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ABSTRACT
Hardware acceleration using FPGAs has shown orders of
magnitude reduction in runtime of computationally-intensive
applications in comparison to traditional stand-alone com-
puters [1]. This is possible because on an FPGA many com-
putations can be performed at the same time in a truly-
parallel fashion. However, parallel computation at a hard-
ware level requires a great deal of expertise, which limits the
adoption of FPGA-based acceleration platforms.

A recent interest to enable software programmers to use
GPUs for general-purpose computing has spawned an in-
terest in developing languages for this purpose. OpenCL
is one such language that enables a programmer to specify
parallelism at a high level and put together an application
that can take advantage of low-level hardware acceleration.

In this paper, we present a framework to support OpenCL
compilation to FPGAs. We begin with two case studies that
show how an OpenCL compilation could be done by hand
to motivate our work. We discuss how these case studies
influenced the inception of an OpenCL compiler for FPGAs.
We then present the compilation flow and the results on a set
of benchmarks that show the effectiveness of our automated
compiler. We compare our work to prior art and show that
using OpenCL as a system design language enables large
scale design of high-performance computing applications.

1. INTRODUCTION
Modern FPGAs are some of the largest and most complex
integrated circuits, and have become a defacto solution for
many high-performance applications, such a network packet
processing. They have also been successfully used to acceler-
ate computation (medical imaging [1, 2], molecular dynam-
ics [3]) in comparison to workstation computers.

Starting in the early 1990s through the present day, there
has been an increasing interest in high-level synthesis (HLS),
because describing a circuit at a high level can take a 10th

of the lines of code as compared to an equivalent Verilog or
VHDL description [4]. If HLS tools could produce a good
circuit, then they would significantly improve productivity,

and allow designers to test their circuits at a higher level of
abstraction, making the process much faster.

Traditional HLS tools implement a circuit from a software-
like language, such as C. For a program, they implement
a circuit in a single-instruction single-data (SISD) fashion,
comprising a datapath that performs computation and a
control circuit that schedules the flow of computation. Some
parallelism is achieved through scheduling independent in-
structions at the same clock cycle. This approach, however,
does not provide the best possible use of an FPGA. First,
an FPGA can be a very large device, and it is possible many
such circuits can simultaneously process data, increasing the
overall throughput of a design. Second, pipelining is not ex-
plicit in programming languages such as C, and thus it is not
always possible to generate a circuit that has a comparable
performance to a hand-coded Verilog/VHDL design.

Recently, a new computing paradigm called OpenCL (Open
Computing Language) [5] has emerged that is suitable for
adoption as an FPGA design entry method and addresses
the two aforementioned problems associated with HLS. In
OpenCL computation is performed using a combination of
a host and kernels, where the host is responsible for I/O
and setup tasks, and kernels perform computation on inde-
pendent inputs. Because of the explicit declaration of the
kernel, and the fact that each set of elements processed are
known to be independent, each kernel can be implemented as
a high-performance hardware circuit. Based on the amount
of space available on an FPGA, the kernel may be replicated
to improve performance of the application.

In this paper, we first prototype two applications to deter-
mine how to build an automated compiler to efficiently syn-
thesize applications from an OpenCL description into a com-
plete system on an FPGA. After analyzing the results from
case studies, we proceeded with the description of the ar-
chitecture of the compiler, highlight some of its key features
and present the results we obtained by using the compiler
on a few key benchmark applications that we implemented
on an Altera Stratix-IV based board (DE4).

2. BACKGROUND
In this section, we provide some basic background about
OpenCL and our target platform, the DE4 board.

2.1 OpenCL Primer
OpenCL is a language, and a computing paradigm, to enable
acceleration of parallel computing, targeting a wide variety
of platforms [5]. OpenCL was developed to standardize the
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Figure 1: DE4 Research Board

method of parallel computation using GPGPUs, for which
proprietary languages such as CUDA already existed.

An OpenCL application comprises a host and kernels. The
host, is responsible for processing I/O requests and setting
up data for parallel processing. When the host is ready to
process data, it can launch a kernel, which represents a unit
of computation to be performed. A kernel executes com-
putation by loading data from global memory as specified
by the host, processing it, and then storing the results back
into global memory so that they can be read by the host.
In OpenCL terminology a kernel and the data it is execut-
ing on comprise a thread. Results are computed for a group
of threads at a time. Threads may be grouped into work
groups, which allow data to be shared between the threads
in a work group; however, no constraints are placed on the
order of execution of threads in a work group and they are
thus required to be independent.

2.2 DE4
The DE4 FPGA board, manufactured by Terasic Technolo-
gies, features an Altera Stratix IV 230/530 GX device. It
provides two DDR2 memory SO-DIMM slots, four GigE eth-
ernet ports, four SATA connections, a PCIe header, three
USB ports, SD Card slot, and other peripherals. Figure 1
shows a photograph of the board.

3. INITAL CASE STUDIES
The first step towards an OpenCL-to-FPGA compiler was
to study two benchmarks that could be implemented in
OpenCL. These benchmarks are Black-Scholes option pric-
ing and a Bloom filter. In both cases, we implemented each
application using a host/kernel model, to generate a circuit
in the OpenCL style. We found that in each case we were
able to steer the final implementation towards a pipeline-
oriented design, replicating the kernel hardware several times
to achieve high performance.

We implemented each design to have a Nios II processor [6]
to run the host program and interact with kernels, two
DDR2-800 memory controllers to store data, and a set of
hardware accelerators that implement the kernels in OpenCL.
The host program communicates with the kernels using memory-
mapped I/O to set up each kernel, launch it, and monitor its
progress. The kernels run independently of the host, load-
ing and storing data in memory using dedicated memory-

mapped master interfaces and local memory buffers for tem-
porary data storage.

3.1 Black-Scholes Option Pricing
Black-Scholes equations are used for modeling pricing of
European-style options. The equations computed in this
model are as follows:

d1 =
log S

X
+ T

(
R + 0.5V 2

)
V T 0.5

d2 =d1 − V T 0.5

call =SN (d1) −N (d2)Xe−RT

put =Xe−RT (1 −N (d2)) − S (1 −N (d1))

(1)

where R is the riskless rate of return, V is stock volatility,
T represents option years, X represents a strike price and
S the current price. The N function is an approximation
of a cumulative normal distribution. The outputs call and
put, represent the call and put prices. Usually, the above
computation is performed for a set of options and a fixed
volatility and rate of return, which requires an input of three
floating-point numbers per computation.

In the OpenCL paradigm, a thread is responsible for produc-
ing one or more results. Each thread loads inputs X, S and
T from memory and computes the call and put values that
are then stored in the corresponding location in memory.

On a GPU, the threads are executed in a SIMD fashion
on a multiprocessor. A similar level of parallelism can be
achieved on an FPGA by using pipelining. A pipelined
design allows a long and intensive computation to be per-
formed over a series of clock cycles. During each clock cycle,
a new set of data can be accepted for computation. Thus,
if a computation pipeline has a depth of 200 cycles, results
will be produced at every clock cycle after some latency.

3.1.1 An Efficient Pipelined Computation Engine
Building a hardware implementation of this kernel begins
with a data-flow graph (DFG). The DFG consists of three
parts. The first part performs computation of inputs to a
cumulative normal distribution (CND) function approxima-
tion, the second part is the CND function itself, and the
final part computes the call and put values. Each part of
the computation produces data at each clock cycle, allowing
the hardware to produce a new result at every clock cycle.
To demonstrate how this is accomplished, we show the im-
plementation of the first part in Figures 2 and 3.

Figure 2 shows the DFG, where circles represent single-
precision floating point operations, implemented using hard-
ware cores. The latency of each block varies, as it takes a
different number of clock cycles to multiply, invert, or take
a square root of a number. To balance the latencies on each
path, we insert shift registers as shown in Figure 3. The
resulting latency of this computational block is 53 clock cy-
cles. When each part of the computation is similarly im-
plemented, we put them together to create an engine that
given a set of inputs produces a result 161 clock cycles later.

3.1.2 Memory Access
To attain a high performance from the above kernel imple-
mentation we need to sustain data throughput to and from
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Converting Computation to HDL
Front part:
float sqrtT = SQRT(T);
float    d1 = (LOG(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
float d2 = d1 - V * sqrtT;float    d2  d1 V  sqrtT;

/
S

log

R

X

+
x /2 +V

x
x d1

T sqrt x

- d2
inv

© 2010 Altera Corporation—Confidential

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS & STRATIX are Reg. U.S. Pat. & Tm. Off. 
and Altera marks in and outside the U.S.
1

Figure 2: DFG for the first part of the computation
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Figure 3: DFG with latency-balancing shift registers

memory. For this kernel, the data consists of three floating-
point numbers as input, and two floating-point numbers as
output. To facilitate the required memory bandwidth we
use two separate high-speed memories (DDR2-800).

A DDR2-800 is a high-speed memory device that can be
accessed via a DDR2 memory controller. The controller is
capable of high-speed transfers of data in a burst fashion.
It exchanges data with the external memory at a clock rate
of 400 MHz, 64-bits at each edge of the clock. On the side
of the FPGA, the controller facilitates a synchronous in-
terface clocked at a rate of 200 MHz, providing 256-bits of
data at the positive edge of the clock. To read and write
data through this interface, a kernel needs to access data in
256-bit blocks at each edge of the clock. This is done by
combining inputs and outputs into groups, such that each
256-bit read comprises several sets of inputs X, S, and T.
Similarly, outputs are grouped together such that a single
256-bit write stores several call and put results.

To facilitate fast access to memory, we created bit-width
adapting buffers for the kernel. The input buffer takes in
256-bit wide data and stores it in an array of eight 96-bit by
n buffers, as shown in Figure 4.

3.2 Bloom Filter
In networking applications, Bloom filters [7] are used to scan
the payload of a packet to help determine if a packet should
be dropped or kept. For example, a packet router may wish
to determine if a message it is about to forward contains
unwanted data. If so, a packet can be dropped, protecting
the destination computer from a potential hazard.

Bloom filters scan the payload of a packet by looking for
signatures of interest. While a usual search could be slow,
Bloom filters employ hash tables, where each signature is
hashed using several hash functions. This allows the filter to
compute a hash value for the data as it arrives, and perform
a quick hash lookup to determine if a signature is of interest.
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Figure 5: High-Level Diagram of a Bloom Filter

A high-level diagram of a Bloom filter is shown in Figure 5.
In this design, a packet is first loaded into a buffer. The
packet data is then sent through two parallel hash compu-
tation functions. Once each hash value is computed, a hash
lookup is performed. If both values at addresses specified
by the hash values are 1, then a Bloom filter reports it has
found a signature of interest. To achieve a high throughput
for this design, it may be necessary to replicate local memory
that stores the hash values, as indicated in the figure.

This type of a search can be efficiently implemented on an
FPGA. A recent paper [8] showed an implementation of
such a filter that can sustain a throughput of approximately
3.2 Gbps. Implementation by Suresh et al. [9] provided a
throughput of 18.6 Gbps on an FPGA.

Our filter is designed to scan the payload of a packet, ex-
pected to contain simple text. The text is parsed and words
are identified and compared against a dictionary of approx-
imately 150000 words. The result of the Bloom filter, is a
pair of values that indicate how many words in every packet
are spelled correctly and how many are not.

3.2.1 Bloom Filter Core
Pseudo-code for the Bloom filter is given in Figure 6. In this
kernel, we process each packet one character at a time. For
every character in a packet, we detect if it is a separator.
If it is not, then we update the hash 1 and hash 2 values
as per the else clause, updating the length of the word cur-
rently being processed. Once a separator is detected, we
perform a lookup into a hash table, updating the hit and
miss registers. This approach matches the high-level design
presented in Figure 5.

In this kernel, the hash lookup is performed at the end of
every word and hence can be executed in parallel with the
rest of the kernel. However, it has to be able to stall the
pipeline when the perform hash lookup function is executing
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kernel void bloom filter(read only int *d lookup,
unsigned int *d result, unsigned char *d packet mem,
int *d packet size, unsigned int packet count) {

for(packet id = 0; packet id < packet count; packet id++) {
int packet length = d packet size[packet id];
unsigned int offset = 1024*packet id;
unsigned int hash 1 = 0, hash 2 = 0, miss = 0, hit = 0;
short int length = 0;
for (index = 0; index < packet length; index++) {

unsigned char packet ch = d packet mem[offset+index];
char is end word= is separator(packet ch);
int temp hash 1 = update hash 1(hash 1, packet ch);
int temp hash 2 = update hash 2(hash 2, packet ch);
if ((is end word) && (this word length > 0))

perform hash lookup(d lookup,
hash 1 % 2500000, hash 2 % 2500000,
&hit, &miss);

hash 1 = (is end word) ? 0 : temp hash 1;
hash 2 = (is end word) ? 0 : temp hash 2;
length = (is end word) ? 0 : length+1;

}
d result[packet id] = (miss << 16) | hit;

}
}

Figure 6: Bloom Filter kernel

and another lookup is required. Such an implementation
allows a lookup to be concurrent with the processing of the
next word, increasing the throughput of the circuit.

3.2.2 Shared Hash Table(s)
A key aspect of performance in this design is the hash ta-
ble lookup. The lookup takes several cycles, which makes it
possible for another word to be processed before the lookup
is completed. In such a case, it is important to design
the lookup circuitry with minimal latency. Also, to enable
higher throughput, we need to be able to share the hash
table between a set of kernels.

We implemented a 2.5Mbit multi-ported shared hash table
using dual-ported on-chip memory. To create more than two
ports for the hash table, we divided it into five segments,
each implemented as a dual-ported memory with 16384 32-
bit words. Each segment can simultaneously read data from
two distinct memory locations, making a total of 10 ports
on the hash table available for simultaneous access.

4. STUDY ANALYSIS
In this section, we discuss the performance results we ob-
tained in our case study of two example benchmarks, in an
effort to determine the key aspects that we will need to ad-
dress when creating an OpenCL-to-FPGA compiler.

4.1 Area and Performance
We implemented each of the case studies on an Altera DE4
board, comprising an Altera Stratix IV 230GX device and
two DDR2 memory interfaces. In each case, we began with
an OpenCL description of an application, manually created
a DFG for each kernel, and coded each kernel hardware mod-
ule in Verilog HDL. We created a system comprising many
instances of hardware kernels on which threads could be ex-
ecuted, as well as a Nios II processor to run the host pro-
gram. Table 1 presents the clock frequency, logic utilization
and throughput results for each circuit in our case study.

The Black-Scholes option pricing circuit comprised four ac-
celerators, where floating-point cores were set for minimum
latency. To obtain the throughput results, we ran the sys-
tem at a clock rate of 150 MHz, allowing each instance of

Table 1: Performance and Area Results
Name Freq. Utilization Throughput

(MHz) (%)
Black-Scholes 150 76 885.6 M results/s
Bloom Filter 150 46 25.559 Gbps

the accelerator to produce two results (call and put) per cy-
cle. To exchange data with the external DDR2 memory, we
connected each pair of accelerators to a single DDR2 mem-
ory controller. Because of the limited memory bandwidth in
comparison to the required number of load and store opera-
tion, four accelerators fully utilized the memory bandwidth
when producing 885.6 million results per second.

To implement the bloom filter, we instantiated 48 kernels
to process packets in parallel. Each kernel was connected
to DDR2-800 memory to load data packets, and used local
on-chip memory for intermediate data storage. The system
was clocked at a rate of 150MHz and occupied 46% of the
available device resources. The resulting throughput of the
circuit was 25.6 Gbps.

4.2 Observations from Case Studies
The initial case studies yielded both compelling results as
well as a number of interesting challenges that need to be
overcome when developing an OpenCL-to-FPGA compiler.
We summarize the key results in three categories: memory
access, pipelining, and hardware replication.

4.2.1 Memory Access
The first challenge we encountered was one of effectively
utilizing the available memory bandwidth. This was par-
ticularly an issue with the Black-Scholes case study, as the
kernel itself was able to process a lot of data very quickly.
To address this challenge we introduced buffers to store in-
put and output data. While these buffers were not explicitly
defined in OpenCL, they could be inferred. With the help
of input and output buffers we were able to group memory
transfers into sizable batches, such that the kernel could be
kept occupied 100% of the time.

One of the less obvious tasks from the point of view of the
programmer was to ensure that the memory interface, in our
case DDR2-800 memory, and the kernel hardware needed to
have matching bus widths. This is something a usual high-
level language programmer does not need to think about, as
the underlying architecture does not change. In our case,
the process of synthesizing a circuit from scratch requires
such details to be handled. To overcome such obstacles, our
compiler will have to take care of low-level implementation
details, while being mindful of the external memory it is
interfacing with.

The key lesson we learnt here was that our compiler will have
to be able to generate efficient memory interface architecture
to external RAM on a per application basis. This will be a
key consideration for many applications.

4.2.2 Pipelining
The second challenge dealt with using pipelining to imple-
ment high-performance hardware for kernels. While in the
case of the Black-Scholes, this can be done easily (by hand
or in an automated tool), implementing a Bloom filter as a
pipelined circuits was more difficult.
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To implement a Bloom filter as a pipelined circuit, we had to
break the kernel up into two parts: the hash computation,
and the hash lookup, each of which could run independently.
The hash computation was responsible for processing packet
data, one character at a time, and computing a hash value
for every word in the packet. When a word was found, the
hash lookup was executed. At the same time another set
of characters were being processed and a hash value was
computed for them. If the computation of a hash value
for the next word completed before the hash lookup, it was
necessary for the hash lookup to stall hash computation,
until the lookup was completed.

The key lesson we learnt was that a pipelined architecture for
many kernels is possible, especially in an OpenCL context
where explicit parallelism is defined. The pipeline would
have to allow sections of the circuit to stall when a long
memory access is required and thus a flexible design will be
required. This is particularly important when dealing with
loop constructs where it is possible for the loop to be only
able to handle a limited number of threads simulteneously.

4.2.3 Hardware Replication
The third challenge in the implementation of both designs
was the level of hardware replication needed to achieve high
throughput. While in the case of Black-Scholes an entire
kernel was replicated, in the case of the Bloom filter it turned
out that a major bottleneck was the hash table.

We noted earlier that the hash table had to be replicated to
achieve high throughput, allowing only half of the kernels
(24) to use each hash table. One way to define such repli-
cation in OpenCL is to provide a kernel with several hash
tables as inputs. A better approach would be to be able
to model a kernel to be able to detect such problems, and
replicate resources shared by kernel instances.

The lesson we learnt here was that some level of control
over the architecture of the system needs to be provided, to
allow the designer to analyze the performance results and
then affect the architecture of the kernel hardware to im-
prove throughput. While the ultimate goal is to be able to
automatically determine the correct level of replication re-
quired for an application, a reasonable first approach is to
allow user some control over the compiler output.

5. OPENCL-TO-FPGA COMPILER
In this section we present the compiler we devised based on
the lessons we learnt from initial case studies.

Figure 7 presents the flow of our compilation framework,
based on an LLVM compiler infrastructure [10]. The input
is an OpenCL application comprising a set of kernels (.cl
files) and a host program (.c file). The kernels are compiled
into a hardware circuit, starting with a C-language parser
thath produces an intermediate representation for each ker-
nel. The intermediate representation (LLVM IR) is in the
form of instructions and dependencies between them. This
representation is then optimized to target an FPGA plat-
form. An optimized LLVM IR is then converted into a
Control-Data Flow Graph (CDFG), which can be optimized
to improve area and performance of the system, prior to
RTL generation that produces Verilog HDL for a kernel.

The compiled kernels are instantiated in a system with in-
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Figure 7: OpenCL-to-FPGA framework.

terfaces to the host and off-chip memory. The host inter-
face allows the host program to access each kernel to specify
workspace parameters and kernel arguments. The off-chip
memory serves as global memory for an OpenCL kernel.
This memory can also be accessed via the host interface, al-
lowing the host program to set data for kernels to process
and retrieve computation results. The complete system can
then be synthesized, placed and routed on an FPGA using
Altera Complete Design Suite (ACDS) [11].

Finally, we compile the host program using a C/C++ com-
piler. There are two elements in the compilation of the host
program. One is the Altera OpenCL (ACL) Host Library,
which implements OpenCL function calls that allow the host
program to exchange information with kernels on an FPGA.
The second is the Auto-Discovery module which allows a
host program to detect the types of kernels on an FPGA.
The Auto-Discovery module is embedded in the system by
the kernel compiler, and stores the information pertaining
to the kernels in a given design.

6. IMPLEMENTATION DETAILS
Our framework comprises a Kernel Compiler, the ACL Host
Library, and System integration. The Kernel Compiler im-
plements OpenCL kernel functionality as a circuit described
in Verilog HDL and produces a description of the generated
circuit for the host program in a form of an Auto-Discovery
module. The C compiler then takes that description as well
as the ACL Host Library and compiles the host program.
The host executable as well as the Verilog HDL are then
put together using a System Integration tool (Qsys) and
compiled using ACDS [11].

6.1 ACL Host Library
The Altera OpenCL (ACL) host library implements most of
the Platform and Runtime APIs of the OpenCL 1.0 speci-
fication [5]. The Platform APIs allow the host program to
discover the FPGA accelerator device and manage execution
contexts. The Runtime APIs are used to manage command
queues, memory and program objects, and to discover pre-
compiled kernels and invoke them.

The ACL Library comprises two layers: a platform inde-
pendent layer that performs device independent processing,
and a hardware abstraction layer that adapts to platform
specifics. The platform independent layer provides the user-
visible OpenCL API functions and performs generic book-
keeping and scheduling. The hardware abstraction layer pro-
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kernel void triangle( global int *x, global int *y) {
int i, t = get global id(0), sum=0;
for (i=0; i < t; i++) sum += x[i];
y[id] = sum;

}
Figure 8: Example OpenCL Kernel Program

For.end

%t = call @get_global_id(0)
%cmp12 = icmp sgt %T, 0
br %cmp12, label %for.body, label %for.end

Entry

%i = phi [0, %entry], [%i.next, %for.body]
%sum_so_far = phi [0, %entry], [%add, %for.body]
%arrayidx = getelementptr %x, %i
%tmp4 = load %arrayidx
%add = add %tmp4, %sum_so_far
%i.next = add %i, 1
%exitcond = icmp eq %i.next, %t
br %exitcond, label %for.end, label %for.body

For.body

%sum = phi [0, %entry], [%add, %for.body]
%ptr_y = getelementptr %y, %t
store %sum, %ptr_y
ret void

Figure 9: Intermediate Representation Example

vides low-level services to the platform independent layer.
These services include: device and kernel discovery, raw
memory allocation, memory transfers, kernel launch and
completion. In particular, all communication between the
host and the kernels goes through this layer.

6.2 Kernel Compiler
To compile OpenCL kernels into a hardware circuit, we ex-
tended the LLVM Open-Source compiler [10] to target an
FPGA platform as shown in Figure 7. The LLVM compiler
represents a program as a sequence of instructions, such as
load, add, subtract, store. Each instruction has associated
inputs and produces a resulting value that can be used in
computation downstream. A group of instructions in a con-
tiguous sequence constitutes a basic block. At the end of
a basic block there is always a terminal instruction that
either ends the program or redirects execution to another
basic block. The compiler uses this representation to create
a hardware implementation of each basic block, which are
then put together to form the complete kernel circuit.

The above abstraction allows us to implement a kernel from
basic block modules. Each basic block module comprises an
input and an output interface with which it talks to other
basic blocks. In the cases of a first and a last basic block,
their interfaces have to be exposed at the top level, forming
primary inputs and outputs of a kernel module.

6.2.1 C-Language Front-End
The first step in the conversion of a high-level description
to a hardware circuit is to produce an intermediate repre-
sentation (IR). To illustrate the IR, consider a program in
Figure 8. In this example, each thread reads its ID using
the get global id(0) function and stores it in variable t. It
then sums up all elements of array x beginning at the first
and ending at t-1. Finally, the result is stored in array y.

%i = phi [0, %entry], [%i.next, %for.body]
%sum_so_far = phi [0, %entry], [%add, %for.body]
%arrayidx = getelementptr %x, %i
%tmp4 = load i32* %arrayidx
%add = add %tmp4, %sum_so_far
%i.next = add %i, 1
%exitcond = icmp eq %i.next, %t
br %exitcond, label %for.end, label %for.body

For.body

Merge [1,2]

Branch [8]

[3]

[4]

[6]

[7]

[5]

Figure 10: Basic Block Module

C-Language front-end parses a kernel description and cre-
ates an LLVM Intermediate Representation (IR), which is
based on static single assignment [12]. It comprises basic
blocks connected by control-flow edges as shown in Figure 9.
The first basic block, Entry, performs initialization for the
kernel and ends with a branch instruction that decides if
a thread should bypass the loop. The second basic block
represents the loop body and the last basic block stores the
result to memory. To determine the data each basic block
consumes and produces, we perform Live Variable Analysis.

6.2.2 Live Variable Analysis
Live Variable Analysis identifies variables consumed and pro-
duced by each basic block. In our example, the Entry ba-
sic block contains only kernel arguments as input variables
(x, y). At the output of the basic block, variables sum, t
and i are also created. This tells us that each thread pro-
duces these values when it completes execution in this basic
block. The For.body basic block includes all kernel argu-
ments as well as the three arguments produced by the first
basic block. It then produces y, t, i.next and add as output
live variables. Notice that i.next and add effectively replace
i and sum when the basic block loops back to itself, allowing
the loop to function correctly. Finally, the last basic block
has input live variables y, t and add, while no variables are
live after the return instruction.

6.2.3 CDFG Generation
Once each basic block is analyzed, we create a Control-Data
Flow Graph (CDFG) to represent the operations inside it.
Each basic block module takes inputs either from kernel ar-
guments or another basic block, based on the results of Live
Variable Analysis. Each basic block then processes the data
according to the instructions contained within it and pro-
duces output that can be read by other basic blocks.

A basic block module, shown in Figure 10, consists of three
types of nodes. The first node is the merge node, which is
responsible for aggregating data from previously executed
basic blocks. This ensures that for each thread, its id as
well as all other live variables are valid when the execution
of the basic block begins. In addition, in cases such as loops,
the merge node facilitates phi instructions that take inputs
from predecessor basic blocks and select the appropriate one
for computation within the basic block, based on which pre-
decessor basic block the thread arrived from.

Operational nodes represent instructions that a basic block
needs to execute, such as load, store, or add. They are
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linked by edges to other nodes to show where their inputs
come from and where their outputs are used. Each opera-
tional node can be independently stalled when the successor
node is unable to accept data, or not all inputs of the suc-
cessor node are ready. This resembles the idea of elastic cir-
cuits [13, 14], however our implementation is much smaller
and simpler because each operation has fixed latency. In
particular, in [14] a convergence of data flow from two op-
erations feeding a single one required 2 FFs and 15 gates,
where communication between elastic nodes requires four
signals. In [13], the approach is simpler with two signals
in each direction and a total of 4 gates in what they refer
to as a join operation. In our implementation we use two
signals and two gates. The valid signal into a node is an
AND gate of its data sources (called ready). The stall to
each predecessor node is computed as !ready+stall out. The
fanout splitting, or fork, logic in our implementation is also
distinct from [13, 14]. In our case, each output of a node
has an associated register called consumed that indicates if
a specific successor already consumed the data being pro-
duced. If so, the register is set to 1. When all consumed
register are, or are about to be set to 1, the functional unit
producing a value is unstalled (its stall in is cleared).

The last node in a basic block module is a branch node. It
decides which of the successor basic blocks a thread should
proceed to.

6.2.4 Loop Handling
Loops are handled at a basic block level. A simple example
of a loop is a basic block whose output is also an input to
it, such as shown in Figure 9. The loop itself presents a
problem in that it is entirely possible that a loop can stall.
To remedy the problem, we insert an additional stage of
registers into the merge node, that allows the pipeline to
have an additional spot into which data can be placed.

When loops comprise many basic blocks, it is possible that
stalling can occur when loop-back paths are unbalanced. In
such cases, we instantiate a loop limiter that allows only
specific number of threads to enter the loop. The number of
threads is equal to the length of the shortest path in a loop.

6.2.5 Scheduling
Once each basic block is represented as a CDFG, scheduling
is used to determine the clock cycles in which each operation
is performed; however, since no sharing of resources occurs,
the key contribution of scheduling is to sequence the oper-
ations into a pipeline where independent operations occur
in parallel. This is important because not all instructions
require the same number of clock cycles to complete. For
example, an AND operation may be purely combinational,
but a floating point addition may take eight cycles. Thus if
possible, we would like to schedule operations that add up to
8 cycles while the adder performs computation maximizing
the throughput of the hardware circuit, while reducing the
area at the same time. In some cases, it may be necessary
to insert pipeline balancing registers into the circuit because
one execution path is longer than another.

To solve the scheduling problem we apply SDC scheduling
algorithm [15]. The SDC scheduler uses a system of lin-
ear equations to schedule operations, while minimizing a
cost function. In the context of scheduling, each equation

represents a clock cycle relationship between connected op-
erations. For example, in implementing an equation f =
a ∗ b + c ∗ d, the scheduler has ensure that both multipli-
cations occur before addition. A secondary objective is the
reduction of area, and in particular the amount of pipeline
balancing registers required. To minimize the impact on
area, we minimize a cost function that reduces the number
of bits required by the pipeline.

6.2.6 Hardware Generation
To generate a hardware circuit for a kernel we build it out
of basic block modules. To achieve high performance, we
implement each module as a pipelined circuit, rather than
a finite state machine with datapath (FSMD). This is be-
cause a potentially large number of threads need to execute
using a kernel hardware, and their computation is largely
independent. Hence, the kernel hardware should be able to
execute many threads at once, rather than one at a time.

In a pipelined circuit, a new thread begins execution at
each clock cycle. Thus, a basic block with pipeline depth
of 100 executes 100 threads simultaneously. This is simi-
lar to replicating an FSMD circuit 100 times, except that
subsequent threads execute different operations. In our de-
sign, the valid in-stall out pairs are used as a handshaking
mechanism to synchronize subsequent operations.

Once each basic block is implemented, we put the basic
blocks together by linking the stall, valid and data signals
as specified by the control edge. We then generate a wrap-
per around a kernel to provide a standard interface to the
rest of the system. In our case, we implement all load and
store instructions as Avalon Memory-Mapped Master inter-
faces [16] that can access data from global or local memory.
In addition, the wrapper keeps track of kernel execution, is-
suing workitems into the pipelined circuit and signals when
the kernel has completed execution.

7. SYSTEM INTEGRATION
Once each kernel has been described as a hardware circuit,
we create a design comprising the kernels, memories and
an interface to the host platform, as shown in Figure 11.
We utilize a templated design, where sections that do not
change from one application to another remain locked down
on an FPGA. These sections include memory interfaces and
a host interface facilitated by a PCIe core. The sections that
change, shown at the bottom of the figure, are attached at
compile-time, synthesized placed and routed. This section
can include many kernels, possibly replicated several times,
where each kernel has a dedicated local memory segment
associated with it.

8. MEMORY ORGANIZATION
OpenCL defines three types of memory spaces: global, lo-
cal and private. The global memory space is designated for
access by all threads. Read and write operations to this
memory can be performed by any thread; however, OpenCL
does not guarantee memory consistency between an arbi-
trary pair of threads, thus one thread may execute fully
before the other one even begins running. Thus, this type
of memory is usually used to store data threads will require
for computation, as well as any results the threads produce.

In our implementation, the global memory space resides in
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Figure 11: System Integration Details

off-chip DDR2-800 memory. It has large capacity allow-
ing us to store data, but long access latency. Accesses to
this memory are coalesced when possible to increase mem-
ory throughput. In the compiler we can detect when access
to particular memory arrays are random or sequential and
take advantage of this. When an array is determined to
be accessed sequentially by consequtive threads, we create
a special read or write module that includes a large buffer
for burst transactions. This is very important, because if we
know that the next set of threads will request consecutive
data, we can request a large burst transaction the moment
the first tread requests data. As a result we incur a small
delay penalty loading/storing the data for the first thread,
and no latency on the subsequent threads.

When memory accesses are random we create a coalescing
unit that collects requests to see if the seemingly random
memory accesses address the same 256-bit word in memory.
If so, the requests are be coalesced into a single data transfer,
improving memory throughput.

Local memory is used by work groups to enable synchronized
exchange of data. To synchronize threads within a work-
group, barriers/memory fences are used to force threads to
wait on one another before proceeding further. This allows
complex algorithms that require collaboration of threads to
be implemented (ex. bitonic sort).

Local memory is implemented using on-chip memory. It has
short latency and multiple ports, allowing the kernel to ac-
cess it efficiently. To do this we create a shared memory
space for each load and store unit to any local memory. For
example, if a kernel uses an array which it reads and writes
a total of 4 times, then the compiler creates four memory
ports for local memory. The four ports are logical (not phys-
ical), and are then mapped into a set of dual-ported on-chip
memory modules. In a case where it is necessary to read
more data in one cycle than the dual-port memory can pro-
vide we split memory into banks to enable faster data access,
allowing for higher on-chip memory bandwidth.

Private memory is implemented with registers that store the
data on a per-thread basis, and are pipelined through the
kernel to ensure that each thread keeps the data it requires
as it proceeds with the execution through the kernel.

9. OPENCL-SPECIFIC FEATURES
OpenCL defines features to allow synchronization of threads,
such as barriers. In our framework, a barrier is a reordering
First-In First-Out (FIFO) buffer. The buffer contains dedi-
cated logic to force an entire workgroup to enter the FIFO
before the first element out of a workgroup is allowed to
exit. This ensures that all threads have stopped execution
at a predefined location and performed all data accesses as
required. This is essential, because with the exception of
barriers and memory fences the OpenCL paradigm does not
guarantee any ordering on thread execution. Thus, any data
dependencies between threads must be guarded by a barrier.

The presence of barriers can help in many applications, es-
pecially when reordering is made possible. This is because
a barrier that is followed by a global memory transation has
the property that the threads exiting the barrier are in or-
der. Thus, we can predict how they will access global mem-
ory and instantiate an appropriate memory access module
as described in the previous section.

Because we use on-chip memory for barriers and local mem-
ory, it places a constraint on how many workgroups can si-
multaneously occupy the same kernel hardware. To ensure
that this limitation is not violated, a workgroup limiter is
included inside of a kernel. It permits only a specific number
of workgroups to enter a kernel at any given time.

In addition to barriers, function calls to obtain global and
local IDs, and other work-item intrinsics are provided. In
our framework, these function calls are replaced by kernel
arguments, whose value is filled by the kernel wrapper as
each thread is issued.

10. EXPERIMENTAL RESULTS
To evaluate the quality of results produced by our OpenCL
compiler, we implemented several OpenCL applications on
a Terasic DE4 board, with the host program running on a
Windows XP64-based machine. Each application was com-
piled to generate both the host program and the kernels.
The kernels were synthesized, placed and routed using ACDS
12.0 and downloaded onto the DE4 board. We then ran the
host programs to obtain performance results, and use ACDS
12.0 report files to obtain fmax and area metrics.

10.1 Benchmark Applications
The applications we implemented are: Monte Carlo Black-
Scholes, matrix multiplication, finite differences, and par-
ticle simulation. The Monte Carlo Black-Scholes (MCBS)
simulation is an option pricing approximation. It computes
the same data as our initial case study, but it does so us-
ing a Monte-carlo approach. Each simulation in this bench-
mark requires a randomly distributed number generator, a
Mersenne Twister, as well as floating-point computations,
including exponent, logarithm and square root functions.
Matrix multiplication is an application that exhibits easy-
to-visualise parallelism. Finite differences (FD) is an ap-
plication used in Oil and Gas industries to analyze sensor
data and detect the presence of desired natural resources.
It requires a large amount of memory bandwidth to run
efficiently. Particle simulation is a demo distributed with
NVIDIA’s OpenCL package, that simulates collisions of par-
ticles in a cube. It is a broad test of language coverage.

The area and fmax measurements for each circuit are listed
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in Table 2. The first column shows the circuit name, the sec-
ond column shows clock frequency of the kernel, and the re-
maining columns show the area of each application including
the memory and host interfaces. The circuit area is specified
in terms of ALMs, FFs, number of DSP blocks and memory
bits, as well as an overall logic utilization metric (%Util) on
an Altera Stratix IV-530 device. The PCIe and DDR2 inter-
faces are included in the resource utilization, and comprise
approximately 11% of resources. The throughput of each
application is summarized in the last column of Table 2.

10.2 Discussion
Each application had its unique challanges that we needed
to address to obtain high-quality results.

Monte Carlo Black Scholes simulation requires a Mersenne
Twister to implement the random number generator. De-
scribing it is easy in Verilog, but more challenging in a multi-
threaded environment, because each thread must obtain a
specific output value from a random number sequence and
in turn generate the next random number for a subsequent
simulation. While it implies a dependency between threads,
it is possible to break that dependency by using barriers.

To do this, we synchronize the data accesses such that each
workgroup accesses a subset of random numbers, while gen-
erating values for the next simulation. When a simulation
completes, all other threads enter a barrier and wait. Once
all threads enter a barrier, they are allowed to proceed fur-
ther and compute the next result. This prevents any race
conditions from occuring. To speed the process up, local
memory is used and as such each workgroup uses a dedi-
cated random number generator, which is initialized when
the workgroup enters a kernel.

When we compare the circuit generated by our compiler to
a hand-coded implementation [17], the compiler performed
very well. We achieved a throughput of 2.2 billion simu-
lations per second (Gsims/sec) in comparison to a hand-
crafted design that achieved a 1.8 Gsims/sec [17] using two
FPGAs. The difference in the number of FPGAs used can
be omitted here, because Stratix IV device is larger than the
Stratix III FPGAs used in [17]. It is expected that the cir-
cuit designed in [17] would fit successfully providing similar
performance to our compiler-generated design if the same
Stratix IV device was used.

The matrix multiplication application (1024x1024 floating
point) uses on-chip local memory to store a part of a row
and column in local memory. Each thread reads this data,
performs a multiply-and-add operation and keeps track of
the current sum. Once a thread finishes computing a matrix
entry, it stores the result in global memory. To account for
practical aspects of this application, we chose a sufficiently
large matrix size such that external memory storage was re-
quired and the effects of communication between the FPGA
and DDR2 memory were account for. A choice of 1024x1024
matrix size was sufficient as storing three 1024x1024 matri-
ces requires 12 MBs of memory, which exceeds the on-chip
memory capacity of the Stratix-IV device.

In this application, each thread is requires to access and
process the same information other threads use. For exam-
ple, when computing a column for a resulting matrix, each
thread needs to access the same row of the first input ma-

trix causing contention for memory access. To alleviate the
problem, we vectorize the kernel to allow each thread to si-
multaneously perform a computation for four matrix entries.
This increased our throughput by a factor of 4.

To utilize the high memory bandwidth, the inner loop is
unrolled to perform 64 floating-point multiplications and
addition simultaneously. This implementation permits a
maximum throughput of 89.6 GFLOPS and we achieve 88.4
GFLOPS with some losses due to communication with the
host. In comparison to [18], our compiler produces a faster
circuit (16ms [18] to compute 64x64 matrix multiplication).
A recent work using double-precision floating point on a Vir-
tex5 device showed a performance of 29.8 GFLOPs [19]. A
throughput of approximately 15.6, 15 and 8 GFLOPS was
also reported in [20], [21] and [22] respectively. Integer ma-
trix multiplication was implemented in [23], where 128 cores
filled a Xilinx Virtex5 device. Our implementation com-
prises a pipeline of 500 clock cycles, still leaving a significant
amount of the FPGA unused. This demonstrates that while
an FSM-based approach can produce a small circuit for a
single thread, over many threads a pipeline-based approach
is superior.

The Finite Differences application is similar in nature to ma-
trix multiplication in that the key operations happen in a
tight loop comprising floating-point multiplication and ad-
dition. However, the data access pattern is irregular, thus
lower bandwidth to global memory is achieved. Also, after
each iteration of the loop, more preprocessing is required
than in the case of matrix multiplication. While an FSM-
based HLS compiler would attempt to apply loop pipelining
in this case, it is not a necessary step in our flow. The key
reason for it is that the design is already pipelined, so while
each thread is takes several cycles to process the loop, several
threads are being processed through the same loop simulta-
neously. Because we have many threads reading data from
memory, we can detect when a series of threads accesses se-
quential memory locations and optimize memory accesses.
In a case of loop pipelining, we would be accessing data in
strides unless it was reordered in memory.

The final application is a particle simulation. The most time
consuming part of this application is collision detection. It
comprises several steps: partitioning, sorting and collision
computation. Partitioning divides the cube in which parti-
cles collide into smaller subcubes. Each particle in a sub-
cube is known to only be able to collide with particles within
the same subcube, or one of the 8 adjacent subcubes. The
particles are then sorted based on the subcube index they
belong to. Once sorted, the collision detection is engaged
independently for each subcube.

In this application, the constant exchange of data between
the host, the FPGA and the GPU slows down the processing.
The processing of a single frame on an FPGA takes only
9ms, while the remaining time is spent copying data from
the FPGA to the GPU for rendering.

11. CONCLUSION
In this paper we presented the prototyping and development
of an OpenCL-to-FPGA compiler. We showed through two
case studies that the OpenCL-to-FPGA flow is not only fea-
sible, but also effective in designing high-performance cir-
cuits. When discussing the initial case studies, we covered
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Table 2: Circuit Summary and Application Throughput Results
Circuit Fmax ALUTs FFs DSPs Mem. Util Num. Throughput
Name (MHz) Mbits (%) copies
MCBS 192.2 175687 261716 988 6.56 71% 12 2181 MSims/sec

MatMult 175 204894 254880 1024 5.12 80% 1 88.4 GFLOPS
FD 163.5 125662 180321 108 5.05 55% 4 647.6 Mpoints/sec

Particles 179.2 168527 206137 444 7.39 69% 1 62 FPS

major lessons we learnt from this process that helped us
shape the architecture of the automated compiler. These
lessons were incoporated in the framework, which we imple-
mented and evaluated on a set of applications.

Our work shows OpenCL is well-suited to automatic gener-
ation of high-performance circuits for FPGAs. Our frame-
work generated circuits for the benchmark suite that provide
high throughput and has been shown to have a wide cov-
erage of the OpenCL language, including synchronization
using barriers, support for local memory, as well as floating-
point operations. In addition, the framework includes a host
library to communicate with kernels over PCIe interface. Fi-
nally, we have shown the ability to automatically implement
complex OpenCL applications that comprise not only an
FPGA-based computation engine, but also host processing
that interfaces with peripherals such as a GPU.

The circuits generated by our compiler are very different
from what a GPU-based implementation would look like.
While at the high-level, the system components are similar,
their architecture at the low level accounts for the difference.
While on GPUs each processing core performs operations in
a SIMD fashion, in our architecture each thread executes
a distinct operation on a distinct set of data. Thus in a
true sense, this kernel architecture is a multiple-instruction
multiple-data style design. This accounts for its size, and
also high performance.
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Abstract— This paper proposes a service-oriented 

communication platform enabling the provision of scalable smart 

community services. The proposed platform is managed and 

operated using Extensible Markup Language (XML) that has 

advantages in terms of flexibility, cost-effective implementation 

and affinity with databases. In practice, the platform is embedded 

into distributed communication nodes, e.g. routers, switches and 

home gateways, and both existing IP services and smart 

community services are provided over public networks. This 

platform should provide a lossless data correction for the 

application of smart grid because it is calculate average or total 

electric power consumption in order to maintain the stability of a 

power grid. To achieve the lossless data correction, database 

insertion architecture was implemented on FPGA and ASIC 

environment. Moreover, as an application, a building energy 

management system (BEMS) using the platform is demonstrated. 

The feasibility of the network architecture with the platform is 

discussed based on experimental results of data acquisition and 

control in the BEMS demonstration. 

Index Terms—Energy management, Smart grids, Coprocessors, 

Service-oriented Network, Optical communication equipment 

I. INTRODUCTION 

HE situation around information is going through great 

change due to the improvement in its value. We are 

developing, implementing and evaluating energy management 

system in smart grid. Smart grid is shortly the integration of 

energy infrastructure and information and communication 

technology. This integration is not limited in an energy area but 

any kind of infrastructure is shifting to a smart system. In these 

smart infrastructures, the role of information systems becomes 

more important and is required to be more flexible to cache the 

great change. In this paper, though we focus on the smart grid 

area 

Many different approaches are currently utilized in the field 

of integrated network control systems, known as smart grids. 

We implemented an energy management system with the aim 

of developing a future integrated infrastructure for this area. It 

is difficult to connect heterogeneous systems that contain 

different data structures and standards. Even if a system can 

correct data from the heterogeneous systems, the difference of 

required latency, jitter, reliability and privacy policy may cause 

a problem in a real installation. We considered distributed and 

shared operations in a large system containing various 

subsystems. This concept maintains interoperability between 

 

 
 

heterogeneous systems. The concept was demonstrated at the 

Fukue Port Terminal building in Goto City, Nagasaki 

Prefecture, and the area of Kurihara City, Miyagi Prefecture. A 

field demonstration of the energy management system was 

conducted. This system uses a variety of devices that are 

produced by seven different companies. An air-conditioning 

control system to reduce carbon dioxide emissions and achieve 

electric-load leveling with a battery was implemented and 

experimented with as an application of the proposed system. 

The battery was emulated by real-time system simulation as 

hardware-in-a-loop system. 

In the future, it is expected that the smart grid will be 

developed into the smart community based on the broadband 

ICT infrastructure [9]. The smart community generates not only 

existing IP traffic but also real-time machine-to-machine 

(M2M) traffic including smart grid traffic [10]. Kim et al. [11] 

proposed a data-centric information infrastructure for the smart 

grid. Liu et al. [12] presented fundamental models to operate 

the smart grid in an integrated manner. The authors have been 

developed EMS applications using an Extensible Markup 

Language (XML)-based platform [13]. However, the 

communication platform to provide the smart community 

services with various requirements has not been studied. In the 

smart community, centralized and decentralized data 

management should be combined appropriately according to 

the requirements of each service [14], and therefore a 

service-oriented communication platform is needed. 

This platform should provide a lossless data correction 

method for the application of smart grid because it is calculate 

average or total electric power consumption in order to 

maintain the stability of a power grid. To achieve the lossless 

data correction, database insertion architecture was 

implemented on FPGA and ASIC environment. 

Data Stream Management Systems (DSMS) are a new class 

of management systems that handle enormous data streams 

[15][16][17]. DSMS makes it possible to look up all the data 

without accumulating the data in an external storage system. A 

feature of DSMS is the constant processing of data generated at 

a high bit rate by several sensors in real time. Thus, DSMS is 

required to produce high-speed data streams. DSMS assumes 

an application such as monitoring an RSS (RDF Site Summary) 

stream, stock trading, or RFID (Radio Frequency 

Identification) Management. For example, an online stock 

trading system requires enormous processing throughput of up 

to hundred thousand transactions per second. About one Kbyte 

of data per transaction is inserted when considering an average 
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size packet. Moreover, it is known that 25,000 transactions are 

concentrated in a peak period and the average packet size is 

about 1,300 bytes. In this case, the total required throughput can 

be calculated as 25,000  1,300  8 = 260Mbps [18]. Thus, the 

throughput required for DSMS is 260 Mbps at most. A database 

used on the Internet has to handle packets at the wire-rate 

without fail. This means the database also requires 

multi-gigabit-speed insertion. Therefore, it is difficult to 

perform the required throughput using existing software-based 

DSMS. 

 The Oracle TimesTen In-memory Database is a product 

for real-time data management. An In-memory Database 

(IMDB) achieves high-speed data processing by storing all the 

data in a main memory, which enables the application to access 

data directly. In addition, this makes it possible to perform 

rapidly and it can process a transaction in tens of microseconds. 

TimesTen allows the users of an application to access a 

database, select their data, or update information with the 

required high throughput execution. This technology can be 

widely applied to systems that need high-speed processing such 

as online stock trading or an information superhighway, which 

was difficult to apply with a general database before. 

According to the TimesTen IMDB white sheet, the average 

turnaround time is 30 µs when a tuple of data is inserted [19]. 

The average turnaround time is 11 µs when a tuple of data is 

read. If we capture traffic data over the internet using TimesTen, 

we can regard a tuple of data as a segment of packet data. The 

average packet size is about 1,300 B and we consider the size of 

tuple as 1,300 B. In this case, the required throughput of the 

reading process can be calculated as 1,000,000/11  1,300  8 = 

950 Mbps, while the throughput of the writing process can be 

calculated as 1,000,000/30  1,300  8 = 350 Mbps. Network 

traffic flows at a multi-gigabit rate over the Internet and it is 

difficult for TimesTen to perform the necessary throughput. 

Therefore, TimesTen cannot achieve the required throughput 

for storing traffic in memory, although it achieves the required 

throughput for data capture to application users. 

This means XML-based communication platform available 

for flexible data acquisition and control (DAC) is required in 

the smart community. XML-based communication platform 

has advantages in terms of flexibility, cost-effective 

implementation and affinity with databases. Firstly, the 

heterogeneity in the smart community and the need for protocol 

convergence are clarified. In addition, an Ethernet Passive 

Optical Network (EPON)-based network architecture [20] 

enabling the provision of scalable smart community services is 

proposed. In this research, we focus on a scalable EMS 

application providing home EMS (HEMS), building EMS 

(BEMS) and cluster EMS (CEMS) services. This paper 

discusses the feasibility of the proposed network architecture 

with the service-oriented communication platform based on 

experimental results of DAC in a BEMS demonstration. 

Additionally, hierarchical cloud services by using passive 

optical network and contents-based routing on a special router 

with hardware designed database manager as an infrastructure 

of future smart grid. Our results demonstrate the effects of the 

proposed platform and its advantages. 

This paper is organized as follows. The following section 

clarifies technical issues to provide the scalable smart 

community services. Section III proposes the XML-based 

communication platform. Section IV presents the configuration 

of the BEMS demonstration in Fukue Island, Nagasaki, Japan 

and the network architecture including EPON-based access 

networks. The experimental results in the BEMS demonstration 

are shown in this section. In section V, real-time data correction 

is discussed as an future application of smart grid infrastructure. 

Finally, our conclusion is described in Section VI. 

I. TECHNICAL ISSUES IN SMART COMMUNITIES 

This section describes heterogeneity in smart communities 

and the concept of protocol convergence to resolve the 

heterogeneity. 

A. Heterogeneity in  Smart Communities 

The smart community is a kind of “system of systems,” and 

includes many and various subsystems such as power systems, 

information/communication systems, intelligent transport 

systems (ITSs), electric vehicles (EVs) and information 

appliances. Currently, each subsystem is designed based on 

different existing standard technologies. Therefore, it is 

difficult to ensure the interconnectivity and interoperability 

among the subsystems. If available protocols are restricted by a 

new standard, the interoperability is ensured at the cost of the 

flexibility. 

However, it is not realistic that available protocols are 

standardized for each interface in the smart community, since 

there are too many exchanged data and infrastructures. In such 

a heterogeneous environment, it is a better solution to develop a 

common platform which can flexibly operate and manage any 

existing protocols. In other words, we need to select and 

combine appropriate standard technologies according to 

requirements and data semantics when we construct a smart 

community system.  

B. Protocol Convergence 

 

 
From the viewpoint of applications, all infrastructures and 

protocols are considered as resources to manage and operate the 

smart community as shown in Fig. 1. For example, there are 

various standard technologies related to medium, quality of 

 

Fig. 1. Convergence of protocols related to smart communities. 
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service (QoS) and security. In practice, the infrastructures are 

connected by networks, and the standard technologies are 

available as resources beyond the range of each area. A 

service-oriented communication platform is expected to enable 

flexible management of the resources effectively. In addition, 

the platform should be flexible, cost-effective and compatible 

with cloud services, since the future smart community 

application is expected to work in collaboration with other 

IP-based services such as triple-play services. 

In this research, the interface between the resource and the 

platform, and the interface between the application and the 

platform are designed so as to meet the above conditions. By 

using a formatted application-level message, a resource 

management server on the platform collects any information as 

configurations or specifications of each component of 

subsystems. This scheme enables flexible use of appropriate 

lower-layer protocols and standard technologies with fulfilling 

each requirement. 

 

 

II. SERVICE-ORIENTED COMMUNICATION PLATFORM 

This section proposes a service-oriented communication 

platform enabling the provision of scalable smart community 

services. The proposed platform is managed and operated using 

Extensible Markup Language (XML). The message format 

described in XML is also explained. 

A. Platform and Interface Design 

Fig. 2 shows the system model of the proposed smart 

community. The system is comprised of “Resource (RS)” 

domain, “Application (AP)” domain and “Platform (PF)” 

domain. The role of each domain is described. 

1) RS Domain: The RS domain includes available 

infrastructures and standard technologies/protocols. For 

example, storages, EVs, home appliances, sensors, actuators, 

communication networks and renewable energy sources are 

infrastructures. On the other hand, interfaces, QoS control 

protocols, authentication mechanisms, protection architectures 

are standard technologies/protocols. All the infrastructures and 

standard technologies are available for the smart community 

applications. 

2) AP Domain: The AP domain includes any applications 

and services. For example, air-conditioning control algorithms, 

lightning control algorithms, energy management algorithms 

and any other algorithms are implemented as application 

software. In addition, visualization services of power 

consumption and home security services are provided as one of 

the smart community services. The smart community 

applications and services access the resource information 

through the platform. 

3) PF Domain: The PF domain includes distributed databases 

for DAC. All information on available infrastructures and 

standard technologies/protocols are stored in the databases. The 

databases have management tables of the data collected from 

the RS domain. The collected data are classified according to 

the QoS level, security level, reliability level, and other basic 

levels. The advantages of the XML-based platform are 

summarized as follows.  

Flexibility: The application-level platform should not be 

restricted by the lower-layer protocols or standard technologies. 

Thus, it allows the applications and services to flexibly operate 

and manage the resources. Using XML tags is a good solution 

for providing the flexibility of adaption and enhancement in 

exchanging any kinds of information concerning system 

resources because it is enough to designate the guidelines of tag 

naming and utilization. 

Cost-effective implementation: The XML specification is 

released by the World Wide Web Consortium (W3C), and can 

be utilized by any users. Many applications and services are 

constructed on the XML based handler or driver. It is easy for 

users to create synergy effects by using mashup technology. 

The XML-based platform is suitable for open innovation. The 

XML description is also suitable for the applications which 

have the possibility to be used extensively in combination with 

other cloud services. 

Affinity with databases: The smart community service is a 

wide area service, and it collects massive data sets such as 

sensor data, operation logs or operation commands from the 

subsystems. In other words, a data center in the smart 

 
 

Fig. 2. XML-based communication platform for smart communities. 

 
(a) Message description in data acquisition 

 

 
(b) Message description in database selection 

 

Fig. 3. Examples of XML-based messages. 
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community has to manage a lot of data. Using the XML 

database is a direct solution of this requirement. In common use, 

general database management systems are enough to manage or 

store data elements implemented using XML-based and 

hierarchically-designed tables. 

4) RS-PF Interface: The RS-PF interface is defined to realize 

DAC in the smart community. For example, distributed 

protocol converters collect sensor data from installed sensing 

devices, and send them to resource management servers on the 

platform using XML-based messages. In addition, the control 

data stored in the resource management servers are sent to the 

installed control devices by using XML-based messages. 

5) AP-PF Interface: The AP-PF interface is defined to realize 

database selection and insertion. For example, the applications 

access resource management servers on the platform using 

XML-based messages, and obtain sensor data from the resource 

management servers. In addition, control data calculated by 

applications are sent to the resource management servers using 

XML-based messages. 

6) PF-PF Interface: The PF-PF interface is defined to 

exchange stored data between databases. For example, 

distributed resource management servers on the platform share 

battery information of EVs using XML-based messages, and 

provide navigation services to drivers. In addition, database 

sharing makes it possible to provide virtualized cloud services. 

B. Massage Descriptions 

To exchange data through the RS-PF, AP-PF and PF-PF 

interfaces, it is necessary to define the format of XML-based 

messages. The message through the RS-PF interface is 

illustrated in Fig. 3(a), and the message through the AP-PF 

interface is illustrated in Fig. 3(b). 

1) Overview: The message starts with the definition of XML 

version. The message description is compliant with XML 1.0 

released by the W3C. The message is comprised of a header 

element and a body element. Both the header and body 

elements are described between start tag <inms> and end tag 

</inms>. 

 

2) Header Element: The header element is described between 

start tag <header> and end tag </header>. In the header element, 

the description of format version, device ID and time stamp is 

mandatory requirement. The format version, device ID and 

time stamp indicate the version of message format, ID of a 

message aggregator, e.g. an XML converter, and aggregation 

time, respectively. The format version is described between 

start tag <version> and end tag </version>. The device ID is 

described between start tag <id name=“device”> and end tag 

</id>. The time stamp is described between start tag 

<timestamp name=“timezone”> and end tag </timestamp>. In 

Fig. 4, JST means Japan Standard Time. 

3) Body Element: The body element is described between 

start tag <body> and end tag </body>. The body element 

includes at least one group element, all user data are described 

between start tag <group name=“group name”> and end tag 

</group>. The nested structure of the group elements is allowed. 

In the group element, the description of time stamp is 

mandatory requirement in the same way as in the header 

element. 

Two description examples of the XML-based messages are 

also described in Fig. 3. Fig. 3(a) shows the situation that the 

sensor data are sent from the RS domain to the PF domain and 

written to the database on the platform. Fig. 3(b) shows the 

situation that the sensor data stored at the database on the 

platform are sent from the PF domain to the AP domain. The 

sensor data are described between start tag <direction 

name=“data name” type=“device type” id=“device id” 

action=“action mode”> and end tag </direction>. The tag 

<direction> is replaced by the tag <in>, which means input to 

the PF domain, or the tag <out>, which means output from the 

PF domain. The attribution “action mode” is replace by “read” 

(selection), “write” (insertion), “ack” (acknowledgment) or 

“transfer” (insertion and transfer). The description of all 

attributions is mandatory requirement. 

III. SYSTEM CONFIGURATION 

This section presents the configuration of the BEMS 

demonstration using the proposed service-oriented platform. In 

addition, a future network architecture including EPON-based 

optical access networks is proposed for scalable smart 

community applications. 

A. BEMS Demonstration 

Fig. 4 shows the configuration of the demonstration system 

constructed in Fukue Island, Nagasaki, Japan. The system was 

developed in 2011 through the project supported in part by the 

Ministry of Internal Affairs and Communications (MIC) of 

Japan. The system includes various subsystems such as 

environmental sensors, photovoltaic generation system, power 

measurement system, air-conditioning control system, EVs, 

plug-in stands, resource management servers and 

communication networks. Each subsystem was developed by 

different vendors based on different standard technologies. 

Both pre-installed and newly-installed devices are mixed. 

Scalable and integrated control of the heterogeneous BEMS 

was achieved by using the proposed XML-based 

communication platform. 

1) Environmental Sensors: The environmental sensors 

 
 

Fig. 4. System configuration of BEMS demonstration.\ 
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measures temperature, humidity, lighting intensity, CO2 

concentration, wind speed and the presence or absence of 

humans. All environmental sensors are powered by attached 

small photovoltaic panels. 88 environmental sensors were 

installed at restaurants, conference rooms, shops and shared 

spaces in the building, and connected to the XML converter. 

All the environmental data are sent to the resource management 

servers in any one minute using XML-based messages. 

2) Photovoltaic Generation System: The 12 kW-class 

photovoltaic generation system includes 96 photovoltaic panels 

and a power conditioner. The photovoltaic panels were 

installed at the parking area of the building. The power 

conditioner converts the DC power generated by the 

photovoltaic panels to AC power at 60Hz. After that, the 

generated AC power combined with the AC power at 60 Hz is 

transmitted to the building. The environment and generation 

data such as temperature, solar radiation intensity, generated 

power, voltage, current and frequency are sent to the resource 

management servers every 10 seconds through the XML 

converter. 

3) Power Measurement System: The power measurement 

system is comprised of 186 sensors, and measures power 

consumed by air-conditioning machines, lightning devices and 

outlets. The sensors are connected to the XML converter. The 

measured data, i.e. voltage, current, instantaneous power and 

power factor, are sent to the resource management servers in 

every 5 seconds using XML-based massages. 

4) Air-Conditioning Control System: The air-conditioning 

control system achieves on/off control of the air-conditioning 

machines to reduce the power consumption. In the AP domain, 

the on/off scheduling of the air-conditioning machines is 

designed based on the static algorithm [13]. The static 

algorithm decides the on/off schedule in advance. In the PF 

domain, the scheduling tables on the platform are updated 

according the algorithm. In the RS domain, the relay switches 

connected to the air-conditioning machines are controlled 

according to the on/off scheduling. The air-conditioning 

control system using radio frequency identification (RFID) 

authentication was also installed in the building. The system 

turns on the air-conditioning machines when anyone exists in 

the room. The system turns off the air-conditioning machines 

when no one exists in the room. The personal data stored in the 

RFID tag are sent to the XML converter through 3G wireless 

communication, and then sent to the resource management 

servers using XML-based messages. 

5) EVs and Plug-in Stands: In Fukue Island, 100 EVs are 

already installed by the Nagasaki EV&ITS Consortium, and 

quick chargers for the EVs are deployed for public use. This 

research used two EVs and quick chargers. The charging 

information is converted to XML-based messages, and sent to 

the resource management servers through wireless 

communication. The environmental data in the EVs measured 

by the environmental sensors are converted to XML-based 

messages, and sent to the servers through wireless 

communication. The driving history of the EVs obtained by the 

global positioning system (GPS) are also converted to 

XML-based messages, and sent to the servers through wireless 

communication. 

6) 

Resource Management System: The resource management 

servers manage all data obtained from the BEMS and provide 

the service-oriented communication platform. In the servers, all 

collected data are converted to application-friendly format by 

the XML parser, and stored at the PostgreSQL-based database, 

which is a kind of open-source object-relational database 

management systems, on the platform. One of the servers is 

located at the building, and the other is located at Keio 

University, Yokohama, about 1000 km away from the building. 

IV. EPON-BASED SMART COMMUNITY ARCHITECTURE 

This section describes the architecture of EPON-based smart 

community architecture and its experimental results in the 

BEMS demonstration using the proposed communication 

 

Fig. 6. Data visualization in BEMS demonstration. 

 
Fig. 5. System configuration of smart communities using EPON-based optical access networks. 
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platform, and discusses the feasibility of the future smart 

community architecture from the viewpoint of the network 

delay. Fig. 5 shows a system configuration of the proposed 

smart communities we are currently planning to construct. The 

network architecture includes wide-area core/metro networks, 

EPON-based optical access networks and home area networks. 

The future smart community system should be managed and 

operated by the distributed and service-oriented 

communication platform (PF) in an integrated manner. The 

EPON-based optical access network is suitable to provide 

flexible, cost-effective and broadband services especially in an 

urban area. 

The EPON is comprised of one optical line terminal (OLT) 

located at a telecom central office (CO) and multiple optical 

network units (ONUs) located at user premises. The OLT and 

ONUs are connected by optical fibers and optical power 

splitters (OPSs). In the EPON system, the transmission of 

downstream signals to the ONUs is based on time division 

multiplexing (TDM), and the transmission of upstream signals 

from the ONUs is based on time division multiple access 

(TDMA). In addition, the upstream and downstream signals are 

multiplexed by wavelength division multiplexing (WDM) 

technology. 

Currently, most of the HEMS and BEMS services are 

provided using a kind of home gateway (HGW). In the BEMS 

demonstrated in Nagasaki, the resource management server 

installed in the building has a function as the HGW. In future 

smart communities, large-scale EMS services may be provided 

using cloud servers located at distant data centers. However, 

mission-critical services including sensor/actuator networks 

and emergency services, which require several-millisecond 

delay, cannot be provided through the large-scale core/metro 

networks because the data are delayed for more than 100 ms. 

In the proposed architecture, any communication nodes, i.e. 

not only ONU/HGW but also OLT, switches and routers, have 

the service-oriented platform to analyze the data exchanged 

through them. For example, if the data are to be used only in the 

local area, the OLT does not transfer the data to core/metro 

networks and transfer them to the destination directly. The 

routing is performed not only using the destination address of 

packets but also based on the application-level data analysis. 

This technique enables the provision of scalable smart 

community services including the mission-critical services and 

the existing IP services. In addition, since unnecessary data are 

not transferred to core/metro networks, it leads to secure data 

management and traffic reduction of core/metro networks. 

A. BEMS Demonstration 

In the experiment, all the collected data were visualized on 

the web, and air-conditioning machines of the building were 

controlled based on the static algorithm [13]. Following 

services are implemented on the platform using the proposed 

XML-based platform through a common application program 

interface (API). The applications are not limited in the 

followings. We also developed similar systems at Kurihara, 

Miyagi, Japan, and at the campuses of Keio University, 

Yokohama, Japan. We are going to connect these different 

BEMS and construct a CEMS by using the API and the 

XML-based platform. 

Fig. 6 shows an example of the data visualized on the web. 

Temperature, humidity, energy consumption of the 

air-conditioning machine and total energy consumption in a 

room are visualized. For example, we can confirm that the 

temperature varies from 23.7 degrees C (during the daytime) to 

26.38 degrees C (during the nighttime). The energy 

consumption of the air-conditioning machine during the 

nighttime was 0 kWh, since the air-conditioning machine was 

turned off by users. This visualizer can depict all measured 

sensor data. The data are stored in the resource management 

servers located at the building and Keio University, distributed 

to the all visitors of the terminal building and used to voluntary 

energy saving and effective use of EV quick charger. 

The air-conditioning control was also performed by the static 

algorithm [13]. The air-conditioning machines were turned off 

during 15 % of operating time. As a result, 13.42 % of total 

CO2 emission of the building was reduced by the 

air-conditioning control system. Questionnaires on comfort 

level were sent to 23 users of the building. If a user feels 

comfort-able as usual, the answer is 0. If a user feels 

hotter/colder than usual, the answer is +1/-1. If a user feels 

much hotter/colder than usual, the answer is +2/-2. The average 

value of the answers was about -0.33. When the 

air-conditioning control was not performed, the average value 

of the answers was about -0.37. Thus, it is confirmed that usual 

comfort level can be kept, even when the air-conditioning 

control is performed. 

B. Feasibility of the EPON-based Architecture 

The data collected in the BEMS demonstration is 

summarized in Table I. We collected approximately 2 million 

data per day. In the BEMS, the average data rate through the 

server was less than 1 Mbps. In the future CEMS using the 

proposed smart community architecture shown in Fig. 5, 

however, the data is collected at the OLT. The existing IP 

services such as triple-play services and the smart community 

services including mission-critical services have to be provided 

simultaneously. In this case, the traffic is estimated to grow to 

 
(a) Experimental setup for delay measurement 
 

 
(b) Upstream and downstream delays of modeled traffic 
 

Fig. 7. Experimental setup and results. 
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approximately 100 Mbps. 

To confirm the feasibility of the proposed architecture, we 

measured the upstream and downstream delays of the EPON. 

The experimental setup for delay measurement is illustrated in 

Fig. 7(a). One OLT was connected to three ONUs using an OPS. 

For the upstream/downstream directions, the background 

traffic data were sent from/to ONU2 and ONU3. The upstream 

and downstream delays through ONU1 were measured. The 

experimental results are shown in Fig. 7(b). The average 

upstream delay varies from 0.9 ms to 1.5 ms. The average 

downstream delay was around 35 µs regardless of the 

background traffic. It was confirmed that the average round-trip 

transmission delay in the EPON is approximately 1.5 ms. The 

proposed architecture can accept mission-critical services 

which cannot be provided by distant data centers. 

C. Experimental Results 

To confirm the feasibility of the proposed architecture, we 

measured the upstream and downstream delays of the EPON. 

The experimental setup for delay measurement is illustrated in 

Fig. 7(a). One OLT was connected to three ONUs using an OPS. 

For the upstream/downstream directions, the background 

traffic data were sent from/to ONU2 and ONU3. The upstream 

and downstream delays through ONU1 were measured. The 

experimental results are shown in Fig. 7(b). The average 

upstream delay varies from 0.9 ms to 1.5 ms. The average 

downstream delay was around 35 µs regardless of the 

background traffic. It was confirmed that the average round-trip 

transmission delay in the EPON is approximately 1.5 ms. The 

proposed architecture can accept mission-critical services 

which cannot be provided by distant data centers. 

  

V. REAL-TIME DATA CORRECTION 

When network applications exchange large number of data 

including smart grid information over the Internet, to correct 

these data and achieve the selection process as a database 

management system becomes important to accomplish a quick 

response from critical status of power grids. The benefit of 

handling the content of packets mainly exchanged among 

electric devices at a router is great, but this benefit is not widely 

exploited by existing network infrastructures. This is because a 

router or other network device has to guarantee the full-cost 

wire-rate processing of packet stream reconstruction. Thus, the 

cost of high speed processing and high memory requirements is 

a major issue. To solve these problems, several studies have 

proposed the construction of streams from packets. 

Not limited in this smart grid area, network streams contain 

useful information such as the creation time of a stream or a 

history of user behavior on the network, which is not exploited. 

We propose high-throughput insertion hardware to accelerate 

the process and prevent the correction of important packets 

including smart grid protocols. 

A. Data correction on a router and DBINS Co-processor 

The peak throughput of Internet traffic is always changing 

because it depends on time, events, and the network 

environment. In this kind of sever condition, lossless correction 

of required packet is indispensable for the future smart grid 

infrastructure on the Internet. In smart grid area, as described in 

EPON-based architecture, quick response is the most important 

requirement for maintaining the stability of a power grid. 

Nowadays, cloud based power grid control is well discussed. 

However, we can say to achieve this control on a cloud service 

is difficult because the required delay for the stability is up to 

several milli-seconds. Within this delay, communication, 

calculation and control have to be finished. To address this 

timing critical application, the intermediate network device, a 

router can help the real-time control on the Internet. 

As the first step of this application, we design the DBINS 

co-processor that achieves lossless filtered packet correction 

and management. This is a core function of the database 

insertion hardware. The DBINS Co-processor consists of three 

hardware modules; DB Insertion Engine (DBINS Engine), 

Archiving Engine, and In-memory Reading Engine (Fig. 8). 

The DBINS Engine allows us to insert captured data into IMDB 

at a multi-gigabit throughput rate. The Archiving Engine 

migrates data from IMDB to a disk-based database, while the 

IMDB Reading Engine is a mechanism for preprocessing the 

basic functions of stream processing such as selection, 

projection, and joining. In this study, the DBINS Engine is 

focused on satisfying wire-rate database insertion. 

In-Memory DB

bank1

bank2

Disk-based DB

Archiving Engine

IMDB Reading Engine

DBINS Engine

Index
Memory

DBINS Co-Processor

Memory
Manager

Stream 
Processing 

Engine

Captured Data

 
Figure 8. DBINS Co-processor 

B. Implementation 

 When DBINS Engine stores network stream into an 

IMDB, it is inefficient to store all data, so it is necessary to 

extract the required data selectively according to a query issued 

by users. It is also desirable that the data is listed based on the 

TABLE I 

DATA COLLECTED IN BEMS DEMONSTRATION 
 

Type 
Number 

of Sensors 
Collecti

on Interval 
Number of 

Data per Day 

Air-Conditioni
ng Control 

15 5 s 259,200 

Environmental 

Sensors 
88 1 min. 74,880 

Power 
Measurement 

186 10 s 1,607,040 

Photovoltaic 

Generation 
1 10 s 8,640 

Supplied 
Power 

2 5 s 34,560 

Total 292 - 1,984,320 
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issued query, where the stored data can be loaded as a series of 

data by high-speed selection processing. Therefore, the DBINS 

Engine creates and index that is accessible to the stored data 

according to Leaf-ID, which is the ID query key. To make the 

stored data accessible by Leaf-ID, the DBINS Engine creates 

the index shown in Table II. Next.ID Pointer is the next pointer 

in the ID list. The Share Number is the number of owners of the 

captured data. When several queries match only one packet, the 

information is recorded with this value. After the stored data is 

loaded by the selection operation, the Share Number is 

decremented, but the data is deleted if the Share Number 

becomes zero. In addition, the DBINS Engine manages the 

index of the captured data so it is scalable with an increase in 

queries, because the resources of the DBINS Co-processor are 

limited. 
TABLE II. KEYS AND POINTERS IN THE INDEX 

Keys and pointers Contents 

ID Leaf-ID 

Timestamp Packet arrival time 

Packet Size Packet Size 

Share Number The number of owners of 

captured data 

Prev. T-Pointer Previous pointer of Time-list 

Next. T-Pointer Next pointer of Time-list 

Next. ID-Pointer Next pointer of ID-list 

 

 To optimize the data structure, four different index 

structures are focused on Leaf-ID as the primary key. Part of a 

stream matches multiple queries issued by different upper layer 

applications, so it is preferable to combine the management 

information for each part. All four methods perform this 

optimization in a different way. Thus, four different index 

structures are implemented. 

In the first approach, the DBINS Engine copies the 

overlapping parts of captured data and adds a Next.ID Pointer 

to all of the generated indexes. This approach facilitates the 

selection and deletion of data, because the DBINS Engine does 

not manage the Share Number of the index. However, when the 

number of overlaps is large, the index creation throughput is 

degraded because the DBINS Engine has to make multiple 

indexes for each part of a data stream. It also causes a loss of 

memory efficiency because the same data is stored in several 

segments of the memory. Furthermore, to support newly 

extracted data arrival the DBINS Engine copies data, but it 

must have a buffer that stores the data until the copying is 

finished. 

In the second approach, the DBINS Engine adds new IDs 

based on a combination of matching queries. To insert the 

captured data, the DBINS Engine manages two tables. One 

manages the correspondence of the Leaf-IDs and the new IDs. 

The other manages the memory area of new IDs used in the 

IMDB. Using this approach, the DBINS Engine can generate an 

index at a constant rate and it has the advantage that there is no 

need to manage a large queue, unlike approach 1. However, the 

data management and index table management becomes 

complicated. Approach 2 has another drawback. If the number 

of issued query increases, the table size increase according to 

O(2n) in the worst case. Moreover, when a new query is issued, 

the DBINS Engine must refresh the entry table. 

In the third approach, the DBINS Engine adds several 

Next.ID pointers to an index. Using this approach, the DBINS 

Engine can improve the efficiency of memory usage compared 

with approach 1, while it can decrease the cost of managing the 

index table compared with approach 2. However, the index 

generation rate depends on the Share Number of the captured 

data. Therefore, when the overlap of a query is large, the index 

generation throughput is degraded. Using this approach, the 

number of Next.ID Pointers is limited by the reserved space 

because the BDISN Engine only reserves enough space for a 

fixed number of Next.ID Pointers 

The fourth approach also adds several Next.ID Pointers to an 

index. The difference from approach 3 is that the DBINS 

Engine stores the Next.ID Pointers in the IMDB. Using this 

approach, the DBINS Engine does not require a large space for 

the Next.ID Pointers in the index memory and it can support a 

larger Share Number than approach 3. However, DBISN 

Engine has to access the IMDB whenever it creates an index, so 

the throughput is worse than approach 3. 

Each processing cycle for the above approaches is shown in 

Fig. 9. The requirements for throughput, selection speed, or the 

memory utilization ratio depend on the application or services. 

Therefore, the application or service providers must choose an 

index structure that meets their requirement.   The requirements 

for throughput, selection speed, or the memory utilization ratio 

depend on the application or services. Therefore, the 

application or service providers must choose an index structure 

that meets their requirement.  

Figure 9. Processing Cycle 

 

C. Implementation of DBINS Co-processor 

The architecture of the DBINS Engine is shown in Fig. 10. 

The DBINS Engine has three blocks, Leaf-ID Module, 

Indexing Module, and IMDB Module. The Leaf-ID Module 

manages the Leaf-ID, which is added according to the query. 

The Indexing Module makes and manages the index. The 

IMDB Module stores the captured data in the IMDB. The 

procedure for storing the captured data is as follows. First, the 

header of the captured packet data is stored in the queue of the 

Leaf-ID Module while the body is stored in the queue of the 

IMDB Module. The Leaf-ID Module then checks the header 

information, which contains the Leaf-ID, timestamp, and index 

structure. The Leaf-ID Module creates a Leaf-ID Entry, which 
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contains the head address and tail address, or it loads the 

leaf-ID Entry information according to the header. Next, the 

Leaf-ID Module gets a free address from the Indexing Module, 

updates the Leaf-ID Entry, and sends the writing address to the 

IMDB Module. The Indexing Module generates an index using 

the Leaf-ID, timestamp, and index structure. The throughput of 

the Indexing module is mainly dominated by memory access so, 

to eliminate the memory access delay, the Indexing Module has 

three dedicated registers, i.e., old_ifreehead for Prev.T-Pointer, 

current_ifreehead for the address to write, and next_ifreehead 

for Next.T-Pointer. When the IMDB Module receives the 

writing address from the Leaf-ID Module, the IMDB Module 

stores it in the IMDB. 
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Figure 10. Architecture of the DBISN Engine 

D. Evaluation of DBINS Co-processor 

In this section, we evaluated the scale of the circuit and the 

throughput of the DBINS Engine. The DBINS Engine was 

implemented in Verilog HDL and it was synthesized using 

Xilinx ISE Design Suite 12.3 on FPGA (Vertex5 

XC5VLX330T). For comparison, we used Synopsys Design 

Compiler 2005.09 by FREEPDK45n Technology as ASIC 

(Application Specific Integrated Circuit) [21]. The scale of the 

circuit, latency, and maximum frequency are shown in Table III. 

The throughput of the DBINS Engine was calculated based on 

the synthesis result. The memory parameters are shown in 

Table IV. The throughput of the DBISN Engine is shown in 

Table V (synthesized using ISE Design Suite) and Table VI 

(synthesized using Synopsys Design Compiler). Where an 

off-chip memory was used as the index memory, equation (1) 

and (2) were used to calculate the cycle time. Table V and Table 

VI show the available network throughput in two cases. In case 

1, we assume the continuous storage of 50-byte packets, which 

was assumed to be the minimum size of network traffic. In case 

2, we assume the storage of an average HTML packet size in 

the Internet backbone traffic captured by the WIDE MAWI 

project [22] between 14:00 and 14:15 on July 12th in 2009. The 

traces of the anonymous filter can be downloaded from the 

MAWI site. We used special trace data that was originally 

captured in the project and not filtered. 

When the overlap of queries was four, this showed that the 

available throughput was 8.25 Gbps with a 50-byte packet size 

and 17.1 Gbps with 1306-byte packets, when the DBINS 

Engine was synthesized on FPGA. However, the throughput 

was 27.0 Gbps with a 50-byte packet size and 55.9 Gbps with a 

1306-byte packets size, when the DBINS Engine was 

synthesized in ASIC. Therefore, the DBINS Engine could 

fulfill the metro network or edge network wire speed 

requirements when the overlap was sufficiently small.  

 
TABLE III. RESULTS OF SYNTHESIS 

 
Scale Latency Max Frequency 

1  of Circuit (ns) (MHz) 

ISE # of Slices 
3.73 318 

Design Suite 475 

Synopsys (μm2) 
1.97 508 

Design Compiler 2.95 × 103 

 
TABLE IV. MEMORY PARAMETERS 

Memory 

standard 

On-chip 

memory 

Off-chip memory (QDR SRAM) 

FPGA ASIC 

WL (cycle) 1 3 8 

RL (cycle) 1 3 8 

 

 
           (                          

                               )  
                                                           ( ) 

                            

 
                 

          
                                     ( ) 

TABLE V. AVAILABLE NETWORK THROUGHPUT USING FPGA 

overlaps 

Available Network Throughput (Gbps) 

On-chip Memory Off-chip Memory 

50-byte 1306-byte 50-byte 1306-byte 

1 13.4 4.3 17.1 17.1 

2 13.4 3.8 17.1 17.1 

3 10.7 3.2 17.1 17.1 

4 8.25 2.8 17.1 17.1 

 
TABLE VI. AVAILABLE NETWORK THROUGHPUT USING ASIC 

overlaps 

Available Network Throughput (Gbps) 

On-chip Memory Off-chip Memory 

50-byte 1306-byte 50-byte 1306-byte 

1 43.9 6.4 55.9 55.9 

2 43.9 5.6 55.9 55.9 

3 35.1 4.8 55.9 55.9 

4 27.0 4.2 55.9 55.9 

VI. CONCLUSION 

This paper proposed a service-oriented communication 

platform for scalable smart community applications. In 

addition, the future smart community architecture including 

EPON-based optical access networks was also proposed. In the 

BEMS demonstration, we reduced 13.42 % of total CO2 

emission of the building without sacrifice of the comfort level. 

The feasibility of the proposed smart community architecture is 

confirmed from the viewpoint of the network delay. The 

average round-trip delay of the EPON system was less than 2 

ms, which is considered to satisfy the QoS requirement of 

mission-critical services. 

Moreover, hardware-based DBINS co-processor is proposed. 
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This hardware supports high-speed database insertion into a 

router on the Internet. We implemented it in FPGA and ASIC. 

We showed that the throughput of the proposed architecture 

satisfied the wire-rate processing of a metro network with a 

throughput of 8.25 Gbps with 50-byte packets and 17.1 Gbps 

with 1306-byte packets. It also provided the requisite 

throughput of 27.0 Gbps with 50-byte packets and 55.9 Gbps 

with 1306-byte packets when the DBINS Engine was 

synthesized in ASIC. Based upon these results, the doors of the 

future network infrastructure for true real-time services like 

smart grid can be open. 
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Abstract—We present an on-demand rapidly reconfigurable 

(~seconds) software-defined payload (SDP) architecture 

called AppSTARTM with a core in-situ re-programmable 

processing capability that supports communications, radar, 

signal analysis and other missions.  At the heart of Harris’ 

AppSTARTM SDP concept is a Virtex-based FPGA and 

interconnect fabric architecture that provides for a modular, 

flexible, scalable core capable of supporting a broad 

spectrum of missions with capabilities that can be customized 

for size, weight and power (SWaP) challenged platforms. 

Illustrating some of the capabilities evolving from this work, 

we present two real-world space qualified/qualifable SDPs, 1) 

a 100 Mbps-capable Ka-band software defined radio (SDR) 

for NASA and 2) a space-ready SAR/ISAR X-band RADAR 

based on the AppSTARTM core. We also present an 

application of this core in a payload for an reconfigurable 

multi-mission space payload.  The work described herein 

primarily leverages our space qualified V4 Processor 

employing several FPGAs in excess of 1 million gates each. 

Related work offering dramatically increased integration, 

reducing the V4 Processor card to 1 cubic inch package 

suitable SWaP challenged near-space and terrestrial 

applications is also discussed. 

I. INTRODUCTION 

Software defined radios (SDRs) have gained popularity  

due to the rapid reconfigurability of devices enabling the 

radio system to dynamically adapt to varying operational 

scenarios during a deployment or mission. Modern 

adaptation techniques include autonomous [1, 2] or 

cognitive methods [3], while traditional methods require 

external intervention (e.g. user entry or network control).  

Regardless of the adaptation method, the clear benefit is a 

single hardware platform that provides robust services over 

varying channel conditions and network connectivity, for 

example via adaptive modulation and/or waveform 

selection [4]. A key to the versatility of the SDR is that it 

relies on programmable computational hardware resources 

(e.g. DSP processors, FPGAs) rather than the dedicated 

circuitry typical in limited function MODEMS. A further 

attractiveness of SDRs is that they can be efficiently 

implemented using a high performance computing engine. 

Further, the commonality of the engine to support a 

spectrum of applications requiring advanced signal 

processing is supportable using a common tool suite and 

interfaces that enables dramatically lower non-recurring 

engineering costs, dramatically shortens development 

cycles, and improves the overall life cycle costs. This  

“This work has been reviewed IAW the ITAR, 22 CFR part120.11 

and the EAR, 15 CFR 734(3)(b)(3) and may be released without export 
restriction. Harris Corporation  may hold specific patent rights pertaining 

to techniques disclosure herein.  

paradigm has been exploited in the development and real-

world application Harris’ V4 Reconfigurable Space 

Processor (V4 RSP) and highly integrated version the SiP-

100 in the AppSTARTM strategy.   

The application of software-based dynamically 

reconfigurable DSP technology in the satellite domain has 

been limited. This is due to a number of interrelated factors 

such as  

 space environment survivability 

 limited SWaP envelope  

 reconfiguration requirements 

 software deployment/management complexity  
 

However, it is possible to overcome these barriers and 

provide a highly flexible capability using an in-situ 

dynamically programmable hardware core (figure 1-1) we 

term the software-defined payload (SDP) AppSTARTM 

concept which is a more general view than an SDR.  
 

 

Figure 1-1: Software defined payload block diagram. 

An SDR is a specialized case of adapting just one sub-

system of a typical multifunction payload. The SDP on the 

other hand, is a concept where the “personality” and 

capabilities of a payload are quickly (~ seconds), and 

possibly autonomously, reconfigured on-orbit (figure 1-2) 

to meet subscriber service demands or a changing business 

model for commercial/civil space in remote sensing and 

communication.  
 

 
Figure 1-2: Notional use case for reconfigurable payload 
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This paper presents current work on a space qualified 

multi-mission payload compute-engine supporting the SDP 

concept based on an FPGA hardware architecture that 

supports complete or partial in-situ on-demand 

reconfiguration of the processing elements. We chose 

FPGAs as the computing platform to achieve a balance in 

the cost, power, performance trade-space between ASICs 

and fully programmable processors.   Our approach utilizes 

advances in radio management software, signal processing 

hardware, and adaptable systems to meet not only radio 

systems needs, but those of other missions as well such as 

signal collection/processing, communication,  RF imagery 

remote sensing (i.e. SAR/ISAR) and could be extended to 

other missions such as MOVINT (e.g. GMTI). The paper 

will also present the capability of the hardware elements 

operating in various sensor and communication 

instantiations for real-world applications.  

The paper is organized as follows. Section II discusses 

SDP concept (section II.1) and two hardware variants of 

the same core, the V4 processing element (section II.2) and 

SiP-100. We also present some of the issues and 

mitigations for a reconfigurable spaceborne platform for 

operation and survivability in various radiation 

environments (section II.3). Sections III and IV present 

application of the V4 Space Processor in a communication 

payload and a remote sensing payload. Assuming the 

existence of various RF support elements, the applications 

could be melded into a single payload. Presently we 

leverage the reconfigurability of the hardware platform by 

merely loading different application software/firmware to 

customize the processing resources to the target 

application. The paper concludes with some closing 

commentary in section V.  

II. FPGA-BASED SOFTWARE DEFINED 

PAYLOAD  

II.1 AppSTAR
TM

 SDP Concept  
 

Harris has been delivering multi-processor based Software 

Defined Payloads (SDP) since 1998 resulting in a 

development path from general purpose RISC processor-

based architectures to today’s modern SDP architectures 

based on Xilinx Virtex FPGAs. With the advent of high 

performance FPGA processors, and techniques [6] which 

allow them to operate in space environments, the 

performance and reconfigurability necessary to tackle 

more complex processing scenarios has become 

increasingly viable.  

 

The high-level block architecture of a generic AppSTARTM 

SDP is illustrated in Figure 1-1. The basic elements of the 

system are the General Purpose Processing (GPP) 

Subsystem, the Signal Processing Subsystem, and the RF 

Front End Electronics Subsystem [6].   The GPP controls 

the payload operations and includes functions to load 

waveforms or configuration data. The GPP includes a 

common set of software infrastructure components that 

provide essential system management functions regardless 

of payload function through a consistent set of interfaces to 

configure, manage, and control the system hardware 

resources. The digital I/O cards provide standard interfaces 

to the vehicle, and can be customized for unique needs of a 

particular point application. The RF electronics are 

generally a separate package from the digital subsystems 

so that the RF functionality may be placed close to the 

aperture which tends to benefit overall system 

performance. The signal processing subsystem is a prime 

focus of this paper. The configuration of the signal 

processing subsystem dictates the function of the payload. 

This is the core of the AppSTARTM  concept. 

 

A fundamental tenet of the Harris approach has been the 

incorporation of standards and leveraging commercial off 

the shelf (COTS) products to the greatest extent possible 

into the radio architecture. Operation of the Harris SDP 

utilizes a mix of commercial-off-the-shelf (COTS) 

hardware and software. A commercially available real-

time operating system (RTOS) provides the key interface 

between the hardware and operating environment (OE). 

The OE is based on the NASA Space Telecommunications 

Radio System (STRS) infrastructure. The system 

backplane uses the compact Peripheral Connect Interface 

(cPCI) standard. As a physical interface standard, 

Spacewire using the Remote Memory Addressing Protocol 

(RMAP) is employed to provide the intra- and 

intercomponent communications. 

 

In prior work, limited to SDRs, it was found that requiring 

knowledge of the underlying physical architecture was a 

significant impediment to waveform porting and third 

party development in FPGA implementations [7]. 

Therefore, a key design objective in SDP using the V4 

Space Processor is to enable third party development, 

while ensuring that the application will not harm the 

hardware or other payloads on the spacecraft. To achieve 

these opposing objectives, a set of Hardware Description 

Language (HDL) modules have been designed and 

implemented to abstract the hardware details of the SDR 

and provide a standard interface for payload developers 

and mission planners [7, 8]. Hardware abstraction is a key 

aspect of developing a software radio that promotes 

extensibility and new application development [8]. 

Additional work is needed to create abstractions of 

processing elements representing an entire spacecraft bus 

that uses a single or set of SDPs in order to promote the 

inclusion of third parties in evolving applications for 

reconfigurable spacecraft. We have taken some first steps 

in this direction with hardware abstractions of the SDR [8]. 

These abstractions have led to the ability to easily use the 

V4 Space Processor in several remote sensing applications 

in addition to the communication applications it was 

envisioned for.  
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II.2  The V4 Reconfigurable Space Processor  
 

The V4 Reconfigurable Space Processor (V4 RSP) is 

shown in figure 2-1 and is a core element of the SDP 

concept (figure 1-1) and provides a flexible compact 

Digital Signal Processor (DSP) module that delivers 

throughput rivaling dedicated ASIC-based solutions while 

providing an optimal balance in SWaP, cost and 

performance between dedicated function ASICs and fully 

programmable DSPs. 

Figure 2-1: V4 RSP and block diagram. 

 

The V4 RSP is latest variant of a line of sustained R&D 

into radiation resistant reconfigurable computing elements, 

complete with signal interfaces and data conversion, 

suitable for space environments. It integrates high 

performance Virtex-4 FPGAs (256 GOPS), 1 GLOP 

general purpose DSP (SMJ320C6701), 256 MB RAM, 

flexible standard IO (IEEE 1149.1 JTAG, Dual Spacewire, 

four 1000 base CX 2.5 Gbaud serial ports, and SEU 

Circumvention logic along with demonstrated total dose 

hardness > 30 Krads, into a single conductively cooled 6U 

compact PCI (cPCI) form factor consuming ~ 30W. The 

SDRAM shown is used to hold the application data, and 

the SDRAM is portioned amongst several possible 

applications (e.g. typically 16) for a mission. The SDRAM 

can also be reprogrammed “at will” to provide updates 

during a mission as warranted. Also, provisions have been 

made in the design such that larger fabrics of multiple 

processing cores can be easily woven together to form 

even more capable designs. Lastly, we are currently 

considering the system-level impacts to size, weight, 

power and speed of the new variants of Virtex radiation 

resistant/tolerant FPGAs, such as the Virtex 5Q family, as 

possible upgrades to our existing designs [5]. 

 

The V4 RSP has been used as a core element in several 

space systems research and development programs such as 

the NASA CoNNeCT SDR (section III) and two Imaging 

RADAR efforts (section IV). The V4 RSP (figure 2-1) will 

be undergoing in-situ testing as part of the NASA 

CoNNeCT SDR on the International Space Station in late 

2012 (planned).  

 

A major issue impacting the design and deployment of 

reconfigurable hardware in a space or near-space 

environment is radiation. Both prompt and long-term 

effects must both be considered. The V4 RSP addresses 

this issue by design. Elements impacting the design of this 

processing element are outlined in section II.3. However, 

for applications not requiring the radiation resistance of a 

space-deployable design, Harris has continued evolution of 

re-configurable processing engines into the highly 

integrated SDR SiP-100 (figure 2-2).  

 

The SiP provides similar core functionality to that of a 

board-sized V4 space processor (figure 2-2), but has 

dramatically increased levels of integration. At a top-level, 

the Harris SDR SiP is composed of 25 million 

programmable gates over 5 FGPAs, one DaVinci DSP 

(which includes separate DSP and ARM-9 processors), 

two 125 Msps 14-bit ADCs, two 500 Msps DACs, 1 GB 

RAM, 1 GB Flash memory, USB 2.0 and Ethernet 

interfaces, an embedded operating system, on-module 

power management controls, and has equivalent 

processing capacity as a 160 GHz desktop computer. The 

small size and short bus lengths allow lower drive current, 

exhibiting low power and negligible digital noise.   

 

The SDR SiP-100 is currently at technical readiness level 

(TRL) 7, having completed low-rate initial production 

(LRIP), passing MIL-STD-883 for 500 temperature cycles 

(-40°C to 100°C) and 100 g shock and vibration, and being 

demonstrated in multiple operational prototypes.   The 

SDR SiP-100 is ideally suited for small systems, including 

man-pack, handheld, UAV’s and other SWaP limited 

systems.   
 

 
 
Figure 2-2: System in Package (top) &  SDR diagram (bottom).  

 

Similar to the V4, at a “flip-of-a-switch,” the SDR SiP-100 

can be dynamically repurposed to a new communications 

mode/waveform or recommit the entire computational 

fabric to perform functions for remote sensing or other 

desired operation. The FPGAs are typically loaded via the 

DaVinci’s ARM-9 processor from on-module memory or 

off-chip resources.  

 

The Harris SiP has already found use in miniature 

terrestrial software-defined radios [11], and is a step 

towards producing radios on a chip. An example of a 

packaged SiP-100 and tested in an SDR is shown in figure 

2-3. The figure illustrates the evolution of the board-level 
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architecture V4-like system, into a deployable µTCA-

compliant SiP-100 SDR platform.  

 

In lab demonstrations the SiP-100 has shown that it 

provides high signal quality of -43 dB EVM for 64 QAM 

OFDM, demonstrated at over 200 Mbps [11]. Also, using 

the same hardware in the µTCA-compliant SiP-100 SDR 

platform we have implemented a novel digital chaotic 

communications system supporting a 100 kbps simplex 

link using a 10 MHz chaotically spread QPSK signal, with 

robust communications performance down to -13 dB 

below the intended receiver’s noise floor.  BER 

performance has been measured within 1 dB of theory, 

down to 8.5x10
-6 

[12].  

 

The SiP provides an enabling technology for the emerging 

class of high altitude surveillance platforms called near-

space vehicles (NSV) [13]. One potential application of 

low-altitude NSVs is to provide a rapidly deployable 

aerostat-based multi-standard cellular base station for 

disaster support. The dynamic reprogrammable capability 

of the SiP-100 enables the platform to be field 

reconfigured to support any of a variety of cellular or 

push-to-talk waveforms, and also offers the option to 

dynamically partition the payload processing capabilities 

in response to cellular usage/demand patterns or other 

sensing/payload processing functions such as MIMO, 

adaptive equalization, beamforming, or STAP. Given the 

anticipated CONOPs of NSVs, a SWaP efficient multi-

mission payload will likely be the preferred design option.  

Figure 2-3: Evolution of the SiP-100 multi-mission platform from 

packaged parts development card (top), prototype SiP 

development card (center), and SiP deployment in an integrated 

µTCA implementation (bottom). 

2.3 V4 Space Processor Radiation Hardness 

 

For operation in a space environment the total ionizing 

dose (TID) and single event effects (SEE) require 

consideration. Additionally, the space environments are 

very different depending on the orbit (i.e. LEO, MEO, 

GEO, Molinya) and inclination. Shielding provides part of 

the solution, but shielding alone is often not practical. 

Hence, the V4 RSP is radiation hardened by design and 

part selection. The space processor, to meet the 

cost/performance objectives of the design, is specified to 

sustain a minimum total dose of 100 Krads before any 

performance degradation occurs, and 100Krad is feasible 

for most long duration LEO missions.  However, for GEO 

mission life (e.g. 5 – 10 years), additional shielding is 

likely part of the solution.  

 

The primary issue concerning this design is SEEs. SEEs 

can be extremely problematic for programmable devices, 

and are divided into three events classes 

 Single Event Latchup (SEL)  

 Single Event Upset (SEU)  

 Single Event Transient (SET)  

Our design philosophy has been to evaluate each part to 

ensure that they are immune from SEL (i.e. latch-up free), 

and to also characterize the SEU and SET events. 

 

To mitigate the possible SEU and SET  upset vulnerability 

the FPGAs V4 RSP uses two “on-board” methods:  

 A “Watchdog ASIC” monitors each FPGA 

configuration memory during operation. The 

configuration is compared against the correct 

configuration (stored as a checksum in protected 

memory) and any detected errors are immediately 

corrected or “scrubbed”. The scrubber power 

consumption depends on the scrubbing rate, which is 

user selectable to optimize power consumption for a 

given environment. 

 The logic within the FPGA is augmented by selected 

Triple-Modular Redundant (TMR) storage and logic.  

A special development tool is used to triplicate the 

appropriate logic in the application. Voters are used 

to isolate an error and "vote" it out of the result 

providing corrected data on the fly. 

 

These two techniques together deliver very high (>99%) 

availability, verified by radiation testing conducted at the 

Berkeley and Texas A&M accelerators while the V4 RSP 

performed as a high data rate MODEM.  

 

The primary mechanism employed to mitigate SEE in the 

SDRAM is Error Detection and Correction (EDAC) 

coding. EDAC is used to protect the memory contents and 

it can correct any error that exists in any single nibble of a 

32-bit word. A dedicated scrubber, housed in the 

“watchdog ASIC”, reads every location in the SDRAM 

and validates the memory contents.  The memory 

scrubbing rate is also programmable for possible power 

savings in various environments.   Two spare SDRAM 

columns are provided in the memory array to allow the 

“watchdog ASIC” to “hotswap” these spare in for any 

other columns in the memory array as needed. We have 

used this memory architecture on several spacecraft. 
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Combined, these mechanisms reduce the cost of the system 

by allowing the use of commercial parts that meet Class S 

reliability and this memory architecture has been validated 

on several spacecrafts [6]. Any additional components 

have been screened to ensure that they meet the 

requirements for outgassing, total dose, and latchup.  

III. V4 SPACE PROCESSOR IN A KA-BAND SDR 

In support of the NASA Communications, Navigation, and 

Networking re-Configurable Testbed (CoNNeCT) 

program, Harris leveraged its existing SDP architecture to 

develop a high data rate Ka-band SDR.  The CoNNeCT 

program is unique in that it will enable an SDR 

demonstration testbed on the International Space Station 

(ISS).   Three different radios covering L-band, S-band, 

and Ka-band will be installed onboard the ISS and 

demonstrated as part of this program.  The goal of this 

mission is to provide an operational testbed to demonstrate 

and exploit the features and benefits of SDRs on-orbit.  

Many different datarates, waveforms, frequencies, and 

coding techniques will be required, hence the need for 

reconfigurability in-situ and on-orbit.  

 Figure 3-1: CoNNeCT Ka-band SDR Chassis. 

 

The STRS compliant Ka-band radio delivered for this 

mission was based on the SDP architecture described 

above.  Figure 3-1 shows the flight chassis designed 

around a 6U compact PCI open standard chassis which 

housed the majority of the payload elements.  The Ka-band 

RF front end electronics is an external module to allow 

mounting at the antenna to optimize system performance.  

Figure 3-3 illustrates the overall payload architecture at the 

block level. A main feature of the design is the MODEM 

implemented with the Harris SDR based on the V4 

processor. Again the common hardware architecture 

exploitable via software abstraction was a key enabler for 

the short design cycle and high performance.  

 Figure 3-2: Sample CoNNeCT BER performance curve. 

The Harris SDR has the ability to transmit up to 100 Mbps 

of user data rate coded with ½ rate error correction coding 

on the return link to the NASA tracking and data relay 

satellite system (TDRSS), and receive up to 25 Mbps on 

the uplink from TDRSS at Ka-band.   Sample BER curves 

from lab tests are shown in the figure 3-2 versus theory. 

The FPGAs of the V4 processor were used to provide as 

much of the radio’s functionality through the digital 

processor as possible.   The radio digitally employed direct 

sampling of the    intermediate frequency (IF) waveforms, 

a digital gain control algorithm, Doppler tracking filters, 

fine-tune frequency adjust, as well as the error coding, 

randomization, and other modem functions.   

The CoNNeCT SDR is currently at a technology readiness 

level (TRL) of 8, system flight qualification through test 

and demonstration, and is scheduled to arrive at the ISS in 

2012, where upon successful operation it will achieve a 

TRL of 9, system flight proven through successful mission 

operations. The the V4 RSP will be undergoing in-situ 

testing as part of the NASA CoNNeCT SDR on the 

International Space Station sometime in 2012 (planned). 

  

Figure 3-3: Block diagram of NASA CoNNeCT payload. 

IV. THE V4 PROCESSOR IN IMAGING RADARS 

In order to demonstrate the simple re-purposing of the SDP 

architecture and core processing architecture 

reconfigurability to realize multi-mission capability, Harris 

embarked on a path to demonstrate an X-band radar 

capability in both lab demonstrations [9,12] and on-orbit 

demo of the AppSTAR
TM

 concept. In both designs, Harris 

heavily leveraged the V4 processing architecture as a core 

processing component of a chirp RADAR payload. The re-

purposing of the V4 platform into the lab RADAR 

waveform generator was completed, from inception to lab 

integration, in less than 10 weeks, owing again to the 

software tools and adherence to standards supporting 

straightforward re-configuring and managing of the on-

board resources. For the spaceborne payload, the V4 

processor framework has been initially loaded with 

waveform descriptors specific to that mission’s objectives.  

IV.1 V4-BASED SOFTWARE DEFINED X-BAND 

RADAR LAB  DEMO SYSTEM   

For the RADAR demo payload, the FPGA firmware was 

programmed to generate chirped linear frequency 
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modulated (LFM) transmit radar waveforms.  This 

combined some external support RF X-band 

multiplier/frequency converter to provide a LFM 

waveform capability of up to 800 MHz of bandwidth 

(figure 4-1).  Various parameters such as pulsewidth, chirp 

rate, start frequency, stop frequency, pulse repetition 

frequency (PRF), and number of pulses are easily modified 

given the software defined nature of the payload. The 

ability to dynamically alter the RADAR waveform so 

completely could provide a basis for cognitive RADAR 

capabilities, as well as supporting the dynamic mission 

needs for specific collection scenarios (e.g. resolution, 

EMI avoidance, spectral allocation, target/scene 

phenomenology). These features are currently under 

consideration in our research on remote sensing.  

 
Figure 4-1: X-band software defined RADAR payload. 

For initial lab demonstrations, a transmit pulse (400 MHz 

bandwidth) was digitally generated, frequency converted 

and multiplied up to X-band, and then looped back into the 

X-band receiver, pulse compressed by a swept stretch 

mode LO and digitized.   The range Impulse Response 

(IPR) and Multiplicative Noise Ratio (MNR) were 

analyzed from the measured results [10].  The raw 

uncalibrated measured data shows nearly ideal main lobe 

shaping and acceptably low non-ideal sidelobe artifacts 

(figure 4-2).  The only significant sidelobe energies of 

interest are the near-in lobes adjacent to the main lobe.   

These are due to deterministic phase errors and are easily 

removed through simple radar calibration techniques. 

However, even with these effects unmitigated the raw data 

exhibited an -23 dB MNR which meets typical allocations 

for RF radar electronics hardware. 

Figure 4-2. The IPR (blue) vs. the ideal MNR (red).  All curves 

use Taylor weighted -35dB, nbar=5, per typical methodology. 

To put the preceding result in a system context, the system 

and chirp waveform was tested as an inverse SAR (ISAR) 

RADAR. A simulated ISAR collect was performed on a ¼ 

scale model P-38 aircraft in an anechoic chamber (Figure 

4-3). The RADAR waveform parameters were varied 

during the measurements with ultimate resolution 

capability of 0.25 m demonstrated which is typically 3x 

better than many commercial SAR systems. The ISAR 

images of the P38 scale model were formed by varying the 

RF chirp bandwidth using a constant chirp rate and varied  

pulse length. For the measurements shown, the frequency 

chirp slope rate was set to 40 MHz/usec and the pulse 

width was changed from 5 to 20 usec. At the highest 

resolution of 0.25m, the proportionate details of the 

plane’s engines and fuselages, pilot cockpit, tail section, 

and wing-mounted fuel tanks were clearly recognizable.    

Figure 4-3: The lab mock-up of the P-38 and ISAR images at 1 m 

(top right), 0.5 m (bottom left), and 0.25 m (bottom right). 

Plans are underway to build on the success of the lab demo 

system to dynamically switch payload from RADAR-only 

to a shared simultaneous RADAR/Comm system with 

waveforms dynamically loaded to meet real-time 

operational remote sensing and communication needs, 

again using the V4 re-configured in-situ.  

IV.2 V4-BASED APPSTAR
TM

 SPACE RADAR 

PAYLOAD   

The V4 Space Processor card has been designated as the 

Reconfigurable Computing Element during the 

AppSTAR
TM

 development to better reflect its multi-

function usage and in response to a few enhancements 

incorporated to better match its true multi-mission role in 

AppSTAR
TM

 concept.  For the initial application 

configuration, as has been discussed on the RADAR lab 

demonstrations, an entire Synthetic Aperture RADAR 

(SAR) data collection application has been developed.  

This encompasses transmit waveform generation, 

including digital pre-correction of the wideband pulses (> 

500 MHz) for IF/RF line-up imperfections such as gain 

slope, ripple and phase deviations  from ideal linearity, and 

precise timing control of transmit and receive processing 

functions for both stripmap and spotlight modes as well as 

for the stretch (de-chirped) and matched filter operations 

[10].  Simultaneous receive processing, all hosted on the 

V4 fabric, includes digital quadrature down-conversion, 

mission selectable filtering and adaptive re-quantization of 
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returns to accommodate limited downlink resources while 

maintaining image quality.  

Digital output compensation follows the Harris joint RF 

and digital system design philosophy of meeting operating 

requirements in a joint system-oriented fashion.  This 

allows the RCE, coupled with the RF up-conversion 

electronics, to meet the expected mission MNR and IPR 

error budget allocations while minimizing overall system 

design and development cost. 

The entire application load for the SAR mission easily fits 

within the four V4 FPGA fabric with significant margin 

and includes the extensive IO Wrapper designs used to 

abstract all hardware level IO interfaces.  These consist of: 

A/D and D/A interfaces, CAD Bus, SERDES, Fiber 

Channel, chip-to-chip parallel IO, clock and enable high-

speed transport and multiplexed Test Ports on each FPGA.  

The VHDL implementation follows a model-based design 

flow starting from a bit-exact behavioral model developed 

in MATLAB/Simulink to provide bit-true test vectors for 

all processing functions and data conversion interfaces.  

The model-based design approach along with the extensive 

use IO abstraction minimizes development and intergration 

time for an application by as much as 30%. 

One of the enhancements to the RCE was to expand the 

on-board storage capacity to support four full application 

images for all four FPGAs.  This allows the AppSTAR
TM

 

platform to support four concurrent missions with the 

ability to execute any two within a single orbit.  Re-

configuration and initialization can be accomplished in < 5 

seconds once an uplink re-configuration command is 

received. 

5. CONCLUSIONS  
 

The adaptability and configurability of this space-qualified 

AppSTARTM SDP architecture quickly enables the payload 

development of communications, radar and other missions. 

The AppSTARTM concept, with the V4 and SiP-100 as 

processing cores, has proven valuable by supporting new 

and changing mission objectives, additional waveforms, 

and signal processing algorithms. Going forward SDPs can 

be assembled from processing elements and dynamically 

programmed in –situ to adapt to rapidly changing mission 

profiles, thereby extending mission life and increasing the 

value of platforms. Additionally the commonality of the 

processing core reduces mission life-cycle cost by 

decreasing the NRE incurred in new system designs.  

 

Operational experience has shown that the V4 processor 

can be completely reprogrammed through industry 

standard interfaces and begin operating in a new 

configuration in < 15 seconds. This level of adaptability 

yields unprecedented dynamic mission flexibility for a 

multi-mission capable payload. It also opens the possibility 

to consider on-board autonomous controllers to manage 

the sensor timelines to address prioritized mission 

elements when configured in a multi-mission payload.  

 

Work is planned to continue evolving AppSTARTM payload 

concepts with the SiP-100 and V4 Space Processor to 

incorporate more complex capabilities to address the 

emerging areas of cognitive radios and dynamic spectrum 

access in conjunction with advanced remote sensing 

capabilities, signal analysis/recognizers, and other 

specialized needs.   
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Abstract - In recent years, highly functional Web pages have 
been designed easily using free web services via web-based 
API. Google, Amazon, Facebook, YouTube, and other web 
services provide web APIs that supporting the design of rich 
web content. As the Internet develops, more useful services 
will be provided. In this environment, it is considered that new 
services can be made by storing network streams into 
databases on a router because a router can passively correct 
the data that is widely distributed over the Internet. The 
utilization of network streams is facilitated by implementing 
DBMS (Database Management System) as a hardware circuit. 
In this study, we examined the structure of an index for a 
database on router, which we implemented on FPGA. This 
showed that the throughput of the proposed architecture 
satisfied the wire-rate processing of the network with a 
throughput of 12.7 Gbps with 50-byte packets and 20.3 Gbps 
with 1,306-byte packets.  

Keywords: In-memory Database, Insertion Hardware, 
Memory Management, Service-oriented Router 

 

1 Introduction 
  Web services are increasingly attractive because of the 
rich content provided by flexible and powerful APIs. Mashup 
is a technology that combines useful information from several 
sources on the Internet, which allows the creation of added 
value and services. The demand for more rich and valuable 
services will rise with the development of the Internet. If we 
can exploit the content of network transactions at the heart of 
the Internet, it will be possible to create highly functional and 
comprehensive services.   

 When network applications exchange large data over 
the Internet, the data is divided into several or many packets. 
These packets are known as the network stream. For example, 
a bundle of TCP/IP packets is known as a TCP stream. When 
a service is provided over the Internet, data should be 
managed and analyzed as a network stream rather than a 
bundle of packets. This means that packets must be 
reconstructed to form a stream to provide a service. Although 
there are many benefits in utilizing information as a stream, 
the use of a stream is mainly achieved by end-hosts and 
routers do not exploit the benefits. The benefit of handling the 
content of packets at a router is great, but this benefit is not 
widely exploited by existing network infrastructures. This is 

because a router or other network device has to guarantee the 
full-cost wire-rate processing of packet stream reconstruction. 
Thus, the cost of high speed processing and high memory 
requirements is a major issue. To solve these problems, 
several studies have proposed the construction of streams 
from packets. 

 Network streams contain useful information such as 
the creation time of a stream or a history of user behavior on 
the network, which is not exploited. If this information could 
be used effectively, an application provider could provide 
richer services by using the data captured at routers compared 
with data captured by existing end-hosts. This is because 
routers or gateways are better located. Thus, we propose a 
new service platform to provide services based on the 
utilization of a network stream at a router or gateway. To 
utilize network stream content, we need to extract the 
requisite part of a stream, store this in a database, and manage 
an index of this partial data based on selective throughput. If 
this function was implemented on a high-end router, it would 
allow processing throughput up to multi-gigabits, which 
cannot be achieved using only a software-based function. In 
this paper, we propose high-throughput insertion hardware to 
accelerate the process. 

 The remainder of this paper is organized as follows. 
Section 2 describes work related to this study, which focuses 
on database insertion and stream databases. Section 3 
describes the concept of our Database Insertion Co-processor 
(DBINS Co-Processor) and its key technology. In Section 4, 
we present the design and implementation of our proposed 
mechanism. The evaluation is presented in Section 5 and our 
conclusions are stated in Section 6. 

2 Related Work 
 In this section, we briefly survey the underlying 
technologies that can achieve high-throughput data insertion. 

 Data Stream Management Systems (DSMS) are a new 
class of management systems that handle enormous data 
streams [1][2][3]. DSMS makes it possible to look up all the 
data without accumulating the data in an external storage 
system. A feature of DSMS is the constant processing of data 
generated at a high bit rate by several sensors in real time. 
Thus, DSMS is required to produce high-speed data streams. 
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DSMS assumes an application such as monitoring an RSS 
(RDF Site Summary) stream, stock trading, or RFID (Radio 
Frequency Identification) Management. For example, an 
online stock trading system requires enormous processing 
throughput of up to hundred thousand transactions per second. 
About one Kbyte of data per transaction is inserted when 
considering an average size packet. Moreover, it is known 
that 25,000 transactions are concentrated in a peak period and 
the average packet size is about 1,300 bytes. In this case, the 
total required throughput can be calculated as 25,000 × 1,300 
× 8 = 260Mbps [4]. Thus, the throughput required for DSMS 
is 260 Mbps at most. A database used on the Internet has to 
handle packets at the wire-rate without fail. This means the 
database also requires multi-gigabit-speed insertion. 
Therefore, it is difficult to perform the required throughput 
using existing software-based DSMS. 

 The Oracle TimesTen In-memory Database is a product 
for real-time data management. An In-memory Database 
(IMDB) achieves high-speed data processing by storing all 
the data in a main memory, which enables the application to 
access data directly. In addition, this makes it possible to 
perform rapidly and it can process a transaction in tens of 
microseconds. TimesTen allows the users of an application to 
access a database, select their data, or update information 
with the required high throughput execution. This technology 
can be widely applied to systems that need high-speed 
processing such as online stock trading or an information 
superhighway, which was difficult to apply with a general 
database before. According to the TimesTen IMDB white 
sheet, the average turnaround time is 30 µs when a tuple of 
data is inserted [5]. The average turnaround time is 11 µs 
when a tuple of data is read. If we capture traffic data over the 
internet using TimesTen, we can regard a tuple of data as a 
segment of packet data. The average packet size is about 
1,300 B and we consider the size of tuple as 1,300 B. In this 
case, the required throughput of the reading process can be 
calculated as 1,000,000/11 × 1,300 × 8 = 950 Mbps, while the 
throughput of the writing process can be calculated as 
1,000,000/30 × 1,300 × 8 = 350 Mbps. Network traffic flows 
at a multi-gigabit rate over the Internet and it is difficult for 
TimesTen to perform the necessary throughput. Therefore, 
TimesTen cannot achieve the required throughput for storing 
traffic in memory, although it achieves the required 
throughput for data capture to application users. 

3 Database on a Router 
 An enormous amount of network traffic flows over the 
Internet with a multi-gigabit throughput rate, so a database on 
a router has to capture network traffic selectively. To prevent 
leakage during capture, high-throughput data insertion 
functions are required by the databases compared with the 
selection function in the database. This requirement depends 
on the application a user wants to execute. Thus, the requisite 
throughput for database insertion should be more than 
multiple 10 G bps over a core, metro, and edge network. In a 
local area network, 1 Gbps throughput is required when it is 

used in a section of a business enterprise. As noted previously, 
TimesTen is an In-memory software-based database 
management system, which can improve the performance of 
database insertion up to the speed of several hundred Mbps. 
However, it is still difficult for TimesTen to meet the 
requirements of storing traffic data in a database. Therefore, 
we focus on hardware based wire-rate insertion into an in-
memory database and we describe the proposed architecture 
of this insertion hardware. 

3.1 Database Architecture 

 In a commercial database system, a disk-based database 
is widely used to provide a reliable database system, such as 
financial institutions, academic organizations, and hospitals. 
Generally, a disk-based database system writes user data onto 
the hard disk and RAID technology is typically usually for 
this. This technology can be applied widely to devices that 
require high I/O throughput, as well as high reliability, which 
is guaranteed by its redundancy function. However, this disk-
based database lacks processing throughput. In-memory 
Databases (IMDB) have become popular because they can 
provide a new application with better throughput. IMDB 
allows us to achieve the high throughput processing required 
by today’s real-time applications, but it has disadvantages 
because of its small capacity memory devices. Given this 
limited database capacity, it is better to filter captured data 
according to the user’s query and to store packet data into 
IMDB selectively, like a DSMS, rather than to store captured 
data into IMDB directly. Moreover, the database also requires 
a disk-based database as an archiving device to maintain high 
reliability and fault tolerance. 

 For a database on a router, the hierarchical architecture 
of IMDB and a disk-based database is appropriate for reliable 
and high-throughput insertion. The top throughput of IMDB 
is almost equal to the throughput of memory I/O, which is 
enough to store network stream data selectively. We planned 
to use on-chip or off-chip memory as a temporary database, 
which is used as a primary database. At the same time, disk-
based database is used as an archiving device. A data 
migration function is also implemented to move the captured 
data into appropriate storage, i.e., an IMDB or Disk-based 
database. This hierarchical architecture eliminates the 
throughput requirements of disk-based databases.  

3.2 DBINS Co-processor 

 The peak throughput of Internet traffic is always 
changing because it depends on time, events, and the network 
environment. If all the traffic data from the Internet is 
captured on a router and stored into a database, the IMDB 
will be soon filled with an enormous volume of data in a busy 
networking environment. It is desirable to filter the network 
traffic using a query operation before an insert operation. 
High-throughput database insertion is required to ensure the 
optimum performance of database during the peak throughput 
period of the target network without any discards of packets. 
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The insertion process requires several complex processes 
such as data filtering, indexes creation, and memory 
management. It is difficult to obtain optimum memory I/O 
throughput performance because these complex processes are 
a bottleneck for overall performance. Thus, we proposed a 
DBINS Co-processor as a core function of the database 
insertion hardware. The DBINS Co-processor consists of 
three hardware modules; DB Insertion Engine (DBINS 
Engine), Archiving Engine, and In-memory Reading Engine 
(Fig. 1). The DBINS Engine allows us to insert captured data 
into IMDB at a multi-gigabit throughput rate. The Archiving 
Engine migrates data from IMDB to a disk-based database, 
while the IMDB Reading Engine is a mechanism for 
preprocessing the basic functions of stream processing such 
as selection, projection, and joining. In this study, the DBINS 
Engine is focused on satisfying wire-rate database insertion. 

 

Figure 1. DBINS Co-processor 

4 Implementation 
 In this section, we describe how the DBINS Engine 
manages the data captured on the Internet and the architecture 
of the DBINS Engine. 

4.1 Index Structure 

 When DBINS Engine stores network stream into an 
IMDB, it is inefficient to store all data, so it is necessary to 
extract the required data selectively according to a query 
issued by users. It is also desirable that the data is listed based 
on the issued query, where the stored data can be loaded as a 
series of data by high-speed selection processing. Therefore, 
the DBINS Engine creates and index that is accessible to the 
stored data according to Leaf-ID, which is the ID query key. 
To make the stored data accessible by Leaf-ID, the DBINS 
Engine creates the index shown in Table 1. Next.ID Pointer is 
the next pointer in the ID list. The Share Number is the 
number of owners of the captured data. When several queries 
match only one packet, the information is recorded with this 
value. After the stored data is loaded by the selection 
operation, the Share Number is decremented, but the data is 
deleted if the Share Number becomes zero. In addition, the 

DBINS Engine manages the index of the captured data so it is 
scalable with an increase in queries, because the resources of 
the DBINS Co-processor are limited. 

Table 1. Keys and Pointers in the Index 
Keys and pointers Contents 
ID Leaf-ID 
Timestamp Packet arrival time 

Packet Size Packet Size 

Share Number The number of owners of 
captured data 

Prev. T-Pointer Previous pointer of Time-list 

Next. T-Pointer Next pointer of Time-list 
Next. ID-Pointer Next pointer of ID-list 

 

 In this study, four different index structures are used. To 
optimize the data structure, these four index structures are 
focused on Leaf-ID as the primary key. Part of a stream 
matches multiple queries issued by different users, so it is 
preferable to combine the management information for each 
part. All four methods perform this optimization in a different 
way. Thus, four different index structures are implemented. 

 In the first approach, the DBINS Engine copies the 
overlapping parts of captured data and adds a Next.ID Pointer 
to all of the generated indexes (Fig. 2). This approach 
facilitates the selection and deletion of data, because the 
DBINS Engine does not manage the Share Number of the 
index. However, when the number of overlaps is large, the 
index creation throughput is degraded because the DBINS 
Engine has to make multiple indexes for each part of a data 
stream. It also causes a loss of memory efficiency because the 
same data is stored in several segments of the memory. 
Furthermore, to support newly extracted data arrival the 
DBINS Engine copies data, but it must have a buffer that 
stores the data until the copying is finished.  

Figure 2. Approach 1 

 In the second approach, the DBINS Engine adds new 
IDs based on a combination of matching queries (Fig. 3). To 
insert the captured data, the DBINS Engine manages two 
tables. One manages the correspondence of the Leaf-IDs and 
the new IDs. The other manages the memory area of new IDs 
used in the IMDB. Using this approach, the DBINS Engine 
can generate an index at a constant rate and it has the 
advantage that there is no need to manage a large queue, 
unlike approach 1. However, the data management and index 
table management becomes complicated. Approach 2 has 
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another drawback. If the number of issued query increases, 
the table size increase according to O(2n) in the worst case. 
Moreover, when a new query is issued, the DBINS Engine 
must refresh the entry table. 

Figure 3. Approach 2 

 In the third approach, the DBINS Engine adds several 
Next.ID pointers to an index (Fig. 4). Using this approach, the 
DBINS Engine can improve the efficiency of memory usage 
compared with approach 1, while it can decrease the cost of 
managing the index table compared with approach 2. 
However, the index generation rate depends on the Share 
Number of the captured data. Therefore, when the overlap of 
a query is large, the index generation throughput is degraded. 
Using this approach, the number of Next.ID Pointers is 
limited by the reserved space because the BDISN Engine only 
reserves enough space for a fixed number of Next.ID Pointers. 

Figure 4. Approach 3 

 The fourth approach also adds several Next.ID Pointers 
to an index. The difference from approach 3 is that the 
DBINS Engine stores the Next.ID Pointers in the IMDB. 
Using this approach, the DBINS Engine does not require a 
large space for the Next.ID Pointers in the index memory and 
it can support a larger Share Number than approach 3. 
However, DBISN Engine has to access the IMDB whenever 
it creates an index, so the throughput is worse than approach 
3.  

Figure 5. Approach 4 

 Each processing cycle for the above approaches is 
shown in Fig. 6. The requirements for throughput, selection 
speed, or the memory utilization ratio depend on the 
application or services. Therefore, the application or service 
providers must choose an index structure that meets their 
requirement.  

Figure 6. Processing Cycle 

4.2 Implementation 

  The architecture of the DBINS Engine is shown in Fig. 
7. The DBINS Engine has three blocks, Leaf-ID Module, 
Indexing Module, and IMDB Module. The Leaf-ID Module 
manages the Leaf-ID, which is added according to the query. 
The Indexing Module makes and manages the index. The 
IMDB Module stores the captured data in the IMDB. The 
procedure for storing the captured data is as follows. First, the 
header of the captured packet data is stored in the queue of 
the Leaf-ID Module while the body is stored in the queue of 
the IMDB Module. The Leaf-ID Module then checks the 
header information, which contains the Leaf-ID, timestamp, 
and index structure. The Leaf-ID Module creates a Leaf-ID 
Entry, which contains the head address and tail address, or it 
loads the leaf-ID Entry information according to the header. 
Next, the Leaf-ID Module gets a free address from the 
Indexing Module, updates the Leaf-ID Entry, and sends the 
writing address to the IMDB Module. The Indexing Module 
generates an index using the Leaf-ID, timestamp, and index 
structure. The throughput of the Indexing module is mainly 
dominated by memory access so, to eliminate the memory 
access delay, the Indexing Module has three dedicated 
registers, i.e., old_ifreehead for Prev.T-Pointer, 
current_ifreehead for the address to write, and next_ifreehead 
for Next.T-Pointer. When the IMDB Module receives the 
writing address from the Leaf-ID Module, the IMDB Module 
stores it in the IMDB. 

0

20

40

60

80

100

120

140

160

0 5 10 15 20In
d
e
x
 g
e
n
e
ra
ti
o
n
 c
y
cl
e

In
d
e
x
 g
e
n
e
ra
ti
o
n
 c
y
cl
e

In
d
e
x
 g
e
n
e
ra
ti
o
n
 c
y
cl
e

In
d
e
x
 g
e
n
e
ra
ti
o
n
 c
y
cl
e

Overlaps of QueryOverlaps of QueryOverlaps of QueryOverlaps of Query

Method 1

Method 2

Method 3

Method 4

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  | 35



 

Figure 7. Architecture of the DBISN Engine 

5 Evaluation 
 In this section, we evaluated the scale of the circuit and 
the throughput of the DBINS Engine. The DBINS Engine 
was implemented in Verilog HDL and it was synthesized 
using Xilinx ISE Design Suite 12.3 on FPGA (Vertex5 
XC5VLX330T). For comparison, we used Synopsys Design 
Compiler 2005.09 by FREEPDK45n Technology as ASIC 
(Application Specific Integrated Circuit) [6]. The scale of the 
circuit, latency, and maximum frequency are shown in Table 
2. The throughput of the DBINS Engine was calculated based 
on the synthesis result. The memory parameters are shown in 
Table 3. The throughput of the DBISN Engine is shown in 
Table 4 (synthesized using ISE Design Suite) and Table 5 
(synthesized using Synopsys Design Compiler). Where an 
off-chip memory was used as the index memory, equation (1) 
and (2) were used to calculate the cycle time. Table 4 and 
Table 5 show the available network throughput in two cases. 
In case 1, we assume the continuous storage of 50-byte 
packets, which was assumed to be the minimum size of 
network traffic. In case 2, we assume the storage of an 
average HTML packet size in the Internet backbone traffic 
captured by the WIDE MAWI project [7] between 14:00 and 
14:15 on July 12th in 2009. The traces of the anonymous 
filter can be downloaded from the MAWI site. We used 
special trace data that was originally captured in the project 
and not filtered. 

 When the overlap of queries was four, this showed that 
the available throughput was 8.25 Gbps with a 50-byte packet 
size and 17.1 Gbps with 1306-byte packets, when the DBINS 
Engine was synthesized on FPGA. However, the throughput 
was 27.0 Gbps with a 50-byte packet size and 55.9 Gbps with 
a 1306-byte packets size, when the DBINS Engine was 
synthesized in ASIC. Therefore, the DBINS Engine could 
fulfill the metro network or edge network wire speed 
requirements when the overlap was sufficiently small.  

 

Table 2. Results of Synthesis 

 
Scale Latency Max Frequency 

 
of Circuit (ns) (MHz) 

ISE # of Slices 
3.73 318 

Design Suite 475 

Synopsys (µm2) 
1.97 508 

Design Compiler 2.95 × 103 
 

Table 3. Memory Parameters 

Memory 
standard 

On-chip 
memory 

Off-chip memory (QDR SRAM) 
FPGA ASIC 

WL (cycle) 1 3 8 
RL (cycle) 1 3 8 

 

 

Cycle	time = �RL	 × memory	read	count	 +WL	

× memory	write	count	 + cycle	time� 	

× 	Latency																																																	 ⋯ �1� 

Avairable	network	throughput

=
total	packet	size

cycle	time
																																	⋯ �2� 

Table 4. Available Network Throughput using FPGA 

overlaps 

Available Network Throughput (Gbps) 
On-chip Memory Off-chip Memory 

50-byte 1306-byte 50-byte 
1306-
byte 

1 13.4 4.3 17.1 17.1 
2 13.4 3.8 17.1 17.1 
3 10.7 3.2 17.1 17.1 
4 8.25 2.8 17.1 17.1 

 

Table 5. Available Network Throughput using ASIC 

overlaps 

Available Network Throughput (Gbps) 
On-chip Memory Off-chip Memory 

50-byte 1306-byte 50-byte 
1306-
byte 

1 43.9 6.4 55.9 55.9 
2 43.9 5.6 55.9 55.9 
3 35.1 4.8 55.9 55.9 
4 27.0 4.2 55.9 55.9 

  

6 Summary 
 In this study, we proposed a hardware architecture to 
support high-speed database insertion into a router on the 
Internet. We implemented it in FPGA and ASIC. We showed 
that the throughput of the proposed architecture satisfied the 
wire-rate processing of a metro network with a throughput of 
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8.25 Gbps with 50-byte packets and 17.1 Gbps with 1306-
byte packets. It also provided the requisite throughput of 27.0 
Gbps with 50-byte packets and 55.9 Gbps with 1306-byte 
packets when the DBINS Engine was synthesized in ASIC.  

7 Acknowledgments 
 This work was partially supported by the VLSI Design 
and Education Center (VDEC), the University of Tokyo, 
Japan, in collaboration with Synopsys Inc., National Institute 
of Information and Communications Technology (NICT), and 
a Grant-in-Aid for Scientific Research (C) (22500069). 

8 References 
[1] A. Arasu, S. Babu and J. Widom, “The cql continuous 
query language: Semantic foundations and query execution”, 
VLDB Journal, 15, 2, (2006). 

[2] A. Arasu, S. Babu and J. Widom, “The cql continuous 
query language: Semantic foundations and query execution”, 
VLDB Journal, 15, 2 (2006). 

[3] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, 
Michael J. Franklin, Joseph M. Hellestein, Wei Hong, Sailesh 
Krishnamurthy, Sam Madden, Vijayshankar Raman, Fred 
Reiss, and Mehul Shah. “TelegraphCQ: Continuous Dataflow 
Processing for an Uncertain World.” In Proc. of SIGMOD, pp. 
668 – 668, (2003). 

[4] Yuan Wei, Sang H. Son, John A. Stankovic, 
“RTSTREAM: Real-Time Query Processing for Data 
Streams”, Proc. of ISORC ’06, pp. 141-150 (2006). 

[5] Oracle TimesTen In-Memory Database - data sheet. 
Technical report, ORACLE JAPAN, July 2007.  

[6] FreePDK, http://www.eda.ncsu.edu/wiki/FreePDK 

[7] WIDE MAWI project, http://mawi.wide.ad.jp/mawi/ 

 

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  | 37



38 Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  |



SESSION

DEVELOPING HETEROGENEOUS COMPUTING
SYSTEMS - MULTICORE, CPU + FPGA

Chair(s)

Prof. Pascal Benoit
University of Montpellier

France

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  | 39



40 Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  |



From Streaming Models to FPGA Implementations
ERSA’12 Industrial Regular Paper

Hugo Andrade, Jeff Correll, Amal Ekbal, Arkadeb Ghosal, Douglas Kim, Jacob Kornerup, Rhishikesh Limaye,
Ankita Prasad, Kaushik Ravindran, Trung N. Tran, Mike Trimborn, Guoqiang Wang, Ian Wong, Guang Yang

National Instruments Corportation, USA.

Abstract—Application advances in the signal processing and
communications domains are marked by an increasing demand
for better performance and faster time to market. This has
motivated model-based approaches to design and deploy such ap-
plications productively across diverse target platforms. Dataflow
models are effective in capturing these applications that are
real-time, multi-rate, and streaming in nature. These models
facilitate static analysis of key execution properties like buffer
sizes and throughput. There are established tools to generate
implementations of these models in software for processor targets.
However, prototyping and deployment on hardware targets, such
as FPGAs, are critical to the development of new applications.
FPGAs are increasingly used in computing platforms for high
performance streaming applications. Existing tools for hardware
implementation from dataflow models are limited in their capa-
bilities. To close this gap, we present DSP Designer, a framework
to specify, analyze, and implement streaming applications on
hardware targets. DSP Designer encourages a model-based design
approach starting from a Parameterized Cyclo-Static Dataflow
model. The back-end supports static analysis of execution prop-
erties and generates implementations for FPGAs. It also includes
an extensive library of hardware actors and eases third-party IP
integration. Overall, DSP Designer is an exploration framework
that translates high-level algorithmic specifications to efficient
hardware. In this paper, we illustrate the modeling, analysis, and
implementation capabilities of DSP Designer. Through a detailed
case study, we show that DSP Designer is viable for the design of
next generation signal processing and communications systems.

I. INTRODUCTION

Dataflow models are widely used to specify, analyze, and
implement multi-rate computations that operate on streams of
data. The Static Dataflow (SDF) model of computation is well-
known for describing signal processing applications [1]. An
SDF model is a graph of computational actors connected by
channels that carry streams of data. The semantics require the
number of data tokens consumed and produced by an actor per
firing be fixed and pre-specified. This guarantees decidability
of key execution properties, such as deadlock-free operation
and bounded memory requirements [2].

Over the years, several extensions of SDF have been
developed that improve the expressiveness of the model
while preserving decidability, such as Cyclo-Static Dataflow
(CSDF) [3], Parameterized Static Dataflow (PSDF) [4], Het-
erochronous Dataflow (HDF) [5], Scenario-Aware Dataflow
(SADF) [6], and Static Dataflow with Access Patterns (SDF-
AP) [7]. Complementing these modeling advances, algorithmic
solutions for static analysis have been studied in depth. Viable
techniques have been developed for computation of through-
put, buffer sizes, and schedules [2] [8] [9].

The expressiveness of dataflow models in naturally cap-
turing streaming applications, coupled with formal compile

time analyzability properties, has made them popular in the
domains of multimedia, signal processing, and communica-
tions. These high level abstractions are the starting points for
model-based design approaches that enable productive design,
fast analysis, and efficient correct-by-construction implemen-
tations. Ptolemy II [10], LabVIEW [11], and Simulink [12] are
examples of successful tools built on the principles of model-
based design from dataflow models.

These tools predominantly deliver software implementations
for general purpose and embedded processor targets. However,
ever-increasing demands on performance of new applications
and standards have motivated prototyping and deployment
on hardware targets, such as Field Programmable Gate Ar-
rays (FPGAs). FPGAs are integral components of modern
computing platforms for high performance signal processing.
Surprisingly, few studies have been directed to the synthesis
of efficient hardware from dataflow models.

The configurability of FPGAs and constraints of hard-
ware design bring unique implementation challenges and
performance-resource trade-offs. FPGAs permit a range of
implementation topologies of varying degrees of parallelism
and communication schemes. Fine-grained specification of
actor execution at the cycle level enables execution choices
between fully specified static schedules and more flexible
self-timed schedules. Communication between actors could
be through direct wires, handshake protocols, shift registers,
shared registers with scheduled access, or dedicated FIFO
buffers. Each mechanism poses different requirements on the
interface and glue logic to stitch actors. Finally, a key re-
quirement for hardware design is the integration of pre-created
configurable intellectual property (IP) blocks. Hardware actor
models must capture relevant variations in data access patterns
and execution characteristics of different configurations.

We address these challenges with DSP Designer, a frame-
work for hardware-oriented specification, analysis, and im-
plementation of streaming dataflow models. The intent is to
enable DSP domain experts to express complex applications
and performance requirements in algorithmic manner and to
auto-generate efficient hardware implementations. The main
components of DSP Designer are: (a) a graphical specification
language to design streaming applications, (b) an analysis en-
gine to validate the model, select buffer sizes and optimize re-
source utilization to meet throughput constraints, and perform
other pertinent optimizations, and (c) implementation support
to generate an efficient hardware design and deploy it on
Xilinx FPGAs. The specification is based on the Parameterized
Cyclo-Static Dataflow (PCSDF) model of computation, which
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is a sufficiently expressive model for wireless communications
applications [13] [14]. DSP Designer provides an extensive
library of math and signal processing functions that harness the
resource elements on the FPGA. It also facilitates integration
of custom-designed hardware blocks and third-party IP into
the design. The back-end eases exploration of design trade-
offs and translates a high level algorithmic specification to
an efficient hardware implementation. Thus, DSP Designer
simplifies the creation of complex streaming applications
targeted for FPGA deployment.

In this paper, we highlight salient features of DSP De-
signer and illustrate a design flow to implement streaming
applications. We then present a case study on the deployment
of an Orthogonal Frequency Division Multiplexing (OFDM)
wireless communication link from the Long Term Evolution
(LTE) [15] mobile networking standard on a Xilinx FPGA.

II. RELATED WORK

Synthesis flow from Register Transfer Level (RTL) logic
and behavioral languages (typically C, C++, or SystemC)
for hardware targets has been a popular topic of several
studies. However, there is limited prior art on hardware gener-
ation from non-conventional high level models like dataflow.
Ptolemy II is a prominent academic framework for graphical
specification and analysis of dataflow models [10]. While these
tools provide some support for RTL generation from restricted
models, the focus is more on proof-of-concept and less on
optimized hardware implementation.

On the commercial front, LabVIEW FPGA from National
Instruments is a popular tool that supports FPGA deployment
from dataflow models [16]. However, LabVIEW FPGA only
supports the Homogeneous Static Dataflow (HSDF) model
of computation, which does not allow native specification
of streaming multi-rate computations. System Generator from
Xilinx is another related offering that supports FPGA imple-
mentations of synchronous reactive and discrete time models
of computation [17]. However, these models are not suit-
able for data driven streaming specifications. SystemVue ESL
from Agilent supports more expressive dataflow models and
provides libraries and analysis tools for the RF and DSP
domains [18]. However, it primarily serves as an exploration
and simulation environment, and does not offer a path to
implementation in hardware.

The closest effort in synthesizing hardware from dataflow
programs is the Open Dataflow framework [19]. The CAL
actor language supported in Open Dataflow is an important
step in formalizing actor and interface definitions. It has
been adopted by the MPEG Video Coding group to develop
codecs for future standards [20]. CAL builds on the Dynamic
Dataflow model of computation but this model is undecidable
and cannot be subject to static analysis. In contrast, the PCSDF
model used by DSP Designer enables analysis of deadlock-
free execution, and memory and throughput requirements.
Also, CAL is a textual specification language, whereas DSP
Designer provides an intuitive graphical design environment.

In summary, DSP Designer is an attempt to integrate the
respective strengths of the previously discussed tools into a
unified framework for hardware implementation. The graphical
design environment is intended for algorithm designers who
are generally not experts in hardware design. The framework
supports analysis capabilities relevant to hardware implemen-
tation and includes an extensive library of common math, sig-
nal processing, and communications functions. It also enables
easy integration of IPs from native and third-party libraries,
like the Xilinx CoreGen library [21], which are essential to
practical efficient hardware design.

III. MODEL SPECIFICATION AND ANALYSIS

The foundation of DSP Designer is its models of computa-
tion – SDF, CSDF, and their parameterized extensions. We dis-
cuss the relevant characteristics of these models, and illustrate
their suitability for specifying signal processing applications.

A. SDF and CSDF

A dataflow model consists of a set of actors inter-connected
via channels. The actors represent computational units while
the channels denote communication. The data is abstracted as
tokens. In the Static Dataflow (SDF) model of computation, at
each firing, an actor consumes a fixed number of tokens from
each input channel, and produces a fixed number of tokens on
each output channel. The channels store the tokens until an
actor consumes the tokens.

Each actor is associated with an execution time and an
initiation interval. Execution time is the time (in clock cycles)
that the actor needs to process inputs, perform computation,
and generate outputs. Initiation interval is the minimum time
(in clock cycles) between consecutive firings of an actor. If
initiation interval is less than execution time for an actor, then
the actor may fire in an overlapping (pipelined) fashion.

Fig. 1 shows an SDF model for computing the standard
deviation of non-overlapping blocks of 100 input samples
each. Every actor in this model except Sum is single-rate or
homogeneous, i.e. it consumes 1 token on every input, and pro-
duces 1 token on every output. The Sum actor consumes 100
input tokens and produces their sum as a single output token.
Execution times of the actors vary with their implementations.
Square, Decrement, Subtract execute in single cycle;
Divide, Square Root take multiple cycles, and could be
pipelined to have initiation interval of 1 cycle. Sum actor has
execution time and initiation interval of 100.
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Fig. 1. Computing standard Deviations of input blocks of fixed size 100.

The SDF model of computation fits well with fixed-length
computations. Such computations are abundant in signal pro-
cessing standards, for example, the processing of 8×8 blocks
of pixels during JPEG encoding. However, there are also
computations that follow a fixed cyclic pattern in the number
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of tokens processed. An example is the normal CP mode of
LTE OFDM standard in which every slot has 7 symbols, with
the first special symbol different in length from the other
symbols. For such computations, the Cyclo-Static Dataflow
(CSDF) model of computation generalizes SDF by allowing
the number of tokens consumed or produced by an actor to
vary according to a fixed cyclic pattern [3]. Each firing of a
CSDF actor corresponds to a phase of the cyclic pattern. In
Fig. 1, if we replace the input token count of Sum actor by a
cyclic pattern (100, 200, 300), then we get a CSDF model that
computes standard deviation of input blocks whose lengths
vary deterministically from 100 to 200 to 300 and back.

The SDF and CSDF models of computation permits efficient
static analysis of key properties. The absence of deadlocks
(i.e., the ability of each actor to fire infinitely often), and
the consistency of execution rates (i.e., the ability to exe-
cute infinitely with bounded channels) can be verified effi-
ciently [1] [2] [3]. Further, there are efficient algorithms for
computation of throughput and buffer sizes [8], [9].

B. Parameterized Extensions

SDF and CSDF are static in nature. However, for many
applications, the number of tokens processed needs to vary at
run-time. For example, MP3 audio compression selects at run-
time between long blocks of 576 samples and short blocks of
192 samples. Fig. 2 shows a variation of the model in Fig. 1, in
which the Sum actors consume N tokens in each firing, where
N is from the set {100, 200, 300}. This computes standard
deviations of a mix of input blocks of lengths 100, 200 or
300 by varying N at run-time. This model of computation is
called Parameterized Static Dataflow (PSDF) [4].
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Fig. 2. Computing standard deviations of input blocks of varying size N .

The behavior of the PSDF model can be viewed as a
composition of several SDF models, one for each possible
value of the parameter (also referred to as configuration).
Fig. 2 has 3 possible values of the parameter, hence 3
configurations. At any point in execution, the behavior of the
PSDF model is the SDF model corresponding to the value
of the parameter. To avoid non-determinism, a change in
parameter value can take effect only at iteration boundaries.
The analysis of a PSDF model accounts for the analysis
for all possible configurations [4]. The CSDF model can
similarly be parameterized to form the Parameterized Cyclo-
Static Dataflow (PCSDF) model.

IV. REALIZING MODELS IN DSP DESIGNER

DSP Designer is a graphical environment backed by the
design and implementation flow of Fig. 3. In this section
we describe how the user specifies applications using models,
explores optimizations, and generates FPGA designs.

A. Design Flow

The user works in a graphical environment as shown in
Fig. 4. The starting point is the Application, e.g. a DSP
algorithm, which the user starts drawing by selecting actors
from the Actor Library and placing them on the editor canvas.
This begins the Model Specification step. The actor library
consists of a rich set of primitive actors (add, square root,
sine, etc.), stream manipulation actors (upsample, build stream,
etc.), third-party actors (e.g. FFT and FIR blocks from Xilinx
Coregen [21]), and user-defined actors that are either specified
in the LabVIEW programming language or constructed using
DSP Designer. This reuse of actors allows for hierarchical
composition of designs within the tool.
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Properties Properties

Properties

Model 
Specification

Clumping

Fig. 3. Design and Implementation Flow in DSP Designer.

The user continues by connecting the actors, and optionally
configuring their properties. Configurable properties of an
actor include the data types and the number of tokens for
its input and output channels. The number of tokens may
vary at run-time for parameterized actors, depending on the
current parameter value, resulting in a potentially distinct con-
figuration for each parameter value. To ensure analyzability,
the tool limits the value of each parameter to a finite set
specified by the user. Some actors can also be configured
for their throughput, pipeline depth, resource usage, or other
implementation-specific options. The actor library includes
cycle-accurate characteristics for each actor configuration,
including the initiation interval and the execution time.

The second input from the user is the Constraints, which in-
clude minimum throughput requirements on input/output ports
or internal channels of the design. Throughput is specified in
engineering units, such as Mega-Samples per second (MSps).

The tool performs several types of analysis on the design
in the background while the user is constructing it, with
immediate feedback on the current state of the design. Validity
Checking includes model consistency and deadlock checking.
It also performs automatic type checking and type propagation
across the design. Errors or warnings are immediately anno-
tated on the offending nodes on the canvas and reported under
the Errors & Warning tab in the tool. On a valid design, the
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tool performs Clumping to identify regions that fit specialized
implementation schemes. Buffer Sizing and Throughput Anal-
ysis are then performed on the design. This determines the
buffer sizes required on the channels to satisfy user constraints
such as minimum throughput. If the constraints cannot be met,
the tool reports errors. Schedule Generation establishes a valid,
cycle-accurate schedule for the design, given the determined
buffer sizes and clumped regions. This schedule is viewable in
the schedule view part of the tool (as shown at the bottom of
Fig. 4), providing instant feedback on the run-time behavior
of the design, including the achievable throughput.

The user can simulate the functional behavior on the devel-
opment platform before invoking the hardware implementation
stage. As a part of the simulation, the user can specify stimulus
data and add graphical displays to the design to visualize the
response on output ports or on any wire in the design.

Fig. 4. DSP Designer Tool Implementing the Example in Fig. 1.

The final step is Code Generation that uses the results of
analysis to emit an FPGA design in the form of synthesizable
LabVIEW files. The tool can also generate a synthesizable
testbench that allows the user to stimulate the design from the
development computer and compare the response to validated
signals. The testbench includes the necessary code for DMA
communication between the FPGA device and the develop-
ment computer. The LabVIEW files can be used to generate a
bitfile used to implement the design on Xilinx FPGA devices
or for timing-accurate hardware simulation. Currently the tool
supports targeting Virtex 5 devices from Xilinx.

B. Implementation Strategy

DSP Designer uses a FIFO-based, self-timed implementa-
tion strategy to realize the designs on FPGA fabrics [8]. In the
FIFO-based strategy every channel in a model is conceptually
mapped to a hardware FIFO of appropriate size and every actor
is mapped to a dedicated hardware block that implements its
functionality. There is no resource sharing among two different
channels or two different actors in the current state of the
tool, but the model does not preclude this. In the self-timed
execution strategy every actor instance is fired whenever it has

a sufficient number of tokens on each of its input channels,
sufficient number of vacancies on each of its output channels,
and the initiation interval of the previous firing has expired.
This evaluation is done on every clock cycle, allowing for a
potentially more opportunistic execution than the conservative
block-based model used in most SDF-based tools, where a
downstream actor is not fired until a cycle after the one where
its upstream actors write the last output token into their shared
buffers. As a consequence, there is no global scheduling logic
in this implementation strategy, reducing the complexity of the
controller for each actor in the final design.

C. Actor and IP Stitching

The FIFO-based, self-timed implementation strategy is im-
plemented using harness logic that surrounds every actor
instance, providing a FIFO-based interface that realizes the
SDF model and its extensions discussed in Section III. The
generated code for all actors presents a standardized interface
to the harnesses, based on designated lines for data and
handshaking. This simplifies actor stitching since the tool can
use generic harness wrapper templates. It also allows the tool
to connect actors more directly and efficiently.

A faithful realization of the SDF model of computation
requires extra resources for the harness logic and the FIFOs
on each channel. In the synthesized design this overhead can
be significant compared to the resource usage of the actors
themselves. To reduce this overhead the tool applies a series
of clumping transformations on the design to reduce both the
number of harnesses and FIFOs in the design. These transfor-
mations preserve the observable flow of tokens on the input
and output ports, while preserving or increasing throughput.
The clumping activity is akin to the process of converting
an asynchronous design, where all actors are connected by
FIFOs, into a GALS [22] (Globally Asynchronous Locally
Synchronous) architecture, where FIFOs connect regions of
synchronously connected actors called clumps.

V. OFDM TRANSMITTER & RECEIVER CASE STUDY

In this section, we present a case study on the design
and implementation of a real-time single antenna OFDM
transmitter and receiver using DSP Designer.

A. System Specifications & Hardware Architecture
Our single antenna OFDM link design is based upon the

LTE standard [15] with system specifications that include
a transmission bandwidth of 5 MHz, 7.68 MSps sampling
rate, 512 FFT length, 128 cyclic prefix (CP) length (extended
mode), 250 data subcarriers, 50 reference subcarriers, and
variable 4/16/64 Quadrature Amplitude Modulation (QAM).
The proposed communication system is implemented on the
National Instruments (NI) PXI Express platform shown in
Fig. 6, where the transmitter (TX) and receiver (RX) consist
of the following four main components.

• PXIe-8133 Real-time (RT) controller equipped with a
1.73 GHz quad-core Intel Core i7-820 processor and 8
GB of dual-channel 1333 MHz DDR3 RAM.
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   Single Antenna Transmitter Baseband Signal Processing Block Diagram

   Single Antenna Receiver Baseband Signal Processing Block Diagram
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Fig. 5. Hardware and Software Mapping of Transmitter and Receiver Block Diagrams.

Fig. 6. National Instruments PXI Express Real-Time Signal Processing
Platform with Ettus Research RF Front-End.

• PXIe-7965R FPGA module equipped with a Virtex-5
SX95T FPGA optimized for digital signal processing,
512 MB of onboard RAM, and 16 DMA channels for
high-speed data streaming at more than 800 MBps.

• NI-5781 40 MHz baseband transceiver module equipped
with dual 100 MSps 14-bit inputs, dual 100 MSps 16-bit
outputs, and eight general purpose IO lines.

• Ettus Research XCVR-2450 802.11a/b/g compliant, 40
MHz, dual 2.4 GHz and 5.2 GHz band RF transceiver
with 100 mW of transmit power.

Fig. 5 shows the TX and RX block diagram representations
of the various signal processing blocks implemented in the
devices. Also shown is a mapping of the various blocks to the
underlying hardware targets and the respective design tools
used in their implementation; e.g., the TX Data Bit Generation
block (programmed using LabVIEW RT) executes on the
PXIe-8133 RT controller, while the higher rate 512 IFFT with
128 CP Insertion block (implemented using DSP Designer)
executes on the PXIe-7965R FPGA module. The various data
rates associated with the inputs and outputs of each block
are also shown; e.g., the TX Sample Rate Conversion block
up-samples input data streaming at 7.68 MSps to 50 MSps in
order to meet the sample rate constraints of the NI-5781 DAC.

B. OFDM Transmitter Design Overview

Fig. 7 shows the DSP Designer implementation of the pro-
posed transmitter. Random bytes of data generated by the RT
controller are forwarded to the FPGA module for Multilevel
QAM (M-QAM) [23]. Depending upon the modulation order
value denoted by the parameterization port, Modulation, the
bytes of data are unpacked into groups of 2, 4, or 6 bits
corresponding to 4/16/64-QAM, respectively. Groups of bits
are then mapped to their respective complex symbols and
passed out of the output port of the sub-diagram.

After QAM modulation, 250 data symbols are interleaved
with 50 reference symbols stored in a look-up table forming
an array of 300 interleaved symbols which is then split into
two equal groups and padded with zeros forming an array of
512 samples. The 512 samples are passed through a 512 point
IFFT block translating the frequency domain samples into the
time domain. A 128 point CP is also inserted such that the
output of the block consists of 640 samples streaming at 7.68
MSps. Sample rate up-conversion is then performed through
two sets of FIR filters, converting the 7.68 MSps signal to 50
MSps. The samples are forwarded to the NI-5781 for digital-
to-analog conversion followed by RF up-conversion.

C. OFDM Receiver Design Overview

Fig. 7 shows the DSP Designer implementation of the
receiver. The RX begins with two FIR filters that perform
sample rate down-conversion taking the incoming 50 MSps
signal from the ADC down to 7.68 MSps. Time and carrier
frequency offset (CFO) estimation is performed using the blind
estimation technique proposed in [24]. Because the first L
samples (CP) and the last L samples of an N+L length OFDM
symbol are equal, the algorithm correlates the two, thereby
eliminating the need for a priori knowledge of the transmitted
signal. The correlation output is then used to estimate the start
index of an OFDM symbol and the CFO thereof.

In order to meet throughput without loss of data during
the estimation of the start index and CFO, the receive signal
is buffered into a memory block while simultaneously being
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Fig. 7. DSP Designer Diagrams of OFDM Transmitter (top) and Receiver (bottom).

processed for time and CFO estimation. Once computed, the
start index is used to calculate a corresponding read address
pointer that indexes the beginning of an OFDM symbol stored
in memory. When it is synchronized to the beginning of an
OFDM symbol, the RX streams the signal out of memory
and into the CFO correction block wherein the synchronized
OFDM symbol is multiplied with a complex sinusoid gener-
ated by a direct digital synthesizer (DDS) block at a frequency
defined by the CFO estimate present at its input.

After CFO correction, the received OFDM symbol is passed
on for CP removal and FFT transformation returning the signal
to the frequency domain. Zero pads are then removed and the
reference and data symbols are separated in a deinterleave
operation. As shown in Fig. 7, the received reference symbols
are passed out of the first output of the deinterleave block for
channel estimation while the received data symbols are passed
out of the second for channel equalization.

In order to estimate the channel coefficients, we model the
received reference symbols as sk = hkrk + zk where k ∈
{0, . . . , 49}. The reference symbol and channel coefficients
are respectively modeled as rk = ejθrk and hk = |hk| ejθhk .
Lastly, zk represents additive white Gaussian noise.

The estimates of the channel coefficients, ĥk, are then cal-
culated by multiplying the complex conjugate of the reference
symbols, r∗k, to the received reference symbol. Moreover, be-
cause only one reference symbol is allocated to every five data
symbols, the 50 channel estimates, ĥk for k ∈ {0, . . . , 49}, are

up-sampled by five generating a total of 250 channel estimates,
ĥi for i ∈ {0, . . . , 249}.

In order to correct the effects of the wireless channel,
zero forcing (ZF) channel equalization is employed where the
received data symbols, yi, are first multiplied by the complex
conjugate of the channel estimates, ĥ∗

i , and then divided by
their square magnitude, |ĥi|2, effectively inverting the channel.
The data symbol estimates, x̂i, are then transferred to the RT
controller at a data rate of 3 MSps for QAM demodulation
and bit error rate calculation.

D. FPGA Compilation & Run-Time Results
In addition to the portions of the design implemented in

DSP Designer, the compilation results include nominal logic
implemented in LabVIEW FPGA that manages data transfer
across the NI-5781 baseband transceiver and PXIe-7965R
FPGA module, and the PXIe-7965R FPGA module and PXIe-
8133 RT controller. The results also include additional logic to
control the NI-5781, such as ADC/DAC read/write operations,
sampling frequency configuration, and clock select.

Table I is a summary of the compiled FPGA resource
utilization. The first two columns show the various resources
available on the PXIe-7965R’s Virtex-5 SX95T FPGA and
the total number of elements associated with each resource.
The percentage utilization of the various resources for the TX
and RX are listed in the last two columns. For instance, there
are 14,720 slice elements available on each FPGA, 43.1% or
6,350 of which are used by the TX and 79.2% or 11,659 of
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which are used by the RX. Due to significant differences in
computational complexity between the two designs, the RX
utilizes more than twice as many slice registers and LUT
resources compared to the TX. With regard to timing, the TX
and RX DSP diagrams are configured to be driven by 125 MHz
clocks, and both successfully met timing during compilation.

Resource Available Resource Transmitter Receiver
Name Elements Utilization Utilization
Slices 14,720 43.1% 79.2%
Slice Registers 58,880 21.6% 54.6%
Slice LUTs 58,880 24.7% 57.3%
DSP48s 640 2.7% 8.3%
Block RAM 244 8.2% 19.7%

TABLE I
FPGA RESOURCE UTILIZATION SUMMARY.

Fig. 8 is a screen shot of the OFDM receiver front panel
taken during an over-the-air test of the communications link.
In addition to carrier frequency, modulation order, and LNA
gain controls, a sample 16-QAM signal constellation plot is
shown along with two average bit error rate (BER) curves,
one taken on a single subframe basis (lower right hand plot),
and the other taken over all received subframes (upper right
hand plot). The average BER over all subframes converges to
an approximate value of 8 ∗ 10−4.

Fig. 8. Receiver Front Panel.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the DSP Designer framework
to specify dataflow models, analyze them, and generate im-
plementations for hardware targets. The PCSDF model of
computation is sufficiently expressive in specifying complex
streaming applications, while capturing characteristics specific
to hardware design. The back-end performs key optimizations
related to buffer sizing and scheduling. The actor library
provides a rich set of building blocks to create complex signal
processing and communications applications. It also facilitates
easy integration of custom designed hardware IPs from native
and third-party sources. Thus, DSP Designer serves as a design
and exploration framework that enables algorithm experts to
productively specify applications using high level models and
still create efficient hardware implementations.

In the future we intend to (a) extend the DSP Designer
modeling and analysis capabilities to support more expressive
streaming models such as Heterochronous Dataflow (HDF);
(b) enhance the analysis back-end to address problems related
to dataflow pipelining and resource constrained scheduling; (c)
study how intra-cycle timing optimizations for hardware, such
as retiming and recycling, can be applied at the model level;

(d) derive more resource-efficient hardware implementations
through rate matching and clumping of multi-rate actors; and
(e) enlarge the DSP Designer actor library and standardize the
IP interface definition to ease third-party IP integration.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Pro-
ceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, Sept. 1987.

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis
from Dataflow Graphs. Norwell, MA: Kluwer Academic Press, 1996.

[3] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
data flow,” in IEEE Intl. Conf. Acoustics, Speech, and Signal Processing,
vol. 5, 1995, pp. 3255–3258.

[4] B. Bhattacharya and S. Bhattacharyya, “Parameterized Dataflow Model-
ing for DSP Systems,” Signal Processing, IEEE Transactions on, vol. 49,
no. 10, pp. 2408 –2421, oct 2001.

[5] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines
with Multiple Concurrency Models,” IEEE Transactions on Computer-
Aided Design, vol. 18, no. 6, pp. 742–760, June 1999.

[6] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V.
Gheorghita, and S. Stuijk, “A Scenario-aware Data Flow Model for
Combined Long-run Average and Worst-case Performance Analysis,”
in Proceedings of MEMOCODE’06, Jul. 2006, pp. 185–194.

[7] S. Tripakis, H. Andrade, A. Ghosal, R. Limaye, K. Ravindran, G. Wang,
G. Yang, J. Kormerup, and I. Wong, “Correct and non-defensive
glue design using abstract models,” in Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, ser. CODES+ISSS ’11. New York, NY,
USA: ACM, 2011, pp. 59–68.

[8] O. M. Moreira and M. J. G. Bekooij, “Self-Timed Scheduling Analysis
for Real-Time Applications,” EURASIP Journal on Advances in Signal
Processing, vol. 2007, no. 83710, pp. 1–15, April 2007.

[9] S. Stuijk, M. Geilen, and T. Basten, “Exploring Trade-offs in Buffer
Requirements and Throughput Constraints for Synchronous Dataflow
Graphs,” in Proceedings of DAC ’06, 2006, pp. 899–904.

[10] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming Heterogeneity - The Ptolemy
Approach,” in Proc. of the IEEE, vol. 91, no. 1, 2003, pp. 127–144.

[11] H. A. Andrade and S. Kovner, “Software Synthesis from Dataflow
Models for G and LabVIEW,” in In Proceedings of the IEEE Asilomar
Conference on Signals, Systems, and Computers, 1998, pp. 1705–1709.

[12] The MathWorks Inc., “Simulink User’s Guide,” 2005,
http://www.mathworks.com.

[13] H. Kee, C.-C. Shen, S. Bhattacharyya, I. Wong, Y. Rao, and J. Kornerup,
“Mapping Parameterized Cyclo-static Dataflow Graphs onto Config-
urable Hardware,” Journal of Signal Processing Systems, pp. 1–17, 2011.

[14] H. Berg, C. Brunelli, and U. Lücking, “Analyzing Models of Com-
putation for Software Defined Radio Applications,” in International
Symposium on System-on-Chip (SOC), Tampere, Finland, November
2008, pp. 1–4.

[15] “3GPP LTE: The Mobile Broadband Standard,” Dec 2008,
http://www.3gpp.org/.

[16] National Instruments Corp., “LabVIEW FPGA,” www.ni.com/fpga.
[17] Xilinx Inc., System Generator for DSP: Getting Started Guide,

www.xilinx.com.
[18] C.-J. Hsu, J. L. Pino, and F.-J. Hu, “A mixed-mode vector-based dataflow

approach for modeling and simulating lte physical layer,” in Proceedings
of the 47th Design Automation Conference, ser. DAC ’10. New York,
NY, USA: ACM, 2010, pp. 18–23.

[19] J. W. Janneck, “Open Dataflow (OpenDF),” http://www.opendf.org/.
[20] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet,

“Synthesizing Hardware from Dataflow Programs: An MPEG-4 Simple
Profile Decoder Case Study,” in IEEE Workshop on Signal Processing
Systems, oct. 2008, pp. 287–292.

[21] Xilinx Inc., Xilinx Core Generator, ISE 12.1, Xilinx Inc., 2010.
[22] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Sys-

tems,” Ph.D. dissertation, Stanford Univ., CA., October 1984.
[23] J. Proakis, Digital Communications, 4th ed. McGraw-Hill Sci-

ence/Engineering/Math, Aug 2000.
[24] M. Sandell, J.-J. van de Beek, and P. O. Brjesson, “Timing and

Frequency Synchronization in OFDM Systems Using the Cyclic Prefix,”
in In Proc. Int. Symp. Synchronization, 1995, pp. 16–19.

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  | 47



A Configurable VHDL Template for Parallelization of 3D Stencil
Codes on FPGAs

ERSA’12 Distinguished Paper

Franz Richter, Michael Schmidt and Dietmar Fey
Department of Computer Science, Chair of Computer Science 3 - Computer Architecture,

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract— 2D and 3D stencil code applications are very
common in scientific computing, but their performance is
mostly limited by the memory bandwidth. Elaborate on-
chip buffering techniques minimize memory transfers, but
they cannot be directly realized on fixed general-purpose
processors or GPUs.

FPGAs instead offer flexibility regarding the processing
scheme, the degree of parallelism and the numerical rep-
resentation of values. This enables FPGA-based problem-
solvers to perfectly scale from low-power embedded de-
vices to high-performance accelerators with a much higher
performance-to-power ratio than conventional processing
nodes. To reach optimal performance, elaborate buffering
techniques within the FPGA are necessary to avoid redun-
dant memory access, first of all in 3D space.

We created a generic VHDL template to ease development
of 3D stencil-based applications, using Full Buffering to
minimize data transfers. The template allows a custom
number format, together with variable parallelization in
space and time. The parameters can be set according to the
capabilities of the underlying hardware and the requirements
of the application.

Keywords: Stencil Codes, FPGA, Full Buffering

1. Introduction
In numerical approximations a specific problem is often

discretized in both, space and time. It is therefore mapped
on a regular grid and computing one step in time for a single
grid point at a certain position, referred to as cell, can be
put down to a function of itself and its surrounding [1].
To perform one iteration, this function, also called stencil,
is applied to every cell of the grid, while several thousand
iterations are often needed for convergence of the results.

Applications of these stencil codes include 2D image
preprocessing operations, which we already have analyzed
in detail [2]. In high performance computing (HPC), 3D
stencils are often used for physical simulation, like the heat
dissipation with the Jacobi Iterator [3] or a particle behavior
with Lattice Gas or Lattice Boltzmann methods [4].

These applications are very data-intensive, first of all for
the 3D problem space. Using off-the-shelf hardware like

CPUs and GPUs, stencil codes are mainly memory bound,
which means that the external memory bandwidth is the
bottleneck in the processing chain.

Fortunately, this limit can be shifted by using clever strate-
gies for buffering and parallelization on FPGAs, because
they can be strongly customized to the problem, instead of
having to adapt the algorithm to a fixed architecture. Fur-
thermore, even high-performance FPGAs have a moderate
power consumption, in contrast to normal CPUs and GPUs,
which allows HPC applications to be realized efficiently [5].

1.1 Buffering
To circumvent the performance limit on FPGAs, extensive

use of on-chip memory is necessary to avoid redundant
memory access and allow parallelization of computation.
The high amount of resources of today’s FPGAs enables
hardware designers to use Full Buffering (FB) in favor of
Partial Buffering (PB) [6].

For PB, only the data needed by the current computation
is stored to minimize memory consumption. Fig. 1a shows a
three-dimensional problem space of size M ×N ×O. Each
block represents one value and its shade gives its current
role in computation. The light gray blocks have neither been
loaded nor processed yet. Values which are needed by the
current stencil update are medium gray. Here, an X×Y ×Z-
wide area is used, which is called neighborhood. To perform
the next update, Y · Z dark gray blocks are needed, and as
much as data is now obsolete and can be evicted (the most
left column of the neighborhood).

Hence, for a single computation, several values have
to be loaded from external memory, limiting the resulting
performance.

In contrast to that, the main idea of FB is to store
data internally until all computation relying on it has been
performed. In Fig. 1b, these additionally stored values are
shaded differently, compared to PB. Data has still to be
loaded to perform an update, but it depends no longer on
the size of the stencil. Instead, only a single value is needed,
since all other data is already present.

During computation, the stencil is applied row-wise, from
the top to bottom and plane-wise from the front to the back.
Thus, a value must have been used for computation at every
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3D PARTIAL BUFFERING (PB) (A) AND FULL BUFFERING (FB) (B)

position of the stencil, i.e X · Y · Z-times, until is can be
evicted.

It is obvious that this is optimal regarding the utilization
of external memory, at the expense of a high demand for
local buffer space. However, this paper will show that FB
is worth on modern FPGAs, since it is the only way to
optimally minimize redundant memory access and it is
furthermore predestined for stream processing, making it
perfectly compatible with typical stencil codes.

The following sections give an overview of prior work
concerning stencil codes on FPGAs and explain the motiva-
tion for our generic approach, before the template itself is
explained.

1.2 Related Work
Stencil code applications on FPGAs are well discussed

and several different architectures have been proposed.
Ref. [7] uses finite-difference schemes for real-time sound

synthesis. They use a two-dimensional array of processing
elements (PE), each containing an independent controller,
internal memory (distributed or Block RAM) and a fixed-
point arithmetical unit. Parallelism is achieved by using
several PEs, which in turn can contain multiple and pipelined
arithmetical units. All input data is spread over of the PEs,
if enough on-chip space is available. Otherwise, external
memory has to be used, limiting the total amount of PEs
available since all PEs have to communicate simultaneously.
For large inputs, it is not analyzed further how the memory
bandwidth affects the overall performance.

The different degrees of parallelization are similar to
ours, but at a different level of abstraction. We do not see
any advantage of implementing multiple PEs, each with
separate control logic and memory access, on a single FPGA.
Instead, enlarging a single PE to the architectural limits
significantly reduces the overhead for maintenance since a
single controller is sufficient.

The authors of [8] [9] claim to have developed the first
hardware accelerator card for the 3D finite-difference time-
domain method. They build a memory hierarchy consisting
of on-chip BlockRAM, coupled with on-board SRAM and
DRAM, connected to PCI-bus of the host system. The
BlockRAM is mainly used as input and output buffer to the
external DRAM to allow bursts of data. Each arithmetical
unit, of which more than one may exist for parallelization,
accesses disjoint on-chip buffers and performs computation
on single precision floating point numbers. They also inde-
pendently exchange data with external memory, but we do
not see multiple memory accesses in parallel with totally
different addresses to be feasible.

In [10], an architecture for star-shaped stencil codes of
size n×(n+1)×n, for even n, with single precision floating
point data is proposed. It consists of the front-end, which is
mainly responsible for external memory access and buffering
of the data already loaded, and the back-end, implementing
the actual update logic, running at twice the clock frequency
of the front-end. The engines are controlled by the input
FIFO and stalled if necessary. They rely on an extended
PB, minimizing memory access along one axis. The paper
emphasizes the speed of on-chip data transfers to maximize
stencil throughput. This throughput depends on the clock
frequency, the amount of BlockRAMs used for parallel data
access and the degree of parallelization of computation, but
we do not expect any of the three to be a bottleneck, despite
of the external memory bandwidth, which is not primarily
minimized in this approach.

The most recent publication [11] shows a similar approach
to ours. They use an FB scheme for the 3D Reverse Time
Migration algorithm, with the same argument as ours, that
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the limitations by the external memory bandwidth is the
main bottleneck in today’s applications. They also cover
different shapes of stencils, coming to the conclusion that
compact ones are more suitable in FB-based applications
due to less memory requirements, even if they have a
higher computational intensity. Despite of our work, they
do not give a detailed description of the hardware structure
and the resource consumption for different configurations.
Furthermore, they only consider 2D blocking to allow ar-
bitrary problem spaces, though 1D blocking involves less
redundancy, compared to 2D, as it is explained in Sec. 2.2.

1.3 Template
In contrast to the work listen above, our goal was to

provide a flexible framework to ease the development of fu-
ture 3D stencil-based streaming-applications on FPGAs, but
offering the performance and transparency of a customized
solution. This general approach is new to out knowledge. It
is an advancement of our prior work on 2D stencil codes, for
which we already have developed a VHDL template, firstly
presented in [2].

The 3D template is based on the results of [12]. It can
be adapted by different parameters, configuring the size of
the problem space, the size of the stencil or the amount
of bits per cell, to fit the application’s needs. Furthermore,
the degree of parallelization in both, space and time, can
be adapted, according to the memory bandwidth and the
FPGA-resources available. If the problem space is too large,
partitioning may be necessary, imposing a certain degree of
overhead. This scalability allows the template to be used in
all ranges of complexity, from low-power embedded devices
to HPC-accelerators, without having to bother with data
handling.

The paper is structured as follows. The next section
explains the components and parameters of our template.
The third section presents some mathematical background,
together with estimations and measurements of processing
time and resource consumption. In the last section, we
present a demonstrator design.

2. Template Design
The main goal of the template is to allow an optimal use of

resources on an FPGA for a given problem, while taking full
advantage of the external memory bandwidth. Stencil codes
are usually very unbalanced regarding the amount of data
required for a single update and the computational intensity.
Therefore, they are often limited by memory bandwidth, first
of all for 3D problems. Hence, an optimal buffering scheme
is needed to optimize the overall performance.

2.1 Full Buffering for 3D Stencil Codes
FB reduces memory transfers to a minimum by keeping

data inside of much faster on-chip memory as long as it
is required for computation. On FPGAs, a limited amount

of on-chip SRAM with a latency of a single clock cycle is
available for buffering.

The total amount of values AFB, which have to be buffered
internally for an FB scheme, is given by (1) (see Fig. 1).

AFB = M ·N · (Z − 1) +M · (Y − 1) +X (1)

Note that each value of the grid is represented by a
constant amount of bits. In scientific computing, single- and
double-precision floating point numbers are very common,
though the wide range of values is often not needed by
the application. In fact, a fixed-point number format may
allow a much more hardware-efficient implementation of
arithmetical units, and even raise the accuracy of values
within the interval. Therefore, the parameter D is used for
the width of a single value, instead of a fixed data type.

As mentioned above, the size of buffer space required AFB
depends on the stencil itself since each value has to be stored
until is has been streamed through the stencil, starting at the
bottom-right of the last dimension and ending at the top-left
of the first dimension, if it is applied in a row- and plane-
wise fashion. As a result, the space required is independent
from the parameter O.

More complex problems or higher requirements on accu-
racy often lead to larger stencils, which results in a strong in-
crease of buffer space. High order compact schemes[13][14]
reduce the size of the stencil at the expense of computation,
which is not regarded to be critical on FPGAs, despite of
the capacity of on-chip memory.

In a PB approach, solely the processed stencil of size
X × Y × Z is stored which requires much less data to be
buffered by the FPGA, with the drawback that X ·Y values
have to be loaded to update a single value. This leads to a
lot of redundant memory access in a PB scheme, which is
therefore unfavorable if enough on-chip storage is available,
as it is on current FPGAs.

Apart from PB and FB, we think it is not worth to
implement a CPU-like memory hierarchy since caches are
intended to speed up applications with an unpredictable
memory access pattern, which is not necessary for streaming
applications, since data is consumed sequentially.

Elaborate techniques like multi-buffering, well known
from cluster computing to hide memory latency, are also
not able to speed up the FB-approach any further since
the external memory bandwidth remains as bottleneck. In
general, the actual data transfer between the template and
external memory should make excessive use of sequential
burst transfers, but since the exact conditions are user- and
application-specific, data transfer is not to be handled by the
template itself.

2.2 Blocking
Depending on the size of the stencil and the FPGA

used, it is likely that an FB approach is not possible for
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SCHEME FOR 1D (A) AND 2D BLOCKING (B)

the complete input space. A sufficient compromise for the
buffering scheme has to be found. The input space has to
be split into blocks. FB is then applied to a block and all
blocks are processed consecutively for each iteration. This
is called blocking.

There are two main blocking methods. For 1D blocking as
in Fig. 2a, the input space is split into slices, each spanning
two whole dimensions. It is recommended for a non-square
input space to choose O as the largest dimension to fully
exploit the streaming character, because as shown in the
section before, AFB is independent of the parameter O.
This maximizes the throughput and hides the initial wind-
up overhead to fill the buffer. Using N for the smallest
dimension reduces the size of the buffer and thus allows
less blocks at all.

If the input space is even too large for 1D blocking to be
feasible, which would result in many slices with a limited
width bm, blocking in two dimensions is applicable (see
Fig. 2b). Again, the largest dimension of the input space
should be used for O.

On the other hand, blocking introduces redundancy be-
cause neighboring blocks must contain overlapping values

BRAM
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Z Y
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Fig. 3
SCHEMATIC OF FB TEMPLATE. EXECUTOR CONSISTS OF SEPARATE

DIMENSIONS WITH INTERMEDIATE BUFFERS AND TWO KERNELS

(P = 2) FOR A STENCIL OF SIZE X = Y = Z = 3

in order to update the boundaries, called ghost zones.
This blocking mechanism can also be used to efficiently

distribute the stencil computation of the input space to sepa-
rate devices, if a multi-FPGA platform is used for example,
which even does not have to be homogeneously due to
the configurability of the template. For such a solution, the
synchronization overhead is regarded to be negligible due
to the deterministic character of the template. To minimize
communication among separate FPGAs, it is applicable to
enlarge the overlapping, even though it raises redundancy
in memory transfers. That way, multiple iterations can be
computed without having to communicate off-chip. These
techniques are also well-known from the area of cluster
computing using MPI and can be adapted to FPGAs.
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2.3 Implementation
We implemented a generic VHDL design based on FB,

allowing different degrees of parallelism, and supporting
arbitrary problem sizes by spatial blocking. To be flexible,
no vendor-specific library components are used but only be-
havioral descriptions, to make full usage of the synthesizer’s
inference capabilities. The main components of the template
are Kernel, Dimension and Executor. Their dependence is
illustrated in Fig. 3 and is explained in the following.

The Executor encapsulates the buffering and computation
of the template. For each update, new data is streamed
into the Executor, and results computed by the Kernel are
streamed out. To be able to embed the template in different
environments, it is controlled by a simple clock-enable signal
which has to be activated if new data is available.

The Kernel implements the computation of the stencil and
depends on the application. A Kernel has access to all data
required for the realization of a stencil operation on a cell
of the input space. It has to be implemented by the user
and may contain either combinational or sequential logic,
depending on the complexity of the algorithm. Updates of
a cellular automata, e.g. for the realization of the Lattice
Gas model, may be performed in a single clock cycle, while
a lot of other stencil codes are more complex, leading to
considerable critical paths. Adding intermediate registers al-
lows pipelining of operations in order to increase the system
frequency. Though this raises the latency of a single update
operation, it does not limit the application’s performance,
because with each clock cycle, a new result is available,
similar to pipelining of a microprocessor. The size of the
kernel depends on the X , Y , and Z of the stencil and can be
configured. Nevertheless, it is recommended to use minimal
stencils if possible, even if they imply a higher computational
intensity, to save buffer space.

Based on registers and FIFOs, an instance of the compo-
nent Dimension holds the rows of an M × N -wide plane
which are currently covered by the Kernel. The remaining
data of each plane is stored in a separate FIFO, except for the
last plane, which directly consumes data from the Executor’s
input (see Fig. 1b).

In detail, each row within a Dimension contains X times
D-wide registers and a separate M − X values wide
BlockRAM-FIFO. The registers are used as input to the
Kernel, since FIFOs can not handle multiple reads simul-
taneously if they are realized with BlockRAM. On FPGAs,
one cell of BlockRAM usually only has two ports. These
registers are queued, allowing data to be shifted from one
end to the other. The end of a queue is connected to the
output port of a FIFO, which contains the remaining data
of the row. On each update, the registers and FIFOs are
shifted by one, allowing the next values to be processes by
the Kernel. If a value is shifted out of the register queue, it
is either sent to the row spatially above, the next plane, or,
if it is not needed any more, it is discarded.

The explained buffering scheme allows to perform one
update with a single load and store. This can be increased
by introducing different degrees of parallelism, which is
explained in the next section.

2.4 Parallelization
Depending on the amount of bits per value D and the

external memory bandwidth, the degree of spatial paralleliza-
tion P can be adapted. With single precision floating point
numbers, 64 bit wide dual-port ram, and an the same clock
frequency for FPGA and memory, P = 2 allows to exploit
the available bandwidth. Two ports are needed to read and
write data simultaneously.

By setting P , several neighboring values are updated
simultaneously with only P − 1 additional values that have
to be buffered. The demand for processing logic increases
due to multiple Kernels, but this is not a limiting factor
for common stencils, so P is only limited by the external
memory bandwidth.

Especially for applications with small D, it leads to a
significant rise of performance. This mechanism also benefits
from the fact that the data format used on the FPGA is fully
customizable.

If P is set properly, the only way to improve performance
is to reduce the amount of data to be transferred by temporal
parallelization of computation, called pipelining. Multiple it-
erations are computed per sweep by queuing up I Executors.
Each Executor has its own FB of the current region and
enhances the iteration by one. It’s output is used as input to
the next one, again enhancing the iteration. In theory, it is
possible to compute all iterations with only a single load and
store per value, but multiple Executors raise the demand for
on-chip memory by factors. Pipelining also raises the latency
of the template, but it is tolerable if a high amount of data
is processed.

If blocking is required due to the size of the problem
space, the demand for memory even grows. For every
iteration to be processed within one sweep, additional values
surrounding the current block are required, called . Because
the block size of bm×bn×O has to be set with regard to the
available internal memory, the actual data block is smaller
if more than one iteration is realized.

Several ways to configure the template have been intro-
duced by now. All of them, the variable blocking mechanism,
i.e. 1D or 2D, the block size, the amount of P neighbors
computed in parallel or the depth of the Executor-pipeline
I either depend on the on-chip resources available or the
external memory bandwidth or both. It is an optimization
problem to find optimal parameters for an actual problem.
For 2D stencil code applications, we have already analyzed
such optimization in more detail [15] and developed an
analytical model. At the moment, we are working on an
advanced version of our model to get an optimal parameter
set also for 3D.
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Table 1
PARAMETER DEFINITION

Identifier Description

M ×N ×O Width, height, depth of input with border
m× n×O Size of block with data to be processed
bm× bn×O Size of block, with ghost zones
k Number of blocks
X × Y × Z Size of the stencil
D Bits per value (per cell)
P Spatial parallelization
I Temporal parallelization
AFB Buffered cells for Full Buffering
AI Buffered cells with pipelined Executors
cblock Total memory accesses with blocking
cFB Total memory accesses without blocking
PFBL Performance of blocking
PFPB Performance of Partial Buffering

As a rule of thumb, P is set as mentioned above. The
problem space is split into equal blocks that barely fit into
the FPGA. If resources are still available, I is increased.

3. Evaluation
In this section, the mathematical background of the tem-

plate is analyzed. Furthermore, syntheses results and the
performance are presented. Tab. 1 gives an overview of
the parameters of the template. Most of them have been
introduced by now.

3.1 Overhead of Blocking
Based on 1, we determine the performance of blocking

in relationship to an FB of the complete input space and
compute the amount of redundant memory access.

The size of the ghost zone depends on the stencil size.
For simple X = Y = Z = 33 stencils the width of the
ghost zone is one for a single iteration. The block size bm×
bn, which also has to contain the required ghost cells, has
to be determined by D and the available on-chip memory,
according to (1). The size of the block m × n of actual
processed values can then be determined as shown in (2).

m = bm−X + 1

n = bn− Y + 1
(2)

Depending on the size of the input space, the number of
blocks k, which have to be processed consecutively, can be
determined by (3).

k =
M ·N
m · n

(3)

The total amount of memory accesses for FB on the
whole input space, cFB, can be determined by (4), and with
blocking, denoted as cblock, by (5). Note that for 1D blocking,
bn becomes N , reducing redundancy.

cFB = k ·m · n ·O (4)

cblock = k · bm · bn ·O (5)

For FB, all redundant memory accesses are eliminated,
leading to an optimal performance. The ratio between cFB
and cblock, giving the fraction of performance that remains
due to redundancy of the ghost areas, is ascertained by (6).

PFBL =
cFB

cblock
=

m · n
bm · bn

=
(bm−X + 1) · (bn− Y + 1)

bm · bn
(6)

Eq. (6) proves our expectations. A greater internal mem-
ory allows a greater block size bm × bn and, hence, a
higher performance because the amount of data needed for
the ghost area is strongly dominated by the data enclosed.
Furthermore, a greater stencil size implies a greater ghost
zone width, leading to an increase in redundancy and, thus,
to a lower performance.

Another interesting issue at this point is the performance
of blocking with regard to PB, where (7) values have to be
loaded.

PFPB =
M ·N ·O

M ·N ·O ·X · Y
=

1

X · Y
(7)

From the equations it follows that if FB is not possible,
blocked FB is still to be favored over PB since PFPB <
PFBL for all bm > X and bn > Y .

3.2 Pipelining
It was already mentioned above that for pipelined Execu-

tors, the actual block size m × n × O has to be wider to
be able to update border values correctly. For I iterations, a
block has to contain (m+I ·(X−1))×(n+I ·(Y −1))×O
values. For high I , it is feasible to use the template with
different parameters for every pipeline stage and omit the
outer border of the previous stage while streaming.

The amount of buffer entries of size D for a Executor
pipeline of depth I is then given by (8).

AI =
I−1∑
i=0

(
(m+ i(X − 1)) · (n+ i(Y − 1)) · i(Z − 1)

+(m+ i(X − 1)) · i(Y − 1) + i(X − 1) + 1
)
(8)

This shows why increasing the pipeline depth highly in-
creases the buffer space.

3.3 Synthesis
By now, only theoretical assumptions were made. To get

real numbers, the template was synthesized with Xilinx ISE
11.5 for a Xilinx Virtex-5 XC5VLX110T FPGA. The FPGA
contains 69120 Flip-Flops (FFs) and Lookup-Tables (LUTs)
respectively, and 148 BlockRAM cells with a capacity of
2KiB each.
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Table 2
SYNTHESIS RESULTS

M ×N ×O · P · I FFs LUTs BlockRAM MHz

32 × 32 × 32 · 1 · 16 11328 2113 80 317
32 × 32 × 32 · 1 · 28 19824 3697 140 317
64 × 64 × 64 · 1 · 1 728 157 11 303
64 × 64 × 64 · 2 · 4 4816 496 80 308
64 × 64 × 64 · 4 · 4 7088 416 128 316

128 ×128 ×128 · 1 · 1 748 209 35 301
128 ×128 ×128 · 4 · 1 1782 1860 53 282
128 ×128 ×128 · 1 · 4 2992 833 140 301
256 ×256 ×256 · 1 · 1 770 239 131 298
256 ×256 ×256 · 2 · 1 1228 208 140 306
256 ×256 ×256 · 4 · 1 1814 168 152 257

These BlockRAMs are predestined to be used for buffer-
ing data on-chip, but they are less flexible than Lookup-
Tables. Large values for D and P could lead to a higher
demand on blocks needed due to the limited interface-width
of 36 bit of each port. If the target architecture is fixed,
technology-dependent optimization of allocated resources
may reduce the demand. For fixed parameters of the problem
space and the stencil, even further optimization is possible,
e.g. by implementing the shorter row-buffers as distributed
RAM.

Tab. 2 shows the results for different parameters with
D = 32. It can be seen that the main limitation for
the template is the available on-chip memory, as already
explained before. Even a small input space of 256×256×256
almost exhausts the capacity, leaving no room to increase
I but only P . Hence, for large input spaces, blocking is
inevitable to achieve a notable speedup.

3.4 Performance
Tab. 3 shows some performance estimations. The runtime

is based on a clock frequency of 400 MHz for a block size
of M = N = O = 128, and a stencil of X = Y = Z = 3.
Note that the actual frequency depends on the speed of the
FPGA and the complexity of the Kernel. To get a reasonable
runtime, 1000 iterations are assumed. The first column shows
the total amount of memory transfers for reading and writing,
followed by the on-chip space needed in multiples of D. The
runtime is estimated for a dual-channel 64bit wide memory
interface with D = 32.

It can be seen that an optimal buffering strategy like FB
can greatly reduce the runtime for 3D stencil code appli-
cations. Furthermore, the speedup can be highly increased
by spatial and temporal parallelization. Compared to regular
FB, the asymptotic speedup with optimization is P · I .

It is necessary to clarify that the accuracy of performance
estimations of hardware descriptions differ from theoretical
peak performance of CPUs and GPUs because it is totally
deterministic and thus predictable what happens during one
clock cycle. Therefore, the performance of the template can

Table 3
COMPARISON OF DIFFERENT CONFIGURATIONS

r|w ·109 Buffer Speedup Runtime [s]

No buffering 54.0| 2.0 27 1 140
PB 18.0| 2.0 27 2.8 50
FB 2.1| 2.0 33027 13.7 10
P = 2 1.1| 1.0 33028 26.7 5
P = 2, I = 2 0.6| 0.5 66056 50.9 3
P = 2, I = 4 0.3| 0.25 132112 180.0 1.4

be exactly given without benchmarking. Of course, for an
actual application, additional components are needed, but the
memory interface remains the bottleneck.

Taking power consumption into account, the FPGA-based
stencil solution shows its actual potential. The FPGA in our
design needs about 1.1 W, independent of the actual problem.

An optimized implementation of the Jacobi-iteration for
Laplace’s equation on recent Nvidia Fermi and Geforce GTX
GPGPUs delivers a performance of 10 GLUPS1 per 250 W
or 40 MLUPS/W [16] for double-precision floating point
operations.

Based on the maximum clock frequency of approximately
100 MHz, 2.8 GLUPS for double precision can be reached on
a small input space of size 32×32×32 (see Tab 2, leading to
an efficiency of 2.5 GLUPS/W, which is magnitudes higher
than the GPGPUs, under the assumption that for each clock
cycle, new data is available, which can easily be fulfilled
due to the low frequency.

For larger problems, the performance drops, but even
0.2 GLUPS/W for P = 2 on a grid of size 256× 256× 256
outperforms the GPUs by far. By using multiple FPGAs,
power consumption scales linear with performance, allowing
to build „green“ HPC-systems. A very interesting example
for the potential of FPGAs for high performance is [17],
where a similar approach is used, but totally optimized
for high-performance streaming applications and at a much
higher degree of abstraction.

Furthermore, the FPGA used here is of medium size
and two generations behind current versions. For greater
applications, a larger FPGA offers even higher performance
due to more on-chip memory, with only a limited increase
of power consumption.

This analysis illustrates that FPGAs are able to outperform
GPGPUs by factors with regards to power efficiency.

The comparison of the power consumption of the single
FPGA-chip and the whole GPGPU-board is seen to be
reasonable since all components used for computation are
taken into consideration, e.g. the on-board RAM of the
GPGPUs vs. the FPGA’s on-chip BlockRAM.

1Giga Lattice Updates Per Second, conforms to single stencil applications
per second
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Fig. 4
3D JACOBI-ITERATION FOR CENTRAL HOT SPOT

4. Reference Design
We implemented a demonstration application based on the

Jacobi-iteration to show the applicability and flexibility of
our template-based approach.

FloPoCo [18], an open and free generator for arithmetic
cores, was used to create the Kernel. The resulting FPU has
a pipeline depth of 13 cycles, and allows a target clock rate
of 100 MHz on the FPGA mentioned previously. If the FPU
is split up into more stages, a higher frequency is possible.
With only about 5 % of available resources of the FPGA,
the Kernel allows a high degree of parallelism.

The results of the demonstrator can be seen in Fig. 4. With
no loss of generality, an input space of only 16 × 16 × 16
was used. Visit2 was used to visualize the 3D volume.

5. Conclusion and Outlook
We presented a generic VHDL template for 3D stencil-

based applications, exploiting Full Buffering to minimize
external memory accesses and increase performance of
memory bound applications.

To configure the template, several parameters can be set,
according to the problem and target architecture. Execution
can be accelerated by spatial and temporal parallelization,
depending on the memory bandwidth and the amount of on-
chip storage available.

The main advantage of the template is its flexibility. Due
to minimized demands to the environment, it is possible to
embed it in a large variety of settings. This may be, for
example, a low-power embedded streaming application, or
a PCIe-based multi-FPGA accelerator for high performance
computations.

Together with the mathematical model we are developing,
we will be able to find an optimal mapping of a given
stencil-based streaming application to the resources of a
system and to implement it without having to bother with
data access, while preserving the advantage of efficiency of
FPGA designs.

2https://wci.llnl.gov/codes/visit/
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Abstract - In the recent years, there has been a growing 
interest in self-adaptive embedded systems. Compared to 
the conventional approach, they require a control loop based 
on a three-step process: (1) observation, handled by a set of 
sensors/monitors, (2) diagnosis, which analyzes observed data 
to adapt and optimize the system, and (3) action, 
which tunes system parameters accordingly. Putting an 
additional intelligence into the circuit so that it is capable 
of modifying itself a set of parameters is not a new idea. But 
today, it seems that the conditions have been met to build such 
circuits. Firstly, self-observation has been made feasible with 
different kind of monitors, like activity counters, temperature 
sensors, critical path-monitors, etc. Secondly, it is possible to 
tune the voltage/frequency pairs, to migrate the code of a 
given task from one processing element to another, to adapt 
the routing of data in the interconnection network, etc. So 
what is the real challenge today? Achieving a complex but 
realistic unified self-adaptation mechanism, which strikes the 
balance between the introduced overhead, 
power consumption, performance and area. Given the 
increasing complexity of embedded systems, our approach is 
to consider a regular distributed architecture, with a set of 
identical Processing Elements, interconnected with a network 
on chip. Thus, all the hardware/software building blocks 
required for self-adaptation, are the same for each PE, which 
simplifies the scalability for future technologies. During this 
talk, we will present an open experimental platform and 
original approaches for the control loop based on the three-
step adaptation process; we will analyze the cost of their 
implementation and will draw the perspectives offered by such 
techniques. 

Keywords: MPSOC, Distributed Architectures, Self-
Adaptability, Game Theory, Consensus Theory 

 

1 Introduction 
  For many years, the evolution of silicon technologies 
has pushed the emergence of new high-tech products, leading 
to new applications and new uses. Today, the application 
needs seem to clearly lead the technological developments. 
The ever-increasing performance and low-power 
requirements continuously brings new challenges in the 
semiconductor research and industry communities.  In the 
2011 edition of the ITRS [1], it was reported that in the next 

10 years, the processing power will increase by 1000x for 
SOC Consumer Portable devices. As depicted in figure 1, the 
number of processing engines, logic and memory size will 
exponentially grow. Due to the short time-to-market and 
reduced lifecycles, the design efforts cannot be increased:  it 
is assumed that in 2020, 90% of a SOC will be a reused 
design (58% in 2012). 

 

Fig. 1. SOC Consumer Portable Design Complexity Trends 
from ITRS 

 

Fig. 2. SOC Consumer Portable Power Consumption Trends 
from ITRS  

 In this context, energy is also a critical issue. The power 
budget for a portable device ranges from 0.5 to 2W. It is clear 
from figure 2, that the current trend will not be acceptable for 
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future circuits. The reduction of the power consumption of 
electronic products must be addressed at all the stages: 
technology, design and applications. 

 From a technological point of view, variability has 
become a major issue. While process variations impact 
process, supply voltage and internal temperature [2], chip 
performances are also dependent on environmental and on 
applicative changes that may further influence chips behavior 
[3]. 

  Performance, energy efficiency, technological 
variability and application versatility motivate the need of 
self-adaptability. The objective is to develop a system able to 
adapt itself to new applicative requirements as well as 
changes in the chip itself, or in its environment. As an 
example, the available energy for a telecom application is 
strongly reduced under weak battery conditions on mobile 
terminals, while real-time constraints depend on the telecom 
configuration. Compared to the classical approach, a self-
adaptive system requires a control loop based on a three-
step process: (1) observation, handled by a set of 
sensors/monitors, (2) diagnosis, which analyzes observed data 
to adapt and optimize the system, and (3) action, 
which tunes system parameters accordingly. The real 
challenge is to achieve a complex but realistic unified self-
adaptation mechanism, which strikes the balance between the 
introduced overhead, power consumption, performance and 
area. Given the increasing complexity of embedded systems, 
our approach is to consider a regular distributed architecture, 
with a set of identical Processing Elements, interconnected 
with a network on chip. Since 2005, we develop our own 
MPSOC platform and investigate different distributed 
strategies for the monitoring and the optimization at run-time. 

 The paper is structured as follows. In the next section, 
we will give a definition of a distributed self-adaptive system. 
Then, we will present the platform developed at LIRMM 
called Open-Scale. In section 4, we will summarize our 
research works on monitoring techniques. Optimization 
techniques handled by distributed controllers will be reported 
and analyzed in section 5. Finally, we will conclude this 
article and give some future research directions. 

2 A definition of a distributed self-
adaptive system 

 The objective of this work is to find coherent solutions 
for the design of integrated systems that are efficient, low 
power, insensitive to technological process variations, 
reliable, scalable, with capabilities enabling them to adapt to 
their environment, and to the various applications they must 
support. We believe that simplicity and regularity of the 
system architecture are two key aspects that should guide the 
design choices. We present in this section on the one hand the 
concept of self-adaptability applied to embedded systems, and 
on the other hand, the specifications of the target architecture 
and the means to implement this system to make it adaptive. 

2.1 Self-adaptability concept 
 Self-adaptability is the faculty attributed to an entity that 
can be self-sufficient and act within its environment to 
optimise its functions. Self-adaptability also describes a 
system that can manage itself using its own rules.  

 In order to apply this concept to the reality of 
technological systems, this study will start with the abstract 
view of a system architecture while applying the notion of 
self-adaptability. Figure 3 gives a synthetic view of self-
adaptability: the activator creates the physical state of the 
system and the diagnosis motivates it. Self-adaptability can be 
used to lower energy consumption in microelectronics. In 
robotics, the challenge is to increase performance in different 
environments. In the artificial intelligence domain, self-
adaptability is the consequence of a life cycle where the 
sensors observe the system, the diagnosis gives the direction, 
the language of command orders (decisions) and actuators 
act.  

 

Fig. 3. Self-adaptability 

2.2 System Specifications 
 When referring to current integrated systems, it is often 
about MPSOC or multi-core system. This is in fact for both 
integrated systems consisting of several processing units. 
When these ones are identical programmable general-purpose 
processors, MPSOC are said to be homogeneous. When 
dealing with heterogeneous architectures, there are different 
kinds of computing resources: general-purpose processors to 
support the system management, but also DSP, dedicated 
accelerators, etc. The current trend is finally the same for over 
40 years: the integration density doubles approximately every 
2 years, we then expect in the longer term Many Core 
systems, or MP2SOC (Massively Parallel MPSOC), i.e. 
systems with hundreds or thousands of processing units. 
Obviously, this complexity poses a number of questions about 
the evolution of design methods, verification, manufacturing, 
test, programming, debugging, etc. 
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Figure 1.1: MPSoC.

Interconnection

The PEs previously described are interconnected by a Network-on-Chip (NoC)

[9, 10, 11, 12]. A NoC is composed of Network Interfaces (NI), routing nodes and

links. The NI implements the interface between the interconnection environment

and the PE domain. It decouples computation from communication functions.

Routing Nodes are in charge of routing the data between the source and des-

tination PEs through the links. Several network topologies have been studied

[13, 14]. Figure 1.1 represents a 2D mesh interconnect. We consider that the

offered communication throughput is enough for the targeted application set.

The NoC fulfills the Globally Asynchronous Locally Synchronous (GALS)

property by implementing asynchronous nodes and asynchronous-synchronous

interfaces in the NIs [15, 16]. As in [17], the GALS property allows partitioning

the MPSoC into several voltage/frequency islands (VFI). Each VFI contains a

PE clocked at a given frequency and voltage. This approach allows fine-grain

power management.

Power Management

Dividing the circuit into different power domains by using GALS has facilitated

the emerging of more efficient designs taking advantage of fine-grain power man-

agement [18]. As in [19, 20], the considered MPSoC incorporates distributed

Dynamic Voltage and Frequency Scaling (DVFS): each PE represents a VFI and

includes a DVFS device. It consists in adapting the voltage and frequency of

each PE in order to manage the power consumption and performance. A set

of sensors integrated within each PE provides information about consumption,

temperature, performance or any other metric needed to manage the DVFS.

 

Fig. 4. System overview. 

 Given the huge design space due to the increasing 
number of transistors, it is not possible to build a 10 billion-
transistor circuit from scratch, for each new product. During 
the 2000s, IP reuse and platform based design appeared as 
new methodologies to accelerate the Time To Market for 
SOCs. Due to the ever-increasing complexity, we start 
hearing about (Sub-) System IPs Reuse to build the future 
many core systems.  

 By observing these changes, we decided in 2005 to 
devote our research efforts on designing a regular and 
homogeneous MPSOC architecture. The basic idea is to have 
a simple subsystem, composed of a programmable processing 
element, memory, and a generic interconnection module, that 
we can instantiate theoretically to infinity. The primary 
version of our architecture called HS-Scale was first 
published in [4]. The thrust of this project is to define a 
generic and regular software and hardware support, to 
facilitate scaling. This very flexible model is originally not 
designed for specific applications, but with the addition of 
programmable and/or dedicated accelerators to the building 
block, one can think advantageously taking advantage of the 
same principle of regularity for specific products. 

 The regular architecture of our MPSOC is described in 
Figure 4. The PEs are interconnected by a Network-on-Chip 
(NOC) [5-8]. A NOC is composed of Network Interfaces 
(NI), routing nodes and links. NI implements the interface 
between the interconnection environment and the PE domain. 
It decouples computation from communication functions. 
Routing Nodes are in charge of routing the data between the 
source and destination PEs through links. Several network 
topologies have been studied in the literature [9, 10]. Our 
approach is based on a 2D mesh interconnect. We consider 
that the offered communication throughput is enough for a 
general purpose application set. Our NOC fulfills the 
“Globally Asynchronous Locally Synchronous” (GALS) 
concept, by implementing asynchronous nodes and 
asynchronous-synchronous interfaces in NIs [11, 12]. As in 
[13], GALS properties allow MPSOC partitioning into 
several Voltage Frequency Islands (VFI). Each VFI contains 
a PE clocked at a given frequency and voltage. This approach 
allows real fine-grain power management.  

 Dividing the circuit into different power domains using 
GALS must facilitate the emergence of more efficient designs 
that take advantage of fine-grain power management [14]. As 
in [15, 16], the considered MPSOC incorporates distributed 
Dynamic Voltage and Frequency Scaling (DVFS): each PE 
represents a VFI and includes a DVFS device. It consists of 
adapting the voltage and frequency of each PE in order to 
manage power consumption and performance. A set of 
sensors integrated within each PE must provide information 
about the power consumed, the local temperature, the 
performance or any other metric needed to manage the 
DVFS. 

3 Open-Scale Prototyping Platform 
 Since 2005, we develop an MPSOC architecture based 
on the principles described in the previous section, i.e. a 
regular and distributed architecture for the implementation 
and the evaluation of self-adaptability principles. This 
architecture published for the first time in [4] has undergone a 
number of developments and changes. The current version of 
this architecture is called Open-Scale: it is therefore an 
MPSoC governed by the basic principles outlined above. We 
have different models of the architecture: a version based on 
ISS (Instruction Set Simulator) and SystemC, and a second 
based on the fully synthesizable RTL code. The first one 
allowed making high level explorations, and the development 
of the RTOS. Although the architecture is the same for a 
system standpoint, we are interested especially here in the 
RTL version, validated on multiple FPGA prototypes, as the 
one depicted in figure 5. In this section we describe the 
hardware and software building elements of the Open-Scale 
platform. 

 

 

Fig. 5. MPSOC prototype 

 
3.1 NPU, the Network Processing Unit 
 The Open-Scale system is an architecture that employs a 
distributed memory/message passing approach and a 2D-
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mesh NOC for connecting different PEs. As the PEs are 
connected through a network, they are called Network 
Processing Units (NPUs) [4].  

SECRETBLAZE 
(MICROBLAZE CPU)

HERMES 
NOC

NPU

INTERRUPT 
CONTROLLER TIMERL1 ICACHE L1 DCACHE

NOC 
INTERFACERAM

WISHBONE BUS

UART

 

Fig. 6. NPU architecture overview 

 The figure 6 depicts the internal architecture of the 
NPU, which includes: (i) a general purpose processor, the 
SecretBlaze [17,18], (ii) an embedded RAM, (iii) an interrupt 
controller, (iv) a timer, a UART, (v) a NI, a (vi) HERMES-
based router [19] and a (vii) Wishbone v4 bus [20]. 

 Originally designed with the Plasma processor [21], the 
NPU is now based on the SecretBlaze [17,18], which is a 
highly configurable open-source RISC soft-core processor 
developed by our research group. It implements the 
MicroBlaze instruction set architecture with a MIPS five-
stage pipeline, where most of the instructions require one 
clock cycle to be executed. As reported in [17], it achieves the 
same performance level as the MicroBlaze for FPGA 
implementations. This processor was developed with a 
modular approach, not only to ensure reliability and 
efficiency across the whole design, but also to provide better 
design reuse opportunities in various research and educational 
projects. It is available as a single open-source processor at 
http://www.lirmm.fr/openscale 

 The flexibility is one of the driving aspects of the 
Secret- Blaze design. On the one hand, the core provides 
several optional logical and integer instructions such as 
multiplication, division, and pattern operations, which 
balances computing performance and area cost to meet 
embedded system requirements. On the other hand, the 
SecretBlaze is a MMU less processor with a simplified 
memory sub-system that offers optional configurable data and 
instruction caches. It implements the pipelined Wishbone 
protocol for memory interfaces. However, no global cache 
coherency between NPU is provided. 

 The SecretBlaze uses an embedded RAM as local 
memory. The interrupt controller can handle up to 8 interrupts 

with masking, arming, and poling mechanisms. The timer is a 
32-bit counter that can generate an interrupt according to a 
configurable time window. Besides, a UART interface, which 
is adjustable via software, can be used for debugging 
purposes. These components are interconnected by a 
Wishbone v4, which is a standard and an open-source bus 
[20]. The communication between the NPU and the NOC 
router is implemented in the NI (Network Interface), which 
defines HW/SW integration (e.g. bus width, bandwidth), as 
well as packing/unpacking the packets from/to the NOC.  

 The adopted NOC router is a small XY router based on 
HERMES [19]. The NOC employs packet switching of 
wormhole type: the incoming and outgoing ports used to 
route a packet are locked during the entire packet’s transfer. 
The routing algorithm is an XY engine that allows 
deterministic routing. Each router processes one incoming 
FIFO per port. The size of FIFOs can be chosen regarding the 
desired communication performance. 

3.2 Open-Scale RTOS 
 Open-Scale is a set of programmable Network 
Processing Units. Programming (and debugging) complex 
applications tp make an efficient use of multiple computing 
units is a real challenge. It is necessary to provide a coherent 
middleware layer to simplify these two fundamental aspects 
of embedded systems. In order to keep a distributed memory 
structure and to preserve the scalability of the system, each 
NPU operates asynchronously and communicates with each 
other by means of a Messaging Passing Interface (MPI) 
protocol. The global operation is performed in a distributed 
fashion and no global shared-memory is used.  

 Each NPU runs a tiny preemptive RTOS that was 
further extended from the Plasma RTOS [21]. The global 
structure of the operating system is depicted in figure 7. The 
RTOS provides a multi-threaded preemptive execution, using 
a scheduler based on thread priorities that is executed 
periodically according to a fixed timeslot. A round robin 
scheduling algorithm is executed when all tasks have the 
same priority. The structure of this system is divided into 4 
categories: (i) services that provide the basic operating system 
requirements, (ii) communication, (iii) drivers, and (iv) 
libraries. The RTOS allows the use of semaphores and 
mutexes, communication between local and remote tasks, and 
dynamic memory allocation, as well. Further, it also provides 
the standard C library together with a compact math library 
that allows floating point operations as well as software 
multiplications/divisions. Different kind of drivers, e.g. timer, 
UART, etc., are also available. 

 Due to the distributed memory characteristic of the sys- 
tem, the applications are described using Kahn Process 
Network (KPN) formalism [22]. 
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Fig. 7. Structure of the Open-Scale RTOS 

 MPI provides a comprehensive number of primitives 
that relate to general-purpose distributed computing; a 
number of works have devised lightweight implementations 
supporting only a subset of MPI mechanisms for embedded 
processors and systems. This makes sense since KPN 
formalism offers a sufficient support that requires only 
blocking read operations, which are necessary to model, for 
instance, data flow (e.g. video and audio) applications. Some 
MPI implementations are layered, and advanced 
communication synchronization primitives (e.g. collective) 
found in the upper layers make use of the simple point-to-
point primitives such as MPI Send() and MPI Receive(). This 
enables using these collective mechanisms in an application-
specific basis in case they prove necessary. The KPN 
computation model allows deterministic behavior of the 
application in an asynchronous way. Furthermore, tasks 
placement can be optimized depending on the user 
requirements (e.g. computation time, energy consumption). 

 The Open-Scale RTOS was implemented in such a way 
that users can easily choose which features are needed in their 
implementation in order to either save memory or meet 
performance requirements. In this scenario, new services and 
features were implemented in order to be compliant with the 
SecretBlaze architecture, while providing more efficiency in 
terms of management and QoS support (Table 1).  

 Table 1 summarizes some services that were included in 
the Open-Scale RTOS. As mentioned before, one of the goals 
of Open-Scale is to explore adaptive mechanisms (e.g. 
monitoring techniques, distributed control, dynamic voltage 
and frequency scaling, task migration, etc.). For instance, to 
enable dynamic load balancing, the system has to be able to 
move running tasks from one NPU to another. For that 
reason, a run-time loading mechanism was included to allow 
compiled separately applications from the RTOS being 
dynamically uploaded at run-time.  

Table 1. Services Included into the Open-Scale RTOS  

Plasma RTOS Services Open-Scale Services 

1- generation of a single object file; 

2- preemptive round-robin sheduler 
based on thread priorities; 

3- intra-NPU communication based 
on local FIFOs; 

4- Extra-NPU communication (e.g 
CP protocol) through ethernet; 

5- interrupt and exception handling; 

6- dynamic memory allocation and 
deallocation; 

7- queues, semaphores, mutexes. 

1- run-time dynamic applications 
loading; 

2- preemptive round-robin scheduler 
based on thread credits; 

3- intra-NPU communication based 
on messages exchanged by software 
FIFOs; 

4- Extra-NPU communication 
(RAW protocol was included), as 
well as MPI_Send and 
MPI_Receive; 

5- run-time monitoring support; 

6- decision-making mechanisms; 

7- a run-time control system used for 
regulating NPU frequency; 

8- API with new primitives, etc; 

9 – development of new drives; 

10- dynamic mapping heuristics. 

 

 Besides, a preemptive round-robin scheduler based on 
thread credits has been implemented, avoiding task execution 
starvation. Moreover, intra/extra-NPU communications were 
extended to provide more flexibility and system performance. 
For example, the RAW protocol was implemented in order to 
achieve better performance when compared to TCP/UDP (as 
shown in [23]). Further, online system-monitoring 
mechanisms were included, in order to access hardware 
monitors available, or software defined monitors (CPU load, 
(ii) FIFO load, etc.). Once monitored information is provided, 
online decisions can be taken by decision-making 
mechanisms, like a run-time control system used for 
regulating NPU frequency. All the middleware support for 
self-adaptation (e.g. local DVFS control, optimization, etc.) 
was included to provide a complete infrastructure for self-
adaptation strategies investigations. 

4 Distributed Monitors 
 We have defined a set of software and hardware 
components, based on distributed resources and a principle of 
regularity of the architecture that has led us to the design of 
the Open-Scale platform. In this section, we will focus on the 
monitoring aspect. To achieve a self-adaptive system, it is 
necessary to provide a set of sensors allowing the system to 
observe both its internal behavior and its environment. We 
focus here on internal monitoring. 
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 We seek solutions to evaluate strategies of self-
adaptation that are also compatible with an FPGA prototyping 
environment. We therefore propose in this section to explore 
several types of approaches to monitoring in this context, by 
focusing on hardware sensors, such as PVT sensors or 
activity counters, on software monitors directly integrated 
into the middleware of Open -Scale, and finally an integrated 
database enabling a coherent organization for a subsequent 
operation for system optimization. 

4.1 PVT sensors 
 Monitoring with trustable and valuable information 
systems made of a billion transistors at a reasonable area and 
performance cost is a real challenge, because of the increasing 
random nature of some process parameters, the spatial 
dependence of process (including aging), voltage and 
temperature variations, but also the broad range of time 
constants characterizing variations in these physical 
quantities.  

 There is a vast literature on this topic, and different kind 
of approaches. Several PVT sensors commonly used for post 
fabrication binning have been investigated [24-29] for global 
variability compensation. They are based on specific 
structures like Ring Oscillators or Replica Paths to measure, 
at runtime, the physical and electrical parameters required to 
dynamically adapting the system, e.g. operating frequency, 
the supply voltage, threshold voltage, substrate biasing, etc. 
Another approach is to directly monitor sampling elements of 
the chip (Latches or D-type Flip Flop) to detect delay faults. 
This can be achieved by inserting specific structures or using 
ad-hoc sampling elements [28-29] to detect a timing violation 
by performing a delayed comparison or by detecting a signal 
transition within a given time window. 

 In the Open-Scale platform, one objective is to design a 
set of sensors in order to monitor locally the Temperature, 
Voltage, and Process. The basic idea is to use digital 
hardware sensors designed with internal resources of the 
FPGA, i.e. configurable logic blocks and switch matrices. In 
this context, we proposed, designed and compared two 
structures: a Ring Oscillator and a Path Delay sensor. 

 

Fig. 8. Ring Oscillator sensor  

 The Ring Oscillator sensor is based on the measurement 
of the oscillator frequency. For instance in [30], this structure 

was used as an internal temperature sensor for FPGA. The 
frequency of a ring oscillator is measured and converted into 
temperature. We have developed a new version of this kind of 
sensor in Open-Scale. Its structure is depicted in Figure 8. 
The main part of the sensor is a 2p+1 inverter chain. The 
oscillation frequency directly depends on the FPGA process 
performance capabilities, for a given voltage and temperature. 
The first logic stage enables the oscillator to run for a fix 
number of periods of the main clock. The ending flip-flop is 
used as a frequency divider and allows filtering glitches from 
the oscillator. The final logic stage counts the number of 
transitions in the oscillator and transmits the count result. 
Then, the count result is used to calculate the oscillator 
frequency as follows: 

         

where F is the ring oscillator frequency, count is the 14-bit 
value of the counter, f is the operating frequency of the clock 
and p is the number of enabled clock periods for which the 
sensor is active. 

 In order to use this sensor for resource monitoring in 
FPGA, a three-inverter ring oscillator was implemented. With 
this configuration, the core of the sensor (ring oscillator + 
first flip-flop) only consumes 4 LUTs. A Hardware Macro 
was designed so that the very same sensor structure can be 
mapped at each FPGA location (Fig. 9(a)). It possibly allows 
characterizing separately each CLB of an FPGA. 

 

Fig. 9. Hard-Macro implementation of both PVT sensors 

 It exists a lot of techniques [31] to manage Critical Path 
but very few are used in FPGAs as PVT sensors. The Path 
Delay Sensor proposed here is directly inspired by CPM. Its 
structure is depicted in Figure 10. The idea of the Path Delay 
Sensor is to adapt CPM to FPGA. Indeed, the regularity of the 
FPGA structure enables to create more easily a critical path 
replica in FPGA than in ASIC. 

 The Path Delay Sensor is composed of n LUTs and n 
flip- flops (FF). The LUTs are chained together and a FF is 
set at the output of each LUT. A clock signal is applied to the 
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chain and is propagated into the LUT. At each rising edge, a 
n-bits thermometer code is available at the output of FFs. This 
thermometer code is representative of LUTs and 
interconnects performances. 

 

Fig. 10. Path Delay sensor 

 When the sensor is running, a thermometer code is 
stored in the FF, and then analyzed. Assuming the code is 
”11111111111111000000000000001111”, then the position 
Nz of the last 0 is identified. The time T required to go 
through one LUT and the associated interconnect is 
approximated as follows: 

          

where f is the frequency of the clock signal applied to the 
sensor. In order to obtain relevant information, the size of this 
sensor must take into account the FPGA family in which it 
operates. For example, for a Spartan-3 device, this sensor is 
composed of 32 stages. It allows propagating a complete 
period of the Spartan-3 reference frequency clock (50MHz). 
The figure 9(b) shows the Hard Macro integration of this 
sensor. 

 Our study in [32] has proved that both structures were 
efficient for fast PVT local monitoring in FPGA devices. The 
ring oscillator is an interesting structure for fine grain 
monitoring, whereas the Path Delay Sensor will be a 
preferred structure to allow rapid performances estimations 
with a minimal area overhead.  

4.2 Activity Counters 
 In some cases, PVT sensors might be not enough 
accurate and fast to reflect the exact load of the core, 
especially to estimate the power consumed locally by the 
Processing Elements. In-situ events counters have been 
proved to be efficient solutions for monitoring at real-time the 
activity of a core. They were first developed to better 
understand application behavior, facilitate debugging and so 
to improve high-end processors execution flow at run-time. 
For this usage, they are also called performance counters. 
These probes are a set of in-situ registers used to record the 
activity (i.e. number of events on some selected signals) in 
the processor. Significant events having an architectural 
meaning are typically used, such as instruction execution, 
floating point operation, memory transactions, pipeline stalls, 

etc. For instance, the super processor BlueGene/P from IBM 
is providing 52 counters [33], which can be configured and 
read through a dedicated API. The ARM processor 
architecture contains two event counters with an extending 
instruction set to configure their inputs. Moreover, a 
dedicated monitoring co-processor can be added through this 
interface. As the required precision becomes more and more 
important, the number of events tends to increase. Temporal 
multiplexing has been proposed to reduce the hardware 
overhead when applications show periodic execution time 
[34]. However, gathering information is problematic and may 
penalize applications with hard performance constraints. As a 
result, the number of monitors as well as the size of their 
associated counters must be reduced. 

 The use of activity counters was extended to embedded 
system run-time management in [35,36]. In such systems, 
area constraints hardly limit the possible number of monitors 
compared to general-purpose processors. Activity counters 
were generally selected manually and their usage was quite 
limited. Moreover, assuming that the NPU of Open-Scale is 
composed of different kind of resources (the processor, 
memory, peripherals, network interface) that could also be 
further augmented with accelerators or specialized DSP, it is 
necessary to provide other activity counters to estimate at run-
time the power consumed by the different blocks. In such a 
context, the selection process of the signals to monitor might 
become a difficult and time-consuming work. 

 We tackled this issue by proposing an automated 
selection of events to be monitored starting from a power 
model, and usable for any IP. Moreover, our selection process 
allows striking the balance between the area taken by the 
monitors and the precision of the model. 

 Power consumption PT can be approximated, over the 
period T, by a linear function of the following form:  

  

where : 

• {ei}i=1:n denotes events to which counters will be 
connected;  

• Nei is the number of occurrences of event ei during the 
sampling period T;  

• αi is the regression coefficient describing power 
contribution of event ei;  

• c is a constant term representing static consumption;  

• n measures the power model complexity.   

 Our goal is to minimize the cardinal of the set {ei}i=1:n of 
events, so that we can limit the model complexity. We 
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propose to use a step-by-step selection technique to detect 
influential events on power.  

 Fig. 11 depicts an overview of the proposed modeling 
flow based on four steps: instrumentation, data processing, 
model extraction and physical placement of monitors. Our 
flow starts with a post-synthesis simulation to generate a 
VCD (Value Change Dump) file containing the transitions at 
each net over time. At this stage, we try to track highly power 
consuming blocks, so for the synthesis process we preserve 
the hierarchical structure of the design. The VCD is used as 
input to the Xpower tool from Xilinx to extract instantaneous 
power values. In parallel to this, the RTL model of the design 
is simulated. Events occurring on each controlling signal are 
time-stamped and then reported, this can be easily done with 
some options in Modelsim. 

 Our method based on stepwise process was evaluated to 
select events able to estimate the power consumption. This 
approach helps to explore cost and accuracy trade-offs when 
designing such probes. Sampling impact can be easily 
analyzed along with the number of counters that should be 
deployed. A control unit extracted from a dedicated VLIW 
accelerator for Open-Scale was used as a case study. The 
model was validated with less than 5% error. The 
implementation results show a reading latency around 500 
clock cycles, at a very cost (only 12 monitored signal) 
regarding the accelerator area. 

 

Fig. 11. Events profiling methodology flow 

4.3 Software monitors and distributed 
database 

 Another complimentary approach to observe the system 
behavior is to use software monitors. As reported in section 
II, monitoring services are implemented into the Open-Scale 
RTOS to measure performance at the software level. The 
software threads implemented into the microkernel allow 

measuring the processor load, the communication load, 
application throughput, etc.  

 Applications suited to be run on Open-Scale are based 
on the traditional KPN (Kahn Process Network) paradigm. 
The application can be described as a finite set of tasks 
interconnected by software FIFOs. A given task can either be 
performed in hardware (with a coprocessor) or in software, in 
which case it becomes a thread executed by a processor on-
chip. The performance of the system is directly related to the 
quality of the application mapping, i.e. the placement of 
threads on processors and the placement of software FIFOs 
on on-chip memories. 

 The processor load is simply calculated as the ratio 
between the number of cycles the PE is executing a set of 
threads, and the total number of cycles on a given time 
period. Indeed, due to local and remote thread dependencies, 
thread priorities, data availability, NOC traffic, etc., the 
processor may be more or less idled during the considered 
time period. This kind of information is very important to 
evaluate the efficiency of the application mapping for 
instance. For the same reasons, the software FIFOs may be 
filled more or less during application execution. 
Consequently, a specific service is implemented to measure 
the filling rate of the FIFOs.  

 It is mandatory for self-adaptive MPSOC architectures 
to be as reactive as possible to critical events, and to keep an 
accurate vision of the system behavior. A memory containing 
collected values from the different sensors is therefore 
needed, as well as appropriate and low cost means to store, 
handle, and retrieve these accumulated data. For this purpose, 
we have developed an in-memory database engine that fulfills 
these needs, as well as its associated API. 

 The DRET (Distributed Raw Events Table) is a 
distributed in memory database that is physically located in a 
specific part of the RAM memory of each NPU. Its purpose is 
to contain the monitoring data extracted from both hardware 
and software. The DRET of a tile may contain several tables 
like traditional database systems and each table contains 
several formatted events retrieved from the HW/SW sensors. 
The database has been designed to be an efficient data 
structure that can be used to store and retrieve information 
easily from the monitoring process. The used structure and 
the API are designed to keep the memory footprint and 
performance overhead as small as possible. The DRET can be 
seen as a uniform repository for the events whatever their 
origin (hardware sensor, software probe, local or external to a 
given processing element). While a DRET is mainly related 
to a given NPU, it can also be used to store a synthetic view 
of the state of neighboring NPU. In order to prevent the 
DRET from occupying too much memory space, a maximum 
size is associated to each table created in a DRET. A DRET 
table can also be cyclic. In that case, it behaves like a fixed-
size cyclic buffer: inserting a new event in a full table 
discards the oldest one. The DRET and its API were 
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evaluated in [37]. Although there is a slight memory overhead 
in the system imposed by the usage of the DRET, the overall 
gain can be very beneficial for the system. It allows the 
system to handle some decisions through the analysis and 
diagnosis of such stored events. This brings to the system the 
possibility to better decide the application mapping tuning it 
according to the requirements, and thus to reach the objective 
of chip self- adaptability. 

5 Distributed Controllers 
 Prior works addressing system optimization 
(performance, power consumption, temperature, etc.) are 
generally based on centralized schemes. Application 
mapping, task placement and scheduling, voltage and 
frequency are tuned to adapt the design dynamic settings to 
its runtime constraints, according to a solution provided by a 
centralized algorithm. For instance, authors of [38] present a 
method to select the frequencies and voltages based on non-
linear Lagrange optimization. The work presented in [39] 
proposes a centralized system inspired by Kirchhoff’s current 
law to decide on the optimal power/performance 
configurations. Conventional centralized approaches become 
problematic when the number of cores increases. First, the 
complexity of the optimization problem explodes as the 
dimension of the system increases. Secondly, communication 
latencies induced after collecting on-line information have to 
be considered; in [40], authors use a time-stamped monitoring 
mechanism to ensure the reliability of their system, but this 
solution leads to overload the network traffic for designs 
connecting more than a few units. Some recent proposals 
focus on distributed techniques to optimize embedded 
systems subject to online information. In [41], the problem of 
multi-core systems thermal control is posed as a convex 
optimization problem and solved in a distributed manner 
using dual decomposition technique. Stochastic methods are 
introduced in [42] to manage power consumption over the 
chip lifetime. The complexity of the used Markov model 
increases with the number of possible power/performance 
configurations, making this technique inconvenient for 
designs embedding hundreds of cores. 

 In this work, we study a new approach in order to 
minimize the energy consumption of MPSOC at run-time 
taking into account different application constraints. As 
depicted in figure 12, we assume that each core is able to 
monitor its resources as described in the previous section (i.e. 
sensors to measure the system performance, and energy 
consumption), and a DVFS engine to tune the 
Voltage/Frequency couples. We propose to achieve 
Power/Performance tradeoff by distributed schemes based on 
3 different approaches: PID based controllers, Game Theory 
inspired controllers, and Consensus Theory inspired 
controllers. 

16 CHAPTER 1. INTRODUCTION TO MPSOC OPTIMIZATION

1.4 Distributed Optimization

We have seen that existing methods, even if they operate at run time, they are not

based on distributed models. An alternative solution to centralized approaches

is to consider distributed algorithms. Our proposal is to conceive the architec-

ture illustrated in figure 1.12: each processing element of an MPSoC embeds an

optimization subsystem based on a distributed algorithm. This subsystem man-

ages the local actuators (DVFS in the figure) taking into account the operating

conditions. In other words, our goal is to conceive a distributed and dynamic

optimization algorithm.

Figure 1.12: Distributed dynamic optimization on MPSoC.

A distributed algorithm is an algorithm optimized to run on a distributed

hardware such as telecommunication networks, wireless sensor networks or mul-

tiprocessors systems. This kind of algorithm is executed concurrently, with sepa-

rated parts being calculated simultaneously on independent processors and having

limited information about what other parts are doing. For a given optimization

problem, the choice of an appropriate distributed model is driven by the problem

complexity and the system characteristics. From our knowledge, there has been

no work proposing a solution to build the architecture of figure 1.12.

It is necessary to study existing models and algorithms in order to define

the distributed optimization subsystem. In the following sections, we survey

pertinent approaches.

 

Fig. 12. Distributed Control overview 

5.1 PID based Controllers 
 Due to the dynamic variations in the workload of 
MPSOC and its impact on energy consumption, adaptation 
techniques such as PID (Proportional-Integral-Derivative)-
based control have been used to dynamically scale the voltage 
and the frequency of processors [43][44], and recently, of 
networks- on-chip [45][46]. These techniques differ in terms 
of adopted control parameters (e.g. task deadline, 
temperature) and response times (period necessary to stabilize 
a new voltage/frequency). 

In [47], we have presented the following contributions: (i) 
power and energy consumption considered when tuning 
processor frequency; (ii) a PI-only controller proposed and 
compared to a PID-controller; and (iii) three perturbation 
scenarios with different application performance impact 
factors. The figure 13 illustrates an overview of the proposed 
approach. As it can be observed, one PID controller is 
devoted to each task in the system that must ensure soft-real 
time constraints. In this example, there is one task per NPU, 
so one PID controller for each processor is required. In the 
case where multiple tasks are executed in the same NPU, a 
system with multiple PID controllers in the same NPU could 
be proposed. The PID controller is implemented as a service 
in the Open-Scale RTOS. It only represents an overhead of 
less than 1% in terms of total memory required by the OS.  

 

Fig. 13. MPSOC platform with PID controller 
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 Monitoring information such as application throughput 
is fed into the PID controller module. It will match the actual 
throughput with the desired throughput (setpoint) and will 
then calculate an error value (e). This e value is used for 
calculating P, I and D parameters and as result, the PID 
controller will indicate a frequency in which the processor 
can reach a given setpoint according to reactiveness factor 
initially set. It is important to observe that the PID 
management and calculation are performed dynamically at 
run-time. In cases where current throughput is lower than the 
setpoint, the PID controller will select a frequency greater 
than the current one in order to reach the setpoint and to 
satisfy application performance constraints. On the other 
hand, when the current throughput is much higher than the 
expected one, the controller will sign to a lower frequency in 
order to reduce the power consumed by the NPU. 

The proposed strategy consists in deciding controller 
parameters on a task basis. To this purpose, a SystemC/TLM- 
based Open-Scale simulation is executed in order to obtain 
the step-response. In this scenario, processor frequency is 
changed from 55MHz to 1005MHz and application 
throughput is monitored. The system is linear, that means the 
system’s behavior remains the same under such frequency 
changes. Based on the high-level model, a number of 
different configurations of controllers can be explored. Each 
one exhibits different features such as speed, overshoot and 
static error. Once the process is modeled, PID parameters are 
fine tuned by using Simulink and the values of P, I and D are 
fed as input to the Open-Scale platform.  

 The PID strategy does not rely only on preventing 
application deadline-misses, but it also attempts to save 
energy, once the processor frequency is adjusted at real-time 
according to application requirements. Our approach can be 
easily integrated to linear systems and, platform resources 
utilization can therefore be optimized. By using PID 
controllers, we have shown in our simulation scenario that it 
was possible to save up to 32%, in terms of energy by tuning 
processor frequency according to application needs. As it can 
be noticed in [47], PID-controllers are intended to react faster 
under disturbing conditions compared to PI-only controllers. 
However its power consumption is higher. The good choice 
of which controller to use in multiprocessor system-on-chip 
platforms will be a trade-off between power consumption and 
the desired system’s reactiveness.  

5.2 Game-Theory based Controllers 
 Game theory involves a set of mathematical tools that 
describe interactions among rational agents. The basic 
hypothesis is that agents pursue well-defined objectives and 
take their knowledge and behaviors of other agents in the 
system into account to make their choices. In other words, it 
describes interactions of players in competitive games. 
Players are said to be rational since they always try to 
improve their score or advance in the game by making the 
best move or action. Game theory is based on a distributed 

model: players are considered as individual decision makers. 
For these reasons, game theory provides a promising set of 
tools to model distributed optimization on MPSOC and, 
moreover, this is an original approach in this context.  

 The second dynamic optimization proposed for Open-
Scale is therefore inspired by game theory, where a non-
cooperative game is a scenario with several players 
interacting by actions and consequences [48]. Basically, 
players individually choose an action within a defined set, 
resulting in consequences. Each player tries to maximize its 
outcome according to its preferences, leading to global 
optimization. If this sequence is repeated, under certain 
conditions, the game finds a solution formalized as Nash 
Equilibrium. These principles provide strong concepts to 
model the behavior of reactive systems where decisions are 
taken in a distributed and dynamic way, justifying the choice 
of the game theory for our approach. 

 We model the NPUs as players, the application latency 
and power consumption as a local objective function that 
depends on the global state of other NPUs. Then, a distributed 
algorithm selects the best solution. The objective functions 
are built by using different terms: the energy contribution of 
each PE to the whole energy consumption, the applicative 
latency contribution to the total latency and penalty functions 
modeling energy and latency constraints. We consider a 
MPSOC, composed of n NPUs interconnected by an 
asynchronous Network-on-Chip, such as Open-Scale. Each 
NPU integrates a DVFS engine that regulates the local 
voltage and frequency couple among a finite number of 
solutions. We denote Ti the clock period corresponding to 
NPUi and Ti− = (T1,...,Ti−1,Ti+1,...,Tn) the periods of all other 
NPUs in the MPSOC. We assume that an external mechanism 
has mapped the application on the MPSOC, each NPU 
handling a unique task. The task assigned to NPUi takes Ni 
cycles of Ti to be processed. We denote as Lmax the application 
latency constraint and we consider that each task is scheduled 
every T0 seconds. Energy, latency contributions and energy 
and latency constraints are modeled with this formalism. 
Then, two objective functions are built according to the 
formulated scenarios, i.e. energy or latency minimization 
under conditions. 

 The proposed method, based on Game Theory, 
optimizes the system while fulfilling dynamic constraints. A 
telecom test-case has been studied in [49,50] to demonstrate 
the effectiveness of this approach. For the evaluated case, the 
proposed technique has obtained up to 20% of latency gain 
under energy constraints, and 40% of energy gain under 
latency constraints. 

 Our studies have also shown in [51,52] that our method 
scales with the number of processors without excessive 
convergence times. For a 100-processor platform, our 
technique has required an average of 20 game cycles to reach 
the solution. A game cycle requires around 2500 cycles to 
collect monitoring data from other NPUs, minimize the 
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objective function, and transmit its data to other NPUs [53]. 
The few calculation cycles needed to converge make this 
technique a feasible approach to optimize consumption and 
performance at run time. Furthermore, we have demonstrated 
that the achieved optimization is about 89% in average 
compared to a global offline method, which proves the 
quality of the results obtained with this method.  

5.3 Consensus Theory based Controllers 
 Although the Game Theory approach is easy to 
implement, it may lead sometimes to local unstable minima, 
which necessitates extra resources to detect oscillations in the 
algorithm execution. Besides, application constraints are 
modeled as a penalty function, so real-time deadlines are not 
always guaranteed. Finally, global information must be 
shared between many NPUs, which could lead to undesired 
traffic in the interconnection network. To overcome these 
limitations, we attempt to apply gradient methods with 
consensus concepts in order to implement a cooperative and 
dynamic approach for Open-Scale. 

Consensus is derived from the research on cooperative 
control theory. It was developed mainly for data processing in 
sensor networks and for multi-agents coordination. Consensus 
is defined as an iterative process utilizing a predefined 
message-passing protocol, leading a set of communicating 
elements to an agreement on a value or a common behavior 
[54]. Similarly to [55], we intend using the consensus to reach 
an agreement on one state optimizing a global interest in 
networked system. 

 A mathematical framework has been proposed for 
distributed optimization using hybrid approaches. This 
framework is a combination of subgradient methods with the 
consensus formalism to handle distributed optimization. In 
this section we summarize the key aspects of this theoretical 
framework before reporting afterwards its benefits. 

 In the context of consensus/subgradient optimization, 
each NPU is considered as an agent. The interconnection 
graph G is built with respect to the NPUs’ NOC connections, 
and the state vector of the system is proportional to operating 
frequencies in each PE. Distributed models and algorithms 
such as Consensus are naturally adapted to Open-Scale.  

 Within a distributed cooperative scheme, each unit 
adjusts its local frequency, so that power consumption of the 
whole system is reduced without degrading performance. 
Considering our benchmark application, the proposed 
technique provides up to 45% energy gain under latency 
constraint changes, and up to 80% when different standards 
are applied. Our experiments have also shown in [56] that our 
distributed model is scalable, and can handle energy 
efficiency in future many core platforms; the number of 
communicating units can be sized to increase convergence 
speed and optimization quality. Indeed, for a 100-processor 
platform, our technique has required an average of 270 

consensus cycles to reach the solution. One consensus cycle 
requires 500 cycles to collect monitoring data from other 
NPUs, compute an iteration of the consensus, and transmit its 
data to neighboring NPUs. We have estimated that the 
achieved optimization is about 82% in average compared to a 
global offline method. 

6 Conclusion and Research Perspectives 
 After having exposed our vision of future self-adaptive 
embedded systems, we have presented our open-source 
MPSOC called Open-Scale. It is based on a building-block, a 
Network Processing Unit, mainly composed of a RISC 
processor, its local memory, peripherals, a network interface, 
and a set local sensors and actuators. The Open-Scale RTOS 
provides classical scheduling services, task, memory and 
interrupt management, but also a Message Passing Interface 
and dedicated services to support self-adaptability. This 
distributed prototyping platform has been used to investigate 
self-adaptation mechanisms. We have reported our researches 
in the design of distributed monitors, PVT sensors in FPGAs, 
activity counters, software monitors and a distributed 
embedded database to collect monitored data and its API. 
High-level distributed control approaches based on PID, 
Game Theory and Consensus Theory have been implemented 
and simulated. Our experimental results have shown that they 
are able provide 40% energy savings in average under 
application performance constraints (throughput or latency) in 
a distributed manner, at run-time. The induced overhead is 
low and scales well thanks, to their inherent distributed 
nature. 

 There are still several research challenges to reach the 
goal of self-adaptability. First, an intelligent management of 
monitored data from hardware and software is necessary, in 
order to correlate and select the most relevant approaches. 
The fine-tuning of mixed software and hardware actuators is a 
second research topic, since there are many ways to adapt the 
system to strike the balance between performance and energy 
consumption. Finally, the learning capabilities of such 
distributed systems must be explored, in order to achieve 
certainly in a near future, real autonomous chips. 
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Abstract— System scenario-based design methodologies are
applied to reduce the costs of dynamic embedded systems.
At design-time, the system is optimized for a set of system
scenarios with different costs, e.g., alternative scheduling
of tasks. At run-time, certain parameters are monitored,
scenario changes are detected, and mapping and scheduling
are reconfigured accordingly. In this process, optimized
identification of parameters and system scenarios is es-
sential. Previously, the parameters have been limited to
control variables, or variables with a limited number of
distinct values. This paper presents a scenario identification
approach based on polyhedral partitioning of the parameter
space for systems where the parameters may have a wide
range of data-dependent values. We evaluate our approach
on a biomedical application. The results indicate that with
20 system scenarios the average execution time cost can
be reduced with a factor 3 and brought within 15% of the
theoretically best solution for the workload-adaptive designs.

Keywords: Application-specific embedded systems, run-time re-
configuration, system scenario-based design

1. Introduction
Increasingly, modern applications are becoming dynamic

resulting in input data dependent variations in system costs,
e.g., execution time and energy consumption. An over di-
mensioned solution based on a few extreme workloads can
be very costly, or even impossible to implement, and a
workload-adaptive reconfigurable design will be necessary
[14].

System scenario based design methodologies [5] provide a
systematic way of constructing workload-adaptive embedded
systems and have been successfully applied to multiple
designs in multimedia and wireless domains [3], [11], [12],
[13], [15], [17], [18]. Through structural analysis and pro-
filing of the application code at design-time, a set of system
scenarios with different costs is identified along with the
parameters that determine the cost variations. The system
is then separately optimized for each system scenario and
augmented with a scenario predictor and switching mecha-
nism. At run-time, the active system scenario is predicted
up front from the actual parameter values and the system

is switched to the most cost-optimal configuration for this
system scenario.

Note, that system scenarios are conceptually different
from the more common use-case scenarios. While both of
them aim at reducing the total costs, use-case scenarios are
extracted from the obvious system parameters, modes or
usage pattern which can be detected without detailed knowl-
edge of the algorithmic implementation. System scenarios
are identified from the observed costs and then characterized
in terms of implementation parameters. System scenarios do
not depend on obvious parameters, modes or usage patterns
and can hence be efficiently applied even if the application
do not contain any of them.

This paper targets the scenario identification technique
in system scenario based design methodologies, in partic-
ular for systems having parameters with widely varying
data-dependent values. Existing techniques assume that the
parameters are control variables and/or that they have a
limited number of possible parameter values. They make use
of enumeration and apply a bottom-up approach to cluster
these values into system scenarios [6], [4].However when
the parameters are data-dependent, they may have thousands
or even millions of possible data values making bottom-up
clustering and enumeration-based prediction impractical (see
Section 3). Our method should then instead be used because
it performs a scalable top-down polyhedral partitioning of
the parameter space. This is our first main contribution.

Secondly, we apply our scenario identification technique
to a real application and demonstrate the feasibility of our
approach for different number of system scenarios.

The paper is organized as follows. Section 2 gives a
motivating example for our work. In Section 3 the existing
techniques for scenario identification are reviewed and the
necessary terminology is introduced. Our proposed approach
for scenario identification is detailed in Section 4. Experi-
mental results are presented in Section 5, followed by our
conclusions and plans for future work.

2. Motivational example
Recent biomedical applications for outpatient care have a

dynamic nature and are at the same time subject to strict cost
constraints. They continuously monitor patient’s signals for
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Fig. 1: Energy consumption of Lyapunov exponent calculation in
6 hours EEG recording.

an anomaly and perform specific tasks when it is detected.
They may use complex signal processing on multiple chan-
nels and are required to be powered by a battery for months
or even years. One such example is an epileptic seizure
predictor, [7], [8], which tracks EEG signals from up to
32 channels and may warn patients of upcoming seizures
hours in advance. A front-end part of this predictor performs
calculations of Lyapunov exponents for each channel once
every 10 seconds. Figure 1 shows the variations in the energy
consumption of different runs of the Lyapunov exponent
calculation of two channels over a six hour period. Due to
different EEG input data, the energy consumption of one
calculation can vary widely from 6 mJ to 13 mJ. The peak
energy consumption for this application occurs only once
in the 6 hours long EEG recording. A system designed
based on this worst case energy consumption will consume
829 J/channel while processing the recording.

An ideal workload-adaptive system is able to reconfigure
the system optimally in each run so that it consumes the
minimum amount of energy possible. A heavily optimized
thread-level workload-adaptive design for the Lyapunov ex-
ponent calculation will require only 567 J/channel for the
same recording. However it can never be built in practice as
the costs of reconfiguring such system, storing the different
configurations and predicting them would be excessive.

A system scenario-based design methodology uses the
same concept of adaptively reconfiguring the system, but
allows only a limited set of possible configurations. A given
system scenario has a fixed system cost corresponding to its
system configuration. It contains the group of runs for which
this configuration is better than any of the other configura-
tions in the limited number of scenarios. For most runs the
system will then require a small energy overhead compared
with running on the optimal configuration. E.g., with 10
scenarios, the Lyapunov exponent calculator will consume
594 J/channel processing the EEG recording above. That
is, somewhat more than the ideal workload-adaptive system,
but far less than the system based on the worst case energy
consumption. There will be an added energy consumption
related to the scenario detection and reconfiguration, but this
can be kept low if the guidelines for scenario based design

is followed [5].
The Lyapunov exponent calculator is a good example of

an applicatin were more traditional use-case scenarios can
not be applied. It repeatedly performs the same calculation
on equal-sized packages of input data. A system scenario
approach can, however, be used to exploit the potential
benefits of a reconfigurable platform.

The system scenario-based design methodology is a pow-
erful tool that can also be used for fine grain optimizations at
the task abstraction level and for simultaneous optimization
of multiple system costs. The ability of handling multiple
and nonlinear system costs differentiates system-based de-
sign methodologies from the dynamic run-time managers
intended for DVFS type platforms [10]. DVFS method-
ologies concentrate on optimization of a single cost - the
energy consumption of the system, that scales monotonically
with frequency and voltage. They perform direct selection
of the system reconfiguration from the current workload
situation. This, however, cannot be generalized for costs that
depend on the parameters in a nonuniform way. That makes
the decision in one run-time step too complex. Scenario-
based design methodologies solve this problem by a two-
stage approach decided both at run-time: they first identify
what scenario the working situation belongs to and then
choose the best system reconfiguration for that scenario.
Since the relationship between the parameters and the costs
will in practice be very complex, the scenario identification
is however performed at design-time.

This paper targets fine grain optimization of a single
system cost.

3. Theory and related work
The term Run-Time Situation (RTS)is an important

concept used in task level system scenario-based design
methodologies [5]. Each instance of running a task has
a corresponding cost (e.g., energy consumption). The run
instance and its cost is treated as a unit denoted an RTS.
One complete run of the application on the target platform
represents the sequence of RTSs.

A scenario identification technique lies at the heart of any
system scenario-based design methodology. It determines
how the different observed RTSs should be divided into
groups with similar costs - the system scenarios, and how
the system scenarios should be represented to make their
runtime prediction as simple as possible.

Two examples of techniques for task-level scenario iden-
tification are presented in [6] and [4]. Both of them split
scenario identification into two steps. In the first step,
the variables in the application code are analyzed, either
statically, [6], or through profiling of the application with
a representative data set, [4]. The variables having most
impact on the runtime cost of the system are determined.
These variables are called RTS parameters, denoted by
ξ1, ξ2, . . . , ξk, and are used to characterize system scenarios
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and design the scenario prediction mechanism. Typically a
small set of RTS parameters is selected to keep the runtime
prediction overhead low.

The output of the first step is the set of the selected RTS
parameters and, for each RTSi, its RTSsignatureis given
by Equation 1 below:

r(i) = ξ1(i), ξ2(i), . . . , ξk(i); c(i), (1)

containing parameter valuesξ1(i), ξ2(i), . . ., ξk(i) and the
corresponding task costsc(i). I.e., each run instance of
each task will have its own RTS signature. The number,
N, of RTS signatures will hence be very large. Depending
on the number of RTS parameters and how many different
values each of them can take, there will be a small or large
number ofdifferent RTS signatures. This is important for
the complexity of step 2 of the scenario identification.

In the second step, the RTS signatures are divided into
groups with similar costs - the system scenarios. In [6] and
[4] this is done by a bottom-up clustering of RTS signatures
with a resulting multi-valued decision diagram (MDD) that
is used as a predictor for the upcoming system scenario.
The limitation for this technique is that the size of an MDD
explodes for many-valued parameters making it infeasible
for the runtime prediction.

The two techniques differ in how they evaluate the impact
of RTS parameters. The first one [6] is based on pure static
analysis of the code and do not take into consideration the
frequencies of occurrence of different RTS parameter values.
It may therefore produce system scenarios that almost never
occur. The second one [4] extends the first one [6] with
profiling information and forms a system scenario set that
exploits runtime statistics. Our scenario identification tech-
nique uses the same approach for the selection of RTS pa-
rameters as the second technique [4]. This approach typically
leads to only a limited amount of parameters being labeled
as important enough to incorporate in the identification step.
That is crucial to limit the complexity.

Identification of thread-level system scenarios has been
studied in [16]. This is fully complementary to the focus of
our paper which considers intra-thread-level system scenar-
ios.

As we have seen the existing scenario identification ap-
proaches cannot be used in a system with many-valued
RTS parameters, causing an explosion of states in the MDD
and the associated runtime/implemenation costs. In the next
section we will discuss a possible solution to this problem.

4. Proposed method
4.1 General overview

Figure 2 illustrates the theoretical concepts of our scenario
identification technique. Givenk RTS parameters andN
profiled RTS signatures from Equation 1. If we assign one di-
mension to each RTS parameter, the resultingk-dimensional

Fig. 2: System scenarios and runtime prediction.

space will define all theoretically possible values for the RTS
parameters in the application. We will call such space anRTS
parameter space. When static max and min constraints on
the values are added, the space reduces to one or several
k-dimensional domain(s).

Assuming a(k + 1)-dimensional cost representation for
each RTS, all signatures can then be plotted as points in a
(k+1)-dimensional space. In the profiling sequence, several
identical signatures may exist, giving coinciding points in the
space. The number of times a point repeats itself is useful
information as it quantifies the probabilities of occurence of
each RTS.

With the representation above, the scenario identification
task can be viewed as a distribution of points into S different
groups, representing system scenarios, according to which
the overall configuration cost is minimized. An RTS point
i is assigned to scenarioj whenever its costc(i) falls
into that scenario’s cost range {C(j)min, C(j)max}. The
scenario cost ranges are determined by a balancing function
that ensures that all scenarios have a near-equal probability
to occur at run-time. In this way, rare system scenarios are
avoided since their storage cost will exceed the gains of
adding them. We measure this probability by the number
of points, including the repeating ones, that each scenario
contains and call itscenario size. The maximum scenario
size equals the number of all RTS signaturesN , divided
by the number of system scenariosS. Given a list r of
RTS signatures sorted by descending cost, the scenario cost
ranges are given by the indices corresponding to the integral
number of the scenario size:

C(j)max = r ((j − 1) ·N/S + 1) (2)

C(j)min = r ((j) ·N/S) (3)

The cost of scenarioj is defined as the maximum cost of
any of the RTS signatures that it includes:Cj = C(j)max.

The projection of scenarios onto the RTS parameter space
(see Figure 2) will produceM ≥ S regions that characterize
the system scenarios in terms of RTS parameter values.
Each region can be described as a polyhedron, and the run-
time scenario prediction can be done by checking which
polyhedron contains the RTS parameter values of the next
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RTS. Since we know which scenario the region belongs to,
we can foresee that the next running cost will be no more
than the cost of that scenario. Checking if a point lies inside
a polyhedra is the classical point location problem from
the computational geometry domain, and the advantage of
using it for prediction instead of MDD is that it operates
on/stores only the vertices of polyhedral regions, not all
possible parameter values.

This top-down approach can handle arbitrary large do-
mains, provided that the number of regions stays reasonably
low. Otherwise prediction overhead will grow. The number
of regions depends on the number of system scenarios and
the underlying structure of the system - the relationship
between the cost locality of RTS points and the value locality
of their RTS prameters.

The desired number of system scenarios is best defined
by the user according to the characteristics of the application
domain. Typically this is limited to a few tens because
beyond that the potential gains in better following the
system dynamics are counterbalanced with the additional
cost complexity of detecting and exploiting the (too) large
set of possible system scenarios.

For the biomedical application that we are investigating,
a strong correlation is present in the locality of the RTS
parameter values and the locality of the corresponding costs
on the target DSP platform, resulting in a single region
per scenario (see Figure 5). The locality of parameters and
the corresponding costs is an important prerequisite for
the efficiency of the current scenario identification tech-
nique. Moreover, we assume that that there is a one-to-
one correspondence between the cost of a scenario and
the system configuration. In other words, we target the
systems were scenarios are mostly defined by the application
characteristics and not by the details of the platform.

4.2 Detailed algorithm
Our scenario identification algorithm,GENERATESCENAR-

IOSET, is presented in Figure 3. Line 2 is a preprocessing
step, where profiled RTS signatures are sorted by their costs
starting from the maximum cost. In line 4 the worst case
system scenario is created. In lines 6 to 8, the system
scenario is filled in with signatures having the next costs in
the sorted sequence. When the size of the system scenario
exceeds the maximum allowable size, a new system scenario
is created (line 17).

Finally, in lines 10 to 15, each completed system scenario
is checked for overlap with previously calculated higher cost
system scenarios. An overlap means that the scenario regions
in the RTS parameter space are not disjoint (see example
on Figure 6), and equals the intersection of the regions:
overlap← scenario1.paramRegion∩ scenario2.paramRegion.The
intersections make prediction of scenarios ambiguous and
have to be eliminated. This is done by subtracting the overlap
region from the lower cost system scenario and moving all

signatures in the overlap region to the higher cost system
scenario. GivenC1 > C2, these operation can be written as:
scenario2.paramRegion← scenario2.paramRegion - overlap
scenario1.paramRegion← scenario1.paramRegion∪ overlap

The complexity of this algorithm is calculated below:

O(N,S) = NO(ADDSIGNATURE)+(1/2)S(S−1)(O(OVERLAP)

+ O(ADJUSTBORDER)) + SO(NEWSCENARIO) (4)

Thus, it depends on the complexity of the underlying geo-
metric algorithms in the labelled functions.

For the fixed numberd of RTS parameters, the function
NEWSCENARIO has a constant complexity O(1) as it only
copies the value of each parameter in a single RTS signature
to a scenario region.

The function ADDSIGNATURE performs aCONVEXHULL

operation on the existing border of the scenario and the
projection point of the new RTS signature onto the RTS
parameter space. For a 2 or 3-dimensional RTS parameter
space an incremental convex hull algorithm has the complex-
ity O(n log n) [9], wheren is the final number of processed
points, which here equals to the scenario size,N/S. The
convex hull of a polygon has the expected number ofv =
O(logn) vertices and many of them may lie very close
to each other. To limit the number of vertices in the hull
for faster run-time prediction, we modify the algorithm,
such that it calculates the distance between the points on
the hull and removes those that are closer thanL/vmax,
whereL is the perimeter of the hull, andvmax is a user
defined constraint of the maximum number of vertices in the
prediction polyhedra. For the application that we investigate
a reasonable value of this parameter could be 10 (see
Figure 5).

The functions OVERLAP and ADJUST BORDER apply
boolean set operations for intersection, difference and union
of two d-polytopes. For the cased = 2 and d = 3 these
operations can be done in O(vmax log vmax) time [2], giving
the total complexity of the algorithm:

O(N,S) = SO((N/S) logN/S) + (3/2)S(S − 1)O(1) + SO(1)

O(N) = O(N logN) (5)

Recall that this scenario identification algorithm is run only
in the design phase of the embedded system. The run-time
prediction of the next scenario is equivalent to a point loca-
tion problem in the polyhedral partitioning of the parameter
space. The time complexity of the point location problem is
O(logvtot), wherevtot = S · vmax is the total number of
vertices in the partitioning. The required memory space is
O(vtot log vtot). To compare, an MDD ford parameters with
l distinct values hasld states and a query time of O(d· l),
wherel ≫ v.

For d > 3, i.e., for systems with more than 3 parameters,
the complexity of convex hull, boolean set operations and
the point location algorithm, increases exponentially ind
[2], similar to MDD. It remains an open research area to find
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GENERATESCENARIOSET(SET rtsSignatures, INT S)
1 SCENARIO solutions← ∅
2 SORTBYCOST(rtsSignatures)
3 wcSignature← rtsSignature(1)
4 currentScenario← NEWSCENARIO(wcSignature)
5 MAX SCENARIOSIZE := N/S
6 for signature in rtsSignatures do
7 if (currentScenario.size < MAX SCENARIOSIZE) then
8 currentScenario.ADDSIGNATURE(signature)
9 else

10 for scenario in solutions do
11 overlap← OVERLAP(scenario, currentScenario)
12 if (overlap 6= ∅) then
13 ADJUSTBORDER(currentScenario, overlap)
14 end if
15 end for
16 solutions.INSERT(currentScenario)
17 currentScenario← NEWSCENARIO(signature)
18 end if
19 end for
20 return solutions

NEWSCENARIO(RTSSIGNATURE signature)
SCENARIO new
new.size← 1
new.cost← signature.cost
new.paramRegion← signature.paramV alues
return new

ADDSIGNATURE(RTSSIGNATURE signature)
thisScenario.size← thisScenario.size+ 1
thisScenario.paramRegion←

CONVEXHULL(thisScenario.paramRegion,
signature.paramV alues)

return
Fig. 3: Scenario identification algorithm

an efficient representation of polytopes in higher dimensions
that will decrease the complexity of the algorithms operating
on them. The complexity does not increase exponentially
when the number of possible parameter values increase,
however, the way it does for MDD. Thus, our algorithm
is efficient for the systems with upto three important data-
variables that determine the data-dependent behaviour of the
system and have a significant number possible values.

4.3 Refining system scenarios
The functionADDSIGNATURE in Figure 3 produces convex

scenario projections in the RTS parameter space. An exam-
ple of convex scenarios is shown on Figure 5. However, in
some situations concave scenario projections, representing
a geometrically tighter envelop of a set of points, are
preferrable. This is the case when: a) the inherent correlation
between the RTS parameter values and the corresponding
costs has a concave shape, b) the system scenarios overlap
in the RTS parameter space and complete migration of
the signatures to the higher cost system scenarios results
in considerable reduction of run-time gain. An example of
concave scenarios is presented in Figure 6.

A concave scenario projection reduces the overlap and
can potentially improve the run-time gain. However, large

overhead may incur since algorithms processing concave
polyhedra are much more complex. A possible solution is to
split the concave projection into a set of convex polyhedra at
design-time and apply convex hull algorithms. The separate
polyhedra require still additional storage and processing time
that should be kept low. To achieve that, a restriction must
be made on the number of reflex anglesvr in the concave
projection, and also a careful consideration of the cost trade-
offs is required. The refinement step is performed before
the OVERLAP andADJUST BORDERfunctions in Figure 3 and
currently includes only a geometric refinement of the border
by manual selection of additional vertices. The cost tradeoff
considerations are the goals of our future work.

It should be noted that scenario overlaps may also be
produced by variables affecting the costs, but not selected
as RTS parameters, or by nondeterministic properties of
the underlying platform, resulting in different costs for the
same RTS parameters. Such overlaps indicate either a faulty
RTS parameter selection or the use of hardware components
unsutable for scenario-based design.

5. Experiments and Conclusions
We have evaluated our scenario identification algorithm on

two versions of the Lyapunov exponent calculator described
in Section 2. Energy numbers in Section 2 are obtained using
the CoolBio DSP platform, presented in [1], and have been
extracted through layout back-annotated power simulations.
In our case we use the high performance mode, running the
DSP on 1.1V. For this voltage we reach 80MHz speed which
is required for this application in the worst-case condition.

In this section we present results for execution time
optimization using system scenarios. The improved execu-
tion time can be exploited for reconfiguration in several
ways. DVFS can be applied, possibly in combination with
rescheduling to allow other tasks to run in the idle time. On
run-time reconfigurable multi-processor platforms, remap-
ping of tasks is possible to achieve an overall optimized
execution.

We have run tests on three different setups, displayed in
Table 1. Throughout the tests we have varied: a) the version
of the application, i.e. different settings for the Lyapunov
exponent calculation, b) the platform, on which the execution
time was measured, and c) the input database for application
profiling. This results in different characteristics which repre-
sent distinct benchmarks to test our algorithm performance.
Figures 5 and 6 show the results of the experiments. Prior
to scenario identification, an RTS parameter selection step,
similar to [4], was performed, and two internal application
variables with the greatest impact on the execution time were
identified - Falsecountand Seqlength. The same variables
were identified in both application versions and they have
upto a few thousands of distinct values. They were selected
as RTS parameters, giving a two-dimensional RTS parameter
space for our scenario identification algorithm.
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Table 1: Experimental setup.
No Application version Platform Database

I, settings: CoolBio 6 hrs continuous
1 nsize=2048, dimm=7, DSP EEG w/seizures

evolv=12, idist=20, tau=4

II, settings: CoolBio 6 hrs continuous
2 nsize=1000, dimm=4, DSP EEG w/seizures

evolv=6, idist=12, tau=4

I, settings: General 200 EEG samples
3 nsize=2048, dimm=7, purpose from epileptogenic

evolv=12, idist=20, tau=4 zone, no seizures

The results of the first two experiments are presented on
Figure 5. Here both application versions are investigated on
the potential target embedded platform, CoolBio DSP. A
profiling of the application with a 6 hrs continuous EEG
recording shows that there is a clear correlation between
the RTS parameters and the execution workload (in clock
cycles), and our scenario identification algorithm produces a
set of non-overlapping system scenarios. The two application
versions have different size of the RTS parameter domain,
but the identified system scenarios appear to be very similar,
approximately a scaled version of each other. A relatively
small number of 5 to 20 system scenarios is generated as
preferred by users in scenario-based systems.
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Fig. 4: Total execution time of the largest Lyapunov exponent
calculation (versions I and II) with different number of
system scenarios in the 6 hours continuous EEG recording.

The last experiment is run on a nondeterministic general-
purpose desktop PC to demonstrate the scenario refinement
step. Figure 6 presents the results. The top left subfigure
shows the overlapping convex scenario projections produced
by function ADDSIGNATURE on this nondeterministic plat-
form. The remaining subfigures show the projection of each
scenario separately along with its respective RTS point
distribution. Concave refinement is performed on scenarios
2-5 in order to reduce the overlaps between the scenar-
ios before the functionsOVERLAP and ADJUSTBORDER are

applied. Although a much smaller database is used for
this experiment, the real scenario borders from Figure 5
can be discerned in the point distributions of Figure 6.
The distortion in the scenario borders is caused by the
noise from the nondeterministic platform. The dashed line
indicates the convex hull of each scenario. It is determined
by the extreme points in the distribution and causes strong
overlap between the scenarios. In fact, the overlap is so
big, that after application ofOVERLAP and ADJUSTBORDER

functions some of the scenarios would disappear totally. The
solid line is the concave hull of the scenarios and comes
significantly closer to the real scenario borders, reducing
the overlap between them. If the point distributions here
were the inherent point distributions for this application (i.e.
not caused by the platform noise), the identified concave
scenarios would improve the execution time of this system
scenario-based design.

Figure 4 compares execution workload for running the
system with and without system scenarios for the first two
experiments. It also shows the execution workload of the
theoretically optimal workload-adaptive design which is not
realizable in practice. The results are presented for both
application versions. Between 61% and 72% gain can be
achieved with 5 to 20 system scenarios. With 5 system
scenarios the total execution workload of the systems is still
situated well above the theoretically best solution - 58%
for system 1 and 67% for system 2. When the number
of scenarios is increased, however, the total execution time
of both systems reduces towards the theoretical limit and
becomes at 20 scenarios less than 13% and 15% above
the theoretically best solution for system 1 and system 2
respectively.

The results presented here demonstrate the feasibility of
the proposed technique and show that it is possible to
reach near optimal execution time with a limited number
of scenarios. Future work includes optimization of scenario
borders to realize a trade-off between overestimation and
run-time prediction / switching complexity.
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Abstract— Protecting the confidentiality and integrity of
data processed by field-programmable gate arrays (FPGAs)
is a major concern in the field of electronics as the use
of FPGAs is becoming increasingly widespread in various
commercial, industrial and other products. Since the FPGA
bitstream is essentially an electronic data stream, it is
susceptible to eavesdropping and tampering during transport
via a data bus or network. Such security issues clearly
hinder the use of systems supporting partial reconfiguration,
where users can design their own circuits or download and
implement custom circuits from the Internet on demand.
　 Although currently available high-end FPGAs feature
cryptographic cores to counteract such security issues, in
2011 it was reported that a cryptosystem on an FPGA could
be broken by means of a side-channel attack. The success
of this type of attack indicates that, in the presence of state-
of-the-art techniques, a fixed key in the memory constitutes
a flaw in security-sensitive systems.

To address the problem of side-channel analysis, we
have developed evaluation boards referred to as SASEBO,
which is an acronym for Side-Channel Attack Evaluation
Board and serves as a collective name for the entire range
of evaluation boards developed thus far, namely SASEBO,
SASEBO-G, -B, -R, -GII, -W, -RII and -GIII. Used in more
than 30 countries, SASEBO is the world’s most popular
series of evaluation boards for side-channel analysis. The
latest board (SASEBO-GIII) is equipped with the newest
Xilinx Kintex-7 FPGA for cryptographic module evaluation
and Spartan-6 for system control.

To resolve the security issue of embedded secret keys,
we are also developing and evaluating Physical Unclonable
Functions (PUFs) with SASEBO. A PUF is a circuit that
generates a device-specific identifier by using the process
variation of the device. Such variations are virtually unclon-
able, and thus the output of the PUF is considered to be a
device fingerprint, which is expected to be unique among
devices. The generated identifier is used to communicate
secret information, and there is no need to store that
information in the device itself.

In this paper, we outline security issues in the modern
large-scale integration market, and we demonstrate the
functionality of SASEBO boards. We also explain how PUFs
can solve the abovementioned security problems concerning
FPGAs.

Keywords: Dynamic Partial Reconfiguration (DPR), SASEBO,
Side-Channel Analysis (SCA), Physical Unclonable Function
(PUF), Authenticated Encryption

1. Introduction
Dynamic Partial Reconfiguration (DPR), or Partial Run-

Time Reconfiguration (RTR) of Field-Programmable Gate
Arrays (FPGAs), refers to the ability to replace a portion of
a circuit with another module while the rest of the circuit
remains fully operational. FPGAs of the Xilinx Virtex family
are probably the most popular dynamically reconfigurable
FPGAs, and recently Altera announced that their Stratix V
FPGA also supports DPR. In a DPR system, a user can
change the functionality of the system on demand by down-
loading a hardware module suitable for particular applica-
tions, performance requirements or environments. Similarly
to downloadable software, such as JavaScript and ActiveX
content, downloadable hardware services for reconfigurable
hardware devices are expected to become available in the
near future. The flexibility of DPR is expected to increase
the versatility of such hardware systems as well as to
improve their cost effectiveness and area efficiency. DPR
also results in shorter configuration times and consequently
makes reconfigurable computing more practical and oper-
ational. The application of DPR has been studied in the
fields of content distribution [1], network processing [2],
image processing [3], automotives [4], fault-tolerant and
self-healing systems [5], and software defined radio [6]
among others.

However, there are certain security issues to consider
before DPR can be applied in practice. Since hardware
configuration data (bitstreams) for FPGAs can be down-
loaded from the Internet, the bitstreams are always ex-
posed to attackers on the network. As represented by Side-
Channel Analysis (SCA), which exploits power consumption
measurement or electromagnetic emanation to obtain secret
keys, technology which can be used for attacks is becoming
more sophisticated every day, and simple encryption and
authentication techniques might not always be sufficient
for protecting confidential data. Indeed, according to recent
reports, the bitstream security mechanisms of some FPGAs
have been defeated by differential power analysis [7], [8].
In other words, secret information stored in the memory
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can be extracted by state-of-the-art attacks. Therefore, we
are currently addressing this security issue with Physical
Unclonable Functions (PUFs), which extract unclonable
process variation of the devices and provide fingerprints
which uniquely identify these devices.

In the following sections, we provide a brief introduction
of the security issues concerning FPGAs, SCAs and PUFs.

1.1 Security Issues Concerning FPGAs
Since a bitstream is merely an electronic data stream,

it is constantly exposed to threats such as illicit cloning,
reverse engineering and other forms of tampering, and
therefore bitstream encryption is essential for protecting
FPGA IP cores. Encryption-only systems, however, are not
sufficiently secure since they cannot prevent erroneous or
malicious bitstreams from being used for configuration.
Since DPR changes the hardware architecture of the circuit,
an unauthorized bitstream can cause fatal, unrecoverable
damage to the system or may cause secret information
to leak through a network connection. Such a malicious
bitstream is referred to as a hardware virus or a hardware
trojan. Cryptographic schemes also provide DPR systems
with solutions for preventing damage from being inflicted
by such hardware viruses and trojans.

To use DPR systems in practice, mechanisms for bit-
stream protection, safe configuration and side-channel attack
prevention should be implemented in accordance with the
intended application of the specific system. In this regard,
we have developed a secure DPR system using the Advanced
Encryption Standard with the Galois/Counter Mode (AES-
GCM) [9], [10], which is one of the latest Authenticated En-
cryption (AE) systems [11]. AE is a cryptographic algorithm
that provides both message confidentiality and authenticity.
Also, several studies on bitstream protection have been
reported thus far [12]–[18].

Modern cryptography provides a reasonably good solution
to the security issues associated with DPR systems. How-
ever, we must also take SCA into consideration in order to
be able to counteract more sophisticated attacks since the
secret key of the encryption core embedded into the FPGA
can be revealed by SCA.

1.2 Side-Channel Analysis
SCA is a collective term for a range of non-invasive

attacks targeting cryptographic modules which focuses on
the power consumption, electromagnetic emanation, and
the leakage of other information about the physical state
of electronic devices. Using SCA, an attacker can extract
secret information from inside the target without physically
accessing the device. The cost of SCA attacks is usually low,
requiring only basic equipment, such as a digital oscilloscope
and a personal computer along with the target device.
Therefore, SCA is a rather straightforward but powerful
attack technique targeting cryptographic modules.

After Kocher et al. reported the first SCA (based on
timing analysis) in [19] and subsequently Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) in
[20], SCA has become widely recognized in both industry
and academia as a serious problem concerning cryptographic
modules. Many derivative attacks have been studied to date
such as correlation power analysis [21], electromagnetic
analysis [22], [23] and mutual information analysis [24].

In 2011, Moradi et al. successfully extracted the secret
key of the encrypted bitstream from a Virtex-II Pro FPGA
by recovering the three encryption keys of the Triple-DES
algorithm from 25,000 power traces obtained during a single
boot-up process [7]. It should be noted that the technique
adopted by Moradi et al. required only 3 min to extract the
key.

To facilitate the study of SCA at academic, industrial and
governmental institutions, we have developed and distributed
a standard experimental environment named SASEBO,
or Side-channel Attack Standard Evaluation Board [25].
SASEBO is a collective name for a series of evaluation
boards developed thus far, namely SASEBO, SASEBO-G,
-B, -R, -GII, -W, -RII and -GIII. Used in more than 30
countries, the SASEBO boards are now the world’s most
popular SCA evaluation boards. It should be emphasized
that SASEBO-GII and -GIII are also designed to support
DPR system evaluation, where the target device can be
(re)configured in various ways to study the feasibility and
effectiveness of DPR systems. It is particularly important
that one of the two FPGAs on these boards can be dynam-
ically reconfigured under the control of the other FPGA. A
detailed explanation of SASEBO will be given in Section 2.

1.3 Physical Unclonable Functions
In this context, storing a secret key in memory might

not provide sufficient security with respect to sensitive
information. Therefore, we look to PUFs as an effective
solution to SCA attacks.

A PUF is an object that outputs a device-specific response
based on its intrinsic physical characteristics. In this sense,
the texture of paper can serve as a PUF, however here we
consider PUFs in the context of semiconductors (silicon
PUFs [26]). A silicon PUF (hereafter referred to simply
as “PUF”) is a circuit constructed on a semiconductor, and
its purpose is to output a unique identifier (ID) based on
variation in the device. By using a PUF for key generation,
the secret key need not be embedded in the FPGA, which
can protect the device against side-channel attacks. Another
novelty associated with using PUFs for FPGAs is that
different IDs can be generated from the same bitstream.
Although bitstreams are common for all devices, device-
specific data are generated as a result of physical differences
between individual devices. Note that the bitstream itself
does not necessarily include any secret information. As
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a consequence, the bitstream of the PUF can be safely
transferred over unsecured network channels.

Maes and Verbauwhede have categorized PUFs into non-
electronic PUFs, analog electronic PUFs, delay-based intrin-
sic PUFs and memory-based intrinsic PUFs [27]. Among
these, delay-based and memory-based PUFs can be applied
to FPGAs. Examples of delay-based PUFs can be given with
arbiter PUFs [28], ring oscillator (RO) PUFs [29], Glitch
PUFs [30] and others, while examples of memory-based
PUFs include SRAM PUFs [31], butterfly PUFs [32] and
tri-state PUFs [33].

Our Pseudo-LFSR PUF (PL-PUF) [34], which is a delay-
based type of PUF, was developed to eliminate certain
shortcomings of existing PUFs. A conventional delay-based
PUF outputs a response consisting of one or several bits from
a challenge consisting of a long bitstream, and consequently
has a low throughput. Additionally, some types of PUFs
can be attacked by using machine learning to perform
mathematical modeling of their signal delay characteristics.
In contrast, PL-PUF efficiently outputs an N -bit response
from an N -bit challenge, and the size of the PL-PUF circuit
is reasonably small. Although the structure of PL-PUF is
based on the Linear Feedback Shift Register (LFSR), in
fact it does not contain a shift register; rather, it constitutes
a large combinational logic. As a result of this structure,
modeling its delay is considered to be exceedingly difficult.
Furthermore, the challenge-response mapping of the PL-PUF
can be varied depending on the active duration of the circuit,
that is, a single PL-PUF behaves as though it consists of
multiple PUF cores. The PL-PUF is explained in detail in
Section 3.

1.4 Organization of this Paper
The remainder of this paper is organized as follows. Sec-

tion 2 presents our SCA evaluation boards of the SASEBO
family, where the details about the structure, functionality
and various configuration mechanisms of the boards are
explained. Section 3 introduces PL-PUF together with details
of its structure and the results of its implementation on
SASEBO-GII boards, and the effectiveness of PL-PUF is
discussed on the basis of performance evaluation results.
Furthermore, Section 4 presents a secure DPR system using
authenticated encryption AES-GCM together with results
regarding its structure and implementation. Finally, Section 5
summarizes the paper and the directions of future work.

2. SASEBO
SASEBO was our first version of an SCA evaluation board

and is also the collective name for the entire series of evalu-
ation boards developed thus far, namely SASEBO-G, -B, -R,
-GII, -W, -RII and GIII. SASEBO is developed to provide
an experimentation environment for SCA to researchers from
various academic and industrial fields. SASEBO is currently
the most common SCA evaluation board in the world, being

used at more than 100 academic, governmental and industrial
institutions in more than 30 countries. Images of the boards
in the SASEBO family are shown in Fig. 1 through 6, and a
summary of the functions of each board is given in Table 1.

After successful timing attacks and differential power
analysis (DPA) were reported in 1996 and 1999 respec-
tively, SCA attacks were recognized as a serious threat
to the industry. However, at the time there was no com-
mon experimental environment for conducting SCA tests,
so some research groups developed their own evaluation
boards while others modified off-the-shelf boards to measure
the power consumption of the chips. These experimental
environments were drastically different from each other,
which rendered the comparison of the experimental results
obtained by different groups meaningless. Furthermore, even
when a novel SCA experiment was conducted, performing
independent confirmation experiments was virtually impos-
sible since the original test environment in which the novel
experiments were performed was unavailable to third-party
research groups. The lack of a uniform and consistent test
environment led to the development of SASEBO.

2.1 SASEBO-GIII
The latest board of the SASEBO family, SASEBO-GIII,

is equipped with a Xilinx Kintex-7 FPGA as a testing
cryptographic module and a Spartan-6 FPGA for imple-
menting control logic. Its strongest advantage is in terms
of expandability, with two standard FMC LPC1 connectors.
Therefore, off-the-shelf boards with an FMC connector, for
example, HDMI cards, Ethernet cards and camera boards,
can be connected to SASEBO-GIII. The configuration pins
of Kintex-7 are connected to and controlled by Spartan-6, al-
lowing the user to test complete and partial reconfigurations
of the chip through the configuration pins.

Since SASEBO-GIII is not yet commercially available,
in the following section we explain the functionality and
configuration mechanisms of SASEBO-GII.

2.2 SASEBO-GII
The SASEBO-GII board is designed for developing secure

DPR systems, as well as for improving the logic capacity and
signal quality for advanced research on side-channel attacks.
The FPGAs on SASEBO-GII can be configured via different
interfaces: JTAG, SPI, SelectMAP and ICAP [35], and the
designer can examine various configurations and evaluate the
security of the developed configuration procedure.

In this section, first we explain the basic specifications of
the SASEBO-GII board, after which we describe the various
FPGA configuration patterns realized with the board.

2.2.1 Board Structure

The block diagram of the board is shown in Fig.7 and its
basic features are summarized in Table 2.
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Figure 1: SASEBO-G Figure 2: SASEBO-B Figure 3: SASEBO-R

Figure 4: SASEBO-GII Figure 5: SASEBO-W Figure 6: SASEBO-RII

Table 1: Summary of the SASEBO family.
Name Year Cryptographic Device Control Device
SASEBO 2007 Virtex-II Pro (XC2VP7) Virtex-II Pro (XC2VP30)
SASEBO-G 2008 Virtex-II Pro (XC2VP7) Virtex-II Pro (XC2VP30)
SASEBO-B 2008 Stratix-II (EP2S15) Stratix-II (EP2S30)
SASEBO-R 2008 LSI socket (QFP160) Virtex-II Pro (XC2VP30)
SASEBO-GII 2009 Virtex-5 (XC5VLX30/50) Spartan-3A (XC3S400A)
SASEBO-W 2010 Smartcard slot Spartan-6 (XC6SLX150)
SASEBO-RII 2011 LSI socket (QFP160) N/A
SASEBO-GIII 2012 Kintex-7 (TBD) Spartan-6 (XC6S45LX)

Table 2: Basic specifications of SASEBO-GII
Size 120x140x1.6 mm3, FR-4, six layers

Devices xc5vlx30/50-ffg334 (for cryptographic circuit)
xc3s50a-ftg (for control and interface circuit)

Power supply 5.0 V USB bus power / 5.0 V DC power supply
1.0 V internal regulators
Alternative 1.0 V supply line for the FPGA

Monitoring points Surface-mounted shunt resistors (1Ω) are inserted at the VCORE , VIO and GND lines
Local bus 38-bit bus between the FPGAs

I/F USB
Clocks 24 MHz oscillator for control device

JTAG, SPI-ROM, User-controllable SelectMAP, ICAP
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Figure 7: Block diagram of SASEBO-GII.

SASEBO-GII has two Xilinx FPGA devices—a Virtex-
5 for cryptographic circuits and a Spartan-3A for interface
and control circuits. Furthermore, there are two variants of
Virtex-5, namely LX30 and LX50 for small and large logic
circuits, respectively. Surface-mounted shunt resistors are
soldered and SMA jumpers are inserted into the VCORE

and GND lines in order to improve the quality of power
tracing. In addition, a surface-mounted device is chosen to
reduce noise generated by the clock oscillator, whereas the
previous SASEBO and SASEBO-G implementations use a
PLL programmable crystal oscillator.

Power for operation can be supplied through the USB
connector, or an external power source can also be used
in cases where more stable power supply is necessary. The
cryptographic device and the control device are equipped
with their own VCORE regulators, and the GND lines of the
two parts are connected through inductors. This architecture
also contributes towards further noise reduction. The size of
SASEBO-GII has been reduced to 1/3 of that of SASEBO-G
by removing the RS-232 interface, the monitoring points for
power consumption for the control device, the FPGA con-
figuration sequencer and the large header pins. As shown in
the block diagram in Fig. 7, the wide local bus of SASEBO-
G is emulated on the Virtex-5 FPGA. This simple and
compact implementation also improves the quality of power
tracing since it reduces the number of parasitic capacitances
and resistances. In spite of its simplicity, SASEBO-GII
provides high compatibility with SASEBO-G, and the same
Verilog-HDL source code and control software [36], [37]
designed for SASEBO-G can be used without modification
for SASEBO-GII.

2.2.2 FPGA Configuration
SASEBO-GII allows for user-controllable configuration,

where bitstreams are transmitted to the Virtex-5 SelectMAP
interface or SPI-ROM through Spartan-3A. Thus, a JTAG ca-
ble is unnecessary for Virtex-5 configuration, although JTAG
interfaces are still implemented for ordinary configuration

1FPGA Mezzanine Card (Low-Pin Count).

and internal signal monitoring. Jumper pins on the board
are used for selecting the configuration type.

Figure 8 illustrates the process of self-DPR of Virtex-5
through ICAP. In this case, a bitstream of a Partially Recon-
figurable Module (PRM) is sent from the personal computer
(PC) through Virtex-5. For the secure configuration, the
integrity of the PRM bitstream should be checked, followed
by decryption of the bitstream in the Virtex-5, after which
the PRM is used to configure the device. The security of the
DPR system with a single FPGA can therefore be examined
with this configuration.

Figure 9 shows the configuration of Virtex-5 via the
SelectMAP interface controlled by Spartan-3A. This type of
configuration is useful for developing a device authentication
protocol between the control logic and the FPGA. In addition
to DPR, this configuration type can also be used for complete
reconfiguration of the FPGA. Therefore, the security of
completely reconfigurable systems can also be examined
with this configuration setting.

Figures 10 and 11 show the configuration of Virtex-
5 and Spartan-3A via the SPI, respectively. Configuration
data are written to SPI-ROM through the JTAG interface
or the FPGA. SPI-ROM is usually used for configuration
during the booting process, in other words, the configuration
data are automatically read from SPI-ROM after the system
is powered on. If the FPGA writes configuration data to
SPI-ROM, the function of the FPGA will be different the
next time the system is booted. Additionally, SASEBO-GII
can trigger an SPI-ROM configuration process while the
system is operating, and therefore completely reconfigurable
environments can be studied with this configuration.

2.3 Other Boards of the SASEBO Family
a) SASEBO and SASEBO-G/-B/-R: SASEBO, SASEBO-
G, SASEBO-B and SASEBO-R are earlier members of
the SASEBO family and were developed in collaboration
with Tohoku University [37]. They have been discontinued
and are currently unavailable on the market. SASEBO-
G and SASEBO-R were replaced with SASEBO-GII and
SASEBO-RII, respectively.

b) SASEBO-W: SASEBO-W was especially developed
for studying and evaluating the security of smartcards.
SASEBO-W is equipped with a card slot for a smartcard
along with a Spartan-6 FPGA for implementing a relevant
controller.

c) SASEBO-RII: SASEBO-RII is the latest version of
the SASEBO-R series, and it was developed for ASIC
evaluation. The architecture of SASEBO-RII is drastically
different from that of SASEBO-R—the controlling FPGA
is removed, and only an LSI socket is installed. SASEBO-
RII is a daughter board of SASEBO-W, and SASEBO-W
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Figure 8: Dynamic partial reconfiguration (DPR) of
Virtex-5.

Figure 9: Virtex-5 configuration via the SelectMAP
interface.

Figure 10: Virtex-5 configuration by implemented by
updating SPI-ROM.

Figure 11: Spartan-3A configuration implemented by
updating SPI-ROM.

is in charge of controlling the smartcard. The schematics
of SASEBO-RII will be made available online under the
condition that they be used for academic research, which
would allow researchers to develop their own boards with
LSI sockets of choice. This is expected to greatly reduce the
cost of board development.

3. Pseudo-LFSR PUF
A PL-PUF is a delay PUF which is compact, efficient,

multi-functional and resistant to attacks. PL-PUF does not
contain a shift register; rather, it constitutes a large combi-
national logic based on the structure of LFSR. Figure 12
illustrates a 128-bit PL-PUF with the following primitive
feedback polynomial [38]

x128 + x126 + x102 + x99 + 1. (1)

Note that in PL-PUF the core logic (Fig 13) is not a
register but an inverter, and thus PL-PUF constitutes a single
combinational circuit. The output of PL-PUF oscillates since
the output of the last core (Dout(1)) is fed back into the top
core. The feedback signal is strongly affected by process
variations in the device, and therefore the output of PL-PUF
becomes sensitive to delays and consequently dependent on
the device. The core logic does not necessarily have to be an
inverter—it can be any combinational logic that efficiently
extracts variations in the device.

PL-PUF realizes authentication based on a challenge-
response pair (CRP). In the case of Fig. 12, the challenge
is the 128-bit initial value supplied to the core logic, and
the response (= ID) is the 128-bit output of the core logic.
Note that the 128-bit ID is generated from a single 128-

bit challenge, which is the remarkable novelty of PL-PUF
realizing high throughput and high attack resistance.

After the initial value is set to each core logic, PL-
PUF is activated for c clock cycles. This active cycle is
referred to as an active duration, where the same PL-PUF
can generate completely different outputs depending on the
active duration c.

The features of PL-PUF can be summarized as follows.

• Compactness
An inverter-based PL-PUF results in a small circuit. In
the case of Fig. 12, it requires only 128 inverters and 3
XOR gates. By comparison, an arbiter-based PUF has
two selector chains, and therefore a 128-stage arbiter
PUF requires 256 multiplexers.

• Efficiency
A PL-PUF efficiently outputs long IDs since all 128
bits of the ID are generated from a single 128-bit
challenge. This is a notable advantage of the PL-PUF
as compared to other PUFs, where only single-bit or
several-bit output is generated from a long challenge.
By comparison, an arbiter-based PUF usually requires
128 CRPs to obtain a 128-bit ID.

• Multi-functionality
The output of the PL-PUF depends on the duration
of the active clock cycles, and thus a single PL-PUF
can be made to behave as multiple PUFs by changing
the active duration. In other words, the challenge-
response mapping of the PL-PUF can be easily changed
without modifying its hardware structure. This property
determines the unclonability of PL-PUF since cloning
CRP mapping for all possible durations is considered
impractical.
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Figure 12: Structure of the PL-PUF.

Figure 13: Structure of the core logic.

• Reliability
A reliable PUF is expected to generate reproducible IDs
which are unique to the device generating them. PL-
PUF features both high reproducibility and uniqueness,
as demonstrated below. In addition, the reliability of
PL-PUF is configurable by changing the duration of
the active clock cycles. Therefore, the user can choose
a duration which corresponds to the preferred reliability.

• Attack resistance
PL-PUF is expected to exhibit high resistance against
attacks based on machine learning since modeling its
delay would be exceedingly difficult. Furthermore, it
outputs a 128-bit response at once from a single 128-
bit challenge, in other words, the function of PL-PUF
is

f : {0, 1}128 → {0, 1}128 (2)

unlike the function of conventional PUFs

f : {0, 1}128 → {0, 1}. (3)

Thus, learning the delay parameter from the 2128 output
space would require an excessive number of CRPs, and
thus it is considered impractical.

3.1 Experiments and Results
3.1.1 Quantitative and Statistical Analysis

First, we evaluated the performance of PL-PUF with re-
spect to the quantitative indicators proposed in [34] (random-
ness, steadiness, correctness, diffuseness and uniqueness).
The evaluation results are given in Table 3. Due to space
limitations, only the results for Device 1 are given in the
table. In the experiments, the active duration was varied
between 1 and 16, and all performance indicators were in
the range between 0 and 1, with 0 being the lowest and 1
being the highest.

Table 3: Performance of PL-PUF evaluated with respect to
several quantitative indicators.

Active Randomness Steadiness Correctness Diffuseness Uniqueness

Duration H S C D U
1 0.984 0.982 0.979 0.988 0.656
2 0.975 0.966 0.960 0.987 0.728
3 0.964 0.954 0.947 0.985 0.746
4 0.967 0.925 0.913 0.989 0.755
5 0.966 0.878 0.859 0.990 0.766
6 0.944 0.804 0.775 0.988 0.772
7 0.969 0.726 0.686 0.989 0.776
8 0.960 0.622 0.572 0.988 0.772
9 0.967 0.516 0.460 0.985 0.773

10 0.964 0.415 0.357 0.978 0.771
11 0.966 0.324 0.269 0.974 0.760
12 0.964 0.253 0.203 0.958 0.756
13 0.964 0.200 0.155 0.950 0.744
14 0.962 0.165 0.126 0.929 0.739
15 0.965 0.145 0.109 0.914 0.738
16 0.963 0.131 0.097 0.900 0.734

As can be seen from the table, randomness and diffuseness
are consistently high for all active durations. As a result, the
entropy of PL-PUF is considered to be sufficiently high for
cryptographic purposes. Also, the uniqueness of PL-PUF is
markedly higher than that of the PUF in [39], and therefore
PL-PUF is considered suitable for device identification as
well. Furthermore, the steadiness and correctness are also
high when the active duration is relatively short, although
their values decrease as the active duration increases. This
result indicates that PL-PUF can be suitable for device
authentication when short active duration is used, while it
can work as a high-quality random number generator in the
case of long active duration.

3.1.2 Evaluation Results for Steadiness

Here, we assess the performance of PL-PUF with the
biometric evaluation method, where the parameters Fault
Rejection Rate (FRR) and Fault Acceptance Rate (FAR) are
used as significant evaluation criteria. FRR represents the
probability of a genuine input being rejected as a counterfeit
one, while FAR represents the probability of a counterfeit
input being accepted as a genuine one. FRR and FAR are
derived from the intra-device Hamming distance (intra-HD)
and the inter-device Hamming distance (inter-HD), where
the former is the average HD between IDs generated by
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Figure 14: FRR and FAR of PUF.

the same device from the same challenge. If the intra-HD
is small, the steadiness of the PUF is considered to be
high. Furthermore, the inter-HD is the average HD between
IDs generated by different devices from the same challenge.
Since the ID length is 128 bits, the uniqueness of the PUF
is considered to be high if the inter-HD is close to 64.

In Fig. 14, the curves on the left and right are the proba-
bility distributions of intra-HD and inter-HD, respectively. If
the two curves cross, FAR and FRR take a non-zero value.

Figure 15 shows the probability distribution of the intra-
HD for Device 1. As can be seen from the figure, when
the active duration is short, the intra-device HD is rather
small, and consequently the steadiness of the ID is high.
On the other hand, the intra-device HD approaches 64 as
the active duration increases, which indicates that the output
of PL-PUF is almost purely random. This result shows that
the active duration of PL-PUF should be reasonably short to
obtain stable outputs.

3.1.3 Evaluation Results for Uniqueness

Figures 16-19 show the intra-HD for Device 1 and the
inter-HDs between Device 1 and the other devices. The
number of clock cycles for the active duration is set to
1, 4, 8 and 16, respectively. When the active duration is
short, the shapes of the distributions of the intra- and inter-
HD are sharp, and therefore FAR and FRR are both zero
(Figs. 16 and 17). In Fig. 18, FAR and FRR become greater
than zero but remain sufficiently low for Device 1 to be
distinguishable from other devices. When the active duration
becomes longer, Device 1 cannot be identified since its intra-
HD and inter-HD distributions become indistinguishable
from each other (Fig. 19).

As Figs. 16-19 show, the uniqueness of PL-PUF is high

Figure 15: Distribution of intra-HD for Device 1.

in the case of a sufficiently short active duration, although
too short an active duration can fail to distinguish different
PUFs.

4. Secure DPR Systems with PUF and
AE

AE is a relatively new concept in cryptographic tech-
nology, providing both message encryption and authenti-
cation. Since both the confidentiality and the authenticity
of bitstreams must be guaranteed, AE must be effectively
applied to DPR systems. We developed a prototype of a
secure DPR system using AES-GCM [14] and studied the
relationship between the throughput and memory overhead
of different AE modules [13]. As a result, we found that
AE achieves high speed and area efficiency as compared
with systems using separate encryption and authentication
algorithms. However, the problem of the storage of the secret
key remains since the secret key embedded into the chip
can be extracted by an SCA attack. The use of PUFs is a
promising approach for solving this problem.

The goal of our study is to build a secure DPR system
by integrating AE and PL-PUF into the system. Such a
DPR system is expected to be secure with respect to reverse
engineering and hardware trojans since the bitstream of the
system is protected by AE and therefore less vulnerable to
SCA since PL-PUF eliminates the requirement that the secret
key be stored in memory. Although there has been related
work using PUF for protecting FPGA IP cores, PL-PUF
is expected to realize higher throughput and considerably
stronger protection against machine learning.

In this section, first we explain the AES-GCM algorithm,
after which we show the implementation results and discuss
the performance of our DPR system with AES-GCM. Fi-
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Figure 16: Distribution of the inter-HD for Device 1 for an
active duration of 1.

Figure 17: Distribution of the inter-HD for Device 1 for an
active duration of 4.

Figure 18: Distribution of the inter-HD for Device 1 for an
active duration of 8.

Figure 19: Distribution of the inter-HD for Device 1 for an
active duration of 16.

nally, we present our ongoing project of a PUF-based secure
video playback system.

4.1 AES-GCM
We chose AES-GCM [9], [10] as an AE algorithm for

bitstream encryption and authentication. AES is a symmetric
key block cipher algorithm standardized by the U.S. National
Institute of Standards and Technology (NIST) [40]. While
the previous standard (DES [41]) features a Feistel network
architecture, AES employs a substitution-permutation net-
work (SPN) architecture. The block length of AES is 128
bits, and the key length can be 128, 196 or 256 bits.

A block cipher algorithm can be applied to various modes
of operation. GCM is one of the latest modes of operation
standardized by NIST. Figure 20 shows an example demon-
strating the operation of GCM.

The encryption and decryption scheme of GCM is based
on the CTR mode of operation [42]. Thus, GCM can be
highly parallelized and pipelined and is therefore suitable for
hardware implementation, exhibiting a number of advantages
ranging from compactness to high speed [43], [44]. There
are other AE algorithms which are not necessarily suitable
for hardware implementation as they cannot be parallelized
or pipelined [45].

AES-GCM is an AE algorithm providing both message
confidentiality and authenticity. GCM uses universal hashing
in the finite field GF (2w) for generating a message authenti-
cation code (MAC). The additional merit of using GF (2w) is
that the computational cost of multiplication under GF (2w)
is lower than that for integer multiplication.
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Figure 20: Example demonstrating the operation of the
Galois/Counter Mode (GCM).

Figure 21: Overview of the proposed system with AES-
GCM.

4.2 AES-GCM-based DPR System
Here, we introduce our AES-GCM-based DPR sys-

tem [14]. Unlike other DPR systems, our system does not
use an embedded processor to control partial reconfiguration.
Rather, the input data and the ICAP control signals are
directly connected to and controlled by the user logic.
Thus, our system is free from the delay associated with
processor buses. In Virtex-5, the maximum frequency of the
ICAP interface is limited to 100 MHz, and thus the ideal
throughput of the reconfiguration process is 3,200 Mbps.

Figure 21 shows a block diagram of the DPR system with
bitstream encryption and authentication using AES-GCM. In
this system, the lengths of the AES key and the initial vector
are set to 128 bits and 96 bits, respectively.

As the main purpose of this study is to clarify the
feasibility of AES-GCM for bitstream encryption and au-
thentication, rather simple function blocks, for example, a
28-bit adder and a 28-bit subtractor, are used as PRM, which
is connected to the static modules with two bus macros. The
four most significant bits of the adder or the subtractor are
output from PRM and connected to LEDs on the board. The
PRR contains 80 slices, 640 LUTs and 320 registers. The

size of the PRM bitstream is about 11KB.
The S-box of AES is implemented as a table using Block

RAM. In AES-GCM, a 128-bit block is decrypted in 12
clock cycles. The last block of the message requires 12 clock
cycles and an additional 10 clock cycles to calculate the
authentication tag.

Table 4 shows the implementation results for the AES-
GCM-based DPR system (PR-AES-GCM) along with AES-
CBC and SHA-256-based DPR systems (PR-AES-SHA)
for comparison. As the table shows in the case of PR-
AES-GCM, the hardware resources used are fewer and the
throughput is higher than for PR-AES-SHA.

4.3 Integration of a PUF into the DPR System
Since a PUF is considered a fingerprint of the device, it

can be used for device authentication in a manner similar
to biometrics. To perform biometric authentication, several
CRPs are exchanged between the server and the device in the
DPR system, in which the server knows the correct responses
in advance. The actual responses are sent by the system
to the server and compared to the correct responses. If the
error rate is lower than a certain threshold, the system is
successfully authenticated.

Note, however, that the simple use of a PUF provides
neither a strict authentication scheme nor a solution to the
problem of key exchange. In a secure DPR system, a (partial)
bitstream of an FPGA is usually encrypted with a symmetric
cipher. In light of the possibility of an SCA attack, the key
should not be stored in the device in advance. Therefore,
the key must be generated in the device in some way. Here,
note that a PUF cannot provide exact reproducibility since
the output of the PUF is affected by random fluctuations in
the device. The sole use of a PUF cannot generate identical
keys from the same challenge set, and thus error correction
code (ECC) is often used in key generation. In this regard,
a scheme known as a fuzzy extractor [46] is widely used
for ECC-based key generation [31], [47], and other key
generation methods have been recently reported, such as in
[48] and [49].

As an ongoing project, we are developing a video play-
back system based on AE and PUFs. The development
platform is SASEBO-GIII, and an FMC daughter board with
an LSI socket for implementing ASIC PUFs is currently
being developed. An off-the-shelf FMC board is used for
HDMI input/output ports. Error correction as well as the
computation of hashes and other parameters in the fuzzy
extractor are implemented on Kintex-7 on a SASEBO-
GIII. Figure 22 shows the development platform, including
SASEBO-GIII and the HDMI FMC board.

It should be noted that an SCA attack against a fuzzy ex-
tractor was recently reported [50]. We believe that SASEBO-
GIII is the most suitable platform for investigating the
security of the proposed PUF-based video playback system
since it supports simple and straightforward implementation
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Table 4: Comparison of the performance of secure PR systems (14,112-byte PRM).
System Device Slice Authentication Decryption Configuration Overall

PR-AES-GCM XC5VLX50T 2,687∗ 106.43 µs 35.3 µs 141.73 µs
1,067 Mbps 3,200 Mbps 797 Mbps

PR-AES-SHA256 XC5VLX50T 2,730∗ 160.97 µs 97.14 µs 35.3 µs 196.27 µs
701 Mbps 1,164 Mbps 3,200 Mbps 575 Mbps

Figure 22: A PUF-based video playback system.

of SCA experiments. We are currently in the process of
implementing the entire system, and the plans for future
work include testing the security and feasibility of the
system.

5. Conclusion
This paper introduced certain security issues associated

with partial reconfiguration of FPGAs together with studies
on counteracting these issues by using SASEBO, PUFs and
secure DPR systems. Since FPGA bitstreams are electronic
data downloaded from a host computer or the Internet, they
are always susceptible to problems such as piracy, reverse
engineering, tampering and hardware trojans. Authenticated
encryption (AE), which guarantees both the confidentiality
and the authenticity of the encrypted data, can serve as
a solution to these problems, however, a recently reported
type of attack referred to as SCA poses serious concern for
the security of cryptographic systems. One solution to SCA
attacks might be a PUF which generates device-specific IDs
by using process variation of the device.

First, we introduced a family of boards named SASEBO
(Side-channel Attack Standard Evaluation Board). The latest
version of SASEBO, SASEBO-GIII, with the newest FPGA
Kintex-7, will be made available in 2012 or 2013.

In addition, our PL-PUF is a compact and secure delay-
based PUF achieving high throughput. Unlike other PUFs,
PL-PUF outputs an N -bit response from an N -bit challenge,
which enables fast and attack-resistant key generation. The
values of both FAR and FRR of PL-PUF are rather small in
the case of a short active duration, and therefore PL-PUF is
suitable for device identification as well as for key generation
with fuzzy extractors.

A direction of future work is to develop an entire video
playback DPR system including AE, PUF, and fuzzy extrac-
tors along with the video decoders.
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Abstract - In this paper, we introduce a novel, broad 

definition of field programmable gate array (FPGA) design 

integrity and explore its value in the domains of Trust, 

high-reliability design, and design anti-obsolescence for 

FPGA-based systems.  We claim that an FPGA design with 

integrity must continuously provide the FPGA user with the 

function described by the designer and no other function.  

A common starting point for approaching design integrity 

in each of the explored domains is the FPGA bitstream.  

Luna’s unique software that evaluates the previously 

inaccessible designs inside of these bitstreams and third-

party intellectual property (IP) provides a firm foundation 

for analysis of FPGA design integrity. 

Keywords: field programmable gate array, FPGA, 

intellectual property, reverse engineering, security, trust 

 

1 Introduction 

Every field programmable gate array (FPGA) 

embodies the core concept that its function is realized by a 

specialized, custom design that was created separately and 

by different agency than the general design of the silicon of 

the FPGA.  Thus, when considering these devices, we must 

address two aspects: the FPGA vendor architecture and the 

user design.    The purpose of the vendor architecture is to 

create a general sea of unprogrammed logic that can be 

configured by a user design to realize the user’s intended 

application-specific function.  Protecting and measuring the 

device integrity of the vendor silicon architecture involves 

the same set of challenges addressed in recent projects to 

trust Application Specific Integrated Circuits (ASICs) and 

control ASIC supply chain risk [1].  In this paper, we do not 

treat the integrity of the vendor device itself.  Rather, we 

focus on the integrity of the user design that is embedded in 

that device.  We introduce a novel, broad definition of 

FPGA design integrity and demonstrate the value of this 

definition to the concise statement of FPGA security 

challenges. Finally, we describe several applied methods for 

guaranteeing that FPGA design integrity is maintained, 

each of which make use of unique software that evaluates 

the contents of FPGA bitstreams and third-party intellectual 

property (IP).  

2 Definition and Attributes of FPGA 

Design Integrity 

An FPGA design with integrity continuously provides 

the User with the function described by the Designer and 

no other function.  The User is the party wishing to make 

use of the function in the FPGA, and the Designer is the 

party or parties responsible for creating the design that 

realizes that function in the FPGA.  The above definition 

leads to the following three guarantees that must be 

provided to the User in order for the design to have 

integrity. 

1) A trusted description of the function 

2) The function described is realized in the design 

3) The design realizes only the function described 

An FPGA design that cannot guarantee all of the 

above attributes cannot be said to have complete integrity.
1
    

Note that this definition encompasses both physical 

correctness of the programming stream (bitstream) and the 

implementation of a design within that stream.  

Traditionally, physical correctness is assessed using a 

mechanism such as a hash or checksum to test the bitstream 

as it is being loaded on the FPGA device to ensure it has not 

been changed since it was first generated by the designer 

[2].  This capability addresses a portion of design integrity, 

but it does not comprise the full range of the term’s 

potential.  Instead, using the above attributes of an FPGA 

design with integrity, we may explore how this simple 

definition elegantly expresses the commonality of the goals 

within many FPGA security domains.  While traversing 

these topics, we provide examples of technology solutions 

 
1 

A similar set of attributes may be easily developed to 

describe the integrity of any kind of microelectronic design. 
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provided by Luna Innovations that make use of our ability 

to directly evaluate the designs inside bitstreams and IP 

cores.  First, however, we make brief comments on the 

common formats of both the user-trusted description of the 

function and the design itself. 

3 Functional Description Formats 

Before we address design integrity challenges and the 

technologies used address them, we must briefly consider 

the functional description formats used to describe the 

designer’s intent.  Luna’s FPGA integrity technologies are 

intended to operate with a variety of functional 

specification formats.  As new forms of functional 

specification are developed, our technology will adapt to 

accommodate those formats common in FPGA design 

flows.   Depending on the particular case in which we are 

seeking to guarantee FPGA integrity, we may use Hardware 

Description Language (HDL) source, a simulatable 

behavioral model, or even a datasheet alone as the user-

trusted functional description.  As other functional 

descriptions gain industry acceptance, our FPGA integrity 

technologies are malleable to accommodate them.  

4 Evaluating Bitstreams and Third-

Party IP 

Just as the user-trusted functional description may take 

many forms, we may similarly wish to guarantee the 

integrity of a design when it is contained in any of a variety 

of formats.  For FPGAs, the common formats in which a 

design might be expressed include HDL, synthesized 

netlist, and bitstream.  Luna’s work has primarily focused 

on the challenge of trust when the design is in the 

synthesized netlist format or in the bitstream format. 

4.1 Synthesized Netlist Design 

Designs expressed in this format have been 

synthesized from the HDL created by the designer.  Once 

synthesized, the design may still be represented in an HDL 

such as Verilog or in another common electronic design 

format such as the Electronic Design Interchange Format 

(EDIF).  Whether Verilog or EDIF, however, the 

synthesized netlist is expressed as a connected and 

configured arrangement of FPGA resources necessary to 

realize the design.  Third-party intellectual property cores 

are commonly distributed to the user purchasing the core as 

synthesized netlists targeted towards the resources provided 

by the FPGA of interest.  It is not uncommon for IP core 

designers to encrypt and obfuscate the proprietary 

implementation details of their cores.  These measures 

taken to hide details of the design add to the challenge of 

guaranteeing the design’s integrity.  However, Luna has 

developed technologies and techniques to explore the 

implementation of FPGA IP cores sufficiently either to 

guarantee or to expose problems with their integrity. 

4.2 Bitstream Designs 

The final design format that is configures the silicon to 

accomplish the user’s application-specific task is the 

bitstream.  It has long been desirable to evaluate the 

bitstream directly in order to verify the contents of the 

design in its deployed form [2].  The challenge faced by 

FPGA users, however, has been that the bitstream formats 

are not documented by FPGA vendors sufficiently to allow 

evaluation of the designs they contain.  To address this 

challenge, Luna has developed software that analyzes an 

FPGA bitstream and describes the design it contains as a 

synthesized human-readable netlist (Fig. 1).  This capability 

enables Luna to make uniquely comprehensive claims about 

the integrity of FPGA designs all the way down to their 

bitstream implementation. 

With the variety of functional description and design 

formats described, we may now look to various FPGA 

security challenges and how they are viewed through the 

lens of our FPGA design integrity definition. 
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Fig. 1.  Recovering design details from a bitstream 

5 FPGA TRUST 

The challenge of FPGA Trust is that of guaranteeing 

both integrity attributes (2) and (3) in reference to attribute 

(1).  Taken on its own, attribute (2) – knowledge that the 

function described is realized in the design – is the 

traditional challenge of FPGA design verification.  With (2) 

and (3) taken together, we have a definition of the goal of 

FPGA Trust.  Restated, in FPGA Trust we wish to 

guarantee that the design provides only that function 

described in the user-trusted description and nothing more. 

Luna has done a variety of work in the FPGA Trust domain, 

primarily through our work on the DARPA Trust and IRIS 

programs [3] [4].  These programs may be summarized into 

three major FPGA Trust domains. 
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Fig. 2. Threats to FPGA design Trust 

5.1 Design-to-Source Trust 

In this domain, the user and the designer are both 

trusted.  What is not trusted is the design environment in 

which the design – as expressed as HDL source – has been 

transformed into its final implementation format.  There are 

a number of factors that may lead to the lack of trust in the 

design environment (Fig. 2).  The most common factors are 

design software with unknown provenance that transforms 

the HDL in ways hidden from the user and the threat of an 

insider that may modify the design.  When performing this 

type of integrity evaluation, we wish to treat the design in 

its final implementation format, the bitstream.  Since we 

trust the designer in this scenario, we use the designer’s 

HDL source as the trusted design description.    

Luna has developed software to automate the many 

steps required to guarantee that a design has maintained its 

integrity when being transformed from HDL into its 

implementation bitstream.  The first automated step is the 

back-conversion of the bitstream into a synthesized netlist 

format.  Thereafter, our software evaluates the extracted 

netlist with reference to the HDL source, applying 

structural, simulation-based, and formal mathematical 

algorithms to prove integrity or expose differences.  

Together, these evaluation methods (described in more 

detail in [4]) provide a guarantee either that the design 

contained in the bitstream matches the intent, and only the 

intent, expressed by the designer in their source HDL or 

that it does not.  In the case that it does not, each non-

matching feature is exposed for further consideration.  Luna 

has named the software that performs this kind of 

evaluation the Change Detection Platform (CDP) (Fig. 3). 

5.2 Netlist-to-Model Trust 

As described in the previous section, the case of 

evaluating a netlist against a model arises when purchasing 

a design element from an IP vendor.  This is common 

practice in modern development as the use of pre-built 

components speeds design construction.  Here, both the 

designer and user might themselves be trusted, but the use 

of outside material in the design process introduces an 

untrusted element.  In this case, the vendor commonly 
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Fig. 3. Luna’s Change Detection Platform (CDP) 
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provides a model to serve as a simulation reference.  The 

designer relies on this model as an accurate representation 

of the IP when developing their application.  This model 

may not provide the implementation details of the IP core; 

it may simply replicate the behavior of the core when 

simulated, and the core itself may be an obfuscated 

synthesized netlist.  Luna has developed technology that 

can create an evaluable netlist from encrypted and 

obfuscated third-party IP.  In this netlist-to-model instance, 

the design portion we wish to trust is the IP core, and the 

design specification against which we may evaluate the 

core is the model provided by the vendor.  The Luna 

Change Detection Platform contains technologies designed 

to assist in the performance of this kind of evaluation.   

One feature of the Change Detection Platform that is 

particularly useful here is its ability to create mappings.  A 

mapping is a collection of equivalent reference points 

between a design under test and its trusted reference.  

Formal equivalence checking (FEC) tools such as Cadence 

Conformal [5] and OneSpin 360 EC [6] currently perform 

similar mappings when assessing design equivalence.  Their 

mappings are most useful when comparing two structural 

and highly similar designs, such as those being evaluated in 

the bitstream-to-source case.  They are not as useful in the 

the netlist-to-model case, however, due both to the 

obfuscation the third-party vendor may have instituted in 

the IP core and the fact that the reference model may be an 

inexact representation of the implementation details of the 

core that it models.  Luna has created mapping technologies 

that move beyond FEC tools to solve this problem.  While 

the mapping step is key to the netlist-to-model trust 

evaluation, each of the change detection steps mentioned in 

the bitstream-to-source evaluation are also used to prove 

whether or not differences exist between the netlist and the 

model. 

5.3 Netlist-to-Datasheet Trust 

There are many cases in which it may be desirable to 

trust a design for which neither source HDL nor a 

behavioral model may be referenced.  For example, it may 

be that an IP provider does not provide a trustable 

behavioral model or that a design has been purchased as a 

bitstream for which there is no accompanying trusted 

source HDL.  It may be that the only trusted reference 

available is a datasheet describing the function of the 

design.  As mentioned in the previous two sections, Luna 

has developed technologies that can convert both third-

party IP cores and bitstreams into evaluable synthesized 

netlists.  Thus, the remaining challenge is that of comparing 

a netlist to the trusted datasheet.   

Luna is currently developing a software platform, the 

Functional Derivation Platform (FDP), to address this 

challenge (Fig. 4).  Our approach is multifaceted.  From the 

design netlist, we derive its function using a combination of 

novel top-down and bottom-up reverse engineering 

methods.  Working from the top down, we define the major 

functions of the designs and their boundaries and then drill 

into them hierarchically to further define internal functions.  

From the bottom up, we transform the unstructured netlist 

into its basic low-level functional constituents and then 

work up to define the function of groups of low-level 

functions.  The approach is unified and managed in the FDP 

such that the top-down and bottom-up methodologies 

converge, completing our understanding of the netlist.  We 

then make use of semi-automated datasheet analysis 

techniques to turn the datasheet into provable propositions 

and compare those propositions against the function derived 

from the netlist.  We are in the process of developing 

Fig. 4. Luna’s Functional Derivation Platform (FDP) 
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multiple techniques and algorithms to automate the top-

down, bottom-up, convergence, and analysis processes 

involved in our approach.  Using this software, we will be 

able to describe the level of similarity or difference between 

the trusted datasheet and the design contained in the netlist.  

5.4 Documentation-to-Source Trust 

The issue of assessing trust in the presence of an 

untrusted designer is partially addressed by the datasheet-

driven analysis described above.  A more encompassing 

solution to this problem, however, requires a means of 

assessing source in terms of design requirements.  Several 

point solutions have the potential of addressing aspects of 

this issue, including commercial tools for assertion-based 

verification [7] [8], application of proof-carrying code [9] 

[10] concepts to hardware designs, and annotation methods 

that communicate information throughout the design flow 

in a manner that allows for verification [11] [12]. These 

methods are at varying levels of maturity from basic 

research that has yet to be applied within hardware designs 

to end products available from commercial companies.  A 

challenge still remains to integrate these solutions into an 

end-to-end evaluation flow for design integrity.   

6 High-Reliability FPGA Applications 

Design integrity is also a concern in high-reliability 

FPGA applications.  FPGAs used in the aerospace industry, 

for example, may be subject to strict design assurance 

standards, such as DO-254 [13].  Designers in high-

reliability areas must have the assurance that their FPGA 

bitstream exactly instantiates their intended design.  Until 

now, their only means of verifying the final implementation 

of their design has been through board-level testing.  

Similar to the three FPGA Trust scenarios outlined above, 

high-reliability designers may be interested in performing 

bitstream-to-source, netlist-to-model, and netlist-to-

datasheet evaluations for a slightly different purpose.  The 

only difference is the agent of change in each domain.  In 

FPGA Trust, the described evaluations are done to 

determine if a malicious party has changed the design 

environment, IP core, or application bitstream to add to, 

remove from, or modify the application.  In FPGA high-

reliability applications, the evaluation is done to ensure that 

no mistake by the designer or in the design software has led 

to an error in its final implementation.  The Luna CDP has 

the ability to verify design integrity down to the bitstream 

level, uniquely addressing this challenge, as illustrated in 

Fig. 5.  By leveraging the original design source verification 

results, end-to-end requirements traceability is established.   

6.1 Radiation-Induced Upsets 

A further agent of concern that can cause changes in 

some high-reliability aerospace applications is the 

environment in which the FPGA might be deployed.  For 

example, FPGA users that deploy applications in space 

wish to know that their designs will maintain integrity in 

spite of single event upsets (SEUs).  SEUs or faults in 

configuration memory can cause changes to the structure 

and function of the implemented design culminating in 

erroneous or undesirable behaviors.  SEU effects in a 

design are typically evaluated at design time by analyzing 

the response of hardware actively running the design to ion 

beam irradiation or internally injected bit flips [14] [15].  

Unfortunately, these hardware-in-the-loop techniques are 

often prohibitively expensive, time consuming, and require 

special test facilities. 

Luna’s bitstream analysis capabilities provide the 

foundation for a purely software-based methodology for 

investigating the effects of faults in FPGA configurations.  

This is illustrated in Fig. 6.  Here, SEUs or faults are 

emulated by toggling bits directly in the bitstream of the 

design under test.  Luna’s mapping of design resources to 

configuration bits enables a drastic reduction in the number 

of bits that must be considered for fault injection by 

identifying those that are essential to configuring the 

design.  Testing time is further reduced by injecting 

multiple, non-overlapping faults in parallel.  In testing the 

effect of a fault, Luna’s tools are used to recover the 

modified netlists describing design resource and 

implementation details as well as device functionality.  

Fig. 5. Luna’s FPGA high-reliability verification flow 
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With this netlist in hand, standard formal equivalence 

checkers and other tools can be used to compare the 

recovered design under test to the original design in order to 

analyze the specific structural or functional effects of a 

fault. 

We anticipate that this work will lead to an enhanced 

understanding of how to implement FPGA designs such 

that their critical functions are less susceptible to failure in 

the face of SEUs or other faults affecting configuration.  In 

this way, we improve the radiation tolerance of the design, 

leading to the maintenance of design integrity when 

deployed in space.  A further effect of such a software 

platform may be the reduction of time spent on ion beams 

to settle questions of FPGA radiation tolerance.  Rather, 

many experiments now performed on ion beams might be 

performed virtually using software models of the effects of 

bit flips on the design. 

7 Anti-Obsolescence 

The final FPGA design integrity challenge we treat is 

that of anti-obsolescence.  In this instance, the user and the 

design are both trusted and the operating environment is not 

considered.  Rather, we here wish to guarantee that the 

design maintains its integrity regardless of the FPGA on 

which it is instantiated.  In anti-obsolescence, we are 

concerned with the antiquation of the FPGA silicon on 

which the design was originally instantiated.  In many 

cases, the source HDL for designs on older FPGAs may be 

lost, but the useful life of the design has not yet expired.  In 

these instances, our ability to convert bitstreams into netlists 

again demonstrates its value.  We may first recover an HDL 

representation of the FPGA design from the bitstream.  

Then we can re-synthesize that design for a more modern 

FPGA, as illustrated in Fig. 7.  In this manner, we maintain 

the integrity of the design independent from the FPGA 

silicon on which it is instantiated.  Our Change Detection 

Platform can perform formal comparisons to ensure that the 

design does not change between the devices on which it is 

realized.  

 

 

Fig. 7. Device migration 

 

8 Conclusion and Future work 

We have presented a novel definition of FPGA design 

integrity, and we have used it as a means of drawing a 

cohesive line between various disciplines of FPGA security 

and reliability.  This perspective has proven its value in our 

work creating software to solve these design challenges.  It 

has allowed us to identify common features that apply 

across the various aspects and craft a software foundation 

that is broadly applicable.  Critical among these common 

features are Luna’s bitstream and third-party IP evaluation 
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software.  These technologies have been assessed in the 

course of the DARPA Trust and IRIS programs, and are 

currently being made available to select customers. 

While this technology provides the basis for 

assessment and preservation of design integrity, challenges 

still remain to fill gaps such as establishing trust in initial 

HDL created from a specification as well as folding the 

functional and change detection methods into a unified 

system.  The ability to understand bitstream contents truly 

opens up a range of new possibilities that have only begun 

to be addressed. 
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Abstract—In this work, we present five years of devel-
opment and improvements on COPACOBANA, a reconfig-
urable cluster system dedicated specifically to the task of
cryptanalysis. Latest changes on the architecture involve
modifications for larger and more powerful FPGA devices
with dedicated 32 MB of external RAM and point-to-point
communication links for improved data throughput. We
present a series of cryptanalytic applications that are cur-
rently available and benefit from the latest improvements
on the architecture.

I. I NTRODUCTION

The security of symmetric and asymmetric ciphers
is usually determined by the size of their security
parameters, in particular the key-length. Hence, when
designing a cryptosystem, these parameters need to be
chosen according to the assumed computational capabil-
ities of an attacker. Depending on the chosen security
margin, many cryptosystems are potentially vulnerable
to attacks when the attacker’s computational power in-
creases unexpectedly. In real life, the limiting factor of
an attacker is often the financial resources. Thus, it is
quite crucial from a cryptographic point of view to not
only investigate the complexity of an attack, but also to
study possibilities to lower the cost-performance ratio
of attack hardware. For instance, a cost-performance
improvement of an attack machine by a factor of 1000
effectively reduces the key lengths of a symmetric cipher
by roughly 10 bit (since1000 ≈ 2

10). Many cryptana-
lytical schemes spend their computations in independent
operations, which allows for a high degree of parallelism.
Such parallel functionality can be realized by individual
hardware blocks that operate simultaneously, improving
the running time of the overall computation by a perfect
linear factor. At this point, it should be remarked that the
high non-recurring engineering costs for ASICs have put
most projects for building special-purpose hardware for
cryptanalysis out of reach for commercial or research
institutions. However, with the recent advent of low-
cost programmable ICs which host vast amounts of logic
resources, special-purpose cryptanalytical machines have
now become a possibility outside government agencies.

In this work we present the evolution of a special-
purpose hardware computer dedicated to the task of

cryptanalysis which provides a cost-performance that can
be significantly better than that of recent PCs (e.g., for
the exhaustive key search on DES). The hardware ar-
chitecture of this Cost-Optimized Parallel Code Breaker
(COPACOBANA) was initially introduced in 2006 [12].
In this contribution we provide an overview on crypt-
analytical applications and present improvements on
the architecture to cope with requirements of further,
advanced applications.

The original prototype of the COPACOBANA
cluster consists of up to 120 FPGA nodes which
are connected by a shared bus providing an aggregate
bandwidth of 1.6 Gbps on the backplane of the machine.
COPACOBANA is not equipped with dedicated memory
modules, but offers a limited number of RAM blocks
inside each FPGA. Furthermore, COPACOBANA is
connected to a host PC with a single interface to control
all operations and provide a little amount of I/O data.

In the following sections, we present cryptanalytic
case studies for a large variety of attacks which all
make use of the COPACOBANA cluster system.
Examples for these case studies include exhaustive key
search attacks on the Data Encryption Standard (DES)
blockcipher and related systems and the GSM mobile
phone encryption based on the A5/1 streamcipher.
More advanced attacks with COPACOBANA comprise
implementations for integer factorization (with the
Elliptic Curve Method), computations on elliptic
curve discrete logarithms and Time-Memory Tradeoffs
(TMTO). We briefly review attack implementations
and compile a list of improvements on hardware
level that can lead to improved performance. Finally,
we present a modified cluster architecture which
addresses most of the determined issues and promises
excellent performance results for the next generation of
cryptanalytic applications.

The paper is structured as follows: we begin with a
brief review of the original COPACOBANA architec-
ture and a list of case studies on cryptanalytic attacks
in Section III. Next, we present the modified cluster
architecture with improvements based on our findings
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in the previous section. We conclude with an outlook
on future cryptanalytic implementations based on CO-
PACOBANA.

II. A RCHITECTURE OFCOPACOBANA

Our first prototype of an Cost-Optimized Parallel
Code Breaker (COPACOBANA) was produced for less
thanBC 10,000 (material and manufacturing costs only).
It was primarily designed for applications and simple
cryptanalytic attacks with high compuational complexity
but minimal requirements on communications and local
memory. In addition to that, it assumes that the
computationally expensive operations are inherently
parallelizable, i.e., single parallel instances do not
need to communicate with each other. The design for
limited communication bandwidth was driven by the
fact that the computation phase heavily outweighs the
data input and output phases. In fact, COPACOBANA
was designed for applications in which processes are
computing most of the time, without any input or output.
Communication was assumed to be almost exclusively
used for initialization and reporting of results. A central
control instance for the communication can easily
be accomplished by a conventional (low-cost) PC,
connected to the FPGAs on the cluster by a simple
interface. Furthermore, simple brute-force attacks
typically demand for very little memory so that we
considered the available memory on low-cost FPGAs
(such as the Xilinx Spartan-3 devices) to be sufficient.

Recapitulating, COPACOBANA consists of many in-
dependent low-cost FPGAs, connected to a host-PC via
a standard interface, e.g., USB or Ethernet. The benefit
of such a standard interface is the easy scalability and to
attach more than one COPACOBANA device to a single
host-PC. Note that the initialization, control of FPGAs,
and the accumulation of results is done by the host.
All time-critical computations such as the cryptanalytical
core tasks are performed on the FPGAs. The first pro-
totype of COPACOBANA was equipped with up to 120
FPGAs, distributed along 20 slots - in FPGA modules
which can be plugged into a single backplane. Note that
the choice for 120 FPGAs was driven by the form factor
of the FPGA module which was designed according to
cheap and standardized DIMM interface specifications.
One (single-sided) DIMM-sized FPGA module can host
6 FPGA devices in a17× 17 mm package, such as the
Xilinx Spartan3-1000 FPGA (XC3S1000, speed grade -
4, FT256 packaging). This device comes with 1 million
system gates, 17280 equivalent logic cells, 1920 Config-
urable Logic Blocks (CLBs) equivalent to 7680 slices,
120 Kbit Distributed RAM (DRAM), 432 Kbit Block
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RAM (BRAM), and 4 digital clock managers (DCMs).
The backplane of COPACOBANA connects all FPGA
devices with a shared 64-bit data and 16-bit address bus.
The entire cluster system is depicted in Figure 1.

COPACOBANA was designed for single master bus
arbitration for simplified control. However, in case the
communication scheduling of an application is not pre-
dictable, the bus master is required to poll all FPGAs for
new events and returned data. This significantly slows
down the communication performance and increases
latencies when reading data back from the FPGAs. Data
transfer from and to the FPGAs is accomplished by a
dedicated control unit. Originally, we decided to pick
a small development board with an FPGA (CESYS
USB2FPGA) in favor of a flexible design. The board
provides an easy-pluggable 96-pin connector which we
use for the connection to the backplane. In later versions
of COPACOBANA, we replaced the USB controller
using an TCP/IP-based unit so that COPACOBANA can
be controlled remotely and can be placed externally, for
example in a server room.

III. C RYPTANALYTIC APPLICATIONS FOR

COPACOBANA

In this section, we briefly describe cryptanalytic ap-
plications which we have already implemented on our
initial release of the COPACOBANA cluster system.
We compiled the most important facts and key points
of each application into individual case studies which
eventually should help to identify shortcomings and
potential enhancements of our cluster architecture.

A. Key Search Applications

In the following sections, we present a short survey
about our work on exhaustive key search and guessing
attacks on a variety of real-world systems. Since all these
applications consist mostly out of very basic tasks that
can be efficiently parallelized on completely independent
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computational cores, they can be perfectly mapped onto
a highly parallel cluster system such as COPACOBANA.

1) Case-Study I: Breaking DES with Exhaustive
Search: Our first cryptanalytic target application was
the exhaustive key search on the DES block cipher.
We implemented a known-plaintext attack and used an
improved version of the DES engine of the Université
Catholique de Louvain’s Crypto Group [18] as a core
component. Inside a single FPGA, we could place four
of such DES engines which allows for sharing plaintext-
ciphertext input pairs and the key space. Our first imple-
mentation and successful attack was presented in [12].
Since this original publication, we were able to improve
the system performance by use of additional pipelined
comparators and simplified control logic. Now, we are
able to operate each of the FPGAs at an increased clock
rate of 136 MHz with a overall gain in performance
by 36%, compared to [12]. Consequently,2

42 keys can
be checked in240 × 7.35 ns by a single FPGA, which
is approximately135 minutes. Since COPACOBANA
hosts120 of these low-cost FPGAs, the entire system
can check4 × 120 = 480 keys every7.35 ns, i.e.,
65.28 billion keys per second. To find the correct key,
COPACOBANA has to search through an average of
2
55 different keys. Thus, it can find the right key in

approximatelyT = 6.4 days on average. By increasing
the numbern of COPACOBANAs used for this task, we
can further decrease this average runtime of the attack
by a linear factor1/n.

2) Case-Study II: Breaking the A5/1 Streamcipher:
A5/1 is a synchronous stream cipher that is used for
protecting GSM communication. In the GSM proto-
col, the communication channel is organized in 114-
bit frames that are encrypted by XORing them with
114-bit blocks of the keystream produced by the cipher
as follows: A5/1 is based on three LFSRs, that are
irregularly clocked. The three registers are 23, 22 and
19 bits long, representing the internal 64-bit state of the
cipher. During initialization, a 64-bit keyk is clocked in,
followed by a 22-bit initialization vector that is derived
from the publicly known frame number. After that a
warm-up phase is performed where the cipher is clocked
100 times and the output is discarded. For a detailed
description of A5/1 please refer to [1].

Most of previously proposed attacks against A5/1
lack from practicability and/or have never been fully
implemented. In contrast to these attacks, we present
in [6] a real-world attack revealing the internal state of
A5/1 in about 6 hours on average (and about 12 hours
in the worst-case) using COPACOBANA. The imple-
mentation is an optimization of aguess-and-determine

attack as proposed in [11], including an improvement
in runtime of about 13% compared to their original
approach. Each FPGA contains 23 guessing engines
running in parallel at a clock frequencey of 104 MHz
each. To mount the attack, only 64 consecutive bits of
a known keystream are required and we do not need
any precomputed data. Note, however, that an average
of 6 hours runtime still cannot be considered a real-
time attack when using a single COPACOBANA. In this
case, we need to record the full communication first and
attack its encryption offline afterwards. Alternatively, by
adding further machines the attack time will be linearly
reduced, e.g., 100 machines only require 3.6 minutes for
a sucessfull attack on average.

B. Advanced Cryptanalytic Applications

In the last section, we briefly surveyed simple at-
tacks based on exhaustive key searches or guessing. All
these attacks have in common that their performance
is basically limited by the number of computations. In
other words, the available logic of the FPGA devices
on COPACOBANA directly determines the performance
of the attack. By incrementing the number of COPA-
COBANA units we yield a speed-up in performance by
a perfect linear factor. This, however, does not hold for
the following, more advanced attacks.

1) Case-Study III: Time-Memory Tradeoffs: The
Time-Memory Tradeoff (TMTO) method was designed
as a compromise between the two well-known extreme
approaches: either to perform an exhaustive search on the
entire key space of the cipher or precomputing exhaus-
tive tables representing all possible combinations of keys
and ciphertexts for a given plaintext. The TMTO strategy
offers a way to reasonably reduce the actual search com-
plexity (by doing some kind of precomputation) while
keeping the amount of precomputed data reasonably low,
whereas “reasonably” has to be defined more precisely.
Roughly speaking, it depends on the concrete attack
scenario (e.g., real-time attack), the internal step function
and the available resources for the precomputation and
online (search) phase.

Existing TMTO methods by Hellman, Rivest and
Oechslin [10], [3], [15] share the natural property
that in order to achieve a significant success rate
much precomputation effort is required on chained
computations. A representation of start point and end
point of each chain is stored in (a set of) large tables,
e.g., on hard disk drives. The actual attack takes place in
a second search phase (online phase) in which another
chain computation is performed on the actual data and
compared to the stored endpoints in the tables. In case
a matching endpoint is found in the table, the sequence
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Method DU PT (COPA) OT TA SR
[GB] [days] [ops]

Hellman 1897 24 2
40.2

2
40.2

0.80

Rivest 1690 95 2
21

2
39.7

0.80

Oechslin 1820 23 2
21.8

2
40.3

0.80

TABLE I
TMTO METHODS ACCORDING TO: EXPECTED RUNTIMES AND

MEMORY REQUIREMENTS USINGCOPACOBANA FOR

PRECOMPUTATIONS.

of keys can be reconstructed using the corresponding
start point. There are few contributions attacking DES
with the TMTO approach. In [20] an FPGA design
for an attack on a 40-bit DES variant using Rivest’s
TMTO method [3] was proposed. In [14] a hardware
architecture for UNIX password cracking based on
Oechslin’s method [15] was presented. However, to
the best of our knowledge, a set of complete TMTO
precomputation tables forfull 56-bit DES was never
created up to now.

In [8] we present possible configurations and pa-
rameters to use COPACOBANA for TMTO/TMDTO
precomputations both to attack the DES blockcipher
and the A5/1 streamcipher. Our estimates took the as-
sumed communication bandwidth between host-PC and
backplane of 24 MBit/s into account. To break DES
with TMTOs on COPACOBANA, Table I presents our
worst case expectations concerning success rate (SR),
disk usage (DU), the duration of the precomputation
phase (PT) as well as the number of table accesses
(TA) and calculations (C) during the online phase (OT).
Note that for this extrapolation, we have used again the
implementation of our exhaustive key search on DES (cf.
Section III-A1).

2) Case-Study IV: Integer Factorization: The factor-
ization of a large composite integern is a well-known
mathematical problem which has attracted special atten-
tion since the invention of public key cryptography. RSA
is known as the most popular asymmetric cryptosystem
and was originally developed by Ronald Rivest, Adi
Shamir and Leonard Adleman in 1977 [17]. Since the
security of RSA relies on the attacker’s inability to factor
large numbers, the development of a fast factorization
method could allow for cryptanalysis of RSA messages
and signatures. Recently, the best known method for
factoring large RSA integers is the General Number-
Field Sieve (GNFS). An important step in the GNFS
algorithm is the factorization of mid-sized numbers for
smoothness testing. For this purpose, the Elliptic Curve

Method (ECM) has been proposed by Lenstra [13] which
has been proved to be suitable for parallel hardware
architectures in [19], [5], [4], particularly on FPGAs.

In [4] it has been shown that the utilization of
DSP slices in Virtex-4 FPGAs for implementing a
Montgomery multiplication can significantly improve the
ECM performance. In that work, the authors used a fully
parallel multiplier implementation which provides the
best known performance figures for ECM phase 1 so
far, however they did provide details how to realize ECM
phase 2.

To accelerate integer arithmetic using a similar strat-
egy, we designed a new slot-in module for use with
a second release of COPACOBANA hosting 8 Xilinx
Virtex-4 XC4VSX35 FPGAs, each providing 192 DSP
slices. Due to the larger physical package of the FPGAs
(FF668 package with dimension of 27x27 mm) we en-
larged the modules. This included also modifications of
the corresponding connectors on the backplane. For more
efficient heat dissipation at high clock frequencies up
to 400 MHz, an actively ventilated heat sink is attached
to each FPGA. With a more powerful power supply
providing 1.5 kW at 12 V, we could run a total of
128 Virtex 4 SX35 FPGAs distributed over 16 plug-in
modules.

In contrast to [4], we used a multi-core ECM design
per FPGA. A single ECM engine comprises of an
arithmetic unit computing modular multiplication and
additions, a point multiplication unit for phase 1 and
ROM tables for phase 2. Only point operations on the
elliptic curve are performed on FPGAs, this means that
the setup of the Montgomery curve needs to be done on
the host-PC and then transferred to the FPGAs. Table
?? shows the results for the block sizeb = 10, factoring
integers up to 151 bit in4.73 ms (phase 1) and5.12 ms
(phase 2). This corresponds to 5,064 computations per
second for the first phase and 2,424 for phase 1+2.

A main issue of ECM is memory. Although ECM
phase 1 has only very moderate memory constraints,
phase 2 involves a significant amount of precomputations
as well as storage for prime numbers. Since memory on
FPGA devices is rather limited (192× 18 KBit BRAM
elements per device), a fast accessible, external memory
could help to improve the impact of phase 2 by storing
even larger tables than presented above.

3) Case-Study V: Solving Elliptic Curve Discrete Log-
arithms: Another popular problem used for building
public-key cryptosystems is known as the Discrete Log-
arithm Problem (DLP) where the exponentℓ should be
determined for a givenaℓ mod n. A popular deriva-
tive is the Elliptic Curve Discrete Logarithm Problem
(ECDLP) for Elliptic Curve Cryptosystems (ECC) [9].
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Aspect Gaj et al. [5] This work Factor

FPGA Device V4LX200-11 V4SX35-10
Supported Bits 198 202 1.02
Max. ECM Cores 24 24 1.00
Max. Frequency 104 MHz 200 MHz 1.92

Cycles for Addition 41 29 0.71
Cycles for Multiplication 216 201 0.93
Cycles for Phase 1 1,666,500 1,473,596 0.88
Time for Phase 1 16 ms 7.37 ms 0.46

(# Phase 1)/s 1,448 3,240 2.24
(# Phase 1+2)/s 696 1,560 2.24

TABLE II
COMPARISON OF OUR RESULTS USINGb = 13 (L = 202BIT) AND

b = 9 (L = 134BIT) BY GAJ ET AL. FOR V IRTEX-4 FPGAS.

An attack on ECC relies on the same algorithmic
primitives as the crypto system itself, namely point
addition and point doubling. Up to now, the best known
algorithm for this purpose is the Pollard’s Rho (PR)
algorithm for parallel implementation described in [21].
This variant of the original PR method [16] allows
for a linear gain in performance with the number of
available processors. This can be efficiently implemented
in hardware as presented in [7].

The PR algorithm essentially determines distinguished
points on the elliptic curve. These points are reported
to a central host computer which awaits a collision of
two points. A distinguished point is defined to be a
point with a specific characteristic, e.g., itsx-coordinate
has a fixed number of leading zero bits. To reach such
a distinguished point, PR follows a so called pseudo-
random walk on the elliptic curve by subsequently
adding points from a fixed, finite set of random points.
Hence, with careful parametrization of the distinguished
point criterion, the duration of a computation until a
distinguished point is found can be adapted to the
bandwidth constraints of the system. Furthermore, the
PR does not need a large memory for computation so
that the COPACOBANA system seems to be a suitable
platform for running the algorithm. As with the ECM
unit, a single PR unit is comprised of an arithmetic unit, a
few kilobytes of RAM and control logic. The arithmetic
unit supports modular inversion as an additional function
required for uniquely determining distinguished points.

For a parallelized PR on COPACOBANA according
to the method presented in [21], all instances of the
algorithm can run completely independent from each
other. For solving the discrete logarithm problem over
curves defined over prime fieldsFp, we have to compute
approximately

√
q points, whereq is the largest prime

power of the order of the curve. Note that the transfer of

k Certicom Est. [2] XC3S1000 FPGA COPACOBANA

79 146 d 15.3 d 3.06 h
89 12.0 y 1.62 y 4.93 d
97 197 y 30.7 y 93.4 d
109 2.47 · 10

4 y 2.91 · 10
3 y 24.3 y

131 6.30 · 10
7 y 7.40 · 10

6 y 6.17 · 10
4 y

163 6.30 · 10
12 y 9.15 · 10

11 y 7.62 · 10
9 y

191 1.32 · 10
17 y 1.89 · 10

16 y 1.57 · 10
14 y

239 3.84 · 10
24 y 8.62 · 10

23 y 7.18 · 10
21 y

TABLE III
EXPECTED RUNTIME ON DIFFERENT PLATFORMS AND FOR

DIFFERENTCERTICOM ECC CHALLENGES

data between host computer and point processing units
on the FPGA can be performed independently from the
computations.

Implementing the PR on Spartan-3 FPGAs for solving
the ECDLP over curves with a length of 160 bits
and using an affine point representation, we achieve a
maximum clock frequency of approximately 40 MHz
and an area usage of 6067 slices (79%) for two parallel
instances. The corresponding point addition requires 846
cycles so that slightly less than 50,000 point operations
can be performed per second by one unit. Consequently,
a single COPACOBANA can compute about11.3 mil-
lion point operations per second. Table III compares
our results for COPACOBANA with the corresponding
estimates from Certicom for their challenges (based on
the computing time of an (outdated) Intel Pentium 100).

IV. I MPROVING THE ARCHITECTURE

According to the issues of our original COPA-
COBANA architecture as shown above, we initiated
a major redesign of the machine with respect to the
following aspects:

• Larger FPGA Devices: more logical elements on an
FPGA enable more complex applications or more
computational cores per device.

• Local Memory per FPGA: a few megabytes of fast
SRAM should be placed adjacent to each FPGA
device to provide additional storage while solving
more complex problems.

• Dedicated Communication Links: Only a single
access to an FPGA at a time was possible in the
recent communication models. Individual links for
each FPGA simplify data communication and also
enable high performance from simultaneous data
exchange.

• Improved Host Controller: the main bottleneck with
respect to data communication is the controller in-
terface between backplane and host-PC. To improve

102 Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  |



Backplane

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

FPG
A

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

FPG
A

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

FPG
A

CTL
XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

XC3S5000

FPG
A

CTL

M
od
ul
e
1

M
od
ul
e
2

M
od
ul
e
3

M
od
ul
e
16

Host PC

P
C

Ie

E
th

e
rn

e
t

Core

i7 920

External

Data

Ring Bus

Fig. 2. Enhanced COPACOBANA Architecture based on Xilinx
Spartan-3 5000 FPGAs

the situation, a host-PC could be integrated inside
COPACOBANA and directly connect the host’s
mainboard with the backplane using a short, high-
performance link.

To address the aspects mentioned above, we entirely
redesigned the backplane and FPGA module of our
cluster system. The new FPGA module consists of 8
FPGAs with a package size up to27 × 27mm, a
CPLD for system control (e.g., temperature and voltage
monitoring) and DC/DC converters (depending on the
FPGA type used). Most suitable FPGA devices for the
new systems are the low-cost Xilinx Spartan-3 5000
with up to 74,880 logic cells (104 hardware multipliers,
104 BRAMs, FG676 packaging), the Xilinx Spartan-3A
DSP 3400 with 53,712 logic cells (126 DSP48A, 126
BRAMs, FG676 packaging) and the upcoming class of
Spartan-6 FPGAs. For the first prototype of the enhanced
COPACOBANA, we chose 128 Spartan-3 5000 devices.
Moreover, we placed 32 MB of SRAM adjacent to each
FPGA that can be accessed by the FGPA within a single
clock cycle at 100 MHz.

The new COPACOBANA design integrates the host-
PC in the same case. Target applications, as for example
Time-Memory Tradeoffs, require a high data rate be-
tween COPACOBANA and an external hard disk drive.
With the PC we placed a hard disk drive physically
inside COPACOBANA and attached it via SATA to the
integrated host-PC. Additional components of the new
system are the1.5kW main power supply unit (with
125A at 12V), six high-performance fans and a 19-inch
rack of three hight units for the housing.

There are fast serial point-to-point connections be-
tween every two neighbors building a chain of FPGAs.
In the configuration as described below, we employed
eight Xilinx Spartan-3 5000 which are arranged as a
systolic one-dimensional array, i.e., in each clock cycle
data is transferred from one FPGA to the next in pipeline
fashion according to a global, synchronous clock. Note

that transferring data using a systolic array introduces
significant latencies on the data path. However, since the
target applications do not have real-time requirements,
this should not be an issue for our cryptanalytic appli-
cations where operations usually can be interleaved to
hide any latencies.

As in the original system, the backplane connects to all
FPGA cards on which individually the clock signals, data
and power are (re-)generated and distributed. However,
the bus is managed now cooperatively by all FPGA
modules instead of a single bus master, i.e., a central
controller. Each FPGA module can transfer incoming
data to the next slot or it can remove the data out of
the stream. In this case, an empty data frame cycles
through the bus pipeline from slot to slot. Note that
another card is allowed to insert new data now into this
empty slot. The two counter-rotating systolic datapaths
allow to minimize the worst case latency to half of the
total number of slots multiplied by the clock cycle time.
The enhanced bus system assigns one ascending and one
descending slot to each single card. This leads to a ring
of point to point connections in which the bus system
can be seen as a circular, parallel shift register.

Due to the modular architecture further developments
can be incorporated seamlessly. For example, alterna-
tive FPGA modules equipped with a Spartan-3A DSP
3400 or Spartan-6 FPGAs can easily plugged into the
backplane. In particular, it is possible to run even a
heterogenous configuration, with a mixed set of FPGAs
for different tasks.

V. I MPROVEMENTS INCRYPTANALYTICAL

APPLICATIONS

At the time of writing, the cluster incorporating the
presented enhancements as described in Section IV is
still in production and is expected to become available
in October 2009. Hence, we now provide first estimates
and projections concerning the expected performance
of the new cluster system. We will revise our figures
as soon as the system (and adapted cryptanalytical
implementations) become available. With the design
modifications on the COPACOBANA architecture, we
can firstly make use of more logic resources due to
the larger Spartan-3 5000 FPGAs. With respect to the
original Spartan-3 1000 FPGAs, the amount of logic
has increased by a factor of 4.5 per FPGA device. For
our exhaustive key search applications as shown in
Section III-A, we achieve a linear speedup by a factor of
4. More precisely, the original DES breaking application
implemented four engines per Spartan-3 1000 so that
we could place 16 engines on each Spartan-3 5000. This
reduces the average runtime to break DES to 1.6 days
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on average. Similar linear performance speed-ups can
be gained for similar applications and the A5/1 breaker
(about 1.5 hours). However, note that due to the higher
cost of the enhanced COPACOBANA (which grows by a
factor of 4.5 as well), the cost-performance is not better
than with the original machine. In general, brute-force
techniques do not benefit from the new architectural
improvements. In this case, the only advantage of the
new design is due to the reduced power consumption.

Advanced cryptanalytical applications with additional
requirements benefit significantly on communication
throughput and fast, local memory. The efficient gen-
eration of TMTO tables will now become available so
that we expect to finish the tables for A5/1 in less
than a month. Furthermore, we are working towards an
implementation of our ECM core (cf. Section III-B2)
for Spartan-3A DSP 3400 FPGAs which also integrate
126 DSP slices, however at much lower costs compared
to Virtex-4 devices. Finally, we plan to adapt the same
implementation strategy based on DSP slices also for
the Pollard-Rho ALU. This can also result in a gain in
performance by an order of magnitude. Last but not least,
the new COPACOBANA also could provide a suitable
platform for even more complex applications, e.g., ad-
ditional tasks required by the number field sieve, index
calculus methods or lattice basis reduction algorithms.

VI. CONCLUSION

In this work, we presented a series of cryptanalytical
applications for cost-efficient hardware architectures.
According to our findings based on a variety
of cryptanalytical implementations, we identified
shortcomings in the design of our cluster. Then, we
came up with an enhanced version which also provides
larger and more powerful FPGAs, up to 4 GB of local
memory and fast point-to-point serial communication
links between all devices and the controller. These
modifications enable the computation of even more
complex cryptanalytic tasks but also other problems
from other domains. With all enhancements, in particular
for communication and local memory, the new cluster
becomes useful beyond pure code-breaking, catching
up with respect to other supercomputing platforms, but
still at low costs.
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Abstract—This paper presents a practical FPGA implementa-
tion of a hardware algorithm for regular expression matching
with look-ahead assertion. Look-ahead assertion is an operation
in Perl compatible regular expression, and used for conditional
matching. A two-stage FPGA implementation that can directly
handle look-ahead assertion has already been proposed. However,
it cannot handle long texts due to the limited size of on-chip
memory used for the buffer between stages. Our proposed
implementation functions in cooperation with a PC and an off-
chip memory with little degradation by using properly-sized
buffers to communicate with the off-chip memory.

I. INTRODUCTION

Regular expression matching is playing important roles in

various fields. For example, it is used in network intrusion

detection systems (NIDSs), which detect malicious traffic (e.g.,

computer virus) on computer networks and notify a firewall of

the detections, in order to describe virus patterns and so on.

Because of today’s high-speed networks and increase of the

virus patterns, speed-up of regular expression matching is be-

ing required. Thus, hardware algorithms for regular expression

matching have been being studied (e.g., [2]–[9]).

How to handle a lot of virus patterns efficiently is an

essential matter for regular expression matching hardware

engines for virus detection. To reduce the necessary amount

of hardware resources, the one proposed in [4] shortens the

total length of patterns by finding common sub-patterns (e.g.,

prefix) and merging those.

In a well-known software NIDS, Snort, virus patterns are

described in extended regular expression, called Perl com-

patible regular expression (PCRE). One of the operations in

PCRE, called look-ahead assertion, is written as “R1 (?=R2)
R3” or “R1 (?!R2) R3”, where R1, R2 and R3 are arbitrary

regular expressions. “R1 (?=R2) R3” matches a string whose

first part matches R1 and whose second part matches both R2

and R3. Likewise, “R1 (?!R2) R3” matches a string whose

first part matches R1 and whose second part does not match

R2 and matches R3. By using look-ahead assertion, strings

not including a given sub-string are simply and efficiently

described. For example, “.∗@(?! hiroshima-cu\.ac\.jp)” de-
tects e-mails from domains other than “@hiroshima-cu.ac.jp”.

Since most of the existing hardware matching engines cannot

directly handle look-ahead assertion, look-ahead assertion pat-

terns need to be transformed into general regular expression

patterns. However, in most cases, transformed regular expres-

sion patterns are very long and require a huge amount of

hardware resources.

Thus, the authors of [11] proposed a hardware algorithm

for directly handling look-ahead assertion, and implemented it

on an FPGA. To handle look-ahead assertion, they introduced

a preprocessing circuit which conducts matching for R2. The

matching result for R2 is used in the main circuit to determine

if it starts matching for R3 after matching for R1 succeeds. It is

performed without backtracks, and thus in a pipeline fashion.

Furthermore, they introduced a special ring buffer structure for

the preprocessing circuit and the main one to achieve high-

throughput processing. However, the straightforward FPGA

implementation of the algorithm can handle only short texts

(e.g., IP packet), because of the limited amount of on-chip

memory (i.e., block RAM) used for the buffers.

In this paper, we present a practical FPGA implementation

of the algorithm that can handle long packets (e.g., TCP

packet). While the entire process of matching is performed

inside the FPGA in the previous implementation, our proposed

implementation functions in cooperation with a PC and an

off-chip memory. Overhead time to communicate with the PC

and memory is hidden by properly-sized buffers, and thus it

functions with little degradation.

The rest of this paper is organized as follows. In Section

II, look-ahead assertion is defined, and the previous FPGA

implementation of the hardware algorithm for look-ahead

assertion is explained. Section III presents our proposed im-

plementation. In Section IV, we analyze the performance of

our proposed implementation. Finally, Section V gives some

concluding remarks.

II. PRELIMINARIES

A. Regular Expression

Regular expression is a method to represent a set of strings

as a single string with operators. It is often used to describe

a pattern compactly. A regular expression represents a set of

strings by using three basic operators: union (|), concatenation
(·) and Kleene operator (∗). These operators are defined as

follows: R1|R2 = L1 ∪ L2, R1R2= L1L2={s1s2|s1 ∈ L1, s2

∈ L2} and R∗ = {ε} ∪ L1 ∪ L2 ∪ · · ·, where ε is a special

character which matches the string with no character (i.e., “”),

R, R1 and R2 are arbitrary regular expressions, L, L1 and L2

are sets of strings corresponding to R, R1 and R2, respectively.
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Extended regular expressions can describe a pattern more

compactly. In this paper, we focus on one of the extended

regular expressions, Perl compatible regular expression, which

is widely used in various fields. It has various operators (e.g.,

back reference, look-ahead assertion, etc.). Due to limited

space, we explain look-ahead assertion, focused on in this

paper.

Look-ahead assertion can be used to compactly describe

patterns that match strings not including specified substrings,

and patterns that match stings including both of specified two

substrings [10]. They are described as follows: one of them is

called positive look-ahead and described as“R1 (?=R2) R3”,

and the other is called negative look-ahead and described as

“R1 (?!R2) R3”, where R1, R2 and R3 are arbitrary regular

expressions. Positive look-ahead represents a set of strings

that match both R1R2 and R1R3. (Strings that match R2 are

substrings of strings that match R3, or vice versa.)

Negative look-ahead represents a set of strings that match

R1R3 and does not match R1R2. In this paper, a look-ahead

assertion denotes a whole pattern “R1 (?=R2) R3” or “R1

(?!R2) R3”, and a look-ahead pattern denotes only R2.

We show examples of matching for look-ahead assertion in

Fig.1. Fig.1(a) shows a normal regula expression, and Fig.1

(b) and (c) are look-ahead assertion.

B. Hardware-based regular expression matching with look-

ahead assertion

In this subsection, we briefly explain an existing two-stage

hardware engine for regular expression matching with look-

ahead assertion [11], which our proposed implementation is

based on.

1) Method for handling look-ahead assertion: Due to

limited space, we here focus on how to handle look-ahead

assertion using general regular expression matching engines.

(In this paper, general regular expression refers to unextended

regular expression.)

As mentioned above, the existing matching engine for look-

ahead assertion has two stages, and thus consists of two

general regular expression matching engines.

In the engine, matching for R2 is performed in the first

stage, and then matching for a pattern R1R3 is performed in

the second stage by using the matching result for R2.

Next, we explain the behavior of the hardware matching al-

gorithm using Fig.2. In order to realize a look-ahead assertion,

it first performs matching for the reversed pattern of R2 and the

reversed text to find the initial characters of the substrings that

match R2. Note that the general regular expression matching

engine employed in [11] can find only the terminal characters

of the substrings that match a given pattern. This is the reason

why R2 and the text are reversed. Please refer to [11] for more

details about the reversed-order matching. Then, it performs

matching of R1R3 and the text. In a positive (negative) look-

ahead assertion, if the matching start position for R3 is the

same as that of the initial character of a substring that matches

R2 (does not match R2), the second-stage matching engine

performs matching for R3.

n a e c c c c c c c g text

lookahead  "ae"
match

n (?=ae).*gpattern

matching success

n a b c c c c c c c g text

lookahead  "ae"
not match

"n"
match

".*g"
match

matching failure

"n"
match

".*g"
match

matching substring is "naecccccccg" 

d a t a . j p gtext

lookahead  "\.exe"
not match

data (?! \.exe)pattern

matching success matching failure

"data"
match

matching substring is "data" 

d a t a . e x etext

lookahead  "\.exe"
match

"data"
match

(c)

(b)

nae.*gpattern

n a e c c c c c c c g text

matching success

"n"
match

".*g"
match

(a)

"ae"
match

Fig. 1. Examples of matching for look-ahead assertion.

2) Architecture of the previous implementation: In this

subsection, we present an architecture which realizes an

existing algorithm for matching look-ahead assertion. The

architecture is shown in Fig.3. The architecture consists of

two matching engines Mb which performs matching for R1R3

and a preprocessing circuit which performs matching for R2.

The preprocessing circuit consists of a matching engine Ma

and two stack memories Sa and Sb. Note that, if a given

pattern does not include a look-ahead assertion, two matching

engines, Ma and Mb, can be used as one matching engine

by ignoring the matching result at Ma. The behavior of the

proposed architecture is shown in the following enumeration.

1) The reversed look-ahead pattern R2
R is set to the

matching engine Ma, and R1R3 is set to the matching

engine Mb.

2) When matching starts, a text is stacked in the stack

memory Sa to make a reversed text.

3) After the terminal character of a text is stacked in the

stack memory Sa, the characters of the text are input to

the matching engine Ma from the end of the text.

4) The matching engine Ma outputs characters with in-
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text ai . . . aj aj+1  . . . ak ak+1 . . . . . . al . . . 

matching start position 
for R3

initial character of substring 
which matched R2

matching for R3

starts

a1 a2. . .

pattern R1 (?= R2) R3

text ai . . . aj aj+1  . . . ak ak+1 . . . . . . al . . . 

not initial character of 
substring which matched R2

matching for R3

does not start

a1 a2. . .

text ai . . . aj aj+1  . . . ak ak+1 . . . . . . al . . . 

R2 matches

a1 a2. . .

first matching

initial character

second matching

A

B

R1 matches

R1 matches

matching start position
for R3

Fig. 2. The behavior of a matching method for look-ahead assertion

preprocessing circuit

stack

memory
Sa

text
matching

engine

Ma

stack

memory
Sb

matching

engine
Mb

Existing circuit

infochar

matching

result

mode

FPGA
Block RAM

　
Fig. 3. The existing architecture

formation about whether the characters are the initial

characters of substrings that match R2 or not, and they

are stacked in the stack memory Sb.

5) After the initial character of the text is stacked in

the stack memory Sb, the characters are input to the

matching engine Mb from the beginning.

6) The matching engine Mb performs matching for R1R3

using the information generated by the preprocessing

circuit.

In the FPGA implementation in [11], the two stack memo-

ries are realized by block RAMs inside the FPGA.

3) Memories to reverse texts: In this architecture, the

engine needs to make reversed packets contiguously. Thus, its

stack memories have a special structure to buffer contiguously

input texts and reverse the texts. Here, we explain the structure.

The size of each stack memory is 2n where n is the

maximum length of a text. They also work as ring buffers to

handle multiple variable-length texts contiguously. In the ring

stack memory, texts are ring buffered, and text characters are

stacked (LIFO). To simultaneously read and write texts, dual-

port memories are required to realize the ring stack memories.

Let us explain the behavior of the ring stack memory briefly.

(Please refer to [11] for more details.)

At first, n characters are input to the memory independently

of texts’ lengths. That is, multiple texts may be stored in

the memory at a time. At this time, the input of the latest

text possibly has not been completed yet. However, it is

guaranteed that at least one text is completely stored in the

buffer. Then, stored texts set P1 except a text which has

not been completely stored yet begin to be output from the

memory. The output order is from the latest input character to

the earliest input character if set P1. While the texts set P1

are output from the memory, new texts set P2 are input to the

memory. Immediately after all the texts set P1 are output from

the memory, the newly stored texts set P2 begin to be output

from the memory. In this way, the inputs of texts and the

outputs of the reversed packets are performed simultaneously

and contiguously. Fig.4 shows the behavior of the memory,

where the maximum length of packets is 8.

In their FPGA implementation, the ring stack memories are

realized by block RAMs in an FPGA.

III. PROPOSED IMPLEMENTATION

In this section, we present a practical FPGA implementation

of regular expression matching with look-ahead assertion for

NIDSs. Our implementation functions in cooperation with a

PC and an off-chip memory to deal with a long text (e.g., TCP

packet).

In the existing FPGA implementation proposed in [11],

matching engines and stack memories to reverse texts are

implemented in an FPGA. The stack memories are realized

by block RAMs in the FPGA. Since input to and output

from a single block RAM are performed within a single clock

cycle, it can work as a high-speed stack memory. However,

a large memory composed of multiple block RAMs degrades

the circuit speed. In our preliminary experiment, the existing

FPGA implementation with 1.6Mbit stack memories, which

can handle TCP packets, was half as fast as that with 36Kbit

stack memories. Note that a 1.6Mbit stack memory consists of

45 block RAMs, and thus is much slower than a single block

RAM. To handle longer packets, since more block RAMs are

necessary, the circuit speed becomes even slower. Thus, it is

not suitable to handling long packets.

Fig. 5 illustrates our proposed implementation of the hard-

ware algorithm for look-ahead assertion. Our proposed imple-

mentation consists of a PC, an FPGA, and an off-chip memory.

The FPGA and off-chip memory are implemented on a printed
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Fig. 5. The proposed implementation

circuit board, and the FPGA and the PC are connected by a

PCI Express (PCIe) x16 bus. We assume the PC is equipped

with an Intel Core i7 CPU and DDR3-2000 SDRAM. As

off-chip memory, a DDR3-2000 SDRAM (1000MHz) is also

used. In the proposed implementation, matching engines Ma

and Mb are implemented on the FPGA, and stack memories

Sa and Sb are implemented by using the main memory of

the PC and the off-chip memory, respectively. In addition,

it has dual-buffers Ba and Bb for burst data transmission

between the off-chip memory and matching engine Ma and

Mb, respectively. Note that since the maximum data size

of burst transmission is limited, data to/from the off-chip

memory is divided into data blocks for burst transmission.

The flow of the matching is as follows. First, fragments of

a packet on a network are stored in the main memory of

the PC. At this step, the packet is reconstructed. This is

to avoid overlooking fragmented viruses. After the packet

reconstruction, the reversed packet PR is constructed. PR

in the main memory is transferred to the FPGA through the

PCIe bus, and the matching engine Ma performs the matching

between PR and R2
R. After the first-stage matching, PR

and the matching result are stored in the off-chip memory

by burst transmission in a pipeline fashion. Note that multiple

characters and matching results are buffered in dual buffer

Ba before the transmission for using burst transmission mode.

Each of the buffers Ba and Bb uses double buffering to write

and read data simultaneously. Bb is also used to reverse a

data block from the off-chip memory, because a data block

transmitted by burst transmission cannot be reversed during

the transmission. Note that data blocks are transmitted in the

reversed order, but each data block cannot be reversed during

the burst transmission. In this way, PR and the matching result

are reversed and transferred to the matching engine Mb in the

FPGA via dual-buffer Bb. That is, the original packet and

the initial characters of substrings that match the pattern are

input to the matching engine Mb. The matching engine Mb

handles the pattern R1R3, considering the matching result for

R2 when determining if it starts matching for R3. Note that

all the components in our implementation work in a pipeline

fashion.

Now, we discuss communication between each matching

engine and the off-chip memory, considering the behavior of

the memory. In the proposed implementation, the off-chip

memory has to be written and read data by time-division

because DDR3 SDRAM is a single-port memory. In some

cases, the memory has to be read data twice per one data

write. The reason is shown in the following. In the ring stack

memory, after all the stored packets set P1 are output from the

memory, the newly stored packets set P2 begin to be output

from the memory. While set P1 are output from the memory,
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read addresses are sequential. However, when set P2 begin

to be output from the memory, read address is not sequential.

Thus, it is necessary to restart burst transmission. For example,

in Fig.4, at i + 7th cycle, a (character in set P1) is read from

address 0, at i + 8th cycle, m (character in set P2) is read

from address 12. Since burst transmission can read data which

have sequential addresses, data consisting of set P1 and set P2

cannot be read by one burst transmission. Therefore, the off-

chip memory has to be read data by burst transmission twice.

Since the data capacity of discrete memory chips can be

much larger than that of block RAMs in an FPGA, using

an off-chip memory as stack memory resolves the problem

of the limited stack size. The remaining problem is that

communication among the discrete components may cause

overhead that degrades the throughput of the system.

In the next section, we analyze the performance of the

proposed implementation, and derive the appropriate size of

buffers between the FPGA and the off-chip memory. The main

problem is that communication among the components may

cause overhead that degrades the throughput of the system.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED

IMPLEMENTATION

In this section, we conduct a performance analysis on

the proposed implementation. In the implementation, stack

memories Sa and Sb is realized by the main memory of the

PC and the off-chip memory. We analyze the communication

overhead among the components. In the analysis, since the

clock frequencies of the existing matching engines [2]–[9] are

from 200 to 300 MHz, we assume that the matching engines

in our implementation can work at 300 MHz.

First, we discuss the processing on the PC. The PC assem-

bles the fragments of a packet and reconstructs the packet. We

assume that the packet reconstruction in the PC is sufficiently

fast compared with the network speed. Then, the PC makes

the reversed packet of the packet and transfers it to the FPGA

through the PCIe x16 bus. Since reversing a packet is a simple

process, it can be done quicker than the packet reconstruction,

for which the PC needs to wait for the packet fragments. Thus,

it can be hidden in the packet reconstruction by using multiple

processes.

Now, let us consider the data transfer between the PC and

the FPGA. The bandwidth of the PCIe x16 bus between the

PC and the FPGA is about 40 Gbit/s. Since the throughput of

the matching engines are 2.4 Gbit/s (= 300 MHz × 8 bit), the

PCIe bus is much faster than the engines, and thus the PCIe

bus does not degrade the system performance. Consequently,

the main memory of the PC can be used as the stack memory

Sa without degradation.

Next, we discuss the communication overhead between the

FPGA and the off-chip memory. We assume that the off-

chip memory is a DDR3 SDRAM-2000, specified in Table

I. A DDR3 SDRAM-2000 has burst transfer mode, and it can

read/write consective data after waiting for the 55ns latency

time. A DDR3 SDRAM-2000 reads/writes an eight-byte data

per one memory clock cycle (1ns) after the latency time.

TABLE I
SPECIFICATION OF DDR3 SDRAM-2000

Bus width 64 bits

Bus clock frequency 1000MHz

Clock period 1ns

Latency 55ns

Burst length 8

No. of banks 8

Since the matching engine Ma works at 300 MHz, it

processes one character per 3.3ns. Since each character is

accompanied with a one-bit matching result, a nine-bit data

is stored in the off-chip memory per 3.3ns. Each nine-bit data

is stored using a two-byte memory space. The data is sent to

the matching engine Mb in a similer way. Thus, the off-chip

memory must read and write the two-byte data within 3.3ns

(in average) to achieve the same performance as that of a block

RAM.

The clock frequency of the off-chip memory is 3.3 times

as fast as that of the matching engine Ma and Mb. Thus, the

latency can be hidden by using burst transfer mode.

Let us discuss the sufficient data block size of a burst

transmission to hide the latency. Let y be the number of 8-byte

(= 64-bit) data sets because a DDR3 SDRAM has a 64-bit data

bus. Then, the necessary time to transmit y × 8 bytes to/from

the memory is

1[ns]× y + 55[ns]. (1)

To emulate a dual-port memory by time-division, three data

blocks (one for memory write, the others for memory read)

need to be transmitted in a time-slice. (The reason why two

data blocks are read is described in the previous section.) Thus,

the necessary time to transmit the data is

3 × (1[ns]× y + 55[ns]). (2)

Since a matching engine outputs y×8 bytes (= (y×8)/2 text

characters and (y × 8)/2-byte matching result data) within

3.3[ns]× (y × 8)/2, (3)

the condition for hiding the communication overhead is rep-

resented by the inequality (4).

3.3[ns]× (y × 8)/2 ≥ 3 × (1[ns]× y + 55[ns]). (4)

Note that data transmission and string matching are performed

in a pipeline fashion. Solving this inequality about y, we get

y ≥ 16.2. (5)

Thus, by transmitting 17 data sets by burst transmission using

136 (= 17 × 8) byte buffers (i.e., the data block size is set

to 136 bytes), the off-chip memory plays the same role as the

original buffer realized by block RAMs, hiding its read/write

latency. Fig. 6 shows the setting of the buffer and data block

size, and transmission delays. Consequently, our proposed

implementation is able to handle long packets as fast as the

existing implementation for short packets.
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Fig. 6. Details of the proposed implementation

V. CONCLUSIONS

In this paper, we proposed a practical implementation

method of a hardware algorithm for regular expression match-

ing with look-ahead assertion, using a PC and an FPGA. In

addition, we analyzed its performance considering the memory

latency and communication delay to show its efficiency. Our

future work includes evaluation by circuit implementation.
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Abstract— This paper presents an efficient asynchronous
design methodology for synchronous FPGAs. The mixed
synchronous/asynchronous design is the best way to mini-
mize the power consumption of a circuit implemented on
a synchronous FPGA. For asynchronous circuit synthesis,
Balsa was proposed. However, the problem is that circuits
synthesized from Balsa description need a lot of logic re-
sources. To solve this problem, we propose two optimization
methods for gate-level netlist. First, we introduce an area-
efficient C-element suitable for FPGAs. Then, we propose
optimization methods for an adder with a carry input and
constant adder. The evaluation results show that the proposed
method reduces the logic resource consumption by 26% to
47%.

Keywords: FPGA, Reconfigurable LSI, Self-timed circuit, Asyn-
chronous circuit, Balsa

1. Introduction
Field-Programmable Gate Arrays (FPGAs) are widely

used to implement special-purpose processors. FPGAs are
cost-effective for small-lot production because functions and
interconnections of logic resources can be directly pro-
grammed by end users. Despite their design cost advantage,
conventional FPGAs impose a large power consumption
overhead compared to custom silicon alternatives [1]. This
overhead increases packaging costs and limits integrations of
FPGAs into portable devices.

An asynchronous circuit is power-efficient for a low-
workload section including Logic Blocks (LBs) since it
does not require the clock tree which consumes the power
even if an LB is inactive [2], [3]. Instead of using the
clock, the handshake protocol is used for synchronization.
To implement the handshake protocol, the circuit becomes
more complex than that of the synchronous circuit. In a low-
workload condition, the power overhead for the handshake
protocol is much smaller than the power reduction of the
clock tree, and the power consumption is greatly reduced.
However, in a high-workload condition, the power overhead
for the handshake protocol is larger than the power reduction
of the clock tree. On the other hand, a synchronous circuit
is power-efficient for a high-workload section because of its

Fig. 1: Advantage of mixed synchronous/asynchronous de-
sign.

simple hardware. However, the synchronous circuit is not
power-efficient for a low-workload section, since the power
of the clock tree is always consumed even if an LB is
inactive. In a synchronous FPGA, the clock tree occupies
a large proportion of the dynamic power because it has
significantly more registers than a custom VLSI. Moreover,
a gated clock technique for reducing the power of the clock
tree is difficult to implement in an FPGA [4]–[6].

An SoC (System-on-a-Chip) consists of several sections,
and each of the sections is used for a dedicated application.
As shown in Fig. 1(a), some sections are for high-workload
applications such as 3D graphics, and some are for low-
workload applications such as audio playback [7]. Since
the synchronous circuit is power-efficient for high-workload
sections and the asynchronous circuit is power-efficient for
low-workload sections, the mixed synchronous/asynchronous
design is the best way to minimize the power consumption
for each section as shown in Fig. 1(b).

In asynchronous circuits, CAD tools that is different from
ones for synchronous circuits is necessary to implement
applications. As the design methods for asynchronous cir-
cuits, some method uses the Signal Transition Graph [8]
and another method employs handshake components [9]
[10]. Besides, Balsa [10] is proposed as the framework for
synthesizing asynchronous hardware systems that uses hand-
shake components. Balsa is also the name of the hardware
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Fig. 2: Simple bundled-data pipeline.

Fig. 3: Simple dual-rail pipeline.

Fig. 4: Example of the FPDR encoding.

description language and it allows circuit designers not to pay
attention to low-level details such as control of handshake.
Thus, it is suitable for designing complex large-scale circuits
such as a DMA controller [10] and a microprocessor [11].
Balsa framework can generate gate-level verilog netlist for
FPGAs. Therefore, Balsa is suitable as an asynchronous
circuit design tool for FPGAs. However, the problem is that
circuits synthesized from Balsa description need a lot of
logic resources. To solve this problem, we propose two op-
timization methods for gate-level netlist. First, we introduce
an area-efficient C-element suitable for FPGAs. Then, we
propose optimization methods for adders that have a carry
input and constant adder.

2. Optimization methods for circuits syn-
thesized from Balsa description
2.1 Asynchronous encodings

Asynchronous encoding schemes are mainly classified into

• Single-rail encoding (ex. the bundled-data encoding),
• Dual-rail encoding (ex. the Four-Phase Dual-Rail en-

coding).

Table 1: Code table of the FPDR encoding.

Sender ReceiverAcknowledge=0

Request=1

(a)

Sender ReceiverAcknowledge=1

Request=1

(b)

Sender ReceiverAcknowledge=1

Request=0

(c)

Sender ReceiverAcknowledge=0

Request=0

(d)

Fig. 5: A four-phase handshake sequence.

-> varData

Request

Acknowledge

Passive
port

Channel

Data

Request

Acknowledge

Request Acknowledge

Active
port

Fig. 6: Handshake components and channels.

The bundled-data encoding is the most common one in
single-rail encodings. Fig. 2 shows a simple bundled-data
pipeline. In this example, data signals and request signals
are oriented in the same direction. In the bundled-data
encoding, request and value are split into separate wires. The
value is encoded as in a synchronous circuit usingN wires
to denote anN -bit value, and request is encoded using a
dedicated request wire denoted byReq. The bundled-data
encoding requires the explicit insertion of matching delays
in Reqto ensure that the request is never received before the
bundled value is valid. The bundled-data encoding is the most
frequently-used way in ASICs since its hardware overhead
is relatively small. This is because theReq wire is shared
among all theN wires. Hence, to transfer anN -bit value,
only N + 2 wires are required. The major disadvantage of

114 Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  |



import [balsa.types.basic]

procedure count16 (output count : 4 bits) is
variable count_reg, tmp : 4 bits

begin
loop

tmp := (count_reg + 1 as 4 bits)
||
count <- count_reg
;
count_reg := tmp

end
end

Fig. 7: An example of a Balsa description (4 bit counter).

->

q[0..4]

tmp[0..4]

A+1

output

4

||

1

2

;*

->

->

4

4

4

4

activate

4

4

Fig. 8: A simple handshake circuit (4 bit counter).

the bundled-data encoding is the difficulty of determining
delay times of Request signals. A Request signal must reach
a receiver after an arrival of a data signal. Therefore, delay
times of Request signals should be determined by the result
of placement and routing of the circuit. Furthermore, a circuit
designer should consider the fluctuations of supply voltage,
temperature and threshold voltage of transistors. As a result,
it is difficult to design a circuit based on the bundled-data
encoding. The dual-rail encoding encodes a data bit onto
two wires. Fig. 3 shows a simple dual-rail pipeline. In the
dual-rail encoding, value is made implicit in the request
and no delay insertion is therefore required [12]. Hence, the
dual-rail encoding is the ideal one for FPGAs. In the dual-
rail encoding, to transfer anN -bit value,2N + 1 wires are
required. The Four-Phase Dual-Rail (FPDR) encoding is the
most common one in dual-rail encodings. Table 1 shows the
code table of the FPDR encoding. The code word consists
of t (truth bit) andf (false bit). The data value 0 is encoded

This 
paper

Balsa code

Handshake circuit

Gate-level netlist

Optimized gate-level netlist

Floorplan

Balsa
system

Fig. 9: Design flow for asynchronous circuits using Balsa.

@
2

In

activateOut0
activateOut1
activateOut2
activateOut3

Fig. 10: Case component.

CaseOut1.req

CaseOut2.req

CaseOut3.req

CaseOut0.req

In0.T

In0.F

In1.T

In1.F

CaseOut0.ackIn.ack

CaseOut1.ack

……

C

C

C

C

C

Fig. 11: Corresponding circuit of a Case component.

as (0, 1) and 1 is encoded as(1, 0). Moreover, the spacer
is encoded as(0, 0). Fig. 4 shows the example where data
values 0, 0 and 1 are transferred. The main feature is that the
sender sends a spacer after a valid data. The receiver knows
the arrival of a data value by detecting the change of either
bit: 0 to 1. The insertion of spacers makes the encoding law
simple. This results in simple hardware for the function unit.
Therefore, the FPDR encoding is chosen in this paper.

2.2 Handshake-component-based asyn-
chronous circuit design

In asynchronous circuits, the handshake protocol is used
for synchronization instead of using the clock. Figure 5
shows a four-phase handshake sequence. First, the sender
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In0

In1
Out

In0 In1 Out

0 0 0

0 1 Out

1 0 Out

1 1 1

C

Fig. 12: Truth table for a C-element.

In0

In1
Out

Fig. 13: Conventional implementation of a C-element.

In0

In1 Out
In2

LUT

In0 In1 In2 Out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Fig. 14: Implementation of a C-element using three-input
Look-up table.

sets the request wire to 1 as shown in Fig. 5(a). Second, the
receiver sets the acknowledge wire to 1 as shown in Fig.
5(b). Third, the sender sets the request wire to 0 as shown
in Fig. 5(c). Finally, the receiver sets the acknowledge wire
to 0 as shown in Fig. 5(d) and wire values return to initial
state.

In Balsa, asynchronous functional element such as a binary
operator is denoted by a handshake component. Figure 6
shows handshake components. Each handshake component
has ports and is connected to another handshake component
through a channel. Communication between handshake com-
ponents is done by sending request signal from the active port
and acknowledge signal from the passive port. Depending
on the kind of handshake components, data signals are
sent along with request signals or acknowledge signals.
As mentioned in Sec. 2.1, FPDR encoding is employed in
synthesized circuits. Therefore, either a request signal or an
acknowledge signal is made implicit in a data signal. The
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Fig. 15: 4-bit adder generated from Balsa description.
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Sum[2]
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Fig. 16: Modified 4-bit adder

number of ports and the width of data signal can be varied.
Each function of handshake component is simple and clear.
Furthermore, handshaking that consists of request signal and
acknowledge signal is symbolized as a channel. Therefore,
handshake circuits are easily understandable and manage-
able. Handshake components constitute a handshake circuit.
Figure 8 shows an example of a handshake circuit. Circuit
synthesis is done by replacing each handshake component
with corresponding asynchronous circuit. As a result, circuits
become large. To implement an asynchronous circuit on an
FPGA area-efficiently, optimizing gate-level netlist generated
from a handshake circuit is required. The proposed design
flow for asynchronous circuits is shown in Fig. 9.
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Fig. 17: Structure of an FPDR full adder.
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Fig. 18: Structure of an FPDR half adder.
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Fig. 19: Structure of an FPDR XOR gate.

2.3 Optimization methods for asynchronous
circuits

2.3.1 Optimization of the Muller C-element

An asynchronous circuit synthesis using Balsa is done by
following steps. First, a Balsa description is converted to
a handshake circuit. Then, a gate-level netlist is obtained
by replacing each handshake component with corresponding
asynchronous circuit. Figures 10 and 11 show the Case
component and the corresponding circuit. As these show,
the Muller C-element is frequently used in asynchronous
circuits. Figure 12 shows the truth table for a C-element.
To implement this on a FPGA, the circuit shown in Fig.
13 is ordinarily used. However, this circuit is not area-
efficient because this implementation uses four primitive

Carry

Async.
Halfadder

In[2]

InA

InB

In[1]

In[0]

0

Sum

Async.
Halfadder

In[3]

Sum[0]

Sum[1]
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Sum[3]

Async.
Fulladder_p

Async.
Halfadder

InA

InB

Carry

Fig. 20: Constant adder which adds two.
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Sum.F
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InB.T

InA.T

Carry.T

InA.F

InB.F
Carry.F

Fig. 21: Structure of a FullAdder_p.

gates. Therefore, we propose an alternative implementation
of a C-element as shown in Fig. 14. This implementation is
area-efficient because only one three-input Look-up table is
required.

2.3.2 Optimization of adders

Some adders execute additions with 1-bit carry signals
for multi-byte additions or subtractions. However, an adder
synthesized from Balsa description consists of an N-bit adder
and an adder that adds N-bit data and 1-bit data as shown
in Fig. 15. The latter adder can be trimmed by employing
Carry input of the former adder as the one-bit input, as
shown in Fig. 16. The structures of asynchronous FPDR full
adder, half adder and XOR gate are shown in Fig.17, 18 and
19. As mentioned in Sec. 2.1, the FPDR encoding requires
two wires to transfer a bit. This leads to larger number of
inputs and circuits compared to conventional synchronous
circuits. Therefore, trimming adders is effective to reduce
circuit size. Also, constant adders are frequently used. Figure
20 shows an asynchronous circuit which adds two to an
input value. Figure 21 shows the structure of a FullAdder_p.
FullAdder_p is a full adder whose one input is fixed to

one. Despite the least significant bit doesn’t change, it goes
through a half adder. Therefore, used logic resources can be
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Sum[2]
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Fig. 22: Modified constant adder.

Out.T

Out.F

In.T

In.F

Fig. 23: Structure of an FPDR NOT gate.

reduced by connecting input wires and output wires directly.
The modified constant adder is shown in Fig. 22. As shown
in Fig. 23, an FPDR NOT gate requires only two wires. As
a result, the number of required logic resources is reduced.

3. Evaluation
The proposed methodology is evaluated by implementing

a 4-bit counter and a 8-bit multiplier on a Xilinx Spartan3E
XA3S500E FPGA. Figures 24 and 25 show the implementa-
tion results of the counter and the multiplier. The proposed
C-element implementation reduces the number of used slices
by 21% and 43% respectively. In addition, the number of
used slices is reduced by 26% and 47% thanks to efficient
implementations of adders.

4. Conclusions
This paper proposed an efficient asynchronous design

methodology for synchronous FPGAs. The logic resources
to implement asynchronous circuit can be reduced by op-
timizing the structure of the C-element and adders. As
a future work, developing the optimal methodology for
synthesizing asynchronous circuits and synchronous circuits
from a hardware description is important to implement
synchronous/asynchronous hybrid circuits.
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FPGA-basedImplementation of Compact Compressor and
Decompressor of Floating-Point Data-Stream for Bandwidth

Reduction
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Abstract— This paper presents FPGA-based implementa-
tion and performance analysis of the hardware for lossless
compression of a floating-point data stream. The imple-
mentation includes the variable-to-fixed length converter
(VFCONV) and the fixed-to-variable length converter (FV-
CONV) that have not been designed and evaluated so
far. The prototype system on ALTERA Stratix IV FPGA
demonstrates that the compressor and the decompressor are
very small so that they each consume only 0.5 % adaptive
LUTs of the total resource on the FPGA. The compressor
and the decompressor can operate at about 250 MHz and
200 MHz, respectively, while further optimization is still
possible. Such small but high-speed hardware modules can
reduce the bandwidth by a factor of an average compres-
sion ratio. Evaluation with the computational results of 2D
fluid simulation shows that the compressor has an average
compression ratio of 3.7. This means that the compressor
operating at 200 MHz can supply the bandwidth of 800
MB/s for single-precision floating-point numbers with the
compressed bandwidth of 216 MB/s.

Keywords: data compression, floating-point, bandwidth reduc-
tion, FPGA

1. Introduction
Stream computation is one of the very useful and promis-

ing approaches for custom computing machines (CCMs)
to accelerate scientific computations, such as computational
fluid dynamics (CFD). So far we have proposed and pro-
totyped an FPGA-based custom accelerator for the lattice
Boltzmann method (LBM) [1], [2], which is one of the
CFD schemes. Due to the high-throughput design based
on stream computation which exploits both spatial and
temporal parallelism of LBM computation, the accelerator
demonstrated that the logic elements and DSP blocks on
state-of-the-art FPGAs could achieve the higher arithmetic
performance than that of general-purpose microprocessors
[2]. However, it also showed that the achievable performance
is limited by the I/O bandwidth rather than arithmetic per-
formance of circuits even if regularity of stream computation
exploits the available bandwidth efficiently. Since it is not
easy to drastically increase the bandwidth of off-chip I/O
pins, present and future chips are perpetually suffering from

the insufficiency of I/O bandwidth for on-chip computing
resources increased by semiconductor scaling.

In our research project, we have proposed enhancement of
I/O or memory bandwidth by employing lossless compres-
sion of floating-point data [3], [4]. The physical bandwidth
can be efficiently used withcompressed bandwidthby ex-
cluding redundancy of bits in data streams. The lossless com-
pression guarantees the complete reconstruction of original
data, thus giving no additional error to computation. Fig.1
shows the accelerator based on stream computation with data
compression. If the compressor reduces the data size to1/r
of the original size on average, we can substantially use the
physical stream bandwidth asr times wider bandwidth. Of
course, the decompressor and compressor slightly increase
the delay, however, stream computation is inherently tolerant
to latency. Therefore only high throughput is required for
compression and decompression.

So far, we have presented algorithms for lossless com-
pression of a floating-point data stream, and partially de-
signed a high-throughput hardware compressor [3], [4]. We
demonstrated that the algorithm achieves the compression
ratio of around 3.5 for single-precision floating-point data,
such as computational results of CFD. This means that the
stream bandwidth can be enhanced to 3.5 times wider for
CFD computation.

Since the compressor and the decompressor are auxiliary
hardware for computation itself, they should be implemented
with as less resources as possible, while higher operating
frequency is required. In our prior work, however, only
the compressor is designed and partially implemented for
evaluation of an operating frequency and resource utiliza-
tion on FPGA, and therefore both compression and de-
compression had not been tested and verified on actual
implementation on FPGA. Furthermore, we did not show the
design of the important modules to handle variable-length
compressed data, which are referred to asa variable-to-fixed
length converter (VFCONV)and a fixed-to-variable length
converter (FVCONV)in the compressor and decompressor,
respectively. VFCONV in the compressor packs variable-
length data into words and output them discontinuously as
a compressed-data stream, while FVCONV in the decom-
pressor extracts the variable-length data from the received
words of a compressed data stream. Since VFCONV and
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FVCONV contain feedback loops with buffer registers, we
need make critical paths as short as possible for higher
operating frequency.

In this paper, we present an entire design of the compres-
sor and decompressor. Their full-implementation on FPGA
demonstrates that compact hardware can compress and de-
compress a floating-point data stream at an average ratio of
3.7. Based on timing analysis, we show that our designed
and implemented hardware can operate at 198 MHz at least,
bringing high-throughput compression and decomrpession
required for bandwidth enhancement. We will also estimate
resource consumption for compressing and decompressing
multiple data-streams in parallel.

This paper is organized as follows. Section 2 briefly
describes the prediction-based algorithm and the hardware
for lossless compression of a floating-point data stream.
Section 3 shows the detailed design and behavior of the
variable-to-fixed length converter and the fixed-to-variable
length converter. Section 4 presents implementation, ver-
ification and evaluation of a prototype system with the
compressor and decompressor on FPGA. Finally, Section 5
gives conclusions and future work.

2. Lossless compressor and decompres-
sor of floating-point data stream
2.1 Requirements for data compression in
stream computation

In our research, we made a choice of a compression
algorithm and designed its hardware based on the following
requirements for bandwidth enhancement in scientific stream
computation [3], [4].

1) Lossless compression.
2) Direct compression of FP data.
3) Single-pass compression.
4) Acceptable compression-ratio for improvement of

memory bandwidth.

5) High-throughput by small hardware.

To avoid unnecessary errors in scientific computation, com-
pression should be lossless so that the original data can
be completely reconstructed with the compressed data. Re-
cently prediction-based lossless algorithms [5], [6], [7], [8],
[9] have been proposed to directly compress floating-point
data, which achieve better compression ratios than general-
purpose compressors like BZIP2[10]. These algorithms pre-
dict the next input with the previous ones in a sequence, and
then encode the difference between the prediction and the
actual value.

The single-pass of requirement 3 means that the en-
tire data set can not be traversed in advance of stream
compression. The prediction-based compression algorithms
are of single-pass algorithms. For requirements 4 and 5,
compression using arithmetic predictors [5], [6], [7] is
suitable. Based on these discussions, we adopted lossless
compression algorithms with 1D arithmetic prediction to
directly compress a floating-point data stream [3], [4].

2.2 Prediction-based compression algorithm
We assume that an IEEE754 floating-point data stream,

S = {..., fi−2, fi−1, fi, ...}, is input to the compressor,
wherefi denotes the current input. Such a stream is gener-
ated by traversing a given 2D or 3D computational grid in a
certain order. Forfi, the compressor computes its prediction
pi with some of the previous inputs stored in a buffer
memory. When prediction is made with good accuracy,pi
has a closer bit pattern to that offi, where a lot of bits
from MSB become zeros in their difference. By encoding
these zeros with their length, we represent the difference
between the prediction and the original datum in fewer bits.
The following subsections describe the detail of the predictor
and the difference encoder.

2.2.1 Predictor

The computational results of scientific simulation such as
CFD typically have some spatial and temporal continuity
because they are the solutions of the partial differential
equations governing the physical phenomena. This allows
us to assume that they can be well locally-approximated
by polynomial functions, similarly to the proposal of [11].
Under this assumption, we usepolynomial predictorsto
obtain good prediction for data given by such computations.

Here let’s consider that a numerical sequenceS =
{..., fi−1, fi} is a set of regularly sampled values of 1D
function f(x), so thatfi = f(xi) = f(i∆x) for integer i.
Assuming thatf(x) is locally approximated by the(n−1)-th
order polynomial functionf(x) = a0+a1x+a2+x2+ ...+
an−1x

n−1, we can predict the next valuefi = f(i∆x) by
determining allak and computingf(x) for x = i∆x. We can
determine then parameters,ak, by evaluating the Lagrange
polynomial [11] with then previous values,{fi−n, ..., fi−1}.
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Considering∆x = 1 for simplicity, we obtain polynomial
predictions ofpi as follows:

pi = 4fi−1 − 6fi−2 + 4fi−3 − fi−4, (1)

where n = 4. We refer to this predictor as a1D cubic
polynomial-predictoror simply aCubic.

2.2.2 Difference encoder

We encode the difference betweenpi and fi with its
leading-zero count (LZC), which is the number of successive
zeros from MSB, and the remaining bits. We refer to
the remaining bits asresidual, denoted byr. The integer-
subtraction evaluates the difference after the FP numbers are
converted to unsigned integers so that the closer numbers
always give smaller difference as mapped integers. The
integer conversion is performed by flipping the sign bit for
positive FP numbers, or all bits for negative numbers [5]. As
a result, the positive and negative FP numbers are mapped
continuously to the higher and lower space of unsigned
integers, respectively. Afterpi andfi are converted to their
integers,P andF , we computeD = P − F for P > F , or
D = F − P for P ≤ F . We also output whetherP > F or
not, with an exchange signal, ex, where

ex=

{
1 for P > F

0 for P ≤ F.
(2)

The obtained LZC can be recorded as it is, however
we use4-bit coding [8], [9], [3] for easier handling of a
variable length of the residual. Here we assume that an FP
number has 32 bits for single precision. In this case, LZC
can be 0 to 31, which is represented in 5 bits. The residual
has (32 − LZC) bits. On the other hand, the 4-bit coding
represents LZC with a multiple of 4. For example, LZC=15
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Fig. 4: Structure of the cubic predictor and the shift buffer.

naively gives 17 residual-bits. In the 4-bit coding, the LZC
is truncated to 12, and the residual becomes 20 bits being
padded with 0s. The 4-bit coding is expected to have the
advantage of 4-bit alignment that allows us to more simply
output residuals with variable bit-length.

For IEEE754 single-precision floating-point data, the pro-
cedure of the integer subtraction and the 4-bit coding is
summarized as follows. We convertpi and fi to their
unsigned integer,P and F , respectively. We computeD
by subtraction, and obtain ex= 1 or 0 for P > F or not,
respectively. Then we obtain the LZC ofD. Instead of using
5 bits to represent the LZC, we encode⌊LZC/4⌋ with 3 bits
so that the LZC is a multiple of 4. We pad necessary 0s to
r. The length of encoded bits is(1 + 3 + 32 − 4⌊LZC/4⌋)
for {ex,LZC, r}.

2.3 Overview of hardware compressor and de-
compressor

Based on the compression algorithm mentioned above,
we designed hardware compressor and decompressor for a
single stream of single-precision floating-point numbers [4].
Figs.3a and b show the overviews of the compressor and
the decompressor. Datum from a floating-point data stream,
{fi}, is input to the compressor one by one every cycle, and
then it outputs a compressed bit-stream{(ex,LZC, r)i}. The
compressor is composed ofinteger converter (INTCONV),a
predictor with a buffer, a difference-computing unit (DCU),
an LZC unit (LZCU)anda variable-to-fixed length converter
(VFCONV). The input floating-point datumf is firstly
converted to an unsigned integerF by flipping the sign bit
for a positive number or all bits for a negative number. The
converted integer is stored in the buffer. The buffer stores a
necessary number of previous inputs.
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Then the predictor computes Eq.(1) to give predictionP
for the current inputF . Fig.4 shows the structure of the cubic
predictor, which takes the four inputs from the shift buffer in
parallel. Here we use integer operations for prediction with
Eq.(1) instead of floating-point operations because floating-
point units have high hardware costs and longer delays than
integer units. Our experiments show that the prediction in
integer provides almost the same compression performance
as the floating-point prediction, especially for floating-point
numbers whose exponents rarely change. In the case of the
fluid data computed by the lattice Boltzmann method, the
integer prediction achieves a comparative compression-ratio
to that by the floating-point prediction thanks to the small
fluctuation of the data.

DCU computes the difference,D, betweenP andF by
subtracting the smaller from the larger after swappingP
andF if necessary. DCU also outputs the exchange signal,
ex, which is asserted whenP and F are swapped. LZCU
computes (LZC) ofD. Finally VFCONV outputs words of
compressed data, which are of{r,LZC,ex}.

The decompressor consists ofa fixed-to-variable length
converter (FVCONV),the predictor with the buffer, a data-
reconstruction unit (DRU)and a floating-point converter
(FPCONV). The predictor and the buffer are the same as
those of the compressor. The decompressor outputs the
original floating-point data-stream from the compressed data
stream. FVCONV generatesD with ex, LZC andr. The pre-
dictor gives predictionP with the previously decompressed
numbers stored in the buffer. DRU reconstructs the integer
of the original data,F , with D, P and ex by performing
the inverse operation of the difference-computation. Finally
FPCONV convertsF to its floating-point numberf .

As shown in Figs.3a and b, the compressor and the
decompressor are each pipelined with the four stages and
the three stages, respectively, to process one floating-point
datum every cycle at high operating frequency. The details
of the units in the compressor and decompressor except

VFCONV and FVCONV are described in [4].

2.4 Related work
Several lossless compression algorithms for floating-point

data have been proposed, which are targetting at software im-
plementation. Lindstorm et al.[5] proposed the compression
algorithm that combines prediction and entropy coding. They
achieved high compression ratios for 2D and 3D data sets
by using 2D or 3D prediction functions. Ratanaworabhan et
al.[8] proposed compression for double-precision floating-
point numbers using a hash table for context-based pre-
diction. Their algorithm also achieved high compression
ratio when using a sufficiently large table. As stated above,
these software implementations are able to achieve high
compression ratio. However, they have problems of area
when considering hardware implementation. For example,
the 2D or 3D prediction require large circuits and buffer
memory. For good context-based prediction, we also need a
large hash table

On the other hand, some hardware designs of lossless
compression have been reported. Sukhwani et al.[12] pre-
sented compression hardware based on context-based pre-
diction using a hash table. In their hardware, 8 bytes of input
data get converted to 2, 4, 8 bytes for different predictions in
parallel, and the most efficient one is selected. This hardware
provides very high-throughput compression, however, it is
not designed to directly compress floating-point numbers.
And therefore an expected compression ratio is not so
high for floating-point numbers. Tomori et al.[13] reported
hardware design to compress double-precision floating-point
data. Their design achieves high throughput compression by
limiting entropy coding to only the upper 12 bits of the data.
However, the compression ratio by this hardware is low, and
only the decompressor was implemented and evaluated.

Our hardware consumes less resources, and achieves both
a high compression ratio and a high throughput for floating-
point numbers. We present complete implementation of the
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compressorand the decompressor for evaluation with an
FPGA-based experiment system.

3. Design of variable-to-fixed and fixed-
to-variable length converters

In our prior research [4], the variable-to-fixed length con-
verter (VFCONV) and the fixed-to-variable length converter
(FVCONV) were not designed and evaluated. However,
these modules are also important for conversion between
a variable-length but every-cycle output to a fixed-length
but intermittent output for compressed data. The following
subsections describe the detailed design and behavior of
VFCONV and FVCONV.

3.1 Variable-to-fixed length converter
Fig.5 shows the design of the variable-to-fixed length

converter (VFCONV). VFCONV consists ofa 68-bit output
data buffer (ODB) and a Pointer. Pointer specifies the
number of bits accumulated inODB at the moment.ODB
accumulates the inputs inODB and outputs a 32-bit word
whenPointer is greater than or equal to 32.

VFCONV is in the stage 4 of the compressor. It receives
ex andD from DCU and LZC/4 from LZCU, and outputs
words of compressed data. Fig.6 shows the behavior of the
ODB. The input is of 8 to 36 bits with a variable length of
a multiple of 4, while the output is a fixed 32-bit word.

First, VFCONV concatenates ex, LZC/4 andD into a
block, so that they are aligned from LSB to MSB. Next,
the block is shifted left so that the block exists in the next
empty bits of ODB. The shift amount is specified byPointer.
The shifted block is inserted into the next empty positions
of the present ODB by OR operation, givingbuffer_added.
The width of the block is obtained with LZC/4, then
pointer_concatis computed by addingPointerand the width
of the block.

If pointer_concatis greater than or equal to 32, the lowest
32 bits of buffer_addedare outputted with a valid signal.
Simultaneously,Buffer_addedis shifted 32-bit right to form
Buffer_new, which is used to updateODB for the next cycle.
Pointer is also updated with the value given by subtracting
Pointer_concatwith 32. Then the next datum is inputted to
VFCONV. If Pointer exceeds 67,ODB and Pointer are not
updated and a signal is outputted to stall the entire pipeline
of the compressor. When the last datum is inputted into
VFCONV, ODB can have remaining bits shorter than 32
bits. We flush them out at the end of compression with zeros
padded to form a 32-bit word.

3.2 Fixed-to-variable length converter
Fig.7 shows the design of the fixed-to-variable length

converter (FVCONV). FVCONV is in the stage 1 of the
decompressor. It receives words of the compressed data
containing ex, LZC/4 andresidual bits, and outputs ex and

D to DRU for each encoded number. FVCONV consists
of a 68-bit input data buffer (IDB), a Pointer and a Mask
Generation Unit (MGEN). Along with VFCONV,Pointer
shows the number of bits accumulated inIDB. IDB receives
and accumulates the next word whenPointer is less than 32.
MGEN makes a 32-bit mask to clear unnecessary bits from
the output ofD.

Fig.8 shows the behavior of theIDB. IDB stores ex, LZC/4
and residual bits for multiple compressed numbers. By
reading LZC/4, the length of theresidual bitsis computed.
If the entireresidual bitsexist in IDB, it is outputted asD
andIDB is shifted. Then the next input word is inserted into
IDB.

The input word is shifted left so that it fits the next
empty positions inIDB. The shift amount is given with
pointer_reduced= (Pointer−bit_length), wherebit_length
is the length of residual bits, LZC/4, ex in Fig.7. If
pointer_reducedis less than 36, the shifted bits are inserted
into IDB by using OR operation, andPointer is updated with
(pointer_reduced + 32). In order to extractD from IDB, it
needs to get the bit length of each compressed data. Since
the bits of LZC/4, ex are always at the LSB ofIDB, we can
read and use LZC/4 to compute the bit length ofresidual
bits by computing(bit_length − 4). ThenMGEN makes a
32-bit mask withbit_length. The 32-bitD is generated by
performing AND operation with the mask and the 32-bit of
IDB[35:4].

4. FPGA-based implementation and per-
formance evaluation
4.1 Implementation of prototype system

We have implemented the compressor and the decom-
pressor in the FPGA-based prototype system of Fig. 9. The
system is composed of the PCI-Express Gen.2 x4 controller,
the two DDR2 memory controllers, and the compressor and
the decompressor. Please note that the prototype system is
designed just for verification and experiments, so that non-
compressed data are read and written from/to the external
memories. For real applications, we will use the compressor
and the decompressor as shown in Fig.1 to provide a
computing engine the enhanced bandwidth from the memory
bandwidth by reading and writing compressed data from/to
the memories. By executing a control software on the host
PC, we can stream data from a DDR2 memory to the other
being compressed or decompressed by the compressor or
the decompressor. We used ALTERA Qsys development
tool to generate the system with the PCI-Express and
DDR2 controllers. We implemented the prototype system
with ALTERA Stratix IV FPGA EP4SGX230, which is
on the TERASIC DE4 development-board [14], while the
PCI-Express controller operates at 250MHz, the compressor
and the decompressor in the prototype system operate at
125MHz. We implemented the four-stage compressor and
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the three-stage decompressor of Fig.3 for IEEE754 single
precision floating-point numbers with the cubic predictor
of Fig.4. All the logics are written in Verilog-HDL, and
compiled with ALTERA Quartus II compiler ver.11.1 where
“Speed” option is specified.

4.2 Resource consumption
Table 1 shows resource consumption of the compressor

and the decompressor. The compressor consumes only 909
Adaptive look-up tables (ALUTs) and 612 dedicated regis-
ters, which correspond to 0.5 % and 0.34 % of the total
resources on EP4SGX230 FPGA, respectively. The biggest
module in the compressor is VFCONV, which consumes
313 ALUTs (0.17 %) and 110 registers (0.06 %). The de-
compressor is also very small, consuming only 822 ALUTs
and 439 dedicated registers which are 0.45 % and 0.24 %
of the total resources, respectively. FVCONV is the largest
module, consuming 428 ALUTs (0.23 %) and 106 registers
(0.058 %). These results show that the designed compressor
and decompressor are so small that they occupy less than
1 % of the total resources of this FPGA, consuming less
resources than those of [12]. Furthermore, they require no
block memory and no DSP block. This is very important for
auxiliary utilization of compression because such embedded
hard macros should be used by major computing modules.

4.3 Operating frequency and throughput
For the compilation results, we obtained the critical paths

and their delays of each pipeline stage by using the Timing-
Analyzer tool of Quartus II compiler. Table 2 shows the
critical-path delays and the maximum operating frequency,
Fmax, calculated with the delays. All the stages of the
compressor and the decompressor haveFmax higher than 125
MHz of the operating frequency of the prototype system.

In the compressor, Stage 1 has the longest delay of 4.141
ns, because of the critical path from the shift buffer to the
pipeline register through the cubic predictor. The second
longest delay is of the critical-path in Stage 4 that includes
VFCONV. This is due to the shift and concatenation oper-
ations in VFCONV. Consequently, the maximum frequency
of the compressor is givenFmax = 241 MHz by Stage 1. We
expect operation at 250 MHz for the compressor by further
optimizing or pipelining the cubic predictor and VFCONV.

In the decompressor, Stage 2 has the longest delay of
5.052 ns, which givesFmax = 197.9 MHz to the decom-
pressor. Stage 1 of the compressor has the shorter delay than
5.052 ns irrespective of using the predictor. This is because
the critical path of the decompressor’s Stage 2 includes the
data-reconstruction unit in the path from and to the buffer.
Since the feedback loop in Stage 2 cannot be pipelined
further with 1-cycle feedback maintained, we need much
more effort to redesign and optimize Stage 2 forFmax of
250 MHz or higher. This is our future work.

4.4 Verification and compression ratio
We verified correct compression by the implemented hard-

ware in comparison with software-based implementation.
For verification, we used the computational results of the
2D9V LBM [4] shown in Figs.10. Each computational result
is composed of nine streams, each of which contains800×
480 floating-point numbers in single precision. As a result,
we made sure that the hardware compressor correctly outputs
the compressed data, and the decompressor reconstructs the
original floating-point data completely.

Then we evaluateda compression ratiowhich is defined
with Rcomp = (Size of original data)

(Sizeof compressed data) . We also used the same
data as of Figs.10 for evaluation. The average compression-
ratio of the data isRcomp= 3.7, where most of floating-point
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Fig. 9: Prototype implementation for experiments.

Table 1: Resource consumption of Stratix IV EP4SGX230.
Modules ALUTs Dedicatedregisters Block memory bits

Compressor 909(0.50%) 612(0.34%) 0 (0.0%)

Controller 119(0.065%) 166(0.091%) 0 (0.0%)

Cubicpredictor 195(0.11%) 132(0.72%) 0 (0.0%)

LZCU 4 (0.002%) 0 (0.0%) 0 (0.0%)

VFCONV 313(0.17%) 110(0.060%) 0 (0.0%)

Others 278(0.15%) 204(0.11%) 0 (0.0%)

Decompressor 822(0.45%) 439(0.24%) 0 (0.0%)

Controller 100(0.055%) 166(0.091%) 0 (0.0%)

Cubicpredictor 228(0.12%) 132(0.072%) 0 (0.0%)

FVCONV 428(0.23%) 106(0.058%) 0 (0.0%)

Others 66 (0.036%) 35 (0.019%) 0 (0.0%)

Stratix IV EP4SGX230 182400 182400 14625792

numbersare compressed at the ratio of 4 while some few
numbers intermittently have lower ratios from 2 to 3. Please
note that the theoretically maximum compression ratio is
32/8 = 4 for the compressor. The average compression-
ratio, Rcomp = 3.7, means that the compressor and decom-
pressor can reduce the bandwidth required for the floating-
point data-stream by a factor of 3.7. Compression ratios for
different predictors are reported in [4].

In the prototype system running at 125 MHz, the band-
width of the input data isWorig = 4 × 125 = 500MB/s.
The compressor reducesWorig into Wcomp= 500/3.7 = 135
MB/s. In other words, we can feed the decompressor with
a compressed data at a rate of 135 MB/s or less, which
is enhanced to 500 MB/s at most. If we assume operation
at 200 MHz, the compressor can reduce the bandwidth of
800 MB/s into 216 MB/s. However, the peak bandwidth
of DDR3-1600 memory at 800MHz or PCI-Express Gen3.0

Table 2: Critical path delay and maximum frequency (Fmax)
of each pipeline stage.

Compressor Decompressor

Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3

Delayof critical path [ns] 4.141 3.946 3.596 4.045 4.550 5.052 3.439

Fmax [MHz] 241.5 253.4 278.1 247.2 219.8 197.9 290.8

with 8 lanes are 12000 MB/s and 16000 MB/s, respectively,
which are much higher than the input bandwidth of the
compressor operating at 200 MHz. If we need enhance such
high bandwidth further, we can use multiple compressors
and decompressors to simultaneously transmit multiple data-
streams in parallel. Designing such a parallel compressor is
our future work.

5. Conclusions
In this paper, we have presented full implementation of

FPGA-based lossless compressor and decompressor for a
floating-point data stream. We have verified their behavior
and evaluated resource utilization, an operational frequency
and compression performance of the implemented hardware.
We implemented the prototype system with a PCI-Express
interface and two DDR2 controllers on ALTERA Stratix
IV EP4SGX230 FPGA. Compilation results show that the
compressor and the decompressor are very small, each of
which consumes only 0.5 % of the total ALUTs of the FPGA
without using block memories and DSP blocks. Such very
compact modules are suitable for auxiliary utilization to en-
hance the bandwidth in HPC systems. Timing analysis shows
that the compressor and the decompressor can operate at 200
MHz at least, while we need to optimize or redesign the
feedback loop including the predictor for higher frequency
of the decompressor. The average compression ratio of 3.7
means that the compressor can reduce the bandwidth to 1/3.7
of the original one.

Since the compressor can have the input bandwidth of
up to 800 MB/s assuming 200 MHz operation, which is
less than the bandwidth of a DDR3 memory or a PCI-
Express interface. To apply compression hardware to these
wider bandwidth, we will design a parallel compressor and
decompressor to handle multiple data-streams with multiple
compression modules. We will develop their IP cores and
apply them to our LBM accelerator.
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Abstract— This paper presents a novel architecture of an
asynchronous FPGA for handshake-component-based de-
sign. The handshake-component-based design is suitable
for large-scale, complex asynchronous circuit because of
its understandability. This paper proposes an area-efficient
architecture of an FPGA that is suitable for handshake-
component-based asynchronous circuit. Moreover, the Four-
Phase Dual-Rail encoding is employed to construct circuits
robust to delay variation because the data paths are pro-
grammable in FPGA. The FPGA based on the proposed
architecture is implemented in a 65nm process. Its evalu-
ation results show that the proposed FPGA can implement
handshake components efficiently.

Keywords: FPGA, Reconfigurable LSI, Self-timed circuit, Asyn-
chronous circuit

1. Introduction
Field-programmable gate arrays (FPGAs) are widely used

to implement special-purpose processors. FPGAs are cost-
effective for small-lot production because functions and
interconnections of logic resources can be directly pro-
grammed by end users. Despite their design cost advan-
tage, FPGAs impose large power consumption overhead
compared to custom silicon alternatives [1]. The overhead
increases packaging costs and limits integrations of FPGAs
into portable devices. In FPGAs, the power consumption
of clock distribution is a serious problem because it has an
enormously large number of registers than custom VLSIs. To
cut the clock distribution power, some asynchronous FPGAs
has been proposed [2], [3], [4], [5], [6].

In asynchronous FPGAs, CAD tools that is different from
ones for synchronous FPGAs is necessary to implement
applications. Although, few CAD tools or design flow for
asynchronous FPGAs have been introduced. As the design
methods for asynchronous circuits, some method uses the
Signal Transition Graph[8] and another method employs
handshake components[9][10]. Handshake-component-based
design is easy to understand and easy to construct datapath.
Besides, Balsa[10] is proposed as a design methodology that
uses handshake components. Balsa is a hardware description
language and it allows circuit designers not to pay attention

to low-level details such as control of handshake. Thus,
it is suitable for designing complex large-scale circuits
such as a DMA controller[10] and a microprocessor[11]. In
Balsa, 46 handshake components are defined and complex
asynchronous circuits are synthesized by combining them.
Moreover, there are synthesis tools that generate a handshake
circuit that consists of handshake components and a netlist
consists of standard cells. Therefore, Balsa is desirable as a
inputs of CAD tools for asynchronous FPGAs.

This paper proposes an area-efficient architecture of
an FPGA that is suitable for handshake-component-based
asynchronous circuit. The proposed architecture implements
handshake components that is defined in Balsa efficiently.
Small frequently-used handshake components are imple-
mented on a logic block (LB), and other handshake compo-
nents are implemented using more than one LB. As hand-
shake components can be mapped directly on the proposed
architecture, circuit designers can utilize existing CAD tools
that generate a netlist of handshake components. Therefore,
a design method for the proposed FPGA is established.

2. Architecture
2.1 Handshake-component-based design
methodology

In asynchronous circuits, the handshake protocol is used
for synchronization instead of using the clock. Figure 1
shows a four-phase handshake sequence. First, the sender
sets the request wire to 1 as shown in Fig. 1(a). Second, the
receiver sets the acknowledge wire to 1 as shown in Fig.
1(b). Third, the sender sets the request wire to 0 as shown
in Fig. 1(c). Finally, the receiver sets the acknowledge wire
to 0 as shown in Fig. 1(d) and wire values return to initial
state.

A asynchronous functional element such as a binary
operator is denoted by a handshake component. Figure 2
shows handshake components. Each handshake component
has ports and is connected to another handshake compo-
nent through a channel. Communication between handshake
components is done by sending request signal from the
active port and acknowledge signal from the passive port.
Depending on the kind of handshake components, data
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Fig. 1: A four-phase handshake sequence.
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Fig. 2: Handshake components and channels.

signals are sent along with request signals or acknowledge
signals. The number of ports and the width of data signal can
be varied. Each function of handshake component is simple
and clear. Furthermore, handshaking that consists of request
signal and acknowledge signal is symbolized as a channel.
Therefore, handshake circuits are easily understandable and
manageable.

Handshake components constitute a handshake circuit.
Figure 3 shows an example of a handshake circuit. Circuit
synthesis is done by replacing each handshake component
with corresponding asynchronous circuit.

2.2 FPGA architecture for Handshake-
component-based design

As mentioned in preceding section, circuit synthesis is
done by replacing each handshake component with cor-
responding asynchronous circuit. Thus, asynchronous cir-
cuits can be implemented on a conventional FPGA by
replacing each handshake component with a combination
of LBs. However, because it is difficult to implement the
C-element that is frequently used in asynchronous circuit
area-efficiently, hardware cost of a handshake component
becomes large. In the proposed architecture, each LB in-
cludes dedicated circuits for implementing handshake com-
ponents. Therefore, the proposed architecture can implement
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Fig. 3: A simple handshake circuit (4 bit counter).
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Fig. 4: Overall architecture.

handshake circuits efficiently. The proposed architecture can
implement 37 out of 46 handshake components defined in
Balsa. Handshake components that have multiple ports or
wide datapath can be implemented using several LBs.

2.3 Overall architecture
Figure 4 shows the overall architecture of the proposed

FPGA. The FPGA consists of a mesh-connected cellular
array likes conventional FPGAs. In the proposed FPGA
architecture, the Four-Phase Dual-Rail (FPDR) encoding
is employed for asynchronous data encoding. The FPDR
encoding encodes a bit and a request signal onto two wires.
Table 1 shows the code table of the FPDR encoding. The
main feature is that the sender sends a spacer and a valid data
alternately as shown in Fig. 5. FPDR circuits are robust to the
delay variation. Hence, the FPDR encoding is the ideal one
for FPGAs in which the data path is programmable. Because
the FPDR encoding is employed, three wires are required for
a data bit. Two wires are used for the data encoded in FPDR
encoding, and one wire for the acknowledge signal.
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Table 1: Code table of the FPDR encoding.

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

Time
(0,1) (0,0) (0,1) (0,0) (0,1)

Data 
Value

0

Data 
Value

0

Data 
Value

1Spacer Spacer

(0,0)

Spacer

Fig. 5: Example of the FPDR encoding.
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Fig. 6: Structure of an LB.
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Fig. 7: Structure of an Encode module.

2.4 Logic block structure
Figure 6 shows a LB of the proposed architecture. The

proposed FPGA architecture can implement 37 handshake
components. The LB consists of an LUT, a Variable module,
a While module, a Call module, a Case module, an Encode
module, multiplexers and a demultiplexer. The detailed cir-
cuits of modules are shown in Fig. 7, 8, 9 and 10. As shown
in Table 2, each module implements several handshake
components. In addition, several handshake components are
implemented by employing programmable interconnection
resources or combining two modules as shown in Table 3.
The number of the transistors of the proposed FPGA is small
because of resource sharing.
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Fig. 8: Structure of a Case module.
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Fig. 9: Structure of a Call module.

3. Evaluation

The proposed FPGA is implemented in a 65nm CMOS
process. Table 4 shows the comparison result of the cells of
the proposed architecture and the conventional architecture.
The number of transistors of the proposed architecture is 2.5
times larger than the conventional one. Table 5 shows the
implementation result of the Case handshake component that
has four output ports. Compared to conventional architecture,
the number of the transistors is reduced by 37%. This
is because the proposed architecture requires one cell for
implementing the four-output Case handshake component
while the conventional architecture requires four cells.

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  | 135



���

���

���

���

��	
���

����

��	
������

�
�
�

���

�

���	
�������

������

������

������

������

����	�

��	
������ ��	
���

����

�����
������	
������� �

�������

�����

���
 ������

������	
�������	�

�!���	�����

�!���	��	�

�!���	�����

�!���	��	�

�������	�

�

"#
�

���
 ������

"#
����
 ���������

�!!$���
 ���������

Fig. 10: Structure of an LUT, Variable module and While
module.

Table 2: Handshake components and its corresponding mod-
ules.
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4. Conclusions
This paper presented an architecture of an asynchronous

FPGA for handshake-component-based design. The pro-
posed FPGA architecture implements handshake compo-
nents efficiently. Therefore, the proposed architecture is
suitable for the synthesis tools that generate netlists consist
of handshake components, such as Balsa. As a future work,
we are evaluating the proposed FPGA architecture on some
practical benchmarks.
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Abstract— This paper presents a novel asynchronous FPGA
architecture that dual-rail encoding and single-rail encod-
ing are respectively configured in the critical path and
non-critical paths. A dual/single-rail convertible LB (Logic
Block) is designed to realize such configuration. 4-phase
dual-rail protocol is applied to realize asynchronous hand-
shake in only the critical path, which saves handshake
overhead. The non-critical paths use single-rail logic which
has small logic overhead. Compared to conventional dual-
rail design, the proposed FPGA shows its advantages of
low power and high logic density when the percentage of
on-critical-path logic cells in the whole mapping circuit are
less than 80%.

Keywords: FPGA, dual-rail encoding, single-rail encoding, logic
density

1. Introduction
Field-programmable gate arrays (FPGAs) are wildly used

to implement special-purpose processors. FPGAs are cost-
effective for small-lot production because functions and
interconnections of logic resources can be directly pro-
grammed by the user. Despite their design cost advantages,
FPGAs impose large power consumption and silicon area
overheads compared to the custom-desinged alternatives [1].
These imposed overheads increase packaging costs and limit
the usage of FPGAs in portable devices. Compared to the
custom VLSIs, FPGA has an enormous number of registers
which need to be drived by a complex clock distribution net-
work. The high power consumption of the clock distribution
network is a serious problem. To cut this clock power, some
asynchronous FPGAs have been proposed [2], [3], [4], [5].
Asynchronous FPGAs are mainly seperated into two types.

• Bundled-data, or single-rail, asynchronous FPGAs [2],
[3]

• Dual-rail asynchronous FPGAs [4], [5]

Bundled-data asynchronous FPGAs have been based largely
on programmable clocked circuits. They are limited to low-
throughput because their asynchronous pipeline stages use
bundled-data pipelines (Fig.1(a)) that rely on interconnects

Fig. 1: Asynchronous pipelines. (a) A diagram of bundled-
data pipeline. (b) A diagram of dual-rail pipeline.

controlled by delay lines (e.g. [2]). For example, a fabri-
cated asynchronous FPGA chip using bundled-data pipelines
operated at a maximum of 20 MHz in a 0.35µm CMOS
process [3]. On the other hand, dual-rail asynchronous
FPGAs use fully dual-rail delay-insensitive interconnects,
and are based on high-speed asynchronous pipelined circuits
(Fig.1(b)). They can realize much higher throughput. For
example, a dual-rail asynchronous FPGA architecture [4] is
reported that operate at up to 400MHz in a TSMC 0.25µm
CMOS process. However, in spite of the high-throughput of
dual-rail asynchronous FPGAs, the delay-insensitive design
is realized at the expense of dual-rail logic overhead which
deteriorates the power consumption and logic density of
FPGA.

This paper proposes an asynchronous FPGA based on a
dual/single-rail hybrid architecture. A dual/single-rail con-
vertible LB is designed, which can be configured to im-
plement a dual-rail logic or two single-rail logics. When a
circuit is mapped to the proposed FPGA, the convertible
LBs would be selectively configured into dual-rail logic or
single-rail logic by deciding whether the LBs are located
on the critical path or on the non-critical paths. The dual-

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'12  | 139



Fig. 2: A diagram of dual/single-rail hybrid asynchronous
pipeline.

Fig. 3: Overall architecture.

rail logic on the critical path is used to transfer dual-rail
data and handshake signal. Because the handshake circuit
only works in the critical path, the handshake overhead
is greatly reduced. Moreover, when the convertible LB is
configured into two single-rail logics in non-critical paths, it
has higher logic density. In addition, the problem of critical
path mapping can be solved by using the currently existing
routing resources through a mapping algorithm.

2. Architecture
2.1 Overall architecture

Fig.3 shows the overall architecture of the proposed asyn-
chronous FPGA. The FPGA consists of a mesh-connected
cellular array which is same as the conventional FPGAs. In
order to maintain the identical of each cell in the dual/single-
rail hybrid architecture, a dual/single-rail convertible LB is
designed. Fig.4 (a) shows the concept of the convertible LB.
A convertible LB consists of two dual/single-rail convertible
LUTs. According toMode_sel signal, the convertible LB
can works in dual/single-rail hybrid mode or single-rail
mode. Dual/Single-rail hybrid mode LB merges the two
LUTs to output a dual-rail data. It is named as dual/single-
rail hybrid mode because it has a mixture of a dual-rail input
and many single-rail inputs. On the other hand, single-rail
mode LB seperates the two LUTs to be configured into two
independent single-rail logics. Fig.4 (b) shows the mapping
concept of 3-input convertible LBs. The LBs on the critical
path are configured into hybrid mode LBs. Each hybrid mode

Fig. 4: Design concepts. (a) Concept of dual/single-rail
convertible LB. (b) Mapping concept of 3-input convertible
LBs.

Table 1: Code table of the 4-phase dual-rail encoding

LB produces a dual-rail data and encoded handshake signal.
On the other hand, the LBs on the non-critical paths are
configured into single-rail mode LBs. Each signel-rail LB
prodcues two signel-rail data. As a result, the whole mapping
has small handshake overheand and high logic density.

2.2 Asynchronous protocols

As we mentioned in introduction, there are mainly two
types of asynchronous FPGAs. These asynchronous FPGAs
are respectively based on bundled-data, or single-ral, pro-
tocols or dual-rail protocols. Furthermore, these protocols
are detailly seperated into 4-phase protocol and 2-phase
protocol [6]. Because our proposed design is based on 4-
phase protocol, we just focus on 4-phase dual-rail protocol
in this paper.

Table1 shows code table of the 4-phase dual-rail encoding.
4-phase dual-rail encoding encodes a bit onto two wires,
(w_t, w_f ). The data value 0 is encoded as (0,1) and 1
is encoded as (1,0); the spacer is encoded as (0,0). Fig.5
shows an example of the 4-phase dual-rail encoding. In the
data transfer, every data is separated by a spacer. The timing
information is encoded in dual-rail data.
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Fig. 5: An example of the 4-phase dual-rail encoding.

Fig. 6: Structure of dual/single-rail convertible logic block.

2.3 Structure of logic block

Fig.6 shows the structure of dual/single-rail convertible
logic block. There are a swtich module, two dual/single-
rail convertible LUTs, two registers and a handshake con-
troller. Depending on the working modes, the switch module
controls the connetion between inputs and LUTs to output
a dual-rail data or two single-rail data. The handshake
controller would be disabled when the convertible LB works
in single-rail mode to save power.

In the convertible LB design, LUT design is the most
important part. Conventional dual-rail asynchronous FPGAs
prefer using dynamic LUT circuit because of its advantages
such as high speed, low power and hazard-free. In spite
of these advantages, dyamaic LUT circuit has a timing
constraint that all inputs should become valid before circuit
enter evaluation phase. This timing constraint can be easily
satisfied with the timing information encoded in dual-rail
data. However, the non-critical data paths in our design use
single-rail encoding which losses the timing information.
It would cause serious problems with using dynamic LUT
circuit. Therefore, a static LUT circuit is chosen to be used
in our design.

Fig.7 shows a 3-input dual/single-rail convertible LUT.
According tomode_sel signal, the convertible LUT works
in dual/single-rail hybrid mode or single-rail mode. When
the convertible LUT works in single-rail mode (mode_sel=
1), the inputs arein0, in1 and in2_t. The convertible
LUT works same as the conventional LUT in synchronous
FPGA design. When it works in dual/single-rail hybrid mode
(mode_sel = 0), the inputs arein0, in1 and (in2_f, in2_t).
Two convertible LUTs are respectively configured to true and
complement outputs. In addition, the hybrid mode LUT has
a timing constraint that the dual-rail data should be the last
to arrive at the inputs. Otherwise, hazards would occur.

Fig. 7: A 3-input dual/single-rail convertible LUT.

2.4 Critical path mapping

The mapping of a robust critical path is important for the
proposed architecture. A robust critical path guarantees not
only the satisfaction of timing constraint in the convertible
LUT but also the correctness of data flow in pipeline.
Fortunately, a robust critical path can be easily mapped by
using a placement and routing algorithm. For conventional
FPGAs, many placement and routing algorithms have been
proposed to minimize the delay time of the critical path,
such as [7]. These algorithms can also be adversely used
to enhance the critical path by enlarging the delay time
of the critical path. In addition, the mapping problems of
placement, routing and partitioning in asynchronous FPGAs
are simplified without the requirement of meeting the global
clock constraint [8]. It offers us more freedom to choose a
appropriate mapping algorithm to get a robust critical path.

In FPGA mapping, a path delay can be estimated by using
the information of LB delay, CB (Connection Block) delay,
SB (Swicth Block) delay and their process variations. Our
mapping algorithm is simply explained as follows:

1) Analyze a circuit to get the critical path before it is
mapped to the FPGA.

2) Map the circuit to FPGA with the lowest priority of
the analyzed critical path.

3) CalculateNLB , NCB and NSB in every data paths.
N is the numbers of LB, CB or SB.

4) Estimate delay time of each path by using the equation
of (DLB+VLB)NLB+(DCB+VCB)NCB+(DSB+
VSB)NSB . D is the delay time andV is process
variations.

5) Remap the critical path longer by increasingNLB ,
NCB or NSB , if the critical path has not the largest
delay time.

6) Repeat step 3), 4) and 5) until geting a reliable critical
path.
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Table 2: Comparison of FPGA cells of dual-rail design and
the hybrid design

Fig. 8: The relationship between energy consumption and
percentage of on-critical-path logic cells in 100 logics.

3. Evaluation
Table 2 shows comparison of FPGA cells of dual-rail

design [4] and the proposed hybrid design. The results are
simulated by HSPICE in a 65nm CMOS process. A FPGA
cell consists of one LB, five CBs and one SB, which is shown
in Fig.3. The results show that single-rail mode of a proposed
cell saves lots of power and transistor count to realize a
logic function. Fig.8 shows the relationship between energy
consumption and pcercentage of on-critical-path logic cells
in 100 logics. Fig.9 shows the relationship between transistor
count and pcercentage of on-critical-path logic cells in 100
logics. Multiple supply voltages researchs [9], [10] show
that the percentage of on-critical-path logic cells in many
media applications are between 20%to 40%. If 20%to 40%
of 100 logics use hybrid mode logic, Fig.8 shows that the
hybrid design saves 35.7%to 49.8% energy compared to
conventional dual-rail design. At the same time, Fig.9 shows
that the hybrid design saves 21.1%to 32.4% transistors.

4. Conclusion
This paper introduced an asynchronous FPGA based

on dual/single-rail hybrid architecture. When a circuit is
mapped to the proposed FPGA, dual/single-rail hybrid logic
is configured in critical path to transfer dual-rail data and
realize handshake process. On the other hand, single-rail
logic is configured in non-critical paths, which has small
logic overhead. As a result, the proposed asynchronus FPGA
has small handshake overhead, low power consumption and

Fig. 9: The relationship between transistor count and per-
centage of on-critical-path logic cells in 100 logics.

high logic density. A mapping algrothm for the critical path
is also simply introduced, which will be further developed
in our future work.
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Abstract—This paper proposes a system to extract digital 

signatures from watermark-protected cores that are embedded 

into complex systems, without direct access to the in/out pins. 

Two subsystems are developed: the first one detects the signature 

extraction sequence using the reset line; and the second one—the 

signature extractor subsystem—directs the recovery of the digital 

signature by measuring variations in the power consumption of 

the overall system. Experimental results show the viability of the 

system proposed, with very low impact on the area, while 
providing high robustness and security.  

Keywords-embedded systems, IP cores, intellectual property 

protection, watermarking, FPGA 

 

I.  INTRODUCTION 

The intellectual property protection (IPP) of cores 
continues to exist as an important subject in the field of modern 
digital design techniques [1]. Reuse-based design requires an 
easy, robust, and secure protection framework for claiming 
authorship rights inside the fast-emerging market of IP cores. 
For this reason, multiple solutions have been proposed [1-7], 
those based on watermarking techniques being especially 
affordable and adequate for the IPP of reusable modules [2-4]. 
Most of these modules (or cores) are used as constructive 
elements for the implementation of complex systems. In this 
situation, the cores are embedded into the system under the 
design, making access difficult to the protection mechanisms 
implemented for rights verification purposes. Therefore, the 
protection of cores embedded into complex systems represents 
a challenge, due to this lack of control over the I/O pins of the 
core. 

In order to approach the protection of embedded cores, a 
well-checked and robust procedure for IP core protection must 
be adapted to support the hard restrictions access to a core that 
is under protection. The IPP@HDL [7] procedure has been 
selected because of the following characteristics: (1) It can be 
applied to any digital system; (2) The protection is performed 
at the high-level design stages; and (3) the method for 
spreading the signature into the combinational logic makes 
removal of the watermark very difficult. Otherwise, IPP@HDL 
presumes, in order to activate the signature extraction process 
and the signature recovery process, that the I/O pins of the core 
under protection are very accessible. Therefore, the techniques 
used in IPP@HDL to activate the signature extraction, and the 

extraction process itself, must be significantly modified to 
achieve the protection of an isolated core embedded in a 
complex system. 

In embedded cores, the only pin accessible a priori, is the 
reset line. Since it is an input, it is the candidate to be used for 
receiving the signature extraction sequence (SES) and to 
activate the extraction process. There are no output pins 
accessible, so the extraction of the signature must be performed 
introducing modifications on the overall parameters of the 
system. One parameter that can be affected for the embedded 
core is the power consumption of the system, which is also a 
parameter that is easy to measure. 

In this sense, the present paper outlines a new technique for 
introducing the SES through the reset line, which activates the 
extraction process. For the extraction of the signature, a 
procedure based on the variation of power consumption is 
proposed. The resulting embedded core protection procedure is 
named e-IPP@HDL and is described alongside the article.  

II. PROTECTION OF IP CORES: IPP@HDL FRAMEWORK 

Among the various procedures for IP core protection, those 
based on watermarking techniques are the most secure and 
robust. The underlying idea is to introduce a digital signature in 
the core under protection, which remains hidden for the user, 
but contains author rights information [2]. The watermark must 
be difficult to remove and cannot interfere with the normal 
functioning of the system.    

Several watermarking techniques for the IPP of cores have 
been proposed in the literature, at different design levels and 
using various methods to hide the digital signature [4-7]. The 
most complete and general is IPP@HDL [7], which spreads the 
signature over the combinational logic, becoming part of the 
design. With this technique, the removal of the signature makes 
the system fail, which makes this technique very tamper-
resistant. IPP@HDL also provides a procedure to extract the 
signature, based on the introduction of a Signature Extraction 
Sequence (SES), which puts the system in “extraction mode,” 
performing the extraction through the output pins. The SES 
must be safe enough to cause the system to enter “extraction 
mode” accidentally or by means of an attack.  

Once the core has been watermarked, the digital signature 
can be recovered introducing the SES and observing the data 
output pins. If the core is embedded and the output pins are not 
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directly accessible, it will be necessary to use other 
alternatives. In this paper, we propose to produce detectable 
modifications on the power consumption of the overall system 
to perform the signature extraction.  

III. ACTIVATION OF SIGNATURE EXTRACTION ON 

EMBEDDED CORES 

We assume that a core has been protected spreading a 
digital signature by means of the IPP@HDL techniques. Thus, 
the signature is hosted in the combinational logic of the core in 
the appropriate signature locations (SLs), and a secure SES has 
been selected. The next step is to create the additional logic for 
the signature extraction. If the protected core will be used as 
part of a complex system, the data input pins are not 
practicable, as assumed in [7], and the only option is to use the 
reset line to detect the SES and activate the extraction process.  

In this scenario, the SES must be introduced as serial bit 
stream through the reset line. As we have only one line, this 
will have to be used to synchronize the transmitter and the 
receiver and to transmit the bit stream corresponding to the 
SES. Also, in order for the SES detector to operate, a clock 
signal is required, and this internal clock must be synchronized 
with the external source providing the SES. With these 
considerations, the block diagram of the SES detector 
operating over the reset line is presented in Figure 1. 

 

Figure 1.  Block diagram for the SES detection subsystem 

The developed system contains three blocks, the reset line 
input, and the activate output that signals the extraction 
subsystem to initiate the extraction process. Below, the 
function of each one of these blocks is described. 

A. Internal clock 

The SES detection subsystem requires a clock signal to 
operate. The general clock signal of the core cannot be 
accessible; therefore, it is necessary to internally generate a 
signal clock. This operation is performed using ring buffers, 
which presents some difficulties because of the inherent 
instability of the design and simulation software tools. The 
time interval the clock generates depends on the specific 
device, so it is not difficult to make experimental 
characterizations of the devices when the cores are to be 
implemented on FPGAs. This block only possesses an output, 
named i_clock, which drives the internal auto-generated signal 
clock to the other blocks.  

B. Synchronization logic 

This block analyzes the reset line, which waits until an 
“initiating transmitting” pattern is detected. When this pattern 
arrives, the logic extracts the period of the clock signal which 
uses the external source in order to synthesize an external clock 
imitation to synchronize the reception of the SES bits. When 
the clock has been synthesized, the ready_rx signal indicates 
that all is ready to receive the SES bit stream. The block has 
the reset and i_clock signals as inputs and generates the s_clock 
(carrying the synthesized clock signal) and ready_rx in order to 
synchronize the reception of the SES stream. 

C. SES detector 

Using the clock signal synthesized by the “synchronization 
logic” block, the SES detector can read the SES bits 
transmitted by the external source. The SES received is 
compared with the SES expected, in order to assign the 
activate output to the ‘1’ value and initiate the extraction 
process. IPP@HDL proposes an alternative to using LFSRs to 
generate safe SESs, and this option is preferred in e-IPP@HDL 
in order to simplify the SES detector. Figure 2 shows the block 
diagram of the SES detector.  

 

Figure 2.  Diagram of the SES detector block 

The elements integrating the SES detection subsystem, the 
timing definitions, and the requirements for performing the 
SES detection are described below.  

D. Timing definitions and requeriments for detecting the SES 

Let’s define tinternal as the time interval of the internal 

signal clock and texternal as the time interval of the external 
source clock. If the external clock must be synthesized from 

the internal one, then: 

                                   texternal = n tinternal                            (1), 

with n being an integer. To minimize round errors, 

synchronization problems, and thus guarantee that it is 

possible to synthesize the external clock,  

                                     texternal >> tinternal                           (2), 
thus, slow clock signals will be used to transmit SES.  

Otherwise, to signal that a SES is going to be transmitted, a 
large pulse will be sent using the reset line. This pulse must be 
longer than the overall SES to avoid confusion (e.g. a SES 
“111111…” could be interpreted like an initiating transmitting 
pulse).  If a maximum of a 512 bit-length is assumed for the 
SES (and it is secure enough to avoid accidental activations 
and attacks): 

                                   tpulse > 512 texternal                           (3), 
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The synchronization logic (SYNL, Figure 3) will expect a 
pulse tinit long, being: 

                                   tinit > tpulse                                       (4), 
which guarantees that SYNL detects the pulse, providing a 
safety margin defined as: 

                                   tsafe = tpulse – tinit  =  nsafe tinternal       (5), 

 
A practical value for tinit can be 500ms, and 550 ms for tpulse, 

avoiding any problem related with the SES pulses (texternal could 
be ≈ 1ms), and forcing the synchronization logic to detect a 
500ms pulse in the reset line. Later, the SYNL will wait for the 
next pulse, which provides the external clock time interval, 
texternal. With this information, the SYNL can reconstruct the 
external clock in order to synchronize the reception, and to 
signal (using ready_rx) the SES detector to receive the SES. 

Table I resumes the values for the timing parameters 
analyzed, assuming tinternal ≈ 30ns (an estimate from the 
datasheet and simulation), and Figure 5 shows the data that 
needs to be put on the reset line in order to introduce the SES 
into an e-IPP@HDL protected core. 

TABLE I.  TIMING REQUERIMENTS FOR SES SYNCRONIZATION 

Timing Parameters recommended 

Parameter Min Max. e-IPP@HDL 

t_pulse 200ms 2s 550ms 

t_init 190ms 1.5s 500ms 

t_safe 10ms 500ms 40ms 

n_safe 300 3e6 8e5 

t_external 100us 100ms 1ms 

 

On the other hand, the SES detector module will wait for 
the 1.1 s pulse, will signal the SYNL module to reconstruct the 
external signal clock, and then the SYNL will trigger the LFSR 
and the comparator block synchronized with the s_clock to 
verify the SES. Figure 3 shows the corresponding timing 
diagram.  The first row shows the s_clock; the second row 
shows the ready_rx, which triggers the LFSR and the 
comparator; and the third row shows the expected SES, as 
generated by the LFSR. 

 

Figure 3.  Timing for generating the expected SES for comparison purposes 

E. Implementation issues 

The implementation of the proposed system needs to solve 
some questions. First, it’s necessary to make an estimation of 
the internal clock period in order to detect the 500ms pulse 
marking the beginning of the transmitting SES. This period 
depends on the physical device used for implementation, but it 
is not critical while meeting conditions (2), (3), and (4) and 
whether or not the t_safe is wide enough (Table I). With tinternal 
≈30ns and tsafe = 40ms, we have nsafe = 8e5. Depending on the 
characteristics of the devices, tsafe can be increased as needed.  

Moreover, the different order of magnitude of the times 
defined, with the instabilities introduced by the oscillation 
structures used in the clock generator, makes it difficult to 
simulate. The design must be carefully partitioned to be 
simulated and checked prior to its physical implementation.   

IV. DESIGN EXAMPLE FOR THE SES DETECTOR  

 With the aim of test being the functioning of the proposed 
structure for the SES detector for embedded cores, a design 
example has been carried out. The SES detector for e-
IPP@HDL has been implemented in a SPARTAN 3A 
evaluation kit by AVNET [8], which has a Xilinx XC3S400A-
4FTG256C Spartan-3A FPGA [9]. The tool used was ISE 10.1.  

Table II shows the implementation results for the internal 
clock generator. The area occupied is negligible, and Figure 4 
shows the experimental waveform taken with an Agilent 16901 
logic analysis system.  

TABLE II.  INTERNAL CLOCK GENERATOR IMPLEMENTATION 

Device utilization summary 

Logic utilization Used Available Utilization 

Number of Slice 

Flips Flops 
4 7168 <1% 

Numer of 

Occupied Slices 
4 3584 <1% 

Total Number of 

4 input LUTS 
5 7168 <1% 

 

The estimation from gate delays in post-place and route 
simulation for the clock time interval is ≈ 30ns and is measured 
with the logic analyzer tinternal=24ns. 

 

Figure 4.  Waveform for the generated internal clock 

Table III shows the implementation data for the entire 
SYNL module. A row with the number of slice registers is 
included because ISE has used them for counter synthesis. The 
overall occupation (the total number of the 4 input LUTS) 
rounds the 1%. Figure 5 shows, in the third row, the 1.1s pulse 
to signal the beginning of the transmitted SES, followed by the 
1ms synchronization pulse (texternal =1ms has been used). The 
fifth row in Figure 5 shows the synthesized clock by SYNL, 
which also has a 1ms time interval and is clearly synchronized 
with the external source, allowing synchronization with the 
SES transmitting. 

TABLE III.  SYNL  IMPLEMENTATION RESULTS 

Device utilization summary 

Logic utilization Used Available Utilization 

Number of Slice 

registers 
65 7168 1% 

Number of 

occupied Slices 
67 3586 1% 

Total Number of 

4 input LUTS 
102 7168 1% 
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Figure 5.  Waveform for the synthesized clock 

V. EXTRACTION OF SIGNATURES IN EMBEDDED SYSTEMS  

The SES detector developed in Sections III and IV can 
detect the introduction of a valid SES through the reset line and 
send a signal to the extraction logic in order to perform the 
digital signature extraction. If the core under protection is 
embedded, there are no output pins accessible, and the 
signature must then be recovered, changing other parameters 
affecting the entire system. 

In [10], a procedure for extracting digital signatures by 
producing variations on the power consumption is proposed. 
The method presented has some drawbacks, the main one being 
the complex signal processing needed to ensure the correct 
recovery of the signature. The aliasing problems have their 
origin in the use of the main clock signal of the system that 
feeds the ring oscillators, which constitute the base of the 
structures for the increase in power-consumption. In e-
IPP@HDL, buffer oscillator structures are proposed, without 
using any clock signal, avoiding aliasing problems. The idea is 
to construct a signal generator operating with a low-frequency 
clock obtained from the internal clock developed in Section IV. 
As shown in Figure 6, the hosted digital signature is recovered 
and the high consumption module (HCM) is driven, producing 
appreciable variations in the power-consumption of the entire 
system.  

 

Figure 6.  Block diagram of the signature extractor 

The main block of the signature extractor is the HCM. It 
must have a low area and high power-consumption, when 
required. In order to test its viability it was put into a medium-
size core with high activity, like a clone of a Z80 µP [11], a 
T80 [12] operating at 40Mhz, implemented in a Virtex 5 
xc5vlx30-1ff676 Xilinx device [13]. For power consumption 
measures, a Virtex-5 LX prototype platform [14] with an 
Agilent N6705A DC power analyzer [15] was used. While 
testing the HCM, the µP was forced to high activity.  

Table IV presents the magnitude of current pulses when 

the HCM went into high power mode (IH) compared with 

normal operation mode (IL). The time interval used was 10ms. 

It can be concluded that while the minimum size HCM 

produced a significant increase in the power line current, using 
a 4-block HCM raised the difference to 5mA, producing more 

reliable output signals. Bigger HCMs do not affect the size of 

current pulses and consume more area. Thus, 4 block-size 

HCMs are committed for implementing the signature 

extractor, making the current variations in the power line 

detectable. 

TABLE IV.  CURRENT CONSUMPTION FOR DIFFERENT SIZES OF HCM 

#n  blocks 
Current consumption variations 

IH (mA) IL (mA) Diff.(mA) 

2 252,4 249,6 2,8 

4 250,7 246,1 4,6 

8 254 249,2 4,8 

VI. CONCLUSIONS  

A framework for the protection of cores embedded in 
complex systems has been shown. A digital signature 
containing the author rights is hosted into the core to be 
protected using the IPP@HDL general procedure, and 
extending the procedure to aim in the extraction of the 
signature without direct access to the IN/OUT pins of the core 
under protection. This extension, e-IPP@HDL, activates the 
extraction of the digital signature using only the reset line and 
recovers the contents of this signature by means of the DC 
consumption analysis of the overall system. The results shown 
have a low area of impact with high performance and 
reliability. 
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Abstract— Heterogeneous processing with CPUs and low-
power accelerators attract many attentions since they can
achieve power-efficient computing. However, the potential
of using low-power accelerators such as FPGAs in high-
performance computing to reduce the power consumption is
rarely exploited. In this paper, we propose a CPU/FPGA het-
erogeneous platform to implement the finite-difference time-
domain (FDTD) computation. According to the experimental
results, we found that 95% of the computation can be done
in FPGA using 32bit fixed point arithmetic without suffering
a major precision loss. According to our estimation, we can
achieve the same performance of CPU/GPU computing with
10 times less power consumption by using the proposed low-
power heterogeneous platform.

Keywords: Heterogeneous processing, high-performance comput-
ing, supercomputing, FDTD

1. Introduction
Applications used in low-power embedded processing

to high performance computing have different tasks such
as data-intensive tasks and control-intensive tasks. Hetero-
geneous processing is proposed to execute such different
applications power-efficiently. In heterogeneous processing,
different processors such as CPUs and accelerators are used
as shown in Fig.1. If the tasks of an application are correctly
allocated to the most suitable processors, all the proces-
sors work together to increase the overall performance. An
example of a heterogeneous high-performance computing
platform (HPC) is “Tianhe-1A” [1] which has Intel X5670
CPUs and NVDIA GPUs (graphic processing unit).

The main problem in commercially available HPC plat-
forms such as [1] is the large power consumption. High-end
CPUs and GPUs have a power consumption of more than
100W and 300W respectively. A very promising solution to
reduce the power consumption of HPC platforms is to use
FPGAs. Recent FPGAs have over 300,000 logic cells, over
5MBits of memory and high-speed data transfer interfaces.
Therefore, a single FPGA is large enough to hold hundreds
of processing elements (PEs). Although FPGAs have a lot
of resources and consume a very small power, they are

Fig. 1: Heterogeneous processing

rarely used in the HPC platforms. One main reason for not
using FPGAs is their high programming complexity. The
other main reason is the weak floating-point performance in
FPGAs compared to that in GPUs.

In this paper, we propose a low-power heterogeneous
platform with CPUs and FPGA accelerators. We propose a
CUDA-like (Compute Unified Device Architecture) SIMD-
2D (Single Instruction, Multiple Data-2 dimensional PE
array) architecture to reduce the programming complexity.
The basic idea of this architecture and its programming
environment are already proposed in [2]. In this paper, we
develop the basic SIMD-2D architecture proposed in [2]
to be applicable for HPC applications. We use the finite-
difference time-domain (FDTD) algorithm for electromag-
netic field computation as an example. According to the
experimental results with FDTD computation, we found that
95% of the computation can be done by fixed-point arith-
metic without a major precision loss. However, for the rest
of the calculations, we must use double-precision floating-
point arithmetic. Therefore, we can perform floating-point
arithmetic in CPUs and fixed-point arithmetic in FPGAs. The
proposed heterogeneous environment produces almost the
same performance of GPU-based processing at a 10 times
smaller power consumption.
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Fig. 2: Flowchart of the FDTD computation

2. Heterogeneous Platform for 2D-
FDTD computation

2.1 FDTD-2D computation

FDTD [3] algorithm is one of the most popular method
of computational electromagnetic simulation due to its sim-
plicity and very high computational efficiency. It has been
already implemented successfully in multicore CPUs. There
are many recent works such as [4] and [5] that use GPUs to
accelerate the FDTD algorithm.

Figure 2 shows the main tasks of the FDTD algorithm. It
starts with the initial values of the electric and magnetic
fields. Then the initial data are processed to obtain the
electric field information for the first time-step. After that,
the periodic boundary conditions are applied. Then the
magnetic field information are obtained and the periodic
boundary conditions for the magnetic field are applied.
This process continues for a given number of time-steps.
Equation (1) shows the electric field computation and Eqs.
(2) and (3) show the magnetic field computation. Electric
and magnetic fields inx, y, z directions are denoted byE
andH respectively. The time-step is denoted byn and the
coordinates of the 2D fields are denoted byi and j. Note
that, the boundaries of the electric and magnetic fields are
calculated differently. A detailed description of the FDTD
algorithm is given in [3]

En+1
z (i, j) = En

z (i, j)

−Py(i, j)
{
H

n+ 1
2

x (i, j + 1/2)−H
n+ 1

2
x (i, j − 1/2)

}
+Px(i, j)

{
H

n+ 1
2

y (i+ 1/2, j)−H
n+ 1

2
y (i− 1/2, j)

} (1)

Table 1: Precision vs. computation error

Method
Maximum absolute error

Electric field Magneticfield

1
Double-precision(DP)

- -
floating point

2
Single-precision(SP)

1.16× 10−5 9.20× 10−6
floating point

3
5% DP floating point

1.50× 10−7 1.92× 10−7
95% 32bit fixed point

4
25% DP floating point

6.80× 10−8 6.39× 10−8
75% 32bit fixed point

Table 2: Specifications of the heterogeneous platform
Processor Numberof cores Maximum power
CPU:

6 130W
Intel core i7 3960X
GPU:

1024 360W
GeFoce GTX5900
FPGA: DE4 board [6]

191 PEs 20W
Stratix IV GX EP4SGX530

H
n+ 1

2
x (i, j + 1/2) = H

n− 1
2

x (i, j + 1/2)

−Qy(i, j) {En
z (i, j + 1)− En

z (i, j)}
(2)

H
n+ 1

2
y (i+ 1/2, j) = H

n− 1
2

y (i+ 1/2, j)

−Qx(i, j) {En
z (i+ 1, j)− En

z (i, j)}
(3)

Table 1 shows the precision of the FDTD computation
when using floating-point and fixed-point arithmetic. We
assume that the method 1 that uses double-precision floating-
point is the desired result. According to the data, the preci-
sion loss of methods 3 and 4 that use fixed-point arithmetic
is very small. Moreover, the precisions of the methods 3 and
4 are much better than that of method 2 which uses single-
precision floating-point arithmetic. In the FDTD algorithm,
the dynamic range of the data is very wide close to the
electric and magnetic field boundaries. Therefore, double-
precision floating point arithmetic are required in this area.
Compared to that, the data in the middle of the fields have
a very narrow dynamic range. Therefore, 32bit fixed-point
arithmetic is sufficient. According to this results, we can use
FPGA with 32bit fixed-point ALUs to do 95% of the total
computation at a very low power consumption of less than
20W.

2.2 Low-power heterogeneous platform
We use a heterogeneous environment with a multicore

CPU, a GPU and an FPGA. Figure 3 shows a computational
node of this heterogeneous platform. FPGA and GPU are
connected through the PCI express bus. The specifications
of the platform is shown in Table 2.

One main problem of the CPU/FPGA low-power het-
erogeneous platform is the programming complexity of the
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Fig. 3: Computational node of the heterogeneous platform

Fig. 4: Overall architecture

FPGA. To reduce the programming complexity, we propose
a CUDA-like architecture for the FPGA. Figure 4 shows
the proposed FPGA architecture. It consists of a Nios II
CPU core, on-chip memory and SIMD accelerator cores.
An external DDR2 SDRAM is connected to the CPU core
through the FPGA board. The Nios II CPU core is mainly
used as the control unit of the accelerators. The proposed
SIMD accelerator is designed similar to the GPU accelerator
so that we can use the same CUDA code. The basic idea of
the SIMD accelerator and its programming environment are
discussed in the previous work [2]. The major difference of
the architecture in [2] and this paper is the structure of the
PE.

Figure 5 shows the architecture of a 32bit fixed-point PE.
It consists of 5 adders and 3 multipliers. The data path is
fully pipelined so that an output is produced in every clock
cycle after the pipeline is filled. We can have 191 such PEs in
a single “Stratix IV GX EP4SGX530” FPGA. It is possible
to increase the number of PEs by using a much powerful

Fig. 5: Architecture of a PE

Table 3: Resource usage estimation of FPGA implementation
394503Logic blocks (92.8%)

Resources 417140Registers (98.1 %)
(for 191 PEs) 1020DSP units (99.6%)

20Mbits (98.87%)
Frequency 50 MHz
Power (estimated) Lessthan 20W

FPGA.
In the proposed platform, the data close to the boundaries

of the electric and magnetic fields are processed in the CPU
(Intel core i7-3960X) and the rest of the data are processed
in the FPGA. After the boundary data are processed, they are
transferred to the FPGA. We can hide this CPU processing
overhead by overlapping the boundary data processing in the
CPU with the electric and magnetic field computation in the
FPGA.

3. Evaluation
We estimated the resource usage, power and frequency

of the proposed architecture for Stratix IV GX EP4SGX530
FPGA in the Altera DE4 [6] board. According to the esti-
mation shown in Table 3, we can implement up to 191 PEs
in the FPGA at 50MHz frequency. The power consumption
is less than 20W.

Table 4 shows the comparison with the CPU/GPU het-
erogeneous platform. The processing time of the CPU/GPU
implementation is measured under the visual studio 2008 en-
vironment using CUDA timer. The time for the CPU/FPGA
environment is estimated by calculating the number of clock
cycles at 50MHz frequency. We consider the method 3 in
Table 1 for the CPU/FPGA implementation. According to
the results, CPU/FPGA implementation is slightly slower
than the CPU/GPU implementation. However, the power
consumption is reduced by more than 10 times. Note that,
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Table 4: Processing time
Method Processingtime (s)
CPU + GPU 10.08(measured)
CPU + FPGA 11.26(estimated)

over 90% of the processing time in CPU/FPGA imple-
mentation is due to the boundary data transfers from the
FPGA global memory to the local memories. Therefore,
reducing the data amount by applying techniques such as
data compression is necessary.

4. Conclusion
We have proposed a low-power heterogeneous HPC plat-

form with a multicore CPU and an FPGA. We have shown
that 95% of the FDTD computation can be done using fixed-
point computation without a major precision loss. The low
power consumption is achieved by using FPGA accelerators
instead of GPU accelerators for most of the computation.
Using the proposed low-power heterogeneous platform, we
achieved almost the same performance of the CPU/GPU
computing at a 10 times lower power consumption.
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