)

(AxOL1)
(AxOL2)
(AxOL3)

(OMA)

Definitions of implications and partial order

il(x,y) = c(x) v (x * y).
1i2(x,y) = il(c(y), c(x).
i3(x,y) = (c(x) *~y) v (c(x) *
id(x,y) = i3(c(y), c(x)).
i5(x,y) = (x " y) v (c(x) *
le(x,y) = (x = (x ~ y)).

where

c(y)) v il(x,y).

y) v (c(x) " c(y)).

X, y are variables ranging over lattice nodes

~

is lattice meet
v is lattice join
c(x) is the orthocomplement of x
il1(x,y) means x —; y
12 (x,y) means -,

i4(x,y) means >4 non-tollens
i5(x,y) means —s
le(x,y) means x <y
<-> means if and only if

= 1is equivalence ([12])

(
X y (
i3(x,y) means x —3; y (Kalmbach implication)
x v (
X o5y

1 is the maximum lattice element (
0 is the minimum lattice element (

Sasaki implication)
Dishkant implication)

implication)

relevance implication)

Figure 1. Lattice, ortholattice, orthomodularity axioms, and some definitions.

Consider the proposition shown in Figure 2.

((x =4 y) = 1) <=> le (x,y)

where 1 = 1,2,3,4,5.

Figure 2. Proposition 2.10

Int'l Conf. Foundations of Computer Science | FCS'12 | 177

Note that there are five implications in QL a Dell Inspiron 545 with an Intel Core2
(BL has only one). Proposition 2.10 is a Quad CPU Q8200 (clocked @ 2.33 GHz)
generalization of the BL definition of and 8.00 GB RAM, running under the
implication, sometimes denoted —> . Windows Vista Home Premium /Cygwin

operating environment.

2.0 Method
3.0 Results

The OML axiomatizations of Megill,

Pavici¢, and Horner ([5], [14], [15], [16], Figure 3 shows the proofs, generated by [3]
[21], [22]) were implemented in a prover9 on the platform described in Section 2.0,
([2]) script ([3]) configured to derive OMA that Proposition 2.10i (for each of i = 4,5),

from Proposition 2.10i, for each of i=4,5 together with ortholattice theory, imply the
together with ortholattice theory OMA.

(orthomodular lattice theory, without the
OMA), then executed in that framework on

PROOF

o°

Proof 1 at 164.91 (+ 2.98) seconds: "OMA".
Length of proof is 57.
Level of proof is 13.

o°

o

le(x,y) <> x = x ~ y # label("Df: less than") # label(non clause). [assumption].

i4(x,y) = 1 <-> le(x,y) # label("Hypothesis for formula 2.10i4") # label (non clause).
assumption].

y v (cly) ©» (x v

le(x,y) | x ~ y !

-le (x,Y)

14(x,y)
8 14(x,y)
11 x = c(c
12 c(c(x))

)

)) = x vy # label ("OMA") # label (non clause) # label(goal). [goall].
x # label ("Df: less than"). [clausify(1)].
| x % X # label ("Df: less than"). [clausify(1)].
=1 | le(x,y) # label("Hypothesis for formula 2.10i4"). [clausify(3)].
1 | -le(x,y) # label ("Hypothesis for formula 2.10i4"). [clausify(3)].
)) # label ("AxL1"). [assumption].
[copy(11),flip(a)].
label ("AxL2"). [assumption].
x v (y v z) # label ("AxL3"). [assumption].
x # label ("AxL5"). [assumption].
x # label ("AxL6"). [assumption].
0 # label ("AxOLL1"). [assumption].
19 c(x) v x 1 # label ("AxOL2") . [assumption] .
20 x v c(x) 1. [copy(l9),rewrite([13(2)]1)1].
21 x ~y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].
29 14(x,y) = ((c(c(y)) "~ c(x)) v (c(c(y)) "~ c(c(x)))) v (c(c(y)) v (c(y) " c(x))) #
label ("Df: i4"). [assumption] .
30 i4(x,y) =y Vv (cly v X) v (c(c(y) v X) v clc(y) Vv c(x)))).
[copy (29),rewrite([12(3),21(3),12(4),12(6),12(6),21(5),12(11),21(12),12(11),12(11),13(13)
,14(13)1) 1.
33 ¢l v (c(cl) » (c2 v cl)) !'= c2 v cl # label ("OMA") # answer ("OMA") . [deny (4)].
34 cl v c(cl v c(cl v c2)) !=cl v c2 # answer ("OMA") .
[copy (33),rewrite([13(6),21(7),12(4),13(12)1)]1.
35 i4(x,y) !'=1 | x ~y = x. [resolve (7,b,6,a)].
36 x v (c(x vy) Vv (c(c(x) vy vecec(c(x)ve(y)))) =11 clcly) vclx))=y.
[copy (35),rewrite ([30(1),21(15)])].
37 id(x,y) =1 | x ~y != x. [resolve (8,b,5,a)].
38 x v (c(x vy) v (clc(x) vy vclc(x) ve(y))) =11c(ly) vel)!=y.
[copy (37),rewrite([30(1),21(15)1)].
39 c¢(l) = 0. [back rewrite(18),rewrite([21(2),12(2),20(2)])].
40 c(c(x) v c(x v y)) = x. [back rewrite(17),rewrite([21(2)])
41 x v c(c(x) v c(y)) = x [back rewrite(16),rewrite([21(1)])
43 x v (y vz) =y Vv (x Vv z). [para(l3(a,1),14(a,1,1)),rewrit
46 x v (y vc(x vy)) =1. [para(20(a,l),14(a,l)),flip(a)].

=

~

~ o — W

!
(

b

—— N g X <=
b

13 x vy
14 (x vy
16 x v (%
17 x ~ (x v
18 c(x) ~ x

Yy
v

~

o n<~

1.
1.
e([14(2)D 1.

178 Int'l Conf. Foundations of Computer Science | FCS'12 |

48 x v (c(x Vv c(y)) v (c(c(x) v y) v c(c(x) v c(y
[para(l Z(a, y,36(a,1,2,2,2,1,2)), rewrite([13(11),
59 c(0) = 1. [para(39(a,1),12(a,1,1))].

66 c(x) v c(x v y) = c(x). [para(40(a,l),12(a,1,1)),flip(a)].

70 c(0 v c(x)) = x. [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)1)1.
74 1 v x = 1. [para(39(a,1),40(a,1,1,1)),rewrite([70(6)1)1].

86 x v c(c(x) v y) = x. [para(l2(a,l),41(a,1,2,1,2))].

90 x v 0 = x. [para(20(a,l),41(a,1,2, 1)),rewr1te([39(2)])
92 X Vv X = X. [para(39(a,l),41(a,1,2,1,2)),rewrite([13(3)
100 x v 1 = 1.
[para(59(a,1),38(b,1,1,1)),rewrite([90(2),13(4),70(5),59(4),13(4),74(4),39(3),90(3),13(2)
,20(2),74(7),39(6)]1),xx(b)].

112 x v (X Vy) =XV Y. [para(92(a,l),14(a,1,1)),flip(a)l.

148 x v c(y v c(x)) = x. [para(1l3(a,1l),86(a,1,2,1))1.

149 x v (c(c(x) Vy) Vv z) =XV Z. [para(86(a,l),14(a,1,1)),flip(a)].

151 x v (y v c(c(x) Vv z)) =Yy V X. [para(86(a,l),43(a,1,2)),flip(a)].

162 c(x) v c(y v x) = c(x). [para(l2(a,l),148¢(a,1,2,1,2))].

163 x v (c(y v c(x)) v z) = X V Z. [para(l48(a,1),14(a,1,1)),flip(a)].

175 c(x) v (c(x v y) v z) c(x) v z. [para(66(a,l),14(a,1,1)),flip(a)].

1.
,70(4)1) 1.

234 c(x) v (c(y v x) v z) = c(x) Vv z. [para(l62(a,l),14(a,1,1)),flip(a)].
525 x v c(x v c(c(x vy) vz)) !I=11] c(c (x vy) vz =c(c(x) v z).
[para(149(a,1),48(a,1,2,2,1,1)),rewrite([12(2),12(12),43(18),149(19),151(15),13(7),12(11)
,13(14),175(14),12(14)1), flip(b)].

621 c(x vy) vc(xvc(c(ly) vz)) =c(xvec(cly) vaz)).
[para(1l51(a,1l),162(a,1,2,1)),rewrite([13(8)]1)].

675 x v (y v cl(c(z v c(x)) v y)) = 1.
[para(46(a,1),163(a,1,2)),rewrite([100(2)]),flip(a)].

1924 c(x) v c(c(y v x) v.c(z v x)) = 1.
[para(675(a,1),234(a,1)),rewrite([12(4)]),flip(a)].

2974 x v (y ve(xve(zve(lxvy)))) =1.

[para(66(a,1),1924(a,1,2,1,1,1)),rewrite([12(3),12(3),14(8)1)1.

23541 x v c(x v c(c(y) ve(xve(xvy)))) =1 [para(621(a,1),2974(a,1,2))].
35630 c(c(x v y) ve(xve(xvy)) = x.

[hyper (525,a,23541,a) ,rewrite([112(4),112(11),66(14),12(10)1)1.

35641 c(x v y) Vc(x ve(xvy))=c(x). [para(35630(a,1),12(a,1,1)),flip(a)l.
35817 x vc(x ve(xvVvy)) =XV Y.

[para (35641 (a,1),35641(a,1,1,1)),rewrite([12(2),35641(9),12(4),13(3),12(8)1)1.
35818 SF # answer ("OMA") . [resolve (35817,a,34,a)].

end of proof

PROOF

o

Proof 1 at 215.39 (+ 3.15) seconds: "OMA".
Length of proof is 61.
Level of proof is 13.

o

oe

1 le(x,y) <> x = x ~ y # label ("Df: less than") # label(non clause). [assumption] .
3 i5(x,y) = 1 <-> le(x,y) # label("Hypothesis for formula 2.10i5") # label (non clause).
[assumption].

4y v (cly) » (xvy)) =xvy# label ("OMA") # label (non clause) # label (goal). [goall.
6 -le(x,y) | x ~ yv = x # label ("Df: less than"). [clausify (1)].

7 i5(x,y) !'= 1 | le(x,y) # label ("Hypothesis for formula 2.10i5"). [clausify(3)1].

11 x = c(c(x)) # label ("AxL1"). [assumption].

12 c(c(x)) = x. [copy(1ll),flip(a)l.

13 x vy=yvx # label ("AxL2"). [assumption].

14 (x vy) vz=xv (yvz) # label ("AxL3"). [assumption].

16 x v (x ~ y) = x # label ("AxL5"). [assumption].

17 x » (x v y) = x # label ("AxL6"). [assumption].

18 c(x) ~ x = 0 # label ("AxOL1"). [assumption].

19 c(x) v x = 1 # label ("AxOL2"). [assumption].

20 x v c(x) = 1. [copy (19),rewrite ([13(2)]1)1].

21 x ~ y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].

31 i5(x,y) = ((x ~ y) v (c(x) ~ y)) v (c(x) "~ c(y)) # label("Df: i5"). [assumption].
32 i5(x,y) = c(x v y) v (c(x Vv c(y)) v C(C(X) v oc(y))).

[copy(31),rewrite ([21(2),21(7),12(7),13(9),21(12),12(11),12(11),13(12)1)1].

33 ¢l v (c(cl) » (c2 v cl)) !'=c2 v cl # label(OMA") # answer ("OMA"). [deny (4) 1.

34 ¢l v c(cl v c(cl v c2)) !'= cl v c2 # answer ("OMA").

[copy (33),rewrite ([13(6),21(7),12(4),13(12)]1)1].

35 i5(x,y) =1 | x ~ y = x. [resolve (7,b,6,a)].

Int'l Conf. Foundations of Computer Science | FCS'12 | 179

36 c(x vy) Vv (c(xvec(y)) ve(c(x) ve(y)) !'=1]c(c(x)vecely)) =x.

[copy (3) rewrite ([32(1),21(14)1)1.

39 c¢(l) = 0. [back rewrite(18),rewrite([21(2),12(2),20(2)])].

40 c(c(x) vV c(x v y)) = X. [backirewrite(17),rewr1te([21(2)])]

41 x v c(c(x) v c(y)) [back rewrite(16),rewrite([21(1)])].
ite

43 x v (y v z) =y Vv (x z) . [para(l3(a,l),14(a,1,1)),rewr ([14(2)1)1].
46 x v (y v c(x v y)) =
49 c(x v y) v (c(y v c(x)) v c(c(y) vc(x))) =1 | cl(c(ly) vc(x)) =y.

X
v

= 1. [para(20(a,l),14(a,l)),flip(a)].
)
)

[para(1l3(a,1l),36(a,1,1,1))1.

52 c(x v (y vz) v (c(xv (yvc(z)) ve(c(xvy) ve(z))) '=1] clc(xvy)vecec(z)) =
X V Y. [para(l4(a,l),36(a,1,1,1)),rewrite([14(6)])].

66 c(x) v c(x v y) = c(x). [para(40(a,l),12(a,1,1)),flip(a)].

70 c(0 v c(x)) = x. [para(20(a,1),40(a,1,1,2,1)),rewrite([39(3),13(3)1)1].
73 1 vx=1. [para(39(a,1),40(a,1,1,1)),rewrite([70(6)1)1].
83 x v c(c(x) v y) = x. [para(l2(a,l),41(a,1,2,1,2))].
87 x v 0 = x. [para(20(a,l),41(a,1,2,1)),rewrite([39(2)])].
90 x v x = x. [para(39(a,l),41(a,1,2,1,2)),rewrite([13(3),70(4)1)].
96 x v 1 = 1. [para(73(a,1),13(a,1)),flip(a)].
98 0 v x = x. [para(87(a,1l),13(a,1)),flip(a)].
105 x v (x vy) =XxXVY. [para(90(a,l),14(a,1,1)),flip(a)].
107 x v (y v X) =y V X. [para(90(a,l),14(a,2,2)),rewrite([13(2)]1)1.
111 x v (y vc(y v x)) = 1. [para(1l3(a,l),46(a,1,2,2,1))].
140 x v c(y v c(x)) = x. [para(1l3(a,1),83(a,1,2,1))1].
143 x v (y v c(c(x) v z)) =y Vv X. [para(83(a,1),43(a,1,2)),flip(a)].
148 x v (y vV (x v .z)) =y vV (XV z). [para(105(a,1),14(a,2,2)),rewrite([43(3),14(2)1)]1.
151 c(x) v c(y v x) = c(x). [para(l2(a,l),140(a,1,2,1,2))1.
)

(
152 x v (c(y v c(x)) Vv z
v

=X V Z. [para(140(a,1),14(a,1,1)),flip(a)].
153 x v (y v c(z v c(x y))) = x v y. [para(140(a,1),14(a,1)),flip(a)]l.
197 x v c(y v x) != 1 | v v x = x.
[para(107(a,1),49(a,1,1,1)),rewrite([14(5),20(4),96(4),39(4),13(7),151(7),12(5),98(4),13(
3),13(9),151(9), 12()]) flip(b) 1.
205 c(x) v (c(y v x) v z) = c(x) VvV z. [para(1l51(a,1),14(a,1,1)),flip(a)].
208 c(x vy) velxv (zvy))=c(xvy. [para(43(a,1),151(a,1,2,1))1.
483 c(x v y) v c(x v c(c(y) v z)) = c(x v c(c(y) v z)).

[para(143(a,1),151(a,1,2,1)),rewrite([13(8)1)].

502 c(x v (y vz)vi(c(yv (xve(yvaz)) ve(lc(lyvx)ve(lyvz)) !=1]c(clyvzxyv
c(y vz)) =y Vv x. [para(l48(a,1),52(a,1,1,1))].

528 x v (y v c(c(z v c(x)) v y)) = 1.

[para(46(a,l),152(a,1,2)),rewrite([96(2)]),flip(a)].

620 x vce(xvy) I=1] yvx-=x. [para(l3(a,1),197(a,1,2,1))].

2363 c(x) v c(c(y v x) v c(z v x)) = 1.
[para(528(a,1),205(a,1)),rewrite([12(4)]),flip(a)].

2583 x v (y vc(z ve(y vx)) =xvVvy. [para(13(a,1),153(a,1,2,2,1,2,1))1.

3525 x v (y ve(xve(zve(lxvy))))=1.
[para(66(a,l),2363(a,1,2,1,1,1)),rewrite([12(3),12(3),14(8)1)1.
3984 c(x vy) ve(xve(zve(xvy))) =c(xvcec(zvelxvy)).
[para(153(a,1),208(a,1,2,1)),rewrite([13(9)1)].

24616 x v c(x v c(c(y) vc(xvec(xvy)) =1. [para(483(a,1),3525(a,1,2))].

35661 x v c(c(y) vc(x vc(x vy))) = x. [hyper (620,a,24616,a),rewrite ([13(8)]1) 1.

35666 x v c(y v c(x v c(x v c(y)))) = x. [para(l2(a,1l),35661(a,1,2,1,1))1.

35725 x Vv c(X V Cc(X VYy)) = X V y.

[para (35666 (a,1),502(a,1,2,2,1)),rewrite([13(6),66(6),12(4),13(3),2583(6),13(8),66(8),12(
6),13(5),3525(10),39(4),12(6),98(5),13(4),14(4),111(4),13(11),66(11),12(9),13(8),3984(12)
,12(10) 1) ,xx(a)].

35726 SF # answer ("OMA") . [resolve (35725,a,34,a)].

end of proof

Figure 3. Summary of a prover9 ([2]) proof of the OMA from Proposition 2.10, for each of i = 4,5.
The proofs assume the default inference rules of prover9. The general form of a line in this proof is
“line_number conclusion [derivation]”, where line_number is a unique identifier of a line in the proof,
and conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying,
and rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.
Note that some of “logical” proof lines in the above have been transformed to two text lines, with the
derivation appearing on a text line following a text line containing the first part of that logical line.

180

Int'l Conf. Foundations of Computer Science | FCS'12 |

The detailed syntax and semantics of these notations can be found in [2]. All prover9 proofs are by

default proofs by contradiction.

The total time to produce the proofs in
Figure 3 on the platform described in
Section 2.0 was approximately 380
seconds.

4.0 Discussion

The results of Section 3.0 motivate several
observations:

1. The proofs in Figure 3 are
symmetric in their dependencies on the
axioms of QL. This suggests (but does not
prove) that the implications determined by i
=4, 5 have common "roots" in the axioms.
Future work will explore this hypothesis.

2. The proofs in Section 3.0 may be
novel.

3. Companion papers provide
proofs for i = 1,2,3, and for orthomodular
lattice theory implies Propositions 2.10i, i =
1,2,3,4,5 ([23]).

5.0 Acknowledgements

This work benefited from discussions with
Tom Oberdan, Frank Pecchioni, Tony
Pawlicki, and the late John K. Prentice,
whose passion for foundations of physics
inspired those of us privileged to have
known him. For any infelicities that remain,
I am solely responsible.

6.0 References

[1] von NeumannJ. Mathematical
Foundations of Quantum Mechanics. 1936.
Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.
URL
http://www.cs.unm.edu/~mccune/prover9/.
2009.

[3] Horner JK. prover9 scripts for
Proposition 2.10. 2011. Available from the
author on request.

[4] Dalla Chiara ML and Giuntini R.
Quantum Logics. URL
http://xxx.lanl.gov/abs/quant-ph/0101028.
2004.

[5] Megill ND and Pavigi¢ M.
Orthomodular lattices and quantum algebra.
International Journal of Theoretical Physics
40 (2001), pp. 1387-1410.

[6] Akhiezer Nl and Glazman IM. Theory
of Linear Operators in Hilbert Space.
Volume I. Translated by M. Nestell.
Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in
infinite dimensions: a theorem of M. Soler.
Bulletin of the American Mathematical
Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A
condition for distribution in orthomodular
lattices.

Kansas State University Technical Report
#40. 1974.

[9] Knuth DE and Bendix PB. Simple word
problems in universal algebras. In J. Leech,
ed. Computational Problems in Abstract
Algebra. Pergamon Press. 1970. pp. 263-
297.

[10] Chang CC and Keisler HJ. Model
Theory. North-Holland. 1990. pp. 38-39.
[11] Birkhoff G. Lattice Theory. Third
Edition. American Mathematical Society.
1967.

[12] Church A. Introduction to
Mathematical Logic. Volume I. Princeton.
1956.

[13] Jauch J. Foundations of Quantum
Mechanics. Addison-Wesley. 1968.

Int'l Conf. Foundations of Computer Science | FCS'12 | 181

[14] Megill ND. Metamath. URL
http://us.metamath.org/qglegif/mmgl.html#un
ify. 2004.

[15] Horner JK. An automated deduction
system for orthomodular lattice theory.
Proceedings of the 2005 International
Conference on Artificial Intelligence.
CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational
logic deduction of join elimination in
orthomodular lattice theory. Proceedings of
the 2007 International Conference on
Artificial Intelligence. CSREA Press. 2007.
pp. 481-488.

[17] Messiah A. Quantum Mechanics.
Dover. 1958.

[18] Horner JK. Using automated theorem-
provers to aid the design of efficient
compilers for quantum computing. Los
Alamos National Laboratory Quantum
Institute Workshop. December 9-10, 2002.
URL
http://www.lanl.gov/science/centers/quantu
m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von NeumannJ. The
logic of quantum mechanics. Annals of
Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum
Computation and Quantum Information.
Cambridge. 2000.

[21] Pavi¢i¢ M and Megill N. Quantum and
classical implicational algebras with
primitive implication. International Journal
of Theoretical Physics 37 (1998), 2091-
2098. ftp://m3k.grad.hr/pavicic/quantum-
logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of
the relative strength of orthomodular and
weakly orthomodular lattice theory.
Proceedings of the 2009 International
Conference on Artificial Intelligence.
CSREA Press. 2009. pp. 525-530.

[23] Horner JK. Quantum-implication-
based equivalents of the Orthomodularity
Law in quantum Logic: Parts 1, 3,4.
Submitted to the 2012 International
Conference on Foundations of Computer
Science.

182

Int'l Conf. Foundations of Computer Science | FCS'12 |

Quantum-Implication-Based Equivalents of the
Orthomodularity Law in Quantum Logic: Part 3

Jack K. Horner
P. O. Box 266
Los Alamos, New Mexico 87544 USA
email: jhorner@cybermesa.com

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of
quantum-mechanical behaviors and operations. In much the same way that the structure of conventional
propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical
systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces
of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the
descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An
OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular
lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA
as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its
equivalents are required in an adequate characterization of QL. The OMA, it turns out, has strong
connections to implication in QL. Here | provide an automated deduction of three implication-based
equivalents of the OMA from orthomodular lattice theory. The proofs may be novel.

Keywords: automated deduction, quantum computing, orthomodular lattice, Hilbert space

1.0 Introduction

The optimization of quantum
computing circuitry and compilers at some
level must be expressed in terms of the
description of guantum-mechanical
behaviors ([1], [17], [18], [20]). In much the
same way that conventional propositional
(Boolean) logic (BL,[12]) is the logical
structure of description of the behavior of
classical physical systems (e.g. “the
measurements of the position and
momentum of particle P are commutative”,
i.e, can be measured in either order,
yielding the same results) and is isomorphic
to a Boolean lattice ([10], [11], [19]), so also
the algebra, C(H), of the closed linear
subspaces of (equivalently, the system of
linear operators on (observables in)) a
Hilbert space H ([1], [4], [6], [9], [13]) is a
logic of the descriptions of the behavior of

quantum mechanical systems (e.g., “the
measurements of the position and
momentum of particle P are not
commutative”) and is a model ([10]) of an
ortholattice (OL; [4]). An OL can thus be
thought of as a kind of “quantum logic”
(QL; [19]). C(H) is also a model of (i.e.,
isomorphic to a set of sentences which hold
in) an orthomodular lattice (OML; [4], [7]),
which is an OL conjoined with the
orthomodularity axiom (OMA; see Figure
1). The rationalization of the OMA as a
claim proper to physics has proven
problematic ([13], Section 5-6), motivating
the question of whether the OMA is required
in an adequate characterization of QL. Thus
formulated, the question suggests that the
OMA and its equivalents are specific to an
OML, and that as a consequence, banning
the OMA from QL vyields a "truer" quantum
logic. The OMA, it turns out, has strong

Int'l Conf. Foundations of Computer Science | FCS'12 | 183

connections to implication in QL, as demonstrated in the following.

Lattice axioms

x = c(c(x)) (AxLatl)
X Vy=yYVX (AxLat2)
(x vy)vzs=xvVv (Vv z) (AxLat3)
(x ~y) Yz =x" (y ~ 2) (AxLat4)
X Vv (x Vy) =x (AxLath)
X N (xVvy) =x (AxLato)
Ortholattice axioms
c(x) " x =20 (AxXOL1)
c(x) v x =1 (AxOL2)
x Ny =c(c(x) v c(y)) (AxOL3)
Orthomodularity axiom
y v (cly) » (x vy)) =xvVvy (OMA)

Definitions of implications and partial order

~

il(x,y) = c(x) v (x y) .
i2(x,y) = il(c(y), c(x).
i3(x,y) = (c(x) ~y) v (c(x) * cly)) v il(x,y¥) .
id(x,y) = i3(c(y), c(x)).
i5(x,y) = (x 7 y) v (c(x) ~y) v (c(x) ~ c(y)).
le(x,y) = (x = (x ~vy)).

where

X, y are variables ranging over lattice nodes
~ is lattice meet

v is lattice join

c(x) is the orthocomplement of x

il(x,y) means x —; y (Sasaki implication)

12 (x,y) means x —, y (Dishkant implication)
i3(x,y) means x —3; y (Kalmbach implication)
i4(x,y) means x —; y (non-tollens implication)
i5(x,y) means x —s y (relevance implication)
le(x,y) means x <y

<-> means if and only if

= 1s equivalence ([12])
1 is the maximum lattice element (= x v c(x))
0 is the minimum lattice element (= c(1))

Figure 1. Lattice, ortholattice, orthomodularity axioms, and some definitions.

Consider the following proposition.

((x =1 y) = 1) <=> le(x,y)
where 1 = 1,2,3,4,5.

Figure 2. Proposition 2.10

184

Note that there are five implications
in QL (BL has only one). Proposition 2.10
is a generalization of the BL definition of

implication, sometimes denoted —.

2.0 Method

The OML axiomatizations of
Megill, Pavic¢i¢, and Horner ([5], [14], [15],
[16], [21], [22]) were implemented in a
prover9 ([2]) script ([3]) configured to
derive Proposition 2.10i, for each of i =1,
2, 3 from orthomodular lattice theory, then
executed in that framework on a Dell
Inspiron 545 with an Intel Core2 Quad CPU

Int'l Conf. Foundations of Computer Science | FCS'12 |

Q8200 (clocked @ 2.33 GHz) and 8.00 GB
RAM, running under the Windows Vista
Home Premium /Cygwin operating
environment.

3.0 Results

Figure 3 shows the proofs,
generated by [3] on the platform described
in Section 2.0, that orthomodular lattice
theory implies Proposition 2.10i, for each of
i=1,2,3.

PROOF

o°

Proof 1 at 0.08 (+ 0.03) seconds.
Length of proof is 44.
Level of proof is 8.

o

o

1 le(x,y) <> x = x ~ y # label ("Df: less than") # label(non clause). [assumption].
3 11(x,y) =1 <-> le(x,y) # label("Proposition 2.10il") # label (non clause) #
label (goal) . [goall].
6 x = c(c(x)) # label ("AxL1"). [assumption].
7 c(c(x)) = x. [copy(6),flip(a)].
8 x vy=yvx# label("AxL2"). [assumption].
9 (x vy) vz=xvVv (yvz # label ("AxL3"). [assumption].
11 x v (x ~ y) = x # label ("AxL5"). [assumption] .
12 x ~ (x v y) = x # label ("AxL6"). [assumption].
13 c(x) ~ x = 0 # label ("AxOLL1"). [assumption].
14 c(x) v x = 1 # label ("AxOL2"). [assumption] .
15 x v c(x) = 1. [copy(1l4),rewrite([8(2)])1].
16 x ~ y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].
17 x v (c(x) ~ (y v x)) =y vVvx# label("OMA"). [assumption].
y v x. [copy(l7),rewrite([16(3),7(2)]1)].

c
)
18 x v c(x v c(y v %))

~y) # label ("Df: il").

20 il1(x,vy) c(x) v (x [assumption] .
21 1il(x,vy) c(x) v c(c(x) v c(y)). [copy (20) ,rewrite ([16(3)]1)].
28 15(x,vy) ((x M y) v (c(x) ~y)) v (c(x) c(y)) # label("Df: i5"™). [assumption].
29 15(x,y) C(xvy) v (c(x v c(y)) v c(c v oc(y))).
[copy (28) ,rewrite ([16(2),16(7),7(7),8(9),16(12),7(11),7(11),8(12)]1)].
30 -le(x,y) | x ~ y = x # label ("Df: less than"). [clausify (1)].
31 -le(x,y) | c(c(x) v c(y)) = x. [copy (30),rewrite([16(2)]1)].
32 le(x,y) | x ~ y !'= x # label ("Df: less than"). [clausify(1l)].
33 le(x,y) | c(c(x) v c(y)) !'= x. [copy(32),rewrite([16(2)]1)].
34 i1(cl,c2) =1 | le(cl,c2) # label("Proposition 2.10i1"). [deny (3)].
35 ¢c(cl) v c(c(cl) v c(c2)) =1 | le(cl,c2). [copy (34),rewrite ([21(3)1)1].
36 il(cl,c2) '= 1 | -le(cl,c2) # label ("Proposition 2.101"). [deny (3)].
37 c(cl) v c(c(cl) v c(c2)) !'=1 | -le(cl,c2). [copy (36),rewrite([21(3)]1)].
38 c(l) = 0. [back rewrite(13),rewrite([16(2),7(2),15(2)]1)].
39 c(c(x) vc(x vy)) =x [back_rewrite(12),rewrite([16(2)])]
40 x v c(c(x) v c(y)) = x. [back rewrite(1ll),rewrite([16(1)])].
44 x v (c(x) vy =1vwvy. [para(1l5(a,1),9(a,1,1)),flip(a)].
54 le(x,y) | c(c(y) v c(x)) !'= x. [para(8(a,1l),33(b,1,1))1].
57 c(cl) v c(c(cl) v c(c2)) =1 | c(c(cl) v c(c2)) = cl. [resolve (35,b,31,a)].
63 c(x) c(x v y) = c(x). [para(39(a,1l),7(a,1,1)),flip(a)].
67 c(0 v c(x)) X [para(1l5(a,1),39(a,1,1,2,1)),rewrite([38(3),8(3)1)1.
68 c(x v y) Vv X vc(xvy)) =c(x).
)

c
[para(39(a,1l),1
69 1 vx = 1.

— 0 —~ |l

para(38(a,1),39(a,1,1,1))

(a,1,2,1,2)), rewrite([8(5),

63(11)1)1.
,rewrite ([67(6)])].

Int'l Conf. Foundations of Computer Science | FCS'12 | 185

73 x v (c(x) vy) =1. [back rewrite (44),rewrite([69(5)])].

78 x v 0 = x [para(l5(a,1),40(a,1,2,1)),rewrite([38(2)1)1].

80 x Vv X = X [para(38(a,l),40(a,1,2,1,2)),rewrite([8(3),67(4)]1)].
91 0 v x = x [para(78(a,1),8(a,1l)),flip(a)].

93 x v (X Vy) =XV Y. [para(80(a,1),9(a,1,1)),flip(a)].

338 c(c(cl) v c(c2)) = cl.
[para(57(a,1),29(a,2,1,1)),rewrite([29(17),7(27),93(26),7(27),7(32),73(31),38(26),8(26),9
1(26),8(25),68(25),7(11),38(11),7(19),93(18),7(19),7(24),73(23),38(18),8(18),91(18),91(17
)1),£lip (b) ,merge (b)].

339 -le(cl,c2). [back rewrite(37),rewrite([338(8),8(4),15(4)]),xx(a)].

340 SF. [ur(54,a,339,a),rewrite([8(5),338(6)]),xx(a)].

end of proof

PROOF

o

Proof 1 at 2.32 (+ 0.08) seconds.
Length of proof is 35.
Level of proof is 8.

o

o

1 le(x,y) <> x = x ~ y # label ("Df: less than") # label(non clause). [assumption].
3 12(x,y) = 1 <-> le(x,y) # label("Proposition 2.10i2") # label (non clause) #

label (goal) . [goall].

6 x = c(c(x)) # label ("AxL1"). [assumption].

7 c(c(x)) x. [copy(6),flip(a)].

8 x vy-= v x # label ("AxL2"). [assumption] .

11 x v (x y) = x # label ("AxL5"). [assumption].

12 x ~ (x v y) = x # label ("AxL6"). [assumption].

13 c(x) ©~ x = 0 # label ("AxOL1"). [assumption].
X
)

>l

14 c(x) v =1 # label ("AxOL2"). [assumption].
15 x v c(x) = 1. [copy(14),rewrite([8(2)]1)1].
16 x ~ y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].
17 x v (c(x) ~ (y v x)) =y v x # label ("OMA") . [assumption].
18 x ve(xve(ly vx) =y vV Xx. [copy(17),rewrite([16(3),7(2)1)1].
22 i2(x,y) = c(c(y)) v (c(y) ”~ c(x)) # label("Df: i2"). [assumption].
23 12(x,y) =y v c(y v x). [copy (22) ,rewrite ([7(3),16(4),7(3),7(3)1)1.
30 -le(x,y) | x ~ yv = x # label ("Df: less than"). [clausify(1)].
c

31 -le(x,vy) | (c(x) v c(y)) = x. [copy (30),rewrite([16(2)]1)].

32 le(x,y) | x ~ y !'= x # label("Df: less than"). [clausify (1)].

33 le(x,y) | c(c(x) v c(y)) != x. [copy (32),rewrite([16(2)])].

34 12(cl,c2) = 1 | le(cl,c2) # label ("Proposition 2.101i2"). [deny (3)].
35 c2 vc(cl vec2) =1 | le(cl,c2). [copy (34),rewrite ([23(3),8(4)]1)1.

36 i2(cl,c2) !'= 1 | -le(cl,c2) # label("Proposition 2.10i2"). [deny (3)].
37 c2 v c(cl v c2) !'=1 | -le(cl,c2). [copy (36),rewrite([23(3),8(4)1)1.

38 c(l1) = 0. [back rewrite(13),rewrite([16(2),7(2),15(2)]1)].

39 c(c(x) v c(x v y)) = x. [back rewrite(1l2),rewrite([16(2)])].

40 x v c(c(x) v c(y)) = x. [back rewrite(1ll),rewrite([16(1)])].

57 c2 v c(cl v c2) =1 | c(c(cl) v c(c2)) = cl. [resolve (35,b,31,a)].

62 le(x,x vV V). [resolve (39,a,33,b)].

78 x v 0 = x. [para(l5(a,l),40(a,1,2,1)),rewrite([38(2)]1)].

79 x v c(y v c(x)) = x. |[para(l8(a,l),40(a,1,2,1))1.

91 0 v x = x. [para(78(a,1),8(a,1)),flip(a)].

362 c2 vec(cl ve2) =11 clvc2=c2. [para(57(b,1),79(a,1,2)),rewrite([8(11)])].
6823 cl v c2 = c2.
[para(362(a,1),18(a,1,2,1)),rewrite([38(8),8(8),91(8)1),flip(b),merge(b)].
6824 -le(cl,c2). [back rewrite(37),rewrite([6823(4),15(4)]),xx(a)].

6828 SF. [para (6823 (a,1),62(a,2)),unit _del(a,6824)].

end of proof

PROOF

o°

Proof 1 at 8.81 (+ 0.12) seconds.
Length of proof is 50.
Level of proof is 9.

o°

o

1 le(x,y) <-> x = x ~ y # label ("Df: less than") # label (non_clause). [assumption].
3 1i3(x,y) =1 <> le(x,y) # label("Proposition 2.10i3") # label(non clause) #
label (goal) . [goall]

186 Int'l Conf. Foundations of Computer Science | FCS'12 |

6 x = c(c(x)) # label ("AxL1"). [assumption].
7 c(c(x)) = x. [copy(6),flip(a)].
8 x vy=yvx# label("AxL2"). [assumption] .
9 (x vy vz=xv (yvz) # label("AxL3"). [assumption].
11 x v (x ~y) = x # label ("AxL5"). [assumption].
12 x " (x vy) =x # label ("AxL6"). [assumption].
13 c(x) ~ x = 0 # label ("AxOL1"). [assumption].
14 c(x) v x = 1 # label ("AxOL2"). [assumption].
15 x v c(x) 1. [copy (14),rewrite([8(2)]1)1].
(%

) v c(y)) # label ("AxOL3"). [assumption].

16 x ~ vy = c(c
N~ (y vx)) =y v x # label ("OMA"). [assumption].

17 x v (c(x)

18 x vc(x ve(ly vX)) =y VvV x. [copy(17),rewrite([16(3),7(2)]1)].
24 13(x,y) = ((c(x) "~ y) v (c(x) "~ c(y))) v (c(x) v (x ~ y)) # label("Df: i3").
[assumption].

25 13(x,y) = c(x vy) v (c(x v c(y)) v (c(x) v c(c(x) v c(y)))).

[copy (24) ,rewrite ([16(3),7(3),16(7),7(6),7(6),8(7),16(9),9(14)1)]1.

28 i5(x,y) = ((x ~ y) v (c(x) ~ y)) v (c(x) ~ c(y)) # label ("Df: i5"). [assumption].
29 i5(x,y) = c(x v y) v (c(x v c(y)) Vv c(c(x) v c(y))).

[copy (28),rewrite([16(2),16(7),7(7),8(9),16(12),7(11),7(11),8(12)1)1.

30 -le(x,y) | x ~ y = x # label ("Df: less than"). [clausify(l)].

31 -le(x,y) | c(c(x) v c(y)) = x. [copy (30),rewrite([16(2)]1)1].

32 le(x,y) | x ~ y !'= x # label ("Df: less than"). [clausify(1)].
33 le(x,y) | c(c(x) v c(y)) !'= x. [copy (32),rewrite([16(2)])].
[

34 i3(cl,c2) =1 | le(cl,c2) # label("Proposition 2.10i3"). deny(3)].

35 c(cl v c2) v (c(cl v c(c2)) v (c(cl) v c(c(cl) v c(c2)))) 1 | le(cl,c2).
[copy (34),rewrite ([25(3)]1)1].

36 13(cl,c2) !'= 1 | -le(cl,c2) # label("Proposition 2.10i3"). [deny(3) 1.

37 c(cl v c2) v (c(cl v c(c2)) v (c(cl) v c(c(cl) v c(c2)))) !=1 | -le(cl,c2).
[copy (36),rewrite ([25(3)]1)1].

38 c(l) = 0. [back_rewrite(l3),rewrite([16(2),7(2),15(2)])].

39 c(c(x) v c(x v y)) = x. [back rewrite(1l2),rewrite([16(2)])].

40 x v c(c(x) v c(y)) = x. [back rewrite(1ll),rewrite([16(1)])].

42 x v (y v.z) =y v (x Vv z). [para(8(a,1),9(a,1,1)),rewrite([9(2)])1].

43 c(cl) v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))) '= 1 | -le(cl,c2).

[back rewrite(37),rewrite([42(19),42(20)])].

44 c(cl) v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))) =1 | le(cl,c2).
[back rewrite(35),rewrite([42(19),42(20)])].

46 x v (c(x) vy =1vwvy. [para(1l5(a,1),9(a,1,1)),flip(a)].

56 le(x,y) | c(c(y) v c(x)) != x. [para(8(a,1),33(b,1,1))].

64 c(x) v c(x v y) = c(x). [para(39(a,1),7(a,1,1)),flip(a)]l.

68 c(0 v c(x)) = x. [para(15(a 1),39(a,1,1,2,1)),rewrite([38(3),8(3)])].
69 c(x vVy) Vve(xvelxvy))s=c(x).
[para(39(a,1),18(a,1,2,1,2)),rewrite([8(5),64(11)1])
701 v x = 1. [para(38(a,1),39(a,1,1,1)),rewrite ([
74 x v (c(x) vy) =1. [back rewrite (46),rewrite ([
79 x v 0 = x. [para(1l5(a,1),40(a,1,2,1)),rewrite([38
8l x Vv X = X. [para(38(a,1l),40(a,1,2,1,2)),rewrite([8
90 c(cl) v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(
[resolve (44,b,31,a)].

93 0 v x = x. [para(79(a,1),8(a,1)),flip(a)].

95 x v (x vy) =xvVvy. [para(8l(a,1l),9(a,1,1)),flip(a)l.

336 c(x) v (c(x v y) v z) =c(x) v z. [para(64(a,l),9(a,1,1)),flip(a)].

347 c(cl) v c(c(cl) v c(c2)) =1 | c(c(cl) v c(c2)) = cl.

[back rewrite(90),rewrite([336(20),336(15)]1)].

350 c(cl) v c(c(cl) v c(c2)) !'=1 | -le(cl,c2).

[back rewrite(43),rewrite([336(20),336(15)1)].

20075 c(c(cl) v c(c2)) = cl.

[para(347(a,1),29(a,2,1,1)),rewrite ([29(17),7(27),95(26),7(27),7(32),74(31),38(26),8(26),
93(26),8(25),69(25),7(11),38(11),7(19),95(18),7(19),7(24),74(23),38(18),8(18),93(18),93(1
7)1),flip(b),merge (b)].

20076 -le(cl,c2). [back rewrite(350),rewrite([20075(8),8(4),15(4)]),xx(a)].

20077 S$F. [ur (56,a,20076,a),rewrite ([8(5),20075(6)]1),xx(a)].

ni.
=1 | c(c(cl) v c(c2)) = cl.

end of proof

Figure 3. Summary of a prover9 ([2]) proof of Proposition 2.10i, for each of i = 1,2,3 from
orthomodular lattice theory. The proofs assume the default inference rules of prover9. The general

Int'l Conf. Foundations of Computer Science | FCS'12 |

form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique
identifier of a line in the proof, and conclusion is the result of applying the prover9 inference rules
(such as paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation),
to the lines cited in those brackets. Note that some of “logical” proof lines in the above have been
transformed to two text lines, with the derivation appearing on a text line following a text line
containing the first part of that logical line. The detailed syntax and semantics of these notations can
be found in [2]. All prover9 proofs are by default proofs by contradiction.

The total time to produce the proofs in
Figure 3 on the platform described in
Section 2.0 was approximately 11
seconds.

4.0 Discussion

The results of Section 3.0 motivate
several observations:

1. The proofs in Figure 3 for i=1
and i=3 use L1, L2, L3, L5, L6, OL1, OL2,
and OL3. In contrast, the proof for i=2 uses
L1, L2, L5,L6,OLL, OL2, and OL3. This
suggests (but does not prove) that
Proposition 2.10, for i = 1,2, may have
axiomatic bases that are more closely related
to each other than they are to the axiomatic
basis for i = 3. Future work will explore this
hypothesis.

2. The proofs in Section 3.0 may be
novel.

3. Companion papers provide
proofs for i = 4, 5, and for Propositions
2.10i,i=1,2,3,4,5, imply the OMA ([23]).

5.0 Acknowledgements

This work benefited from
discussions with Tom Oberdan, Frank
Pecchioni, Tony Pawlicki, and the late John
K. Prentice, whose passion for foundations
of physics inspired those of us privileged to
have known him. For any infelicities that
remain, | am solely responsible.

6.0 References

[1] von Neumann J. Mathematical
Foundations of Quantum Mechanics. 1936.
Translated by R. T. Beyer. Princeton. 1983.
[2] McCune WW. prover9 and mace4.
URL
http://www.cs.unm.edu/~mccune/prover9/.
2009.

[3] Horner JK. prover9 scripts for
Proposition 2.10. 2011. Awvailable from the
author on request.

[4] Dalla Chiara ML and Giuntini R.
Quantum Logics. URL
http://xxx.lanl.gov/abs/quant-ph/0101028.
2004.

[5] Megill ND and Pavicic M.
Orthomodular lattices and quantum algebra.
International Journal of Theoretical Physics
40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory
of Linear Operators in Hilbert Space.
Volume |I. Translated by M. Nestell.
Frederick Ungar. 1961.

[71 Holland, Jr. SS Orthomodularity in
infinite dimensions: a theorem of M. Soleér.
Bulletin of the American Mathematical
Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A
condition for distribution in orthomodular
lattices.

Kansas State University Technical Report
#40. 1974.

[9] Knuth DE and Bendix PB. Simple word
problems in universal algebras. In J. Leech,
ed. Computational Problems in Abstract
Algebra. Pergamon Press. 1970. pp. 263-
297.

[10] Chang CC and Keisler HJ. Model
Theory. North-Holland. 1990. pp. 38-39.

187

188

[11] Birkhoff G. Lattice Theory. Third
Edition. American Mathematical Society.
1967.

[12] Church A. Introduction to
Mathematical Logic. Volume 1. Princeton.
1956.

[13] Jauch J. Foundations of Quantum
Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL
http://us.metamath.org/qglegif/mmgl.html#un
ify. 2004.

[15] Horner JK. An automated deduction
system for orthomodular lattice theory.
Proceedings of the 2005 International
Conference on Artificial Intelligence.
CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational
logic deduction of join elimination in
orthomodular lattice theory. Proceedings of
the 2007 International Conference on
Artificial Intelligence. CSREA Press. 2007.
pp. 481-488.

[17] Messiah A. Quantum Mechanics.
Dover. 1958.

[18] Horner JK. Using automated theorem-
provers to aid the design of efficient
compilers for quantum computing. Los
Alamos National Laboratory Quantum
Institute Workshop. December 9-10, 2002.
URL
http://www.lanl.gov/science/centers/quantu
m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von NeumannJ. The
logic of guantum mechanics. Annals of
Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum
Computation and Quantum Information.
Cambridge. 2000.

[21] Pavici¢ M and Megill N. Quantum and
classical implicational algebras with
primitive implication. International Journal
of Theoretical Physics 37 (1998), 2091-
2098. ftp://m3k.grad.hr/pavicic/quantum-
logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of
the relative strength of orthomodular and
weakly orthomodular lattice theory.
Proceedings of the 2009 International
Conference on Artificial Intelligence.
CSREA Press. 2009. pp. 525-530.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[23] Horner JK. Quantum-implication-
based equivalents of the Orthomodularity
Law in quantum logic: Parts 1,2/4.
Submitted to the 2012 International
Conference on Foundations of Computer
Science.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Quantum-Implication-Based Equivalents of the
Orthomodularity Law in Quantum Logic: Part 4

Jack K. Horner
P. O. Box 266
Los Alamos, New Mexico 87544 USA
email: jhorner@cybermesa.com

Abstract

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of
quantum-mechanical behaviors and operations. In much the same way that the structure of conventional
propositional (Boolean) logic (BL) is the logic of the description of the behavior of classical physical
systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces
of (equivalently, the system of linear operators on (observables in)) a Hilbert space is a logic of the
descriptions of the behavior of quantum mechanical systems and is a model of an ortholattice (OL). An
OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular
lattice, which is an OL conjoined with the orthomodularity axiom (OMA). The rationalization of the OMA
as a claim proper to physics has proven problematic, motivating the question of whether the OMA and its
equivalents are required in an adequate characterization of QL. The OMA, it turns out, has strong
connections to implication in QL. Here | provide automated deductions of two quantum-implication-
based equivalents of the OMA from orthomodular lattice theory. The proofs may be novel.

Keywords: automated deduction, quantum computing, orthomodular lattice, Hilbert space

1.0 Introduction

The optimization of quantum
computing circuitry and compilers at some
level must be expressed in terms of the
description of guantum-mechanical
behaviors ([1], [17], [18], [20]). In much the
same way that conventional propositional
(Boolean) logic (BL,[12]) is the logical
structure of description of the behavior of
classical physical systems (e.g. “the
measurements of the position and
momentum of particle P are commutative”,
i.e, can be measured in either order,
yielding the same results) and is isomorphic
to a Boolean lattice ([10], [11], [19]), so also
the algebra, C(H), of the closed linear
subspaces of (equivalently, the system of
linear operators on (observables in)) a
Hilbert space H ([1], [4], [6], [9], [13]) is a
logic of the descriptions of the behavior of

quantum mechanical systems (e.g., “the
measurements of the position and
momentum of particle P are not
commutative”) and is a model ([10]) of an
ortholattice (OL; [4]). An OL can thus be
thought of as a kind of “quantum logic”
(QL; [19]). C(H) is also a model of (i.e.,
isomorphic to a set of sentences which hold
in) an orthomodular lattice (OML; [4], [7]),
which is an OL conjoined with the
orthomodularity axiom (OMA; see Figure
1). The rationalization of the OMA as a
claim proper to physics has proven
problematic ([13], Section 5-6), motivating
the question of whether the OMA is required
in an adequate characterization of QL. Thus
formulated, the question suggests that the
OMA and its equivalents are specific to an
OML, and that as a consequence, banning
the OMA from QL vyields a "truer" quantum
logic. The OMA, it turns out, has strong

189

190

Int'l Conf. Foundations of Computer Science | FCS'12 |

connections to implication in QL, as demonstrated in the following.
Lattice axioms
x = c(c(x)) (AxLatl)
X Vy =Y VX (AxLat2)
(x vy)vzs=xvVv (Vv z) (AxLat3)
(x ~y) "z =x"(y " z) (AxLat4)
X v (x Ny =x (AxLath)
X N (xVvy) =x (AxLato)
Ortholattice axioms
c(x) ~x =0 (AxOL1)
c(x) vxx=1 (AxQL2)
x Ny =c(c(x) v c(y)) (AxOL3)
Orthomodularity axiom
y v (cly) " (x vy)) =xVy (OMR)

Definitions of implications and partial order

~

il(x,y) = c(x) v (x y) .
i2(x,y) = il(c(y), c(x).
i3(x,y) = (c(x) ~y) v (c(x) "~ cly)) v il(x,y).
id(x,y) = i3(cly), c(x)).
i5(x,y) = (x 7 y) v (c(x) ~y) v (c(x) ~ c(y)).
le(x,y) = (x = (x ~y)).

where

X, y are variables ranging over lattice nodes

~

is lattice meet
v is lattice join

c(x) is the orthocomplement of x

il(x,y) means x —; y
i2(x,y) means x —; y
i3(x,y) means x —; y
i4(x,y) means x —; y
i5(x,y) means x —s y
le(x,y) means x <y

(Sasaki implication)
(Dishkant implication)
(Kalmbach implication)
(non-tollens implication)
(relevance implication)

<-> means if and only if

([121)

= 1s equivalence

1 is the maximum lattice element
0 is the minimum lattice element

(= x v c(x))

(= c(1))

Figure 1. Lattice, ortholattice, orthomodularity axioms, and some definitions.

Consider the proposition shown in Figure 2:

((x =i vy)

where 1 =

1) <=> le (x,vy)

1,2,3,4,5.

Figure 2. Proposition 2.10

Note that there are five implications in QL (there is only one in BL). Proposition 2.10 can be
regarded as a generalization of the BL definition of implication, sometimes denoted — .

Int'l Conf. Foundations of Computer Science | FCS'12 | 191

2.0 Method Home Premium /Cygwin operating
environment.

The OML axiomatizations of
Megill, Pavi¢i¢, and Horner ([5], [14], [15], 3.0 Results
[16], [21], [22]) were implemented in a
prover9 ([2]) script ([3]) configured to
derive Proposition 2.10i, for each of i=4,5

from orthomodular lattice theory then in Section 2.0, that orthomodular lattice

executed in that framework on a Dell S . :
’) theory implies Proposition 2.10i, for each of
Inspiron 545 with an Intel Core2 Quad CPU i=4 5)'/ P P

Q8200 (clocked @ 2.33 GHz) and 8.00 GB
RAM, running under the Windows Vista

Figure 3 shows the proofs,
generated by [3] on the platform described

PROOF

o

Proof 1 at 6.52 (+ 0.22) seconds.
Length of proof is 43.
Level of proof is 9.

oo

o

1 le(x,y) <-> x =x ~ y # label("Df: less than") # label(non clause).

[assumption].

3 14(x,y) =1 <-> le(x,y) # label("Proposition 2.10i4") # label (non clause) #
label (goal) . [goall].

6 x = c(c(x)) # label ("AxL1"). [assumption].

7 c(c(x)) = x. [copy(6),flip(a)].

8 x vy=yvx # label ("AxL2"). [assumption].

9 (x vy) vz=xvVv (yvz) # label ("AxL3"). [assumption].

11 x v (x ~ y) = x # label ("AxXL5"). [assumption].

12 x » (x vy) = x # label ("AxL6"). [assumption].

13 c(x) ~ x = 0 # label ("AxOL1"). [assumption].

14 c(x) v x = 1 # label ("AxOL2"). [assumption].

15 x v c(x) = 1. [copy (14),rewrite([8(2)])].

16 x ~ vy = c(c(x) v c(y)) # label ("AxOL3"). [assumption].

17 x v (c(x) ~ (y v X)) =y v x # label ("OMA") . [assumption].

18 x vc(x vely vx) =y V X. [copy (17),rewrite([16(3),7(2)]1)].

22 12(x,y) = c(c(y)) v (c(y) " c(x)) # label("Df: i2"). [assumption].

23 12(x,y) =y Vv c(y Vv X). [copy(22),rewrite([7(3),16(4),7(3),7(3)1)1].

26 14(x,y) = ((c(c(y)) ~ c(x)) v (c(c(y)) "~ c(c(x)))) v (c(c(y)) v (c(y) *
c(x))) # label("Df: i4") [assumption] .

27 14 (x,y) =y Vv (c(y v x) v (c(c(y) v x) v c(c(y) v c(x)))).

[copy (26),rewrite ([7(3),16(3),7(4),7(6),7(6),16(5),7(11),16(12),7(11),7(11),8(1
3),9(13)1) 1.

30 -le(x,y) | x ~y = x # label ("Df: less than"). [clausify(1)].

31 -le(x,y) | c(c(x) v c(y)) = x. [copy (30) ,rewrite([16(2)])].

32 le(x,y) | x ~y !'= x # label ("Df: less than"). [clausify(1)].

33 le(x,y) | c(c(x) v c(y)) != x. [copy (32) ,rewrite([16(2)])].

34 i4(cl,c2) =1 | le(cl,c2) # label ("Proposition 2.10i4"). [deny (3) 1.

35 c2 v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))) =1 | le(cl,c2).
[copy (34),rewrite([27(3),8(4),8(9),8(15)1)].

36 14 (cl,c2) !'= 1 | -le(cl,c2) # label("Proposition 2.10i4"). [deny (3)1].
37 c2 v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))) '=1 | -le(cl,c2).
[copy (36) ,rewrite([27(3),8(4),8(9),8(15)1)1.

38 c(1) = 0. [back rewrite(13),rewrite([16(2),7(2),15(2)])].

39 c(c(x) v c(x v y)) = x. [back rewrite(12), rewr1te([l6(Y1) 1.

40 x v c(c(x) v c(y)) = x. [back rewrite(11l),rewrite([16(1)])].

42 x v (y v.z) =y Vv (x Vv z). [para(8(a,1),9(a,1,1)), rewr1te([9(2)])].

192 Int'l Conf. Foundations of Computer Science | FCS'12 |

57 c2 v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))) =1 | c(c(cl) v
c(c2)) = cl. [resolve (35,b,31,a)].

62 le(x,x v y). [resolve(39,a,33,b)].

78 x v 0 = x [para(l5(a,1),40(a,1,2, l)) rewrite ([38(2)])].

79 x v c(y v c(x)) = x. [para(l8(a,1l),40(a,1,2,1))1.

91 0 v x = x. [para(78(a,1),8(a,1)) fllp(a)].

196 x v (c(y v c(x)) VvV z) = X V Z. [para(79(a,1),9(a,1,1)),flip(a)].

336 c(c(cl) v c(c2)) =cl | c2 v c(c2 v (c(cl v c2) v (c(cl v c(c2)) v c(c(cl)
v c(c2))))) = c2.
[para(57(a,1),23(a,2,2,1)),rewrite([23(27),38(33),8(33),91(33)1)1.

4403 x v (y v (c(z v c(x)) vu)) =y Vv (x vu).
[para(l96(a,l),42(a,1,2)),flip(a)]

4550 c(c(cl) v c(c2)) =cl | ¢l v c2 = c2.

[back rewrite(336),rewrite([4403(28),79(21),8(15),18(17)])1].

4552 c2 v c(cl v c2) !'= 1 | -le(cl,c2).

[back rewrite(37),rewrite([4403(19),79(12),8(6)])].

16868 cl v c2 = c2. [para (4550(a,1),79(a,1,2)),rewrite([8(8)]),merge(b)].
16869 -le(cl,c2). [back rewrite(4552),rewrite([16868(4),15(4)]),xx(a)].

16876 $F. [para(l6868(a,l),62(a,2)),unit del(a,16869)].

end of proof

PROOF

o

Proof 1 at 95.86 (+ 1.70) seconds.
Length of proof is 50.
Level of proof is 10.

oo

o

1 le(x,y) <-> x =x ~ y # label ("Df: less than") # label(non clause).

[assumption].

3 15(x,y) =1 <-> le(x,y) # label("Proposition 2.10i5") # label (non clause) #
label(goal) [goall].

6 x = c(c(x)) # label ("AxL1"). [assumption].

7 c(c(x)) = x. [copy(6),flip(a)].

8 x vy=yvx# label ("AxL2"). [assumption].

9 (x vy) vz=xvVv (yvz) # label ("AxL3"). [assumption].

11 x v (x ~ y) = x # label ("AxXL5"). [assumption].

12 x ~ (x v y) = x # label ("AxL6") . [assumption].

13 c(x) ~ x = 0 # label ("AxOL1"). [assumption].

14 c(x) v x = 1 # label ("AxOL2"). [assumption].

15 x v c(x) = 1. [copy(1l4),rewrite([8(2)])].

16 x ~ y = c(c(x) v c(y)) # label ("AxOL3"). [assumption].

17 x v (c(x) ~ (y v x)) =y v x # label ("OMA") . [assumption].

18 x vce(xvely vx)) =y VvV X. [copy (17) ,rewrite ([16(3),7(2)1)1.

28 i5(x,y) = ((x ~ y) v (c(x) "~ y)) v (c(x) "~ c(y)) # label("Df: i5").
[assumption].

29 1i5(x,y) = c(x v y) v (c(x v c(y)) v c(c(x) v c(y))).
[copy(28),rewrite([16(2),16(7),7(7),8(9),16(12),7(11),7(11),8(12)1)1.
30 -le(x,y) | x ~ vy = x # label ("Df: less than"). [clausify(1l)].

31 -le(x,y) | c(c(x) v c(y)) = x [copy (30) ,rewrite([16(2)])].

32 le(x,y) | x ~ y != x # label ("Df: less than"). [clausify(1l)].

33 le(x,y) | c(c(x) v c(y)) != x. [copy (32) ,rewrite([16(2)])].

34 i5(cl,c2) =1 | le(cl,c2) # label ("Proposition 2.10i5"). [deny (3)1].
35 ¢c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))) =1 | le(cl,c2).
[copy (34),rewrite([29(3)])1].

36 i5(cl,c2) !'= 1 | -le(cl,c2) # label("Proposition 2.10i5"). [deny (3) 1.
37 c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))) !'= 1 | -le(cl,c2).
[copy (36),rewrite([29(3)]1)1.

38 c(1) =0 [back rewrite(13),rewrite([16(2),7(2),15(2)])].

39 c(c(x) v c(x v y)) = x. [back rewrite(12), rewrlte([6(2)]1)1.

40 x v c(c(x) v c(y)) = x. [back rewrite(ll),rewrite([1l6(1)])].

Int'l Conf. Foundations of Computer Science | FCS'12 | 193

42 x v (y v.z) =y Vv (xV z). [para(8(a,1),9(a,1,1)),rewrite([9(2)])].

46 x Vv c(x V Cc(x vV Vy)) =Yy V X. [para(8(a,1),18¢(a,1,2,1,2,1))].

48 x v (y ve(lx v (yve(zv (xvy))))) =zv (xVvy).
[para(18(a,1),9(a,1)),rewrite([9(7)]),flip(a)].

57 c(cl v c2) v (c(cl v c(c2)) v c(c(cl) v c(c2))) =1 | c(c(cl) v c(c2)) = cl.
[resolve (35,b,31,a)].

62 le(x,x v y). [resolve(39,a,33,b)].

63 c(x) vc(x vy =c(x). [para(39(a,1),7(a,1,1)),flip(a)].

67 c(0 v c(x)) = x. [para(l5(a,1),39(a,1,1,2,1)),rewrite([38(3),8(3)1)].

69 1 vx=1. [para(38(a,1),39(a,1,1,1)),rewrite([67(6)])].

78 x v 0 = x. [para(l (a,l),40(a,l,2,l)),rewrite([38(2)])].

79 x v c(y v c(x)) = x. [para(1l8(a,1),40(a,1,2,1))1.

83 x v (y vVve(lxvec(zvx))) =yv (zVvXx). [para(l8(a,l),42(a,1,2)),flip(a)].
91 0 v x = X [para(78(a,1l),8(a,l)),flip(a)].

196 x v (c(y v c(x)) v z) =XV 2z [para(79(a,1),9(a,1,1)),flip(a)].

204 c(x v cl(y)) v (z vy) =2z Vv y.
[para(79(a,1),48(a,1,2,2,1,2,2,1,2)),rewrite([196(10),83(9),79(9)1)]1

334 c(c(cl) v c(c2)) =cl | c(cl v c2) v (c(cl v c(c2)) v (c ((cl) v c(c2)) v
x)) = 1. [para(57(a,1),9(a,1,1)),rewrite([69(10),9(26)]),flip(b)]

18704 c(c(cl) v c(c2)) =cl | c2 v c(cl v c2) = 1.
[para(204(a,1),334(b,1,2)),rewrite([8(20) 79(20),8(14)1)1.

75845 ¢c2 v c(cl v c2) =1 | cl v c2 = c2.

[para (18704 (a,1),79(a,1,2)),rewrite([8(11)])].

76052 cl v c2 = c2.
[para(75845(a,1),18(a,1,2,1)),rewrite([38(8),8(8),91(8)]1),flip(b),merge(b)].
1=

(
1 | -le(cl,c2).

76053 c(c2) v (c(cl v c(c2)) v c(c(cl) v c(c2)))

[back rewrite(37),rewrite([76052(3)1]1)].

76058 le(cl,c2). [para (76052 (a,1),62(a,2))].

76059 cl v c(cl v c(c2)) = c2.
[para(76052(a,1),46(a,1,2,1,2,1)),rewrite([8(10) 76052 (10)1) 1.
76068 c(cl) v c(c2) = c(cl). [para(76052(a,1),63(a,1,2,1))].
76662 SF.

[back unit del (76053),rewrite([76068(12),7(10),8(9),76059(9),8(4),15(4)1),xx(a)
;,unit del(a,76058)].

end of proof

Figure 3. Summary of a prover9 ([2]) derivations of Proposition 2.10i for each i = 4,5, from
orthomodular lattice theory. The proofs assume the default inference rules of prover9. The general
form of a line in this proof is “line_number conclusion [derivation]”, where line_number is a unique
identifier of a line in the proof, and conclusion is the result of applying the prover9 inference rules
(such as paramodulation, copying, and rewriting), noted in square brackets (denoting the derivation),
to the lines cited in those brackets. Note that some of “logical” proof lines in the above have been
transformed to two text lines, with the derivation appearing on a text line following a text line
containing the first part of that logical line. The detailed syntax and semantics of these notations can
be found in [2]. All prover9 proofs are by default proofs by contradiction.

The total time to produce the The results of Section 3.0 motivate several
proofs in Figure 3 on the platform observations:
described in Section 2.0 was o
approximately 110 seconds. 1. Both proofs in Figure 3 use L1,

L2, L3, L5, L6, OL1, OL2, and OL3. This
.) suggests (but does not prove) that the
4.0 Discussion implications defined by i = 4, 5 share an

194

axiomatic basis. Future work will
investigate this suggestion.

2. The proofs in Section 3.0 may be
novel.

3. Companion papers provide
proofs for i = 1,2,3, and for the claim that
"Propositions 2.10i, i = 1,2,3,4,5, imply the
OMA" ([23]).

5.0 Acknowledgements

This work benefited from
discussions with Tom Oberdan, Frank
Pecchioni, Tony Pawlicki, and the late John
K. Prentice, whose passion for foundations
of physics inspired those of us privileged to
have known him. For any infelicities that
remain, | am solely responsible.

6.0 References

[1] wvon Neumann J. Mathematical
Foundations of Quantum Mechanics. 1936.
Translated by R. T. Beyer. Princeton. 1983.
[2] McCune WW. prover9 and mace4.
URL
http://www.cs.unm.edu/~mccune/prover9/.
2009.

[3] Horner JK. prover9 scripts for
Proposition 2.10. 2011. Available from the
author on request.

[4] Dalla Chiara ML and Giuntini R.
Quantum Logics. URL
http://xxx.lanl.gov/abs/quant-ph/0101028.
2004.

[5] Megill ND and Pavici¢c M.
Orthomodular lattices and quantum algebra.
International Journal of Theoretical Physics
40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory
of Linear Operators in Hilbert Space.
Volume |I. Translated by M. Nestell.
Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in
infinite dimensions: a theorem of M. Solér.
Bulletin of the American Mathematical
Society 32 (1995), pp. 205-234.

Int'l Conf. Foundations of Computer Science | FCS'12 |

[8] Marsden EL and Herman LM. A
condition for distribution in orthomodular
lattices.

Kansas State University Technical Report
#40. 1974.

[9] Knuth DE and Bendix PB. Simple word
problems in universal algebras. In J. Leech,
ed. Computational Problems in Abstract
Algebra. Pergamon Press. 1970. pp. 263-
297.

[10] Chang CC and Keisler HJ. Model
Theory. North-Holland. 1990. pp. 38-39.
[11] Birkhoff G. Lattice Theory. Third
Edition. American Mathematical Society.
1967.

[12] Church A. Introduction to
Mathematical Logic. Volume I. Princeton.
1956.

[13] Jauch J. Foundations of Quantum
Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL
http://us.metamath.org/glegif/mmgl.html#un
ify. 2004.

[15] Horner JK. An automated deduction
system for orthomodular lattice theory.
Proceedings of the 2005 International
Conference on Artificial Intelligence.
CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational
logic deduction of join elimination in
orthomodular lattice theory. Proceedings of
the 2007 International Conference on
Artificial Intelligence. CSREA Press. 2007.
pp. 481-488.

[17] Messiah A. Quantum Mechanics.
Dover. 1958.

[18] Horner JK. Using automated theorem-
provers to aid the design of efficient
compilers for quantum computing. Los
Alamos National Laboratory Quantum
Institute Workshop. December 9-10, 2002.
URL
http://www.lanl.gov/science/centers/quantu
m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von NeumannJ. The
logic of guantum mechanics. Annals of
Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum
Computation and Quantum Information.
Cambridge. 2000.

Int'l Conf. Foundations of Computer Science | FCS'12 | 195

[21] Pavici¢ M and Megill N. Quantum and
classical implicational algebras with
primitive implication. International Journal
of Theoretical Physics 37 (1998), 2091-
2098. ftp://m3k.grad.hr/pavicic/quantum-
logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of
the relative strength of orthomodular and
weakly orthomodular lattice theory.
Proceedings of the 2009 International
Conference on Artificial Intelligence.
CSREA Press. 2009. pp. 525-530.

[23] Horner JK. Quantum-implication-
based equivalents of the Orthomodularity
Law in quantum logic: Parts 1, 2, 3.
Submitted to the 2012 International
Conference on Foundations of Computer
Science.

196 Int'l Conf. Foundations of Computer Science | FCS'12 |

Int'l Conf. Foundations of Computer Science | FCS'12 | 197

SESSION
NOVEL SYSTEMS, LANGUAGES, QUANTUM
SECRET SHARING
Chair(s)

Prof. Hamid R. Arabnia

198 Int'l Conf. Foundations of Computer Science | FCS'12 |

Int'l Conf. Foundations of Computer Science | FCS'12 | 199

A static type system for the Language of Effective
Definitions (LED)

Jarred Blount and J. Nelson Rushton
Department of Computer Science, Texas Tech University

Abstract - This paper augments the Language of Effective
Definitions (LED) with a static type system, supporting prenex
polymorphism, but not user-defined types. The semantics of
LED are recast in the framework of small-step reduction rule
semantics to facilitate the type safety argument. The main
theorem of this paper is type safety for the augmented system.

Keywords: Static Type System, Functional Programming
Language

1 Introduction

The Language of Effective Definitions (LED) was
introduced in [1], as a formal language for defining
computable functions and predicates. The objectives of the
language are (1) that it be definable in just a few pages, (2)
that it have precise formal semantics, and (3) that its
definitions resemble informal mathematical definitions as
closely as possible.

A type system has been introduced for LED which
permits function overloading, together with and an algorithm
for certifying that overloading does not introduce ambiguities
[2]. We conjectured that the algorithm is sound in the sense it
never certifies a program in which ambiguities actually occur,
and complete in the sense that if the algorithm fails then
ambiguities do exist in the program; but we have only proven
the algorithm to be sound.

In this paper we present a type system for LED that is
safe, meaning that well typed programs cannot encounter type
errors during execution. In order to use the standard method
for establishing this, known as the syntactic approach[3], the
semantics of LED are recast here in the form of a small-step
reduction system. The reduction rules may be applied
nondeterministically, and so the same safety theorem already
applies when using a variety of optimized algorithms for
evaluation (optimized, in particular, by making clever choices
of how to resolve the nondeterminism). The paper is
organized as follows: Section 2 defines syntax, Section 3
gives semantics, Section 4 gives the type system, section 5 is
the type safety argument.

2 Abstract Syntax

A symbol is a string of non-white-space characters not
beginning with a digit and not containing parentheses or single
quotes ().

A reserved symbol is any of the following identifiers: def
lambda branch if set tuple error.

A built-in function symbol is any of the following: ~ * /
mod + - = < > <= >= in and intersect or

union \ card
A digit string is a string of one or more digits.

A numeral is either a digit string or a digit string preceded by
a minus sign (-).

An atom is an arbitrary sequence of printable characters
enclosed by double quotes ().

A constant is a built-in function symbol, a numeral, or an
atom.

The expressions of LED have the following (abstract) syntax:

el==¢

tuplee...e)

| (Lambda (a...a) €)

| (branch (ifee)...(ifee))
| error

where ¢ and a are non-terminals representing arbitrary
constants; and symbols respectively.

A lambda abstraction is an expression of the form
(lambda (X; ... Xn) €), where x; ... X, are symbols, and e is
an expression. The symbols x; ... x, are the parameters of
(lambda (X; ... Xy) €), and are bound in (Lambda (X; ... Xn)
e). A symbol that is not bound is free. FV(e) is the set of
symbols that occur free in expression e. An expression with
no free variables is closed. The abstraction (Lambda (X; ...
Xn) €) is well-formed if the symbols x;...x, are pairwise

200

distinct. We restrict our attention to expression containing
only well-formed lambda abstractions.

A function definition is an expression of the form, (def
| (f X1...X,) €) where n > 0, f is a symbol, x;...x, are symbols,
and e is an expression. The symbol f is the defined function
symbol of the function definition, and e is called the body of
the function definition. The symbols x;...x, are its parameters
and bound within the function definition. A symbol definition
| is an expression of the form, (def g €) where n > 0, g is a
symbol, x;...x, are symbols, and e is an expression. The
symbol g is the defined symbol of the symbol definition. The
expression e is called the body of the symbol definition. A
program is a set of definitions, and a definition which is an
| element of program P is called a definition of P. The defined
function symbols of P and the defined symbols of P may be
called, collectively, the defined symbols of P. Given a
program P, an expression e is P-closed if FV(e) contains only
defined symbols of P. A program is well-formed if no
defined symbol of P occurs as a parameter in P, and every
body of every definition is P-closed.

3 Semantics

Before the reduction rules are detailed, some preliminary
definitions must be given. A set literal is an expression of the
form (set vy ... v,) Where v; ... v, are values. A tuple literal
takes the form (tuple v ... v,) where n>1 and vy ... v, are
values. A value is a constant, symbol, set literal, tuple literal,
or lambda abstraction. An answer is either a value or the
reserved symbol error. Given a program P, a P-value is a
value or defined function symbol of P. For the remainder of
this paper let P be a fixed program. The meta-variables
€,61,65,... Will vary over expressions; v,vy,V,,... will vary over
values; X,Xg,... will vary over symbols; n,ng,n,,... will vary
over numerals; s,5,5,,... Will vary over set literals, and Op will
vary over built-in function symbols.

A substitution is a finite set of pairs (x, €) where x is a
variable symbol and e is an expression, such that no variable
occurs as the first coordinate of more than one such pair. If e
is an expression and S is a substitution, then e[S] denotes the
expression obtained from e by replacing all free occurrences
of x with g whenever (x,g) € S. The substitution of e for x in p
is safe if no free occurrence of a variable in e becomes bound
when it is substituted for x in p. All substitutions described in
the semantics are presumed to be safe, by renaming variables
whenever necessary. The capture avoiding substitution of P-
closed expression e; for P-closed expression e, in expression
e is written e[e;:=e;] is defined similar to the ‘regular’
substitution used to replace free variables with values.

Int'l Conf. Foundations of Computer Science | FCS'12 |

The semantics below are based upon an operational
formulation of the language’s semantics by term rewriting,.
The reduction relation is a binary relation over closed
expressions e; and e,, written e;=e,. We say “e; reduces to
e,” if e;=e, is the conclusion of a deduction constructed
according to the inference rules below. Let =* be the
reflexive and transitive closure of =. For each program P, the
partial function evaly is defined from closed expressions to
values so that the following holds:

(eval) evalp(e) = v iff e=*v

The relationship between the semantics given in the
section and the semantics given in [1] described by the
following conjecture.-

Soundness: Given well-formed program P,
if evalp(e)=v then e denotes v under P.

Where the precise meaning of “denotes under P” is given in
[1]. Itis straightforward to see the definition of value given
earlier in the section corresponds to the definition of datum in
[1], ie. each builtin function symbol, numeral, atom, set
literal, and tuple literal corresponds to a datum.

As in [1], builtin function symbols are only meaningful if
applied to appropriate arguments, ie. (/ 1 0) is application of
‘> to erroneous arguments. The denotation rules in [1], place
these restrictions in each semantic rule. Here we specify the
relation Defined((Op v; ... v,)), which essentially collects all
of the conditions under which an application of a built-in
function symbol to values v,,...,v, is meaningful.

Defined((Op ny ny) if Op € {+,-,*+, -, *, A, <> <=, >=}

Defined((" ny ny)) if ny is zero implies n, is nonnegative

Defined((Op ny ny)) if Op in {/,;mod} and n is not 0

Defined((Op vy v,)) if Op in {and, or} and vy,v, in {true,
false}

Defined((not vy)) if v, in {true,false}

Defined((in vy s,))

Defined((Op s, 5,)) if Op in {union, intersect, setminus},

Defined((card s,))

Defined((= v v,))

A built-in redex is an application of a built-in function
symbol to a sequence of values, eg. (+ 1 2), and (not false),
and (union (set 1 2) (set 3)). The partial function & from built-
in redexes to values, and Defined must satisfy the following
correctness condition:

If Defined((Op v; ...v,)) then there is some value v such
that 8((Op vy ...vy)) =vand "(Op v; ..v,) denotes v"

Int'l Conf. Foundations of Computer Science | FCS'12 |

Reduction rules

[Delta]

Op vy ... vy) = 8(0p vy ... v,) if Defined(Op, vy, ..., Vp)
(Opvy ...V, = error otherwise

Data Structures-
[set] (set e; ... e,)) = (set e; ... ey)[ei=¢€] (for

expressions € e; ... &, where some 1<i<n g;=€)

[tuple] (tuplee; ... e,) = (tuplee; ... e))[e;:=e] (for
eXpressions e e; ... &, where some 1<i<n g;}=e)
Application

[app] (er...en) = (er...e) [e:=€] ifej=>e (for
expressions e ... €, where some 1<i<n ej=¢)

Beta reduction

[B] ((lambda (X1 ... Xp) €) Vq ... Vp) = e[{(X¢,V1),-- -, XnVi)}]
(for symbols x; ... x,, and expressions e, values v; ... v,)

Defined function

[deffun] (aVa...Vs) = e[{(XaVa),. . ..(Xn Vi) }] (for
(def (@ x...x,) €)inP and values v,... v;,)

[defsym] a=e (for (def ae)inP)
Branch

[branchT] (branch (if vy e;)...(if vy €,)) = € (for values
Vi... Vp, €Xpression e; ... e, such that some 1<i<n g;=true)

[branchF] (branch (if false e,)...(if false e,)) = error (for
expressions e;...e,)

[branchG] (branch (if gy e1)...(if g, €,)) = (branch (if g;
e1)...>if gn en))[0i:=g] (for expressions g;...g, and e;... e,
where some 1<i<n gi=0)

Error propagation

(a; ... a,) = error (for answers a; ... a, where some 1<i<n
aj=error)

(branch (if g, e1)...(if g, €,)) = error (for
expressions g;...g, and e;... e, where some 1<i<n g;=error)

(tuplee; ... e,) = error (for expressions e;... e, where
some 1<i<n ej=error)

201

(set e;...e,) = error (for expressions e;... e, where
some 1<i<n ej=error)

4 Type System

Before introducing the inference system that assigns an
expression a particular type, we must define the type language.
Each sort of value has a different type, so the type language
has simple types as well as compound types. For example, the
type of the successor function (lambda (x).x+1) is
int—int. In the same way the identity function (1ambda
(x).x) for integers has type int—int, but for booleans it
has type bool—bool. It is clear that the identity function
may be defined without taking into account the type of its
parameter. To express this abstraction of the type of the
parameter, the type variable o, is bound by a quantifier, so the
type of the polymorphic identity function is all o.a—o.
Similarly, the types of (set 1 2) and (tuple 1 2) are
{int}and intxint, respectively.

The type language contains two syntactic categories, types and
type schemas.

Types: atype tis either
1. one of the scalar types: int, bool, atom,
2. atype variable «,
3. a function type, t;—1,, Where t; and 1, are types,
4. atuple type, 11%...x1,, Where n>1 and each 7; is a
type,
5. a set type, {t}, where t is a type.

Type schemas: a type scheme o is either

1. atyper,

2. apolymorphictype 6 = all o4...0,.T Wheretisa
type, and ay...0, are distinct type variables.

Type variables a;...0, are bound in (all oy...04.7),
variables that are not bound are free. We will write FTV(o)
and BTV(o) for the sets of free and bound variables of a type
scheme . A type schema o; is called an instance of a type
scheme o, if there exists a substitution S of types for free type
variables such that o; = 6,[S]. Instantiation acts on free
variables: if S is written [a;—1] with a;e FTV(o) then o[S] is
obtained by replacing every free occurrence of o; with T
(renaming the bound variable in o if necessary). The domain
of S is written domain(S).

The type scheme o, has a generic instance c,, written ¢ ;
> o,, if there exists substitution S such that t,= 1;[S] where
domain(S) < {ay,...,0n}, and {B,....pm } N FTV(cy) = @
when o= (all al...an.t1) , and 6,= (a1l By...pm.T2), and
T, = 7, When o; and o, are types instead of polymorphic types.

Examples of generic instance.
o> o

202

intXbool > intXbool
all a.o—o > int—int

all oq0p.00—0p > int—bool
all a.o—a > oy—0

all ogop.y—ap > all B.f—a

Intuitively, the type of an expression containing
symbols, either defined or variable, depends on context in
which the expression appears. This contextual information is
represented in the type environment, I'. A type environment is
a finite mapping from symbols to type schemes, written
{x1~01, ..., xn>0,}. Given symbol x type scheme ¢ and type
environment I', the update of I" with x ~g, written x—o T, is a
type environment gotten by updating I" to now associate x with
0, S0 that I'(X)=c . The free type variables, written FTV(I'), of
a type environment I" are the free type variables of the type
schemas in its range.

To make the presentation of the type rules more clear,
the types of constants are represented by the definition of the
TypeOf function. TypeOf is a total function from constants to
type schemas, defined below.

TypeOf (N) = int
TypeOf(a) = atom
TypeOf (true)=bool
TypeOf (false)=bool
TypeOf (c) = intxint—int (forcin{+,-,*,/,”,mod})
TypeOf (¢) = intXint—bool (forcin {<,><=,>=})
TypeOf (¢) =all a.({a}{a})—{ce} (forcin{union,
intersect, setminus})

TypeOf (card) = all a .{a}—int
TypeOf (¢) = boolxbool—bool
TypeOf (not) =bool—bool
TypeOf (in) = all a.ox{a}—bool
TypeOf (=) = all a.aXo—bool
TypeOf ((set)) = {a}

(for numeral n)
(for atom a)

(forcin{and, or})

(for type variable o)
Type rules

Constants
(Tconst) T+ c:t (for constant ¢ and type t such that

TypeOf(c) > 1)

(Terror) T error:t (for any type 1)
Application
(Tabs) '+ (lambda (X1 ... Xp) €):T1X... XT,—>1, if

X1PT . Xy T D et

(Tapp) I'(ere,... 6,1, if TFestoand ... and T e,:1,
and T'Fey: ToX... XT,—1T

Int'l Conf. Foundations of Computer Science | FCS'12 |

Data

(Ttuple) T+ (tuplee;...en)mX... X1, if T'Heyitiand ...
and T'+e,:t,

(Tset) ' (sete;...e){r} if Teyit and T'k (set
e ... ey : {t}

(Tsym) T+ a:t (for symbol a and type t such that T'(x) >1)
Conditional

(Tbranch) I' (branch (if g €1)... (1 f gn &)t if

for every 1<i<n I'g;:bool and I'+e;:t

The expression e has type t under type environment I', T'-e:1,
is a type judgment, if it a conclusion of a deduction
constructed according to the type rules. An expression is well-
typed if for some type t and type environment I', ['-e:t is a
type judgment.

A definition (def (a x; ... X,) €) is well-typed by I if
o T(a)>1yX... X1, —71, and
o ap(TiX... XT, >T) X BTy ... Xy Ty e, and
e TI'(a)=Close(tix... X1, =1 I).
where Close(t, [)=all 03... a, .1 where {a;...
an} =FTV()\FTV(I)
A definition (def ae) is well-typed by T" if
e [(@=tandT e
A well-formed program is well-typed by type environment I" if
every definition is well typed by I

5 Type Safety

A static type system attempts to prevent the occurrence of type
errors during execution. Intuitively, a type error is the
application of a function to erroneous arguments, or the
attempted application of a non-function. A static type system
is safe if well-typed programs and expressions cannot cause
type error. Below, we utilize a variation of syntactic
approach[3] due to Harper[4], which proves safety by proving
Progress and Preservation lemmas. The progress lemma
ensures that well-typed expressions are either values or can be
further reduced. The preservation lemma says that reduction
preserve typing. Before we move onto the lemmas, note that
the following condition is true of the builtins. It’s proof is
obvious upon examination of the reduction rules, and the
definition of TypeOf, while paying special attention to the
[divZero] reduction rule, and (Terror) type rule.

Lemma [8-typability]
For every constant values v,,..., vy,

Int'l Conf. Foundations of Computer Science | FCS'12 |

(6-typability) if TypeOf(c) > (r2%... X1, — 1) and F V,i1, and
... F Vpr, then 8(c,vs,...,v,) is defined and 8(c,v,,...,Vn): T

Theorem:[Progress]
For program P, well-typed by T, and P-Closed expression e,;
if T'-e:t then one of the following must be true
1. eis aP-value
2.eiserror
3. there is some e’ such thate = e’

Sketch of proof by rule induction over I'+-e:t. Each case, one
for each type rule, generally takes the following form.
First, the Inversion lemma, discussed below, is applied to
the last step in the type judgment of I'e:t, yielding the
type judgments of the immediate subexpressions of e.
Next, the induction hypothesis is applied to these
subderivations. Lastly by applying the Canonical Forms
lemma, or by appealing the reduction rules an expression
e’ is constructed such thate = e.

Lemma:[Preservation]
For program P, well-typed by I, and P-Closed expression e,
ifT'Fe:tand e=e’thenTe’: T

Proof by rule induction over e=e¢’ relation. Each case, one for
each reduction rule, generally takes the following form.
First, the reduction rule is examined to determine the

| relationship between subexpressions of e and the
subexpressions of e’. Next, the inversion lemma is applied
to the last step in the type judgment of 'e:t, yielding the
type judgments of the immediate subexpressions of e.
Then, the induction hypothesis is applied to these
subexpressions, yielding type judgments for the
subexpressions of e. Lastly, the Substitution lemma,
and/or the type rules are used to construct the type

| judgment'- e’ t.

Lemma [Inversion]:
Given type program P, well-typed by environment T, type t,
P-closed expression e,

(Tconst) if T'+ c:t then TypeOf(c) >t
(Tsym) if THa:t thenT'(a) >t
(Tabs) if T'+ (lambda (X1 ... Xy) €): T1X... X1, — 1, then

X191 X T et

(Tapp) if '+ (e e;... €)1, then Teytpand ... and T'-
en Ty and T'eq: 1oX... X1, —> 1

(Ttuple) if T+ (tuplee; ... ey)mX... X1, then THeity
and ... and T'te,t,

(Tset) if '+ (sete;...ey):{t} thenT'+etand ...
and T'ke,t

203

(Tbranch) if '+ (branch (if g; €,)... (if g, €p)):7, then
I'+g;: bool and ... and I'+gy:bool and I'-e;: tand ... and
I'ent

Proof: is straightforward upon examination of type rules, and
definition of type judgment.

Lemma [Canonical Forms]:
Suppose P is a program well-typed by T,

(int) if vis a value of type int, then v is a numeral.
(bool) if vis a value of type boo1l, then v is either true
or false.

(tuple) ifvisavalue of type (ty,...,1,), then v is of the
form (tuple v;i...V,) and vyt and ... and v,t,.

(set) if v is a value of type {1}, then v is of the

form (set v;...V,) and vytand ... and vyt

(abs) if v is a value of type 1,x... X1, — 1, then v is fo the
form (lambda (X1..X,) €)and X;—1q-...X,—T, T - e, or v
is defined function symbol of P

Lemma:[Substitution]
For program P, well-typed by T, and P-Closed expressions
e,e’, variable x, and types z, 7’

if {x> 1} THe"t’and I'e: 1 then e’ [{(x,6)}]: T

Proof: by rule induction over {x~ 7} T+ e":7’

6 References

[1] Rushton, J., Blount, J. The Language of Effective
Definitions. International ~ Conference on Frontiers in
Education: Computer Science and Computer Engineering
2011.

[2] Blount, J., Rushton, J. Type Disjointness in the Language
of Effective Definitions. International ~ Conference on
Foundations of Computer Science, 2011

[3] Wright, A.,Felleisen, M. A Syntactic Approach to Type
Soundness. Information and Computation, 115(1):38-94,
1994

[4] Pierce, B. Types and Programming Languages, MIT Press,
2002

204

Int'l Conf. Foundations of Computer Science | FCS'12 |

Implementation of a Software IP Router using Ant Net
Algorithm

A. Jusrut, A. Khedan , and V. Ramnarain-Seetohul
Computer Science and Engineering Department, University Of Mauritius, Reduit, Mauritius
Computer Science and Engineering Department, University Of Mauritius, Reduit, Mauritius

Abstract - Nowadays, routing standards are governed by the
Internet, and the state-of-the-art is link-state routing. These
types of algorithms adapt well to network topology changes,
but respond poorly in high-traffic environment, where the
network load changes dynamically. Very often the
shortcomings of these algorithms are not apparent, because
their poor performance is compensated for by powerful
routers and high-bandwidth links. In this paper, Ant Net, a
novel routing approach based on research done mostly in
reinforcement learning and swarm intelligence was explored.
A Software router using Ant Net algorithm to route IP packets
between Ethernet networks was implemented. CNET, a
network simulator was used to test the routing algorithm. The
simulations done were used create network environment so as
to test all aspects of the routing algorithm. Besides these
simulations, the software router was tested on a test-router,
constructed using a Pentium-4 PC, equipped with 3 PCI
Ethernet Network Interface Cards, and running a Linux
distribution. Using this test-router, the forwarding
mechanisms of the algorithm were tested on real Ethernet
hardware.

Keywords: Ant Net, Algorithms, CNET, Ethernet, topology,
router

1 Introduction

Today, computer networks are the core of modern
communication. For a computer to send data to another
computer found in its own LAN, communication is
straightforward (e.g., broadcasting on Ethernets). But when it
comes to inter-connecting different networks together, a whole
new layer of protocols needs to be introduced. A router is a
device dedicated to the task of routing data from one network
to another and every router maintains a routing table. A
hardware router has several ports to connect to different
network and also has processing power and memory. Routers
are generally expensive devices and their maintenance and
reparation costs in case of failure are also very high.
Moreover, modern routing algorithms implemented by
hardware routers have some shortcomings that make them
unsuitable in certain situations. Hence a software router with
same capabilities as a hardware router can be a way to reduce
cost and efficiently route packets. The paper consists of

designing and implementing a software router that will help
network administrators in experimenting with routing, without
actually requiring a specialized hardware router. The router
will run as a software application on a computer. It will
provide the routing functionality of a real (physical) router
efficiently, so that it can be used as a viable alternative by
network designers. The paper focuses mainly on routers for
connectionless networks; more specifically, the focus is on
IPv4 routers. Since the objective is to find a useful, efficient
and inexpensive solution to routing, only the routing and
forwarding functionalities of a router are considered, while
specialized hardware routers may provide a variety of other
functions, aside from routing, such as NAT, firewall, DHCP
among others. Static routing is not implemented in the
software router, as the aim is to design a software router to
work in dynamic environment.

2 Swarm Intelligence in networking

Swarm intelligence is the collective constructive
behaviour that is observed when many individuals work
independently, and coordinates by interacting amongst each
other or with their direct environment [1].

2.1 Ant Net Algorithm

Ant Net [2,3] is a new type of routing algorithm,
inspired from work done in the fields of ant colony
optimization, where the natural characteristics of biological
swarms (e.g., ants) are studied to solve optimization problems.
Ant Net has been implemented and tested on simulation
networks and real networks. The results and conclusions from
Di Caro and Dorigo’s[4] original paper show that the
algorithm is superior to all its competitors that were also
subjected to the same tests. The competing algorithms
included OSPF. Ant Net makes use of mobile agents, known
as agents or ants. The agents are data units, generated,
received and processed by the routers. The purpose of the
agents is to explore the network and to exchange collected
information. The marked difference here between Ant Net
and other protocols, like OSPF, is that the agents
communicate indirectly [4]. In OSPF, each router explicitly
sends protocol packets to other routers, but in Ant Net, the
agents just travel around the network, modifying routing tables

Int'l Conf. Foundations of Computer Science | FCS'12 |

of routers accordingly. This type of communication that
happens through the environment and not directly between
agents is called stigmergy; a concept inspired from social
insects [5]. Ant Net uses two types of mobile agents: forward
ants and backward ants [4]. Forward ants are launched at
intervals by each router. The forward ant moves step-by-step
towards the destination, and at each intermediate node it
collects information as to how much time it took for the trip.
On reaching the destination, the forward ant becomes a
backward ant, with all the collected information [6]. The
backward ant visits the same nodes as the forward ant, but in
reverse, and updates routing data structures at each node. Each
router keeps two data structures [4]: Fig. 1 shows the data
structures required by Ant Net.

Network Nodes

P P P
T 12

P [E | [— P
El 22

K‘,umg TaN
[=
(Tl

| werwortc

\
| Node Local ““:.-7""'*"7. P, Ry = P
Traffic L N
Statistics Iy

Outgoing Links

Network Nodes ™~

Stat (2) Stat(h) J

\ [Stat (1)

Fig. 1: data structures required by Ant Net[4]

The Ant Net algorithm is robust, scalable with respect to
network growth, highly traffic adaptive and provides inherent
load balancing [7]. However, if topology is large, routing
protocol traffic increases with ant stack size [8].

2.2 Modified Ant Net algorithm

A simplified version of the Ant Net algorithm will be
implemented. The changes made to the algorithm, and the
rationale behind will be discussed. The main change that will
be done is that a constant reinforcement factor will be used to
update routing table probabilities. Normally, in the original
algorithm, the rfactor is calculated from the trip times of ants
[4]. There is a practical difficulty in calculating packet trip
times, since the clocks of all routers must be synchronized.
Using a constant rfactor eliminates the need to use trip times
and thus there is also no need for the statistical models: only
the routing table is required. The probability values are then
affected only by the arrival rates of ants [2]. Newly generated
forward ants are forwarded on all router-router links. The
changes mentioned will desirably have the following effects:
Much lower protocol traffic, since ant stacks no longer contain
trip times and considerable reduction of router processing
loads. Calculation of the reinforcement factor repeatedly, and
working with trip times, in the original algorithm, required lots
of floating-point operations.

205

3 Proposed System

The software router will be used in packet-switched
networks and will run on a computer that will need some
additional hardware configuration. The machine to be used
for routing will need to have more than one network interface
card, else it will have the capacity to act only as a standalone
host. The software will support only Ethernet NICs. The
number of NICs installed will effectively determine the
number of links that the router will have, and directly affect
the number of networks that can be connected to it. Hosts on
connected networks will not require any special
configurations; they are configured normally for IP
communication. A router may connect to another router, to a
single host, or to a LAN. LANs may connect to the router via
a switch, as in switched Ethernet. Fig. 2 illustrates the
possible connections.

LAN

Switch

Router

Fig. 2: Topology of proposed system

The sets of all the routers will form the backbone. Some
routers in the backbone may not connect to any network, but
only provide routing. These may be used on sites where data
traffic between networks is very high, and will effectively tend
to improve performance as they provide additional routes for
packets to travel. The software router will implement the
modified Ant Net algorithm as its adaptive routing algorithm.
A router distinguishes between two types of packets: data
packets and routing protocol packets. Any other packet not
forming part of the routing protocol will be treated as plain
data, and forwarded using information from the routing table.
The routing packets will be packets generated, decoded and
processed by the routers to construct the routing table. The
router will work directly at layer 3 of the TCP/IP stack;
routing protocol packets will have the IPv4 header as the last
encapsulation. The router will not use any transport
mechanism to ensure routing packets get delivered. This is
also applied to data packets. As Ant Net protocol is designed
for best-effort packet-switched networks, the routers will not
be responsible for any data loss. For reliability, hosts will
need to implement TCP. If the routers have to be configured
for dynamic routing, then some configurations will be needed
initially. Each router should know all reachable networks and
its neighbors. This information will be available in
configuration files.

206

4 System Architecture
4.1 Design

The software router will be implemented and tested on a
network simulator first, and then if the algorithm works, the
code will be tested on a Linux machine. Due to peculiarities
with how network simulators work, there will be architectural
differences in the implementations of the two versions. The
core router architecture should be independent of platform
specific details. The core architecture comprises of the
routing and forwarding mechanisms, and platform refers to the
environment in which the router will be implemented and
tested; that is, on the network simulator or on a real physical
setup. This prevents tying the core design with the intricacies
of the simulation tool. It will also be easier to change the
software later to use the libpcap API [9]. The performance of
router should also be considered. A router is a complex real-
time processing system, with hard deadlines. If it is poorly
design, this will result in an excessive loss of packets.

4.2 Architectural Design

Most networking software is written with a layered
design. The interfaces of the router need to be managed at a
very low level; network traffic should be handled as soon as
they enter an interface. This will allow link statistics to be
maintained, and most importantly, allow the flexibility to
queue up packets based on their incoming/outgoing interface.
Thus, a proper architecture operating at the link layer needs to
be designed. The way the Ant Net algorithm is defined
requires a lot of book-keeping at the link level [5]. Hence it is
important to decide when to process inbound and outbound
packets. One possibility with inbound packets is to start
processing them immediately as soon as they have been stored
by the interface hardware (i.e., Ethernet card). Similarly,
outbound packets are sent to the hardware for transmission as
soon as they have been processed. However, this scheme has
inherent problems:

o Inefficient processing/scheduling. The operating
system will have a limited buffer for incoming
packets. Processing packets one by one as soon as
they come will mean that the OS buffer will tend to
fill up, resulting in loss of packets.

o It is difficult to build up data-structures (queues) that
are required for statistical data collection.

The solution that was chosen is to defer the processing of
incoming packets. Packets are stored for later processing or
transmission. As soon as a packet comes, it is buffered in a
queue. Each interface on the router has a corresponding queue
to store incoming packets. Packets are then dequeued from
the queues and processed. Similarly, when packets have been
processed, they are queued in the outgoing queue for the
appropriate link. Later on, the queues will be emptied and the
packets will be transmitted on the network card. Fig. 3 depicts

this architecture.

Int'l Conf. Foundations of Computer Science | FCS'12 |

Fig 3: Efficient queuing and processing of incoming packets: The
link queues will actually hold Ethernet frames.

At the network layer, the modified Ant Net algorithm is used.
This layer determines how to process packets received from
the link layer, and after processing, packets are sent again to
the link layer, to be queued. A suitable format for an ant
packet will be designed. This layer is best described by means
of the data-structures and algorithms. The link layer and
network layer have to exchange messages. One possibility is
to copy the protocol data units from layer-to-layer. But, there
will be too much processor time wasted in copying data
around. Instead, a different design is used, but it blurs to some
extent the separating line between both layers. When a frame
comes in, the link layer allocates memory needed to store it in
the queue. When the network layer requests a packet, instead
of copying the packet in the frame, the memory reference of
the frame itself is passed. All processing will happen on this
memory, and it is this memory itself that will be queued on an
outgoing link queue. Hence, only memory addresses, and not
whole memory buffers will be passed back and forth. Fig. 4
illustrates this concept.

Frame at memaory location 100

Extract packet from
frame at memory
location 100. Do not
touch link header

Outgoing queus Engueus frame
a—

The frame still at memory location 100, but in
another queue

Fig 4: Communication between network and link layers

A radically different approach will be used for the link queues:
the length of a queue will have no limit. Dedicated hardware
routers have limited memory; hence they use fixed-length
queues and perform load-shedding if there is no more room.
The software router will run on a Linux PC, and Linux
provides a virtual address space of 4 GB, irrespective of
physical RAM installed. When a new frame comes in, the
Operating System will be requested for memory to store the
frame. If the request is unsuccessful, only then the frame is
discarded. Queues will be serviced in a round-robin manner.
The design of the router is inherently multi-threaded. The
multi-threading API of Linux will be used. All the threads will
have simultaneous access to shared data segments, like the

Int'l Conf. Foundations of Computer Science | FCS'12 |

routing table. Mutexes will be used to provide mutual
exclusion between threads, for variables that can change
values during program execution. Locks will be applied
whenever shared memory needs to be read or written.

The frame queues will be constructed using linked lists.
Frame queues are lists of ether_frame structures, logically
maintained as FIFO data-structures (queues). Each link on the
router will have its own incoming and outgoing queue.
Moreover, there is a priority queue for holding backward ant
packets, since these have to be processed very fast. All the
queues are implemented in the same way; a queue is accessed
using a global variable, which is an array of pointers to the
queue heads. The queue heads are ether_frames.

4.3 Simulation Plan

The simulations will be carried out on topologies that
consist only of routers and LANs. A LAN will have a network
id and a subnet mask. A LAN will be represented by a single
host workstation with an IP address. The LANSs in the
simulation are hereafter referred to as hosts. Different
simulation topologies consisting of different numbers of
routers and hosts will be created, and the routing algorithm
will be tested on them. Fig.5 illustrates a simple topology.

2001122322

192.168.2.5

N

Consists of a single host,
but representsa whole
LAN

Fig 5: Sample simulation topology

Each node in the simulation, router or host, will have a log file
to which it will dump information about its operations. These
log files will provide the basis for the simulation analysis.
Modification made to the routing tables can be verified by
analysing these files.

5 Implementation and testing

The software router was first simulated using the CNET
simulator. Fig. 6 shows a simulation window, with the network
shown graphically. The simulation consists of five hosts each
on a different network and six routers to route data on the
network.

207

A"~"@ cnet: topology-A —ala=uv

Run Run-speed Update-freq Subwindows

cnetv3.2.3
-
2| =
Ty

L JEE
Host_192.168.33.5

1

Host_192.10.1.216 HOSLOT 239

1

Host_176.23.65.11

2

Host_10.1.3.100

714,95 Simulation time: Ousec Messages delivered: 0 (100.0%)

Fig 6: CNET Simulation shown graphically

5.1 Testing

Using simulator CNet, performance testing was done.
The variables that were tested were packet delay, packet size
packet loss, data rate.

Packet delays for the first 20 packets of a simulation

3.5
3 -

25 r___-\
A FAA/i S

1 3 5 7 9

—+—192.1689.3 >
42.192.16.11

[]\, —=—101118->
200.50.128.90

Packet Delay

200.4.50.12 -->

11 13 15 17 19 10.10.127.3

Packet Number

Fig 7: graph for delays for packets in 3 specific flows

Variation of average packet delay with packet size

—+—192.168.9.3 --=
10.10.127.3

Average Delay per packet

100 200 400 600 800 1000 1300

Packet Size

Fig 8:graph for packet delay variation with packet size.

Packet delays with one host injecting packets at a faster rate

’_/__‘_‘_/\\o—o—o—o—o —+—192.168.9.3 >
10.10.127.3 (fastdata
rate)
—m—200.50.128.90->

172.16.5.10

Packet Delay
=N W » wn (=]

1234567 8 9101112131415

Packet Number

Fig 9: Graph for packet delay variation with time, given one particular flow
is made to generate data at a fast rate.

208

Variation of packet loss with data rate upon failure of a
routing node
14
12
10
8
6
4
2
(¢}

——192.168.9.3 -->
10.10.127.3

new packets (in seconds)

1 3 5 8 10

Time between generation of

Number of packets lost

Fig 10: Variation of the number of packets lost with data rate along a
particular flow, when a router in the best path along that flow fails.

Changes in link pheromones for router R3
0.6
0.5
0.4

Simulation Time

—#—Link3

Pheromone Values

——Link 4

Fig 11: the variation pheromone values of a router

According to results obtained it can be deduced that on
average the packet delay does not increase considerably as
number of packets increases. As packet size increases, there is
a slight increase in the packet delay. If a given flow is made
to generate data at a faster rate, it can be observed that the
packet delay increases considerably at first but it then
stabilises as number of packets increases. If a particular
routing node has failed then according to its data rate,
variation of the packet loss was measured and results
concluded that as number of packets lost increases, the time
between generations of new packets decreases. Finally the
variation pheromone values of a router were tested. This test
helps to analyze the changes in routing table during load-
balancing. Result shows that the best path is through link 4 in
Fig. 11, and is used initially. But soon, due to a fast data rate
towards a host, this best path suffers some delays. Hence, an
alternate path, through link 3 is then chosen. However after
some time, the performance of the alternate path starts
degrading due to congestion and gradually, the router starts
switching packets on link 4 again.

To fully test its operations, the software router has to be tested
in real life situation but the main limitation was the
unavailability of a real network to perform the testing. Hence,
to counterbalance this limitation, the software router has been
tested on a PC with three LAN cards to verify if it is operating
correctly. It was observed that the software router was indeed
forwarding data to the hosts. However to create a topology for
testing, several PCs with more NICs were required.

6 Conclusion

The software router understands only I[P at the
internetwork layer of TCP/IP. There is no support for

Int'l Conf. Foundations of Computer Science | FCS'12 |

additional protocols like ICMP, IGMP, IP multicasting, IPsec.
Support for these protocols can be added by extending the
router code base to distinguish special IP packets from normal
data packets. Furthermore, the software router also
understands only IPv4. To support IPv6, a redesign of the
routing table and other major data structures will be needed.
At the link layer, the router simply broadcasts packets on
destination LANs, and the network layer on hosts’ filters them
based on IP address. This can be avoided by implementing
ARP and maintaining an ARP cache on the router. Also, the
router can be made to detect neighbors and networks by
implementing hello and flooding mechanisms similar to
OSPF. The flooding will only aid in discovering new
networks being added, and the hello packets will query
neighbors. However, these mechanisms will be done less
frequently than in OSPF, since here they do not form integral
part of the routing algorithm.

7 References

[1] Kassabalidis, I., EI-Sharkawi, M. A., Marks II, R. J,,
Arabshahi, P. and Gray, A. A. (2001). Swarm
intelligence for routing in communication networks,
IEEE Globecom

[2] G. Di Caro and M. Dorigo, "An adaptive multi-agent
routing algorithm inspired by ants behavior”, Proc.
PART98 - Fifth Annual Australasian Conference on
Parallel and Real-Time Systems, Adelaide, Australia, 28-
29,Sept. 1998.

[3] G. Di Caro and M. Dorigo, "Ant colonies for adaptive
routing in packetswitched communications networks",
Proc. PPSN V — Fifth International Conference on
Parallel Problem Solving from Nature, Amsterdam,
Holland, 27-30,Sept. 1998.

[4] G. Di Caro and M. Dorigo, "AntNet: distributed
stigmergetic control for communications networks",
Journal of Artificial Intelligence Research, vol. 9, pp.
317-365, 1998.

[5] M. Dorigo, E. Bonabeau, G. Theraulaz, Ant algorithms
and stigmergy, Future Generation Computer Systems
vol 16 No 8, 2000 pp. 851-871.

[6] Kwang Mong Sim and Weng Hong Sun, “Ant Colony
Optimization for Routing and Load-Balancing: Survey
and New Directions “,|IEEE transactions on systems
and humans,Vol.33,No.5 Sept 2003.

[7]1 J. Chen, P. Druschel, and D. Subramanian, A new
approach to routing with dynamic metrics. In Proceedings
of IEEE INFOCOM 99, pp 661-670, New York, NY,
March 1999.

[8] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics-Part B,
Vol. 26, No 1:pp. 29— 41, 1996.

[9] Sly technologies jNetPcap 2012 [online] Available at:
http://jnetpcap.com/node/60

Int'l Conf. Foundations of Computer Science | FCS'12 |

Quantum secret sharing with noisy channels

1Aziz. Mouzali, 2Fatiha Merazka, sDamian Markham
Department of physics, ENP, Algiers, Algeria.
2Electronic & Computer Science Faculty, USTHB, Algeria.
3Laboratoire Traitement et Communication de I’Information.
CNRS - Télécom ParisTech, France.

Abstract- This paper is devoted to quantum error cor-
rection for secret sharing with a five qubits graph state
through five noisy channels. The correction procedure is
described for the five, seven and nine qubits codes. These
three codes are similar if one among the sent qubits is
infected by an error in the transmission channel. How-
ever, If two qubits are infected, then the correction re-
sult changes from one code to another. The three codes
are compared in this work by computing the average fi-
delity which is the distance between the sent secret and
that measured by the receivers. To reduce the complexity
of the problem, we will treat the case where, at most, two
qubits are disturbed in each depolarizing channels.

Keywords: Quantum Correction, Quantum communi-
cation, Graph State, Quantum Secret Sharing, Feynman
Program.

1 Introduction

The graph state can be very useful for several quan-
tum protocols as secret sharing, measurement-based com-
putation, error correction, teleportation and quantum
communications. Then, it would be in the future a good
way to unify these topics in one formalism. The quantum
secret sharing with graph state is very well described in
[1], particularly the five qubits graph state. In this work,
we investigate the effects of the five, seven and nine qubits
codes used to protect a five qubits graph state contain-
ing a secret and sent by a dealer to five players. Some
of the results have been obtained using a simulator called
"Feynman Program", witch is a set of procedures sup-
porting the definition and manipulation of an n-qubits
system and the unitary gates acting on them. This pro-
gram is described in details in [2][3][4][5] and obtainable
from [6].

2 Quantum secret Sharing

Quantum secret sharing (QSS) is a quantum crypto-
graphic protocol wherein a dealer shares private or pub-
lic quantum channels with each player, while the players
share private quantum or classical channels between each

other. The dealer prepares an encoded version of the se-
cret using a qubits string which he transmits to n players,
only a subset k of them can collaborates to reconstruct the
secret. We call a (k,n) threshold secret sharing a protocol
where each player receives one equal share of the encoded
secret and a threshold of any k players can access the se-
cret. This scheme is a primitive protocol by which any
other secret sharing is achieved. In this work, we treated
the case (k,n)=(3,5) where the dealer sends through five
depolarizing channels, a quantum secret encoded in a five
qubits graph state [1].

3.1 Five qubits graph state

Graph states are a an efficient tool for multipartite
quantum information processing task like secret shar-
ing. Also, they have a graphical representation witch of-
fers an intuitive picture of information flow. The graph
state |Ug) given by equation (2) and containing the
quantum secret |Us) = a|0) + B|1) = cos(6/2)]0) +
e'?sin(6/2)|1), should be transmitted by a dealer to five
players through five different channels. First, he con-
structs the state |G) from an initial five qubits state
|Tp) =]00000), then applies the Hadamard gate H
on each qubit and the controlled-Z gate CZ on qubits
[1,2],[2,3], [3,4], [4, 5], [5,1] -

|G) = ngg CZ; v +)®° (1)

The dealer intricates an additional qubit called D with
each of the five qubits and add to the obtained system the
secret qubit S in the state |¥,) = «|0) + S |1) . Then, he
performs a Bell measurement on qubits D and S and ob-
tains finally [1] :

Wa) = a|G)+ 8, Z]1G)

(2)

3.2 Perfect channel

We describe below the procedure allowing players to
access the secret. The secret should be accessible only
for player 1, 2 and 3, players 4 and 5 being considered as
eavesdroppers. Players 1 and 3 measure their qubits in
the Bell basis and transmit the result to player 2 which

209

210 Int'l Conf. Foundations of Computer Science | FCS'12 |

applies on its qubit the suitable recovering gate Rg given F(|T),p) = {(¥|p|¥) (9)
in table 1 to access the secret state [1].
In this work we measure the overlap between the

The graph state [¥) can be decomposed in terms of correct secret state o, = |U,) (U] and the qubit state
Bell states |Bj;) 5 and |Byj) 4 [1] : py = |Wa) (¥o| measured by player 2 to access the secret.
Then, the fidelity is function of the angles (6, ¢) in the
Vg) = (%){ |Boo) 13 [|[+) + B1=)5 [Bot)ss + |Bo1)y3 Block sphere and the average fidelity is :
[a[4+) = B1=)a [Bro)ys +[Bio)ys [|=) = B+)]; ,
[Boo)ys + [Bi1)yg [|=) + B [+)]5 [Bi1)gs) } (3) F, = (1/4m) [T [27 F(9,)sin(0)d9d¢ (10)
Equation (3) can be written : We will describe below the procedure giving the fi-
delity. If any Pauli errors affects the state |Ug) then
Ve) = [Boo)i3(10),)2a5 + [Bo1)13(I¥)y)245 + equation (4) becomes :
|B10>13 (|\II>C)245 + ‘B11>13 (|\Ij>d)245 (4)
vEY = (A){B vE + |B 17 +
Measurement in the Bell base {|B;;),,} gives only one |BGi P (2)_&300113 ||\Iﬁg>>245} [Bot)a | ¥ >245(11)
term in (4), then the density matrix : 107131 e /245 113 15d 245
p . = (i)(p“)l3 (P2)oss (2 =a,b,cord) (5) ‘\I/aEb,C,d>245 are the states of qubits (2,4, 5) modified
by the channel errors.
The partial trace over qubits (4,5) gives the density After measuring on the Bell states of qubits (1, 3) only
matrix of qubit 2 : one term will remain in (11) :
p, = ‘\I’2> <\D2) = Pirl(p2) 245145 (6) (WE) = (1) 1Bis)1s |95, (12)

The corresponding affected density matrix is :
Then the secret state :

E 1 E
, , P = (Z)(pin)l?)(pa?)245 (13)
p, = Ryp Ry or |W2) = R, V) (7) ’
The partial trace over qubits (4,5) gives the measured
|Bij)15 | Boo | Bo1 | Bio B density matrix of qubit 2 :
R, H | ZH | ZXH | XH
p/2E = |\II/2E> <\Il/2E’ = Pt?"[(pf)245]4,5 (14)
Table 1 : Secret recovering gate R, used by player 2
versus the Bell state | B;;),, measured by players 1 and 3. Then the affected secret state measured by player two
3.3 Fidelity ps = R&py Rg = |08 (VF| (15)
The sent qubits can be affected by error X, Z or Y rep- We multiply by the secret state |¥,) = «|0) + 8 |1) to
resented respectively by the Pauli matrix X = (1) (1)) , obtain the fidelity :
— _ E
Z = <(1) _01) andY = —iXZ =1 <? 01> correspond- F(0,0) = (¥s[;| Vs) (16)
ing to rotation 7 around ox or oz or both in the block Table 2 gives the fidelity F'(0, ¢) calculated for all er-

sphere. The fidelity is one of the mathematical quantities rors on qubits ¢ = 1,2 or 3.
which permits to know how close are two quantum states

represented by the density matrix o and p by measuring Error), F(0,9) F,
a distance between them [7] : . ally = B0y | [sin(@)sind? | 1/3
) b al0) — F11) cos(0) 1/3
Fo,p) = |Tr(v/Vap/a)| (8) e |all)+B0) | Jsin(@)cosol” | 1/3
Ed al0) 4+ G1) 1 1

In the case of a pure state o = |¥) (¥| and an arbi-
trary state p, the fidelity is the overlap of the two states Table 2 : Fidelity and measured state |¥sy) versus
[7] : different errors groups ¢, on qubits ¢ = 1,2, 3.

Int'l Conf. Foundations of Computer Science | FCS'12 |

3.4 Depolarizing channel

The depolarizing channel is a particular model for the
noise on quantum systems. In this process, the global
density matrix p is replaced by a mixed one p(P) function
of the probability P that a Pauli error E;; = (01; = 04,
09j = 0y Or 03; = 0;;) affects any qubit "j" in the n-
qubits system. The matrix density is given by (17a) for
one-qubit system[2] and can be generalized by (17b) for
the n-qubits system :

p1(P) = (1 — P)p+ Z[XpX + YpY + ZpZ] (17a)
k n— 1sqisn *
pu(P) = (1P 4 QP+ 5 (1 o)
pr 1S3 S0 N
p(H1§L§kgijl)+"'+ 3n [Z1<1<3 1<z§nO-ijl)]p(nlgzgngijl)
(170)

Consider now the case where the five qubits are sent
by the dealer through five depolarizing channels. Sup-
pose the probability P that any single error occurs on
any qubit is the same in the five channels. Then we can
use equation (19) as if the dealer send the five qubits
through only one depolarized channel. We describe be-
low the procedure to obtain the average fidelity F,(P),
considering all the possible errors in the five transmitting
noisy channels. We begin by writing the affected density
matrix pf _(P) received by the five players :

pP (P)=Q1—P)°p +5(1—Py[p" + p +
pPs +pPi 4 pPe |+ B2 (1 *P)d[pElEz +pPrbs +pE1E4 +
pElEs + pE2E3 + pE2E4 + pEzEs + pE3E4 + pEsEs +
pE4E5} + %;(1 _ P)2[pE10E2E3 + pE1E2E4 + pE1E2E5 +
pE1E3E4 + pElESES + pE1E4E5 + pE2E3E4 + pE2E3E5 +
p
P,

E2E4E5+pE3E4E5]+ (1 P)[E1E2E3E4+pE1E2E3E5+

p° E1E2 EsE4Es

E1E2ELE5 + pE1E3E4E5 + pE2E3E4E5} + 5P
1..5
(18)
With pf the density matrix affected by errors on
qubit "i"
PP =Xip Xi+Yip Yi+Zip Z; (19)

E E Ek E E EkEl and

The density matrix p
E,E;ELEE

TP P
m are summation of respectlvely 9 27, 81 and
243 terms and represent the density matrix affected by
error on two, three, four and five qubits.

After measuring on the Bell states of qubits (1,3),
tracing over qubits (4,5),multiplying by the recovering

gate Ry, we multiply by the secret state and integrate
over (0, ®) to obtain the average fidelity :

(Us|pF [Os) = 1= PP+ §(L = P)'[F' + F2 +
FPs 4 FP 4 FEs)+ B (1 P[P B2y pEABs 4 PEVEL 4
FaE1E5 + Fszg + FaEQE4 + FaEzEs + F£3E4 + FaEaEs +
FBaBs] 4 12;;(1 — P)2[FE1E2Bs | PE\E2Es 4 PE1B:Bs 4
FaElEaE4 + FaElESES + FflE4E5 + FaEzEsEzL + FaEzEsEs +

FaEzE4E5 +F53E4E5]+% (1_P) [FflE2E3E4 +FE1E2E3 54

F(LElE2E4E5 —|—FuElE3E4E5 +F{LEQE3E4E] 243}7’E1E3E4E5E
(20)
(Wsl p, [0s) =15 FF = (W] pf | W) (21)

We deduce from tables 2 the values of FX and obtain
the average fidelity :
F,(P)=1-2P+5P?—

2Zp3 (22)

4 The five-qubits code

This code is described in [7][8] and uses five qubits to
protect one of them in a superposed state from any error
X, Y or Z. The dealer protects each of the three qubits
(1,2, 3) with four ancillas as showed in figure 4 and send
them through three noisy channel which introduce a bit
or phase flip or both with probability P = 1.

Protected qubits Ancilbs
Channel 1 & 2-0-9-0—
Clamel? __g@ s0 00—
Chamel} —g@ so00—
Channel 4 {Z} 000
Channel 5 & SO —
Figure 1 : Transmission of five protected qubits

through five channels.

The graph state (3) can be written as follow :

We) = (V2/8){[al0) + BI)], [¥a) . + [al0) -
BIDL W), + [B10) + a[]|¥e)nm +[B10) —
a1, [Wa);eim] (23)
[1,(4,k lm) = 2,3,4,5],[i = 2,(j,kl,m) =

3][Z: 7(]7 alvm):172a4a5] (24)

After coding , syndrome measurement, correction and
decoding, the players suppress the ancillas. If the qubit

211

212

77 ig affected by error Ei = X“ Y; or Zi then the graph
state becomes :

\wgf = Ei|¥a) = (E)Eial0) + B, W), +
Ei[a]0) = B, [y) ... + EilB10) + a[1)],[¥c)inm +
Ei[B10)—a [1)], %) juim } (25)

Table 3 gives the error F; affecting the to be protected
physical qubit ”4” after correcting double input errors as
the single error having same syndrome. The ancillas are
designed by ”a;” and the to be protected qubit by 74"
withi=1,2,3 and j=1,2,3,4.

Error E;
Xi;(ZaZZaS)v(Xa3Za47Za1Xa2) Iia(Xi)a(Zi)
Xa17(Za3Za4)’(ZiXa47Z(L2Xu3) Iia(Xi)a(Zi)
Xa2’(ZiZa4)?(XiZal’ZagXa4) Ii7(Xi)7(Zz‘)
Xa37(ZiZa1)7(XiZa47Xa1Za2) Ii7(Xi)7(Zi)
Xau(Zu,l az)v(Xa2Za3inXa1) I’i’(Xi)v(Zi)
ZU(XalXa4)7(Xa2Za4’Za1Xa3) Iia(Xi)a(Zi)
Zaw(iXaz)v(Zi a3vZa2Xa4) Ii’(Xi)’(Zi)
Za27(XalXa3)’(XiZa37Za1Xa4) Ii7(Xi)7(Zi)
Za37(XazXa4)=(XiZaz7Xa1Za4 Ii7(Xi)7(Zi)
Zaw(XiXa;,)v Xa12a3azi ag) Ii’(Xz‘)7(Zz')
Y;a(XaZXaB, alza4) Ii’(Yi)
Yal?(XasXa47 iZ(lQ) Ilv(Yl)
YGQ,(XiXM,ZalZaS) I, (Y),)
Ya3,(XiXa1,Zu2Za4) L, (Y),)
Yau(XalXan iZa3) Ii7(Yi)

nn

Table 3 : Error E; on the physical qubit "i" versus errors

on the logical qubit "i".

Consider three double errors E,E;, B, E, and E,E,
occurring respectively in depolarizing channels 717, 72”
and ”3” on any qubits (k,1,m,n,0,p) and corrected as the
three single error with similar syndrome. The qubits (4, 5)
can be affected by any error X, Y or Z. If the probability
that channel error occurs on one qubit is equal to P, then
the density matrix received by the five players is :

p(E123a)(45) = (1 - P)gp(123a)(45> + g(l o P)7[Z prBa)(%)]
APPSR S (PP 1+
DDA T (PP
S (L= PPIC s ™2 P G =PI+
ST -

The notation (123a) represents the logical qubits 1,2
and 3, each one protected by four ancillas and :

Z pE,_ — FE E; Em
(123a)(45) (123a)(45) (123a)(45) (123a)(45)
B, E, E, B, TN o5
(123a)(45) (123a)(45) (123a)(45) (123a)(45) (123a)(45)

Int'l Conf. Foundations of Computer Science | FCS'12 |

is the error E; affecting after decoding the to be protected

physical qubit ”77”. (27a)
Ey — X Yi Zr X —
(123a)(45) (123a)(45) (123a)(45) (123a)(45) " ' (123a)(45)
Xx Xi,... 27b
kp(123a)(45) k> ()
The summations Ea BBy
Zp(123a)(45)’ Zp(lZSa)(45)7
E.E E. E.EyE.Ey E.E E.E,E, E.EyE.EyE, Ey
Z p(123a)(4s)’ Z p(123a)(45) ’ Ep(123a)(45) ’ zp(123a)(45)
and Y pFeBuEEuE.EuEs contains respectively 8X3,

(123a)(45)
28X32, 56X32,70X3%, 56X3°%, 28X3% and 8X3" terms.

The expression pE’“EgE’")E"EﬂEPE‘LEs is the summation of
(123a)(45

3% terms. After decoding, measuring on the Bell states
of qubits (1,3), tracing over qubits (4,5), multiplying by
the recovering gate and the secret state and integrating,
we obtain the average fidelity :

F,(P) = (1—P)®+8P(1 - P)" +26P*1 — P)5 +
44P3(1 — P)® + %P‘*a - Pt + 8p51 — P)® +
SOpS(1— P2+ 42P7(1 - P) + £P° (28)

5 Comparison among the three codes

The Steane and Shor codes described respectively in
[9] and [7], use respectively seven and nine qubits to pro-
tect one of them in a superposed state from any error
X, Y or Z. The procedure giving the average fidelity de-
scribed in section 4 for the five qubit code is the same for
the seven and nine qubits codes. The difference comes
from the number n of double channel errors on logical
qubit which let the protected qubit ”i” free of error. The
simulation with Feynman Program gives for respectively
the five, seven and nine qubits codes :

ny _ 39.
— 31

— 108
T 144

ng

ns — ()
=0 e

5 7 N7

(29)

2

With N5s=40 N,;=81 and Ng=144 the total number
of double errors for the three codes. Then we can deduce
the average fidelity for the seven and nine qubits codes
by changing the value F, = % in table 2 by an average
value f,, and obtain for each code :

— 53 .
81

f _ (77,7><1+(N7—1’L7)><%
7 81
(ngXl—‘r(Ng—ng)X% —

fs=3% ;
9 = 144

f

oot
—
w
(=)
=

The average fidelity is then for any code :

Int'l Conf. Foundations of Computer Science | FCS'12 |

F,(P)=(1—-P)®*+8P(1—P)"+(3f,+25)P?(1—P)°+
(18 fn, +38)P3(1 — P)® + (41 f, +29) P*(1 — P)* + (44f, +
12)P5(1 — P)? 4 (28LH4T)pS(1 — P)2+

(0f=t22)pT(1 —)+ 3 P8 (31)

6 Summary

The results are summarized on table 4 where the sym-
bols Cy and C,, correspond respectively for no correction
and the n-qubits code. The figure 2 compares the varia-
tion of average fidelity without and with correction by the
three codes. The figure 1 shows logically that the average
fidelity is decreasing with P without and with correction
by any code. The values of fidelity are always better and
the decrease is slower when using codes. The best average
fidelity is given by the nine qubits code, followed by the
seven qubits code then the five qubits code. The reason is
that for the five qubits code all the double input errors let
the protected qubits affected, while some of them could be
covered when using the two other codes. We considered
in this work that triple input errors and more are very
unlikely, so that syndrome measurement allows (in seven
and nine qubits code) recovering errors. We note that if
P=1, then the average fidelity Fa(P =1) = 13 = 0.4815
is the same regardless the used code.

Code
Co
OTL

Fo(P)
1-2P+ P> — Zp3
(1— P)*+8P(1 — P)"+(3f,+25)
P2(1 — P)°+(18f, +38)P*(1 — P)°+
(41f, +29)P*(1 — P)*+(44f, +12)
P5(1 — P)°4(2B8LH4T) po(1 — p)?
+(30at22ypT(1 — p)+13p8
(1 — P)*+8P(1 — P)"+26P%(1 — P)°+
44P%(1 — P)°+128p4(1 - p)*
80p5(1 — P)* 4308 p6(1 — Py’
S2PT(1 — P)+5 P+
(1- P)*+8P(1 - P) + 2 P?(1 - P)°+
Usp3(1 - p)° 1482 pi(1 — p)*
30 pS(1 — P)* 418672 p6(1 — p)* 4

729
4432 13
WP7(81 - P)+ﬁpg7 ,]
(1-P)°+8P(1—P)'+28P%(1 - P)°+
53P3(1 — P)°+312 p4(1 — p)*
P (1 - P)* 1301 po(1 — p)* 4
LLpPT(1—P)+8p8

Cr

Cy

Table 4 : Expressions of fidelity without and with
correction by the five, seven and nine qubits codes.

213

— Mocorrection
Minequhitzcode

—— Fivequhitscode —— Sevenqubitscode

104

i
1

=
1

Arerane fidelty FalP)
= i
1 1

£
1

=

0z 04 0g 0z L0
Errar probability P

=
=

Figure 2 : Fidelity without and with correction.

7 Conclusion

This work was devoted to error correction for quan-
tum secret sharing. The results show that the nine qubits
code gives the best fidelity, followed by the seven, then
the five qubits code, regardless the depolarizing channel
error probability P. This conclusion seems to confirm
the simulation work done in [11], where errors were in-
troduced by the correction process itself. We conclude
that higher is the ancillas number better is the fidelity.
The reason is that the nine qubits code allows the recov-
ering of a higher fraction of double channel input errors.
In fact, as only single and double errors have been con-
sidered, this code gives a specific syndrome for a higher
number of double errors, then allowing their recovery and
leading to fidelity equal to one. We have supposed that
triple errors and more are very unlikely and then with
negligible effect on the obtained results.

Acknowledgement

We would like to thank very much Mrs S.Fritzsch and
T.Radtke for providing us with the version 4 (2008) of
Feynman Program.

214

8 References

[1] Graph States for Quantum Secret Sharing, Damian
Markham and Barry C. Sanders, Phys. Rev. A 78,
042309 (2008).

[2] T.Radtke, S.Fritzsche: ’Simulation of n-qubits quan-
tum systems’, I. Quantum gates and registers, CPC, Vol-
ume 173, Issues 1-2, 2005, Pages 91-113.

[3] T.Radtke, S.Fritzsche: ’Simulation of n-qubits quan-
tum systems’, II. Separability and entanglement, CPC,
Volume 175, Issue 2, 2006, Pages 145-166.

[4] T.Radtke, S.Fritzsche: ’Simulation of n-qubits quan-
tum systems’, III. Quantum operations, CPC, Volume
176, Issues 9-10, 2007, Pages 617-633.

[5] T.Radtke, S.Fritzsche: ’Simulation of n-qubits quan-
tum systems’,IV. Parametrization of quantum states,
CPC, Vol 179, Issue 9, 2008, Pages 647-664.

[6] CPC Prog Lib, Queen’s University of Belfast,
N.Ireland, Apr 2008.

M.A. Nielsen, I.LL Chuang: "Quantum computation and
information", Cambridge University Press, UK, 2000.

[8] Raymond Laflamme and co "Perfect Quantum Er-
ror Correcting Code", Physic Review Letters, Volume 77,
Number 1,198-201, july 1996, .

[9] A. M. Steane. "Multiple particle interference...".
Proc. R. Soc. Lond. A, 452:2551-2576, 1996. quant-
ph/9601029.

[10] A.G.Fowler, "Constructing arbitrary Steane code sin-
gle logical qubit fault-tolerant gates", Quantum Informa-
tion and Computation,11: 867-873 (2011).

[11] Jumpei Niwa, Keiji Matsumoto, Hiroshi Imai, "Simu-
lating the Effects of Quantum Error-correction Schemes",
arXiv:quant-ph/0211071v1 13 Nov 2002.

Int'l Conf. Foundations of Computer Science | FCS'12 |

